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1. Introduction

Insects form the largest class of the phylum Arthropoda. There are
at least one million known species, so more than 50% of all existing
organisms on earth are insects. It 1s even thought that at least another
mullion insect species have not yet been discovered. Insect-like forms
mhabited the terrestrial and freshwater ecosystems about 300 muillion
years ago and their basic features have been so successful that they
were able to exploit almost every available habitat except the true
marine environment, which is occupied by their arthropod “cousins”,
the Crustacea.

Metazoan animals like insects had to develop systems for communica-
tion between cells, tissues and organs in order to coordinate their re-
sponses to internal and external stimuli and to regulate biochemical and
physiological processes. Both the nervous and the endocrine systems are
well-known cellular components for communication, recruiting chemical
messengers for their tasks. In general, the nervous system 1s used for rapid
communication, whereas the endocrine system is involved 1n the regula-
tion of longer lasting responses. Both systems, however, quite often do not
work in 1solation from each other, but form a functional, integrated
system. This 1s best seen in the action of the so-called neurosecretory cells

References, pp 97-128



The Explosion of Structural Information on Insect Neuropeptides 3

which synthesize and release specific chemical messengers, the neuro-
peptides (there are also aminergic neurosecretory cells, but these will not
be dealt with here).

As early as 1922 the Polish scientist KOPEC (239) proposed that sub-
stances in the brain (in specific neurons though) control the processes
necessary for moulting and metamorphosis, thus acting in distant parts of
the body. He had extirpated brains from the gypsy moth, Lymantria
dispar, and shown that the debrained larvae never pupate. This “brain
hormone” is now known under the name prothoracicotropic hormone
(PTTH), but its sequence in the gypsy moth is still not known.

Historically, the SCHARRERS coined the term neurosecretion to charac-
terize the activities of those neurons which contained electron-dense
granules of about 400nm in diameter. ERNST SCHARRER was studying
vertebrate animals and discovered nerve cells with secretory activity in the
fish, Phoxinus laevis (401), whereas his wife BERTA SCHARRER was studying
invertebrate animals, including insects, in which she reported the presence
of neurosecretory cells including those in the corpora cardiaca of the
cockroach, Leucophaea maderae (398, 399). The SCHARRERS were the first
to characterize the structural and functional similarities between the
vertebrate hypothalamo(nervous)-hypophyseal system and the insect
brain-corpora cardiaca-corpora allata complex (400).

Today we know that all nerve cells are secretory and that the distinc-
tion between “ordinary” neurons containing small synaptic vesicles and
the neurosecretory neurons with large-cored vesicles is fluid. Between
these two extremes — the ordinary neurons forming synapses and releas-
ing their chemical messengers, the neurotransmitters, into the synaptic
cleft, and the neurosecretory cells releasing relatively large quantities of
their chemical mediators, the neuropeptides or neurohormones, into the
general circulation —all kinds of graded intermediate cells can occur
(331, 455). Some of these cells directly innervate endocrine or nonendo-
crine tissues and their function as modulators of nerve or muscle activity
is discussed; their messengers may be called neuromodulators.

Although neurosecretory cells were co-discovered in insects, much
more attention has been paid to the vertebrates, especially the mammalian
system. Consequently, a wide variety of neuropeptides has been shown to
be present in vertebrates and has been chemically characterized. For quite
a few, even the precursor molecules are known and the gene structures
have been elucidated. From these mammalian studies it soon became
clear that peptides represent the largest single class of neuroregulatory
substances (195, 433). After the first discovery, studies to identify (chemi-
cally) neuropeptides in insects lagged behind, but this has changed
dramatically in the last ten years or so.
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Before we outline the progress made in elucidating the primary
structures of insect neuropeptides, we first have to discuss briefly the
classical, epithelial endocrine glands of insects in the context of develop-
ment and growth and, subsquently, the main localizations of neuro-
secretory cells and their release sites.

The life cycle of insects from the fertilized egg to the adult, reproduc-
tively-active imago is characterized by.growth. Since the insect body is
encased in an external skeleton which would prevent growth its volume
and surface area must increase from time to time. The growth of the
integument is achieved by moulting. A new, larger cuticle is made and the
old, confining cuticle is cast away. The latter process is called ecdysis or
eclosion (when the resulting insect is an adult one). The whole period
between two moults is called a moulting cycle. Changes in morphology,
function and life strategy of an insect during its ontogenesis are named
metamorphosis.

The morphological changes occurring during metamorphosis can
vary quite drastically and three major evolutionary lineages can be
distinguished:

1. Ametabolic insects like springtails (Collembola) and silverfishes/
firebrats (Zygentoma). Body forms of larvae and adults are identical
except for the external genitalia and internal reproductive organs of the
adults; adults have no wings and this group is called Apterygota.

2. Hemimetabolic insects like dragonflies (Odonata), cockroaches
(Blattaria), grasshoppers (Caelifera) and bugs (Hemiptera). These insects
undergo an incomplete metamorphosis. The larvae look very similar to
adults, but the latter differ from the larvae in having functional wings. This
group is known as Exopterygota.

3. Holmetabolic insects like beetles (Coleoptera), butterflies and
moths (Lepidoptera), flies (Diptera) and bees and wasps (Hymenoptera).
These insects undergo complete metamorphosis. The larvae look entirely
different from the adults and prior to the adult stage a pupal stage is
formed. This group is called Endopterygota in reference to the internal
development of their wing imaginal disks.

Whichever lineage the insect belongs to, the general hormonal events
during moulting are identical. Two non-peptide hormones, the ecdys-
teroids and the juvenile hormones produced in the two major classical,
epithelial endocrine glands are responsible for moulting.

The first glands are the paired corpora allata which are located
retrocerebrally and are connected to the brain via nerve fibers (Fig. 1). The
corpora allata produce and release species-specific juvenile hormones
(JH O-III; JH B3), which chemically are acyclic sesquiterpenoid epoxides

References, pp. 97-128
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Fig. 1. Schematic diagram of the endocrine system in insects. The epithelial glands (corpus
allatum, prothoracic gland) as well as the neurosecretory cells and their release sites (corpus
cardiacum, perisympathetic organ) are shown

(Fig. 2). The juvenile hormones are vitally involved in the regulation and
control of certain steps of insect development like larval moulting, and
also in adult sexual maturation and reproduction (88, 89, 445).

The second classical, epithelial endocrine glands are the paired pro-
thoracic glands located mainly in the thorax of the larval and pupal insect
(Fig. 1). They mainly synthesize and release the steroid ecdysone which is
subsequently converted into its active form (20-hydroxyecdysone) by the
fat body and by epidermal cells (Fig. 2). The titre of 20-hydroxyecdysoneis
increased before each moult, but the titre of juvenile hormone determines
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Fig. 2. Structures of the juvenile hormones and main ecdysteroids

the character of the moult. The classical scheme that a high juvenile
hormone titre leads to a larval/larval moult, a low titre to a larval/pupal
moult and that without juvenile hormone a moult to the adult occurs, is
today revised to a somewhat more complicated scheme which is explained
in detail elsewhere (327). Activity of both gland pairs, however, is control-
led and fine-tuned by neuropeptides which are produced in neuro-
secretory cells of the brain (see Sects. 3.2.2 and 3.2.3).

Whereas prothoracic glands are suggested to be the ecdysteroid
source in immature stages, i.e. when ecdysteroids are involved in the

References, pp. 97-128
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control of moulting, the gonads and the epidermis represent important
sources during late pupal and adult stages, i.e. when control of reproduc-
tion is the main task (66). These alternative sources of ecdysteroids are
likely to be regulated by neuropeptides as well.

In general most of the endocrine processes in insects are controlled by
neuropeptides. The main centers for neurosecretory cells are in the pars
intercerebralis and the median and lateral parts of the protocerebrum,
which send axons to the corpora cardiaca (Fig. 1). These retrocerebral
structures store and release the neuropeptides produced in the brain’s
neurosecretory cells and are therefore called neurohaemal organs (located
in close proximity to the aorta, thus, ideal for release of neuropeptides into
the circulation). In addition, the corpora cardiaca produce their own
neuropeptides in their intrinsic neurosecretory cells. In addition to these
more classical neurosecretory areas, neurosecretory cells are found
throughout the central nervous system, the sympathetic nervous system
(including the neurohaemal perisympathetic organs) and also within the
peripheral nervous system (331, 366).

A great variety of processes in insects is known to be influenced or
regulated by neuropeptides. These processes may be metabolic, be-
havioral, developmental or reproductive in character. The following list
shows some major neuropeptide groups and their actions:

1. Myotropins, which modify spontaneous muscle contractions;

2. diuretic and antidiuretic peptides, which are involved in ion- and
water balance;

3. adipokinetic and hypertrehalosaemic peptides, which control fat,
carbohydrate and protein metabolism;

4. eclosion hormone which initiates behavioral patterns associated
with ecdysis and its timing;

5. allatotropins/allatostatins, which stimulate/inhibit the synthesis of
juvenile hormones by the corpora allata;

6. prothoracicotropic hormones, which stimulate moulting by
initiating ecdysone biosynthesis and release by the prothoracic
gland;

7. diapause hormone, which arrests development in eggs of certain
moth species;

8. oostatic hormone, which inhibits maturation of the ovaries;

9. neuropeptides which activate the synthesis of sex pheromones.

Before details on the individual categories of neuropeptides are given,
methods important in the research on neuropeptides are discussed very
briefly and appropriate examples of the applications of these methods are
described.
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2. General Methods Used for Isolation,
Identification and Characterization of Insect Neuropeptides

2.1. Biological Assays

The existence and detection during isolation of the majority of insect
neuropeptides was initially monitored by bioassays. There is a whole
range of bioassays available now, including those measuring physiologi-
cal actions (like energy mobilization and diuresis) as well as behavioral
events (like those for the eclosion hormone). As examples of bioassays, the
very popular tests for adipokinetic and for myotropic substances are given
here in some detail.

2.1.1. Adipokinetic Bioassay

In 1969 two research groups (15, 279) observed that injection of
extracts from the corpora cardiaca of locusts increased the amounts of
lipids (specifically: diacylglycerols) in the haemolymph. As a result, a bio-
assay was developed in which the concentration of total lipids was
routinely measured in the haemolymph with a very reliable and simple
method. In our laboratory, for example, we take a 1pl haemolymph
sample from the migratory locust at time zero, then inject the insect with
10 ul of the solution to be analyzed (either a corpus cardiacum extract
from a locust or other insect or HPLC fractions after isolation pro-
cedures), and a second 1 pl sample of haemolymph is taken 90 min later
from the same insect. For analysis of the lipids the sulpho-phosphovanil-
lin method (493; modified by 179) is used; the developed pink colour is
easily read in a simple filter photometer at about 450 nm and the lipid
concentration quantified by the use of a standard curve. An increase of the
concentration of lipids in the post-injection sample compared to the
pre-injection value is indicative of a positive response, e.g. the presence of
an adipokinetic substance.

For further readings on this and related metabolic bioassays see (107,
449).

2.1.2. Myotropic Bioassay

In 1962, DAVEY (63) demonstrated that homogenates from corpora
cardiaca of Periplaneta americana had an effect on the spontaneous
contractile activity of the isolated hindgut by increasing the tonus, fre-
quency and amplitude of contraction. Later, a preparation of the hindgut
from the cockroach Leucophaea maderae was used for the successful

References, pp. 97-128
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purification of a great number of myotropic peptides from L. maderae, the
cricket, Acheta domesticus, and from Locusta migratoria (169, 176). For
this, the digestive tract was carefully removed from the cockroach, all
adhering tissues such as fat body, trachea and Malpighian tubules pulled
away or trimmed off, the hindgut tied at the junction to the midgut and the
latter plus foregut cut off. The posterior end of the rectum was tied with
thread as well and then the whole preparation suspended in a muscle
chamber (5ml plastic disposable syringe barrel) filled with an aerated
saline solution. The preparation was attached to a muscle transducer,
which displayed the signal onto an oscillograph. Such a preparation needs
about one hour for equilibration; thereafter, the pattern of spontaneous
contractions is relatively constant and the preparation can be used for
a whole day. Thus, up to 80 samples can be tested per day by monitoring
the alteration of the pattern of spontaneous contractile activity (either
stimulatory or inhibitory).

2.2. Liquid Chromatography

The introduction of high performance liquid chromatography (HPLC),
using micron-sized particles of high mechanical strength as supports for
column packing materials, therefore allowing a fast flow of liquid at high
pressure, has provided a very versatile tool for purifying proteins and
peptides. This is generally achieved at some stage during isolation by
reversed-phase HPLC (RP-HPLC), a partition chromatography where
the starting mobile phase is more polar than the stationary phase.

The support material is silica whose silanol groups are chemically
derivatized with organosilanes such as octadecyl (C-18), for example. RP-
HPLC using various ion-pairing reagents such as trifluoroacetic acid
(TFA) or heptafluorobutyric acid (HBFA) has been used widely for
purifying neuropeptides because of its excellent resolution. For details of
this and other LC methods readers are referred to appropriate reviews
(90, 418, 427). Of course, for the isolation of insect neuropeptides it is
important to know at the start roughly how much material is expected to
be present and whether the peptide-producing tissue can be easily dis-
sected or whether whole heads/animals have to be used for extraction.
This will be briefly illustrated by three examples of isolation procedures.

Adipokinetic/hypertrehalosaemic peptides: Corpora cardiaca some-
times store these peptides in impressive quantities of 200 to more than
3000 pmol per gland. Therefore this tissue is dissected and then extracted
with 80% methanol. Such methanolic extracts are applied to C-8 or C-18
RP-HPLC columns which are developed in a gradient mode with
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acetonitrile/water/0.1% TFA. With a single column step these peptides
are sufficiently pure for structural work (107, 119). Almost all of the
adipokinetic/hypertrehalosaemic peptides, which often differ only by
a single amino acid residue, can be separated in a single run due to the
spectacular resolving power of RP-HPLC (114).

Myotropic neuropeptides: Due to the low concentration of these
peptides (maximally about 1 pmol per head) whole heads of cockroaches
(Leucophaea maderae) were extracted in a mixture of methanol/
water/acetic acid (90:9:1; v/v) and subsequently extracted sequentially
with ethyl acetate and hexane to remove lipids (for details see 177). The
aqueous solution was lyophilized, dissolved in 0.1% TFA and prepurified
on C-18 Sep-Pak cartridges. This extract was subsequently fractionated
on a series of 4 HPLC columns with different separation characteristics.
The first step was performed on a pBondapak phenyl column, developed
with an acetonitrile/water/TFA gradient. Individual active fractions were
processed on a C-1 column using the same solvents and thereafter on
a C-18 column, again using the same solvents. The final purification step
was HPLC in a normal phase mode (I-125 Protein Pak column); the
gradient run from 95% to 75% acetonitrile containing 0.01% TFA. After
the final step fractions were pure enough for sequencing.

Allatotropin: SCHOOLEY’s group isolated eclosion hormone, diuretic
hormone and allatotropin from whole heads of Manduca sexta in a very
similar fashion (212, 213, 214). As an example, the purification of allato-
tropin is given here (418). Due to the minute amounts of peptides expected,
10000 trimmed heads (eyes, proboscis and other chitinous parts were cut
off, leaving brains, corpora cardiaca and corpora allata) of pharate adult
moths were first defatted by homogenization in acetone. The extract was
filtered, the acetone discarded and the residue re-extracted with a strongly
acidic buffer (1 M acetic acid containing 20 mM HCI) containing protease
inhibitors. After centrifugation the supernatant was chromatographed on
a cation exchanger (sulphopropyl Sephadex C-25) which was eluted with
1 M acetic acid, 50 mM ammonium acetate (pH 4), and then with increas-
ing concentrations (from 50 to 800 mM) of ammonium acetate (pH 7).
Eclosion hormone was eluted in the 50 mM fraction, allatotropin in the
100 to 200mM one and diuretic hormone between 400 and 800 mM
NH,OAc. Concentration and desalting of the sample occurred on a large
cartridge column containing Vydac C-4 material. The allatotropin was
eluted with 60% acetonitrile containing 0.1% TFA. The next step was
a semipreparative Vydac C-4 column which was eluted with a 0-60%
acetonitrile/water/TFA gradient. Allatotropin eluted between 17-19%
acetonitrile and this material was separated again on a semipreparative
Vydac C-4 column, but with a gradient of 10-30% acetonitrile and 0.1%

References, pp. 97-128
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HBFA as the ion-pairing reagent. An analytical cation exchange LC
column (TSK SP-5PW), which was equilibrated with 20mM sodium
phosphate buffer (pH 6.25) and developed with a gradient (0—0.5 M) of
sodium chloride, was used next. The last step employed a Vydac C-18
analytical column which was eluted with a gradient (10-40%) of acetonit-
rile/water/TFA and resulted in a sufficiently pure peak for sequence
analysis.

2.3. Edman Degradation Sequencing, Mass Spectrometry and
Peptide Synthesis

Edman degradation cleaves the N-terminal amino acid from a peptide
or protein backbone and prepares the derivatized residue (the PTH amino
acid) for identification. Automated sequencers became available in 1970.
Since then continued improvements in peptide isolation techniques and
sequencer technology have increased the speed of analysis and vastly
reduced the amounts of peptides required in the sequencer reaction
chamber. Today on-line microbore RP-HPLC separation and optimized
identification of PTH amino acids enable the new generation of gas phase
or pulsed liquid phase sequencers to operate in the range of about 10 pmol
(262).

Many proteins and peptides contain post-translationally modified
amino acids. A majority of insect neuropeptides, for example, are blocked
at the N-terminus by a pyroglutamate residue. Since Edman degradation
sequencing needs a free N-terminal amino acid, the pyroglutamate residue
has to be cleaved enzymatically by pyroglutamate aminopeptidase. After
separating the deblocked from the parent peptide via RP-HPLC the new
des-pyroglutamate peptide can be automatically sequenced.

Other post-translational modifications such as phosphorylation, methyl-
ation, acetylation, sulfation or glycosylation can also be detected by
specific preparations before Edman degradation or with mass spec-
trometry (see below) or a combination of both techniques (281).

Even with the newest generation of sequencers the “repetitive yield”,
i.e. the overall yield of one step in Edman degradation, is about 95%,
which means that these machines only give sequencing results to a maxi-
mum length of about 30—40 residues. Thus, longer peptides or proteins
first have to be chemically or enzymatically fragmented, the fragments
isolated by RP-HPLC, and then analyzed in the sequencer. Fragmenta-
tion is facilitated by denaturing the protein/peptide under investigation.
Guanidine hydrochloride is the denaturing detergent of choice. Since
disulfide bonds may hinder digestion, disulfide bridges are cleaved by
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reduction yielding two cysteines; subsequently the thiol groups are stabil-
ized by alkylation with, for example, iodoacetic acid yielding S-
carboxymethyl cysteine.

Various enzymes are commercially available for enzymatic fragmenta-
tion. These are characterized as endopeptidases such as trypsin (specifi-
cally cleaving Lys and Arg residues) and endoproteinases Asp-N, Arg-C,
Glu-C and Lys-C or as exopeptidases such as carboxypeptidases A, B,
P and Y and pyroglutamate aminopeptidase (see above). For further
details the reader is referred to the special literature (163, 226, 448).
Complementary to enzymatic digestions are chemical fragmentation
methods. The most widely used cleavage chemical is cyanogen bromide
which specifically cleaves Met-Xaa bonds thereby converting methionine
into a C-terminal homoserine residue and creating a new amino terminus
NH,—Xaa. For further reading see KELLNER (226).

Mass spectrometric methods are nowadays continuously used solely
orin combination with Edman degradation for elucidation of the primary
structures of proteins and peptides. Mainly, mass spectrometry is used to
measure the mass of the peptide/protein accurately, thereby confirming
sequencing results achieved by other methods. A second goal of modern
mass spectrometry is to give sequence assignments of smaller peptides or
peptide fragments (for production of those see above), especially when
post-translational modifications occur.

However, mass spectrometry is not infallible. For example, the amino
acid residues Leu, Ile and hydroxypro have the same mass of 113 Da, thus
mass spectrometry cannot differentiate between the three compounds. In
such a case mass spectrometry has to be used in combination with Edman
degradation sequencing. Thus both methods are complementary. A brief
outline will illustrate the power of mass spectrometry. For further infor-
mation the reader is referred to the following references (12, 280, 387, 428
and 475).

During the last two decades tremendous improvements have been
made with respect to mass spectrometry. Whereas formerly it was not
possible to ionize larger proteins and analyze compounds with a mass
greater than 1-2kDa, the introduction of fast atom bombardment (FAB)
mass spectrometry made it possible to ionize peptides and small polar
proteins up to 15kDa. In the FAB mode the peptide/proteinis taken up in
a glycerol matrix which is then bombarded with a beam of argon or xenon
atoms resulting in protonated [M + H] ™" or deprotonated [M — H] ™ ion
signals of the peptide depending on whether positive or negative mass
spectra were generated. Because FAB is a relatively soft ionization
procedure, the molecular ion is rather stable and is scarcely degraded to
fragment ions. Thus, only a limited amount of structural information can
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be obtained directly. However, for sequence analysis tandem mass spec-
trometry in the FAB mode can be used and has been the method of choice
to sequence, for example, some members of the adipokinetic hormone
family (133, 491), even to detect post-translational modifications like
unusual glycosylation sites in such a peptide (128). In this method four
sector mass spectrometers are used consisting of two double-focusing
mass spectrometers with the geometry of two electric fields (E) and two
magnetic fields (B) in either the BEEB or BEBE configuration. In the first
double-focusing mass spectrometer (BE or EB) the peptide is ionized and
the parent ion filtered to reach eventually the second instrument. In the
free-field region between the two instruments the ion is fragmented by
collision with helium or argon atoms (collision-induced decomposi-
tion = CID; or collisionally activated dissociation = CAD) producing the
daughter or product ions which are detected and analyzed in the second
double-focusing mass spectrometer (EB).

In the last 10 years new mass spectrometric techniques have been
developed which are especially useful for molecular weight measurements,
but may be employed for sequencing as well when modifications are used.
The method of matrix-assisted laser desorption/ionization (MALDI)
mass spectrometry, for example, has outstanding sensitivity (1 pmol or
less) and large biopolymers up to about 300 kDa can be determined when
a time of flight mass analyzer is used. Characteristic for MALDI mass
spectrometry is that short pulses of lasers emitting in the ultraviolet or
infrared are focused on a suitable matrix (for example, sinapinic acid is
quite often used for peptides), in which the peptide/protein is embedded.
The laser energy is absorbed by the matrix molecules and transferred to
the sample molecular layers. Thereafter ionization and desorption takes
place. The ions are emitted and separated while they fly to the detector.
Generally, the most intense signal is the singly charged molecular ion, but
doubly and triply charged molecular ions appear as well.

In electrospray mass spectrometry the peptide/protein sample is dis-
solved in, for example, a mixture of methanol or acetonitrile and water,
infused very slowly into a glass capillary at a constant flow rate and
introduced into the electrospray source. At this source a spray of fine,
highly charged droplets is created at atmospheric pressure in the presence
of a strong electric field. The droplets are made to shrink until ions
evaporate and enter the mass analyzer, which, most commonly with this
technique, is a triple quadrupole. During the electrospray ionization
process multiprotonated molecules (M + nH)** are formed which give
rise to a series of consecutive peaks at (M + n)/n along the mass to charge
scale of the ion spectra. The occurrence of multiply charged ions allows
the determination of proteins up to more than 100 kDa; the sensitivity for
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the molecular mass of peptides has been shown to be in the picomole or
even femtomole range.

Once the structural data are collected, peptides up to 30 to 50 amino
acid residues can be synthesized by solid phase techniques using the
modern generation of automated peptide synthesizers. The synthetic pep-
tide, in turn, is carefully compared with the natural peptide with regard to
chromatographic retention time in different solvent and support systems,
mass spectrometric data and biological activity in the appropriate bioas-
say. Only when these parameters of the natural and synthetic peptide
match can one be sure that the correct sequence was determined or
assigned.

2.4. Immunological Techniques (RIA, ELISA, Immunocytochemistry)

Analytical immunochemical methods have been used widely to ident-
ify and quantify peptidergic substances in insects. The most important
techniques in the context of this review are immunocytochemical
methods, which detect qualitatively an insect peptide antigen in tissues
and cells, as well as the quantitative radioimmunoassays (RIAs) and
enzyme-linked immunosorbent assays (ELISAs), which selectively
measure minute amounts of peptide antigens among a mixture of poten-
tially interfering material found in complex biological samples such as
haemolymph. Only when the concentration of a neuropeptide is increased
in the haemolymph after some specific physiological challenge can a true
neurohormonal role be established. Thus, the neuropeptide is then re-
leased from its production/storage sites into the general circulation to act
on peripheral tissues.

Most immunochemical work in insects is carried out with polyclonal
antibodies raised in rabbits, but some monoclonal antisera have now been
prepared for insect work (265). Most important for the success of any
immunochemical method is the availability of a high-titred antiserum. In
peptide work a synthetic product is the best antigen; however, problems
may be encountered with small peptides, because they are not im-
munogenic. In such a case they have to be conjugated covalently, using
carbodiimide or glutaraldehyde, to a larger carrier molecule which is
usually a protein such as thyroglobulin, bovine serum albumin or keyhole
limpet haemocyanin. Further problems may occur when the peptide does
not contain a reactive group. This is, for example, the case with most
peptides of the AKH/RPCH-family. One possible solution is to synthesize
chemical analogues: either a des-pGlu-analogue was used for conjugation
(49, 84), or the pGlu residue was replaced by Tyr (422) or Glu (290), or the
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N-terminal tetrapeptide (pGlu-Leu-Asn-Phe...) was conjugated via
a diaminohexane spacer to thyroglobulin (421).

Another problem that may occur when using RIA is the preparation of
a tracer, a radiolabelled antigen, with high specific activity. Conveniently,
radioiodine is utilized to produce a tracer with high specific radioactivity;
it is a gamma emitter which can easily be measured in inexpensive gamma
counters. However, for example, most AKH/RPCH-family peptides do
not contain an iodine-reactive molecule such as Tyr or His residues.
Therefore, MosHITZKY etal. (290) prepared a derivative, 4-hydroxy-
phenylpropionyl-[Glu!]-Lom-AKH-I, which was subsequently iod-
inated with sodium !2°I. Although such a molecule mimics the structure
of the antigen and can be used in a RIA, it is not possible to use it for
receptor binding studies. Structure-activity experiments (see Sect.3.1.1)
have shown that the N-terminal pGlu is quite essential for exerting
biological activity. Recently, a different radiolabelled AKH peptide,
a derivative of a moth AKH (Mas-AKH), was made (492). First a peptide
analogue with p-iodo-Phe at position 4 was synthesized, which was
subsequently treated with tritium gas to produce a peptide analogue with
tritium at the para position of Phe. The peptide had high specific activity
and showed no difference in biological activity to the native non-tritiated
peptide.

For further readings about applications of immunochemical methods
in insect research and of problems and challenges of RIA, ELISA and
immunocytochemistry the interested reader is referred to excellent articles
in the book of GILBERT and MILLER (I39). The contribution of
SCHOONEVELD and VEENSTRA (423) in this book, for example, clearly
indicates the possible limitations of immunocytochemical work and the
caveats needed in interpretation of this histochemical technique. There-
fore, positively-reacting cells in immunocytochemistry are generally
called immunoreactive-“like”; which means that the specific antibody
used has recognized a substance immunologically indistinguishable from
the antigen. The true chemical identity has to await classical peptide puri-
fication and characterization or identification by molecular biological
methods.

2.5. Molecular Biological Techniques

Advances in this particular field are extremely rapid and it is beyond
the scope of this article to cover the different techniques. Some informa-
tion in this respect with regard to insect neuropeptides can be found in
several overviews (140, 395, 396).
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It is clear, however, that the entire amino acid sequence of a large
peptide or protein can nowadays be obtained more easily by deduction
from its DNA sequence than determination of the amino acid sequence
using protein chemical techniques. However, there are prerequisites and
drawbacks as well: first, a partial amino acid sequence has to be known to
construct oligonucleotide probes for screening a recombinant DNA (cDNA)
or genomic DNA library to be sequenced for positive DNA clones.
Sequencing of those DNA clones, in turn, will then give information on
the identity of the amino acid sequence of the encoded peptide/protein.
Second, DNA sequencing, as Edman degradation sequencing, is limited to
the extent that post-translational modifications cannot be detected and
identified.

One of the most successful applications of recombinant DNA techni-
ques in insect research has been the provision of information on the amino
acid sequences of neuropeptide precursor proteins. In some cases, as with
many vertebrate neuropeptide precursors, other new peptide sequences
were identified which occurred in the same precursor. In a recent short
review, GIRARDIE (140) states that the respective genes for insect neuro-
peptide hormones can be classified as three types:

1. The preprohormone consists of a signal peptide and the neuropept-
ide. Examples are the eclosion hormone precursor (183; Sect. 3.2.4) and
the neuroparsin precursor (245; Sect. 3.2.5.1). This type of organization
has not yet been demonstrated in vertebrates.

2. The preprohormone consists of a signal peptide, the neuropeptide
and other structurally unrelated peptides. Examples are the bombyxin
and another insulin-related peptide precursor (197, 246; Sect. 3.2.3.) and
the precursors for the adipokinetic hormones of locusts (329, 424; Sect.
3.L1).

3. The preprohormone contains a signal peptide and multiple copies
of the same and/or very similar neuropeptides (isoforms). Examples are
the FMRFamide-related peptide precursor of the fruitfly Drosophila
melanogaster (320, 402; Sect. 3.3.8) and the precursor for the allatostatins
of the cockroach Diploptera punctata (71; Sect. 3.2.2.2).

Since neuropeptide precursors are metabolic intermediates and are
present in even smaller amounts than their products, recombinant
DNA techniques for elucidating their structures are almost a necessity.
This is also true for the receptor proteins of insect neuropeptides which
are obviously scarce and therefore extremely difficult to identify struc-
turally by protein chemical methods. Up to now, only the receptor for
the diuretic hormone from the Malpighian tubules of the moth,
Manduca sexta, has been cloned and sequenced (384; Sect.3.1.2),
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but future molecular biological work will undoubtedly reveal more
receptor structures.

A third area in which molecular biological techniques are very helpful
is the production of large peptides/proteins which are impossible or very
difficult to synthesize chemically. For this, cDNA is expressed in cells
which are infected with recombinant vectors like baculoviruses. Recently,
the cDNA encoding human growth hormone was expressed in larvae of
Bombyx mori employing B. mori nuclear polyhedrosis virus (a baculovirus)
as an expression vector (206). The hormone was synthesized in the larvae
and secreted into the haemolymph. It was confirmed that the recombinant
growth hormone had the same molecular weight and amino acid sequence
at its N-terminal region as the natural growth hormone. Moreover, the
biological activity was comparable to that of natural growth hormone
suggesting that the active structure of the recombinant growth hormoneis
identical with that of the natural one. Thus, this insect’s larvae and
baculovirus system has the potential as an efficient gene expression system
for the industrial production of biologically active peptides/proteins
including hormones, important for medical and pharmaceutical purposes.

Expression of insect neuropeptides in insects or cell cultures making
use of recombinant baculoviruses has been achieved for eclosion hormone
(86, 156) as well as for the pheromone biosynthesis activating neuropept-
ide (PBAN; 463). For further reading on this subject an article by MAEDA
(267) is recommended.

3. The Insect Neuropeptides

In the next sections, the various neuropeptides of insects will be dis-
cussed. Attention is mainly focused on those whose primary structures
are known. Since there has been an explosion of characterized neuro-
peptides during the last few years and since almost every month new
information is published, it is entirely possible that the literature and
structures dealt with in this review are not complete. This is not because
of deliberate omission, but simply because the author has failed to spot
those publications.

The various neuropeptides are categorized by their actions. However,
quite a few of those peptides elicit more than one biological response, thus
have pleiotropic actions. In general, such peptides are discussed with
respect to their main action or to the action they are best known for. This
also has a bearing on their nomenclature. Although no single nomencla-
ture is perfect, the one proposed by RAINA and GADE (368) is used here, but
in some instances alternative names are included as well.
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3.1. Peptides Involved in Homeostasis and Metabolism

3.1.1. Adipokinetic and Hypertrehalosaemic Peptides

Insulin and glucagon are well-known metabolic hormones of verte-
brates which are involved in homeostasis of carbohydrate and lipid
metabolism. The limited structural knowledge about insulin-like peptides
in insects is discussed in Sect. 3.2.3. The first report on the existence of
a glucagon-like factor in insects came from STEELE (446). Extracts of
corpora cardiaca elevated the concentration of the haemolymph sugar
trehalose (hypertrehalosaemic effect). The active principle was shown to
be peptidic and, because of limited sequence identity of mammalian
glucagon and some of these metabolic peptides in insects (see later) and
similarities in action, the term “trehalogon” was coined (447). In a recent
review (148), however, it is argued that there is “no justification in claiming
any homology or evolutionary relationship” between the insect peptides
and vertebrate glucagons.

In 1969 a different effect of extracts of corpora cardiaca was reported
in the locusts Schistocerca gregaria (279) and Locusta migratoria(15). Here
the concentration of haemolymph lipids was elevated (adipokinetic effect).
In 1976 the decapeptide adipokinetic hormone, now called Lom-AKH-I,
was isolated from 3000 corpora cardiaca by size exclusion chromatogra-
phy on controlled-pore glass and thin layer chromatography on silica gel
(450). Structure elucidation was achieved by a combination of enzymatic
cleavage and mass spectrometry. The structure (see Table 1) was clearly
related to that of the previously described red pigment-concentrating
hormone from the shrimp Pandalus borealis (Pab-RPCH) (92). This
structural similarity was the reason for naming this group of peptides the
AKH/RPCH-family of peptides. During recent years new members of this
family have been described from many insect orders. Isolation was
achieved mainly by single-step RP-HPLC (see Sect. 2.2) and structure
elucidation was carried out by Edman degradation after deblocking the
N-terminal pyroglutamate residue or by various mass spectrometric
techniques, mainly FAB-MS. Due to the relatively high concentration of
AKH-type peptides per corpus cardiacum, the entire primary structure
was resolved using, for example, only 4 glands from the grasshopper
Phymateus leprosus (127) which compares quite favorably with the high
amount of material necessary during the first AKH structural study (450).
About 30 different peptides are known at present (Table 1) and that makes
this family one of the largest. Such peptides have been identified from
representative species of most insect orders (106) and attempts have been
made to use the sequence information to construct phylogenetic trees
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(117, 130). It appears that Pab-RPCH is conserved in crustaceans; insect
species, however, show a high degree of structural variability. All members
are from 8 to 10 amino acids long, are N-terminally blocked by a pyro-
glutamate residue and C-terminally blocked by an amide. At position
4 (Phe or Tyr) and 8 (Trp) aromatic residues are present; most variations
in constituent amino acids are conservative (Table 2). The majority of
peptides is not charged under physiological conditions, but certain dip-
teran species and members of scarabaeid beetles contain peptides with
a negatively charged Asp residue at position 7 (see Table 1). The family
shows even more post-translational modification than only the blocked
termini. For example, the stick insect Carausius morosus contains two
decapeptides (see Table 1) one of which is glycosylated as shown by mass
spectrometry (128). The glycosylation site is not the usual Ser/Thr (O-
glycosylation) or Asn (N-glycosylation), but Trp is involved. Recently, it
was reported that human RNase also uses Trp as a glycosylation site and,
by *C and 'H nuclear magnetic resonance spectroscopy, it was shown
that the substituent was an aldohexopyranosyl residue which was C-
glycosidically linked to the C2 atom of the indole ring of the tryptophan
(168).

Moreover, in various cicada species from Africa and America two
decapeptides have been found which are identical in structures judged by
all methods used, including differences between D- and L-isomers. How-
ever, they can be separated on RP-HPLC (123, 376, 471), thus have to be
different. As yet it is not known which modification does occur.

Besides the hyperlipaemic and hypertrehalosaemic effects mentioned
above, other activities of peptides of the AKH/RPCH family are known.
The major ones are the following:

1. Stimulation of the frequency of the heart beat in Periplaneta
americana (462) which led to the use of this action as a bioassay for the
isolation of the peptides Pea-CAH-I and II (14, 394) and also to some
structure-activity studies (13).

2. Increase in muscle tone and frequency of contraction of the sponta-
neous activity of the isolated leg of a locust; this bioassay was also
successfully used to isolate Pea-CAH-I and 11 (336, 478).

3. Inhibition of protein synthesis in L. migratoria (42), which was also
shown to occur in the cricket Acheta domesticus (61). In the cockroach B.
discoidalis, however, the endogenous peptide Bld-HrTH stimulates the
rate of protein biosynthesis by interacting cooperatively with juvenile
hormone (223).

4. Inhibition of fatty acid synthesis in S. gregaria (145). A simpler,
more convenient and rapid method measuring the inhibition in fat body of
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L. migratoria of the synthesis of lipid from [1-'4C] acetate was developed
recently (253, 254).

5. Inhibition of RNA synthesis in fat body of L. migratoria (232).

6. In B. discoidalis the peptide Bld-HrTH is also thought to regulate
the synthesis of haemes for mitochondrial cytochromes, although not
directly; furthermore, Bld-HrTH appears to be responsible for the induc-
tion of gene expression for a cytochrome P450 enzyme (221).

In conclusion, the AKH/RPCH peptides exert multiple physiological
effects in various insect model systems. Mainly, they act on the metabolic
status of the fat body. Most physiological research is done on the func-
tions of adipokinetic hormones in locusts during flight (112, 146, 147). The
hormones have direct effects on the mobilization of carbohydrates and
lipids and/or the utilization of such substrates by the flight muscles, but
have additional indirect effects on the transport of lipids as lipoproteins to
the flight muscles and on the enzyme system of lipoprotein lipase in the
flight muscles. This enzyme is responsible for “unloading” of the diacyl-
glycerol from lipoproteins and making it finally available for oxidation to
power the contraction of the flight muscles.

There are numerous reports, for locusts as well as other insects, on the
involvement of AKH/RPCH peptides in activation of phosphorylase, of
lipase, in the production of cyclic AMP, the usage of calcium for signal
transduction etc., but this will not be discussed here. Rather short
accounts on structure-activity relationships, biosynthesis, localization by
immunocytochemical techniques, release and breakdown are given.

Studies on how the biological information is encoded within the structure
of various members of the AKH/RPCH family and some synthetic
analogues have been conducted employing bioassays. Such studies on
structure-activity relationships have been done on the lipid-mobilizing
activity in locusts (109, 115, 150, 151, 451) and in M. sexta (101), on the
carbohydrate-mobilizing activity in P. americana (104, 109, 114, 121) and
B. discoidalis (99, 159) and on the phosphorylase-stimulating activity in
M. sexta (489). Major differences apparently exist between those insects
containing one endogenous peptide, M. sexta (Mas-AKH) and B.
discoidalis (Bld-HrTH), and those containing two or three endogenous
peptides, L. migratoria (Lom-AKH-L IL III) and P. americana (Pea-CAH-
L, II).

The receptors in M. sexta and B. discoidalis are apparently more
selective, since quite a few of the tested, naturally-occurring analogues
(= bioanalogues) were poorly active in those systems. On the other hand,
for most bioanalogues up to a 50-fold higher dose was needed to achieve
a half-maximal response (ED 5, value) than for the endogenous peptides in
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L. migratoria and P. americana. This may be indicative of the presence of
more than one receptor type and, therefore, a broader spectrum of bind-
ing. Support for a multiple receptor hypothesis comes from various other
experiments. For example, the three peptides from L migratoria have
different potencies in different biological assays. Lom-AKH-III is more
potent as an inhibitor of fatty acid uptake and RNA synthesis than
Lom-AKH-I, but it is less potent in lipid-mobilization and activation of
fat body phosphorylase (253, 338). Since optimal responses for the acetate
uptake assay are obtained with locust fat bodies of young insects ( < 8-day
adults), but for hyperlipaemia in older than 15-day adults, it is assumed
that receptor populations may change during adult development (253).
Moreover, certain single amino acid replacement analogues (at positions
1 and 2) for the endogenous peptide Pea-CAH-I in P. americana showed
biphasic dose response curves characteristic of two receptors with differ-
ing affinities for the analogues (121).

Such single replacement studies also revealed that in the cockroaches
P. americana (121) and B. discoidalis (99), the aromatic amino acid side
chains at positions 4 and 8 are absolutely essential and that the amidated
C-terminus and the pGlu at the N-terminus are very important as well.
Since these are general structural features of the family it is very likely that
all receptors are similar in that respect. Another result of these single
replacement studies was that replacement at positions 6 and 7 in Pea-
CAH-I had very little effect on the activity. These results are consistent
with the prediction that a B-turn is formed around residues 5 to 8 (149,
477). The corner residues 6 and 7 would not directly interact with the
receptor; however the turn would be present primarily to orient the N-
terminal pentapeptide residues and the C-terminal Trp-amide for inter-
action with the receptor (121). Studies on the conformation of some
peptides of the AKH/RPCH family appear to confirm these predictions.
Although in water such small peptides show a random coil conformation,
increasing concentrations of SDS progressively stabilized the emergence
of a single structure, as evidenced by circular dichroism spectroscopy,
which would be described as a type of B-turn (477, O. CusiNnaTO, A.F.
DRAKE, G. GADE and G. J. GOLDSWORTHY, unpublished results). Nuclear
magnetic resonance studies on the octapeptide Emp-AKH dissolved in
dimethylsulfoxide indicated a B-turn encompassing residues 5 to 8, with
evidence of a B-sheet conformation for residues 1 to 5 (494).

The biosynthesis of adipokinetic hormones, including the genes and
precursors, is best understood in the desert locust, Schistocerca gregaria
(335). Direct protein isolation and sequencing methodology was used as
well as molecular cloning. It is now believed that each adipokinetic
hormone (even when three exist in one species, as in L. migratoria) is
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encoded on a separate gene. Small mRNA’s, each of about 500 nucleotide
in length have been found for the decapeptide Lom-AKH-I and the
octapeptide Scg-AKH-II; they encode the two precursor proteins, prepro-
AKH-I of 63 amino acids and prepro-AKH-II of 61 amino acids. The
organization of the two preprohormones is very similar: there is a 22-mer
signal peptide, followed by the sequence for either Lom-AKH-I (10 amino
acids) or Scg-AKH-II (8 amino acids), followed by a Gly residue used for
amidation and a Lys-Arg processing site and a 28-mer peptide called the
a-chain in prepro-AKH-I and called the B-chain in prepro-AKH-II. After
cleavage of the signal peptide the linear prohormones form dimeric
precursors by oxidation. There are three dimeric precursors P, P, and P5:
two homodimers (2 pro-AKH-I and 2 pro-AKH-II) and a heterodimer
(1 pro-AKH-I plus 1 pro-AKH-II). The processing of these dimeric
precursors yields as products monomeric AKHs and dimeric AKH
precursor-related peptides (APRPs), of which there are three different
ones: APRP,, consisting of two a-chains, APRP, consisting of two
B-chains and the heterodimer APRP, consisting of an a-chain and
a PB-chain. The steps necessary for the prohormone processing have
recently been elucidated in an in vitro system (383). It has been shown that
the corpora cardiaca contain an endoproteolytic activity which cleaves at
the C-terminal side of the Arg residue at the processing site in each chain
of the dimer. The product, the C-terminal extended AKH (AKH-Gly-Lys-
Arg), is subsequently digested by a carboxypeptided H-like enzyme
removing Arg and then Lys. The next step is catalyzed by a peptidyl-
glycine-a-amidating monooxygenase producing the amidated AKH from
the glycine-extended peptide. It is also suggested that a structural motif,
a so-called Q loop, located 7 amino acids prior to the cleavage site, is
necessary for action of the endopeptidase (382). When the structure of the
precursor P, was analyzed in solution by circular dichroism and nuclear
magnetic resonance, no evidence for an Q loop in the N-terminal region
could be found (182). However, the authors found an a-helical structure at
the C-terminal end where another putative processing site (Arg-Lys) is
located. This site is not used in prohormone processing and the study thus
supports the idea that cleavage sites do not lie in helical regions, but near
flexible structures (182).

In another Schistocerca species, S. nitans, sequence analysis of cloned
cDNAs derived from 550 nucleotide long mRNAs that code for the
prepro-AKHs led to a very similar organisation as for S. gregaria (329).

The sequences of the three prepro-AKHs of L. migratoria have been
deduced from three distinct cDNAs. Whereas the precursors for Lom-
AKH-I and II are highly homologous to the precursors of their counter-
parts in the two Schistocerca species, the precursor for Lom-AKH-III is
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different with respect to its “tail” region (the a- or B-chain) and resembles
more, at least in length, the situation in non-locusts and crustaceans (see
below) (23). In situ hybridization data revealed that mRNAs for the three
AKHs of L. migratoria are co-localized in cell bodies of the glandular part
of the corpus cardiacum. Remarkably, when the effect of flight activity on
AKH gene expression was studied in L. migratoria, it became evident that
the level of the Lom-AKH-III transcript was increased about 4 times and
those for Lom-AKH-I and II 2 times (23). These differences of gene
expression during flight constitute another example for the conclusion
that the different AKHs of one species may be used for different functions.

The prepro-AKH sequence for M. sexta was deduced from the nuc-
leotide sequence by using a genomic library for isolating the AKH gene
(32). A 19-mer signal peptide is followed by the sequence for the nonapep-
tide Mas-AKH and subsequent to that by a Gly residue (for amidation)
and a classical Lys-Arg cleavage site which is followed by a C-terminal
peptide of 34 amino acids. This C-terminal “tail” peptide may be the
equivalent to the o- or B-chain in the locusts, but the sequences are
unrelated. However, the “tail” contains a Cys residue 4 residues from the
C-terminus, which may be used for oxidation to form a dimeric structure
like the APRPs, but this has not yet been detected.

The fruitfly, Drosophila melanogaster, which contains a single octa-
peptide identical in sequence with the hypertrehalosaemic peptide of
Phormia terraenovae (Pht-Hr'TH), contains the same overall architecture
of its Pht-HrTH precursor as shown for the species above (328). The
length of the C-terminal peptide, however, is 46 amino acids; this is even
longer than those of the Lom-AKH-III and Mas-AKH precursor, but
shorter than the ones for the Pab-RPCH precursor (see below).

The precursor for the only crustacean member of this family of pep-
tides, the red pigment-concentrating hormone (Pab-RPCH), has the same
general organization as the precursors from insects. The sequences for
prepro-RPCH from the shore crab Carcinus maenas (258) and the blue
crab Callinectes sapidus (231) have been deduced from nucleotide se-
quences using cDNA libraries from the neurosecretory X-organs of C.
maenas or from eyestalk ganglia of C. sapidus. The signal peptide contains
25 amino acids in both species, followed by the 8-mer RPCH sequence
with Gly and a dibasic (Lys-Arg) processing site and a 74-(C. maenas) or
73-mer (C. sapidus) “tail” peptide. This so-called RPCH-precursor related
peptide (RPRP in analogy to the insect APRPs) is much longer than the
APRPs. It also contains cysteine residues and thus could form dimers, but
it is not known if dimers exist.

That adipokinetic hormones are located in and synthesized by intrin-
sic neurosecretory cells of the corpus cardiacum in insects has also been
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shown by immunocytochemical methods (49, 84, 420, 422). In locusts
region-specific antibodies with high specificity for either Lom-AKH-I or
Lom-AKH-II/Scg-AKH-IIrevealed that both peptides are co-localized in
the same glandular cells of the corpus cardiacum and even in the same
secretory granules (68, 162). The release of both Lom-AKH-I and II into
the haemolymph during flight has been reported and it was suggested that
the release is controlled by octopamine and cyclic AMP (332, 343).
However, other groups could not find octopamine immunoreactive fibers
in the locust corpus cardiacum (233) and were unable to show AKH
release by octopamine (344). It was, however, demonstrated that locusta-
tachykinin I (Lom-TK-I) immunoreactive axon terminals were situated in
close contact with the glandular corpus cardiacum cells (309). Moreover,
Lom-TK-I induced the release of Lom-AKH-I when monitored in an
in vitro system.

In M. sexta the endogenous AKH (Mas-AKH) mobilizes lipids for
flight in adults and activates phosphorylase in moulting and wandering
larvae during starvation; thus in this species this neurohormone is also
involved in energy metabolism and acts on fat body cells (490). By
synthesizing a radiolabelled (tritiated) Mas-AKH analogue (see Sect. 2.4)
it was shown that membrane fractions prepared from fat body cells of
M. sexta specifically bind this analogue (492). No receptor binding, how-
ever, was found with membranes prepared from brains, heart or flight
muscle tissue. Membrane fractions prepared from the pterothoracic
ganglion resulted in, albeit low, specific binding. This result is in full
agreement with a recent study in which the injection of Mas-AKH into the
mesothoracic neuropile area increased the motor activity of those muscles
which are innervated by motorneuron dendrites from this area (282).

Inactivation and metabolism of AKH-peptides, thus termination of
the hormonal signal, in different insect species have been investigated to
some extent. In the central nervous system of S. gregaria, for example,
Lom-AKH-I can be inactivated by a membrane-bound endopeptidase
which cleaves the Asn®/Phe* bond (187). According to in vitro and in vivo
studies of RAYNE and O’SHEA (381), such an endopeptidase is also present
on the external surface of the desert locust’s fat body cells. Both en-
dogenous AKHs, Lom-AKH-I and Scg-AKH-II, are cleaved at the
Asn3/Phe* bond. The fragments, both of which are biologically inactive,
are now susceptible to degradation by exopeptidases. Indeed, for the
C-terminal fragments of Lom-AKH-I and Scg-AKH-II, breakdown by
aminopeptidase activity, which apparently resides in the haemolymph,
could be demonstrated, whereas the N-terminal fragments (pGlu-Leu-
Asn) were long-lived. Short characterization of the endopeptidase sug-
gests a great deal of similarity to mammallian endopeptidase 24.11.
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Exchanging Phe* with Tyr* in an analogue of Lom-AKH-I did not affect
the activity of the endogenous endopeptidase (381). Since all members of
the AKH/RPCH family contain either Phe* or Tyr* (see Table 1), it is safe
to speculate that probably all peptides of this family are degraded by the
same mechanism.

Another degradation process may take place in S. gregaria as well.
Homogenates of the Malpighian tubules of this species or incubation of
isolated Malpighian tubules take up and/or break down Lom-AKH-I
(431). It is thought that the first step in the proteolytic degradation is
catalyzed by a post-proline cleaving enzyme. Scg-AKH-II, however,
containing no Pro® residue, is broken down by another endopeptidase
which cleaved between Phe* and Ser”. This action is similar to that of
chymotrypsin (432). Once the endopeptidases have been active, the now
unblocked new N- and C-terminus of the fragments can be attacked by
exopeptidases of the leucine aminopeptidase and carboxypeptidase A or
B-type. Such enzymes have been demonstrated in homogenates of
Malpighian tubules (432). From these experiments it is assumed that
AKHs can enter the Malpighian tubule cells and can be degraded there.
Whether this breakdown by internalization is the major route of inactiva-
tion of AKHs is questionable. At least it is clear from the other set of
experiments described above (381) that breakdown of AKHs by a cell-
surface located endopeptidase is also occurring.

3.1.2. Diuretic and Antidiuretic Peptides

The osmotic composition of the haemolymph of insects is tightly
regulated. The major organs responsible for fluid and ion secretion are the
Malpighian tubules, but the hindgut (ileum and rectum) are important as
well (Fig. 3). The insect’s excretory system can be viewed in general to
consist of two parts: the Malpighian tubules form and secrete the primary
urine and the hindgut, specifically the rectum, determines, by reabsorp-
tion, the quality of the final excreted waste product. Thus, the primary
urine from the Malpighian tubules enters the gut at the junction between
the midgut and hindgut, where some may move forward for reabsorption
in the midgut (72). The remaining major part mixes with the gut contents
and moves in a posterior direction through the hindgut to the rectum,
where most of the selective resorption and absorption of essential meta-
bolites, including ions, and water occurs (266, 346, 347).

The primary urine produced by the tubules is isosmotic to the
haemolymph. The driving force for fluid secretion is by active transport of
cations achieved by a proton pump (an H*~ATPase) and associated
Na*/H* and K*/H™ antiporters as well as Cl~ channels, all situated in
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Malpighian CRF-related peptides;
tubules Kinins
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Fig. 3. Schematic diagram of the insect’s excretory system indicating upon which part the
different neuropeptides are acting

the apical or luminal membranes as reviewed in (326, 18). By this action,
either potassium chloride (in nonblood-feeding insects like locusts,
beetles, and ants) or sodium chloride (in bloodsucking insects like the bug,
Rhodnius prolixus, the yellow fever mosquito, Aedes aegypti, and the tsetse
fly, Glossina morsitans) are the major salts which occur in the tubule fluid
in sometimes quite high concentrations. The possibly deleterious effect of
this high ionic composition is counteracted by the hindgut, where a well-
controlled ion reabsorption takes place. Specifically the rectum is capable
of producing a excretory product that is hyper- or hypoosmotic to the
haemolymph, because the relative rates of water and ion absorption can
be varied.

Neuropeptides have been reported to control tubular excretion rates
(diuretic effects) as well as to regulate rectal reabsorption (antidiuretic
effects). For example, feeding in haematophagous (blood-feeding) insects
apparently stimulates release of diuretic peptides resulting in increased
secretion rates of the tubules and an overall water loss during this
so-called post-prandial diuresis (266). In xeric species, however, although
diuretic peptides are released, an increased overall water loss may not be
noticed; here the accelerated rate of tubular secretion is “masked” by the
equally stimulated (by antidiuretic factors) uptake of fluid in the hindgut.
The latter scenario results, because of the higher rates of recycled fluid, in
a better clearance of toxic wastes and metabolic products and it was on
this account that NICOLSON (325) proposed the term “clearance hor-
mones” as opposed to diuretic hormones, especially for insects like the
Namib Desert beetle which have to conserve water. Thus, as discussed by
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SPRING (435), the definition of “diuretic hormone” is quite ambiguous
and has led to substantial confusion. This mainly stems from the different
methods used to determine the action in biological assays, i.e. water loss
from the whole insect, fluid secretion of Malpighian tubules in situ or by
isolated tubules in vitro, measurement of the transepithelial potential in
isolated perfused tubules or fluid reabsorption of the rectum in vitro (for
details, see 326, 435, 476).

Since the concentration of intracellular cyclic AMP (in some cases
cAMP is even released into the incubation medium) in the Malpighian
tubules is increased by the action of certain diuretic peptides, measure-
ment of cCAMP by RIA or competitive protein-binding assays is also
frequently used to detect diuretic actions in intact tubules in vitro.

In what follows, studies will be reviewed which have dealt with
isolation and successful sequence determination of diuretic peptides, but
numerous articles on not fully-characterized diuretic peptides will not be
discussed.

Using a vertebrate immunochemical approach (antibodies raised against
the antidiuretic hormones of many higher vertebrates, e.g. arginine
vasopressin), immunoreactivity was shown to occur mainly in the
suboesophageal and thoracic ganglia of the migratory locust (359, 385).
The material was also biologically active in one of the many diuretic
assays: it affected the rate of amaranth excretion in the locust. For
purification, 51000 ganglia of L. migratoria were homogenised, extracted
and isolated on a RP-HPLC column eluted with a acetonitrile/TFA
gradient resulting in two zones, F1 and F2, which were immunoreactive,
but only F2 material increased dye excretion (419). A further 3 to
4 RP-HPLC steps, using different solvents and organic modifiers, purified
both immunoreactive compounds sufficiently for peptide analyses. Sur-
prisingly, both factors had identical amino acid composition and identical
sequences, although retention times during the different purification steps
were always different (358). Size-exclusion chromatography, however,
revealed a relative molecular mass of about 700 for F1 and 1470 for F2
suggesting that the latter might be a dimer. Finally, it was shown that F2is
the antiparallel dimer of F1, i.e. Cys! of each chain in the dimer forms
a disulfide bridge with Cys® of the opposite chain (see Table 3). Compari-
son with vertebrate arginine vasotocin and arginine vasopressin showed
78 and 67% sequence homology (Table 3). Both native and synthetic F2
had biological activity invitro on Malpighian tubules attached to the
midgut, maintaining the urine production which in non-stimulated con-
trols decreases gradually. Concentrations of about 10~ M were effective.
Moreover, cyclic AMP production was stimulated by F2 (357). Because
levels of AVP-like immunoreactivity in the haemolymph altered with
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relative humidity (359) and one of the three peaks in diuresis (measured as
dye excretion) over a 24h period was correlated with a higher titre of
AVP-like peptide in the haemolymph, this peptide was named arginine
vasopressin-like insect diuretic hormone. It was thought to be one, of
possibly several, of the true diuretic hormones of L. migratoria. Unfortu-
nately, neither stimulation of fluid secretion or production of cyclic AMP
in isolated Malpighian tubules of L. migratoria could be demonstrated in
doses of up to 107 M/10”7 M by the synthetic antiparallel dimer F2,
which was checked by chromatographic and mass spectrometric methods
to be the authentic compound (56). Another synthetic locust diuretic
peptide, however, which was previously isolated and characterized from
whole heads or brains and corpora cardiaca of L. migratoria (220, 256)
stimulated urine production in locust tubules 5-fold and dramatically
increased tubule cyclic AMP levels at 5 x 10~ 8 M (56). This L. migratoria
diuretic peptide is one of a series of peptides which are all related to the
mammalian corticotropin releasing factor (CRF) and which are therefore
called CRF-related insect diuretic peptides. The first one of this series was
isolated in parallel with eclosion hormone (see Sect. 3.2.4) from 10000
trimmed heads of pharate adults of Manduca sexta (214). Separation on
SP-Sephadex was followed by cartridge and semi-preparative RP-HPLC
on C-4 material with acetonitrile/TFA and 1-propanol/TFA, followed by
ion exchange and subsequent purification on analytical and microbore
C-4 with acetonitrile/HFBA and acetonitrile/TFA respectively. As a bio-
assay throughout purification, “post-eclosion diuresis” (voiding of urine
in many lepidopteran species immediately after adult eclosion) in the
butterfly, Pieris rapae, was used. Newly emerged adult butterflies were
ligated behind the neck and beheaded; these insects were then injected
with the material to be tested and the activity was scored when clear urine
was excreted. The purified material, about 5 nmol from 10 000 heads, was
sequenced intact and also the tryptic fragments. This yielded a 41-mer
peptide in its C-terminal amidated form, called here Mas-DP-I (Table 3).
Of the two synthesized forms (amidated or acidic at the C-terminal), the
amidated one had the same retention time on RP-HPLC and was about
1000-fold more active than the acidic form in the Pieris assay. Further-
more, it promoted a pronounced loss of water through the gut and
epidermis in pre-wandering, post-feeding M. sexta larvae, but had no
direct effect on isolated tubules of these larvae (214). Later it was demon-
strated that synthetic Mas-DP-I stimulated fluid secretion and produc-
tion of cAMP in isolated Malpighian tubules of Acheta domesticus (53).
Stimulation of fluid secretion and cAMP production invitro by
Malpighian tubules of the butterfly, P. rapae, taken from adults within
1-12h of eclosion, was shown by these authors as well. Data of



34 G. GADE

TROETSCHLER and KRAMER (458) revealed a decrease in fluid absorption
from the rectum and an increase of intracellular levels of cyclic AMP in the
rectum and Malpighian tubules of larval M. sexta invivo by Mas-DP-1L
Recently, the direct stimulating effect on Malpighian tubule secretion of
adult M. sexta by synthetic Mas-DP-I invitro was presented, and it was
demonstrated that Mas-DP-I acts as an antidiuretic peptide on the
cryptonephric complex of M. sexta larvae (8). Both effects appear to be
mediated via cCAMP.

Antisera raised against the N-terminal (Mas-DP-1, ,,) and C-ter-
minal (Mas-DP-1,, ,,) parts of the Manduca diuretic peptide both recog-
nised the same two median neurosecretory cells on each side of the
protocerebral groove of M. sexta larvae and a group of about 80 median
neurosecretory cells in the adult (470). These data and the positive
immunoreactivity of axons leading to the corpora cardiaca and axon
terminals in these neurohaemal organs suggest that Mas-DP-I may be
released into the haemolymph from these sites and act as a true neuro-
hormone.

Three members of the CRF-related diuretic peptides, one each from
Acheta domesticus, Locusta migratoria and Periplaneta americana, were
isolated by KAy etal. (218, 219, 220), using as their primary bioassay the
production of cAMP by isolated Malpighian tubules in the species under
investigation (or in the locust), but also checking the purified native
peptide for stimulation of fluid secretion in its respective Malpighian
tubules in vitro. Starting materials for the purification were whole heads
(1000 from A. domesticus, 2000 from L. migratoria, and 800 from P.
americana) which were frozen in liquid nitrogen and powdered. The
powder was subsequently extracted with acidified methanol (87% meth-
anol, 5% glacial acetic acid, 8% water) and the fluid concentrated by
precipitation with 70% acetone. The resulting pellet was dissolved in
5mM TFA and then fractionated on a Sep-Pak C-18 cartridge with
successive steps of increasing acetonitrile concentration. Diuretic activity
of the 40—45% acetonitrile fraction was further purified by HPLC em-
ploying a combination of three column chemistries: the first two steps
involved RP-HPLC on a semipreparative C-8 and a diphenyl column
using acetonitrile/TF A gradient, the next step was a normal size-exclusion
Protein-Pak 125 column operated in normal phase, i.e. the peptides
loaded in a non-polar solvent are forced into polar interactions with the
packing material and are eluted with increasing polarity. To confirm
purity and to concentrate the purified peptide from the previous step, the
last step employed the diphenyl column again. This purification scheme
was successful for all three species and in each case resulted in one pure
diuretic peptide with an amidated C-terminus as established by auto-
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mated Edman sequencing combined with either FAB or electrospray
mass spectrometry. These peptides, called Acd-DP, Lom-DP and Pea-DP
here, are 46-mers and show striking sequence homology with Mas-DP-I
(see Table 3). An identical diuretic peptide for L. migratoria was purified
and sequenced (256), using 4600 dissected brains (without opticlobes) plus
corpora cardiaca, and testing the fractions during isolation by an ELISA
test developed for Mas-DP-I (103). Isolation was achieved by a modified
protocol of the one employed to isolate Mas-DP-I (214); thus 7
chromatography steps were involved despite the relative purity of the
starting material.

Essentially only one step of C-8 RP-HPLC purification was used to
purify a second diuretic peptide from M. sexta when either complexes of
corpora cardiaca/corpora allata or dissected clusters of neurosecretory
cells from the medial protocerebrum were taken as starting materials (19).
Edman sequencing, tryptic or endoproteinase Lys-C digests, in associ-
ation with quadrupole Fourier transform mass spectrometry, identified
the primary structure as an amidated 30-mer peptide (Mas-DP-II; Table
3). Biological activity was measured by determining weight loss in vivo of
adult female M. sexta, which were decapitated 24 h after emergence, the
wound sealed, and insects assayed the next day; such a weight-loss assay
does not discriminate between various pathways for water loss and, thus,
it was not known whether Malpighian tubules and/or the rectum were
involved (19). This was clarified later in two separate studies (9, 20).
Mas-DP-II elevates fluid secretion by isolated Malpighian tubules from
adult moth at concentrations as low as 4nM (20) or 0.05nM (9). Cyclic
AMP production in larval proximal and adult tubules was stimulated as
well by Mas-DP-II (9), but, in contrast to the effect of Mas-DP-I (8),
Mas-DP-II was not able to stimulate fluid uptake across the larval
cryptonephric complex; thus no anti-diuretic effect was measured (9).
These results are difficult to interpret since REAGAN (384) had shown that
Mas-DP-II binds to and activates Mas-DP-I receptors expressed in
COS-7 cells (see below). The phenomenon may be explained by postu-
lating the existence of different receptor subtypes for the distal (crypto-
nephric) and proximal larval tubules.

The last CRF-related peptide sequenced to date was purified from
whole-body extracts of the blowfly, Musca domestica, (444 500 individ-
uals) and, separately, the stable fly, Stomoxys calcitrans, (50). The biologi-
cal activity was monitored by measuring the ability of fractions to
stimulate cCAMP production in isolated Malpighian tubules of adult M.
sexta. Isolation was achieved by seven different column systems and the
purified peptide was analyzed by automated Edman degradation and
laser desorption and/or electrospray mass spectrometry. The sequence of
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the 44-mer shown in Table 3 resulted for the material from both insect
species. Interestingly, in M. domestica the peptide was completely oxidized
(Met residue) during isolation, whereas two peaks were isolated and
sequenced from S. calcitrans, identified as the Met-oxidized and non-
oxidized form. In a homologous bioassay, stimulating the rate of
fluid secretion of M. domestica Malpighian tubules, the synthetic (Met-
oxidized) Mud-DP was active at 1 nM concentration. No elevated secre-
tion by another target tissue, the salivary glands of the house fly, was
observed.

To date, six insect diuretic neuropeptides are fully characterized which
are related to the vertebrate corticotropin releasing factor/urotensin
I/sauvagine family (see Table 3). These latter three peptides have at least
45% sequence identity with each other (252) and, with the exception of the
much shorter Mas-DP-II, the insect CRF-like peptides have at least 40%
sequence identity with each other and are about 20-30% identical with
the vertebrate counterparts (52). When the precursor for Mas-DP-I was
characterized (69), it became clear the prepro-Mas-DP-I and ovine
prepro-CRF only show a low degree of homology (between 28—33%) and
alarge gap is needed to align the mature and the preceding regions of both
precursors (69). Moreover, the Mas-DP-I receptor was isolated by ex-
pression cloning in COS-7 cells; it possesses seven putative transmem-
brane domains common to other G-protein coupled receptors and, thus,
is coupled to a cCAMP second messenger system (384). There is a 31%
sequence identity between the cloned Manduca receptor and the cloned
human CRF receptor (44). Effects of vertebrate peptides (urotensin I,
sauvagine and bovine CRF) on stimulation of fluid in A. domesticus
tubules were significant (at 10~ 5 M) but small (20%) compared with the
maximal possible stimulation in this tissue (53). These peptides also
elicited small increases in cAMP production in cricket tubules (in vitro)
(53). Similarly, sauvagine, human- and bovine CRF stimulated cAMP
production in Manduca tubules at 10~ > M, but this effect was only 7% of
the maximum (9). Thus, the limited sequence identity between insect and
vertebrate peptides is also mirrored in their action.

Another group of insect neuropeptides, the myokinins (see Sect.
3.3.4), also have diuretic activity. For example, fluid secretion in isolated
Malpighian tubules of A. domesticus is stimulated by achetakinins, but
cAMP does not seem to be involved (54). The leucokinins of Leucophaea
maderae depolarize the transepithelial voltage in isolated Malpighian
tubules of Aedes aegypti (161). The latter bioassay served also as a tool
to isolate similar peptides, culekinin depolarizing peptides, from the
mosquito, Culex salinarius (158). Peptides belonging structurally to the
kinin family (see Sect. 3.3.4) but are potent stimulators of secretion by
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Malpighian tubules of M. sexta have also been isolated and sequenced
from the abdominal ventral nerve cord of the adult lepidopteran insect,
Heliothis zea (22). 1t is speculated that these myokinins are probably
involved in post-feeding diuresis, to get rid of the excess water derived
from the diet, whereas the CRF-related diuretic peptides are more likely to
act as clearance peptides, removing metabolic waste products from the
haemolymph by creating a high rate of fluid secretion (55). With respect to
these different putative functions it has been proposed (see 50) that (1)
there is no great evolutionary pressure on structure change for the
CRF-related peptides, because metabolic waste management can be
viewed as a basic function for all insect species. Thus, these peptides are
relatively highly conserved; that (2) the source and physiological state of
the diet is different for various species and, therefore, peptides involved in
post-feeding diuresis may be more variable and may even be species-
specific as seems to be the case for the myokinins.

Most of the primary urine formed in the Malpighian tubules is passed
posteriorly into the hindgut which consists of the ileum and the rectum.
Functionally, the ileum has the same task as the proximal tubules of the
vertebrate kidney, removing large quantities of fluid without affecting the
osmolarity of the urine. The rectum has the same function as the distal
tubules, loop of Henle and collecting ducts of the vertebrate kidney,
selectively reabsorbing water, ions and metabolites and, thereby deter-
mining the final composition of the excreta which can be hyper- or
hypoosmotic (see 348, 349).

Much less is known about the regulation of ion and fluid reabsorption
in the hindgut by neuropeptides than regulation of tubule fluid secretion.
Except for neuroparsins, which may exert an antidiuretic action (see
Sect. 3.2.5.1), no structural data on complete primary sequences have
been published (see 11). A peptide was isolated from the corpora cardiaca
of the desert locust, Schistocerca gregaria, by a four step separation
technique on C-4, C-8 and phenyl-columns using acetonitrile/TFA gradi-
ents and partially sequenced (10). As a bioassay chloride transport was
measured, since an apical electrogenic Cl1~ pump is the major rectal ion
transport process. Experimentally, ilea were mounted as flat sheets in
Ussing-type chambers, voltage-clamped at zero and the short-circuit
current (Isc) measured. The isolated peptide was called Scg-ITP (see Table
4), Schistocerca gregaria ion transport peptide. It has a molecular mass
of 8652 (11) and its N-terminal 34 residues show sequence homology with
the hyperglycaemic hormones of crustaceans (see Table 4). Interestingly,
an immunocytochemical study of stick insect (Carausius morosus) brain
and retrocerebral complex using an antiserum against Carcinus maenas
hyperglycaemic hormone had revealed quite a few immunopositive cells
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(203). Inlight of the above results these previous data suggest that the stick
insect also contains a neuropeptide which is related to the crustacean
CHH-family and may be involved in ion transport in the insect.

3.2. Peptides Regulating Reproduction, Growth and Development
3.2.1. Pheromone Biosynthesis Activating Neuropeptides

Chemicals that are secreted by one individual and affect the physiol-
ogy or behavior of another member of the same species are termed
pheromones (208). Sex pheromones are produced by females of many
species of Lepidoptera to attract conspecific males. A vast body of infor-
mation has been accumulated on these sex pheromones, partly because
they are vital to assure successful mating and therefore reproduction,
partly because of their use in insect control. In 1959 the pheromone
produced by the female silkworm moth, Bombyx mori, to attract males
from a great distance was the first to be purified and identified chemically;
it is (10E, 12Z)-hexadecadien-1-ol, with the trivial name bombykol (36).

Since it was observed that (a) sexual activity in both male and female
Lepidoptera occurs at defined times of the day (mostly in the scotophase)
and that (b) production and release of sex pheromones follows a diel
periodicity (350), it was apparent that pheromone production was under
hormonal control. This was shown to be true for the corn earworm moth,
Helicoverpa (Heliothis) zea, by a factor from the brain (373). The factor
appeared to be a peptide produced in the suboesophageal ganglion of the
moth and released, at the onset of the scotophase, into the haemolymph
via the corpora cardiaca to travel to the pheromone-producing cells in the
ovipositors. There it stimulates production of 11Z-hexadecenal, the main
pheromone component (370). The peptide was isolated and its structure
determined from a total of about 20000 brain-suboesophageal ganglia-
corpora cardiaca complexes from adult male and female H. zea using
either a sequence of four RP-HPLC steps (1. C-18; acetonitrile/TFA
gradient; 2. C-8; acetonitrile/triethylammoniumphosphate gradient; 3.
C-8; acetonitrile/TFA gradient; 4. C-18; acetonitrile/TFA gradient) or
three HPLC steps (1. as above; 2. high performance size-exclusion
chromatography on a series of 4 Protein-Pak I-125 columns isocratically
developed with 40% acetonitrile and 0.1% TFA 3. as 4 above) (201, 369).

The pheromonotropic activity was tested during isolation by a rather
simple and very sensitive bioassay (373). female moths were ligated
between head and thorax at least 3h prior to the test, injected intra-
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abdominally with the desired material during the scotophase; 3 h later the
pheromone gland was extracted and the pheromone quantified by gas
chromatography (374). After isolation, the major component was sequenced
by automated Edman degradation using a pulse-liquid sequencer (also
involving carboxypeptidase P to determine the carboxyterminus) and the
structure confirmed by plasma desorption mass spectrometry (201, 369).
The pheromonotropic neuropeptide, called pheromone biosynthesis-acti-
vating neuropeptide (Hez-PBAN) consists of 33 amino acids (Table 5), has
a molecular weight of 3900 and only the C-terminal amidated form is
biologically very active (2—4 pmol/female needed compared with at least
1000 pmol, when the C-terminus is a free acid) (375). The molecule has
two methionine residues (Met® and Met'#), which in the isolated native
peptide were both oxidized to methionine sulfoxides; other peaks during
the purification step apparently represented the mono- or disulfoxide
forms of PBAN (201).

Hez-PBAN represents the first member of a new family of insect
neuropeptides. The family now includes the pheromonotropic peptides
from the silkworm Bombyx mori , Bom-PBAN-I and II, which were
purified from 6 x 10° (= 4.48 kg fresh weight) heads of adult male silk-
worms using an 11-step purification procedure (229, 230, 316) and from
the gypsy moth, Lymantria dispar, Lyd-PBAN, which was isolated from
abut 2000 brain-suboesophageal ganglion complexes in a 5-step HPLC
purification protocol using the heterologous bioassay in H. zea (272).
Whereas Bom-PBAN-I and Lyd-PBAN are also 33-mers, as is Hez-
PBAN, and have about 82% homology in their primary sequence (see
Table 5), Bom-PBAN-II consists of 34 amino acids; it has an additional
Arg at the N-terminus compared with Bom-PBAN-I (see Table 5).

A much shorter peptide with pheromonotropic activity has been
isolated from 32000 heads of the penultimate instar larvae of the army
worm, Pseudaletia separata, by a 7-step purification procedure using the
heterologous bioassay in B. mori (275). This 18-mer pheromonotropin
called Pss-PT has an identical C-terminal pentapeptide with the other
PBANS (with the exception of Thr instead of Ser; see Table 5).

Interestingly, the same pentapeptide sequence (FXPRL-amide, where
Xiseither T, S, G or V) has been found in certain myotropic peptides of the
cockroach, Leucophaea maderae (294), and the locust, Locusta migratoria,
which stimulate contraction of hind- or foregut and/or oviduct (406, 409,
410; see Sect. 3.3) and in the diapause hormones of B. mori (185, 392; see
Sect. 3.2.6). Furthermore, a peptide with the same sequence as Bom-
PBAN-I has been isolated as the melanization and reddish colouration
hormone (Bom-MRCH) of B. mori using an armyworm cuticle melaniz-
ation test as a bioassay (277).

References, pp. 97-128
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It was shown that the P. separata pheromonotropin induces cuticular
melanization and also embryonic diapause (278). Further results support
these data. Quantitative analyses of endogenous PBAN (or MRCH) levels
by an enzyme linked immunosorbent assay (ELISA; 138),in head extracts
and haemolymph of larvae of the noctuid moth, Spodoptera littoralis,
which exhibits morphological color variations when reared under
crowded (dark coloration) and isolated conditions (light coloration),
suggest that the peptide is involved in color polymorphism (6). Thus,
a group of peptides showing the FXPRL-amide at their C-terminus and
therefore forming a peptide family are widely distributed among various
insect groups and are responsible for regulating a number of functions in
diverse physiological processes.

Structure-activity studies on both Bom- and Hez-PBAN and their
fragments and analogues have revealed some interesting information on
how these molecules will interact with their postulated receptor (243, 317,
371, 372). The Arg residue at the N-terminus of Bom-PBAN-II is not
important for activity; in fact, the whole N-terminal region of Hez-PBAN
(amino acid 1-18) was not active in H. zea. However, C-terminal frag-
ments (15-33, 19-33, 23-33, 28-33 and 29-33 for Hez-PBAN and 24-33,
25-33,26-33, 27-33, 28-33, 29-33 for Bom-PBAN-I) display biological
activity, indicating that the C-terminus is indispensable for activity. The
C-terminal pentapeptide represents the smallest unit required for activity.
The C-teminus has to be amidated; the free acid form was at least 1/100-
fold less active. When the entire native PBANs which have their two
(Hez-PBAN) or three (Bom-PBAN) methionine residues in the sulfoxide
forms are assayed, they are more active than the non-sulfoxidized ana-
logues. The increased activity of the sulfoxide forms is suggested to be due
to stabilization of PBAN against enzymic deactivation. Interestingly, an
internal pentapeptide fragment of Hez-PBAN, which was amidated at its
C-terminus (Y-R-Q-D-P-amide)showed very high activity at the low dose
of 1pmol, but was inactive at 100 and 1000 pmol; these results were
ascribed to the possible presence of two different types of receptors which
could trigger the pheromonotropic response.

Since the C-terminal pentapeptide was very active (Bom-PBAN-I
28-33-amide) each residue was substituted by other amino acid residues.
It was shown that Pro3!, Arg®? and Leu>? were essential, suggesting that
this part is probably the binding site for a putative receptor. Designing
cyclic peptides, containing Lys residues with the carboxyl portion of
Bom-PBAN-Iin order to get conformationally more rigid peptides, failed
to produce very active analogues. However, the cyclo (-N-T-S-F-T-P-R-
L) analogue which was used in myotropic studies and shown to have
a B-turn in the region of T-P-R-L (301) was as active as the C-terminal
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28-33 amide fragment of Bom-PBAN-I. This again demonstrates clearly
the close relationship of myotropic and PBAN peptides. During cross-
reactivity studies (244) it became apparent that the carboxyl-terminal
hexapeptide of Bom-PBAN-I elicited myotropic activity comparable to
the effect achieved by myotropic peptides, while intact Bom-PBAN-I
exhibited much lower activity. All myotropic peptides assayed, however,
had high pheromonotropic activity.

The Hez-PBAN gene has been elucidated (64). The genome clone of
Hez-PBAN was isolated from a genomic library using two mixed probes
which represented two overlapping amino acid regions of PBAN. The
organization of the Hez-PBAN gene is very interesting since it suggests
sequences for two additional, previously unknown insect neuropeptides
with pheromonotropic and/or myotropic activity, and, therefore, the gene
may represent a prohormone. The proposed open reading frame starts
with M-E-F-T-P-R-L (thus including the well-known pentapeptide char-
acteristic for this family) followed by a G (providing the amino group for
amidation) and a distant cleavage site (R-R). Thereafter follows the
sequence of residues 1 to 14 of PBAN interrupted from the remaining
residues 15 to 33 by a 0.63 kilobase intron; the PBAN sequence is followed
by G-R, a widely used prohormone processing site in which the G pro-
vides the amino group for amidation. Subsequently the sequence is
T-M-N-F-S-P-R-L (thus again the characteristic pentapeptide) and is
again followed by a putative processing site G-R. One may speculate that
besides PBAN the two peptides with the C-terminal pentapeptide se-
quences F-T/S-P-R-L-amide (thus a hepta- and octapeptide) are released
separately and may have specific functions, either in concert or indepen-
dently of PBAN, for regulating pheromone production and/or ovipositor
movement in H. zea females (64).

The search for the genes for PBAN and for the diapause hormone of
B. mori (see Sect. 3.2.6), which contains the characteristic C-terminal
pentapeptide, has resulted in finding a cDNA encoding a polyprotein
precursor which can be processed not only into the diapause hormone,
but also into PBAN and 3 other, functionally unknown, neuropeptides
(termed: o, B, y-suboesophageal ganglion neuropeptide) sharing the com-
mon C-terminal sequence F-X-P-R/K-L amide (where X is G, T, I or S)
(217, 393). A schematic representation of the precursor peptide (217)
showing a 23-mer signal peptide, the sequence of diapause hormone, the
3 putative peptides and of PBAN is shown in Fig. 4. Met! to Cys?? is the
signal peptide, amino acids 24-27 represent the Bom-DH, followed by
Gly for amidation and a processing site, Bom-PBAN-I is localized from
residue 126 to 158 (and Bom-PBAN-II from 125 to 158) and the peptides
with the conserved pentapeptide sequence were found at residues 118 to
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Bombyx mori

T
rhan [sone]

Fig. 4. Schematic diagram of the precursor peptide of Bom-PBAN (pheromone bio-
synthesis-activating neuropeptide). o, B, y-SGNP = q, B, y-suboesophageal neuropeptide).
Modified after (217)

122, 164—-168 and 99—-103. The last three peptides were synthesized and
tested for diapause inducing activity, but were almost inactive (393);
however, the authors report that one of the components (B-SGNP =
SVAKPQTHESLEFIPRL) has higher pheromonotropic activity than
Bom-PBAN-I, but the other two peptides were far less active. Interesting-
ly, when these authors re-interpret the gene sequence data of Hez-PBAN
(64) by assigning the GTG codon not to Met! for translation initiation,
but to the usual Val residue, they find a sequence of an 18-mer peptide very
similar to the Bom-B-SGNP and, surprisingly, to the pheromonotropin of
P.separata(see Table 5). The Hez-PBAN gene did not code for a diapause
hormone, which, of course, has never been found to exist in H. zea.

Which steps in the biosynthetic pathways of pheromones may be
under control of PBAN is still under debate (see 375). In general,
pheromone production in H. zea (major pheromone: 11Z-hexadecenal)
and B. mori (pheromone: bombykol) commences with the production of
palmitic acid followed by species-specific steps of desaturation/dehyd-
rogenation, reduction of the acid to alcohol, and, if necessary, oxidation.
It is suggested that in H. zea PBAN regulates the fatty acid biosynthesis
or a step prior to it (205), whereas in B. mori PBAN promotes the
reduction step of the acyl moieties to their corresponding alcohols (7).

The availability of synthetic PBAN made it possible to prepare
antisera. A highly specific (directed to the N-terminal region of Hez-
PBAN 1-33) antiserum was produced and used in an enzyme linked im-
munosorbent assay (ELISA) (13§). It was demonstrated that 3- and 7-day
old H. peltigera moths of both sexes had roughly the same content of
PBAN (£ 5 pmol/head); PBAN-like immunoreactivity was not present in
the first three larval instars, but increased steadily as a function of
development from the 4th instar larvae onwards.

Antisera raised against colloidally adsorbed synthetic Hez-PBAN and
used in immunocytochemical studies showed three clusters of cells in the
mandibular (4 cells), maxillary (12—14 cells) and labial neuromers (227).
Axons from cells from the labial cluster project to the corpora cardiaca,
a possible release site, and to the aorta. Thus there are some indications
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that PBAN is a true neurohormone, although immunoreactivity has not
yet been detected consistently in the haemolymph.

Developing a specific radioimmunoassay (RIA) for PBAN using
[*H]-Hez-PBAN and a specific PBAN antiserum was a prerequisite for
showing PBAN-like immunoreactivity in various neuronal tissues from
females of H. armigera (during scoto- and photophase) (367). Levels of
immunoreactive-PBAN in corpora cardiaca, prothoracic and abdominal
(excluding the terminal one) ganglia were higher during the peak hour
of pheromone production, thus during the 4-5th hour of scotophase,
than the levels in ganglia from insects in the 6-11th hour of photophase.
This was interpreted as an increased passage of PBAN from the
suboesophageal ganglion to the corpora cardiaca for possible release. In
contrast, immunoreactive PBAN levels were higher in the terminal ab-
dominal ganglion during the photophase which may reflect an accumula-
tion before the onset of pheromone production. Future studies with
detailed emphasis on the temporal distribution of PBAN have to be
undertaken to provide a clear description of storage, passage and release
of PBAN from the different neuronal tissues.

3.2.2. Allatotropins and Allatostatins

The corpora allata synthesize and release species-specific juvenile
hormones. The activity of the corpora allata, in turn, is regulated by neu-
rosecretory material from the brain (93). These are factors which stimulate
or inhibit the biosynthesis of juvenile hormone, thus they are either
allatotropins or allatostatins.

3.2.2.1. Allatotropins

For detection of active fractions during purification of the allatotropin
from the lepidopteran moth, Manduca sexta, the following in vitro radio-
chemical bioassay was used (94, 457): Corpora allata of female moths, 0 to
4 h after eclosion, were analyzed for incorporation of the labelled methyl
moiety from L-[methyl-'*C] methionine into juvenile hormone; the
labelled hormone is secreted into the medium, then extracted and quanti-
fied (212). Using a variety of separation steps (see Sect. 2.2) finally 1.5 nmol
of pure peptide was obtained from 10000 trimmed heads of pharate adult
M. sexta (212). Automated sequence analysis revealed the presence of
a 13-residue peptide which was shown to be amidated at the C-terminus
(see Table 6). The biological activity of the synthetic peptide was not
significantly different from the native peptide. Studies on N-terminal
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truncated fragments suggested that the amino acids 6—13, an octapeptide,
are the biologically active core. Interestingly, the synthetic compound was
not active in the biosynthesis of juvenile hormone during other develop-
mental stages (larval, pupal) of M. sexta. Furthermore, corpora allata
from the beetle, Tenebrio molitor, the grasshopper, Schistocerca nitens,
and the cockroach, Periplaneta americana, were not activated by the
synthetic allatotropin, whereas the corpora allata of the noctuid moth,
Heliothis virescens, were stimulated, suggesting order-specificity.

3.2.2.2. Allatostatins

During isolation of the allatostatins, the same bioassay as described
above (Sect. 3.2.2.1) was used, but here the inhibition of juvenile hormone
biosynthesis was monitored. Either the corpora allata of virgin females
(480) or the glands from 10-day old pregnant females were incubated
invitro (353); both research groups obtained the material from the vivipar-
ous cockroach Diploptera punctata. Brains or brains/retrocerebral com-
plexes of this cockroach comprised the starting material for purification in
both studies. Purification was achieved in various steps by reversed-phase
HPLC using C-18 and C-8 supports leading to apparent homogeneity of
four peaks with allatostatic activity, allatostatins I to IV (480); or purifica-
tion was successful with inclusion of pre-purification steps on C-18
Sep-Pak followed by Diol Sep-Pak which separated two types of allato-
statins: one with a lower molecular mass, designated type A allatostatins,
and the other with a higher molecular mass, designated type B allato-
statins (352, 353). Later, two further allatostatins, VI and VII, were isolated
from this cockroach (479). Both research groups employed Edman degra-
dation sequencing techniques and mass spectrometry for structure eluci-
dation. It became clear that the six allatostatins (I, II, III, IV, VI, and
VII or Dip-AST-7, -9, -8, -5, -11, -4; for nomenclature and structure see
Table 6) vary between 8 and 13 residues and apparently belong to a family
of peptides. This is suggested by the highly conserved sequence at the
C-terminus;  Arg/Ser-Leu-Tyr-Xaa-Phe-Gly-Leu-NH,. The larger
allatostatin was identified by tandem mass spectrometry as an octadeca-
peptide (V or Dip-AST-2, Table 6) having an amidated three residue
C-terminus identical with the termini of the other allatostatins (352).

The synthetic peptides had the same elution times as the native
material and inhibition of juvenile hormone synthesis of more than 40%
was achieved with 7 x 1077 M, 1078 M and 10~ ° M (allatostatin III, II,
IV and I respectively; 480). Allatostatin I also inhibits juvenile hormone
synthesis in another, only distantly related cockroach, Periplaneta ameri-
cana; thus there appears that no species specificity exists (480).
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Cockroaches synthesize juvenile hormone I1II in their corpora allata.
De novo synthesis starts from acetyl CoA through the classical isoprenoid
pathway to farnesyl pyrophosphate (see 417). Studies by PRATT et al. (351,
352, 353) revealed that allatostatins I and V were totally ineffective in the
presence of 200 uM farnesol, indicating that the action of allatostatins
must be located at the beginning of the biosynthetic pathway. The same
conclusion was drawn from experiments using allatostatins IV and VII
(479).

Structure-activity studies showed that allatostatins lacking the C-
terminal amide produce no detectable inhibition of juvenile hormone
biosynthesis (373, 480). When allatostatin IV was truncated by either the
first two or three residues from the N-terminus, the products had pro-
gressively reduced activity when compared with the parent molecule (441).
Using the tridecapeptide allatostatin I PRATT et al. (354) found no activity
at all when changes were made at the C-terminus: Gly® (instead of Phe),
Ala!? (instead of Leu), shortening of the peptide by the last two amino
acids (des-Gly'? and Leu'3), an extra Ala (amidated or not). All these
results suggest that the C-terminal part of the molecule is important in
signal transmission. However, when Lys’ or D-Arg’ (instead of L-Arg)
were bioassayed, the affinity was only marginally less than that of the
unchanged peptide. A lower binding strength was observed, but the
magnitude of the response was not reduced. Two N-terminally truncated
analogues of allatostatin I, a decapeptide (= allatostatin I 4-13) and an
octapeptide (= allatostatin I 6—13) showed substantially lower affinities,
but still the magnitude of the response (> 85% juvenile hormone inhibi-
tion at concentrations of 1 uM or lower) was identical with that produced
by the intact molecule indicating that the message segment in these
peptides is still intact.

Some structure-activity studies were also performed with allato-
statin V, the octadecapeptide. An N-terminal nona- or undecapeptide
amide (allatostatin V 1-9 or 1-11) is completely inactive as is a
peptide missing the Leu'® residue. These data indicate that the nine
residue N-terminus of allatostatin V has no independent action on the
corpora allata (352). This is interesting because this peptide shows a
potential dibasic (Lys®~Arg'®) cleavage site. The C-terminal fragments
(allatostatin V 9—18, 10-18 or 11-18) give full responses at high concen-
trations, but they are less potent than the intact molecule; this again shows
that the message is encoded at the C-terminus (352). Thus, the current idea
is that the N-terminus is important for high affinity binding to the
allatostatin receptor and, given the N-terminal differences in the various
allatostatins, that each one may bind to a different receptor subtype
(354).
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For one allatostatin (IV or Dip-AST-5) analogues have been syn-
thesized in which either single residues were substituted by replacement
with Ala, to study the importance of side chains, or the native L-amino
acid at each position was replaced by its D-amino acid counterpart (157).
Whereas replacement of Tyr*, Phe®, Gly” or Leu® with L-Ala reduced the
biological potency of the analogues quite dramatically, replacements of
Asp?, Arg? and Leu® were less effective and Ser® had almost no effect.
These data are quite consistent with the fact that the C-terminal penta-
peptide is characteristic for this peptide family and that the position of Ser
(in Dip-AST-5) is the position which is quite variable in the allatostatins
(see Table 6). Substitution with D-amino acids again resulted in significant
loss of biological potency, particularly for the residues which form the
C-terminal pentapeptide. Since replacement by D-amino acids will also
distort the structure of the peptide by reversal of symmetry of either the
backbone or the side chain, such studies are of aid in assessing which
residues are likely to be necessary for receptor interaction. The data were
interpreted from a conformational point of view in the following way: the
N-terminal region is either charged or polar and may have an a-helical
structure, whereas the C-terminal pentapeptide region is hydrophobic
and may have a B-strand structure. Moreover, there is a strong suggestion
that residues Phe®, Gly” and Leu® form a type II B-turn. More precise
information, however, can only be gathered when the allatostatin recep-
tors have been isolated.

Polyclonal antibodies were raised in mice against allatostatin I (Dip-
AST-7) coupled to bovine serum albumin. The presence of allatostatin in
the corpora allata was shown by binding of these allatostatin antibodies
to corpus cardiacum/corpus allatum tissue.

Specifically, immunocytochemistry identified allatostatin-positive
axons which transverse the corpus cardiacum and branch extensively in
the corpora allata (444). This result supports the hypothesis that the
allatostatins are synthesized in neurosecretory cells of the brain and trans-
ported axonally to the corpora allata. Recent studies, therefore, attempted
the isolation and purification of allatostatins from corpora allata instead
of brains (444). The successful isolation of the same four allatostatins I to
IV previously sequenced from the brain was reported after work-up of
6000 glands; identification was achieved by showing that the retention
times were identical with those of the synthetic allatostatins in HPLC and
by bioassays. No sequencing was reported. These results suggest the
transport of peptidergic neurosecretory brain material to the corpora
allata to inhibit the rate of juvenile hormone synthesis. Such a process is
analogous to the release of hypothalamic peptidergic factors in verte-
brates into the portal system and transport to the anterior pituitary.
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Recently, a bioactive radioiodinated analogue of allatostatin I (Dip-
AST-7) with a N-terminal azidosalicylamide group was synthesized. Such
an analogue can be used for photoaffinity labelling (62). It was shown that
membranes of corpora allata from virgin females of D. punctata, when
incubated with this analogue and irradiated, contained two protein bands
of 59 and 39 kDa after SDS gel electrophoresis which were specifically
labelled; thus, these proteins are thought to be the putative receptor
proteins for allatostatin. Very recently, an in vitro binding assay and
a photoaffinity labelling assay were developed and the presence of recep-
tors for allatostatins demonstrated in brain and corpora allata of D.
punctata (488).

By isolation and sequencing methods not only were the seven allato-
statins from the cockroach, D. punctata, determined, but also 2 resp.
4 allatostatins in the cockroaches, P. americana (474), and, Blattella
germanica (17), as well as eight allatostatins (four Leu-, and four Met-
callatostatins) in the blowfly, Calliphora vomitoria (75, 76, 77), six allato-
statins in the cricket, Gryllus bimaculatus (260, 261), and one in the tobacco
hornworm, Manduca sexta (240) (see Table 6).

The two allatostatins of P. americana are novel members of the
allatostatin family, but molecular cloning led to the isolation of cDNA
encoding for a total of 14 putative allatostatins (vide infra). Two of the four
allatostatins of B. germanica are identical with isolated or cDNA-inferred
allatostatins from D. punctata (see Table 6). Whereas the effective dose of
P. americana allatostatins required to inhibit JH synthesis in this cock-
roach is similar to the dose required in D. punctata (474), the peptides from
B. germanica are at least two orders of magnitude less effective in B.
germanica (maximal inhibition at about 10~ M) (17). The allatostatins of
C. vomitoria are all unique members of the family, but despite having an
inhibitory effect on JH synthesis in cockroaches, they do not affect the
synthesis of JH bisepoxide, the endogenous JH of the blowfly itself.
They are, however, potent inhibitors of gut motility in the blowfly (75, 82).
There is also immunocytochemical evidence that immunopositive
neurons from the abdominal ganglion project into certain areas of the
hindgut, but there are no neural pathways from the brain to the corpus
allatum (75, 82).

Two cricket allatostatins are novel members of the family. The effec-
tive concentration to inhibit JH synthesis in isolated corpora allata of
crickets is somewhat higher when compared with the effect of the allato-
statin of D. punctata in this species, but this can be explained by the
different arrangement used for the assay procedure (261). The other four
allatostatic neuropeptides of the cricket do not contain the highly conser-
ved C-terminus found in all other allatostatins (260). These peptides
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Diploptera punctata

Fig. 5. Schematic diagram of the precursor of the allatostatins from Diploptera punctata.
Structures of peptides Dip-AST-1-13 are given in Table 6. Modified after (71)

consistently have the C-terminal amino acid sequence of G-X-W-amide
(X=G or S; see Table 6).

The primary structure of the allatostatin of M. sexta does not contain
the family-characteristic pentapeptide. This molecule is very effective in
inhibiting JH synthesis in the tobacco hornworm and shows cross-
reactivity in another moth, H. virescens. The corpora cardiaca of adult
females of the beetle, Tenebrio molitor, the grasshopper, Melanoplus
sanguinipes, or the cockroach, P. americana, are not affected (240).

Recently, the sequence of a cDNA encoding the 370 amino acid long
preproallatostatin polypeptide has been determined in D. punctata (71).
The sequence deduced for this precursor confirms the identity of the seven
previously isolated and sequenced allatostatins of this cockroach. More-
over, the existence of six new allatostatic peptides is predicted (see Table
6 and Fig. 5). Some of these predicted peptides contain the well-known
pentapeptide motif Y-X-F-G-L amide, but in three (Dip-AST 10, 11, and
12) Tyr is substituted by Phe, and in Dip-AST-13 the C-terminal Leu is
replaced by Ile. The polypeptide precursor also contains three acidic
spacer regions (see Fig. 5) and in the third region sequences of two
potential peptides with a C-terminal Ile occur. However, there is no indic-
ation that these peptides are amidated; since amidation is essential for
allatostatic bioactivity, it is highly unlikely that these peptides belong to
the allatostatin family.

Similar results have been obtained from a gene sequence of P. ameri-
cana (see 443). The allatostatin precursor is 379 amino acids long and
shares 71% amino acid identity with D. punctata. The coding regions of
the two allatostatin genes are remarkably similar in structure and organ-
ization.

The precursor of P. americana contains 14 potential allatostatins,
including the two which have been isolated and sequenced (474), which
are also separated by acidic spacer regions. Five putative peptides of
P. americana are identical in structure with those of D. punctata (see
Table 6).
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Southern blot analyses indicated the presence of a single copy of the
gene per haploid genome in both cockroaches. In situ hybridization of
brains from native female D. punctata and P. americana with their
respective allatostatin gene showed that the allatostatin mRNA is strong-
ly expressed by two pairs of large medial cells in the pars intercerebralis of
the protocerebrum and some weaker signals have been found in other
structures like lateral cells, for example.

3.2.3. Prothoracicotropic Hormone, Bombyxin and Other Insulin-
Related Neuropeptides

Since the studies of KoPe¢ (239) which demonstrated that the brain of
the larval gypsy moth, Lymantria dispar, released a factor that induced
pupation, the pivotal role of the brain in the control of moulting and
metamorphosis has been well established. This so-called “brain hormone”
of KOPEC is now generally referred to as prothoracicotropic hormone
(PTTH) because it stimulates the paired prothoracic glands to synthesize
and release ecdysone.

At the beginning of the research to purify PTTH, heads of the easily
accessible silkworm, Bombyx mori, were used as the source for extraction
and the heterologous moth species, Samia cynthia ricini, served as the
bioassay animal. When pupae of S. cynthia were debrained shortly after
pupation, adult development stopped. When these debrained pupae were
implanted with brains of B. mori or injected with B. mori brain extracts,
the Samia pupae restarted their adult development. The same was true
when debrained dormant pupae of B. mori were injected with brain
extracts of B. mori or received implanted Bombyx brains (191). It was
thus assumed that the “PTTH” from B. mori was not species specific
and, because of technical advantages, brainless pupae of S. cynthia
were first used to assay “PTTH” during purification of B. mori
heads/brains. When after years of purification efforts an apparently
pure form of “PTTH” was obtained (313), it could be established that
the material was not active on brainless pupae of B. mori, but only on
S. cynthia. Since the crude extract was active in both systems, a
re-examination of the bioassay potencies during various purification
steps revealed that the brain extract from B. mori contained two types
of molecules: one, with a molecular weight of about 5kDa, was active
only on debrained S. cynthia pupae, while the other of about 30kDa,
was active on brainless B. mori pupae but not on those from S. cynthia
(189). The smaller molecule is now called bombyxin and the 30kDa
peptide is the genuine or true PTTH.
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3.2.3.1. Prothoracicotropic Hormone

After heroic efforts a 16-step purification scheme was adopted for the
isolation of PTTH from 5 x 103 (=3.7kg) B. mori heads (211) which
yielded only 15 pg pure material. The N-terminus (amino acids 1 to 13)
was sequenced from this material, but another batch of 3 x 10° heads had
to be used for purification to get most of the information for the primary
structure, including the dimeric state of the molecule (210). Peptide
sequencing of the purified PTTH and its enzymatic fragments resulted in
a monomeric peptide of at least 104 amino acid residues (position 41 was
unclear), but also showed microheterogeneity at the amino-terminus
(apparently truncation of 6 and 7 residues) and similar slight variations at
the carboxy-terminus (210).

An antibody raised against a synthetic peptide comprising the amino
acids 1 to 15 of the N-terminus of PTTH (285) was used for screening an
expression cDNA library which was constructed from mRNA of larval
brains of B. mori (216). The amino acid sequence deduced from the
nucleotide sequence revealed a B. mori PTTH hormone consisting of 109
amino acids; thus the 104 amino acids previously found by direct se-
quencing and 5 additional residues (R-Y-N-N-N) at the carboxy-terminus
(for structure, see Table 7). The previously unidentified residue 41 turned
out to be N, which in conjunction with the presence of T at position 43,
a typical motif (N-X-T) for asparagine N-glycosylation, suggest that
a carbohydrate moiety is linked to the side chain of N*!. Therefore, it is
very likely that PTTH is a glycoprotein, but the carbohydrate moiety is
not yet known. The cDNA work also revealed that PTTH is first
synthesized as a large precursor, the prepro-PTTH (see Fig. 6) consisting
of 224 amino acids. The cDNA encodes for a signal peptide (29 amino
acids) followed by a typical (K-R-K) processing site, then for two smaller
peptides (21 amino acids = p2k and 57 amino acids = p6K) which are
separated by and end with a proteolytic cleavage site (K-R and R-K-R)
and whose functions are not known, followed by the PTTH subunit (109
amino acids). There are seven Cys residues present in the PTTH monomer
and it is suggested that there exists one disulfide bridge between the
monomers and three intrasubunit disulfide bonds to form the mature
PTTH. When a portion of cDNA encoding the PTTH monomer was
inserted into a plasmid vector and introduced into Escherichia coli, an
active peptide that was indistinguishable from natural PTTH was ex-
pressed (190, 216, 311). This provided good evidence that the cloned
c¢DNA indeed encodes PTTH of B. mori, that a dimer was apparently
formed, and that glycosylation was not essential for biological activity.
Recently, two allelic PTTH genes were cloned from a B. mori genomic

References, pp. 97-128



55

The Explosion of Structural Information on Insect Neuropeptides

9IC

{PIBIASOOAID) 11, N

NNNAYTOAQE
IOTOVASAdHSHVAMIAN TANd A TSHOS T LAY I N TILISATSIOIALd
ADLAOOLINONYLATAIIASNAD TAIAANANDLOIdAIIVONTADIND

‘HLLd-wog

2ouaIgjey

souonbag

aweN 2poD

V N2 wo4f paonpap so 1iow xfquiog fo 1auouou auoutioy 21do.a300100.40y304d fo aouanbas p1ov outwy “f d1qeL



56

Fig. 6. Schematic diagram of the precursor of Bom-PTTH (prothoracicotropic hormone).
p2K and p6K = peptides with mass of 2 or 6 kDa. B: Schematic representation of the
Bom-prepro-PTTH-subunit gene. Modified after (190)

DNA library using the PTTH cDNA as a probe (3). The genes encode
a precursor protein for the PTTH monomer and consist of five exons (see
Fig. 6): Exon II contains regions encoding for the signal peptide, the p2k
and p6k peptides and the first part of PTTH; the remaining part is
encoded in exons I11, IV and V. A single copy of the PTTH gene is found in
the haploid genome of B. mori as evidenced by Southern hybridization
experiments, indicating that the microheterogeneities found during pep-
tide sequencing of PTTH have resulted either from post-translational
processing or are some sort of artefacts produced during purification steps
or products of denaturing conditions during storage.

The monoclonal antibody raised against the N-terminus (1-15) of
PTTH was also used for immunocytochemical studies on brain-corpora
cardiaca-corpora allata complexes of B. mori. Two pairs of dorsolateral
neurosecretory cells in the brain were immunostained. Furthermore,
immunoreactive-material was also detected in the axons of those neuro-
secretory cells which run to the corpora allata, a finding which indicates
these structures as a possible release site (285). The same two pairs of
dorsolateral neurosecretory cells in the brain contained mRNA for PTTH
as shown by in situ hybridization with the PTTH cDNA probe (216). In
the other moth species which is well known for its PTTH, the tobacco
hornworm, Manduca sexta, very similar immunohistochemical results
were achieved. A monoclonal antibody, very specific for M. sexta “big”
PTTH (ca. 25.5kDa), immunostained all four cells (two pairs) of the
so-called L-NSC-III cells (neurosecretory cells located dorsally in each
hemisphere of the protocerebrum); the axons of these cells traverse
medially through the protocerebrum to the contralateral lobe and then
pass posteriorly, via the nervi corporis cardiaci I and II, through the
corpora cardiaca without branching to the corpora allata where the axon
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terminals form a typical neurohaemal release site (330). Previously, only
one of the cells each of the L-NSC-II pair was recognized as producing
PTTH when a revolutionary new bioassay was used to measure the
amount of PTTH activity (monitored as ecdysone production by in vitro
incubation of prothoracic glands), in individual somata (5), but with this
method the corpora allata were already identified as the release site for
PTTH (4). In M. sexta, PTTHs appear to exist as two different size groups
(similar to the “real” PTTH and bombyxin in B. mori). a “big” PTTH with
different variants of about 25.5kDa and a “small” heterogenous PTTH of
about 7kDa; however, both forms directly stimulate prothoracicotropic
glands of M. sexta invitro (24). The “big” PTTH has been isolated from
M. sexta brains using immunoaffinity chromatography (making use of
the previously produced specific monoclonal antibody) and characterized
by SDS-polyacrylamide gel electrophoresis, Western blot and partial
sequencing (291). The mature PTTH is apparently a homodimer consist-
ing of monomers of 16.5kDa. Trypsin digestion of the monomer and
isolation of these fragments on HPLC produced four peptides in sufficient
quantities for sequencing. None of these sequences was similar to the
PTTH sequence of B. mori. Furthermore, isolectric focusing performed on
crude “big” PTTH from M. sexta yielded a pI of 5.2, while the PTTH of B.
mori is a basic peptide (see 211, 216). Isolated B. mori PTTH also showed
no biological activity in the invitro prothoracic gland assay of M. sexta.
Thus, B. mori PTTH, which is apparently present in M. sexta, as evidenced
by 9% sequence similarity by independent PCR of genomic DNA and
a L-NSC-III cDNA library (153), does not act as a prothoracicotropin in
the tobacco hornworm. At the moment it is unclear what the function in
M. sexta is, but because the Bombyx-like PTTH peptide and Manduca
“big” PTTH are coexpressed in the L-NSC-III cells of M. sexta local
release into the CNS (or into the haemolymph) and action as neuromodu-
lators have been hypothesized (153).

3.2.3.2. Bombyxin

The function of the “small” PTTH is also not well understood.
Although this molecule from B. mori, now called bombyxin, can induce
adult development in brainless pupae of the saturniid moth, Samia cynthia
and also stimulates invitro the production of ecdysone in prothoracic
glands of S. cynthia, adult development of a debrained pupae of B. mori is
not induced (189, 313). After years of work a 15-step purification scheme
succeeded in isolating a pure form of bombyxin but with indications of
more than one molecular form (313). Further studies revealed that at least
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five molecular forms (bombyxin I to V) could be isolated and more are still
to be discovered (204, 269, 311, 314). When the N-terminal 19 amino acids
were sequenced, it became clear that the bombyxins are homologous to
insulin (314). After sequencing it was shown that the molecule is a hetero-
dimer and that the A-chain consists of 20 amino acid residues with about
50% homology to insulin, whereas the B-chain, a mixture of at least four
microheterogeneous peptides, consists of 28 or 26 residues with about
30% homology to insulin (Table 8) (315). Bombyxin contains 6 Cys residues
which are distributed as in insulin; they form one intra-(Cys A® — Cys A'?)
and two interchain (Cys A7 - CysB!° and Cys A2° - Cys B?2) disulfide
bonds (269). Using interactive computer graphics and energy minimiz-
ation techniques, and assuming homology with porcine insulin, a three-
dimensional model of bombyxin II has been constructed (204). The model
proposes two important characteristics: Bombyxin can assume an insulin-
like tertiary structure, mostly because the important hydrophobic core
residues are identical in bombyxin and insulin, and, when this globular
structure is formed, the surface residues in bombyxin are quite different
from those in insulin which accounts for the inability of bombyxin to bind
anti-insulin antibodies or insulin receptors.

After the structure of some forms of bombyxin were known, studies
focused on the chemical synthesis of bombyxins. This faced difficult
problems to find the conditions which would induce the formation of the
disulfide bonds. The first attempts gave only low yields (270, 318), but
recently, by stepwise, regio-selective formation of the three disulfide
bonds, yields of 50—60% have been achieved (271). The synthetic peptides
had the same biological activity as the natural bombyxins.

Having established a sequence for bombyxin-II, oligonucleotide probes
were designed and a genomic library screened, resulting in the isolation of
a genomic DNA encoding for the precursor preprobombyxin (197). The
organization of the preprobombyxin gene is thus to code for a signal
peptide, B-chain followed by dibasic processing site, C-peptide followed
by dibasic processing site and A-chain; this overall structure is exactly the
same as that of the preproinsulin genes (16); however, in contrast to the
insulin gene family, the bombyxin gene has no intron. It is predicted — by
homology to insulin—that the mature bombyxin is generated in the
following way: translation of the preprobombyxin, cleaving off of the
signal peptide, generating of the disulfide bridges and, finally, cutting off of
the C-peptide.

Using a synthetic oligonucleotide 51-mer of the antisense DNA for the
bombyxin-IT A-chain,a cDNA library constructed from larval brains of B.
mori was screened and a clone with the complete coding region for
preprobombyxin as given above was isolated (2). The B. mori genome
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contains multiple copies of the bombyxin gene which contrasts strongly
with vertebrate insulin genes (either a single or 2 copies found per haploid
genome). Further studies on bombyxin genes revealed the presence of up
to 30 gene copies (190, 283). These have been classified into the A, B and
C families according to their sequence similarities (196). In some cases it
was shown that four genes form a cluster in which two genes belonging to
different families (A or B) are closely apposed with an opposite transcrip-
tional orientation (215). Whether this unique spatial organization has
a functional significance for coordinate and differential expression of the
bombyxin genes is not yet known. Together with the lack of introns, it
shows that differences exist among other members of the insulin gene
family of vertebrates and, thus, that there are greater evolutionary
distances between these insulin genes.

Knowledge of the primary structures of the bombyxins was also a
prerequisite for producing antibodies to study the localization of bom-
byxin at the cell level. A monoclonal antibody against a synthetic bom-
byxin fragment corresponding to the N-terminus 1-10 of the A-chain of
bombyxin-I was used for immunohistochemical studies (284). Four pairs
of large dorsomedial neurosecretory cells in the brain of B. mori were
stained as well as their axons, which traversed to the contralateral lobe of
the brain to enter the retrocerebral nerve. This nerve connects the brain
with the corpus cardiacum (CC), but the stained axons passed through the
CC to the corpora allata (CA) where they arborized and their terminals
were preferentially located at the periphery of the CA. Thus, these
neuroanatomical studies suggest that eight medial neurosecretory cells
produce bombyxin, which is then transported to and released from the CA
(284). The same cells also contain bombyxin mRNA as shown by in situ
hybridization (311). So far bombyxin transcripts (as analyzed by Northern
hybridization experiments) were only found in brain tissue of B. mori, but
not in the suboesophageal ganglion, fat body, silk gland, Malpighian
tubule, ovary or testis (215).

As to the putative function of bombyxin, the development of a radio-
immunoassay (RIA) using monoclonal antibodies against natural bom-
byxin-II was very helpful (283, 390). Interestingly, peak levels of ecdys-
teroids in the haemolymph before larval/larval and larval/pupal ecdysis
were accompanied by increases in the titre of bombyxin-immunoreactive
material suggesting that bombyxin has some, as yet not clearly defined,
physiological role to play during development. Moreover, other experi-
ments showed that bombyxin-immunoreactive material was released
when feeding was used as a stimulus. Together with the observation that
bombyxin immunoreactive material was released from the brain when
glucose was injected into starved larvae, these results, comparable to
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post-prandial release of insulin by a high glucose titre, indicate a role for
bombyxin in regulating carbohydrate metabolism. The levels of trehalose,
the major blood sugar of B. mori, were indeed decreased by injection of
bombyxin into the haemolymph of neck-ligated larvae; but this hypo-
trehalosaemic effect was significant only 6 to 9 h after injection. Midgut
trehalase, the enzyme that catalyzes trehalose to glucose, of larvae which
were injected with bombyxin increased by 40% compared with controls.
However, this effect was only present 6h after injection, but not after 3 h.

3.2.3.3. Locusta Insulin-Related Peptide

During the search for developmental neurohormones in Locusta
migratoria, a peptide was isolated from the neurosecretory (storage) part
of the corpora cardiaca whose primary structure, as determined by
automated sequencing of V8 protease and trypsin fragments and by liquid
secondary-ion mass spectrometry, suggested that it was a spacer peptide
(166). The sequence was used to design oligonucleotide probes with which
a cDNA library prepared from mRNA of the pars intercerebralis of the
locust brain was screened and several clones encoding a polypeptide of
145 amino acids were isolated (246).

This polypeptide serves as a precursor for a molecule with strong
sequence similarity to mammalian insulins; its overall organization is
signal peptide/B-chain/C-peptide/A-chain. There are seven cysteines in
the A- and two in the B-chain as in other insulins and the Cys residues
have identical positions as in other insulins. Moreover, most of the
hydrophobic core residues are in positions similar to those in other
members of the insulin family.

Using a more vigorous extraction procedure than previously (either
with 1 M acetic acid or with 75% ethanol containing 0.2 M HCl compared
to previous conditions of extraction in deionized water at pH 5.5), crude
extracts of neurohaemal parts of locust CC were prepurified on C18
Sep-Pak cartridges. Subsequently fractions of molecular mass between
1 and 15kDa were obtained on a ProteinPak I-125 gel-permeation
column and this material separated on C8-RP-HPLC with an acetonit-
rile/TFA gradient (165). A peptide, here called Lom-IRP (Locusta migra-
toria insulin-related peptide) was characterized, after cleaving the
disulfide bridges, the A- and B-chains sequenced by Edman degradation
and masses confirmed by plasma-desorption mass spectrometry (see
Table 8). These results, in conjunction with the previous cDNA cloning
studies (246), led to the conclusion that the 145-residue insulin precursor is
posttranslationally processed into a 21-residue A chain, a 31-residue
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B-chain and 50-residue C-peptide. Furthermore, in contrast to the situ-
ation in B. mori (see above), there is only a single insulin present in L.
migratoria and about 5 pmol (thus 10 times more than in B. mori) can be
extracted from a single corpus cardiacum. The successful cloning of the
Lom-IRP gene (242) showed that the gene is present as a single copy per
haploid genome and consists of three exons separated by two introns,
which is remarkably similar to the organization of the gene in vertebrates,
but differs dramatically from the situation in B. mori (about 30 intronless
genes/haploid genome; see above). Northern blot analyses revealed the
presence of insulin transcripts in other tissues and organs (fat body,
epidermis, midgut, mature oocytes, embryos) than the brain (241).
After the finding of two transcripts of Lom-IRP, namely T1 and T2
which differ in their 5" untranslated region, it is proposed that these are
produced by alternative usage of two different promoters (242). It is clear
at least that T1 and T2 are differentially expressed in the various tissues
analyzed so far in L. migratoria: T1 is the specific one that is massively
expressed in the brain, while T2 is found at low levels in all other tissues
(242).

Invitro production of ecdysone by the prothoracic glands of L.
migratoria is not increased by natural Lom-IRP; thus no physiological
function for this peptide is known. It is speculated that this molecule, as
insulin in vertebrates, has a role to play in anabolic processes leading to
storage of energy (242).

3.2.4. Eclosion Hormones

Insect growth and metamorphosis are characterized by a series of
moults in the course of which a new cuticle is produced. A neuropeptide
that is secreted by neurosecretory cells in the brain and stored in the
neurohaemal corpora cardiaca-corpora allata complex causes the shed-
ding of the old cuticle at ecdysis and is therefore called eclosion hormone
(386, 459). The hormone controls the ecdysis behavior not only in
adult eclosion, but also in embryonic, larval and pupal ecdyses (460).
Although its cellular targets and actions are diverse, not only trig-
gering the aforementioned behavior, but also causing cuticle plasticiz-
ation during the moult and even initiating programmed degeneration of
certain intersegmental muscles which are not needed by the imago, the
primary target of this peptide appears to be the central nervous tissue
(425).

The physiology and biochemistry of eclosion hormone has been
studied mainly in two lepidopteran moth species, the tobacco hornworm
Manduca sexta and the silkworm Bombyx mori. Eclosion hormone was
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firstisolated from pharate adult heads of B. mori by a complex purification
scheme and the sequence of the 13 N-terminal amino acid residues was
determined (312). Later it was found that the N-terminus of eclosion
hormone is heterologous (319). Purification of eclosion hormone to
homogeneity from B. mori was achieved from 777 000 pharate adult heads
(12 kg fresh weight!); this resulted in isolation of four molecular species of
eclosion hormone which were called EH I-1V in the order of elution from
reversed-phase HPLC and are here called Bom-EH I-IV (235). Although
aliquots of each EH were subjected to automated Edman degradation, the
amounts were too small to derive complete sequences. Therefore, the
whole sequences of these eclosion hormones were constructed by combin-
ing sequence data. It appeared that two elosion hormones had 61 amino
acid residues, whereas the other two showed a truncation of the two
N-terminal residues Ser-Pro (see Table 9).

At the same time two other research groups had isolated eclosion
hormone from Manduca sexta. Whereas SCHOOLEY’s group used 10000
trimmed heads of pharate adults (213), TRUMAN’s group dissected brain
neurohaemal organs from the heads of over 17000 pharate adults for
extraction (268). Fractions from each purification step were injected into
pharate adult Heliothis virescens moths 7 h before normal eclosion should
occur. When eclosion took place within 3 h of injection, this fraction was
judged as giving a positive response (213). Using different purification
schemes both groups detected the same primary structure, a 62-mer
peptide, determined by sequence analyses of the intact peptide and/or
fragment peptides generated by various proteases or cyanogenbromide
cleavage (Table 9). MARTI et al. (268) found that 20% of their preparation
contained a peptide which lacked the N-terminal dipeptide Asn-Pro. Both
studies thus confirmed a 62-amino acid peptide for M. sexta, whose
C-terminus is a free acid and has an extra Leu residue which was not
detected in B. mori. However, subsequent studies on B. mori were success-
fulin cloning the eclosion hormone gene; its nucleotide sequence indicated
a 62-mer containing a Leu at the C-terminus (453). When the eclosion
hormone-encoding gene of M. sexta was isolated, it became clear that
there is only one gene and eclosion hormone is the only product from the
precursor molecule (183). The gene contains 7.8 kilobases and consists of
three exons. Whereas exon I is non-translated, exon II contains a signal
peptide (26-mer) and the four N-terminal amino acids of eclosion hor-
mone and exon III encodes the remainder of the peptide. Experiments
using in situ hybridization showed expression of the eclosion hormone
gene in two pairs of ventromedial neurosecretory cells of the brain of both
larvae and developing adults only (183). Using a monoclonal antibody
against a synthetic C-terminal fragment of B. mori eclosion hormone (EH
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49-61), immunohistochemistry revealed also two pairs of median neuro-
secretory cells of the brain in this species which produce eclosion hormone
(234). The results were confirmed when the cDNA encoding B. mori
eclosion hormone was isolated and sequenced (207). The pre-eclosion
hormone molecule contains a 26-mer signal peptide and the 62-mer
eclosion hormone; furthermore, in situ hybridization showed expression
of the eclosion hormone gene in two pairs of neurosecretory cells of the
brain of fifth instar larvae. Of interest is a comparison of the data on B.
mori and M. sexta:

1. Primary sequences of eclosion hormones differ by 12 residues, thus
80% sequence homology;

2. DNA sequence encoding eclosion hormone again shows about 80%
homology;

3. in contrast, DNA sequences encoding the signal peptide (26-mer)
and the non-translated region have less than 50% homology (207).

The gene encoding B. mori eclosion hormone (1-62) was chemically
synthesized, inserted into a secretion vector and expressed in Escherichia
coli, where it produced biologically active eclosion hormone (237). Recent
studies on this recombinant eclosion hormone (237) and on native eclo-
sion hormone from M. sexta (209) assigned the location of three disulfide
bonds between Cys'*-Cys38, Cys'®-Cys**, and Cys?!-Cys*°. These
results are consistent with the fact that, although Bom-EH and Mas-EH
differ by 12 residues, the six cysteine residues and the residues before and
after them are conserved in the two species (see Table 9). Additionally,
biological activity was abolished by reductive alkylation, thus disulfide
bridges are necessary for activity. Since both eclosion hormones are active
in the heterologous species, arrangement of disulfide bonds was antici-
pated to be identical in both molecules, because it is apparently essential
for correct receptor-binding.

Lastly, with the help of the recombinant Bom-EH it was shown that
the molecular species I and II (3-61) (1-61) are very likely produced
artefactually from EH III (3-62) and IV (1-62), possibly by digestion by
a carboxypeptidase A-like enzyme present in the extract during purifica-
tion (236).

3.2.5. Peptides Affecting Gonad Activity

Reproduction in insects is a very precisely regulated process in which
hormones are involved (87). The key players of hormonal regulation are
the true epithelial hormones, the ecdysteroids and juvenile hormones. In
the adult stage these hormones do not interact with moulting, but control
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the synthesis and uptake of yolk protein (vitellogenesis), the maturation of
ovaries, and the development of eggs (oogenesis). Although the pro-
thoracic glands degenerate at metamorphosis, other tissues in the adult
insect (mostly the gonads, but fat body and integumental tissue as well) are
the main ecdysteroid producers. Endocrine regulation of reproduction is
very complex because different species have developed different physio-
logical mechanics. In most insects the synthesis of vitellogenin is stimu-
lated by JH, but it may not be the only stimulator. In many dipterans
a pulse of ecdysteroids is needed to trigger vitellogenesis. Most Diptera
have to take a proteinaceous meal before oogenesis as well; the amino
acids of the ingested proteins are the precursors for the vitellogenin.
However, also the stretching of the abdomen by the blood meal in the
blood-sucking bug, Rhodnius prolixus, provides the physiological
stimulus which initiates endocrine events.

In locusts, for example, growth of the oocytes is synchronized. Thus
gonotrophic cycles occur which follow immediately upon each other; thus
locusts produce and lay their eggs in batches. Both vitellogenin synthesis
and the uptake of yolk proteins by the oocytes are stimulated by
JH. However, new data have shown that peptide hormones play a role as
well.

3.2.5.1. Ovary Maturating Peptide and Neuroparsin of
Locusta migratoria

In the migratory locust it was shown that a factor residing in the
nervous (neurosecretory) part of the corpus cardiacum leads to premature
oocyte development when injected into young adult females (59). For
purification, 2 000 nervous parts of corpora cardiaca were extracted with
70% methanol and isolated via a Pharmacia Mono Q anion-exchanger;
the active material was desalted and further purified by C-8 RP-HPLC
(142, 144): Sequence determination was achieved by a combination of
Edman degradation of the N-terminal intact peptide and various frag-
ments produced by 2-iodobenzoic acid or tryptic digestion and quadru-
pole electrospray mass spectrometric measurements. The peptide, code-
named Lom-OMP (Locusta migratoria ovary maturating parsin; Table
10), consists of 65 amino acids, does not contain any cystein residues (thus
there is no possibility to form dimers via disulfide bridges), but has
a polyalanine sequence (8 Ala residues at positions 43 to 50). The existence
of two isopeptides, due to a point mutation at position 26 (Ala or Ser), was
noted by sequencing and mass spectrometry. A polyclonal antibody was
raised and, by immunocytochemical staining, 250 acidophilic cells in the
pars intercerebralis-corpora cardiaca gave a positive response. Injection
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of the immune serum into young adult females blocks the rapid growth of
oocytes. Although JH produced in the corpora allata stimulates the
synthesis of vitellogenin in normal fat body, implantation of supplement-
ary corpora allata does not induce normal oocyte growth when im-
munoneutralization had taken place prior to this treatment. Other
preliminary experiments showed that Lom-OMP apparently does not
stimulate the incorporation of vitellogenin into the oocytes, but rather,
like JH and very likely synergistically, induces the expression of the
vitellogenin genes.

The “counterpart” of Lom-OMP is a large peptide which causes
an antigonadotropic effect (but also stimulates fluid reabsorption and
elevates trehalose and lipids in the haemolymph) which is called Lom-
neuroparsin (100, 141, 289). Its name was coined because it was isolated
from the neurosecretory part of the locust’s corpus cardiacum and is
produced by the A 1 type of the protocerebral median neurosecretory cells
(141). The isolation procedure for this compound was as described for
Lom-OMP; during the anion-exchange run two fractions, called neuro-
parsins A and B, were found which were further purified and character-
ized (142, 143). Whereas it was assumed initially that the neuroparsins
were dimers containing 12 Cys residues and being microheterogenous
at the N-terminus, it appeared later that they are monomers con-
taining 6 intramolecular disulfide bridges (167). The latter authors
fractionated the crude extract of nervous lobes of corpora cardiaca
on C-18 RP-HPLC and analysed the purified peaks by liquid secondary-
ion and electrospray mass spectrometry. According to HIETTER et al.
(167), three main peptides could be found (see Table 10): the longest
one consists of 83 amino acids (compound y), whereas compounds p and
o are two and five amino acids shorter from the N-terminus, respectively.
In the terminology of GIRARDIE etal. (143) the 83- and 81-mers are
neuroparsin A and the 78-mer is neuroparsin B. It is not yet known
whether compounds o and $ result from proteolytic cleavage by
aminopeptidases from compound y or, alternatively, whether all three
peptides are synthesized in the corpus cardiacum and have each a different
function.

When a cDNA library, prepared from mRNA of L. migratoria brains,
was screened with appropriate probes, a cDNA encoding a precursor
protein (107 amino acids) consisting of a signal peptide (22 amino acids),
two processing sites (3 amino acids) and neuroparsin A (83 amino
acids) was isolated and sequenced. The deduced amino acid sequence
shows complete identity between residues 25 and 107 with the peptide
sequence for neuroparsin A determined previously by Edman degrada-
tion (143).
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3252 Oostatic Hormones of Diptera

Substances that inhibit egg development and are therefore called
antigonadotropins or oostatic hormones have been found in a number of
nsect species (27) Most of the research has been done on flies, mosquitoes
and the blood-sucking bug, Rhodnius prolixus Until very recently the only
very limited information on the chemical nature of these factors has been
reported for the latter two groups (25, 259) New data have been compiled
for the mosquito Aedes aegypt: culminating 1n the elucidation of the
primary structure (27) Therefore, the present status of research of oostatic
hormones 1s described 1n some detail only for this species

Egg development 1n anautogenous (insects which need a blood/
protein meal to produce eggs) mosquitoes like A aegypt: depends on
digestion of ingested blood as well as on the release of an until now not well-
characterized egg development neurosecretory hormone (EDNH) also
called ovarian ecdysteroidogenic hormone (OEH) (152, 249, 274) This
EDNH 1s apparently produced 1in medial neurosecretory cells of the brain
and stored 1n the corpus cardiacum (250) The peak of release of this
neuropeptides brief, 1ts action 1s to stimulate the ovarian follicular cells to
secrete ecdysone In contrast, the ovary of the mosquito controls its own
growth and development, because an oostatic hormone fraction highly
purified from ovaries was able to inhibit egg development and the bio-
synthesis of vitellogenin, the main yolk protein precursor 1n nsects (25)
Recently, one peptide hormone has been purified from 30000 ovaries of
female A aegypti by using low and high pressure liquid chromatography
(28), Fourier transform mass spectrometry was critical for the proper
characterization of the minute amounts available (29) The last step of
1solation was on a RP-HPLC-C18 column, where a single peak with
bioactivity was eluted Amino acid analysis combined with tandem
quadrupole mass spectrometry with 1on cyclotron resonance revealed the
primary structure of an unblocked decapeptide with the rather unusual
C-terminal sequence of 6 proline residues (see Table 11) Surprisingly,
a computer search found significant structural homology to mammalian,
plant and several viral protemns that are either synthesized by double

Table 11 Primary structures of oostatic peptides (= trypsin modulating oostatic factors,

TMOFs)
Code Name Species Sequence Reference(s)
Aea-TMOF Aedes aegypti YDPAPPPPPP 28, 29
Neb-TMOF Neobellieria bullata NPTNLH 37

Neb-colloostatin N bullata SIVPLGLPVPIGPIVVGPR 38
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stranded DNA viruses (Epstein Barr virus; Herpes simplex virus) or single
stranded RNA viruses (Abelson murine leukemia viruses, and HIV-2, for
example). The peptide directly modulates trypsin biosynthesis in the gut
and indirectly regulates egg development and is therefore now called
Trypsin Modulatory Oostatic Factor or Aea-TMOF.

Synthesis occurs in the follicular epithelium of the ovary and active
secretion by the ovary, as shown by immunocytochemistry and in vitro
incubations of ovaries (29) and by RIA and ELISA (31), is reported 24 to
48 hours after the blood meal. It is proposed that it is then bound to
a receptor on the midgut epithelium cell where it acts, possibly via a
repressor, by inhibiting trypsin synthesis. Trypsin biosynthesis, which
was initiated during the first 24 hours after the blood meal, is then
stopped, blood digestion cannot progress after some time, no more amino
acids are transported to the fat body, and therefore no more vitellogenin
can be made which will lead in the end to an arrest of egg develop-
ment (30).

TMOF is rapidly hydrolyzed in intact mosquito having a half-life of
about 1.6h (29). The source of hormonal inactivation is suggested to
reside in the thorax: when ligated abdomens were injected with synthetic
Aea-TMOF, lower concentrations than injected into intact animals in-
hibited 90% of the trypsin-like enzyme biosynthesis (29). Some structure-
activity studies using the test on ligated abdomens, where inactivation was
not crucial, revealed the following: when the left-handed helix at the C-
terminus was abolished by removing four or two of the Pro residues, the
ED,, values were increased, thus the molecule was less active. Similarly,
changing Tyr at position 1 with Asp at position 2 also increased the ED,;
thus, N- and C-termini are apparently important for biological activity (29).

Since natural or synthetic TMOFs are not species specific (26, 28), it
was proposed that sequence-related TMOFs control trypsin biosynthesis
in other insect species as well (29).

A peptide that inhibits trypsin-like synthesis by the midgut of liver-
fed female flies of the species Neobellieria (Sarcophaga) bullata was purified
from 10 000 ovaries of late vitellogenic state by using five HPLC steps and
identified as a hexapeptide called Neb-TMOF (see Table 11) (37). Despite
the difference in sequence to Aea-TMOF cross-reactivity was noted:
Neb-TMOF is 6-fold more active in the fly and Aea-TMOF is 5-fold more
active in the mosquito. This may probably be attributed to some proper-
ties of the physico-chemical structure; in both molecules an aromatic
amino acid (Tyr in Aea-TMOF and His in Neb-TMOF) sticks out of the
molecular axis (37). In contrast, the six C-terminal Pro residues in
Aea-TMOF were predicted by computer modelling and NMR (28, 60) to
form an a-helix, which is absent in Neb-TMOF-.
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Recently, a second peptide which displays oostatic activity has been
purified from whole abdomens of adult N. bullata (38). This 19-mer pep-
tide is called Neb-colloostatin because it has a striking structural resem-
blance to a particular part of the sequence of preprocollagen of Drosophila
(Table 11). Its effect is different from that of Neb-TMOF; trypsin bio-
synthesis is not inhibited. It is more likely that this peptide prevents yolk
deposition in the penultimate oocytes.

3.2.6. Diapause Hormones

Diapause is defined as a spontaneous developmental arrest which
occurs to adapt to changing environmental conditions. It is not restricted
to a specific developmental stage in the life cycle; thus insects may enter
diapause either in the embryonic, larval, pupal or imaginal stage (67, 485).
Diapause is induced by a variety of environmental cues (e.g. temperature,
humidity, photoperiod, diet) which are transduced by the neuroendocrine
system to result in the various and complex adaptive responses of a
physiological, biochemical and endocrinological nature.

In this chapter we are only concerned with embryonic diapause (egg
diapause) occurring in the silkworm, Bombyx mori. Depending on the
strain and environmental conditions, the number of annual generations
varies in this species. Generalizing, one can say that a univoltine strain
produces a single generation per year and all eggs enter diapause. Bivol-
tine or quadrivoltine strains which produce two or four generations
annually lay eggs that undergo diapause when the female moth is subjec-
ted to high temperature (25 °C) and long-day photoperiods (16 h light: 8 h
dark) during the embryonic stage; low temperature (15 °C) and short-day
photoperiods (12 h light: 12 h dark), however, produce non-diapause eggs
(484).

Early experiments had already demonstrated that the suboesophageal
ganglion is involved in the nature of diapause. Neurosecretory cells of the
suboesophageal ganglion secrete a substance which was called diapause
hormone and promotes diapause. Attempts to isolate the active com-
pound from huge quantities of dried heads of male adults using several
conventional column chromatographic steps led to a highly purified
sample of peptidic nature (192, 193, 194). Recently, the isolation proper
and sequence determination was successfully executed (185). 55000
complexes of the suboesophageal ganglion and the first thoracic ganglion
were dissected from day 1 old sitkworm pupae, homogenized in ethanol
and the pellet, after centrifugation, sequentially washed with ethanol,
methanol/dichloromethane (1:1), 80% ethanol and 50% 2-propanol.
This procedure did not extract the diapause hormone which was
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Table 12. Primary structures of diapause hormones causing egg diapause in Bombyx mori

Code Name Species  Sequence Reference(s)

Bom-DH B.mori TDMKDESDRGAHSERGALCFGPRLamide 185
Bom-DH-I B.mori TDMKDESDRGAHSERGALWFGPRLamide 392

finally extracted by hot water. The aqueous extract was fractionated by
reversed-phase HPLC into several broad peaks one of which contained
biological activity. The pooled material was applied again to the RP-
HPLC including the ion-pairing reagent trifluoroacetic acid (0.5%)
into the organic solvent (2-propanol). Diapause hormone bioactivity
was mainly found in one sharp peak. The yield of pure peptide was
calculated to be less than 500ng from the 55000 ganglia. Gas-phase
sequencing revealed a 24 mer peptide (see Table 12) with one ambiguity at
position 19 which was assumed to be Cys. The sequence from Arg!’ to
Gly?! was confirmed by sequencing a fragment after digestion with
endoproteinase Glu-C. Sequencing showed that the N-terminus was
not blocked, but it was not clear whether the C-terminus was amidated
or not. Synthesis of both alternatives (free and amidated Leu at the
C-terminus) solved this uncertainty: the peptide with the Leu as free acid
had no biological activity when injected at the very high dose of 1 pg/pupa,
whereas the amidated form eluted exactly at the same retention time as the
native diapause hormone and was comparably biologically active.

The information of the primary structure of diapause hormone (DH)
made it possible to isolate cDNA clones coding for DH. A cDNA library
constructed from mRNA of suboesophageal ganglia was screened using
oligonucleotide probes. Sequence data of the cloned cDNA encoding DH
indicated the possibility that a second DH was produced in B. mori.
Therefore, 110000 suboesophageal ganglia (plus first thoracic ganglia)
were excised from day 2 to 3 pupae of a bivoltine race and the material
purified as previously described (185) yielding a single peptidic compound
which was characterized as having a Trp at position 19 (as predicted from
the cDNA) instead of Cys which was previously found at this position
(392). The synthetic Bom-DH (Trp*®) in its amidated form had the same
retention time as the native molecule; it also has similar dose-response
relationship in the biological assay as its Cys!® analogue. Thus, it was
concluded that this new peptide containing Trp!? is a novel DH molecule.
It is interesting to note that no cDNA clone was isolated which bears the
codon for Cys*®.
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Interestingly, four out of five amino acids at the C-terminus are
identical to those of the pheromone biosynthesis-activating neuropeptide
from Helicoverpa zea and Bombyx mori (see Table 5), and of the
locustamyotropins and locusta- and leucopyrokinins (see Table 13).

On a molecular level this was clearly shown when cDNA encoding
DH was cloned and sequenced (217, 393): the cDNA encodes a poly-
protein precursor from which DH is processed post-translationally to-
gether with PBAN and three other, shorter neuropeptides; all of these
peptides share the common pentapeptide C-terminal sequence F-X-P-
R/K-L-amide (see also Sect. 3.2.1.). Using these molecular tools it was
shown that the transcript of the diapause hormone polyprotein precursor
was found in the suboesophageal ganglia of pupae and pharate adults, but
brains, thoracic and abdominal ganglia had no positive reaction (391).
Insitu hybridization revealed 12 cells in the suboesophageal ganglia
aggregated in three clusters.

3.3. Peptides Modifying Spontaneous Muscle Contractions:
Myotropic Peptides

The majority of insect neuropeptides fully characterized thus far have
the property of regulating the contractile activity of visceral and/or
skeletal muscles. The first insect neuropeptide which was isolated and
whose primary structure elucidated was proctolin (34, 439). The heroic
efforts of isolation (11 steps were used starting with 125kg of whole
cockroaches) at a time when only quite insensitive techniques were
available have been reported many times (418, 177) (Table 13).

3.3.1. Proctolin and Cardiostimulatory Peptides

Proctolin was present in extracts of the hindgut of the American
cockroach Periplaneta americana and caused a slow graded contraction of
the longitudinal muscles of the hindgut. Since then proctolin has been
found, by using RIA, immunocytochemistry and/or HPLC, to be widely
distributed among insects and other arthropods (333, 426). At first,
proctolin was proposed to be a visceral muscle neurotransmitter (34). The
pentapeptide, however, not only stimulated visceral muscles but also
skeletal muscles (see 334). Moreover, most of the effects of proctolin can be
attributed more to a neuromodulatory role than to the classical effect of
a neurotransmitter or of a neurohormone; in an insect neuromuscular
junction, proctolin acts as a cotransmitter with a second, conventional
(possibly glutamate) neurotransmitter (334). Whereas the hindgut assay in
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P.americana was (first) used to detect proctolin, later the far more sensitive
(picomolar range) tests using the locust extensor tibia or the locust oviduct
bioassays were implemented (247, 334). Using the latter preparation or the
locust ovipositor muscles, a skeletal muscle preparation, proctolin’s role
as a contransmitter was clearly shown (333). There is no direct evidence
for a role of proctolin as a neurohormone in insects, but immunocyto-
chemistry shows proctolin-like immunoreactive neurons in the blowfly,
with endings terminating outside the neural sheath (308), in the corpora
cardiaca of a beetle and in moths (65, 472) or in the corpora allata of
a moth (180).

Studies on the pharmacology of the proctolin receptor have been
carried out by several groups who determined the myotropic effects of
various proctolin analogues in different bioassay systems like the cock-
roach hindgut (440, 452), the desert locust foregut (154), the migratory
locust oviduct (363) and the heart of the cockroach and the mealworm,
Tenebrio molitor (238). Although species- or bioassay-specific responses
occur, it can be generalized that activity depends on the full pentapeptide
while the amino acids have to have the L-configuration. C- or N-
terminally truncated analogues (di-, tri- or tetrapeptides) were inactive
and slight modifications at a single position resulted mostly in a complete
loss of activity. Some analogues, however, for example [Ala*]-proline, had
substantial activity in a particular bioassay, causing locust oviduct con-
traction in this case, but were inactive in others. A supra-analogue, which
had twice the potency of proctolin in the cockroach hindgut assay and was
4- and 1.5-fold more active in the cockroach and mealworm heart assay
respectively, contained a methoxygroup instead of the hydroxylgroup at
the p-position of the aromatic side chain of Tyr2. Phe?, however, showed
little or no activity, whereas analogues substituting the hydroxylgroup
of Tyr? with various nitrogen containing groups (Phe(p-NH,); Phe(p-
NMe,); Phe(p-NO,)) were all more active than proctolin in the cardio-
stimulatory assay. This was also true for the Phe(p-fluoro)-analogue in
the locust foregut assay. In this system the Tyr(3'mono-iodo)-analogue
had reasonable potency and, if still active when !?°I-labelled, such a com-
pound could be extremely useful for receptor binding studies. Another
useful tool may be the Tyr(a-methyl)-analogue which reduced the maxi-
mum response of the locust foregut by 88% at a concentration of 107 M
and thus is an antagonist. Another antagonist was the tripeptide Arg-Tyr-
Thr, but, at higher concentrations (10~ > M), the reduction in the maximal
response to proctolin was smaller. It is speculated that the tripeptide in
high concentration reduces the rate of proctolin inactivation by enzymes
either by competing with proctolin for the active sites of the proteolytic
enzymes or by exerting end product inhibition. From a number of studies

References, pp. 97-128
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on proctolin degradation using cockroach haemolymph (441, 442), cock-
roach tissue homogenates (364), membranes of desert locust synatosomes
(186) and membrane preparations of migratory locust hindgut and ovary
(360), the presence of aminopeptidase, carboxypeptidase and endopep-
tidase activity is known. Depending on the pH it became clear that, at pH
6, either a carboxypeptidase followed by an endopeptidase cleaves the
Tyr-Leu bond or that immediately the endopeptidase degrades proctolin
to yield Arg — Tyr 4+ Leu — Pro + Thr, whereas, at pH 8, an aminopep-
tidase is apparently favoured which produces Arg + Tyr-Leu-Pro-Thr
and later Arg + Tyr + Leu-Pro + Thr. The effects discussed above for the
tripeptide Arg — Tyr — Thr, which were detected in vitro, could thus relate
to the situation in vivo by the degradation product Arg + Tyr.

Tritiated proctolin, [*H] proctolin, was used to investigate binding to
locust hindgut- and oviduct membranes and specific binding was shown
(361, 362).

Besides proctolin, whose effect on the insect heart has been mentioned
above, two peptides isolated from the corpus cardiacum of P. americana
(Pea-CAH-I and II) have cardioacceleratory activity. These peptides,
which belong to the adipokinetic hormone/red pigment-concentrating
hormone family, also have hypertrehalosaemic activity in cockroaches
and have been dealt with in Sect. 3.1.1.

The most potent cardiostimulatory peptide in P. americana is Pea-
corazonin. It was isolated from corpora cardiaca of this cockroach by
RP-HPLC on a C-18 support using a water/acetonitrile gradient with
TFA or HFBA as ion pairing agents and, after deblocking with pyrogluta-
mate aminopeptidase, was shown to be a blocked undecapeptide (464)
(Table 13). Subsequently, using an ELISA to monitor the presence of
corazonin, the same molecule was shown by retention time on HPLC and
amino acid composition to be present in the corpora cardiaca of the
cockroach, Nauphoeta cinerea, and the tobacco hawk moth, Manduca
sexta. The primary structure of a bioanalogue, [His’] corazonin instead
of Arg’, was determined for the material isolated from the corpus car-
diacum of the desert locust, Schistocerca americana (466) (Table 13).
Because of its isolation from corpora cardiaca and its distribution, as
shown by immunocytochemistry with antisera specific to Pea-corazonin,
in neurosecretory cells of the protocerebrum and their axon terminals in
the storage part of the corpus cardiacum (355, 469), it is suggested that this
peptide is released from the corpus cardiacum and acts as a neurohor-
mone to control heart beat. Moreover, immunoreactivity was also found
in interneurons of the brain and segmental body ganglia of P. americana
(469). A similar distribution of Pea-corazonin immunoreactivity was
found in another cockroach, Leucophaea maderae (355). In the blowfly
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Phormia terraenovae, two cell groups (lateral and median) with im-
munoreactivity were found in the protocerebrum of all postembryonic
stages and a large plexus of varicose fibres located in the wall of the aorta,
a possible release site, was shown to contain peripheral processes as well
(41). When brain-corpora cardiaca-aorta complexes of P. terraenovae
were extracted, the material was identified by a Pea-corazonin specific
ELISA to co-elute with authentic Pea-corazonin. This suggests that P.
terraenovae also contains Pea-corazonin. Synthetic Pea-corazonin was
also able to stimulate contraction of the hyperneural muscle of P. ameri-
cana, but neither the oviduct nor the proctodeum. Interestingly, only the
hyperneural muscle of P. americana is stimulated in a very sensitive way,
but not those of other cockroaches such as Blatta orientalis, Blattella
germanica (weakly), Blaberus craniifer, Blabtica dubia, Pycnoscelus
surinamensis, Leucophaea maderae (weakly), Gromphadorhina portentosa
and Nauphoeta cinerea (355). Since Pea-corazonin appears to be present
in some of the species, another, as yet not discovered, target tissue and
possibly another function has to be postulated for Pea-corazonin.

The heart of the moth, Manduca sexta, is modulated by a number of
neuropeptides called cardioacceleratory peptides (CAPs) of which two
groups (CAP, and CAP,) with at least two and three members, respective-
ly, exist (461). It is believed that these peptides stimulate the heart
immediately after adult emergence, facilitating wing inflation and are also
active during flight to achieve adequate haemolymph circulation between
abdomen and thorax. In larvae, the hindgut may be the primary target
(461). Isolation of one of the CAP, peptides was achieved by dissecting
6000 ventral abdominal nerve cords from pharate adult moths and, after
heat-treatment, extraction in 0.5 M acetic acid. Pre-purification was on
Sep-Pak (C-18 support), followed by a 6-step HPLC procedure (45),
resulting finally in a pure peptide as judged by Edman sequencing and
mass spectral analysis. The primary structure yielded an amidated
nonapeptide containing cystein residues at positions 3 and 9 (45) (Table
13). An identical peptide had earlier been isolated and sequenced from 800
locust brain-suboesophageal ganglia-ventral nerve cord complexes; it was
shown to have a potent myotropic effect on the locust hindgut (438).
Purification had been achieved by antibody affinity chromatography
followed by RP-HPLC using a RIA developed for the detection and
quantification of the crustacean cardioactive peptide (Cama'-CCAP)
(437). Thus, L. migratoria and M. sexta were shown to contain authentic
Cama-CCAP in their nervous tissue. This peptide was subsequently also

YA four letter code is used for this crustacean peptide to distinguish between Cam =
Carausius morosus (a stick insect) and Cama = Carcinus maenas (a crab). See also Table 4.
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sequenced in M. sexta (255), the southern armyworm, Spodoptera
eridania, and the mealworm, Tenebrio molitor (102). The presence of
Cama-CCAP in the latter beetle species was not too surprising, since
CCAP-immunoreactive neurons in the ventral nerve cord and the brain
(lateral neurosecretory cell) had been demonstrated previously (33). In the
locust, the antiserum stained efferent and intersegmental neuronal sys-
tems in the ventral nerve cord, some of which are recognized as release
sites (70). In the blowfly, only four cells in the fused thoracic-abdominal
ganglion are immunopositive. Axons of these cells reach the hindgut (306)
and the peptide may be involved in modulating hindgut myotropic
activity. Recently, another cardioacceleratory peptide, CAP,,, of M. sexta
has been fully structurally elucidated (184). This N- and C-terminally
blocked octapeptide has no sequence homology to CAP,, (= Cama-
CCAP) or any other insect neuropeptide (see Table 13).

During 1987/1988 12 novel myotropic peptides were isolated and
characterized from head extracts of the cockroach, Leucophaea maderae,
using the hindgut bioassay (see Sect. 2.1.2) and a four-step HPLC purifica-
tion procedure (see Sect. 2.2) (176, 178). The same purification and
bioassay system was used for the identification of five myotropic peptides
from head extracts of Acheta domesticus (176, 178) and a very similar
procedure yielded 21 novel neuropeptides from brain-corpora cardiaca-
corpora allata-suboesophageal ganglion complexes of Locusta migratoria
(415). The peptides are now placed in distinct peptide families because of
their structural similarities; additional members of these families have
been elucidated in the meantime from other insect species and are all listed
in Table 13.

3.3.2. Myokinins

To date eight myokinins from L. maderae, five from A. domesticus,
three each from Aedes aegypti, Culex salinarius and Helicoverpa zea are
known and a single one from Locusta migratoria (for original references
see Table 13). They all share a common C-terminal pentapeptide se-
quence. FX'X?WGamide (where X' =H, S, N, Y, F and X*>=S, P, A).
The leucokinins stimulate the hindgut most potently by increasing the
frequency and amplitude of spontaneous phasic contractions at lower
concentrations and with a tonic component at higher concentrations
(threshold concentration: 0.3 to 2.0 x 10~ '° M for the various peptides)
(294). Their effects on stimulating the muscles of the foregut and oviduct
are about 100- and 1000-fold less (57, 58).

An antiserum against leucokinin I and synthetic leucokinin I labelled
with '?°I-Bolton-Hunter reagent were used to develop a sensitive RIA.
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Low levels of immunoreactive material were measured in the ventral
nerve cord of L. maderae, but high values (1.9 pmol) in the brain and
largest amounts (6.6 pmol per tissue) in the corpora cardiaca-corpora
allata complexes, whereas the titre in the haemolymph was in the nano-
molar range (292). High-potassium depolarization combined with
Ca?*-induced release of about 2% of the stored material suggested that
the leucokinins may act via the circulation as neurohormones.

The achetakinins are almost as potent on the cockroach hindgut
(178), but the locustakinin is inactive on hindgut and oviduct of the
locust (415). Achetakinins also exhibit an adipokinetic effect and cause
inhibition of protein synthesis in the fat body of crickets and locusts,
actions well known for peptides from the AKH/RPCH family (see
Sect. 3.1.1).

Achetakinins have a diuretic effect in the cricket (54, 436) and, after
raising antibodies in rabbits for immunocytochemistry and establishing
a RIA, achetakinin-like immunoreactive material was found in brain and
other nervous tissues. Activity was mainly in the retrocerebral complex of
crickets (CC, CA and hypocerebral ganglion), and was detected in the
haemolymph, where it increased 10-fold in starved crickets (47). More-
over, achetakinin binding sites on the membranes of Malpighian tubules
of the cricket have been studied by using a biologically active 125I-labelled
analogue and specific binding sites have been demonstrated (48). Leuco-
kinins are also known for their effect on Malpighian tubules of the
mosquito, Aedes aegypti, where they cause a depolarization of the trans-
epithelial potential (161). This bioassay, in conjunction with the cock-
roach hindgut myotropic assay, was actually used to monitor the separa-
tion of the myokinins from Culex salinarius (158). Diuretic and anti-
diuretic effects of locustakinin on locust tubules and rectum, respectively,
have been shown as well (415). The novel kinins from H. zea, the
helicokinins, were isolated from the abdominal ventral nerve cord and
stimulated fluid secretion of the Malpighian tubules at concentrations
below 10711 M (22).

Antisera raised against Lem—M-I recognized about 160 immunoreac-
tive cell bodies from mainly interneurons and neurosecretory cells in the
protocerebrum and optic lobes of L. maderae (307); neurosecretory cells in
the protocerebrum have also been stained in the blowfly brain (304), and
abdominal ganglia also contained immunoreactive neurons (40). In larvae
of the lepidopteran species Agrotis segetum, immunoreactive fibers inner-
vate the perisympathetic organ, which are known release sites (39). These
data, in conjunction with the failure to detect immunoreactivity to
leucokinin I in fibers directly innervating the hindgut of L. maderae,
indicate that leucokinin may act as a neurohormone (307).
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Structure-activity studies on Lem-M-VIII showed that truncated
analogues, Lem-M-VIII (1-7) or Lem-M-VIII (5-8) are totally inactive;
the core pentapeptide (FYSWG-amide) is as active as the parent molecule,
but not its free acid (294). Replacements of Phe! or Trp* by Ala resulted in
inactive analogues, but Trp' and Phe* are tolerated, thus aromatic groups
are needed at these positions. While Ala analogues at positions 2, 3 or
5 had reasonable activity, the D-Ala? analogue is inactive. A B-turn is
predicted for the C-terminal region of the leucokinins. A conformationally-
constrained analogue of the core region, cyclo-[ CFYSWCamide], retains
activity although the threshold activity is now in the range of 9 x 1077 M
instead of 0.2 x 107 1M (294). Since bioanalogues (naturally occurring
peptides) tolerated various substitutions at positions 2 of the pentapeptide
core region, a pseudopeptide analogue containing a reduced amide bond
linkage (-CH,—NH-instead of -C(O)NH-) between residues 1 and 2 was
synthesized, F¥[CH,-NH,]FSWGamide (299). The biological activity
of this pseudopeptide is 1% when compared to its amide bond-containing
counterpart (FFSWGamide). Thus it retains activity, but, most import-
antly, the pseudopeptide is stable to proteolytic digestion by aminopep-
tidase M, whereas its natural conterpart is not (299). This experiment
proves that peptide mimetics, which may be extremely useful as potential
insect pest control agents, are active and have an improved half life.

3.3.3. Sulfakinins

To date two sulfakinins each from L. maderae and Neobellieria bullata,
and one each from L. migratoria and P. americana have been isolated and
sequenced (Table 13). Moreover, the non-sulfated Lem-SK-II molecule
has been sequenced from P. americana (465); Sulfakinins in Diptera
(Drosophila melanogaster, Calliphora vomitoria, and Lucilia cuprina) have
been deduced from cloning and sequencing the respective genes. It still has
to be demonstrated that they are expressed in these species, but since
identical or very similar peptides have been sequenced in another dipteran
insect, N. bullata (98), expression in the other dipterans is very likely.
In fact, very recently, the peptide from Calliphora vomitoria has been
1solated from heads of this fly (83). The sulfakinin insect family is charac-
terized by high conservation of the C-terminal decapeptide sequence:
X'X?DY (SO,;H) GHMRFamide (where X' = F, S and X? = E, D). They
share sequence near-identity of the C-terminus with the human gastrin
and the vertebrate hormone cholecystokinin (CCK):

gastrinII: ... Y(SO;H)YGWMDFamide
CCK4: DY(SO;HYMGWMDFamide
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However, these vertebrate molecules were inactive on the cockroach
hindgut, but introduction of Arg instead of Asp transformed them into
active analogues in this bioassay (296). The structural homology between
these vertebrate hormones and their insect counterparts and their analog-
ous myotropic actions (gastrin and CCK also stimulate smooth muscle
contractions in the intestine (see 295)) point to a long evolutionary history.
It is also interesting to note in this context that the sulfakinins share
sequence similarities with the so-called FMRFamide related peptides
(FaRPs) which are dealt with later (see Sect. 3.3.8).

Structure-activity studies demonstrated that non-sulfated analogues
were inactive, and the C-terminal hexapeptide is the smallest fragment
(“active core”) possessing about 10% of the myotropic activity of the
parent molecule. Full activity requires the C-terminal octapeptide (294).
The relative importance of amino acid residues within the active core
region was established by synthesizing and bioassaying single (by Ala)
replacement octapeptide analogues (297). All contractile activity on the
hindgut was lost when the last (Phe), — 1{Arg) and — 3(His) positions were
replaced. These and additional experiments suggested that aromaticity
(— 3 and last position) and basicity (— 1 position) are critical for interac-
tion with the putative receptor. Furthermore, although the presence of
a sulfate group is required for biological activity, the position is less
critical; it can be moved by one position towards the C-terminus without
complete loss of activity (0.3% of parent molecule) and by one (still 38%
active) or up to five (about 0.2% active) positions to the N-terminus (294).

3.3.4. Pyrokinins/M yotropins

This family, characterized by the carboxy-terminal sequence FXPRL
(where X =T, V, S), consists of the myotropins (Lom-MT-Ito IV) and two
pyrokinins (Lom-PK-I and II) from L. migratoria, the pyrokinin (Lem-
PK) from L. maderae, which was the first member of this family fully
elucidated, as well as some peptides from H. zea and B. mori, which were
deduced from cDNA work (see Table 13 for references). Lem-PK has the
highest concentration (1.4 pmol/head) of all myotropic peptides in L.
maderae, but had surprisingly weak activity on the hindgut (threshold
concentration: 0.6 nM). However, it was active on the cockroach foregut
and oviduct (I78). The locustapyrokinins and -myotropins were all
monitored during isolation by their effect on the cockroach hindgut, but
the synthetic peptides were also shown to stimulate the oviduct of L.
migratoria (415).

The structural requirements for Lem-PK were assessed by synthesiz-
ing a series of octapeptide analogues (293). Analogues with substitutions
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Leu — Asn
/ AN
Arg Thr
| |
Pro Ser
AN /
Thr — Phe

Fig. 7. Structure of the cyclic analogue of Lem-PK (Leucopyrokinin)

of Thr? by Leu? or Ser® by Thr? retained most of their activity. This was
not surprising since even a peptide truncated by the N-terminal tripeptide
(pGlu-Thr-Ser) still had 30% of the parent molecule’s activity; surprising-
ly the des-pGlu-analogue was even 40% more active than the intact
Lem-PK. At the C-terminus the amide was essential and replacement of
Pro® by Gly® or D-Ala® or Arg” by Lys” resulted in very weak activity (all
at least 1000-fold less active).

Conformational information was gained by studying a cyclic, biologi-
cally active, Lem-PK analogue (see Fig. 7) in which the N- and C-termini
are linked by an amide bond (301). Analyzing data from circular dichro-
ism, nuclear magnetic resonance and molecular dynamics, the presence of
atype 1 B-turn in the active core region formed by residues Thr-Pro-Arg-
Leu was established for this conformationally restricted analogue; the
biological activity is about 4% of the linear molecule suggesting that its
C-terminal B-turn is the active pyrokinin conformation recognized by the
specific receptor.

Additional members of this family containing the pentapeptide
FXPRLamide sequence at their C-terminus are the insect hormones
pheromone biosynthesis activating neuropeptides (PBAN) isolated from
Heliothis zea, Bombyx mori, Pseudaletia separata, and Lymantria dispar
(see Sect. 3.2.1) and the diapause hormone from B. mori (see Sect. 3.2.6).
Cloning of the PBAN and PBAN/DH genes of H. zea and B. mori (64,217,
393) led to the deduction of other peptides with the above C-terminal
sequence (see Table 13); only one of these putative Bom “myotropins”
contained Lys as the penultimate amino acid instead of Arg. Since
structure-activity studies had revealed that the pentapeptide sequence is
sufficient to elicit myotropic (293) and pheromonotropic (371) activity, it
was not surprising to find that leucopyrokinin (294) and the locustamyo-
tropins (96, 244) have considerable cross-activity in the pheromonotropic
assay of the silkworm, B. mori. Lom-MT-II, for example, was even
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100-fold more active in this assay than the 33-mer Bom-PBAN-I (244).
Locustamyotropins also stimulate pheromone biosynthesis in Spodoptera
litura (96). Furthermore, PBAN is also able to stimulate visceral muscle
contractionsin L. maderae and L. migratoria(176,415). Since Bom-PBAN
is the same molecule as the hormone responsible for cuticular melaniz-
ation and epidermal reddish brown pigmentation, the so-called MRCH
(277), and a similar “pheromonotropic peptide” with MRCH activity was
isolated from P. separata (275), it was again in keeping with the “active
core theory” that locustamyotropins induced larval cuticular melaniz-
ation in P. separata (276).

Lastly, Lem-PK, Lom-PK-I and II, and Lom-MT-I and II all elicit
significant diapause-inducing activity in B. mori (300). Lom-PK-I was
even 3-fold more potent than the native Bom-DH-I. Conversely, Bom-
DHs elicited contraction of the hindgut, but were several orders of
magnitude less active as native Lem-PK. All these results clearly show
cross-reactivity for this peptide family in different physiological processes,
myotropic, pheromonotropic, diapause inducing and cuticular melaniz-
ation, suggesting homologous features of the receptor sites.

Antisera raised against Lom-MT-I and IT and Hez-PBAN were used
for studying the distribution of these immunoreactivities in the nervous
system of L. migratoria and various other insects (414, 456). Since the
antisera cross-react with all peptides of this family, interpretation of the
results is difficult and, therefore, no further comments are given here, but
the interested reader is referred to the literature (see above) or a recent
review (415).

3.3.5. Tachykinins

To date nine members comprise the insect tachykinin family which is
characterized by the C-terminal pentapeptide sequence FX'GX?Ramide
(where X! is mostly Y but in one member each H and T; X? is V except
M in 2 members; see Table 13). The “true” tachykinins from vertebrates, of
which the undecapeptide substance P is the most well-known member,
contain the pentapeptide C-terminus of FXGLMamide (X =F, Y, I, V).
Substance P (RPKPQQFFGLMamide), for example, has been identified
in mammals to act on many systems— as an excitatory neurotransmitter
and as a modulator involved in regulating such diverse functions as
sensory processing, control of movement, gastric motility, vasodilation
and salination (164, 337). Because of some structural homology with the
tachykinins, especially with the physalaemin subfamily of tachykinins
(see 415), and because the first members were discovered to stimulate
the hindgut of L. maderae these peptides were grouped together into
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the insect tachykinin family (404). The Lom-TKs were also shown to
stimulate the visceral muscles of locust foregut and oviduct (415). More-
over, they stimulate the slow excitatory motor neurons of the locust
extensor tibiae (415) and display some pheromonotropic activity in
B. mori (95).

Antisera against Lom-TK-I have been raised and applied to nervous
tissue of various insect species, including L. migratoria, L. maderae, C.
vomitoria and D. melanogaster (see 303, 305), to determine the cellular
localization of tachykinins. Most of the immunoreactive neurons are
interneurons. In L. migratoria immunoreactive neurons project to the
intrinsic neurosecretory cells in the corpus cardiacum and make synapses
there with these cells known to synthesize adipokinetic hormone (303);
this is also corroborated by immunocytochemical studies on the electron
microscopical level (309). The suggestion that the Lom-TK immunoreac-
tive cells may be interneurons regulating Lom-AKH release is substan-
tiated by the demonstration of release of Lom-AKH-I in vitro from
isolated corpora cardiaca by authentic Lom-TK-1(309). In the blowfly, C.
vomitoria, those neurons reacting to the Lom-TK-I antiserum were
identical with those which were immunoreactive with antisera against
kassinin, a member of the tachykinin family in frogs (263). This is
explained by the structure of the native tachykinins in C. vomitoria,
Cav-TK-I and II (see Table 13); whereas the C-terminal pentapeptide of
Cav-TK-I is identical to Lom-TK-I, the C-terminus of Cav-TK-II is
similar to kassinin.

Interestingly, peptides which were isolated from salivary glands of the
mosquito, A. aegypti, and therefore called sialokinins I and II (I:
NTGDKFYGLM; II: DTGDKFYGLM), contain the “true” tachykinin
C-terminal pentapeptide FXGLM (43). It is not yet known whether they
are produced in neurons.

3.3.6. Periviscerokinin

The perisympathetic organs of insects, first discovered in stick insects
(365), have been identified as a major neurosecretory storage and release
site of the ventral nerve cord. Using these organs as starting material for
isolation, a peptide was purified from extracts of 1000 abdominal perisym-
pathetic organs of male American cockroaches by a 3-step HPLC
procedure. This peptide had an excitatory action on the hyperneural
muscle of P. americana (356). After Edman degradation and mass
spectral analysis, the structure of a unique undecapeptide, called peri-
viscerokinin (Pea-PVK), was elucidated (Table 13). The synthetic
amidated form, but not the free acid, was biologically active. Since



90 G. GADE

this compound was isolated from a neurohaemal site and is active on the
isolated hyperneural muscle at low concentrations (10~ M), it is believed
that periviscerokinin has a physiological role. Immunocytochemical
studies revealed Pea-PVK-like immunoreactivity in three cell clusters
of the abdominal ganglia. These neurons project into the perivisceral
organs (85).

3.3.7. Accessory Glands- and Midgut-M yotropins and Others

Peptides which stimulate the spontaneous contractions of the oviduct
have been isolated by several (in the case of L. migratoria) or a single (in the
case of M. domestica) HPLC step(s) from either male accessory reproduc-
tive glands of the migratory locust (Lom-AG-MT-I, II; 341, 342) or
from female accessory sex glands of the house fly (Mud-AG-MT; 473)
(Table 13). Lom-AG-MT-I resembles in structure the juvenile hormone
biosynthesis stimulating peptide allatotropin from M. sexta (Mas-AT;
see Sect. 3.2.2.1), but this compound had no allatotropic effect on the
corpora allata of the desert locust (212). It is not known yet whether Lom-
AG-MT-I stimulates the biosynthesis of juvenile hormone in locusts. The
neuropeptide status of the Mud-AG-MT is not established, but Lom-AG-
MTs immunoreactive cells, stained with polyclonal antibody raised
against each of the peptides (340), were not only found in the tubules of the
glands, but also in cell bodies of proto- and deuterocerebrum, optic lobes,
frontal ganglion, thoracic and the last abdominal ganglion (for Lom-AG-
MT-I). The antiserum against Lom-AG-MT-II also stained cells of the
central nervous systems, but double staining revealed the presence of
Lom-AG-MT-1 and II immunoreactive materials in distinct cell popula-
tion and nerve fibres (340, 415).

It is well known that endocrine cells are present in the insect gut.
Recently, two myoactive peptides isolated from the midgut of M. sexta
have been sequenced (Mas-MG-MT-I and II), but, again, it is unclear
whether they are synthesized in neurons (486, 487). The same is true of
a peptide that stimulates the contraction of the oviducts of L. migratoria
and was isolated from 10000 heads of the Colorado potato beetle,
L. decemlineata, by a 4-step HPLC procedure. After prepurification on
Sep-Pak, a phenyl support, followed by C-1 and C-8 RP and sub-
sequently normal phase Protein Pak 125 columns were used to achieve
purification to homogeneity (434). Edman degradation resulted in
the sequence of an amidated hexapeptide code-named Led-OVM
(Table 13). The peptide had no influence on the contraction of the
beetle’s hindgut.
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3.3.8. Myoinhibitory Peptides and Other F M RFamide Related
Peptides (FaRPs)

The purification of 9000 brain complexes of L. migratoria led not only
to the isolation of the contracting-stimulatory peptides (see previous
section), but some fractions were also found which inhibited the contrac-
tions of the cockroach hindgut. Further purification lead to the isolation
and identification of three myoinhibiting peptides which have structurally
nothing in common with each other.

Locustamyoinhibitory peptide (Lom-MIP; see Table 13) is a blocked
nonapeptide; the C-terminal tripeptide sequence, ... AGWamide, is ident-
ical with that of the locust adipokinetic hormone Lom-AKH-II (408).
Immunocytochemical studies found immunoreactivity in neurons inner-
vating the heart and oviduct of the locusts (415). This pattern corresponds
well with the functional aspect of Lom-MIP, which was shown to suppress
the spontaneous contractions of the hindgut and oviduct of L. migratoria
as well. The same tissues seem to be targets for the partially sequenced
tridecapeptide locustamyoinhibin (Lom-MIH) which is blocked at both
termini (416) (Table 13). Two peptides structurally related to Lom-MIP
have been isolated and sequenced from the ventral nerve cord of adult M.
sexta(21). These nonapeptides, Mas-MIP-1 and II (Table 13), significantly
reduced the rate of peristalsis of the isolated anterior hindgut (ileum) of M.
sexta at low concentrations (10~° M).

The other myosuppressins belong to the large family of FMRFamide
related peptides (FaRPs), which is characterized by at least an RFamide
sequence at the C-terminus; but mostly by an FLRFamide.

We have already discussed one of the “FaRPs” of insects — the sul-
fakinins which consistently contain the C-terminal sequence HMRF-
amide (see Sect. 3.3.3). Myosuppressins (FLRFamides), which are
structurally closely related, have been found in L. maderae, S. gregaria,
L. migratoria, M. sexta and N. bullata/D. melanogaster (see Table 13).
During isolation most of them were detected by monitoring HPLC
fractions via a immunoassay using an FMRFamide antiserum. Function-
ally diverse actions were found. For example, Mas-FLRFamide may be
involved in flight behavior patterns, since it increases the force of contrac-
tion of dorsal longitudinal flight muscles in M. sexta (228), whereas
Scg-FLRFamide inhibits the heart rhythm, but also potentiates twitch
tension in the extensor tibiae muscles of S. gregaria (389) and inhibits
spontaneous contraction of the oviduct of L. migratoria (248, 345, 412,
Table 13).

Three further FaRPs, here code-named Lom-FaRP I to III, have been
1solated from ventral nerve cords of L. migratoria. Two of them, one not
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yet fully sequenced, contain a FIRFamide C-terminus, whereas the other
one has the known FLRFamide C-terminal sequence (248). These pept-
ides had excitatory actions on the locust oviduct, indicating that the
N-terminus of such FaRPs is important as well. Moreover, it is evident
that a number of FaRPs exist in one species. This was very clearly shown
for some dipteran species, where not only the peptides but the genes are
known as well.

It had been shown by immunocytochemical studies that ventral
neurosecretory cells of the thoracic ganglion of Calliphora vomitoria
projecting axons into a neurohaemal area were immunoreactive against
the vertebrate C-terminally extended enkephalin (YGGMRF; 81), against
vertebrate gastrin/cholecystokinin which has the C-terminus WMDFamide
(80) and against FMRFamide (264). YGGMRF and FMRF, but not the
amidated forms, were active in inducing saliva excretion from isolated
salivary glands (79), and this was true using partially purified extracts of
the thoracic ganglia, which have been shown to contain YGGFMRF-
immunoreactive material. Processing thoracic ganglia from the blowfly
in a 5-step HPLC procedure and using radioimmunoassays against
YGGMRF and RFamide for monitoring the fractions, thirteen neuro-
peptides of varying length (7 to 11 residues) and ending C-terminally in
FMRFamides, designated calliFMRFamides, and one (a dodecapeptide)
ending in IRFamide, were isolated and sequenced (78). By cloning and
sequencing a genomic DNA fragment encoding the FMRFamide prohor-
mone it became clear that the prohormone contains 16 copies of potential
FMRFpeptides and additionally two copies of FIRF peptides (74) (Figure
8, Table 13). Potential amidation (a Gly residue at the C-terminus of the
putative peptide sequence) and cleavage sites (mostly single Arg residues)
were found as well. This organization of the prohormone precursor divided
into signal peptide, acidic spacer region, first FMRFamide peptide, spacer
region and then a high amount of more FMRFamide-related peptides
without spacers is very similar in all dipteran species investigated, but there
are species-specific differences in the putative FMRFamide peptides in the
precursor from C. vomitoria, Lucilia cuprina (see 74) and D. melanogaster
and D. virilis (46, 320, 402, 454) (Fig. 8). Only one peptide, PDNFMRF-
amide, is present in all four species. Five peptides are shared between
C. vomitoria and L. cuprina and four between the two Drosophila species
(Table 13). In Drosophila another precursor of the FaRPs has been
isolated; it contains two copies of FaRPs, the drosulfakinins I and I1 (322,
see 3.3.3.). However, recently another FaRP, TDVDHVFLRFamide, was
isolated and sequenced (323), which is not encoded on the two known
precursors (Table 13). Thus, a third precursor appears to be present in
Drosophila.
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Fig 8 Schematic diagrams of the precursor peptides for FMRF amude-related peptides

from various Diptera A The precursors of C vomitoria and L cuprina Roman numbers

correspond to the Cav-FMRF amide peptides given in Table 13 Modified after (74) B The

precursors of D melanogaster and D virilis Roman numbers correspond to the Drm-FMRF
amide peptides given 1n Table 13 Modified after (454)

What does this molecular diversity mean? At the moment it is not
known whether all the deduced peptides are expressed, but the studies on
C. vomitoria show that at least 13 of 16 peptides are and, thus, it may be
true for the remaining peptides in this and other species as well. It seems
unlikely that of this array of peptides each has a different task, which
would also mean a multiplicity of receptors. However, there is at least
some evidence in the blowfly that certain calliFMRFamides are active
secretagogues for the salivary glands, whereas others are inactive. In
contrast, only two of these peptides are active on the heart of the blowfly
increasing either the frequency alone or frequency and amplitude of the
heartbeat (73).

In the mosquito Aedes aegypti two FaRPs were isolated and charac-
terized from whole heads and designated Aea-HP-I and 11 (273, Table 13).
Recent studies suggest that Aea-HP-I inhibits the host-seeking behavior
(35). This behavior is employed by female mosquitoes to locate a verte-
brate host for taking a blood meal, which, in turn, triggers the onset of



94 G. GADE

oogenesis. After initiation of oogenesis the female does not engage in
host-seeking. Synthetic Aea-HP-I injected into non-oogenic females,
which actively seek a host, inhibited this behavior. Based on RIA determi-
nations the haemolymph titre of Aea-HP-I in females that had ingested
a blood meal was increased.

3.4. Chromatotropic Factors in Insects

A true color change in insects within one developmental stage is rare.
This is especially true for the physiological color change resulting from
pigment movement, since most terrestrial insects have developed a robust
cuticle to prevent water loss, and thus pigment movement in the underly-
ing epidermal cells, even if it takes place, is not so obviously noticeable.
Morphological color change is characterized by pigment concentration
and mostly occurs during specific developmental stages such as moulting.
Although studies have shown that hormonal regulation is involved in
color change in some species, here only those examples where molecules
have been structurally identified either by controlling the color change in
insects or in crustaceans are briefly reported.

The only structural knowledge of a true neuropeptide regulating
insect pigmentation is for the melanization and reddish coloration
hormone (MRCH) from the silkmoth Bombyx mori(227). The penultimate
instar larvae of Spodoptera separata served as bioassay animals. In this
species cuticular melanization and epidermal reddish-brown pigmenta-
tion in morphological color change is regulated hormonally. The se-
quence analysis revealed that Bom-MRCH was the same molecule as
Bom-PBAN (see Sect. 3.2.1.).

It was found around 1940 that extracts from insect nervous tissue
caused body blanching in prawns and shrimps due to concentration of
pigments in the chromatophores of these crustaceans; furthermore, ex-
tracts from heads of insects also caused dispersion of pigments in crabs
(155). When the locust adipokinetic hormone I (Lom-AKH-I) was struc-
turally characterized (450) and its similarity to the crustacean red pigment-
concentrating hormone (92) was noted, it became clear that the substances
from insects causing “blanching” in crustaceans are the various members
of the AKH/RPCH family (see Sect. 3.1.1.).

Using eyestalkless (the eyestalks are the source for synthesis and
storage of endogenous crustacean neuropeptides) fiddler crabs, Uca
pugilator, as bioassay animals by monitoring the dispersion of pigment in
epidermal melanophores, pigment-dispersing factors were purified from

References, pp. 97-128
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whole heads of the cricket, Acheta domesticus (379), the grasshopper,
Romalea microptera (378), and the American cockroach, Periplaneta
americana (287) (see Table 14). The isolation procedure was very complex
and used many chromatographic steps including partition-, gel filtration-
and ion exchange chromatography. The result for each species was
a compound which was characterized by protein chemical analysis to be
an octadecapeptide, as was shown previously for the pigment dispersing
hormones from crustaceans itself, the a- and B-PDHs of Pandalus borealis
and Uca pugilator, respectively (91,380). Antisera were raised either against
crustacean B-PDH or against the Romalea-PDF. Immunocytochemical
studies showed prominent PDH or PDF-immunoreactive neurons which
are associated with the visual system in a variety of insects (181, 310, 377)
leading to the conclusion that the PDFs in insects have probably some-
thing to do with a circadian pacemaker system. At least their function in
insects is not, as in crustaceans, to regulate pigment dispersion.

4. Conclusions

The last decade or so has seen an explosion of structural data on insect
neuropeptides. This is well-documented in this review. Mainly this was
possible because techniques for isolation and acquiring sequence informa-
tion have been improved. It became clear that an array of methods,
including Edman degradation sequencing, mass spectrometry and cDNA
work, has to be used for arriving at the correct structures since post-
translational modifications occur quite often. Using one method alone
would, in most cases, not have been sufficient for structure elucidation.
Immunocytochemistry was also a helpful tool for localizing the site of
peptide synthesis in the cells/tissues, especially when the starting materials
for isolation were whole animals or whole heads. In this context we have
to acknowledge that for the majority of neuropeptides we still do not
know exactly whether they are true hormones or not. One way to
demonstrate this would be to show their production or storage in known
neurohaemal organs from which they can easily be released; another way
would be to show an increased neuropeptide concentration in the
haemolymph upon some physiological stimulus.

Because quite a few neuropeptides were pleiotropic, thus had different
biological activities, future research will possibly reveal that the primary
effect of some so-called myotropic peptides, for example, will be different
from that described in the bioassay used for isolation purposes. The
pyrokinins, for example, share the C-terminal sequence with the PBANs
and the diapause hormones and cross-reactivity occurs (1). Thus, are the

References, pp. 97-128
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pyrokinins also involved in pheromone production in vivo? Interestingly,
a single mRNA in B. mori encodes for a large precursor protein from
which the diapause hormone, PBAN and three putative pyrokinins can be
produced (482). Moreover, expression of this gene was regulated by
temperature which leads to the induction of diapause. Temperature-
independent, but stage-dependent regulation seems to be related to the
production of pheromone (483). With the current interest of molecular
biologists in insect endocrinology, much more of this type of research will
occur in the future.

Another area that will be investigated quite actively during the next
decade will involve characterization of receptors. Since only a few recep-
tor molecules are probably present, protein purification methodology
alone will not be successful and, again, molecular biological techniques
will have to be used.

One aspect of great interest in insect neuropeptide research, which has
not been dealt with in this review, is the exploration of alternative
strategies to combat insect pests. This is very well outlined in a review by
KEeeLEY and HAYES (222). Among other strategies, one is to synthesize
peptidomimetics, i.e., substances in which at least some of the peptide
bonds susceptible to degradation by exo- or endo-peptidases in the
insect’s gut or haemolymph, have been replaced. NACHMAN and co-
workers are very active in this field. Recently, they have synthesized
a pseudodipeptide analogue of the C-terminal core pentapeptide of the
pyrokinins/ PBANs/diapause hormones which had almost the same
biological activity in the myotropic assay (cockroach hindgut) as the
pentapeptide itself (302). This line of research will surely be intensified
once pharmaceutical companies become fully convinced that insect neuro-
peptides may be useful as insecticides.
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1. Introduction

For centuries preparations containing resin from the root of Thapsia
garganica L. (Fig. 1) have been used in Arabian and Furopean medicine
for treatment of pulmonary diseases, catarrh and as counterirritants for
relief of rheumatic pains (I). The properties of the resin were described
already by Theophrastos (372-287 B.c.), Dioscorides (approximately
A.D. 50), and Plinius (A.D. 24-79) (2). Radix Thapsiae and Resina Thapsiae
have been included in several pharmacopoeias, the latest in the French
pharmacopoeia from 1937. The two major active principles were about

Fig. 1. Thapsia garganica

References, pp. 163—167
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Thapsigargin (1), R!= Oct, R2= But
Thapsigargicin ( 2), R1= Hex, R2 = But
Thapsitranstagin (3), R1=iVal, R2= 2-MeBut
Thapsivillosin A ( 4), Rl= Ang, R2= Sen
Thapsivillosin B ( 5), R1= Ang, R2= 2-MeBut
Thapsivillosin C ( 6), Rl= Oct, R2= 2-MeBut
Thapsivillosin D ( 7), R1= 6-MeOct, R2= Sen
Thapsivillosin E ( 8), R1= 6-MeOct, R2= 2-MeBut
Thapsivillosin G ( 9), R1= 6-MeHep, R2=2-MeBut
Thapsivillosin H ( 10), R1 or R2= Ang or Sen
Thapsivillosin I ( 11), R1= Ang, R2= But
Thapsivillosin J ( 12), Rl1=iVal, R2= But

Thapsivillosin K ( 13), R1= Sen, R2= 2-MeBut

Chart 1. Hexaoxygenated thapsigargins found in Thapsia

two decades ago found to be the sesquiterpene lactones thapsigargin (1)
and thapsigargicin (2) (3).

If applied on the skin these compounds induce within 4-5 hours
erythema, small vesiculae and intense itching which remains for several
days. The present interest in the genus Thapsia arose when thapsigargin
and thapsigargicin were recognized as highly potent histamine liberators
(3), general stimulants of the immune system (4—7), non-TPA tumour
promoters (8, 9) and selective inhibitors of the microsomal Ca? *-ATPases
(SERCA-ATPases) (6,10,11). Besides thapsigargin and thapsigargicin
a number of related hexaoxygenated guaianolides (3—13) only differing in
the structure of the acyl groups attached to O(2) and O(8) (12-14), and
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Trilobolide (14), R=(S)-2-MeBut
Nortrilobolide (15), R = But

Thapsivillosin F ( 16), R = Sen

Chart 2. Pentaoxygenated thapsigargins found in Thapsia and Laser trilobum

three pentaoxygenated guaianolides (14—-16) (14—16) have been isolated.
Only one of these, trilobolide (14) has been isolated from a species not
belonging to Thapsia, i.e. from Laser trilobum, Apiaceae (17). Without
definition the collective term thapsigargins is generally used for the
guaianolides (1-16), which are characterized as 1BH,6aH,3a,783,8a,10p,
11a-pentaoxygenated-6,12-guaianolides. The 1BH stereochemistry is
often found in guaianolides isolated from Apiaceae (18). Hydroxylation of
C(7) is only cxceptionally found in guaianolides [e.g. 7a-hydroxy-3-
deoxyzalazanin C(17), isolated from Podachaenium eminens, Asteraceae
(19)], but the 7p-hydroxy group is unique for the thapsigargins. A likely
explanation for the unique 7B-hydroxy group is that a precursor possess-
ing a C(7)-C(11) double bond during the biosynthesis is converted into an
epoxide, which subsequently is opened into a trans-glycol (18).

Chart 3. Ta-Hydroxy-3-deoxyzaluzanin C

References, pp. 163-167
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2. Taxonomy of Thapsia

The genus Thapsia belongs to the family Apiaceae, tribe Laserpitiae.
In Flora Europaea (20) the genus s divided into three species: T. garganica
L., T. maxima Miller and T. villosa L. distributed in the Mediterranean
area and on the Iberian peninsula. However, recent chemotaxonomic
studies based on morphological and anatomical characters, chromosome
numbers and secondary metabolites have indicated a need for taxonomic
revision of the genus (14, 21, 22).

2.1. Thapsia garganica and Thapsia transtagana

T. garganica L. and T. transtagana Brot. are classified as synonymous
in Flora Europaea. The anatomy of the fruits as well as the profile of the
secondary metabolites of the two species, however, are different. Thus, in
spite of the same chromosome number 2n=22(=2x) and the presence of
thapsigargins (Table 1) in both there are good reasons for considering
T. garganica and T. transtagana as two different species. Closer studies of
T. garganica have revealed the presence of at least two chemotypes (14).

2.2. Thapsia maxima

T. maxima has been shown to include two phytochemically identical
phenotypes I and I, having the same chromosome numbers 2n = 22( = 2x)
(21). Neither of the two contains thapsigargins. Based on this finding it is
concluded that a specimen previously regarded as T. maxima (23) should
be designated T. villosa type 4 [chromosome number 2n =44(=4x)].

2.3. Thapsia villosa

T. villosa, the most heterogeneous species, has been divided into two
distinctly different groups, 1 and 2 (22). Group 1, which does not contain
thapsigargins, is further divided into three types 1-3. Types 1 and 2, both
have the chromosome number 2n=22(=2x) and the names T. minor
Hoffgg. et Link and T. laciniata Rouy, respectively, have been proposed.
Type 3 has the chromosome number 2n =44(=4x). Group 2 includes two
types, 4 and 5, both of which contain thapsigargins, with the chromosome
numbers 2n =44(=4x) and 2n = 66(=6x), respectively.
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Table 1 Guaianolides from Thapsia

Structure Name of Formula Plant Source Plant Organ Reference(s)
Number Compound
(83 Thapsigargin CMHSOO12 Thapsia garganica Root, frmit  14,34,37
T gymnesica Root, fruit 14
2) Thapsigargicin C 3.H, 6O 1, T gargamca Root, frmit 14,34
T gymnesica Root, fruit 14
3) Thapsitranstagin  C 3. H, 6O 1, T transtagana Root, fruit  12,14,23
T villosa, type 5 Root 13
4) ThapsivillosinA  C H,0, T vllosa, type 4  Root 12,23
T villosa, type 5 Root 12,23
5) ThapsivillosnB C, _H, O , T willosa,type4 Root 12,23
T wllosa, type 5 Root 12,23
T transtagana Root, fruit 14
(6) ThapsiviltosnC  C, H_,O,, T villosa, type4 Root 12
T villosa, type 5 Root 12,13
(7 ThapsivittosnD  C, H,,O,, T vilosa, type4 Root 12
T villosa, type S5 Root 12
8) ThapsivillosmE  C, H, O,, T villosa,type4 Root 12
T villosa, type 5  Root 12
9) ThapsivillosinG  C 4sH, 0, T villosa, type 4  Root 12
T villosa, type 5 Root 12
10) ThapsivillosnH  C, H, O ., T willosa, type4 Root 12
T villosa, type S5 Root 12
(1) Thapsivitlosin I CMH“O ., T gargamca Root, frut 12,14
(12) ThapsivillosmJ  C, H, O, , T garganica Root, frmt 12 14
(13) ThapsivillosinK  C 3,H,,0,, T transtagana Root, fruit 14
T vllosa, type 5 Root 13
(14) Trilobolide C,,H,,O,, T transtagana Root, fruit 14
T wllosa, type 5 Root 23
T gargamca* Root, frit 14
(15) Nortrilobolide C26H36O10 T garganica Root, frmt 14,16
T gymnesica Root, frmt 14
(16) ThapsivillosinF  C 5 H, 6O w T villosa, type 4  Root 15,23
(18) C,H,,O, T gargamca Fruit 40,41
19) C,.H, 2O o T transtagana Root, fruit 41
(20 C,H,0,, Tullosa type5 Root 42
(21) C,H,, 0, Tuwllosa type5 Root 42
(22) C,H, O, Tullosa type5 Root 42
(23) C,H,O T villosa, type 5 Root 42
(24) Consts T maxima Root 79
(25) CZOHmO5 T maxima Root 79

* Only present 1n some specimens

References, pp 163—-167
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Table 5. Other Sesquiterpenoids from Thapsia

Structure Name of Formula  Plant Source Plant References
Number  Compound Organ

(56) d-Cadinene C15H24 Thapsia villosa var. minor Umbellas 27

(57) y-Cadinene C15H24 Thapsia villosa var. minor Umbellas 27

(58) y-Muurolene C15H24 Thapsia villosa var. minor Umbellas 27

(59) B-Caryophyllene C15Hz4 Thapsia villosa var. minor Umbellas 27

(60) B-Caryophyllene C”H“O Thapsia villosa var. minor Umbellas 27

oxide

(18), R1=2-MeBut, R2= But, R3=H
(19), R1=iVal, R2= 2-MeBut, R3=H
(20), Ri= Ac, R2= 2-MeBut, R3= Ac
(21), R1= Ac, R2= Sen, R3= Ac

(22), Ri=H, R2=2-MeBut, R3= Ac

(23), RI=H, R2= Sen, R3= Ac

Chart 4. Slovanolides found in Thapsia

The heterogeneity of T. villosa has caused some confusion in the
naming of investigated plant specimens. The name T. villosa var. minor
was used by a Spanish group for plant material, from which they isolated
a number of secondary metabolites (24—28). The structures of the isolated
secondary metabolites make it most likely, that their collection should be
designated T. villosa type 1. Likewise T. villosa var. villosa (28) is assumed
to belong to type 5.

Common for all the three types within group 1 is the presence of
derivatives of thapsane, tovarol and shiromodiol (Tables 2 and 4) in the
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(24)R = Ang

(25) R =Tig

Chart 5. 10(14)Unsaturated guaianolides found in Thapsia

10
CH;

OR

% CH
HC CHy  CH
@NHR=H

(28) R = Fer

(30),R=H

(31),R=Ac

Chart 6. Thapsanes found in Thapsia
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CH3

O%
jost
o

HiC CH; } '
OH

32)

O%

CH
H3C CH; 3 :

OH
(33), R=Ang
(34), R = Sen
(35), R = p-Coum
(36), R = Fer

RO
CHj

HyC CHC;;H3 ' ?
OH

(37), R = Sen

(38), R = Ang

(39), R=Tig

CH;

AngO

2

CH
HsC CHy !
OH
(40)

Chart 7. Epoxythapsanes found in Thapsia
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CH; OSen

CHj; O
H;C CH;

_..O...-

H3C CH;,
0 \H:C

41

AngO’ CH;
Chart 8. Dimeric epoxythapsanes found in Thapsia

HiC

H;C OH
HC© CH;

Guaiol (42)

(43), R =Sen
(44), R = p-Coum

(45), R = Fer

Chart 9. Guaianes found in Thapsia

roots, whereas only type 2 contains guaiol and guaiane esters (Table 3).
The major constituent of the essential oil, accounting for 79—89%, from
the fruits of all three types is geranyl acetate (29).

In contrast, the characteristic constituents of the roots of the two types
4 and 5, within group 2, are thapsigargins and slovanolides (Table 1),
phenylpropanoids (13) and 6-methoxy-7-geranyloxycoumarin (23). Only
a few tovarol derivatives (46,52,53 and 55) have been detected in plants
from both groups 1 and 2 (28). The essential oils from types 4 and 5 are
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_O-R

H;

él—b OH CHs
(46)R = Ang
(47)R=Sen
(48)R = p-Coum
(49)R =Fer

_-OAng

CH, OH CHs

(50)R=H

(S1)R=Ang

(52)R=H

(83)R=Ac

_OAng

NG
CH3 OAc CH3
(55

Chart 10. Germacranes found in Thapsia
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CH;
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3 H

H;C CH;

§-Cadinene ( 56)

CH,

H;C
H,;C CHj;

y-Cadinene (57)

CH,
H 2

HiC
i H

H;C CH;

Y¥-Muurolene (58)

CHj

H,C

CH3

B-Caryophyllene ( 59)

Chart 11. Sesquiterpenes found in Thapsia

similar to the essential oil from T. maxima in having limonene and methyl
eugenol as the two major components which together constitute 80-90%
of the oil (21,30, 31).
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Chart 12. B-Caryophyllene oxide (60)
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Chart 13. Structure and abbreviations for acyl residues found in Thapsia

References, pp. 163-167



Sesquiterpenoids from Thapsia Species 145
2.4. Thapsia gymnesica

Thapsia gymnesica Rossello & Pujadas, found only on Mallorca and
Minorca, has been described as a new species in 1991 (32). Like T.
garganica the chromosome number is 2n=22(=2x) and it contains
thapsigargin (1), thapsigargicin (2) and nortrilobolide (15), which previ-
ously have been found only in T. garganica. The characteristic difference
between T. garganica and T. gymnesica is the much smaller fruits of
T. gymnesica, which are of the same size as the fruits of T. maxima and
T. villosa.

3. Elucidation of the Structure of Thapsigargin

Comparison of the spectra of thapsigargin (1) and thapsigargicin (2)
(Fig. 2) with those of trilobolide (14) (17) showed that 1 and 2 were
hexaoxygenated guaianolides (33). The non-crystalline state of thapsigar-
gin prevented determination of the relative and absolute configuration by
an X-ray crystallographic analysis. However, after treatment of thapsigar-
gin with thionyl chloride a crystalline derivative was obtained, the struc-
ture of which was determined by X-ray analysis. This analysis established
the location of the four acyl groups and the relative configuration, except
at C(7)and C(11) (34). The X-ray analysis also showed that in analogy with
trilobolide (17) treatment of the thapsigargin with thionyl chloride con-
verts the vicinal 7,11-diol into the epoxide (78) (Scheme 7, p. 156). Although
it is easily rationalized thionyl chloride promoted conversion of 1,2-diols
into epoxides apparently only occurs if the geometry of the molecule
favours intramolecular dehydration (see e.g. 35). The few known analog-
ous reactions did not allow conclusions concerning the stereochemistry of
the starting 7, 11-diol.

The unresolved stereochemical questions were elucidated, when the
X-ray structure of trilobolide was published (36). 8-O-Deacylthapsigargin
(63) formed an 1,3-dioxane (82) upon reaction with acetone (Scheme 7) as
did 8-O-deacyltrilobolide (37). This common reaction path indicated that
the 7-hydroxy group had to be trans to the 8- and 11-hydroxy groups. In
addition the absolute configurations of C(3) in thapsigargin (1) and
trilobolide (14) were established by taking advantage of the exciton
coupling in the allylic ester of the a,f-unsaturated ester residue (38, 39).
The found absolute configuration of trilobolide (14) was confirmed by
determination of the absolute configuration of the 2-methylbutyric acid
residue (38) and taking advantage of the relative stereochemistry as
determined by X-ray crystallography (36).
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HiC,

Fig. 2. 13C NMR (CD, OD) and *H NMR (CDCl,) Data for Nucler of the Skeleton of
Thapsigargin (12, 34)

The acyl groups in the thapsigargins (2-13) were located by interpreta-
tion of the fragmentation pattern of the mass spectra (12). This method,
however, did not permit locating the isomeric acyl groups in thapsivillosin
H (10).

4. Proazulenic Slovanolides

In addition to the thapsigargins some 7aH-6,12-guaianolides (18-23)
have been isolated from species belonging to the genus Thapsia (40—42).
These guaianolides were originally isolated in order to find the precursor
for the azulenes found in the essential oils of the fruits of T. garganica (43).
All of the guaianolides (18—23), which possess the stereochemistry charac-
teristic of the slovanolides (44), are easily converted into azulenes by
heating. The mechanism for the degradation of the 11-hydroxy lactones
(18) and (19) to give 1,4-dimethylazulene (61) could be a retrograde
Prins-like reaction (45) and some cis-eliminations of carboxylic acids
(Scheme 1). This reaction explains the presence of 1,4-dimethylazulene
(61) in the essential oil of fruits from T. garganica and T. transtagana.

References, pp. 163—167
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H;C

1
R'Q %

|

CH3
H3C Rlo §3C O%OH

H}C H3C H O 0
CHj3
(61) 0

Scheme 1. Possible mechanism for the formation of 1,4-dimethylzulene

—_—
HiC
i O
H;C CH;
0
(62)

Scheme 2. Possible mechanism for the formation of 1,4-dimethyl-7-acetylazulene
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The proton of the 11-hydroxy group is essential for formation of 1,4-
dimethylazulene as depicted. Accordingly only trace amounts of
1,4-dimethylazulene can be found after heating a methanolic solution of
the 1la-acetoxyslovanolides (20-23) whereas the main product is 1,4-
dimethyl-7-acetylazulene (62). The mechanism for this conversion is
obscure, but the decarbonylation of a-oxygenated acids and esters de-
scribed in the literature (46) suggests that the azulene is formed through
the reaction path depicted in Scheme 2.

5. Non-lactonic Sesquiterpenoids from Thapsia

A number of non-lactonic sesquiterpenoids have been isolated from
specimens belonging to T. villosa (Tables 2—5). Most interesting from
a phytochemical point of view are the 2,3,3a,4,4,7a-hexamethylindan
(thapsane) derivatives (26—41), since natural products possessing this
skeleton only have been isolated from plants belonging to Thapsia. The
unique structure including three contiguous quaternary carbons and five
to six chiral centres has made the compounds attractive synthetic targets
(47,48).

6. Pharmacological Activity of the Thapsigargins

The mechanism behind the skin irritating effect of the thapsigargins
might be related to their ability to release mediators from cells belonging
to the immune system. Indeed thapsigargin was demonstrated to activate
a broad number of cells including mast cells (3,49), neutrophil and
basophil leucocytes, lymphocytes, macrophages and platelets (4—7). Later
studies have verified that thapsigargin activates virtually all kind of cells
(50,51), with erythrocytes as exceptions (4). Besides causing release of
mediators or contraction of muscle cells thapsigargin was shown to be
a tumour promoter on mouse skin (8). Careful study of the numbers of
induced tumours reveals an unusual decrease after 22 weeks. The recently
described thapsigargin induced programmed cell death (apoptosis) (52)
might explain this finding and might indicate a future for thapsigargin in
the treatment of cancer.

The broad spectrum of activity indicates that thapsigargin interferes
with an ubiquitous target. A clue for the identification of this target was
the finding that all effects of thapsigargin were preceded by a dramatic
increase in the cytosolic Ca** concentration (4, 53). This effect was
rationalized by the observation that thapsigargin was a selective inhibitor

References, pp. 163—167
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OH
C(CHz)3
(HyCiC
OH
Cyclopiazonic acid 2,5-Di-tert-butylhydroquinone

Chart 14. Structure of cyclopiazonic acid and 2,5-di-tert-butylhydroquinone

of Ca?* pumps in the sarco- or endoplasmic reticulum (the SERCA
family) without affecting either the pumps in the plasma membrane or
those in the mitocondrial membrane (6, 10,11). In the resting state of the
cells the cytosolic Ca®* - concentration is maintained at a very low level by
active transport of Ca?* either into the endo- or sarcoplasmic reticulum
or to the extracellular medium. Inhibition of the SERCA pumps is
accompanied by a leak in the membranes surrounding the microsomal
Ca%*-pools causing an increased cytosolic Ca®>* concentration and
eventually an opening of Ca?*-channels in the plasma membrane, fol-
lowed by an influx of extracellular Ca?™. Since Ca2* signal transduction
regulates such diverse cellular processes as fertilization, cell growth,
muscle contraction, neuronal signal transduction and mediator release,
any compound selectively affecting a step in the Ca?* homeostasis is
a potential tool for investigating the physiology of the cells.

In addition to the thapsigargins two other compounds, 2,5-di-tert-
butylthydroquinone and cyclopiazonic acid, have been shown to mobilize
Ca?* from the same intracellular pools (54—57). However, as it is four
order of magnitudes more potent than the latter two compounds, thap-
sigargin is the preferred tool for investigation of the Ca?" homeostasis
(56,57). A still debated question concerning the mobilization of Ca®™*
during cell activation is whether the depletion of the microsomal Ca®* -
pools and the opening of the plasma membrane Ca?® " -channels is coupled
through an unknown soluble messenger (58). Thapsigargin has played
a key role in the attempts to elucidate this problem.

7. Molecular Pharmacology

The Ca®"-ATPases belong to the P-type ion pumps. These enzymes
are characterised by a transport mechanism which involves occlusion of
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2Ca2C;t ATP ADP
El$——- E *Ca, <=2 E,-P*Ca,

N |

E*Tg«—, E <= E P == E_-P*Ca
2 2 2
T ‘T:

1 n

Fig. 3. A model of the transport cycle for SERCA pumps illustrating the dead end complex
formed with thapsigargin [modified after (60, 61)}

the cations to be translocated followed by a transfer of the terminal
phosphate group of ATP to a B-aspartyl carboxyl. This phosphorylation
induces a change of conformation from the E,; to the E, conformation.
This conformational change transports the cations through the mem-
brane against the concentration gradient and releases them to the in-
tracellular pool or to the extracellular medium. After release of the cations
the pump is dephosphorylated and returns to the E; conformation (59).
Thapsigargin inhibits the SERCA pumps by locking the enzyme into
a conformation, which have only a poor if any affinity for Ca®*, ATP and
phosphate (60,61).

In Fig. 3 the complexation between thapsigargin and the ATPase has
been drawn as if the reaction were irreversible. In principle, this reaction
must be reversible; however, the extremely small dissociation constant
[K,;2.2 pM or less (62)] makes this reaction irreversible in practice. Since
complexation with thapsigargin locks the enzyme into a dead end com-
plex this binding must inactivate the enzyme by decreasing the flexibility.
An improved knowledge of the binding site, thus might contribute to an
understanding of the conformation changes involved in the translocation
of Ca’*,

At the present the most detailed model for the structure, topology and
helix packing of P-type ion pumps has been obtained by electron micro-
scopy (63). According to this model the enzyme contains ten transmem-
brane helices and an ATP binding site and a phosphorylation site on the
cytosolic loop combining the fourth and fifth transmembrane segment.
The Ca?* binding site is constituted from residues on the fourth, fifth,
sixth and eighth transmembrane section (64). Studies on chimeric proteins
consisting of defined parts of Ca?*-ATPase and Na*, K*-ATPase have
revealed that the third transmembrane segment is important for the
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binding of thapsigargin (65—67). Studies on the complex between a fluor-
escent thapsigargin derivative and the pump have revealed that thapsigar-
gin is situated less than 19 A from tryptophan residue-272 (68). An indirect
way of characterising the topography of the binding site is to correlate
changes of the structure of the molecule with the inhibitory potency of the
analogue. This, however, depends on development of methods for selec-
tive transformations of thapsigargin.

8. Chemistry of Thapsigargin

Selective modification of the structure of thapsigargin is complicated
by the few different functional groups present, although the guaianolide
skeleton is heavily substituted.

8.1. Changes at C(8)

Anchimeric assistance by the 11-hydroxy group in the solvolysis of the
ester group at C(8) results in selective hydrolysis of the butyrate group to
give (63) by merely allowing a methanolic solution to stand for some days
at room temperature (Schem 3). The reaction is catalysed by addition of
a few percent of triethylamine (69). In contrast to sodium carbonate
catalysed cleavage of the butanoate group (70), triethylamine in methanol
does not open the lactone ring, a side reaction which after acidification has
been shown to afford a mixture of (63) and the isomeric 8,12-guaianolide
(64). Addition of acid to a methanolic solution of thapsigargin decreases
the rate of the solvolysis.

An isomer of 8-O-debutanoylthapsigargin has been claimed to be
present in a methanolic extract of the roots of T. garganica (71). The
published spectrum of this compound, however, is similar to the spectrum
of (63) and the time consuming extraction with methanol (7 days) makes it
likely, that the compound is (63) formed by methanolysis of thapsigargin.

Compound (63) has been used as starting material for preparation of
radio and fluorescence labelled analogues [e.g. (*H-1) and (66)] (69, 70). In
spite of the loss in the affinity for the Ca?*-ATPases by insertion of a large
fluorescent group, the derivatives have found use as tools for investigation
of the Ca?* homeostasis and the topography of the binding site.

Esterification of the 8-hydroxy group in (63) with vinylacetic acid
yields (65), which by selective reduction of the terminal double bond by
hydridocarbonyltris(triphenylphosphine)-rhodium(f) catalysed hydro-
genation using deuterium or tritium gas, gave access to deutero- or tritium
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1) Mild base
/I(L 2) Acid 0
CHyCHpecOQ G P~ CHs CHyCHpc0Q G P~ "CHs
0
HC HC 0 --OH
OH
CH; HsC 0 ---OH
CH,
0
(64) (63)
(RCO)0
DMAP
H‘_;C/\/\/\/U\
HiC
©5) R -HCT NCH,
3
3 L/jH
Cu) R= -HC

0 0
\\S// CH
(66) R= 'HZC/\IT/ P 3
H

Scheme 3. Replacement of the 8-O-acyl group of thapsigargin
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labelled thapsigargin (*H-1) (70). Although thapsigargin labelled in the
8-O-acyl group is useful for binding studies (72), the derivative is unfit for
metabolic studies because of the possible loss of the reporter group. In
order to overcome this problem 8-O-debutanoylthapsigargin (63) was
used for radiolabelling in the guaianolide skeleton. 8-O-Debutanoylthap-
sigargin (63) was oxidized to the ketone (67) which by stereoselective
reduction with sodium borohydride afforded the starting material
(Scheme 4). The use of sodium borotritide permitted tritiation at C(8) in
the guaianolide skeleton (69). In contrast to the mode of reduction
with sodium borohydride, reduction of the 8-ketone with sodium
triacetoxyborohydride selectively afforded the 8-hydroxy derivative in-
verted at C(8) (68) (73). This might be explained by assuming that the
11-hydroxy group defines the stereochemistry of the product.

8.2. Changes at C(3)

Selective cleavage of the angelate ester at O(3) to give (71) was accom-
plished by permanganate oxidation of the double bond under phase

(o}

cHyCHcoQ 3G 07 Chs

H3C O CH;

CH;3(CH;)sCOQ H HyCrOy4 0,
0O HiC O-- 0]
0 ---OH
HiG NaBH, OH
OH CH; H;C ""OH
CH3 H3C ."OH CH3;
CH; 0o
o) (67)

(63)

Na(CH3COO);BH l

CHy(CHYCOQ FHG 07 "CHs

(69)

Scheme 4. Inversion of C(8) in thapsigargin
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transfer conditions to give the pyruvate (70) followed by methanolysis
(Scheme 5). Thapsigargin analogues with inverted configuration at C(3)
were obtained either by oxidation to the ketone (72) followed by

CH;3(CH,)sCOQ

CH3(CHp)sCQ

HOr

1

CHy(CHpeCOQ HG 07 "CHs
)
KMnO, 0 ---00CC3Hy
I OH
CH3 H3C --"OH
CH,
(10) 0
Pyridine
CH30H
CHyCHpcOQ 156 97 "Chs
HO-—- --00CC;Hy
-— OH
H,CrO4 H;C ---OH
CH;
an 0
H* Y
CH3(CHole~ &0,

|
O

(73) o
(CH;3(CH;)sC0O),0
DMAP
I
CHyCHpcOQ 56 97 "Chs
CHy(CHy)eCOO ---00CC3Hy
OH
--OH
CH,

(76)

Scheme 5. Inversion of C(3) in thapsigargin

References, pp. 163-167



Sesquiterpenoids from Thapsia Species 155

borohydride reduction to give a mixture of (74) and (75), or by treatment
of (71) with trifluoromethanesulfonic anhydride to give the same mixture
of the two monooctanoates (74) and (75). The two monooctanoates were
found to be easily interconvertible, but treatment of the mixture with
octanoic anhydride afforded the stable dioctanoate (76) (73) (Scheme 6).

HC 0O CH
(CH3(CHo)6CO),0 CH3(CHy)¢COQ H & 3

DMAP
(71) —_—> CH3(CH;)sCOO---

()]

Scheme 6. Replacement of the 3-O-acyl group in thapsigargin

Access to (71) has made a number of thapsigargin analogues available,
in which the angeloyl group has been replaced with other acyl residues e.g.
(77)(73) (Scheme 6). These latter analogues have given important informa-
tion about the binding site for thapsigargin.

8.3. Changes of the Vicinal Diol

Treatment of thapsigargin with thionyl chloride converts the diol into
the P-epoxide (78) (34) (Scheme 7). Esterification of the two tertiary
alcohols affording the diacetate (81) only succeeds if 4-dimethyl-
aminopyridine is added as a catalyst. The 11-O-monoacetate (80) is
formed as the major side product (73). Selective esterification of the
7-hydroxy group to give (79) is accomplished via the isopropylidene
derivative (82) (73).

8.4. Changes of the Lactone Carbonyl Group
Reduction of thapsigargicin (2) with sodium borohydride or preferen-

tially sodium bis(2-methoxyethoxy)ethoxy-aluminium hydride (74) af-
fords a mixture of the a-and B-lactol (83) and (84), which has been used as
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(CH3CO)%,0
\DMAP i
HiC 0o
0

CH3(CH,)sCOQ

O,
HiC O-- ---00CC3H;
OR'
CH3 ch "~OR2

(79) RI=CH,CO, R2=H

(80) Ri=H, R2=CH_CO
CH;COCH3 (81) R1=R2=CH,CO
CH3C(OCH;),CHs, H'

™~ 0

CHy(CHpcoQ G 07 "CHs

(63)

(82)

Scheme 7. Derivatives of the glycol residue of thapsigargin

starting material for several analogues of thapsigargicin (2) (Scheme 8).
Attempts to separate the two epimeric lactols failed, probably because of
a phenomenon analogous to mutarotation in carbohydrate chemistry.
Treatment of the lactols (83) and (84) with trimethyl orthoformate in
ethanol affords a mixture of the B-ethyl acetal (85) and the two possible
ortho formates (86) and (87) (74). In contrast reaction with triethyl

References, pp. 163-167



Sesquiterpenoids from Thapsia Species 157

CH;, CHyCH)coqQ G P7 TCHs

CH3(CH2)4COQ
0, 0,
HiC, O-- ---O0C(CHp),CH; HsC O--- --O0C(CH,),CH;
OH 'OH
CH; HsC ---OH CH3 HsC \-"OH

Rl." 2 \ OC,Hs

(83) R'=0OH,R’=H 85)

it (C2HsO1CH
(84) R'=H,R'=0H 2753 .
CHHC(COCH;);,CH;
H 0 Q
CHyCHcoQ HHG 97 “Ch cHCHpcoQ 15 7 CHs

0, 0,
HsC, 0--- ---00C(CHp),CH; HsC O--- ---00C(CHy),CHs

OH

CH; H;C ==CHs CH; HiC ,\0CH3

\ 2

\O/!O‘-CH:; \()/;-R
! 1
CH; R
(88) (86) R1=0C,H R2=H

(87) RI=H,R2= OCsz

Scheme 8. Derivatives of thapsigargicin lactol

orthoacetate only yields the a-acetate (91) (Scheme 9). Reaction between
the lactols and 2,2-dimethoxypropane affords the tetracyclic derivative
(88)(71). Treatment of the lactols (83) and (84) with N,N-dimethylformam-
ide dimethyl acetal affords the epoxide (90).

The a-ethylthioacetal (94) obtained by reacting the lactols (92) and (93)
with ethanethiol in the presence of hydrogen chloride was reduced to give
the 12-deoxoanalogue of thapsigargin (95) (75) (Scheme 10), in which the
heterocyclic ring cannot be opened under physiological conditions as is
the case for thapsigargin (1) as well as for the lactols (92) and (93), (83) and
(84). The reduction, which is catalysed by triphenyltin hydride and
o0 -azoisobutyronitrile follows a radical mechanism and the radicals
formed during the reduction also converts the thermodynamically less
stable angeloyl residue into a tigloyl residue.

8.5. Changes at O(10)

Selective hydrolysis of the acetate ester can be accomplished indirectly
by hydrolysis under more vigorous reaction conditions to give the 2,8,10-
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Scheme 10. Synthesis of 12-deoxythapsigargin
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NaOH H3C,
1) —_—

(96)

(CH3(CH)sC0),0
DMAP

CHy(CHyCOQ 156 PH
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G H5C, 0 -~ 00C(CH2):CHs
-— OH
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Scheme 11. Selective hydrolysis of the 10-O-acyl group in thapsigargin

O-trideacylderivative (96) which by reaction with an excess of octanoic
anhydride is converted to the 2,8-dioctanoate (97). Selective hydrolysis of
the 8-octanoate group to give (98) followed by reesterification with
butyric anhydride yields 10-O-deacetylthapsigargin (99) (73) (Scheme 11).

9. Structure Activity Relationships
The very small value of the dissociation constant indicates that

thapsigargin (1) is very intimately bound to the binding site. This statement
is confirmed by the dramatic change in affinity cause by small changes in
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Table 6 Relatwe potencies of Thapsigargin-Derived Microsomal
Ca?*-ATPase Inhibitors*

Compound Relative Activity (R)
) 1

) 10

95) 11
(85) 12
92+ 93) 16

91) 19
(86) 25
(80) 25

(79) 28

(77 11

(81) 15

(88) 16

(86) 40

(99) 42

(72) 66

(76) 44 x 10
(69) 31 x 10?2

* The R value designates the number obtained by dividing the
IC, , value of the analogue with the IC,  value of thapsigargin (1)
[c, 0(analogue)/ICSO(thapslgargm)] The analogues are ar-
ranged according to decreasing potencies The numbers are
obtained from the IC, values reported in Refs (72-74) Notice
that the mhibition of the ATPase has been measured 1n two
different ways 1n the references and that different enzyme
preparations have been used

structure (Table 6). Thus, epimerization of C(8) causes the IC,, value to
increase more than 3000 times [compare (1) with (69)]. Similar epimeriz-
ation at C(3) induces a fortyfold decrease in affinity [compare (77) with
(76)]. The carboxylic acid residue at O(3) also has some importance for the
affinity, since replacement of angelic acid (1) with the larger octanoic acid
(77) causes an elevenfold decrease in inhibitory activity. The acyl residue
at O(10), however, appears to be of major importance for activity since
hydrolysis of this ester causes a fortyfold decrease in activity [compare (1)
with (99)]. In contrast, the hydroxyl groups at C(7) and C(11) appear to be
of lesser importance since monoacetylation (79) and (80) only yields a two
to threefold decrease in activity. Acetylation of both of these hydroxy
groups (81), however, produces a somewhat weaker analogue, which
might be explained by the bulkiness of the two acetyl groups. Similarly,
the lactone carbonyl is not essential for activity, since reduction of this
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CH-96)

Scheme 12. Metabolic catabolism of thapsigargin
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group to a methylene group (95) has only a marginal effect. This is
confirmed by reduction of the lactone to a mixture of the two lactols (92)
and (93), which has a somewhat smaller activity than thapsigargin. It is
tempting to speculate that this remaining activity mainly originates in the
B-form, since the B-ethyl acetal (85) is only marginally less potent than 1,
whereas the a-acetate (91) is only half as potent. Replacement of the
butanoic acid residue with larger acid functions causes a decrease in
activity, thus limiting the possibilities for introduction of fluorescent
groups which in general contain a large aromatic system.

Replacement of the octanoic acid residue at O(2) with hexanoic acid
only has a marginal effect on the activity [compare (1) with (2)]. Un-
fortunately no chemical method has been developed for selectively replac-
ing this acid. However, Nature produces trilobolide (14), which appears to
be four times less potent than thapsigargin indicating that the nature of
the ester group has some bearing on the activity. It is important to point
out that the potencies observed in studying enzyme preparations do not in
a simple way correspond to functional assays performed on e.g. whole
cells. Thus both of the acetates (79) and (80) have a considerable effect on
the isolated enzyme, but they are thirty times less potent as histamine
secretagogues (77).

The above structure activity relationships are based on measurements
performed on purified enzyme preparations.

10. Metabolic Catabolism of Thapsigargin

No in vivo study has been performed on the metabolism of thapsigar-
gin. Incubation of hepatocytes with thapsigargin tritiated at C(8) reveals
a quick catabolism of the compound which affords first 2-O-deoctanoyl-
thapsigargin (*H-100) and thereafter the trideacylated derivative (*H-96)
(78) (Scheme 12). Further degradation products could not be detected
because of loss of the reporter tritium, probably occurring by an oxidation

‘of the secondary alcohol at C(8). Addition of diethyl p-nitrophenyl
phosphate strongly protected thapsigargin from metabolic degradation
indicating that carboxylesterases catalyze the transformation.
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1. Introduction

Pregnanes (1, 2) are C,, steroidal compounds found in nature either in
the free state or as glycosides. In pregnane glycosides the sugar moiety is
linked to an alcoholic hydroxyl group of the pregnane aglycon, most
frequently at C-3 (3), C-20 (4) or both (bisdesmosidic glycosides) (5),
through an acetal linkage. However, in some cases, the sugar moiety is
linked to hydroxyl functions at C-2 (6), C-4 (7) or C-21 (8). Pregnane
glycosides containing one (9) to six (10) sugar units have been isolated
from the extracts of different plant parts, i.e. roots, stems, seeds etc.

The last comprehensive review of pregnane glycosides by REICHSTEIN
(I) covered the literature up to 1967. Although four review articles dealing
with certain aspects of pregnanes and their glycosides (11-14) have since
been published, no comprehensive review has appeared since then. A
review article by DEePAk and co-workers (2) dealt in depth with the
structural features of plant pregnanes; the present review article is thus
a continuation of this earlier review. Besides the structures of isolated
pregnanes and their glycosides, new techniques of isolation, recent
physicochemical methods of structure elucidation and the biological
significance of glycosides reported during the period 1968—1995 have been
incorporated.

2. Isolation and Identification

The advent of new chromatographic techniques has made it possible
to isolate these compounds in high purity which was not possible earlier.
Examples of the use of classical and more recent techniques for isolation of
pregnane glycosides are given below.

2.1. Thin Layer and Column Chromatography

Use of thin layer chromatography (15) still prevails for preliminary
identification and for comparison with authentic samples. The use of
reversed phase TLC (RP-8-R,, S and RP-18,,,) for the study of preg-
nane glycosides has been reported by JiN et al. (16) and YUAN et al. (17).
Use of high performance TLC (Si 50,000 F-254S) (6) and high perform-
ance reversed phase TLC (Merck HPTLC RP-18) (18) has also been
reported.

The most common and successfully employed method for preparative
isolation of pregnane glycosides is column chromatography. Normal and
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reverse phase silica gel columns (Li chromprep RP-8) are being used for
such isolations (17,19). With reverse-phase packing material, there is
increased back pressure which requires a shortening of the column in
order to maintain adequate flow rates (20). AgNO, impregnated silica gel
has been used for separation of A’-and 5a-H types of pregnane deriva-
tives (19). Several bisdesmosidic pregnane glycosides have been isolated
by ABE et al. (21) who used a combination of polystyrene (MCI gel),
reverse-phase octadecyl silica (ODS) and silica gel columns.

2.2. Sephadex LH-20 Chromatography

Sephadex LH-20 has been used successfully for the separation of
pregnane glycosides. A typical isolation procedure involving silica gel
column chromatography and Sephadex LH-20 for the separation of
cynanformoside A (81) and B (82) from Cynanchum formosanum has been
described by CHEN et al. (22). Sephadex LH-20 chromatography has been
combined with silica gel and ODS chromatography by IDAKA et al. (23)
for the isolation of causiaroside II (237).

2.3. Flash Chromatography

Preparative air-pressure (compressed air or nitrogen) driven liquid
chromatography (flash chromatography) (24) is relatively fast, thus reduc-
ing the risk of decomposition and sample loss. Thus, dry column flash
chromatography using CH,Cl,~MeOH and hexane-Me,CO has been
used by CABRERA et al. (25) for preliminary separation of the crude
glycoside mixture obtained from Mandevilla pentlandiana.

2.4. Low Pressure Liquid Chromatography (LPLC)

LPLC(26)is a very versatile and simple means of isolating substances
on a milligram to gram scale, generally in combination with a pre-
purification step. In order to increase the effective column length and thus
augment loading capacity and separating power, several Lobar columns
are connected in series (20). The technique makes use of columns contain-
ing packing with a particle size of ca 40—60 um. Thus, YUAN et al. (17) have
isolated marsdekoiside A (183), a pregnane triglycoside from Marsdenia
koi, using Lobar chromatography on a LPLC system with a RP-8 column
in combination with Si gel chromatography.
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2.5. High Performance Liquid Chromatography (HPLC)

HPLC (27-29) is a very efficient technique used for the detection and
isolation of pregnane glycosides and is commonly applied as a last step in
the purification process. ABE et al. (21, 30) have purified the bisdesmosidic
pregnane glycoside constituents of Apocynum venetum and Trachelosper-
mum asiaticum using CH,CN and water as eluent. HPLC using reverse
phase packing material is also being successfully employed for isolation
purposes. Thus, ITOkAWA et al. (31) effected the separation of pregnane
glycoside constituents of Periploca sepium by HPLC on RP-18 column
using methanol-water as eluant while toosendanoside (235) was isolated
from Melia toosendan by NAKANISHI et al. (6) by HPLC on a reverse phase
Kusano ODS column (MeOH-H,O; flow rate 3 ml/min) and Kusano
Si—-10 silica column (CHCl;—MeOH; flow rate 3 ml/min). Preparative
HPLC was used for the isolation of four pregnane glycosides from
Boucerosia aucheriana by HAYASHI et al. (18), while AHMAD et al. (32) used
preparative HPLC on a reverse phase column for separation of two
pregnane glycosides from Caralluma tuberculata. Chiral HPLC columns
are being used for confirming the absolute stereochemistry of the sugar
moieties obtained by acidic hydrolysis of pregnane glycosides (19).

The detection of pregnane glycosides is usually difficult as no diagnos-
tic test or specific reaction for their identity is so far known. Colours
observed with non-specific reagents such as chloroformic SbCl, (33, 34)
and 50% H,SO, (35, 36), although widely used for their detection, are
never reliable and conclusive. Still, there are some diagnostic reagents and
reactions which are used for characterization, such as the LIEBERMANN—
BURCHARDT (37) and CARR—PRICE tests (34) for steroids. The presence of
sugar(s) in these glycosides is established by the MOLISCH test (38, 39).
2-Deoxy- and 2,6-dideoxyhexoses are characterized using the xanthydrol
test (3,40), WEBB’s test (41), vanillin-perchloric acid reagent (42, 43) and
KELLER-KILIANI test (3,44) while the presence of normal (2-hydroxy)
sugars is detected by PARTRIDGE (45) and FEIGL tests (9, 46).

3. Structure Elucidation

The conventional method for structure elucidation of pregnane glyco-
sides involved acid hydrolysis followed by identification of the aglycon
and sugar residues separately (47), whereas the site of glycosidation was
usually determined by comparing the UV absorption of the glycosides
with that of the aglycon in the presence or absence of various shift reagents
(48,49). In recent years, in addition to mass spectroscopy (EI, CI, FD and
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FAB), other physico-chemical techniques of a non-destructive nature such
as NMR ('H, '3C and 2D) etc. are increasingly being used for structure
elucidation of pregnane glycosides.

3.1. One-Dimensional NMR Spectroscopy

'H NMR Spectroscopy

The high frequency (400-500 MHz) 'H NMR spectra of pregnane
glycosides are well resolved; thus the information from the range which
contains the signals of anomeric protons is considerable. The anomeric
protons of the monosaccharides present in pregnane glycosides appear
between 4.3-5.5 ppm (50,51). The anomeric protons of a-glycosides
usually resonate 0.3—0.5 ppm downfield from those of the corresponding
B-glycosides (52). In the case of normal (2-hydroxy) sugars, the anomeric
proton usually appears as a doublet (16) in the region 84.4-5.4 (16,52),
the magnitude of the splitting depending on the stereochemistry of H-1" as
well as that of H-2'. For example, if the H-2' is axial (as in the case of gluco
and galacto stereochemistry), J . ,. is relatively small (2-4 Hz) for an a-
glycosidic linkage, whose H-1' is equatorial (53). In B-anomers of sugars
with gluco and galacto configuration H-1" and H-2' are trans-diaxial
which results in a larger (8—10 Hz) coupling constant (50). In sugars having
the manno-configuration, such as rhamnose, where H-2' is equatorial the
small dihedral angle gives rise to small values of J,, ,. for both a- and
B-anomers (52). In the case of 2-deoxy sugars, the signals of the anomeric
proton appears as a dd in the region $4.2-5.3 (51,54) and sometimes as
a triplet (55) if J,. ,, = J,. ,,, depending on the nature of the glycosidic
linkage. Coupling constants of 7-10 and 1-2 Hz are indicative of a B-
glycosidic linkage (3) with the sugars in the *C, conformation (56) and
H-1" axial, whereas smaller coupling constants of 3—4 and 1 Hz (57)
indicate a a-glycoside with the sugar in the *C, conformation (56) and
H-1'is equatorial. In the higher field region, the signals of the equatorial
and axial H-2' protons of 2-deoxy hexoses appear as two sets of multiplets
in the region 62.0-2.5 and 1.5-2.0 (53), respectively, while the characteris-
tic signals of the secondary methyl groups (6'-CH;) of 6-deoxy sugars
appear as doublets (J = 6Hz) between 61.0-1.5 (3).

The 'H NMR spectra of pregnane glycosides also provide important
information about the aglycon. Thus, -CHOHCH, or -COCHj side
chains at C-17 can be recognized (15) by the presence of a three proton
doublet in the region 3 1.0-1.5 or a three proton singlet at 52.1, respective-
ly. Two three proton singlets appear in the region 60.7-1.2 (15,53) due to
the angular methyl groups at C-10 and C-13; however, in 18-nor pregnane
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glycosides the signal of the C-13 angular methyl group is absent (58).
Signals of the methylene and methine protons occur in the region §1.5-2.5
(59) and 83—4 (2), respectively. The C-11 methine proton under a hydroxyl
appears in the region 83.2-4.6 (15, 60) as a triplet (15) or double doublet if
a hydroxyl is present at C-12 (61) while the C-12 and C-20 methine
protons generally are doublets (62) and quartets (63), respectively, in the
same region depending on whether substituents are present on neigh-
bouring carbons. Esterification of the hydroxy functions shifts the signal
of corresponding methine proton downfield by 0.6—-1 ppm (2) compared
with its precursor. Most commonly, pregnanes are found as esters of
benzoic (19), cinnamic (10), isovaleric (64), tiglic (65), nicotinic (66),
2-methylbutanoic (65), B, p-dimethyl acrylic (ikemic) (10,67) or acetic
acids (69).

The number of primary and secondary hydroxyl groups present can be
established by counting the acetate peaks at 62.1-2.3 of acetylated
pregnane glycosides (53) while the number of tertiary hydroxyl groups can
be deduced by D,O exchange (16) and the trichloroacetyl isocyanate
reagent (68). Decoupling experiments (7, 52, 58) which are very helpful in
confirming the assignments of the anomeric protons and other functional
groups are now routine. These experiments can be used for confirming the
assignments of the signals due to H-1’, H-2" and H-5' of the 2,6-dideoxy
sugars besides the C-20 methine and secondary methyl protons present in
the side chain of the pregnane aglycon (63). Proton spin decoupling and
correlated spin—spin coupling experiments (69) have been used for estab-
lishing the structures of constituent hexoses of pregnane glycosides.

Nuclear Overhauser Effect (NOE) measurements can also be used to
prove the point of attachment of the sugar moiety to the aglycon. Ir-
radiation of H-3a of the aglycon (when the sugar is linked to 3-OH) results
in an NOE at the anomeric proton of the sugar (S,) directly attached to
the glycon (5). Similarly, irradiation of the anomeric proton of the second
sugar (S,) causes enhancement of H-4 proton (in case of a 1 — 4 linkage) of
the first sugar (S,) and vice versa (70), thus providing information regard-
ing the sugar sequence and site of glycosidation in pregnane oligoglyco-
sides. The technique is also helpful in determining the structure of the
constituent sugars (7, 32) and the stereochemistry at C-17 and C-20 of the
pregnane aglycon (19).

The point of attachment of the sugar moiety to the pregnane genin can
also be ascertained by comparison with the O-acetyl derivative of the
pregnane glycoside (53). A downfield shift of 0.5-1.0 ppm is observed in
the signal of the acetylated methine proton as compared with the parent
precursor while the chemical shift of the methine signal involved in the
glycosidic linkage remains unaffected.
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13C NMR Spectroscopy

In recent years ' *C NMR spectroscopy which is complementary to *H
NMR spectroscopy has become much more useful due to the greater
chemical shift dispersion and the lack of complexities arising from spin—
spin coupling and overlap of resonances. It is instrumental in assigning
the number, sequence and linkage of sugars (52) within the molecule. In
the case of oligoglycosides (52, 71-75), the identity of the sugar(s) may be
established (18,19) on the basis of the chemical shift of the anomeric
carbon(s). Moreover, it supplements {H NMR spectrometry in helping to
establish the point of attachment of ester functions present (52).

In the *3C NMR spectra of pregnane glycosides the resonances of the
anomeric carbons are found in a well-separated chemical shift range of
896-112 (52,76) and not only greatly aid in determining the number of
monosaccharide units but also provide information on the nature of the
glycosidiclinkages. The signals due to B-linkages usually appear 2—6 ppm
downfield from their a-counterparts (52). The other resonances due to the
carbohydrate part of the glycoside appear in the region §16—-19 (31,77);
855-62 (19,76);, 860—63.5 (23,53) and 665-85 (76) for the secondary
methyl of 6-deoxy sugars, methoxy functions, CH,OH of normal hexoses
and the ring carbons, respectively.

As for the pregnane part of the glycosides the signals of the C-18
angular methyl group appears in the region 67-15.8 (22,51) while the
position of the angular methyl at C-10 varies between 612-24.5 (18,78).
Any variation in the structure of the aglycon, affects (78) the chemical
shifts of these two angular methyls. If H-5 is o or if a 5,6-double bond is
present the signal of C-19 angular methyl group appears between 610.8—
17.0 (54,64) and 815.5-20.0 (23, 53) respectively, while if the double bond
is between C6 and C7 it is found between 614.4-14.7 (30, 55). C-21 appears
in the region 315.0-24 unless next to a carboxyl (6,22). Methylene and
methine carbons to which no oxygen function is attached absorb between
835-54 (79,80) while carbons carrying an —OH group have signals in the
region 660-90 (53,77).

Esterification of a hydroxyl deshields the corresponding carbon by
0.6-3.5 ppm (52,81) compared with unacylated precursor. These acyla-
tion shifts are important in deducing the position of esterification as the
downfield shift of the esterified carbon is accompanied by an upfield shift
of the adjacent carbon resonances (the B-carbons) by 1.2-4.0 ppm (82, 83).
The carbonyl carbon of the ester appears in the region 8165-171 (51, 65)
depending on the presence or absence of unsaturation in the esters while
the other carbons of acid part exhibit their customary shifts (viz. $20-22
for CH, of acetate (19,22), 128-135 for the aromatic carbons of benzoyl
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and cinnamoyl residues (51,65), 8117-145 for vinylic carbons of tigloyl
and cinnamoyl (65,84) and 3160-164 for the sp? hybridized carbon
carrying the methyl group of ikemoyl (10). The vinylic C-5 and C-6
carbons of the aglycon appear between 3140-144 and 5117-123 (84, 85).
A CH,C==0 side chain attached to C-17 can easily be identified as the
carbonyl C-20 resonates between 208-217 (65, 86).

The glycosidation shifts are analogous to the acetylation shifts and are
instrumental in determining the point of attachment of the sugar chain to
the aglycon. The carbon involved in glycosidation shifts to lower field by
3—-6 ppm (87) while the upfield shift of the adjacent carbons ranges
between 0.5—4 ppm as compared with the native genin (87). These glycosi-
dation shifts (88—-94) are being used to ascertain the glycosidation site in
the pregnane glycosides (18, 69) and in all the reported cases, where sugar
is glycosidically linked to C-3 of the genin, the shielding experienced by
C-4 is about twice that suffered by C-2 (19, 58).

The sugar sequence in the glycoside can be ascertained (25, 95-98) by
spin lattice relaxation time (T,) measurements, as the average NT, values
for the sugar carbons in each unit increase with increasing distance from
the aglycon moiety (99). This is due to segmental motion in the oligosac-
charide chain with the aglycon part exhibiting an anchoring effect (99).
Differences in the peak intensities of the inner and terminal sugar ob-
served in partially relaxed Fourier transform (PRFT) measurements
(100-103)in the *3C NMR spectrum also provide information for identifi-
cation of the terminal sugar and the sugar sequence in pregnane glycosides
(19,70). In diglycosides, the anomeric carbon of the terminal sugar
resonates 2—4 ppm downfield from that of the inner sugar (104).

Long-range selective proton decoupling (LSPD) (105-108) has also
been used to establish the location of ester functions within the aglycon of
pregnane glycosides. This technique has made it possible to correlate
protons under ester groups with the corresponding carbonyl carbons,
particularly in cases when esters are attached to C-11 and C-12 of
a pregnane genin (19,107). This technique also served to identify the
chemical shifts of the angular methyl carbons at C-10 and C-13 and the
site of the glycosidic linkage. Thus irradiation of the signals due to H-9
and H-12 results in an increase in the intensity of the C-19 and C-18
signals (107), respectively, while irradiation of an anomeric proton
changes the splitting of that carbon to which it is glycosidically linked,
hence permitting identification of the site of glycosidation (109).

Primary, secondary and tertiary carbons can be identified by single
frequency off resonance decoupling (SFORD) (87, 110) which reduces CH
couplings to such an extent that only the largest coupling constants
[J(CH)] give rise to residual splittings, thus allowing determination of the
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number of attached hydrogens (22). Thus a quarternary carbon gives rise
to a singlet, a methine carbon to a doublet, a methylene to a triplet and
a methyl group to a quartet. Information regarding the multiplicity of
carbons can also be obtained by newer techniques such as the attached
proton test (APT) (62,111-113), distortionless enhancement by polariz-
ation transfer (DEPT) (22,32, 114-116) and insensitive nuclei enhanced
by polarization transfer (INEPT) (117-120). Selective INEPT (120,121)
has been used to establish connectivity (122—124) between the anomeric
proton and carbon atom of the aglycon. Irradiation of the anomeric
proton selectively enhances the carbon signal of the aglycon to which it is
linked; similarly, irradiation of the aglycon proton leads to the appearance
of the anomeric carbon of the glycon residue (52).

BERGER et al. have used the technique of selective proton-
decoupling in gated decoupled **C NMR for the structure revision (54) of
condurangogenins A,B,C,D and E and their glycosides. The results
indicated that the acetoxy group was attached to C-11 at 11a-OH and the
cinnamate to C-12 which was the reverse of the originally proposed
structures (125—130).

3.2. Two-Dimensional NMR Spectroscopy

Although one-dimensional NMR methods (*H and '3C) provide
useful information for determining the basic structure of pregnane glyco-
sides, the severe problems encountered due to substantial overlap of
multiplets does not generally allow unambiguous assignments of all signals
leading to a complete structure of the molecule. These difficulties may be
overcome by the use of various two-dimensional techniques developed in
recent years (52,131-133). The application of such techniques to solve
problems in the field of pregnane glycosides will be discussed briefly.

2D'H-'H COSY (Homocorrelated Spectroscopy)

This is also referred to as homonuclear shift correlation through
J-coupling (134—136). The information obtained from the spectrum is the
scalar coupling connectivity network of the molecule concerned using
cross peaks. Assignment of signals requires an initial point for identifica-
tion of the individual spin systems — in pregnane glycosides, the anomeric
proton which is connected to a carbon bearing two oxygen atoms appears
downfield and is conveniently taken as a starting point for assignments.
Within a typical aldohexopyranosyl ring, the coupling network is un-
idirectionali.e., H-1 couples to H-2, H-2 couples to H-1 and H-3 and so on
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(52). In the aglycon portion, the scalar (J) coupling pathways leading from
H-3a to H-4a, H-4P and to H-2a, H-2p and finally to H-1a, H-1P can be
elucidated from a 'H-'H COSY experiment (113). The method has also
been used to assign the position of an ester function within the aglycon or
sugar portion (17, 55). One fundamental limitation of COSY, however, is
that couplings must be at least partially resolved before they can give rise
to a cross-peak.

COSY45
COSY-45 (133) has two advantages over basic COSY:

(a) Byreducing the intensity of transfer between parallel transitions as
a result of reducing cross peaks within multiplets and by thus simplifying
the appearance of the spectrum around the diagonal in a complex
spectrum the technique makes it possible to identify correlations that
would otherwise be hidden in the cluster of peaks close to the diagonal.

b) By restricting multiplet transfers largely due to directly connected
transitions the method allows determination of the relative sign of coup-
ling constant in a system with three or more spins. AHMAD et al. (32) have
made use of the spin couplings in the COSY-45 (32) experiment to identify
the sugar of caratuberside A (58) from Caralluma tuberculata. Sequence
information on the sugars of the glycoside could also be deduced from the
long-range (*H-'H) COSY-45 experiment (137).

Double-Quantum Filtered COSY(DQF-COSY)

Multiple quantum filters (138) for elucidating NMR coupling net-
works have been described; the most widely used filtration method is
through double quantum coherence (139-141). The great advantage (86)
of double quantum filtration is that it suppresses the strong signals
emanating from singlets, i.e. from tertiary methyls and solvents, and that
therefore hidden multiplets which are isochronous to tertiary methyls can
be assigned unambiguously from the spectrum. It not only provides
characteristic multiplicity within the cross-peak, enabling identification of
particular sugar units, but also provides semiquantitative information on
the coupling constants of protons involved in cross peaks. In the aglycon
part of the pregnane glycosides all H-H connectivities except for those
next to the angular methyl groups (Me — 18, — 19) can thus be determined
by DQF COSY (7).

Relayed Coherence Transfer COSY(RCT2D)

In an AMX system where J ,,, and Jy represent vicinal couplings and
Jax equals zero (for a saturated compound), the corresponding COSY
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spectrum would show cross peaks between A and M and M and X, but not
between A and X. A technique for establishing connectivity between A and
X, i.e. between two remote nuclei within a given spin system, is known as
relayed Coherence Transfer (RCT). RCT COSY (142-144) propagates the
magnetization transfer from A to M on through further couplings experi-
enced by M. Recently, HUGHES has used RCT 2D NMR spectroscopy for
determining proton chemical shifts in steroids (145). As the heteronuclear
RCT 2D spectrum contains both the direct 'H-13C responses and relayed
responses which arise from 'H—'H vicinal couplings (146), it allows the
proton—proton and carbon—carbon connectivity network to be deduced
irrespective of congestion in the proton spectrum if the carbon spectrum
can be resolved. On the basis of RCT2D spectrum, the connectivities in
the aglycon portion (C-2 to C-4, the five proton bearing carbon segment
from C-6 to C-11, C-14 to C-17 and C-20 to C-21) have been established
(113).

Nuclear Overhauser Effect Spectroscopy (NOESY)

This experiment offers a means of determining spatial relationships,
thus providing the information about the spatial structure of the molecule.
Cross peaks are observed in 2D NOESY (147-148) spectra between
proton pairs that are close in space (i.e. typically less than 5A°). In general,
1,3-diaxial and equatorial-axial proton pairs in pyranosyl rings produce
intra NOESY cross peaks, i.e. for the B-glucopyranosyl residue cross-
peaks are observed between H-1 and H-3 (and H-5) whereas a strong cross
peak is observed between H-1 and H-2 in the a-glucopyranosyl configur-
ation (52). It is also used for sugar sequencing and for determining the sites
of glycosidic linkages. In a glycoside (G-O-S;-O-8S,), where the proton on
C-1 of S, is close enough to the proton on C-4 of S, (in case of a 1 —»4
linkage), a cross peak between H-1 of S, and H-4 of S; would be observed.
Thus, it is possible to demonstrate a linkage between the two sugars from
a NOESY experiment (31, 32). The experiment is also used for deciding the
stereochemistry of substituents (e.g. that of the C-17 side chain) in
a pregnane aglycon (39).

Homonuclear Hartmann—Hahn Spectroscopy (HOHAHA)

The most useful method of relay in coherence along the chain of spins
is the isotropic mixing experiment in which the net magnetization is
transferred under spin-locking. From a HOHAHA (149—152) spectrum,
a so-called ‘J-network’ can be determined (39) where a J-network is
defined as a group of protons that are serially linked via *H-'H J (scalar)
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couplings. For example, all protons of a single saccharide unit belong to
the same J-network. A complete spin system can thus be identified (86) if
there is at least one resonance in the spin system, such as the anomeric
proton, which is well isolated and has a resonably large coupling to its
neighbouring spin. Therefore, a slice through a HOHAHA spectrum (39)
at each anomeric proton along the diagonal yields a 'H subspectrum
containing all scalar-coupled protons within that sugar residue. However,
the distribution of magnetization around the spin system can be impeded
by small couplings (e.g. H-4 and H-5 in the galactosyl residue) which lead
to cross peaks up to H-4 but no further (52).

Homonuclear J-resolved Two-dimensional Spectroscopy (HOMO 2DJ)

J-resolved spectroscopy (153)is used to resolve overlapping multiplets
by producing spectra which have chemical shifts on one axis and scalar
coupling on the other. It can provide unprecedented dispersion of the 'H
NMR spectra (154-155) but leaves unsolved assignment of individual
resonances when strongly coupled nuclei are involved and/or multiplets
originating from different spin system overlap (156). The usefulness of the
method declines with increasing number of sugar residues and becomes of
limited value in studies of oligoglycoside structure due to overlapping of
mutually coupled signals which causes distortions in the multiplet pattern
and prevents the use of cross sections for observing individual multiplets
and for extraction of the desired "H—'H couplings (31,32).

Heteronuclear 2D-N MR Spectroscopy

In heterocosy (157-161), heteronuclei such as 'H and '3C are corre-
lated in 2D experiments. This, one of the most powerful of 2D experi-
ments, combines the excellent resolving power of decoupled *3C NMR
with the ease of interpretation of proton chemical shifts and allows the
resolution of single sites in all but the most intractable spin systems. Thus,
'H-13C correlation spectroscopy is useful for identification of protons
bonded to individual carbons in pregnane glycosides (113,124,162).

13C-'H Long Range COSY

Two-dimensional heteronuclear correlation (163—-165) via long-range
coupling has been found to be useful in determining the connectivity of
sugar to aglycon and the sequence of the sugars. The technique (39) has
been employed by ITokAwa et al. (162) for determining the sequence of six
sugars in the glycosidic chain of periplocoside A (217).
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Heteronuclear Multiple-Quantum Coherence (HMQC)

Heteronuclear Multiple-Quantum Coherence (HMQC) (166—168) is
a powerful method for the unambiguous assignment of 'H and 1*C NMR
(86) spectra of pregnane glycosides and the C-H correlation assignment.
KASHMAN et al. (7) have used HMQC for geminal C-H correlations in
deducing the structure of verrucoside (238).

3.3. Mass Spectrometry

Mass spectrometry (MS)is obviously of prime importance in structure
determination of pregnane glycosides (2, 169-170) which are frequently
obtained from natural sources only in very small quantities, particularly
when it is used in conjunction (53) with information obtained from 'H and
13C NMR spectral data. In recent years, better inlet techniques (171) have
overcome the problem of low volatility.

In electron impact mass spectrometry (EIMS), (79, 172) fragments of
lower mass value are more evident which often provides valuable struc-
tural information (57). Sometimes, fragments corresponding to the agly-
con and the sugar are obtained (173). In addition to producing fragments
arising from the common loss of the elements of water, methanol and
CH,CHO in different sequences (174), the oligosaccharides of pregnane
glycosides also decompose by retro—Diels—Alder fragmentation (170)
initiated by a double bond created between C2 and C3 by the loss of water
or methanol (175). Another important mode of fragmentation of oligosac-
charides involves the radical ion cleavage of the C1 and C2 bond of the
terminal sugar followed by the migration of the methoxyl (or hydroxyl)
(176) group from C3 to C1 of the same sugar, a process which results in
cleavage of the terminal sugar (50,53,170,175,177—-178). Further frag-
mentation of the residual oligosaccharide or glycosides takes place by the
characteristic fragmentation patterns reported by BROWN et al. (172). The
presence of a methoxy function at C-3 of a normal sugar can be ascer-
tained by the loss of mass fragment C;H¢O, from the sugar fragment.
Similarly, loss of mass fragment C,H,O, from a 2-deoxy sugar, present
at the reducing end, shows the presence of a methoxy function at C-3
(170).

EIMS is also very useful in assigning the substituent groups within
the aglycon part of polyhydroxy pregnane glycosides (2). Studies of the
MS of polyhydroxy-pregnanes enabled FUkUOKA etal. (179) and
BUDZIKIEWICZ et al. (180) to deduce correlations between structures and
fragmentation patterns which have been summarised by DEEPAK and
co-workers (2). Mass spectra have been of great utility in establishing the
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presence of C-8 or/and C-14 hydroxy functions (181—-183) which being
tertiary in nature are not acetylated (181) and consequently cannot be
easily detected by NMR methods. Mass spectra are also useful in as-
signing the position of hydroxy functions at C-11, C-12, C-15 and C-16
(6,181-182,184-185). The loss of ions of m/z 45 or 43 shows the
presence of a -CHOHCH, or COCHj side chain at C-17 (3,61) and can
be used to establish the point of attachment of the sugar chain to either the
C-3 or the C-20 hydroxy function of aglycon (53). The stereochemistry (o
or B orientation) of the C-17 side chain can also be determined by MS
(183).

Field desorption mass spectra (FDMS) (186) of pregnane oligoglyco-
sides (17, 173) often contain only the molecular ion [M *], the protonated
molecularion [M + H] " or the [M + cation] " ion if NH; or a metal salt
is added and is a reliable method for confirming the molecular formula of
pregnane glycosides (18—19).

In fast atom bombardment (FAB) (171) and secondary ion (SI) MS
(31,187) an abundant molecular ion, usually a protonated species
[M + H]" or a cationic species [M + cation] ™, is observed. The MS also
contains mass fragments of intermediate and lower mass value which thus
provides comprehensive information (5, 16, 39) about the oligoglycoside.
As evident from FABMS of pregnane glycosides, the individual monosac-
charide units become detached from the molecular ion at the glycosidic
linkage along with displacement of the hydroxyl group to which it was
linked. Starting from the terminal end, the stepwise elimination of mono-
saccharide units leads to the formation of a fragment corresponding to the
genin (53). Often, fragments corresponding to [M *—genin] and [M* -
sugar], i.e. the oligosaccharide and genin, (61) are obtained; these frag-
ment further by repeated H-transfers accompanied by elimination of the
terminal sugar less water, thus giving rise to an ion of the same mass as the
molecular ion of the corresponding oligosaccharide with one less mono-
saccharide residue and so on until only the monosaccharide remains. The
sequence of sugars and aglycon can be determined from the mass differ-
ence of major fragments (53). Thus the differences in mass between
G-S,-S,-S;,G-S,-S, and G-S; in the FAB MS provide information on the
sequence of sugars in the glycoside and also indicate which sugar is
directly linked to the aglycon (16, 30). At what point the sugar residue is
attached to the aglycon can also be established (53, 61).

While up to a certain point assignment of stereochemistry can also be
achieved by mass spectrometry (183) a severe limitation of the mass
spectrometry approach is the inaccessibility of finer stereochemical details
such as the configuration of glycosidic linkage.
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3.4. LR. Spectroscopy

The role of IR spectroscopy in structure elucidation of pregnane
glycosides cannot be ignored (54, 80), although it has been largely super-
seded by the techniques discussed earlier. IR spectrometry establishes the
presence of carbonyl functions (=~ 1740-1715 cm ~?) (32, 124) thus differ-
entiating between hydroxyethyl or acetyl side chains on C-17, and also
shows the probable presence of ester functions (124). IR spectrometry also
establishes the presence of associated and free hydroxyl groups
(~ 3400 cm ™) (18, 187) and unsaturation in pregnane glycosides.

3.5. U.V. Spectroscopy

The absence of a conjugated system in pregnanes has limited the use of
U.V. spectroscopy. However, the technique may be useful when pregnane
esters containing a, f-unsaturated and/or aromatic acids are encountered
(18-19,54,124).

3.6. Optical Rotatory Dispersion

The C-20 stereochemistry of pregnanes with a CHOH—-CH, can be
established by o.r.d. as was shown by NaGaI (188) who reported that the
C-20 o-nitrobenzoates of pregnane derivatives exhibited a Cotton effect at
ca 330 nm due to the n —»nn* transition of the aromatic nitro group whose
sign depends on the configuration. Thus 20-R-o-nitrobenzoates exhibited
a negative Cotton effect while 20-S-o-nitrobenzoates exhibit a positive
Cotton effect. It has been reported that polar functional groups present
near the nitrobenzoate, such as a 17-OH, strongly influence the Cotton
effect. HavAsHI et al. (189) have used this property to assign absolute
configurations to the C-20 carbinol group of sarcostin, utendin and
tomentogenin.

The 17-acetyl function of pregnanes may be a- or B-oriented. When no
other substituent is present on C-17, compounds with a 17-B-acetyl side
chain show a positive Cotton effect whereas those with an a-oriented side
chain exhibit a Cotton effect of opposite sign (190).

3.7. Hydrolysis of Pregnane Glycosides

Although modern physicochemical techniques link NMR and mass
spectrometry play a very important role in structure elucidation of
pregnane glycosides, classical degradative methods have not lost their
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significance. In particular, methods for cleaving sugars from the parent
compounds form a vital part of structure determination, especially since
they provide confirmation of structural features arrived at by spec-
trometry. Different conditions of acid hydrolysis, i.e. from strong to very
mild depending on the nature of the sugar present in the glycoside, are
used for identification of sugar and aglycon. Generally, mild acid hydroly-
sis (0.IN H,SO,/Dioxan; RaNGaswami and REICHSTEIN) (191-192) is
used for glycosides containing 2-deoxy sugars. Mild acid conditions are
required to prevent the destruction of acid sensitive 2-deoxysugars and
acid labile tertiary hydroxyl groups in the genin (193). Sometimes, hy-
drolysis is carried out in the presence of methanol (H,SO, or HCI in
MeOH) (17,31,39,70) or ethanol (AcOH, H,SO, or HCIl in EtOH)
(34,55,124). In the case of normal sugar glycosides, strong acidic condi-
tions such as the KiLIANI method are required for hydrolysis (194).
Hydrolysis affords genin and oligosaccharide or monosaccharides. The
oligosaccharides are identified either by direct comparison with authentic
samples ([a]p, TLC and PC) or by chemical degradation (23, 195). The
comparison may involve physical properties (such as PC, [a]p) as well as
conversion to lactones, acid phenylhydrazides (196—197) and other de-
rivatives such as alditol acetates (25), tetramethylsilyl ethers (16,113),
partially methylated alditol acetates (198) etc., which may be identified by
GLC or GC with authentic samples. The absolute configuration of the
isolated sugars can be determined by analysing their 3,5-dinitrocarba-
mate methyl glycoside derivatives on a chiral HPLC column (18, 199).

To sequence the sugars in oligoglycosides containing 2-deoxyhexoses
controlled partial hydrolysis (195) under very mild acid conditions
(0.01N H,SO, in dioxane) is used. During hydrolysis, aliquots are taken at
different time intervals to obtain intermediate products until only the
aglycon is left (60). MANNICH and SIEWERT hydrolysis (conc. HCl/acetone)
(200) is employed for determination of the sugar sequence if the oligo-
glycoside contains both normal and 2-deoxy sugars (53, 80). The sequence
can also be deduced by permethylation studies (23) using HAKOMORT’s
method (201) followed by acidic hydrolysis.

Enzymatic hydrolysis (21) of pregnane oligoglycosides is effective only
in eliminating the terminal glucose units (16). B-Glucosidase enzyme
preparations obtained from snails are used for cleaving terminal B-glucose
(70,202). Molsin (protease type XIII from Aspergillus saitoi) (6,203) and
sulfatase (having B-glucuronidase activity from Helix pomatia) (198) are
also used to cleave terminal B-glucose; the latter effected the cleavage of
glycosidic linkages resistant to B-glucosidases (198). Specific enzymes
cleave specific glycosidic linkages thus providing information on the
nature of glycosidic bonds.
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4. Pregnane Aglycons

More than eleven dozen pregnane aglycons have been so far isolated
(1,2) from natural sources. Basic skeletons are listed in Chart1. The
structural features of plant pregnanes have been discussed in detail in
a review article by DEEPAK and co-workers (2). The pregnane aglycons
isolated since then are listed in Chart 2. Modifications of the pregnane
skeleton are also known, for example cyclic ethers closed to C-20 (1, 204—
206). Some 8, 14-seco-(137), 14, 15-seco-(58) and 13,14; 14,15-
disecopregnanes (79, 207-212) have also been isolated.

5. Sugars of Pregnane Glycosides

5.1. General and Monosaccharides

Most of the sugars obtained from the acid hydrolysate of pregnane
glycosides are 6-deoxy- and 2,6-dideoxyhexoses or their oligosaccharides
(I). Such deoxy sugars have seldom been found in higher plants although
they have been reported to occur in microorganisms (213-214). The
oligoglycosides of pregnane glycosides generally contain a linear (215)
rather than branched sugar chain although two exceptions have so far
been found (23,216). A detailed study of the sugar linkages in the
glycosides revealed that in the B-D-type, the hexopyranose ring is present
in the “C, conformation with the aglycon equatorial (62) whereas in the
a-L-type, the hexopyranose exists in the 'C, conformation with the
aglycon preferentially axial (217). The chemistry of naturally occurring
deoxysugars has been reviewed by REICHSTEIN (I).

New monosaccharides reported as constituents of pregnane glycoside
since the last review are L-sarmentose (55), 3-O-methyl-D-galactose (53),
4-O-acetyl-L-sarmentose (55), 2 deoxy L-fucose (59) and D-holosamine
(4-desoxy, 4-amino-D-cymarose) (218).

5.2. Disaccharides from Pregnane Glycosides

The preparative isolation of sugars by hydrolysis of pregnane glyco-
sides has afforded in addition to monosaccharides some novel reducing
disaccharides containing 2,6-dideoxyhexose at the reducing end with
a normal sugar at the non-reducing end. This was possible because of the
very slow rate of hydrolysis of the normal sugar glycosidic linkage
compared with 2-deoxysugar glycosidic linkages which being weaker



D. DEEPAK, S. SRIVASTAV, and A. KHARE

186

Al

(suruag sueudord ur suonouny usgLxo jo suonisod parrodal Sy} 9)eIIPUL SMOLIR)
Sutuor) suBUSIJ JO SUOII[YS Jiseq ‘[ MvY)

IA A

References, pp. 309-325



187

Pregnane Glycosides

“VNOTYd-AXOYAAHIYL-HTI

(6£2) 4 TOYALSNVANISOOL

YD

(962 ANO
-0T-ANANIL9I' L' - YNDT U
-AXOYAAHIYL-YZI ‘g€ %T

(9€2) ANO-0T-NAIA-L'¥

‘g€ ‘TT-AXOHLAN -*91
OH

[EIDHD o6'5€-1 b07T—€07

(917) ANO-0T-10

-g€-NAIA-91°s-YNOT dd
HO = OH

(#) ANO-€-NINOHUd -,V
-AXOYAAHIQ-H0T *$1
(0]

HO—)—H

=)
O---

(6£0) V. TO¥IALSNVANISOOL

H o oH i OH

HO—)—H
EHO EHD

(877) NINDOINVIOHOYAAHNY [o1€ -1 o521
oH (812) NINIDOLNVTOH
OH
HO
o/
tHO" O HO
tHO” O
(£2) ANO-0T-NI-$ (082) ANO-91
-NOTUd-AXOYAAHIA-Y91 'ds  "NYNDTUI-*S-AXOUAAH-¥€
OH H OH
HO 0
Ho_ HD
tHD fw

[0'TT+] 0£8-18T

(0I) TOYLAL 0T ‘91 ‘%€ ‘o7 (##7) NINA 4L
-ANVNOT ¥d-05-(d 07) OvAH

H
¥ oH _

LT sr1-1o£2-02T

OH

HO “OH
HO--
H—DOH _

£HO



D. DEEPAK, S. SRIVASTAV, and A. KHARE

188

[EIDHD oS €% +] s05-8¥1
(£82) NISOLNIWOL

[£IDHD o6 -1 0S-S5 ¥1
(#827) NILNGFWOLOYAAHAA
OH

HO

HO—
o<0|wl:

(0544
tHO

(Z82) TOTYL-0TY LT d€ “ANTIA
“P1'¢-NOTYd-WO-1T
OH

HO—
:otwl:
3SNOTHD

(panuruoo) 7 1vy)

[EIDHD oY +] obt0v1
(982) NIQOLNAWOL

[FIDHD J0€+] o It-LEL

(#82) NILNIWO.L

[FIDHD “o£°5€ 1 0£61-261
(rb2) ANO-9-NANDT YU
-07-AXOYAAHIA-YS ‘J€

HD
HD

(0]

OH

OH

[EIDOHD o8¢ +]019-851
(982) NINOLNFWOL

HO

m"* OH

0-8iL
o1pAytq

(£82) II'NINTODOATUA

() 101a-9¥

‘Je-ANT-0T-NOTUd-FS

HO

[©IOHD oLET +] oL§—SS1
(§87) NINOLNTWOL

H

OH

HO—
.o_Z|0|w|:

o~un
tHO

(£) NINTDOTVO TALIDV-0-0T

OH
HO
o<0|u_|m
tHO
[HOM oT' €Y -] oE VT 17T
(z#2) ANINIATYIONALS
HO
H OH
4
N
O—H
I
EHD

References, pp. 309-325



189

Pregnane Glycosides

oSPI-TPL
(#8) NINAOIXATdVLIW
“TAOVAQTAOZNAL-O-4T1

[E1DHD ‘.0L] .L8-T8
(§2) ANO-0T
-NVYNOAU-JS-AXOHIAW-O
-12-AXOYAAHIA-gY1°g¢
H OH

HO

0= w
SNOCHO

(66) ANO-0T-ANA-S-NOAId
-AXOYAAHILL-GST ‘g1 ‘d¢

OH

(panu1uoo) z 1vy)

[HO?W .$ 7T -1 9T
(682) NINADIXATdV.LAW

(8) ANOIQ-0T'¢-ANA
-NOTIIAXOYAAHIA-1T ‘Fri

0}
HO

OH%
HO®HD

(z82)
TOYLAL 0T ‘L1 ‘g1 ‘g
-ANA-$-NOTYdSNO-1T
OH
HO

HO
HO—O—H

SNOHD

[EIOHD oST +] .89-591

(£I) NILSODUVS (882) NINFDOLNAWOL
-OdAAHIATAOWVNNID-O-4T1 ~“1ALIDV-0-9T1
H OH
HO
HO
molwl: Sov
EHD

lo€ 5T +] £VT-OVT

(8) ANO-0T-NVNOT dd

-05-AXOAAAHIA-g¥1°d€
OH H

(¢2) NIONFLN TALIOV-0-0T

HO OH
HO
HO
oVO-OH
<w H_V OH ouu_
Ho £HO
0P-8€T [EIDHD otF +] .£8-081
(z81) NINADIYE (982) NISOLNAWOLOYAAHAA
OH OH
no HO HO
HO HO
OHW o<O¢lW|I o8

£HO 3570)



D. DEEPAK, S. SRIVASTAV, and A. KHARE

190

[SIOHO o¥'ep +] 0TS05T
(£60) NINIAQVT1OraId

[©IDHD 96°SH1 +] oLS—SS 1
(£62) NINTD SYVINANINAD

(¢81)
NINZONAHSONVADONIO
OH

(panu1juod) 7 1vy)H

(962) NINZDOJNNEd

OH
o [ )

)
HO— @

HO—Q—H ¢y,
‘HO

(260) NINADSAYA

[FI0HD oT€9 +] o6v-L¥1
(§62) NINVIOLAIA

OH

(£82) IFNINADOATUA

wo [

‘[eaost lO.rwIm )

fHO

[HOP +'8C1+] o8T1-6C1
(#81) NINDOYAHLL

[SIDHD o8°¢P1 +] .0L-991
(#62) NININVOVO

(I62) NINFZOOOTIA

[(10HD ‘.87 -1 (I€)
NOTOANIT TAOZNAg-0-9T1

References, pp. 309-325



191

Pregnane Glycosides

(#0€) NILVANVD

(Z0€) NINTOVINANI

(006) a

f
tHO

ANODATOV

(panuniuod) 7 1avy)

(£06) TONAOVINAAI
“TAOWVNNID-0O-0T

[HOW ‘¥ 111+]1008-5L
(961) NINFDONIO

Nas

WY—-0—-I-H

tHD

OH
o [ 1

(£0€) TONIOVINTAI
“TAOWVNNID-O-§21

OH

(10€) NINAOT1Y4IS

EHD

[{OHD +001 +] oLT+TT
(862) ANosSNININA
OH

(z0€) NINIDOVWANIOSI

(008) I-INODATOV

OH
wo [ )
o0
BL-0-5—H .

] o~
£HD

[HOHD o576 +] 060-50T
(£62) NINIAVTOrAINTALADVAA




D. DEEPAK, S. SRIVASTAV, and A. KHARE

192

[HOS o0l 056-€61
(§1) NINIDOADNV'T

(962) £ NINFOOSSAETIA

HO

:owm
EHD

ooV

(0204

OH

(2£2) A NINTOOATUA
-1A0ZN38-0-1a-0°T1

2§0~-OH
¢EHD

HO

ozd

OH

(panutuod) 7 104D

[EIDHD o5 9L +] :56-16
(80¢ "9#2) NINADOAVNAD
H__oH

HO

(962) O NINTDOSSAGIIA
OH
HO

0oV
[ O-[eros|

(022) 4-NINTDOATIA
OH

[EIDHD "695+] 0691-591
(90§) O NINTIDOATIA
OH

(£0§) NILSODYVSODATO TALIOV
-0-0C-TAOWVNNID-O-4 T1

Q-leAost
] oV

(962) 4 NINIDOSSAgIIA (§72) ©1 NINTDOSSAET YA

OH OH
HO HO
0oV “OH
0=J BAOSI-O-DH
ern O—O—DH—DHBW 0% o “_V HO
HO I YHO
O OH

(022) V-NINIDOATIA (§0€) NILYANVIAXOdT-%9%S

“O—[eaost

0=0 2v0
fw

References, pp. 309-325



193

Pregnane Glycosides

[EIDHO “o$°01 +]

(§9) 4 NINID
-IDVNALTALIOV-0-4T1
“TAMALNGTAHLIW-T-O-%1 1

[A1K1inq
"0 1Ayt

(£9) 4 NINIDIDVNAL TAOZNA4
0TI TAMALNETAHLANW Z-0-%11

[K1fing
O KYRN-T

(19) NINTDODYO
TALIDV-O-1Q-4T1 ‘P11

(panu1uody z 10y
[SOHD ‘o5 -1 (59)
4 NINdDIOVNAL TALIDV (59) 4 NINIDIDVNAL

-0-JT1-1A0ZNAg-O-*11 (992) 111-9 NINIDIDVNAL -JLI-TAOTOILIA-O
OH oz TARAN

| 9vO0

£HD onw ov\,wA

fHD 8n‘zg

[E10HD ‘.50 +1 (59)

(69)d NINFOIDVNALTAOTOIL 8 NINIDIDVNALTALIADV (608)
-0-4-71-"TAYALNETAHLIW T-O-%1 | -0-J71-TAOTOIL-O%1 | g-NINIOIDVNAL

OH

1K1finq
0 Ay N-T

[oLT +] o£8-081 [.6% +] 0801-501 [HOPI o0 +] 6791
(s87) NINIDODYO (181) NINTDODYVS (£#) NINEOTAQ




D DEEPAK, S SRIVASTAV, and A KHARE

194

(panuruod) g 14vyH

3 .60 3 - (0€1) ANVYNOTIdTAHLAN-0-0SIT

[F1OHO o§ TV - o£L-L9 [fOHD ¥ L8] b1 [HON oz 88-] «£L~69 T AXOII-OTRU-TALADY

(062 8) NINIDOdVIVNAD (86) -NINAOOLVILY 067 85) V-NINADOLV YLV 092 1-TAOYNNID-O11

OH AXOUAAHIA-gp1 ‘g€ ‘H-»S

H
OH OH
HO
m:o/_/ o uD
awo  9svo
(0sD
ANVNOTIdTAHLANW-0-02-AX0dd (0¢D) ANVNDTIIAX0dE
-(0T ‘81) TALADOV-0-9T! -0z ‘81) TALIOV-0O-4T1
“TAOWVNNID-O-?IT  ~TAOWVNNIO-O-?[[-"AXOYAAH
-AXOYAAHIA 941 ‘g€ ‘H-°S THL-0T ‘gp1 g ‘H0s  (#6)  NINIDOONVINANOD  (827) O NINTDOONVINANOD
H H
OH H OH OH OH
HO HO HO 0. HO
o]
?NO 0o~ uo HO o~ 0=0 oV HOOH | 5w$<
o u) | -
o 9ovo 1o 9ovo MO *HO
(szr-sen [HOP o£9 6 +] .£8-081 [HOPW o€ T -] o¥1701T
0£1) 4 NINTDOONVINANOD V NINTDODNVYINANOD (£9) NINIOOSVNAL (016) NINIDOSSIO
H oH H oH OH OH
HO HO HO
o 1Ko[h10e
AYISN 1P ¢
o-uD o0 ooV molw:m:o O W 1P :olw\m:o OH
W "0%yo gy O £HD €HO

References, pp 309-325



195

Pregnane Glycosides

(panu1uoo) 7 140y>

N
N
() szzuazvunmolu_l = W[ (61 ANOIA-Y1'8 ANT-9-NOTYODES
A_W w P1'8-AXOYAAHIIL-L! ‘d§* JE-AXO
-TAOZNIEId 0 ‘z1-(S 07)
sz:ufu{m\ = “[erost i:uHmu!ml =u Ho OH
o]
(o}
SWHO=(W)D—D— = ‘8u d—p—=7d HO—
w Mu Nmoiw: 200
. YHO
fulmi =9y
o}

[HOW o7°€8 +] 4907-50T
NINIDO0ONVTO

(es2°210) O

(€67 “zIz “6L) A-NINIDODNV1D

(€57 °212) V-NINIO0ONVTO

(62) A-NINTIO0DNVTO

(I7€ '60€) V-NINIOIOVNAL

OH



196 D. DEEPAK, S. SRIVASTAV, and A. KHARE

CH3 CH3 CH3 CH3
HO HO

H3CO OH OCH3 H3CO OH

Asclepobiose Pachybiose Lilacinabiose

CH3 CH,4
HO o 0OMe

OCH,
OH OCH3

Glaucobiose Strophanthobiose Methyl-g-D-Digitalo-
pyranosyl-(1— 4) g-D-

H, CH, Cymaropyranoside

HO 0 0 OMe HO HO
OCHY Q 0 lo)
OH Y QO (OH Yw0H
OAc OCH, HO
OH OH

Methyl-4-O-(2-O-acetyl- )
B-D-Digitalopyranosyl)- Cellobiose
f-D-Cymaropyranoside

HO

O

OH Y o
HO 0
OH (OH OH
HO
OH OH OCH3

Leptatriose

OH HsCO OH  OCH;

Gentiobiose

Cynanchomose Dregeatriose
CH3
OH H3;CO OH
Neocondurangotriose
Chart 3
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hydrolyse faster. Disaccharides from pregnane glycosides are listed in
Chart 3.

The disaccharides pachybiose (56, 195,219-221) and asclepobiose (19,
56, 222-223) are most frequently encountered in pregnane glycosides.
Lilacinabiose (62,224) is 3-O-methyl-6-deoxy-B-D-glucopyranosyl-
(1 > 4)-D-cymaropyranose. Glaucobiose (70, 225) and strophanthobiose
(58,76,225) differ from each other in that in the former the B-D-
glucopyranosyl moiety is linked to L-cymarose by a (1—4) linkage
whereas in the latter -D-glucopyranosyl half is linked to D-cymarose by
a (1-4) linkage. Two disaccharides, methyl B-D-digitalopyranosyl-
(1->4) B-D-cymaropyranoside (31) and methyl-4-O-(2-O-acetyl-8-D-
digitalopyranosyl)-B-D-cymaropyranoside(162, 226), have been obtained
from the methanolic H,SO, hydrolysate of pregnane glycosides of Perip-
loca sepium. The disaccharides gentiobiose (8, 34) and cellobiose (50, 53)
have also been found present in pregnane glycosides.

5.3. Trisaccharides from Pregnane Glycosides

Hydrolysates of pregnane glycosides have yielded four trisaccharides
which are also listed in Chart 3. These contain a 2-deoxysugar at the
reducing end which is linearly linked to two normal hexoses. Leptatriose
obtained from Leptadenia reticulata by SRIVASTAV et al. (50,53) has
a cellobiose moiety linked to D-cymarose by a 1 —» 4 B-glycosidic linkage
whereas in cynanchotriose (76,227) from Cynanchum wallichi the cel-
lobiose moiety is linked to D-oleandrose by a 1 — 4-B-glycosidic linkage.
In dregeatriose (76, 215) the terminal D-glucose is linked to 3-O-methyl-6-
deoxy-D-allose which is in turn linked to D-cymarose. In the case of
neocondurangotriose (76, 129—130, 215) the reducing end is made up of
D-oleandrose while 3-O-methyl-6-deoxy-D-allose and D-glucose form
the intermediate and terminal end respectively. In both these trisacchar-
ides, the two normal hexoses are linked by (1 — 4) B-glycosidic linkages.

Interestingly, in pregnane glycosides 211 and 213 isolated from Perip-
loca sepium (228) the sugar component contains an ortho-ester function
which is rather uncommon in natural products. In glycosides 217-221 and
224-226 from the same source, the glycosidic linkage between O-4 of the
first sugar, 2,6-dideoxyarabinohexopyranose and C-1 of the second O-
cymarosyl is peroxide.

6. Biosynthesis of Pregnane Glycosides

Biosynthesis of pregnanes and their glycosides has been covered in
depth by REICHSTEIN (). In this context, it is of interest that a pregnane
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glycosideisolated from Mandevilla pentlandiana(25) has a 21-O-methoxy-
20-one C-17 side chain and is biogenetically related to 3B,14p,21-trihyd-
roxy-5B-pregnane-20-one, a precursor of a cardenolide (25). The isolation
of this glycoside suggests a pregnane route for the biosynthesis of car-
denolides (229-230). The 21-O-methylated compound possibly is a stor-
age form of a 21-hydroxy-20-keto pregnane derivative (25). Another
pregnane, i.e. pregnenolone (A*-pregnen-3p-0l-20-one), which is a known
biosynthetic precursor of cardenolides has also been isolated as a consti-
tuent of the glucosides (34) from the root and trunk bark of Nerium odorum.

7. Biological Activity

Pregnane ester glycosides* closely resemble cardiac glycosides (193)
which are important in medicinal chemistry due to their digitalis-like
effect on cardiac muscles and their application in the therapy of auricular
fibrillation and in many types of congestive heart failure (229-230).
Biogenetic studies have revealed that pregnane derivatives are biological
precursors of cardiac glycosides (1, 25) and therefore these substances can
be isolated from plants only in very small quantities. Using modern
pharmacological methods some of these compounds have shown specific
biological activity.

The crude drug condurango cortex, the bark of Marsdenia conduran-
go, has been used as an avomatic bitter stomachic in popular medicine and
also against cancer or syphilis in folk remedies (129). In anti-tumor
screening by CCNSC the extract of this plant was not effective against
sarcoma-180, adenocarcinoma 755, human sarcoma HS-1 and KB system
(231). However, condurango glycosides (CG) A, (164), CGB,, (166), CGC,
(165), CGD, (167), 20-O-methyl CGD, (168) and 20-iso-O-methyl-
CGD, (169) from Marsdenia condurango were found active against
Ehrlich ascites carcinoma (129-130). Two other pregnane glycosides, viz.
condurangoglycoside E,, (170) and E, (171) obtained from Marsdenia
condurango, have also shown anticarcinogenic activity (232). AHSAN
reported that the polyoxypregnane glycoside amplexoside A (36) from
Asclepias amplexicaulis showed cancer inhibitory activity in the KB assay
(233). Generally members of Asclepiadaceae produce an abundance of
esterified polyoxypregnane glycosides (I, 2) and can therefore, be a prom-
ising source of antitumor agents. Thirteen pregnane glycosides (215,234—
235) were isolated from Dregea volubilis; among them, dregeosides Ap,
(131) and A, (132) showed antitumor activity against Ehrlich carcinoma
(solid type), with dregeoside A, also being active against melanoma B-16

*Table 1 which follows lists pregnane glycosides isolated since 1967 and their sources,
arranged by plant family. Structures are listed in Table 2.
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Table 2. Structures of Pregnane Glycosides

G o
HCOH HCOH
.-OH .-OH
HO HO
Me Me
0 : (o} .
HO o H AcO 0 H
OH OH
)] 2
?Hs CH;
HCOR H(|JOR
<OH .-OH
HO HO
Me Me
O t 0
HO 0 HO o
OH OH H
HO

0.<CHj 0. .CH;
OH
Me OH Me
H,N Qo H,N Q o
OCH3; (5) OCH; (6)
¢
c=0
Me o OH
0 :
HoN H 1

OCH;
@] 3
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Table 2 (continued)

CH3
HC—NH

ey AT
e e Ctgﬁ

OCH3 OCHj;
10) CH;4
c=0
OH
0
HO/%/O
HO od o
HO o)
HO o
OH
S5
HO
1
HO OH an |CH3
¢=0
OH
HO Q O
HO OH 0
HO o)
12)
CH;
i o
=0 C=0
OH
HO 0
HO o Hg()&é/o
OH OH
HO OH 13)
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Table 2 (continued)

"o (s) HCOR
-OH
o)
OH Me o
0 0
OH H;CO OoH H
0
_ HO OH O
R= HO OH /%O‘A/ Me o Me o
(16) r= HO OH
HO OCH; OCH;
CH;,4 amn CH;
HCOR HCOR
OH <-OH
HOM HOMe
gi&o &0%/
H;CO O H H3CO OH H
Me o Me o)
= HO R= HO
HO™™ 1y CH HCo
| 3 (19) (|:H3
HCOR
C?OH HCOR
-OH
HO
Me HOM
H,CO OH H H;CO OHO H
OH 0 OH
Me Me
= HO 2 HCO&&/ R= "Ho 2 H,CO 2
7 ou’ H 3
(20) (21
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Table 2 (continued)
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o
HCOR
<-:OH
HOM
€ o o |
- :
3CO o H
OH
0 Me 0
HO
R= HO (1){?)%/
OH
(22)
g
HCOR
OH
HO
Me o
H;CO o i OH Me
OH r = HO Q o
= "HO o
HO ¢
23)
o
HCOR
<-OH
HO
Me
Q
H;CO 0 i
OH
OH Me o Me
Q 0
HO 0 Q
R= HO&@@@ @0&/
OH HO
(24) Me
Q .
H;CO Y '
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Table 2 (continued)

CH;
HCOR
ﬁtgjﬁ OH
0
(0] Me
RASRYAN SN
3 “30 OH H
(26) ?Hs
HCOR
thjﬁm
0
(0] Me
AN YAL S PN
3 “30 O H
0
OH Me
HO 0 Q
)
R= HO 630
HO
27
o
HCOR
0
0] Me
ARAN YA
3 “30 o H
OH Me
HOQ_o X
R= Ho “,50%
HO (28) CH
HCOR
0
(0] Me
3 “30 o H
OH Me
R= HO%%
HO—" 35 0O
29
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Table 2 (continued)

G
HCOR
<;OH

O
€ O B
H;3CO Y\%CO H
OH
OH Me o Me o
R= HO HO ‘2,'\, &2»3

(30)

o
HCOR
-OH
a0 N R M,
H;CO— ) 0 i
wy OH
O M o (g0 el
0 O
HO 0 o 006&/000
R="Ho S ¥
HO  OCH;
@31
o
HCOR
:-OH

0
PASSRVACT
HyCo\ ¢ co 0 i
™y OH
Me

Me
OH Me N le)
R="Ho ~ ¥ ¥

OCH;

(32)
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Table 2 (continued)

HCOR HCOR
-OH
HO
&y O &W
H3CO 0 }11 HiCO
HO
.- r- How ng
B H3CO \%
(33) CH
HCOR
Hacow &QVO’ : 5
Me
R = H;CO R CH;
OH |
(35) PhHC—HC—é«O HC—O—é—CH3

OH
Me 0}
P
¢
HO/%O/?I%\/""’ OCH
HO OH OCH;,4 37
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Table 2 (continued)

0 |CH3 0
I I
@c—o HC—O—C@
OH
OH Me Me
Me O O O H
HO Q 0 O/Omo
© Wi OCH
H 3
OH  oer)
(38)
0 |CH3 0
I |
O sl
OH
[+
OH Me o Me o o o O
HO 0 ©
OH OH  OCH;  OCH;
OCH; 39
(39) 0 HE O
I I
Oy ot
OH
M :
OH Me Me Qo € o0O i
HO
OH OCH;  OCH;
OH  ocH; "
I
@c—o HC-OH
OH
Me Me

Me

OCH

0}
O
Ho%o% %
OH OCH;
3

OCH;,

@D
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Table 2 (continued)

f
OH
Me
M R 0%0
HO%O%
OH OCH; OCH;
OCHj
42)
Me Me
Me 00
Q OMO
HO ‘:\“:C
HO OCHj
OCHj;
(43) i $H3
@C— HC—OH
OH
Me Me Me
O
HO QOGN 0 T2
HO Wy
OCHj OCH;

45)
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Table 2 (continued)

(0]
Il
@— C—0 HC O -C—CHj;
M Me Me o OH
e
QO OMO °
HO \:\30
HO OCHj
OCHj3
(46)
I
Il
@C—O HC—0-C—CHjs
Me Me OH
Me o 0 o Q o
OH OCH;j OCH;
OCH;
@7
O (|3H3 0
Il Il
@C—O HC—0 -C—CHj
OH
Me
Me Me o 00
HO%O
OH OCH; OCHj;
OCHj;
(48)
(0] (I:H3 (6]
1l 1
O-bo od )
OH
Me !
Me Me 00 '
0 Q H
HO%O@T}/\VO%
HO ¥ OCH3
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Table 2 (continued)

Odo wbod )

Me Me ! OH
Me o Q o O o :
HO%O% H
OH OCH, OCH;
OCH;,
(50)
Me Me o €
Me Me
0 0 0 ¢ 0
O, Q,
HO N Qgﬁﬁw | S Y
OCH;> ¥
(51)
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Table 2 (continued)

Me
Me Me Me 0 %
o
HHgm Ooﬁ&%o 0 O%
3 RES e OocH;  OCHs
(54)
Me
Me Me Me 0
1o 0 o X% 00
HsCO e OCH OCH,
3
(55)
Me
Me Me Q %
Q o
HO Q o o%/
H;C(;yﬂ&ooi\;\y den,  OCHs

o, T 0 =AY
H,CO de,  OCH;
(57)
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Table 2 (continued)

7
C=0

OH OMe o OH oH
HO Q “&o&@/o | ’
HO OH OH HCOH

(58)
OH OMe OH

HO o
59
g
C=0
OH
Hoﬂ/o OH |CH3
HO OH HO&%/O Cc=0
HO
OH
0 OH [:610?
oS00
HO OH
(61)
0 o
HyC—C—0-
(@)
OH
M :
€00 H
Me o o
(6]
OH ﬁ)ily OCH;
e -
Hos R B0 o
OH (62)
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Table 2 (continued)

HiC—C—0
lo)
OH
Me H
o 0 0 7
€ O fo}
OH OCH; OH
Mw\\) 0 cns
Hoﬂo 07  OCH; n
63) c -0 c 0
OH
H}C—C=0.
o)
Me
OCH3 Me
OH omo
OCH
O 3
Hoé&/gle Q7w o o
HO = (64) 0 lCH3
HiC—C—0-
Me OH

OH OCHL O Ew
~0 7
%%é@vg W 65)

C
Me—~- 5
Hoeﬁﬂ on ®
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Table 2 (continued)

(68)

OCH CH;

0
|
HO o
/Mww
00%} OCH;4
OCH; 2)
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Table 2 (continued)

o % o %
0 O OCH;  OCHj
HO o H;C
HO OCH; (73) Q

OH Me O

) ﬁ\v
HO OCH;
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Table 2 (continued)

0 $H3
1l
Me,CH(Me)C=HC-C—0 C=

Me

Me o%
0
OCH; Me o0 3
0
o oK Mol N
H}?O o OCHj3 O ¢Hs
11
HOYO™ "OH Me,CH(Me)C=HC-C—0 C=0
Me
Me Me
0] Q0
HO
0 OCH;
OCH, OCH;
(79
0] CHj3
g
HO HC—OH
~OH
Me OH
HO~~—Q op
Qo= ey, AV
OCH; 81)
(80)
CHj; o
il
HO HCO—C—CH;
i OH
Me OH
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Table 2 (continued)
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Table 2 (continued)

o\<i;:§2? OCH;
CH?H/\/@OH
N

OCH;

References, pp. 309-325



Pregnane Glycosides 265

Table 2 (continued)

OH

e

Me o Me o Me 0
HO Ow
HSCSmO%
OCH; OCH;
(96)

(@) (|3H3
Il
Me,CHMe)C=HC—C—O C=0

O OH CH
(100) 0 P
Me,CH(Me)C=HC-C—0  C=0

OH OCH; OCHj3




266 D. DEEPAK, S. SRIVASTAV, and A. KHARE

Table 2 (continued)

R
Me,CH(Me)C=HC—C—0  C=0

Me Me
M Me 0d o lo)
o OH 04 H,CO
HoO-S0, Q0 Ocm,  OCH:
HO ‘2‘0 OHOCH3
OH (102)
I I
Me;CH(Me)C=HC—C—0O C=0
—OH
Me

(0} Q 0

Me Mew OCH;
0 O OOCH;

OCHj /%/
Me—7—|~ (103)
HO O OCH;
CH;,

Il |
Me;,CHMe)C=HC—C—0 C=0

I e
Me,CH(Me)C=HC-C—O C=0
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Table 2 (continued)

0 CHj

Me Mew OCHj

O _oocCH;

OHo " OCH3O/W
HO e7~0
HW j\f OCH3; (106) 0 CH;

I
Me,CH(Me)C=CH-C—0 C=0
OH

Me
020
Me o MeZ-07 by
OI({) " OCHO/%/oOCH3
Ho *7to7
Hoﬁﬂ/O 07 ocH;
OH (107)

ﬁ) CH;
Me,CH(Me)C=CH-C—O C=0

HO OCH; (109)
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Table 2 (continued)

R
PhHC=CH-C—-0O HC—O-C@
—~OH N

ol

Me OH
ox—Qo0
Me OMemf OCHj
OH OCH3O OOCH3
HOZ Q Me71"07 OCH;, (110)
CH; O

Il | |
PhHC=CHC —0 HC-O-CCH=C(Me)CHMe,
i~ OH

Me Mem OCH;

OCH;0 0OCH;
Me7~
HO-LL7  OcH; (112)
Me
o 0
Me OM"'W OCH;
OCH;0 OOCH;
Me7 |~
HO o OCH;, (113)
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Table 2 (continued)

A
PhHC=HC—-C—0O HC—O—C—C(Me)=CHMe
—OH

em /O(:%H/
M 3
N OCH

OCH;0 Q oV (114)

Me—7{~
Ho+~27  ocH,
0
Me Mew OCH;
HO\—Q _0OCH; 115)
OCH, o CH;
Il
Me;CH(Me)C=HC—C—0 C=0
._OH
Me
OH OH Me Q o
HO
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Table 2 (continued)

T
Me,CHCH,—C—O C=0
HyC—C—0,
Me Me OH
Me Q O%O
HO%O OCH
OH 3
ool OCHj,
(118) ﬁ (|JH3
Me,HC(OH)HC—C—0O C=0
H;C—C—0,
% o
W oc, CH;

OCH; (119)
Me
HO Me
Me 0
‘?&O 0
OH OCH; OCHj3
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Table 2 (continued)

OCH, 127




272 D. DEEPAK, S. SRIVASTAV, and A. KHARE

Table 2 (continued)

I ICH3
Me,HC—H,C—C—0 HCOH
I_OH

OH
Me Me
Me o) 0 o |
HOXM-Q 0 ﬁ\yo H
H3CO D ocH;
3

0 CH,
Me,HC—H,C—C—0 (=0

M
Ho/wo
(130)
3 0 CH;

Me,CH—CH,—C—0 (=
HyC—C—0.,
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Table 2 (continued)

273

It
MezCH—CHQ—C—O

Me
Me

On OCH;
OCHj

Me

Me
OH

HO OCH;

OH

M
N o%

o o%/
Ho QO 1N ocwy

(133)
ﬁ) CH;
MC2CH—CH2—C—O C=

M
Q0

(]
0 0
OCH;

(134)
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Table 2 (continued)

i
HO HC—0—C—CH,—CHMe,
HO.. I
OH
€
Me 00
Me o0
0
HO oQo OCH;, 136
OH, &
OCH; CH;
|
HO HC—0—C—CH,—CHMe,
HO.. I
Me OH
Me O
OH 00
HOg&/O OCHj3 CH,
HO OCHj; (137) [
OH HO HCOH
HO..
Me OH
Me Q
Me X o Owo OCH
HO & 3
OCH; (138)
s
HO HOOH
HO..
OH
Me
Me 00
Me /ﬁ&f’
HO/?g/O OCH,
OCH;
OH
OCH; (139)
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Table 2 (continued)

o) CHj

Me
Me O O

00

Me

Me o 00 OCH

HO o% 3

Qo OCHj
L
3

CH;

[l |
Me,HC—H,C—C—0 HCOH

OCH; (141)

Me Q0

Howo/EH\v OH
OH 3

OCHj3 (142)
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Table 2 (continued)

(o} (!3H3
I
PhHC=CH—C—0 HCOH

Me Me o O,Gymnemarogenin
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Table 2 (continued)

CH3
HCO—C—CH3

I
%}:tl] 0
CHs
/wﬁi;l/égthA/ HCOH
Me Me Me
O%O%O

|
HO HCOH

|
HCOH




278 D. DEEPAK, S. SRIVASTAV, and A. KHARE

Table 2 (continued)

Me O OH e Me OH

CH;
HCOH

e o "
0 CH,
HCO- 3 /ﬁ\v |

O OH - HCOH

OH OH Me OH

OH  OcCH;
(159)
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Table 2 (continued)

0 ICH3
Il

H;C—C—0 HCOH

PhHC—_—CH—ﬁ—O\

¢
H,C—C—0 C=0

0 O
on on ,OWOZO%/O%
I_i?o (6] OHo OCH}O &

HO OH .H
(163)

i CH;4
H;C—C—0 C=0

HO

T
)
o
g\:
o
S
o
o
%
ES
o
o
ES
o
o)

OH HO & OCH3

(164)
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Table 2 (continued)

0 (|3H3
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Table 2 (continued)
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Table 2 (continued)

0 CH,
PhHC=CH—C—0 (C=0

% A o%
Ho‘é\"s

OCH;

|
I -OH
9 CH3 O
M
(Me)HC=(Me)C— ¢o HCO—C—CH3 vegvo OH
HO 0

P g
176 —=HC—C— — O—C—
OCH3 (176) Ph HC=HC—C—0 HC o C CHj;
HO C—O
'~OH
HO % (179)
(178) OCH3
ﬁ CH o o] CHj
(Me)HC=(Me)C—C—0 HCO—C—CH3 (Me)HC=(Me)C—g)—O H(’:OH
,~OH

Me OH
HO =0 Ov\v Q ﬁ\v
O
X ™ %

HO OCH; (181)
CH3
HCOH
OH

Me Me Me o
HO -2 o ﬁ&o ﬁ\vo
H3CO
HO OCH; OCH;

(182)

References, pp. 309-325



Pregnane Glycosides

Table 2 (continued)

283

l
OCH; HO HCOH




284 D. DEEPAK, S. SRIVASTAV, and A. KHARE

Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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Table 2 (continued)
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(215). A number of pregnane glycosides have been isolated from antitumor
active fractions of Periploca sepium (31,69, 162,187). Among these perip-
locoside A (217) showed significant antitumor activity against Sarcoma
180 ascites in mice (162). Another pregnane glycoside, periploside A (211)
from the same source, showed significant anticomplementary activity at
a concentration of 1.0 mg/ml (228). Recently, pregnane derivatives iso-
lated from Stizophyllum riparium (236), Gelsemium sempervirens (237) and
Marsdenia tenacissima (65) showed cytotoxic activity while two pregnane
glycosides isolated from Cynanchum otophyllum showed antiepilepsy
activity (238). Marsdekoiside A (183) from Marsdenia koi has shown good
antifertility activity (17, 239). Verrucoside (238), a pregnane glycoside from
the gorgonian Eunicella verrucosa, possesses cytotoxic activity (7) against
human lung carcinoma (P-388) and human colon carcinoma (HT-29). Six
pregnane glycosides—condurangoglycoside A (160), condurangoglyco-
side C (161), condurangoglycoside E, (174), condurangoside A (293),
condurangoside B (295) and condurangoside C (296) obtained from the
methanol extract of Condurango cortex (bark of Marsdenia condurango),
possess differentiation-inducing activity towards mouse myeloid
leukemia (M 1) cell line (240). M1 cells were differentiated into phagocytic
cells by these glycosides which were found to be more effective than their
aglycons. Kondurangoglycosides A (160) and C (161) having a cinnamoyl
group in their aglycons, were the most potent differentiation inducers and
M1 cells became phagocytic cells after 24 hours treatment with these
glycosides (240).
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