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In many ways, the articles “What Numbers Could Not Be” and “Mathematical Truth”
byPaulBenacerraf have dominated the philosophyofmathematics for aboutfifty years.
If you take into account the early version of “Mathematical Truth” that Benacerraf has
kindly agreed to publish in this volume for the first time, some of his main ideas have
circulated in the philosophical community since the late sixties.

Many seminal articles and important books have argued in favor of views about
what truth in mathematics amounts to and about what numbers could or could not be.
Most of them have done so by taking a stand on these two timeless papers; at the very
least, this is where they started from. The philosophy of mathematics might be
philosophy “in a pure state, stripped of all worldly appendages; austere; philosophy
without the sugar coating of a pretense to Relevance to Life” (Benacerraf 1996b1: 10),
yet everyone working today in philosophy tout court has read them.

And this is only, if I may say so, the tip of the iceberg. “Frege: The Last
Logicist,” from 1981, and Benacerraf’s very first publication, “Tasks, Super-Tasks,
and Modern Eleatics,” from 1962, have also shaped, or reshaped, some key areas
of the discipline. Because of them, people have looked at Frege’s logicist project of
reducing mathematics to logic, and at the vexed puzzle of how an infinite number of
operations might be performed in a finite time, in a different way.

As far as Frege is concerned, we should perhaps travel back to the spring of
1961, when Benacerraf presented his 1960 dissertation on the “fundamentally
mistaken” doctrine of logicism in a course on the philosophy of mathematics he
gave at Princeton (Benacerraf 1960: iii, 255). George Boolos, then a student, was
“irritated” by Benacerraf’s reading of it, judged it “perverse” but later on came to
agree with it (Boolos 1996: 143–144)2. It is striking that Benacerraf’s rejection of
logicism, mainly on the ground that concepts of mathematics cannot be defined in
terms of concepts of pure logic (Chaps. I and II of Benacerraf 1960), and that we do
not accept (or reject) mathematics on extra-mathematical grounds (Chap. III of
Benacerraf 1960), has stimulated an interest in the logicist outlook, e.g., in sub-
programs of logicism offering reductions of fragments of arithmetic, in
neo-logicism and, more generally, in a discussion of Hume’s principle.
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As for supertasks, Benacerraf and Putnam pointed as early as 1964, in the wake
of the 1962 paper, that “[i]f we take the stand that ‘nonconstructive’ procedures—i.e.,
procedures that require us to perform infinitely many operations in a finite time—are
conceivable,3 though not physically possible (owing mainly to the existence of a limit
to the velocity with which physical operations can be performed), then we can say that
there does ‘in principle’ exist a verification/refutation procedure for number theory”
(Benacerraf and Putnam [1964] 1983: 20). The point here is that the notion of truth in
number theory is a bona fide notion only insofar as the notion of a completed actually
infinite series of operations is one itself. Intuitionist worries about the actual infinite,
Dummettian antirealist worries about the non-constructivity of classical proofs, and, a
fortiori, strict finitist worries about the permissiveness of the “in principle” clause at
work in the claim, all take us back to the notion of truth, a unifying, perhaps the
unifying theme of Benacerraf’s work.4

Then, last but not least, there is the anthology of texts in the philosophy of
mathematics, the Selected readings that generations of students have used as a
sourcebook—indeed as a textbook—edited, twice prefaced, and introduced in
collaboration with Hilary Putnam (Benacerraf and Putnam [1964] 1983).

Few philosophers trigger such a fresh start on perennial philosophical problems
and do so much to teach their discipline. The idea of an international meeting
devoted to a critical evaluation of Benacerraf’s work in the philosophy of mathe-
matics, with its wide bearings on the philosophy of language, the philosophy of
logic, and epistemology, seemed a natural one. The idea came in the form of a
workshop rather than in the form of a glorifying celebration, with a large part of the
time to be set aside for discussion. The prospect of benefiting from Paul’s partic-
ipation certainly gave it more than a tinge of excitement.

The workshop eventually took place in Paris at the Collège de France on May 10
and May 11, 2012. The participants were Jody Azzouni, Jacques Dubucs, Bob
Hale, Brice Halimi, Sébastien Gandon, Mary Leng, Andrea Sereni, Stewart
Shapiro, Claudine Tiercelin, and myself. The present volume includes some of the
papers read at the workshop and five additional essays. Unfortunately, the papers by
Jacques Dubucs, Bob Hale and Claudine Tiercelin are missing from the volume.
Hale’s “Properties and the Interpretation of Second-Order Logic” has since
appeared in Philosophia Mathematica, Vol. 21 (2), 2013, pp. 133–156; it was first
published online by the journal on August 3, 2012. The five essays that were not
presented at the workshop are, respectively, by Justin Clarke-Doane, Jon Pérez
Laraudogoitia, Antonio León-Sánchez and Ana C. León-Mejía, Marco Panza, and
Philippe de Rouilhan.

The fourteen essays have been conveniently organized into four parts. Mine
serves as an introduction. The first part includes those that directly address what is
known today as “Benacerraf’s dilemma.” The second gathers contributions directly
involved with issues in the philosophy of mathematics and in particular with that
part of it concerned with arithmetic and number theory. The third is devoted to
supertasks. The fourth part contains the ancestor of “Mathematical Truth,” a draft
from January 1968 that Benacerraf started writing in 1967 with the joint support
of the John Simon Guggenheim Foundation and of Princeton University, and
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Notes

1. Benacerraf’s name, either by itself or with the name of another author, followed
by a date, refers to the corresponding publication in the Chronological
Bibliography of Paul Benacerraf to 2016 at the end of this volume.

2. Boolos, G. (1996). On the Proof of Frege’s Theorem. In A. Morton and S.
P. Stich (Eds.), Benacerraf and his Critics (pp. 143–159). Blackwell Publishers:
Oxford and Cambridge, Mass.

3. E.g., if one has an infinite series of operations to perform, say S1, S2, S3, … and
if one is able to perform S1 in 1 min, S2 in 1/2 min, S3 in 1/4 min, etc.; then in 2
min one will have completed the whole infinite series.
[The note appears as footnote 12 of the Introduction [revised] in Benacerraf and
Putnam [1964] 1983: 20. Editor’s note].

4. See, e.g., “Mathematical Truth (1968 version),” in this volume: Sect. 12.1, and
the Answer to objection 2: Truth vs. knowledge in Sect. 12.5.
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Introduction
In Defence of a Princess Margaret Premise

1. Introductory Remarks

In their introduction to the volume Benacerraf and his Critics, Adam Morton and
Stephen Stich remark that “[t]wo bits of methodology will stand out clearly in
anyone who has talked philosophy with Paul Benacerraf”: (i) “[i]n philosophy you
never prove anything; you just show its price,” and (ii) “[f]ormal arguments yield
philosophical conclusions only with the help of hidden philosophical premises”
(Morton and Stich 1996: 5).

The first bit will come to some as a disappointment and to others as a welcome
display of suitable modesty. Frustration notwithstanding, the second bit suggests
that, should one stick to modesty, one might after all prove something just in case
one discloses the hidden premises of one’s chosen argument and pleads convinc-
ingly in their favor on independent grounds.

I would like to argue that a philosophical premise may be uncovered—of the
kind that Benacerraf has dubbed “Princess Margaret Premise” (PMP)1—that helps
us reach a philosophical conclusion to be drawn from an argument having a
metamathematical result as one of its other premises, viz., Gödel’s first incom-
pleteness theorem. To be somewhat more (im)precise, something philosophical may
be inferred from Gödel’s THEOREM VI (Gödel [1931] 1986: [187] 173) (and its
proof) with respect to the vexed question whether truth may transcend recogniz-
ability in principle by us, humans.

Obviously, this first approximation of the question in such unblushingly
Dummettian terms of transcendence, truth, recognizability, and the in principle vs.
effective distinction must be found wanting. It is, of course, unspecific to a fault to
speak in such general terms of the grand philosophical problem of the relation
between truth and the recognition of truth, but it is not for that matter either
dreadfully vague or offensively inexact. The argument I shall propose, provided it is
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indeed one, has three virtues: (i) It shows with a non-negligible degree of accuracy
what is the price one has to pay for the philosophical conclusion I believe may be
secured; (ii) it is genuinely philosophical (as opposed to genuinely metamathe-
matical) and does indeed lead to a conclusion, so that something in philosophy may
be proved after all; (iii) thanks to (i)–(ii), the argument enables us to come up with a
more refined version of the problem I just started with without thereby loosing sight
of its very general scope. I shall explain why it is important not to loose sight of
such a scope in the concluding remarks, i.e., why, although powerful formal tools
play a crucial role in the obtaining of a sober and strictly philosophical conclusion,
the larger philosophical picture, for the benefit of which “a lot of delicate informal
interpretation” (Morton and Stich loc. cit.) has to be put to good use, must in the end
matter to us (see infra Sect. 8).

The only rather feeble apology I am able to offer at this point with regard to the
unreliability of the introductory formulation of the question to be answered is that
the forthcoming argument reveals “unexpected premises and consequences”
(Morton and Stich loc. cit.) at play in the controversy about the independence of
truth from our ability to recognize that truth obtains when it does, so that, if the
argument does indeed go through, we shall at least end up with an improved
formulation of the philosophical puzzle we started with.2

2. Correctness and Truth

Let me start with Gödel’s result proper and with remarks—some by Gödel, some by
others—pertaining to it that will play a role in the forthcoming argument.

Gödel certainly thought it worthwhile to remind his readers that his proof of the
first incompleteness theorem was constructive. He pointed out the fact that the
result had been obtained “in an intuitionistically unobjectionable manner” (Gödel
[1931] 1986: [189] 177) and offered as a warrant for this claim that “all existential
statements [Existentialbehauptungen] occurring in the proof [were] based upon
THEOREM V [i.e., the theorem immediately preceding the first incompleteness the-
orem] which, as is easily seen, is unobjectionable from the intuitionistic point of
view” (Gödel loc. cit.: note 45a). In Kleene’s terminology, THEOREM V states that
every primitive recursive relation is numeralwise expressible in P, where P is the
system obtained from Whitehead and Russell’s Principia Mathematica, without the
ramification of the types, taking the natural numbers as the lowest type and adding
their usual Peano axioms (Kleene 1986: 129). When expressed formally, without
reference to any particular interpretation of the formulas of P, and in Gödel’s own
terminology which favors the indirect talk of Gödel numbers and of concepts
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applying to these numbers rather than a direct talk of the formal objects (i.e., the
formulas and the variables), THEOREM V claims that:

For every recursive relation R(x1,…, xn) there exists an n-place RELATION SIGN r (with the
FREE VARIABLES u1, u2,…, un) such that for all n-tuples of numbers (x1,…, xn) we have

R(x1,…, xn) → Bew [Sb(ru1     …  un )], 
Z(x1)…  Z(xn)     

R(x
1
,…, x

n
) → Bew [Neg(Sb(ru1      … un ))]. 

Z(x1)…  Z(xn)      

Gödel [1931] (1986: [186] 171)

Gödel sketches an outline of the proof and notes on this occasion that THEOREM

V is itself “of course, […] a consequence of the fact that in the case of a recursive
relation R it can, for every n-tuple of numbers, be decided on the basis of the axioms
of the system P whether the relation R obtains or not” (Gödel op. cit.: [186n39]
171n39). This, it must be noted, may also be decided by means of procedures that
remain unobjectionable from the intuitionistic standpoint.

Gödel’s true and undecidable formula, the existence of which is proved con-
structively by the first incompleteness theorem (THEOREM VI), may seem at first
sight to offer a counterexample to the claim that truth may not transcend recognition
by us, either in principle or effectively, for the proof establishes the existence of a
formula which does have both properties, viz., that of truth and that of undecid-
ability. Gödel’s diagonal argument does indeed provide a true statement which is
nevertheless omitted by the relevant algorithm.3

Two aspects of the situation passed on to us by Gödel’s proof somewhat
complicate the matter. First, there are followers of Wittgenstein’s Remarks on the
Foundations of Mathematics like Shanker who think that it is incoherent and indeed
downright nonsensical to claim that a statement or formula is (or may be, for that
matter) both true and undecidable. Shanker points out that, if a complete mani-
festation of our recognition of the truth of the Gödel formula were possible, the
semantic formulation of the theorem would thereby be defective: It would turn the
connection between a mathematical statement and its proof into a purely external
matter (Shanker 1990: 221ff). This strongly suggests that the first incompleteness
theorem should be formulated in syntactical fashion, without reference or com-
mitment to truth, as stating that every formal system S, if consistent and when
elementary number theory is taken as its domain, contains a formula A expressing a
proposition A of elementary number theory such that neither A nor its negation ¬A,
expressing ¬A, is provable in S.

So, to begin with: May we or may we not claim that Gödel’s undecidable
formula is true simpliciter, or true tout court, as distinct from true beyond recog-
nition, either effectively or in principle, by us, humans? When giving an informal
sketch of the main idea of the proof in the first section of his 1931 paper, Gödel says
that if the proposition [R(q);q] were provable, it would also be correct [richtig] and
that, in that case, Bew [R(q);q] would hold [würde gelten], “which contradicts
the assumption” (Gödel op. cit.: [175] 149).4 If, on the other hand, the negation of
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[R(q);q] were provable, Bew [R(q);q] would hold. Then both [R(q);q] and its
negation would be provable, “which again is impossible.” He then concludes this
introductory section by saying that “[f]rom the remark that [R(q);q] says about itself
that it is not provable, it follows at once that [R(q);q] is [correct] [richtig ist], for
[R(q);q] is indeed unprovable (being undecidable). Thus the proposition that is
undecidable in the system PM still was decided by metamathematical considera-
tions” (Gödel op. cit.: [176] 151).

Gödel does not use the German wahr in this instance. Jean van Heijenoort resorts
to the English equivalent of that German word in his translation (which I have
departed from here on purpose), and Kleene, in his presentation, also claims that the
formula A is “unprovable, hence true [emphasis mine]” (Kleene 1986: 128).5 Is it
sensible, then, to claim that truth forces its way into the Gödelian picture—which
after all is entirely in terms of a proposition being correct and in terms of a claim to
the effect that x is not a provable formula (or, better, in terms of a claim to the effect
that a natural number q belongs to a class K of natural numbers, with K defined in
terms of non-provability) holding—only because of van Heijenoort’s translation,
and that Kleene’s presentation is, likewise, flawed, or at least anomalous in this
respect?6

It is not, even though there is no notion of “correctness” or of “holding” to be
mistranslated in THEOREM VI itself:

For every x-consistent recursive class k of FORMULAS there are recursive CLASS SIGNS r such
that neither v Gen r nor Neg (v Gen r) belongs to Flg(k) (where v is the FREE VARIABLE of r).

Although Gödel’s formulations do not involve a direct or explicit claim to the
effect that the undecidable formula is true, or true without any further proviso or
qualification, but only a claim to the effect that, for all x, x is not the Gödel number
of a proof of it, it can hardly be maintained that the formula which is undecidable
modulo the consistency and x-consistency of P, and which states that it is neither
provable nor refutable in the system, may not be a truth bearer (and thus, may not
be true simpliciter and, a fortiori true and undecidable).

As far as the informal presentation is concerned, the undecidable formula truly
says of itself that it is not provable for it is indeed not provable. Is the situation any
different when, instead of referring to the undecidable formula by means of its
metamathematical description [R(q);q], we refer to it by means of its Gödel number
once we have determined the number q, i.e., by the expression “17 Gen r” (“x Gen
y” denoting the 15th number theoretic function proven to be (primitive) recursive)?
Undeniably, Gödel concludes his proof of the first incompleteness theorem by
saying that “17 Gen r is therefore undecidable on the basis of k, which proves
THEOREM VI” (Gödel op. cit.: [189] 177) and not by saying that “17 Gen r is
therefore true and undecidable on the basis of k, which proves THEOREM VI.” The
undecidable formula nevertheless truly claims that 17 Gen r is not k-PROVABLE and
that Neg (17 Gen r) is, likewise, not k-PROVABLE.

Of course, Gödel remarks that “the purpose of carrying out the […] proof with
full precision […] is, among other things, to replace the [assumption that every
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provable formula is true [[my emphasis]] in the interpretation considered] by a
purely formal and much weaker one” (Gödel op. cit. : [176] 151). Kleene might be
right to explain that we assumed that only true formulas are provable in S to the
extent that this assures us that “the formulas have clear meanings” (Kleene loc. cit.),
but this is so provided that only true formulas are provable no matter how one refers
to them. The important point here is not about meaning, or limpidity of whatever
must be grasped. What counts is that it must not matter in this respect that 17 Gen
r is a sentential formula whose undecidability has to be stated as being about this
particular SENTENTIAL FORMULA. Kleene is certainly right to remind us at this point
that the informal concept of truth was not “commonly accepted as a definite
mathematical notion, especially for systems like [Principia Mathematica] or
Zermelo-Fraenkel set theory” (Kleene loc. cit.). It nevertheless remains that whether
we are dealing with a metamathematical description of the undecidable proposition
or with the undecidable proposition itself (see Gödel op. cit.: [175n13] 149n13 for
the distinction), we are indeed in a situation where contradicting (simple) consis-
tency would yield the falsity of [R(q); q] (and, likewise, the falsity of 17 Gen r), and
where contradicting x-consistency would similarly yield the falsity of its negation
(and, likewise, the falsity of the negation of 17 Gen r), as well as the falsity of an
assertion to the effect that the negation of these formulas is, respectively, provable
and k-PROVABLE.

The assertion of its own unprovability and irrefutability qualifies A for the status
of truth bearer and the price one must pay for the jettisoning of consistency and
x-consistency is indeed, by parity, that of its falsity. Bivalence, here, is not the
issue. The issue is whether the purely formal and much weaker assumption that has
replaced the informal and stronger assumption that every provable formula is true
has disposed of our problem, or dissolved it into thin air, and my point here is that it
has not.7

3. The Logical Constants

Another set of remarks that turn out to be relevant for the forthcoming argument
concerns Gödel’s conception that “intuitionistic logic, as far as the calculus of
propositions and of quantification is concerned, turns out to be rather a renaming
and reinterpretation than a radical change in classical logic” (Gödel [1941] 1995:
[3] 190). Gödel defended this view after the publication of the undecidability
results, first in a paper given at Karl Menger’s colloquium in Vienna in 1932 (Gödel
[1933] 1986), then in a lecture delivered at Yale in April 1941, from which the last
quote is taken. He then discussed the view with respect to the issue of the use of
abstract intuitionistic proofs in the explanation of the intuitionistic logical constants
in the Dialectica paper from 1958 (Gödel [1958] 1990; see also Gödel [1972a]
1990). What is of interest to us here is that Gödel, building on results by Glivenko,
showed that the classical propositional calculus is a subsystem of the intuitionistic
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propositional calculus and that every valid classical formula also holds in Heyting’s
propositional calculus provided that we translate the classical “notions” or “terms”
(Gödel’s words), or “operators” (Kleene’s word), i.e., the classical constants, into
the intuitionistic ones (Glivenko 1929; Gödel [1933] 1986).

In particular, Gödel defends the somewhat surprising claim that the law of
excluded middle is intuitionistically acceptable. In classical propositional logic, *
being the classical negation sign, the formula p _ *p is a tautology. According to
Gödel, although intuitionists reject this law for their notion of disjunction, one may
nevertheless define another notion of disjunction in terms of the other primitive
logical constants of their calculus so that, ¬ being the intuitionistic negation
sign, p _ ¬p is also a tautology. It is sufficient, Gödel claims, to define, quite
trivially, p _ q as ¬(¬p • ¬q); p _ ¬p may then be translated, just as trivially, into
¬(¬p • ¬¬p) so that the law of excluded middle turns out to be a special case of the
law of contradiction, which is, of course, intuitionistically valid (Gödel [1941]
1995: [2] 190).8

This noticeably overlooks the fact that intuitionists will want to reject classical
deduction rules such as double negation elimination and classical tautologies such as
excluded middle precisely because they contend that such rules and tautologies
would allow us to draw illegitimate inferences (from judgments to judgments) on the
basis of relations of alleged logical consequence holding between antecedent
propositions and consequent propositions. What they will object to, while still
holding on to the law of contradiction, is the very idea that either p or its negation is
true, or holds, whether or not we could either be able to decide the truth-value of p or
that of its negation. What is at stake here is the contention that the truth of p, or that
of its negation, is independent and indeed cut off from all links with our ability to
decide the matter one way or the other. Moreover, intuitionists require that the
assertion of a negated proposition be justified by a reductio ad absurdum of the
supposition that we could obtain a proof of the proposition, or of the supposition that
the means of obtaining such a proof are, at least in principle, at our disposal. This
strongly suggests that neither disjunction nor negation may be translated in the way
suggested.

In yet other words, the following translation manual:

classical logical constants
1 2 3 4

� p p ! q p _ q p&q

intuitionistic logical constants
1 2 3 4

:p :ðp � :qÞ :ð:p � :qÞ p � q

overlooks the fact that, although no special symbol for intuitionistic disjunction is
thereby introduced, the claim to the effect that p _ ¬p is valid is now tantamount to
the claim that we have a constructive proof of p _ *p, or at least the means of
obtaining one. But the claim that we have a constructive proof of p _ *p is
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acceptable only provided that we have either a proof of p or a proof of *p and this
is definitely not what we have with classical disjunction. It seems, as a matter of
fact, that what we have now with the translation manual is rather a claim to the
effect that, independently of our knowledge, and perhaps indeed unbeknownst to
us, either there is a proof of p or there is a proof of its negation. Or perhaps what we
have is a claim to the effect that either we have a proof of p or we have a proof that
we shall never have a proof of its negation, i.e., a proof of the double negation of
p. But, clearly, the second term of this disjunction must be rejected by the intu-
itionist for a proof of the double negation of p doesn’t amount, intuitionistically, to
a proof of p (see Endnote 8).

In other words, we are surreptitiously appealing to an objective realm of proofs
which is disconnected and indeed “cut off from all links with the reflecting subject,”
to borrow Bernays’ apt phrase in his description of platonism in the philosophy of
mathematics (Bernays [1935] 1983: 259; see also Bernays op. cit.: 267). In doing
so, we are appealing to a notion of proof that is obviously not faithful to the
constructive standpoint.9 If this is the case, the Glivenko-Gödel translation manual
leaves both the classical logician and the intuitionistic logician unsatisfied, precisely
because, most vividly in the case of excluded middle, both will judge that the
meaning imposed upon disjunction and negation by way of the translation manual
is arbitrary.

Although it may seem at first blush that the validity of excluded middle does not
depend upon any peculiarity in the interpretation of disjunction that intuitionists
would object to on the ground that the translation manual would propose a defi-
nition of disjunction “in terms of their [emphasis mine] other primitive logical
symbols” (Gödel [1941] 1995: [1–2] 190), i.e., in terms of intuitionistic conjunction
and negation, we are indeed in the situation that Dummett describes thus:

The failure of the law of excluded middle is often explained by the different meaning of
intuitionistic disjunction: a proof of A_B is a proof either of A or of B, and hence a claim to
have proved A_¬A amounts to a claim either to have proved A or to have proved ¬A. Such
an explanation of the matter is correct as far as it goes, but it will naturally leave a platonist
with the feeling that the meaning imposed upon _ is arbitrary: on any view on which either
A or ¬A must be true, irrespective of whether we can prove it, to repudiate that sense of _ in
which we can assert A _ ¬A a priori is to deny ourselves the means of expressing what we
are able to apprehend.

Dummett (1977: 18)

There is in particular, at this fundamental level of primitive logical laws,
something that seems to undermine the translation claim inherited from Glivenko
and that Dummett does not underline in his objection, namely a disagreement about
the logical form that a proper reductio should take and which directly concerns
negation. It must be remarked, and indeed stressed in this instance, that a classical
reductio is not equivalent to an intuitionistic one and that each yields a particular
form of negation, so that* may not, after all, be translated into ¬. The intuitionist’s
rationale for the rejection of both p _ *p and p _ ¬p indiscriminately under the
proposed translation scheme is that neither formulation of excluded middle amounts
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to the claim that we have either obtained a proof of p or a proof of its negation,
or that we are in a position to obtain either. So the distinction between the allegedly
objectionable p _ *p and the quite acceptable p _ ¬p modulo the Glivenko
translation turns out to be invidious: It points quite unfairly to a difference that, as a
matter of fact, does not exist at all.

Let me now take stock of what has been established in Sects. 2 and 3. The first
point is that A is a truth bearer; the second is that the validity of a logical law should
not depend on any peculiarity in the assignment of a meaning to the main constant
occurring in a logically valid statement or formula that prevails as a law. The first
point matters because it licenses us to give a semantic formulation of Gödel’s first
incompleteness theorem. The second matters because, as Gödel insists, the purpose
of carrying out of the proof of THEOREM VI with full precision is to replace the
assumption that every provable formula is true in the interpretation by a weaker
one. There is no doubt that the precision is indeed provided by the proof. The point
here is that there should not be any arbitrariness in our determining whether or not
the notion of truth involved in the claim that A truly asserts its own unprovability
and irrefutability is itself constrained by provability or, on the contrary, uncon-
strained so that the truth of that claim could after all remain beyond recognizability
by us, humans. As the following section should make clear, the notion of truth
involved in the recognition of the truth of the proposition that asserts its own
unprovability with no faulty circularity is not arbitrarily construed. If it were, we
would have begged the question. With these points in mind, let me now turn to the
semantic formulation.

4. Gödel’s Theorem (I): A Semantic Formulation

The main outline of the semantic formulation of Gödel’s proof may be given in the
following way.10 The proof exhibits an elementary formula which is finitary in
Hilbert’s sense and proven to be both unprovable and irrefutable in P, as the result
of the following steps:

1. A formula A is constructed by diagonalization, which asserts its own unprov-
ability in P.

2a. The consistency of P being taken for granted, it is proven that A is unprovable
in P.

2b. Since A asserts its own unprovability in P, A is true.

3. The x-consistency of P being taken for granted, it is proven that A is irrefutable
in P.

4. A is proven to be undecidable in P.

5. A is true and undecidable in P.
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Our warrant for (5) is that Gödel’s formula A is both recognized to be true (at
step (2b)) and proven to be undecidable (at step (4)) since it is both proven to be
unprovable (at step (2a)) and proven to be irrefutable (at step (3)). Our question
from Sect. 1 is whether truth may transcend its recognizability by us, humans. We
have already remarked how large that question is; not just large but truly inordinate.
A sense of balance or proportion might perhaps be restored if we answer two
questions that are related to it according to the description of the doctrine Dummett
has dubbed “realism.”

The first question is whether our understanding of the meaning of A amounts to a
knowledge of its truth conditions.11 In particular, are we able to manifest, make
plain, or display that we do possess that knowledge? We must answer this question
in the positive since the truth of A is recognized as obtaining at step (2b).12 We do
have a means at our disposal to find out that the truth conditions of A are satisfied
and are able to make that knowledge manifest by proving the unprovability of
A under the assumption that P is consistent (step (2a)) and by concluding that A is
true (step 2b)). Our answer is positive because, as Gödel points out (in relation to
the Epimenides paradox):

[we] can construct propositions which make statements about themselves, and, in fact, these
are arithmetic propositions which involve only recursively defined functions, and therefore
are undoubtedly meaningful statements. It is even possible, for any metamathematical
property f which can be expressed in the system, to construct a proposition which says of
itself that it has this property.

Gödel [1934] (1986: [21] 362–363)

It is therefore possible, for any predicate F of the language LP of P expressing in
P a given metamathematical property, to construct by diagonalization a formula
A of LP which asserts of itself that it possesses that property. If we note the Gödel
number of that formula with the symbol “ Ah i,” then, for every predicate F of LP,
there exists a formula such that A , F Ah ið Þ.

Let us choose as a metamathematical property the property of non-provability in
P, expressed in P by the predicate “non-PrP.” We may then construct a formula
A which asserts its own unprovability in P, such that A , non-PrP Ah ið Þ.

Once that first step is accomplished, we may proceed to step (2a) and distinguish
the following substeps leading to (2b).

If A were provable in P, then:

2a1. PrP Ah ið Þ would be true in P and, therefore, provable in P, and
2a2. non-PrP Ah ið Þ would be provable in P, since A and non-PrP Ah ið Þ are logically

equivalent.
2a3. P would therefore be inconsistent.
2a4. Under the assumption that P is consistent, A is therefore unprovable in P.
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Gödel notes in this respect that:

Contrary to appearances, such a proposition [which says of itself that it is not provable]
involves no faulty circularity, for initially it [only] asserts that a certain well-defined for-
mula (namely the qth formula in the lexicographic order by a certain substitution) is
unprovable. Only subsequently (and so to speak by chance [gewissermaßen zufällig]) does
it turn out that this formula is precisely the one by which the proposition itself was
expressed.

Gödel [1931] (1986: [176n15] 151n15)

We may then directly proceed to step (2b): Since A, non-PrP Ah ið Þ, A is true. It is
thus clear that the question whether or not we know the truth conditions of A may—
and indeed must—be answered in the positive by the time we reach (2b), for we can
make it perfectly plain, by proceeding from step (2a1) to step (2b) that we know
indeed that these truth conditions are satisfied. So it is possible for us, humans, to
manifest (to borrow once again from Dummett’s terminology) our knowledge of the
truth conditions of a formula proven to be unprovable in a formal system obtained
from Whitehead and Russell’s Principia, without the ramification of the types, that
takes the natural numbers as the lowest type and incorporates the usual Peano
axioms.

As far as truth conditionality is concerned, we are not in a situation where it
would be appropriate to eschew the twin notions of truth and truth conditions
altogether. Since arithmetic propositions that involve only recursively defined
functions are “undoubtedly meaningful statements” (Gödel [1934] 1986: [21] 362),
there is no reason to jettison the truth conditionality principle, as applied to A. The
meaning of A is indeed constituted by its truth conditions and our knowledge of that
meaning amounts to a knowledge of these conditions. There is indeed something in
virtue of which A is true, i.e., something in virtue of which its truth conditions are
fulfilled, namely the proof that proceeds from (1) to (2b).

5. Gödel’s Theorem (II): Two gaps

The second question related to the description of the doctrine Dummett has dubbed
“realism” is whether we are in a case where truth transcends, one way or another,
recognition by us, humans: either recognition in principle (in which case theoretical
or ideal recognizability is at stake), or effective (in which case actual or feasible
recognition is at stake). This, of course, takes us back to the vexed question we
started with in Sect. 1, but we are now in a somewhat more comfortable position for
we may after all get a purchase on that controversy. Gödel’s proof is unambiguous
in this respect: The elementary formula proven to be undecidable in P given the
consistency and x-consistency of P is true in a sense that may not offend either a
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constructivist or Dummett’s antirealist. As noted at the beginning of Sect. 2.1,
Gödel thought it worthwhile to remark that his proof was unobjectionable from the
intuitionistic standpoint. In particular, the proof does not allow one to conclude that
the truth conditions of A transcend its justification conditions; it shows something
quite different, namely that:

[…] our capacities for justification go beyond what is strictly speaking provable in a formal
system: there exists, for each sufficiently rich formal system [i.e. such that the property
“provable in the system” is expressible in the system], undecidable elementary statements
that we nevertheless have cogent reasons to hold as true.

Dubucs (1992: 57)13

In other words, Gödel’s first incompleteness theorem does not show, either
directly or indirectly—i.e., either with or without the help of a Princess Margaret
Premise—that the extension of the predicate “true” is larger than the extension
of the predicates “recognizable (in principle) as true” and “(effectively) recognized
as true.” The first gap would indeed be unacceptable from a constructivist or
antirealist standpoint, and the second from a strict finitist one. What the proof of the
theorem shows is that the extensions of the last two predicates are larger than the
extension of the predicate “provable in P,” which is quite another matter. What we
have been able to acknowledge so far is that the truth conditions of A are tran-
scendent with respect to its provability in P, but this offers nothing in the way of an
admission of some “absolute” notion of recognition-transcendent truth, of some
supreme notion, as it were, of truth beyond all possible justification, or even of the
possibility thereof.

Two conclusions may thus be drawn.14 The first is that there is no elementary
formula whose truth could be undetectable in a formal system if we assume that
system to be consistent (which we do). The most we are allowed to say is that there
are elementary formulas whose truth remains algorithmically undetectable given the
consistency of the system, and that amounts to a quite different claim. In the case in
point, no algorithmic procedure may help us to conclude that A is true, but its truth
is nevertheless acknowledgeable by us by means of a reductio ad absurdum of the
supposition that it is provable in P, given that P is consistent. Unless we decree that
the unavailability of an algorithmic procedure for deciding the truth-value of a
formula is a criterion for the undetectability of its truth, there are no undetectable
truths, or truths beyond all possible recognition in a formal system if that system is
consistent. So the question is: Should we order the decree? Step (2b), from the
previous section, strongly suggests that we may not even argue for this position
(let alone decree that we may benefit from such a criterion). We must on the
contrary distinguish the case of algorithmic undecidability from that of unde-
tectability of truth-value simpliciter (or, better, in the case at hand, of unde-
tectability of truth-value by any non-algorithmic means) when discussing the vexed
question we started with.
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The second conclusion to be drawn is thus that we must take into account a
finer-grained distinction than the one we have been pondering over so far, i.e., one
that contrasts:

A. The gap between what is true in the standard model for arithmetic and what is
recognizable as true on the basis of cogent reasons

with

B. The gap between what is recognizable as true on the basis of cogent reasons and
what is algorithmically recognizable as true in the standard model for arithmetic.

The first gap is filled by the proof of the unprovability of A and, a fortiori, by the
(complete) proof of its undecidability. The second may not be filled, just because
of the very same proof.

The question now is: What does this tell us about the vexed question we started
with?

6. The Missing Princess Margaret Premise:
Benacerraf’s Assessment

When discussing the case of Gödel’s incompleteness results, and of the first result
in particular, Benacerraf drops more than a gentle hint at what the Princess
Margaret Premise is, and indeed should be, with respect to the anti-mechanistic
conclusion that we are not machines, especially when that conclusion is based on
the “libertarian arguments to the effect that our abilities transcend those of any
machine, outstrip in truth-power any formal system, i.e. do not constitute or cannot
be adequately represented as an i.e. set of sentences etc.” (Benacerraf 1996b:
42–43). The proper PMP one would have to add to the formal result in order to get
the desired conclusion is that:

There is something human mathematicians can do that no machine can do — for any
(theorem proving) machine, find its Gödel number and, given its Gödel number, prove its
Gödel sentence (something it manifestly cannot do).

Benacerraf op. cit.: 31

Although the finer-grained distinction does allow us to conclude that there is
something human mathematicians can do that no machine can do, it does not
thereby support the much stronger view that we are not machines. For the sake of
simplicity, let us call the claim that we must take into account the distinction
between (A) and (B), along with the remarks about gap-filling (and the impossi-
bility of gap-filling) offered at the very end of Sect. 5, the “two gaps thesis.” We are
not in a situation where we could avail ourselves to a specific instance of an
argument of the form:
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ðCÞ ðMetamathematical result; PMPÞ ‘ Conclusion

with:

ðC�Þ ðTheoremVI;Two gaps thesisÞ ‘ Weare not machines

in the role of the desired specific instance.
If we were arguing in this way, we would indeed be deriving an unwarranted

philosophical conclusion. Benacerraf knows this, of course, and remarks in this
respect that:

The [first incompleteness] theorem heralds what its name suggests: an incompleteness in
formalized arithmetic. However hard we may squeeze, we can not extract from it the
thought that, although we once believed we had a concept of arithmetic truth, now that we
see that the sentences true in arithmetic cannot be exactly those corralled by any plausible
formal “proof” procedure (if bivalence is also to be preserved), we must concede that we
did not. The incompleteness that Gödel demonstrated, the incompleteness of the First
Incompleteness Theorem, was shown to exist in the calculus, not in our conception. Not
that one couldn’t be lurking in our conception as well — of course one could — but that
just hasn’t been shown; […] to go that extra mile requires a Princess Margaret Premise and
a separate argument to support it.

Benacerraf op. cit.: 42

The two gaps thesis supports a much weaker view. It is therefore crucial, in order
to identify that view correctly, to avoid either crediting the human mind with
cognitive capacities it does not have, or denying that a Turing machine associated
with the relevant formal system of arithmetic may perform tasks that it is, after all,
clearly able to perform. In particular, it might be objected that although we are able
to provide a justification for A, given that the formula correctly expresses its own
unprovability, the availability of such a justification through a non-mechanizable
step does not thereby establish that we are not a Turing machine, but only that we
are not a Turing machine associated with P. After all, since P is taken to be
consistent and proves Cons(P) ! A, the system P* = P [ {Cons(P)} also proves
A. A machine that would enumerate the arithmetical theorems of P* would indeed
be able to generate A. We would not, therefore, be in a case where some arithmetical
truth has been omitted and where the human mind would thereby be cognitively
“superior” to the machine associated with P*.

The anti-mechanist or libertarian might object at this point that she is not arguing
that there exists an elementary formula of arithmetic whose truth a human mind is
able to justify but that no consistent Turing machine will ever engender (or that
such a machine will necessarily omit). She might wish to claim that her argument
establishes the falsity of the general claim that Turing machines may, qua consis-
tent, enumerate all the arithmetical truths for which (non-mechanical) human minds
are able to find, albeit non-mechanically, a justification. She would then be
proposing, in order to stand her ground, a case-by-case refutation of each particular
instance of the general mechanistic claim. This would imply that the mechanism
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involved in the libertarian claim to be rejected and the libertarian argument to be
refuted amounts to the rather weak proposal that the mind is a machine, but only
given that it is established that, for each particular machine we may care to
consider when assessing the mind-machine metaphysical identity thesis, the mind
isn’t that particular machine. Some x-inconsistencies would indeed be involved in
such a conception of the non-mechanistic mind.15

Notice that Benacerraf, in Benacerraf (1967), seems to argue in favor of such a
thesis: He infers from Gödel’s incompleteness results that we are not Turing
machines, or at least that, if we were, we wouldn’t be able to determine our own
instruction tables. This, of course, is a crucial proviso for it seems indeed to be a
way of saying that the mind is a machine, albeit with the rather damaging caveat
that it may be established, for each particular machine, that the mind is not that
machine, just because the mind cannot acknowledge what its own Turing
instructions are and is therefore clearly deficient in terms of self- or introspective
knowledge.

We are left, then, with a position that draws as a conclusion from Gödel’s first
incompleteness result some indulgent form of libertarianism based on a weak
notion of mechanism; a notion so weak indeed that it cannot do justice to the idea at
the heart of libertarianism that our cognitive abilities transcend those of any Turing
machine and, in particular, that such machines are unable to enumerate all the
formulas whose truth a human mind or agent can acknowledge or recognize insofar
as the mind or agent targets the standard model for arithmetic.

There must be another way to do justice to Benacerraf’s important remark that
Gödel’s incompleteness should not be located in our conception of arithmetical
truth and should safely remain where it belongs, i.e., in the calculus (or in the
family of calculi) we have managed to devise. What is the view, then, which the
two gaps thesis may support, so that one is neither “brandishing” the metamathe-
matical result as the authority for some purely philosophical yet unwarranted
conclusion (Benacerraf 1996b: 43), nor defending one that involves
x-inconsistency?

7. In Defence of the Proper Princess Margaret Premise

It looks like I have driven myself into a tight corner. I have claimed in Sect. 6 that
there is something we can do that Turing machines cannot do, i.e., fill the first gap,
and that this distinction supports a philosophical view which is both weaker than
the strictly anti-mechanistic or libertarian view, and distinct from the one
Benacerraf defends—or at least seems to defend—in Benacerraf 1967. Whatever its
details might turn out to be, the philosophical conclusion we may draw must be true
to Benacerraf’s brief that the incompleteness is in the calculus and not in our
conception of arithmetical truth. If the PMP is indeed one, the philosophical con-
clusion it yields must be consistent with the view that our conception of arithmetical
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truth, or of what makes a statement of arithmetic true when it is true, should be the
very notion we had before Gödel proved his incompleteness result, so that the
“unformalized practice of mathematics” (Benacerraf 1996b:12) must escape
unscathed from the Gödelian result. The point I wish to make with respect to the
two gaps thesis being the proper PMP we need is that, contrary to what Benacerraf
contends, something may not remain unscathed, namely the “implications […]
regarding the very nature of […] ourselves as [the] practitioners [of mathematics]”
(Benacerraf op. cit.: 14). Although we must reject the claim that our former con-
ception of arithmetical truth was defective, despite the undeniable fact, established
by Gödel’s result, that “the sentences true in arithmetic cannot be exactly those
corralled by any formal ‘proof’ procedure (if bivalence is also to be preserved)”
(Benacerraf op. cit.: 42), we still must conclude that there is a human cognitive
capacity that transcends those of any Turing machine. It is the conception of
“ourselves,” or of our minds, or of the scope and nature of our own cognitive
capacities that must be amended so that the incompleteness is, strictly speaking, a
property of the mathematical formalism, and nothing more.

Benacerraf claims that the argument that purports to show that we are

subject to the same limitations that have been proved to hold of the formal languages and
systems that we study in metamathematics (or, in other cases, free from them) […], if it is to
be at all probative […], must include a convincing demonstration of the relevant isomor-
phism (or lack thereof) between our own powers and the relevant features of the systems.

Benacerraf op. cit.: 12

The lack of isomorphism is manifested by our capacity to fill the gap between
what is true in the standard model for arithmetic and what is recognizably true on
the basis of cogent reasons, and this is precisely what allows us to conclude that we
are not machines, albeit neither in the strong metaphysical sense that we are not
strictly speaking identical to any Turing machine, nor in the weaker sense that we
are not any particular machine we may care to consider, given our ignorance, in
each and every particular putative case, of our own instruction tables. The crucial
point here is that Gödel’s incompleteness proof, by showing that the first gap is
filled, thereby shows that the second may not be filled. So our PMP relies crucially
on the claim that we have the cognitive capacity to target the standard model for
arithmetic, for it is this very capacity which is responsible for our acknowledgement
of the truth of A, i.e., the capacity that so troubles Shanker (see, supra, Sect. 2).

To go back to the first Benacerrafian methodological point that Morton and Stich
remind us of (see Morton and Stich 1996: 5) and that I have mentioned at the very
beginning of this paper in the first paragraph of Sect. 1, it would be strange indeed,
perhaps even mystifying, if nothing philosophical could be “proven” or argued in
this regard, so that nothing more than the price of the philosophical point about
ourselves, or our minds, or our cognitive capacity to target the standard model of
arithmetic, would be known. After all, if we have shown the price of what must be
proven, we know the price, and if we know the price, the only thing that could
prevent us from coming by the conclusion is some unfortunate lack of funds. But
how could that be? If we have determined which argument would yield a
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philosophical view when appended to an established metamathematical result, then
we do, de facto, have that argument in favor of the purely philosophical conclusion,
although not necessarily an independent one for each of its premises.16

Benacerraf remarks, of course, that the metamathematical result alone yields a
weaker purely philosophical conclusion (Benacerraf op. cit: 43), so that if (C), then:

ðC0Þ Metamathematical result ‘ ðPMP ! ConclusionÞ

in which case

ðC0�Þ ðTheoremVIÞ ‘ ðTwo gaps thesis ! We are not machinesÞ

would be the specific desired libertarian instance.
I have argued here, though, in favor of a different and somewhat weaker claim.

We do need, of course, independent grounds for that claim, grounds which would
give it a bona fide proper content: We do need to say more on the nature of these
“cogent” reasons. I will not be arguing for such independent grounds here. What
may be stressed, though, is that since A is a genuine truth bearer and the notion of
truth involved in the claim that A truly asserts its own unprovability is neither guilty
of faulty circularity nor arbitrarily construed, Gödel’s proof, together with the two
gaps thesis, yields a claim to the effect that we are free of one limitation that has
been proved to hold for P, where P is the system obtained from Principia
Mathematica, without the ramification of the types, taking the natural numbers as
the lowest type and adding their usual Peano axioms.

We cannot guarantee any public display of our non-mechanical knowledge that
the truth conditions of A obtain, given that P is consistent, over and above what the
argument sketched in Sect. 4 imparts with steps (1)–(5) (and steps (2a1)–(2a4)).
This, obviously, is a defect for which the semantic formulation argued for in Sect. 2
is fully responsible. Shanker, or anyone convinced by his skepticism, may rightly
object that since the reference to the standard model may not be eliminated from our
argument, and since no recursively axiomatizable class of formulas allows us to
give a proper definition of such a standard model, the argument is wanting unless it
may be shown, once again on independent grounds, that our grasp of the standard
model need not rely on the existence of a language fit to describe it, say second
order Peano arithmetic, or some other.17

What I would like to stress here in way of a conclusion is that, perhaps more than
truth proper, the crucial philosophical dimension of the semantic reading of Gödel’s
first incompleteness theorem is bivalence, as the remarks of Sect. 3 about the
meaning of the logical constants in relation to the validity of logical laws, and the
quote, in this section, to the effect that arithmetic truth does not quite match
arithmetic provability if bivalence is to be secured (Benacerraf 1996b: 42) clearly
indicate. I shall now turn to this question.
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8. Concluding Remarks About the Larger Picture

I promised in Sect. 1 to explain why it is important not to loose sight of the scope
of the general question we started with in spite of the fact that it might appear too
general, unspecific and, for this very reason, nothing less than ill-defined. There is
no doubt that the question whether truth may go beyond recognizability in principle
is a crucial philosophical question. The problem, rather, if the gist of the argument
that unfolds from the beginning of Sect. 4 to the end of Sect. 7 stands up to critical
examination, is whether we should care about that larger picture at all in the specific
case of the Gödelian metamathematical result we have taken into consideration.

The large question has gained momentum and even currency in great part
because of Dummett’s persistent claim that it lies at the core of the realism versus
antirealism debate, conceived as a debate whose genuine content is semantic in
nature (hence the reference to those “Dummettian terms of transcendence, truth,
recognizability and the in principle vs. effective distinction” in the opening para-
graphs of Sect. 1). Part of the advantage of being at this center is that it discloses the
non-metaphorical content of the time-honored metaphysical issue of the existence
and, should existence be granted, of the independence of objects of some given
kind, or sort, or class; typically, abstract objects such as numbers, but also, say,
colors or values. Since semantics is a stake, the question of bivalence is crucial; not
just of bivalence, but of semantic principles in general. More specifically, what is at
stake is the question of their relation to logical laws. How is, say, bivalence related
to excluded middle, or stability to double negation elimination? One idea is that the
semantic principles justify the logical laws. So the question is: Should the semantic
principles be accepted?

Benacerraf rejects the idea that since

(bivalent) truth outruns formal provability, for any consistent formal system of Arithmetic,
the concept (of bivalent truth) is inherently flawed and must be replaced with a concept of
truth in arithmetic that is more closely tailored to our ability as provers. This, of course,
then splinters into countless possibilities, depending on how bounded we believe our
“proving” abilities to be.

Benacerraf (1996b: 30)

The splintering might well be curtailed so that, after all, only two main possi-
bilities remain, or at least two kinds thereof, depending on whether one rests content
with in principle formal provability or wishes to insist that effective formal prov-
ability, guaranteed to be humanly feasible, must be secured in order for the prin-
ciple of bivalence to be acceptable.

Given what has been said before about the implications of Gödel’s result given
some proper PMP, this conception of the issue at stake strongly suggests that we are
facing a dilemma: Either we must conclude that we are somehow free of the
shackles built in the mechanistic view because we are endowed with
super-mechanical powers, or truth must be constrained by some epistemic notion
such as provability (either in principle, which would satisfy Dummett’s antirealist,
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or effective, along strict finitist lines). In other words, it is as if we should choose
between two conclusions to be derived, provided one may be derived at all with the
aid of some bona fide PMP: either the adoption of a strong metaphysical libertarian
thesis, or the replacement of bivalent truth conditions by conditions such that it
must be guaranteed, by the very nature of the case, that we, humans, are able to
recognize that they obtain when they do (or at least that we are able to put ourselves
in the position to activate the appropriate recognitional capacities to that effect).

It is, I suspect, because of such a dilemma (either libertarianism or the death of
bivalence) that Benacerraf takes Putnam to task for locating the incompleteness in
our conception on the ground of an endorsement of a “heavily ‘epistemic’ notion of
truth” (Benacerraf op. cit.: 44). Benacerraf’s rationale for rejecting Putnam’s neg-
ative conclusion regarding bivalence is that epistemic considerations, as applied to
truth—and hence to the issue of the unrestricted appeal to the semantic principle—
rather than offering reasons to be restrictive about what we are able to understand
“point the opposite way.” His justification for this position is that he

[takes] “epistemic” considerations to include ones of meaning, but without accepting as
axiomatic that these are ineluctably entwined with a semantics of “assertibility conditions,”
as opposed to a “truth-conditional” semantics, or even some other, as yet undreamt-of, kind.

Benacerraf op. cit.: 44

It might seem odd, once epistemic considerations have been taken to include
those of meaning, especially with respect to the issue of grasp or understanding, to
claim that the latter are divorced from considerations pertaining to assertibility
conditions. It is odd, or course, not because one would be an antirealist in
Dummett’s preferred sense, but because our cognitive limitations as “provers,” i.e.,
those that play a key role in the PMP, come in a twosome, along with our non-
mechanistic ability to fill the gap between what is true in the standard model and
what is recognizable as true on the basis of cogent reasons (provided we are able to
target the standard model and that the targeting need not rely on a language fit to
give a bona fide description of it). These limitations come hand in hand with, as it
were, a positive aptitude or capacity. The reason why we are not Turing machines
after all is that being such a machine requires that there be a finite collection of
instructions, each instruction calling for atomic operations to be performed under
certain given conditions. The recognition of such a cognitive limitation or failure is
therefore crucial, in Benacerraf’s 1967 moderate anti-mechanistic conclusion. This
is even more so in the argument I have sketched: There is a bound to our purely
mechanical proving abilities, and a corresponding release, as it were, of our
non-mechanistically characterizable bona fide recognitional capacities with respect
to truth.

Putnam, quoted by Benacerraf, claims that since nothing epistemic may help us
“explain the truth-value of […] undecidable statements, precisely because they are
undecidable,” i.e., no matter how hard we constrain the notion of arithmetic truth,
we should refrain from attaching any “metaphysical weight to the principle of
bivalence,” a principle which would have us believe that these statements are either
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true or false although “their truth-value cannot be decided on the basis of the
axioms we presently accept” (Benacerraf 1996b: 44).

What I have been urging here, the acceptance of axioms notwithstanding, and
the crucial matter of the targeting of the standard model pending, is to leave
bivalence alone and to draw from a modest PMP an equally modest conclusion to
the effect that there is a least one capacity that the anti-libertarian or hard-nosed
computationalist is unable to account for.

Notes

1. Benacerraf reports the following parable of the Cohens and Princess Margaret
(Benacerraf 1996b: 9–10). The Cohens want the right spouse for their son.
When they accept somewhat reluctantly the goy Princess Margaret as the right
girl for Abie on the basis of the staggering advantages their future grandchil-
dren would benefit from (being heirs to the throne of England, etc.), only half
the shatchen’s job is done. Abie still has to marry Princess Margaret. Without
the Cohen’s acceptance of the marriage broker’s final offer, no result could be
obtained, but more is needed nevertheless for the job to be rounded off. The
Cohen’s reluctant acceptance after the turning down of so many proposals is
what Benacerraf mischievously dubs “the easy part”; what is needed now is the
extra move which will bring the broker’s efforts to its expected conclusion, i.e.,
a marriage settlement.
In the same way, once you have obtained your metamathematical result and the
first half of the job is done, you still need some extra premise—the so-called
Princess Margaret Premise—along with an independent argument in its favor,
to get the analogue of the settlement, i.e., the desired philosophical conclusion
that you may not obtain directly from the metamathematical result.

2. An important part of what follows draws from Pataut (1998). That paper did not
address Benacerraf’s points about the PMP one must fall back on in order to
draw philosophical conclusions from Gödel’s first incompleteness theorem,
although it did address the truth vs. recognition of truth issue. My purpose here
is to address as explicitly as possible the points Benacerraf makes with respect
to this opposition, especially the point about the demonstrated incompleteness
being shown to exist in the calculus and not in our conception (see Benacerraf
1996b: Sect. 4.2, pp. 42–44). It is essential to avoid both the mathematical
fallacy of deducing philosophical conclusions directly from formal results of a
metamathematical kind, and the philosophical blunder of mistaking some
irrelevant extra premise for the genuine Princess Margaret one.

3. Boolos has proposed a non-constructive proof in Boolos (1989). His proof, just
like Gödel’s, establishes the existence of an undecidable statement of arith-
metic, but, unlike Gödel’s, it does not provide an effective procedure for pro-
ducing it. Let a correct algorithm M be an algorithm which may not list a false
statement of arithmetic. A truth omitted by M is a true statement of arithmetic
not listed by M. Boolos’s proof establishes the existence of such a statement,
but the statement is recognized as true classically and not constructively.
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4. Richtig may also be rendered as “right,” and würde gelten as “would be valid,”
or “would obtain.”

5. A states that every natural number x is not the Gödel number of a proof, in S,
of a formula that turns out to be A.

6. Kleene notes that Gödel approved van Heijenoort’s translation of his 1931
paper for the then forthcoming volume van Heijenoort was editing (van
Heijenoort 1967), and that the translation was accommodated in many places to
Gödel’s own wishes (Kleene 1986: 141).

7. Gödel notes that “the true reason for the incompleteness inherent in all formal
systems of mathematics is that the formation of ever higher types can be
continued into the transfinite, while in any formal system at most denumerably
many of them are available” (Gödel [1931] 1986: [191] 181, note 48a).
Kleene’s reading of this remark is that Gödel implicity defends the view that the
adjunction of higher types “permits one to define the notion of truth for that
system, then to show that all its provable sentences are true and hence to decide
the sentence shown in THEOREM VI to be undecidable in the system” (Kleene
1986: 135). In that case, then, the sentence (or formula) whose undecidability
has been decided thanks to the adjunction of higher types is indeed a bona fide
true and undecidable sentence (or formula), as suggested toward the beginning
of this section but, in that instance, without the recourse to types.

8. ¬(¬p • ¬¬p) is a case of the law of contradiction just in case double negation
may be eliminated, something an intuitionist will not grant.

9. This, of course, must be judged against Gödel’s complaint that, it is “doubtful
whether the intuitionists have really remained faithful to their constructive
standpoint in setting up their logic” and, worse, that “the notion of an intu-
itionistically correct proof or constructive proof lacks the desirable precision” to
the point that “it furnishes itself a counter example against its own admissi-
bility, insofar as it is doubtful whether a proof utilizing this notion of a con-
structive proof is constructive or not” (Gödel [1941] 1995: [3–4] 190).

10. It is a much too simple-minded formulation that does not do justice to essential
features of Gödel’s proof such as the Gödel numbering of the formal objects,
the notion of numeralwise expressibility, and the constructively defined notion
of the class of primitive recursive functions. Its one and only purpose is to focus
on the relation between arithmetical truth and formal proof procedures in for-
malized arithmetic.

11. For the idea that A has a meaning, or is meaningful, see Sect. 2 and Kleene’s
remark in Kleene (1986: 128), already quoted in that section.

12. The claim should be qualified. At steps (2a)–(2b), we manifest our knowledge
that if P is consistent, then A is unprovable in P and therefore true. There
remains the further problem of knowing how we could know that P is con-
sistent and make that knowledge manifest. I have focused here on the conse-
quent of the conditional, but it is of course established by Gödel’s second
incompleteness theorem (Theorem XI in Gödel [1931] 1986) that a proof of the
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consistency of P may not be obtained in P. What we have here, therefore,
strictly speaking, is only a partial manifestation of our knowledge of the truth
conditions of A.

13. My translation from the French.
14. The claim should be qualified. The conclusions follow from the first part of

Gödel’s proof and are grounded on the steps of its semantic formulation up to
(2b). I have not taken into consideration the proof of the unprovability of
A (given the x-consistency of P). Note that the very same conclusions would a
fortiori be justified were the complete proof taken into consideration.

15. See Dubucs (1992: 75–76), to which I am very much indebted for these
remarks.

16. See Benacerraf (1967, 1996b: 54, endnote 20) for a stern dismissal of argu-
ments without PMPs, i.e., without “a significant injection of philosophical
serum.”

17. See Dummett ([1963] 1978) for a discussion of the manifestation or public
warrant of our private but still commonly shared grasp of bona fide mathe-
matical objects and formal proofs, in regard to Gödel’s incompleteness result.
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Part I
Benacerraf’s Dilemma

To say that mathematics is really logic in disguise merely pushes the problem off
onto logic. If logic includes set theory, the problem is particularly difficult. I don’t
even know of an adequate answer to the question when limited to the propositional
calculus and quantification theory. I suspect that the animal in question (the nature
of mathematical truth) will turn out to be a many-headed monster; it will have to be
slaughtered and appropriately butchered into pieces which are sufficiently man-
ageable to lend themselves to fruitful dissection.

Benacerraf (1960: 255–256)



Chapter 1
McEvoy on Benacerraf’s Problem
and the Epistemic Role Puzzle

Jody Azzouni

1.1 Benacerraf’s Problem

Benacerraf’s problem is justly famous. It’s had a major influence on the philosophy
of mathematics right from its initial appearance,1 an influence that continues up
through the present moment. In its author’s supernaturally elegant prose, it lays out
a tension between the possibility of an epistemic access to abstracta and the
apparent semantics (truth conditions) of mathematical statements about those
entities. Given a causal construal of epistemic access, on the one hand, it seems that
we can’t have any epistemic access to the objects that our true mathematical
statements must be about because those objects are causally inefficacious and
causally insensitive; on the other hand, the mathematical truths in question are
genuinely about those objects, and somehow we are adept at identifying some of
the true mathematical statements and some of the false ones.

Benacerraf’s problem long outlasted the faddish “causal theory of knowledge”
that he originally couched it in terms of.

Field, among others, generalized Benacerraf’s problem by writing:

Benacerraf’s challenge […] is to provide an account of the mechanisms that explains how
our beliefs about these remote entities can so well reflect the facts about them. The idea is
that if it appears in principle impossible to explain this, then that tends to undermine the
belief in mathematical entities, despite whatever reason we might have for believing in
them.

Field (1989: 26)
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The challenge is now put in terms of mechanisms of any sort—they needn’t be
causal ones. What’s important is that such mechanisms are required to explain—at
least in principle—how our beliefs about these “remote” entities so well reflect the
facts about them. So what’s being indicated is the worry that because the entities in
question are typically abstract (e.g., they’re not in space and time, they’re not
causally efficacious or causally sensitive), no possible mechanism can—even in
principle—foot the bill.

And indeed, one strand of the widespread philosophical response to Benacerraf’s
problem is precisely to supply an “in principle” mechanism for these remote entities
by denying their purported remoteness. Maddy (Maddy 1990) suggests that at least
some sets are in space and time, the set of the shoes that I’m wearing, for example,
is claimed by her to be located where my shoes are at; she further suggests that I see
this set each time I happen to gaze down at the shoes themselves. Field (similarly)
suggests that points and spacetime regions aren’t disagreeably remote because (after
all) they’re in spacetime; so too there’s an in principle perceptual mechanism by
which our beliefs about points and spacetime regions can so well reflect the facts
about them.

Leaving aside the discussions of “in principle” mechanisms that (some)
philosophers are so addicted to, Benacerraf’s problem is recognizably a modern
one, not visible to earlier philosophers concerned with mathematical entities. Plato,
for example, can be seen as offering an experiential, if not perceptual, theory of the
mechanisms involved. As disembodied souls we previously experienced the
mathematical objects that some of us (in our current lives) nostalgically recollect.
(Those people are called “mathematicians.”) A later view, roughly attributable to
Descartes, is that mathematical ideas are innately imprinted in our minds. The
worry about such imprints being reliable remains—it’s not solved by merely pos-
tulating that mathematical ideas are innate; it’s solved (by Descartes) using the
hypothesis that an “honest-broker” deity is the (ultimate) source of these ideas. It’s
that the metaphysics behind these earlier views are no longer respectable—so too,
that certain epistemic accompaniments (e.g., “rational intuition”) aren’t respectable
either—that’s allowed Benacerraf’s problem to emerge as a problem for contem-
porary philosophers of mathematics.

Meanwhile (elsewhere, in the sciences) a progressive understanding of the ac-
tual mechanisms of perception has emerged, especially in this and the last century.
That is to say, the actual mechanisms behind our abilities to perceive those parts of
the world that we can perceive are being uncovered. And this extends to our
understanding of the instrumental mechanisms by which we’ve extended our sen-
sory capacities; sophisticated instruments that gain us epistemic access to otherwise
sensorily-remote parts of the universe (the very far away, the very small, for
example) are themselves the subjects of intricate scientific studies.2 Epistemic
access (in empirical realms, anyway) is itself the subject of sophisticated science.

The remarkable fact about mathematics is that there is nothing corresponding to
the scientific study of the epistemic access to its entities. There is, of course, serious
cognitive-science studies of the (largely subpersonal) mental processes that occur
when animals, children, and adults engage in mathematical ratiocination (e.g., when
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they count some things that are near them)3; but in lieu of Cartesian deities, these
studies of arithmetical competence hardly count as studies of epistemic access.

An important corollary of the emergence of studies of epistemic access is the
systematic recognition of epistemic artifacts. Epistemic artifacts are the ways that
our means of access to objects distort our impressions of the properties of those
objects. In vision science, this takes the form of a systematic study of “optical
illusions,” in particular, the study of what it is about our visual capacities that
allows such illusions to occur.4 A corresponding study of our instrumental access to
objects occurs in the sciences; we learn how the mechanisms by which an instru-
ment allows us to learn about its target objects are limited in various ways, how
they generate false impressions of the properties of the objects, and so on.5

Understood broadly: these are studies of how we make mistakes about the objects
we’re epistemically accessing in particular ways; and it’s our (scientific) under-
standing of the epistemic mechanisms we use to gain access to those objects that
explains how those mistakes arise.

In the mathematical sciences, by contrast, mistakes are invariably
“proof-theoretic ones.” I understand “proof-theoretic” broadly: it can be a matter of
our failure to execute a computation correctly, by actually writing down the wrong
numerals,6 for example; but it can also be a matter of conceptualizing a class of
objects the wrong way. What it never involves, however, is that the mechanism of
our epistemic access to the abstracta under study is misleading, that our means of
epistemic access to those objects is itself creating problems. There is no study of the
nature of such mechanisms; there is no science of such; there are no cases where we
say, for example: Rational intuition often fails in such and such circumstances
because…

Notice that these disanalogies with respect to epistemic access in these respec-
tive areas, mathematics and the various empirical realms, don’t even remotely
involve skeptical considerations—as philosophers generally construe those con-
siderations, anyway. The point is an “internal” one about how the sciences, and the
corresponding sciences of their various kinds of epistemic access to the world, have
developed. I’ll return to the purported relationship of these considerations about
scientific studies of epistemic access to philosophical skepticism later in the paper.

1.2 The Epistemic Role Puzzle

In my Metaphysical Myths, Mathematical Practice (Azzouni 1994), I argued that
the influence of Benacerraf’s problem on the philosophy of mathematics literature
was deeply nefarious: focus on it has obscured our view of the real philosophical
issues and puzzles posed by standard mathematical practice. Attempting to establish
this, however, involved emulating Benacerraf’s achievement by posing a different
philosophical puzzle, one that can be seen as derived (as it were) from Benacerraf’s
problem by flipping the angle of concern. Instead of worrying about how it is we’re
supposedly getting access to these “remote” objects, notice instead, as the
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concluding paragraphs of the last section indicated, that mathematical objects play
no epistemic role whatsoever in mathematical practice. What does a philosophical
focus on that lead to?

My various expositions of the epistemic role puzzle were invariably accompanied
by a joke. I’ve written, more than once: imagine that mathematical objects ceased to
exist sometime in 1968. Mathematical work went on as usual. Why wouldn’t it?7 But
one—I’ve since learned—should never ever make jokes in philosophical work. It’s
not merely that a dismayingly large number of professionals become totally lost
when that happens; it’s also that what’s been written can (will) be taken literally.
Perhaps it didn’t help that some years later Balaguer wrote, echoing my earlier
remarks, that: “[i]f all the objects in the mathematical realm suddenly disappeared,
nothing would change in the physical world” (Balaguer 1998: 132).

Regardless. An interpretation of the epistemic role puzzle appeared in the lit-
erature that characterized it as a modal argument. The epistemic role puzzle was
interpreted as trading on the construction of a possible world where there are no
abstracta but the (empirical) world is otherwise exactly the same. This makes no
difference argument has enjoyed a bit of discussion8; but the considerations both for
and against “makes no difference” arguments are remote from what motivates the
epistemic role puzzle.

First of all, I was offering a colorful thought experiment that was meant to draw
the reader’s attention to the considerations raised at the end of the last section: that
epistemic access to the mathematical objects themselves (purportedly referred to by
mathematical terms) plays no epistemic role in the practice of mathematics, neither
(specifically) in how mathematical results are established, nor in (specifically) our
studies of how mathematical practice operates. I wasn’t suggesting the existence of
a possible world in which there are no mathematical objects but mathematical
practice goes on as before.9 Baker writes of my thought experiment that:

provoking the intuition that the existence of mathematical objects makes no difference by
depending on thought-experiments whose conditions are conceptually impossible gives the
[p]latonist plenty of ammunition for resistance.

Baker (2010: 224)

Even if my aim were to ask the reader to imagine a possible world in which there
are no mathematical objects, I hardly think that demands the reader to entertain
conditions that are conceptually impossible. Perhaps this melodramatic phrasing is
meant to allude to the common view that mathematical objects are metaphysically
necessary. Even so, to imagine abstracta as not existing isn’t to imagine something
that’s conceptually impossible. (Metaphysical necessity doesn’t imply conceptual
impossibility; surely we all know that by now.) Perhaps, instead, Baker means to
suggest that imagining mathematical objects not to exist is to imagine certain
mathematical truths (that are conceptually necessary) to instead be falsehoods. But
this doesn’t follow either. Our understanding of mathematical statements, and our
understanding that such are true doesn’t require that anything exists.10 At least, this
needs to be established by argument and not just assumed, as it seems to be by Baker.
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1.3 McEvoy on the Epistemic Role Puzzle:
His General Strategy

Claiming that sets, points and regions of spacetime are located within our per-
ceptual ranges, I’ve noted, responds to Benacerraf’s problem. That it doesn’t
respond to the epistemic role puzzle shows the puzzle to be distinct—according to
whatever vague principles of individuation that philosophical problems seem to
obey, anyway. One can’t merely claim that points, regions of space, or sets can be
perceived as Maddy and Field do in order to meet the epistemic role puzzle. One
has to show that perception of these things actually does play a role in mathematical
practice—in the proving of theorems, for example. (And, as we all also know by
now: contexts of discovery don’t count.) So “in principle” epistemic access to
otherwise artificially-designed entities isn’t relevant.

McEvoy, however, isn’t out to show that the epistemic role puzzle reduces to
Benacerraf’s problem tout court; he only wants to show that the epistemic role
puzzle raises no new considerations that platonists need worry about.11

McEvoy’s argument for this claim is ingenious, intricate and detailed. Here’s
(roughly) how it goes. Consider the epistemic role puzzle all on its own. Nothing
follows about the existence or non-existence of mathematical abstracta. After all,
the epistemic role puzzle is only an epistemic observation, that there’s no epistemic
role for mathematical abstracta. So it’s clear that claim alone can’t imply that there
are no mathematical abstracta, and this means that other premises are needed.
McEvoy, by surveying the options that seem compatible with what I’ve written on
this, argues that any other candidate premises—that would do the job to enable the
epistemic role puzzle to refute the existence of mathematical entities—would
manage that job all on their own. Therefore, argumentatively speaking, the epis-
temic role puzzle is an idle wheel.12 McEvoy writes:

The added premise, if ERP [Epistemic Role Puzzle] is to count as both a legitimate and
novel challenge to platonism, must not be one the truth of which would itself refute
platonism.

McEvoy (2012: 298)

1.4 Correspondence Truth and Quine’s Criterion,
According to McEvoy

Unsurprisingly, the candidate additional premises that McEvoy considers as pos-
sible supplementations for the epistemic role problem involve metaphysical
assumptions. Here’s one:
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(AZ) The only non-epistemic role that abstracta can play is that of providing truth con-
ditions for mathematical statements within a correspondence theory of truth, and the cor-
respondence theory of truth is false.

McEvoy op. cit.: 295

McEvoy writes:

If AZ is added, it is no longer ERP that creates the problem for the platonist: it’s the fact
that platonism assumes the correspondence theory of truth, which, given AZ, is false. […]
With the addition of AZ, though the argument from ERP does become valid, since AZ itself
refutes platonism, this validity is purchased only at the cost of making ERP redundant.

McEvoy op. cit.: 296

So too, consider a different premise:

(AZ*) The only non-epistemic role that abstracta can play is that of entities over which the
quantifiers of a suitably regimented best theory range, and this incurs a commitment to the
untenable Quinean criterion of ontological commitment.

McEvoy loc. cit.

McEvoy similarly observes:

Once again the problem is that if AZ* is added, it is no longer ERP that creates the problem
for the platonist: it is the assumption that the platonist must assume the (ex hypothesi) false
Quinean criterion. Once again, when we add the premise to render the argument valid, ERP
does none of the heavy lifting.

McEvoy op. cit.: 297

What’s an Azzouni to do? Well, here’s what I suggest this Azzouni do: Deny that
AZ and AZ* are to be interpreted as McEvoy does; in particular, McEvoy glosses
the implications of rejecting the correspondence theory of truth and of rejecting
Quine’s criterion far too strongly. Appropriately glossed, rejections of these fun-
damental principles aren’t sufficient on their own to refute platonism. What’s
needed to refute platonism is, along with the rejections of these principles, the
epistemic role puzzle. I turn now to spelling out what I have in mind.

1.5 What Does Rejecting Correspondence Truth
and Quine’s Criterion Actually Imply?

Let’s start with the rejection of the correspondence theory of truth (encapsulated in
AZ) that, according to McEvoy, all by itself can be used to refute platonism. It
should be admitted that the rejection of the correspondence theory of truth is often
taken to be, as McEvoy seems to, the rejection of it with respect to every sentence
of our language. Competing candidate theories of truth, when a philosopher is
moodily fanatical this way, are also characterized globally. Coherence theories of
truth, so interpreted—for example—deny that any sentence corresponds to
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anything. Instead, every sentence (that’s true) coheres—whatever that means
exactly—with the other true sentences. So too, deflationary theories are interpreted
by global truth fanatics as denying of every sentence that by describing it as a true
one is ascribing a “substantial” truth-property to it. Deflationism, characterized this
way, is militantly anti-metaphysical in intent.13

These alternatives to correspondence truth fit McEvoy’s bill perfectly: if a pla-
tonist adopts one of these theories of truth, quick work can be made of a purported
correspondence between mathematical truths and how it is with mathematical
abstracta. But, of course, more liberal theories of truth are out there and flourishing.
A candidate that’s emerged recently is one or another species of pluralist truth14:
Our language divides neatly into various discourses. Some operate according to
correspondence principles of one or another sort, some operate according to
coherence principles of one or another sort. Truth pluralists don’t claim that pla-
tonism is ruled out just because correspondence truth has been ruled out for the
language as a whole. Specific arguments about mathematical discourse are called
for to adjudicate this question.

I’m not a fan of pluralism; but I am a proponent of a liberal version of
deflationism.15 Liberal deflationism treats the truth predicate as a logical device of
blind ascription that’s neutral with respect to whether true statements correspond to
anything or not. “Sherlock Holmes is depicted as smarter than Mickey Mouse” and
“Barack Obama is more famous than Saul Kripke” are both true; the second
statement (in my view) corresponds to the way it is with several items in the world;
this isn’t true of the first statement.

This view of truth is neutral—as far as it goes—with respect to whether state-
ments about abstracta are like statements about Mickey Mouse or like statements
about Barack Obama (true because of correspondence to facts or true for some other
reason). Liberal deflationism is a candidate theory of truth that’s opposed to global
correspondence; a proponent of it will accept AZ, but AZ doesn’t, therefore, refute
platonism. Additional premises are needed to manage this.

The same point can be made about Quine’s criterion and McEvoy’s AZ*, so I’ll
be brief. Rejecting Quine’s criterion doesn’t imply that quantifier statements16 are
never ontologically committing; it only implies that we can’t assume that any
particular quantifier statement is ontologically committing. Further premises,
therefore, are needed as well to establish (or deny) that quantifier statements about
abstracta are ontologically committing.

1.6 The Epistemic Role Puzzle to the Rescue

So what do the additional premises needed by the opponent of platonism look like?
I imagine, of course, that there is more than one way to go here, but I want to sketch
an argument that utilizes the epistemic role puzzle as the needed additional premise.

Start with the following criterion for what exists: anything that exists is mind-
and language-independent. Next step: how do we recognize that an object is mind-
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and language-independent? Answer: it has an epistemic role. Contrariwise, if an
object has no epistemic role, then it’s mind- and language-dependent, and therefore
(by our criterion) it doesn’t exist. Mathematical abstracta have no epistemic role.
Conclusion: there are no mathematical abstracta.

I’ve defended detailed versions of this argument elsewhere,17 and haven’t the
space to do it again here; I’ll offer a couple of elucidations. First off, the criterion for
what exists is one that I take us to have collectively adopted. It’s not revealed by a
conceptual analysis of ordinary words like “exist” or “there is” because the per-
ceived meanings of those words are compatible with any number of criteria.18

Second, the argument as I’ve put it may seem to draw too strong a conclusion.
Perhaps all that’s licensed is the weaker conclusion that “we have no reason to believe
in abstract objects, not that there are no such objects”.19 I think the stronger con-
clusion is licensed, however, because it’s reasonable for us to say: there are no Ss if
we have no reason to believe in Ss. Again, this is perhaps not the place to fully argue
for this conclusion, but let me say this in my defense: it’s sometimes reasonable for us
to assert: there are no Ss. I think, for example, that it is reasonable for me to say: there
is no Santa Claus, there are no hobbits, there is no Harry Potter. I think it’s under-
statingwhat I’m licensed to say if I say only: I’ve no reason to believe in these things.
The latter is true, of course, and it is what licenses me to say that none of these things
exist. Having said this, I should modestly add: I could be wrong. There might be a
Santa Claus, a Harry Potter, some hobbits here and there. But surely the fact that I’ve
no reason to believe in these things is compatible both with my being able to draw the
conclusion: there are none of these things and I might be wrong about this. Surely the
epistemic situation is the same with respect to abstracta.

1.7 Skepticism Again

This last point somewhat naturally brings us back to something I raised at the
beginning of this paper, that the considerations behind the epistemic role puzzle
(and behind Benaceraff’s problem) aren’t skeptical ones. McEvoy denies this, and
as he notes, he has good company: Gödel, Katz, Burgess and Rosen (among others,
no doubt). Giving his reasons for why the epistemic role puzzle as a challenge to the
existence of platonic objects is analogous to skepticism, he writes (and I quote him
nearly in full):

The skeptical argument at play in this argument is that, for all we know, it is possible that
there is, right now, no physical world, but that we are deluded into thinking there is one.
This is a possibility since all of the evidence available in the event of the existence of the
external world would be present in the skeptical world. The mathematician is similarly
situated with respect to mathematical objects; given the lack of an epistemic role for
mathematical objects, any evidence that would lead a mathematician to believe that there
are mathematical entities would be present whether or not such entities exist. From this
perspective, Azzouni’s thought experiment begs the question against the argument from
skeptical analogy: it assumes that the processes that produce our beliefs about the external
world are currently operating reliably (i.e., they give us genuine knowledge of the external
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world). […] But the parallel between external world skepticism and mathematical skepti-
cism that is relevant to the argument from skeptical analogy actually blocks this assump-
tion. This parallel has to do with the possibility that we may right now be deceived about
what is causing those experiences on the basis of which we infer the existence of physical
reality, on the one hand, and mathematical reality on the other. Given this parallel, we
cannot, as Azzouni does, hold constant our epistemic story of how these appearances are
caused, and then ask what would happen if everything disappeared. This move is at once
ruled out by the parallel that operates in the argument from skeptical analogy. We of course
believe that we have knowledge of the external world, due to the reliable operation of our
senses. (Similarly platonists believe that we have knowledge of the mathematical realm due
to the reliable operation of intuition, or reason.) However, the point is that the falsity of this
belief is compatible with our having a phenomenologically indistinguishable experience.
This possibility of our having phenomenologically indistinguishable experiences regardless
of whether entities of a certain kind exist is, after all, the point of skepticism; and the point
of the argument from skeptical analogy is that this possibility obtains equally in the cases of
mathematical and external world knowledge.

McEvoy op. cit.: 302–303

How analogies between things may be drawn is, naturally enough, open-ended
and fairly subjective (that’s why analogies are so popular in poetry). Couple this
point with my earlier hint that the individuation of philosophical problems is none
too clear, and the reader won’t be blamed for thinking that the ground rules of this
debate between me and McEvoy are too ill-defined to be resolvable.
Unsurprisingly, perhaps, I’m going to try to show this is false; that the matter isn’t
just resolvable, but resolvable in my favor.

Let’s start with the background motivation for noting a parallel with traditional
skepticism: it’s a form of dismissivism. Correspondingly, the background motiva-
tion for denying the parallel to skepticism isn’t a misguided hope for some credit for
originality; it’s the claim that even if skeptical considerations are neutralized (one
way or another), the concern with the existence of mathematical abstracta remains.
Notice that this neutralization point can hold even if there is an analogy between the
two forms of argument. After all, surely there is an analogy (a rather close one)
between what we might call Evil-Demon skepticism and Dreaming skepticism. Both
involve possibility-scenarios (I might be dreaming right now; I might be in the grip
of evil demon); nevertheless, it’s obvious—or should be—that arguments that
neutralize the threat of Dreaming skepticism might still leave Evil-Demon skepti-
cism intact.

Let’s start with Benacerraf’s problem. The worry, as I’ve noted, is about a
particular kind of object, an object that is causally inefficacious, causally insensi-
tive, and not in space and time (and maybe that’s weird in a whole bunch of other
ways as well). It should be clear that even if one has neutralized the standard
skeptical concerns McEvoy invokes (inferences from phenomenologically identical
experiences that encapsulate all our relevant evidence), these concerns about these
metaphysically peculiar objects remain. Imagine a scientist, for example, who
postulates a kind of particle that is causally neutral in a similar way. It would be
insensitive to the concerns of his opponents, philosophically insensitive, to invoke
analogies to standard skepticism to undercut his concerns. To use faintly technical
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terminology: this would be to trivialize those concerns. In short, Benacerraf’s
problem is rooted in the presumed metaphysical peculiarities of abstracta that make
them immune to epistemic inroads. To compare this to skeptical scenarizing where
one eliminates all our epistemic tools altogether (so that every object is now
immune to epistemic inroads) misses the philosophical point.

Okay, what about the epistemic role puzzle? I would have hoped that the differ-
ences that matter between the concerns it raises and standard skeptical concerns
would be even more obvious in its case. After all, the official concern of the puzzle is
this: notice that our standard epistemic practices have certain accompaniments:
methods of recognizing the epistemic artifacts that our means of access to the objects
in question have because of those means of access. Indeed, the facts about this are
intricate and subtle enough to give rise to sciences of those means of access. Surely,
drawing an analogy between these considerations and external world skepticism is to
miss the philosophical point: in the one case, we are focusing on facts about our
epistemic access, facts that count unfavorably towards existence claims for mathe-
matical abstracta. In the other case, we are undermining our methods of epistemic
access altogether. The result, of course, counts unfavorably towards the existence of
anything in the external world: this is analogous, in the usual sense of the word. I’d
like to hope, however, that the disanalogy between undermining our methods of
epistemic access altogether and noting that those very methods don’t accommodate
certain purported objects even if left intact would be taken note of as well.

1.8 Benacerraf’s Problem and the Epistemic Role Puzzle:
Close but Different Nevertheless

As I mentioned, the epistemic role puzzle can be seen as arising from Benacerraf’s
problem by flipping the focus of concern: not how do we manage to know about
those objects, but instead, why isn’t epistemic access to these objects a topic of
mathematics, or a part of an ancillary science of mathematics? Nevertheless, in
practice, bringing the puzzle against an approach in philosophy of mathematics can
often be reconceptualized as bringing the problem against that approach. Doing so
doesn’t show they’re the same concern; it only shows they live in the same
neighborhood.

McEvoy writes of my discussion of apriorist varieties of platonism, when I
complain that “no explanation is possible at all for how we can have a priori
knowledge of ontologically independent objects …”20:

In these passages, Azzouni raises the (serious) problem for the platonist’s epistemology:
how is it that human cognitive processes can reliably yield knowledge of a realm of
abstracta which is entirely ontologically independent of those processes? If this sounds
familiar, it is because we are now facing […] Field’s version of the Benacerraf problem.
Interpreting ERP as a demand for how our beliefs are sensitive to the facts obtaining in the
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platonic realm does yield a significant challenge to the [p]latonist […] but it does so at the
cost of reducing ERP to the Benacerraf problem.

McEvoy op. cit.: 299

I take myself to have already established in the foregoing pages of this paper
that the puzzle and the problem are distinct, both in how they can be responded to,
and in the sorts of issues that they make philosophically salient. My only job,
therefore, is to delineate how these concerns dovetail in this particular case. The
epistemic role puzzle tells us that there is no epistemic role for abstracta, in contrast
with (some of) the items posited in the empirical sciences. It immediately follows
that we have no reliabilist story for how we know what we (purportedly) know
about abstracta because we have no epistemic story at all.21 Benacerraf’s problem
runs the objection more directly: we have no reliabilist story for abstracta like we
have in the empirical sciences. That’s a problem.

1.9 Some Concluding Remarks

If you’re a genuine (card-carrying) nominalist, Benacerraf’s problem isn’t going to
quite do the job you need done. The contemporary proponents of Field’s program
show this by blithely countenancing abstracta, such as spatial points and regions—
which they regard as meeting the challenge Benacerraf’s problem successfully poses
for more “remote” abstracta; so too, philosophers who think that mathematical
statements can “index” nominalistic content—where such content involves
spacetime-embodied abstracta — presumably feel that Benacerraf’s problem is met
by their abstracta, precisely because those items are spacetime-embodied.22 The
epistemic role puzzle is more unforgiving, so I’ve argued, requiring more of spatial
points and regions—that they not only be “in principle” perceivable but that epis-
temic access to them actually play a role in the establishing of mathematical truths.23

Apart from this, however, I’ve argued that the epistemic role puzzle is a nec-
essary component in at least one argument for nominalism because rejections of
correspondence truth and Quine’s criterion are insufficient all on their own to refute
the platonist.

Notes

1. Benacerraf (1973).
2. See, e.g., Strobel and Heineman (1989) and Barret and Myers (2004).
3. See, e.g., Carey (2009), especially Chap. 4, for discussion of the literature.
4. See, e.g., the essays in Rock (1997).
5. See, e.g., Hacking (1983), Chap. 11.
6. See Azzouni (1994), Part I, § 5 and § 6 for details about these kinds of errors.
7. E.g., Azzouni (1994: 56, 2004a).

1 McEvoy on Benacerraf’s Problem and the Epistemic Role Puzzle 13



8. See Baker (2003) for the original coinage of the term “makes no difference,”
and for an attack on the argument. See Raley (2008) for a careful elucidation of
the complex strands involved in these “MND” (Makes No Difference) argu-
ments. She there labels an argument against the existence of mathematical
abstracta that turns on calling the epistemic role puzzle the “epistemic version
of MND”—I won’t be using this terminology. I should add that I’m unsym-
pathetic to the various MND arguments, largely for the reasons Raley gives for
rejecting them. I won’t discuss these details further now.

9. In Azzouni (1994), when I first offered this thought experiment, I was neutral
on the question of the existence of abstracta—mainly because I already saw no
reason to accept Quine’s criterion. I first officially publicized my nominalism,
however, in Azzouni (2004b). I thought the challenge posed by the epistemic
role puzzle remained the same despite this change in viewpoint precisely
because it wasn’t (in my view) a philosophical claim but instead an (over-
looked) insight about ordinary mathematical practice.

10. See Azzouni (2004b).
11. McEvoy (2012: 4), footnote 292.
12. This is almost his argument. Here’s another rider he sometimes employs: where

the epistemic role puzzle actually seems to do some work (in some versions of
the argument against mathematical entities that McEvoy tries to mount on my
behalf) it turns out that what it’s doing is indistinguishable from the work
Benacerraf’s problem does.

13. See, e.g., Horwich (1998).
14. See Lynch (2004).
15. See Azzouni (2006, Forthcoming).
16. Statements of the form “(9x)… x ….”.
17. E.g., in Azzouni (2004b), and in the appendix of the General Introduction in

Azzouni (2010a).
18. See Azzouni (2007, 2010b).
19. McEvoy (2012: 291).
20. From Azzouni (2000: 237).
21. Furthermore—although I wasn’t running this argument in 2000, see footnote 9

—if our criterion for existence is mind- and language-independence, we can
simply deny, on these grounds, that the purported objects exist.

22. See Daly and Langford (2009).
23. I should note, by-the-by, that I don’t think that spacetime points or regions are

“in principle” perceivable; but I’ve left that point aside for the sake of
discussion.
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Chapter 2
What Is the Benacerraf Problem?

Justin Clarke-Doane

In “Mathematical Truth,” Paul Benacerraf presented an epistemological problem for
mathematical realism. “[S]omething must be said to bridge the chasm, created by
[…] [a] realistic […] interpretation of mathematical propositions… and the human
knower,” he writes.1 For prima facie “the connection between the truth conditions
for the statements of [our mathematical theories] and […] the people who are
supposed to have mathematical knowledge cannot be made out.”2

The problem presented by Benacerraf—variously called “the Benacerraf
Problem” the “Access Problem,” the “Reliability Challenge,” and the
“Benacerraf-Field Challenge”—has largely shaped the philosophy of mathematics.
Realist and antirealist views have been defined in reaction to it. But the influence of
the Benacerraf Problem is not remotely limited to the philosophy of mathematics.
The problem is now thought to arise in a host of other areas, including
meta-philosophy. The following quotations are representative.

The challenge for the moral realist […] is to explain how it would be anything more than
chance if my moral beliefs were true, given that I do not interact with moral properties. […]
[T]his problem is not specific to moral knowledge. […] Paul Benacerraf originally raised it
as a problem about mathematics.

Huemer (2005: 99)3

It is a familiar objection to […] modal realism that if it were true, then it would not be
possible to know any of the facts about what is […] possible […]. This epistemological
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objection […] may […] parallel […] Benacerraf’s dilemma about mathematical […]
knowledge.

Stalnaker (1996: 39–40)4

We are reliable about logic. […] This is a striking fact about us, one that stands in need of
explanation. But it is not at all clear how to explain it. […] This puzzle is akin to the
well-known Benacerraf-Field problem […].

Schechter: (2013: 1)5

Benacerraf’s argument, if cogent, establishes that knowledge of necessary truths is not
possible.

Casullo (2002: 97)

The lack of […] an explanation [of our reliability] in the case of intuitions makes a number
of people worry about relying on [philosophical] intuitions. (This really is just Benacerraf’s
worry about mathematical knowledge.)

Bealer (1999: 52n22)

[W]hat Benacerraf […] asserts about mathematical truth applies to any subject matter. The
concept of truth, as it is explicated for any given subject matter, must fit into an overall
account of knowledge in a way that makes it intelligible how we have the knowledge in that
domain that we do have.

Peacocke (1999: 1–2)6

One upshot of the discussion below is that even the above understates the case.
An important class of influential but prima facie independent epistemological
problems are, in relevant respects, restatements of the Benacerraf Problem. These
include so-called “Evolutionary Debunking Arguments,” associated with such
authors as Richard Joyce and Sharon Street.

The Benacerraf Problem is, thus, of central importance. It threatens our
knowledge across philosophically significant domains. But what exactly is the
problem? In this paper, I argue that there is not a satisfying answer to this question.
It is hard to see how there could be a problem that satisfies all of the constraints that
have been placed on the Benacerraf Problem. If a condition on undermining, which
I will call “Modal Security,” is true, then there could not be such a problem. The
obscurities surrounding the Benacerraf Problem infect all arguments with the
structure of that problem aimed at realism about a domain meeting two conditions.
Such arguments include Evolutionary Debunking Arguments. I conclude with some
remarks on the relevance of the Benacerraf Problem to the Gettier Problem.

2.1 Benacerraf’s Formulation

Benacerraf’s “Mathematical Truth” has been deeply influential—but more for its
theme than for its detail. The theme of the article is that there is a tension between
the “standard” realist interpretation of mathematics and our claim to mathematical
knowledge. Benacerraf writes,
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[O]n a realist (i.e., standard) account of mathematical truth our explanation of how we
know the basic postulates must be suitably connected with how we interpret the referential
apparatus of the theory. […] [But] what is missing is precisely […] an account of the link
between our cognitive faculties and the objects known. […] We accept as knowledge only
those beliefs which we can appropriately relate to our cognitive faculties.

Benacerraf (1973: 674)

Benacerraf is skeptical that such an account exists. Thus, he thinks, we must
either endorse a “non-standard” antirealist interpretation of mathematics or settle for
an epistemic mystery.

What is Benacerraf’s reason for being skeptical that our mathematical beliefs can
be “appropriately related” to our cognitive faculties, if those beliefs are construed
realistically? His reason is the causal theory of knowledge. He writes,

I favor a causal account of knowledge on which for X to know that S is true requires some
causal relation to obtain between X and the referents of the names, predicates, and quan-
tifiers of S. [.…] [But] […] combining this view of knowledge with the “standard” view of
mathematical truth makes it difficult to see how mathematical knowledge is possible. […]
[T]he connection between the truth conditions for the statements of number theory and any
relevant events connected with the people who are supposed to have mathematical
knowledge cannot be made out.

Benacerraf (1973: 671–673)

There is a natural response to this argument. Even if the causal theory of
knowledge were plausible in other cases, it seems inappropriate in the case of
mathematics. As Øystein Linnebo remarks,

By asking for a causal connection between the epistemic agent and the object of knowl-
edge, Benacerraf treats […] mathematics […] like physics and the other […] empirical
sciences. But […] [s]ince mathematics does not purport to discover contingent empirical
truths, it deserves to be treated differently.

Linnebo (2006: 546)

Indeed, not even the originator of the causal theory of knowledge, Alvin
Goldman, intended that theory to apply to mathematics. In the article to which
Benacerraf refers, Goldman begins,

My concern will be with knowledge of empirical propositions only, since I think that the
traditional [justified true belief] analysis is adequate for knowledge of non empirical truths.

Goldman (1967: 357)

But the causal theory of knowledge is not even plausible in other cases. It does
not seem to work with respect to knowledge of general truths or with respect to
knowledge of truths about spatio-temporally distant events. Indeed, it has been
almost universally rejected for reasons that are independent of the Benacerraf
Problem (Goldman rejected the theory long ago).7

For these reasons, Benacerraf’s own formulation of the problem no longer
carries much weight. But it is widely agreed that Benacerraf was onto a genuine
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epistemological problem for mathematical realism nevertheless. W. D. Hart sum-
marizes the prevailing opinion nicely.

[I]t is a crime against the intellect to try to mask the [Benacerraf] problem […] with
philosophical razzle-dazzle. Superficial worries about […] causal theories of knowledge are
irrelevant to and misleading from this problem, for the problem is not so much about
causality as about the very possibility of natural knowledge of abstract objects.

Hart (1977: 125–126)

The genuine problem to which Benacerraf was pointing is commonly thought to
have been identified by Hartry Field. I turn to his formulation of the problem now.

2.2 Field’s Improvement

Field’s presentation of the Benacerraf Problem is the starting point for nearly all
contemporary discussion of the issue8. It has a number of virtues which will occupy
me below. Field writes,

Benacerraf formulated the problem in such a way that it depended on a causal theory of
knowledge. The [following] formulation does not depend on any theory of knowledge in
the sense in which the causal theory is a theory of knowledge: that is, it does not depend on
any assumption about necessary and sufficient conditions for knowledge.

Field (1989: 232–233)

In particular,

We start out by assuming the existence of mathematical entities that obey the standard
mathematical theories; we grant also that there may be positive reasons for believing in
those entities. These positive reasons might involve […] initial plausibility […] [or] that the
postulation of these entities appears to be indispensable. […] But Benacerraf’s challenge
[…] is to […] explain how our beliefs about these remote entities can so well reflect the
facts about them […] [I]f it appears in principle impossible to explain this, then that tends
to undermine the belief in mathematical entities, despite whatever reason we might have for
believing in them.

Field op. cit.: 26

Three observations about Field’s formulation of the Benacerraf Problem are in
order. First, as Field emphasizes, his formulation of the problem does not assume a
view as to the necessary and sufficient conditions for knowledge. Field’s formu-
lation does assume a view as to the conditions that are (merely) necessary for
justification (if justification is taken to be necessary for knowledge, then of course
Field’s formulation implies a necessary condition for knowledge too). According to
Field, if one’s beliefs from a domain F are justified then it does not appear to her in
principle impossible to explain the reliability of her F-beliefs.

Note that the claim is not—or, anyway, should not be—that if one’s F-beliefs are
justified, then one can now explain the reliability of one’s F-beliefs. That would
clearly be too stringent. Consider our perceptual beliefs. People’s perceptual beliefs
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were presumably justified before anything like an explanation of their reliability
became available. Even today we have no more than a sketch of such an expla-
nation. But it is less plausible that people’s perceptual beliefs would have been
justified if it appeared to them in principle impossible to explain the reliability of
those beliefs.

The second observation is that Field’s formulation of the Benacerraf Problem is
non-skeptical. Field does not merely claim that it appears (to us realists)9 in prin-
ciple impossible to offer an explanation of the reliability of our mathematical beliefs
that would convince a mathematical skeptic—one who doubts that there are any
(non-vacuous) mathematical truths at all. Field grants for the sake of argument that
our mathematical beliefs are both (actually) true and (defeasibly) justified, realis-
tically conceived.10 Field claims that, even granted these assumptions, it appears in
principle impossible for us to explain the reliability of our mathematical beliefs.

This is important. In granting these assumptions, Field can draw a contrast
between the likes of perceptual realism—realism about the objects of ordinary
perception—and mathematical realism. Notoriously, it appears in principle
impossible (for us realists) to offer an explanation of the reliability of our perceptual
beliefs that would convince a perceptual skeptic. What we can arguably offer is an
explanation of the reliability of our perceptual beliefs that assumes the reliability of
our perceptual beliefs. We can arguably offer an evolutionary explanation of how
we came to have reliable cognitive mechanisms for perceptual belief, and a neu-
rophysical explanation of how those mechanisms work such that they are reliable.11

Clearly, neither of these explanations would convince someone who was worried
that we were brains in vats. The arguments for evolutionary theory and neuro-
physics blatantly presuppose the reliability of our perceptual beliefs. Still, these
arguments do seem to afford our perceptual beliefs a kind of intellectual security.
The question is whether analogous arguments are available in the mathematical
case.12

The final observation is that, while Field does not seem to recognize it, his
formulation of the Benacerraf Problem does not obviously depend on the view that
mathematics has a peculiar ontology. Prima facie, his challenge merely depends on
the view that mathematical truths are causally, counterfactually, and constitutively
independent of human minds and languages.13 The converging opinion that there is
no epistemological gain to “trading” ontology for ideology in the philosophy of
mathematics reflects this point. But the point is often misconstrued.14 The point is
not that the explication of the ideological “primitives” will still somehow make
reference to abstract objects, so the apparent loss of ontology is illusory. The point
is that abstract objects are not what give rise to the Benacerraf Problem in the first
place.

This point should not be surprising. As was mentioned in the introduction,
something similar to the Benacerraf Problem is commonly thought to arise for
realism about domains like morality, modality, and logic. But none of these
domains, at least obviously, has a peculiar ontology. In the context of nominalism
about universals, morality merely carries with it additional ideology (“is good,” “is
bad,” “is obligatory,” and so on). Similarly, for one who takes modal operators as
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primitive, the same is true of modality. Finally, it is certainly not mandatory to think
that there are peculiar objects corresponding to (first order) logical (as opposed to
metalogical) truths. However, in none of these cases does the existence of some-
thing like a Benacerraf Problem seem to depend on the plausibility of an onto-
logically innocent interpretation of the corresponding domain.15

The canonical formulation of the Benacerraf Problem, due to Field, is, thus,
appealing. It does not rely on a theory of knowledge, much less a causal one. It does
not simply raise a general skeptical problem for mathematical realism that has an
analog in the perceptual case. Finally, it does not, in any obvious way, rely on an
ontologically committal interpretation of mathematics. Nevertheless, it is unclear at
a crucial juncture. It is unclear what it would take to explain the reliability of our
mathematical beliefs in the relevant sense. In what sense of “explain the reliability”
is it plausible both that it appears in principle impossible (for us realists) to explain
the reliability of our mathematical beliefs, and that the apparent in principle
impossibility of explaining the reliability of those beliefs undermines them?

2.3 Safety

In addressing this question, it will be helpful to begin by considering an account of
mathematical truth that even Field believes meets his challenge. We can then look
for the sense in which this view can “explain the reliability” of our mathematical
beliefs and in which the apparent in principle impossibility of explaining their
reliability would undermine them.

The view in question is a version of mathematical pluralism. The key idea to this
view is that consistency suffices for truth in mathematics. This contrasts with
“standard” mathematical realism, according to which the overwhelming majority of
consistent (foundational) mathematical theories are false (just as the overwhelming
majority of consistent physical theories are false). Although this view takes many
forms [see Carnap [1950] (1983); Putnam [1980] (1983); Linsky and Zalta (1995);
and Hamkins (2012)], Field has been clearest about the merits of Mark Balaguer’s
“Full Blooded Platonism” (FBP). According to FBP, consistent mathematical
theories are automatically about the class of objects of which they are true, and
there is always such a class (where consistency is a primitive notion, and the notion
of truth is a standard Tarskian one).16

FBP was specifically advanced as a solution to Field’s formulation of the
Benacerraf Problem. Mark Balaguer writes,

The most important advantage that FBP has over non-full-blooded versions of platonism
[…] is that all of the latter fall prey to [Field’s formulation of] Benacerraf’s epistemological
argument.

Balaguer (1995: 317)
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Balaguer explains,

[FBP] eliminates the mystery of how human beings could attain knowledge of mathe-
matical objects. For if FBP is correct, then all we have to do in order to attain such
knowledge is conceptualize, or think about, or even “dream up,” a mathematical object.
Whatever we come up with, so long as it is consistent, we will have formed an accurate
representation of some mathematical object, because, according to FBP, all [logically]
possible mathematical objects exist.

Balaguer loc. cit.

Field agrees. He writes,

[Some philosophers] (Balaguer (1995); Putnam [1980] (1983); perhaps Carnap [1950]
(1983) solve the [Benacerraf] problem by articulating views on which though mathematical
objects are mind-independent, any view we had had of them would have been correct […].
[T]hese views allow for […] knowledge in mathematics, and unlike more standard Platonist
views, they seem to give an intelligible explanation of it.

Field (2005: 78)

In what relevant sense of “explain the reliability” does FBP explain the relia-
bility of our mathematical beliefs? The quotations above suggest that FBP explains
the reliability of our mathematical beliefs in the sense that it shows that had our
mathematical beliefs been different (but still consistent), they still would have been
true. However, FBP only shows this assuming that the mathematical truths are the
same in the nearest worlds in which our mathematical beliefs are different.17 If there
are no (existentially quantified) mathematical truths in the nearest worlds in which
we have different mathematical beliefs, for instance, then had our mathematical
beliefs been (appropriately) different, they would have been false. I shall assume,
then, that Field intends to grant not just the (actual) truth of our mathematical
beliefs, but also that the mathematical truths are the same in all nearby worlds.

Would an explanation in the relevant sense need to show that had our mathe-
matical beliefs been different, they still would have been true? Surely not. Consider
the perceptual case. Had our perceptual beliefs been (sufficiently) different (but still
consistent), they would have been false. The closest worlds in which we have
(consistent) perceptual beliefs as of goblins, say, is a world in which we are deluded
somehow. Perhaps it is true that had our perceptual beliefs been different, but
“similar,” they still would have been true (assuming that there is some independent
way to explicate the notion of similarity). But it is still doubtful that an explanation
in the relevant sense would need to show this. The observation that had our beliefs
of a kind F been different, they would have been false only seems undermining to
the extent that they could have easily been different. If the closest worlds in which
our F-beliefs are different but “similar” are remote, then it is hard to see how the
observation that had we been in those worlds, our F-beliefs would have been false,
could undermine them.

The reasonable explanatory demand in the neighborhood, which FBP does seem
to address (if the mathematical truths are the same in all nearby worlds), is to show
that our mathematical beliefs are safe—i.e. to show that we could not have easily
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had false mathematical beliefs (using the method we used to form ours).18 For
typical contingent truths F, our F-beliefs can fail to be safe in two ways (assuming
their actual truth). They can fail to be safe, first, if it could have easily happened that
the F-truths were different while our F-beliefs failed to be correspondingly dif-
ferent. They can fail to be safe, second, if it could have easily happened that our
F-beliefs were different while the F-truths failed to be correspondingly different. If,
however, the F-truths could not have easily been different, then our F-beliefs cannot
fail to be safe in the first way. If, moreover, the F-truths are “full-blooded,” in the
sense that every (consistent) F-theory is equally true, then our F-beliefs cannot fail
to be safe in the second way (assuming the “safety” of our inferential practices).
Thus, if the mathematical truths are the same in all nearby worlds, and we are
granted the (actual) truth of our mathematical beliefs, then FBP shows that our
mathematical beliefs are safe.

But if the mathematical truths are the same in all nearby worlds, and we are
granted the (actual) truth of our mathematical beliefs, then our mathematical beliefs
may well be safe even if standard mathematical realism is true. Again, if the
mathematical truths could not have easily been different (whether or not they are
full-blooded), then our mathematical beliefs cannot fail to be safe in the first way
(assuming their actual truth). Moreover, if we could not have easily had different
mathematical beliefs (even if, had we, they would not still have been true), then
they cannot fail to be safe in the second way (again, assuming their actual truth).
But there are reasons to think that we could not have easily had different mathe-
matical beliefs. Our “core” mathematical beliefs might be thought to be evolu-
tionarily inevitable.19 Given that our mathematical theories best systematize those
beliefs, there is a “bootstrapping” argument for the safety of our belief in those
theories. Our “core” mathematical beliefs are safe; our mathematical theories
“abductively follow” from those; our abductive practices are “safe” (something
Field, as a scientific realist, would presumably concede); so, our belief in our
mathematical theories is safe.

Of course, to the extent that our mathematical theories do not best systematize
our “core” mathematical beliefs, this argument is not compelling. But, then, to that
extent, the standard realist should not believe in those theories anyway. The reason
that standard realists typically refuse to endorse either the Continuum Hypothesis
(CH) or its negation is precisely that neither CH nor not-CH seems to figure into the
(uniquely) best systematization of our mathematical beliefs.

This argument for the safety of our mathematical beliefs obviously turns on
speculative empirical hypotheses. In particular, what evolutionary considerations
most clearly suggest is that we would have certain quantificational and geometrical
beliefs about things in our environments in certain situations. It does not seem that
it was evolutionarily inevitable for us to have the “core” pure mathematical beliefs
that we have. One way to address this problem would be to argue that our pure
mathematical theories plus bridge laws linking pure mathematical truths to quan-
tificational and geometric truths about things in our environments “abductively
follow” from the latter. But the point is that there is a promising argument here—
one that it does not appear “in principle impossible” to make.
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It appears, then, that the standard mathematical realist may also be able to show
that our mathematical beliefs are safe. Is there some other relevant sense of “explain
the reliability” in which FBP can explain the reliability of our mathematical beliefs?
I cannot think of one. (If there is not, then there may be little to recommend FBP.)
But there is another epistemological challenge which is closely related to the
challenge to show that our mathematical beliefs are safe. Let me turn to that now.

2.4 Sensitivity

Despite his remarks on mathematical pluralism, Field typically suggests that his
challenge is to show that our mathematical beliefs are counterfactually persistent—
i.e., that had the mathematical truths been (arbitrarily) different (or had there been
no existentially quantified such truths at all), our mathematical beliefs would have
been correspondingly different (if we still formed our mathematical beliefs using
the method we actually used to form them). For example, Field writes,

The Benacerraf problem […] seems to arise from the thought that we would have had
exactly the same mathematical […] beliefs even if the mathematical […] truths were
different […] and this undermines those beliefs.

Field (2005: 81)20

Notice that FBP does nothing to answer this challenge. Balaguer is “doubtful
that mathematical theories are necessary in any interesting sense” (Balaguer 1998:
317), and he concedes that “[i]f there were never any such things as [mathematical]
objects, the physical world would be exactly as it is right now” (Balaguer 1999:
113). Given the supervenience of the intentional on the physical, it follows that had
there been no existentially quantified mathematical truths, our mathematical beliefs
would have failed to be correspondingly different.

Would the apparent in principle impossibility of showing that our mathematical
beliefs are counterfactually persistent in this sense undermine them? Surely not. We
cannot even show that our perceptual beliefs are counterfactually persistent in this
sense. As skeptics argue, the closest worlds in which the perceptual truths are
sufficiently different is a world in which we are deluded.21

The reasonable challenge in the neighborhood is to show that our mathematical
beliefs are sensitive—i.e., that had the contents of our mathematical beliefs been
false, we would not still have believed them (using the method we actually used to
form our mathematical beliefs). Although we cannot show that had the perceptual
truths been (arbitrarily) different, our perceptual beliefs would have been corre-
spondingly different, Nozick (1981) pointed out that we can, it seems, show that
had I, e.g., not been writing this paper, I would not have believed that I was. The
closest world in which I am not writing this paper is still a world in which my
perceptual faculties deliver true beliefs.

But there is a problem with Field’s challenge under this construal. Contra
Balaguer, mathematical truths seem to be metaphysically necessary. If they are,
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then our mathematical beliefs are vacuously sensitive on a standard semantics. As
David Lewis writes,

[I]f it is a necessary truth that so-and-so, then believing that so-and-so is an infallible
method of being right. If what I believe is a necessary truth, then there is no possibility of
being wrong. That is so whatever the subject matter […] and no matter how it came to be
believed.

Lewis (1986: 114–115)22

Field might respond that, though we are granted the actual truth (and defeasible
justification) of our mathematical beliefs (and presumably also that the mathe-
matical truths could not have easily been different), we are not granted the necessity
of their contents. Unlike the claim that the contents of our mathematical beliefs are
true, the claim that their contents are necessary requires argument. But our belief
that the mathematical truths are necessary is commonly thought to enjoy a similar
status to our belief that they are true. Both beliefs are commonly regarded as
default-justified positions. If Field were merely trying to undermine our mathe-
matical beliefs under the assumption that our belief that they are necessary is not
itself (defeasibly) justified, then the interest of his challenge would be greatly
diminished.23

Of course, it is arguable, contra Lewis, that some conditionals with metaphys-
ically impossible antecedents are not vacuously true. For a variety of purportedly
metaphysically necessary truths, we seem to be able to intelligibly ask what would
have been the case had they been false. As Field writes,

If one [says] “nothing sensible can be said about how things would be different if the axiom
of choice were false,” it seems wrong: if the axiom of choice were false, the cardinals
wouldn’t be linearly ordered, the Banach-Tarski theorem would fail and so forth.

Field (1989: 237–238)

However, we seem to be equally unable to show that our relevantly uncontro-
versial beliefs are non-vacuously sensitive. For example, we seem to be unable to
show that our belief in “bridge laws” that link supervenient properties to subvenient
ones are so sensitive. Had—as a matter of metaphysical impossibility—atoms
arranged car-wise failed to compose cars (as “ontological nihilists” allege), we still
would have believed that they did.24

It might be thought that Field could simply accept that his challenge is at least as
serious for realism about truths that link supervenient properties to subvenient ones.
After all, such truths are metaphysically necessary, and, again, the Benacerraf
Problem is often thought to arise for realism about such truths. The problem with
this response is that it would not just require rejecting realism about necessary
truths. It would at least prima facie require rejecting realism about the truths of
ordinary perception. If our belief about the composition conditions of cars is
undermined, then so too, presumably, is our belief that we are not sitting in one.25 If
Field’s challenge generalized this wildly, then it would no longer point to an
epistemic difference between our mathematical beliefs and our beliefs about the
objects of ordinary perception.
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I will shortly mention a way to argue that our mathematical beliefs are even
better off than our beliefs about the composition conditions of cars with respect to
sensitivity. But the above demonstrates that if Field’s challenge is to show that our
mathematical beliefs are sensitive, then, again, it either does not appear in principle
impossible to answer, or this appearance does not plausibly undermine those
beliefs.

2.5 Indispensability

Those familiar with “Evolutionary Debunking Arguments” (to be discussed) are
likely to think that I have failed to consider the most obvious analysis of Field’s
challenge. The challenge, it might be thought, has nothing immediately to do with
the safety and sensitivity of our mathematical beliefs. It has to do with the expla-
nation of our having those beliefs. The challenge is to show that the contents (or
truth) of our mathematical beliefs figure into the best explanation of our having
them.

This proposal is related to a causal constraint on knowledge. But it is intuitively
weaker. Rather than requiring that the subject matter of our beliefs from an area
F helps to cause our having the F-beliefs that we have, it is required that the
contents of our F-beliefs help to explain our having those beliefs. Prima facie, our
beliefs may have a causally inert subject matter, though their contents figure into the
best explanation of contingent states like our having those beliefs.

But there is an obvious problem with Field’s challenge under this analysis. It
simply does not appear in principle impossible to answer. Insofar as mathematics
appears to be indispensable to empirical science, it appears impossible to show that
the contents of our mathematical beliefs do not figure into the best explanation of
our having them. As Mark Steiner writes,

[S]uppose that we believe […] the axioms of analysis or of number theory. […]
[S]omething is causally responsible for our belief, and there exists a theory — actual or
possible, known or unknown — which can satisfactorily explain our belief in causal style.
This theory, like all others, will contain the axioms of number theory and analysis.

Steiner (1973: 61)

The point is that mathematics, like logic, seems to be assumed by all of our
empirical theories.26 If it is, however, then mathematics is a background assumption
of the theory that best explains our having the mathematical beliefs that we have. In
particular, for any typical (e.g. not higher-set-theoretic) mathematical proposition
p, p is a background assumption of the best explanation of our having the belief that p.

One might respond to this problem by arguing that an explanation in the per-
tinent sense would show, not just that the contents of our mathematical beliefs
figure into the best explanation of our having those beliefs, but that they do so in an
“explanatory way.” But, setting aside the obscurity of the quoted locution, it would
still not appear in principle impossible to explain the reliability of our mathematical
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beliefs. The key point of the “improved” indispensability argument pressed lately
by Alan Baker and others is that mathematical hypotheses seem to figure into the
best explanation of empirical phenomena in just such a way.27 This argument does
not show that the contents of our mathematical beliefs figure into the best expla-
nation of our having them in an explanatory way. But the latter claim is prima facie
plausible. Consider, for instance, Sinnott-Armstrong’s suggestion that “[p]eople
evolved to believe that 2 + 3 = 5, because they would not have survived if they had
believed that 2 + 3 = 4” (Sinnot-Armstrong 2006: 46). The question arises: why
would people not have survived if they had believed that 2 + 3 = 4? According to
Sinnott-Armstrong “the reason why they would not have survived then is that it is
true that 2 + 3 = 5” (Sinnot-Armstrong loc. cit.). Sinnott-Armstrong appears to be
suggesting that 2 + 3 = 5 explains our ancestors’ coming to believe that 2 + 3 = 5.
It does not merely “figure into” the explanation of their doing this. Whether this is
true is certainly debatable. The point, however, is that it does not appear “in
principle impossible” to show that the contents of our mathematical beliefs figure
into the best explanation of our having them—even “in an explanatory way.”28

Field is under no illusions on this point. When discussing his challenge as it
applies to logic, he explicitly rejects the above analysis of his challenge (Field 1996:
372n13). Field even notes that the realist can appeal to the explanatory role of
mathematics in an effort to bolster the conclusion of the previous section. He notes,
in effect, that one can argue from explanatory considerations to the non-vacuous
sensitivity of our mathematical beliefs. Field writes,

[O]ne can try to invoke indispensability considerations […] in the context of explaining
reliability. One could argue […] that if mathematics is indispensable to the laws of
empirical science, then if the mathematical facts were different, different empirical con-
sequences could be derived from the same laws of (mathematicized) physics.

Field (1989: 28)

Such an argument for the sensitivity of our beliefs about the composition con-
ditions of ordinary objects would not be plausible. When p is a truth predicating a
property—such as the property of being a car—which is not the “postulate” of any
special science, one cannot argue from the explanatory indispensability of p to the
sensitivity of our belief that p, as above. This is true even if the property is
supervenient on properties which are the “postulates” of special sciences.29

What should we think of the above argument? I need offer no final assessment
here. But Field’s reason for doubt is not compelling. He objects that “the amount of
mathematics that gets applied in empirical science… is relatively small” (Field
1989: 29). But, as with safety, there is a “bootstrapping” argument from the sen-
sitivity of our belief in applicable mathematics to the sensitivity of our belief in the
rest of it. Again, such an argument may fail to “decide” certain abstract hypotheses.
But this would merely seem to confirm the standard view that we ought to remain
agnostic about their truth-values.

Suppose, however, that it did appear in principle impossible to show that the
contents of our mathematical beliefs figure into the best explanation of our having
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them. Would this appearance undermine those beliefs? It is hard to see how it
could. I have argued that we may be able to show that our mathematical beliefs are
both safe and sensitive, given their (actual) truth (and defeasible justification), in the
sense in which we can show that our uncontroversial beliefs are. We may be able to
argue that we could not have easily had false mathematical beliefs, given their truth
(and that the mathematical truths could not have easily been different), because we
could not have easily had different ones. Thus, our mathematical beliefs are safe.
And we may be able to argue that, since mathematical truths would be meta-
physically necessary, had the contents of our mathematical beliefs been false, we
would not have believed those contents (in the sense that we can argue that, had the
contents of our explanatorily basic ordinary object beliefs been false, we would not
have believed those contents). Thus, our mathematical beliefs are (vacuously)
sensitive as well. Notice that this argument does not assume, even implicitly, that
the contents of our mathematical beliefs figure into the best explanation of our
having them. The problem, then, is this. How could the observation that the con-
tents of our mathematical beliefs fail to figure into the best explanation of our
having them undermine them without giving us some reason to doubt that they are
both safe and sensitive? This obscurity points to a basic problem with the
Benacerraf Problem.

2.6 In Search of a Problem

What is the Benacerraf Problem? It is not to show that our mathematical beliefs are
safe or sensitive, since we may be able to show that they are safe and sensitive in
the sense that we can show that our uncontroversial beliefs are. Nor is it to show
that the contents of our mathematical beliefs figure into the best explanation of our
having them, since we may be able to show that too—and, anyway, it is unclear
how the apparent in principle impossibility of showing this could undermine our
mathematical beliefs. Is there some other sense of “explain the reliability” in which
it appears in principle impossible to explain the reliability of our mathematical
beliefs and which is such that this appearance plausibly undermines those beliefs?

It is sometimes said that what is wanted is a unified explanation of the correlation
between our mathematical beliefs and the truths. Without this, that correlation
seems like a “massive coincidence.”30 But what does this worry amount to?

It cannot be that the reliability of our mathematical beliefs would be improbable.
Either the probability at issue is epistemic or it is “objective.” If it is epistemic, then
the suggestion is question-begging. It effectively amounts to the conclusion that
Field’s argument is supposed to establish—that our mathematical beliefs are not
justified. Suppose, then, that the probability is objective. Then for any mathematical
truth p, presumably Pr(p) = 1, given that such truths would be metaphysically
necessary.31 Moreover, as we have seen, it may be that Pr (we believe that p) ≈ 1,
because the probability of our having the mathematical beliefs that we have is
high.32 But then, Pr (p & we believe that p) ≈ 1, by the probability calculus. Since
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(p & we believe that p) implies that (our belief that p is true), it may be true that
Pr(our belief that p is true) ≈ 1.

Nor can the request for a unified explanation be the request for a common cause
of the mathematical truths and of our mathematical beliefs. Such a request blatantly
assumes a causal constraint on knowledge, which Field’s challenge is supposed to
avoid. (Nor, again, can the request for a unified explanation be a request to show
that the contents of our mathematical beliefs help to explain—even if not to cause—
our having them. Again, the contents of our mathematical beliefs may well do
that.)33

The problem is not just that it is hard to state an analysis of Field’s challenge that
satisfies the constraints that he places on it. It is not clear that there could be a
problem that satisfies those constraints, given what I argued in Sects. 2.3 and 2.4.

To see this, let me introduce a condition on information E if it is to undermine
our beliefs of a kind F. The condition is:

Modal Security: If information E undermines all of our beliefs of a kind F, then it does so
by giving us reason to doubt that our F-beliefs are both sensitive and safe.34

Modal Security states a necessary condition on underminers. It does not say that
if information E gives us reason to doubt that our F-beliefs are both safe and
sensitive, then E obligates us to give up all of those beliefs. It says that if E does not
even do this, then E cannot be thought to so obligate us.35

The key idea behind Modal Security is that there is no such thing as a
“non-modal underminer.” (Of course, there is such a thing as a non-modal defeater
—namely, a rebutter, i.e. a “direct” reason to believe the negation of the content of
our defeated belief.36) If there were such a thing as a non-modal underminer, then
information could undermine our beliefs “immediately.” It could undermine them,
but not by giving us reason to doubt that they are modally secure. The “by” is
needed, since everyone should agree that if E undermines our F-beliefs, then
E gives us reason to doubt that those beliefs are safe—i.e. that they could not have
easily been false. If our F-beliefs are actually false, then they could have easily
been.

Paradigmatic underminers seem to conform to Modal Security. If E is that we
took a pill that gives rise to random F-beliefs, for instance, then E seems to
undermine them by giving us reason to believe that we could have easily had
different F-beliefs, and, hence (given that the F-truths do not counterfactually
depend on our F-beliefs), that our F-beliefs are not safe. Something similar could
perhaps be said of evidence E that there is widespread disagreement on F-matters
(though whether such evidence is undermining is of course debatable). On the other
hand, when the F-truths are contingent, and E is that we were “bound” to have the
F-beliefs that we do have because of some constraining influence, such as a ten-
dency to overrate one’s self, then E seems to undermine our F-beliefs by giving us
reason to doubt that had the contents of our F-beliefs been false, we would not still
have believed those contents—i.e., by giving us reason to doubt that our F-beliefs
are sensitive.
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Nevertheless, it might be thought that Modal Security cannot handle necessary
truths that we were “bound” to believe. Suppose that a machine enumerates sen-
tences, deeming them validities or invalidities. Independent investigation has
confirmed its outputs prior to the last five. The last five outputs are “validity.” We
defer to the machine’s last five outputs only, and have no prior metalogical beliefs.
Today a trusted source tell us that the machine was “stuck” in the last five instances.
Call this evidence E. Then E does not seem to give us “rebutting” reason to believe
that the last five outputs are invalidities. Nor does it seem to give us undermining
reason to doubt that had, as a matter of metaphysical possibility, the last five
outputs—those sentences—been invalidities, the machine would not have called
them validities. (E does not seem to give us reason to believe that there is a
metaphysically possible world in which those sentences are invalidities, and the
counterfactual in question can only be false with respect to such worlds if there is.)
Nor does E seem to give us undermining reason to believe that the machine could
have easily called the last five sentences invalidities. That was the point of calling it
“stuck.” But E seems to undermine all of our metalogical beliefs. Does not this
show that E may undermine all of our beliefs of a kind but not by giving us reason
to doubt that they are both sensitive and safe?37

It does not. E may not be evidence that, for any metalogical proposition p that
we believe, we could have easily had a false belief as to whether p. It does not
follow that E is not evidence that we could have easily had a false metalogical
belief. E is evidence that, even if the machine had considered an invalidity last, it
still would have called the sentence a validity. But it is not just this fact which
seems undermining. If we know that the only worlds in which it considers an
invalidity last are “distant,” then it is hard to see how evidence that, had we been in
one, we would have had false metalogical beliefs, could undermine all of our
metalogical beliefs. It must apparently be added that we know that such worlds are
“near” to the actual one.38 But if this is added, then E is evidence that we could
have easily had different metalogical beliefs, had the machine considered different
sentences last, and hence, given the necessity of the metalogical truths, that we
could have easily had false metalogical beliefs—i.e., that those beliefs are not
safe.39

This response depends on the assumption that not just any grouping of beliefs
counts as a “kind.” If we could let F be {[b] = {x: x = b}}, for some belief formed
by the machine, b, then E could undermine all of our F-beliefs despite giving us no
reason to believe that we might have easily had false F-beliefs. Intuitively, how-
ever, metalogical beliefs, like moral beliefs, are kinds, while “the last metalogical
belief formed by the machine” is not. If there is no principled argument for this,
however, then Modal Security may not get off the ground. The problem is similar to
the “generality problem” for process reliabilism.40

Of course, if we could explicate “stuck” in such a way that learning that the
machine was stuck in the last five instances undermines all of our metalogical
beliefs, but has no modal implications at all, then the example above would be a
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counterexample to Modal Security. But it is hard to see how we could do this. We
might say that the machine is “stuck” in that it is not “detecting,” “tracking,” or
“sensitive to” the metalogical truths—it is not generating its outputs “because” they
are true. But what do these locutions mean? They do not mean that the truth of the
machine’s outputs is not implied by their best explanation. Had we imagined
instead a machine that outputs only logical truths themselves, then, trivially, the
machine would output such truths “because” they were true, since every logical
truth is a consequence of every explanation at all. We might explicate “stuck” in
terms of hyperintensional ideology like constitution or ground. But why exactly
should give up beliefs which we learn are not “constituted by” or “grounded in”
their truth?41

The relevance of Modal Security to the Benacerraf Problem is as follows. If it is
true, and what was said in Sects. 2.3 and 2.4 is correct, then there could not be a
problem that plays the epistemological role that the Benacerraf problem is supposed
by Field to play. Even if there is a sense in which it appears in principle impossible
to “explain the reliability” of our mathematical beliefs, this is not a sense which
gives us reason to doubt that they are both safe and sensitive (with respect to
metaphysically possible worlds). Field does not even pretend to give us (“rebut-
ting”) reason to think that they are actually false, and he does not seem to give us
any (“undermining”) reason to doubt that if they are true, then they are both safe
and sensitive. Hence, even if there is a sense in which it appears in principle
impossible to “explain the reliability” of our mathematical beliefs, this is not a sense
which undermines them, if Modal Security is true.

To be sure, the conclusions of Sects. 2.3 and 2.4 are subject to amendment. As
more is learned about the genealogy of our mathematical capacities, it may come to
appear impossible to show that our “core” mathematical beliefs are inevitable. But
if we can show that they are, and if Modal Security is true, then we can “explain
their reliability” in every sense which is such that the apparent in principle
impossibility of explaining their reliability undermines them.

Note that this is not to say that our mathematical beliefs are in good epistemic
standing—anymore than it is to say that the theological beliefs of a theological
realist who can argue both that the theological truths would be metaphysically
necessary if true, and that she could not have easily had different theological beliefs,
are in good epistemic standing. For all that has been said, our mathematical beliefs
could be false and unjustified. Field grants for the sake of argument that our
mathematical beliefs are (actually) true and (defeasibly) justified, in order to gen-
erate a dialectically effective argument against realists. But if Modal Security is true,
then such an argument may not, in general, be possible. Modal Security implies that
Field overreaches.

Let me illustrate the above reasoning with reference to two further analyses of
Field’s challenge. When discussing the Lewisian reply to the challenge to show that
our mathematical beliefs are sensitive, Field proposes an alternative. He writes,
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If the intelligibility of talk of “varying the facts” is challenged […] it can easily be dropped
without much loss to the problem: there is still the problem of explaining the actual
correlation between our believing “p” and its being the case that p.

Field (1989: 238)

The problem is this. Even if there is some hyperintensional sense of “explana-
tion” according to which one can intelligibly request an explanation of the “merely
actual correlation” between our mathematical beliefs and the truths, it is unclear
how the apparent in principle impossibility of offering that could undermine those
beliefs—given that we may still be able to show that they are safe and sensitive. If
we can show that our mathematical beliefs are safe and sensitive, given their truth,
then we can show that they were (all but) bound to be true.

Schechter suggests another response to Lewis on behalf of Field. He writes,

Lewis is correct […] that the reliability challenge for mathematics […] is subject to a
straightforward response, so long as the challenge is construed to be that of answering [the
question of how our mechanism for mathematical belief works such that it is reliable] […].
[But] [t]here remains the challenge of answering [the question of how we came to have a
reliable mechanism for mathematical belief].

Schechter (2010: 445)

Schechter claims that the question of how we came to have a reliable mechanism
for mathematical belief may remain open even under the assumption that it is
unintelligible to imagine the mathematical truths being different (even if the
question of how that mechanism works such that it is reliable may not). But, first,
this appears incorrect. Schechter is explicit that the question of how we came to
have a reliable mechanism for mathematical belief is different from the question of
how we came to have the mechanism for mathematical belief that we actually came
to have (since the latter question is clearly answerable in principle). However, in
order to decide whether we were, say, selected to have a reliable mechanism for
mathematical belief, as opposed to being selected to have a mechanism for math-
ematical belief with property F which is in fact reliable, we would seem to need to
have to decide what mechanism it would have benefited our ancestors to have had
had the mathematical truths been different.42 Second, even if Schechter were
correct, it is hard to see how the apparent in principle impossibility of explaining
the reliability of our mathematical beliefs in his sense could undermine them.43 For
all that has been said, we might still be able to show that our mathematical beliefs
are safe and sensitive.

Whether Modal Security is true requires in-depth treatment. But while suc-
cessfully defending it would suffice to deflate the Benacerraf Problem, successfully
challenging it would not suffice to reestablish that problem. The question would
remain: in what sense of “explain the reliability” is it plausible both that it appears
in principle impossible to explain the reliability of our mathematical beliefs and
that the apparent in principle impossibility of explaining their reliability under-
mines them? Insofar as there seems to be no satisfactory answer to this question, the
force of the Benacerraf Problem seems lost. Of course, it does not follow that there
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are no mysteries surrounding mathematical knowledge. The point is that no such
mystery can play the role that the Benacerraf problem is supposed to play.

Let me now turn to the broader relevance of this conclusion.

2.7 Broader Relevance

The difficulties surrounding the Benacerraf Problem are actually very general. They
infect formulations of it aimed at moral realism, modal realism, logical realism, and
philosophical realism. But they infect much more than this. They infect any
argument which grants the (actual) truth and (defeasible) justification of our beliefs
from an area and seeks to undermine those beliefs, so long as the area F meets two
conditions. Those conditions are:

1. The F-truths would be metaphysically necessary.

2. There is a plausible explanation of our having the F-beliefs that we have which
shows that we could not have easily had different ones.

Many arguments which are not supposed to be variations on the Benacerraf
Problem have these features. Consider Evolutionary Debunking Arguments, which
are now influential epistemological challenges themselves. Richard Joyce offers a
canonical formulation:

Nativism [the view that moral concepts are innate] offers us a genealogical explanation of
moral judgments that nowhere […] presupposes that these beliefs are true […]. My con-
tention […] is that moral nativism […] might well […] render [moral beliefs] unjustified
[…]. In particular, any epistemological benefit-of-the-doubt that might have been extended
to moral beliefs […] will be neutralized by the availability of an empirically confirmed
moral genealogy that nowhere […] presupposes their truth.

Joyce (2008: 216)44

What is Joyce’s argument? Taken at face value, it is that our moral beliefs
(realistically conceived) are undermined on the mere ground that their contents fail
to figure into the evolutionary explanation of our having them. But we have seen
that such an argument must be too quick. In the first place, it is arguable that the
contents of our moral beliefs do figure into the evolutionary explanation of our
having them, just as it is arguable that the contents of our mathematical beliefs do.45

But set this possibility aside. In order for the information to which Joyce alludes to
undermine our moral beliefs, it would seem prima facie to have to give us (“direct”)
reason to doubt that our moral beliefs are both safe and sensitive. But, on its own,
the observation that the contents of our moral beliefs fail to figure into the evolu-
tionary explanation of our having them does not do this. If this observation has any
epistemological force, it is apparently to help undercut what is arguably the only
dialectically effective argument for the contents of our moral beliefs (realistically
conceived). As Gilbert Harman writes,
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Observation plays a part in science it does not appear to play in ethics, because scientific
principles can be justified ultimately by their role in explaining observations […]. [M]oral
principles cannot be justified in the same way.

Harman (1977: 10)

If the contents of our moral beliefs did figure into the evolutionary explanation
of our having those beliefs, then those contents could be justified by their role in
explaining observations.46

Perhaps, then, Joyce’s argument is that the evolutionary considerations to which
he alludes give us reason to doubt that our moral beliefs are safe. But, on the
contrary, if anything, those considerations seem to give us reason to believe that our
moral beliefs are safe. The whole point of Evolutionary Debunking Arguments is
often taken to be that it would have been advantageous for our ancestors to have the
“core” moral beliefs that we have (such as that killing our offspring is bad) “in-
dependent of their truth.” If this is right, then we could not have easily come to have
different such beliefs, in which case they are safe (assuming that the explanatorily
basic moral truths are the same in nearby worlds—more on this below). As before,
we may be able to “bootstrap up” from the safety of our “core” moral beliefs to the
safety of our moral theories. Note the irony. A tentative sign that a realist about an
area F can establish the safety of her beliefs is that there is an Evolutionary
Debunking Argument aimed at F-realism.47

Perhaps, then, rather than giving us reason to believe that our moral beliefs are
not safe, Joyce takes evolutionary considerations to give us reason to doubt that our
moral beliefs are sensitive. This interpretation is in harmony with standard for-
mulations of the Evolutionary Debunking Argument, due to Walter
Sinnott-Armstrong, Sharon Street, Michael Ruse, and others. It would have bene-
fited our ancestors to believe that killing our offspring is wrong even if killing our
offspring were right—or, indeed, even if there were no (atomic or existentially
quantified) moral truths at all. Thus, had the contents of our moral beliefs been
false, we still would have believed those contents. In an earlier book, Joyce writes,

Suppose that the actual world contains real categorical requirements — the kind that would
be necessary to render moral discourse true. In such a world humans will be disposed to
make moral judgments […] for natural selection will make it so. Now imagine instead that
the actual world contains no such requirements at all — nothing to make moral discourse
true. In such a world, humans will still be disposed to make these judgments… for natural
selection will make it so.

Joyce (2001: 163)

But this argument is also fallacious. Even setting aside the prospect of arguing
for sensitivity via explanatory indispensability, the explanatorily basic moral truths
—the truths that fix the conditions under which a concrete person, action, or event
satisfies a moral predicate—are widely supposed to be metaphysically necessary.
But, if they are, then our corresponding beliefs are vacuously sensitive on a stan-
dard semantics. Of course, as before, those beliefs may not be non-vacuously
sensitive. But, then, neither are our relevantly uncontroversial beliefs, such as the
belief that atoms arranged car-wise compose cars.
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As in the mathematical case, it follows that we may be able to show that our
moral beliefs are both safe and sensitive, given their actual truth. This affords them
extraordinary intellectual security. To the extent that Joyce’s evolutionary specu-
lations give us no reason to doubt their modal security, it is hard to see how those
speculations could undermine our moral beliefs.

2.8 The Benacerraf Problem and the Gettier Problem

What is the Benacerraf Problem? There does not seem to be a satisfying answer.
There does not seem to be a sense of “explain the reliability” in which it is plausible
both that it appears in principle impossible to explain the reliability of our math-
ematical beliefs and that the apparent in principle impossibility of explaining their
reliability undermines them. The problem is quite general, infecting all arguments
with the structure of the Benacerraf Problem meeting two conditions.

It remains open how this conclusion bears on our claim to knowledge in
mathematics and related areas. Unlike Benacerraf’s challenge, both Field’s chal-
lenge and Evolutionary Debunking Arguments focus on whether our beliefs are
justified, not on whether they qualify as knowledge. This is a virtue. The correct
analysis of knowledge is notoriously controversial. Moreover, if our beliefs are
justified, and we can relevantly explain their reliability, then it is hard to see why we
should give them up—even if they fail to qualify as knowledge. Perhaps the most
interesting feature of Field’s formulation of the Benacerraf Problem and of
Evolutionary Debunking Arguments is that they purport to give realists reason to
change their views.

Nevertheless, the argument offered here may suggest that we have knowledge in
mathematics and related areas. I have argued that our mathematical and related
beliefs may be both safe and sensitive, given their (actual) truth (and defeasible
justification). (In the case of mathematics, I also argued that the contents of our
beliefs may figure into the best explanation of our having them.) But many
philosophers would hold that a justified true belief which is both safe and sensitive
qualifies as knowledge (and even more would hold that a justified true belief which
is both safe and sensitive and such that its content figures into the best explanation
of our having it so qualifies).

Perhaps the present discussion helps to explain why. “Gettiered” beliefs—jus-
tified and true beliefs which fail to qualify as knowledge—are plausibly beliefs
whose truth is coincidental in a malignant sense. What is that sense? It is arguably
precisely the sense in which learning that the truth of one’s beliefs is coincidental
would undermine them. If this is correct, then there is a “translation scheme”
between the claim that it is impossible to relevantly explain the reliability of our
F-beliefs, given their truth, and the claim that those beliefs are Gettiered.
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Notes

1. See Benacerraf (1973: 675).
2. Ibid: 673.
3. See also Mackie’s epistemological “argument from queerness” in Chap. 1 of

Mackie (1977), as well as Alan Gibbard’s discussion of “deep vindication” in
Sect. 13 of his Gibbard (2003).

4. Similarly, O’Leary-Hawthorne writes, “The relevant difficulties are not, of
course, peculiar to modal metaphysics. Our dilemma re-enacts Paul
Benacerraf’s famous dilemma for the philosopher of mathematics”
(O’Leary-Hawthorne 1996: 183).

5. See also Resnik (2000).
6. Adam Pautz suggests that the Benacerraf Problem arises for realism about

phenomenal properties. He writes, “If propositions about resemblances among
properties report acausal facts about abstracta, then how can we explain the
following regularity: generally, if we believe p, and p is a such a proposition,
then p is true? […] [T]his problem arises for all accounts of the Mary case [of
the “Mary’s Room” argument] […]. [And it] resembles the Benacerraf-Field
problem about mathematics” (Pautz 2011: 392–3). (The Mary’s Room argu-
ment purports to show that physicalism is false on the grounds that someone—
Mary—could know all the physical facts about color vision and yet learn
something upon seeing colored things for the first time.).

7. The only contemporary formulation of a causal constraint on knowledge of
which I am aware seems hopelessly ad hoc. Colin Cheyne contends that “[i]f Fs
are noncomparative objects, then we cannot know that Fs exist unless our belief
in their existence is caused by: (a) an event in which Fs participate, or
(b) events in which each of the robust constituents of Fs participate, or (c) an
event which proximately causes an F to exist” (Cheyne 1998: 46).

8. For overviews, see Liggins (2006, 2010) and Linnebo (2006).
9. I am not actually a mathematical realist (in a common sense of that phrase). But

since it will be convenient to frame things in terms of what “we” can explain, I
will often identify as one.

10. I will generally fail to qualify discussion of mathematical truths or of our
mathematical beliefs with “realistically conceived” in what follows. But let me
emphasize that this will always be what I intend. The Benacerraf Problem
threatens our mathematical beliefs under a realist construal. This hardly
detracts from its importance, however, for it is notoriously difficult to give a
satisfactory non-realist construal of the subject. I clarify the relevant sense of
“mathematical realism” at the end of the present section.

11. These explanatory tasks are distinguished in Schechter (2010).
12. For more on the “non-skeptical” character of Field’s challenge, see Balaguer

(1995).
13. But see Sect. 3 of Clarke-Doane (2014).
14. See, for example, Shapiro (1995) or Leng (2008).
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15. Joshua Schechter, following Field (1998), suggests that what matters for Field’s
formulation of the Benacerraf Problem is not the ontology of mathematics, but
its objectivity. He has in mind the contrast between, say, standard platonism,
according to which there is a “unique” universe of mathematical objects that
our (fundamental) mathematical theories aim to describe, and Balaguer’s
“Full-Blooded Platonism,” to be discussed below, according to which any
“intuitively consistent” theory that we might have come to accept would have
been true. A given domain of truths F is objective in the relevant sense, if and
only if “not just any [F−] practice counts as correct.” Schechter writes, “[t]he
root of the trouble is not the ontology but the apparent objectivity of mathe-
matics […]. If mathematics […] were to turn out not to have an ontology, but
the relevant truths were nevertheless objective, our reliability would remain
puzzling” (Schechter 2010: 439). We will see in Sect. 3 that this thought, as
promising as it may appear, could not be correct. (For more in-depth treatment
of this issue, see Clarke-Doane [manuscript]).

16. The parenthetical qualification is needed in order to distinguish FBP, which is
highly controversial, from the Completeness Theorem, which is not. FBP does
not just say that every consistent mathematical theory has a model. It says that
every such theory has an intended model. Sometimes critics of FBP accuse
Balaguer of merely advocating the Completeness Theorem. See, for instance,
Burgess (2001).

17. I assume the standard view that “had it been the case that p, it would have been
the case that q” is true only if q is true at the closest worlds in which p is true.

18. While I am not using “safe” in exactly the sense of Pritchard (2005) or
Williamson (2000), the idea is similar. It is unobvious how to spell out the
pertinent sense of “easily.” See Hawthorne (2004: 56) for a complication. I will
mostly ignore methods of belief-formation in what follows.

19. I am not suggesting that our having true “core” mathematical beliefs per se
might be evolutionary inevitable. I am suggesting that our having the “core”
mathematical beliefs that we have, which are actually true, might be. These
claims are very different. See Field (2005) and Clarke-Doane (2012).

20. Field alludes to the parenthetical antecedent in the following: “[W]e can
assume, with at least some degree of clarity, a world without mathematical
objects…” (Field 2005: 80–81). Sometimes Field describes the problem of
showing that our mathematical beliefs are counterfactually persistent as that of
offering a unified explanation of their reliability. In a discussion of the
Benacerraf Problem for logical realism, Field writes “The idea of an explana-
tion failing to be “unified” is less than crystal clear, but another way to express
what is unsatisfactory about [a bad explanation] is that it isn’t counterfactually
persistent […], it gives no sense to the idea that if the logical facts had been
different then our logical beliefs would have been different too.” (Field 1996:
371). I will discuss another sense of “unified explanation” in Sect. 6.

21. This is not incontrovertible. Given an “external” theory of reference, one can
argue that, had we been brains in vats, we would have believed that we were.
See Putnam (1981). This argument relies on a causal theory of reference.
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22. See also Pust (2004).
23. There are arguments that the mathematical truths would be necessary, though I

am not sure how compelling they are. One such argument is that mathematical
truths concern abstract objects like numbers, sets and tensors. Such objects are
neither spatial nor temporal and participate in no physical interactions. “Hence”
they do not depend on the way that the contingent world happens to be. So, if
mathematical objects satisfy the standard axioms in the actual world, then they
do so in all possible worlds. See Shapiro (2000: 21–24) for something like this
argument.

24. See Korman (2014): Sect. 4.2 for relevant discussion.
25. This assumes a closure principle which could conceivably be questioned. But

even if it were, an analogous point would hold. See Clarke-Doane (2016),
Sect. 2.2.

26. Field, of course, hopes ultimately to show that mathematics is not assumed by
(the best formulations of) our empirical theories. But he does not deny that it
seems to be, and, anyway, appears to hold that the Benacerraf Problem arises
even if it is. See Field (2005): Sect. 2.5, and Field (1989: 262).

27. See, for instance, Baker (2009), and Lyon and Colyvan (2008).
28. For more on evolutionary examples like this, see Braddock et al. (2012). I argue

that, despite appearances, the contents of our mathematical beliefs do not
explain our having them in Clarke-Doane (2012): Sect. III.

29. For more on this, see Sect. 2.3 of Clarke-Doane (2014).
30. Field makes gestures in the direction of this position in Field (1996), but then

explicates “unified explanation” in terms of sensitivity (see supra footnote 22).
Sharon Street makes claims like this with respect to our moral beliefs in Street
(2006, 2008).

31. What if we only assign objective probability 1 to contents which are necessary
in an even stronger sense—e.g. “conceptually necessary”? Then, unless one can
argue that “ontological nihilism” is not just false but conceptually impossible,
the contents of our (explanatorily basic) “ordinary object beliefs” would seem
to have equal claim to being objectively improbable. See Sect. 2.4.

32. I am not assuming that if our mathematical beliefs are safe, then the objective
probability that they are true is high. I am pointing out that, for all that has been
said, our mathematical beliefs may be both safe and objectively probable.

33. Perhaps it amounts to the request to show that our mathematical beliefs are
“grounded in” or “constituted by” the corresponding state of affairs (see
Bengson (2015) for something like this proposal)? Such hyperintensional
ideology does not seem to me to be more perspicuous than the quoted phrase
itself. But, even if it were, this proposal would not seem to serve Field’s
purposes, as will become clear shortly.

34. Safety and sensitivity plausibly need to be relativized to methods of belief
formation, as indicated towards the end of Sect. 2.3 and at the beginning of
Sect. 2.4, respectively and reason is shorthand for “direct” “reason”. (When the
area F is not logic, “all of our F-beliefs” refers to all of our non-logical
F-beliefs. Not even Field would deny that we are justified in believing, e.g., that
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either it is the case that there are perfect numbers greater than 1,000,000 or it is
not the case that there are.).

35. The next few paragraphs closely follow parts of Sect. 2.4 of Clarke-Doane
(2016).” Thanks to Neil Sinclair for permission to reprint them.

36. See Pollock (1986: 38–39) for the distinction between underminers (or “un-
dercutters”) and rebutters.

37. Thanks to David James Barnett for pressing me with something like this
example.

38. Compare to the discussion of Full-Blooded Platonism in Sect. 2.3.
39. This assumes that we believe of at least one sentence that it is invalid. But it is

hard to see how we could believe of any sentence that it is valid while failing to
believe of any other that it is invalid.

40. See Conee and Feldman (1998). We could alternatively individuate kinds by
methods of belief. Modal Security would then say that if E obligates us to give
up all of our beliefs formed via M, then it does so by giving us reason to doubt
that our beliefs formed via M are both sensitive and safe. Given plausible
assumptions, this formulation is strictly stronger than Modal Security as I have
interpreted it.

41. There is another kind of problem case. Suppose that E is evidence that a false
theory of justification is true according to which our F-beliefs are not justified.
It might be thought that E could undermine all of our F-beliefs, but not by
giving us reason to doubt their sensitivity or safety. But, on inspection, this
seems bizarre. Suppose that F includes only propositions for which we have
excellent evidence, and E is evidence for the view that a belief is justified only
if it is infallible. Perhaps we are students in a Philosophy 101 class, for
example, and E is an apparently strong argument for the view. To give up our
F-beliefs on the basis of E—when E is neither “rebutting” nor “direct” reason
to doubt that our F-beliefs are modally secure–seems to be to give up those
beliefs “for the wrong kind of reason” (Barnett, [unpublished manuscript]).

42. See Field (2005) and Clarke-Doane (2012).
43. Strangely, Schechter appears to grant something like this point in his discussion

of Nagel in Schechter (2010: 447–448). See also, Chap. 4 of Nagel (1997). My
own view is that the interest of the Benacerraf Problem is greatly reduced if the
apparent in principle impossibility of answering it is not supposed to undermine
our mathematical beliefs (realistically construed).

44. In addition to Joyce, see Greene (2007), Griffiths and Wilkins (forthcoming),
Levy (2006), Lillehammer (2003), Ruse (1986), Sinnot-Armstrong (2006), and
Street (2006).

45. See Brink (1989), Boyd (2003a, b) for relevant discussion.
46. I argue that debunkers have confused the challenge to empirically justify our

moral beliefs with the challenge to explain their reliability in Clark-Doane
(2015).

47. I am not saying that Joyce and Street is committed to holding that we could not
have easily had different explanatorily basic moral beliefs. I am saying that the
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view that we could not have is consistent with, and on some presentations, even
suggested by, their evolutionary speculations. As a result, those speculations
certainly do not seem to give us reason to believe that we could have easily had
different explanatorily basic moral beliefs.

References

Baker, A. (2009). Mathematical explanation in science. The British Journal for the Philosophy of
Science, 60(3), 611–633.

Balaguer, M. (1995). A platonist epistemology. Synthese, 103(3), 303–325.
Balaguer, M. (1998). Platonism and anti-platonism in mathematics. Oxford: Oxford UP.
Balaguer, M. (1999). Review of Michael Resnik’s mathematics as a science of patterns.

Philosophia Mathematica, 7(3), 108–126.
Bealer, G. (1999). A theory of the a priori. Philosophical Perspectives, 13, 29–55.
Benacerraf, P. (1973). Mathematical truth. Journal of Philosophy, 70, 661–679.
Bengson, J. (2015). Grasping the third realm. In T. S. Gendler & J. Hawthorne (Eds.), Oxford

studies in epistemology (Vol. 5, pp. 1–34). Oxford: Oxford UP.
Boyd, R. (2003a). Finite beings, finite goods: The semantics, metaphysics and ethics of naturalist

consequentialism, part I. Philosophy and Phenomenological Research, 66(3), 505–553.
Boyd, R. (2003b). Finite beings, finite goods: The semantics, metaphysics and ethics of naturalist

consequentialism, part II. Philosophy and Phenomenological Research, 67(1), 24–47.
Braddock, M., Mortensen, A., & Sinnot-Armstrong, W. (2012). Comments on Justin

Clarke-Doane’s. ‘Morality and mathematics: The evolutionary challenge’. Ethics
Discussions at PEA Soup. http://peasoup.typepad.com/peasoup/2012/03/ethics-discussions-at-
pea-soup-justin-clarke-doanes-morality-and-mathematics-the-evolutionary-challe-1.html

Brink, D. (1989). Moral realism and the foundations of ethics. Cambridge: Cambridge UP.
Burgess, J. P. (2001). Review of platonism and anti-platonism in mathematics. The Philosophical

Review, 110, 79–82.
Carnap, R. [1950] (1983). Empiricism, semantics and ontology. In P. Benacerraf & H. Putnam

(Eds.), Philosophy of mathematics—Selected readings (2nd ed., pp. 241–257). Cambridge:
Cambridge UP.

Casullo, A. (2002). A priori knowledge. In P. Moser (Ed.), Oxford handbook of epistemology
(pp. 95–143). Oxford: Oxford UP.

Cheyne, C. (1998). Existence claims and causality. Australasian Journal of Philosophy, 76(1), 34–
47.

Clarke-Doane, J. (Manuscript) “Mathematical Pluralism and the Benacerraf Problem”.
Clarke-Doane, J. (2016). Debunking and Dispensability. In Neil Sinclair and Uri Leibowitz (Eds.),

Explanation in Ethics and Mathematics: Debunking and Dispensability (pp. 24–36). Oxford:
Oxford University Press.

Clarke-Doane, J. (2012). Morality and mathematics: The evolutionary challenge. Ethics, 122(2),
313–340.

Clarke-Doane, J. (2014). Moral Epistemology: The Mathematics Analogy. Noûs, 48(2), 238–255.
Clarke-Doane, J. (2015). Justification and Explanation in Mathematics and Morality. Russ

Shafer-Landau (Ed.), Oxford Studies in Metaethics, Vol. 10, pp. 80–104. New York: Oxford
University Press.

Conee, E., & Feldman, R. (1998). The generality problem for reliabilism. Philosophical Studies,
89(1), 1–29.

Field, H. H. (1989). Realism, mathematics, and modality. Oxford: Basil Blackwell.

2 What Is the Benacerraf Problem? 41

http://peasoup.typepad.com/peasoup/2012/03/ethics-discussions-at-pea-soup-justin-clarke-doanes-morality-and-mathematics-the-evolutionary-challe-1.html
http://peasoup.typepad.com/peasoup/2012/03/ethics-discussions-at-pea-soup-justin-clarke-doanes-morality-and-mathematics-the-evolutionary-challe-1.html


Field, H. H. (1996). The a prioricity of logic. Proceedings of the Aristotelian Society New Series,
96, 359–379.

Field, H. H. (1998). Mathematical objectivity and mathematical objects. In C. MacDonald & S.
Laurence (Eds.), Contemporary readings in the foundations of metaphysics (pp. 387–403).
Oxford: Basil Blackwell.

Field, H. H. (2005). Recent debates about the a priori. In T. Gendler & J. Hawthorne (Eds.),
Oxford studies in epistemology (Vol. 1, pp. 69–88). Oxford: Clarendon Press.

Gibbard, A. (2003). Thinking how to live. Cambridge, Mass: Harvard UP.
Goldman, A. I. (1967). A causal theory of knowing. The Journal of Philosophy, 64(12), 357–372.
Greene, J. (2007). The secret joke of Kant’s soul. In W. Sinnot-Armstrong (Ed.), Moral

Psychology, Vol. 3: The neuroscience of morality: Emotion, disease, and development (pp. 35–
80).

Griffiths, P. & Wilkins, J. Forthcoming. When do evolutionary explanations of beliefs debunk
belief? PhilSci Archive: http://philsci-archive.pitt.edu/5314/

Hamkins, J. (2012). The set-theoretic multiverse. Review of Symbolic Logic, 5, 416–449.
Harman, G. (1977). The nature of morality: An introduction to ethics. Oxford: Oxford UP.
Hart, W. D. (1977). Review of Mathematical Knowledge. The Journal of Philosophy, 74(2), 118–

129.
Hawthorne, J. (2004). Knowledge and lotteries. Oxford: Oxford UP.
Huemer, M. (2005). Ethical intuitionism. New York: Palgrave Macmillan.
Joyce, R. (2001). The myth of morality. Cambridge: Cambridge UP.
Joyce, R. (2008). Précis of the evolution of morality [and reply to critics]. Philosophy and

Phenomenological Research, 77(1), 213–218 [pp. 218–267 for the “Reply to Critics”].
Korman, D. Z. (2014). Ordinary objects. In E. N. Zalta (Ed.), The Stanford encyclopedia of

philosophy. http://plato.stanford.edu/archives/spr2014/entries/ordinary-objects/
Leng, M., Paseau, A., & Potter, M. (Eds.). (2008). Mathematical knowledge. Oxford: Oxford UP.
Levy, N. (2006). Cognitive scientific challenges to morality. Philosophical Psychology, 19(5),

567–587.
Lewis, D. (1986). On the plurality of worlds. Oxford: Wiley-Blackwell.
Liggins, D. (2006). Is there a good epistemological argument against platonism? Analysis, 66

(290), 135–141.
Liggins, D. (2010). Epistemological objections to platonism. Philosophy Compass, 5(1), 67–77.
Lillehammer, H. (2003). Debunking morality: Evolutionary naturalism and moral error theory.

Biology and Philosophy, 18(4), 567–581.
Linnebo, Ø. (2006). Epistemological challenges to mathematical platonism. Philosophical Studies,

129(3), 545–574.
Linsky, B., & Zalta, E. (1995). Naturalized platonism versus platonized naturalism. The Journal of

Philosophy, 92(10), 525–555.
Lyon, A., & Colyvan, M. (2008). The explanatory power of phase spaces. Philosophia

Mathematica, 16(2), 227–243.
Mackie, J. L. (1977). Ethics: Inventing right and wrong. New York: Penguin.
Nagel, T. (1997). The last word. Oxford: Oxford UP.
Nozick, R. (1981). Philosophical explanations. Cambridge, Mass: Harvard UP.
O’Leary-Hawthorne, J. (1996). The epistemology of possible worlds: A guided tour. Philosophical

Studies, 84(2–3), 183–202.
Pautz, A. (2011). Can disjunctivists explain our access to the sensible world? Noûs (Supplement:

Philosophical Issues, Epistemology of Perception), 21, 384–433.
Peacocke, C. (1999). Being known. Oxford: Oxford UP.
Pollock, J. (1986). Contemporary theories of knowledge. Lanham, Maryland: Rowman and

Littlefield.
Pritchard, D. (2005). Epistemic luck. Oxford: Oxford UP.
Pust, J. (2004). On explaining knowledge of necessity. Dialectica, 58(1), 71–87.
Putnam, H. (1981). Reason, truth and history. Cambridge: Cambridge UP.

42 J. Clarke-Doane

http://philsci-archive.pitt.edu/5314/
http://plato.stanford.edu/archives/spr2014/entries/ordinary-objects/


Putnam, H. [1980] (1983). Models and reality. In P. Benacerraf & H. Putnam (Eds.), Philosophy of
mathematics—Selected readings (2nd ed., pp. 421–444). Cambridge: Cambridge UP.

Resnik, M. (2000). Against logical realism. History and Philosophy of Logic, 20(3–4), 181–194.
Ruse, M. (1986). Taking Darwin seriously. Amherst: Prometheus Books.
Schechter, J. (2010). The reliability challenge and the epistemology of logic. Noûs (Supplement:

Philosophical Perspectives), 24, 437–464.
Schechter, J. (2013). Could evolution explain our reliability about logic? In J. Hawthorne & T.

Szabò (Eds.), Oxford studies in epistemology (Vol. 4, pp. 214–239). Oxford: Oxford UP.
Shapiro, S. (1995). Modality and ontology. Mind, 102(407), 455–481.
Shapiro, S. (2000). Thinking about mathematics: Philosophy of mathematics. Oxford: Oxford UP.
Sinnott-Armstrong, W. (2006). Moral skepticisms. Oxford: Oxford UP.
Stalnaker, R. (1996). On what possible worlds could not be. In Ways a world might be:

Metaphysical and anti-metaphysical essays (pp. 40–54). Oxford: Oxford UP.
Steiner, M. (1973). Platonism and the causal theory of knowledge. The Journal of Philosophy, 70

(3), 57–66.
Street, S. (2006). A Darwinian dilemma for realist theories of value. Philosophical Studies, 127(1),

109–166.
Street, S. (2008). Reply to Copp: Naturalism, normativity, and the varieties of realism worth

worrying about. Philosophical Issues (Interdisciplinary Core Philosophy), 18, 109–166.
Williamson, T. (2000). Knowledge and its limits. Oxford: Oxford UP.

2 What Is the Benacerraf Problem? 43



Chapter 3
Benacerraf’s Mathematical Antinomy

Brice Halimi

3.1 Benacerraf’s Dilemma About Mathematics
as a Mathematical Antinomy

Benacerraf’s “Mathematical Truth” (Benacerraf 1973) takes on the form of a
well-known dilemma. Either a referential semantics for ordinary language is
extended to mathematical language, but then one lapses into platonism, or a rea-
sonable account of mathematical knowledge as a proof activity is put forward, but
then no account of mathematical truth as truth is given. Of course, the semantic
horn and the epistemic horn are not exactly on a par, but Benacerraf’s paper
precisely tends to tilt the scales so as to get an embarrassing balance, i.e. a dilemma.
Its two horns are mutually exclusive and, to the extent that they are both inde-
fensible, Benacerraf leaves it to the reader to understand that they both rest on a
mistake.

I shall argue that the situation smacks of the paradigmatic opposition of two
equally false theses that constitutes the core of Kant’s antinomies of pure reason—
more precisely the core of the first two antinomies, the so-called “mathematical
antinomies,” whose both opponents, Kant argues, are mistaken, whereas both
opponents of the last two antinomies (the “dynamical” ones) are right, albeit from
two incompatible points of view. It might seem at first sight that Benacerraf’s
dilemma is a dynamical antinomy, as though mathematical truth could be looked at
from the point of view of epistemology as well as from that of semantics, so that
both claims would be legitimate within their respective limits. It is nevertheless
clear that Benacerraf’s dilemma must be understood as an antinomy of the math-
ematical kind, where both opposite claims are false, since Benacerraf makes it plain
that neither is philosophically defensible.
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A comparison of Benacerraf’s dilemma with Kant’s mathematical antinomies is
called for by strong analogies, but it also serves a purpose. It is indeed natural to ask
what Benacerraf’s dilemma is driving at, since Benacerraf himself does not provide
any clear solution to it. On that score, a comparison with Kant’s Transcendental
Dialectic could turn out to be useful since Kant, in addition to presenting a
predicament analogous to Benacerraf’s dilemma, does provide a solution for it. The
aim of the present paper is to go into the details of the analogies so as to explore the
possibility of transposing Kant’s solution to the case of Benacerraf’s dilemma.

Let us recall the first two antinomies of pure reason. The first lies in the conflict
between two theses. The first thesis of the first antinomy is “The world has a
beginning in time, and in space it is also enclosed in boundaries.” Its antithesis is
“The world has no beginning, and no bounds in space, but is infinite with regard to
both time and space.”1

As to the second antinomy, its thesis is: “Every composite substance in the world
consists of simple parts, and nothing exists anywhere except the simple or what is
composed of simples.” Its antithesis claims: “No composite thing in the world
consists of simple parts, and nowhere in it does there exist anything simple.”2

In Kantian antinomies, each claim is mainly negative: it relies on a reductio ad
absurdum and feeds entirely upon the impossibility of the opposite claim. In the
same way, each horn of Benacerraf’s dilemma draws its strength from the
predicament of the other only. So the main structure of the argumentation is the
same in both cases.

Let us now examine the particulars of the antinomies of pure reason. There is
nothing accidental about the antinomies—nor indeed about the whole dialectic of
pure reason. Pure reason is bound to run into contradictions as soon as it is applied
to objects of experience. Indeed, a concept of reason (such as the concept of the
world) seeks what is unconditioned with respect to some given condition and, for
that purpose, carries out the synthesis of the regressive series of conditions for a
given conditioned or, rather, takes that synthesis for granted (i.e. already completed)
and presupposes the absolute totality of the series of the conditions. So there are in
fact two different ways of conceiving of the unconditioned3: either as being the last
term of a regressive series of conditions, or as consisting in the whole series itself.

In each antinomy, the thesis encapsulates the first conception, the antithesis the
second one. The thesis seeks a first unconditioned entity on which the whole series
of conditions depends: it is reason trying to catch up with understanding, since the
unconditioned is presented as an actual object (although it is prevented from being
an empirical one). Conversely, the antithesis presents the absolute sum of the
conditions in the series itself as constituting an unconditioned totality: it is
understanding trying to catch up with reason, since it extends the successive syn-
thesis of appearances (empirically discharged by the understanding) into an ideally
completed synthesis of the whole series of conditions. As a consequence, cosmo-
logical ideas are either too large or too small for the empirical regress sustained by
the concepts of the understanding. The first antinomy offers an example of this
discrepancy:
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[Assume] that the world has no beginning: then it is too big for your concept; for this concept,
which consists in a successive regress, can never reach the whole eternity that has elapsed.
Suppose it has a beginning, then once again it is too small for your concept of understanding in
the necessary empirical regress. For since the beginning always presupposes a preceding time,
it is still not unconditioned, and the law of the empirical use of the understanding obliges you
to ask for a still higher temporal condition, and the world is obviously too small for this law.

Kant [1787] (1998: A486-487/B514-515; 508–509)

Hence each antinomy originates in the conflict between understanding and reason.
In each case, the antithesis sticks to the limits of sensible experience given by the
conditions of space and time. On the contrary, the thesis goes beyond those limits and
aims at some given absolute entity whose purported existence stems from a request of
reason to make sense of a totality of conditions, starting with some given conditioned.
Owing to these orientations, Kant associates the thesis of each antinomy with dog-
matism and the corresponding antithesis with empiricism.4 With empiricism
embodied in the antithesis, “the understanding is at every time on its proper ground,
namely the field solely of possible experiences” (Kant op. cit.: A468/B496; 499): the
connection between appearances and the laws of those connections is the main focus.
On the contrary, the dogmatism embodied in the thesis expresses the voice of reason in
its quest for an unconditioned entity in individuo—what Kant calls an Objekt, as
opposed to a Gegenstand.

At this point, it seems fair to say that an analogy with Benacerraf’s dilemma is
called for. How far that analogy goes has to be examined, but it is natural to suspect
an analogy between the stress laid by empiricism on the understanding and the
stress laid by the epistemic horn on knowledge; and between the stress laid by
dogmatism on Objekte and the stress laid by platonism on mathematical objects. Of
course, both contexts differ substantially. But, after all an analogy is not a com-
parison, quite the contrary. The whole working hypothesis of this paper, far from
proposing an argument in favor of any direct resemblance, is that there is an
analogy relating, on the one hand, the function of the understanding to the function
of mathematical proofs and, on the other, the function of entities of pure reason to
the function of mathematical objects. As one shall see, the analogy goes deep and
leads to a solution to Benacerraf’s dilemma.

Kant’s Critique characterizes the understanding as the faculty of relations and
laws, and reason as the faculty of absolute entities. In the same way, the epistemic
horn of Benacerraf’s dilemma belongs in the camp of formal proofs and syntactic
rules, whereas the semantic horn is typical of a quest for an absolute mathematical
referent. Empiricism, Kant says, encourages and furthers knowledge, but at the cost
of the practical (in the Kantian sense), whereas dogmatism, especially platonism,
meets the practical interest of reason,5 but neglects the investigation of natural
appearances. In the same way, the epistemic horn focuses on proofs and on math-
ematical activity taken in itself, at the cost of mathematical referentiality, whereas
the semantic horn meets the practical need of a unified referential framework, but lets
the objects prevail over one’s possible access to them.

Thus, the analogy leading from the antinomy of pure reason to Benacerraf’s
dilemma consists in a comparison of Kantian understanding with the production of
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deductive series, and of Kantian reason with the reference to the absolute entities
underlying those series; in a comparison of the platonism of the thesis with
Gödelian platonism, and of the empiricism of the antithesis with Hilbertian finitism.
Instead of claiming that space has a definite extension, the dogmatic in Benacerraf
claims that mathematical objects are the definite actual denotations of mathematical
terms. To go back to the first antinomy, instead of claiming that space is boundless,
the empiricist claims that a mathematical object is nothing but the unlimited sum of
all the formal proofs that we can produce with respect to the symbols that stand for
it, and that it does not exist over and above these proofs.6

There are, as a matter of fact, various and quite precise similarities between the
respective situations described by Kant and Benacerraf which urge us to reconsider
“Mathematical Truth” as putting forward a genuine Dialectic of Mathematical
Reason. The table below summarizes these main similarities.

Analogy between the antinomy of pure reason and Benacerraf (1973)

Kant Benacerraf

Mathematical antinomy Dilemma

Antithetic (each thesis feeds upon the
contradiction of the other)

Negative argumentation

Understanding “Our ability to produce and survey formal
proofs” (Benacerraf 1973: 668)

Appearances Symbols

Possible experience Admissible inference

Series of conditions Deductive chains

Law Theorem

Reason Truth theory

Unconditioned being Direct reference

Intellectual intuition Gödelian intuition

Dogmatism (thesis) Realism (standard conception)

Platonism Platonism (in mathematics)

Empiricism (antithesis) Finitism (combinatorial view)

Epicureanism Hilbertian formalism

The Idea is “either too big or too small” for
the concept of the understanding (Kant
[1787] 1998: A486/B514; 508)

All analyses “bulge either on the side of
knowledge or on the side of truth”
(Benacerraf 1973: 668).

The antithesis favors knowledge of nature
(Kant [1787] 1998: A469-472/B497-500;
499–501)

The epistemic horn accounts for
mathematical knowledge.

The thesis favors the practical and is more
popular for that reason (Kant [1787] 1998:
A466-467/B494-495; 498–499)

The semantic horn accounts for mathematical
truth and dovetails with the pragmatic needs
of ordinary communication.7

Solution provided by transcendental idealism Solution to be specified
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For lack of space, a further study of Kant’s Transcendantal Dialectic has to be
foregone for the moment, but the detour through Kant calls forth one important
point: Kant provided a systematic and extensive solution for his antinomies. In that
sense, the detour hints at a solution of Benacerraf’s dilemma. As a matter of fact,
Kant’s solution is in some respects reconfigured by Benacerraf himself, although
not in Benacerraf (1973). I shall argue that the reconfiguration may be recovered
from two other papers by Benacerraf: Benacerraf (1965) (“What Numbers Could
Not Be”) and Benacerraf (1981) (“Frege: The Last Logicist”). Before turning
towards the possible transposition of Kant’s solution to Benacerraf’s problem, I
shall therefore examine these papers. They will confirm that Benacerraf’s dilemma
is indeed akin to a mathematical antinomy, as opposed to a dynamical one, i.e. that
the two views in conflict cannot be reconciliated and must be both overcome. I shall
then consider the transposition of Kant’s solution, and to what extent Benacerraf
carries it out himself.

3.2 Bring on the Kids and the Founding Father

This section aims to show that Benacerraf (1965) proves the semantic horn to be
inconsistent and, proceeding forward, that Benacerraf (1981) proves the epistemic
horn to be inconsistent.

3.2.1 Backwards to Benacerraf 1965: Objects Involve
Proofs

If Benacerraf (1973) foregrounds the semantic constraint, Benacerraf (1965) clearly
shows that the semantic values of numerical terms like “3” or “17” are not univocal.
Even when we are using genuine singular terms in mathematics, their reference is
not set unambiguously. So the basic lesson to be learned is that neither Ernie’s
account nor Johnny’s account can provide the right semantic value for natural
numbers. On that score, neither Ernie nor Johnny succeeds in securing any of the
two horns.

Actually, Ernie’s account (i.e. Zermelo’s) and Johnny’s (i.e. von Neumann’s)
can be construed as two different interpretations of the same mathematical objects.
A mathematical object such as 3 is in fact a series of objects (containing {∅, {∅},
{∅, {∅}}} as well as {{{∅}}}), supplemented with the proof that the two models
to which they respectively belong are mutually interpretable.

Let’s consider E and J, respectively the “Ernie interpretation” and the “Johnny
interpretation” of L = {2, 0, S}: E is the L-structure whose domain is {∅, {∅}, {∅,
{∅}}, …} and J is the L-structure whose domain is {∅, {∅}, {{∅}}, …}.
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An interpretation of J in E consists:

• in a formula ∂(x) of L
• for each atomic formula φ(y0,…, ym−1) of L, in a formula φ*(x0,…, xm−1) of L
• in a surjective map f : ∂E � |E| → |J| such that, for all atomic formulae φ(x0,…,

xm−1) of L and all ai 2 ∂E (0 ≤ i ≤ m − 1):

Ej¼ u�½a0; . . .; am�1� iff Jj¼ u½f ða0Þ; . . .; f ðam�1Þ�:

The formula ∂ is called the domain formula of the interpretation, and the map f is
called its coordinate map: it assigns to each element f(a) in |J| its “coordinate”
a in |E|.

There is a straightforward interpretation of J in E, given by:

• ∂(x) is “x = x,” so that ∂E = |E|
• f(0E) = 0 J and f(n [ {n}) = {n}, so that f((S(n))E) = (S(n))J

• (x 2 y)∗ = x 2∗ y, i.e. x 2 TC(y), where 2∗ is the ancestral relation of 2 and
“TC(y)” refers to the transitive closure of y.

(Let ZFC+ be the theory ZFC extended by the definition of the function symbol
“TC(y)”; ZFC+ is a conservative extension of ZFC—any model of ZFC can be
expanded to a model of ZFC+.)

More generally, φ∗ = φ[2∗ / 2]. One can check that E |= x 2 y [n, p] iff J |= x 2∗

y [n, p]. For instance, E |= 0 2 2, and J |= 0 2∗ 2, since J |= (0 2 1 ∧ 1 2 2).
So, as a matter of fact, natural numbers correspond to a series of models, sup-

plemented with the proof that any two models of the series are mutually inter-
pretable. This is the way to exhibit “the natural numbers” as the invariant of the
series. If we have canonical interpretations (canonical coordinates) between any two
models, then we can speak in the same way of the series of all presentations of “the
number 3.” Quite generally, a mathematical object is but the invariant of the series
of all its possible realizations or “presentations,”8 which involves in a crucial way
the proof of their mutual interpretability into one another. The proof is built into the
mathematical object qua mathematical. So the semantic horn is inconsistent.

Further misgivings about the semantic horn should be mentioned. First of all,
explaining the referentiality of a mathematical theory, i.e. granting that the theory is
not simply wheelspinning, does not require one to abide by the superficial grammar.
And Benacerraf knows this very well.9 But that issue can be left aside, to the extent
that the problem of the semantic value remains in the end an open one. A more
serious concern is that the semantic constraint falls to the philosopher of mathe-
matics. It is incumbent upon him, as a philosopher, to explain the semantic value of
mathematical terms in order to account for the truth of mathematical sentences
modelled upon some kind of correspondence (in the framework of Tarski’s con-
vention T). Now, the problem is a very simple one: Tarskian semantics, which is
explicitly taken as the scheme to comply with, relies heavily on a background
set-theoretic universe that is taken for granted. The inhabitants of that universe are
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mathematical objects. In other words, Tarskian semantics is mathematical in nature.
Admittedly, in the sentence “Socrates is Plato’s master,” “Socrates” is interpreted as
denoting the individual Socrates himself, not any mathematical entity whatsoever.
But what about “All men are mortal”? In Tarskian semantics, the interpretation of
such a sentence calls at least for the domain of all men, which is a set—with all
human beings as urelemente. So it is not true that, in the perspective of the semantic
horn, mathematical objects come into play for the interpretation of mathematical
terms only: they come into play for the interpretation of any sentence whatsoever.
Mathematical objects are resorted to, not only to account for mathematical truth,
but, more generally, to account for truth simpliciter.

Now the actual semantic values of the set-theoretic terms that any Tarskian-style
semantics resorts to must be accounted for themselves. The mathematical terms of
the semantic metalanguage ought to be properly interpreted. So the problem is only
pushed back one step further; one is clearly up for an infinite regress. And since
Benacerraf’s epistemological point is about any kind of mathematical object, this
problem applies not only to set theory strictly construed, but to all branches of
mathematics—to arithmetic, to begin with. Worse, that infinite regress is of the
vicious kind. One may indeed be reminded of Russell’s remark: “[…] whenever the
meaning of a proposition is in question, an infinite regress is objectionable, since
we never reach a proposition which has a definite meaning.”10

3.2.2 Forward to Benacerraf 1981: Proofs Involve Objects

Let us now turn to Benacerraf’s later argument to the effect that the epistemic horn
is inconsistent. In Grundlagen (§3), Frege claims that “the question [as to whether a
proposition is a priori or not] is removed from the sphere of psychology, and
assigned, if the truth concerned is a mathematical one, to the sphere of mathe-
matics.” Here is Benacerraf’s comment:

Since arithmetical propositions are at issue, the question of their justification is properly a
matter for mathematics. Therefore, the concepts will be so defined as to make it a properly
mathematical question whether some arithmetical judgment is analytic or synthetic, a priori
or a posteriori. […] To determine whether a proposition is analytic, look for a proof of it in
which the basic propositions are “primitive truths” — propositions which themselves have
no proofs. If there exists such a proof (one in which appeal is made only to definitions and
to “primitive truths”) and the primitive truths evoked include only laws of logic, the
proposition in question is analytic. If not, it is synthetic.

Benacerraf (1981: 26–27)

Benacerraf extends Frege’s claim with the conclusion that the whole enterprise of
the Grundlagen is “first and foremost a mathematical one” (Benacerraf op.cit.: 34).
Along with that assessment of Frege’s perspective, it is also important to mention,
with respect to §3 of the Grundlagen, that the question as to whether a given
mathematical proposition is analytic becomes a mathematical one, not only because
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“the truth concerned is a mathematical one,” but because the way of establishing its
analyticity is mathematical. The construction and survey of all the steps of a
mathematical proof is a mathematical task—ideography being quite the tool geared
to it. So only a mathematician quamathematician is able to deem a given proposition
analytic or synthetic. The rigorous representation of a mathematical proof is in itself
a piece of mathematics—this is the implicit part of Frege’s claim that “the question is
assigned to the sphere of mathematics.”

Benacerraf insists that Frege’s theory is a theory of analytic truth. The further
point that should be made here is that Frege’s theory is precisely a mathematical
theory laid out in the language of ideography. The recognition of special mathe-
matical truths as analytic requires one to turn proofs themselves into mathematical
objects in their own right. This is also the reason why the hierarchy of truths is, in
Frege’s reckoning, entirely objective. So the conclusion, if one remains true to
Frege’s perspective, is that mathematical proofs, even when viewed as purely
formal, must be recognized as mathematical objects in their own right, i.e. as
objects which are no less epistemologically problematic than the number 3 itself. To
that extent, the epistemic horn is indeed inconsistent.

In his discussion of the status of Frege’s definitions, Benacerraf adds a further
point. With respect to the fact that, in Frege’s Grundgesetze, any course of values
can be taken to be the True, Benacerraf writes:

Of course it does not make any mathematical difference. But that it makes no mathematical
difference is an important philosophical point concerning what we must construe definitions
such as Frege’s to accomplish. Although I cannot pursue the matter further here, I hope that
these examples make it clear that a straightforwardly “realist” construal of Frege’s inten-
tions or accomplishments will fail to do justice to his practice.

Benacerraf op. cit.: 31

If one connects this argument with the discussion of the accounts of numbers
given by Ernie and Johnny, two kinds of situations emerge where one has to deal
with two mathematically equivalent items: either, as in the case of Ernie and
Johnny, with two different tokens of the same mathematical character (to use
Kaplan’s terminology) or, as in the case of the referent of the True, with two
different choices that amount to the same thing mathematically speaking. In both
cases, a mathematical referent emerges in the form of a cluster of proofs proving
that one is dealing with distinct but mathematically equivalent presentations of what
must then be recognized as a mathematical invariant.

In his 1965 paper, Benacerraf does not intend to build up a predicament. On the
contrary, and in a quite positive way, he shows that a mathematical object cannot
but be the invariant of its different presentations; as such it involves the proof that
any two such presentations are equivalent (in the relevant sense of “equivalent”),
the equivalence proof being built into the object properly understood as a mathe-
matical object. In his 1981 paper, Benacerraf stresses that a mathematical definition
need preserve neither the meaning nor even the reference of the definiendum,
because it is meant to introduce a mathematical object whose identity conditions are
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determined by what one needs to prove, either with it or about it. In both cases, the
dichotomy between mathematical objects and formal proofs, that is instrumental in
setting up Benacerraf’s dilemma, has to be overcome. Above all, the fact that a
mathematical object consists in the system of all its different presentations (I shall
soon go back to this word) and can never be referred to independently of one of
these, is fully recognized by Benacerraf, and acknowledged by him in a much more
positive way than is usually made out.

3.3 Back to Kant

3.3.1 The Analogy Put to Work

One of the main benefits that can be expected from an analogy between Kant’s
Dialectic and Benacerraf’s dilemma is a clue for a solution to the latter. What is
Kant’s solution to the whole antinomy of pure reason? Let us consider again the
case of the first antinomy:

If one regards the two propositions “The world is infinite in magnitude,” “The world is
finite in magnitude,” as contradictory opposites, then one assumes that the world (the whole
series of appearances) is a thing in itself. […] But if I take away this presupposition, or
rather this transcendental illusion, and deny that it is a thing in itself, then the contradictory
conflict of the two assertions is transformed into a merely dialectical conflict, and because
the world does not exist at all (independently of the regressive series of my representations),
it exists neither as an in itself infinite whole nor as an in itself finite whole. It is only in the
empirical regress of the series of appearances, and by itself it is not to be met with at all.
[…] Accordingly, the antinomy of pure reason in its cosmological ideals is removed by
showing that it is merely dialectical and a conflict due to an illusion arising from the fact
that one has applied the idea of absolute totality, which is valid only as a condition of things
in themselves, to appearances that exist only in representation, and that, if they constitute a
series, exist in the successive regress but otherwise do not exist at all.

Kant [1787] (1998: A504-505/B532-533; 518–519)

As a consequence, the series of conditions for a given conditioned should be
understood, not as a regress in infinitum (a regress to infinity), but as a regress in
indefinitum (an indeterminately continued regress) whose absolute completion
cannot be postulated:

[The regress in the series of conditions] is a principle of the greatest possible continuation
and extension of experience, in accordance with which no empirical boundary would hold
as an absolute boundary; thus it is a principle of reason which, as a rule, postulates what
should be effected by us in the regress, but does not anticipate what is given in itself in the
object prior to any regress.

Kant [1787] (1998: A509/B537; 520)11

The whole antinomy, as well as the entire Dialectic, relies on the false assumption
that the objects to which the ideas of reason refer are given in themselves, whereas
they are given only in the course of a regressive series of conditions:
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[If] it is said that the world is either infinite or finite (not infinite), then both propositions
could be false. For then I regard the world as determined in itself regarding its magnitude,
since in the opposition I not only rule out its infinitude, and with it, the whole separate
existence of the world, but I also add a determination of the world, as a thing active in itself
which might likewise be false, if namely, the world were not given at all as a thing in itself,
and hence, as regards its magnitude, neither as infinite nor as finite.

Kant [1787] (1998: A504/B532; 517–518)

Now, if we are willing to pursue the analogy suggested at the beginning of this
paper, the dilemma urges us to jettison the presupposition that mathematical objects
are things in themselves and that the question of their status calls for a clear-cut
answer, namely that they either “exist in the sense of a full-fledged existence” or
“are mere ideal fictions in the course of a proof and do not exist at all.” Let us try to
implement this idea in a more precise way. How are we to make sense of the claim
that mathematical objects are not given in themselves? What does it mean? It means
something quite simple, namely that a mathematical object goes hand in hand with
modes of presentation (or presentations, for short) whose nature depends on the
kind of object it is.

Various examples of multiple modes of presentation abound in mathematics: a
vector space is usually presented through an affine space fixed by the arbitrary
choice of some origin; the symmetric group Sn is often described as the group of
permutations on {1, 2, …, n}, but can equally well be defined as the group of
permutations on any other n-element set; complex numbers can be defined alge-
braically as R/(X2 + 1), arithmetically as the set {a + ib: a, b 2 R} endowed with
addition and multiplication, and geometrically as points of the plane; the natural
numbers can be defined either à la Ernie or à la Johnny. Another example is
Cantor’s account of ordinals as equivalence classes of well-orderings: it constitutes
a certain presentation of the concept of ordinal which itself involves, for each
ordinal, a presentation in the form of a representative of this ordinal as equivalence
class.

Admittedly, different scales ought to be distinguished, because in some cases the
“same” structure is introduced with the help of different supports (as in the case of
complex numbers), whereas in others different structures provide different accounts
of the “same” mathematical concept (as in the case of Ernie vs. Johnny). All those
cases belong to such obviously different scales that the notion of presentation is
affected by some irreducible vagueness, which verges on equivocity. For instance,
the different presentations of Sn which have been mentioned are notational variants,
whereas the different presentations of complex numbers are based on altogether
different frameworks. This does not detract, however, from the occurrence of the
same phenomenon on each scale, namely the diffraction of a “same” mathematical
item into various incarnations, without which this mathematical item cannot be
grasped, let alone studied. Such is already, in fact, Benacerraf’s diagnosis in
Benacerraf (1965):
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Any purpose we may have in giving an account of the notion of number and of the
individual numbers, other than the question-begging one of proving of the right set of sets
that it is the set of numbers, will be equally well (or badly) served by any one of the
infinitely many accounts satisfying the conditions we set out so tediously.

Benacerraf (1965: 62)

A mathematical object (e.g., a vector space) cannot in general be given “in
itself,” canonically, but requires some fixed configuration (e.g., an affine space
having that vector space as direction) whose bias enables one to each the intended
structure. Bringing up the notion of mathematical presentation is a general way to
single out the pervasive use of such configurations throughout mathematics.
Contrary to the actual drawing compared to the geometrical theorem, presentations
do not boil down to sub-mathematical conditions of concrete mathematical activity.
They are truly mathematical in nature and sometimes lend themselves to an explicit
mathematical treatment: the notion of presentation of a group by generators and
relations, or the notion of resolution of a module, are prominent examples in the
field of algebra.

Hence, if we try to make sense of Kant’s solution and to transpose it to
Benacerraf’s dilemma, we are lead to the view that a mathematical object is but the
invariant of the open-ended series of all its possible presentations, which them-
selves are neither purely formal items nor independent semantic units.

As already pointed out at the end of Sect. 3.2.2, Benacerraf knew this very well
as early as 1965:

Number theory is the elaboration of the properties of all structures of the order type of
numbers. The number words do not have single referents. […] Only when we are con-
sidering a particular sequence as being, not the numbers, but of the structure of the numbers
does the question of which element is, or rather corresponds to, 3 begin to make any sense.
Slogans like “Arithmetic is about numbers,” “Number words refer to numbers,” when
properly urged, may be interpreted as pointing out two distinct things: (1) that number
words are not names of special non-numerical entities, like sets, tomatoes, or Gila monsters;
and (2) that a purely formalistic view that fails to assign any meaning whatsoever to the
statements of number theory is also wrong.

Benacerraf op. cit.: 70–71

Just as the cosmological idea, in Kant, “is only in the empirical regress of the
series of appearances, and by itself […] is not to be met with at all” (Kant [1787]
1998: A505/B533; 518),12 in the same way, a mathematical structure never exists
outside the series of its presentations, none of which can be privileged as giving
what would seem to be “the structure itself.” And just as the unreachable com-
pletion of a series of conditions is the task prescribed to the understanding as a
“regulative principle of reason,” in the same way the never-ending exploration of all
possible presentations of the “same” mathematical structure (definitions becoming
theorems, and conversely), which amounts to the establishment of all the possible
theorems about it, is the task, never amenable to completion, that defines mathe-
matics as a discipline.
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Just as “the world” is something real indeed, but only as an incomplete series of
conditions and as the regulative focus thereof on “the world,” in the same way a
mathematical object covers an open-ended bundle of provably equivalent presen-
tations (i.e. an open-ended bundle of equivalence proofs for different presentations),
the mathematical object “itself” being only the regulative invariant of this series. It
is not a thing-in-itself from which each presentation would originate, but, on the
contrary, the focal point that multiple presentations project collectively as their
common target.

The presentational account defended in this paper claims that mathematical
objectivity is intentional, insofar as a coherent bundle of presentations points to an
object, but only in a regulative way, without positing any pointee. On the contrary,
the semantical account claims that a pointing presupposes a pointee that exists in
itself, whereas the combinatorial account denies in the first place that there is any
pointing at all and claims that a series of presentations, in and of itself, is all there is.
Both accounts miss the crucial fact that doing mathematics involves shifting from
one presentation to another (probably equivalent) one. Not only are the history and
practice of mathematics witnesses to this fact, but the fact constitutes the very core
and texture of mathematics.

3.3.2 Presentations

A few words are in order about the notion of presentation as it occurs in the phrase
“mode of presentation.” The phrase may be traced back to Frege. Indeed, as is well
known, it was mentioned by Frege in the context of the distinction he drew between
sense and reference:

If the sign “a” is distinguished from the sign “b” only as object (here, by means of its
shape), not as sign (i.e. not by the manner in which it designates something), the cognitive
value of a = a becomes essentially equal to that of a = b, provided a = b is true.
A difference can arise only if the difference between the signs corresponds to a difference in
the mode of presentation of that which is designated. Let a, b, c be the lines connecting the
vertices of a triangle with the midpoints of the opposite sides. The point of intersection of
a and b is then the same as the point of intersection of b and c. So we have different
designations for the same point, and these names (“point of intersection of a and b”, “point
of intersection of b and c”) likewise indicate the mode of presentation [Art des
Gegebenseins]; and hence the statement contains actual knowledge. It is natural, now, to
think of there being connected with a sign (name, combination of words, letter), besides
that to which the sign refers, which may be called the reference of the sign, also what I
should like to call the sense of the sign, wherein the mode of presentation is contained.

Frege [1892] (1952: 57)

The choice that Frege made of the term “presentation” is certainly not
insignificant and could be driven back to two opposite sources contemporary with
Frege’s work: the work of Franz Brentano in psychology, in particular his
Psychologie vom empirischen Standpunkt (Brentano 1874), where the notion of
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“mode of presentation” (Modus des Verstellens) is ubiquitous, most notably in his
account of time-consciousness; and the foundation of the theory of group presen-
tations by Walther von Dyck (a student of Felix Klein) in von Dyck (1882).
Admittedly, the terms are different: Brentano uses “Vorstellen” (or “Vorstellung”)
and von Dyck uses “Präsentation,” whereas Frege uses “Gegebensein.”
Notwithstanding these terminological differences, the affinity between the concepts
put forward is strong enough to allow a comparison. In that perspective, the Fregean
notion of mode of presentation should be construed as both epistemological and
logical, i.e. both as an epistemic access and as a presentation in the mathematical
sense of the presentation of a group. The mathematical example chosen by Frege in
the quote must be understood as a way to introduce a notion that provides a
common platform to account both for the basic phenomenon of meaning in ordinary
language and the customary use of various descriptions of mathematical objects.
But this is matter for another paper.13

The main point here is that, as early as 1965, before the dilemma was properly
coined, Benacerraf already had a virtual solution to his 1973 dilemma, even though
he did not bring it out and that his solution is as a matter of fact analogous to that
proposed by Kant, according to the general analogy described at the beginning of
this paper. Going back to “Mathematical Truth,” one may express the mistake of the
epistemic horn as the false claim that mathematical presentations do not present
anything, and the mistake of the semantic horn—the mistake of contemporary
structuralism14—as the false claim that presentations are mere artefacts, as opposed
to the mathematical structures “themselves.”

Of course, a lot remains to be explained about the workings of mathematical
presentations and about their epistemic accessibility. I cannot provide such an
explanation within the limits of this paper. For sure, mathematical presentations
take on various aspects, from the choice of letters for the representation of per-
mutations or Gödel numberings, to group presentations or module resolutions.
Their spectrum is hardly amenable to a single kind and, more importantly, as
underlined earlier in Sect. 3.3.1, their different cases belong to heterogeneous
scales. Moreover, presentations are certainly many-layered: the presentation of
some mathematical object can itself be turned into an object with respect to some of
its own presentations.

Despite this variety, a mathematical presentation always relies on a fixed con-
figuration, laid out in an environment that shows how shifting to another config-
uration would be possible but incidental to the intended mathematical structure. The
mediation thus provided by a presentation shows how to loosen Benacerraf’s
dilemma. Group presentations are a good example to consider: [a, an = 1] is a
presentation of the cyclic group Z/nZ among other possible presentations, and yet
produces this cycle group itself. The presentation is neither a mere sequence of
symbols (as the formalist would have it) because it does present something, nor a
proper name (as the platonist would have it) because it has an internal structure that
is by itself informative and does not point to any external object. Moreover, tracing
back “the” cyclic group with n elements to the presentation [a, an = 1] shows how
one may (and does indeed) deal with the former on the much more cognitively
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tractable basis of the latter. Of course, other presentations of Z/nZ are available, in
particular presentations that are not specifically presentations by generators and
relations. One of the tasks of mathematics is precisely to link all the known pre-
sentations together as equivalent presentations of the same “thing.”

The “same” mathematical object entertained by multiple presentations is the
same object only derivatively, because of the provable equivalence of all these
presentations. This kind of identity is a source of increased complexity. Indeed, the
criteria that rule the equivalence of two distinct presentations, as well as the logical
resources (in the broad sense) available to ascertain it, have varied significantly in
history. In particular, when resources are too weak, no connections may be made.
The equivalence relating certain geometric entities with algebraic equations was
beyond consideration before Descartes’ analytic geometry. The proof of the
equivalence of mathematical objects in the sense of the existence of categories
(such as that between the category of Boolean algebras and the category of Stone
spaces) required the development of category theory. The variety of tools to set an
equivalence is not only historical, i.e. diachronical. For instance, the equivalence of
categories is a global way of conceiving equivalence that differs in that respect from
the set-theoretic notion of isomorphism, yet both notions belong to contemporary
mathematics and may not be assigned to different periods of its history. Thus, the
framework within which the comparison of different presentations may be estab-
lished in a more or less fine-grained way, and the whole apparatus that Bourbaki
described in general terms as “transport of structures,” are themselves part of the
process from which stable mathematical objects emerge. In other words, the
emergence of stabilized ways of assessing the equivalence of (thereby) stable
mathematical objects runs concurrently with the emergence of those objects. Of
course, it always remains an option to maintain that stable objects come first and
that equivalence proofs cannot be integral to them, either because a bundle of
proofs can never make up an object, or because equivalence proofs presuppose as
objects the very items they show to be equivalent.15 What is, then, the way out of
the difficulties to which platonism leads? A more constructive answer to meet the
challenge is this: any equivalence proof bears on two mathematical constructions
which, in a sense, already have the status of pre-objects, but a genuine mathematical
object stands out only after several equivalence proofs have secured some invariant,
e.g., to take a very elementary example, the mathematical way of looking at a
triangle begins with disregarding its size or actual position.

There is one last point which should be cleared up. As already mentioned, Kant
explains that, in the first antinomy, the idea of the world is too small for the concept
of the understanding in the thesis, and too big for it in the antithesis. In the case of
Benacerraf’s dilemma, one could be tempted to consider things the other way
around: that in the equivalent of the thesis (the standard conception), the idea of
mathematical objectivity is too big for the understanding, and that in the equivalent
of the antithesis (the combinatorial view), it becomes too small. As Benacerraf says:
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[A] typical “standard” account (at least in the case of number theory or set theory) will
depict truth conditions in terms of conditions on objects whose nature, as normally con-
ceived, places them beyond the reach of the better understood means of human cognition
(e.g., sense perception and the like). […] [P]ostulational stipulation makes no connection
between the propositions and their subject matter — stipulation does not provide truth. At
best, it limits the class of truth definitions (interpretations) consistent with the stipulations.
But that is not enough.

Benacerraf (1973: 667–668, 679)

How should one explain this manifest inversion? As a matter of fact, there is
none. The idea of mathematical objectivity, as supplied by the standard conception,
is too small indeed, and the same idea, as supplied by the combinatorial view, is
undoubtedly too big. This is because the yardstick is not so much our cognitive
power as the open-ended series of presentations that mathematicians come up with
within the course of history. The standard conception closes the process too early
and thus supports too narrow an idea of a mathematical object: the content of a
mathematical concept is fixed once for all (“the number 3 is…”) despite the fact that
it continues to be enriched by new theorems, so that the problem is now to decide
whether one really sticks to the same object when some new presentation of it is put
forward. (Think of the parabola when it came to be construed as a scheme, or of the
number 3 when it came to be construed as an ordinal set). On the contrary, the
combinatorial view contends that a mathematical object is not in any way different
from the (thereby too big) complete series of all that is and will be proved about it,
which now raises the symmetrical problem of accounting for genuine ruptures in
the history of mathematics. Both opponents neglect the deep historical nature of
mathematical objectivity—which should come as no surprise since the main pro-
ponents on either side (Tarski and Hilbert, respectively) advocated a mainly logical
and a-historical view of mathematics.

3.4 Conclusion

As a starting point, we saw that an analogy may be drawn between Kant’s anti-
nomies and Benacerraf’s dilemma: dogmatism assumes the role of the semantic
horn and empiricism assumes the role of the epistemic horn. Benacerraf’s dilemma
can then be reconsidered as a mathematical antinomy about mathematical objec-
tivity. The analogy turned out to be remarkably steady and sharp.

In that perspective, “Mathematical Truth” may be read as an attempt at recon-
structing a naïve philosophy of mathematics in order to better overcome it, and to
do so in quite the way that Kant undertook to overcome rational cosmology. Two
other seminal papers by Benacerraf, Benacerraf (1965) and Benacerraf (1981),
confirm that both horns are inconsistent, and that, to resort once more to Kantian
terminology, the antinomy is genuinely mathematical, as opposed to dynamical.
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The main motivation of the analogy, though, was the prospect of transposing
Kant’s solution so as to suggest a way of solving Benacerraf’s dilemma proper. The
upshot of the analogy is that a mathematical object can never be given in itself,
because it consists in the open-ended series of all its possible presentations, in the
sense specified above. As Benacerraf’s own example shows, Ernie’s and Johnny’s
“accounts” constitute two different presentations of the natural numbers. The
standard conception and the combinatorial view are both wrong because they
crystallize an open-ended series either into a closed referent or into a complete
infinite series. Both give rise to the dilemma and face further problems of their own,
in particular that of accounting for well known historical shifts in the definitions of
classical mathematical objects. On the contrary, the solution to Benacerraf’s
dilemma that one may draw from the analogy with Kant’s antinomies calls for a
more history-sensitive analysis of mathematical objectivity. It acknowledges that
mathematical objects do exist, but proposes to conceive of each as a series of
equivalent presentations which remains in the making, thus revisable, i.e. as objects
which may not be separated from the proofs explaining that the equivalent pre-
sentations it gathers are indeed equivalent, and how they are.

Notes

1. Kant [1787] (1998: A426-427/B454-455; 470–471).
2. Kant [1787] (1998: A434-435/B462-463; 476–477).
3. See Kant [1787] (1998: A417/B445; 465).
4. See Kant [1787] (1998: A465-466/B493-494; 498): “In the assertions of the

antithesis, one notes a perfect uniformity in their manner of thought and
complete unity in their maxims, namely a principle of pure empiricism, not only
in the explanation of appearances in the world, but also in the dissolution of the
transcendantal ideas of the world-whole itself. Against this the assertions of the
thesis are grounded not only on empiricism within the series of appearances but
also on intellectualistic starting points, and their maxim is to that extent not
simple. On the basis of their essential distinguishing mark, however, I will call
them the dogmatism of pure reason.”

5. See Kant [1787] (1998: A466-472/B494-500; 498–501).
6. Admittedly, both opponents of Kant’s first antinomy agree to refer to “the

world,” whereas the formalist, in Benacerraf’s dilemma, is unwilling to
acknowledge any mathematical referent whatsoever. This seems to weaken the
comparison between the empiricist antithesis in Kant and the epistemic horn in
Benacerraf. In fact, this should rather urge one to understand how inconsistent
the concept of the world is, as the empiricist describes it, namely as being both
an infinite series and a given totality (see Kant [1787] (1998: A418/B445-446;
465)). Whereas Benacerraf’s formalist claims not to refer to anything, Kant’s
empiricist claims to refer to something which actually cannot be anything. This
difference qualifies the parallel, but only to a very limited extent, because the
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empiricist of the first antinomy does not invoke any individual entity—only an
infinite series which, even if it supposed to be completed, can hardly be
compared to a referent in the usual sense of the word.

7. In Benacerraf (1965: 71–72), Benacerraf considers shifting back from “the”
natural numbers to the space of all ω-progressions, but remarks that “ordinary
communication” requires one single distinguished sequence of notations. This
is echoed by the semantic horn in Benacerraf (1973): for practical reasons, we
need to speak of “the” natural numbers. But we should step back from that habit
if we wish to be faithful to the way mathematics really works. Speaking of the
natural numbers is really just a way of speaking of any ω-progression. The
structure of natural numbers is an abstraction that results from the desire to
single out one privileged ω-progression. From that point of view, as Benacerraf
(1965) points out, the main misconception concerning mathematical objects
consists in conceiving each of them as being both a proxy for a whole class of
particular objects and a particular member of that class.

8. About the notion of presentation, see Sect. 3.3.1.
9. See, for instance, Benacerraf (1965: 58–62).

10. Russell (1903: §329; 349).
11. See also Kant [1787] (1998: A518-523/B546-551; 525–528).
12. Kant adds: “The series of appearances is to be encountered only in the

regressive synthesis itself, but is not encountered in itself in appearance, as a
thing on its own given prior to every regress.”

13. Stanley and Williamson (2001: 427), referring to the Fregean notion of mode
of presentation, have transposed it into a practical context. To stick to their
example: the ascription to Hannah of a certain knowing how (knowing how to
ride a bicycle) is described as a “practical mode of presentation of Hannah’s
propositional knowledge that a particular way of riding a bicycle is a way for
her to ride a bicycle” (see op. cit.: 428–429). Whereas a linguistic or semantic
mode of presentation designates the particular way in which a proposition is
entertained, a practical mode of presentation is a particular way of expressing or
understanding “ways of engaging in actions” (op. cit.: 436). The analysis of the
notion of practical mode of presentation is still to be developed, as the authors
concede (op. cit.: 429). This paper claims that the notion of mathematical
presentation is certainly clearer than that of practical mode of presentation, in
particular because the former does not rely on a mere parallel with the Fregean
one, whereas the latter does; it does indeed correspond to one of the main cases
that Frege had in mind.

14. Taking presentations seriously, as essential devices in between mathematical
structures and the empirical systems that instantiate them, would be a way to
overcome the “identity problem” that has been raised against ante rem struc-
turalism (see, in particular, Keränen 2006; Shapiro 2006). The identity problem
comes from the existence of non-trivial automorphisms in certain structures
(such as conjugacy in the field of complex numbers). The solution that could be
given to that problem is that a non-trivial automorphism of a given structure is
always, in fact, an isomorphism between two presentations associated with that
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structure (for instance, conjugacy is an isomorphism between ⟨C, i, −i⟩ and
⟨C, −i, i⟩, taken as presentations of the same structure). This solution requires
to admit that a structure is never accessible outside some of its presentations,
which clearly qualifies realist structuralism, without giving in, however, to the
empiricist thesis that one can have access only to systems (i.e. to concrete
instances of structures).

15. This objection was raised by Marco Panza and Achille Varzi in two different
ways. I thank them both for their remarks.
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Chapter 4
On Benacerraf’s Dilemma, Again

Marco Panza

In spite of its enormous influence, Benacerraf’s dilemma admits no standard unan-
imously accepted formulation. This mainly depends on Benacerraf’s having origi-
nally presented it in a quite colloquial way, by avoiding any compact, somehow
codified, but purportedly comprehensive formulation (Benacerraf 1973). But it also
depends on Benacerraf’s appealing, while expounding the dilemma, to so many
conceptual ingredients so as to spontaneously generate the feeling that most of them
might in fact be inessential to it. Apart from the almost unanimous agreement on the
fact that, despite Benacerraf’s appeal to a causal conception of knowledge throughout
his exposition, the dilemma does not rely on it, there is still no agreement about which
of these many ingredients is essential and which should be left aside, in agreement
with an Ockhamist policy, so as to obtain a minimal version of the dilemma.

I will firstly offer a discussion of this matter (Sect. 4.1), with a particular attention
to Field’s reformulation of the problem (especially in Field 1989), in order to identify
two converging and fundamental challenges addressed by Benacerraf’s dilemma,
respectively to a platonist and to a combinatorialist philosophy of mathematics, in
Benacerraf’s own sense of these terms (Sects. 4.2 and 4.3, respectively).What I mean
by saying that these challenges are convergent is that they share a common core which

I thank for valuable comments and suggestions Paul Benacerraf, Stefan Bujisman, Annalisa
Coliva, Fabrice Pataut, Andrea Sereni, Göran Sundholm, and Gabriele Usberti.

M. Panza (&)
CNRS, IHPST (CNRS and University of Paris 1 Panthéon-Sorbonne),
13, rue Du Four, Paris 75006, France
e-mail: marco.panza@univ-paris1.fr

and

Chapman University, One University Drive, Orange, CA 92866, USA
e-mail: panza@chapman.edu

© Springer International Publishing Switzerland 2016
F. Pataut (ed.), Truth, Objects, Infinity, Logic, Epistemology,
and the Unity of Science 28, DOI 10.1007/978-3-319-45980-6_4

63



embeds a crucial puzzle for any plausible philosophy of mathematics,1 and that they
suggest a way out along similar lines. Roughing these lines out is the purpose of the
last two sections of the paper (Sects. 4.4 and 4.5).

4.1 Field’s Reformulation of Benacerraf’s Challenge
to a Platonist: Is the Problem Really About Truth
and Knowledge?

Unquestionably, Benacerraf’s purpose is to keep the reader’s attention focused on
an alleged contrast between two kinds of philosophical concerns about mathe-
matics, one doubtlessly epistemological, the other apparently semantic, though
possibly ontological in nature. Having been originally written for a presentation at a
symposium on mathematical truth, his paper mentions this notion in its very title
and, from its very first lines, declares its interest for mathematical knowledge,
explicitly presented as a notion depending “on how truth in mathematics is properly
explained” (Benacerraf 1973: 661). Still, under some readings, the dilemma appears
to be eventually independent of both the notions of (mathematical) truth and
(mathematical) knowledge, and to be concerned with the connection between
mathematical beliefs, or possibly their formation process or justification, and the
subject matter of mathematics, i.e. whatever mathematics is taken to be about,
provided that it is taken to be about something.

This, at least, is what is suggested by Field’s reformulation of the problem,
which ascribes to it the form of a challenge to ‘mathematical realism’ or “platon-
ism”, conceived as “the view that there are mathematical entities and that they are in
no way mind-dependent or language-dependent” (Field 1989: 228), that they “bear
no spatio-temporal relation to us [, and] […] do not undergo any physical inter-
actions […] with us or anything we can observe” (Field 1989: 27), in short that they
are both mind- and language-independent, and abstract.2

One of Field’s explicit purposes is precisely to adapt the challenge to this char-
acterization of platonism, which is, as such, independent of any appeal to truth and
knowledge. According to this picture, a mathematical platonist is not required to take
mathematical statements to be true in some sense of ‘true’ “more loaded” that a mere
“disquotational” sense (Field 1989: 228–229; see also Field 1988: 62–63). The
platonist is merely required to maintain that “his or her own states of mathematical
beliefs, and those of most members of the mathematical community […] are highly
correlated with the mathematical facts” (Field 1989: 230; see also Field 1988: 62),
namely the “facts about [the] mathematical entities” (Field 1989: 232) that he or she
takes to obtain. Once this is admitted, the challenge becomes independent, as such,
not only of any appeal to some non-merely-disquotational conception of truth, but
also of “any theory of knowledge”, and then, of “any assumption about necessary
and sufficient condition for knowledge” (Field 1989: 232–233). In short, it “can be
put without use of the term of art ‘knows’ and ‘[…] without talk of truth”’ (Field
1989: 230; see also Field 1988: 62).

64 M. Panza



What Field means when he claims that, for a platonist, the states of mathematical
beliefs of most members of the mathematical community are highly correlated with
the mathematical facts is that “for most mathematical sentences that you substitute
for ‘p’, the following holds: [i]f mathematicians accept ‘p’ then p” (Field 1989: 230;
Field 1988: 62; see also Field 1989: 26). The challenge consists, then, in requiring
of a platonist an appropriate explanation of such a “systematic correlation” or
“general regularity” (Field 1989: 231), “an explanation of how it can have come
about that mathematicians’s belief states and utterances so well reflect the mathe-
matical facts” (Field 1989: 230; see also Field 1988: 62). It seems plain that
accepting p is here taken to be the same thing as believing that p, and that math-
ematicians’ utterances are taken to be content-transparent expressions of mathe-
maticians’ belief states. This suggests the following rephrasing of the challenge:
how can a platonist explain that, at least in the great majority of cases, a mathe-
matician has the mathematical belief that p only if it is a (mathematical) fact that p?

From Field’s own perspective, the question is rhetorical, of course, since
according to him “there seems prima facie to be a difficulty in principle in
explaining the regularity” (Field 1989: 230–231). Later on in his paper, this prima
facie difficulty becomes a principled impossibility, and the challenge turns into a
negative dictum:

[…] we should view with suspicion any claim to know facts about a certain domain
[namely mathematics, in the case at issue] if we believe it is impossible in principle to
explain the reliability of our beliefs about the domain.

Field (1989: 230); see also Field (1989: 26)

Two things might seem eccentric about this way of setting the debate: it relies on
the quite controversial and loaded epistemological notion of reliability, which the
previous considerations do not take into account, apparently; it appeals to the notion
of mathematical knowledge, which seems to contradict Field’s initial proposal.

A way to answer the former worry is to observe that Field is not here resorting to
the reliability of some sort of justification or belief formation process, but rather to
the reliability of the relevant beliefs themselves. Of course, one might stipulate that
a belief is reliable just in case its formation process is reliable. But this does not
seem to be what Field is driving at. He seems to take the reliability of mathematical
beliefs to be the same thing as their reflecting the mathematical facts, in the sense of
the systematic correlation or general regularity previously mentioned.3

A way to answer the latter worry is to observe that mathematical knowledge only
enters the matter a fortiori, so to say, and independently of any specific view about
it: what Field seems to be saying is that, if this correlation or regularity is not
explained, there is no room for a platonist to provide an appropriate account of
mathematical knowledge, whatever his or her conception of knowledge might be.4

The challenge does not seem, then, to be different in nature; the crucial point is
the same as before: how can a platonist explain that, in the great majority of cases, a
mathematician has the mathematical belief that p only if p?

But—one could object—is a platonist actually required to maintain that, in the
great majority of cases, a mathematician has the mathematical belief that p only if p?
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Even if it is admitted that the reference of the term ‘mathematician’ is fixed with
some degree of certainty, the answer still largely depends on what is meant by ‘in
the great majority of cases’ and ‘mathematical belief.’ If one takes a mathematical
belief to be any belief that can be expressed by means of a statement using a
mathematical vocabulary (or a vocabulary widely recognized as being a mathe-
matical one), or even using only such a vocabulary (together with the appropriate
logical constants), and the majority of cases to be the majority of mathematical
beliefs that mathematicians have now, had in the past, or will have in the future, the
answer seems to be negative. Leaving logically possible cases of collective hyp-
nosis or hallucination on the side, it remains that many mathematicians hold, at
some point in time, opposite beliefs since, presumably, many of these beliefs are
not grounded on proofs, or at least on any widely accepted proof, but rather depend
on methodological, philosophical, aesthetic, or even mystical attitudes or convic-
tions.5 In other words, much of what mathematicians believe about what they take
to be the subject-matter of mathematics, even of pure mathematics, is open to
controversy within the mathematical community itself. There is, then, no reason to
think that someone who considers that there are mathematical objects, and that they
are mind- and language-independent and abstract should also maintain that, in the
great majority of cases, a mathematician has the mathematical belief that p only if p.

Field’s point seems on the contrary much more plausible if the range of math-
ematical beliefs is restricted to beliefs somehow secured within purely mathematical
theories that are widely accepted by the mathematical community. For short, call
these beliefs ‘mathematical theory-tied beliefs’.6

That the challenge is as a matter of fact restricted to these beliefs is something
that Field himself suggests. He remarks that “as mathematics has become more and
more deductively systematized, the truth [disquotationally understood, I suppose]
of mathematics has become reduced to the truth of a smaller and smaller set of basic
axioms”, with the result that what a platonist needs to explain is only the alleged (by
him or her) circumstance that “for all (or most) sentences ‘p’ […] [,] if most
mathematicians accept ‘p’ as an axiom, then p”, or better, that “either p, or [most]
mathematicians don’t take ‘p’ as an axiom” (Field 1989: 231). So conceived, the
challenge is echoed by Heck who claims, rephrasing Benacerraf’s dilemma:

[…] we lack […] an explanation of how we come to know the axioms, be these the axioms
of some developed mathematical theory or those propositions which are, in a less devel-
oped theory’s present state, typically assumed without proof. More precisely, it is not
obvious why there should be any relation at all between our belief that the axioms are true
and the facts of mathematics as the platonist conceives them, why our beliefs should
reliably reflect how things stand with the sets or the numbers, or whatever.

Heck (2000: 128)

Field and Heck clearly consider that it is easy to meet the challenge for whatever
mathematical theory-tied belief in case it is also met for the axioms of the relevant
theories. Still, this is so only if these theories consist in formal axiomatic systems and
if these systems are sound in the appropriate sense, i.e. if they are such that, if their
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axioms reflect the mathematical facts, then so do their theorems. Even if it were
taken for granted that the former condition is met, one would still have to argue that
the latter is met as well: one would still have to explain how it happens that the
deductive rules of the relevant theories fit in with the way mathematical facts are
related to each other. For this reason, and also because one would have to take into
account other kinds of theories, either formal or not, that do not reduce to axiomatic
systems, it would be more appropriate to generalize what Field and Heck say on
mathematical axioms to any sort of liminal assumptions of the relevant theories,
certainly including axioms, but also other kinds of stipulations or presumptions
(either explicitly governing formal deductions, like deductive rules, or playing a role
in informal but widely accepted proofs).

Still, if it is admitted that meeting the challenge for these liminal assumptions
makes it be automatically meet (or, at least, makes easy to meet it) for any math-
ematical theory-tied beliefs are concerned, why should one restrict its formulation
to the former? This does not make it easier to meet. For the sake of
all-inclusiveness, it is therefore advisable to state the challenge as applying to
mathematical theory-tied beliefs in general.

Finally, if the content of these beliefs is taken to be stable under the variety of
cognitive subjects that hold them and of the cognitive contexts in which they do (as
Field and Heck seem to admit), the challenge may be stated without any appeal to
mathematicians as bearers of these beliefs: all what is relevant are the beliefs
themselves.7

In the end, the question seems to be the following, then: how can a platonist
explain that mathematical theory-tied beliefs reflect the mathematical facts (in the
sense specified above)?

It remains, however, that not appealing to mathematicians as the bearers of the
relevant beliefs when stating the challenge is not the same as taking it to be
independent of what mathematicians do, namely of their providing justifications for
these beliefs. By definition, a belief is mathematical theory-tied just in case it comes
together with a consensual epistemic practice to secure it: typically a generally
accepted justification for it, or at least a consensual admission that it has an
acceptable justification, namely a widely accepted proof or another sort of direct or
indirect ground, such as those one usually appeals to when supporting mathematical
axioms or other liminal assumptions of mathematical theories.

Hence, although neither Field’s nor Heck’s formulation of the challenge appeals
to the justification of the relevant beliefs (either under the form of a proof or of any
sort of suitable ground), and despite Field’s claim that “Benacerraf’s challenge […]
is not […] a challenge to our ability to justify our mathematical beliefs, but […] a
challenge to our ability to explain the reliability of these beliefs” (Field 1989: 25),
the justification for the relevant beliefs seems to be an indispensable ingredient of it.8

Field’s insistence on the idea of a systematic correlation, or of a general regularity,
suggests, then, that the required explanation could be offered only insofar as a stable
connection (regularly and/or systematically operating under the variation of p)
between the mathematical fact that p and the consensually accepted justifications for
the belief that p may be identified. Taking the identification of this connection to be
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an essential ingredient of a theory of mathematical knowledge, or preferring to avoid
any appeal to so loaded a term as ‘knowledge’ for describing the problematic setting
at issue, depends on a terminological choice rather than on some substantial option.
What matters is that, according to Field, a platonist could hardly be credited with a
decent epistemology (broadly understood as an analysis of the virtues that mathe-
matics has for us) if he or she were not able to answer this challenge.9

4.2 Another Way to Understand Benacerraf’s Challenge
to a Platonist

When Benacerraf’s dilemma is seen in this light, its original formulation seems to
depend on the requirement that the connection to be explained (which in the
original settings takes the form of a “connection between the truth conditions of
p […] and the grounds on which p is said to be known”: Benacerraf 1973, p. 672)
hinge on a “causal relation” (ibid., p. 671) between the epistemic subjects having
the relevant beliefs and the constituents of the relevant facts, namely the objects that
these facts are supposed to be about10: a relation allowing one to account for the
justification of these beliefs by admitting that these subjects are causally affected by
these objects, and that the justification just results from this.

Not only is it worth our while to give up this requirement, since, as famously
observed by Hart (1977: 125–126), “superficial worries about the intellectual
hygiene of causal theories of knowledge are irrelevant […] and misleading […], the
problem [being] not so much about causality as about the very possibility of natural
knowledge of abstract objects”. This is also indispensable if we are to avoid beg-
ging the question by putting too heavy a burden on the platonist—admitting, in
agreement with Field’s account, that mathematical objects are mind- and
language-independent, abstract, and that mathematical facts are facts about these
mind- and language-independent abstracta.

Moreover, Sereni’s argumentation in the paper included in the present volume
suggests that any plausible requirement concerning the nature of the relevant
connection is likely to either beg the question or yield too unspecific a challenge.

Should we conclude with Sereni that the challenge Benacerraf’s dilemma
addresses to the platonist, even if understood in the minimal form I have described
above along Field’s lines, is either ill-posed or unspecific?11

I do not think so. I think on the contrary that for the challenge to be correctly
formulated and specific,12 it is enough to stay away from any requirement on the
nature of the connection between the mathematical theory-tied belief that p and the
(mathematical) fact that p. All what is to be required is that the justification of the
former (i.e. the consensual epistemic practice that secures the belief and makes it a
mathematical theory-tied belief)13 be a justification that the latter obtains.

To make this point clear, let us reflect once again on Field’s picture. Not only
does this picture depend on the characterization of the platonist as someone who
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maintains that there are mathematical objects, and that they are mind- and
language-independent and abstract, but it also depends on the claim that, according
to the platonist, the relevant mathematical beliefs have a propositional content, and
that this content is that a mathematical fact, namely a fact about these very objects
(presumably consisting in their being in certain relations with one another), obtains.
In other terms, this picture seems to take for granted that a (mathematical
theory-tied) belief that p is just the belief that the (mathematical) fact that p obtains,
i.e. that some appropriate (mathematical) objects are related to one another in a
certain way.

This is quite natural to admit from a platonist perspective and does not seem as
such to require any further explanation. What is by far much less natural to admit
and requires indeed an explanation is that a justification for a mathematical
theory-tied belief that p be a justification that the mathematical fact that p obtains,
that is, a justification that the relevant mathematical objects are related to one
another in a certain way. Taking a justification of a mathematical theory-tied belief
to meet this requirement is in itself a very strong assumption: an assumption that a
platonist cannot merely take for granted and that must indeed be argued for.

Here is, in my view, the basic challenge that Benacerraf’s dilemma addresses to
the platonist: the platonist is required to explain how the justification of a mathe-
matical theory-tied belief (i.e. either an argument supporting an axiom or some
other kind of liminal assumption of a mathematical theory, or a proof within such a
theory) may count as the justification that a mathematical fact, conceived as a fact
about the relevant mathematical objects, obtains. The crucial question is not con-
cerned with what, from a platonistic point of view, could guarantee that the relevant
mathematical beliefs reflect (in Field’s sense) the facts about the mathematical
objects, but rather with the very possibility of taking the justifications for these
beliefs to be justifications that such facts obtain.

Consider the belief that 5 + 7 = 12. It should be plain that this belief is both
mathematical and (as opposed, for instance, to the belief that 5 + 7 = 13)
theory-tied. One might have many different ideas about what should count as a
justification for it, but it should be clear that most of us would spontaneously
consider that a proof that 5 + 7 = 12, or of ‘5 + 7 = 12’ within some accepted
version of arithmetic, constitutes indeed such a justification (and even a suitable and
reliable one if it were admitted that this belief could also have unsuitable or
unreliable justifications). Now, there is no doubt that such a proof justifies a belief.
The point is whether a platonist can, in agreement with the spontaneous pro-
nouncement of most of us, take this belief to be the very belief that 5 + 7 = 12.

According to Field’s construal of platonism, this last belief is the belief that:
(i) there are numbers, namely the numbers 5, 7, and 12; (ii) they are mind- and
language-independent abstract objects; (iii) they are related to one another by the
additive relation expressed by the statement ‘5 + 7 = 12.’ Hence, if this picture is
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admitted, the point is whether a platonist can take a proof that 5 + 7 = 12, or a
proof of ‘5 + 7 = 12’ within some accepted version of arithmetic, to provide a
justification that facts (i)–(iii) obtain, or at least—supposing that it has been pre-
viously justified on independent grounds that facts (i)–(ii) obtain—that fact (iii) also
obtains, rather than to provide a justification that it is a theorem of some version of
arithmetic that 5 + 7 = 12, or that ‘5 + 7 = 12’ is such a theorem.

To avoid additional worries, let us focus for the sake of argument on categorical
versions of arithmetic, say on PA2. Following a platonist, let us also take for granted
—still for the sake of argument—that the singular terms of PA2, or of whatever
categorical version of arithmetic, have the same reference as the corresponding
numerical terms we use, both in our ordinary informal arithmetic and in our
everyday parlance (provided these terms have any reference at all). It would be a
crucial challenge for a platonist, as described by Field, to explain how it can happen
that a proof within such a suitable accepted version of arithmetic justifies that the
facts that (i)–(iii) obtain or, alternatively (under the mentioned condition), that the
fact that (iii) obtains.

A similar concern also applies to other sorts of mathematical theory-tied beliefs,
namely those pertaining to the axioms or other liminal assumptions of mathematical
theories. Take as another example the axiom of existence and unicity of the suc-
cessor for natural numbers in one of its (formal or informal) formulations, which,
still for the sake of argument, we shall take as being all about the same objects
(provided they are about objects at all). According to Field’s picture, for a platonist
to believe this axiom is to believe that: (i) there are natural numbers; (ii) they are
mind- and language-independent abstract objects; (iii) every such number has a
single successor. Now, many grounds have been offered for this axiom, and all of
them undoubtedly justify a belief. What is far from clear is whether these grounds
are justifications that facts that (i)–(iii) obtain, or, at least—supposing that it has
been previously justified on independent grounds, that facts (i)–(ii) obtain—that
fact (iii) also obtains, rather than justifications that this axiom is a suitable axiom for
a suitable version of arithmetic. Again, an obvious challenge for a platonist, as
described by Field, is to explain how it can happen that the former option holds
rather than the latter.

The two cases are indeed not equivalent. In the former, the justification is
regimented so as to make any doubt about its internal correctness or accuracy
immaterial. In the latter, the justification is either essentially informal, in which case
it is open to doubts or plausible scepticism, or it is regimented within a metatheory
(as it happens for justifications based on proofs of completeness or categoricity), in
which case it openly conforms only to the second of the two options considered,
since a proof within a metatheory possibly justifies that some facts about the
relevant theory obtain, but certainly not that some facts about whatever the theory is
about obtain as well. Still, this difference does not seem to affect the point I want to
make, since this point is not concerned with the accuracy or perfection of the
justification, but rather with what it is a justification of, and stands on its own feet
even if it is granted for the sake of argument that our formal and informal math-
ematical argumentations are all about the same objects (provided, once again, that
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they are about objects at all). I therefore take the challenge to be the same in the two
cases and to apply quite generally to any mathematical theory-tied belief: it is the
challenge to explain how a justification for such a belief that p can be a justification
that the fact that p obtains.14

When it is couched in these terms, the challenge seems to be close to the one to
which Burgess and Rosen have reduced Benacerraf’s dilemma: “granted that belief
in some theory is justified by scientific standards, is belief in the truth of that theory
justified?” (Burgess and Rosen 1997: 48). This reduction goes through many
intermediary stages that I shall account for here only partially. (One will find a
compendious account and a stringent criticism of it in Hale 1998: 162–163). Burgess
and Rosen begin with their own construal of Field’s challenge: if it is true that “when
mathematicians believe a claim about mathematicalia, then that claim is true”, an
explanation of this is in order (Burgess and Rosen op. cit.: 41–42). They then admit,
with Field, that the explanation should not be required to concern “what follows
logically or analytically from what” and restrict the issue to “axiomatic beliefs, ones
that are not believed simply because they follow logically or analytically from other,
more basic beliefs” (Burgess and Rosen op. cit.: 45). Next, they appeal to the
possibility of rephrasing all mathematics within set theory (and to other connected
considerations that we may leave here on the side) in order to further restrict the
challenge to the following: “granted that belief in standard set theory is justified by
scientific standards, is belief in the truth of standard set theory justified?” (Burgess
and Rosen op. cit.: 47). Finally, they argue, in agreement with what Benacerraf and
Putnam contend in the introduction to Benacerraf and Putnam (1983), at page 35,
that the problem is not “peculiar to mathematics” (Burgess and Rosen loc. cit.),15 and
remark, in agreement with Field, that truth is here to be intended disquotationally, so
as to reach the last reformulation quoted above at the very last step.

This long detour already suggests, however, that the way in which Burgess. and
Rosen consider their own version of the challenge is quite different from the way I
consider mine. This difference is blatant in the following comment:

Once it is put in this last form, it becomes clear that the […] challenge presupposes a ‘heavy
duty’ notion of ‘justification’ — one not just constituted by ordinary commonsense stan-
dards of justification and their scientific refinements […]. To put the matter another way,
once it is put in this last form, it becomes clear that the question or challenge is essentially
just a demand for a philosophical ‘foundation’ for common sense and science — one that
would show it to be something more that just a convenient way for creatures with capacities
like ours to organize their experience — of the kind that Quine’s naturalized epistemology
rejects.

Burgess and Rosen (1997: 48)

It is clear, then, that Burgess and Rosen construe the challenge as a request for
an ultimate legitimization of our theories, both mathematical and scientific,
depending on what there is and on how things actually are, a request that openly
violates naturalism (see, e.g., Liggins 2010: 73).

Although I do not see any reason for a philosophy of mathematics to abide by
naturalism, I do not construe the challenge in this way. I understand it as the
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requirement of an account of mathematics able to explain how mathematical the-
ories, which we devise and select according to our own standards, can say what
they say according to a platonistic construal, and how, from then on, the justifi-
cations which are germane to mathematics may also be justifications for mathe-
matical beliefs platonistically construed.16 I am not asking for anything more when
I argue that an explanation of how a justification of the mathematical theory-tied
belief that p may also be a justification of the fact that p obtains must be given.17

I fail to see why the challenge, thus understood, should beg the question for
platonism, as construed by Field. If it did, the begging would come from the
requirement that a justification for a mathematical theory-tied belief not be a jus-
tification for something distinct from what the platonist takes that belief to be. In
other words, what would beg the question for such a platonist would be the very
request to offer an epistemology of mathematics that should be both plausible and
compatible with the platonist view of what mathematics is (about).

When understood in this way, the challenge that Benacerraf’s dilemma
addresses to the platonist is neither concerned with the reliability of the relevant
justifications, nor with any other possible condition that these justifications could be
required to meet (beside that of being indeed justifications for the relevant
beliefs).18 This cuts short a number of questions, arguments and counter-arguments
that are often evoked in discussions allegedly concerned with Benacerraf’s
dilemma. Let us then leave these questions, arguments and counterarguments on the
side and ask now which challenge, if any, the dilemma offers to a combinatorialist
(in Benacerraf’s sense of that word).

4.3 Benacerraf’s Challenge to a Combinatorialist

A simple way to answer the former challenge is to deny that the mathematical fact
that p is distinct from the fact that it is a theorem or a liminal assumption of an
accepted mathematical theory that p. Insofar as it seems quite implausible (since
contrary to the evidence coming from mathematical practice) that the former fact
reduces to the latter, this depends on admitting that there is nothing like a mathe-
matical fact that p other than the mere fact that it is a theorem or a liminal
assumption of an accepted mathematical theory that p. For example, there is
nothing such as the mathematical fact that 5 + 7 = 12, or that every natural number
has one and only one successor over and above, respectively, the mere fact that it is
a theorem of an accepted mathematical theory that 5 + 7 = 12, and that it is a
suitable axiom for a suitable version of arithmetic that every natural number has
only one and only successor.

Field denies that this solution is open to a platonist on the ground that it is
incompatible with the view that there are mathematical objects and that they are
mind- and language-independent and abstract; unless, of course, the platonist is
ready to admit that mathematical facts are not facts about these objects, which
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would then make his view quite immaterial as a basis for a philosophical account of
mathematics.

It is, instead, quite in line with the views about mathematical truth that Benacerraf
calls ‘combinatorial’, according to which “the truth conditions for arithmetical [but
one could in general say ‘mathematical’] sentences are given as their […] derivability
from specified sets of axioms”, provided that such a derivability is broadly construed,
or that the requirement of completeness (understood as the requirement that a
truth-value be assigned to each statement of the language of the relevant theorem) is
abandoned, so as to avoid the difficulties brought forth by Gödel’s incompleteness
theorem (Benacerraf 1973: 665). According to Benacerraf, the “leading idea” behind
these views is indeed “that of assigning truth-values to arithmetical [but, once again,
one could in general say ‘mathematical’] sentences on the basis of certain (usually
proof-theoretic) syntactic facts about them” (Benacerraf loc. cit.).

The claim that the there is no mathematical fact that p beside the fact that it is a
theorem or a liminal assumption of an accepted mathematical theory that p does not
rely on a non-disquotational notion of mathematical truth. This claim thus turns out
to be a natural way of expressing the combinatorial views in a weakened setting
where any such notion is dismissed, such as the setting of Field’s reformulation of
the challenge that Benacerraf’s dilemma addresses to the platonist. This suggests
that the challenge to the combinatorialist could be restated within such a weakened
setting as a challenge to a supporter of such a claim.

Although Benacerraf does not insist on this point in his original paper, he clearly
remarks that combinatorial views are in need not only of a combinatorial account of
mathematical truth, but also of a “new theory of truth theories” capable of relating
combinatorial truth for mathematics to usual truth for “referential (quantificational)
languages” (Benacerraf op. cit.: 669). The challenge he addresses to the combi-
natorialist seems, then, that of providing such a new theory of truth theories.

It follows, then, that if the notion of truth, for any kind of language, is appro-
priately weakened, or indeed removed from the setting, one may quite naturally
rephrase the challenge in the following way: a combinatorialist must explain how an
analysis of a mathematical theory-tied belief that p, according to which the content of
this belief is that the fact obtains that it is a theorem or a liminal assumption of an
accepted mathematical theory that p, is related to an analysis of a non-mathematical
belief that q, somehow connected with the mathematical theory-tied belief that p (for
example the belief that ‘p’ results from the axioms of the relevant theory by
appropriate transformations licensed by the deductive rules of this same theory),19

according to which the content of this belief is just that the fact that q obtains.
It seems to me, however, that there is more to be said on this matter. Even if such

an account were indeed available or, better, before one may even hope to provide it,
a combinatorialist should explain how the content of a mathematical theory-tied
belief that p is to be precisely determined. Should this content be taken to be that
(i) the fact obtains that it is a theorem or a liminal assumption of a specified
mathematical theory that p, or that (ii) the fact obtains that there is an accepted
mathematical theory of which it is a theorem or a liminal assumption that p, or that
(iii) the fact obtains that for any accepted mathematical theory pertaining to an

4 On Benacerraf’s Dilemma, Again 73



appropriate specified branch of mathematics, it is a theorem or a liminal assumption
of the theory that p?

Moreover, for each of these options, a combinatorialist must also explain what is
to be taken as an appropriate justification for the relevant belief, and possibly give
that explanation so as to guarantee that our customary and natural conception of
what it means for a subject to have the justified belief that p be preserved. For
example, a proof that 5 + 7 = 12 within PA2 would certainly be a justification of the
belief that 5 + 7 = 12 if this belief were analyzed in agreement with (i) and the
mathematical theory were identified with PA2, or in agreement with (ii) and PA2
were included in the relevant domain of accepted mathematical theories. But it
certainly wouldn’t be enough to justify this belief if it were analyzed in agreement
with (iii). It seems, then, that a combinatorial view about the content of mathe-
matical theory-tied beliefs and their justification would be plausible only if this
view allowed us to specify the content of these beliefs, and of what would count as
a justification for them, in a way that would not be either utterly complex, or quite
unfaithful to our customary and natural conceptions of both the content and the
justification.

I shall not explore the matter further: a better explanation of the difficulties that a
combinatorialist should overcome in order to meet the challenge would require
more space than allotted here. The point here is to make clear how one should
understand the challenge that the Benacerraf’s dilemma addresses to a combina-
torialist when that challenge is required to dispense with the twin notions of truth
and knowledge.

4.4 Meeting Both Challenges Simultaneously

One might think that the essential difficulty of the challenge to a platonist is that of
filling the gap between the mind- and language-independent abstract objects that the
platonist takes to exist, and the human justifications embedded in our mathematical
practice. If this were the case, one could try to meet the challenge either by
advocating a characterization of platonism alternative to Field’s, or by weakening
the platonist contention.

According to Field’s picture, for a mathematical platonist: (i) mathematics is
about appropriately specified objects and non-reducible actual facts concerning
them20; (ii) these objects are mind- and language-independent; (iii) they are
abstract. The more natural option would be to stick to (i) and to give up (ii) and (iii).
Call, then, ‘minimalist platonist (about mathematics)’ anyone who endorses (i), but
remains agnostic with respect to (ii) and (iii), i.e. open to either an endorsement or a
rejection of either position.21

Endorsing (i) entails maintaining that there are mathematical objects.22 If one
endorsed this thesis, but rejected (ii), i.e. argued that there are mathematical objects,
but admitted that they could be mind- and language-dependent (and therefore
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abstract),23 one would allow the existence of these objects to be open to concep-
tualizations that are different from the one according to which existence is a
primitive intrinsic condition not open to specification. A minimalist platonist
should, then, concede this possibility as well.

According to a minimalist platonist, the content of a mathematical theory-tied
belief would still be, however, that a non-reducible fact about mathematical objects
obtains, and a justification of such a belief would accordingly still be a justification
that this very fact obtains.

One could reply, either that such a minimalist platonist is no longer a genuine
platonist one, or that a minimalist platonist fails to have at his or her disposal
enough explanatory power to account for mathematical ontology and semantics. It
nevertheless seems clear that taking the belief that 5 + 7 = 12 to be a belief about
three distinct objects, namely 5, 7, and 12, and the belief that every natural number
has a single successor to be a belief about a domain of distinct objects, namely
natural numbers, and admitting as well that the fact obtains that 5 + 7 = 12 and that
the fact obtains that every natural number has a single successor, and that such facts
are non-reducible, amounts to the adoption of a strong philosophical view endowed
with a respectable explanatory power, both for mathematical ontology and math-
ematical semantics, one which is quite different from other views often defended in
an anti-platonist perspective. (Note that the view implies that the statements
‘5 + 7 = 12’ and ‘every natural number has a single successor’ have a semantic
structure that parallels their superficial syntactical form, and are true, at least
disquotationally.)

Hence, the problem with minimal platonism seems to depend neither on its being
too weak or of falling short of explanatory power, nor on its openly being not quite
platonist in spirit. It would depend on its not being specifiable without eventually
admitting that mathematical objects are, after all, mind- and language-independent,
which amounts to either endorsing platonism as described by Field, or to embracing
the quite unlikely view that these objects are somehow concrete.

Still, if it were clear that adopting minimal platonism would make it easy to meet
the challenge addressed to platonism by Benacerraf’s dilemma, both under Field’s
construal and mine, one could give it a try, even though one would then make a new
challenge arises, consisting in the demand for an appropriate specification of this
minimal view in order to avoid coming back to an endorsement of (ii).
Unfortunately, merely leaving open the possibility of taking mathematical objects
to be in some way or other mind- and language-dependent, does not provide an easy
way for a plausible explanation of how a justification of the mathematical
theory-tied belief that p can also be a justification that the fact that p obtains, if this
fact is conceived as a non-reducible fact about mathematical objects.

The adjective ‘plausible’ is crucial here. It is intended to mean that the required
explanation shouldn’t, mutatis mutandis, run into the same difficulties as those the
combinatorialist views runs into face to Benacerraf’s challenge. This would happen
indeed if one hoped to provide the required explanation by allowing that mathe-
matical objects be nothing but the items fixed within our current mathematical
theories.
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Broadly speaking, this is the position defended, albeit in quite different ways, by
Shapiro’s and Resnik’s ante rem structuralism (Shapiro 1997; Resnik 1997) and by
Linsky and Zalta’s version of platonism framed within Zalta’s object theory (Linsky
and Zalta 1995, 2006; Zalta 1999, 2000). The problem with this position is that it is
hardly compatible with meeting the challenge that Benacerraf’s dilemma addresses
to platonism without specifying what is a fact about mathematical objects, what is
the content of a mathematical theory-tied belief and what counts as a justification of
such a belief, in a way that is not unreservedly complex, or quite unfaithful to our
customary and natural conceptions of what such a fact, content and justification are.

Suppose one argued that, insofar as the fact that 5 + 7 = 12 is a fact about items
fixed within a certain version of arithmetic and there called ‘5’, ‘7’ and ‘12’, this
very fact is nothing but the fact that a proof within this version of arithmetic ends
with ‘5 + 7 = 12’ and analogously, that, insofar as the fact that every natural
number has a single successor is a fact about the items fixed within a certain version
of arithmetic and and there called ‘natural numbers’, this very fact is nothing but the
fact that this version of arithmetic includes an axiom, or possibly a theorem, just
asserting, in the relevant language, that every natural number has a single successor.
Given the way the relevant mathematical objects are identified, one could argue that
these are non-reducible facts about them—and, from there, that the semantic
structure of ‘5 + 7 = 12’ and ‘every natural number has a single successor’ par-
allels the superficial syntactical form of these statements. But it would be harder to
admit that this way of specifying these facts is faithful to our customary and natural
conceptions of what the non-reducible facts about the numbers 5, 7, and 12, and the
natural numbers in general are, since, according to these conceptions, these facts are
not concerned with any particular theory, but merely with the numbers 5, 7, and 12,
and with the natural numbers as such.

The same could be said if it were argued that the fact that 5 + 7 = 12 is nothing
but the fact that the items fixed within a certain version of arithmetic (and there
called respectively, ‘5’, ‘7’ and ‘12’) stand to each other in such a way that the
value of the addition-function fixed within this same version of arithmetic for the
first two items taken as arguments, is just the third, and, analogously, that the fact
that every natural number has a single successor is nothing but the fact that the
items fixed within a certain version of arithmetic (and there called ‘natural num-
bers’) stand to each other in such a way that the successor relation thereby fixed
within this same version of arithmetic is functional and total.

Things wouldn’t be better if one set out to overcome the difficulty by taking the
foregoing facts to be nothing but the facts that, for any accepted version A of
arithmetic, 5A + A7A = 12A (or even 5A + A7A = A12A), and 8x[NNA(x) ⇒ 9!y
[NNA(y) ∧ SUCA(x, y)]] (or even that 8Ax[NNA(x) ⇒ 9A!y[NNA(y) ∧ SUCA (x, y)]]),
providing that the subscript ‘A’ indicates that the relevant statements have to be
understood in one of the two previous ways, by taking the relevant version of
arithmetic to be A. Although, so understood, these facts wouldn’t be related to any
particular theory, it remains that the conception wouldn’t be faithful to our cus-
tomary or natural way of understanding what the non-reducible facts about the

76 M. Panza



numbers 5, 7, and 12, and the natural numbers in general are, since according to that
conception these facts are not universal facts about particular versions of arithmetic,
but facts about the numbers 5, 7, and 12, and the natural numbers as such.

Moreover, if the facts that 5 + 7 = 12 and that every natural number has a single
successor were so conceived, and it were also admitted (in agreement with minimal
platonism) that the content of a mathematical theory-tied belief that p is that the fact
that p obtains, it would follow that no proof, within any version of arithmetic, and
no argument supporting an axiom of any such theory could, respectively, justify the
beliefs that 5 + 7 = 12 and that every natural number has a single successor. Only
proofs or arguments within some appropriate theory of arithmetical theories could
do this. Hence, since no such theory is available (unless we consider that this is
provided for by the historiography of mathematics), it would follow that no justi-
fication for these beliefs is available (unless such a justification depends on histo-
riographic remarks). This, once again, is openly unfaithful to our customary and
natural conception of what counts as a justification for these beliefs.24

It seems, then, that the difficulties that both the platonist and the combinatorialist
must face when addressing Benacerraf’s dilemma are deeper than worries about
whether there are any mathematical objects independently of our intellectual
activity, or whether mathematical facts are reducible to proof-theoretical facts. The
deeper issue is whether there is room for conceiving mathematical objects as being,
as such, independent of mathematical theories, though maintaining that these the-
ories are about them. In other terms: is there room for conceiving these objects as
the objects about which these theories are, rather than, merely, as the objects that
these theories are about?

There is no doubt that mathematical theories are human constructions. No pla-
tonist or realist seems to be able to deny this. At most, one can argue that these
constructions are (supposedly) about a transcendent reality. So, wondering whether
a mathematical theory M is about objects that are independent of it is tantamount to
wondering whether the cognitive subjects that have set up M, or who work in M, or
who come to learn M can be credited, while doing this, with a de re epistemic access
to the objects M is about, rather than merely with a de dicto epistemic access to
them. In other words, can it be maintained that it is these very objects that the
cognitive subjects are dealing with, or can it only be said that these subjects are
dealing with these objects while doing mathematics? In still other words, the
question is whether mathematical objects can be fixed as individuals we have
epistemic access to—i.e. individuals we can distinguish from other individuals, and,
when focusing on some of them one by one, also from each other—independently
of M, to the effect that we may take them as the objects M is about, and not merely
take M to be about them.

It follows that a way of meeting both challenges at once (and indeed the only
possible way to do this) is to provide a plausible account of mathematics according
to which mathematicians are credited with a de re epistemic access to mathematical
objects when they devise a mathematical theory about such objects, work within the
theory, or merely learn it.
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One could think that it is just for granting this that a platonist matching with
Field’s description maintains that there are mathematical objects, that they are
mind- and language-independent, and that mathematics is about them. But this
grants, at most, that the same mathematical vocabulary may be used to speak about
the very same objects in whatever context of use. It doesn’t yet grant that one can
have a de re epistemic access to them. Since the possibility of such an epistemic
access to mind- and language-independent abstract objects is precisely what is
called into question by Benacerraf’s dilemma. So, if we concede that a platonist
matching Field’s description is not able to meet this challenge, we must conclude
that the very same platonist is not able to account for the possibility of having a de
re epistemic access to mathematical objects either.

It seems, then, that a platonist can hope to account for this only provided that he
or she is not only a minimalist platonist, but is also ready to deny either that
mathematical objects are mind- and language-independent—i.e. to deny (ii)—, or
that they are abstract—i.e. to deny (iii). If the latter option is discarded as highly
implausible, such a platonist should then maintain that mathematics is about
abstract objects that we fashion through our intellectual activity—which amounts to
denying (ii)—, and look for a way of accounting for our fashioning of these objects
that leaves open the possibility of having a de re epistemic access to them.

In my view, what is distinctive of an object (either concrete or abstract) is just
this: an object is an individual item—that is, an item which may provide the
putative reference of a singular term, or to count as an element of the putative range
of a first order quantifier (possibly in a multi-sorted first-order language, or in a
multi-sorted first-order fragment of a higher-order language)—that some cognitive
subjects can have a de re epistemic access to. This means that there is, for these
subjects, a way of relating to this item such that one may argue that it is with it that
these subjects are dealing, and not merely that these subjects are dealing with it.
Existence, intended as a primitive intrinsic condition not to be submitted to any sort
of specification, isn’t what is at stake here: taking a to be an object does not require
to admit that a exists in such a primitive sense. If one is willing to argue that an
object exists—as I am willing to as far as mathematical objects are concerned—one
has to specify the particular sense in which it does, a sense that depends on the
particular nature of the object or, better, on the particular nature one ascribes to it.
Fashioning an abstract object, or a domain of abstract objects, consists, then, in
fixing an individual item or a domain of individual items, in such a way as to make
it possible for cognitive subjects to have a de re epistemic access to it (more on this
matter in the next section).

Conversely, nothing that has not yet been so fixed, or that cannot be specified so
as to allow cognitive subjects to have a de re epistemic access to it, may be
considered an object. Such a putative object would be a mere logical reification of a
concept, or a bundle of properties, a posit resulting from the nominalization of
predicates, or from the association of such predicates to names, along with the
stipulation that this is enough for ensuring reference. Hale and Wright seem to
imply that something like this happens to places in a structure, as defined in ante
rem structuralism: according to them, by merely giving an “axiomatic description
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[…] characterizing a structure” we cannot “do more than convey a concept”,
namely we cannot “induce awareness of an articulate, archetypical object, at once
representing the concept in question and embodying an illustration of it” (Hale and
Wright 2002: 113). I agree. This does not mean, however, that providing an
axiomatic description cannot result in, or be part of, fashioning some abstract
objects in my sense. It is so, indeed, when this description makes it possible, or
contributes to make it possible, for cognitive subjects to have a de re epistemic
access to the items so fixed, while dealing with them as objects that a theory, which
doesn’t involve, as such, this axiomatic description, is about.

I have argued so far that one may meet conjointly the challenges that
Benacerraf’s dilemma addresses to the platonist and the combinatorialist by pro-
viding a plausible account of mathematics according to which mathematicians are
credited with a de re epistemic access to mathematical objects while they devise a
mathematical theory, work in it, or learn it. According to such an account, a
theorem, axiom, or any other liminal assumption of such a theory is intended as a de
re description of these objects, or as a de re ascription of properties or relations to
them. Hence, the content of a belief expressed by such a theorem, axiom, or liminal
assumption is just that these objects satisfy these descriptions or conform to these
ascriptions. Proving such a theorem, or endorsing such an axiom or liminal
assumption is the same as securing these descriptions or providing grounds for such
ascriptions. Moreover, insofar as these descriptions and ascriptions are de re, other
descriptions or ascriptions may be offered concerning the very same objects
depending on other theories which are also about them, and any such theory pro-
vides a way of speaking of these objects, i.e. of describing them or of ascribing
properties or relations to them.

What I have just said on what I take an object to be, and on what fashioning an
abstract object or a domain of abstract objects consists in, should make clear that
this way of meeting Benacerraf’s challenge is perfectly in line with the view that
mathematical objects are objects in a proper sense: they are more than mere logi-
cally appropriate reifications of concepts or bundles of properties. It is also perfectly
in line with the idea that mathematics is not only a human production, namely the
result of our intellectual activity, but also that it is self-determining, that it hardly
requires the exercise of a mysterious faculty yielding an access to a transcendent
reality. Neither does it rely on the independent existence of such a reality. In short,
this way of meeting these challenges is in line with the basic proposals of both a
platonist and a combinatorialist.

What remains to be explained is how an abstract object, or a domain of abstract
objects, is to be fashioned so as to make it possible for us to have a de re epistemic
access to it, or, more precisely, how one may achieve such fashioning so as to make
it possible for us to have a de re epistemic access to it while a mathematical theory
about such objects is being devised, worked on, or learned. This is indeed a
complex question. Let me try, however, before concluding my paper, to outline the
direction along which I think it would be possible to respond to it.
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4.5 Fashioning Abstract Objects and Having a de re
Epistemic Access to Them

The first thing to be said is that a de re epistemic access to abstract objects that we
fashion cannot come together with the very act of fixing them. The former must be
subsequent to the latter. Hence, the question is not whether and how we can have de
re access to abstract objects while fixing them, but rather, whether and how we can
fix them in such a way that we may later on benefit from de re access to them, i.e.
describe them de re, or ascribe properties or relations to them de re. This is perfectly
consonant with the picture of mathematics suggested by platonism as described by
Field. According to this view, there are mathematical objects before we can speak of
them, describe them, or ascribe properties or relations to them. Still, the sense in
which we are said to ascribe properties or relations to mathematical objects, and the
way such ascriptions interact with descriptions, are quite different in the two cases.

According to platonism as described by Field, we have no other intellectual
capacity relative to mathematical objects than that of recognizing their properties or
relations. Any assertion about them is quite literally a description, or at least a
purported description. We may attribute properties or relations to them only insofar
as we introduce appropriate conceptual tools fitted to a description, so that the
ascription is properly a part of a description. It follows that there is no intrinsic
difference in nature between the intellectual activity consisting in fixing the math-
ematical objects and the intellectual activity consisting in asserting something about
them: in both cases, what is provided is a (purported) description. Typically, we do
the former through appropriate definitions and the latter through appropriate theo-
rems. The definitions can be either explicit or implicit. In the former case, they either
come after some axioms or liminal assumptions, and are licensed by them (which is
generally the case in formal theories), or come before them and complete them
(which is generally the case in informal theories). In the latter case, they precisely
consist in some axioms or liminal assumptions. There is, then, no other intellectual
activity we can perform with respect to mathematical objects than that of defining
them, or of stating some axioms or liminal assumptions about them—which is often
the same as defining them—and of asserting some theorems about them (once these
theorems have been proved). In any event, all we do is (purportedly) describe them.
The only difference is that the description provided by a theorem is secured by the
description provided by the relevant definitions, axioms or liminal assumptions: the
relevant objects cannot but be as the theorem asserts they are, if they are indeed as
the definitions, axioms or liminal assumptions say they are. But whether a statement
about them is deemed a definition, an axiom, a liminal assumption or a theorem,
pertains to a choice that depends only on our ability to identify the properties and
relations of the relevant objects, and/or on matters of expository economy.

According to the picture I’m trying to offer, things are much more complex. It is
one thing to fix mathematical objects so as to make it possible for us to have a de re
epistemic access to them at a later stage, and quite another to deal with them while
the access is being secured. The latter can be done in three different ways: we may
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select some of them among others; we may offer further specifications of some of
them by ascribing new properties or relations to them without modifying their
nature; or we may acknowledge that they are so and so, i.e. that they have such and
such properties or stand to each other in such and such relations. Typically, we fix
mathematical objects through appropriate definitions, either explicit or implicit, in
the same connexion as before with axioms or liminal assumptions. This doesn’t
amount to a description but, rather, to a process of constitution. We make these
objects available; under appropriate specifications, we can say that we bring them
into existence. We may also resort to definitions, either explicit or implicit, in the
same connexion as before with axioms or liminal assumptions, while enjoying a de
re epistemic access to mathematical objects and dealing with them. This is exactly
what we do when we select some of these objects among others, or when we further
specify them, or some of them, by ascribing to them new properties or relations in
the appropriate way. Still, whereas in the former case we merely offer a description
of the relevant objects, in the latter we bring their constitution to completion by
making it more fine-grained, so to say: accordingly, the attribution is justified in so
far as it is not part of a description, but rather of a constitution. Finally, we typically
recognize that the mathematical objects we have de re epistemic access to are so
and so by proving theorems about them. This consists, once again, in providing a
description of these objects, although the role of the description isn’t to distinguish
them from other objects, say by emphasizing some of their features, but to have a
finer grained look at them, by making explicit what is only implicit in their defi-
nition, or in the relevant axioms or liminal assumptions. In other terms, what we
now achieve is a description secured by the constitution, possibly involving pre-
vious selections and proper ascriptions.

An example should make my point clearer.
Suppose we define the cardinal numbers as neo-logicists suggest we should do,

i.e. as values of a function from concepts to objects, implicitly defined defined by
Hume’s principle. It is not mandatory to consider that this definition identifies
independently existing objects that are recognized, just because of this, as the
cardinal numbers. One can take the definition to be a skillful stipulation that merely
fixes some abstract items as something that we shall later on be able to identify as
such and talk about. This is done without asserting anything about the properties of
these objects and the relations between them, over and above their being values of
this function. These objects are then fixed without us asserting anything more about
them, in particular without us ascribing relations to them. One can then look at them
as such, i.e. have a de re epistemic access to them, and define some relations on
them or on some of them that we have previously selected.

For example, if Hume’s principle is stated as a proper axiom added to an
appropriate system of second-order logic whose monadic predicate variables are
intended to range over concepts, as neo-logicists suggest, one can define the suc-
cessor relation on cardinal numbers by appealing to one or another among many
well-known equivalent formulas of this system of logic, then consider the cardinal
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number of the concept [x : x ≠ x] and show that the cardinal numbers that bear the
weak ancestral of the successor relation to it form a progression.

It seems clear that, by doing this, one is operating on the cardinal numbers as
objects that are fixed in advance (through Hume’s principle) and that this is made
possible because one has a de re epistemic access to them: it is on these objects that
the relevant strict-order relation is defined, and this consists in the proper ascription
of a relation to them. We then rest on this ascription to select the natural numbers
among the cardinal ones. This is done by taking zero to be the cardinal number of
the concept [x : x ≠ x] and the natural numbers to be those cardinal ones that bear to
zero the weak ancestral of the successor relation. Finally, it is of these numbers, so
selected among the cardinal ones, that we prove that they form a progression, which
entails that each of them has a single successor (merely saying that the cardinal
numbers stand in a strict-order relation and form a succession doesn’t, therefore,
provide a suitable account of what is here at issue). This amounts to a description of
these numbers, secured by a previous constitution, and involving a previous proper
ascription and selection.

Once this is done, one may define an additive operation on the natural numbers
and prove additive theorems, for example that 5 + 7 = 12. Once again, the oper-
ation is defined on these very objects and the theorems are proved about them
(merely saying that these objects stand in some additive relation doesn’t provide a
suitable account of what is here at issue).

It might be argued that when operating in this way, one is working within a
particular theory, namely Frege Arithmetic, so that one falls prey to the problems
we’ve already considered above, i.e. to the difficulties linked to the justifications of
mathematical beliefs coming from proofs within particular theories. But this would
be disregarding a crucial fact, namely that Frege Arithmetic is built in order to deal
with objects that are fixed in advance, quite independently of many of its
components.

One might perhaps hope to argue that: (i) Hume’s principle, intended as a proper
axiom added to an appropriate system of second-order logic, is nothing but a
particular version of a more fundamental principle, namely a clear-cut but essen-
tially informal stipulation assigning the same cardinal number to any pair of
equinumerous concepts; (ii) this more fundamental principle is enough for fixing
the cardinal numbers as abstract objects in such a way that we may, later on, have a
de re epistemic access to them. If this is admitted, one should also concede that
Frege Arithmetic is built for dealing with objects fixed in advance, so that stating
Hume’s principle as a proper axiom added to an appropriate system of second-order
logic is tantamount to a description of objects that have been fixed in advance so as
to allow us to work with them in a convenient way. It would follow that Frege
Arithmetic is a theory of objects we have a de re epistemic access to independently
of this very theory; in particular that we have a de re epistemic access to these
objects while we build the theory, work within it and eventually learn it.

Moreover, one could also argue that there is a way of informally defining
addition on these objects as a binary operation satisfying a number of conditions
specified in relation to them. If this is the case, the definition of addition within
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Frege Arithmetic reflects a relation that these objects bear independently of it, and
there is room for claiming that a proof of an additive theorem within Frege
Arithmetic is a justification of a belief whose content is independent of this theory.

On could object that nothing ensures, pace Frege, that arithmetic is a theory of
cardinal numbers intended as numbers of concepts, and that an arithmetical belief is
therefore a belief about them. There is, indeed, no reason for crediting the identi-
fication of natural numbers with numbers of concepts with any sort of pre-eminence
over other possible identifications, for example over their identification with ordi-
nals or elements in a progression.

I agree that there is indeed no reason for doing this. Still, what I want to argue
for, by offering the foregoing example, is not that Hume’s principle (either formally
or informally understood) fixes natural numbers as they actually are. It is rather that
there is a way of fixing abstract objects counting as natural numbers so as to allow
us to have a de re epistemic access to them while dealing with them within a given
version of arithmetic, which means that we have access to them quite independently
of such a version of arithmetic, and possibly of any version of arithmetic, or at least
of most components of it. There are certainly other ways of doing this. And there is
also room for arguing that the exact content of our belief that 5 + 7 = 12, or that
every natural number has a successor, isn’t fixed once for all, but can vary from
context to context, community to community, or, even, subject to subject.25

I have neither the space in this paper, nor enough clear ideas in my mind for
arguing in favor of one of these possibilities, or for suggesting a possible alterna-
tive. My only purpose, here, was to make clear what is, in my view, the crucial and
basic challenge that Benacerraf’s dilemma addresses to a plausible philosophy of
mathematics, and to suggest that there is a possible way out which is compatible
with platonism, or, at least, with a platonist spirit.

Notes

1. This last challenge is possibly not generalizable to any sort of a priori
knowledge or beliefs, as opposed to the original version of the dilemma, as
recently shown, e.g., in Thurow (2013): Sect. 2.

2. Two clarifications are in order. First of all, although Field writes
‘mind-dependent or language-dependent’, it seems clear that the ‘or’ counts
here as an ‘and’; this is confirmed by many other formulations offered by Field
(for example in Field 1989: 27). Secondly, although Field’s preference is for
labelling this view ‘mathematical realism’, I prefer to use the term ‘platonist’
and its cognates, since the former term is, more often than the latter, also used
in the literature to refer to other views openly concerned with mathematical
truth, or more generally with the truth-value of mathematical statements. I also
dislike to use the term ‘entity’ to denote the kind of thing which, according to a
platonist, mathematics is about, since using this term suggests that platonism is
quite vague about the logical status of what mathematics is about. This is why,
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except in quotes, I shall use the logically much more precise term ‘object’
instead.

3. This reading is quite openly suggested by Field himself when he writes that “one
would have to formulate more clearly the claim that our mathematical beliefs are
‘reliable’, or ‘reflect themathematical facts’” (Field 1989: 26). It is also suggested,
e.g. in Burgess and Rosen (1997: 41–42) and in Linnebo (2006: 548–549).

4. This reading is suggested by Liggins (2006: 137) and seems to be confirmed by
two other formulations of what Field takes to be the “key point” of
Benacerraf’s dilemma, which he offers in Field (2005: 77, 81):

Our belief in a theory should be undermined if the theory requires that it would
be a huge coincidence if what we believed about its subject matter were correct. But
mathematical theories, taken at face value, postulate mathematical objects that are
mind-independent and bear no causal or spatio-temporal relations to us, or any other kinds
of relations to us that would explain why our beliefs about them tend to be correct; it seems
hard to give any account of our beliefs about these mathematical objects that doesn’t make
the correctness of the beliefs a huge coincidence.

The Benacerraf problem […] seems to arise from the thought that we would have had
exactly the same mathematical […] beliefs, even if the mathematical […] facts were dif-
ferent; because of this, it can only be a coincidence if our mathematical […] beliefs are
right, and this undermines those beliefs.

5. Remark that I am not referring here to mere conjectures having a conditional or
dubitative content, since one could argue that these are not expressions of
genuine beliefs. I refer to unquestionably genuine beliefs expressed by apod-
ictic statements like ‘2@0 6¼ @1’ or ‘the real part of any non-trivial zero of the
Riemann zeta function is 1/2’.

6. This is not the same as arguing that Field’s challenge is to be intended as the
request that a platonist explain the reliability of the process that is supposed to
secure the relevant beliefs. What I mean is that the challenge appears to be
plausible only if it is intended as the request that a platonist explain how it
happens that a mathematician has the mathematical theory-tied beliefs that
p only if p.

7. Things would be different if the challenge were taken to concern the reliability
of the process that is supposed to secure the relevant beliefs. For one could
easily admit that, if there is something special that makes this process reliable,
then it is thereby available to mathematicians. Considering mathematicians to
be the bearers of the relevant beliefs would then be a way of focusing on this
special reliability-maker, rather than on the beliefs themselves. Still, I do not
think that the problem with Benacerraf’s dilemma, however understood, is that
of identifying such a special reliability-maker for mathematics (for example the
kind of thing that is often allegedly referred to with the term ‘mathematical
intuition’, which is hardly understandable without further specifications).

8. This has already been remarked in Burgess and Rosen (1997: 42) , but see also
Linnebo (2006: 571, note 4). Liggins, on the other hand, insists that the two
projects of “explaining how our beliefs come to be justified, and […] [of]
explaining how our beliefs come to be reliable” are “distinct” and “quite
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separate” (and they would be so, even if “being justified” were conceived as
being the same as “being formed by a reliable process”, since the former project
should then involve an explanation of such a conception of being justified,
whereas the latter should not), and he also adds that Field’s argument “has
nothing to do” with the former project, but rather pertains to the latter (Liggins
2006: 139–140; see also Liggins 2010: 73). It is not clear to me what Liggins
means by ‘reliability of mathematical beliefs.’ Still, his point seems to be that
one thing is to wonder whether some beliefs count as justified or not, and
another is to wonder what in general makes a belief formation process reliable
(or, possibly, what in general makes a belief reliable, if the latter question were
considered as different from the former). Though I fully agree on this dis-
tinction, I disagree that Field’s point concerns the question of establishing what
makes the formation process of mathematical beliefs reliable, provided that it
would be different from the question of explaining how the relevant beliefs
reflect the mathematical facts, this having in turn nothing to do with the way the
relevant beliefs are justified. Indeed, it seems clear that: (i) for Field, claiming
that our mathematical beliefs are reliable means the same as claiming that they
reflect the mathematical facts; (ii) Field’s point cannot plausibly be made with
respect to any mathematical belief, but must be restricted to theory-tied ones.
Under such circumstances, separating the explanation of the reliability of the
relevant beliefs from any consideration of their justification seems quite arti-
ficial, unless it depends on arguing that mathematical theory-tied beliefs are not
necessarily justified. Field has suggested something like this when arguing that
“many of our beliefs and inferential rules in mathematics, logic, and method-
ology” are such that “we must be, in a sense, entitled to them by default”, and
that “our being default-entitled to them” is not to be regarded as a “mysterious
metaphysical phenomenon” since what happens “is, basically, just that we
regard it as legitimate to have these beliefs and employ these rules, even in the
absence of argument for them, and that we have no other commitments that
entail that we should not so regard them” (Field 2005: 81–82). According to
Field, one reason for considering that, in the case of these mathematical beliefs
—namely mathematical axioms or other sorts of liminal assumptions of
mathematical theories—“the need for justification doesn’t seem as pressing” is
that, in mathematics, there does not seem to be a “genuine conflict between
alternative theories” because “it’s natural to think that different mathematical
theories, if both consistent, are simply about different subjects” (Field op. cit.:
82–83). But, as he also observes, this is no “lessening the need for justifica-
tion”; it merely entails “that the justification for consistent mathematical the-
ories comes relatively cheap: by the purely logical knowledge that the theory is
consistent” (Field op. cit.: 83). The latter option (according to which mathe-
matical axioms or other sorts of liminal assumptions of mathematical theories
are justified by consistency proofs, or at least by arguing in their favor) fits in
perfectly with what I shall say later (though my point also applies if we admit
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more substantial sorts of justification for them). Under the former option (ac-
cording to which we are entitled by default to mathematical axioms or other
sorts of liminal assumptions of mathematical theories so that they have no
genuine justification at all), something I shall say in what follows would not
apply. But the conclusion I shall come to, regarding what I take to be the crucial
challenge addressed by Benacerraf’s dilemma to a platonist, could be easily
restated for it to apply also under this option. More on this in endnote 14.

9. Field (Field 1989: 233–239; Field 1988: 62–67) has considered the possibility
of trivially meeting the challenge by observing (in Linnebo’s words; see
Linnebo 2006: 557) that “the correlation to be explained has no counterfactual
force”, since mathematics is necessary and mathematical facts obtain in all
possible worlds. He has offered different arguments against this line of
response, and other scholars have discussed some of them, or offered other
arguments to the same effect. I do not wish to enter into this discussion because
it seems to me that there is a quite simple way to block a similar response, even
if one takes for granted (something I’m not inclined to do) that mathematics is
necessary in an appropriate way, so that mathematical facts obtain in every
possible world. The point is that, even if it were admitted that mathematical
facts obtain in all possible worlds, this would in no way entail that our math-
ematical theory-tied beliefs are the same in all possible worlds. It is not hard at
all to imagine a possible world in which these beliefs include, e.g., the belief
that 5 + 7 = 13, though what happens there, as in any other possible world
(under the granted assumption) is that 5 + 7 = 12. So, in this setting, a platonist
should still explain how it happens that in our actual word our mathematical
theory-tied beliefs include the belief that p only if p, even if this isn’t so in all
possible worlds (also under the assumption that a mathematical fact obtains in
all possible worlds). One could say that, provided it is granted that the fact that
p obtains in all possible worlds, requiring an explanation of this is not tanta-
mount to requiring an explanation of a genuine correlation. Still, far from
solving the problem, this purely terminological remark would leave the prob-
lem untouched.

10. It isn’t necessary at this point to specify the nature of the relation that mathe-
matical facts are supposed to bear to mathematical objects. Specifications will
rest upon metaphysical views which shouldn’t affect the points under discus-
sion. What is crucial here is that mathematical facts are taken to depend in one
way or another on how mathematical objects are, and on which relation they
bear to each others. Following Field’s terminology (see, e.g., Field 1989: 232,
quoted above in Sect. 4.2), I use ‘about’ to indicate this unspecified relation: I
say that some facts are about some objects to mean that these facts depend on
how mathematical objects are, and on which relations they bear to each others.

11. Sereni’s conclusion is equivalent to this one only under some specifications.
Sereni argues that, when addressed to a platonist, Benacerraf’s dilemma faces,
as it were, a meta-dilemma structurally quite similar to itself: for it to be
recovered so as to avoid begging the question, and being, in this sense,
ill-posed, “it should not rely on notions so robust as to make the corresponding
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challenge to the platonist prejudicial’; for it to be recovered so as to avoid being
confused with other, already well-known charges to platonist views or with the
mere requirement that a philosophical account of mathematics meet some basic
satisfaction conditions, and so being utterly unspecific, “it should not be so
general that no novel or dedicated threat is raised for mathematical platonism.”
His point is, then, that though “both requirements are desirable and can be
defended on their own[…] [,] it is unclear whether they can be satisfied
together.” Sereni’s suggestion is, clearly, that they cannot. As I shall try to
explain in what follows, my point is that the former requirement can be fully
satisfied so that a genuine challenge may be addressed not only to mathematical
platonism, but also to any plausible philosophy of mathematics. That the same
challenge could also be detected in other arguments in the philosophy of
mathematics is another question altogether: this is certainly true, and far from
undermining the problem, it testifies to its deepness.

12. See endnote 11 above for the sense in which I deem the challenge specific.
13. In what follows, when speaking of justifications for mathematical theory-tied

beliefs, I shall not be referring to possible arguments, belonging to some
abstract domain of arguments that one could take as a justification of these
beliefs, but to consensual epistemic practices, i.e. to actual justifications
occurring within the relevant theory (or theories), or in relation to it (or them).

14. Of course, if we were merely entitled by default to mathematical axioms or
other sorts of liminal assumptions of mathematical theories, so that they had no
justification at all (see endnote 8), the challenge would not apply to our beliefs
pertaining to these axioms or liminal assumptions. It is, however, easy to restate
the challenge so as to make it apply also in this case: what should, then, be
explained would be how we could be entitled by default to the belief that a
mathematical fact obtains, rather than to the belief that it is appropriate, or
perhaps only legitimate, to admit a certain axiom or liminal assumption. After
all, under this construal, as Field himself notes, the relevant entitlement by
default reduces to the mere circumstance that “we regard it as legitimate to have
these beliefs […] [and to have] no other commitments that entail that we should
not so regard them” (see endnote 8, again).

15. Burgess and Rosen consider indeed that the last formulation quoted above “is in
fact Benacerraf’s (writing with Putnam in Benacerraf and Putnam 1983:
Introduction, Sect. 9)”. What they allude to is possibly the following passage of
Benacerraf and Putnam’s introduction, where a similar question is raised:

But why should the simplest and more conservative system (or rather, the system that best
balances simplicity and conservatism, by our lights) [that is, the theory we prefer and adopt]
have any tendency to be true? […] It is hard enough to believe that the natural word is so
nicely arranged that what is simplest, etc. by our lights is always the same as what is true
(or, at least, generally the same as what is true); why should one believe that the universe of
sets […] is so nicely arranged that there is a preestablished harmony between our feelings
of simplicity, etc., and truth?

Benacerraf and Putnam (1983: 35)
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This is even closer to an alternative way of posing the challenge that Burgess
and Rosen also suggest:

[…] there is a connection which has not been explained. It is the connection between set
theory’s being something that creatures with intellectual capacities and histories like ours
might, given favourable conditions for the exercise of their capacities, come to believe, and
set theory’s being something that is true.

Burgess and Rosen (1997: 47).

16. I’m not sure whether Holland means something like this when he retorts to
Burgess and Rosen’s understanding of the challenge that this “is not a demand
for an external justification of science; rather, it is a demand for the justification
of the scientific character of belief formation about abstract mathematical
entities” (Holland 1999: 239; see also Linnebo 2006: 552).

17. Notice that this question cannot be appropriately answered by what Linnebo
calls ‘internal explanation’, i.e. by an explanation according to which “math-
ematicians’ tendency to accept as axioms only true sentences is adequately
explained by pointing out that the historical process that led to the acceptance
of these axioms is a justifiable one according to the standards of justification
implicit in the mathematical and scientific community” (Linnebo 2006: 561).
Possibly, Linnebo is right in claiming that this explanation is “undefeated”, if it
is intended to respond to Field’s challenge (see Linnebo op. cit.: 563). But it
simply does not address my version of the challenge, since what I’m requiring
in way of an explanation is just how it can happen that the justifications issued
by this historical process (that is, the arguments selected through it, in support
of mathematical axioms and other liminal assumptions of mathematical theo-
ries, and the proofs within these theories) turn out to be the justifications that
some appropriate mathematical facts obtain. An internal explanation in
Linnebo’s sense no more answers Field’s version of the challenge, at least
insofar as this is understood as a demand for an explanation of how it happened
that this historical process lead mathematicians to (justifiably) have a mathe-
matical (theory-tied) belief that p in case the fact that p obtains. Things go
possibly differently with Linnebo’s “external explanation”, i.e. with an expla-
nation of “what makes it the case that the process is reliable”, i.e. of “why […]
[mathematicians’] methods are conducive to finding out whether […] [mathe-
maticians’] claims are true” (Linnebo loc. cit.). According to Linnebo, in the
case of perceptual knowledge, such an explanation should explain the corre-
lation between claims “about physical objects outside of people’s sensory
surfaces” and methods used “for deciding whether to accept such claims”,
relying on “the verdicts of […] [people’s] senses” (Linnebo op. cit.: 564). This
might suggest that what Linnebo is requiring here is just an explanation of the
correlation between mathematicians’ justifications and mathematicians’ claims
or, possibly, their (theory-tied) beliefs (Linnebo op. cit.: 569). If this is so,
Linnebo comes here very close to my version of the challenge, though he
suggests, then, a way to meet it that is quite different from what I shall suggest
later on.
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18. We can make this clear by pointing out the difference between the setting which
underlies this challenge and the setting which underlies a counter-example à la
Gettier to the tripartite conception of knowledge. One could argue that no such
counter-example is available for mathematical knowledge but, if one were
possible, it should go as follows. (An alleged counter-example for the case of
logical knowledge has been suggested in Besson 2009: 2–4). Suppose that
someone—Archy—reads the following sentence in a textbook on number
theory: “a prime number is a natural number having no divisor other than 1 and
itself.” Suppose also that the textbook doesn’t offer a definition of natural
numbers, taking for granted that these are the well-known numbers 0, 1, 2, etc.,
and that the definition occurs at page 2, while at page 3, a perfectly usual and
universally acceptable definition of the order relation SMALLER OR EQUAL TO on
natural numbers is offered. Suppose furthermore that Archy, after having read
this (and before coming upon the definition of the strict-order relation SMALLER

THAN offered on page 4 and, then, before understanding the difference between
an order and a strict-order relation), draws from what he has learned until then,
through a simple and perfectly correct deduction, that 1 is a prime number and,
then, that there is a prime number smaller or equal to 2. Although there is
indeed such a prime number, one shouldn’t admit that Archy knows this. One
could argue that this is not a suitable counter-example à la Gettier by observing
that the source of Archy’s justification, namely the definition of the textbook, is
not an admissible source of mathematical justification. Whether or not this
criticism is legitimate, what is relevant here is not whether the counter-example
is well-taken, but rather that the setting which underlies it is different from that
which underlies the challenge that, in my view, Benacerraf’s dilemma
addresses to a platonist. In the former, it may not be doubted that the relevant
justification is indeed a justification of what the relevant belief is taken to be a
belief of. This is simply taken for granted. What is questioned is whether the
relevant justification is suitable for turning the relevant true belief into a gen-
uine piece of knowledge. In the latter, things just go the other way around.
There is no question whether the relevant justification is suitable for turning the
relevant true belief into a genuine piece of knowledge. As a matter of fact, the
question doesn’t even arise since one doesn’t appeal to the notions of truth and
knowledge. What is questioned here is whether this justification is a justifica-
tion of what a platonist takes the relevant belief to be a belief of.

19. Note that such a belief is different from the belief that ‘p’ follows from the
axioms of the relevant theory, or that it is a theorem of this theory: while this
latter belief is a mathematical one (and is even, according to the granted
reduction, a prototypical mathematical theory-tied belief), the former is not.
The latter depends indeed on the intra-theoretical notion of following from or of
being a theorem, while the former is independent of any such intra-theoretical
notions and is justified by an empirical examination of a system of appropriate
inscription-tokens (together with the admission that such an examination
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suffices to justify a belief about the corresponding inscriptions-types).
Moreover, the latter contributes to the justification of the former (the converse
doesn’t hold), and this is precisely the reason why the two beliefs are connected
and why a combinatorialist cannot avoid accounting for the way in which the
analyses that reveal their respective contents are related.

20. I say ‘actual facts’ to make it clear that thesis (i) is not compatible with the view
that the facts mathematics is concerned with never obtain, since the objects that
these facts are about do not exist (a view suggested by Field’s arguments in
Field 1980 and Field 1982).

21. Note that the negation of (ii), namely the thesis that mathematical objects (if
any) are mind- and/or language-dependent, entails (iii), as well as, of course
(the subjacent logic, here, being classic), the negation of (iii), namely the thesis
that mathematical objects (if any) are concrete, entails (ii), since the idea of
concrete mind- and/or language-dependent objects appears inconceivable.
Conversely (ii) and the negation of (iii) are, of course, perfectly compatible.

22. See endnote 20.
23. See endnote 21.
24. Ante rem structuralism could be taken as the view that mathematical facts are

facts about structures, which are, as such, independent of specific theories, or
are at least brought about by different theories. For example, according to ante
rem structuralism, the facts that 5 + 7 = 12 and that every natural number has a
single successor could be taken to be facts concerning the structure of a pro-
gression, this structure being brought about by any appropriate version of
arithmetic. Under this reading, these facts would not be universal facts about
versions of arithmetic, but singular facts about a particular structure. A problem
with this view is that it either (i) requires that only categorical theories, which
all have the same model (under isomorphism), are appropriate rendering of a
certain branch of mathematics (for example that only PA2, or other categorical
theories having the same model as PA2 are appropriate versions of arithmetic),
which is quite implausible, or (ii) depends on a notion of a structure (and on an
identity condition for structures) allowing one to admit that different theories,
having different models (under isomorphism)—for example PA2, ACA0, RCA0,
and FA (provided we only consider the case of arithmetic)—bring about the
same structure, which is not what ante rem structuralism in Shapiro’s and
Resnik’s versions admits. If, despite this and the difficulty it raises, this second
route were taken, it would also be necessary to explain how proofs within a
particular theory, among those that bring about the same structure, or arguments
related to it, can justify that facts about this very structure obtain, or to provide
a general theory of these theories (which certainly couldn’t be a general theory
of structures), in which justifications for obtaining these facts can be offered.
The difficulties in solving these problems set aside (as well as other well-known
ones connected to ante rem structuralism), it also remains that any possible
plausible solution would presumably be, once more, quite unfaithful to our
customary and natural conceptions about what counts as a justification of
mathematical theory-tied beliefs.
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25. One could even imagine that, in some special contexts, the content of these
beliefs be entirely theory-laden, i.e. that what one is believing when believing
that 5 + 7 = 12 and that every natural number has a single successor be just that
some proof-theoretic facts obtain. To my mind, the point, then, isn’t to discover
or reveal what the real content of these beliefs is, but simply to make it clear
that there is room for accounting for the possibility that this content be inde-
pendent of a particular theory, while maintaining that these beliefs are justified
by means of the usual arguments advanced in mathematical practice, which do
depend on particular theories. One should also avoid to mistake, e.g., the belief
that 5 + 7 = 12 when entertained by a professional mathematician or a mindful
user of mathematics—which is indeed about the natural numbers 5, 7, and 12—
for the widespread belief that 5 + 7 = 12 when entertained by mathematically
uneducated subjects possibly concerned with other objects, such as the
numerals ‘5’, ‘7’ and ‘12’ involved in our usual decimal numeral system, or
with the countable collections to which these numerals are assigned. It seems
clear to me that accounting for this latter belief and its justification is not a task
for the philosophy of mathematics proper, but rather a task for some branch of
sociology or socio-linguistics. Whatever a philosopher of mathematics might
argue for, concerning the belief that 5 + 7 = 12, should indeed be also appli-
cable, mutatis mutandis, to other mathematical (or at least arithmetical) beliefs
that have no correlate among the widespread beliefs entertained by mathe-
matically uneducated subjects. After all, what philosophy of mathematics is
concerned with is mathematics, not the various ways in which mathematical
vocabulary is more or less consciously used in everyday life.
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Chapter 5
A Dilemma for Benacerraf’s Dilemma?

Andrea Sereni

5.1 Fact of the Matter or Matter of Temperament?

A major part of the debate in the philosophy of mathematics of the last forty years
has been dominated by attempts at escaping the dilemma Paul Benacerraf suggested
in “Mathematical Truth” (Benacerraf 1973). Most attempts have come from
mathematical platonists of different varieties, since the dilemma has been perceived
to raise a particularly serious epistemological challenge to platonism. Even when
some of the assumptions on which Benacerraf relied are discarded, revised versions
of the original challenge are thoroughly discussed.1 Many have offered head-on
responses to the dilemma from various directions, but some have questioned in
more recent times that any significant, or indeed coherent, epistemological chal-
lenge may be recovered from Benacerraf’s original dilemma or by its heirs.2

My aim here is to offer stronger evidence in support of this last strand of
reactions by arguing that there is something in the very general structure of
Benacerraf-style dilemmas and corresponding challenges to platonism that makes
them in some important sense self-defeating.

Let me anticipate the basic idea and outline the discussion that follows. One
strategy for reacting to the challenge raised by Benacerraf-style dilemmas is to offer
a direct response from a platonist standpoint. Under this category fall all those
views that Bob Hale and Crispin Wright classify as “conservative,” i.e. those which
maintain “that pure mathematics is correctly construed at syntactic face value and
that, so construed, it represents, at least for the greater part, a body of a priori
knowledge” (Hale and Wright 2002: 103). Another strategy is to answer the
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challenge by dropping the ontological assumptions on which it is based. All
nominalistic interpretations of mathematics fall in this category.3 A third strategy is
to observe with Burgess and Rosen (1997: 35–60) that most of the arguments
available to the anti-platonist in support of the challenge are going to take the form
of burden-of-proof arguments and lead to a stalemate between opponents.

Following this last strategy, one might eventually wonder—as suggested in
Wagner (1996: 74) whether there is any fact of the matter underlying the question
of the existence of abstract mathematical objects, as Peter Strawson had already
suggested about a parallel dispute on universals—or whether there is any “vantage
point, […] either in the natural world […] or out of it” from where the dispute can
be settled, so that any decision will be a matter of “temperament” or “persuasions”
(Strawson 1979: 10).

While steering clear of Strawson’s temperamental conclusion, I will undertake a
similar strategy by suggesting that it is in the very structure of this family of
challenges to either (i) be prejudicial against their opponent, i.e. to preclude the
possibility of any reply—so that, in Strawson’s words, “any location of our
judgement seat would be a prejudgement of the issue” (Strawson 1979)—, or else
(ii) to fail to constitute any substantial threat, i.e. any novel challenge with respect to
previously known and obvious ones. An excursus through epistemology will pro-
vide evidence that the structure of Benacerraf-style arguments and challenges
prevents finding a middle position, where the challenge is both substantial and not
prejudicial.

In order to show this, I will suggest that the epistemic notions in Benacerraf’s
original challenge (Sect. 5.2) and the weaker notions later employed (Sect. 5.3)—
the former focusing on causal theories of knowledge, the latter on reliabilist theories
of justification—both make the argument prejudicial almost to the point of being
question-begging against the platonist. I will then suggest (Sect. 5.4) that
employing weaker notions merely makes the challenge unchallenging to the pla-
tonist (Sect. 5.4). Finally, I will advance a more explicit formulation of the
envisaged shortcoming of Benacerraf-style dilemmas, in the form of a (meta-)
dilemma that these dilemmas have to confront (Sect. 5.5).

5.2 The Original Dilemma and Challenge

5.2.1 Knowing the Beasts

For ease of exposition, let me express a Benacerraf-style dilemma in an enthy-
mematic form, as consisting of two claims: a conjunctive clause, stating that two
independent requests should be satisfied together, and a dilemmatic clause, stating

94 A. Sereni



that the satisfaction of either request entails that the other is unsatisfiable. It is the
first conjunctive clause that will be of interest here.

Benacerraf’s dilemma can be expressed in different ways and with different
degrees of generality. One very general formulation is suggested by Benacerraf
when he claims that:

[. . .] the concept of mathematical truth, as explicated, must fit into an over-all account of
knowledge in a way that makes it intelligible how we have the mathematical knowledge
that we have. An acceptable semantics for mathematics must fit into an acceptable
epistemology.

Benacerraf (1973: 667)

However, the “as explicated” clause suggests that a more precise version of the
dilemma may be offered, where assumptions on both the semantic and the episte-
mological horns are made explicit. Since generality of formulation will play some
role in what follows, let me start with a more stringent formulation:

[BD1]

(a) A referential (i.e. Tarskian) account of mathematical truth must be compatible
with a causal account of mathematical knowledge.

(b) However, the former excludes the latter, and conversely.

I will keep the semantic horn fixed and consider only variations on the episte-
mological horn. Thus, from now on, by “mathematical knowledge” I will mean
“knowledge of mathematical statements under a platonistic (i.e. referential)
semantic interpretation.”

Clearly, “platonistic” and “referential” are not by themselves synonyms.
Mathematical terms could refer to empirical objects. But I will be considering
challenges to what Benacerraf calls “the standard view,” i.e. the (maybe merely
hypothetical) version of platonism according to which mathematical objects are
acausal, aspatial, atemporal, and mind-independent. So I will not consider views
such as Penelope Maddy’s early physicalist platonism.4

Causal constraints are distinctive of our knowledge of empirical objects (and of
truths about them), and have traditionally been central to naturalistic views in
different areas of philosophy. Thus the challenge to the platonist that may be
extracted from BD1 is how, if mathematical objects are “the kinds of entities they are
normally taken to be” (Benacerraf 1973: 673), we could ever have “natural
knowledge” of them, as Hart puts it (Hart, 1977: 126). In Benacerraf and Putnam’s
more vivid terms, “[we] need some account of how we can have knowledge of these
beasties, some account of our cognitive relationship to them” (Benacerraf and
Putnam [1964] 1983: 31).

Assuming for the time being an intuitive understanding of what a causal theory
of knowledge (henceforth CTK) is, the challenge to the platonist can thus be
expressed as follows:
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[BC1]

(i) A referential semantics entails the existence of mathematical objects as
referents of numerical terms (and values of variables) in true mathematical
statements.

(ii) CTK is (unrestrictedly) true.
(iii) CTK requires a causal knowledge of the mathematical objects and facts that

make mathematical statements true.5

(iv) Mathematical objects and facts cannot stand in causal connections with
anything, and thus, a fortiori, with human subjects.

(v) Therefore, a referential semantics for mathematical discourse makes
knowledge of mathematical truths impossible.

There are at least three hidden assumptions here:

[Abstractness] Mathematical objects are abstract (i.e. acausal, non-spatial,
atemporal, mind-independent)

[Knowledge] We must account for mathematical knowledge.6

[UniformityCTK] CTK is the correct theory of knowledge for all areas of inquiry

Benacerraf makes a parallel uniformity requirement for the dilemma’s semantic
horn, asking for “an overall theory of truth,” valid across all areas of discourse, or,
equivalently, asking that “the semantical apparatus of mathematics be seen as part
and parcel of that of the natural language in which it is done” (Benacerraf 1973:
666). This has been questioned in various ways, but it is not relevant for present
purposes: we are only concerned here with the uniformity requirement for the
selected theory of knowledge.7

5.2.2 Causal Knowledge and Abstract Objects

A proper assessment of the strength of BD1 and BC1 requires that the details of the
causal theory of knowledge be made explicit. For a working definition of CTK, we
may take either Benacerraf’s own:

[CTKB]

I favor a causal account of knowledge on which for X to know that S is true requires some
causal relation to obtain between X and the referents of the names, predicates, and quan-
tifiers of S.

Benacerraf (1973: 671)
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or Alvin Goldman’s well-known definition, to which Benacerraf himself refers:

[CTKG]

S knows that p if and only if the fact that p is causally connected in an “appropriate” way
with S’s believing p.

Goldman (1967: 369)

Appropriate causal connections are sustained by processes including perception,
memory, causal chains in which inferences participate but which originate either in
perception or in memory, and combinations of these. Notice that CTK is a local
theory: it establishes whether S’s belief that p counts as knowledge by reference to
the particular causal connection between S and the fact that p. We will see that this
marks a difference with (some) reliabilist theories of justification.

5.2.2.1 Incompatibility of CTK and Platonism

Many are likely to agree with Øystein Linnebo that “it is natural to protest that
Benacerraf’s considerations are biased against mathematics at the very outset”
(Linnebo 2006: 546). But one might want to argue for more, namely that CTK makes
platonism a non-starter, that it immediately rules out platonism as an incoherent
position which posits unknowable objects and unknowable truths: BC1 may then be
seen as prejudicial against the platonist. In order to show this, one needs to argue
for the following claim:

[IncompatibilityC] CTK entails that platonism is false.

This is the natural reading of the following passage by Benacerraf:

If, for example, numbers are the kind of entities they are normally taken to be, then the
connection between the truth conditions for the statements of number theory and any
relevant events connected with the people who are supposed to have mathematical
knowledge cannot be made out [emphasis mine].

Benacerraf (1973: 673)

Once this is motivated and accepted, one may eventually argue that since
[IncompatibilityC] is, if not immediately evident, at least almost so, the following
holds:

[PrejudicialityC] Assuming CTK in BC1 makes the latter prejudicial (if not
question-begging) against the platonist.

Notice that [IncompatibilityC] rests on the following claim:

[Causality] Causal constraints on knowledge or justification rule out direct
knowledge of acausal objects, knowledge of truths about acausal
objects, and justification of truths about acausal objects.
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Now, in order to argue for PrejudicialityC one also needs to argue for:

[Hasty Generalization] Even though causal constraints in accounts of knowledge
or justification are adequate for empirical knowledge, the
extension of the corresponding accounts to the domain of
non-empirical knowledge is the outcome of an unjustifi-
able generalization.

I will assume Hasty Generalization to be true. There seems to be in principle no
reason for extending a model of knowledge that has proved appropriate in one area
of inquiry (e.g. sensory experience), however crucial to our entire body of
knowledge, to other areas whose characteristic facts are presumably radically dif-
ferent (unless that model is so general and schematic as to allow for significantly
diverse specifications in different domains).

Let me now briefly offer evidence in favor of [IncompatibilityC], [PrejudicialityC]
and the part of [Causality] concerned with knowledge. (I shall consider the part of
[Causality] concerned with justification in the following section.)

5.2.2.2 Reactions to CTK

Different reactions to the appeal to CTK in BC1 are possible on the platonist side. The
platonist might attack premise (ii) and claim that:

(a) CTK is not valid across all areas of inquiry. At the very least, we lack sufficient
reasons for believing that it is.

Burgess and Rosen have convincingly argued that any attempt to claim the contrary
is bound to end up in a stalemate (Burgess and Rosen 1997: 35–60).8 Be that as it
may not be, [Hasty generalization] might be used in justifying (a), although it may
not sufficient.9 In any event, accepting (a) stands clearly in no contrast with either
[IncompatibilityC] or [PrejudicialityC]. Premise (ii)—in case no other premise is
questioned—precludes mathematical knowledge.

Alternatively, the platonist might also want to claim that:

(b) CTK does not necessarily require a causal knowledge of mathematical objects
and facts that make mathematical statements true.

Following a similar line of thought, Hale (1987: Chap. 4) suggests that two dif-
ferent forms of CTK should be distinguished. There is a strong CTK (CTKS) which is
incompatible with platonism and is by itself untenable. CTKS allows Hale to reject
premise (iii). There is a weak CTK (CTKW) which is compatible with platonism insofar
as it does not require a direct causal connection between mathematical facts and
corresponding beliefs. Hale suggests that CTKW is better treated as a theory of
justification than as a theory of knowledge, and I will discuss it as such below. On
the other hand, the fact that CTKS is incompatible with platonism is clearly no
obstacle to either [IncompatibilityC] or [PrejudicialityC].

10
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Alternatively, the platonist might want to reject (iv) by claiming that:

(c) it is possible, or at least conceivable, that mathematical objects and facts stand
in causal connection with human subjects.

Whether possibility or conceivability is at stake will depend on the reading of “can”
in premise (iv). Benjamin Callard has suggested that Benacerraf should be inter-
preted as claiming that the required causal connections are unconceivable. He then
argues that, even on the assumption of CTK, it is not “unintelligible how we can have
mathematical knowledge whatsoever” (Callard 2007, quoting from Benacerraf
1973: 662). This would tell against (iii), [IncompatibilityC] and [PrejudicialityC]
and would be the beginning of an answer to BC1. So let us briefly consider his
arguments.

5.2.2.3 Is Platonism Conceivable?

Callard argues that there is nothing unintelligible in there being efficient causation
from abstract objects to our brain and mental states. Two features of causation seem
to rule this out: the requirement of contiguity relations between causes and effects,
and the idea of reciprocal action between objects in the form of energy transfer.
Abstract objects are allegedly both non-located and unchanging, and this seems
respectively incompatible with both of these features. But Callard argues that:

Efficient causal relations unsupported by contiguity relations are perfectly intelligible and
(therefore) apparently possible, even if they are not actual,

and that

[…] [t]here is no contradiction, or any other conceptual or metaphysical difficulty, in
accepting the claim that abstract objects impart energy to us, and thereby change us,
without themselves receiving any energy or suffering any change

to conclude that:

[…] contiguity relations and reciprocal action are contingent features of efficient causation;
so their strong impossibility in the case of abstract objects cannot support the claim that
efficient causal relations with abstract objects are strongly impossible.

Callard (2007: 350, 351, 352)

Jody Azzouni raised two objections to Callard’s proposal. They are based on the
following assumption:

Some explanation of how it is possible for the different effects that different [p]latonic
objects have on different objects in space and time is— in principle (a priori, if you will)—
required if we are to claim that [p]latonic objects can have causal effects.

Azzouni (2008: 398)

But the difference between, say, 13 causing me to think of it, and 13 causing a
perfect duplicate of myself to think of it some minutes later, seems to be localizable
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only in spatio-temporal differences between me and my duplicate, since “temporally
and spatially, 13 has the same relationship to both of us” (Azzouni 2008). So we
need to postulate what Azzouni calls “brute ‘abstracta sensitivity relations’”
(Azzouni 2008: 399) and this postulation seems unjustified. If this is correct,
Callard has not shown that causal relation with abstract objects is intelligible.

I agree with Azzouni’s objections, but I think they concede yet too much to the
opponent. Let us grant that “contiguity relations and reciprocal action are contin-
gent features of efficient causation.” Callard does not say which essential and
intrinsic features causation is supposed to have, over and above these contingent
ones. Without this explanation, Callard’s claim seems to reduce to the claim that
there is some sort of relation, call it causation*, that could hold between physical
objects, e.g. human brains, and abstract objects such that:

(i) causation* is a relation connecting human subjects and abstract objects in a
knowledge-supporting way (i.e. it can occur as a replacement of causation in
standard definitions of knowledge),

(ii) causation* is a direct form of acquaintance with abstract objects.

This makes knowledge by causation* dangerously close to knowledge by
mathematical intuition. But it is not just because it satisfies (i) and (ii) that intuition
can be said to be causal in character. The problem here is not merely that the proper
causal character of the notion is now missing, but that it is not clear why, in
connection with non-abstract objects, we should ever have come to use a notion like
causation*, which is explained in terms of relations with abstract ones.

Suppose one nevertheless finds an answer to this problem. It still isn’t clear what
notion of causation we are left with. What is a necessary condition for causation? I
see only one possible reply.11 Callard often speaks of objects “affecting us,” or
“effecting changes on us.” He could then reply that the essential feature of causation
is that for a to stand in a causal relation with b is for a to effect changes in b. But
this seems to be inadequate: we still lack an explanation of what “effecting chan-
ges” means (on top of Azzouni’s remark that we miss an explanation of how
different effects might be caused). We may of course know what it means for us to
undergo changes when we form beliefs, e.g. the belief that 17 is a prime number, by
describing the change in our cognitive and, arguably, neuro-biological states. But
we still lack any explanation of how 17 could ever effect this change in us.12 Unless
this explanation is provided, we have not been shown that it is conceivable,
let alone possible, that abstract objects effect changes on us.

So Callard seems to leave us either with what looks like an utterly impoverished
notion of causation, or with no explanation of causation at all. Even if “contiguity
relations and reciprocal action are contingent features of efficient causation,” this is
a far cry from claiming that we have been shown that causal relations with inert
abstract objects are conceivable.
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5.2.3 Conclusions to Section 5.2

From the previous section it follows that, if one assumes CTK in BC1 (i.e. premise
(ii)), premise (iv) will follow, since by the very definition of causation no abstract
object can stand in causal connections with a human subject (and, a fortiori, in
knowledge-conferring causal connections with a human subject). Premise
(iii) seems uncontroversial, though we have left some provisos for later.

We have not been shown, therefore, that CTK is in any clear sense compatible with
platonism. Assuming CTK precludes a knowledge of abstract objects, and makes BC1

prejudicial, up to the point of being question-begging, against the platonist.

5.3 The Revised Dilemma and Challenge

5.3.1 The Challenge Revisited

One may argue, even if one accepts the conclusions of Sect. 5.2, that Benacerraf
was pointing to a more general challenge to platonism, one that would stand even
when notions weaker than causation are involved, and then offer revised versions of
BC1 accordingly. The best-known revised form of BC1 is due to Hartry Field.

Field stresses that “Benacerraf’s formulation of the challenge relied on a causal
theory of knowledge which almost no one believes anymore,” but also that “he was
on to a much deeper difficulty for platonism” (Field 1989: 25). He adds that
Benacerraf’s challenge may be stated in such a way that it “does not depend on any
assumption about necessary and sufficient conditions for knowledge,” showing that
it “depends on the idea that we should view with suspicion any claim to know facts
about a certain domain if we believe it impossible in principle to explain the
reliability of our beliefs about that domain [emphasis mine]” (Field 1989: 233).
Field’s epistemological argument is not meant to prove that platonism is false, but is
intended to “raise the costs” of giving a platonist interpretation of mathematics. His
revised challenge can be reconstructed as follows:

[RBC1]

(i) [Initial Plausibility] We are (initially) justified in believing in the existence of
mathematical objects as being those (abstract) objects our mathematical
statements are about.

(ii) [Reliability Claim] Mathematicians’ mathematical beliefs are reliable.
(iii) [Explanation] The platonist must explain the [Reliability Claim].
(iv) [ImpossibilityR] It is not possible for the platonist to explain the [Reliability

Claim].
(v) [Defeat] [ImpossibilityR] defeats [Initial Plausibility].

Presumably, the platonist will accept (i). Field grants that plausibility can derive
from indispensability considerations (and even from evolutionary considerations).
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Platonists will also likely accept (ii), assuming that expert mathematicians tend,
most of the time (read: for most ps), to have true mathematical beliefs: they will
believe that “the mechanisms” underlying the formation of our beliefs about
mathematical objects can “so well reflect” the facts about them (see Field 1989: 26).
Premise (iii) amounts to the quite acceptable claim that “special ‘reliability rela-
tions’ between the mathematical realm and the belief states of mathematicians”
should not be accepted as ‘brute facts’” (Field 1989: 26–27).

The challenge, for the platonist, is to offer the explanation required in (iii) and
Field’s allegation is expressed by [ImpossibilityR], which undermines initial plau-
sibility for platonism.13

Notice that an alternative version of [Reliability Claim] would read the claim that
mathematicians’s mathematical beliefs are reliable as the claim that if mathemati-
cians accept p as an axiom, then p. This is so because we have a plausible and easy
explanation of the reliability of our beliefs about theorems: they are reliable because
theorems are obtained by proofs from accepted and consistent axioms.14 Thus the
thesis which calls for an explanation may be restricted to our beliefs in axioms.
Field’s RBC1 is meant to be superior and stronger than BD1 despite the alleged
similarity in structure,15 insofar as it “can be put without use of the term of art
“knows,” and also without talk of truth [. . .]” (Field [1988] 1989: 230). As we have
seen above, it is also meant to be more innocent and neutral on matters semantic
and epistemological. More or less explicitly, Field suggests the following claims:

(a) RBC1 need not assume any “heavy-duty” notion of truth over and above a
disquotational one, and may even be formulated without talk of truth at all,

(b) RBC1 makes no use of the terms “know,” “knowledge” and their cognates,
(c) RBC1 doesn’t appeal to any particular epistemological theory,
(d) RBC1 does not appeal to any epistemic notion,
(e) RBC1 doesn’t concern the justification of mathematical beliefs but only the

explanation of their reliability.

There are, however, several reasons for being skeptical about Field’s declara-
tions of neutrality. Let us consider these in turn.

Point (a) is the least controversial; it isn’t however of present interest. Point
(b) seems to mark a genuine difference between BC1 and RBC1. No appeal to any
particular theory of knowledge seems required by RBC1. Points (c), (d) and (e) are
more controversial and indeed relevant: if they are correct and the platonist is not
able to meet the challenge, platonism will have been proven untenable on quite
minimal grounds, and the challenge will turn out to be both substantial and not
prejudicial. But they can be questioned.

First of all, they can be questioned on sociological grounds. Point (c) is striking
indeed: to the extent that causal theories of knowledge are representative of the
anti-rationalist, empiricist and naturalist philosophical trends that were pervasive
when Benacerraf first proposed his dilemma, reliabilist theories of justification were
also representative of the very same trends at the time Field was reformulating it. In
both cases, Goldman’s work has a major relevance. CTK was first fully expounded in
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Goldman (1967), whereas the reliabilist theory of justification (henceforth RTJ) was
first presented in Goldman (1979). Any reader familiar with the epistemological
debate of those years might have been expected to associate Field’s mention of
reliability with Goldman’s views and thus to take the fact that RBC1 appeals indeed
to a particular epistemological theory as evidence against (c), and to then take as
evidence against (d) the fact that, as a consequence, RBC1 appeals to distinctively
epistemic notions, if not explicitly—if reliability itself is not considered an epis-
temic property—at least surreptitiously, when the use of “reliability” is taken as
pointing to reliably formed, i.e. justified beliefs. Sociological arguments, however,
would at best point to a possible (voluntary or accidental) underestimation of the
epistemological debt of the relevant notions in Field’s own exposition.

Field suggests that RBC1 is only concerned with the explanation of reliability, and
not with justification, which he takes to be distinct from the former:

Claims of initial plausibility are of some help to the platonist […] in answering questions
about the justification of particular mathematical beliefs […]. But to give them a justifi-
catory role does nothing to explain the reliability of this class of judgements.

Field (1989: 28)

However, as Burgess and Rosen have noticed, the gist of the challenge seems
straightforwardly to be that if reliability is not explained, then our mathematical
beliefs will turn out to be unjustified, contrary to initial plausibility considerations:

Though Field maintains that his challenge is “not to our ability to justify our mathematical
beliefs,” and though he does not explicitly rely on any causal theory of justification, the
implicit suggestion in [Explanation] can hardly be anything but this, that if the reliability
thesis cannot be explained, then continued belief in claims about mathematicalia is
unjustified.16

Burgess and Rosen (1997: 42)

This goes against (e).
True, as David Liggins has pointed out in a discussion of related issues, we

should distinguish between explaining how our beliefs come to be reliable and
explaining how our beliefs come to be justified. For even once we have the former,
we need something more to have the latter: we need to “add the assertion that being
reliably formed suffices for justification” (Liggins 2006: 139n4). One could appeal
to this distinction to defend Field on point (e): RBC1 only requires explaining reli-
ability, not justification.

But if this is so, then it is not clear that RBC1 encodes any sensible challenge to
the platonist—not because it asks for too much, but because, on the contrary, it asks
for too little. On one interpretation of reliability according to which reliability is the
property of a process of producing true beliefs most of the time, based on actual
past occurrences (see Sect. 5.3.1.2), there will be no possibility of distinguishing
between the reliability of mathematical methods and the alleged reliability of some
unreliable procedure hitting on true mathematical beliefs most of the time (like that
adopted by Linnebo’s (2006) Lucky Fool, who forms mostly true mathematical
beliefs just by tossing a coin).17 If, on the other hand, explaining reliability involves
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explaining what it is for a method or process to make it probable that, even in future
and counterfactual instances, it will produce mostly true beliefs, then it is not clear
that there is any substantial distinction left between a belief being formed by a
reliable process and a belief being justified. The point is rather that, independently
of whether one explains reliability in causal or non-causal terms, forming beliefs by
a process such that we can tell which features of the process will make these beliefs
mostly true in actual and non actual situations seems ipso facto equivalent to being
justified in our holding these beliefs.18

To sum up, if RBC1 merely asks for an explanation of reliability as unrelated to
justification, it will be immaterial to the relevant debate: meeting that challenge,
easy or hard as it may be, will not provide any epistemic defence of platonism.
Point (e) seems preposterous: a minimal condition for RBC1 to pose a significant
challenge is that an explanation of reliability contribute to an explanation of jus-
tifiedness. This also tells against (d). RBC1 should better be understood as asking not
merely for an explanation that mathematicians’ beliefs are reliable, but rather an
explanation why they are reliable and thereby justified.

5.3.1.1 Field, Reliability, and Causation

Let us grant, then, that Field is appealing to some epistemically relevant notion of
reliability. The question is: how should reliability be explained? If reliability is to be
explained in causal terms, it would again make RBC1 prejudicial against the pla-
tonist. Is Field assuming that a proper explanation of reliability should be given in
causal terms? Here is what Field says (bracketed letters are for ease of reference):

[A] We need an explanation of how it can have come about that mathematicians’ belief
states and utterances so well reflect the mathematical facts. But there seems prima facie to
be a difficulty in principle in explaining the regularity. [B] The problem arises in part from
the fact that mathematical entities, as the platonist conceives them, do not causally interact
with mathematicians, or indeed with anything else. This means that we cannot explain the
mathematicians’ beliefs and utterances on the basis of the mathematical facts being causally
involved in the production of those beliefs and utterances; or on the basis of the beliefs and
utterances causally producing the mathematical facts; or on the basis of some common
cause producing both. [C] Perhaps then some sort of non-causal explanation of the cor-
relation is possible? Perhaps; but it is very hard to see what this supposed non-causal
explanation could be. Recall that on the usual platonist picture, mathematical objects are
supposed to be mind- and language-independent; they are supposed to bear no
spatio-temporal relations to anything, etc. The problem is that the claims that the platonist
makes about mathematical objects appear to rule out any reasonable strategy for explaining
the systematic correlation in question.

Field [1988] (1989: 230–231)

This is how Field argues for [ImpossibilityR]. Divers and Miller read this passage as
the conjunction of the two following claims (see Divers and Miller 1999: 278–279):
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(a) Any causal explanation of reliability is incompatible with the acausality of
mathematical objects.

(b) Any non-causal explanation of reliability is incompatible with the
mind-independence of mathematical objects.

(b) is a questionable reading of Field’s words. First of all, it isn’t clear that
mind-independence alone is incompatible with non-causal explanations of relia-
bility. In [C], the failure of spatio-temporal location is put on a par with
mind-independence19; both, together with other features (“etc.”), are said to pre-
clude non-causal explanations of reliability. Field’s dilemma seems better expressed
as follows: (platonistic) mathematical objects are characterized by a bunch of fea-
tures (acausality, aspatiality, atemporality, mind-independence); among these, (a*)
acausality precludes causal explanations of reliability; and (b*) the remaining ones
preclude non-causal explanations of reliability.

While there is a clear hint for a possible argument underlying (a*), no such hint
is available for (b*): nothing does, not even prima facie, rule out any explanation of
reliability just because the entities involved are atemporal, aspatial, and
mind-independent (think of Fregean or neo-Fregean epistemologies, or of a
believer’s religious beliefs, or perhaps of our beliefs concerning time). (b*) seems
merely to assume that no other sort of explanation could be hoped for; this is an
unmotivated expression of skepticism (and, to some extent, a variation on [Hasty
generalization]). Field was surely aware that (neo-logicists) candidates for
non-causal explanations of reliability were on the market.20 His discussion seems
then to suggest the underlying thought that the only plausible explanation of reli-
ability is causal in character.

On the other hand, claim (a) seems correct: causal explanations of reliability
does preclude the possibility of reliable beliefs about acausal objects. But this
should be now argued in more details than Field suggested, with the additional help
of some recent works on reliabilism.

5.3.1.2 Reliability in the Epistemological Debate

How do reliabilist theories fare with respect to the issue of platonism? Reliabilist
constraints on knowledge were initially suggested by Ramsey (1931) and later arose
as means of avoiding accidentality (see Unger 1968) or luck in the way a subject
S comes to have a true and justified belief that p, in response to Gettier cases.

A first version of reliabilism was offered as a theory of (non-inferential)
knowledge in Armstrong (1973): the so-called “reliable-indicator” theory (or
“thermometer-theory”). According to Armstrong, a subject S has a non-inferential
knowledge that p iff S is such that there is a law-like connection in nature such that
if p is true, then S believes that p.21 Subjects might under appropriate circumstances
be nomologically reliable indicators of the holding of certain facts, just like ther-
mometers are under appropriate circumstances nomologically reliable indicators of
external temperature being such-and-such.
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We need not enter here into the details of Armstrong’s theory, since asking for
some law-like connections holding in nature between mathematical facts or objects
and human beliefs seems to ban a platonist interpretation of mathematics from the
outset. Notice nevertheless that (i) Armstrong suggests a non-platonist interpreta-
tion of mathematics; (ii) Armstrong conceives of mathematical beliefs as general
beliefs (even when it comes to existential statements) and thinks this allows him to
conceive of all mathematical knowledge as inferential; (iii) as a consequence of (ii),
the definition just rehearsed is not meant by Armstrong to apply to mathematical
knowledge; (iv) despite Armstrong’s own views about mathematics, we are
assuming that inferential knowledge alone cannot suffice for a comprehensive
account of mathematical knowledge: we also need non-inferential mathematical
knowledge, and the definition above should then apply to it too.

The best developed form of reliabilism is due to Goldman. Goldman (1967)
originally introduced CTK by suggesting that the justification condition be dropped
from the JTB definition of knowledge and substituted with the condition that the fact
that p be causally connected in an “appropriate” way with S’s believing that p.

Unfortunately, CTK too fell prey to Gettier-style counterexamples, most notably
to the fake barns mental experiment.22 This led Goldman (1976) to Provide a
modified theory of knowledge that will be recalled later (cf. sect. 4.1.1 below). The
first suggestion for a reliabilist condition on knowledge was suggested in Goldman
(1975):

[…] the causal theory of knowing does not say that any causal connection between the fact
that p and S’s belief yields knowledge; the theory requires that the causal connection be an
“appropriate” one. But in order for a particular causal connection to be appropriate, it is
sufficient, I think, that it be an instance of a kind of process which generally leads to true
beliefs of the sort in question. […] [B]oth the chicken-sexer and the rain-predictor have
reliable techniques for forming beliefs about their respective subject matters, even though
neither has any idea what his technique is, and even though neither may know that his
technique is perfectly reliable.

Goldman (1975: 116)

Goldman made it clear in later works that the reliability constraint does not
require that the believer and the relevant fact be causally connected. Knowledge is
still explained in causal terms, by means of “causal mechanisms” that are “in an
appropriate sense” reliable:

Like an earlier theory I proposed, the envisaged theory would seek to explicate the concept
of knowledge by reference to the causal processes that produce (or sustain) belief. Unlike
the earlier theory, however, it would abandon the requirement that a knower’s belief that
p be causally connected with the fact, or state of affairs, that p.

Goldman (1976: 771)

Goldman also expands on which causal processes or mechanisms would count
as reliable:

What kinds of causal processes or mechanisms must be responsible for a belief if that belief
is to count as knowledge? They must be mechanisms that are, in an appropriate sense,
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“reliable.” Roughly, a cognitive mechanism or process is reliable if it not only produces
true beliefs in actual situations, but would produce true beliefs, or at least inhibit false
beliefs, in relevant counterfactual situations.

Goldman loc. cit.

Reliabilism is given a proper definition in Goldman (1979) as a way of under-
standing the notion of justification within the framework of CTK. In Goldman (1979: 1),
Goldman revises his earlier (1967) claim that justification should be dropped by means
of the JTB definition of knowledge, arguing that what has to be dropped is “Cartesian”
justification (the current time-slice capacity of giving accessible-to-the-subject reasons
in support of one’s own beliefs), whereas under RTJ, justification “is necessary for
knowing, and closely related to it.”

A standard reliabilist definition of justification is the following:

If S’s believing p at t results from a reliable cognitive process (or set of processes), then S’s
belief in p at t is justified.

Goldman (1979: 13)

Goldman defines his process-reliabilist account as “genetic,” since for a belief to
be justified is not something which concerns the doxastic state of S at t, but rather
the history of the formation of S’s belief that p. This account concerns global
reliability: it is not centered on the particular connection between the believer and
the particular belief that p, but rather on the overall (global) reliability of the process
by which p is formed. Reliability, according to Goldman (Goldman 1979: 11),
“consists in the tendency of a process to produce beliefs that are true rather than
false.” “Tendency” may be understood as either “actual long-run frequency” on past
records, or “propensity” on past and possible future occasions.23 Standard examples
of reliable processes are standard perceptual processes, memory, good reasoning,
introspection; standard examples of unreliable processes are confused reasoning,
wishful thinking, reliance on emotional attachment, mere hunch or guesswork and
hasty generalization.

5.3.1.3 Is Goldman’s Reliability Explained in Causal Terms?

Can we say that Goldman’s explanation of reliability makes no essential appeal to
causal relations? The simple answer to this question is: no. There is plenty of
evidence that reliability is conceived by Goldman in causal terms. For instance,
after having reviewed a number of classical definitions of justification—appealing
to infallibility, self-evidence, self-presentation, incorrigibility, etc.—, Goldman
explains why he found all them wanting as follows:

Notice that each of the foregoing attempts confers the status of “justified” on a belief
without restriction on why the belief is held, i.e., on what causally initiates the belief or
causally sustains it. […] I suggest that the absence of causal requirements accounts for the
failure of the foregoing principles.
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[…] [C]orrect principles of justified belief must be principles that make causal require-
ments, where “cause” is construed broadly to include sustainers as well as initiators of
belief […].

Goldman (1979: 8–9)

He claims later on:

The justificational status of a belief is a function of the process or processes that cause it,
where (as a first approximation) reliability consists in the tendency of a process to produce
beliefs that are true rather than false.

Goldman (1979: 10)

Goldman defines a process as a “functional operation or procedure, i.e.,
something that generates a mapping from certain states—‘inputs’—into other states
—‘outputs’” (Goldman 1979: 11). In the present case, outputs are states of
believing this or that proposition at a given moment. The question that concerns us
here is whether any such process could have inputs provided by abstract mathe-
matical objects or facts about them. Still, both then and now (see e.g. Goldman
2011: 9) Goldman is clear that reliable cognitive processes, even those in which
inference is involved, must constitute a “chain” that “must ultimately terminate in
reliable processes having only non-doxastic inputs, such as perceptual inputs
[emphasis mine].”

But how could we have non-doxastic inputs about abstract mathematical
objects? One possibility, of course, is that of postulating some special faculty of
mathematical intuition, allowing for some sort of quasi-perceptual contact with
mathematical objects. I will assume that the prospects for a full-fledged account of
such an alleged faculty are lame. In any case, it seems that non-doxastic inputs
amenable to enter into causal cognitive processes could only come from sources
capable of transmitting informations to us; and again, it is wholly unclear how
abstract objects could be supposed to do that.

In any case, cognitive processes in Goldman’s sense are supposed to have a
psychological plausibility that the alleged faculty of intuition lacks. Clearly, this is
not to say that there is no experimental evidence for the existence of dedicated
cognitive skills for numerical cognition. Simply, there is no direct evidence that
these skills are fit for the detection or description of abstract mathematical objects.

Others have already extensively argued that most common reliabilist concep-
tions of either knowledge or justification cannot be coupled with the postulation of
mathematical intuition. In particular, Albert Casullo has suggested that there is
sufficient evidence in favor of the following two claims:

(A) all basic reliable belief forming processes involve the objects of belief as a
cause of the belief (this being argued on the basis of inductive evidence from
known reliable processes)

(B) there can’t be any basic psychological processes that generate beliefs about
objects which are causally inert
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and that these together imply that no intuitional knowledge of mathematical
abstract objects is compatible with reliabilism (Casullo 1992: 582–583).24

5.3.1.4 Moderate Naturalism, the A Priori, and Mathematical
Knowledge

How does Goldman account for mathematical knowledge? If we look at how
Goldman (1986) considers mathematical knowledge, we see that he has in mind
either non-platonistic views of mathematics (Hilbert’s, Kitcher’s), or Maddy’s
physicalist platonism. More generally, he discusses mathematical cognition (and the
role that visual experience can have in it), rather than the content of mathematical
statements.

Recently, however, Goldman has argued for a Moderate Naturalism (MN) which
is meant to accomodate a priori knowledge (see Goldman 1999).25 It is a common
platonist claim that mathematical truths are a priori. Should we conclude that
Goldman’s MN, which still vindicates a form of reliabilism about justification,
allows for knowledge of mathematical claims platonistically construed?

Among other things, Goldman accepts that it is a mark of the a priori that a priori
knowledge, or warrant, has a “non-experiential, i.e., a non-perceptual source or
basis” (Goldman 1999: 4–5).26 If his MN allows for a priori knowledge or warrant, it
will also allow for belief-forming processes which have a non-experiential,
non-perceptual basis. If it does, then Goldman would be acknowledging the exis-
tence of reliable processes with a non-doxastic, non-experiential and non-perceptual
basis. Goldman seems to take this liberal aspect of his naturalism as a way of
accommodating mathematical knowledge. He claims:

Another feature of rational insight, however, might frighten off naturalists. This is the
perceptual model of rational insight, in which the objects of rational insight are somehow
cognized in a fashion analogous to the perception of physical objects. Perception is a causal
process, in favorable cases, a process that causally connects a perceived object with the
perceiver’s mental experience. If rational insight is understood on this model, it must
consist in a causal connection between the realm of rationally knowable objects and the
knower’s cognitive awareness. But it is highly doubtful, from a naturalistic perspective, that
such causal connections could obtain. Benacerraf (1973) crystallized this problem in the
domain of numbers. If numbers are [p]latonistic entities, can they really have a causal
connection with people’s mental lives? This problem seems particularly threatening to the
form of naturalism adopted here, because (MN) endorses a causal theory of warrant. How
can this form of naturalism be reconciled with a priori knowledge?

A crucial step in the reconciliation is to distinguish two types of causal processes, what I
shall call intra-mental processes and trans-mental processes. Intra-mental processes occur
wholly within the mind; trans-mental processes include links that are external to the mind
as well as links that are internal. Warrant-conferring processes, as envisaged by (MN), are
intra-mental processes; they don’t encompass objects outside the mind (although the
contents of their constituent states may refer to such objects). Thus, a priori warrant does
not require the sort of trans-mental, perception-like process that Benacerraf was discussing.

Goldman (1999: 7)
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But this conclusion seems way too hasty. Can dispensing with trans-mental
processes really allow for a reliable knowledge of mathematical statements pla-
tonistically construed? Not quite, for as Sosa has pointed out:

Some intra-mental processes lead reliably to beliefs about the physical objects in a subject’s
environment. Taking our experience at face value is normally such a process on the surface
of the earth. Processes of reasoning or calculation also yield true beliefs reliably enough to
make them warranted. Again, such processes for Goldman comprise no quasi-perceptual
relations to the objects or facts that they enable us to know. So it is not by including such
relations to abstracta that his processes of a priori warrant cause a problem; but they do
cause a problem anyway. We can know and understand how it is that taking experience at
face value is a reliable gateway to the shapes and colors of visible surfaces. But this
explanation will apparently involve postulating perception of surfaces in appropriate con-
ditions. By contrast, abstracta are imperceptible; so how could our intramental processes of
reasoning or calculation put us reliably in touch with how it is with such abstracta? True,
ethereal perception does not constitute the intramental processes. But it is still a mystery
how these processes could be reliable about mind-transcendent facts without perception or
some other causal mechanism to connect the two.

Sosa (2003: 178–179)

If Sosa is right about this—and I believe he is—then we should not follow
Goldman in thinking that his recent reliabilist MN can account for platonistic
mathematical knowledge.

If what has been said so far is correct, the appeal to the notion of reliability
discussed in mainstream epistemological debates will still make RBC1 ipso facto
unanswerable by the platonist, thus lending support again to the following modified
versions of [IncompatibilityC] and [PrejudicialityC]:

[IncompatibilityR] RTJ entails that platonism is unjustified.
[PrejudicialityR] Assuming RTJ in RBC1 makes the latter prejudicial (if not

question-begging) against the platonist.

5.3.2 Hale on CTK and Reliability

As mentioned above, Hale’s argument is addressed to CTK, not to RTJ. However, I
think—and Hale himself suggests—that his argument can be split in two halves (see
Hale 1987: Chap. 4). The first half addresses CTK, and its conclusions go in the
same direction as [IncompatibilityC]. The second half is better seen as addressing
theories of justification and deserves closer attention.

Hale wants to score a twofold result: that (a) on some strong reading, CTK

precludes (platonist) mathematical knowledge but is itself untenable; and that (b) on
some weak reading, CTK is compatible with (platonist) mathematical knowledge. He
thus distinguishes between CTKS and CTKW. Both
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will require, for knowledge that p, the existence of a causal connection of some sort
between the state of affairs in virtue of which it is true that p and the putative knower’s
belief that p.

Hale (1987: 93)

However, CTKS will involve “a requirement that the truth-conferring fact itself is
suitably causally related to the putative knower’s belief,” while CTKW will “require
(merely) that, for x to know that p, x’s grounds or evidence for p should be causally
effective in producing his belief that p.” Hale then makes two objections to CTKS:

(a) CTKS seems untenable insofar as it also rules out knowledge of general
empirical truths (e.g. “copper conducts electricity”)

(b) even though adjustments can be made to CTKS in order to defuse point (a), the
threat posed by CTKS to platonists adds nothing to threats posed by causal
theories of reference.27

Either way, it is safe to take Hale as claiming that CTKS does rule out platonism
(since it is either implausibly strong, or poses well-known and substantial threats).

When it comes to CTKW, Hale notices that:

(c) it “can, and perhaps should, be viewed as elucidating the notion of justified
belief, rather than replacing a JTB account by something else”

and that

(d) since it “involves no suggestion that the object of knowledge (i.e. what is
known) must play a causal role, there is thus no reason to regard it as posing
any particular threat to platonism.”

As such, CTKW will be compatible with the possibility of (platonist) mathematical
knowledge only if either the causal aspects involved in belief-forming processes
allow cognitive processes to reliably form beliefs about states of affairs involving
abstract objects, or there is some plausible understanding of reliability which
involves no causal connection of any sort between the (facts constituting the) truth
conditions of p and the belief that p, for some statement p.

However, as the previous section indicates, the first option is likely to be ruled
out for most common readings of the notion of reliability. If this is so, appealing to
CTKW will be equivalent to appealing to RTJ, and this, again, points towards
[IncompatibilityR] and [PrejudicialityR]. As regards the second option, I will later on
suggest that any reading of reliability which obliterates causal connections reduces
it to a far weaker notion of accuracy, and I will submit that versions of RBC1

requiring that the platonist provides an explanation of accuracy, as opposed to
reliability, of mathematical beliefs, pose no novel epistemological threat to
platonism.
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5.3.3 Conclusions to Section 5.3

Let us take stock. The following conclusions seem now available. On the
assumption that Field, in formulating RBC1, is surreptitiously appealing to notions of
reliability available in the epistemological debate, we can argue: that Field
implicitly assumes a causal explanation of reliability; that major accounts of reli-
ability in the epistemological literature are either strongly causal in character (e.g.
reliable-indicator theories), or relying on some causal understanding of reliable
cognitive processes (process reliabilism); that RBC1 should be read as asking the
platonist for a justification of mathematical beliefs.

Like BC1, RBC1 is thus based on assumptions which immediately rule out pla-
tonism as incoherent—assumptions motivated by the unwarranted generalization of
models of knowledge from the empirical to the mathematical.28

It turns out, then, that neither causal knowledge nor reliability (read: reliabilist
justification) can legitimately be appealed to in a Benacerraf-style dilemma and in
the corresponding challenge to the platonist, on pain of prejudiciality.

The obvious advice is to weaken the required constraints by appealing to weaker
notions, so as to obtain a version of the challenge that would provide an arena
where nominalists and platonists may dissent on an equal footing.

5.4 Weakening Constraints

What remains to be seen is thus whether there is any (interesting and non preju-
dicial) version of RBC1 that can be offered with the help of weaker notions. Here,
“weaker” stands for “less explicitly relying, either directly or indirectly, on causal
notions.” Theories of knowledge and theories of justification may be both relevant.

5.4.1 Weakening Reliability: Counterfactual Dependency

A first and obvious suggestion is to remain within the reliabilist camp, but to appeal
to versions of reliabilism that do not require any causal connection between the
knower and what is known. This would still satisfy Field’s request that we should
be able to explain why, if mathematicians believes that p, then p.

Counterfactual accounts of knowledge or justification are natural candidates, for
these accounts would explain the required correlation while presumably remaining
silent about what makes the correlation hold.

112 A. Sereni



5.4.1.1 Goldman’s Relevant Alternative Theory

As previously mentioned, a form of counterfactual theory for perceptual knowledge
was suggested in Goldman (1976). Goldman requires that a subject be ascribed
knowledge that p “just in case he distinguishes or discriminates the truth of p from
relevant alternatives” (Goldman 1976: 771).29 This, however, is a modification of
CTK by way of the introduction of further constraints concerning discriminating
abilities. Insofar as it is a form of CTK, this theory falls prey to the same limitations
considered above.

5.4.1.2 Nozick: Tracking Truth

The best known counterfactual theory of knowledge has been suggested by Robert
Nozick in Nozick (1981). According to Nozick, a subject knows that p iff the
subject is in a position to track the truth of p. This means that, in order for a subject
S to know that p, two counterfactual conditions must be added to those of truth and
belief:

(i) if p were not true, the subject would not believe that p (the so-called sensitivity
conditions, see fn. 22);

(ii) if p were true, the subject would believe that p.

This could be a good candidate for what we are looking for, since it is neither
causal connections nor reliable processes which allow the subject to track the truth
of p.

However, it is agreed by many that counterfactual theories of knowledge are
inadequate for mathematical knowledge. If mathematical truths are necessary, the
antecedent in condition (i) is necessarily false. Unless some appropriate account of
counter-possibles is offered—and there seem to be no agreement on this—we lack a
clear conception of what a counterfactual theory of knowledge would imply for
mathematical knowledge.

Now, the preceding argument is in good standing only if mathematical truths are
necessary. However, one might think that the existence of mathematical objects is
contingent. On the nominalist side, Field has suggested this. On the platonist side,
those arguing for platonism on the basis of (some particular) version of the indis-
pensability argument could argue for the contingent existence of mathematical
objects; Colyvan (2001) is a case in point. However, this view is controversial and
certainly isn’t part of the “standard view” that Benacerraf was addressing.

However, as Field claims (see Field 1989: 227–281), there may be a legitimate
sense in which we speak of mathematical counter-possibles. After all, it makes
perfect sense to wonder what would be the case if the Continuum Hypothesis or the
Axiom of Choice were false. Generalizing, we might accept that it also makes sense
to ask what would happen if basic arithmetical statements like “1 + 1=2” were
false, however odd this may strike one at first. Maybe, thus, it is not implausible
that some version of the counterfactual theory of knowledge be adopted in some
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version of BC: call it RBC2. RBC2 would ask the platonist to explain how it is that
mathematicians’ mathematical beliefs are counterfactually dependent on mathe-
matical facts. We have then two options:

(a) On the one hand, the platonist does indeed believe that mathematical
counter-possibles are trivially true. RBC2 would preclude (an explanation of)
platonist mathematical knowledge from the start, since this kind of platonist
would then clearly be unable to explain the required correlation between facts
and beliefs.

(b) On the other hand, the platonist who doesn’t hold principled views on
counter-possibles will have to explain how some worldly (spatio-temporally
located) facts—psychological states, i.e. mathematical beliefs—can be affec-
ted by what happens to be non-worldly (acausal, non spatio-temporally
located) objects. Since the platonist takes mathematical objects to be causally
inert and non-spatio-temporally located, however, this explanation will not be
available.30 Once again, RBC2 rules out platonism much too easily.

5.4.2 From Counterfactual Correlation to Accuracy

A more radical route remains open. Let the proponent of RBC2 grant the platonist
that counterfactual dependence of beliefs on mathematical facts is unintelligible.
Some sort of correlation still remains to be explained. Indeed, when Field intro-
duced his revised challenge in Field [1988] (1989: 230–231), he did not state it in
terms of reliability (as he did when he introduced it in Field (1989), as we saw
above), but merely in terms of “regularity” between mathematical facts and
mathematicians’ beliefs: the fact that for most p it holds that if mathematicians
believe p, then p. (Notice the use of “believe” as opposed to “believed.”)

Thus, even when counterfactual dependency is dropped, we still have to explain
actual correlation (see Field [1988] 1989: 238). Following recent discussion (see
Liggins 2010; Linnebo 2006), I will call this explanandum “accuracy.” Call, thus,
RBC3 the corresponding revised version of BC1 in which the relevant explanandum is
“accuracy.” RBC3 would then take the following form:

[RBC3]

(i) [Initial Plausibility] We are (initially) justified in believing in the existence of
mathematical objects as being those (abstract) objects our mathematical
statements are about.

(ii) [Accuracy Claim] Mathematicians’ mathematical beliefs are accurate.
(iii) [Explanation] The platonist must explain [Accuracy Claim].
(iv) [ImpossibilityA] It is not possible for the platonist to explain [Accuracy

Claim].
(v) [Defeat] [ImpossibilityA] defeats [Initial Plausibility].
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Accuracy seems the most neutral explanandum we can ask for. So our question
now should be: is RBC3 once more guilty of requiring the impossible from the
platonist? Is this revised version of BC1 once again so strong that the very possibility
of platonism turns out to be barred by the very nature of the explanandum? The
answer, this time, seems finally to be in the negative. There is nothing, in the notion
of accuracy, i.e. in the very fact that mathematicians’ beliefs are true most of the
time, to prevent a platonistic explanation.31

But maybe this is too quick. For one might suspect—as Field does, immediately
after suggesting RBC3—that the acausal or abstract character of the mathematical
entities allegedly constituting the facts conferring truth on our beliefs is an obstacle
to the explanation of accuracy. But assuming this entails either (i) committing a
now familiar fallacy of [Prejudiciality]; or (ii) begging the question against the
platonist in yet a different sense. It entails (i) if the suspicion about the relevance of
the acausal or abstract character in the explanation of accuracy is motivated by the
generalization of modes of knowledge that are appropriate in the empirical case to
the non-empirical case. And this is a case of hasty generalization we should reject.
It entails (ii) because there is no indication that the acausal or abstract character of
any entity should prevent an explanation of the accuracy of our beliefs.

Accordingly, this may not be the sought-for middle position where the challenge
to the platonist is both non-prejudicial and substantial. For we seem to have
immediately jumped to the opposite extreme where it is not even clear that any
genuine challenge is proposed. To be more precise: there seems to be no challenge
to the platonist in addition to the familiar and innocent request that a philosophical
account of an area of discourse be supported by good arguments and evidence. But
this very general challenge makes mathematical platonism no worse off than any
other philosophical view whatsoever.32 Hale and Wright rightly emphasize that:

[…] the general issue of reconciling semantics and epistemology for mathematics is not just
a challenge for would-be platonists—it faces all philosophical positions which allow that
pure mathematics presents, as it is normally taken to do, a substantial proper part of human
knowledge.

Hale and Wright (2002: 103)

But now, how and when should this generalization stop? Why shouldn’t the
challenge be simply that of reconciling, with no additional constraint, semantics and
epistemology generally, for all philosophical positions whatsoever?

5.5 A Dilemma’s Dilemma

The preceding discussion leaves several questions unanswered. First of all, despite
the initial impact of Benacerraf’s original challenge and of Field’s revised version,
it isn’t clear anymore that a coherent epistemological challenge to platonism along
the lines suggested by Benacerraf’s dilemma is still available.
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I am not denying that mathematical platonism, in whatever version, has the
heavy burden of giving an account of mathematical knowledge, of our epistemic
access to mathematical objects, and of our methods of justification for mathematical
beliefs. What I want to suggest is that it isn’t clear that the structure of Benacerraf’s
original argument, or of Field’s revised version, really adds anything to the general
and obvious request that platonists supplement their view with a plausible and
reasonable epistemology.

I think it is safe to assume the validity of a familiar and generally accepted form
of objection that we might call the [No Additional Charge] objection (or, better still,
counter-objection): an argument m, construed as an objection to some position x,
poses a significant challenge to x only insofar as it suggests that x has other
difficulties to deal with in addition to those that other objections n1, n2,… have
already suggested.

[No Additional Charge]

is clearly more effective when other or previous challenges to x point to a problem that
x shares with other philosophical views, either in the same vicinity or perhaps in other areas
of inquiry.

The dialectic situation of Benacerraf’s and Field’s epistemological challenges to
platonism suggests a whole family of dilemmas, varying along two different the-
oretical axes. On the one hand, they vary according to how demanding the semantic
and epistemological notions involved in their formulation are. Call this the ro-
bustness axis. On the other hand, they vary according to how specifically a par-
ticular area of inquiry is targeted by the challenge. Call this the specificity axis.

I have been suggesting that a sensible challenge to platonism, along the lines of a
Benacerraf-style dilemma, may be obtained only if a suitable point of intersection is
secured for these two axes: in other words, only in case one or more dilemmas may
be found that: (i) rely on notions weak enough so that platonism doesn’t turn out to
be a non-starter, i.e. so that the corresponding challenge to the platonist isn’t
prejudicial; and (ii) deliver a self-standing challenge to philosophical views about
mathematics (be they platonism or any other view), i.e. a challenge that is both new
with respect to other available challenges to philosophical accounts of mathematics,
and specific to mathematics.

The foregoing discussion, however, seems to suggest that no such fruitful point
of intersection will be forthcoming. We already saw that:

[BD1]

(a) A referential (i.e. Tarskian) account of mathematical truth must be compatible
with a causal account of mathematical knowledge

(b) However, the accounts are mutually exclusive

fails with respect to the robustness axis. The notion involved on the epistemological
side makes the corresponding challenge BC1 prejudicial (if not question-begging)
against its opponent.
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The Benacerraf-style dilemma underlying the discussion in Sect. 5.3 could be
stated as follows:

[BD2]

(a) A referential (i.e. Tarskian) account of mathematical truth must be compatible
with a reliabilist account of justification for mathematical beliefs.

(b) However, …

In this case, the notion one resorts to for the epistemic horn of the dilemma is
weaker than the one resorts to in BD1. However, we have seen that there is a good
deal of evidence that BD2 also fails with respect to the robustness axis, since it points
once again towards corresponding versions of [Prejudiciality].

We may go on along the robustness axis, by gradually weakening the notions
involved. In order to avoid [Prejudiciality] (or begging the question), we are bound
to arrive at what we found to be the most general notion available, i.e. accuracy:

[BD3]

(a) A referential (i.e. Tarskian) account of mathematical truth must be compatible
with an account of the accuracy of our mathematical beliefs.

(b) However, …

Itnowseems thatweare immunefromthe threat ofprejudicialityalong the robustness
axis. However, different threats loom large, for now the corresponding challenge to the
platonist—RBC3—reduces to a demand for an explanation of the correlation between
belief(s) and fact(s) that is not in any clear sensemotivated by qualms about the role that
abstract mathematical objects would play in constituting the relevant truth-conferring
facts. But, in this case, RBC3 fails with respect to the other axis, the specificity axis, and
falls prey to the [No Additional Charge] counter-objection: no additional challenge is
addressed to the platonist other than challenges that are already independently available,
such as the general request that any philosophical view about a given area of discourse
accommodates an acceptable epistemology for that area of discourse.

From BD3, we can proceed through progressive generalizations of both require-
ments (the semantical and the epistemological) in the dilemma, so as to obtain more
and more comprehensive versions:

[BD4]

(a) A suitable/acceptable/good account of mathematical truth must be compatible
with a suitable/ acceptable/good account of the epistemology for mathematics.

(b) However, …

[BD5]

(a) An account of mathematical truth must be compatible with an account of the
epistemology for mathematics.

(b) However, …

[BD6]

(a) An account of truth for an area of discourse A must be compatible with the
epistemology for A.

(b) However, …
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Needless to say, each of these dilemmas fails, in increasing order, with respect to
the specificity axis. BD4 reduces to the obvious demand for a suitable epistemology
of mathematics that isn’t even related to any particular semantics for mathematical
discourse. BD5 still generalizes this very general challenge. Last and least, BD6 does
not even include any reference to mathematics.

Arguably, in these last three formulations, nothing even guarantees that clause
(b) meaningfully provides any dilemma at all. Nothing seems, for instance, to
support with the required generality (unless additional assumptions are made) that if
one can provide a suitable semantics for mathematics (whatever that may be), one
cannot at the same time provide a suitable epistemology for it, as BD5 requires.
Things are even worse with BD6, for in that case the alleged dilemma brought about
by (b) would have the radically skeptical consequence that no area of discourse
whatsoever could be given an acceptable philosophical account.

If what has been said so far is correct, epistemological challenges to platonism
modelled on Benacerraf-style dilemmas face the following situation. There are two
desirable requirements that any such dilemma should satisfy. On the one hand, it
should not rely on notions so robust as to make the corresponding challenge to the
platonist prejudicial, let alone question-begging. On the other, it should not be so
general that no new or dedicated threat is raised against mathematical platonism, or
at least against philosophical accounts of mathematics generally. If the evidence
gathered so far (as incomplete as it may be) is correct, it points to a now very
familiar Benacerraf-style challenge. In Benacerraf’s own words: “these then are the
two requirements. Separately, they seem innocuous enough” (Benacerraf 1973:
668). Both are desirable, and each can be argued for. But any dilemma “can be
identified with serving one or another of these masters at the expense of the other”
(Benacerraf 1973, 661).

Notes

1. For discussions of epistemological challenges to platonism, see Linnebo
(2006), Liggins (2010).
For a survey of recent responses to Benacerraf’s dilemma, see Panza and Sereni
(2013).

2. At least since Burgess and Rosen (1997).
3. Of course, as Benacerraf (1973) discusses, formalists will have to meet their

own version of the challenge.
4. See Maddy (1990a, b).
5. In what follows, unless crucial to the argument and specified, whether what is at

stake is knowledge that (mathematical facts holds) or knowledge of (mathe-
matical objects) should be clear from the context.

6. A platonist position according to which all mathematical truths are unknowable
is therefore considered untenable.

7. Depending on interpretations of the text, Benacerraf may be taken to merely
assert that CTK should apply to mathematical statements because it is the best
theory currently available, and not because a single uniform account of our
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knowledge in radically diverse areas is required. The latter, however, seems to
be the standard interpretation.

8. The anti-platonist will argue that CTK is the best theory of knowledge available
for empirical truths and will recommend an extension to the case of mathe-
matical truths. The anti-nominalist will deem this extension unjustified, for
nothing garantees that the two areas can or indeed should be treated as epis-
temically on a par. The dispute will lead to a reciprocal burden-of-proof
argument with no clear way out.

9. See Cheyne (2001) for a strenuous criticism of (a).
10. The same holds for one of the arguments presented in Steiner (1973: 59–60).

Steiner argues that the following fully general formulation of CTK:

(CTK*) One cannot know that p unless the fact that p causes one’s knowledge (or belief)
that p

presupposes the existence of facts. Facts are abstract entities and, as such,
cannot enter in causal interactions. So (CTK*) precludes all knowledge since it
states that knowledge is possible just in case some fact produces the belief that
p. This is clearly consistent with [IncompatibilityC] and [PrejudiciabilityC].

11. There is another possible reply, i.e. that the (only) essential feature of causation
is that causal relations support appropriately specified counterfactuals, but
Callard does not want to go this way because counterfactual analyses of
knowledge seem inadequate for knowledge of necessary truths (as we are
assuming mathematical truths to be). More on this point below.

12. On a more relaxed reading of “effecting changes,” we sometimes speak of the
effecting of a change in connection with non-causal relations, as in, e.g., “My
love for philosophy changed my life.” But on this reading the effecting of the
change can at best be a necessary condition for causation. It doesn’t provide a
definition of it.

13. It is important to notice that a full defence of [ImpossibilityR] will depend on the
sort of explanation that a platonist is required or allowed to offer. See Linnebo
(2006) for an elaborate discussion on this point.

14. As Field himself acknowledges, this alone does not answer [Explanation].
According to Burgess and Rosen, rather than proper correlation, we might in
the end need the explanation of a mere conjunction. Since the reliability of our
beliefs in theorems is warranted by deduction, and since classical mathematics
can be reduced to set theory and all axioms of set theory can be summed up in
the claim “The full hierarchy of sets exists,” what we need is just an explanation
of the conjunction “The full hierarchy of sets exists and it is believed [i.e.
mathematicians believe] that the full hierarchy of sets exists” (Burgess and
Rosen 1997: 45).

15. Consider the following, stronger formulation of Field’s revised challenge:

5 A Dilemma for Benacerraf’s Dilemma? 119



(i*) [Semantic Justification] A referential (Tarskian) account of truth entails
that the mathematical terms occurring in our truly believed mathemat-
ical statements have referents and that such referents exist.

(ii*) [Knowledge Claim] Mathematicians mostly causally know the mathe-
matical statements they believe.

(iii*) [ExplanationK] The platonist must explain [Knowledge Claim].
(iv*) [ImpossibilityK] It is not possible for the platonist to explain

[Knowledge Claim].
(v*) [Conflict] [ImpossibilityK] is in conflict with [Semantic Justification].

Premise (ii*) may strike one as harsh. However, this is consistent with the
stringent formulation of BD1, so that the argument just given turns out to be a
reformulation of BC1. An alternative version would make the causal analysis of
knowledge explicit as an additional premise—but this would disrupt the sim-
ilarity in structure with RBC1.

16. Linnebo directly formulates RBC1 in terms of justification (see Linnebo 2009:
18; emphasis mine):

1. Mathematicians are reliable, in the sense that for almost every mathematical
sentence S, if mathematicians accept S, then S is true.

2. For belief in mathematics to be justified, it must at least in principle be
possible to explain the reliability described in Premise 1.

3. If mathematical platonism is true, then this reliability cannot be explained
even in principle.

If these three premises are correct, it will follow that mathematical platonism
undercuts our justification for believing in mathematics.
Notice that “belief in mathematics” in Premise 2 should not (not only?) be
taken as referring to our philosophical justification for believing mathematical
platonism, as opposed to mathematicians’ justification for their belief. The
following claim by Linnebo makes this clear (Linnebo 2009: 19; emphasis
mine):

Premise 2 seems fairly secure. If the reliability of some belief formation procedure could
not even in principle be explained, then the procedure would seem to work purely by
chance, thus undercutting any justification we have for the beliefs produced in this way.

17. We are granting that ascertaining the truth of a mathematical belief in order to
assess reliability, and hence justification and possibly knowledge, is a
non-circular process. But is this so? Ascertaining the truth of a mathematical
statement p is tantamount to know that p: clearly, p can be true without me
knowing that p, but how can I ascertain that p without thereby coming to know
that p? If “ascertaining truth” is to be relevant in the explanation of reliability, it
must entail knowledge that p, or at least justified belief that p.
But this goes in my direction. For now RBC1 would again be requiring of the
platonist something that she is in principle unable to offer—an explanation of
how she can have reliable beliefs that p that itself presupposes some account of
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how she can come to know (and hence have reliably-formed justified beliefs)
that p. This is either an inconsistent request in general, or (should it be accepted
in cases of empirical knowledge) one which is in principle inaccessible to the
platonist and therefore makes RBC1 too strong.
On a very different reading, the request could be seen as one of pointing at
some indirect grounds for the truth of some mathematical statement p. We
might have a genuine challenge here, which nonetheless can be tackled in
several ways (like those advanced by neo-logicism and indispensability argu-
ments), and it is unrealistic to think that this is what RBC1 is really asking for.

18. Unless, of course, one has an infallibilist notion of justification, for which even
high probability of true outputs would not suffice. Notice that we are not
discriminating here between externalist and internalist views: tests for internal
coherence may well be considered among the relevant candidate processes.
Notice also that on a strongly externalist reading, we may be justified in
believing p, granted that p is reliably formed, even if we have no explanation at
all of the mechanism that has produced p. This, however, does nothing to
defuse the point that if we have such an explanation, then our belief will count
as justified. In any case, strongly externalist readings seem inadequate for an
account of mathematical justification and knowledge.

19. Mind-independence is the target of Divers and Miller response-dependent
account of mathematics, so it does play a special role in their exposition.

20. Wright (1983) was published six years earlier and Field already discussed it in
Field (1984). Burgess and Rosen (1997: 42) suggest that Field’s challenge is
neither addressed to Maddy’s platonism nor to neo-logicist platonism, since
Field argues against these in separate places. But it is unclear why Field’s RBC1

should not also figure among the neo-logicists’ concerns, as the original BC1

indeed does.
21. More specifically, see Armstrong (1973: 170):

A’s non-inferential belief that c is a J is a case of non-inferential knowledge if,
and only if:

(i) Jc
(ii) (9H)[Ha & there is a law-like connection in nature (x)(y) {if Hx, then

(if BxJy, then Jy)},

where “x” ranges over “beings capable of cognition,” and “BxJy” means
“x believes that y is a J.”

22. The example goes: travelling in the countryside, Henry looks at what, unbe-
knownst to him, is the only real barn in a neighborhood of fake barns, and
forms the belief (by perception, in normal conditions) “That’s a barn.” The
belief is actually true and appropriately causally formed. However, we would
not attribute knowledge to Henry, for he could easily have been mistaken in
close words in which that belief is false. In contemporary epistemological
jargon, Henry’s belief violates a constraint of sensitivity. A belief that p is
sensitive if, in all closest possible worlds in which p is not true, S would not
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believe that p. In the close possible world in which Henry looks at a nearby fake
barn, his belief is false but he would still have it. For a discussion of sensitivity
and related constraints on beliefs, cf. Pritchard 2008.

23. Goldman originally suggested that our everyday conception of justification is
vague enough in this respect, so that different interpretations may be appropriate
in different circumstances (i.e. in assessing different processes), although he
generally leaned towards a propensity interpretation in his later work.

24. For a discussion of Casullo’s claims, see Cheyne (2001: 126–130). Compare
with what Goldman and Pust say about the role of intuitions in securing
knowledge of universals:

The chief difficulty for this approach comes with the assumption that intuition is a basic
evidential source, a source of information about universals. Is there any reason to suppose
that intuitions could be reliable indicators of a universal’s positive and negative instances
(even under favorable circumstances)? The problem is the apparent “distance” or “re-
moteness” between intuitions, which are dated mental states, and a nonphysical,
extra-mental, extra-temporal entity. How could the former be reliable indicators of the
properties of the latter? This is similar to the problem Benacerraf (1973) raises about the
prospects for mathematical knowledge on any [p]latonistic view of mathematics.
Benacerraf, however, assumes that a causal connection with the object known is necessary
for knowledge. We deliberately have not imposed such a requirement for a basic evidential
source. Nor have we imposed the requirement of a counterfactual dependence between
states of affairs that make an intuition’s content true and the occurrence of such intuitions.
We have only imposed the reliable indicatorship constraint. However […] wherever it is
obscure, as it is here, how a causal relation or counterfactual dependence of the right sort
could obtain, there are grounds for serious doubt that the reliable indicatorship relation
obtains. Some philosophers […] might reply that abstractness per se does not exclude
causal relations. Nonetheless, we certainly lack any convincing or even plausible story of
how intuitions could be reliable indicators of facts concerning universals.

Goldman and Pust (2002: 80)

25. Goldman defines Moderate Naturalism as the conjunction of the following two
claims:

(a) An epistemic warrant or justification is a function of the psychological
(perhaps computational) processes that produce or preserve belief.

(b) The epistemological enterprise needs appropriate help from science,
especially the science of the mind.

26. Goldman (Goldman 1999) considers four properties that are traditionally
associated with a priori knowledge or (as he calls it here) warrant: (1) a
non-experiential, i.e. non-perceptual, source or basis, (2) necessity, (3) a
subject-matter of abstract, eternal objects, (4) infallibility, (5) certainty, and
(6) rational unrevisability (incorrigibility). He denies that (4), (5) and (6) should
be taken as features of the a priori. This might be questionable, but it is not
relevant here. More relevant is that he sets aside (3), claiming the following:

Here I want to stick to my earlier resolve to stick to the epistemological questions con-
cerning the a priori and avoid the metaphysical questions. Thus, I want to remain neutral on
the issue of what the subject-matter of the a priori has to be. To be more precise, although I
am willing to concede that only beliefs on certain topics or in certain domains will qualify
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as warranted a priori, I want to remain neutral on the question of what the truth-makers are
in those domains. I want to be able to concede the possibility of a priori warrant about
arithmetic without taking a position on what numbers are or must be. Given this desire for
metaphysical neutrality, it is obviously unacceptable to make an abstract subject-matter a
necessary condition for a priority.

27. Cheyne (2001: Chap. 7) reviews and criticize Hale’s argument, at least insofar
as existential knowledge is involved.

28. Kasa (2010) has independently suggested that Field’s revised challenge is even
worse off than Benacerraf’s original one. Kasa argues that Field’s version of the
challenge entails that every valid explanation of (a case of) knowledge must
assume X, where X is something inaccessible to the platonist. According to
Kasa, the best candidate for X is either that the entities involved in the
truth-conferring facts are causally efficacious or that they are spatio-temporally
located. Kasa’s argument thus suggests that [Causality] can be generalized into:

[Non-Abstractness] Non-abstractness constraints on either knowledge or justification rule
out direct knowledge of abstract objects, knowledge of truths involving abstract objects,
and justification of truths involving abstract objects.
If we add Kasa’s conclusion to ours, it follows that RBC1 is prejudicial insofar as
it assumes not only causal constraints on knowledge, but also non-abstractness
constraints on justification.

29. E.g., from the truth of “There is a barn in front of me” and the truth of “There is
a fake barn in front of me and all other similar barns in the vicinity are real”; but
not from the former and the truth of “There is no external world.”

30. But see Linnebo (2006) for a proposal on how to make sense of such
dependency.

31. Notice that, in recent proposals by Sosa (2007, 2011) where accuracy does play
a role, not only is accuracy insufficient for second order justification of one’s
own first order beliefs (what Sosa calls “reflective knowledge”), it isn’t even
sufficient for first order justification or knowledge (what Sosa calls “animal
knowledge”). Beyond accuracy (the property of a performance, e.g. such as
believing, of being successful), what is needed for animal knowledge is also
adroitness (the property of a performance of being accurate because adroit, i.e.
accurate insofar as it is the effect of the manifestation of a competence and not
the outcome of luck or accident). In order to have reflective knowledge, what is
needed is an aptly possessed second order belief concerning the aptness of
one’s first order beliefs. This is way more than what RBC3 would be asking of
the platonist.

32. It becomes indeed the very general challenge that Christopher Peacocke calls
“the Integration Challenge,” i.e. the very general challenge, proper to such
diverse areas such as discourse about mathematics, the past, necessity,
self-knowledge, etc., of showing how we can “reconcile a plausible account of
what is involved in the truth of statements of a given kind with a credible
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account of how we can know those statements, when we do know them”
(Peacocke 1999: 1).
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Part II
Logicism, Fictionalism and Structuralism

[R]eshuffling the designata of our number words without making a corresponding
readjustment in their connection to our practices of counting, etc. is perilous
business and can lead to grievous error if remedial measures are not taken.

Benacerraf (1996b: 48)



Chapter 6
Benacerraf on Logicism

Sébastien Gandon

I will be making three distinct but interrelated claims in this paper. First, I will
attempt to show that Benacerraf (1981) (“Frege: The Last Logicist”) should be seen
as a distant continuation of the better known Benacerraf (1965) (“What Numbers
Could Not Be”) and Benacerraf (1973) (“Mathematical Truth”). Second, I will
claim that logicism does not fit in with the dilemma that Benacerraf set forth in
1973. It seems to me that the relative neglect of Frege in 1973 is the source of
Benacerraf’s wish to come back to Frege in 1981. Third, I will suggest that the way
in which Benacerraf saved Frege in 1981 should have some impact on his 1973
claim that philosophers must take mathematical discourse at face value—and, more
generally, on the way Benacerraf contrasts philosophical problems with mathe-
matical ones.

I will develop these ideas in five separate sections. In the first, I will present a
summary of Benacerraf (1981)’s main points. In the second, I will draw connec-
tions between the 1981 paper and the 1965 and 1973 papers. In the third, I will
continue to examine Benacerraf (1981) and to focus on its main thesis, namely that
Frege’s project is neither philosophical nor epistemological, but mathematical. In
Sect. 6.4, I will contrast Benacerraf’s reading of Frege with the neo-logicist pro-
gram. In Sect. 6.5, I will challenge the relevance of Benacerraf’s dilemma by
radicalizing Benacerraf’s 1981 interpretation of Frege.
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6.1 Frege and neo-positivist Logicism

The main goal of Benacerraf 1981 is to show that Frege’s project hardly bears a
likeliness to the program the neo-positivists called “logicism.” What is
neo-positivist logicism? It is an epistemological thesis about the place of mathe-
matical knowledge within knowledge in general:

The philosophical point of advancing the view was nakedly epistemological: logicism, if it
could be established, would show how our knowledge of mathematics could be accounted
for by whatever would account for our knowledge of language.

Benacerraf (1981: 18)

According to Benacerraf, the positivist conceptual framework is quite unrefined.
The basic idea is that there are two kinds of knowledge, analytic knowledge and
synthetic knowledge. Roughly said, the former derives from our knowledge of
language and the meaning of our words, while the latter derives from our interaction
with the world. For the positivists, an analytically true statement is a statement
which is true in virtue of the meanings of the words occurring in it. Now, if
mathematics is nothing else than logic, and if logical knowledge derives entirely
from a knowledge of language, then mathematical knowledge is analytic, and can
easily find its place in an empiricist (i.e. anti-Kantian) epistemology. Let me quote a
telling passage where Benacerraf comments Hempel’s typical approach:

A striking example is the position advanced by C. G. Hempel in an article that, although
breaking no really new ground, presented a nuclear point of view as only Hempel can.
According to Hempel, the Frege-Russell definitions of number, 0, successor, and related
concepts have shown the propositions of arithmetic to be analytic because they follow by
stipulative definitions from logical principles. What Hempel has in mind here is clearly that
in a constructed formal system of logic […], one may introduce by stipulative definition the
expressions “Number,” “Zero,” “Successor” in such a way that sentences of such a formal
system using these introduced abbreviations and which are formally the same as […]
certain sentences of arithmetic […] appear as theorems of the system. He concludes from
that undeniable fact that these definitions show the theorems of arithmetic to be mere
notational extensions of theorems of logic, and thus analytic.

Benacerraf op. cit.: 20

According to Benacerraf, the positivist view is untenable. It implies that logical
knowledge itself is analytic (logical propositions being true in virtue of their
meaning). And this would mean that the logical theorems of, e.g., first order logic,
get their truth in virtue of the implicit definitions of the logical constants.
Benacerraf refers here to Quine’s argument, set forth in “Truth by Convention”
(Quine [1935] 1976), according to which the very application of the rules which
implicitly define the logical constants requires the use of logic. The positivist
solution is circular:
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The only solution that seems to be offered in such a case [i.e. when logic must comprise
enough set theory (or suitable equivalent) to yield enough mathematics] is that the axioms
constitute an implicit definition of the concepts. This is a form of conventionalism that
construes the axioms as stipulations that are to govern the use of the terms they contain.
[…] As an explanation of how sentences of logic in fact get their truth-values it is
worthless, as Quine and others have made abundantly clear.

Benacerraf op. cit.: 20–21

But this critical stance is not the main tenet of Benacerraf’s argument. His most
important claim is that Frege never shared this mistaken view of logical and
mathematical truth. According to Benacerraf, Frege ascribed to Kant a
truth-in-virtue-of-meaning conception of analytic judgments. And Frege criticized
Kant on this point: the target of Frege’s distinction between the content of a
judgment and its justification is precisely Kant’s view that analytic judgments are
analytic in virtue of their content.1 Benacerraf rightly concludes that the criticism
Frege launched against Kant could also be launched against the neo-positivist
logicists:

For Kant, the distinction between analytic and synthetic propositions was primarily a
distinction in the content of the propositions. And the epistemological point was that this
distinction in content had, for the analytic propositions, the immediate consequence that
they […] were knowable independently of experience just on the basis of a consideration of
their content. […] Twentieth-century “logicists,” following Kant in this respect, accorded a
priori status to an enlarged class of analytic propositions on the basis of their content — for
truth-in-virtue-of-meanings is simply an extension of Kant’s distinction and of the epis-
temological analysis that went along with it.

Benacerraf op. cit.: 25

According to Benacerraf, one should, in order to understand Frege, distinguish
two views of analyticity: the somewhat vague view that analytic truths are true in
virtue of their meaning, and the more precise view that an analytic truth is a truth
which can be transformed into a logical truth by way of definitions. Frege—and
Quine as well—defends the second conception. But this last characterization bears
little ostensible relation to the truth-in-virtue of meaning definition of analyticity—a
definition which confers its epistemological importance on the logicist project.
Frege’s logicist undertaking (just like Quine’s) cannot then be easily enrolled in the
epistemological program that underlay the neo-positivist approach.

In brief, Benacerraf (1981) (just like Musgrave 1977) denounces a kind of
cheating. When the positivists assert that mathematics is logic, they usually rely on
the technical sense of analyticity (i.e. on the one that Frege and Quine used: an
analytic truth is a truth which can be transformed into a logical truth by way of
definitions). But when they want to account for the philosophical import of logi-
cism, they resort to the truth-in-virtue-of-meaning sense, because only it “bore the
epistemological burden of persuading us that analytic propositions were also a
priori.” Positivists conflated two theses that should indeed be kept separate:
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If, as W. V. [O.] Quine has done, one defines analytic truth as transformability into a logical
truth by meaning-preserving definitions, it becomes a trivial matter that the laws of logic are
analytic; but such a definition, as applied to logic, bears little ostensible relation to the
traditional account of analyticity as truth-in-virtue-of-meanings. Yet it was this latter
explanation which bore the epistemological burden of persuading us that analytic propo-
sitions were also a priori.

Benacerraf op. cit.: 19

According to Benacerraf, Frege never claimed that mathematical knowledge
derived from a knowledge of language. Frege thus never had an epistemological
goal. What was then the philosophical pay-off of Frege’s program?

6.2 Frege’s Logicism: an epistemological or a semantical
program?

Before presenting Benacerraf’s answer, let me stress how substantial the problem
is. A paragraph of the 1981 article reveals that, even though he was aware of the
positivists’ confusion, Benacerraf still had trouble untangling the neo-positivist
epistemological view of logicism from the Quinean-Fregean “semantical” view:

The view I have been calling “logicism” is evidently an amalgam of two views: a semantical
thesis to the effect that arithmetic is a definitional extension of logic (Frege’s view) and an
epistemological claim about how this explains the a priori character of arithmetic (the posi-
tivists’ view). Evidently, one can […] reserve the title for the semantical thesis alone, in which
case Frege was certainly asmuch of a logicist as his followers […]. I chose the present method
partly for dramatic effect and partly because I am not really sure how clearly the two theses
can be untangled from one another— howmuch the philosophical motivation behind a given
form of the semantical thesis infects the thesis itself [emphasis mine].

Benacerraf op. cit.: 35

To understand Benacerraf’s trouble, one must go back to 1973. Recall that in
Benacerraf (1973), Benacerraf set forth two desiderata which any acceptable
philosophical account of mathematics should satisfy. The semantic desideratum
claims that “[a]ny theory of mathematical truth [should] be in conformity with a
general theory of truth […] which certifies that the property of sentences that the
account calls ‘truth’ is indeed truth” (Benacerraf 1973: 666). The epistemological
desideratum requires that “[a] satisfactory account of mathematical truth […] fit into
an over-all account of knowledge in a way that makes it intelligible how we have
the mathematical knowledge that we have” (Benacerraf op. cit.: 667).

As is well known, those who abide by the semantic constraint take mathematical
language at face value and are reluctant to wander away from what mathematicians
literally say. In his 1965 article, Benacerraf did not picture the logicists as
philosophers who wanted to satisfy the semantic constraint. Recall that the shared
mistake of Ernie and Johnny was to refuse to take their teacher at his words and to
replace the sequence of integers by a sequence of sets. In 1973, Benacerraf did not
hold that logicism was motivated by “the concern for having a homogeneous
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semantical theory in which the semantics for the statements of mathematics parallel
the semantics for the rest of the language” (Benacerraf op. cit.: 661). Logicists did
not hesitate to distort the surface form of arithmetical sentences.

On may rely on Shapiro (2006) for exactness so as to distinguish two readings of
the semantic constraint. Let me quote Shapiro on this point:

Before going further, I would like to acknowledge an orientation. As I see it, the goal of
philosophy of mathematics is to interpret mathematics, and articulate its place in the overall
intellectual enterprise. One desideratum is to have an interpretation that takes as much as
possible of what mathematicians say about their subject as literally true, understood at or
near face value. Call this the faithfulness constraint.

Shapiro (2006: 110)

Shapiro then distinguishes “a second, and weaker, desideratum” from the
faithfulness constraint:

A second, and weaker, desideratum is to develop an interpretation that does not go too
much beyond what mathematicians say about their subject. Surely the philosopher is going
to say some things that the mathematician does not say. Mathematicians, as such, do not
usually address philosophical issues about their subject. For example, they do not say much
about what the natural numbers are, nor how we obtain mathematical knowledge, nor how
mathematics applies to the physical world. Presumably, philosophical questions about
mathematics are not to be answered solely in mathematical terms. The second desideratum
is to not attribute mathematical properties to mathematical objects unless those attributions
are explicit or at least implicit in mathematics itself. Call this the minimalism constraint.

Shapiro loc. cit.

As an illustration of this last desideratum, Shapiro mentions Dedekind’s
abstractionist methodology:

Richard Dedekind’s philosophical methodology was to develop a system of objects, and
then abstract the structure of the system. […] For example, he constructed the system of
cuts in rationals, and then abstracted the real numbers from the cuts. According to
Dedekind, the abstracted items — the real numbers — are not part of the system abstracted
from, but are instead something “new” which the mind freely “creates.” […] Dedekind’s
friend Heinrich Weber suggested instead that real numbers be identified with cuts.
Dedekind replied that there are many properties that cuts have which would sound very odd
if applied to the corresponding real numbers. […] For example, cuts have members. Do real
numbers have members? Dedekind’s Benacerraf-type point is consonant with the mini-
malism constraint.

Shapiro op. cit.: 110–111

I take Shapiro’s reference to Benacerraf to be a reference to Ernie’s and Johnny’s
construals of the natural numbers: the two trainee logicists both make the Weber
mistake—none of them respect the minimalism constraint.

What is, then, the correct reading of Benacerraf’s 1973 semantic constraint?
Should one treat it as strictly equivalent to the faithfulness constraint, or should one
take it to consist in both the faithfulness and the minimalism constraints? In the
former case, logicists would abide by the constraint since they construe numbers as
objects (at least Frege would). But Benacerraf’s (1965) whole point was to criticize
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this weak reading. In 1965, Benacerraf was claiming that it is not acceptable to
require that numbers be taken as objects since this kind of characterization might
carry unwanted excess baggage, thereby making the choice between different defi-
nitions intractable. As Shapiro correctly points out, the bulk of Benacerraf (1965)
was to say that logicists failed because they did not respect the minimalist constraint.

One should learn two lessons from this conclusion. First, even though Benacerraf
remains silent on this point in 1973, one should ascribe to him a pretty strong reading
of the semantic constraint. Recall that, in 1965, it was the minimalism constraint
which carried the argumentative weight. The second lesson is that there was at the
time, for Benacerraf, a tension between the logicist programme and the semantic
constraint: logicists were charged indeed, in 1965, with violating minimalism. This
second point is important because it shows that one cannot easily enroll logicism
under the banner of philosophies that intend to satisfy the semantic constraint. But
then, according to Benacerraf’s 1973 dilemma, if a philosophy does not take the
constraint seriously, it should at least try to abide by the epistemological constraint.
Should one then interpret logicism as an epistemological program?

As we have seen in Sect. 6.1, this was precisely the view of logicism that the
neo-positivists developed and that Benacerraf was opposed to in his 1981 article.
Should we then ascribe to Benacerraf (1973) this neo-positivist interpretation of
Frege’s work?

In fact, neither Frege nor logicism play any role in 1973. When presenting an
account of mathematical truth driven by epistemological considerations, Benacerraf
refers to Hilbert and the combinatorialists—not to Frege and the logicists. True,
there is one place where Benacerraf seems to say that what applies to combinato-
rialists applies to positivist logicists as well:

Similarly, certain views of truth in arithmetic on which the Peano axioms are claimed to be
“analytic” of the concept of number are also “combinatorial” in my sense. And so are
conventionalist accounts, since what marks them as conventionalist is the contrast between
them and the “realist” account [the one that respects the surface form of sentences].

Benacerraf (1973: 665)

But Benacerraf does not mention Frege in this respect. And one obvious reason
why Benacerraf might have to refer to Hilbert rather than Frege is that Hilbert’s
program was, unlike Frege’s, explicitly put forward as an attempt to meet the
epistemological challenge. It thus seems that in 1973 Benacerraf already had
misgivings about the epistemologically oriented positivist interpretation of logi-
cism. This would explain why he avoided then speaking about Frege and logicism.

In other words, my suggestion is that Benacerraf realized that logicism did not fit
well with the dilemma he was trying to set forth. Logicism did not square with the
philosophical frameworks which attempt to abide by the semantic constraint (this
seems to underlie Benacerraf 1965’s criticism), but neither can it be understood as
having an epistemological program (this seems to underlie the criticism of
Benacerraf 1981). This must be the reason why logicism disappeared from the
scene. One may interpret the 1981 article as an attempt to make amends and fix
one’s previous mistake. If I am right, the impetus at the source of Benacerraf (1981)
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comes from far away, namely from the difficulty to accommodate Frege to the
framework set up in 1973.

6.3 Frege as a philosopher, Frege as a mathematician

Let me go back to Benacerraf (1981): the main claim is that, contrary to what
neo-logicists think, Frege’s logicist program was not driven by an epistemological
concern. But then, what were the philosophical reasons that led Frege to espouse
the logicist cause?

To answer that question, Benacerraf makes an important distinction between two
kinds of foundationalist interests:

A concern [with the foundations of arithmetic] might be interpreted in two different ways,
corresponding to the interests of a philosopher and to those of a mathematician. Typically,
the philosopher takes a body of knowledge as given and concerns himself with epistemo-
logical and metaphysical questions that arise in accounting for that body of knowledge,
fitting it into a general account of knowledge and the world. That is Kant’s stance. […] And
that was the positivist’s stance. But a mathematician’s interest in what might be called
“foundations” is importantly different. Qua mathematician, he is concerned with substantive
questions about the truth of the propositions in question, as well as slightly more “philo-
sophical” issues concerning how such propositions are properly established. The interests of
the two groups are not disjoint — nor can these questions be sharply separated. But the
differences are significant, and it is important to keep them in mind as we approach Frege.

Benacerraf (1981: 23)

Indeed, according to Benacerraf, Frege came to adopt his logicism because he
was moved by the mathematician’s motivation:

I claim that the Frege of the Grundlagen has the mathematician’s motivation; that where he
appears to deal directly with the more typically “philosophical” issues […], it is because he
has restructured those questions and posed them in such a form that the answers they
require will answer the substantive mathematical questions which are his principal concern.

Benacerraf loc. cit.

The idea that one should distinguish between mathematical and philosophical
motivations is something which is already present in 1965, when Benacerraf
contrasts the philosophical demands of the logicists with the reasonable demands of
the mathematicians:

Martin [whom Benacerraf quotes at the beginning of the paper] correctly points out that the
mathematician’s interest stops at the level of structure. If one theory can be modelled in
another […] then further questions about whether the individuals of one theory are really
those of the second do not arise. In the same passage, Martin goes on to point out […] that
the philosopher is not satisfied with this limited view of things. He wants to know more and
does ask the questions in which the mathematician professes no interest. I agree. He does.
And mistakenly so.

Benacerraf (1965: 69)
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What has changed in 1981 is that Frege, who was considered in 1965 as the
paragon of a philosopher, is now regarded as a mathematician. In particular, in
1965, Benacerraf ascribed to Frege the wish to find the “real” essence of the
mathematical object—that is, the wish to go beyond the level of structure. In 1981,
Benacerraf claimed that, in Frege’s Grundlagen, definitions are neither sense- nor
reference-preserving. They are just like the usual mathematical definitions, whose
sole aim is to pick out the entities (or the sets of entities) one wants to talk about,
and which do not claim to deliver their true essence:

I engaged in that discussion myself some years ago in a piece that can be read as arguing
that either the definitions of the mathematical terms do not preserve their meaning, or their
meaning does not determine their reference, since different and equally adequate definitions
assign different referents to the mathematical vocabulary. I will argue later, contrary to what
I formerly thought Frege to hold, that he and I speak with one voice.

Benacerraf (1981: 18)

Frege is seen in Benacerraf (1981) not as someone who is interested in
accounting for the nature of arithmetical knowledge, but as someone who seeks to
extend mathematics by proving yet unproved elementary arithmetical theorems.

But this sharp distinction between the philosophical and the mathematical
motivations is more slippery that it seems. Proving basic theorems of arithmetic
requires holding that basic arithmetical truths could be grounded on yet more basic
non arithmetical truths. In what sense exactly would they be more basic? Benacerraf
makes it clear that the distinction between less and more basic has nothing to do
with epistemology:

The sense in which Frege [understands mathematics is one] that attempts to give some
content to the notion of “the ultimate ground upon which rests the justification for holding
[…] a judgment to be true.” For this is the metaphysical notion on which his view depends.
I say “metaphysical” to contrast the dependence to which he is alluding with epistemic
dependence. […] Frege is [concerned with] relations of dependence among the proposi-
tions themselves, whether or not they are believed and however those beliefs may be related
to one another in the epistemic world of any individual. To prove a proposition involves (at
least) deducing it from the propositions on which it “depends” in this metaphysical sense.

Benacerraf op. cit.: 26–27

It is not easy to decipher what Benacerraf has in mind here, especially when the
remark is relocated within his own framework, in which there is a sharp contrast
between philosophically and mathematically oriented foundational programs. On
the one hand, Benacerraf’s new emphasis on the importance of finding new proofs
seems to sever Frege from any metaphysical or philosophical concern. On the other
hand, Benacerraf still acknowledges that Frege, when deriving arithmetic from
logic, thought he had uncovered the true content of arithmetical propositions, as
opposed to a mere particular method of proof. Frege’s project is then not purely
mathematical after all—as is shown by Benacerraf’s reference to the notion of a
“metaphysical” dependence between propositions. In other words, it seems that
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Benacerraf still has trouble in 1981 characterizing the philosophical payoff of
logicism in some unambiguous way.

There are some advances, however. Frege’s logicism is not ignored as it was in
1973; it is indeed discussed. Benacerraf’s stress on the importance of proofs moves
Frege’s logicism closer to Hilbert’s combinatorialism. And the idea that Frege’s
basic propositions are not basic in an epistemological sense helps us to locate where
exactly Hilbert and Frege (as characterized by Benacerraf) diverge: logicism is now
sharply distinguished from epistemologically oriented philosophies of mathematics.
Nevertheless, the emphasis being now on proofs rather than on sense- and
reference-preserving definitions, Frege’s logicism is thus disconnected from any
philosophy keen on preserving the semantic content of mathematical statements.
A close reading of Benacerraf (1981) thus confirms our previous exegetical
hypothesis, namely that Frege’s logicism, as read by Benacerraf, fails to meet both
the epistemological challenge and the semantic challenge. From the point of view of
the 1973 dilemma, it seems that Frege looses on both counts.

One might think that Benacerraf (1981) could provide us with the means to
explain why this sad conclusion may not have bothered Frege too much. According
to Benacerraf, Frege was not a philosopher of mathematics, but a mathematician.
He didn’t want to satisfy two incompatible desiderata; what interested him instead
was to extend mathematics. To claim that Frege’s project was first and foremost
mathematical allowed Benacerraf to maintain his 1973 dilemma while finding a
place for Frege’s project which would be more in line with the historical Frege. But,
as a result, this leads to restrict the scope of the 1973 dilemma, since, according to
Benacerraf (1981), the dilemma does not concern Frege’s philosophy of mathe-
matics. Of course, this is so only because Frege’s project is described by Benacerraf
as being ultimately not philosophical. But this answer is very weak: according to
the standard reading of Frege, Frege’s work belongs indeed to the philosophy of
mathematics. Benacerraf should then explain how to distinguish the “pure” philo-
sophical project (facing the 1973 dilemma) from the hybrid
mathematical-and-philosophical developments exemplified in Frege’s works. Does
the dilemma set forth in 1973 really exhaust the entire domain of the philosophy of
mathematics? Or does it apply only to certain positions within a larger domain?

6.4 Benacerraf and Neo-logicism

Before exploring the issue raised in the previous section, and in order to insist on
the originality of Benacerraf’s reading, I would like to contrast it with the
neo-logicist interpretation of Frege. Benacerraf’s (1973) dilemma is one of the
starting points of the neo-logicists. Like the positivists, the neo-logicists regard
Frege’s work as constituting an epistemologically oriented program. But, unlike the
positivists, they manage to recast Frege’s construction so as to associate it with the
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epistemological motivation. In this section, I will draw attention to a strange irony
of fate: the dilemma that Benacerraf had trouble fitting into the Fregean framework
is nothing but the dilemma that neo-logicists use as a starting point.

In their 2002 article, Hale and Wright classify the various kinds of responses to
Benacerraf’s challenge. They label conservative the responses “which take the
Dilemma head-on, unrepently maintaining both that pure math is correctly con-
strued at syntactic face value and that, so construed, it represents, at least for the
greater part, a body of a priori knowledge” (Hale and Wright 2002: 103). They then
distinguish two families of conservative responses: the intuitional and the intel-
lectual. Let me quote from them:

[Among conservative responses], two broad approaches seem possible: intuitional and
intellectual. It may be proposed, first that an epistemology of mathematics should reckon
with a special faculty— traditionally “intuition” — which enables an awareness of systems
of abstracta […] broadly as ordinary sense perception makes us aware of ordinary concrete
objects and their properties. Or it may be proposed that access to the objects of pure math is
afforded by our general abilities of reason and understanding.

Hale and Wright op. cit.: 104

Hale and Wright first establish that neo-logicism is an intellectual conservative
response to the 1973 dilemma, and then attempt to show that this response fares
better than its rivals—e.g. than Shapiro’s ante rem structuralism. Here is the tree of
the different possible conservative answers that Hale and Wright elaborate:

I won’t be concerned here with Hale and Wright’s arguments in favor of their
own view. My point is simply that the neo-logicists conceive their project as an
answer to Benacerraf’s 1973 dilemma, i.e. as a way of meeting the epistemological
challenge about the nature of arithmetical knowledge.

Despite the sharing of this conception with the neo-positivists, the neo-logicists’
view is much more articulated than the positivists’. In particular, Hale and Wright
do not adhere to the vague truth-in-virtue-of-meanings conception of analyticity.
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The neo-logicist doctrine and its main difficulties have been presented and dis-
cussed in many papers; I shall restrict myself here to the main tenets of the program.
What matters is that the neo-logicist’s answer to the epistemological challenge
raised by arithmetical knowledge is grounded in two key elements:

(1) The context principle, according to which “only in the context of a proposition
does a word mean anything”—Hale and Wright use the principle as a device
with which to settle worries about the reference to and knowledge of abstract
objects2and

(2) Hume’s Principle, which provides an explanation of how one has a grasp of
the truth conditions of numerical identity statements, and hence of how one
can acquire arithmetical knowledge.3

For the neo-logicists, the context principle and the abstraction schema (Hume’s
Principle) explain how we can refer to numbers and acquire arithmetical knowledge
by reconceptualizing certain material equivalences without relying on intellectual
intuition. Arithmetical statements are a priori in so far as they are deducible from
second order logic extended by Hume’s Principle. Arithmetical truths are thus not
vaguely characterized as true in virtue of meaning. Neo-logicism is indeed a much
more articulated conception than the neo-positivist view that Benacerraf attacked in
1981.

An interesting question then arises: if the neo-logicist interpretation of logicism
is different from the neo-positivist one, should one still consider that there is an
opposition between the former and Benacerraf’s 1981 reading of Frege? Would
Benacerraf approve the neo-logicist conservative response to his 1973 dilemma?
Insofar as he insists on the fact that Frege’s motivation was not epistemological, it
seems that Benacerraf is opposed to the fundamental tenet of the neo-logicist
interpretation of Frege. Although neo-logicism is much more refined than the
neo-positivist doctrine, Benacerraf still claims in 1981, contra Hale and Wright, that
Frege did not intend to account for mathematical knowledge, and if that is so, then
neo-logicism doesn’t quite provide a head-on response to the 1973 dilemma. This is
ironical indeed since Hale and Wright root their own project in Benacerraf’s
dilemma. I shall devote the next section to a defence of this Benacerrafian inter-
pretation (perhaps against Benacerraf’s understanding of his own dilemma).

6.5 Semantic versus architectonic issues

We have seen that Benacerraf claimed in 1973 that philosophy of mathematics falls
prey to a dilemma, but that, in 1981, he seemed to take half a step back with the
implication that Frege developed a hybrid mathematical and philosophical project.
I also pointed out that Benacerraf’s 1981 characterization of Frege’s project
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remains unstable: Frege’s research was then seen as a purely mathematical one
while it was still grounded in purely metaphysical considerations. I will suggest
now that this last difficulty comes from the fact that Benacerraf did not go far
enough in his criticism of his 1973 dilemma. What Benacerraf says about Frege in
1981 should have led him to cast doubt on one of its horns, namely the semantic
horn.

The argument to that effect is as a matter of fact quite simple. According to
Benacerraf, Frege’s analysis of arithmetic does not take arithmetic at face value, at
least if the notion of face value is to be taken in Shapiro’s substantial sense (see
Sect. 6.2). But according to Benacerraf (1981), Frege’s heterodox analysis of
arithmetical statements was a central part of the new mathematics he was busy
developing. So in reshaping arithmetical statements as he did, Frege was faithful
indeed to a certain kind of mathematics after all, namely to the logical calculus he
was elaborating. Did Frege abide by the semantic constraint of the dilemma, or did
he not? Even if he wasn’t faithful to ordinary arithmetic, Frege was certainly
faithful to the new mathematics he created.

This example shows that the target that philosophers should aim at is much less
definite than Benacerraf seems to believe. There is nothing trite in the task of giving
an unambiguous characterization of the standard form of mathematical discourse.
The Fregean mathematician, against his arithmetician colleagues, will consider that
“There are at least three perfect numbers greater than 17” does not have the form
“There are at least three FG’s that bear R to a.” So which mathematician should a
philosopher follow? This sort of disagreement about the best way to formulate a
theorem is not an exception among mathematicians. What is the genuine form of
the fundamental theorem of arithmetic? Does the result merely say something about
integers, or does it implicitly allude to Riemann’s function zeta (since a reference to
it seems needed in its proof)?4 What is the genuine form of the fundamental
theorem of algebra? Does it say something about the intersection of algebraic
curves and nothing more, or does it implicitly refer to topological considerations?5

What is the genuine form of the fundamental theorem of real projective geometry?
Does it say something about projective order, as Klein believed, or does it merely
say something about the incidence structure of the real projective plane?6 In all of
these cases, mathematicians disagree on the formulation of some key results, and
these disagreements, far from being merely rhetorical, encapsulate important dif-
ferences in the way one views mathematics as a whole, and in the way one
anticipates its future progress.

Disagreements and conflicts about the correct way to analyze a mathematical
proposition play an important role in mathematics. Benacerraf’s idea that Frege’s
logicization of arithmetic should be seen, first and foremost, as a mathematical
project is in this respect quite legitimate. By reconceptualizing basic arithmetical
statements, Frege imitates what mathematicians never stop doing in other areas. But
this diagnosis should have led Benacerraf to cast doubt on the legitimacy of the
semantic horn of his dilemma. If an integral part of mathematical activity consists in
reconceptualizing mathematical discourse, then it is no longer possible to believe
that mathematicians adhere to a mathematical language that has been fixed once and
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for all. It thus becomes difficult to describe the semantic horn of the dilemma in
terms of a faithfulness demand in Shapiro’s sense. To be faithful to mathematics,
philosophers should rather account for the fact that there are some cases where
mathematicians do not agree on the way a theorem should be stated.

Mark Wilson has forcefully defended this point. Wilson remarks that the lin-
guistic maturity of a science often arises “after its basic terminology seems to have
settled into fixed meanings” (Wilson 1994: 520). Wilson’s point is to explain that in
such cases the apparent grammar of a proposition is gradually superseded by a (at
first) hidden grammar, which gradually emerges from the original language after
repeated experiences. Wilson calls this second grammatical pattern the “working
grammar”:

[In the process] agents discover that inferential pathways validated in their original apparent
semantics sometimes lead to unhappy results, whereas other, officially unsanctioned,
deductions generally lead to success. At first, the relevant speakers tend to excuse these
deviations from apparent semantical correctness by a variety of ad hoc explanations. Over
time, however, a system seems to emerge within the deviations and the agents now recog-
nize, as they reassess their language’s workings, that a distinct grammatical parsing better
captures the inferential successes and failures they have encountered. Previously unrecog-
nized syntactic categories now become salient as the keys to deductive validity. Call this
second pattern of grammatical structuring, which slowly emerges from the language after
repeated experience, a working grammar for the language. The reappraisal of word/world
relations which belongs with this new grammar becomes the language’s working semantics.

Wilson loc. cit.

The disagreements among mathematicians we previously alluded to precisely
concern the ways in which one could devise a working grammar for a given
mathematical language. In fact, the very distinction between an apparent and a
working grammar is a challenge for Benacerraf’s semantic challenge: which
grammar are we supposed to follow as far as philosophy is concerned, the first one
or the second one?

This point also pertains to Benacerraf’s global conception of the relation
between philosophers and mathematicians. Benacerraf (and this is something which
remain stable from 1965 to 1981) describes life within the mathematical community
as peaceful and consensual. According to him, mathematicians are always in
agreement about the scientific issues. The troublemakers are outsiders—philoso-
phers, who are motivated by the epistemological goal consisting in locating
mathematical knowledge within knowledge in general and whose business is not
scientific progress. According to Benacerraf, philosophers introduce unwarranted
divisions when asking mathematicians irrelevant questions. In this regard,
Benacerraf is very close to the neo-positivists he criticized in other respects—for
him as for them science is metaphysically neutral, and it is the job of the “good”
philosophers to protect scientists against the pernicious influence of the meta-
physicians. It is in this particular historical context that Benacerraf’s emphasis on
the demand that mathematical discourse be taken at face value should be under-
stood. The semantic constraint plays the role of a safety net, which prevents
philosophers from falling into metaphysics.
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It seems to me that Benacerraf somehow exaggerates the unity of the mathe-
matical community. Of course, mathematicians do agree on the fact that a certain
proof proves a certain theorem.7 But they often disagree on the best way to analyze
mathematical propositions, and on their particular place and role within the archi-
tecture of the mathematical sciences. The semantic constraint is indifferent to the
fact that there is no consensus, within the mathematical community, about the way
one should view the global organization of mathematics. Grammar is not a reliable
guide to answer this question. Algebraists do not compare mathematical theories in
the same way as analysts or geometers. These disagreements are not caused by the
malign influence of intruders—they come from the development of mathematics
itself. How then to settle such internal disagreements between mathematicians? The
answer is: by doing mathematics, i.e. by reshaping the standard theorems and the
standard proofs in a way that conforms to our preferred view, but also by elabo-
rating philosophical justifications about the relations between the various mathe-
matical disciplines.

In brief, what I want to suggest here is that, beside the epistemological problem
(how to locate mathematical knowledge within the totality human knowledge?),
there is another issue I shall call the architectonic issue, which deals with the
articulation of the various mathematical disciplines and the formulation of their
main theorems. It seems that one cannot approach these two questions simultane-
ously. The wish to locate mathematical knowledge within human knowledge in
general leads to homogenize mathematics, and thus to lose sight of the internal
diversity of mathematics. Conversely, the attempt to compare various ways of
organizing mathematics tends to hide what makes mathematical knowledge, taken
as a species of knowledge, so specific (the fact that it deals with abstract objects, for
instance). In this respect, the semantic constraint acts as a powerful homogenization
operator. As a consequence, when abided by too strictly, the constraint forbids
articulating the architectonic issue. The semantic requirement makes us forget that,
in mathematics, there are more than one way to articulate a theorem, and that such
differences are mathematically relevant.

Once the existence of the architectonic issue is acknowledged, an explanation of
Frege’s talk about the “metaphysical” dependence between propositions may be
provided. Frege strives to promote a Gaussian vision of mathematics in which
arithmetic (the queen of the sciences) is neatly distinguished from the other
mathematical disciplines, especially geometry. The wish to guarantee a special
place for arithmetic within mathematics could be the impetus behind the idea that
arithmetical theorems, unlike geometrical propositions, depend on the most general
laws of thought. The idea that certain propositions depend (in a non epistemological
sense) from others might be understood as a way of describing the relation between
the different disciplines within mathematics.

I won’t defend this exegetical claim here. It is worth being mentioned because it
seems to prolong Benacerraf’s 1981 interpretation. It does share with Benacerraf’s
reading the idea that Frege’s project was not inherently epistemological. This is an
important point of agreement because it distinguishes these readings from both the
neo-positivist and the neo-logicist readings. But the architectonic interpretation differs
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from Benacerraf’s in that it refuses to oppose mathematical and philosophical issues;
some questions (the architectonic ones) are inextricably mathematical and philo-
sophical. Contrary to what Benacerraf (1981) implies, it isn’t sufficient to show that a
project isn’t epistemological to show that it is purelymathematical. As amatter offact,
Benacerraf’s faithfulness to the semantic constraint prevents him from recognizing
the existence of the architectonic interpretation, i.e. of the convergence and interde-
pendence of the mathematical and the philosophical. In still other words, I think that
Benacerraf recognizes in 1981 that Frege, in transforming the grammar of usual
arithmetic, acted as a mathematician. It nevertheless seems to me that Benacerraf
doesn’t draw the full lesson he should have drawn. His analysis should have led him to
challenge his own faithfulness to the semantic constraint, just as it should have led him
to recognize the existence of hybrid—i.e. both mathematical and philosophical—
questions. It is precisely because he refrained from drawing these conclusions that he
failed to identify the architectural motivation behind Frege’s logicism.

6.6 Conclusion

I have been making two claims in this paper. The first claim is that Benacerraf
(1981) should be viewed as the conclusion of a move, which sprung from
Benacerraf’s early criticism of Frege in 1965, and passed through the elaboration of
his dilemma in 1973. Although Benacerraf did not identify Frege’s program as
epistemological, he considered that Frege did not abide by the semantic constraint.
Logicism was then for him a puzzle. The second claim is more general: in order to
be consistent, Benacerraf should have put his semantic constraint into question in
1981. Benacerraf acknowledges that the two horns of the dilemma do not exhaust
the possible philosophical positions, but his faithfulness to the dilemma leads him
to expel Frege’s work from the sphere of the philosophy of mathematics. I think on
the contrary that Frege’s undertaking could be read as an attempt to solve the
architectonic issue (how should we view the organization of mathematics?) and that
this question is a philosophical as well as a mathematical one.

Concerning this second claim, let it be clear that I don’t mean to undermine the
importance of Benacerraf’s (1973) dilemma. Mathematics does indeed raise an
epistemological issue: mathematical knowledge exhibits features that make it
utterly different from other kinds of knowledge, and this, in and of itself, raises a
whole set of intricate puzzles. Neo-logicism, ante rem structuralism, etc. strive to
provide answers to a venerable family of deep problems. My worry does not
concern the epistemological constraint as such, but only a reading of the semantic
constraint that is way too strong.8 Taken too seriously, the constraint can lead us to
believe that the only reason we have to change the surface form of mathematical
sentences comes from the wish to find a reasonable epistemology for mathematics.
This simply isn’t true: mathematicians never stop modifying their notation and
reconceptualizing the contents they express. As Hale and Wright have noted,
however, the epistemological issue persists even if we do not strictly follow the
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surface form of mathematical statements. So after all, perhaps we don’t need the
semantic constraint—or perhaps a very weak version of it will do. But it seems to
me that the quite radical way in which Benacerraf has formulated his constraint in
1973 has contributed to stray contemporary philosophical attention away from
mathematico-philosophical issues about the internal organization of mathematics.
And I think this is a pity.

Notes

1. See Benacerraf (1981: 24): “The point of [Grundlagen, §3] is to separate the
notion of the content of a judgment from that of the justification for the judg-
ment—in the sense of justification introduced in [Grundlagen, §2]; namely, the
“support” of the judgment; the propositions on which it ‘depends’ for its truth.”

2. “[According to the context principle,] singular thought, and object-directed
thought in general is […] enabled and fully realized in an understanding of
suitable kinds of statements. […] The opposite idea is precisely what is
embodied in the Augustinian conception of language put up for rebuttal at the
very outset of the Philosophical Investigations; and the prime spur towards the
‘naturalist’ tendency which finds abstract objects per se problematical is the
idea, at the heart of the Augustinian conception, that some, however primitive,
form of conscious acquaintance […] must lie at the roots of all intelligible
thought of, and hence reference to objects of a particular kind” (Hale and Wright
2002: 115–116).

3. “The import of the stipulation of the equivalence is simply that corresponding
instances of the left and right sides—matching sentences of the shapes ‘the
direction of line a = the direction of line b’ and ‘lines a and b are parallel’—are
to be alike in truth-value, i.e. materially equivalent. But because the stipulation
is put forward as an explanation, its effect is to confer upon statements of
direction-identity the same truth conditions as those of corresponding statements
of line-parallelism. Thus what a recipient of the explanation immediately learns
is that whatever suffices for the truth of a statement of line-parallelism is equally
sufficient for the truth of the corresponding statement of direction—identity.
However, she also understands that she is to take the surface syntax of
direction-identity statements at face value. She already possesses the general
concept of identity, and so is able to recognize that the expressions flanking the
identity sign must be singular terms. […] [From this,] she learns […] that
directions just are objects with exactly those identity-conditions, and thus
acquires the concept of direction” (Hale and Wright 2002: 117–118).

4. For a discussion of the fundamental theorem of arithmetic, see Arana (2011).
5. For an overview of the various proofs of the theorems and the many ways of

looking at complex polynomials, see Fine and Rosenberger (1997).
6. See Gandon (2012): Chaps. 1 and 2.
7. One might wish to challenge this by referring to intuitionist mathematics, or to

issues raised by computer-assisted proofs.
8. This is the kind of reading that Shapiro favors in Shapiro (2006). See Sect. 6.2.
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Chapter 7
Truth, Fiction, and Stipulation

Mary Leng

For the past few years, I have been fortunate enough to teach, annually, a third year
undergraduate module in the philosophy of mathematics. It is a testimony to Paul
Benacerraf’s great influence on the discipline that the module is structured very
naturally in two halves, which could quite easily be subtitled “Before Benacerraf”
(BB) and “After Benacerraf” (AB). The story I tell starts at the end of the 19th
century, with Cantor’s development of the new infinitary set theory, and mathe-
maticians’ and philosophers’ concerns about how (or whether) we can make sense
of this new mathematics that is not grounded in Kantian intuition of space and time.
We look at the usual “big three” of logicism, intuitionism, and formalism, and
consider how, during this period, it was possible, and perhaps even quite plausible,
to think (as Hilbert did in his debate with Frege over the nature of axioms) of
mathematical truth as something quite different from empirical truth, or truth
simpliciter. Truth in mathematics could plausibly be thought of as an internal affair,
a matter of mere derivability from consistent axioms, rather than correspondence to
some external mathematical reality.

Along, alas, came Kurt Gödel, whose first incompleteness theorem put paid to
the simple equation of truth with formal derivability found in Hilbert’s early dis-
cussions about mathematics, by presenting a statement of arithmetic such that
neither it nor its negation was formally derivable (and that, nevertheless, we have
good reasons for taking to be true). Furthermore, Gödel’s second theorem destroyed
the hopes for Hilbert’s more mature view of mathematics according to which
finitary mathematics has a meaningful and true interpretation (in terms of finite
strings of strokes), but infinitary mathematics should be viewed as a strictly
meaningless “useful instrument,” consisting of ideal elements introduced to smooth
out our theory of the finitary meaningful portion of mathematics. Hilbert’s “one
condition, albeit an absolutely necessary one” ([1926] 1983: 199) on this account

M. Leng (&)
Department of Philosophy, University of York, Heslington, YO10 5DD, UK
e-mail: mary.leng@york.ac.uk

© Springer International Publishing Switzerland 2016
F. Pataut (ed.), Truth, Objects, Infinity, Logic, Epistemology,
and the Unity of Science 28, DOI 10.1007/978-3-319-45980-6_7

147



was the provision of a finitary (and therefore meaningful) consistency proof for
infinitary “ideal” mathematics, to show that this “instrument” would not conflict
with true infinitary claims. Gödel’s second incompleteness theorem showed that the
consistency proof that Hilbert envisaged was impossible.

One upshot of Gödel’s 1931 paper, so I tell my students, is thus that it invited
mathematicians and philosophers to take seriously mathematical truth as a species
of genuine truth, i.e., not as reducible to formal derivability. And this they did, with
things going rather quiet on the formalist front post-Gödel. Gödel’s own platonism,
presented, e.g., in his 1947 paper “What is Cantor’s Continuum Problem?” (Gödel
[1947] 1990), sees mathematics as a science alongside the physical sciences, with
similar methods of justification available (such as use of the hypothetico-deductive
method to justify axiom choices in light of their consequences, as well as, in what is
now most often quoted with an accompanying eye-roll, Gödel’s claim that “despite
their remoteness from sense experience, we do have something like a perception
also of the objects of set theory, as is seen from the fact that the axioms force
themselves on us as being true” (Gödel [1964] 1990: [271] 268)). Mathematical
truth thus becomes answerable to mathematical reality in the same way that
empirical truths are answerable to physical reality. And with this picture in place, it
was only a matter of time before someone would put 2 and 2 together and wonder
how we can be said to know those things we take ourselves to know about this
realm of mathematical objects.

While 1931 brought the metaphorical death—via Gödel’s results—of Hilbert’s
programme, it also brought the very real birth, in Paris, of Paul Benacerraf. Events
in Europe meant that Benacerraf and Gödel both found their ways to the US, with
Gödel leaving Austria to join the Institute of Advanced Study at Princeton in 1940,
where he remained until his retirement in 1976. Paul Benacerraf was still a child
when he left Paris for the US, but it was not long before he too found his way to
Princeton, as an undergraduate (graduating with his A. B. in 1953), then Ph.D.
student and, from 1960, a Faculty member in the Department of Philosophy. The
story I tell in my lecture course imagines the young Benacerraf hearing of the old
Gödel’s platonism, digesting this as the new orthodoxy, puzzling about it, then
tapping him on the shoulder around 1965 (with “What Numbers Could Not Be”)
and again around 1973 (with “Mathematical Truth”) to say, “But isn’t that view just
crazy?”, thus setting in place the predicament for philosophy of mathematics ever
since. On the one hand, the failure of the “less substantial” views of mathematical
truth suggests that platonism has to be right, but on the other hand, the sheer
craziness of platonism (and in particular the epistemic puzzle Benacerraf raises for
platonism) suggests that it cannot be so. Philosophy of mathematics AB has largely
consisted of attempts to pick up the pieces in light of this attack on the platonist
orthodoxy and the apparent lack of any acceptable alternative.

Such is my story, but it is of course just a story—at best a rational reconstruction
of some developments in the history of the philosophy of mathematics through the
20th century. It makes for a nice narrative, and a neat way of organizing a lecture
course, but each year as I present it I become less happy with the simplistic picture
that arises. In particular, I worry, by centering on events around Princeton it ignores
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what’s going on in Harvard in the BB period, with the work of W.V.O. Quine. Of
course, I do cover Quine’s work, fitting it in with more recent discussions of the
indispensability argument AB. There, Quine’s indispensability considerations are
presented as yet another reason to take platonism seriously, but Quine’s holistic
epistemology, I claim, does not have the resources by itself to solve the epistemic
puzzle raised by Benacerraf in “Mathematical Truth,” at least not if this is recast, as
Field (1989) does, in terms of the puzzle of explaining the reliability of our
mathematical beliefs. The puzzle remains, I claim—indeed, it is made even more
stark, because indispensability considerations give us even more reason for taking
mathematical truth seriously, but provide no account of how it could be that beliefs
gained through our attempts to organize our empirical experiences could manage to
get things right about a causally isolated realm of mathematical objects.

But—and now for confessions—I find myself increasingly unhappy with this
account of the position of Quine’s views in relation to Benacerraf’s 1973 puzzle.
I fear that its initial plausibility depends on a metaphysically heavyweight under-
standing of “objects,” coming out of Gödelian platonism, that Quine himself would
be unwilling to accept. Benacerraf’s 1973 paper presents a dilemma for any account
of mathematical truth. On the one hand, adopt a “standard” platonist semantics that
interprets mathematical truths as truths about a realm of abstract objects, and face a
difficulty explaining how we could come to know any mathematical truths; or, on the
other hand, adopt an alternative “combinatorial” semantics that accounts for math-
ematical truths in terms of our methods of coming to know them (through proof from
stipulated axioms), and face a difficulty explaining how this could possibly be
enough to bring genuine truth. Understood as an attempt to provide an epistemology
for platonism as construed in the “standard” view (which sees mathematics as
consisting in a body of truths about an independent realm of mathematical objects),
then Quine’s holism does seem to fall short of answering the puzzle Benacerraf
raises and Field revives (“how could beliefs gathered in those ways get things right
about objects like that?”). But, reading Quine carefully, it is perhaps better to
understand him as answering (before the fact!) Benacerraf’s challenge not to the
standard view, but to combinatorial views, of explaining how postulational stipu-
lation can—if the circumstances are right, and despite Benacerraf’s protestations to
the contrary—“provide for truth” (Benacerraf 1973: 679). So my worry is that it
begins to look as though Quine’s philosophy of mathematics provides the resources
to answer Benacerraf’s dilemma, and did so even before Benacerraf presented his
challenge in his 1973 paper. Does this mean that the philosophy of mathematics AB
has been sent down a wrong path, expending endless efforts on solving a problem
that was already solved BB, if only we’d paid attention to Harvard rather than
Princeton, with a careful reading of Quine?

Well, I don’t think so (though, as a philosopher of mathematics fully entrenched
in the AB tradition, I would say that, wouldn’t I?). But I have come to think that
Quine’s view requires a response in its own terms, read as a challenge to
Benacerraf’s claim that “stipulation does not provide for truth”, rather than as an
attempt to fill in an epistemology for standard platonism that bridges the gap between
acausal abstracta and causally located human knowers. So what follows is my
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attempt at telling a new story about the Quinean “solution” to the problems raised in
“Mathematical Truth,” one that, I hope, I’ll be able to tell my students in the future
without wincing.

7.1 Benacerraf’s Problem for Combinatorial Views

Let us go back, then, to Benacerraf (1973), and Benacerraf’s challenge, not to the
Gödelian platonist, but to those who wish to ground mathematical truth in deriv-
ability from stipulated axioms, providing what Benacerraf calls a “combinatorial”
view of mathematical truth. “Mathematical Truth” may be best remembered for its
epistemic objection to the standard (platonist) view of mathematical truth, but it is
with his objection to combinatorial views that Benacerraf chooses to end his paper.
Benacerraf is, of course, aware of the worries that the first incompleteness theorem
raises for taking truth in mathematics to be grounded in derivability from stipulated
axioms, but he does not take these to be conclusive. Neither is he convinced by the
completeness of Quine’s objections to views of this sort in “Truth by Convention”
(Quine [1935] 1976), where it is argued that it cannot be conventions “all the way
down,” since this objection applies to the thesis of the conventionality of logic,
without getting to the heart of the problem with taking mathematical truth as
grounded in logic plus conventions. Neither Gödelian worries nor Quine’s objec-
tions get to the heart of what, in Benacerraf’s eyes, is wrong with the idea of “truth
by convention,” since both would allow for the conventional stipulation of some
truths. “The deeper reason,” Benacerraf tells us, “is that postulational stipulation
makes no connection between the propositions and their subject matter—stipulation
does not provide for truth” (Benacerraf 1973: 679). The paper ends:

To clarify the point, consider Russell’s oft-cited dictum: “The method of ‘postulating’ what
we want has many advantages; they are the same as the advantages of theft over honest
toil” (Russell 1919: 71). On the view I am advancing, that’s false. For with theft at least you
come away with the loot, whereas implicit definition, conventional postulation, and their
cousins are incapable of bringing truth. They are not only morally but practically deficient
as well.

Benacerraf loc. cit.

7.2 The Fictionalist’s Stance

The “method of ‘postulating’” that Benacerraf complains about has its contempo-
rary expression in mathematical fictionalism. In relation to unapplied mathematics,
fictionalists see mathematicians as involved in working out the logical conse-
quences of stipulated axioms. And insofar as fictionalists see mathematical cor-
rectness as a matter of following logically from such axioms, the view is
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“combinatorial” in character (albeit generally involving a beefed up modal notion of
“logical consequence,” rather than resting mathematical correctness in formal
derivability). But Benacerraf’s complaint against “the method of ‘postulating’” is
well taken by fictionalists, who do not claim to “come away with the loot” of
mathematical truth. Fictionalists agree that one cannot make axioms true by fiat. So
insofar as mathematical theories are grounded in stipulated axioms, we have no
reason to call such theories true.

Indeed, Quine too agrees that this understanding of mathematical theories does
not bring truth, in a passage that predates Benacerraf’s own complaint that “stip-
ulation does not provide for truth”:

Playing within a non-Euclidean geometry, one might conveniently make believe that its
theorems were interpreted and true; but even such conventional make-believe is not truth by
convention. For it is not really truth at all; and what is conventionally pretended is that the
theorems are true by non-convention.

Quine [1954] (1977: 116)

Yet, despite all he has to say against the concept of truth by convention, there is a
sense in which Quine can be viewed as arguing, against Benacerraf, that if the
circumstances are right then stipulation can and does bring truth with it.

7.3 Truth by Convention from the Enemy of Truth
by Convention?

When, for Quine, does stipulation lead to truth? All the time, in fact! One way into
Quine’s rejection of the analytic/synthetic distinction is via the recognition of the
presence of conventional/stipulated elements in all truths (“Taken collectively,
science has its dual dependence on language and experience; but this duality is not
significantly traceable into the statements of science taken one by one” (Quine
[1951] 1953: 42)). It may be a feature of some sentences that they were introduced
entirely as a matter of conventional stipulation. But this, in Quine’s view, is not a
lasting feature, or a particularly important one. “Conventionality,” Quine tells us,

is a passing trait, significant at the moving front of science but useless in classifying the
sentences behind the lines. It is a trait of events and not of sentences. […] Legislative
postulation contributes truths which become integral to the corpus of truths; the artificiality
of their origin does not linger as a localized quality, but suffuses the corpus.

Quine [1954] (1977: 119–120)

The development of science is, in Quine’s view, a matter of stipulation leading to
truth, again and again, as convenient ways of speaking prove themselves to be
useful in organizing experience, and through that receive empirical confirmation as
part of a theoretical package.

But don’t the axioms of mathematical theories have a quite different character to
conventions adopted in empirical science? Einstein presents the assumption that
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light travels at the same speed in all directions as “in reality neither a supposition
nor a hypothesis about the physical nature of light, but a stipulation which I can
make of my own freewill in order to arrive at a definition of simultaneity” (Einstein
1920: 23). But although we cannot arrange a direct test of the one-way speed of
light (the best we can do is measure speed over a round-trip), one might think that
the utility of the theoretical package as a whole that starts from the stipulation that
the speed of light is the same in all directions is enough for us to take the package as
a whole, including its conventions, as confirmed as true (if anything is), despite its
starting point in an explicit stipulation. The axioms of set theory might look dif-
ferent in this respect: they are adopted apparently without any view to empirical
matters, and appear immune from empirical testing in a quite different way. We can
make sense of the idea of testing the speed of one-way light signals, using syn-
chronized clocks at a distance, but our difficulty is that we cannot ensure clocks are
synchronized without making assumptions about the one-way speed of light, so
from a practical perspective we are stuck with adopting an assumption as a con-
vention. But it’s simply unclear what could count as an empirical test of the axioms
of set theory, even in ideal conditions, since they do not appear to be making any
claims about empirical matters.

This Quine disagrees with fundamentally, holding firstly that the conventional
character of the axioms of set theory is just the same as the conventionality found
elsewhere, and secondly, that the mathematical components of our theories are
ultimately in receipt of empirical confirmation through their presence in an entire
theoretical package.

What seemed to smack of convention in set theory […], at any rate, was “deliberate choice,
set forth unaccompanied by any attempt at justification other than in terms of elegance and
convenience”; and to what theoretical hypothesis of natural science might not this same
character be attributed? For surely the justification of any theoretical hypothesis can, at the
time of hypothesis, consist in no more than the elegance or convenience which the hypothesis
brings to the containing body of laws and data. How then are we to delimit the category of
legislative postulation, short of including under it every new act of scientific hypothesis?

The situation may seem to be saved, for ordinary hypotheses in natural science, by there
being some indirect but eventual confrontation with empirical data. However, this con-
frontation can be remote; and, conversely, some such remote confrontation with experience
may be claimed even for pure mathematics and elementary logic. The semblance of a
difference in this respect is largely due to overemphasis on departmental boundaries. For a
self-contained theory which we can check with experience includes, in point of fact, not only
its various theoretical hypotheses of so-called natural science but also such portions of logic
and mathematics as it makes use of. Hence I do not see how a line is to be drawn between
hypotheses which confer truth by convention and hypotheses which do not, short of reck-
oning all hypotheses to the former category.

Quine [1954] (1977: 121–122)

In science, then, stipulation leads to truth all the time. What starts as stipulation is
confirmed as true through the success of theories grounded in that stipulation in
empirical theorizing.
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In light of Quine’s blurring of “departmental boundaries,” and his placing of
mathematics alongside the rest of empirical science when it comes to confirmation,
Benacerraf’s epistemological objection to the “standard view” of mathematical
truth seems to miss the mark. Benacerraf complains that “the principal defect of the
standard account is that it appears to violate the requirement that our account of
mathematical truth be susceptible to integration into our over-all account of
knowledge” (Benacerraf 1973: 670).

But Quine’s account of the confirmation of empirical theories is designed pre-
cisely so as to integrate our knowledge of mathematical truths into our over-all
account of knowledge. Benacerraf continues:

If, for example, numbers are the kinds of entities they are normally taken to be, then the
connection between the truth conditions for the statements of number theory and any
relevant events connected with the people who are supposed to have mathematical
knowledge cannot be made out.

Benacerraf (1973: 673)

But in Quine’s view, the idea that our knowledge of objects requires a connec-
tion between the knower and the objects known is just mistaken. Physical objects,
as well as mathematical, are introduced as convenient ways of organizing experi-
ence, and our beliefs about them are confirmed by the serviceability of that
convention:

Physical objects are conceptually imported into the situation as convenient intermediaries
not by definition in terms of experience, but simply as irreducible posits comparable,
epistemologically, to the gods of Homer. For my part I do, qua lay physicist, believe in
physical objects and not in Homer’s gods; and I consider it a scientific error to believe
otherwise. But in point of epistemological footing the physical objects and the gods differ
only in degree and not in kind. Both sorts of entities enter our conception only as cultural
posits. The myth of physical objects is epistemologically superior to most in that it has
proved more efficacious than other myths as a device for working a manageable structure
into the flux of experience.

Quine [1951] (1953: 44)

Quine’s philosophical outlook, developed in his writings in the 1950s, thus
appears to provide the unified account of the semantics and epistemology of
mathematics that Benacerraf, in 1973, claimed was lacking. By providing a route
from conventional stipulation to truth (via successful use of stipulated assumption
in empirical science), Quine was able to argue that, despite their roots in explicit
convention, mathematical hypotheses could be as well-confirmed as any of the
hypotheses of our empirical scientific theories, and that our knowledge of mathe-
matics was of a kind with our knowledge of physical objects. Both are stipulated in
the course of our attempts to organize our experience, and both are vindicated by
the success of such attempts.
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7.4 What’s Wrong with Quine’s “Solution”?

It looks, then, as though Quine had the solution to Benacerraf’s famous problem
well before Benacerraf wrote “Mathematical Truth.” Why, then, have Benacerraf’s
concerns about the difficulty of reconciling one’s account of mathematical truth
with an epistemology for mathematics been so hugely influential? One reason is
that they were developed without Quine’s holistic epistemology in mind, in the
heyday of the causal theory of knowledge. Against the target of epistemological
accounts along those lines (i.e., that ask what extra ingredients may be needed to
make an individual justified, true, belief count as knowledge), Benacerraf’s con-
cerns surely hit their mark. But even when alternative epistemologies are brought
into view, Benacerraf’s knowledge problem still seems to pack a punch. One
influential way of recasting Benacerraf’s problem in the absence of a causal theory
of knowledge is Hartry Field’s:

The way to understand Benacerraf’s challenge, I think, is not as a challenge to our ability to
justify our mathematical beliefs, but as a challenge to explain the reliability of these beliefs
[…]. Benacerraf’s challenge — or at least, the challenge which his paper suggests to me —
is to provide an account of the mechanisms that explain how our beliefs about these remote
entities can so well reflect the facts about them.

Field (1989: 25)

And, as I have said, it is this response that I quote to my students when trying to
explain why Quine’s indispensability argument does not provide a satisfactory
solution to Benacerraf’s knowledge problem. Even if the indispensability consid-
erations tell us that we ought to believe in mathematical objects, they still leave it
entirely mysterious as to how beliefs reached in that way (through our attempts to
organize our experience of the physical world) should get things right about objects
of that sort (acausal, nonspatiotemporal, mind- and language-independent
abstracta).

My concern with this quick response to Quine is that, in its worries about
“remote entities,” it takes objecthood too seriously, and does not take seriously
enough the conventionality of all “objects” in Quine’s theoretical framework. In
Quine’s view, all there is for there to be evidence for the existence of objects is for
our object-involving conventions to be serviceable ones. A “reliability” explana-
tion, linking our evidence for believing in /s to the facts about /s, is not needed to
underpin our knowledge of mathematical objects, simply because such an expla-
nation is not needed anywhere. We have reason to believe in electrons because the
electron hypothesis is serviceable, and the same goes for numbers or tables and
chairs. By focussing on the “remoteness” of mathematical objects, Field’s char-
acterisation of the knowledge problem simply ignores Quine’s rather thin con-
ception of objecthood.
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7.5 Why I Am not a Quinean: Confirmation, Explanation,
and Good Old Causal Isolation

Quine’s work throws into doubt the Benacerrafian concern that we could never
have knowledge of abstract objects because of the lack of a causal connection
between us and the objects known. In Quine’s view, knowledge of objects of a
particular kind doesn’t require any such causal connection; it just requires that our
beliefs about such objects form part of a well confirmed scientific theory. In Quine’s
holistic view, whatever conventional stipulations remain in our best scientific
theory should be considered as confirmed truth, since confirmation extends to the
entire theoretical package, conventions and all.

However, as has been emphasized in recent challenges to the indispensability
argument (Maddy 1992, 1997 and Leng 2010), there appear to be plenty of cases
where we successfully adopt a convention to speak as if there were /s without
having reason to think that the existence of /s is thereby confirmed. In fluid
dynamics, for example, we choose to speak as if fluids were continuous substances,
even though we know they are no such thing. Indeed, in his textbook presentation
of the theory, G. K. Batchelor stipulates that he will adopt the following “contin-
uum hypothesis”:

[…] that the macroscopic behaviour of fluids is the same as if they were perfectly con-
tinuous in structure; and physical quantities such as the mass and momentum associated
with the matter contained within a given small volume will be regarded as being spread
uniformly over that volume instead of, as in strict reality, being concentrated in a small
fraction of it.

Batchelor (1967: 4–5)

In some cases (as in this example of an explicit idealization), a stipulation remains
just that, despite the success of the theory that takes this as a starting point.

Quine’s assumption is that such idealizations will not remain in our best sci-
entific theories. In his view, explicit idealizations such as these can be rephrased as
claims about the behavior of actual systems as complicating features are minimized:

When one asserts that mass points behave thus and so, he can be understood as saying
roughly thus: that particles of given mass behave the more nearly thus and so the smaller
volumes. When one speaks of an isolated system of particles as behaving thus and so, he
can be understood as saying that a system of particles behaves the more nearly thus and so
the smaller the proportion of energy transferred from or to the outside world.

Quine (1960: 249)

However, as Maddy notes, this strategy only works for certain kinds of idealiza-
tions, which she calls “idealizations by causal isolation,” where “what happens in
ideal circumstances can be extrapolated from what happens in real circumstances by
gradually minimizing the disturbing causal factors” (Maddy 1997: 144). The
“continuum hypothesis” of fluid dynamics is not of this character:
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On Quine’s principles, a claim about a continuous ideal fluid would be replaced by, or
translated as, a claim about what happens to actual fluids as they approximate ever more
closely to ideal fluids, that is, I suppose, as their molecules become ever more tightly
packed together, approximating continuous matter. But this is all wrong. If the molecules of
an actual fluid are packed tightly enough, it stops being a fluid, and even if it didn’t, the best
we could approximate in this way would be density, not full continuity. The real point is
that fluid dynamics isn’t more applicable to one fluid than another, depending on how
closely that fluid approximates a continuum; rather, it provides a workable account of any
fluid.

Maddy op. cit.: 145

What happens to the Quinean picture of confirmation if we assume, as Yablo puts
it, that some theoretical falsehoods (idealizations, metaphors, and the like), “like the
poor. . . will be with us always” (Yablo 1998: 245)?

If even our best theories contain assumptions (such as the continuum hypothesis)
whose literal truth we ought not accept, then Quine’s holistic picture of confir-
mation cannot remain. Despite Quine’s protestations, the example of apparently
indispensable idealizations suggests that there does seem to be a distinction to be
made between mere stipulations, and well confirmed theoretical hypotheses. And
this raises the question, “How can we know whether a stipulation is to be taken as a
mere stipulation, or to be considered confirmed by theoretical successes?”What is it
that pushes a hypothesis from convenient stipulation to confirmed truth?

In my book (Leng 2010), I argue for an “explanatory” approach to the mere
convention/literal truth distinction. There I suggest that, to understand which parts of
our scientific theories should be considered confirmed by our theoretical successes,
we should look at our best explanations of those successes. If the best explanation of
the success of a theory requires us to assume the real existence of the objects
characterized by that theory, then we ought to believe in those objects. And the best
explanation will not always require such an assumption: there will be times when we
can explain a theory’s success on the assumption that its posits are mere fictions (the
“continuous fluids” example is one such: here, we explain the theory’s success by
pointing out, as Batchelor does, that real fluids “move as if they were continuous,” so
that a comparison with the fictional fluids of our ideal models is apt).

It is here that the causal efficacy that Benacerraf (Benacerraf 1973) focuses on
comes into play. For if a theoretical posit is assumed to play a causal role, it is very
difficult to explain the success of the theory in which it is posited on the assumption
that the object posited is a mere fiction. Fictional a-particles do not leave tracks in
cloud chambers. So when, in the context of a predictively successful theory, an
object is posited and assumed to play a particular causal role, this gives us good
reason for thinking that the best explanation of that theory’s success involves the
real existence of the object posited.

Clearly, mathematical posits do not play a causal role in our theories, so our
explanation of their contribution to successful scientific theories cannot appeal to
such a role. Instead, accounts of the role played by mathematical posits often focus
on their representational role, in allowing us, in Joseph Melia’s words, “to make
more things sayable about concrete objects” (Melia 1998: 70–71). But this is a role
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that I (and others) have argued could be played by merely fictional theoretical posits
(Leng 2010), so if our explanation of the success of mathematically-stated scientific
theories requires us only to attribute a successful representational role to the
mathematical posits in those theories, then this will give us no reason to consider
the existence of the objects posited to be confirmed by that success.

This suggests a way of thinking about the epistemic challenge raised by the
acausal nature of mathematical objects that remains even in a Quinean setting,
where there is no immediate causal link requirement on our knowledge of objects.
The challenge is to find some theoretical role played by mathematical posits in our
successful theories that could not be played equally well by mere stipulations (mere
fictions). They do not play a causal role, so that particular route to realism is
blocked. If the path from stipulation to truth is via the confirmation afforded to
stipulations when they become embedded in our successful theories, we need to
find some feature of our mathematical stipulations that earns them credit for that
success (and that would not account for that success were the stipulated objects
mere fictions). Jody Azzouni raises something like this challenge in his book
(Azzouni 1994), where he too considers the question of why Benacerraf’s
knowledge problem isn’t simply solved by Quinean epistemology. Azzouni focuses
there on the role played by mathematical posits in the context of the practice of
working mathematicians, rather than in empirical theorizing, and points out that
mathematical objects do not seem to feature in the reasons mathematicians have for
believing their theorems. However, Azzouni’s title for the challenge he raises, the
“epistemic role puzzle,” remains apt when we turn to the practice of empirical
science. In the context of considering mathematical practice, Azzouni asks, “What
exactly is it in traditional mathematical practice that mathematical objects do?”, and
we may similarly ask, “What exactly is it, in empirical science, that mathematical
objects do?” (that couldn’t, we may add, be done by merely fictional posits).

Do mathematical posits make any other kind of contribution to our theoretical
successes aside from enabling us to describe fundamentally physical processes?
And if so, does the successful use of mathematical posits in such contexts require us
to consider the objects posited as real? In recent years, Quinean platonists such as
Baker (2005, 2009) and Colyvan (2002, 2010) have argued that mathematical posits
also sometimes play an explanatory role in empirical science, and this is a role that
cannot be played by mere fictions. In my own work, I have responded to this
challenge on behalf of nominalists by arguing that, though Baker and Colyvan are
right that mathematics does sometimes do genuine explanatory work, the way in
which mathematics explains (through “structural explanations” where physical
systems are seen as (approximate) instantiations of mathematically described
structures) does not require the existence of any mathematical objects, only
physical systems mathematically described (Leng 2012). But however this debate
pans out, I take it that this kind of consideration of the precise role played by
mathematics in empirical science is the appropriate place to focus if we wish to
learn the lessons of both Benacerraf and Quine.
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Chapter 8
Identification and Transportability:
Another Moral for Benacerraf’s Parable
of Ernie and Johnny

Philippe de Rouilhan

In his classic 1965 article “What Numbers Could Not Be” Benacerraf recounts the
parable of Ernie and Johnny, those two children to whom their respective
father-tutors presented the terms of Neumann’s progression and those of Zermelo’s
progression as being the natural numbers, and who come into conflict when it
comes to knowing whether or not 3 belongs to 17. From this, Benacerraf derives the
ontological moral that only the structure of progression of the so-called natural
numbers counts, while the natural numbers themselves do not exist. He says almost
nothing about an ontologically neutral, methodological moral that would enable
Ernie and Johnny to “identify” their respective progressions with one another, all
the while collaborating harmoniously on the development of arithmetic as a theory
of progressions. The aim of this paper is to present such a moral. I shall do so in
terms essentially originating in the crossing of Tarski’s first1 theory of models,
outlined in his 1936 article on logical consequence, with Bourbaki’s theory of
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Abel and Hilbert,” on June 2, 2015 at the Institut Henri Poincaré (IHP). In more recent
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have met their expectations. At last, thank God, Claire O. Hill transmuted all the stuff, but for a
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structures as set forth in 1957 in the first edition of chapter 4 of Book 1 of the
Éléments. I shall consider four methods, one after the other.

The first method will come to mind naturally: Ernie and Johnny have but to limit
themselves to statements whose truth-value is invariant through the class of the
progressions, but certain results, easy to obtain, will reveal the worrying logical
complexity of the invariance in question. Thus one will be led to advise Ernie and
Johnny to fall back on a second, fortunately simple, method: the formal axiomatic
method. Taking a closer look, however, it will turn out that Ernie and Johnny
should meet a certain requirement of structurality, explained here in terms of a
revised version of Bourbaki’s notion of transportability, and therefore move on to a
third method, which one could call the structural axiomatic method. The concept of
transportability, however, will prove to carry with it the same signs of logical
complexity as the invariance of truth-value through the progressions. Ernie and
Johnny could, therefore, just as well resort to a fourth and final method by going
back to the Neumann and Zermelo progressions so as to uphold the requirement of
transportability from that point on.

By highlighting the logical complexity of the concept of transportability, perhaps
I will have added to the reasons adduced by those who doubt that Bourbaki’s theory
of structures is adequate for the rational reconstruction of a properly structural
mathematics, or even that set theory is an adequate framework for such a recon-
struction. I shall have, however, held back from leading our two innocent boys
down the heathen path.

8.1 Benacerraf’s Parable and Its Ontological Moral

Thus, Benacerraf presented two young children, Ernie and Johnny, who were taught
arithmetic not as a particular subject but as a mere chapter of set theory.2 For Ernie,
natural numbers were defined à la Neumann: 0 = df ∅, 1 =df 0 [ {0}, 2 =df 1 [
{1}, …, n + 1 =df n [ {n}, …; and for Johnny, they were defined à la Zermelo:
0 =df ∅, 1 =df {0}, 2 =df {1}, …, n + 1 =df {n}, …. And each one took the
definition literally, as expressing what natural numbers are, namely this, or that, and
no more or less than that. Everything was fine until one day, comparing their ideas,
they realized with amazement that they did not agree about everything, for instance
about the question as to whether or not 3 2 17. For Ernie the answer was yes, for
Johnny no. They soon detected the origin of their disagreement, namely they had
not been taught the definition of natural numbers in the same way. At least one of
the two definitions, they thought, had to be wrong.

Benacerraf settled the matter in his own distinctive way, namely by pointing out
that neither definition, nor any other of the same kind, provides any ground justi-
fying its claim to prevail over its rivals when it comes to stating what natural
numbers “themselves” are. Indeed, natural numbers are not really definite sets at all
—neither, more generally, are they objects at all—, they are nothing at all beyond
the place they hold, the part they play, the function they fulfill, the purpose they
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serve within the progression where they occur. Those poor children, victims of the
“militant logicists” they had had as their private tutors (in fact, their respective
fathers!) were arguing about an illusory problem. With the eliminative version of a
structuralist philosophy of arithmetic, they will (kill the father and) find their peace
again.

I shall draw another lesson from that parable, one that is quite simply
methodological and indeed ontologically neutral. Whatever the ontological status of
natural numbers could be, whatever they could or could not be, it would suffice to
explain to our two innocent boys that, in the guise of a “definition,” each one was
only given an example of progression. These examples were borrowed from Ernst
Zermelo and John von Neumann, whose only aim, when it came to the “definition”
of natural numbers, certainly amounted to no more than giving examples of
progression.

Let me be more specific. Ernie was given Neumann’s progression, 〈N; 0, s〉,3

with

N =df the smallest set, y, such that ∅ 2 y and, for every x 2 y, x [ {x} 2 y;
0 =df ∅;
s =df (the graph of) the function x|! x [ {x} of N into N.

By the same token, Johnny was given, with the same notation, Zermelo’s pro-
gression, 〈N; 0, s〉, with

N =df the smallest set, y, such that ∅ 2 y and, for every x 2 y, {x} 2 y;
0 =df ∅;
s =df (the graph of) the function x|! {x} of N into N.

One will appreciate the chiasma of first names4 and also, more seriously, the
ambiguity of notation. Ernie and Johnny argued about whether 3 2 17. Asked in
this way, the question is ambiguous, and the first thing to do is to have them clear
up the ambiguity by noting 〈NN; 0N, sN〉 Neumann’s progression, and 〈NZ; 0Z, sZ〉
Zermelo’s progression. The situation may then be explained straightforwardly. For
Ernie the question was actually whether 3N 2 17N (and the answer was yes); for
Johnny, whether 3Z 2 17Z (and the answer was no).

There is a second, incomparably more delicate, thing to teach our two ingenuous
boys: we should tell them that, and why, should they want to do arithmetic together,
in the modern sense of progression theory and in an harmonious manner, without
either of them having to give up the poisoned gift he had received from his
father-private tutor (incompatible definitions and ambiguous notation), they can do
so indeed on the necessary and sufficient condition that they abide by a certain
requirement. No doubt, Benacerraf is well aware of the existence of such a
requirement, and what he says is important. When dealing with explications of the
notion of natural number that can be provided by the means of any given particular
progression, like, for instance, Neumann’s or Zermelo’s, he states:
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There is no way connected with the reference of number words that will allow us to choose
among them, for the accounts differ at places where there is no connection whatever
between features of the accounts and our uses of the words in question.

Benacerraf (1965: 62)

In a nutshell, in order to work together harmoniously in arithmetic, Ernie and
Johnny only have to limit themselves to matters that are relevant to arithmetic,
either as usually practiced for its own sake, or applied. The problem is that
Benacerraf does not provide any criterion that our budding arithmeticians could
turn to, while this is just what they need. Let me try to do it on his place.

8.2 First Attempt: Ernie and Johnny Can Keep
to the Genetic Method Provided They Limit
Themselves to Statements Whose Truth-Value Is
Invariant Through the Progressions

8.2.1 Have we not all been Ernie and Johnny, if not for the natural numbers, either
presumed to be familiar or reintroduced at fresh cost as verifying the Peano axioms,
at least for the successive extensions of the notion of number beyond the natural
numbers: integers, rationals, reals, complex numbers, and other quaternions? At
each stage, our own mentors, explicitly defining the new numbers in terms of the
foregoing ones, gave us definitions of the same kind as those of which, unbe-
knownst to them, our two children-guinea pigs were deprived of the instructions
sheet. For example, the reals were explicitly defined in terms of the rationals as one
or another 19th century mathematician had defined them (Weierstrass, Cantor,
Dedekind, or someone else), with an order relation and two algebraic operations
that made their set into a complete ordered field. But, even imagining one started
with the same rationals, these definitions did not lead to the same reals, any more
than Neumann’s and Zermelo’s definitions lead to the same natural numbers.

And yet, no, there was no Ernie or Johnny among us, because, as when learning
a language by the direct method, we later learned, as we went along, to separate the
grain from the chaff, i.e., the questions, assertions and denials that must be retained
from those that must be thrown out. We no more had an instruction sheet than Ernie
and Johnny did, but never the slightest mishap comparable to theirs either. Left to
their own devices, stuck with their trick definition, our two lost children would have
needed some explanation in due form so as not to head for disaster. It is this
explanation that I would like to give them. Benacerraf’s parable is a far-fetched tale
precisely where it makes one think the most.

8.2.2 Hilbert called the method of introducing the concept of number by suc-
cessive extensions starting from the natural numbers the genetic method (Hilbert
1900). We can recognize in Zermelo’s or Neumann’s explicit definition of natural
numbers a regressive extension, so to speak, of this method to the natural numbers
themselves, now constructed in purely set-theoretical terms.
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The problem is not only one of finding a method allowing Ernie and Johnny to
develop arithmetic while avoiding any conflict and all the while retaining the
original definitions and notations. A third child could join the party, who would
work under conditions comparable to those of Ernie and Johnny, and for whom the
natural numbers would have been defined: 0 =df ∅, 1 =df P(0), 2 =df P(1), …,
n + 1 =df P(n), …, or for whom, more precisely, the progression of natural
numbers, 〈N; 0, s〉, would have been defined by the following:

N =df the smallest set, y, such that ∅ 2 y and, for every x 2 y, P(x) 2 y;
0 =df ∅;
s =df (the graph of) the function x|! P(x) of N in N.

Ernie and Johnny may and indeed must look for the only properties of their
progression that are common to all the progressions, whether or not definable. But it
would be doing things backwards to begin by proving that their progression pos-
sesses such and such a property, so as to verify afterwards that all the progressions
possess it, and, were this not the case, to eliminate it. The right method would be to
begin by verifying that the property is indeed arithmetically relevant in the sense that
it is either possessed by all the progressions or is not by any, and then, in such a
disjunctive case, to try to show that it is possessed indeed by their progression.

8.2.3 To explain more precisely under what necessary and sufficient condition
Ernie and Johnny may stick to the original, ambiguous notations and incompatible
definitions, the explanation itself must obviously be devoid of ambiguity. The
distinctive subscripts ‘N’ and ‘Z’ introduced above (§1) are there for that purpose.

A progression in general can be defined, for example, in reference to Zermelo’s
progression, namely as being an object of the form 〈U; V1, V2〉 such that (i) U is a
set, V1 2 U5 and V2 2 F(U, U), and (ii) there is a bijection f: U ! NZ such that,
on the one hand, f(V1) = 0Z and, on the other hand, calling g the canonical
extension of f to sets F(U, U) and F(NZ, NZ), g(V2) = sZ.

6 Condition (i) says that
the object 〈U; V1, V2〉 is a structure7 of a certain kind, and condition (ii) that this
structure is isomorphic to Zermelo’s progression. The class of progressions thus
defined is not dependent on the progression chosen as reference in the definition.

We shall call

• NA (“Neumann arithmetic”) [ZA (“Zermelo arithmetic”), resp.] the extension8

of ZFC obtained by adding the constants ‘NN,’ ‘0N,’ ‘sN’ (‘NZ,’ ‘0Z,’ ‘sZ,’ resp.)
and the definitional axioms correlative to their definition (see §1, penultimate
paragraph);

• ℒ(NA) [ℒ(ZA), resp.] the language of NA (ZA, resp.) used by Ernie (Johnny,
resp.) to talk about Neumann’s progression (Zermelo’s progression, resp.).9

• GA (“generic arithmetic,” so to speak) the extension of ZFC obtained by adding
constants ‘N,’ ‘0,’ ‘s,’ now acting as parameters,10 and the axiom according to
which 〈N; 0, s〉 is a progression;

• ℒ(GA) the language of GA, at our disposal to speak about the generic pro-
gression 〈N; 0, s〉.
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A statement ofℒ(GA) is said to be true in (false in, resp.) a progression, 〈U; V1,
V2〉,—or, more generally, a structure, 〈U; V1, V2〉, such that V1 2 U and V2 2 F(U,
U)—if, and only if, it becomes plainly true (false, resp.) when the parameters ‘N,’
‘0,’ ‘s’ take U, V1, V2, respectively, as values. As for the notion of truth (falsehood,
resp.) simpliciter appealed to here, as opposed to that of truth in (falsehood in, resp.)
and not to be confused with demonstrability (refutability, resp.), it is a clear enough
notion since Tarski (see Tarski 1933) for us to be allowed to use it without further
explanation, or just about. To rein in the trouble and confusion sometimes accom-
panying the use of a word as banal as “true,” may it suffice here to draw attention to
this, which strikes at the heart of the concept of truth. In a quite general way, if an
English statement, A, contains neither the truth predicate nor any related predicate,
quoting this statement to assert its truth with the help of a second statement (⌈A is
true ⌉), or asserting what A expresses by using A itself without speaking of its truth
(see endnote 12) amount to the same thing. To a certain extent, one can thus forego
the truth predicate, but, if the truth predicate is applied to a statement that is merely
described, as in “The first statement of the Vulgate is true,” or is left indeterminate,
as in “The logical consequences of a true statement are true,” one cannot do this.

On the basis of all this, we can reformulate in a precise way the method that
Ernie and Johnny should respectively follow. They must only take an interest in
statements ofℒ(NA) [ℒ(ZA), resp.] of which the counterpart statement ofℒ(GA)
[obtained by substituting ‘N,’ ‘0,’ ‘s’ for ‘NN,’ ‘0N,’ ‘sN’ (‘NZ,’ ‘0Z,’ ‘sZ,’ resp.),
respectively] is true in every progression or is in none, in other words, whose truth-
value is invariant through the class of progressions, or, more briefly, is tv-invariant
through the progressions.

Ernie and Johnny were right to affirm that 3 2 17 and that 3 62 17, respectively,
in the sense in which they understood it, but it is just that, from that point on, they
must consider these truths, which are not tv-invariant through the progressions, to
be truths irrelevant to arithmetic, truths that do not count. If they have understood
correctly that the arithmetic in question is no longer the theory of natural numbers,
but the theory of progressions, or of generic progression, they are, in principle,
sheltered from any irrelevance comparable to that which led them to contradict one
another.

8.2.4 To apply the method in question, the ideal would be for the tv-invariance
of a statement of ℒ(GA) through the progressions to be easily recognizable, as, for
example, Fermat’s last theorem or Goldbach’s conjecture, even though discovering
its truth-value, presuming that to be possible, could present the greatest difficulties,
as in the past for the theorem, and still today for the conjecture. Unfortunately, it
may happen that this is not the case.

For the sake of accuracy, let us call GA+ the extension of GA obtained by adding
the elementary syntax of GA,11 and GA+ the extension of GA+ obtained by adding
what, by abuse of language, may be called a recursive definition of truth in a
progression for the statements of ℒ(GA).12 This theory is strong enough to
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meet all our needs, and weak enough not to overflow the set-theoretical framework
in which GA was itself constructed.13 For our present purposes, it has everything in
its favor.

For any statement, A, of ℒ(GA), let me call ♯A the universal closure of the
result of substituting the variables ‘U,’ ‘V1,’ ‘V2,’ for ‘N,’ ‘0,’ ‘s,’ respectively, in
A, which is the canonical expression in ℒ(ZFC) of the truth of A in all the
progressions; and let me call ♭A the statement ⌈♯A or ♯(non A)˥, which is the
canonical expression in ℒ(ZFC) of the tv-invariance of A through the
progressions.14

PROPOSITIONS — (i) There is a statement, C, of ℒ(GA) such that ♭C is as
difficult to decide in ZFC as Goldbach’s conjecture; (ii) there is a statement, C, of
ℒ(GA) such that ♭C is undecidable in ZFC (barring inconsistency).

PROOFS.—(i). Let there be

• A a statement of ℒ(GA) true in every progression;
• B a statement of ℒ(GA) non-tv-invariant through the progressions;
• Goldbach the statement in ℒ(GA) of Goldbach’s conjecture;
• C the statement ⌈(Goldbach and A) or (not Goldbach and B)˥ (C is our

statement!)

If Goldbach is true in all the progressions, then so is C and C is therefore
tv-invariant through the progressions. And if Goldbach is false in all the pro-
gressions, then C has the same truth-value as ⌈not Goldbach and B˥ in all the
progressions, which has the same truth-value as B in all the progressions, which is
not tv-invariant through the progressions, and therefore C is not tv-invariant
through the progressions. We have just easily proved ⌈C is tv-invariant through the
progressions , Goldbach is true in all the progressions˥, i.e., ⌈♭C , ♯Goldbach˥
in GA+, without invoking the properly arithmetical axiom of GA. By choosing
A = ‘card(N) = card(NZ),’ B = ‘N = NZ’ and by eliminating the truth predicate of
the proof, one easily obtains a proof of ⌈C , Goldbach˥ in ZFC. It is finally as
difficult to decide C in ZFC as it is to decide Goldbach.

(ii). Let us assume the consistency of ZFC (and, therefore, of GA, which is
consistent relatively to it), and let us call Gödel a statement of ℒ(GA) that is
undecidable in GA. By replacing ‘Goldbach’ by ‘Gödel’ in the beginning of the
proof of (i), we deduce ⌈♭C , ♯Gödel˥ from the hypothesis of consistency in GA+

without invoking the properly arithmetical axiom of GA. By then choosing A and
B as we did in the proof of (i), and by eliminating the truth predicate, we derive
⌈C , Gödel˥ from the hypothesis of consistency in ZFC and, finally, the unde-
cidability of C.

8.2.5 The proposition (ii) and its proof would in fact still hold if we replaced
ZFC with any extension whatever obtained by adding an effective15 set of purely
set-theoretical new axioms. A corollary to this remark is that the set of statements of
ℒ(ZFC) canonically expressing the tv-invariance through the progressions of a
statement of ℒ(GA) tv-invariant through the progressions is neither effective, nor
even effectively enumerable. The same obviously goes for the set of statements
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invariant through the progressions themselves. We wish we had been able to say to
Ernie and Johnny something like: “You can safely drop your distinctive subscript
(‘N’ or ‘Z’) if, and only if, you limit yourselves to statements of your language
[ℒ(NA) or ℒ(ZA)] whose counterparts in ℒ(GA) are the statements of a certain
sub-language (in a sense to be specified) of ℒ(GA), or at least constitute a certain
effective subset of the set of statements of ℒ(GA).” But, we have just seen that this
is far from being the case. Let us repeat this: the set of statements of ℒ(GA) tv-
invariant through the progressions is neither effective, nor even effectively
enumerable.

For want of better, we can advise Ernie and Johnny to go to pains to establish a
battery of criteria of tv-invariance through the progressions that will allow them, as
arithmetic develops out of their progression, to make sure without too much dif-
ficulty that the statements they are interested in have as their counterparts inℒ(GA)
statements that are tv-invariant through the progressions. They will realize, for
example—and this will be good news—, that the set of statements of ℒ(GA) tv-
invariant through the progressions is stable for the Boolean operations.16 If
statements of ℒ(GA), A, B, C, …, are tv-invariant through the progressions, then
so are ⌈not A˥, ⌈A or B˥, ⌈A and B˥, ⌈A ) B˥, ⌈A , B˥, etc. However, they will
also realize, for example—and this will be bad news—, that the set in question is
not stable for tautological deduction, based just on the use of Boolean operators.
Indeed, let A and B be two statements ofℒ(GA) that are, respectively, true in every
progression and not tv-invariant through the progressions, and let C = ⌈not A and
B˥. Just like A, C is tv-invariant through the progressions (because of ⌈not A˥),
while B is not although it is deducible from C.

To proceed further, Ernie and Johnny will first of all have to consider a property
more general than that of tv-invariance through the progressions of a statement of
ℒ(GA), viz., the property, for a formula of ℒ(GA) and an assignment of values to
its free variables,17 of being tv-invariant through the progressions for this
assignment; then to take into account successively the formulas governed by a
primitive predicate (‘=,’ ‘Ens,’ ‘2’) or a quantifier (‘9,’ ‘8’), without forgetting the
description operator (say the upside down iota of Peano) in case it occurs in
ℒ(ZFC). Our little soldiers have their work cut out for them. But, once they have
come up with the right criteria, they will be saved, won’t they?

8.3 Second Attempt: Ernie and Johnny Would Do Better
to Start Using the so-Called Formal Axiomatic Method

Admittedly, Ernie and Johnny are now saved, but at what cost!
Hilbert contrasted the genetic method with the axiomatic method (Hilbert 1900),

which he had implemented in his Grundlagen der Geometrie (Hilbert 1899) and
which he preferred. Was this already the formal axiomatic method that he would
much later contrast with the material, contentual (inhaltlich)18 axiomatic method in
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the first pages of the Grundlagen der Mathematik I (Hilbert 1934), as he would
have then people believe and as the doxa adamantly maintains? Be that as it may, in
order to see the formal axiomatic method unhesitatingly adopted on a major scale,
the historical priority must be given to van der Waerden in his famous Moderne
Algebra (van der Waerden 1931).19

Instead of allowing our two heroes to go to great pains to observe the safety
measures prompted, strictly speaking, by the use of the genetic method, we should
rather initiate them to the formal axiomatic method, applied to arithmetic consid-
ered once again as theory of progressions, or of generic progression, and reveal to
them the only advantage for the new method that can be had from the rotten
definitions that their respective fathers made them swallow.

So Ernie and Johnny only have to work directly in GA, or better, in the arith-
metic obtained from it by replacing its single but needlessly complicated axiom
with the celebrated axioms chosen to perfection by the author of Arithmetices20

Principia (Peano 1889). In other words, they have but to work directly in Peano
arithmetic,21 referred to here as PA,22 whose axioms express: (A1) that 0 belongs to
N, (A2) that s is (the graph of) an application of N into N, (A3) that this application
is injective, (A4) that 0 does not belong to its image, and (A5) that any subset of N
having 0 among its members and being stable under s is all of N.

Of course, our two young modern axiomaticians will not therefore be shielded
from arithmetic irrelevance (see above, §1), but, assuming that PA is consistent, at
least they will not risk contradicting one another. As for the sole genuine interest of
the purely set-theoretical construction of progressions such as those of Neumann
and Zermelo, it shows in ZFC the existence of progressions, and, as a corollary, that
PA is consistent relative to ZFC. Indeed, if there existed a statement, A, of ℒ(PA)
such that A and its negation were provable in PA, in other words, such that A and
its negation were deducible in a purely set-theoretical fashion from the Peano
axioms, then, by substituting the definiensa of ‘NZ,’ ‘0Z,’ ‘sZ,’ for example, for ‘N,’
‘0,’ ‘s,’ respectively, in corresponding deductions, one would obtain deductions in
ZFC of a statement and its negation from instances of Peano axioms provable in
ZFC, and ZFC would therefore be contradictory.23

8.4 Third Attempt: Ernie and Johnny Would Do Even
Better to Start Using an Axiomatic Method that One
Might Call Structural

8.4.1 Is everything fine, now? No, not yet.
Let us go back to the conflict to which the young students have found them-

selves exposed through the fault of irresponsible mentors and to its solution in terms
of tv-invariance through the progressions. In the beginning, we more or less told
them this: “If (and only if) you limit yourselves to the statements of your language
that attribute to your progression a property that is possessed either by all the
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progressions or by none, i.e., if you limit yourselves to statements whose coun-
terparts inℒ(GA), orℒ(PA), are tv-invariant through the progressions, you will be
protected from any conflict, you will be able to drop your distinctive subscript
safely. You will be able, as one says, to identify your respective progressions with
one another, and also with any progression and with the generic progression.” Then,
we saw how costly this precaution would be and finally urged our arithmeticians in
short pants to change methods, to adopt the formal axiomatic method for devel-
oping GA or, better, PA.

The analysis was not wrong, but it might have been somewhat obsessed with the
maxim of conservation in solving problems. It remained superficial. It did not go to
the heart of the matter. Right after having considered the first method with the two
boys, we could have, and perhaps even should have, told them in heuristic terms:
“In fact, apart from any danger of conflict, the definitions you were given without
instructions for their use have their origin, their own methodological nature, in the
idea that what counts in the study of a progression as such isn’t, of course, all the
properties of this progression, but it isn’t, for that matter, all the properties that
progressions have in common either. What counts is only those of these properties
that are—in a sense yet to be specified—structural. You must therefore limit
yourselves to statements of your language that express the possession of these
properties by your progression, in other words, to those of these statements whose
counterpart in ℒ(GA) is structural.” And it is now time to tell them: “In fact, it is
not all the properties of the generic progression that count. It is only its structural
properties. You must therefore limit yourselves to statements of ℒ(PA) that are
structural.” Be that as it may of the ontological structuralism inaugurated by
Benacerraf about arithmetic, it is in this requirement of structurality, and in this
requirement only, that a rigorous idea of methodological structuralism arises.

8.4.2 To explain what that means nicely, freely echoing Bourbaki’s theory of
structures as applied to the theory of progressions, I must enrich the supply of
model-theoretical notions presented above (§2.2) a little bit.

The axioms of PA naturally divide into two groups. The first two axioms:

(A1) 0 2 N
(A2) s 2 F(N, N)24

are the axioms of typification, which say that 0 and s belong, respectively, to
echelons N and F(N, N) of the scale of sets of base N.25 The last three ones:

(A3) s is injective
(A4) 0 62 Im(s)
(A5) for every X � N, if 0 2 X and X is stable under s, then X = N

are the axioms of specification, which say which purely set-theoretical properties
the objects N, 0, s are assumed to possess, or in which relations they are assumed
to be.

An object of the form 〈U; V1, V2〉, where V1 2 U (see endnote 5) and
V2 2 F(U, U), is a structure of interpretation of the language ℒ(PA), i.e., a
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structure in which ℒ(PA) can be interpreted, the interpretation being then that in
which ‘N,’ ‘0,’ ‘s’ denote—or take as a value—U, V1, V2, respectively. A (M,
resp.) being a statement (a set of statements, resp.) of ℒ(PA), such a structure is a
model of A (M, resp.) if, and only if, A (the statements of M, resp.) is (are) true in
this structure. The class of models of the axioms of typification is a kind of
structure, referred to here as C; the class of structures of kind C that are models of
the axioms of specification is a species of structure, referred to here as R, subor-
dinated to the kind C. The structures of species R are none other than the pro-
gressions; the structures of kind C have not been assigned a common noun of their
very own.

8.4.3 The essential question remains to be answered: What does the structurality
requirement consist in? The structurality of a statemenof ℒ(PA) mustcertainly be
explicable in terms of tv-invariance by isomorphism through a certain class of
structures. The question is: Which one? Since there is only one class of isomor-
phism in the species R, the tv-invariance through R is none other than the
tv-invariance by isomorphism through R, but R is not the class we are looking for.
The explication of structurality by tv-invariance by isomorphism through R would
underdetermine the essence of the structurality one wants to explain. It would at
best only explain a weak form of structurality, structurality relative to R.

A preliminary remark is necessary regarding the notion of isomorphism. In
mathematics, people have acquired the habit of associating the notion of isomor-
phism with a species of structure (“isomorphism of ordered sets,” “isomorphism of
groups,” “isomorphism of topological spaces,” etc.). Admittedly, this way of
speaking is formally correct, but it is also somewhat misleading. It would lead us
here to speak of “isomorphism of progressions,” as if the notion of isomorphism at
play was bringing about the relativization to species R all by itself, while it depends
only on the kind C. Two structures of kind C, 〈U; V1, V2〉 and 〈U′; V′1, V′2〉, are
isomorphic if, and only if, there is a bijection, f U ! U′, such that f(V1) = V1′ and,
calling g the canonical extension of f to sets F(U, U) and F(U′, U′), g(V2) = V′2.
Now, when PA is developed ab initio (within the framework already fixed of ZFC),
once the axioms of typification are laid down and the kind C and the notion of
isomorphism are thereby both determined, the structurality requirement holds
starting from the first possible axiom of specification, no matter which one it is,
even though it has not been laid down yet. Just like the notion of isomorphism, the
notion of structurality to be explicated must depend only on kind C and not on one
or another subordinate species. This thesis can be confirmed by noting that the
development of PA naturally leads to an interest in the consistency of the axioms of
specification, in their mutual independence, and, more generally, in the effect each
one of them has on the theory, and therefore to a consideration, however brief, of
other species of the same kind C, while an interest in the very same statements is
still in order. These statements must be able to retain their structural nature inde-
pendently of the species under consideration.

Hence the explication sought, based on the strongest possible form of
tv-invariance by isomorphism, according to which a statement of ℒ(PA) is
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structural (relative to C) if, and only if, it is tv-invariant by isomorphism through
the kind C—in other words, still borrowing just as freely from Bourbaki, if, and
only if, it is transportable (through C). The explicatum of structurality is
transportability.26

Any transportable statement is obviously tv-invariant through R, but the reverse
does not hold, as the following counter-example shows. Let us use ‘A1–5’ to abbre-
viate the conjunction of axioms (A1),…, (A5), and let 〈Z; 0, s〉 be a structure of kindC
defined purely set-theoretically and isomorphic to the set of integers equipped with its
usual zero and successor function. The statement ‘A1–5 or 〈N; 0, s〉 = 〈Z; 0, s〉’ is true
in the progressions, it is therefore tv-invariant through R; but it is also true in 〈Z; 0, s〉
without being true of any other structure isomorphic to the latter. It is therefore not
transportable.

The axioms of typification of PA are transportable, since they are true, by
definition, in any structure of kind C. So are, as they should be, the axioms of
specification, as can be verified axiom by axiom. And it is in keeping with the spirit
of the structural method, even though the author of the Éléments does not do it
expressly for any theory of species of structure as such, to require of the theorems
of the theory of progressions as theory of the species of structure of progression
that they be transportable.

8.5 Fourth Attempt: Ernie and Johnny Could just as Well
Go Back to the Genetic Method, Provided They Limit
Themselves to Transportable Statements

Subject to the requirement of transportability, the structural axiomatic method no
longer enjoys the obvious advantage the formal axiomatic method had over the
genetic method. If Ernie and Johnny want to go back to the genetic method and, by
studying their favorite progression, to find exactly the same transportable properties
as those of the generic progression that the structural axiomatic method enables one
to find, they will have to endorse essentially the same requirement, and it will be
enough for them to do so. More precisely, they will have to keep to the statements
of their language whose counterpart in ℒ(GA) is transportable. On this condition,
and on this condition alone, will they be able to identify27 their respective pro-
gressions with one another and also to identify them with the generic progression—
i.e., they will be able to delete their distinctive subscript (and thus to restore the
original ambiguity)—without running the risk of mutual contradiction any more
than that of a divergence on the set of statements selected.

A balanced judgment can be made of the situation, which could already have
been made in Sect. 8.2.3. On the one hand, it is easy to show that transportability
(through C) has the same properties, and therefore poses the same problems as
tv-invariance through R. On the other hand, the transportability of a statement is, as
a matter of practice, more or less accessible to the intuition of anyone understanding
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it. This intuition may perhaps be validated by a proof, and this proof will be all the
easier to find if the suitable criteria of transportability have been established once
and for all.

In the above-mentioned appendix, Bourbaki sets up some thirty criteria of
transportability and finally leaves readers with a prudent, but optimistic remark:

Remark. — Practice alone can teach the extent to which the identification of two [struc-
tures]28 presents more advantages than disadvantages. It is necessary in any case that when
using it one does not risk writing non-transportable [formulas].29 The criteria given in this
Appendix show that the risk is most often minimal.

Bourbaki (1957) [1st ed.]: Chap. 4, 69

Whether or not these fine words suffice to reassure those they reach, one could
ask whether, in laying bare some not very nice properties of the notion of trans-
portability, we have not, volens nolens, added a bit of new grist to the mill of those
who, for completely different reasons which have arisen with the development of
mathematics itself, have long doubted or denied that the Bourbachic theory of
structures is adequate for the rational reconstruction of a properly structural
mathematics. Most of these disbelievers eye the theory of categories, the moderates
pleading for a new explication, “categorical” in style, in an adapted set-theoretical
framework, and the radicals for a change of framework and a “categorical”
reconstruction of all of mathematics.30 When the day comes, our budding mathe-
maticians will also have to take a stand on this matter and proceed, if they think it
necessary, to engage in some more or less painful revision.

Until that time, let us let them fight their first battle in light of the notion of
transportability and of the identifications that it authorizes: a time comes for
everything, even in the case of little geniuses.

Notes

1. Not to be confused with the second theory of models, codified by Tarski et al.
in the 1950s, which has developed into one of the fundamental topics of
contemporary mathematical logic.

2. To fix our ideas, one can identify the set theory in question to Zermelo-Fraenkel
set theory with the axiom of choice (ZFC). This is what I shall do—except for a
detail, which, nevertheless, is not to be neglected. ZFC is usually presented by
excluding from its intended universe those non-sets that Zermelo called
Urelemente. On the contrary, following Zermelo’s example, I am anxious to
countenance the possibility of such objects. The usual axioms must then be
amended to accommodate this possibility, and it turns out that the language
must contain, beyond the usual ‘2’ (dyadic predicate of membership), a second,
properly set-theoretical, primitive constant, for instance ‘Set’ (monadic predi-
cate of sethood) or ‘∅’ (singular term for the empty set).

3. 〈N; 0, s〉—definable as being 〈〈N〉, 〈0, s〉〉—rather than 〈N, 0, s〉, to mark the
distinction between, on the one hand, the base set N, and, on the other hand, the
operations 0 (zero-adic operation) and s (monadic operation) on this set.
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4. I have always sensed that this chiasma was deliberate. When writing this paper,
I expressed this to Fabrice Pataut, who then raised the question with Benacerraf.
The answer (to Fabrice) did not disappoint me: “You have found me out! I am
embarrassed to confirm that it was my idea of a small joke, and, in the context,
an example of a harmless switch about which there WAS a fact of the matter
regarding which was the right way.”

5. If V1 2 U, then U is a set and the clause that it is so is redundant and may be
eliminated. In the analogous circumstances encountered later on, the corre-
sponding clause will be eliminated.

6. The requirement that g(V2) = sZ is equivalent to the more familiar one that, for
all x 2 U, f(V2(x)) = sZf(x)).

7. For a definition of the general notions of structure and isomorphism in perfect
agreement with the considerations of the present article, see Rouilhan (2007:
43–56), to be compared with Bourbaki (1957) [1st ed.]: chap. 4, §1 (without
substantial change in the subsequent editions).

8. It will go without saying that, in going from a theory to one of its extensions,
the validity of the first theory’s axiom schemata and rules of inference are
extended to the language of the second theory.

9. To simplify things, setting aside the definition of these constants, I consider any
other possible “definition” to be only an abbreviation not involving any
enrichment of the language in question.

10. Without claiming to explain the general notion, I shall say that the parameters
are letters dealt with syntactically as constants, but semantically as variables, to
the extent that their interpretation is, in a certain sense, “indeterminate, but
fixed,” as was formerly said. In this case, in their new, parametric role, ‘N,’ ‘0,’
‘s’ are no longer ambiguous notations for designating NN, 0N, sN as well as NZ,
0Z, sZ, respectively. They can now respectively designate any U, V1, V2 such
that 〈U; V1, V2〉 is a progression.

11. It is a matter of the elementary study of signs, finite sequences of signs [among
them, the terms, the formulas, the statements (i.e. closed formulas)], and finite
sequences of finite sequences of signs (among them, the demonstrations),
independently of their meaning.

12. It is in reality a matter of an (explicit) definition of truth in a progression for the
statements of ℒ(GA) in terms of a more general notion, which concerns the
formulas of ℒ(GA) and is defined by recursion on their length, viz., the notion
of truth of a formula in a progression for an assignment of values to its free
variables. [A statement being a formula without free variables, its truth in a
progression can be explicitly defined as truth in this progression for every (or
some) assignment of values to its free variables.] The “recursive definition of
truth in a progression” in question can be considered adequate insofar as, for
any statement explicitly given, A, ofℒ(GA), the statement “for any progression
〈U; V1, V2〉, A is true in 〈U; V1, V2〉, A[U, V1, V2],” where ‘A[U, V1, V2]’ is
an abbreviation for the formula obtained from A by substituting ‘U,’ ‘V1,’ ‘V2,’
for ‘N,’ ‘0,’ ‘s,’ respectively, is provable in GA+ without resorting to the
properly arithmetical axiom of GA. This is the case, e.g., of the statement “for
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every progression 〈U; V1, V2〉, ‘for every x 2 N, s(x) 6¼ x’ is true in 〈U; V1, V2〉
, for every x 2 U, V2(x) 6¼ x.” [Compare with the remark “striking at the heart
of the concept of truth” made above (§ 2.3).].

13. This means that, like ℒ(GA), ℒ(GA+) is an extension of ℒ(ZFC) obtained by
adding constants each one of which is a singular term, a predicate, or a functor,
without affecting the variables [it goes without saying that, like those of GA,
the sets formed respectively by the terms, the formulas, and the demonstrations
of GA+ are effective (about this notion, see footnote 16)]. From this point of
view, the only notable difference between ℒ(GA) and ℒ(GA+) is that the
additional constants of ℒ(GA) are all singular terms, while one of the addi-
tional constants of ℒ(GA+) is a predicate (it is the predicate of truth of a
formula in etc. mentioned above, footnote 12).

14. The equivalences ⌈A is true in all the progressions , ♭A⌉ and ⌈A is
tv-invariant through the progressions , #A⌉ are provable in GA+ in a purely
set-theoretical fashion, without appealing to the properly arithmetical axiom of
GA (see endnote 12).

15. The notions of effectivity and effective denumerability are informal. The idea
here is that a set of expressions (or its characteristic function) is effective if, and
only if, there is an effective procedure enabling one, for any (explicitly given)
expression, to settle in a finite number of steps the question whether or not it
belongs to the set in question; and that a set of expressions is effectively
denumerable if, and only if, there is an effective procedure making it possible to
draw up a finite or indefinite list of elements (each explicitly given in its turn) of
this set. (One can persuade oneself that the effectivity of a set of expressions
implies its effective denumerability, but not vice versa.) As for the notion, also
informal, of effective procedure, several formal explications of it were given in
the 1930s, the most convincing being that of Turing, which however all proved
equivalent to one another. Church’s thesis states that they are adequate. The
general theory of any one of the explicata can naturally be had within the
framework of ZFC.

16. Operations also called truth-functional. It is a matter of operations of negation,
disjunction, conjunction, etc.

17. It goes without saying that these variables may be assigned absolutely any
values, thus without any restriction whatsoever involving N, 0, and/or s.

18. Instead of contrasting along with Hilbert the “formal” with “material” methods,
people sometimes contrast the “modern” with “traditional” methods—a mere
matter of words.

19. Which, being a matter of numbers, does not, however, keep the author—after
having presumed the natural numbers to be familiar and having recalled the
Peano axioms—from successively introducing the (relative) whole numbers,
the rationals, the reals, the complex numbers and the quaternions by the genetic
method.

20. “Arithmetices” instead of “arithmeticae,” in “Latino sine flexione,” the
Interlingua invented by Peano.
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21. Which it would be fairer to call “Dedekind-Peano arithmetic”; see
Dedekind (1888).

22. Not to be confused with the homonymous theory (“first order Peano arith-
metic,” “PA”), which logicians have rightly taken a great deal of interest in, but
the expressive and demonstrative capacities of which are extremely limited
compared to the one of interest to us here.

23. In a general way, from the construction in ZFC of an ordered set, a group, a
topological space, etc., one can conclude that the theory of ordered sets, group
theory, the theory of topological spaces, etc. are consistant relative to ZFC. It is
to be noted that the reverse does not hold. For example, the theory of sets of
cardinality strictly larger than that of the denumerable and smaller than that of
the continuum, which one could present in the formal axiomatic mode with ‘E’
as sole proper constant (playing the role of parameter), and ‘@0 < card
(E) < 2@0 ’ (which implies that E is a set), as sole proper axiom,—this theory is
consistent relative to ZFC (Cohen 1963–1964), but one cannot for that matter
construct a set in ZFC whose cardinal has this property (one can do so only if
ZFC is inconsistent).

24. In general, if E and F are sets, F(E, F), or FE, is the set of (the graphs of) the
applications of E into F.

25. The scale in question, E(N), is the smallest set, X, such that N 2 X and, for all
sets E1, E2, …, En+1 2 X, with n � 1, P(E1 � E2 � … � En) 2 X and
F(E1 � E2 � … � En, En+1) 2 X. The members of the scale E(N) are its
echelons. Let us say that, in this scale, the members of the echelon N are of type
1 and that, if the members of echelons E1, E2, …, En, En+1 are of respective
types s1, s2, …, sn, sn+1, then the members of P(E1 � E2 � … � En)
[F(E1 � E2 � …, En, En+1), resp.] are of type 〈s1, s2, …, sn〉 (〈s1, s2, …, sn !
sn+1〉, resp.). The members of N [F(N, N), resp.] are therefore the objects of
type 1 (〈1 ! 1〉, resp.) in the scale E(N). To situate an object in the scale E(N),
instead of saying what echelon it belongs to [for example, 0 to N and s to F(N,
N), see (A1) and (A2)], one could say what its “type” is (1 for 0 and 〈1 ! 1〉
for s). Hence the terminology of “typification,” the usefulness of which,
however, is only clearly apparent in the general theory of structures.

26. In the same way, tv-invariance by isomorphism through R, which explicates
structurality relative to R, as considered at the beginning of the present Sect. 4.3,
corresponds to transportability relative toR (Bourbaki 1957 [1st ed.]: Appendix,
n° 4). The explicatum of relative structurality is relative transportability.

27. See Bourbaki (1957) [1st ed.]: Chap. 4, Appendix, whose n°5 is entitled
“Identifications.” This appendix was purely and simply eliminated from the
following editions. One would like to know exactly what kind of pressure was
applied to bring about this unfortunate decision. The archives available online
today do not afford an answer.

28. Bourbaki is speaking here about “sets” for reasons of context, but what holds
for “sets” holds in particular for (what I call) “structures.”.

29. In Bourbaki’s idiosyncratic terminology: relations.
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30. On the complex story of Bourbaki’s relationship to the theory of categories, see
Corry (1992, 1996), in particular Chaps, 7 and 8 (§ 8.5), and Krömer (2006).
For a radical “categorical” solution to the Ernie and Johnny problem, see
Lawvere (1964), where an elementary, “categorical” theory of sets is devel-
oped, and McLarty (1993), where this theory is applied with a view to such a
resolution, whose value, whatever it may be, stems entirely from that of the
theory itself.
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Chapter 9
What Numbers Could Be; What Objects
Could Be

Stewart Shapiro

Paul Benacerraf’s “What Numbers Could Not Be” (Benacerraf 1965) has domi-
nated thinking in the philosophy of mathematics for almost 50 years. There have
been dozens of influential papers and books telling us what natural and real
numbers could and could not be, in light of the main observations forcefully pre-
sented in that paper. Benacerraf’s key observation, of course, is that there are
multiple, equally good reductions of natural numbers within set theory and, for that
matter, within just about any proposed foundation of mathematics.

Benacerraf (1965) was a major motivation, perhaps the major motivation, for
various varieties of structuralism, views that see mathematics as the science of
structure. According to the structuralist, what matters about natural numbers, for
example, are their relations to other natural numbers. In metaphysical terms, the
idea is that natural numbers do not have substantial intrinsic properties. They are
not self-subsistent objects, on a par with, say, tables, cars, and human beings. As
Benacerraf put it, “[t]o be the number 3 is no more and no less than to be preceded
by 2, 1, and possibly 0, and to be followed by 4, 5, and so forth” (Benacerraf
op. cit.: 70).

Roughly speaking, there are two varieties of structuralism. Eliminative struc-
turalists hold that, due to the various features highlighted in “What Numbers Could
Not Be,” natural numbers are not objects (Parsons 1990). The same goes for real
numbers, complex numbers, real-valued functions, and maybe even sets. We have,
to modify the title of Geoffrey Hellman’s (1989) book, mathematics without
objects; or, to use the title of Burgess and Rosen’s 1997 book, mathematics is a
subject with no object. It is, I think, straightforward to interpret the final section of
Benacerraf (1965) as a defense of eliminative structuralism. Michael Dummett
dubbed this a “hardheaded” orientation to structuralism:
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According to it, a mathematical theory, even if it be number theory or analysis which we
ordinarily take as intended to characterize one particular mathematical system, can never
properly be so understood: it always concerns all systems with a given structure.

Dummett (1991: 296)

Benacerraf (1965) is also a major inspiration for a second, opposing view, ante
rem structuralism, as articulated in my own Philosophy of Mathematics: Structure
and Ontology, from 1997. With the eliminativists, I take natural numbers to be
places in the natural number structure, but I take this structure to exist independently
of any exemplifications it may have. Structures are like traditional universals, in that
each structure is a one-over-many. In this case, however, the “many” are not indi-
vidual objects, but rather systems of related objects. Ante rem structuralism opts for a
platonic orientation to such things. As such, the natural number structure is a par-
ticular x-sequence, the form of all x-sequences. And, at least in some uses, numerals
denote places within this structure. Natural numbers, so understood, are bona fide
objects. Dummett calls this “mystical structuralism” (in Dummett op. cit.).

The two varieties of structuralism agree that there is no more to being a par-
ticular natural number than being related to other natural numbers in certain ways.
One view says that, because of this, numbers are not objects; the other view insists
that numbers are objects, namely places in an ante rem structure. One key philo-
sophical difference between the two structuralisms concerns what it takes to be an
object. This is our present topic.

Being the classic that it is, “What Numbers Could Not Be” deserves reading and
re-reading, especially as new views and options are put on the philosophical
map. What I propose to do here is to re-examine the third, and final, section, entitled
“Way out.” Our agenda is to see what views on objecthood the considerations there
support, or at least suggest. I propose connections to other work in the philosophy
of mathematics and the philosophy of language.

There is, I suggest, a tension between the first and third sub-sections of “Way
out.” The first proposes an intriguing account of identity. Extending those insights
to the very notion of object gives a different “way out,” a way in which natural
numbers are objects after all. Moreover, if certain views in the philosophy of
language are correct, numbers, so construed, are not all that different from other
sorts of objects. We will consider the sub-sections in order.

9.1 Sub-section A: “Identity”

The new, intriguing proposal is that statements of identity are context sensitive.
Benacerraf begins with a critical presentation of an aspect of Frege’s position (e.g.,
Frege [1884] 1960), the aspect that led to the infamous Caesar problem:
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To speak from Frege’s standpoint, there is a world of objects — that is, the designata or
referents of names, descriptions, and so forth — in which the identity relation has free
reign. It made sense for Frege to ask of any two names (or descriptions) whether they
named the same object or different ones. Hence, the complaint at one point in his argument
that, thus far, one could not tell from his definitions whether Julius Caesar was a number.

Benacerraf (1965: 64)

Benacerraf then proposes an alternate view, one that denies “that all identities are
meaningful.” In particular, the Caesar identities are dismissed as “senseless” or
“unsemantical”:

Identity statements make sense only in contexts where there exist possible individuating
conditions. If an expression of the form “x = y” is to have a sense, it can be only in contexts
where it is clear that both x and y are of some kind or category C, and that it is the
conditions which individuate things as the same C which are operative and determine its
truth-value. […] To put the point differently, questions of identity contain the presuppo-
sition that the “entities” inquired about both belong to some general category. This pre-
supposition is normally carried by the context or theory […]. To say that they are both
“entities” is to make no presupposition at all — for everything purports to be at least that.

[…] There are really two correlative ways of looking at the problem. One might
conclude that identity is systematically ambiguous, or else one might agree with Frege, that
identity is unambiguous, always meaning sameness of object, but that (contra-Frege now)
the notion of an object varies from theory to theory, category to category […]. This last is
what I am urging.

Benacerraf op. cit.: 64–65, 65, 65–66

I would urge “this last” as well.
Notice, first, that this is not a kind of relative identity, such as that advocated by

Peter Geach (Geach 1967). Benacerraf is not saying that there could be two cate-
gories C1, C2, such that s is the same C1 as t, but s is a different C2 from t—for the
very same s and the very same t, whatever that might mean. Benacerraf’s thesis is
that each singular term, and each variable, is associated with a particular category.
Statements of identity make sense only if the items that flank the identity sign are
associated with the same category. Or, in material mode, identities only make sense
between entities from the same category.

As Benacerraf puts it, statements of identity have a presupposition that the entities
in question belong to the same category. It might be noted that identity statements, on
this view, pass at least one main test for presupposition: both statements of identity
and their negations presuppose sameness of category. So, on this view, when the
entities come from different categories, the corresponding identity statement suffers
from presupposition failure, and so has no truth-value. The same goes for statements
of non-identity (except perhaps meta-linguistic versions thereof). So, for example,
both “2 = {0,{0}}” and “2 6¼ {0,{0}}” suffer from presupposition failure.

Aspects of Benacerraf’s proposal bear a family resemblance to the solution to
the Caesar problem proposed by the Scottish neo-logicists, Bob Hale and Crispin
Wright (Hale and Wright 2001: Chap. 14). Their thought, roughly, is that each
object is associated with a criterion of identity, indicating how that object differs
from all others, or at least all others of its kind. Natural numbers, they claim, are
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individuated through statements of one-to-one correspondence between concepts,
while people, say, are individuated through matters of spatio-temporal continuity
(or psychological continuity, or…). The difference between the neo-logicists and
the Benacerraf-view articulated in this sub-section of “What Numbers Could Not
Be” is that the former maintains that because of the differing criteria of identity,
Caesar is distinct from any natural number. So the corresponding identity statement
is false, not meaningless. Assuming that numbers and sets have different
identity-criteria, the neo-logicist has it that “2 = {0,{0}}” is false and “2 6¼ {0,
{0}}” is true.

Benacerraf broaches this possibility:

Some will want to argue that [the] identities [in question] are not senseless or unsemantical,
but simply false […]. I have only the following argument to counter such a view. It will be
just as hard to explain how one knows that they are false as it would be to explain how one
knows that they are senseless, for normally we know the falsity of some identity “x = y”
only if we know of x (or y) that it has some characteristic that we know y (or x) not to have.
I know that 2 6¼ 3 because I know, for example, that 3 is odd and 2 is not, yet it seems
clearly wrong to argue that we know that 3 6¼ [[[0]]] because, say, we know that 3 has no
(or seventeen, or infinitely many) members while [[[0]]] has exactly one. We know no such
thing. We do not know that it does. But that does not constitute knowing that it does not.
What is enticing about the view that these are all false is, of course, that they hardly seem to
be open questions to which we may find the answer any day. Clearly, all the evidence is in;
if no decision is possible on the basis of it, none will ever be possible.

Benacerraf op. cit.: 66–67

Of course, the neo-logicistmaintains that 2 does have something that {0,{0}} lacks,
namely its particular criterion of identity. Benacerraf concludes that “for the purposes
at hand,” the difference between these twoviews on identity “is not a very serious one,”
and that he “should certainly be happywith the conclusion that all identities”of the sort
under study “are either senseless or false” (Benacerraf op. cit.: 67).

My proposal, to be sketched below, is perhaps closer to Benacerraf’s, at least in
spirit, but I take the identities in question to be open, and thus neither meaningless
nor false. Saying the identities are meaningless precludes deciding them later, unless
the meanings of our words change. Saying that the identities are false also seems to
preclude deciding them later, unless we discovered we were wrong about the facts.

9.2 Sub-section B: “Explication and Reduction”

In this brief sub-section, Benacerraf takes up “two activities closely related to that
of stating that numbers are sets” (Benacerraf op. cit.: 67). The first, explication,
occurs when a theorist—mathematician or philosopher—somehow “identifies” one
kind of mathematical object with another. It may be part of an explication that, for
example, the natural number 3 is identical with the corresponding von Neumann
ordinal. Another common explication identifies each real number with a certain
Dedekind cut, and a third identifies each real number with a certain equivalence
class of Cauchy sequences of rational numbers. According to Benacerraf, this sort
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of “identification” does not constitute the foregoing mistake of thinking that this
number just is this set:

I certainly do not wish what I am arguing in this paper to militate against identifying 3 with
anything you like. The difference lies in that, normally, one who identifies 3 with some
particular set does so for the purpose of presenting some theory and does not claim that he
has discovered which object 3 really is. We might want to know whether some set (and
relations and so forth) would do as number surrogates. In investigating this it would be
entirely legitimate to state that making such an identification, we can do with that set (and
those relations) what we now do with the numbers. […] [I]t is clear that someone who says
this would not claim that […] numbers were really sets all along.

Benacerraf op. cit.: 68

The closely related activity of reduction occurs when one theory is interpreted in
another. Benacerraf reports that “Gaisi Takeuti [(Takeuti 1954)] has shown that the
Gödel-von Neumann-Bernays set theory is in a strong sense reducible to the theory
of ordinal numbers less than the first inaccessible number” (Benacerraf loc. cit.). As
Benacerraf put it, with a whiff of sarcasm: “No wonder numbers are sets; sets are
really (ordinal) numbers, after all. But now, which is really which?” (Benacerraf loc.
cit.). The conclusions are the same as with explication, namely that this activity does
not constitute a discovery or thesis that certain objects have been identical all along.

Consider the following passage from a chapter entitled “Are sets all there is?” in
Moschovakis (1994):

[Consider] the “identification” of the […] geometric line […] with the set […] of real
numbers, via the correspondence which “identifies” each point […] with its coordinate. […]
What is the precise meaning of this “identification”? Certainly not that points are real
numbers. Men have always had direct geometric intuitions about points which have nothing
to do with their coordinates. […] What we mean by the “identification” […] is that the
correspondence […] gives a faithful representation of [the line] in [the real numbers]
which allows us to give arithmetic definitions for all the useful geometric notions and to
study the mathematical properties of [the line] as if points were real numbers. […] [W]e
[…] discover within the universe of sets faithful representations of all the mathematical
objects we need, and we will study set theory […] as if all mathematical objects were
sets. The delicate problem in specific cases is to formulate precisely the correct definition of
“faithful representation” and to prove that one such exists.

Moschovakis (1994: 33–34)

On Penelope Maddy’s gloss, “the job of set-theoretic foundations is to isolate the
mathematically relevant features of a mathematical object and to find a set-theoretic
surrogate with those features” (Maddy 1997: 26). Of course, surrogates, by defi-
nition, are not the real thing. Something like a replacement, supposedly one that is
good for certain purposes. Benacerraf’s notions of explication and reduction are
useful descriptions of what is described.

The activities of explication and reduction are not only done for philosophical
purposes, such as ontological economy. Maddy highlights foundational benefits:
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[T]he set-theoretic axioms […] have consequences for existing fields. […] [The] single,
unified arena for mathematics provides a court of final appeal for questions of mathematical
existence and proof: if you want to know if there is a mathematical object of a certain sort,
you ask (ultimately) if there is a set-theoretic surrogate of that sort; if you want to know if a
given statement is provable or disprovable, you mean (ultimately), from the axioms of the
theory of sets.

Maddy loc. cit.

[…] [V]ague structures are made more precise, old theorems are given new proofs and
unified with other theorems that previously seemed distinct, similar hypotheses are traced at
the basis of disparate mathematical fields, existence questions are given explicit meaning,
unprovable conjectures can be identified, new hypotheses can settle old open questions, and
so on.

Maddy op. cit.: 34

The benefits of “explication” and “reduction,” within mainstream mathematics,
are, I think, even more substantial than these foundational ones. As Georg Kreisel
once put it:

[…] [V]ery often the mathematical properties of a domain D become only graspable when
one embeds D in a larger domain D’. Examples: (1) D integers, Dʹ complex plane; use of
analytic number theory. (2) D integers, Dʹ p-adic numbers; use of p-adic analysis.
(3) D surface of a sphere, Dʹ 3-dimensional space; use of 3-dimensional geometry.
Non-standard analysis [also applies] here.

Kreisel (1967: 166)

To take a simple example, when one realizes that the complex plane (or, for that
matter, the set-theoretic hierarchy) contains an “isomorphic copy” of the natural
numbers, then one can use complex analysis (or set theory) to shed light on the
natural numbers. The recent, spectacular resolution of Fermat’s last theorem is a
case in point, solving a problem in basic arithmetic through elliptical functions—
whether or not it should turn out that the theorem has a more elementary proof.

Sometimes the identifications, or embeddings, are amazingly fruitful, shedding
much light on a mathematical structure. Hermann Weyl once wrote that Riemann’s
approach to complex analysis should be seen

[N]ot merely a device for visualizing the many-valuedness of analytic functions, but rather
an indispensable essential component of the theory; not a supplement, more or less arti-
ficially distilled from the functions, but their native land, the only soil in which the func-
tions grow and thrive.

Weyl (1955: VII)

(See also Wilson 1992). Jamie Tappenden suggests that Weyl (1955) may not
have meant to endorse this sentiment unequivocally; he was referring to his earlier,
youthful exuberance (Tappenden 2005: 191n16). Nevertheless, in cases like these, I
suggest that one can be forgiven for thinking that one has discovered the true nature
of the entities in question, and that, to paraphrase Benacerraf, complex numbers
have been points all along.
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Nevertheless, Benacerraf says that explication and reduction are “neutral” on the
metaphysical issues broached in “What Numbers Could Not Be.” He notes, how-
ever, that these activities do “cast some sobering light on what it is to be an
individual number.” Both he and Maddy speak of “surrogates” for various math-
ematical objects. The underlying idea is grist for the structuralist mill. Why is it that
we can get so many valuable results about a given kind of mathematical entity by
studying surrogates for those entities? The answer, I suggest, is that in mathe-
matics, structure is all that matters. The surrogates exemplify the structure in
question and, of course, isomorphic systems are equivalent, at least in the language
of the structure. So anything, in the language of the original theory, that can be said
of the surrogates holds of the original structure. So, for example, a theorem of
complex analysis that only refers to the natural-numbers-of-the-complex-plane is
true of the natural numbers.

So far, so good. But what conclusions should be drawn from all of this con-
cerning the nature of natural numbers and other mathematical entities? This takes us
to the final sub-section of “What Numbers Could Not Be.”

9.3 Sub-section C: “Conclusion: Numbers and Objects”

This subsection begins with what has become a manifesto for structuralism, as the
“crux of the matter—that any recursive sequence whatever would do—suggests that
what is important is not the individuality of each element but the structure which
they jointly exhibit” (Benacerraf 1965: 69). Here, however, Benacerraf takes this
insight in an eliminative direction:

I therefore argue, extending the argument that led to the conclusion that numbers could not
be sets, that numbers could not be objects at all; for there is no more reason to identify any
individual number with any one particular object than with any other (not already known to
be a number). […] Number theory is the elaboration of the properties of all structures of the
order type of the numbers. The number words do not have single referents.

Benacerraf op. cit.: 69, 70–71

This eliminative conclusion turns on presuppositions concerning what it takes to
be an object and, correlatively, what it takes to be the referent of a singular term or
something in the range of a first order variable. And I take that to be the crux of the
matter, at least here, in the contrast between eliminative and ante rem structuralism.

Advocates of both kinds of structuralism—eliminative and ante rem—can agree
with Benacerraf “that number words are not names of special nonnumerical entities,
like sets, tomatoes, or Gila monsters” (Benacerraf op. cit.: 71). The ante rem
structuralist holds that number words, like numerals, are names; but they are not
names of any non-numerical entities. Number words are names of numbers.
Numbers, in turn, are places in the natural number structure. From the ante rem
perspective, this structure exists, and it is legitimate to have variables ranging over
its places, and to have singular terms denoting individual places.
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Consider Benacerraf’s argument, cited just above, that “numbers could not be
objects at all; for there is no more reason to identify any individual number with any
one particular object than with any other (not already known to be a number).” The
idea seems to be that it is not legitimate to say that numbers are objects unless we
can identify each number with some object “not already known to be a number.”
But there seems to be no analogous requirement on any other sorts of objects. For
example, no one would balk at the idea that, say, golf balls or statues, are objects,
just because we have no way to identify each golf ball or each statue with an object
not already known to be a golf ball or a statue.

Of course, there is a much-discussed metaphysical issue whether a given statue,
say, can be identified with the material that makes it up, say a lump of clay. The
statue and the clay seem to have different modal profiles: one can survive being
squashed to a pancake and the other cannot. And, in philosophy of mind and in
ethics there are raging debates over whether a person is to be identified with a
particular body, and in philosophy of mind, whether a certain mental state, such as
being in pain, is to be identified with a certain physical state. Perhaps these are
analogues of the present issues concerning numbers and sets. Notice, however, that
the success or failure of the identification of statues and clay lumps, persons and
bodies, mental states and physical states, seems to have no bearing on the question
of whether statues, persons, and mental states are objects. Prima facie, we do not
need to find a non-statue-type of object to identify with the statue, or a physical
entity to identify with a person or a mental state, in order to classify these as objects.
Similarly, we do not need to find a unique set, or a unique anything non-numeric, in
order to correctly think of numerals as names and to think of numbers as objects.

I submit that the proper orientation toward objects is a natural extension of the
aforementioned view sketched in Benacerraf’s first sub-section, on identity. Recall
that the target there was the Fregean thesis that the range of the identity relation
consists of any and all objects: “It made sense for Frege to ask of any two names (or
descriptions) whether they named the same object or different ones” (Benacerraf
op. cit.: 64). Recall that Benacerraf rejected this. He proposed instead that state-
ments of identity carry a certain presupposition. He simply denies “that all identities
are meaningful.” To repeat the key passage:

If an expression of the form “x = y” is to have a sense, it can be only in contexts where it
clear that both x and y are of some kind or category C, and that it is the conditions which
individuate things as the same C which are operative and determine its truth-value. […] To
put the point differently, questions of identity contain the presupposition that the “entities”
inquired about both belong to some general category. This presupposition is normally
carried by the context or theory […]. To say that they are both “entities” is to make no
presupposition at all—for everything purports to be at least that.

[…] There are really two correlative ways of looking at the problem. One might
conclude that identity is systematically ambiguous, or else one might agree with Frege, that
identity is unambiguous, always meaning sameness of object, but that (contra-Frege now)
the notion of an object varies from theory to theory, category to category […]. This last is
what I am urging.

Benacerraf op. cit.: 64, 65–66, 66
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I hereby urge something in the ballpark of “this last,” not only as an account of
identity statements, but also as an account of objecthood. If the very notion of
object varies from theory to theory, category to category, as Benacerraf suggests,
then there is no reason to expect an identification of numbers, golf balls, statues,
and persons with objects “not already recognized” to be numbers, golf balls, stat-
ues, and persons, respectively. For the same reason, there is no reason to deny the
honorific title of “object” to numbers.

The present proposal or, better, the present proposal sketch, fits smoothly with a
slogan coined by Quine: to be an object is to be the value of a bound variable in a
true theory. The basic principles of arithmetic are true, or at least their truth is not in
question here (putting fictionalism and the like aside). The ante rem structuralist
interprets arithmetic as being about a particular structure, with the first order
variables ranging over the places of this structure. So, numbers—places in the
natural number structure—are objects. To make the relativity explicit, the natural
numbers are the objects of arithmetic.

When put in these Quinean terms, one might think that the issue at hand is bound
up with that of so-called “absolute generality,” the question of whether it is coherent
to speak of “all objects whatsoever.” Frege presupposed that it is indeed coherent to
invoke absolutely unrestricted quantification, and that metaphysical reality, so to
speak, imposes a single, determinate identity relation on this absolutely general
range. It is this last that is rejected here.

Rejecting absolute generality does not resolve the problem, however. Another
Quinean slogan is “no entity without identity.” Perhaps there is a true theory whose
objects are the natural numbers—whatever those may be—together with some other
objects, say sets. By Quinean lights, that theory would have to have an identity
relation on its combined ontology. So the combined theory would have to decide
identities between numbers and the other objects, the sets.

Our question would then be whether the natural numbers of the combined theory
are, as a matter of metaphysical reality, the very same objects as those in the range
of the variables of arithmetic, a sort of stand-alone theory. The view proposed here
maintains that there is no fact of the matter concerning that question. It has a kind of
indeterminacy.

To put this is a larger perspective, let me sketch a philosophy of language, due to
Friedrich Waismann, that I have invoked in various contexts in recent years. Then
we’ll briefly apply it to the matters at hand.

9.4 Open-Texture

The perspective begins with a thorough rejection of what Mark Wilson calls the
“classical picture” of language, the thesis that the concepts we deploy are precisely
delimited in all possible situations, well beyond the normal use of the words
(Wilson 2006). The opposing claim, or one opposing claim, is that there is genuine
indeterminacy concerning at least some possible applications of words and what
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they stand for. Recall Benacerraf’s claim that identity statements have a presup-
position concerning theory or category. The idea here is that a similar, but less
articulate, presupposition applies to just about all of language.

Waismann introduced his notion of open-texture in an attack on crude phe-
nomenalism, the view that one can understand any cognitively significant statement
in terms of sense-data. The failure of the verificationist program:

is not, as has been suggested, due to the poverty of our language which lacks the vocab-
ulary for describing all the minute details of sense experience, nor is it due to the difficulties
inherent in producing an infinite combination of sense-datum statements, though all these
things may contribute to it. In the main it is due to a factor which, though it is very
important and really quite obvious, has to my knowledge never been noticed—to the ‘open-
texture’ of most of our empirical concepts.

Waismann [1945] (1968: 121)

Here is one of the thought experiments Waismann uses to illustrate open-texture:

Suppose I have to verify a statement such as ‘There is a cat next door’; suppose I go over to the
next room, open the door, look into it and actually see a cat. Is this enough to prove my
statement? […]What […] should I saywhen that creature later on grew to a gigantic size?Or if
it showed some queer behavior usually not to be found with cats, say, if, under certain
conditions it could be revived fromdeathwhereas normal cats could not?Shall I, in such a case,
say that a new species has come into being? Or that it was a cat with extraordinary properties?
[…] The fact that inmay cases there is no such thing as a conclusive verification is connected to
the fact that most of our empirical concepts are not delimited in all possible directions.

Waismann op. cit.: 121–122

The last cited “fact” is the key insight behind this philosophy of language.
Language users introduce terms to apply to certain objects or kinds of objects, and,
of course, the terms are supposed to fail to apply to certain objects or kinds of
objects. The point, after all, is to make distinctions. However, as we introduce
terms, and use them in practice, we cannot be sure that every possible situation is
covered, one way or the other. This applies even in science. Indeed, Waismann
applies the concept of open-texture to a concept that is now sometimes invoked as a
paradigm natural kind:

The notion of gold seems to be defined with absolute precision, say by the spectrum of gold
with its characteristic lines. Now what would you say if a substance was discovered that
looked like gold, satisfied all the chemical tests for gold, whilst it emitted a new sort of
radiation? ‘But such things do not happen.’ Quite so; but they might happen, and that is
enough to show that we can never exclude altogether the possibility of some unforseen
situation arising in which we shall have to modify our definition. Try as we may, no
concept is limited in such a way that there is no room for any doubt. We introduce a
concept and limit it in some directions; for instance we define gold in contrast to some other
metals such as alloys. This suffices for our present needs, and we do not probe any farther.
We tend to overlook the fact that there are always other directions in which the concept has
not been defined. […] We could easily imagine conditions which would necessitate new
limitations. In short, it is not possible to define a concept like gold with absolute precision;
i.e., in such a way that every nook and cranny is blocked against entry of doubt. That is
what is meant by the open-texture of a concept.

Waismann op. cit.: 122–123
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Waismann concludes: “Every description stretches, as it were, into a horizon of
open possibilities: However far I go, I shall always carry this horizon with me”
(Waismann op. cit.: 124).

Let R be an n-place predicate from natural language. Say that R exhibits open-
texture if there could be objects p1, …, pn, such that nothing in the established use
of R, or the non-linguistic facts, determines that R holds of p1,…, pn, and nothing in
the established use of R, nor the non-linguistic facts, determines that R fails to hold
of p1, …, pn. In effect, the sentence Rp1 … pn is left open by the use of the
language, to date. The claim here is that the identity relation is subject to
open-texture.

The phrase “open-texture” does not appear in Waismann’s treatment of the
analytic-synthetic distinction in a lengthy article published serially in Analysis
(Waismann 1949, 1950, 1951a, b, 1952, 1953), but the notion clearly plays a
central role there. He observes that language is an evolving phenomenon. As new
situations are encountered, and as new scientific theories develop, the extensions of
predicates change. Sometimes the predicates become sharper, which is what
someone who accepts open-texture would predict. As new cases are encountered,
the predicate in question is extended to cover them, one way or the other. When
things like this happen, there is often no need to decide—and no point in deciding
—whether the application of a given predicate to a novel case represents a change
in its meaning or a discovery concerning the term’s old meaning, going on as
before, as Wittgenstein might put it.

Waismann said, in an early article in the series: “there are no precise rules
governing the use of words like “time,” “pain,” etc., and that consequently to speak
of the ‘meaning’ of a word, and to ask whether it has, or has not changed in
meaning, is to operate with too blurred an expression” (Waismann 1951a: 53). The
key word here is “precise.” I take it that the “blurred expression” we are trying to
“operate with” is something like “means that same as.” There is genuine indeter-
minacy concerning that relation.

The opposing thesis, that there is always one and only one correct way to go on
consistent with the meaning of the term is what Wilson calls the classical picture.
This badly misrepresents the nature of language:

Simply […] to refer to “the” ordinary use [of a term] is naive. […] [The] whole picture is in
a state of flux. One must indeed be blind not to see that there is something unsettled about
language; that it is a living and growing thing, adapting itself to new sorts of situations,
groping for new sorts of expression, forever changing.

Waismann (1951b: 122–123)

Toward the end of the series, Waismann writes: “What lies at the root of this is
something of great significance, the fact, namely, that language is never complete
for the expression of all ideas, on the contrary, that it has an essential openness”
(Waismann 1953: 81–82).
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Waismann’s official definition of open-texture in Waismann [1945] (1968) limits
it to the application of empirical predicates (or their negations) to hitherto uncon-
sidered, and even undreamt of, cases. In Shapiro (2006), I argue that the mathe-
matical notion of a computable function (of natural numbers) is, or at least was,
circa 1936, subject to open-texture. The notion of a recursive (or Turing com-
putable) function served to sharpen it, to the extent that, now, Church’s thesis is
more or less uncontroversially true. Nevertheless, to ask whether the notion of a
recursive (or Turing computable) function corresponds exactly to the notion of a
computable function—the one implicit in the earlier mathematical treatments—is to
operate with too blurred an expression. Again, the blurred expression is something
like “means the same as.” The mathematical work served to sharpen or replace the
pre-theoretic, intuitive notion of computability.

Again, the proposal here is that the very notion of identity, at least within
mathematics, is similarly subject to open-texture. As new objects—and new
structures—are encountered and incorporated into theories, new identity statements
emerge, statements that, at least at first, are genuinely indeterminate.

Here is a sort of rational reconstruction of the current situation, amply described
in Benacerraf 1965, but recast in terms of open-texture. I am not claiming that this
is any more than a cartoon sketch of how something like the present state of play
could have come about.

At first, a community of mathematicians developed a theory of arithmetic. They
have a pure theory, which concerns only the natural number structure. Say it is
ordinary second order Peano-Dedekind arithmetic (to make sure that the theory is
categorical, and thus concerns only one structure). The mathematicians also have an
applied theory, showing how numbers—places in the structure—can be used in
various ways, such as determining the cardinalities of various collections, balancing
their checkbooks, and the like.

A bit later, the community develops a richer mathematical theory, say set theory,
and think they can use the resources of the richer theory to shed light on the natural
number structure. So they formulate a combined theory, one that has both variables
ranging over natural numbers and variables ranging over sets. They might have two
different variable-sorts, or else they may invoke a single sort, covering numbers and
sets, and introduce a predicate for natural numbers and a predicate for sets. This
difference does not matter here.

So now we confront a version of the question posed at the end of the previous
section. Is it the case that the “natural numbers” of the combined theory are the very
same objects as those studied in the pure theory of arithmetic? In terms of ante rem
structuralism, the question is whether the range of the arithmetic variables in the
combined theory (or the extension of the “natural number” predicate in that theory)
consists of the places in the natural number structure, the subject matter of the pure
theory of arithmetic. The view here is that there is no fact of the matter concerning
that question. It has a kind of indeterminacy. To ask if the original natural numbers
are the same as the new natural numbers, is the same sort of question as asking if
the arithmetic terminology in the original theory has the same meaning as its
counterpart in the new theory. And that, to paraphrase Waismann, is to operate with
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too blurred an expression. As above, the blurred expression here is something like
“means the same as” or, in more ontological mode, “has the same subject matter.”
There is genuine indeterminacy concerning that relation, vagueness if you will.

So let us turn to the combined theory, putting the “past” pure theory aside for the
time being. In the new theory, the community of mathematicians might need, or at
least want, an identity relation. If they take the Quinean slogan, no entity without
identity, seriously, then they will need an identity relation, in order to satisfy
themselves that they are dealing with entities. Slogans aside, the community might
want an identity relation, for matters of convenience, ontological economy, or what
have you.

In other words, the mathematical/linguistic community in question might need to
or want to decide identity statements between the natural numbers of the new theory
and the sets of the new theory. Satisfying this want or need is not a matter of
discovering some fact about the world. Nothing that they have said or done to date
determines whether a given natural number is the same as or different from a given
set. Such is open-texture. The situation is just like that in Waismann’s thought
experiments, where it is noted that nothing we have done to date determines
whether the envisioned creature (if that is what it is) is a cat, or whether the
envisioned substance is gold.

Recall Waismann’s quip: “Every description stretches, as it were, into a horizon
of open possibilities: However far I go, I shall always carry this horizon with me”
(Waismann [1945] 1968: 124). The present claim is that, at least in mathematics,
the “horizon” applies to the identity relation as much as to any other notion. As new
structures are defined and studied, and as these new structures are related to the
existing ones, identity issues can arise, and can be settled.

In the rational reconstruction at hand, the mathematical-cum-linguistic com-
munity has at least two choices. One is to identity the natural numbers with certain
sets, such as the finite von Neumann ordinals. If they choose, they can make the
identification permanent. So as a matter of linguistic fiat, the numeral “2” would
denote the set {/,{/}}. The community would thereby sharpen the identity rela-
tion, similar to what happens when the use of any open-texture term is extended to
cover new cases, one way or the other. The resulting theory will extend the old,
pure arithmetic. No theorems would be lost. The reason this would go so smoothly
is that the finite von Neumann ordinals form an x-sequence, and so anything, in the
language of arithmetic, that is true of this set is also true of the original natural
numbers.

A second option for the mathematicians is to insist that natural numbers are
distinct from sets. That is, if m is a natural number and s is a set, then m 6¼ s. They
can still, to use Benacerraf’s term, explicate the natural numbers as certain sets (say
the finite von Neumann ordinals), for certain purposes, or they can reduce arith-
metic to set theory in various ways. However, because it is an explication, or
reduction, the community would not be saying that natural numbers are sets. The
community might even find it convenient to use different explications at different
times, or even at the same time. Some might prove convenient for some purposes,
others for other purposes.
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From the perspective urged here, there is no question, no matter of fact, con-
cerning whether one or the other of these options is the correct way to “go on as
before,” as Wittgenstein might have put it. Again, to think that one or the other
option—a permanent identification or a range of explications—is the correct option
is to fall into the classical picture of language, the thesis that the concepts we deploy
are precisely delimited in all possible situations. This applies especially to the
identity relation.

Concerning the actual world of mathematics, Wilson once noted that “any notion
that the reals should not be identified with sets represents as great a misunder-
standing of mathematical ontology as the claim that they should” (Wilson 1981).
That orientation is sanctioned here, through the notion of open-texture.

To reiterate, the foregoing rational reconstruction, and the ensuing observations,
are meant to support the conclusion of the previous section and, for that matter, that
of Shapiro (1997), namely that natural numbers are places in the natural number
structure and that, as such, they are fully bona fide objects. They are as bona fide as
any other objects, be they avocados, statues, or golf balls.
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Part III
Supertasks

If we take the stand that “nonconstructive” procedures—i.e., procedures that require
us to perform infinitely many operations in a finite time—are conceivable,* though
not physically possible (owing mainly to the existence of a limit to the velocity with
which physical operations can be performed), then we can say that there does “in
principle” exist, a verification/refutation procedure for number theory.

*E.g., if one has an infinite series of operations to perform, say S1, S2, S3,… and one
is able to perform S1 in 1 min, S2 in 1/2 min, S3 in 1/4 min, etc.; then in 2 min one
will have completed the whole infinite series.

Benacerraf and Putnam ([1964] 1983: 20)



Chapter 10
Tasks, Subtasks and the Modern Eleatics

Jon Pérez Laraudogoitia

10.1 Introduction

In a frequently quoted paragraph, Benardete presented the “paradox of the gods” in
the following terms:

A man decides to walk one mile from A to B. A god waits in readiness to throw up a wall
blocking the man’s further advance when the man has travelled ½ mile. A second god
(unknown to the first) waits in readiness to throw up a wall of his own blocking the man’s
further advance when the man has travelled ¼ mile. A third god…, etc. ad infinitum. It is
clear that this infinite sequence of mere intentions (assuming the contrary-to-fact condi-
tional that each god would succeed in executing his intention if given the opportunity)
logically entails the consequence that the man will be arrested at point A; he will not be able
to pass beyond it, even though not a single wall will in fact be thrown down in his path. The
before-effect here will be described by the man as a strange field of force blocking his
passage forward.

Benardete (1964: 259–260)

In the present paper, I set myself four tasks. The first is to construct a gener-
alization of the Benardete Dichotomy that allows us to reveal its true scope. I then
defend this generalization by demonstrating that it may quite clearly be analyzed in
Newtonian terms which are also applicable to the original Benardete Dichotomy.
The demonstrated possibility of a physically consistent Benardete Paradox suggests
the introduction of a new concept, the concept of subtask, that unifies and sys-
tematizes the study of the paradox and its many generalizations. Finally I propose a
purely mechanical model of the paradox of the gods that allows me to formulate an
argument against one of the most widely accepted critical analyses of the paradox
available today. So my defence of the subtask of Benardete’s gods has an affinity
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with Benacerraf’s classic defence of the logical possibility of the supertask of
Thomson’s lamp (see Benacerraf 1962): in both cases, the idea is to vindicate the
legitimacy of two notions which, as we shall see, are related in a peculiar way.

10.2 The Logical Structure of Two Generalizations
of the Paradox of the Gods

In the Benardete paradox, a man (who, to all intents and purposes, may be con-
sidered a particle) is prevented from moving. Preventing the movement of a particle
entails imposing a very particular form on its World line (namely, the form of a
straight line). In the first generalization I shall present (let us call it G1), the gods
(god1, god2, god3, god4, …) will make particle Q follow the World line L � {(t, L
(t))/ t1 < t < t2} between the instants t1 and t2, where L() represents a continuous
function of time t but which, for any other purpose, may have an arbitrarily
complex form (corresponding to a highly intricate evolution). In this paper, I
assume (and this is also implicit in Benardete) that the World lines of all the
particles are always continuous functions of time. The meaning of the term “gen-
eralizations” that appears in the title of this section is also clear: it will be shown
that Benardete’s gods are not only able to prevent a particle from moving, but also
that they are able to direct its evolution in time according to any continuous
function of t. This means that any admissible form of the evolution of a particle
(and, as we shall see at the end of this section, even of any system of particles at the
most numerably infinite) is susceptible of being reproduced by following the
essential features of the schema proposed by Benardete. In the initial instant t1, let
Q be at point L(t1). As a general rule, we refer to L(t) as the point of space
corresponding to the World line L at instant t. Although Benardete is concerned
with counterfactual conditionals in the quote, his paradox may be conveniently
analyzed and generalized without them (several authors have as a matter of fact
done so). All one needs is to stipulate that the gods decide to follow a certain plan
of action (which, we assume, it is in their power to follow) and then specify this
plan in terms of material conditionals. In any event, should anyone consider this to
violate the original sense of Benardete’s work, one could still interpret my analyses
as variations on the paradox of the gods rather than as bona fide generalizations.

10.2.1 The First Generalization (G1)

In G1, I assume, in particular, that the gods decide to follow the plan specified by
the following set of sentences:
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C1
(1): if at some instant t, with t1 < t < t2, Q comes to be at a distance 1/1 from L(t),

then for every instant t*, with t < t*< t2, god1 will ensure that, at t*, Q is at a distance
� 1/1 from L(t*).

C2
(1): if at some instant t, with t1 < t < t2, Q comes to be at a distance 1/2 from L(t),

then for every instant t*, with t < t* < t2, god2 will ensure that, at t*, Q is at a distance
� 1/2 from L(t*).

C3
(1): if at some instant t, with t1 < t < t2, Q comes to be at a distance 1/3 from L(t),

then for every instant t*, with t < t* < t2, god3 will ensure that, at t*, Q is at a distance
� 1/3 from L(t*).

……………………………………………………………………………
Cn
(1): if at some instant t, with t1 < t < t2, Q comes to be at a distance 1/n from L(t),

then for every instant t*, with t < t* < t2, godn will ensure that, at t*, Q is at a distance
� 1/n from L(t*).

…………………………………………………………………
In symbolic notation, with “dt(A,B)” meaning “distance between A and B at the

instant t” and “gnH” meaning “godn ensures that H,” we have respectively1:

Cð1Þ
1 : 8tðt1\t\t2 ! ½dtðQ;LðtÞÞ ¼ 1=1 ! 8t�ðt\t�\t2
! g1dt� ðQ;Lðt�ÞÞ� 1=1Þ�Þ:

Cð1Þ
2 : 8tðt1\t\t2 ! ½dtðQ;LðtÞÞ ¼ 1=2 ! 8t�ðt\t�\t2
! g2dt� ðQ;Lðt�ÞÞ� 1=2Þ�Þ:

Cð1Þ
3 : 8tðt1\t\t2 ! ½dtðQ;LðtÞÞ ¼ 1=3 ! 8t�ðt\t�\t2
! g3dt� ðQ;Lðt�ÞÞ� 1=3Þ�Þ:

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

Cð1Þ
n : 8tðt1\t\t2 ! ½dtðQ;LðtÞÞ ¼ 1=n ! 8t�ðt\t�\t2
! gndt� ðQ;Lðt�ÞÞ� 1=nÞ�Þ:

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

It is easy to see that if each Cn
(1) (n = 1,2,3,…) is true then C: particle Q follows

the World line L between instant t1 and instant t2. In other words C: 8t (t1 < t < t2 !
dt(Q, L(t)) = 0) will also be true:

ðIÞð^nCð1Þ
n Þ ! C:

Proof: All one needs to do is to confirm that the negation of C is incompatible
with the conjunction of all the Cn

(1). Indeed, if C is false, then at some instant t with
t1 < t < t2, particle Q is at a distance > 0 from L(t):
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9tðt1\t\t2 ^ dtðQ;LðtÞÞ[ 0Þ:

Let us call one of these instants T:

t1\T\t2 ^ dTðQ;LðTÞÞ ¼ d[ 0 ð10:1Þ

and let N be a positive integer such that d > 1/N. We assumed that the function L()
is continuous, that at t1 the particle was on L: dt1(Q, L(t1)) = 0, and that the World
line of Q is continuous. This implies that, between t1 and T, particle Q was at all
possible distances from L(t) between 0 and d. To put it more precisely:

8að0\a\d ! 9tðt1\t\T ^ dtðQ;LðtÞÞ ¼ aÞÞ:

As 0 < 1 / N < d,

9tðt1\t\T ^ dtðQ;LðtÞÞ ¼ 1=NÞ:

Let us call one of these instants TN. At TN, with t1 < TN < T, Q must have been at
a distance 1/N from L(TN):

t1\TN\T ^ dTNðQ;L TNð ÞÞ ¼ 1=N: ð10:2Þ

However, from (10.1) and (10.2) it follows that

t1\TN\t2 ^ dTN Q;L TNð Þð Þ ¼ 1=N ð10:3Þ

and, particularizing CN
(1) to the case t = TN,

t1\TN\t2 ! ½dTN Q;L TNð Þð Þ ¼ 1=N ! 8t�ðTN\t�\
t2 ! gNdt� Q;L t�ð Þð Þ� 1=NÞ�: ð10:4Þ

From (10.3) and (10.4):

8t�ðTN\t�\t2 ! gNdt� Q;L t�ð Þð Þ� 1=NÞ: ð10:5Þ

But from (10.1) and (10.2) we also know that TN < T < t2 so that, particularizing
(10.5) to the case t* = T, it follows that

gNdTðQ;LðTÞÞ� 1=N: ð10:6Þ

In other words, given that gnH implies H (according to the formalization noted
above):

dTðQ;LðTÞÞ� 1=NÞ: ð10:7Þ
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However, from (10.1),

dTðQ;LðTÞÞ ¼ d ð10:8Þ

which contradicts (10.7) by virtue of the fact that, as I said at the beginning, d >
1/N. The contradiction proves that the negation of C is incompatible with the
conjunction of all the Cn

(1). Therefore, when all the Cn
(1) are true, C is too. ┤

We may proceed further because if C is true, then every Cn
(1) is also true (owing

to the fact that the main conditional occurring in Cn
(1) would then be vacuously true)

and, therefore, so would be its conjunction:

ðIIÞ C ! ð^nCð1Þ
n Þ:

Proof: From the properties of the material conditional of propositional logic we
know that, for each positive integer n:

8tðdt Q;LðtÞð Þ ¼ 0 ! ½dt Q;LðtÞð Þ ¼ 1=n ! 8t�ðt\t�\t2
! gndt� Q;L t�ð Þð Þ� 1=nÞ�Þ

and then

8t ð½t1\t\t2 ! dt Q;LðtÞð Þ ¼ 0� ! ½t1\t\t2 ! ½dt Q;LðtÞð Þ
¼ 1=n ! 8t�ðt\t�\t2 ! gndt� Q;Lðt�Þð Þ� 1=nÞ��Þ:

From this and C it is clear that, for each positive integer n:

8tðt1\t\t2 ! ½dt Q;LðtÞð Þ ¼ 1=n ! 8t�ðt\t�\t2 ! gndt� ðQ;
L t�ð ÞÞ� 1=nÞ�Þ:

In other words, every Cn
(1) is also true. ┤

We then conclude that C is equivalent to the infinite conjunction of the Cn
(1):

ðIIIÞC $ ð^nCð1Þ
n Þ:

Proof: From (I) and (II). ┤

10.2.2 The Interesting Generalization (G2)

To generalize the paradox of the gods suitably, a stipulation is required that pre-
vents any god from being able to act on its own on Q (even in a way compatible
with the Cn

(1)) beyond what is explicitly permitted by Cn
(1). We thus construct the
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second generalization G2 so that it is identical to G1 except for the fact that each
godn fulfils Cn

(2) rather than Cn
(1).

Cn
(2): if at some instant t, with t1 < t < t2, Q comes to be at a distance 1/n from L(t),

then for every instant t*, with t < t* < t2, godn will ensure that, at t*, Q is at a distance
� 1/n from L(t*). If at some instant t, with t1 < t < t2, Q does not come to be at a
distance 1/n from L(t), then godn shall not apply any force at all on Q at t.

That is, with “¬gn(Q, t)”meaning “godn does not apply any force at all on Q at t”:

Cð2Þ
n : 8tðt1\t\t2 ! ½dt Q;LðtÞð Þ ¼ 1=n ! 8t�ðt\t�\t2 !

gndt� Q;L t�ð Þð Þ� 1=nÞ�Þ ^ 8tðt1\t\t2 ! ½dt Q;LðtÞð Þ 6¼ 1=n !
:gnðQ; tÞ�Þ:

Finally, what makes G2 specifically interesting is that:

ðIVÞ In generalizationG2; no godn exerts individually
any force at all onQ:

Proof: Since (^n Cn
(2)) ! C (given that (^n Cn

(2)) ! (^n Cn
(1)) and that (^n Cn

(1))
! C), it follows that, in generalization G2, particle Q evolves according to L(t),
i.e., Q follows the World line L between instant t1 and instant t2 and, therefore, the
force acting on it is m d2L/dt2.

Since, by C: 8t (t1 < t < t2 ! dt(Q, L(t)) = 0), it follows that

8tðt1\t\t2 ! dt Q;LðtÞð Þ 6¼ 1=nÞ: ð10:9Þ

However, the second term of the conjunction Cn
(2) implies:

8t ðt1\t\t2 ! dt Q;LðtÞð Þ 6¼ 1=nÞ ! 8tðt1\t\t2
! :gnðQ; tÞÞ:

ð10:10Þ

From (10.9) and (10.10): 8t (t1 < t < t2 ! ¬gn(Q, t)) and, therefore, godn does not
apply any force at all on Q. ┤

From (IV) it follows that, if Ei is the sentence:

Ei : godi applies the forcem d2L=dt2 onQ; between

instant t1 and instant t2; by pushing it by contact

himself

then Ei^(^n Cn
(2)) is logically inconsistent.
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10.2.3 The Interesting Generalization: Many Particles

Instead of directing the evolution of a single particle Q without individually
exerting any force at all on it, a numerable infinity of gods may likewise direct the
evolution of any material body composed of particles (even of a numerable infinity
of particles) without applying forces individually on any of them, which leads to a
new generalization of the Benardete paradox.

Let X be a material body composed of the numerable infinity of particles Q1, Q2,
Q3, Q4, … and let us suppose that the gods want (8i) Qi to follow the World line Li

� {(t, Li(t))/ t1 < t < t2} between t1 and t2. If we use p(n) to represent the n-th prime
number (p(1) = 2, p(2) = 3, p(3) = 5, etc.) and p(m,n) to represent the m-th power of
p(n) (p(1,1) = 2, p(2,1) = 22, p(3,2) = 33, etc.), then there is enough (8i) for the
numerable infinity of gods: godp(1,i), godp(2,i), godp(3,i), godp(4,i), … to direct the
evolution of Qi along the World line Li between t1 and t2, following the procedure
seen in the previous generalization G2. What we have done is simply to select a
certain infinite numerable set S of gods and perform in it a partition into a
numerable infinity of classes Si, each being formed by a numerable infinity of gods.
Then the gods of Si direct the evolution of Qi exactly as in G2.

10.3 The Physics Underlying the Paradox (I)

Let us now recover G2 in order to analyze in a sufficiently general way the con-
ceptual difficulties to which the paradox of the gods leads from a physical per-
spective. If no god exerts any force on Q, it is because Q is already following the
World line L. Fulfilling the conditions Cn

(2) implies that the force F = m d2L/dt2 is
applied on Q and takes it along the World line L. The problem of explaining who
exerts that force on Q is undoubtedly a genuine problem, but it is a physical
problem, not a logical problem. As we already saw, Benardete claims that “The
before-effect here will be described by the man as a strange field of force blocking
his passage forward” (Benardete 1964: 260). What explanation might there be for
the force F = m d2L/dt2 that the gods exert on Q, without introducing any “strange
field of force”?

10.3.1 A More Detailed Specification of G2

In the first place, I shall suppose that if any god interacts with Q, it does so only by
contact, so that when in Cn

(2) it states:

(A) if, at some instant t, with t1 < t < t2, Q comes to be at a distance 1/n from L(t), then for
every instant t*, with t < t* < t2, godn will ensure that, at t*, Q is at a distance � 1/n from
L(t*).
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this means that if at some instant t, with t1 < t < t2, Q comes to be at a distance
1/n from L(t), then for every instant t*, with t < t* < t2, godn shall exert by contact
on Q the force necessary to ensure that, at t*, Q is at a distance � 1/n from L(t*).

Specifying further, I shall assume that for every instant t*, with t < t* < t2, godn
will ensure that, at t*, Q is at a distance � 1/n from L(t*):

(a) by positioning itself at instant t at a distance 1/n from L(t) with Q between it
and L(t) (aligned therefore with Q and L(t))2 and

(b) for every instant t′ with t < t′ < t*, by positioning itself at a distance 1/n from
L(t′) aligned with Q and L(t′).

This guarantees that godn will exert by contact on Q the force necessary to
ensure that Q, at t*, is at a distance � 1/n from L(t*).

Consequently, (A) implies that, if at some instant t, with t1 < t < t2, Q comes to
be at a distance 1/n from L(t), then godn positions itself, at t, at a distance 1/n from
L(t) with Q between it and L(t) (aligned therefore with Q and L(t)), and for every
instant t*, with t < t* < t2, godn positions itself at a distance 1/n from L(t*) aligned
with Q and L(t*).

In symbolic notation, with “GnQtt2” meaning “godn positions itself, at t, at a
distance 1/n from L(t) with Q between it and L(t) (aligned therefore with Q and
L(t)), and for every instant t*, with t < t* < t2, godn positions itself at a distance 1/n
from L(t*) aligned with Q and L(t*),” we have:

8t½ðt1\t\t2 ^ dt Q;LðtÞð Þ ¼ 1=nÞ ! GnQtt2�: ð10:11Þ

10.3.2 Excursus: Interaction by Contact
and Impenetrability

The key to my reasoning is to be found from here on in a careful consideration of
what interaction by contact amounts to in classical mechanics. The first thing one
notices is how unfortunate the expression “interaction by contact” is. (Despite this, I
use it freely in the present paper, following common practice). Since mere contact
lacks the causal powers associated with the idea of interaction, it would be better to
speak of “interaction in contact conditions.” I shall be looking here at a special type
of interaction in contact conditions; not, e.g., through gravitational interaction in
contact conditions (which in general lacks any special theoretical interest), but
rather interaction in contact conditions based on the impenetrability of the bodies
involved. Impenetrability is a basic postulate implicit in mechanics. (I also
implicitly assume it in the present context). Its principal virtue (besides its smooth
empirical fit) lies in the fact that it avoids complicating the theory with more
complex hypotheses about the internal structure of matter. The reason for my
interest in interaction in contact conditions based on impenetrability is that what is
usually called interaction by contact amounts to just this, i.e. to an interaction in
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contact conditions based on impenetrability. But, as we shall see in this section, the
truly central point is the idea of interaction based on impenetrability (whether in
contact conditions or not), which thus becomes a more general concept than the
classic one of interaction by contact and one that is certainly compatible with it.

For the sake of simplicity, in what follows I consider that:

(a) all the relevant material bodies have volume and are rigid or are composed of
rigid parts and that

(b) the only kind of interaction this provides is interaction based on
impenetrability.

We must now specify what interaction based on impenetrability is exactly.
I therefore use the complex term “interaction by impenetrability” and introduce the
principle of interaction by impenetrability as follows:

PII: two material bodies interact by impenetrability at t if and only if, should they
not interact at t (everything else remaining the same),3 a massive part of one of them
would interpenetrate with a massive part of the other at instants of time t′ > t
arbitrarily close to t.

By way of illustration, let us consider a cylinder C (of any finite radius) at rest on
the X axis such that its own axis occupies the interval x = 0 to x = 1. Particle Q
approaches it at a certain constant velocity from the region x < 0. By PII, Q interacts
by impenetrability with C at instant t when it arrives at x = 0, because if it did not
interact, it would pass the point in question and would interpenetrate with C at
instants of time t′ > t arbitrarily close to t (in other words, “a massive part of Q
would interpenetrate with a massive part of C at instants of time t′ > t arbitrarily
close to t”).

Once the existence of such an interaction has been established, the relevant laws
of conservation (i.e., in the case at hand, the laws of conservation of momentum and
kinetic energy) would be applied in the conventional way together with the implicit
postulate of impenetrability (mentioned above, and not to be confused with PII), in
order to predict the future state of the system formed by Q and C. This example
suffices to justify the idea that, as I said above, the usual textbook notion of
interaction by contact is a form of interaction by impenetrability. It must be clear
now that PII tells us when there is interaction by impenetrability and, in case there
is, that the conventional “machinery” of classical mechanics should be used to
make quantitative predictions.4

10.3.3 The Dynamics Underlying G2

We shall now apply PII to understand the origin of the force that the gods exert on
Q. Let us suppose that, with no loss of generality, the World line L is sufficiently
complicated so as to not have parts that depend linearly on t (if the World line of Q
depends linearly on t, then Q moves freely since, in that case, m d2L/dt2 = F = 0). In
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other words, let us suppose that the force that acts on a particle with the world line L
is never null: 8t with t1 < t < t2 is F(t) 6¼ 0.

We shall need three prior logically connected results.
(V) If, at some instant tº between t1 and t2, Q did not interact in any way with the

gods, so that the force on it were (tº) = 0 (everything else remaining the same, i.e.
everything that is compatible with non-interaction between Q and the gods at tº
remaining the same, which in particular means that the new spatial location (t) of
Q is (t) = L(t) in all instants of the interval (t1, tº)), then, for any e > 0, the spatial
location (t) of Q cannot coincide with L(t) at all instants of the interval (tº, tº + e).

Proof: If (t) = L(t) for all t 2 (t1, tº + e), then (t) = m d2 /dt2∣t = m d2L/dt2∣t =
F(t) 6¼ 0 is also fulfilled for all t 2 (t1, tº + e) with t1 < t < t2, which contradicts the
starting assumption that, for the instant tº 2 (t1, t2), Q does not interact in any way
with the gods ( (tº) = 0).5 Therefore, whatever e > 0 is, the spatial location (t) of Q
cannot coincide with L(t) at all instants of the interval (t1, tº + e), although it does in
fact coincide (as stated above) at all instants of the interval (t1, tº). As a conse-
quence, for any e > 0, the spatial location (t) of Q cannot coincide with L(t) at all
instants of the interval (tº, tº + e). In symbols:

ð10:12Þ

(VI) If, for any e > 0, the spatial location (t) of Q cannot coincide with L(t) at
all instants of the interval (tº, tº + e), then there is an infinite sequence of positive
integers zi (z1 < z2 < z3 <….) and an infinite sequence of real numbers t^i (t^1 > t^2
> t^3 >….) convergent to tº, such that, 8i, godzi positions itself at t^i at a distance
1/zi from L(t^i) with Q between it and L(t^i) (aligned therefore with Q and L(t^i)),
and for every instant t*, with t^i < t* < t2, godzi remains at a distance 1/zi from L(t*)
aligned with Q and L(t*).

Proof: Let t^ be an instant between tº and t2 at which Q has moved away from L
(t^) a distance d, i.e. ∣ (t^) − L(t^)∣ = d. In symbols:

to\t^\t2 ^ dt^ðQ;Lðt^ÞÞ ¼ d ð10:13Þ

Since we assumed from the beginning that the World lines of all the particles are
always continuous functions of time, we know that (tº) = L(tº). From this and
(10.13), it follows that:

There is an infinite sequence of positive consecutive integers zi (z1 < z2 < z3
<….), with 1/zi < d, and an infinite sequence of real numbers t^i (t^1 > t^2 > t^3
>….) convergent to tº, with tº < t^i < t^, such that t^i is an instant between tº and t2
at which Q has moved a distance 1/zi away from L(t^i), i.e such that ∣ (t^i) − L
(t^i)∣ = 1/zi.
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In symbols:

to\t^1\t2^dt^1 ðQ;Lðt
^
1 ÞÞ ¼ 1=z1

to\t^2\t2^dt^2 ðQ;Lðt
^
2 ÞÞ ¼ 1=z2

to\t^3\t2^dt^3 ðQ;Lðt
^
3 ÞÞ ¼ 1=z3

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

to\t^i \t2 ^ dt^i ðQ;Lðt
^
i ÞÞ ¼ 1=zi ð10:14Þ

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

z1\z2 ¼ z1 þ 1\z3 ¼ z2 þ 1\. . .

t^1 [ t^2 [ t^3 [ . . . ð10:15Þ

to\t^i \t2 ð10:16Þ

limi!1t^i ¼ to: ð10:17Þ

Particularizing (10.11) in the form (t1 < ti
^ < t2 ^ dt^i(Q, L(t^i)) = 1/ zi) ! GziQt^it2

and given that, by (10.16), (tº < t^i < t2 ^ dt^i(Q, L(t^i)) = 1/zi) ! GziQt^it2, using
modus ponens with (10.14), GziQt^it2.

We conclude that:

8i GziQt^i t2
: ð10:18Þ

Expressing this non symbolically: 8i, godzi positions itself at t^i at a distance 1/zi
from L(t^i) with Q between it and L(t^i) (aligned therefore with Q and L(t^i)) and,
for every instant t*, with t^i < t* < t2, godzi remains at a distance 1/zi from L(t*)
aligned with Q and L(t*). ┤

From (V) and (VI) it now easily follows that:
(VII) If, at the instant tº between t1 and t2, Q were not to interact in any way with

the gods (everything else remaining the same), a massive part of Q would inter-
penetrate with a massive part of the set of gods at instants of time t′ > tº arbitrarily
close to tº.

Proof: Our initial assumption that at some instant tº between t1 and t2 Q does not
interact in any way with the gods (everything else remaining the same, i.e.
everything compatible with non-interaction between Q and the gods at tº remaining
the same) brings us to a situation where, by (V) and (VI), Q occupies, for all t 2 (t1,
t2), not the position L(t) but the position (t), characterized (as we saw in (10.14)),
by the fact that, at instants t^j, Q is at a distance 1/zj from L(t^j), and (as we saw in
(10.18)), 8i GziQt^it2.

Furthermore, since for t^i > t^j, the distance between Q and L(t^i) (namely, 1/zi)
is greater than the distance between Q and L(t^j) (namely, 1/zj), we may assume
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without loss of generality that, at instants t^i, Q is at a distance 1/zi from L(t^i) and
moving away from L(t^i). In other words, using once again the hypothesis of
continuity, for instants of time t′ > t^i arbitrarily close to t^i, Q will be at a distance
> 1/zi from L(t′). By 8i GziQt^it2, this means that, 8i, a massive part of Q would
interpenetrate with a massive part of godzi at instants of time t′ > t^i arbitrarily close
to t^i. But, since we saw in (10.15), (10.16), and (10.17) that t^1 > t^2 > t^3 >….,
tº < t^i and limi!∞ t^i = tº, it follows that a massive part of Q would interpenetrate
with a massive part of at least one god (and, therefore, with a massive part of the set
of gods) at instants of time t′ > tº arbitrarily close to tº. ┤

In view of (VII), we may directly apply the Principle of interaction by impen-
etrability PII. It follows that Q interacts by impenetrability at tº with the set of gods.
Since tº was an arbitrary instant between t1 and t2, it also follows that, in gener-
alization G2, Q interacts by impenetrability with the set of gods between t1 and t2.
This interaction is the one that explains why Q follows the World line L � {(t, L(t))
/ t1 < t < t2} between the instants t1 and t2. Appealing to the Principle of interaction
by impenetrability enables us to understand the origin of the force F = m d2L/dt2

the gods exert on Q without having to introduce any “strange field of force.”

10.3.4 Global Interaction at a Distance in G2

Let Q, at instant tº between t1 and t2, not interact in any way with the gods.
Although, as we have already seen, it follows from this that a massive part of Q
would interpenetrate with a massive part of the set of gods at instants of time t′ > tº
arbitrarily close to tº, it by no means follows that a massive part of Q would
interpenetrate with a massive part of god1 at instants of time t′ > tº arbitrarily close
to tº, or that a massive part of Q would interpenetrate with a massive part of god2 at
instants of time t′ > tº arbitrarily close to tº, or that a massive part of Q would
interpenetrate with a massive part of god3 at instants of time t′ > tº arbitrarily close
to tº, … etc.

This means that, in G2, the effect on Q would be the same in spite of the fact that
we would have eliminated one of the gods (indeed, quite clearly, even if we
suppressed some finite set of gods). It follows that, in G2, neither god1, nor god2,
nor god3, nor…, interacts with Q.

The final conclusion to draw is striking. Although, in generalization G2, Q
interacts by impenetrability with the set of gods, it does not interact separately with
any particular god. Since Q follows the World line L � {(t, L(t))/t1 < t < t2}
between the instants t1 and t2, 8t (t1 < t < t2 ! dt(Q, L(t)) 6¼ 1/n).

This non-interaction with any particular god, separately from the others, is
compatible with what has been stated in the second part of Cn

(2), namely that if, at
some instant t, with t1 < t < t2, Q does not happen to be at a distance 1/n from L(t),
then godn shall not apply any force at all on Q at t:
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8tðt1\t\t2 ! ½dt Q;LðtÞð Þ 6¼ 1=n ! :gn Q; tð Þ�Þ:

Since no god manipulates Q in any way, all the gods, during the interval of time
(t1, t2), may remain at a finite distance from Q greater than a given constant value.
This implies that the gods interact at a distance with Q (although not individually,
as we already know, but globally).

This is not a paradox; it follows from the possibility that the gods move as fast as
necessary in order to interfere with the evolution of Q. What G2 shows is that, if we
allow interaction by contact and we place no limit whatsoever on the velocity that a
material object can attain, interaction at a distance becomes a genuine possibility. It
corresponds to the “strange field of force” mentioned by Benardete.

Some years ago, in Laraudogoitia (2005), I examined another complementary
example of a “strange field of force”: if we permit interaction by contact and we
place no limit whatsoever on the length that a material object may have, then
interaction at a distance becomes a possibility. I considered the case of a flat,
infinite surface on which lay two identical infinite javelins (perfectly rigid), one
being placed parallel to the other at a unit distance. If Achilles makes the javelin to
his left rotate clockwise (without lifting it off the ground), the one to his right will
also simultaneously begin to rotate clockwise, although the distance separating the
two is finite at all times. There is no contradiction in this case either with the laws of
classical mechanics: “It is important to observe that classical mechanics allows us to
determine in detail the future evolution of the two javelins depending on the
external forces that Achilles exerts on one of them” (Laraudogoitia op. cit.: 437).

One important difference still remains: while a purely mechanical model is
obtained from the paradox of Achilles’ javelin, I have merely given a model that is
compatible with classical mechanics from the generalization of the Benardete
paradox (see, however, Sect. 10.6 below). The central point of the analogy is
nevertheless clear: the mere possibility of interaction by contact may in certain
conditions give rise to interaction at a distance. Interaction at a distance between the
javelins is a direct consequence of the possibility of their interaction by contact
(which requires that the javelins, as material bodies, should not mutually inter-
penetrate) and of the procedure Achilles follows in acting on one of them (without
interaction at a distance the javelins would interpenetrate mutually as Achilles only
makes one of them rotate). Analogously, (arbitrarily complex) interaction at a
distance between the set of gods and Q in G2 is a direct consequence of the
possibility of their interaction by contact and of the action procedure studied in my
generalization of the Benardete paradox (which presupposes this possibility). One
of the purposes of the paper was indeed to make this point clear.
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10.4 The Physics Underlying the Paradox (II)

Neither Benardete’s formulation nor my generalization of it lead to a contradiction
since all they state is that the gods stop the particle or, in my generalization, that
they move it along the World line L. They do not attempt to explain how they
manage to influence its movement, which is irrelevant with regard to the logical
structure of the paradox.

Going one step further, we saw in the previous section that the gods interact
globally by impenetrability with particle Q, but this is not sufficient to guarantee the
physical coherence of the situation. A problem appears when one considers the
means by which the gods affect the particle. In G2, the gods apply a total force m
d2r/dt2 = m d2L/dt2 on Q, but from Cn

(2) it follows that no god exerts any force on
Q. How is it possible that, if no god applies any force on Q, the set of gods can do
so?

This, in my view, is the main problem underlying the Benardete Paradox of the
gods. An equivalent form of this difficulty can be seen by resorting to the principle
of action and reaction (ARP), which may be formulated thus: the force that a
physical system X exerts on a physical system Y is equal and opposed to the force
that Y exerts on X, and both forces are contained in the same straight line (see, for
example, Goldstein 1959).6 In G2, the gods exert a force m d2r/dt2 = m d2L/dt2 on
Q, such that Q must exert a force -m d2L/dt2 on the set of gods. But none of the
gods exerts any force on Q, so Q exerts no force on any of them. How is it possible
for Q to exert a non-null force on the set of gods without exerting any force on any
of the gods separately? This is not a question one may address by merely appealing
to interaction by impenetrability. Although that does not mean that any specific
model of G2 will be physically impossible, it is not hard to find models in which
that physical impossibility occurs.

10.4.1 G2(I): A Physically Impossible Model of G2

Let us consider the following model of G2, which I shall call G2(I). Let us suppose
that, 8t � t1 = 0, particle Q is at rest at x = 0, taking t2 = +∞. Let the World line L
for 0 < t < ∞ correspond to a uniformly accelerated movement of constant positive
acceleration U along the axis OX. Let us also suppose that the gods are situated on
the axis OY (perpendicular to OX) at the points of Cartesian coordinate (x,y) = (0,
n). Since the force on Q is mU and is directed in the positive direction of the axis
OX, an equal and contrary force (i.e. in the negative direction of the OX axis) must
act, by ARP, on the set of the gods. But this is impossible, because we supposed
that none of the godn is situated on the OX axis and ARP demands that the force of
action and the force of reaction be contained in the same straight line. G2(I) is
physically impossible to the extent that ARP is violated (in this paper I assume the
underlying physical theory to be formed by Newton’s three laws of dynamics), but
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there is no logical impossibility (indeed, as we know, ARP is also violated, e.g., in
classical electrodynamics).

In a world governed by laws that include ARP (as is the case of a world
governed by Newton’s three laws of dynamics), gods attempting to follow the plan
specified by the Cn

(2) in G2(I) will fail. This means that not all Cn
(2) may be true

(further, an infinite number of Cn
(2) will be false, as is immediately clear). But the

gods will fail for physical, not for logical, reasons. The Benardete paradox and its
generalizations may, in some of their versions, imply the presence of forms of
interaction between the gods and the particle Q that happen to be incompatible with
specific physical laws (e.g. with ARP).

10.5 Circumventing the Problem with ARP

I claimed that G2 is not in principle incompatible with ARP (unlike G2(I), which
clearly is), but it remains unclear how one could construct a model in which the
compatibility would be made explicit (i.e. a model in the Benardete spirit, involving
a numerable infinity of gods). I now address this particular task, which will also
have other interesting consequences. The idea is to construct a generalization of the
Benardete paradox of the gods (another model of G2) that is explicitly compatible
with ARP.

10.5.1 G2(II): A Physically Interesting Model of G2

Let us suppose from the outset that each godn has control over a wall wn with which
it is possible to manipulate a particle by contact, i.e. “by pushing.” Let us stipulate
that, at the instant t = t1 = 0, we have particle Q (of mass m) at rest on the axis OX
at point x = +h, while the walls are all at rest and in mutual contact, occupying the
region between x = 0 and x = −k of the x axis, so that wall wn (which may be
manipulated by godn) occupies the part of this region between x = −k/n and
x = −k/(n + 1). We shall call L0,+h � (t, L0,+h(t)) the World line of any particle that,
starting from rest at x = +h in t = 0, moves with increasing acceleration a(t)
towards the right (i.e. the positive region of the X axis). We shall now consider the
following model of G2, which I call G2(II):

Cn
(2(II)): if at some instant t, with 0 < t < +∞, Q comes to be at a distance 1/n from

L0,+h(t), then for every instant t*, with t < t* < +∞, godn will ensure that, at t*, Q is
at a distance � 1/n from L0,+h(t*), making wall wn, which it controls, interact by
contact with Q for that purpose. If, at some instant t, with 0 < t < +∞, Q does not
come to be at a distance 1/n from L0,+h(t), then godn shall not apply any force at all
on Q at t.
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If we introduce:

C: particle Q follows the World line L0,+h between the instant t1 = 0 and t2 = +∞.
then, given that (^n Cn

(2(II))) is fulfilled, C follows, i.e. particle Q follows the
World line (t, L0,+h(t)) for t � 0. Since Q does not diverge from the World line
L0,+h between 0 and +∞, no god exerts any force on Q in that interval. Even so, in
case Q did not interact with the walls and, therefore, diverged from the World line
L0,+h between 0 and +∞, Q would interpenetrate with the walls, which indicates
that the force F(t) = m a(t) that acts on Q for t > 0 is applied by the walls, this being
an interaction by impenetrability. It is the walls indeed that will now, if necessary,
enter into direct contact with Q, just as the gods themselves did in the case con-
sidered in the discussion of Sect. 10.3. Thus, the same argument that led us to
global interaction by impenetrability of the gods with Q leads now to global
interaction by impenetrability of the walls with Q.

Furthermore, the interaction at a distance by impenetrability of Q with the walls
is compatible with ARP. As a matter of fact, the initial spatial arrangement of the
walls was designed to allow for a simple description of the result of this global
interaction: by being all together in mutual contact in the way specified previously,
the walls will move “en bloc” to the left (w1 being pushed by w2, w2 by w3, and so
on) with the same linear momentum in absolute value as Q’s, but towards the
opposite sign, being thus compatible with Newton’s laws and, in particular, with
ARP. No physical law is violated (i.e. none of Newton’s three laws), and the gods
have triggered the increasing separation between Q and the set of walls through
their interaction by impenetrability (i.e. through the interaction by impenetrability
between Q and the set of walls).

10.6 A Purely Mechanical Model of the Benardete
Dichotomy

In what follows, our hitherto thoroughly general discussion will be complemented
by an analysis of the paradox of the gods construed as a particular case; among
other things, this will enable us to check which role the Principle of interaction by
impenetrability (PII) plays in a specific and particularly simple case.

Let us suppose that each godn has control over a wall wn with which it is possible
to manipulate (by contact) an object (a man). The following condition is quite
faithful to the gist of the paradox of the gods in Benardete’s original formulation:

(a) godn prevents the man from going further than 1/2n miles if and only if the
man actually goes 1/2n miles

which, making the walls intervene explicitly, we may rewrite thus:

(b) walln prevents the man from going further than 1/2n miles if and only if the
man actually goes 1/2n miles.
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10.6.1 The Model

In order to construct a purely mechanical model of this situation, we shall replace
the man with a particle Q moving towards the right at unit velocity on the negative
region of the X axis. The role of wn will be taken by a particle Pn, centered and at
rest at point x = 1/2n. Let us suppose that all the particles involved have the same
unit mass; although they are not point particles, for the sake of clarity we shall not
take their size into consideration in the discussion. An elementary result of classical
dynamics (as well as of relativistic dynamics) establishes that the collision between
a particle A, moving at velocity v, and another particle B at rest of identical mass,
results in A being at rest and in B moving at velocity v (provided we are dealing
with a movement in a single spatial dimension), i.e. with B preventing the subse-
quent progress of A.

Applying this idea to the case of the pair of particles Q and Pn:

(c) if Q reaches the point x = 1/2n, Pn prevents it from going beyond the point x =
1/2n.

But, understanding the phrase “prevents it from going beyond” in terms of a
physical action, it is an analytical truth that:

(d) if Q does not reach the point x = 1/2n, then it is not true that Pn prevents it
from going beyond the point x = 1/2n.

From (c) and (d) we then conclude that:

(e) Pn prevents Q from going beyond point x = 1/2n if and only if Q reaches point
x = 1/2n.

The strict formal analogy between (a), (b) and (e) guarantees that we have indeed
constructed a purely mechanical model of the paradox of the gods. On this basis,
checking which role (PII) plays turns out to be an easy task.

10.6.2 The Role of Impenetrability

Let us suppose that Q reaches point x = 0 at t = tº. If, at this instant, Q did not
interact in any way with the particles Pn so that the force on it were 0 (everything
else remaining the same, i.e. everything being compatible with non-interaction
between Q and the particles Pn at tº), the velocity of Q at t = tº would still be the unit
and, therefore, for instants of time t′ > tº arbitrarily close to t = tº, Q would be in the
region x > 0. But this means that Q would have interpenetrated with at least one
particle Pn (and therefore with a massive part of the set of particles Pn) at instants of
time t′ > tº arbitrarily close to t = tº.7 We conclude that if, at instant tº, Q were not to
interact in any way with the particles Pn (everything else remaining the same), a
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massive part of Q would interpenetrate with a massive part of the set of particles Pn
at instants of time t′ > tº arbitrarily close to t = tº.

Applying (PII), it follows that Q interacts by impenetrability at t = tº with the set
of particles Pn. Thus, PII enables us to understand the origin of the force that the
particles Pn exert on Q without having to introduce any “strange field of force.”

Let Q at instant tº not interact in any way with the particles Pn. Although, as we
have already seen, it follows from this that a massive part of Q would interpenetrate
with a massive part of the set of particles Pn at instants t′ > tº arbitrarily close to tº, it
by no means follows that a massive part of Q would interpenetrate with a massive
part of P1 at instants t′ > tº arbitrarily close to tº, or that a massive part of Q would
interpenetrate with a massive part of P2 at instants t′ > tº arbitrarily close to tº, or
that a massive part of Q would interpenetrate with a massive part of P3 at instants
t′ > tº arbitrarily close to tº,…, etc. This means that, in my mechanical model of the
paradox of the gods, the effect on Q would be the same despite the fact that we
would have deleted one of the particles Pn; it is clear indeed that it would be the
same even if we had deleted any finite set of particles Pn. It follows that neither P1,
nor P2, nor P3, nor … interacts in any way with Q. Although Q interacts by
impenetrability with the set of particles Pn, it does not interact separately with any
particular particle Pn.

We must now check that my mechanical model of the paradox of the gods is also
compatible with the laws of conservation of mechanics (the relevant ones here, as in
the usual processes of collision in one-dimensional motions, are the law of con-
servation of momentum and the law of conservation of energy). This compatibility
follows automatically if we suppose, for instance, that at every instant one and only
one of the particles involved in the model has a unit velocity (except, of course, at
the instants at which a collision takes place). Although this is not the only possible
supposition warranting compatibility (so that the evolution of the system is in fact
indeterminist, something by no means difficult to demonstrate), it is indeed the
simplest.8 The interaction (collision) of Q with the set of Pn takes place at tº and,
before this instant, Q is the particle with unit velocity. How is it possible that there
always be one, and only one particle with unit velocity? Let tj be an instant after tº
in which Pj has velocity vj = 1. Pj was set in motion by the collision with Pj+1,
which was in movement (vj+1 = 1) at certain instants tj+1 (tº < tj+1 < tj) and was set in
motion by the collision with Pj+2, which was in movement (vj+2 = 1) at certain
instants tj+2 (tº < tj+2 < tj+1) … and so on. So it is clear that Pj (j > 1), which was
originally at rest at x = 1/2j, acquired velocity vj = 1 from its collision with Pj+1 and
transferred it (returning to rest) to Pj−1. In other words, the system of Pj (j � 1) has
become excited at tº (i.e. limj!∞ tj = tº) as a consequence of its global interaction
(collision) with Q at that instant, both momentum and kinetic energy being con-
served throughout the process.

In my mechanical model, the global interaction between Q and the set of Pn took
place at an instant tº in which Q’s distance from the set was null (namely, when Q
was at point x = 0). But it is not essential that this distance be null at the instant at
which the global interaction takes place. To see why, let us suppose that, initially
(for t < tº, just as before), Q is moving towards the right on the negative region of
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the X axis at unit velocity while the particles Pn are centered and at rest, not at
points x = 1/2n, but rather, say, at points x = 1+ (1/2n). If we suppose no more than
this, we already know that Q would collide globally with the set of Pn at x = 1 at
instant tº+ 1. But suppose that we make Benardete’s gods intervene in this scenario
in the following way. Godn controls particle Pn and decides to prevent Q from
moving beyond point x = 1/2n by placing the particle Pn there (after removing it
from its initial location at x = 1+ (1/2n)) in case Q reaches that point. Let us say that
godn removes Pn from its initial location at x = 1+ (1/2n) and quickly places it at
x = 1/2n if godn sees Q reach the mid point between x = 1/2n+1 and x = 1/2n.

Obviously it is still true that:

(e) Pn prevents Q from going beyond the point x = 1/2n if and only if Q actually
reaches the point x = 1/2n.

The previously deduced conclusion, to the effect that Q interacts globally with
the set of Pn at instant tº at point x = 0, so that it cannot pass beyond that point, may
therefore be maintained. By being unable to pass beyond it, it is clear that Q will not
reach any point x = 1/2n, which means that no godn will remove the particle Pn it
controls from its initial location at x = 1+ (1/2n). This means that Q interacts
globally at a distance with the set of Pn at point x = 0, being at a unit distance from
the set and not in contact with it. This follows from (PII), which we explored in a
more general setting in Sect. 10.3. (Note that, unlike what happens in the present
case, the conservation of kinetic energy could not then be guaranteed, which clearly
indicates that my generalization is not a trite variation on the present case). In any
event, it is clear that what causes particle Q to be unable to go beyond point x = 0 is
its interaction with the set of particles Pn. The intentions of the gods are not the
cause.

10.6.3 Reply to Yablo-Type Criticisms

Taking advantage of the simplicity of my mechanical model, I shall now resort to it
to criticize one of the best known diagnoses of the paradox of the gods, a diagnosis
that is also one of the most influential for anyone who has cared to explore the
subject. I refer to the analysis offered by Yablo in Yablo (2000). The thesis, dia-
metrically opposed to mine, is that the paradox of the gods should be analyzed as a
logical problem and not as a physical one. Yablo’s idea is that, if Benardete’s man
moves from A to B, the gods are faced with a task that is logically impossible to
perform. Yablo claims that:

If there’s a paradox here, it lies in the difficulty of combining individually operational
subsystems into an operational system. But is this any more puzzling than the fact that
although I can pick a number larger than whatever number you pick, and viceversa, we
can’t be combined into a system producing two numbers each larger than the other?

Yablo (2000: 151)
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For a detailed understanding of Yablo’s argument and of the reason why it is
fallacious, we need to return to (e), which implicitly includes a universal quan-
tification on n. A logical consequence of (e) is that:

(f) 8n (If Q reaches the point x = 1/2n and ¬ 9m > n such that Pm prevents Q from
going beyond point x = 1/2m, then Pn prevents Q from going beyond point
x = 1/2n).

But, given the conditions of the situation in my mechanical model, it is clear
that:

(g) 8n (If Pn prevents Q from going beyond point x = 1/2n, then Q reaches
point x = 1/2n and ¬ 9m > n such that Pm prevents Q from going beyond
point x = 1/2m)

although (g) is not a logical consequence of (e).
Finally, from (f) and (g) we infer that:

(h) 8n (Pn prevents Q from going beyond point x = 1/2n if and only if Q reaches
point x = 1/2n and ¬ 9m > n, such that Pm prevents Q from going beyond point
x = 1/2 m).

The conclusion to be drawn is that (h) depends logically on both (e) and (g).
Now, let Q go beyond point x = 0. We may suppose without loss of generality

that Q reaches successively all the points x = 1/2n and goes beyond them. From this
and (h) it follows that:

(i) 8n (Pn prevents Q from going beyond point x = 1/2n if and only if ¬ 9m > n
such that Pm prevents Q from going beyond point x = 1/2m).

But it is logically impossible to carry out (i) since it is a logical contradiction. It
would then seem that if Q goes beyond point x = 0, the particles Pn must carry out a
logically impossible task.

In the terminology of Benardete’s original paradox, one would say that if the
man goes from A to B we would analogously infer that:

(j) 8n (godn prevents the man from going beyond 1/2n miles if and only if ¬ 9m >
n such that godm prevents the man from going beyond 1/2m miles).

Yablo concludes that, in such a case, godn would have to carry out a task that it
is logically impossible to bring to completion (Yablo op. cit.). This conclusion is
however mistaken.

Let us briefly take a look at what happens within my mechanical model. If Q
goes beyond point x = 0, reaching successively all points x = 1/2n and going
beyond them, then (e) is clearly false (no Pn prevents Q from going beyond point
x = 1/2n). Now if (e) is false, since (h) is deduced from both (e) and (g), there is no
justification left for (h) and, therefore, no justification left for (i). The conclusion to
the effect that if Q goes beyond point x = 0, the particles Pn must carry out a
logically impossible task is therefore unjustified. Indeed (as we have already seen in
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Sect. 10.6.2), if Q goes beyond point x = 0, Q will interpenetrate with the set of
particles Pn, so that they will not comply with (c) nor, therefore, with (e). In the
terminology of Benardete’s original paradox, the argument to the effect that, if the
man goes from A to B, godn must carry out a logically impossible task is fallacious.
In other words, there is no reason to think that the man must remain at point A in
order for the infinite set of all of the gods’ intentions to be consistent. What one
should say is that the man remaining at point A is a necessary condition for the
fulfilment of an infinite number of the gods’ intentions. This underwrites my
interpretation of the paradox of the gods and its generalizations as a physical
problem rather than as a logical problem. The only thing one may reasonably
maintain from a purely logical perspective is that, if the man went from A to B, the
gods would not fulfill their intentions. Sentences (a) and (b) would simply be false
just as, in my mechanical model, (e) would be false in case Q goes beyond point
x = 0, reaching successively all the points x = 1/2n and going beyond them.

But to claim that, if the man went from A to B, the gods would not act according
to their intentions, is about as trivial as to say that if my intention were to start my
car’s engine today at midday, and it turned out that my car’s engine didn’t start
today at midday, I would not have fulfilled my intention.

10.7 Introducing Subtasks

In all the generalizations of the Benardete paradox of the gods that we have looked
at in the previous sections (and something similar could be said of Benardete’s own
formulation), the clauses Cn

(1), Cn
(2), and Cn

(2(II)) describe vacuously performed
conditioned actions in the precise sense that none of their antecedent conditions are
fulfilled (although Cn

(2) and Cn
(2(II)) also describe conditioned omissions of actions

whose antecedent conditions are fulfilled). In this respect, the generalization G1 was
particularly interesting. The proof of C $ (^n Cn

(1)) made it clear that any sentence
describing a possible physical process (typically exemplified by the possible pro-
cess described by sentence C) is equivalent to (the conjunction of) an infinite set of
sentences describing vacuously performed conditioned actions. In other words, any
possible physical process may be equivalently described as an infinite set of vac-
uously performed conditioned actions or, to put it yet more tersely, any possible
physical process is indeed equivalent to an infinite set of vacuously performed
conditioned actions.

However, although the evolution of particle Q between t1 and t2 is a possible
physical process, it may occur in the context of a broader physical system whose
evolution between t1 and t2 is not itself a possible physical process. This is what
some of the generalizations of Benardete’s paradox we’ve been considering show.
For example, in G2(I) the gods act on particle Q by applying the force mU on it
without, in return, any equal and contrary force acting on the gods. In this case, the
evolution of the broader physical system formed by particle Q and the gods is
obviously not an example of a possible physical process because, as we saw above,
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ARP is violated. Furthermore, generalization G2(II) shows that the evolution of the
broader physical system formed by particle Q and the walls is not an example of a
conventional process9 despite the fact that it is a physically possible process (in the
sense, assumed in this paper, of compatibility with Newton’s three laws of
movement). This shows that in many cases such as G2(II), infinite sets of vacuously
performed conditioned actions imply processes that, while not being conventional,
are nevertheless physically possible.

In view of their theoretical relevance, I suggest we call such sets “subtasks,” by
analogy with the term “supertask” applied to infinite sequences (sets) of actions. In
other words, a subtask is an infinite set of vacuously performed conditioned
actions.10 The reference to “actions” in this context is in no way restrictive because
one may always consider nature itself to be an actor, in which case subtasks and
supertasks will deal simply with physical processes in general.11

There are relevant similarities between the two concepts that need to be explored
in more detail in the future. For instance, we have seen that any physical process
may be equivalently described as a subtask, and we likewise know that any physical
process may be equivalently (and trivially) described as a supertask.12 When
Thomson introduced the concept of supertask (see Thomson 1954–1955), the idea
had already matured in the literature published around that time (see, e.g., Black
1950–1951; Grünbaum 1955; Weyl 1949) and the new concept helped to unify and
systematize an entire branch of thinking about the infinite. I believe that a new
sphere of reflection on the infinite, which began with Benardete 1964 and has been
considered until now in several publications (see, e.g., Priest 1999; Shackel 2005;
Hawthorne 2000; Peijnenburg and Atkinson 2010 and Uzquiano 2012), may also
be unified and systematized under the concept of subtask I have proposed.13

Appendix: The Way to Subtasks

A supertask is an infinite sequence of actions (processes) carried out (taking place)
in a finite time. A task is a finite sequence of actions (processes). It must necessarily
be carried out (take place) in a finite time because, by definition, the carrying out of
an action only lasts a finite time. Hereafter, I use the terms “actions” and “pro-
cesses” indifferently as befits the case. The notions of supertask and task may be
formulated in terms of sets of actions instead of in terms of sequences of actions
without significant change. Along these lines, we may try to define a subtask as:

(a) an infinite set of actions not carried out in a finite time.

The idea is that there exists a certain finite interval of time in which none of the
actions of the set has been carried out. But the fact that actions haven’t been brought
to completion in a finite interval of time is no more controversial than their
non-completion in an infinite interval of time. Considered from another perspective,
time is relevant when discussing actions that have indeed been carried out (and

216 J.P. Laraudogoitia



these lead to changes in time), but it doesn’t appear to be so when no action is
performed at all. This suggests that we should leave time out of the description.

If we defined a subtask as:

(b) an infinite set of actions not carried out

subtasks would be uninteresting in a vast majority of cases, except perhaps those in
which there are conditions for actions to be carried out. If these conditions are
sufficient conditions then we know, that, by definition, they will not be carried out
in a subtask. Thus, a subtask would be an infinite set of not carried out actions, with
non-carried out sufficient conditions for their completion. In other words, a subtask
would be defined as:

(c) an infinite set of actions whose carrying out (which happens not to take place)
is (materially) conditioned by the realization of certain states of affairs which
do not take place either.

Notice that if we do not impose the condition that the states of affairs should be
relevant, it follows that, since (as a consequence of the properties of the material
conditional) any falsity would be a sufficient condition (as well as a necessary one)
for the carrying out of some action in a subtask, (c) would be extensionally
equivalent to the definition of a subtask construed as a an infinite set of actions (of
processes) whose carrying out does not take place.

But in that case, we would end up with an unnecessarily broad notion (as in the
case of (b)). In Sect. 10.7, I defined a subtask as an infinite set of vacuously
performed conditioned actions (processes). In more explicit terms, and as a result of
the necessary modification to (c), the definition now takes this form:

(d) a subtask is an infinite set of actions whose carrying out, which does not take
place, is (materially) conditioned to the realization of certain relevant states of
affairs that do not take place either.

This suggests that it would be suitable (by analogy) to extend the definition of
supertask so that an infinite set of actions, whose completion takes place during a
certain interval of finite time, is now taken into account in the definition. In this
case, an infinite set of actions whose completion is (materially) conditioned by the
realization of certain relevant states of affairs could, in principle, either be a subtask
(in case the actions end up not being carried out and the states of affairs end up not
being realized), or be a supertask (in case infinite actions are not only brought to
completion, but brought to completion in a finite time). A subtask is carried out
although none of the infinite actions required by its definition is brought to com-
pletion, and none of its relevant states of affairs is realized. By contrast, a supertask
is carried out whenever infinite actions are brought to completion (in a finite time),
and a task is carried out whenever only a finite number of actions are brought to
completion. With respect to the carrying out of actions, a supertask goes beyond a
mere task, but a subtask does not even achieve the status of a task, hence its name.
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As I suggested above, a subtask will only be non-trivial in case, by way of
relevant states of affairs, there are sufficient, or necessary and sufficient conditions,
of a certain type. Any infinite set of actions (processes) whose carrying out does not
take place would in principle allow us to define a subtask because, in such a case,
any infinite set of actions may be (materially) conditioned (at the very least if we
take into account sufficient conditions) by the realization of relevant states of affairs
that are not realized (and which, furthermore, can be realized in infinitely many
ways). The notion of subtask (just like the notion of supertask) therefore includes a
multitude of realizations of no interest, as I already noted above. But there are
nevertheless interesting cases. An interesting supertask is one that has non-trivial
consequences, and the very same thing may be said of interesting subtasks.
Although the notion of “trivial” is unmistakably vague, the vagueness merely
reflects that of the notion of what is deemed “interesting.”

In any event, (d) provides the concept of subtask with some structure, by
allowing it to have non-trivial consequences; this is indeed a progress over the
non-structured (b). We’re now facing something which is indeed more interesting
than supertasks because it seems a priori impossible for the carrying out of a
subtask (as defined as in (d)) to have significant consequences. Just as one must
provide an infinite sequence of carried out relevant actions when describing a
supertask, one, when describing a subtask, must provide an infinite set of relevant
actions (of relevant processes), whose carrying out does not take place, and a set of
relevant conditions (relevant states of affairs) for its carrying out, which are not
realized either. In many cases, it will be sufficient, given the situation, to specify the
relevant conditions in order to deduce that none of the actions of the infinite set of
relevant actions will be carried out. This is exactly what we have seen in the
paradox of the gods and its generalizations.

I would like to conclude with a note on the terminology. I have talked of
“carrying out” a subtask despite the fact that one necessary condition for being a
subtask is that none of the infinite actions that play a role in its definition is actually
carried out. My intention was to underline the formal parallels with the concept of
supertask. It would perhaps be more suitable to talk of carrying out* a subtask,
analogously to how some authors use the term “causation*” to describe cases of
prevention or omission in causal terms. The expressions “observe” or “comply
with” (as when one says that one “observes the rules” or “complies with the law”)
might appear to be a suitable alternative to “carry out” in the context of subtasks. In
the absence of a clear alternative, I have not followed any of these paths. My
purpose was to point out the relevance of the concept of subtask.

Notes

1. Cn
(1) is a universal sentence, namely, Cn

(1): for every instant t, with t1 < t < t2, if
Q, at t, comes to be at a distance 1/n from L(t), then for every instant t*, with t <
t* < t2, godn will ensure that, at t*, Q is at a distance � 1/n from L(t*).

2. Since all the material bodies I consider in this paper are assumed to be
non-point, Q and godn (in particular) are non-point, which means that they
cannot be at the same distance from L(t) and, at the same time, that Q be
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between L(t) and godn. The small changes required to put this right are trivial
and I do not take them into consideration here because they would complicate
the argument unnecessarily.

3. In other words, everything that is compatible with non-interaction between
them at t remains the same.

4. There are a number of philosophical subtleties concerning contact and
impenetrability that I do not take into account in this paper. My stance on this
point is in line with the position defended by Smith, for whom such subtleties
have little importance within the framework of the mechanics of continuous
media that one finds as an essential chapter of classical physics (see Smith
2007). The principle of interaction by impenetrability (PII) isn’t one of such
subtleties. What it does, as the example of particle Q and cylinder C shows, is
to facilitate an explanation of why two rigid bodies interact by collision when
they do (and do so, furthermore, according to the relevant laws of conserva-
tion): PII takes physics seriously.

5. I do not explore here questions of differentiability, which would require a more
sophisticated treatment, but wouldn’t, in any event, compromise the validity of
(V).

6. The principle of action and reaction assumes that forces are always given
between two bodies (physical systems) such that the total force on a body is
always the sum of two-to-two interactions. As Margenau makes clear, if the
force between two molecules depends on the distance between them, and
molecule 3 introduces a difference in the force of 2 on 1, the relative position of
molecules 2 and 1 remaining unchanged, we are faced with a force between
three bodies (see Margenau 1950).

7. Indeed. For t � tº, the center of mass of the total system of infinite particles Q,
P1, P2, P3, P4,… is the point x = 0 (remember that they all have the same mass).
Now let Q be at t = tº+e at point x = d > 0. If it has not interpenetrated with any
particle Pn, this can only be due to all of these particles remaining to its right.
But since in tº there were infinite particles Pn between x = 0 and x = d, they
must have moved in the interval of time Dt = e to the right of the point x = d.
Therefore, the center of masses of the complete system must now be at a point
x � d. This displacement of the center of masses of the isolated system formed
by the total set of particles Q, P1, P2, P3, P4, ….. goes against Newton’s 1st law
of movement (the law of inertia), which implies that if Q is at t = tº+ e at point
x = d > 0 (in a more general form, if for instants of time t′ > tº arbitrarily close
to t = tº Q is in the region x > 0), then it must have interpenetrated with at least
one particle Pn (and, therefore, with a massive part of the set of particles Pn) at
instants t′ > tº arbitrarily close to t = tº.

8. Alternatively (and rather more elegantly), one might suppose that at no moment
shall any of the particles involved move to the left (in the negative direction of
the X-axis). Then it is easy to prove that the requirement of the conservation of
kinetic energy and momentum leads, at every instant, to one and only one of the
particles involved in the model having unit velocity (except, of course, at the
instants at which a collision takes place).
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9. By “conventional process,” I mean a process with interaction by contact and in
accordance with Newton’s laws of movement.

10. To appreciate the relation between subtasks and supertasks more closely, it is
interesting to note that an infinite set of non-vacuously carried out conditioned
actions is simply an infinite set of actions simpliciter and, therefore, a supertask.
In order to have a subtask, the conditioned actions must be vacuously carried
out. Note also that in subtask G2(II), the principle of conservation of energy
would appear to be violated (given that the kinetic energy of the system formed
by the walls and Q grows constantly), something that is likewise characteristic
of many standard examples of dynamic supertasks (see, e.g., Atkinson 2007).

11. The idea of nature as actor is not that remote from physical theory proper and
has been frequently associated with a teleological formulation of the laws. The
paradigmatic case in classical mechanics is Hamilton’s principle of minimum
action. All of this is admissible provided it is clear that, as Mittelstaedt and
Weingartner note: “Physical nature has no goals in the sense that living
organisms have goals” (Mittelstaedt and Weingartner 2005: 144). In the case of
subtask G2(II), if we substitute “the gods” by “Nature,” we have a suggestive
means of explaining the interaction at a distance between the walls and Q based
on the “mechanism” of impenetrability.

12. At least in Newtonian worlds which, as I said above, are the only ones I have
taken into consideration in this paper.

13. The parallels with the history of supertasks are also striking. Authors such as,
e.g., Thomson (1954–1955) and Black (1950–1951) have argued against the
possibility of supertasks; authors such as Yablo (2000), Shackel (2005) and
Peijnenburg and Atkinson (2010) have also refused to accept the possibility of
subtasks (using different arguments). Although the critical analysis of such
arguments was not the objective of this paper (with the exception of Yablo
2000), I think my generalizations of the Benardete paradox may be taken as a
useful starting point for a reply to their objections.
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Chapter 11
Supertasks, Physics and the Axiom
of Infinity

Antonio León-Sánchez and Ana C. León-Mejía

11.1 Introduction

It seems reasonable to assume that mathematical infinity was not the objective of
Zeno’s dichotomy (in any of its variants); however, some kind of mathematical
infinity was already at stake in his celebrated arguments. Aristotle proposed a
solution to Zeno’s dichotomy by introducing what we now call one-to-one corre-
spondences, the key instrument of modern infinitist mathematics. But Aristotle, more
a naturalist than a platonist, finally rejected the method of pairing the elements of two
infinite collections (in the case at hand, points and instants) and introduced instead the
distinction between actual and potential infinities. Aristotle’s distinction served to
define two opposite positions on the nature of infinity for more than twenty centuries.
Actual infinity was finally mathematized through set theory in the first years of the
20th century and the discussions on its potential or actual nature almost vanished.
But, as we shall see in what follows, things still remain to be said on this issue.

During the last decades of the 19th century, Bolzano, Dedekind and most
notably Cantor, inaugurated a new infinitist era in the history of mathematics, which
included the birth of set theory. As expected, bijections and ellipses played a capital
role in the foundation and subsequent development of the new infinitist theory.
Interestingly, set theory was founded on a violation, the violation of the old
Euclidian axiom of the whole and the part. Dedekind’s foundational definition
states that a set is infinite if it can be put into one-to-one correspondence with one of
its proper subsets. For this very reason, Bolzano did not dare to complete and
perfect the violation, a task that Dedekind and Cantor eventually rounded off.
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The success of set theory as the fundamental theory of modern mathematics cata-
pulted set theoretical infinitism to a hegemonic position. Yet, the controversy
surrounding the infinite is not over. Before addressing the heart of this controversy,
we need to examine the mathematical foundations of contemporary infinitism
critically, and this will be our starting point.

It is somewhat ironic that set theory, the infinitist theory par excellence, contains
mathematical instruments that may be used to call into question the formal consis-
tency of the actual infinity hypothesis (i.e. the hypothesis of the existence of infinite
collections as complete totalities). One of those instruments is x, the first transfinite
ordinal, the smallest ordinal greater than all finite ordinals. This first transfinite
ordinal defines a type of well-order, called x-order, that characterizes the most basic
infinite objects in transfinite mathematics such as x-ordered sets and x-ordered
sequences. Most supertasks, for instance, are x-ordered sequences of actions carried
out in a finite time interval. Inevitably, x-order implies a colossal asymmetry that is
largely ignored in infinitist literature. In turn, this asymmetry gives way to a
dichotomy that ultimately results in contradictions, whose ultimate cause can only be
the axiom of infinity itself, which legitimates both x and x-order. In this paper, we
shall resort to a formal version of Zeno dichotomy in order to examine this transition
from asymmetry to inconsistency via the aforementioned dichotomy.

Two seminal papers published at the beginning of the second half of the 20th
century laid the foundations for a new infinitist theory, independent of set theory,
which has known subsequent developments throughout the last decades of the 20th
century and the first years of the 21st, namely Thomson’s work on what he called
“super-tasks” (Thomson 1954–1955), and the criticism of this work by Paul
Benacerraf (Benacerraf 1962). The success of Benacerraf’s criticism somehow
motivated the subsequent development of the new infinitist theory, i.e. of supertask
theory. As in the previous case, the controversy is not yet over. Indeed, supertasks
can also be used to question the hypothesis of actual infinity that is subsumed in the
axiom of infinity. The objective of the present paper is to contribute to this criti-
cism. As we shall see later on, we propose to start off exactly from where
Benacerraf’s arguments ended.

Supertasks are carried out by theoretical artefacts usually known as superma-
chines or infinite machines. The problem with machines, including theoretical
supermachines, is not the (finite or infinite) number of actions they must carry out,
but the machine’s changes of state that are involved in each completed task. As is
well known, the problem of change, another pre-Socratic inheritance, does not have
a consistent solution within the space-time continuum. Therefore, anyone con-
cerned with machines that undergo changes of state must, somewhat inconve-
niently, face an additonal problem: the problem of change. We shall see later on
what may be done regarding this issue.

Definitions, procedures and proofs with infinitely successive steps are common
fare in mathematics. Even though mathematics is not concerned with the way in
which these infinitely successive steps could be carried out, the definitions, pro-
cedures and proofs of infinitely successive steps can be timetabled and converted
into mathematical supertasks. These supertasks have the advantage of not requiring
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the use of supermachines, theoretical as they may be. Hence it is possible to argue
exclusively in mathematical terms, free of such theoretical complications, and to
analyze the consequences one faces when assuming the axiom of infinity. Some of
these mathematical supertasks will be discussed here.

Although supertasks are also discussed from a physical perspective, our goal
here is not to involve physics in supertask theory but to illustrate the way supertasks
could be used to call into question the hypothesis of actual infinity. By the same
token, we shall also explain why such questioning is of great interest to experi-
mental sciences such as physics. As a result, we shall only focus on conceptual
supertasks. Furthermore, all of our arguments will be developed in a conceptual
scenario entirely favorable to the actual infinity hypothesis, without any physical or
chemical restriction limiting the discussion. Notwithstanding, we shall also take
into account physics and infinity, particularly the restrictions that the Planck scale
and Planck universal constants impose on supertasks and, what is more interesting,
on the infinitist continuums involved in the special theory of relativity.

Platonism is the natural home of infinity and transfinite mathematics. In general,
modern mathematics is essentially platonistic and a significant number of con-
temporary mathematicians are, at heart, platonists, which might be surprising from
the perspective of the natural sciences. For this very reason, we shall conclude this
essay by questioning platonism (platonic idealism) from a biological perspective,
because we believe that evolutionary biology and neuroscience could shed some
light on the classical conception of human knowledge embedded in platonism.

11.2 The Grounds of Transfinite Mathematics

As we already pointed out, Dedekind’s foundational definition states that a set is
infinite if it can be put into one-to-one correspondence with one of its proper
subsets. It is, therefore, an operational definition of infinite sets based on the vio-
lation of Euclid’s axiom of the whole and the part. Note that this definition says
nothing about the potential or actual nature of the infinity involved. It is simply
taken for granted that the infinity is actual infinity. In other words, it is presupposed
that infinite sets are complete totalities. This is due to the fact that potentially
infinite sets are not even considered in most mathematical discussions. Bolzano,
Dedekind and Cantor unsuccessfully tried to prove the existence of actually infinite
sets. Bolzano’s proof is as follows:

One truth is the proposition that Plato was Greek. Call this p1. But then there is another
truth p2, namely the proposition that p1 is true, [there is then another truth p3, namely the
proposition that p2 is true]. And so ad infinitum. Thus the set of truths is infinite.

Moore (2001: 112)

But this endless process (p1 is true, then p2 is true, then p3 is true, then…) does
by no means prove the existence of a final result as a complete totality. Dedekind’s
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proof is similar, and Cantor’s one is even less successful: “Each potential infinite
presupposes an actual infinity” (Hallet 1984: 25).

It is clear why the existence of an actually infinite set had to be established in
axiomatic terms. This is precisely the objective of the axiom of infinity. In symbols:

9N(£ 2 N ^ 8 x 2 N(x [ fxg 2 N)):

Notice again that the axiom of infinity makes no reference to the type of infinity
of the infinite set whose existence is being asserted. As in the case of Dedekind’s
definition, it is simply assumed that we are talking about the actual infinity.

Not only do one-to-one correspondences (bijections or exhaustive injections) play
a role in Dedekind’s foundational definition, they have also been used in a great
variety of arguments throughout the history of the concept of infinity, mostly to prove
(or disprove) the actual infinity hypothesis. They have been and continue to be (along
with the inevitable short cuts) an essential instrument in the development of transfinite
mathematics.We shall analyze them at themost basic foundational level of set theory.

It is sensible to assume that two sets A and B have the same number of elements
if it is possible to pair each element of A with an element of B so that all the
elements of A and B end up being paired (exhaustive injection). But it is also
sensible to assume, for the very same reason, that if one or more elements of B end
up not being paired (non-exhaustive injection), then A and B do not have the same
number of elements. The existence of both exhaustive and non-exhaustive injec-
tions between two infinite sets could indicate that they both have and do not have
the same cardinality. Thus, the arbitrary distinction of the exhaustive injections to
the detriment of the non-exhaustive ones could be concealing a fundamental con-
tradiction in set theory. We shall begin by analyzing this “apparent” conflict.

If the notion of set is primitive (as it seems to be in the platonic scenario), we need
operational definitions in which the pairing method plays a basic foundational role.
Moreover, if sets have different sizes (cardinalities), we should establish an appro-
priate method for comparing them. We need to do so before considering the types of
sets that may be defined according to their cardinalities, and before carrying out any
other arithmetic or set theoretical operation. Exhaustive and non-exhaustive injec-
tions are the only known basic instruments fit to this purpose. It follows from this that
the question whether the pairing method is appropriate to compare the cardinality of
any two sets must be addressed at this very basic and foundational level of set theory.
If the method turns out to be appropriate, we shall need to explain why
non-exhaustive injections must be rejected, since the rejection could be pointing to a
fundamental contradiction in set theory, i.e. the contradiction to the effect that infinite
sets both have and do not have the same cardinality as some of their proper subsets.

It could be argued that infinite sets are defined as those that may be put into
one-to-one correspondence with one of their proper subsets and that, for this very
reason, it is possible to define exhaustive and non-exhaustive injections between
any infinite set and some of its proper subsets. However, a simple definition does
not guarantee that the defined object is consistent. Definitions may be inconsistent
as well. Furthermore, the existence of a one-to-one correspondence between two
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infinite sets isn’t sufficient to show that they are actually infinite since both could, as
a matter of fact, be potentially infinite. In the latter case, the infinite sets would not
be regarded as complete totalities and so we would be pairing the elements of two
incomplete totalities with the same cardinality. More importantly, under such
conditions, the axiom of the whole and the part would not be violated.

Dedekind’s definition could be based on one of the terms of the contradiction,
say on the existence of an exhaustive injection between some infinite set and one of
its proper subsets. The existence of a non-exhaustive injection between some
infinite set and the same proper subset would constitute the other term of the
contradiction. No one has ever explained, safe in circular terms, why having an
exhaustive injection and a non-exhaustive injection with the same proper subset is
not contradictory. The problem has simply been ignored or, better, justified in
behalf of certain properties of infinite cardinals, all of them derived from the
foundational definition that is being justified. We believe, however, that this
problem needs to be addressed before we may define what an infinite set could be.
Otherwise, set theory would lack a consistent basis.

The arithmetic peculiarities of transfinite cardinals, such as @o = @o + @o and the
like, could be used to explain why it is possible to define exhaustive and
non-exhaustive injections between a set and one of its proper subsets. However,
these arithmetic peculiarities are formal consequences of the assumption that the
existence of sets may be put into exhaustive and non-exhaustive injections with
some of their proper subsets. We cannot, therefore, on pain of unacceptable circular
reasoning, resort to such arithmetic peculiarities to justify the existence of
exhaustive and non-exhaustive injections between a set and one of its proper
subsets. In short, at this foundational level of set theory, we cannot use posterior
attributes of infinites sets derived from the foundational assumptions to justify the
very same foundational assumptions.

If exhaustive and non-exhaustive injections were equally valid as instruments
with which to compare the cardinality of any two sets, the actually infinite sets
would be inconsistent. If, as a matter fact, they are not equally valid, we should
explain in non-circular terms why exhaustive injections are valid instruments with
which to compare the cardinality of infinite sets while non-exhaustive injections are
not. Recall that both types of correspondences resort to exactly the same pairing
method. If no (circular) reason may be given, we would have to admit that it is as
legitimate to deem both types of injections valid instruments with which to compare
cardinalities as it is legitimate not to. Leaving such a problem unsolved compels us
to declare that the arbitrary superiority of exhaustive injections is a new axiom for
the foundations of set theory.

Meanwhile, the foundations of set theory may rest on a contradiction. The
paradoxes of reflexivity (like Galileo’s celebrated paradox) are mere consequences
of the assumption that there are both exhaustive and non-exhaustive injections
between a set and one of its proper subsets. In other words, they are consequences
of the violation of the old Euclidian axiom of the whole and the part. Clearly, they
could also be reinterpreted as contradictions derived from the inconsistent nature of
actually infinite sets (and, thus, as consequences of the axiom of infinity). But this
alternative, as legitimate as it may be, has always been ignored.
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The paradoxes of reflexivity are not the only paradoxes related to infinite sets.
Burali-Forti’s paradox of the set of all ordinals and Cantor’s paradox of the set of all
cardinals are other well-known examples. In such cases, we have, stricto sensu,
genuine contradictions rather than paradoxes. According to Cantor, the inconsistent
nature of these sets would be a consequence of their excessive infinitude, too close
to the absolute infinity, the mother of all infinities that directly leads to God. It can
be proved, however, that Cantor’s inconsistency can easily be extended with the aid
of Cantor’s theorem of the power set. That extension proves (in naïve set theory)
that each (finite or infinite) set of cardinal C originates no fewer than 2C inconsistent
sets, all of them infinite.

One may offer a summary of the proof as follows:
In naïve (non-axiomatic) set theory, the elements of a set may be sets, sets of

sets, sets of sets of sets, etc. It therefore makes perfectly good sense to define the
following relation R between two sets A and B: a set A is R-related to a set B
(symbolically A R B) if B contains at least one element which forms part of the
definition of at least one element of A.

For instance, the sets: {{{a, {b}}}, {p}, d, {{{e}}}, f} and {a, b, c} are R-related
through the elements a and b, while the sets{{{a, {b}}}, {c}, d, {{{e}}}, f} and
{1, 2, 3} are not R-related.

Under such conditions, let X be any non empty set, and Y any of its subsets, and
let us define the set CY of all sets A that are not R-related to any set B that contains
elements of Y, in the following way:

CY ¼ fA :9BðB\Y 6¼ ; ^ ARBÞj g:

If P(CY) is the power set of CY, then every element of P(CY) is a subset of CY

and, consequently, a set of sets that are not R-related to any set that contains
elements of Y:

8D 2 P(YÞ::9BðB\Y 6¼ ; ^ DRBÞ:

Thus:

8D 2 P(CYÞ : D 2 CY:

It follows that the cardinality of P(CY) is equal to, or less than, the cardinality of
CY, which contradicts Cantor’s theorem of the power set (the cardinality of any set
is less than the cardinality of its power set).

Had we known the existence of such an infinity of inconsistent sets (far less
infinite than either Cantor or Burali-Forti sets), transfinite set theory might have had
a very different reception. This, however, hasn’t been the case and for more than half
a century all efforts have been directed towards the establishment of a foundation for
a set theory free of inconsistencies. The goal was finally accomplished with the aid of
a considerable number of ad hoc axioms. All of them, grouped in different ways,
have contributed to the establishment of at least half a dozen axiomatic set theories.
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We would indeed need several hundred pages to explain all these axiomatic
restrictions. One may wonder if this is the best way of founding a formal science. The
alternative to dealing with all these axioms is to consider a simpler explanation for all
the inconsistencies arising from set theory, namely that actual infinity may after all
be inconsistent, an avenue that needs to be explored.

11.3 x-Order: From Asymmetry to Inconsistency

Cantor’s Beiträge (Cantor 1955) was both the last and the most mathematical of his
publications on transfinite arithmetic. In §6 we can read:

The first example of a transfinite aggregate is given by the totality offinite cardinal numbers v;
we call its cardinal number “Aleph-zero” and denote it by “@o.”

Cantor took the existence of that set, conceived as an actually infinite complete
totality, for granted. It is reasonable to suppose that his platonistic and theological
convictions prevented him from considering the existence of that complete totality
as an initial foundational hypothesis (i.e. the axiom of infinity in contemporary set
theories). In any case, he successfully derived from that infinite totality an infinity
of growing transfinite cardinals and ordinals. In most of his proofs, Cantor made an
extensive use of his concept of equivalent sets or equipotent sets, i.e. of sets that can
be put into one-to-one correspondence. This concept also illustrates the great
importance of bijections, and the role played by the violation of the axiom of whole
and the part in the foundation of transfinite mathematics.

Theorem I (Cantor op. cit.: Part II, §14), which proves the existence of ordinals
as limits of increasing fundamental sequences of ordinals, is particularly revealing
in this respect. In Cantor’s terminology, these are the ordinals of the second class,
or of the second kind. The first transfinite ordinal, x, is the first of the second class,
and of the second kind of transfinite ordinals: it is the smallest of all ordinals greater
than all finite ordinals. This ordinal defines a type of well order usually known as
x-order. The set of natural numbers in their natural order of precedence is a
well-known example of an x-ordered set. It is important to highlight that x-order
and x-ordered sequences will play an important role in what follows. For now, let
us note that their existence is formally deduced from the axiom of infinity.

Let us begin our journey from x-order to x-inconsistency. The first leg of the
journey will lead us from x-order tox-asymmetry. To begin with, let us consider any
x-ordered sequence a1, a2, a3,… In these types of sequences, there is a first element a1,
and each element an has an immediate predecessor an−1 (except a1) as well as an
immediate successor an+1, so that there is no last element. As a consequence, every
element in the sequence has a finite number of predecessors and an infinite number of
successors. We call this kind asymmetry “x-asymmetry.” Since infinitist mathe-
matics takes x-ordered sequences to be complete totalities, we could travel through
each of the successive elements of the sequence and complete the journey in a finite
time. But even if we managed to complete this journey, we would never reach an
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element with an infinite number of predecessors and a finite number of successors.
From the very start to the very end of this infinitist excursion, we would always be
dealingwith elements that have a finite number of predecessors and an infinite number
of successors. This sort of Red Queen’s race to nowhere is known as x-asymmetry.

To grasp the colossal magnitude of x-asymmetry, consider a finite straight-line
segment AB a trillion times greater than the diameter of the visible universe
(9.3 � 1010 light years). Consider a point C on AB, arbitrarily close to B, and let us
assume that AB is x-partitioned. Whatever the x-partition may be, only a finite
number of parts will lie within AC, while infinitely many of them will lie within
CB, CB being a trillion times smaller than, e.g., Planck length (1.62 � 10−33 cm)
which, in turn, is inconceivably smaller than, e.g., the smallest of the atomic nuclei.
Due to x-asymmetry, there is no way to devise a less asymmetric partition in case
the partition were x-ordered, i.e. in case it were the smallest of the infinite parti-
tions. Moreover, whatever part you may consider (even within CB), it will always
have a finite number of preceding parts and an infinite number of succeeding ones.
This is how x-asymmetry works.

Let us now travel from x-asymmetry to x-dichotomy. In order to do so, let us
consider the X axis of the Euclidian space R3. Let us assume that its interval (0,1) is
partitioned by the sequence {zn} of points defined by:

Zn ¼ ð2n � 1Þ=2n; 8 n 2 N

where N is the set of natural numbers.
For well-known historical reasons, the points {zn} will be referred to as Z-points

(for “Zeno’s points”). Now, consider a mass point P moving through the X axis
from point 2 to point −2 at a finite and uniform velocity v. Assume that at instant
t = 0, P is at point 1. At instant 1/v, it will be at point 0, which means that it has
gone through all Z-points (since they form a complete totality). Let f(t) be the
number of Z-points that P has gone through at instant t, for any t within the time
interval [0, 1/v]. As a consequence of x-asymmetry we will have:

f(t) = 0 if t ¼ 0
f(t) = @o if t [ 0

:

There is no instant t in [0, 1/v] at which f(t) = n, n being any natural number
greater than zero. Otherwise, we would have to deal with the existence of the last n
elements of an x-ordered sequence, something that is indeed impossible in x-order
(x-asymmetry). Keep in mind that f is well defined for every t within the interval [0,
1/v]. It maps the set [0, 1/v] onto the set {0, @o}. In other words, f defines a
dichotomy. So, with respect to the number of Z-points P has gone through, P can
only exhibit two states: the state P(0), at which it has gone through 0 Z-points, and
the state P(@o) at which it has gone through @o Z-points. There are no intermediate
states P(n) at which P would have gone through a finite number n of Z-points. P will
always be either at P(0) or at P(@o). This is x-dichotomy, a consequence of
x-asymmetry which is itself a consequence of x-order which is, in turn, formally
derived from the axiom of infinity.
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Finally, let us travel from x-dichotomy to x-inconsistency. First, notice that the
points of the interval (0, 1) are densely ordered (there are infinitely many other
different points between any two of them), whereas Z-points are not. Each Z-point
has an immediate predecessor (except the first one) and an immediate successor,
and no other Z-point exists between any two successive Z-points zn, zn+1. In
addition, there is always a distance dn = zn+1 − zn = 1/2(n+1) greater than zero
between any two successive Z-points zn, zn+1 (x-separation). Consequently, at any
finite velocity, P may go through them only successively, i.e. one by one, one at a
time, one after the other, and in such a way that it takes a time greater than zero to
go from any Z-point to its immediate successor or to its immediate predecessor.

We now know that P travels from point 1 to point 0 at a finite and uniform
velocity v, so it must become P(@o) from P(0) as it travels from point 1 to point 0.
As a consequence of x-order, there is no last Z-point to begin the transition P
(0) ! P(@o). Thus, it will be impossible for us to calculate, either the distance P
must travel to become P(@o) when starting from P(0), or the time it takes P to
complete the transition. But the transition takes place anyway, even if we are unable
to describe the way in which it does, since P(0) = 0 and P(1/v) = @o.

We shall now prove that the transition P(0) ! P(@o) must be instantaneous. For
this purpose, let t be any real number greater than zero, and let us assume that P
makes the transition P(0) ! P(@o) at time t. Let t′ be any element in the interval (0,
t). According to x-dichotomy, and since t′ > 0, we will have P(t′) = @o. Therefore,
at t′, the transition P(0) ! P(@o) has already been completed. Consequently, that
transition lasts a time less than t, which is any real number greater than zero. We
must conclude that the transition P(0) ! P(@o) lasts a time less than any real
number greater than zero, in other words that the transition P(0) ! P(@o) lasts a
null time: it can only be instantaneous. It is worth noting that we are not facing a
problem of indeterminacy due to the fact that we cannot measure the duration of the
transition, but with an impossibility directly derived from x-dichotomy: the tran-
sition P(0)!P(@o) lasts a time less than any real number greater than zero, and this
is possible only in case it takes a null time to achieve the transition.

We have just proved that the transition P(0) ! P(@o) must be instantaneous.
This implies that P must go through @o successive Z-points instantaneously at a
finite velocity v. This is nevertheless impossible because there is a distance greater
than zero between any two successive Z-points (x-separation). Travelling a dis-
tance greater than zero at a finite velocity always takes a time greater than zero. It is
therefore impossible for P to go through any two successive Z-points instanta-
neously. At its finite velocity v, P cannot go through several Z-points simultane-
ously. It can only go through them successively, one after the other, so that a time
greater than zero always elapses between going through one Z-point and going
through the next. Oddly enough, we must conclude that the transition P(0) ! P(@o)
must be instantaneous even though it may not be. In short: the transition P(0) ! P
(@o) takes place; due to x-dichotomy, P(0) ! P(@o) can only be instantaneous; due
to x-separation, P(0) ! P(@o) cannot be instantaneous at a finite velocity.
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In addition to Z-points, we could also consider Z*-points {zi*} defined within
(0, 1) by:

Z�
n ¼ 1=2n; 8n 2 N:

f(t) being the number of Z*-points that P must go through at any instant t within [0,
1/v], f defines a new x-dichotomy: with respect to the number of Z*-points P must go
through, P can only exhibit two states: the state P(ℵ0), in case there still are @o points
for P to go through, and the state P(0) at which no Z*-point remains. Intermediate
states P(n) at which P would have to go through only a finite number of Z*-points are
impossible. An argument similar to the argument about Z-points leads to the fol-
lowing conclusion concerning the P(@o) ! P(0) transition: the transition P(@o) ! P
(0) takes place; due to x-dichotomy, P(@o) ! P(0) can only be instantaneous; due to
x-separation, P(@o) ! P(0) cannot be instantaneous at a finite velocity.

This is x-inconsistency, an (almost) direct consequence of x-dichotomy which,
in turn, is a formal consequence of x-asymmetry (the existence of complete
totalities in which each and every element has a finite number of predecessors and
an infinite number of successors), which, in turn, is an immediate consequence of
the x-order derived from x. Recall that x is the least transfinite ordinal of the
second class, and of the second kind, whose existence Cantor deduced from the
assumption of the existence of a complete infinite totality of finite cardinals (i.e., in
modern terms, the axiom of infinity).

Just as in the case of transitions P(0) ! P(@o) and P(@o) ! P(0),
x-inconsistency will also come forth in any x-ordered sequence of actions {ai}
successively carried out at each of the successive instants of {ti}. This means that an
infinite number of these actions would have to be carried out instantaneously, while
they can only be carried out successively, so that a time Δnt = tn+1 − tn greater than
zero always elapses between any two of these successive actions. Deriving a
contradiction from an axiom should be a sufficient reason to seriously consider the
possibility that the axiom might after all be inconsistent. Nevertheless, for myste-
rious reasons, this seems to be still not enough when that axiom happens to be the
axiom of infinity. Let us, therefore, continue to examine the issue.

11.4 Benacerraf and Thomson: A Seminal Discussion

The concept of supertask was already implicit in many classical discussions
involving infinity, e.g. in Zeno’s dichotomy and in Aristotle’s criticism of it. In the
14th century, Gregory of Remini explained how infinitely many successive actions
could be carried out in a finite time in the following way:

If God can endlessly add a cubic foot to a stone — which He can — then He can create an
infinitely big stone. For He need only add one cubic foot at some time, another half an hour
later, another a quarter of an hour later than that, and so on ad infinitum. He would then
have before Him an infinite stone at the end of the hour.

Moore (2001: 53)
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Disputation about such claims became popular, at least in an academic setting, at
the beginning of the 1950s. Black’s machines meant to prove the impossibility of
performing an infinite number of successive actions (Black 1950–1951). Black’s
arguments were then discussed by Taylor (Taylor 1951) and Watling (Watling
1952). Thomson’s paper was precisely motivated by these discussions (Thomson
1954–1955). Thomson introduced the term “super-task” and developed several
arguments, among which the famous lamp argument (which we shall discuss in the
next section), purporting to prove their impossibility. Benacerraf successfully
criticized Thomson’s arguments in a seminal paper published in 1962, and this
somehow gave rise to the birth of a new infinitist theory in the last decades of the
20th century, i.e. supertask theory (Benacerraf 1962).

Most supertasks are x-supertasks, i.e. x-ordered sequences of successive actions
(tasks) carried out at the successive instants of a strictly increasing x-ordered
sequence of instants within a finite interval of time. We shall restrict our attention to
conceptual x-supertasks. We shall assume that they are all carried out along the
same strictly increasing and x-ordered sequence {ti} of instants within the same
finite interval of time [ta, tb], each action ai being carried out at the precise instant ti,
and tb being the mathematical limit of the sequence {ti}. They will be denoted by
“{ai, ti},” “{bi, ti},” “{ci, ti},” etc.

The possibility of carrying out an uncountable infinity of successive actions has
been examined and ruled out by Clark and Read (Clark and Read 1984). Their
proof was based on Cantor’s proof of the impossibility of uncountable partitions of
the real line (Cantor 1885). Let us note that Cantor’s proof is not an independent
proof but an immediate corollary of his theorem on the countable nature of the set
of rational numbers (more on this below). Supertasks have also been examined
from the perspective of non-standard analysis. But, as far as we know, the possi-
bility of carrying out hypertasks along hyperreal intervals of time has not been
discussed, despite the fact that finite hyperreal intervals may also be divided into
hypercountably many successive infinitesimal intervals (hyperfinite partitions).

Only conceptual x-supertasks will be considered here. So let us begin with the
supertask achieved by Thomson’s reading lamp, i.e. “[a] lamp[] [that] has a button
in the base. If the lamp is off and you press the button, the lamp goes on, and if the
lamp is on and you press the button, the lamp goes off” (Thomson 1954–1955: 5).
Let us add the following constraints to Thomson’s description: (a) the lamp has
only two states: on and off; (b) the only way to change the state of the lamp is by
pressing the button; (c) each change of state takes place at a precise and definite
instant; (d) the pressing of the button and the corresponding lamp’s change of state
are instantaneous and simultaneous events.

Most variants of Thomson’s lamp have been proposed with the physical pos-
sibility of performing Thomson’s supertask in mind. We shall take our Thomson’s
lamp to be a theoretical device whose role is to contribute to our examination of the
formal consistency of the axiom of infinity.

The problem of change surfaces in all discussions of supertasks carried out by
supermachines undergoing changes of state. As we know, any canonical change
from state A to state B (without intermediate states) poses a problem that remains
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unresolved in the space-time continuum. It has been claimed for a long time that
canonical changes could be inconsistent. As a matter of fact, if the change has a
duration greater than zero, the changing object can only be in an unknown state
(different from both A and B) when the change takes place. The problem of change
thus arises in terms of a new change between the state A and that still unknown
state, and so on and so forth. On the other hand, if the change is instantaneous, it
cannot take place in the space-time continuum since, in this continuum, no instant
has an immediate successor and a time greater than zero always elapses between
any two of its instants. Things could be quite different in discrete spacetimes, where
immediate successiveness is an essential characteristic of both space and time. But
let us focus for now on what happens in the space-time continuum.

We shall ignore the problem of change for the sake of discussion and assume
that change is instantaneous so as to discuss supertasks from the perspective of the
axiom of infinity, focusing our attention on x-ordering and on the corresponding
x-asymmetries, x-dichotomies and x-inconsistencies. Bear in mind that, from a
purely theoretical point of view, x-dichotomies and x-inconsistencies have nothing
to do with the problem of change, except for the fact that infinite sequences are
complete totalities.

Let {ci, ti} be Thomson’s supertask and let us assume that each click ci is
performed at the precise instant ti of the strictly increasing sequence {ti} of instants
within the finite interval (ta, tb), tb being the limit of {ti}.

Thomson claims that:

[The lamp] cannot be on, because I did not ever turn it on without at once turning it off. It
cannot be off, because I did in the first place turn it on, and thereafter I never turned it off
without at once turning it on. But the lamp must be either on or off. This is a contradiction.

Thomson (1954–1955: 5)

Benacerraf objects that:

The only reasons Thomson gives for supposing that his lamp will not be off at tb are ones
which hold only for times before tb. The explanation is quite simply that Thomson’s
instructions do not cover the state of the lamp at tb, although they do tell us what will be its
state at every instant between ta and tb (including ta). Certainly, the lamp must be on or off
(provided that it hasn’t gone up in a metaphysical puff of smoke in the interval), but nothing
we are told implies which it is to be. The arguments to the effect that it can’t be either just have
no bearing on the case. To suppose that they do is to suppose that a description of the physical
state of the lamp at tb (with respect to the property of being on or off) is a logical consequence
of a description of its state (with respect to the same property) at times prior to tb.*

* “ta” and “tb” appear respectively as “t0” and “t1” in Benacerraf’s paper.

Benacerraf (1962: 768)

We agree with Benacerraf that we cannot deduce the state of the lamp at tb from
the sequence of its previous changes. We also assume that certain properties of the
sequence of changes that hold while the number of changes is finite may be not
satisfied in case that number is infinite. But, as we shall see, the discussion cannot
end here. Benacerraf’s conclusion that “the lamp must be on or off […], but nothing
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we are told implies which it is to be” will be the starting point of our extension of
Benacerraf’s argument about {ci, ti}.

We may not infer that a machine is not the same as it was before and while
performing some supertask from our ignorance of what the state of the machine is
once it has indeed achieved the supertask. The machine could only change its
(theoretical or physical) nature after completing the supertask, otherwise it would be
impossible for the machine to complete it. There is no reason to assume that, if we
define a theoretical machine as one which is to achieve a conceptual supertask, that
machine is no longer the one it was defined to be once it has achieved the supertask,
no matter what its current state might be (except arbitrarily, for the sake of con-
venience). In other words, ignoring the state of the machine isn’t quite the same
thing as ignoring the nature of the machine (i.e., in our conceptual scenario, its
formal definition).

Consequently, we shall assume that, once it has achieved a supertask, the
conceptual objects that participated in it (regardless of their current states) continue
to be the same objects they were before and during the carrying out of the supertask.
If, e.g., x is a rational variable and we redefine it a (finite or infinite) number of
successive times, we still take x to be a rational variable once such redefinitions
have been provided, and not, say, a red hat or a neutron star. By the same token, if T
is a table of real numbers within (0, 1) whose rows are permuted any finite or
infinite number of times, once the permutation has occurred, T will continue to be a
table with the very same real numbers it had before its rows were permuted. So,
unnecessary as it may seem, we shall begin by assuming the following hypothesis:

H0: The definition of a conceptual object does not change as a consequence of
any finite or infinite sequence of successive actions being carried out with the help
of that object.

More specifically, we shall assume that formal definitions, laws, conditions and
constraints are never arbitrarily violated as a consequence of having carried out a
finite or infinite number of actions. Denying H0 would have destructive conse-
quences for transfinite mathematics. For instance, after providing a recursive def-
inition (or procedure, or proof) of infinitely many successive steps (that could also
be scheduled in the form of a supertask), we couldn’t assert anything about the
defined object. And this would also happen to all the axioms, definitions and
theorems involved.

If nothing could be asserted of a conceptual object once a supertask has been
achieved, nothing could be asserted either of any mathematical object or result
obtained through a sequence of infinitely many successive steps. Obviously, under
such conditions, transfinite mathematics would remain empty of content (more on
mathematical supertasks below). As we shall see, we could also define conditional
supertasks (mathematical supertasks, in particular) in such a way that each task
would be achieved only in case certain conditions are satisfied. In this case, it would
indeed be impossible for us to know whether the number of achieved tasks is finite
or infinite. Even if we admit that the state of a conceptual object cannot be deduced
from its previous states while performing a supertask, H0 guarantees that its formal
definition does not change as a consequence of such a carrying out.
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11.5 Thomson’s Lamp Revisited

According to H0, Thomson’s lamp will remain the same Thomson lamp before,
during and after the completion of supertask {ci, ti}. Consequently, at tb, after the
completion of {ci, ti}, the lamp will be in a certain state Sb. We are not interested in
knowing whether the lamp is on or off at Sb, although by definition a Thomson
lamp can only be either on or off. Some authors have claimed that it could be in
some exotic state different from these two states. We must nevertheless insist that if
the lamp can be in some exotic state other than either on or off, then it isn’t by
definition, a Thomson lamp.

We know that the state of the lamp is Sb at tb and we are able to prove that at any
instant prior to tb it is impossible for the lamp to have reached Sb, whatever that
state might be. Let t be any instant prior to tb. Since tb is the limit of the sequence
{ti}, there will be a tv in {ti} such that tv � t < tv+1, which means that only a finite
number v of clicks have been carried out at t (x-asymmetry). As a consequence, Sb
cannot originate at t for any t within (ta, tb). Therefore, Sb being the state of the lamp
at tb, the state Sb can only originate at tb and at no other instant. Notice that this
conclusion is a direct consequence of the fact that tb is the mathematical limit of {ti}
together with the assumption that {ci, ti} has been carried out along the successive
instants of the strictly increasing sequence {ti}.

Notice also that while tb is the mathematical limit of the strictly increasing and
upper bounded sequence of real numbers (successive instants) {ti}, the state Sb is
not the mathematical limit of the sequence of states {Si} = on/off/on/, off/on/off…
that the lamp undergoes as a consequence of {ci, ti}. Recall that oscillating
sequences do not have a limit. Therefore, Sb is the state of a Thomson lamp that
originates at some specific instant tb, otherwise the supertask would not have been
completed. This is indeed all that may be said about Sb and the supertask {ci, ti}.

According to the definition given above, a Thomson lamp only changes its state
when the button is clicked. So we cannot claim that the lamp may change its state in
virtue of yet unknown reasons. Remember that, according to H0, a lamp that
changes its state for unknown reasons is not, by definition, a Thomson lamp. Since
tb is the specific and definite instant at which Sb originates, the button of the lamp
had to be clicked at tb (the clicking and the corresponding change of state are
instantaneous and simultaneous events that take place at a specific and definite
instant). Yet this is impossible because at tb the supertask {ci, ti} has already been
achieved. It follows that tb is the first instant after performing {ci, ti} and that the
button of the lamp has not yet been clicked at tb.

Let f(t) be the number of clicks to be performed at t within the closed interval
[ta, tb]. As a consequence of x-order and x-asymmetry, each ci of {ci} has infinitely
many successors. Consequently, we shall have:

f(t) = @o if t \tb
f(t) = 0 if t = tb
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which means that, for any natural number n, there is no instant t at which f(t) = n.
Otherwise, the (impossible) last n elements of an x-ordered sequence would exist;
in other words, there would exist an element of the sequence with a finite number n
of successors. Therefore, with respect to the number of clicks to occur, a Thomson
lamp may only have two states:

TL(@0), at which @0 clicks still have to occur
or
TL(0), at which no further clicks may occur.
A similar argument to the one provided above for Z*-points proves that the

transition TL(@0) ! TL(0) can only be instantaneous, and hence that @0 clicks
have to occur simultaneously. This contradicts the fact that the button of the lamp is
clicked successively and that each click ci takes place at instant ti in such a way that
a time Δit = ti+1 − ti greater than zero always elapses between any two successive
clicks ci and ci+1 (x-separation).

In order to illustrate the difficulty brought about by the x-dichotomy of {ci, ti},
consider a box BX containing a denumerable sequence {bi} of labelled balls b1, b2,
b3, … and assume that we remove the balls from the box one by one in such a way
that at each click ci (i.e. at each instant ti), we remove the ball bi from the box. At tb
all the balls will have been removed from BX, exactly as the one-to-one corre-
spondence g(ti) = bi proves. If f(t) is the number of balls to be removed at instant t,
we obtain the same x-dichotomy that we obtained in the case of Thomson’s
lamp. So, despite the fact that all the balls are removed one by one, one after the
other, and in such a way that a time Δt = ti+1 − ti > 0 always elapses between the
extractions of any two successive balls bi, bi+1 (x-separation), the box BX will
never contain a finite number of balls. BX is emptied by the successive removal of
all of the balls one by one, but it will never contain …5, 4, 3, 2, 1, 0 balls. The
number of balls inside the box will always be either @0 or 0; it will indeed suddenly
change from @0 to 0.

Furthermore, as in the case of Sb (and for the same reasons), the change can only
be instantaneous. So an infinite number of balls would have to be removed from the
box simultaneously, which is incompatible with the fact that all of them are
removed successively, as the bijection f(ti) = bi proves. All things considered, one
may wonder whether we are facing a new infinitist extravagance or a mere
inconsistency. Notice that we are not subtracting cardinals but removing balls from
a box under the restriction of a dichotomy formally derived from x-order, and thus
from the axiom of infinity. The substraction of cardinals is indeed a suspicious
transfinite arithmetic operation: it is admissible only in some specific cases (e.g. in
the Tarski-Bernstein and the Tarski-Sierpinski theorems). Sometimes, it is utterly
inconsistent (see, e.g. the Faticoni argument and cognates).

For strictly illustrative purposes, and without going into further details, we shall
now formalize the Thomson-Benacerraf dispute.

Consider the following expressions and their corresponding symbolic
counterparts:
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– Thomson’s lamp on at instant t: *[t]
– Thomson’s lamp off at instant t: o[t]
– Thomson’s lamp on along the interval (ta, tb): *(ta, tb)
– Thomson’s lamp off along the interval (ta, tb): o(ta, tb)
– Click at t the lamp being previously on: c{[t], *}
– Click at t the lamp being previously off: c{[t], o}
– Click at least one time along the interval (ta, tb) the lamp being previously on: c

{(ta, tb), *}
– Click at least one time along the interval (ta, tb) the lamp being previously off: c

{(ta, tb), o}.

The word “previously” in “the lamp being previously on (off),” does matter a great
deal here. Recall that in the spacetime continuum no instant has an immediate pre-
ceding (or succeeding) instant in the way that, e.g., the natural number 5 has an
immediate predecessor (the natural number 4) and an immediate successor (the nat-
ural number 6). As noted above, this is why the problem of change remains unsolved
in the spacetime continuum. The problem bears upon all changes we may think of,
whether theoretical or experimental, so that we must indeed leave it on the side if we
want to discuss fruitfully the question of the state changes of a Thomson lamp.

With the help of our symbolism, we can formalize some fundamental laws of
Thomson’s lamp, e.g. the following axioms (definition of the lamp):

cf½t]; og )� ½t�:
cf½t];� g ) o½t�:
�½t] _ o½t�
:ð�½t] ^ o½t�Þ

and the following derived laws:

cfðta; tbÞ; og ) 9t 2 ðta; tbÞ :� ½t�
cfðta; tbÞ;� g ) :�ðta; tbÞ
o[tb� ) :�½tb;1Þ
etc:

We shall focus on the following two laws:

BT1: cfð�1; tbÞ;� g ^� ½tb;1Þ ) 9 t� tb : cf½t],og ^ :
cfðt;1Þ;� g

BT2: cfð�1; tbÞ; og ^ o½tb;1Þ ) 9 t� tb : cf½t],�g ^ :
cfðt;1Þ; og:

BT1 reads: if the lamp’s button has been clicked at least once within the interval
(−∞, tb), the lamp being previously on, and the lamp stays on from tb, then there is
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an instant t equal or prior to tb such that the button is clicked at t, the lamp being
previously off, and the button is no longer clicked from t. BT2 reads similarly
except that we must replace “on” with “off” and vice versa.

Let us now prove BT1 (the proof of BT2 may be provided along similar lines).

H1: Assume that:9t� tb: cf½t]; og:

We will have:

:cfð�1; tb�; og:

On the other hand, according to the antecedent of BT1 we have:

cfð�1; tbÞ;� g ) 9 t \tb : cf½t],�g

which means o[t].
From:

: cfð�1; tb�; og and o[t], being t \tb

we derive o[tb] and ¬*[tb, ∞), which tells against the second term of the antecedent
in BT1. Therefore, if that antecedent is true, H1 is false.

H2: Assume that::9 t� tb : :c f½t;1Þ;� g:

We will have:

cf½tb;1Þ;� g

which tells against the second term *[tb, ∞) of the antecedent of BT1. So, if this
antecedent is true, H2 must be false. The falsehood of H1 and H2 proves BT1.
Notice that BT1 is not derived à la Thomson, from the successively performed
clicks. BT1 is a law directly derived from the laws that define Thomson’s
lamp. Therefore, if we assume H0, BT1 must hold before, during and after the
occurrence of any (finite or infinite) number of clicks.

Consider again the supertask {ci, ti}. Assume that the state Sb is on (a similar
argument can be developed if it were off, with BT2 in the place of BT1). Under
such conditions, the antecedent of BT1 would be true. Therefore, its consequent
would also be true. However, it is false. On the one hand, if t < tb − (tb being the
limit of the sequence {ti}), there would exist some tv in {ti} such that tv � t < tv+1,
and hence only a finite number v of clicks would have occurred. On the other hand,
t cannot be tb, because at tb the button of the lamp has not yet been clicked.
Consequently, t cannot be an element of (←, tb]. Therefore, the carrying out of
superstask {ci, ti} implies the violation of BT1, which flies in the face of H0.
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11.6 On Marbles and Boxes

We sometimes speak of paradoxes when inconsistencies are at stake as, e.g., in the
case of the Burali-Forti and Cantor paradoxes. Ross’s so-called paradox might also
belong to this category. It is indeed a supertask. Before considering the
Ross-Littlewood paradox, we shall introduce expofactorial and n-expofactorial
numbers in order to define two variants of Ross’s supertask (expofactorials were
also introduced independently by C. Pickover in Pickover 1995). Although we do
not need such numbers to define supertasks, they make things easier for us and help
illustrate how finite natural numbers may be so large as to prove offensive.

The expofactorial n! (note that the factorial symbol ! appears as an exponent) of a
number n is the factorial n! raised to a power tower of order n! of the same exponent
n! Thus the expofactorial of 2 is:

2! ¼ 2! ^ 2! ^ 2! ¼ 2 ^ 2 ^ 2 ¼ 24 ¼ 16:

We cannot calculate the expofactorial of 3 (3!):

3! ¼ 3! ^ 3! ^ 3! ^ 3! ^ 3! ^ 3!
¼ 6 ^ 6 ^ 6 ^ 6 ^ 6 ^ 6

¼ 6 ^ 6 ^ 6 ^ 6 46656

¼ 6 ^ 6 ^ 6 265911977215322677968248940438791859905342200269

92430066043278949707355987388290912134229290...

where the incomplete exponent of the last expression of 3! has no less than 36,306
digits (it is roughly ten pages long). We haven’t been able to calculate the next step,
not even with the help of a big integer supercalculator. And there still remain three
steps to go. So 3! is such a large number that we cannot calculate its precise
sequence of numerals (it isn’t a mere sequence of zeros), not even with the help of
the most powerful computers. Imagine the case of 9!, let alone of 100!.

Expofactorials are very small compared to n-expofactorials, which are recursively
defined from expofactorials: The 2-expofactorial of a number n (denoted “n!2,” is the
expofactorial n! raised to a power tower of order n! of the same exponent n!:

n!2 ¼ n! ^n! ^. . .ðn! timesÞ. . .^ n!:

The 3-expofactorial of a number n, denoted “n!3,” is the 2-expofactorial n!2

raised to a power tower of order n!2 of the same exponent n!2:

n!3 ¼ n!2 ^n!2 ^. . .ðn!2 timesÞ. . .^ n!2:
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The 4-expofactorial of a number n, denoted “n!4,” is the 3-expofactorial n!3

raised to a power tower of order n!3 of the same exponent n!3:

n!4 ¼ n!3 ^n!3 ^. . .ðn!3 timesÞ. . .^ n!3

and so on and so forth. Three arithmetical symbols—“9,” “!,” and “9,”—suffice to
denote a number (9-expofactorial of 9) so large that the standard writing of its
precise sequence of figures would require a volume of paper trillions of times
greater than the volume of the visible universe. As we noted above, they are so
large that they prove offensive. Still, being finite, they are much smaller than the
smallest of the infinite cardinals @o (or than the improper real number ∞). In some
of the following discussions we shall resort to the number 9!9 which, for the sake of
simplicity, will be denoted by the letter H (for “huge”).

Let us now consider the following supertask, our first variant of Ross’s super-
task: at each instant ti of {ti} we add H marbles (i.e. 9!9) to an initially empty box A.
If the index i is an integer multiple of H (i.e. tH, t2H, t3H,…), then one marble is
added to another initially empty box B. At tb, once the supertask has been com-
pleted, A and B will contain the same number of marbles, i.e. @o. From the
transfinite arithmetic perspective, there is nothing remarkable in this conclusion
because transfinite cardinals satisfy equations such as @o = (@o)

H and the like. One
might nevertheless feel frustrated from a conceptual or philosophical point of view.

On the one hand, @o is the least transfinite number greater than all finite integers.
In this respect, it is the upper limit of any strictly increasing x-ordered sequence of
natural numbers. Since the number of marbles in each box forms a strictly
increasing x-ordered sequence of natural numbers, at tb both boxes contains the
same number @o of marbles. This is fine, but, since the supertask progresses, there
is a third strictly increasing and x-ordered sequence of natural numbers {di},
namely the difference in the number of marbles in A and B:

fdig ¼ H; 2H; 3H; . . .H2�1;H2 þH�1;H2 þ 2H�1;H2

þ 3H�1; . . .H3�2. . .

di ¼ H1þ a
i þ biH�ai

where ai = Int(i/H) and bi = (i mod H).
So, if at tb the number of marbles in A is the limit @o of the sequence

fiHg ¼ H; 2H; 3H; . . .

and the number of marbles in B at the same instant tb is the limit @o of the sequence

fig ¼ 1; 2; 3; . . .
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we may wonder why the difference in the number of marbles in A and in B at tb is
not the limit @o of the sequence

fH1þ a
i þ biH�aig ¼ H; 2H; 3H; . . .H2�1;H2 þH�1;H2

þ 2H�1;H2 þ 3H�1; . . .H3�2. . .

How is it possible that the difference be 0 at tb? Recall that at tb both boxes
contain the same number of marbles. Notice also that we are discussing the limits of
strictly increasing x-ordered sequences, as opposed to properties that only apply to
finite sequences. And things can get even worse if we take into account the fact that
the difference in the number of marbles in A and B becomes null exactly at tb, i.e. at
the first instant after all marbles have already been added. For we then have:

8t 2 ðt1; tbÞ : 9tv 2 ftig : tv � t \tvþ 1:

Consequently, at instant t the difference d(t) in the number of marbles inside
A and B is

dðtÞ ¼ dv ¼ H1þ intðv=HÞ þ ðv mod HÞ � intðv=HÞ

which obviously increases with v and then with t within (t1, tb). How can it finally
be d(tb) = 0? Is it unreasonable to suspect that there is something amiss here?

In order to introduce our second variant of Ross’s supertask {Ri, ti} (which
hardly differs from the original version), consider an x-ordered collection of
identical marbles {mi} labelled with the successive natural numbers, and assume
that at each instant ti of {ti} we add a group of H marbles, labelled from (i − 1)
H + 1 to iH, to an initially empty box A. In addition, the box A is provided with a
mechanism M that removes the marble with the least index from the box while a
new set of H marbles is added to the box, including the first set. The mechanism M
is set in such a way that it only works within the interval [ta, tb). Under such
conditions, each marble mi will be removed at instant ti, an instant at which the box
will contain exactly i(H − 1) marbles. Therefore, as the supertask {Ri, ti} pro-
gresses, the number of marbles in A varies according to the following strictly
increasing x-ordered sequence of natural numbers

fi(H�1Þg ¼ 1ðH�1Þ; 2ðH�1Þ; 3ðH�1Þ; 4ðH�1Þ; . . .

On the one hand, each marble mi being removed from the box at ti, the one-to-one
correspondence f(ti) = mi proves that at tb, once the supertask {Ri, ti} is completed, all
marbles have been removed from the box. This isn’t open to debate. The conclusion to
the effect that, at tb, the box A is empty is a direct consequence of a bijection.

On the other hand, let t be any instant within (t1, tb), tb being once again the limit
of the sequence {ti}. We shall have:

8t 2 ðt1; tbÞ : 9tv 2 ftig : tv � t\tvþ 1:
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Consequently, at instant t, the number n(t) of marbles within the box A will be

nðtÞ ¼ nðtvÞ ¼ vðH� 1Þ

which strictly increases with v, and then with t within (t1, tb). It is therefore
impossible for box A to be empty at any instant within the interval (t1, tb). Therefore,
taking into account that at tb no marble has been removed from the box (because at tb
the supertask {Ri, ti} is already completed and the mechanism M is off), the box
cannot be empty at tb. This isn’t open to debate either. The conclusion to be drawn
for this variant of Ross’s paradox can only be that box A is and is not empty at tb.

To conclude this section on marbles and boxes, consider the x-ordered collec-
tion of marbles {mi} of supertask {Ri, ti}, with the same labelling as before. Let us
replace box A by a hollow cylinder C of infinite length with a diameter equal to that
of the marbles. Assume that at each instant ti of {ti} the marble mi is introduced into
the cylinder through its left end. At tb all the marbles will have been introduced into
C. If we now introduce a rigid rod through the left end of C, the rod may hit a
marble mv, proving that only a finite number v of marbles have been introduced into
C. But it may also be the case that the rod travels the whole length of the cylinder
without hitting any marble, as there is no last marble to be hit in the x-ordered
sequence of marbles {mi}, but this contradicts the fact that infinitely many marbles
were introduced inside the cylinder.

11.7 Synchronizing a Supertask

To illustrate the need for H0 in supertasks discussions, a mathematical supertask
will now be carried out synchronically with a classical supertask. The classical
supertask will be carried out with the collaboration of the infinitely patient guests of
Hilbert’s Hotel. Let us recall some of the extraordinary properties of this illustrious
hotel. Its director has just discovered a new infinitist way of getting rich: he or she
demands one euro from G1 (the guest of room R1); G1 recovers his or her euro by
demanding one euro from G2 (the guest of room R2); G2 recovers his or her euro by
demanding one euro from G3 (the guest of room R3), and so on and so forth.
Finally, each guest recovers his or her euro since there is no “last guest” losing his
or her money. The deceitful director then demands a second euro from G1 who
recovers it again by demanding one euro from G2, who recovers it by demanding
one euro from G3, etc. Thousands of euros thus pass from (infinitist) nothingness to
the pocket of the fortunate director!

Eccentricities aside, let us assume that the rooms of the hotel are arranged in a
unique row divided into two adjacent parts, the left-hand side and the right-hand
side. The right-hand side is an x-ordered sequence of contiguous rooms labelled R1,
R2, R3, … from left to right. The left-hand side is also an x-ordered sequence of
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contiguous rooms, labelled … L3, L2, L1 from right to left, and in such a way that
L1 is contiguous with R1. Symbolically:

HH ¼ . . .L5 L4 L3 L2 L1 R1 R2 R3 R4 R5. . .

In addition to its entrance front door, each HH room has two lateral doors: a left
door that communicates with the contiguous room to the left, and a right door that
communicates with the contiguous room to the right. We shall also assume that
along the interval [ta, tb] all lateral doors are open and that all entrance doors of
every single room are blocked, so that no guest can leave the hotel. To say that a
room Li or Ri is empty we shall write “Li

o, Ri
o,” and to say that the guest Gn

occupies them we shall write “Li
Gn, Ri

Gn.” We shall assume that, initially, each right
room Ri is occupied by guest Gi, all left rooms being initially empty. So the initial
state of HH at ta will be:

HHðtaÞ ¼ . . .Lo
5 Lo

4 Lo
3 Lo

2 Lo
1 RG1

1 R2
2 RG3

3 RG4
4 RG5

5 . . .

Let us now consider the following HH-change: through the left door of his or her
room, guest G1 moves to the left empty room contiguous to his or her current room
(provided that such an empty room exists) and each guest Gi, i>1 moves through the
left door of its current room to the room previously occupied by Gi−1:

HH t1ð Þ ¼ . . .Lo
5 Lo

4 Lo
3 Lo

2 LG1
1 RG2

1 RG3
2 RG4

3 RG5
4 RG6

5 . . .

HH t2ð Þ ¼ . . .Lo
5 Lo

4 Lo
3 LG1

2 LG2
1 RG3

1 RG4
2 RG5

3 RG6
4 RG7

5 . . .

HH t3ð Þ ¼ . . .Lo
5 Lo

4 LG1
3 LG2

2 LG3
1 RG4

1 RG5
2 RG6

3 RG7
4 RG8

5 . . .

By either induction or Modus Tollens, it can be easily proved that for every
natural number v it is possible to carry out the first v HH-change (Theorem 1).

Let now A0 = {a1, a2, a,…} be an x-ordered set, and consider the following
x-ordered sequence of recursive definitions {Di(Ai)} of the sequence of nested sets
{Ai}:

i ¼ 1; 2; 3; . . .DiðAiÞ : Ai ¼ Ai�1�faig:

Let us assume that at each instant ti of the sequence of instants {ti} the ith
definition Di of {Di(Ai)} is provided and that, at the very same instant ti, the ith
HH-change occurs (provided that it can indeed occur). At tb, once the infinitely
many successive definitions Di have been provided (supertask {Di, ti}) and thanks
to H0, we shall have a new sequence of nested sets {Ai} exhaustively defined as a
complete totality. We shall be able to resort to it whenever needed, for instance to
prove new theorems. This is typical of standard infinitist mathematics (were it not
for the fact that standard infinitist mathematics is not interested in timetabling the
steps of x-ordered sequences of steps).
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Things are quite different with {HHi, ti}. As a matter of fact, at tb, and once all
possible HH-changes have taken place, all guests mysteriously disappeared from
the hotel: Gn being any guest, he or she cannot be in any right room Rk (for any
natural number k) nor in any left room Lp (for any natural number p). In the first
case, only the first n − k HH-changes would have occurred, while in the second
that number would be p + k − 1.

It is clear that both results contradict Theorem 1. So, if H0 applies to supertask
{HHi, ti} in the same way that it applies to the recursive definition {Di(Ai)}, we
have a serious conflict with the x-ordering derived from the axiom of infinity. In
any event, anyone denying that there is a conflict should provide a cogent argument
to that effect.

11.8 Mathematical Supertasks

Definitions, recursive definitions, procedures and proofs involving infinitely many
successive steps are common in contemporary mathematics. In general, mathe-
maticians are not interested in the way these infinitely many steps might be taken.
They take it for granted that they are and focus on the results. If these results consist
in infinite collections such as sets or sequences, these are construed as completed
totalities in agreement with the hypothesis of actual infinity embedded in the axiom
of infinity, which in turn implies that infinitely many steps have indeed been taken.
Of course, all these infinite definitions, procedures or proofs assume H0. Unless H0
is assumed, once these infinitely many steps of the corresponding definitions,
procedures and proofs have been taken, one could be in the odd situation of being
unable to assert anything about them: they would be utterly useless. Uninteresting
as it may seem from a purely mathematical perspective, we could schedule these
infinitely many successive steps in the form of supertasks. These mathematical
supertasks have the advantage of being immune to the problem of change. They
nevertheless have the same discursive functionality than standard supertasks and
could be used, e.g., to examine basic transfinite principles such as x-order and the
axiom of infinity. We shall now introduce some of these mathematical supertasks,
although not in detail (for detailed arguments, see Antonio León-Sánchez 2013).

11.9 Lost in Exchanges

Let {ai} = a1, a2, a3, … be an x-ordered sequence and construe it as a table with
one row and infinitely many columns both x-ordered and indexed by the successive
natural numbers. Assume now that we successively exchange a1 for the element
placed in the next column to the right of a1. Let us call these exchanges “a1-
exchanges.” After the first n successive a1-exchanges we would have:
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a1; a2; a3; a4; . . .an; anþ 1anþ 2; anþ 3. . .

a2; a1; a3; a4; . . .an; anþ 1anþ 2; anþ 3. . .

a2; a3; a1; a4; . . .an; anþ 1anþ 2; anþ 3. . .

. . .

a2; a3; a4; a5; . . .an; anþ 1a1; anþ 2; anþ 3. . .

It is easy to prove either by induction or Modus Tollens that for any natural
number v greater than 0 it is possible to carry out the first v successive a1-exchanges
(Theorem 2). Consider now the following supertask {ai, ti}: at each successive
instant ti of {ti}, exchange a1 for the element in the next adjacent column to the right
of a1 (provided that such a column exists), otherwise stop the supertask. In any
event, the supertask will have been achieved at tb. Let v be any natural number and
assume that the element a1 is in the vth column of {ai} at tb. If that were the case,
the first v a1-exchanges would not have been carried out, which contradicts
Theorem 2. Therefore, v being any natural number, we must conclude that the
element a1 is no longer an element of {ai} at tb. At tb, a1 has disappeared from the
table in spite of the fact that no a1—exchange made it disappear.

11.10 The Next Rational

The set Q+ of positive rational numbers in their natural order of precedence is
densely ordered: between any two rationals, infinitely many other rationals exist.
But Q+ is also denumerable, so it can be put into a one-to-one correspondence f
with the set N of natural numbers. This correspondence f induces an x-order in Q+:
{q1, q2, q3, …}, where qn is the rational number f(n). Therefore, the set of positive
rational numbers may be both densely ordered (between any two rationals infinitely
many other rationals exist) and x-ordered (between any two successive rationals no
other rational exists).

This kind of numerical disorder allows us to develop the following argument.
Let x be a rational variable whose initial value is 1, and consider the following

sequence {Di(x)} of x redefinitions:

i ¼ 1; 2; 3; . . . :

If qiþ 1 � q1
�
�

�
�\x; then DiðxÞ : x ¼ qiþ 1 � q1

�
�

�
�;

otherwise DiðxÞ : x remains the same

which redefines “x (for each i = 1, 2, 3,…)” as “|qi+1 − q1| if |qi+1 − q1| is less than
the current value of x, |qi+1 − q1| being the absolute value of qi+1 − q1, and <being
the natural order in Q+.”

It is worth noting that all the successive definitions Di(x) redefine the very same
object, i.e. the rational variable x. By contrast, each recursive definition Di(Ai) of
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the above sequence of definitions {Di(Ai)} defines a different object, i.e. the set Ai

of the sequence of nested sets {Ai}. This divergence is crucial: in one case we have
an x-ordered sequence of definitions without a last definition that originates an
x-ordered sequence of nested sets without a last set. In the other case, we also have
an x-ordered sequence of definitions without a last definition, but all these suc-
cessive definitions define the very same object x, which forces {Di(x)} to leave a
permanent trace in the form of the rationality of x: once all possible redefinitions
Di(x) have been provided, the variable x will still be a rational variable, albeit one
that has been redefined a certain number of times. Otherwise, H0 would have been
violated, and the very same violation could happen to any sequence of successive
definitions of the same object or of different objects. The only alternative to this
would be to forbid to redefine the same object infinitely many successive times. The
prohibition would then have to be added as a new restrictive axiom of transfinite
mathematics. For the time being, we shall proceed with our argument about Di(x)
since we are, as a matter of fact, allowed to redefine an object any finite or infinite
number of successive times.

By either induction or Modus Tollens, it can easily be proved that for any natural
number v, the first v redefinitions of the sequence {Di(x)} can be carried out
(Theorem 3). Consider the following supertask {Di(x), ti}: perform Di(x) at instant
ti if it is possible to perform Di(x); if not, stop the supertask. In any event, all
possible redefinitions Di(x) will have been carried out at tb. Whatever the value of x
at tb may be, it will be a rational number since x is a rational variable, i.e. one that
can only take rational values even though it has been redefined a given number of
times. Otherwise, we would be violating H0. We now prove the following two
contradictory results with respect to the value of x at tb.

R1: At tb, the rational q1 + x is not the least rational greater than q1.

Proof Q Being densely ordered, the rational number q1 + 0.1x, for instance, is
greater than q1 and less than q1 + x. So q1 + x is not the least rational greater than
q1.

R2: At tb, the rational q1 + x is the least rational greater than q1.

Proof Assume it is not. Q+ being x-ordered, there will be a qv in {q1, q2, q3, …}
such that:

q1\qv\q1 þ x

and then

0\qv�q1\x

which implies that the vth redefinition Dv(x) (the one that would have defined x as
qv − q1) has not been provided, a conclusion which contradicts Theorem 3. So
q1 + x is indeed the least rational greater than q1.
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11.11 Cantor’s (1874) Argument

In 1874, Cantor proved that the set A of algebraic numbers and the set Q of rational
numbers are both denumerable (Cantor 1874). He also proved in the same paper
that the set R of real numbers is not denumerable. This argument is as conclusive as
his diagonal proof, although it is far less well known. Cantor’s 1874 argument leads
to three exhaustive and mutually exclusive possibilities, each of them proving that
R is not denumerable. Two out of the three could also be applied to the set Q of
rational numbers. So we need to prove that Cantor’s 1874 argument always leads to
the third option when it is applied to the set of rational numbers, otherwise Q would
also be non-denumerable. Unless we prove that this is indeed the case (and the
proof promises to be far from obvious), set theory is facing a contradiction with
respect to the cardinality of the set of rational numbers. It is hard to believe that
neither Cantor nor his infinitist successors ever realized that such a proof is
necessary.

We shall resort to a variant of Cantor’s 1874 argument to define a new math-
ematical supertask with conflicting consequences. As noted above, Q can be put
into a one-to-one correspondence f with N. So we can define an x-ordered sequence
of rational numbers {qi} = {f(i)} that contains all rational numbers. Let (a, b) be
any rational interval, and let x, a rational variable whose domain is (a, b) and whose
initial value is c, be any element of (a, b). Consider then the following x-ordered
sequence {Di(x)} of successive x redefinitions:

i ¼ 1; 2; 3; . . . :

If qi 2 a; bð Þ and qi \ x; thenDiðxÞ : x ¼ qi;

otherwise;DiðxÞ : x remains the same

which compares x with the successive qi of {qi} within (a, b), and redefines x as qi
each time qi is in (a, b) and is less than the current value of x. By either induction or
Modus Tollens, we may prove that for each natural number v it is possible to
provide the first v definitions of the sequence {Di(x)} (Theorem 4).

Assume that, if carrying out Di{x} is possible, it is carried out at instant ti of the
sequence {ti}, otherwise stop the supertask {Di(x), ti}. In any case, at tb, all possible
redefinitions of the sequence {Di(x)} will have been carried out. According to H0,
x will be defined at tb as a rational number within the interval (a, b), since x is a
rational variable whose domain is (a, b) and has been redefined a given number of
times. Consider then the rational interval (a, x), and let q be any of its elements.
Obviously, q is in (a, b) because (a, x) is a subinterval of (a, b). Yet q cannot be an
element of {qi}. Let us suppose that it is. In that case, q = qv, for a certain qv in
{qi}, and then qv < x because qv is in (a, x). But this implies that the vth redefinition
Dv(x) has not been carried out and this conclusion contradicts Theorem 4 (notice
that Dv{x} would have redefined x as qv). We must conclude that the sequence {qi}
that contains all rational numbers does not contain all rational numbers.
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11.12 Cantor’s Diagonal Argument

Cantor’s diagonal argument is one of the most celebrated and productive arguments
in the recent history of logic and mathematics (Cantor 1890–1891). It is a simple
and elegant Modus Tollens proving that the set of real numbers is
non-denumerable. Despite many criticisms, it is correct. It is relatively common in
infinitist discussions to reject an argument because the conclusion of another
independent argument contradicts its conclusion. This has been the case with
Cantor’s diagonal argument, and it is clearly inadmissible because two independent
arguments that happen to contradict each other amount to a proof of a contradiction.
An argument may be dismissed only when one is able to show where and why that
particular argument fails.

Cantor’s diagonal argument also poses a problem that has not been adequately
addressed so far: could the indexed rows of Cantor’s table be permuted in such a
way that the resulting table defines a rational diagonal (and then a rational antidi-
agonal)? Clearly, and for the same reasons as in Cantor’s 1874 argument, if that
were the case, we would be facing a contradiction with respect to the cardinality of
the set of rational numbers. As with the alternatives of Cantor’s 1874 argument, we
need to prove that such a reordering of the rows of Cantor’s table is not possible if
we want to reject the contradiction (once again, the proof is far from obvious). It is
striking that little attention has been paid to this problem.

Our last mathematical supertask is related to Cantor’s diagonal argument (in this
case, some auxiliary work is nevertheless necessary). To begin with, we need to
prove the following theorem of the nth decimal:

For every natural number n there are infinitely many different rationals in (0, 1) with
the same decimal dn in the same nth position of its decimal expansion.

Without going into all the details, the sequence of rationals numbers:

q1 ¼ 0:d1d2. . .dn1

q2 ¼ 0:d1d2. . .dn11

q3 ¼ 0:d1d2. . .dn111

q4 ¼ 0:d1d2. . .dn1111

. . .

and the bijection f(n) = qn will suffice to prove the theorem.
Let us recall that Cantor’s hypothetical indexed table {ri} contains all the real

numbers (rational and irrational) within the interval (0, 1), one number in each row
ri. Although it isn’t necessary as far as the next argument is concerned, Cantor’s
table could easily be redefined so as to make sure that it contains at least all the
rational numbers within (0, 1).

The decimal expansion of rational numbers with a finite decimal expansion will
be completed with infinitely many 0s to the right of their last decimal. So, in place
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of, say, 0.25, we shall write 0.25000… etc. Finally, we shall say that a row of
Cantor’s table is n-modular if the nth decimal of its decimal expansion is (n mod
10). For instance:

row r1: 0.60305111022339 … is 3-modular, 5-modular, 13 modular, etc.
row r2: 0.02000671010000 … is 2-modular, 6-modular, 7 modular, etc.
row r3: 0.11300000000000 … is 1-modular, 3-modular, 10 modular, etc.

If the nth row rn of Cantor’s table is n-modular, we shall say that it is D-modular
(in the above examples, the rows r2 and r3 are D-modular). If a row ri is not
D-modular, it can be exchanged for any of the following i-modular rows rj, j>I,
provided that such a row exists. Once exchanged, ri will contain the number in rj
(and vice versa) and it will become D-modular. We call these exchanges
“D-exchanges.” This is all we need to define the next Cantorian diagonal supertask.

Assume that, at each instant ti of {ti}, the row ri of Cantor’s table is such that:

If ri is D-modular, it remains unchanged.
If ri is not D-modular and can be D-exchanged for any following i-modular row rj, j>i,
it is D-exchanged.
If ri is not D-modular and cannot be D-exchanged, it remains unchanged.

Notice that once a non-D-modular row ri has been D-exchanged, it becomes
D-modular and will remain D-modular (and unaffected by the subsequent
D-exchanges) due to the condition j > i (in rj, j>i) on D-exchanges. At tb, all rows
will have been taken into consideration and the supertask will have been completed.
Let this supertask be denoted by “{ri, ti}.”

We may now prove that, at tb, once {ri, ti} has been carried out, all rows of
Cantor’s table are D-modular. Let us assume that they are not, i.e. let us assume that
there is a row rn at tb that is not D-modular. As a consequence of x-asymmetry, rn
has a finite number (n − 1) of preceding rows and an infinite number of succeeding
rows. This implies that rn can only be preceded by a finite number of n-modular
rows. According to the theorem of the nth decimal, there are infinitely many
rationals with the same decimal (n mod 10) in the same nth position, since all
n-modular rows have the same decimal (n mod 10) in the same nth position of their
decimal expansion. In other words, there are infinitely many n-modular rows, of
which only a finite number precede rn. Consequently, rn is succeeded by infinitely
many n-modular rows and hence had to be D-exchanged for any one of them.
Therefore rn must be D-modular. We must conclude that, once the supertask {ri, ti}
has been carried out, all rows of Cantor’s table are D-modular. As in the case of
Cantor’s diagonal argument, this one is also a simple Modus Tollens. The reader
can easily prove that supertask {ri, ti} leads to other conflicting results such as the
disappearance of infinitely many rows from the table.

If all the rows of Cantor’s table become D-modular, the new diagonal of the
table will be a periodic rational number within (0, 1), whose period is 1234567890,
i.e. the rational number 0.123456789012345678901234567890…
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From this diagonalization, we may define infinitely many rational antidiagonals,
e.g. the periodic rationals within (0, 1) of periods 0123456789, 45, 21, etc. For the
same reasons as with irrational antidiagonals, each of these rational antidiagonals
would prove that the set of rationals within (0, 1) is not denumerable. Therefore, we
would have a fundamental contradiction in set theory: the set of rational numbers
would be both denumerable and non denumerable. The alternative to this contra-
dictory conclusion would be a violation of H0, so that, for example, at tb, either the
rows of Cantor’s table are no longer real numbers within (0, 1), or they are arbi-
trarily permuted so that we cannot be sure that all of its rows are D-modular, etc.
Obviously, the same final arbitrary effects could be expected with any definition,
procedure or proof involving infinitely many successive steps, and transfinite
mathematics would then be a meaningless affair.

11.13 Partitions à la Cantor

The following summarized argument is not a supertask but a mathematical pro-
cedure with infinitely many steps, expressed in the compact form of computer
language. It illustrates another way of posing problems related to the hypothesis of
actual infinity. It is inspired by Cantor’s Ternary Set (Cantor’s power) and by
Cantor’s argument about the partition of the real line in Cantor (1885).

Let A be the real interval (0, 1) and X a set of indexes whose elements will be
referred to as a, b, c, d, … and whose cardinality is 2@o . Let u and v be two real
variables and f a one-to-one correspondence between A and X.

Consider the following procedure P:

u = 0 Used to define the left end of the successive intervals.
v = 0 Used to define the right end of the successive intervals.

When A 6¼ ∅:

X = X − {a} a (b, c, d, …) is any element of X.
A = A − {f(a)} Remove f(a) from A.
v = v + f(a) Right end of the interval.
If v is in R then R is the set of proper real numbers.
(xa, ya] = (u, v] Define a new real interval.

Otherwise:

Exit Loop Two real numbers whose sum is not a proper real number.

End if

u = v Left end of the next adjacent and disjoint interval.

Loop.
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Since the sum of any two real numbers is a real number, P exhausts the sets I and
A and defines a partition T = {(xa, ya], (xb, yb], (xc, yc],…} on the real line, each of
whose intervals (xh, yh] defines a different real number rh = yh − xh. We may then
prove that g((xh, yh]) = rh is a one-to-one correspondence between T and (0, 1).
Thus, by selecting a rational number qh within each (xh, yh], we would have a
non-denumerable sequence of different rational numbers. As with Cantor’s 1874
argument and Cantor’s diagonal argument, this new conclusion also points to a
possible contradiction with respect to the cardinality of the set of rational numbers.

11.14 Infinity and Physics

While many authors believe in the formal consistency of supertasks, a (much
smaller) number of them believe in the physical possibility of actually carrying out
supertasks. In this latter group, there are those who believe that supertasks could be
carried out in infinite intervals of time that are perceived as finite intervals thanks to
the relativistic dilation of time (these are the so-called “bifurcated supertasks”). As
we shall see now, x-asymmetry and quantum mechanics add new difficulties to the
possibility of actually carrying out (or even observing) a supertask in a finite
interval of time.

Let tp be Planck time (5.39 � 10−44 s) and consider the time interval (tb − tp, tb).
Due to x-asymmetry, at any instant t within (tb − tp, tb), only a finite number of
actions have been carried out and there still remains an infinite number of actions to
be completed. Since tb is the limit of {ti}, there will exist an instant tv in {ti} such that
tv � t < tv+1 and hence, at instant t, only a finite number v of actions will have been
carried out. So infinitely many actions would have to be completed within an interval
of time far smaller than Planck time.

A simple exercise in differential calculus proves that, assuming Heisenberg
principle of uncertainty, Planck length and Planck time are, respectively, the
shortest length and least time to be measured in physical terms. So we could never
verify in these terms that a supertask has been carried out in a finite interval of time
simply because infinitely many actions would have to be carried out in less than
Planck time. Furthermore, as most physicists now suspect, physical laws might no
longer hold beyond Planck scale. It is also quite plausible that nothing in the
physical world can last a time shorter than Planck time. This adds some additional
difficulties to the claim that supertasks could be physically carried out.

We have only been concerned here with conceptual x-supertasks. Our purpose
wasn’t to enlist physics in supertask theory but to illustrate the way in which
supertasks could be used to call into question the axiom of infinity. This ques-
tioning is nevertheless of great interest for the experimental sciences, e.g. physics.

Apart from x-asymmetry, x-inconsistency also applies to physical supertasks: as
far as the number of actions to be carried out is concerned, that number can only
take two values: @o and 0. The only solution to this dichotomy is that infinitely

252 A. León-Sánchez and A. C. León-Mejía



many successive actions be carried out simultaneously. But successive actions
cannot be carried out simultaneously in physical terms.

The mathematical infinite, on the other hand, is anything but a trivial matter.
Consider its impact on physics. The points of the infinitist continuum of the real
numbers, for instance, are of capital importance in physics: think of point masses,
point particles, point charges, etc. The special theory of relativity, one of the more
successful theories of modern physics, is a physical theory of the spacetime con-
tinuum. Theoretical physics relies almost exclusively on infinitist mathematics. But,
as we shall see, the continuum may well not be the best model of the physical
world, particularly when we approach ultramicroscopic scales such as the Planck
scale. The persistent problems that physicists have been concerned with for more
than fifty years suggest that the physical world could be discrete and discontinuous,
i.e., digital.

For many contemporary physicists, the persistent incompatibility between
quantum mechanics and general relativity is a consequence of the lack of dis-
creteness of the continuum-based models (see Majid 2008). They suspect that space
and time are not continuous but discrete (i.e. composed of indivisible minima) and
that the granular fabric of spacetime could be the meeting place for the two fun-
damental physical theories. An increasing number of theoretical and experimental
research is now trying to prove the discrete nature of space and time. As we shall
also see, the search for violations of Lorentz symmetry at Planck scale (the plau-
sible granular scale of the physical world) is now becoming an active area of
theoretical and experimental research (see Smolin 2007; Maudlin 2011). The
continuum being a formal descendent of the axiom of infinity, we must insist on the
importance of reexamining the formal consistency of the actual infinity hypothesis,
if only for the fact that, if it were inconsistent, so would all continuums. Most
physicists have not considered this possibility.

Some of our conclusions on supertasks and mathematical supertasks suggest that
the hypothesis of actual infinity embedded in the axiom of infinity may be
inconsistent. If that were the case, more than a century of mathematics would have
to be revised. As a consequence, a new type of discrete (digital) mathematics would
have to be developed, including discrete analysis and discrete geometry (more on
this below). Physics would also be affected by these conclusions, albeit in a dif-
ferent way. This is, at least, what the following points seem to indicate:

1. Although theoretical physics relies on infinitist mathematics, experimental
physics deals with digital results. Even when dubbed analog, observations and
measurements are always discrete, truncated to a small number of digits.

2. Infinities that emerge in physical equations have to be removed in order to avoid
the unsolvable problems they invariably lead to, e.g. in the standard model of
particles (renormalization).

3. All physical magnitudes seem to be of a discrete nature, with indivisible min-
ima. Even space and time are also suspected of being composed of indivisible
minima.
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4. Nothing we have ever observed, measured or divided is infinite. In physics,
infinity could just be a “manner of speaking.”

5. The suspected digital scale of nature could be the Planck scale. As experimental
and theoretical physics get closer to this scale, some problems emerge. Most
physicists suspect that it is not possible to find a solution to these problems
within our current analog models. (We shall deal with one of them in this
section.)

If nature is indeed discrete in all its observables, the analog mathematics of the
continuum may very well not be the most appropriate instrument to deal with the
physical world. When we examine the world independently of its discrete scale of
minima, the analog mathematics of the continuum works quite well. Problems
surface when we approach that scale.

Before approaching the hypothetical digital scale of the physical world (and the
problems it poses for some well-established physical theories), let us recall the
n-expofactorial numbers of unimaginable size such as 9!9. We certainly may define
finite numbers that large, but to suppose that they are in any way meaningful is
quite another matter. Suppose there is indeed a real number with 9!9 decimals in its
decimal expansion. Suppose furthermore that all the physical constants needed to
explain the universe are real numbers with 9!9 decimals (and 9!9 is still very small
compared with @o). Wouldn’t such a universe be utterly absurd? On the other hand,
all periodic rational numbers and all irrational numbers have an x-ordered sequence
of @o decimals in their decimal expansions. Moreover, according to infinitist
orthodoxy, these numbers exist as a complete totality. Most of the irrational
numbers within (0, 1) are supposed to have an infinite (x-ordered) and random
sequence of decimals. Being infinite and random as they are, it would be easy to
prove that each of these sequences contains an encoded version of all known texts
written by humans from the Neolithic up to now. What is even more incredible is
that every one of them would also contain sequences of the same decimal repeated,
e.g., 99!99 times. These are unavoidable consequences of the alliance of randomness
with actual infinity.

As we know, @o, the cardinal of the set of natural numbers, is the smallest
number greater than all finite natural numbers. The problem with @o is that its
definition is not related to the operational definition of natural numbers via the
successor set. @o is not the successor of any finite natural number simply because
there is no last natural number to be succeeded by @o. Cantor proved that @o is not a
natural number because @o = @o + 1, while every natural number n satisfies n 6¼
n + 1. He then proved that @o is greater than all finite cardinals because, for any
finite cardinal n, the set {1, 2, … n} is not equivalent to N although it is a proper
part of it. He also proved that it is the least cardinal greater than all finite cardinals
(see Cantor 1955: Theorems A and B, epigraph 6). So @o is the limit of all strictly
increasing and x-ordered sequences of natural numbers; but @o does not play in
physics the fundamental role that it plays in set theory.

The next transfinite cardinals are 2@o and @1. The former is the cardinal, among
others, of the set of real numbers, i.e. the power of the continuum. The latter is the
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cardinal of the set of all ordinals whose sets have the same cardinal @o. We do not
know if 2@o = @1 (Continuum Hypothesis). The sequence of powers (2@o , 2^2@o ,
2^2^2@o , …) and the sequence of alephs (@1, @2, @3, …) yield an unending number
of infinities of an increasing infinitude that leads towards absolute infinity, which is
infinite to the point of being inconsistent, at least, if Cantor is to be believed, for our
limited human minds. All of them, except the power of the continuum, are irrele-
vant to physics.

The spacetime continuum is grounded on the continuum of the real numbers,
whose cardinal is 2@o (in physics literature, even under the signature of Nobel
laureates, it is not unusual to meet with the erroneous assertion that this cardinal is
@1. After all, transfinite arithmetic may not be essential for doing physics). As is
well known, the continuum of the real numbers is so infinite that a straight line
segment of Planck length (1.62 � 10−35 m) has the same number of points as the
whole tridimensional visible universe, which, bijections aside, is rather enigmatic
from a purely physical point of view (think, for instance, of virtual quantum par-
ticles). Bijections and ellipses thus form an unlikely, not to say dangerous, couple.

The physical theory which turns out to be directly concerned with the hypothesis
of actual infinity is the special theory of relativity; it was founded on the contention
that space and time are unified into a four-dimensional continuum called spacetime,
this continuum being the infinitist continuum of the real numbers. As is well known,
Einstein’s theory refines Newtonian mechanics for velocities approaching the speed
of light. The special theory of relativity has been satisfactorily confirmed by exper-
iments and observations. The question is: is there any scale of nature at which the
theory will also need to be refined, or is it, as such, the ultimate theory? The question
matters here because space and time could be discrete rather than continuous, and if
they are, some aspects of the special theory of relativity would have to be modified.

Since the beginning of the 21st century there is a growing interest in the search
for violations of Lorentz symmetry at the Planck scale. Although this scale was
intended to define a metric reference independently of arbitrary definitions of
unities for mass, length and time, the interest in Planck’s scale has gone far beyond
its original metric objectives. It is considered an appropriate candidate for a defi-
nition of the granularity (discreteness) of space and time. The Planck scale is
defined by a set of universal constants: Planck mass mp, Planck length lp and Planck
time tp (Planck energy, Planck charge and Planck temperature may also be inclu-
ded). Planck mass, Planck length and Planck time are defined in terms of three
universal constants: h (Planck constant), c (the speed of light in the vacuum) and G
(constant of gravitation). The universality of the Planck constants poses some
significant problems for Lorentz transformation.

The first principle of the special theory of relativity asserts that the laws of
physics are universal, i.e. that they are the same in all inertial reference frames. The
universality of physical laws implies the universality of the physical constants
involved in their mathematical formulations. In addition, if A and B are two uni-
versal constants, their algebraic combinations must also be universally constant. For
instance, mo (the magnetic permeability of the vacuum) and eo (the electric
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permittivity of the vacuum) being two universal constants, their algebraic combi-
nation (moeo)

−1/2 is also a universal constant (in this case, the speed c of light in the
vacuum). For the same reason, lp, tp and mp, which are also defined as algebraic
combinations of three universal constants (h, c and G in all three cases), can only be
universal constants in all reference frames. If that were not the case, say because a
given algebraic combination f(h, c, G) had changed with relative motion, the
change could only be due to a change in at least one of these three universal
constants (provided that real numbers and algebraic operations do not change with
relative motion). Thus, at least one out of the three universal constants would
change with relative motion: it would not be the universal constant it was assumed
to be.

The problem is that Lorentz transformation does not preserve the universality of
certain algebraic combinations of h, c, and G. In particular, it does not preserve the
universality of Planck length, Planck time and Planck mass. As Smolin pointed out
(Smolin 2007), it is astonishing that the problem of the relativity of the universal
constants hasn’t been posed until the very beginning of the 21st century.
Amelino-Camelia proposed a solution that is now known as Doubly Special
Relativity, or Deformed Special Relativity (DSR for short) (see Amelino-Camelia
2001). In addition to the speed of light as universal constant, DSR includes two
additional universal constants (independent of relative motion): a maximum energy
(Planck energy) and a minimum length (Planck length). The theory has now several
variants, e.g. DSR II (see Magueijo; Smolin 2003). Not surprisingly, DSRs have not
been enthusiastically welcomed.

DSR and its successive variants have built upon the same infinitist mathematics
of the continuum as other physical theories. The problem here is that, at Planck
scale, we plausibly approach the discrete scale of nature, where the
continuum-based mathematics may no longer be the appropriate instrument. The
relevance of the formal consistency of the hypothesis of actual infinity becomes
striking precisely at this point: if that hypothesis turned out to be inconsistent, so
would all continuums formally derived from it, and we would be forced to develop
a new discrete mathematics more attuned to the physical world (the branch of
mathematics we usually call “discrete mathematics” has nothing to do with this
issue). Besides, and for the first time in the history of logic and mathematics, we
have at our disposal two productive instruments to dispute that foundational
hypothesis: x, the least transfinite ordinal, with its wealth of asymmetries,
dichotomies and possible inconsistencies, and supertask theory, which provides an
appropriate scenario by means of which arguments may be represented.

11.15 Platonism and Biology

From a physical point of view, an object exists just in case it can interact with other
objects in such a way that their states are modified as a consequence of the inter-
action. It is through interactions that we can detect the existence of physical, i.e.
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spacio-temporal, objects. The different branches of physics and other experimental
sciences study different types of interactions, from the simple change in the tra-
jectory of a photon to a chemical reaction or a galactic collision. We usually call
these “dynamic interactions” because energy is always involved. As far as we
know, they are always governed by the same set of universal laws.

Living beings introduce another type of interaction into the physical world,
so-called “infodynamic interactions,” in which arbitrary signals and codes are
involved. Infodynamic interactions modify the state of the receiving objects in such
a way that it is not always possible to detect the changes from the physical laws
proper, but only from the complex evolutionary and reproductive history of each
organism. Obviously, all objects involved in infodynamic interactions are physical
objects subject to dynamic interactions with the rest of the world. Apart from being
arbitrary, infodynamic interactions are also teleonomic, the objective in most
instances being either directly or indirectly related to reproduction (which also
includes survival), the universal goal of all living beings.

Living beings survive and reproduce in a physical environment governed by a
set of universal physical laws. It isn’t surprising that living beings behave in har-
mony with such laws in order to survive and reproduce, and that nature’s regularity
has eventually been captured in genetic, epigenetic and neurological terms. In other
words, we shouldn’t be surprised that we have acknowledged the fundamental laws
of logic and proved able to develop formal systems which provide successful
models of the physical world.

This natural harmony between our capacities for abstraction and the formal
coherence of the physical world have led some to idealize the ontological status of
mathematical objects and defend the philosophical doctrine of platonism. But let us
recall that mathematical objects have also played an essential role in many erro-
neous physical theories. Moreover, these objects play no role whatsoever in our
account of most chemical, geological and biological phenomena, let alone psy-
chological, or sociological ones. Finally, if the above arguments on the hypothesis
of actual infinity turn out to be conclusive, and the hypothesis is therefore proven
inconsistent, platonism could no longer be defendable: it would no longer make
sense because the sequence of natural numbers could only be potentially infinite. In
other words, natural numbers, the simplest mathematical objects, could only be the
result of successive mental recursive operations.

Platonism claims that mathematical objects exist in some more profound sense
than physical objects. Notwithstanding, the only method available to us to test
whether or not some object exists resorts of its (purported) dynamic or infodynamic
interactions with other objects. Since non spatio-temporal objects (e.g. abstract
objects such as numbers) may not be subjected to this objective physical test, no
causal relation can be established with them, which inevitably brings us back to
Benacerraf’s epistemological argument against platonism. To overcome this diffi-
culty, the platonist is ready to make another claim, i.e. the epistemological claim to
the effect that we can have access to them by means of a cognitive ability dubbed
intellectual or mathematical “intuition.” Let us investigate this contention from the
perspective of neuroscience.
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To paraphrase Zeki, the organization and laws of the brain dictate all human
activity: there can be no genuine epistemology of mathematics unless it is neuro-
biologically based (Zeki 1995). The kind of mathematical intuition that platonism
resorts to in order to argue in favor of a contact between spatio-temporal and
non-spatio-temporal objects is incompatible with neuronal processing of
information.

We tend to think of vision, hearing and perceptual experience in general as if our
brain worked like a camera, capturing external reality, as it were, in a shot. But what
the brain does is much more complex and counter-intuitive: it reacts to stimuli, and
selects and processes them in different parts of the brain in order to integrate the
information it has gathered and to give rise to a unitary conscious experience.

The brain, in a nutshell constructs perceptions. It processes sensory outputs,
categorizes them, makes generalizations and abstractions that allow us to represent
reality. Plato believed that objects are derived from abstraction, but neuroscience
has taught us that the derivation takes places the other way around. This capacity
for abstraction and concept formation is primitive, allowing us to attain knowledge
by means of a construction of all objects of perception.

The importance of such neurological findings cannot be underestimated: there
must be enough neurons to represent whatever exists. In other words, if knowing
consisted of looking things up in a mental repertoire in which each and every
object had been previously registered, the repertoire would be infinite, whereas our
physical memory is limited. We may perhaps discuss whether or not there are
infinitely many numbers but it may not be doubted that the number of neurons we
possess as individuals is finite. Fortunately for us, the process of abstraction saves a
lot of energy, neuronally speaking.

When, e.g., we perceive an orange, our preconscious experience is fragmented.
The brain processes separately the colour, size, shape, and smell of the object in
order for a conscious experience of “perceiving an orange” to emerge at all, i.e. a
perception in which all these distinct features are perceived unitarily (unless one
suffers from brain injury or merely hallucinates an orange). This is how “an orange
becomes all the oranges that exist in the world,” and this is how abstraction and
generalization take place in the neurophysiological realm (see Mora 2007).

Let us pick up another example to illustrate why anatomic acquisition of
knowledge is so efficient. Imagine a set of, say, fifty alphabetical symbols. With
such a small number of symbols we could create many languages, in which we
could write and tell a vast number of stories. Suppose, on the contrary, that every
time we want to tell a story we have to start from scratch and create different
alphabets (different sets of letters). This would indeed be very costly in terms of
time and energy. Reusing and combining the same letters seems to be a much wiser
strategy.

To cope with the problem of limited memory, evolution has selected brains that
are able to identify common features shared by distinct objects without having to
previously register all of them. Intuition, if there is any such thing, probably results
from the intrinsic activity of the brain, i.e. the default mode network discovered by
Raichle and his colleagues (Raichle 2006), which is believed to play a major role
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in brain function. We know that intuition, whether mathematical or otherwise, is
part of the overall machinery by which the brain acquires knowledge. As such, it
must be subjected to the same organization and rules that are being investigated by
an overwhelming amount of experimental studies.
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Chapter 12
Mathematical Truth (1968 Version)

Paul Benacerraf

12.1 Introduction

Contrary to what you might expect from its title, this paper is on the concept of
mathematical truth. I will not present an analysis—but I will try to indicate the
direction, or directions, I think analyses should follow. I think that many traditional
attempts to account for truth, meaning, and knowledge in mathematics are mis-
guided and doomed to failure. Analysis of these failures suggests that the
philosopher who wishes to give an account of these notions faces a dilemma. I will
describe this dilemma. But my principal aim is to shift the discussion in the phi-
losophy of mathematics away from certain traditional lines (which I take to be
bankrupt), and onto some new ones. I fear that nothing I say will itself be new for
I’m sure everything I say has already been denied in print, probably by Hilary
Putnam.

Virtually every question in the philosophy of mathematics depends for its
answer on how we view mathematical truth. For example, discussions of the
philosophical import of various metamathematical results (Gödel’s incompleteness
theorems, Cohen’s and Gödel’s independence proofs) often proceed by asking if
arithmetic (set-theoretic) propositions, if undecidable in some standard systems are
true (or false) nevertheless. Thus, in the arithmetic case, one side will press the view
that Gödel’s (Rosser’s) discovery that certain axiomatic systems were either
incomplete or inconsistent forced one to relativize the notion of arithmetic truth to
individual systems—to accept as many different conceptions of arithmetic truth as
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there are different formal systems of arithmetic. Opponents of such a multiplicity of
concepts see no unclarity in what is for them “the” notion of arithmetic truth. They
take Gödel’s remarkable achievement as showing that for no formal system of
arithmetic does theoremhood coincide with truth. Clearly as many variations on
those themes as are possible have been played. Some such divergent views on the
import of Gödel’s results usually stem directly from different conceptions of
arithmetic truth: in the first case, theoremhood in some specified or specifiable
formal system is the determinant characteristic, while in the second, it is some
principle implying that of every pair consisting of a closed sentence and its negation
exactly one member must be true. Quite often, a Tarski-type truth definition in some
richer language, usually some set theory, is lurking in the background. More often
than not, there is simply the view that every closed sentence is “meaningful” and
makes some definite claim which must therefore be true or false. But if we
understand negation in the usual way, of every pair consisting of a sentence and its
negation, exactly one member must be true and exactly one must be false. The view
can be embellished a bit, but not transformed, by making reference to the gram-
matical forms in question (names, predicates, quantifiers, etc.).

The case of set theory is considerably more complicated; two factors intrude to
prevent it from assuming the relative pastoral calm and beauty that attends arith-
metic. First, there are the set-theoretical paradoxes discovered around the turn of the
20th century which, despite the current vogue decrying the “Catastrophe Theory” of
set-theoretic truth, forced a radical revision in the Fregean concept of set—a
revision which detractors of the Catastrophe Theory will claim had been obvious all
along—but a radical revision nevertheless.1 Number theory has not needed to
recover from such conceptual illness, no matter how minor you may consider this
one to be. The second complication, though perhaps not a defect of birth, is owed to
something discovered by Paul Cohen. Cohen showed that the Axiom of Choice and
the Continuum Hypothesis are independent from the usually accepted axioms of set
theory. This is an incompleteness result reaching beyond the one Gödel obtained for
arithmetic (which applies to standard formalizations of set theory as well), with
what may be more serious conceptual consequences, for the propositions proved
independent by Cohen are in a sense more central to the theory. They represent live
and debated questions at the very heart of the theory of sets, perhaps genuine
branching points in the theory, analogously to the way the independence of the
parallels postulate provided a branching point in geometry. The future could see the
parallel development of Cantorian and non-Cantorian set theories, according as they
accept or reject the Continuum Hypothesis, with neither being given priority. Most
practitioners (Gödel and Cohen, for example) seem to feel that these issues will
eventually be decided by the adoption of new and evident axioms which charac-
terize further our conception of set—where the emphasis is now upon a further
characterization rather than an extension of our present concept (not a pellucid
distinction).

Such is not the case with the class of propositions involved in Gödel’s result on
arithmetic, for two reasons: (1) for any pair of undecidable Gödel sentences, there is
more general agreement concerning which of the two should be added to form
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extensions of the basic first order arithmetic, and (2) there is a tendency to regard
undecidable arithmetic sentences from a set-theoretic point of view, and thus to
decide them by set-theoretic means—as is evidenced by the following comment of
Cohen’s:

Indeed we can postulate as a rather vague article of faith that any statement in arithmetic is
decidable in “normal” set theory, i.e. by some recognizable axiom of infinity. This is of
course the case with the undecidable statements of Gödel’s theorem which are immediately
decidable in higher systems.

Cohen (1966: 152)

Whereas the force of the second factor is to relativize arithmetic truth to
set-theoretic truth, the independent existence of the first factor provides a minimal
testing ground for these additional set-theoretic axioms: they must give the “right”
answer to the number-theoretic questions. The difference lies in that whereas there
might conceivably exist mathematicians who would investigate “Cantorian” set
theories (i.e. ones which imply GCH) and even advocate their adoption, it is
unthinkable, as a matter of mathematical anthropology, that anyone seriously
contemplate the adoption of systems of arithmetic which take the “wrong”
branching at Gödel sentences. Despite these differences, however, the several
camps seem once more to form on the basis of what they would take to be the
determinants of mathematical (in this case, set-theoretic) truth.

For, one who believes in the possibility of the parallel development of Cantorian
and non-Cantorian set theories is likely to do so because she takes the axioms of set
theory (e.g. the ZF axioms) to constitute an implicit definition of the notion of set—
or of a notion of set shown by Cohen to fall short of determining the truth-value of
either AC or GCH. I.e., what doesn’t follow from these axioms isn’t true of sets
thus conceived—and what is not first order derivable from those axioms doesn’t
follow from them. Conversely, the “implicit definition” view just mentioned seems
to commit its proponent to denying that propositions independent of the axioms
have a truth-value at all.

There are many infirmities inherent in such a position, but this is not the place to
uncover them in detail. I will simply mention two: (1) It is not usually noticed that
excluded middle must be rejected if one is to avoid asserting, for undecidable S,
(S V * S), while denying a truth-value to S and to*S (otherwise, disjunction must
be reinterpreted); (2) It is unclear what concept of logical consequence is being
employed when what is at issue is the very theory (set theory) in terms of which the
notion of logical consequence is customarily explained. But we will return to this
point in another connection. In any event, the branching view seems to have as its
rationale a view of set-theoretic truth which identifies a concept of set with the
axioms which characterize that concept. Non-equivalent sets of axioms yield dif-
ferent concepts, and something is true under a given conception of set if and only if
it is derivable from axioms individuating that conception.2

On the other hand, a number of positions seem to be open to those who deny that
the axioms are implicit definitions of the associated concepts of set. It will suffice
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for our immediate purposes to distinguish roughly two: first, there are those who
feel that in writing axioms of set theory one is describing some well determined
reality—in such a way that each closed formula, whether a theorem or not, has a
truth-value determined by how accurately it represents that reality. Secondly, there
are those who feel that what is being axiomatized is a (perhaps somewhat vague)
underlying conception of set. The axioms we write may or may not correctly
characterize sets thus conceived—on this score there is no difference with the
immediately preceding view—but nor is there any assumption that the conception
we are trying to characterize is determinate with regard to every closed sentence
that can be formulated in the vocabulary. Holders of this latter view might admit of
possible indeterminacies in our conception but need not claim that finding propo-
sitions independent of present axioms is proof of such indeterminacies: it might at
best be proof of our imperfect intuitions concerning the conceptions which activate
us. For both of these groups, the prescribed method of research is to explore the
consequences of new axioms (whose truth or falsity may not be immediately evi-
dent), flooding the axioms with the light of our intuitions based on matters con-
cerning which we feel more secure. The former group thinks of this process as one
of discovery, always, while the latter countenances the possibility that propositions
might be found which are independent of accepted axioms and with respect to
which our intuitions are totally indeterminate, even in the aforementioned “in-
ductive” sense. Such propositions would be without a truth-value (and the problem
with excluded middle would arise). However, in either case, what determines the
relevant positions on the significance of the independence results is how the axioms
were viewed in the first place.3

I think these few examples will suffice to point out the pervasiveness and
importance of the problem which forms the subject of this paper: how may truth in
mathematics be explained? I shall now try to sharpen the question by setting down
two conditions which I feel any acceptable answer must meet. It will be the burden
of the balance of this paper to describe the general kinds of answer traditionally
given to the problem of mathematical truth and argue that each kind satisfies exactly
one of the two conditions I set down—in each case apparently at the cost of
violating the other. I will thus present a dilemma. There are two conditions which
any satisfactory account of mathematical truth must satisfy, but existing accounts
each seem to satisfy one of the conditions at the expense of the other. Must this be
so? Is there an account which meets both conditions? Or is there an argument that
would suggest that one of the conditions is unreasonable? I conceive of this paper
as an invitation to escape the dilemma I pose—not as an attempt to prove that the
questions I ask are unanswerable.

Before getting on with the job, I must apologize and beg your indulgence. Much
of what I have said and will say will seem extremely vague, perhaps hopelessly so.
Still, I think that despite the vagueness some sense, and perhaps even some truth
can be eked out.
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12.2 The Problem

For illustrative purposes, consider the following two sentences:

(1) There are at least three large cities between New York and Chicago.
(2) There are at least three prime numbers between 17 and 43.

Do they have the same logico-grammatical form? Or, more specifically, are they
both of the form

(3) There are at least three FG’s each of which bears R to a and b,

where “there are at least three” is a normal numerical quantifier, “F” and “G” are to
be replaced by one-place predicates, “R” by a three-place predicate, and “a” and “b”
by names of elements of the universe of discourse? What are the truth conditions of
(1) and (2)? Barring possible vagueness in the term “large cities” it seems fairly
clear that (1) is of the form (3) and thus that it will be true if and only if what are
named by the expressions replacing “a” and “b” (“Chicago” and “New York,”
respectively) bear the relation designated by the expression replacing “R” (“sur-
rounding”) to at least three elements of the domain of discourse of the quantifier
which satisfy the predicates replacing “F” and “G” (“large” and “city,” respec-
tively).4 This is what a truth definition à la Tarski would tell us. And I think that is
right. Thus, if (1) is true it is because certain cities stand in a certain relation to one
another, etc. But what of (2)? May we use (3) as a guide to spell out the conditions
of its truth? Does (2) contain names where (1) does? Is (2) true if and only if what
are named by the expressions replacing “a” and “b” (“17” and “43,” respectively)
bear the relation replacing “R” (“surrounding”) to at least three elements of the
domain of discourse of the quantifier which satisfy the predicates replacing “F” and
“G” (“prime” and “number,” respectively)? Or is an entirely different kind of
answer to be given concerning the conditions of its truth? Certainly the history of
the subject (the philosophy of mathematics) has seen other answers given. Some
(including one of my past selves),5 reluctant to face the consequences of such an
overtly platonistic account, have shied away from supposing that numerals are
names and thus, by implication, that (2) is of the form (3). (I sympathize.) Indeed,
on some such accounts, the truth conditions of arithmetic sentences are given as
their derivability from specified sets of axioms. When coupled with the desire to
have each closed sentence of arithmetic receive a truth-value, such accounts were
torpedoed by the incompleteness theorems. They could be rescued at least to in-
ternal consistency either by liberalizing what counted as derivability (e.g. including
an x-rule in permissible derivations) or by abandoning the desire for completeness.
For lack of a better term, I will call such views “combinatorial” views of the
determinants of mathematical truth. The leading idea of combinatorial views is that
what makes for mathematical truth is certain combinatorial (generally,
proof-theoretic) facts about the formulas in question. Often, truth is defined in terms
of (formal) derivability from certain axioms. Frequently, in such circumstances a
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more modest claim is made—the claim to truth-in-S, where S is the particular
system in question.

It is worth mentioning here that certain views of truth in arithmetic which claim
the Peano axioms to be “analytic” of the concept of number fall under this rubric.
Similarly, it is intended to cover conventionalist accounts, since what marks them
as conventionalist is the contrast between them and the “realist” account that
analyzes (2) by assimilating it to (1) via (3). To make one further distinction, I will
not automatically call combinatorial a view that takes mathematical propositions to
be about matters combinatorial, either self-referentially or otherwise. For such a
view might attempt to analyze mathematical propositions in a “standard” way in
terms of the names (if any) they might contain and of the properties they ascribe to
the objects within their domain of discourse—which is to say that the underlying
concept of truth is essentially Tarski’s, though perhaps in so doing they construe the
mathematical universe as being populated exclusively by mathematically
unorthodox objects: mathematics is merely metamathematics, which is syntax.

It is not my immediate purpose to evaluate these various approaches to the truth
of sentences such as (2). I wish here simply to alert us to this distinction—between
those views which attribute the obvious syntax (and the obvious semantics) to
mathematical statements, and those which ignore the apparent syntax and semantics
in order to state truth conditions (or to specify and account for the existing distri-
bution of truth-values) on the basis of more evidently non-semantic syntactic
considerations. In the following sections, I will examine both kinds of views in
more detail with a particular eye to their relative merits. Suffice it for now to say
that I will argue that each kind of account has its merits and defects: each answers to
certain interests which we have (or ought to have) in giving an account of math-
ematical truth. The interests I have in mind are two and these:

(A) Any account of mathematical truth must be recognizably an account of truth.

Our account should imply truth conditions for mathematical propositions that are
evidently conditions of their truth: there must be some general view of truth on the
basis of which the property attributed to mathematical propositions when they are
said to satisfy the conditions set down by a candidate for an account of truth is
indeed truth. I will argue that we have only one such general account, Tarski’s, that
its essential feature is to define truth in terms of reference (or satisfaction) on the
basis of a particular kind of syntactico-semantical analysis of language, and thus
that any putative analysis of mathematical truth must be an analysis of a concept
which is a truth concept in Tarski’s sense. I believe that, suitably elaborated, this
condition rules out much: namely all the accounts that I have termed “combina-
torial.” On the other hand, the account which assimilates (2) above to (1) and
(3) obviously meets this condition, as do many variants of it.

My second condition on accounts of mathematical truth presupposes that we
have mathematical knowledge, and that such knowledge is no less knowledge for
being mathematical. Since our knowledge is of truths, an account of mathematical
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truth, to be acceptable, must be consistent with the possibility of having mathe-
matical knowledge: the conditions of the truth of mathematical propositions cannot
such as to make it impossible for us to know that they are satisfied. This is not to
argue that there cannot be unknowable truths—only that not all truths can be
unknowable, for we do know some. The minimal requirement, then, is that a
satisfactory account of mathematical truth must be consistent with the possibility
that some such truths be knowable. Actually, I will state a stronger requirement:
that

(B) Any account of mathematical truth must be useful as part of an explanation of
the existence of particular bits of mathematical knowledge.

In short, an acceptable semantics must mesh with an acceptable epistemology.
For example, if I know that Cleveland is between New York and Chicago, it is

because there exists a certain relation between the truth conditions for that statement
and my present subjective state of belief (whatever may be our accounts of truth and
knowledge, they must connect with one another in this way). Similarly, in math-
ematics, it must be possible to link up what it is for p to be true with my knowing
that p. Though this is extremely vague, I think we can see how condition B tends to
rule out accounts which satisfy condition A, and to admit those ruled out by A.6 For
a typical account satisfying A (at least in the case of number theory or set theory)
will depict truth conditions in terms of conditions on objects whose nature, as
normally conceived, places them beyond the reach of the better understood means
of human cognition (e.g., sense perception and the like). The “combinatorial”
accounts, on the other hand, usually arise from a sensitivity to just this fact and are
hence almost always motivated by epistemological reasons. Their virtue lies in
providing an account of the nature of mathematical truth based on the procedures
we follow in justifying truth claims in mathematics, namely proof. It will therefore
come as no surprise that modulo such an account of mathematical truth, there is
little mystery about how we can obtain mathematical knowledge. We need only
account for our ability to produce and survey proofs. However, squeezing the
balloon at that point apparently makes it bulge on the side of truth: the more nicely
we tie up the concep of proof, the more closely we link the definition of proof to
combinatorial (rather than semantic) features, the more difficult it is to connect it up
with the truth of what is being thus “proved”—or so it would appear.

These then are the two requirements. Separately, they seem innocuous enough.
In the balance of this paper I will both defend them further and flesh out the
argument that jointly they seem to rule out almost every account of mathematical
truth that has been proposed. I will consider in turn the two basic approaches to
mathematical truth that I mentioned above, weighing their relative strengths in light
of the two fundamental principles that I am advancing. I hope that the principles
themselves will receive some illumination and support as I do so.
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12.3 The Standard View

I will call the “platonistic” account that analyzes (2) as being of the form (3) “the
standard view.” Its virtues are many, and it is worth enumerating them in some
detail before passing to a consideration of its defects.

As I have already pointed out, this account assimilates the logical forms of
mathematical propositions to those of apparently similar empirical ones: like other
more mundane propositions, mathematical propositions contain predicates, singular
terms, quantifiers, etc. What this means is that the truth definitions for individual
mathematical theories thus construed will have the same recursion clauses as the
ones for their more earthbound brethren. They will not be distinguished in point of
logical grammar (provided one doesn’t get perverse about non-mathematical
statements). That this is a tremendous advantage should be evident, for it means that
the logico-grammatical theory we employ in less recondite and more tractable
domains will serve us well here. We can do with one account and need not invent
another for mathematics. This should hold true on virtually any grammatical theory
that includes a semantics adequate to account for truth. My bias for Tarski in this
context comes from his monumental achievement in giving what is to my knowl-
edge the only viable systematic account of that traditionally elusive concept.
Although I will want to differ with Donald Davidson on the subject of truth and
meaning in a later section of this paper, let me take this opportunity to endorse fully
his urgings7 that Tarski’s account must be extended to natural languages, and that it
should be considered at least a necessary condition of an adequate empirical
semantics that it provide us with something like a truth definition for the relevant
portions of the language.

One consequence of the economy which attends the standard view is that, with
truth standardly defined, logical relations are subject to uniform treatment: invariant
with subject matter. The same rules of inference may be used and their use
accounted for by the same theory which provides us with our ordinary account of
consequence. Here too we can dispense with a double standard. If we do not adopt
such a view, the inferences permitted in mathematics will need a new, special,
account. For example, standard uses of quantifier inferences seem to require for
their justification some sort of soundness proof. The formalization of theories in
first order logic requires for its justification the garantees (provided by the com-
pleteness theorem) that all the logical consequences of the postulates will be
forthcoming as theorems. Given the standard view, none of these issues present
major problems. The obvious answers seem to work. I will defer until we come to
combinatorial views any detailed discussion of the problems encountered when the
theory of truth is not a standard one. So much for the obvious virtues of this
account. What are its faults?

The principal defect of the standard account, when it is not being construed as a
strict formalism, is that it violates the second of the two requirements I set down,
the one having to do with the integration of an account of mathematical truth into
our account of knowledge. In order to make this out with any degree of conviction,
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I will have to outline an epistemological picture that I take to be roughly correct and
on the basis of which mathematical truths, standardly construed, do not seem to
constitute knowledge. I apologize for this detour through the more general prob-
lems of epistemology, but I don’t see how to make my case without it.

For Hermione to know that the black object she is holding is a truffle is for her
(or at least requires her) to be in a certain (perhaps psychological) state.8 It also
requires the cooperation of the world, at least to the extent of permitting the object
she is holding to be a truffle. Further—and this is the part on which I would like to
lean—in the normal case, that the black object she is holding is a truffle must figure
in a causal explanation of her knowing that the black object she is holding is a
truffle. On almost any account of explanation, the conditions imposed by the
account would insure that in some sense, p must figure in an explanation of
Hermione’s knowledge that p. If what is to be explained is that Hermione knows
that p, and the explanans is to imply the explanandum (as it must on most accounts),
it must also imply p, because the explanandum does. So what I require is that
p figure in some suitable way in the explanation of Hermione’s knowledge. But
what is a “suitable way”? One approach which seems promising has been taken
recently by Alvin I. Goldman,9 it involves requiring that Hermione’s believing p
bear a suitable causal relation to the fact, state of affairs, etc. correlated with p. One
difficulty with this theory is that if we are to spell it out, some account will have to
be given of how facts, states of affairs, and/or the like can engage in causal rela-
tions. Donald Davidson has recently argued convincingly that the most likely
participants in these relations are events, and has in the process given an excellent
analysis of how events participate.10 I am less convinced by his negative thesis
excluding other entities than I am by the positive one concerning events. But to fill
out my account, I would have to do for facts, state of affairs, etc. what he has done
so ably for events. If not, at the very least I would have to argue that with every case
of X’s knowing that p, there is an associated pair of events eX and ep which bear
some appropriate causal relation to one another and both of which figure in an
appropriate way in an explanation of X’s knowing that p.

Recent philosophic literature contains a spate of articles on the problem of
knowledge and related issues (by Harman, Gettier, Skyrms, Unger, Lehrer, and
many others).11 The proffered accounts differ considerably from one another, and it
would take me too far afield to comment on the details of each. However, to pick a
few, Harman, Goldman, and Skyrms seem to me to be pointing in the general
direction in which I think the truth lies. All three are consistent with some causal
account of knowledge, and all three seem to be explicating features of the general
empiricist view—which for present purposes I should like to espouse, if it is
possible to marry such a vague and unspecific bride. (Let me add parenthetically
that I don’t believe the empiricism I am espousing to be incompatible with our
having the linguistic knowledge we have, even if the linguistic knowledge we have
is as Chomsky supposes it to be in denying empiricism and affirming some form of
rationalism. I don’t wish to discuss this here, and I mention it only because the ideas
are in the air and ought not to be ignored.) Perhaps one illuminating way of
convincing oneself that some such view must be correct is to think of the kinds of
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reasons one can offer for claiming that someone could not know some particular
thing which she claims to know. If we are satisfied that the person in question has
normal inferential powers, that the proposition in question is true, etc., then we are
thrown back on arguing that the person could not have come into possession of the
relevant evidence or reasons: that her four-dimensional space-time worm does not
make the necessary (causal) contact with the grounds of the truth of the proposition
for her to have the evidence to make the inference (if an inference was relevant).
The proposition p places restrictions on what the world can be like. Our knowledge
of the world, combined with our understanding of the restrictions placed by p (these
are given by the truth conditions of p) will often tell us that a given individual could
not have come into possession of evidence sufficient to come to know p, and we
will thus deny her claim to knowledge.

It seems indisputable that the normal account of our knowledge about medium
sized objects, in the present, is along the right lines and will involve, causally, some
direct reference to the facts known.12 Furthermore, such knowledge (of houses,
trees, truffles, dogs and bread boxes) presents the clearest case and the easiest to
deal with. If Hermione knows the language, has normal sensory apparatus, which is
functioning normally at the time, etc., etc., then, having extracted her truffle from
the can, which is properly labeled, she indeed knows that the black object she is
holding is a truffle. And she knows it because she can read the label, she can tell a
truffle when she sees (and smells) one, because she has read the label, and the object
she is holding looks and smells as truffles should, and because it is one. Further
cases of knowledge can be explained as being based on inferences based on cases
such as these. Specifically, what I have in mind is our knowledge of general laws,
and, through them, our knowledge of the future and of much of the past. Then will
come an account of our knowledge of theories, etc., much along the lines that have
been proposed by empiricists, but with the crucial modification introduced by the
explicitly causal condition mentioned above—but often left out of modern
accounts, largely because these accounts have been at pains to draw careful dis-
tinctions between “discovery” and “justification.”

In brief, in conjunction with our other knowledge, we use p to determine the
range of possible relevant evidence. We use what we know of X (the putative
knower) to determine if there could have been an appropriate kind of interaction, if
X could have come into possession of enough evidence to warrant her belief that
p. If not, then she could not know that p. The connection between what must be the
case if p is true and the causes of X’s belief can vary widely. But there is always
some connection, and the connection relates the grounds of X’s knowledge to the
subject matter of p.

Such, I think, is the skeleton of an adequate analysis of knowledge. At least, the
necessary condition imposed which must belong to such a skeleton is that it must be
possible to establish an appropriate sort of connection between the truth conditions
of a proposition (as given by the truth definition for the language in which it is
embedded) and the grounds on which the proposition is said to be known. In the
absence of this, no connection has been established between having those grounds
and believing a proposition which is true. Having those grounds cannot be fitted
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into an explanation of knowing p. The link between p and justifying a belief in p on
those grounds cannot be made. But if knowledge is properly regarded as justified
true belief, then the link must be made.

It should come as no surprise that this has been a preamble to pointing out that
on this view of knowledge, and on the “standard” view of mathematical truth, it is
very difficult to see how mathematical knowledge is possible. For, to start with
number theory, if numbers are the kinds of entities they are normally taken to be,
then the connection between the truth conditions for the statements of number
theory and any relevant events connected with persons who are supposed to have
mathematical knowledge cannot be made out. It will be impossible to account for
how anyone knows any properly number-theoretical propositions. Our second
condition on an account of mathematical truth will not be satisfied, because in order
to satisfy it, one must show how the truth conditions for mathematical propositions
can be ascertained by us to obtain. One obvious answer—that some of these
propositions are true if and only if they are derivable from certain axioms via certain
rules—will not help here. For, to be sure, we can ascertain that those conditions
obtain. But in such a case, what we cannot make out is the link between truth and
proof, when truth is directly defined in the standard way. In short, although it may
be a truth condition of certain number-theoretic propositions that they be derivable
from certain axioms according to certain rules, that this is a truth condition must
also follow from the account of truth if the condition referred to is to help connect
truth and knowledge, if it is by their proofs that we know mathematical truths.

Of course, given some set-theoretic account of arithmetic, both the syntax and
the semantics of arithmetic can be set out so as superficially to meet the conditions
laid down. But the regress that this invites is transparent, for the same questions
must then be asked about the set theory in whose terms the answers are couched.

Gödel seems quite aware of the fact that, given a platonistic (i.e. standard)
account of mathematical truth, our explanation of how we know the basic postulates
must be connected with what we conceive them to mean. Thus, in discussing how
we can resolve the continuum problem, once it has been shown to be undecidable
by the accepted axioms, he paints the following picture:

[…] the objects of transfinite set theory […] clearly do not belong to the physical world,
and even their indirect connection with physical experience is very loose […].

But, despite their remoteness from sense experience, we do have something like the
perception also of the objects of set theory, as is seen from the fact that the axioms force
themselves upon us as being true. I don’t see any reason why we should have less confi-
dence in this kind of perception, i.e. in mathematical intuition, than in sense perception,
which induces us to build up physical theories and to expect that future sense perceptions
will agree with them, and, moreover, to believe that a question not decidable now has
meaning and may be decided in the future.

Gödel [1964] (1990: [271] 267–268)

What is the matter with this picture? Clearly, my own objection is that in the
absence of any credible account of how the axioms “force themselves upon us a
being true,” we should consider the analogy with sense perception and physical
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science a misleading one. For what is missing is precisely what my second principle
demands: an account of the link between our cognitive faculties and the objects of
knowledge. In physical science we have at least a start on such an account. We
accept as knowledge only those beliefs which we can appropriately relate to our
cognitive faculties. To be sure, there is a superficial analogy here. For as Gödel
points out, we “verify” axioms by deducing consequences from them concerning
areas in which we seem to have more direct “perception” (clearer intuitions). But on
Gödel’s view, we are never told how we know even these, clearer, propositions. For
example, the “verifiable” consequences of axioms of higher infinity are (otherwise
undecidable) number-theoretical propositions which themselves are “verifiable” by
computation up to any given integer. But the story, to be a coherent one anywhere,
must tell us how we know statements of computational arithmetic—if they mean
what the standard account would have them mean. And that we are not told. So, the
analogy is at best superficial.

If our account of empirical knowledge is an acceptable one, it must be in part
because it tries to make the connection evident, in the case of our theoretical
knowledge concerning matters not immediately accessible to our senses. This is not
to argue for “foundations” of empirical knowledge of any reductionistic sort. Nor is
it to suppose that our only justification for empirical beliefs is the “observational”
consequences they imply. But it is to try to extract and explain the kernel of truth
that has motivated such accounts.

Therefore, in the case of mathematics, in the absence of a coherent account
telling how our mathematical intuition is connected with the truth of mathematical
propositions, we must conclude that the picture of truth is unsatisfactory. To
introduce a speculative historical note, with some foundation in the texts, it might
not be unreasonable to suppose that Plato had recourse to the concep of anamnesis
at least in part to explain how, given the nature of the forms as depicted by him, one
could ever have knowledge of them.13 But this is at best meant to be suggestive of
what I mean.

Before passing directly to the combinatorial views, let me mention one possible
interpretation of Gödel’s and related views which might seem plausible and that I
might appear to have overlooked. One might propose to regard the sentences of
“computational arithmetic” (variable free sentences) as expressing computational
rules, and thus as immediately verifiable by following such rules. Statements with
variables, and quantified statements, of arithmetic (and for that matter of set theory)
might be seen as instrumental devices for going from “verifiable” statements to
“verifiable” statements, on an analogy with instrumentalist views of theories in
natural science. Surely something like this was behind Hilbert’s views when he
regarded quantified statements or quantifiers as “ideal elements.” A sophistication
might be to regard statements which are “finitely verifiable,” whether or not they
contained quantifiers, as the basis of mathematics, and the rest as instrumental in
simplifying the system of finitely verifiable, or “real” statements. It should be
evident that such a view, however attractive, does not count as what I have called a
“standard” view. For it does not give a standard interpretation of the quantifiers, nor
does it give a standard interpretation of the “real statements”—unless some
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metalinguistic version of them can be found which can be fitted into a truth defi-
nition for the whole language. Furthermore, the unsophisticated version leaves one
wondering why add the rest of mathematics at all, since the “real statements” can be
completely and finitely axiomatized. The more sophisticated version, depending as
it does on some concept of “finite verifiability” is for that reason open to different
construals, with different attendant consequences. But we will return to a discussion
of this view almost immediately.

12.4 The Combinatorial View

The “combinatorial” view of mathematical truth has its motivation and origins in a
realization that, whatever may be the “objects” of mathematics, our knowledge is
obtained from proofs. Proofs are or can be (for some, must be)14 written down or
spoken; mathematicians can survey them and come to agree that they are proofs. It
is on the basis of these proofs that mathematical knowledge is obtained and
transmitted. In short, the fact of mathematical knowledge and its (essentially lin-
guistic) means of production and transmission gives their impetus to the class of
views I call “combinatorial.”

Noting that proofs are seemingly sufficient to produce knowledge, it seeks the
grounds of truth in the proofs themselves. This is, of course, not the entire moti-
vation. There is in addition the realization, so central to our last section, that the
wildly platonistic picture leaves it a mystery how knowledge can be obtained at all.
Given that realization, plus the belief that it is a child of our own begetting
(mathematical discovery, on these views, is seldom discovery about an independent
reality), it is not surprising that one looks for acts of conception to account for the
birth.

To illustrate briefly, one can see in Hilbert’s concerns about the infinite15 some
similar motivation. But Hilbert’s concern went deeper: he did not simply wish to
give a philosophical account of the nature of mathematical knowledge. He feared
that unless the account was of a particular sort, the very content and security of
mathematics was threatened. He felt that the extension of principles employed in
reasoning concerning finite collections to the case of infinite collections needed
justification, lest it lead to contradiction, thus putting in question the very appli-
cability of elementary logical principles, such as excluded middle, quantification,
etc. The permission is granted because of the simplification in the laws of logic
governing the “real,” “finitary” statements that the introduction of these “ideal”
elements permitted. The logical laws governing “real” statements would otherwise
have to be immensely complicated.

The proof of such innocuousness, were it possible to carry it out on Hilbertian
principles—if accompanied by a proof of completeness of the formal calculus
embodying these laws—would permit the substitution of questions of provability
for those of truth. Undoubtedly, Hilbert had this in mind. Yet the species of for-
malism which he advocated (if one may use the definite article for such a holocaust
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of indefinite views) considered only the “finitary” statements as being meaningful,
the rest as meaningless but useful. The point to notice is that in doing this, Hilbert
seemed to be making the “knowability” of propositions the touchstone of their
meaningfulness and truth. Since, grammatically, it is hard to distinguish between
real and ideal statements, to adopt the method of ideal elements à la Hilbert is
effectively to give up the notion of mathematical truth. If a (syntactically) complete
and consistent system could have been constructed, it might have been possible to
extend meaning to ideal elements consistently with Hilbert’s philosophical princi-
ples. But when the theory of proof proved to contain the seeds of its own
destruction, the possibility of elaborating a Hilbertian account that meets our two
conditions went with it. But we cannot dwell further on Hilbert. His papers are full
of enormously stimulating remarks, and a detailed consideration of his views would
be endless—for it would contain all the exciting work being done in proof theory,
which is stimulated in large part by the Hilbert Program. But I need not sing his
praises here. I used him here merely as an illustration.

There is a raft of combinatorial views. I think they may profitably be divided into
several groups. It will be evident from the divisions and the views contained in
them that in certain cases it is even prima facie a misnomer to call some of them
views of mathematical truth. They don’t pretend that what they define is truth;
indeed, for some there is no such animal. It will be the burden of this section to
argue that on none of these views does one get an adequate account of mathematical
truth: that the concepts defined, even by those who think they are getting at truth,
are not concepts of truth at all. This would require, for its full documentation, a
certain analysis of truth which I cannot conceivably give here—any more than it
was possible to provide the analysis of knowledge needed in the preceding section.
So, as you hunger after knowledge, so shall ye thirst for truth. But where it seems
useful, I will try to make some comments pointing in the direction I would take.
I will now enumerate and discuss the kinds of views I am lumping together under
the “combinatorial” umbrella.

(a) Crude Formalism: Mathematics consists of the manipulation of meaningless
marks according to certain rules. The “propositions” are neither true nor false.
Meaningful questions are limited to combinatorial ones concerning the pos-
sible results of applying rules (e.g. syntactic consistency, whether this or that
formula is derivable, etc.). Though it is doubtful that Hilbert ever held such a
view, he certainly came very close in certain instances. And, as I suggested
above, it is not unreasonable to suppose that the Hilbert Program for the
analysis of mathematical proof was pointed in the direction of such a view: if
its goals could have been achieved, the reduction claimed to exist by crude
formalists would have been considerably more palatable, for no mathematics
need have been relinquished, only some interpretation of it. The consequent
epistemological gain from the reduction of the concept of mathematical proof
to that of derivability within a single, provably complete and consistent formal
system would make almost any philosophical price worth paying. Such a view
is clearly less an analysis of truth in mathematics than an open refusal to speak
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in such terms. It therefore clearly fails to satisfy my first condition, and just as
clearly meets the second. I will not return to this view.

(b) Mathematics is the “if… then” science: it consists of deriving logical conse-
quences from axioms which themselves have no truth-value. We simply
investigate the deductive properties of axiom systems, asserting sentences of
the form

If Axioms then Theorem.

This view should sound familiar. For, substitute first order derivability for
logical implication and you get one brand of Formalism right back. This view is
motivated by a denial that mathematical axioms are true or false and that mathe-
matical proof eventuates in theorems that are detached from the axioms. It falls
short of the Crude Formalism described under (a) by claiming that there are at least
some candidates for assertability which are not strictly combinatorial claims: the
“if… then” statements, or at least so it would seem. The view splits off from
Formalism decisively if its proponents are willing to deny that there is any adequate
“formal” explication of logical consequence. For those among you (us) whose early
toilet training included the ritual recitation that logical consequence is adequately
captured by first order derivability, this might seem difficult to conceive. But as
early as 1933 and 1936,16 Alfred Tarski discussed concepts of logical consequence
which were demonstrably (after 1931) non formal, for they considered that for
systems of arithmetic, [(x) Fx] was a consequence of the set of sentences resulting
from [Fy] by replacing “y” with each standard numeral of the system. Since, given
any consistent formalization of number theory, there will be predicates F for which
all the relevant numerical instances will be theorems but for which the universally
quantified statement will not, logical consequence thus conceived is unformalizable.
There are, accordingly, two species of “if… then” theorists: those who are satisfied
with first order derivability as an equivalent of logical consequence, and those who
are not. Among those who are satisfied with it the position reduces to a kind of
Formalism if they do not base their satisfaction on the completeness proof for first
order logic.

By and large, I fail to understand what concept of logical consequence those who
don’t accept the completeness proof may have in mind. Though there seem to be
partial motivations through Herbrand-Gentzen-Ackermann procedures, I have not
found them completely satisfactory. In any event, I consider views based on these
theorems intermediate between the flat refusal to discuss soundness and consis-
tency, claiming first order derivability as the explanation of logical consequence,
and the full-fledged acceptance of the completeness proof in all its infinitistic glory.

Those who do accept the completeness proof must accept some standard concept
of first order validity which the completeness proof shows to be coincident with
derivability (modulo soundness as well, of course). This will invariably be some
set-theoretic concept, usually truth in every model. But then, the view cannot be
applied to set theory as well, and there is some mathematics (set theory) which is
not simply an “if… then” discipline and for which some different account must be
given: either a combinatorial one or a platonistic one. In either case I need not
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consider them further in this context. The same will be true of the “if… then”
theorists who are not satisfied with first order derivability as an equivalent for their
concept of logical consequence. For them there will be all the more reason to
depend on some set-theoretic concept—which, after all, is all we have. Until we get
a better explication of logical consequence than truth of the conclusion in every
model of the premises it is unlikely that the “if… then” view will approach ade-
quacy as an explanation of or substitute for mathematical truth. In any case, it
should be clear that my general argument applies to this class of views.

One further problem with this view follows from matters pointed out by Tarski
in 1936. In explicating logical consequence he pointed out that his analysis
depended on the notion of a model, which in turn depended on the concept of a
logical constant—for which we had and have no explication—only a more or less
adequate list. Hence, the concepts of logical consequence, logical truth, etc. will be
relative to the choice of constants. One might think of the choice of constants as a
third dogma, shared not only by empiricists but by quasi-, neo- and proto-
pragmatists as well.

(c) Mathematical propositions (when true) are analytically true, i.e. true in virtue
of meanings alone. Reluctant as I am to reach into this Pandora’s box, I must.
For its content cannot be dismissed out of hand. This currently much maligned
group of views dominated the empiricist scene for a long time, and has only
recently found its much deserved disfavor, largely as a result of Quine’s
attacks on the notions of meaning on which they rest.

Logicism. Mathematics is reducible to logic. Each mathematical concept is
definable in terms of concepts belonging to logic, and, under these definitions, the
theorems of mathematics are translatable into theorems of logic. Furthermore, these
definitions accurately render the meanings of the mathematical terms. These claims,
plus the claim that the propositions of logic are themselves analytic—that they are
true in virtue of the meaning of their constituent terms—amount to the classical
statement of the logicist position.

There are many variations under this same rubric but I will not play them all.
I am calling “logicism” that class of views which conclude to the analyticity of
mathematical propositions on the basis of the explicit definability of the concepts of
mathematics in terms of those of logic. For our purposes, the further classification
that will be useful is on the basis of how those who hold this position view logical
truth: for, even granting the enormously moot claim of the definability of the
mathematical concepts in terms of those of logic, the view requires for its support
the additional step providing for the analyticity of the laws of logic to which
mathematics is allegedly thus reducible. For if they cannot be shown to be analytic
in the relevant sense, the view collapses: the first step in the argument having been
to argue that the definition showed mathematical propositions to be analytically
equivalent with those of logic. Therefore, by the first step of the argument, math-
ematical propositions are analytic only if those to which they are “reducible” are.
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We can conclude that logicism would fall with the collapse of the translatability
claim.

But if that claim withstands Quine’s assault on it, additional buttressing will be
needed in the form of a suitable analysis of truth in logic. Let us bypass trans-
latability and address ourselves to logical truth, granting for the sake of argument
that the logicist’s definitions reflect the necessary synonymies.

If mathematics is reducible to logic, then the logic to which mathematics is
reducible is set theory, type theory, or some such. We can limit our attention to set
theory as the “logic” needed to complete the logicist account of mathematical truth.
Type theory would do as a possible alternative but would present no essentially
different solutions—except possibly under Russell’s “no class” interpretation of
Principia Mathematica. But this view, appealing though it be, will not serve the
logicist who wishes to preserve classical mathematics. For with logic so construed,
the first part of his argument collapses. Mathematics is not reducible to logic.

This leaves us with essentially three positions with which to deal. We have
already considered the first: it is the standard realistic account of set-theoretic truth,
the account to which we saw Gödel subscribing some pages back. It does not
belong in this section. The second is the view, mentioned above, that the axioms
and rules of logic constitute implicit definitions of the undefined terms occurring in
them, where it is supposed that the truth of the axioms (and theorems) is guaranteed
by the meanings of the terms. Finally, the third view is that truth (and meaning) are
conferred upon these axioms by explicit convention/stipulation—i.e. that these
axioms and rules represent conventions that we stipulate for the use of these
expressions, in virtue of which the sentences containing them are true.

Both of these latter views have non-logistic counterparts when what is at issue is
mathematical truth with no claim for the reducibility of mathematics to logic. For
example, both have been advanced as accounts of arithmetic truth. It should be
fairly clear from what follows how most of the objections I will raise to these
conceptions of logical truth apply, mutatis mutandis, to the non-logicist theories of
mathematical truth. This should make it unnecessary to treat these other views
separately.

Truth by convention. Quine, in his classic paper on this subject (Quine [1935]
1976), dealt clearly, convincingly and decisively with the view that the truths of
logic are to be accounted for as the products of convention—far better than I could
hope to do here. He pointed out that, since there are infinitely many truths to be
accounted for, the characterization of the eligible sentences as truths must be
wholesale rather than retail. But finitely expressed wholesale characterization can
only come by means of general principles—and if we are supposed not to under-
stand any logic at all, we cannot extract the individual instances from the general
principles: we would need logic for such a task.

Convincing as this may be, I wish to add another argument—not because I think
this dead horse needs further flogging, but because the principal point I wish to
make is insufficiently clearly made in Quine’s argument. Indeed, Quine grants the
conventionalist certain principles I should like to deny him. In resting his case
against conventionalism on the need for a wholesale characterization of infinitely
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many truths, Quine concedes that if there were only finitely many truths to be
accounted for, the conventionalist might make out his case. He says:

If the truth assignments were made one by one, rather than an infinite number at a time, the
above difficulty would disappear; truths of logic […] would simply be asserted severally by
fiat, and the problem of inferring them from more general conventions would not arise.

Quine [1935] (1976: [344] 105)

It appears that on his view if some finitistic way could be found to make
sentences of logic wear their truth-values upon their sleeves, the objections to this
account of truth would disappear—for we would have determined truth-values for
all the sentences, which is all that one could ask.

I wonder, however, what it is supposed such a distribution of the word “true”
would accomplish. It surely cannot suffice in order to determine a concept of truth
to assign “truth”-values to each and every sentence of the language. Suppose now
that the language is set theory, in some first order formalization, and let those
sentences with an even number of horseshoes be “true.” What would make such an
assignment of the predicate “true” the determination of the concept of truth? Surely
not simply the use of that time honored monosyllable. Tarski has supplied us with
Convention T as a necessary and sufficient condition on a definition of truth for a
particular language (Tarski [1933] 1983). A mere distribution of truth-values will
not suffice to satisfy Tarski’s criterion. For a mere distribution of truth-values will
not provide us with the sentence-by-sentence translations needed for the satisfaction
of Convention T. I submit that what would be missing—hard as it is to state—is the
theoretical apparatus employed by Tarski in providing his truth definitions. I submit
first that we would not accept as a concept of truth something that failed to satisfy
Convention T, but also, something that, though it satisfied Convention T, did not
define truth by analyzing the language as having a structure involving predication,
naming, quantification, etc. In short, I feel that a definition of truth which does not
proceed by the customary recursion clauses for the customary grammatical forms
may not be deemed adequate—even if it satisfied Convention T.

This brings me to the difference I would raise between my views and those of
Donald Davidson’s, and which I think is relevant to the case at hand. I should like
to invert Davidson’s argument of “Truth and Meaning.” He claims essentially that
the grasp we have on the concept of meaning (and presumably reference as well) is
through the concept of truth—and that to have apparatus sufficient for the satis-
faction of Convention T is for all practical purposes to have enough for the
determination of meaning. The Quine of “Truth by Convention” felt that to
determine the truth-values of all the contexts which contain a word suffices to
determine its meaning. I should like to suggest, however, that our concept of truth,
insofar as we have one, proceeds through the mediation of the concepts Tarski has
used to define it for the class of languages he has considered—that the essence of
Tarski’s contribution goes farther than Convention T but includes the schemata for
the actual definition as well: that an analysis of truth for a language that did not
proceed through the familiar devices of predication, quantification, etc., might not
prove satisfactory.
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If this is all near the mark, then it should be clear why “combinatorial” views of
the nature of mathematical truth fail on my account. They avoid what seems to me
to be the necessary route to an account of truth: through the subject matter of the
sentences whose truth is being defined. Being motivated by epistemological con-
siderations, they come up with truth conditions whose satisfaction or
non-satisfaction it is relatively possible for mere mortals to ascertain, but they pay
the price of being unable to connect these so-called “truth conditions” with the truth
of the propositions for which they are conditions.

So, for Quinean reasons, I think it is impossible to make out a satisfactory
doctrine of logical-truth-by-convention. If for some reason it be granted that the
truths of first order logic do not stem from conventions, then the problem of
accounting for mathematical truth splits into two: first order logic and the rest.
Ignoring logic, someone may still wish to claim that the rest (set theory, for logi-
cists; set theory, number theory, and other things for non-logicists) consists of
conventions formalized in first order logic. This view, I think, falls on my general
objection that such a concept of convention need not bring truth along with it.
Indeed it is clear that it does not. For, ignoring my other more general objections,
once the logic is fixed, no matter how, it becomes possible that the conventions thus
stipulated turn out to be inconsistent relative to the interpretation of the logic, which
is already fixed. Hence it is impossible to maintain the claim that setting down
conventions guarantees truth. But if it does not guarantee truth, what distinguishes
those cases in which it provides it from those in which it does not? Consistency
cannot be the answer. To adopt it as such is to misconstrue the significance of the
fact that inconsistency is proof that truth has not been attained. The deeper reason is
that stipulation makes no connection between the sentences and their subject matter
—stipulation does not provide truth definitions in the sense in which we have been
led to expect them.

As for the final view we shall consider: that the postulates are implicit definitions
of existing concepts (as opposed to stipulations for how new ones are to be
understood), very much the same objection can be raised, if it is meant as an
explanation of how we know the axioms to be true (we learned the language by
learning these postulates). Otherwise, such a view can be taken simply as stating
that the truths of the field can be conveniently regimented in this or that axiomatic
form. When thus taken, it is innocuous. But it is also totally devoid of explanatory
content on the point at issue: the grounds of mathematical truth. Yet it is hard to see
how else to construe it, if one views as gratuitous the “explanation” that the
meanings of the logical and mathematical primitives “dictate” the truth of the
postulates.

To clarify the point, consider Russell’s oft cited dictum: “The method of ‘pos-
tulating’ what we want has many advantages: they are the same as the advantages
of theft over honest toil” (Russell 1919: 71). On my view, that’s false. For with theft
you at least come away with the loot (not that crime pays—only if you don’t get it,
it isn’t theft). Implicit definition however, is incapable of bringing truth. It is
practically, as well as morally deficient.
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There are other positions, but I won’t bore you further by enumerating and
discussing them. I hope that these remarks will suffice to make the general point of
this section clear: Truth is truth à la Tarski. Truth à la Tarski is satisfaction of
Convention T in a particular way (i.e. via satisfaction, reference, quantification,
etc.). “Combinatorial” views don’t give us truth—though the “truth conditions”
they assign to sentences can be known to obtain without having to commune
directly with the Forms.

12.5 Conclusions

I will conclude shortly and briefly by answering a few objections carefully chosen
at random from those that might immediately leap to mind. I hope they will help
summarize the views and stave off the day of reckoning:

Objection 1. Don’t the same objections you raise against platonistic theories
apply to combinatorial ones as well?

Objection 2. You have stacked the deck.
Objection 3. Your position, depending as it does on being able to segregate bits

of experience as being relevant or irrelevant to the truth of propositions one-by-one
is incompatible with a totally holistic epistemology, for which your problems don’t
even arise.

Objection 4. What can your condition A (and its attendant justification) amount
to in light of the fact that on Tarski’s own theory, you cannot conceivably elaborate
an analysis of mathematical truth which eventuates in a definition? You are citing
Tarski’s theory of truth—which is a theory concerning truth definitions—in support
of the requirement on an analysis which could not eventuate in a definition. What is
the relevance of Tarski?17

Answer to objection 1: Combinatorial views

It may not be immediately evident how we have any more contact with the
universals required for the proper functioning of combinatorial views than we do
with their more abstract brethren summoned up by the platonistic positions—say,
for example, the Zermelo-Fraenkel sets. Thus it may seem that the picture is even
darker than I have painted it—combinatorial views are doubly bad: not only do they
not give us concepts of truth, but they also fail to provide “truth conditions” which
are any more knowable than those of the platonist.

As I would tell my six-year-old son, that’s a long story. Briefly, I think the
answer is no. I think we have a fair idea that non universals would suffice to
constitute a proof. This is the virtue of formalization: it provides us with a regi-
mentation of proofs—a standard form for proofs. Of course this is not to say that the
concept of proof is entirely—or even almost—clear. It is only to point out that we
have reasonably statable sufficient conditions on material objects which we can, on
occasion, perceptually recognize to have been met. This was the key to Hilbert’s
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insight: our truck is with finite objects, always: no matter how infinite may be the
apparent object of our thought. So, he felt, in some sense it must be possible to
explain the infinite through the finite.

Answer to objection 2: Truth versus knowledge

I have spoken all along as if it were our concept of mathematical truth that
contained the deficiency. Clearly, one could with equal justice suppose the difficulty
to stem form our concept of knowledge. One more cautious still would simply point
to the insufficiency of these concepts as we understand them for answering the
questions we want answered. To saddle truth with the entire responsibility is per-
haps a more dramatic way of pointing to the inadequacy of our total account. It is
also to indicate what I think is true but cannot argue for: that the account of
knowledge I sketched is correct, and it is mathematical truth that cannot bear the
burden. Such, at least, is my intuition.

I make these remarks to anticipate an obvious objection: didn’t I stack the deck
in imposing my causal condition on knowledge? No. I did not. My claim is that
with the concepts of knowledge and truth explicated as I have suggested, we do not
seem to have adequate accounts of mathematical truth and mathematical knowl-
edge. I am open to suggestion on how the analysis of either concept might be
improved to remedy this defect. This is simply a bit of philosophical anthropology:
I did not choose my analyses with a view to supporting my conclusion. They just
do, I hope.

Answer to objection 3: Argument against total holism

The presumption is that for each proposition, certain obtainable conditions are
sufficient to produce knowledge—and that these conditions are connected in some
way with the content of the proposition, as spelled out by a truth definition for the
language. Now, for abstruse physical theories, much complication obtains—the
range of relevant experiences is very broad, etc. For most statements about
breadbox sized objects, it is relatively narrow. For mathematics—seemingly more
remote than even the most abstruse physical theory—the startling thing is that proof
is sufficient to produce knowledge. Hence it must be sufficient for truth: but how? If
you like—the problem of mathematical truth is to account for how proof produces
knowledge. Its connection with us is evident enough—but what is its connection
with truth? Holist views, satisfactory as they may be on other grounds, blur the very
fact that I think needs explaining by telling a fairy tale which jumbles up all kinds
of propositions with a net which impinges on experience at the well worn edges.

Answer to objection 4: Truth

Tarski’s theory does not provide a truth definition. It provides conditions on
truth definitions. I have suggested that, implicitly, it provides more than the explicit
requirements it lays down—that Tarski’s account is valuable not only for con-
taining Convention T but also and perhaps principally for showing how
Convention T can be satisfied in individual cases. In brief, I think there is a concept
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of Truth. Tarski has shown that such a concept, if consistent, must elude adequate
definitions—that only concepts of truth in specific languages can be defined.

One has two options here: conclude that there is no general concept of truth, or
of truth in mathematics (without metalinguistic regress)—that no theory is possible
which accounts for why truth-in-L is truth, that truth is a hopelessly relative con-
cept. Or one could seek for some kind of “absolute” account. Gödel makes this
“absolute”/“relative” distinction in his 1946 lecture at Princeton, but somewhat
obscurely.18 I opt for the latter course and my requirement amounts to a claim that
Tarski’s theory contains implicitly the germ of such a theory.

Notes

1. The Catastrophe Theory was so baptized in a symposium entitled “Is Any Set
Theory True?” at a joint meeting of the American Philosophical Association
and the ASL, December 27, 1967 in Boston. The Symposiasts, Joseph S.
Ullian, Donald Martin and Saul Kripke, were unanimous in decrying the
Catastrophe Theory, and W. V. O. Quine was unanimous in upholding a his-
torical version of it.

2. One might think it possible to distinguish two different kinds of propositions
independent of any given set of first order axioms for set theory: (a) those
independent for Gödelian reasons—i.e. whose undecidability stems from
Gödelian incompleteness, and (b) those independent for set-theoretic reasons—
presumably the rest. If such a distinction were viable, one believing in the
“implicit definition” view might think that propositions independent under
(a) have a truth-value, while those independent under (b) don’t and represent
real gaps in our concept of set. But, for reasons which would take us far afield,
it seems that such distinction could not be made out to do the needed work.

3. I do not insist on a privileged direction of possible illumination, for often it is
only incompleteness (or independence) results that force us to look at concepts
of truth which we could at best be said to have held implicitly prior to being
awakened from our dogmatic slumbers. It suffices for my small point (which is
but illustrative) to recognize the importance of the connection, regardless of
which is the chicken and which the egg.

4. Let us ignore the complication introduced by the fact that a large city is not
something large and a city, but more like something large for a city.

5. See Benacerraf (1965). Editor’s note.
6. I see possible exceptions: for example, the class of views on which all of

mathematics is metamathematics and on which every mathematical sentence
receives an interpretation via a truth definition. Views on which mathematics
consists simply in turning a generative crank on a black box that prints out
meaningless symbols are not even in the ballpark we are considering, for
(2) above would, on such views, either not be a mathematical statement, or
would, at any rate, lack a truth-value.

7. See, for example, Davidson [1967a] (1984). Davidson makes in this article
some rather extravagant claims for a Tarskian theory of truth with which I do
not wish here to associate myself: specifically, “if [some sentence of the form
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“s is true if and only if p”] followed from a characterization of the predicate “is
true” that led to the invariable pairing of truths with truths and falsehoods with
falsehoods—then there would not, I think, be anything essential to the idea of
meaning that remained to be captured” (Davidson op. cit.: [312] 26).
This much zeal I do not have, for it is easy to see that for an infinite language
for which there is at least one such theory, there are indefinitely many different
ones with paired sentences as different in meaning as you like (consistent with
likeness of truth-value). Though this would not trouble one, like Quine, who
shuns even likeness of truth-value as a condition in translation, I must confess it
troubles me. Given Quine’s radical stand, I can hardly regard this objection as a
refutation of Davidson’s view, but I think it relevant to register some form of
mild protest, to stand up and be counted, as it were.

8. If possible, I would like to avoid taking any stand on the host of issues in the
philosophy of mind or psychology concerning the nature of psychological
states. Any view on which Hermione can learn that the cat is on the mat by
looking at a real cat on a real mat will do for my purposes. If looking at a cat on
a mat puts Hermione into a state and you wish to call that state a physical, or
psychological, or even physiological state, I will not object—so long as it is
understood that such a state, if it is her state of knowledge, is causally related in
an appropriate way to the cat’s having been on the mat when she looked. If
there is no such state, then so much the worse for my view.

9. See Goldman (1967). There are, I fear, difficulties with Goldman’s account,
particularly with those cases in which Hermione’s belief that p and the fact,
state of affairs, event, corresponding to p stem from a common cause and it is
their relation to that cause that is (in part) responsible for Hermione’s belief
constituting knowledge.

10. See, e.g., Davidson [1967b] (1980), [1969] (1980) on the role of events in
causal explanations. Editor’s note.

11. See, e.g., the discussions in Gettier (1963), Harman (1973), Lehrer and Paxson
(1969), Skyrms (1967), and Unger (1968). Editor’s note.

12. For an illuminating account of perception, see Grice [1961] (1989). But of
course, this is at best a small part of the problem.

13. “The soul, then, as being immortal, and having been born again many times,
and having seen all things that exist, whether in this world or in the world
below, has knowledge of them all ” (Plato [Approx. 402 BC] 1949: 81).

14. Intuitionists, on the other hand, consider the linguistic expressibility of con-
structions and proofs an incidental feature of mathematics, whose subject
matter is “mental constructions.” This and other intuitionistic views makes it
difficult to deal with the position in the context of this paper and I fear I will
have to bypass discussion of it. For an excellent account, see Kreisel (1962).

15. Hilbert advocated the “extension” of these principles to reasoning about infinite
domains, provided that it could be shown that such extensions did not lead to
contradiction. Referring to statements which involved essential reference to the
finite or “real” statements, he advocated thinking of the rest as introduced in the
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manner of the “ideal” elements of projective geometry, to simplify laws con-
cerning the real statements.

16. See Tarski (1936), [1936] (1983). Editor’s note.
17. I am indebted, if that is the right word, to Bill Tait for this objection.
18. Gödel does make a distinction between relative and absolute notions of

demonstrability and definability (and of ordinal definability in particular) in
Gödel [1946] (1990). His remarks are prompted by Tarksi’s stress, in his talk at
the Princeton University bicentennial conference on Problems of mathematics
in December 1946, “on the great importance of the concept of general recur-
siveness (or Turing computability)” (Gödel op. cit.: [1] 150).
Gödel never reacted explicitely to the German version of Tarski’s 1933 article
on the concept of truth in formalized languages. I am indebted to Mark van
Atten for this information. See Tarski (1933), [1933] (1983) in the References
below. I am indebted to Philippe de Rouilhan for details pertaining to the
successive editions of Tarski (1933). Editor’s note.
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Chapter 13
Comments on Reduction
(Lecture in a Graduate Seminar ~1975)

Paul Benacerraf

There appear to be two kinds of theories on the nature of numbers, distinguished by
the way they interpret their results. I am speaking, of course, of theories which
conclude, or appear to conclude that, e.g., numbers are sets—that, say, 3 is some
particular set. There are, on the one hand, theories which I will refer to as realist
theories; and there are Quinean theories, which we may think of as instrumentalist
theories. As with most things in this murky area, the distinction is hard to make out,
but also, I think, important. We may be forced to abandon it in the end, but if so,
much will have come tumbling down with it.

Theories of the first sort conclude, at the end of some argument, that numbers are
sets, properties, extensions of concepts, or what have you. Most commonly, they do
so on the basis of linguistic evidence—on the basis of an examination of the
meaning of the linguistic apparatus employed in number talk, by semantic descent
to the material mode; they draw conclusions about the numbers from premises
about the language we employ in seeming to talk (or indeed in talking) about
numbers. Such, I think, is Frege’s case. His motivation was epistemological; he
wanted to find the roots of our knowledge of numbers. But his route to those roots
was first of all to question the nature of the objects of which we had supposed
knowledge, and then to proceed to answer his questions by a trip through the
language, to an analysis of its meaning, and ultimately, he thought, eventuating in
the reference, with a clearer picture of the objects themselves, only a part of the
nature of which was revealed in arithmetic talk. This seems to me the only
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hypothesis that makes any sense of Frege’s claim that his investigation shows the
propositions of arithmetic to be analytic, even on his expanded sense: definitional
contractions of certain laws of logic. He aimed at accounting for mathematical
knowledge by showing how it was a case of logical knowledge, and he realized
better than anyone that to claim identity of reference for the two vocabularies was
simply not enough: on Frege’s theory of these matters, that would not have yielded
the desired epistemological conclusion. He had to show that we got at the reference
in similar ways in both cases: that the mode of presentation of the reference per-
mitted us to know the objects being referred to (the numbers) through their pre-
sentations as extensions of concepts. This would, of course, satisfy only a necessary
condition of the analyticity of the mathematical laws. A further account would have
to be provided which explained the grounds of the truth of the logical laws to which
the reduction was effected. This might have been done by thinking of logical
knowledge as part and parcel of speaking the language (in a linguistic version
perhaps alien to Frege), or of thinking (in a semantical version which would sit
better with him). In each case, what is lacking is a clear specification of the
behavioral component. In the linguistic case, knowledge that p is reduced to
knowledge how to use the language, and must be unpacked in terms of its noto-
riously slippery concepts—concepts incapable of securing the epistemological
advantages required for analytic propositions. In the case where what is at issue is
not the linguistic version, but the conceptual one (logic is “the laws of thought”),
the tie to behavior is even more tenuous and less able to do the required job. For
Frege’s aversion to psychologism in logic cut the cord that for others might have
tied the theory of meaning to thought and behavior. I mention this in passing if only
to note that what promise Frege’s theory has of explaining our knowledge is
undercut by his reluctance to speak of our belief. But even if we believe that he will
ultimately fail—that another necessary condition for an ultimately satisfactory
account will never materialize, it might prove instructive to pursue his argument as
far as it will take us.

So, to return to it, we just noted that to establish identity of reference would be
insufficient for Frege. He needed to establish something more like identity or
similarity of mode of presentation of reference: something akin to sense. That
explains why the accounts in sections I and II of my paper1 would not be satis-
factory Fregean accounts. Although they seem to me to be perfectly adequate as
such accounts go (they fulfil all the conditions I singled out as necessary), there
seems to be no way to choose between Ernie’s and Johnny’s numbers on the basis
of our knowledge of number theory. The referent of “3” has not sufficiently clearly
been shown to be connected with the referent of “((K)),” or with its von Neumann
surrogate. Frege, who defined the numbers directly as the cardinals—i.e. who built
the notion of cardinality into the very definition of the numbers—thought he had
thereby found the route to the roots of our arithmetic knowledge. It is this pre-
sumption that gives the Frege-Russell numbers first priority on correctness, or so it
seems to me. But, if I am right about all this, then neither does it suffice to yield a
victory for the Frege-Russell numbers. For the following account will do just as
well and meets anything that can be dredged up from the above comments as an
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additional condition which Frege’s account meets but which Ernie’s and Johnny’s
do not. In some set theory (or type theory—the modifications to be made are
obvious), pick out a sequence Z (says Zermelo’s) and define “Sz,” the concept of
immediate successor in Z, the least element of which we will call L. In terms of Sz
and L, define “<z” and then give contextual definitions of cardinality as follows:

C a; Lð Þ ¼df ð9wÞ wmaps a 1�1 ontofy:y\zLgð Þ
C a; Szxð Þ ¼df ð9bÞ ðb 2 a& ðfcjc 2 a& c 6¼ bg; xÞÞ:

Thus, if one of the elements of Sz is Julius Caesar, this defines what it is for a set
to be of the cardinality Julius Caesar. It only remains now to define the numbers as
follows:

Nn ¼df fx: ð9yÞC y; xð Þg

and, more specifically,

0 ¼df L

SNn ¼df Szx:

Since, in an ideal world, C induces equivalence classes, i.e. divides the universe
into classes of equinumerous classes, it is a fine candidate for the relation of
cardinality. The numbers (Nn) are then satisfactorily introduced as those objects
which, through their association via C with classes, represent the cardinality of
classes. It could hardly be clearer that these are fine and worthy candidates for
numbers. By the time we are told that the elements of Sz are the numbers, we have
been amply prepared by noting their essential involvement in the concept of car-
dinality, which is after all the foundation of the concept of number. The edge that
the Frege-Russell numbers seemed to hold over Ernie’s and Johnny’s is not one
which they hold over the numbers so defined. Ernie’s and Johnny’s numbers seem
like a put up job, es post facto. Who, looking at their definitions but unaware of the
arrière pensée in the mind of Zermelo or von Neumann would have recognized
them as numbers? Not so with these definitions, however. When the definitions of
Nn is produced, it is clear at once that it is the numbers that have been introduced.

For the above argument to be made out in any detail on Frege’s behalf, a lot of
things have to go right with the theory of meaning, and more particularly with the
theory of sense and reference. But even if it is right, if it can be made to work, it
fails in its ultimate purpose, which was to find the genuine numbers and not make
do with ersatz surrogates. For even if the present account were superior to the ones
handed Ernie and Johnny, it is clearly consistent with the identification of the
numbers as any sequence, names for whose members we could generate in a
manner suitable for deployment in the definition of cardinality. Reflection upon this
fact leads to the following disjunctive conclusion for the Fregean entreprise.
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Either (i) there are facts about numbers which we have yet to uncover as being
about numbers (or uncover at all) and which discriminate which x-sequence is
really the numbers—and this independently of whether or not such facts are dis-
coverable, or even, if discovered, are of such a kind as to warrant including them as
necessary conditions on a correct analysis of the concept of number (that, after all,
is more a comment about what correct analyses should do than about numbers), or
(ii) there are no such facts, and we should rethink the quest on which we found
Frege embarking—the quest for the True Numbers.

In this latter vein, the simplest and most immediate conclusion we might be
inclined to draw is that the advantage claimed for the Frege-Russell numbers and
perhaps as well for the account of the present paper was illusory. All the accounts
we have considered are equally good, and what makes them good or correct is not
their correctness definition-by-definition, as Frege would perhaps have had us
believe, but properties of the completed account, as a whole, shared by different
accounts with different definitions and which identify different sequences of objects
as “the numbers.” In brief, their status as reductions defines the standard on which
they are to be judged, and on that standard they fare equally well.

This would be tantamount to concluding that there was no truth of the matter
because the conditions on the correctness of an account expressed all the deter-
minants of truth that there were, and these clearly were such as to determine the
answer only up to isomorphism with what we know as the numbers, to put it a bit
too realistically. A correct reduction is one that gives us back all that we know
about the numbers and, from a structural point of view, we know all there is to
know (there are certain matters of detail that still escape us, but the condition on
reductions is insensitive to those differences). Hence the entreprise of reduction is
precluded in advance from making finer discriminations among number-candidates
than we now make among numbers themselves. This conclusion is the premiss from
which Quine began in his earlier work on reduction and ontological commitment,
and represents what I spoke of at the outset of this paper as the “instrumentalist”
view of the conclusion that numbers are sets: the view that sets can “do the work of
numbers” and thus are fully equipped to replace them. I will return shortly to a
consideration of this early Quinean position, for it represents an alternative inter-
pretation of the conclusion that numbers are sets, one which, on some interpreta-
tions at least, never saw the quest as one which inquired into the true nature of the
numbers. But this conclusion depends upon that “instrumentalist” view of reduction
and is better discussed along with its parent premiss.

Or one might think of abandoning the quest because one saw that it would never
be fulfilled: that, first of all, whatever further facts we might learn about numbers
qua numbers, we can now see that we can immediately transfer to whatever sur-
rogates we might have chosen in a reduction. They would therefore be of no help in
identifying one sequence over another as the true numbers. They would simply be
further characterizations of all x-sequences. So more number theory won’t
help. And secondly, if we wanted to discriminate one x-sequence from others as the
genuine numbers, we would always be hard put to answer the skeptic. The argu-
ment would go:
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We: S is not the numbers, because U(S) and not-U(Nn)

He: But, how do you know that not-U(Nn), for if Nn = S,
surely U(Nn), since, as you have shown, U(S).

If we are now at a standstill, we are unlikely to make much headway. The reason
for this is that there seems to be now no general theory, discoveries within which
force or even incline us to choose certain identifications over others. Of course, we
might develop a theory which, did we have it now, would fit that description. But
unless such a theorizing could be seen as the natural outgrowth of present theories,
which don’t seem to exist, it is hard to see how it could be said to answer the
present question: Which sequence of objects is really the numbers?

Still, one might suppose that there is a glimmer of hope in this direction, offered
by the fact that there do seem to be reasons to rule out some sequences, or at least
some things, from being numbers. The reasons are a bit obscure, but, on the whole
correct—I think. What I have in mind is that we can put to rest our old concern that
that same familiar conqueror of Gaul might be the number 3, or any other number,
for that matter. He could not. I assume that we still cling to the belief that we know
that 2 < 3. But this was known to those who had no idea of Caesar’s existence—
who knew nothing of Caesar. Put in this way, it seems to beg the question, for our
skeptic might simply reply that if Caesar is the number 3, then of course they knew
of Caesar (they knew a whole lot about Caesar) that he was divisible into three
parts, that he was the square root of the Taj Mahal, etc. But now this will not do.
We would like there to be an account of how they knew. But that would be asking
too much, since we don’t really have an account of how we know that 3 > 2. But
given that we do know about Caesar and the kind of object that he is (was) (or at
least what we take him to be), we have good reason to think that the ancient
Babylonians could not have known about him. And if they didn’t know about him,
they could hardly have known that he was >2. But they did know that 3 > 2. This
sounds misleadingly like a fallacious argument that depends on substituting in an
opaque context. But it is not. What is in question is our conception of what we
know about Caesar and how we know it. If “3” refers to Caesar, and did for the
Babylonians, then it came to do so in strange and wondrous ways. To accept the
possibility that they had knowledge of Caesar sufficient to yield the relevant
arithmetic truths would force us to revise too much of the background theory we
have about reference and knowledge in terms of which we account for our
knowledge of the physical world. The obstacles, it would appear, are well nigh
insurmountable—which is not to say that someone might not prefer to throw all that
over for the pleasure of thinking of Julius as a number, but it is to suggest that we
have enough background in our theory of knowledge and theory of reference to
render the revisions they would undergo if we were to contemplate allowing Julius
Caesar numerical status not worth the effort. But, as I said before, if this is any hope
at all, it is only the faintest glimmer. For if these considerations have the slightest
cogency, they owe it entirely to a causal account of knowledge and, underlying that,
reference, which in turn is plausible only in connection with physical objects. So
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using this, we cannot choose between competing abstract candidates for the ulti-
mate Pythagorean reality, unless, of course, the abstractions can be sorted out on the
basis of our ordinary empirical knowledge of everyday objects.

Finally, one might think of abandoning the search because one felt the question
not to be a genuine one. A verificationist of sorts might conclude that it was not a
real question precisely on the grounds given a page or so ago: that the answer (if
any) must forever elude us. But one need not reject the question for such prima
facie verificationist reasons. One can, like the Quine of “Ontological Relativity” be
a bit more circumspect. There, he finally accepts the conclusions which have been
inherent in Word and Object and which lead him to the doctrine of the relativity of
ontology and, with it, identity, for, as he says

[w]e cannot know what something is without knowing how it marked off from other things.
Identity is of a piece with ontology. Accordingly, it is involved in the same relativity.

Quine [1968] (1969: 55)

So, relativistic conclusions concerning the numbers—that they may with equal
justice be identified with any sequence, lead to a relativistic interpretation of the
predicate in “1 = [K].” What I described as a more circumspect approach to this
relativistic conclusion—to this rejection of the Fregean question, realistically
construed—is the grounds on which Quine rests the view that any sequence would
do. In the end, it comes down to verificationism, not a general all-encompassing
form of it, but a more subtle one. Quine takes his verificationist stand first in the
theory of meaning, and finally in the theory of reference. So, what ontological
relativity comes down to is the impossibility of concocting behavioral tests to
discriminate among different analytical hypotheses all of which meet certain basic
conditions. Perhaps this verificationist foundation for the theory of reference suf-
fices to yield the more thoroughgoing variety adumbrated by the early positivists
and mentioned early in this paragraph as a view contrasting with Quine’s. But that
would have to be shown.

These, then, are the reasons why, beginning with a realistic interpretation of the
Fregean question, we would be inclined to consider whether a misconstrual of
identity is not what is at fault here.

The early Quine held a view somewhat as follows. It is pieced together from a
variety of sources—principally memory, so do not ask for chapter and verse.

Ontological commitment: this is the touchstone of the earlier views. “What is
there?” There is everything a true theory says there is (and possibly more). But we
can agree at least on that. So ontology reduces to: (i) forming a theory and assessing
what it says there is, and (ii) determining if the theory is true. That may not be all
there is to ontology—or at least it may not get a complete answer to the question
(complete but more informative and detailed than “Everything”), but it is a start. So
what does a theory say there is? To what is a theory committed (ontologically)? It is
committed to all those things that must be counted among the values of its variables
of quantification if the theory is to be true. All this would be straightforward
enough, and useless enough, were it not for the word “must.” For it espresses the
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possibility that what may on first reckoning be needed as a value of a bound
variable might actually, on deeper probing, prove superfluous. Hence the important
notion of paraphrase. If a sentence (theory) makes apparent reference to F’s, but
can be paraphrased into one that does not need to count any F’s among the values
of its variables to be reckoned as true, then the original reference was apparent only.

Witness:

(1) 5 is the number of planets.

That would seem to imply that (9x) (x is a number). Thus, our original would
appear to be committed to numbers. But we all know that such is not the case. For
(1) can be paraphrased into a sentence whose quantifiers range only over bona fide
physical objects—planets—and not numbers at all (unless they are planets—which
raises the question of the opacity or transparency of the criterion).

You will immediately notice two things about this criterion: (i) it depends on
some notion of paraphrase, and (ii) it contains a built-in reductionist feature. Some
form of Occam’s razor is guiding the direction of the reduction. The ontology of a
theory is the sparest it can do with. It is the original apparent ontology stripped by
paraphrase of all inessentials. Try as one may to be lavish in one’s ontology, one
cannot. For the criterion dictates that if our apparent commitments can be pared
away, they are apparent only. The criterion stands as our ontic super-ego. Although
at the outset it may have seemed neutral, it ends up with a strong reductionist bias.
Applied to the case most immediately at hand, it is unclear whether the reduction of
arithmetic to set theory shows that a theory which contains number-expressions as
well as set-expressions (but hasn’t defined the one in terms of the other) is
uncommitted to numbers, or that it is committed to numbers, but through its set
vocabulary. For to what are you committed when you are committed to numbers,
say, in number theory? Well, to things satisfying the axioms. But what is it to
satisfy the axioms? Does only the intended model satisfy the axioms? Or do other
things do so as well? Clearly, the latter is intended. For if the former were intended,
no reduction or ontology would be possible. Hence the ontology of a pure number
theory is itself not specifiable except in some stronger theory which tells us more
about the range of the variables and the extensions of the predicates. But now we
are closing in on the position of “Ontological Relativity,” where what number
theory is said to be committed to is, quite evidently, relative to the theory in which
the reduction is carried out.

What is at stake here is the notion of paraphrase and its neutrality. In the earlier
papers, Quine’s view had a realistic ring. A theory has certain commitments, and it
is either true or false. In Word and Object, the notion of translation into canonical
notation is developed as the successor or explicans of paraphrase, and it is explicitly
recognized that different translations might be carried out for different purposes, and
hence that there may be no fact of the matter concerning the ontology of a theory. In
“Ontological Relativity,” these views are pushed to their extremes by undercutting
the concept of truth entirely.
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So reduction, seen as casting about for what would do the work of the numbers,
also leads to a relativistic view of the class of identities Frege wanted to settle. For
the identification of the “job to be done” is either made in terms of the truth theory
for the language—the theory or a theory that attributes an ontology to it—in which
case there is no reduction to be had and only the numbers can do their job, or else it
is done in some way that eschews outright identification of the objects and settles
for isomorphisms to define the job, in which case there is no pretense of identifying
the objects through finding what would do their job.

Note

1. See Benacerraf (1965). Editor’s note.
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