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Table of statistical tests included in this book



1
Designing an experiment

The scientific approach to behaviour

Psychologists do not have an exclusive claim on the study of human behaviour.
Many philosophers, writers, poets, theologians, and even salesmen are interested
in the nature of human thought and action. And indeed, there is a sense in which
we all possess some sort of personal ‘theory’ of behaviour, a theory which is
used to guide our relationships with other people and to help us predict each other’s
reactions and sensitivities.

Now each of these different approaches can sometimes produce perfectly
respectable psychological theories. For example, the popular belief, ‘Once bitten,
twice shy’, has its counterpart in the psychological literature on punishment. And
some theological views, such as the belief that suffering induces more tolerant
attitudes, could easily be the starting-point for a programme of psychological
research. So we cannot claim that there is a basic difference between the theories
put forward by psychologists and those devised by other students and observers
of human nature. The distinguishing feature of experimental psychology is not so
much the nature of its theories as the methods used to test their validity. The
approach adopted is essentially scientific; a psychological theory has to fit the
facts of behaviour as derived from systematic observations taken in carefully
controlled conditions. If a theory does not fit the facts it is discarded or revised,
no matter how long its history, how appealing its logic, or how convenient its
implications. As we shall see, this, emphasis on objectivity and rigorous control
narrows the range of behaviour that can feasibly be studied, but in return it
produces more solid and reliable conclusions.

Thus we have defined experimental psychology mainly in terms of its
methodology, i.e. the procedures used to evaluate theories. But we have placed
no limits on the way in which these theories are first devised. They may be based
on years of exploratory research, on a vague hunch, or even on a political or
religious viewpoint. It doesn’t really matter so long as the theories give rise to
predictions which can be tested against the behaviour of human beings in
controlled settings. This is the basis of scientific psychology.



Predictions in psychology

What does a prediction from a psychological theory actually look like? Here are
some examples:

1 Highly aroused subjects respond more rapidly to visual stimuli than sleepy
subjects.

2 Reaction time to sounds is faster than reaction time to visual stimuli.
3 Daydreaming occurs more frequently during simple tasks than complex

tasks.
4 The amount of saliva produced by a dog when a bell is rung depends on how

frequently the sound of the bell was previously associated with feeding.
5 Two letters can be classified as having the same name more rapidly if they

are identical (e.g. AA) than if they differ in case (e.g. Aa).
6 Driving skill varies as a function of the level of alcohol in the blood.

These predictions (or experimental hypotheses) differ in a number of ways. Some
accord very much with common sense whereas others do not. Some are based on
rather complex theoretical notions whereas others seem to reflect a very simple
model of behaviour. Some are clearly related to everyday behaviour whereas
others deal with seemingly obscure psychological tasks. What is common to them
all, however, is their general format. In effect each prediction is saying that as one
thing changes there will be consequential change in something else: as arousal
increases response time decreases, as task complexity increases so frequency of
daydreaming decreases, as alcohol level changes so driving skill changes, and so
on. Each of the above predictions has the same basic logical form although the
sentence structure varies slightly from one case to another.

A prediction, then, is a statement that a change in one thing (the independent
variable or IV) will produce a change in another thing (the dependent variable or
DV). Thus a change in arousal level (the IV) is said to produce a change in
response time (the DV). Task complexity (the IV) influences frequency of
daydreaming (the DV). And variations in alcohol level (the IV) cause changes in
driving skill (the DV). In general the independent variable will relate to a change
in the conditions governing behaviour and the dependent variable will
correspond to some measure of the subject’s behaviour or performance under
those conditions.

Testing a prediction: the role of experimental design and
statistics

How do we go about testing a psychological prediction? Clearly we need some
sort of plan for collecting information or data about the relationship between the
independent and dependent variables. The formulation of a plan for collecting
relevant data is known as research design.
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Consider, for example, the prediction that driving skill is affected by the level
of blood alcohol. One possible plan for data collection would be to ask a sample
of drivers whether they had experienced any change in their driving skill after
drinking. This wouldn’t be a very good research design for obvious reasons.
Drivers are probably very poor at estimating changes in their own skill even
when they are sober. But we would be asking them to remember changes which
took place while in various states of intoxication. Even if they could recall such
information it is doubtful whether they would willingly report their own reckless
or anti-social behaviour just because we asked them. So this approach would lead
to unreliable and possibly biased results.

An alternative plan would be to collect our data from various official records
of accident rates. We would be interested, for example, in the proportion of
accidents involving drunken drivers. We could also compare accident rates
before and after the introduction of stricter legislation on drink and driving. Or we
could look at changes in accident rates as a function of the times at which public
houses are open for the sale of drinks. Data of this kind would lead to rather
tentative conclusions about the effects of alcohol level on driving skill. Although
this sort of evidence is reasonably objective, it is none the less circumstantial.

Scientists are generally agreed that the most effective means of testing a
prediction is deliberately to manipulate the independent variable and then to
observe the consequential changes in the dependent variable. It is only this
method of collecting data—the experimental method—which has the power to
reveal cause-and-effect relationships in an unambiguous way. Thus the best way
of testing whether alcohol influences driving skill is to actually administer
different quantities of alcohol to groups of volunteers and to compare their
performance in a subsequent driving task. This direct, experimental approach
will produce more definite results than the methods based on the observation of
natural events, such as a survey of accident rates in relation to the availability of
drinks.

We are committed in this book to the use of experimental methods in testing
psychological predictions. In this first chapter we shall discuss the different ways
in which data can be collected in an experiment—this is the topic of experimental
design. Our main interest is to decide how subjects should be divided between
the various conditions of the experiment. Such questions of layout should not be
decided arbitrarily. The idea of experimental design is to ensure that the data
emerging at the end of an experiment are relevant to the prediction being tested
and not contaminated by outside factors. In other words, an experiment has to be
designed in such a way that its results will logically confirm or refute the
predicted effects of the independent variable. It is surprisingly easy to sabotage
these aims by carelessness at the design stage of an experiment. 

Let us assume, for the moment, that an experiment has been adequately
designed and carried out. The next step is to interpret the results to see if they
support our prediction. Now it rarely happens—even with the best laid designs—
that the results are completely clear cut. One would be pleasantly surprised if all
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the subjects in one condition produced dramatically different behaviour from all
the subjects in another condition. We normally get some overlap between the
performance of the two groups, some blurring of the effects of the independent
variable. This is where statistics come in—to tell us whether we can draw any
general conclusions from the data, or whether there is too much blur to say
anything. We shall return to this problem and the various techniques needed to
solve it in the coming chapters. But before we do this we must establish the basic
logic of an experiment and the principles underlying its design.

What exactly is an experiment?

In formal terms an experiment is a means of collecting evidence to show the
effect of one variable upon another. In the ideal case the experimenter
manipulates the IV, holds all other variables constant, and then observes the
changes in the DV. In this hypothetical, perfect experiment any changes in the
DV must be caused by the manipulation of the IV.

Suppose, for example, we have a theory which predicts that sleep deprivation
causes an increase in reaction time to visual signals. Given the co-operation of a
group of subjects we could test this prediction experimentally. Half the subjects
would be deprived of sleep for one night while the remaining half were allowed
to sleep normally. The next morning we would measure the reaction time of each
subject and see whether the sleep deprived group had noticeably longer reaction
times. If they had, and provided that the two groups were similar in all other
respects, we would be justified in concluding that sleep deprivation causes a
slowing of reactions to visual stimuli. This procedure qualifies as an experiment
because we have actually manipulated the independent variable (amount of sleep)
and observed the consequential changes in the dependent variable (reaction
time). This is the simplest type of experiment—one in which the independent
variable takes on only two values or levels (no sleep—normal sleep). We shall
focus on this basic design for most of the book, but the principles will apply
equally to more complex experiments in which we compare the effects of three or
more levels of the independent variable (e.g. no sleep—two hours’ sleep—
normal sleep).

Now let us consider a second example. This time we have a theory which
predicts a relationship between, say, intelligence and reaction time: intelligent
subjects are expected to react faster than less intelligent subjects. Again we
might divide our group of willing volunteers into two sub-groups, this time
according to their IQs. Thus we would form a more intelligent group and a less
intelligent group. If we found the predicted difference in reaction times we might
be tempted to conclude that intelligence determines the speed of a subject’s
reactions, just as sleep deprivation did in the previous example. The analogy is
misleading, however, because intelligence cannot be deliberately manipulated in
the way that sleep deprivation can. Subjects bring their own level of intelligence
with them to the laboratory, and all we can do is to observe the relationship
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between intelligence and reaction time. But we cannot go on to infer a cause-and-
effect relationship between the two variables because both of them may be
influenced by a third, uncontrolled variable. For example, it may be that
intelligent subjects tend to be healthier than less intelligent subjects, or younger,
or more highly motivated, or more attentive…; any one of a number of such
variables might be the real cause of the variation in reaction time. We might be
mistaken if we ascribed the causal role to intelligence rather than one of the other
variables which happens to be related to intelligence. This example highlights the
major weakness of all non-experimental research; we can never be certain
whether the independent variable we measure is actually the one that produces
changes in the dependent variable.

Unfortunately many of the variables we would like to investigate cannot be
brought under experimental control. We cannot manipulate a subject’s personal
characteristics: his age, sex, social status, intelligence, personality, religious
beliefs, social attitudes, and so on. Nor would we want to interfere with critical
aspects of a subject’s physiological or emotional state, even though this might be
possible in principle. In such cases the researcher has to fall back on observing
natural variations in the variables of interest. He compares the performance of
old and young subjects, or males and females, or, as in the above example, more
and less intelligent subjects. He then has to resort to statistical procedures to rule
out the possible influences of uncontrolled factors which may be changing
together with the variable under study. The procedures which are used in this
type of study are discussed in more detail in other texts under the heading of
correlational designs (see, for example, Chatfield and Collins, 1980; Miller,
forthcoming). They are of critical importance in such subjects as social
psychology, sociology and economics where experimental control of the
independent variables is usually impossible or unrealistic. But the experimental
psychologist can avoid the complications of correlational studies if he is prepared
to limit his research to variables which can be manipulated experimentally. This
means, in effect, that he is going to be more concerned with the influence of
external conditions on performance than with the effect of the characteristics of
his subjects. It also means he will be less plagued by the problems of
psychological measurement. The manipulation of independent variables like the
brightness of a stimulus or the length of a word is much more straightforward
than the measurement of independent variables like intelligence or neuroticism.

Irrelevant variables

So far the reader may have gained the impression that there are no unwanted
variables in an experiment—that all the variation in the subjects’ performance
will be caused by changes in the independent variable. This might be true of a
scientific paradise, but in the real world it is impossible to hold constant all those
variables which might influence the subjects’ behaviour in an experiment. Take,
for example, our investigation of the effects of sleep deprivation on reaction time.
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How could we ensure that all our subjects are equally attentive and well
motivated, or that they have equally acute vision? Can we be certain that the
apparatus will remain equally sensitive throughout the experiment, or that the
background noises and distractions will be the same for each subject? And how
can we eliminate any changes in the experimenter’s tone of voice or general
attitude to the subjects? Even changes in the room temperature or time of
day might affect a subject’s reaction time. There are a large number of variables
that might, in principle, affect the dependent variable, although we are only
interested in the effects of sleep deprivation. For the purposes of our experiment,
then, all the other factors may be thought of as irrelevant variables.

The effect of irrelevant variables

It would be useful if we could hold all of these irrelevant variables constant and
just manipulate the independent variable. Then we would get a perfectly clear
picture of its effect on the subject’s behaviour. But such complete control over
all irrelevant variables can never be achieved. It is either physically impossible
(e.g. how can one hold the sensitivity of the apparatus constant?) or practically
inconvenient (e.g. imagine trying to hold noise, temperature, humidity and
illumination constant). And in any case there are reasons why too much control
is actually undesirable (see p. 156). So we have to resign ourselves to the
presence of some irrelevant variables in every experiment we undertake. The
question is whether such variables could undermine the logic of the experiment
itself.

The only way in which this could happen is for an irrelevant variable to
change its value systematically across the two conditions of the experiment. We
then have the independent variable and the irrelevant variable changing together,
so that any difference between the scores obtained in the two conditions becomes
impossible to interpret; it could be caused by the irrelevant variable, or the
independent variable, or the combined effects of both. Suppose, for example,
that our subjects in the sleep deprivation experiment have to be tested in two
rooms, one of which is warmer than the other. Room temperature then becomes
an irrelevant variable which might influence a subject’s reaction time. If, for some
reason, we tested all the sleep deprived subjects in the warmer room and all the
non-deprived subjects in the cooler room, then we would not know how to
interpret a difference between the performance of the two groups. If our results
show that the sleep deprived group have, say, longer reaction times than the non-
deprived group, we are unable to say whether lack of sleep or the warm
environment were responsible. The point is that we can never disentangle the
effects of two variables that change together. The irrelevant variable in such cases
is known as a confounding factor because it literally confounds our interpretation
of the experiment.

Of course confounding doesn’t just happen, it is of our own making—and it
can usually be avoided. Thus in the previous example we could decide randomly
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for each subject which room was to be used. This wouldn’t remove the effect of
the irrelevant variable altogether—changes in room temperature would still be
causing variations in reaction time—but the effects would be spread more or less
evenly across the two experimental conditions. This then is the second way in
which irrelevant variables can influence the results of an experiment—by
varying randomly from subject to subject but not tending to influence one
condition any more or less than another. Non-systematic effects of this kind are
called random effects, and they do not undermine the logic of an experiment.
However, they do tend to obscure the effects of the independent variable because
they increase the variability in each set of scores. Thus when we come to
compare the two sets we do not see the effects of the independent variable so
clearly (see table 1).

Table 1 Imaginary results of the sleep deprivation experiment (a) with and (b) without
random effects

(a) Reaction time to visual stimuli in
milliseconds

(b) Reaction time to visual stimuli in
milliseconds

Sleep deprived (5
subjects)

Normal sleep (5
subjects)

Sleep deprived (5
subjects)

Normal sleep (5
subjects)

450 420 450 420

470 450 450 420

430 400 450 420

420 440 450 420

480 390 450 420

Average 450 420 450 420

Methods of controlling irrelevant variables

The major purpose of experimental control is to avoid confounding—that is, to
ensure that the only variable which changes systematically from one condition to
another is the independent variable. Without this our experiment becomes
uninterpretable. The second aim is to minimize the random variation in the data
so as to highlight the effect of the independent variable. With these aims in mind
we shall now introduce the various methods of control

A preliminary point: we need to distinguish between those irrelevant variables
associated with the subject—intelligence, motivation, personality, etc.—and
those associated with the conditions under which the experiment is conducted—
background noise, instructions, experimenter’s tone of voice, etc. We shall call
the former subject variables and the latter situational variables. Although both
classes of irrelevant variable may threaten our experiment in the same way, they
are controlled in different ways.
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The control of subject variables

In controlling subject variables we want to ensure that the groups of subjects
tested under each experimental condition are as similar as possible on all the
dimensions along which people can differ. We do this by carefully controlling
the way in which subjects are allocated to the experimental conditions. There are
three possible methods:

(1)
THE REPEATED MEASURES DESIGN

The only way we can be sure that our two groups of subjects will have identical
characteristics is to use the same subjects in each group. This is what we do in a
repeated measures design; each subject performs under both conditions of the
experiment so that the effects of subject variables will balance out exactly. This
is the most effective method of control. By analysing the difference between the
two scores belonging to each subject we obtain a very sensitive measure of the
effects of the independent variable, a measure which is uncontaminated by any
variations in subject characteristics.

Suppose, for example, we were investigating the effect of word length on the
ease of remembering a list of ten words. Using a repeated measures design our
group of subjects would be tested 

Table 2 The layout of a repeated measures design

Independent variable

Level I (e.g. long words) Level II (e.g. short words)

S1 S1

S2 S2

S3 S3

S4 S4

· ·

· ·

· ·

Note: S1, S2, S3, stand for different subjects.

for their memory of a list of short words, and the same group would be tested on
a list of long words (see table 2). This arrangement would give us perfect control
over troublesome variables like differences in the subjects’ learning abilities, or
levels of motivation which might otherwise contaminate the results. But, in
return, we now have to cope with a new irrelevant variable, i.e. whether a task is
performed first or second. The task that is performed second may benefit from
practice acquired in the first, or may, perhaps, suffer from the effects of fatigue or
boredom. Order effects of this kind can easily lead to confounding. Thus if all our
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subjects perform the two tasks in the same order, any differences that emerge
could be caused either by the change in word length, or by a change in fatigue,
practice, or whatever. We must therefore ensure that the order in which the tasks
are performed is counterbalanced across subjects—that is, half the subjects
follow one order, and the other half follow the reverse order. Alternatively, we
could decide on the order randomly for each subject, say by tossing a coin.
Normally such steps will ensure that the order effects will balance out over the
experiment as a whole, but there is no guarantee of this. If the order effects are
asymmetrical, e.g. one task produces greater fatigue than the other, then we
cannot expect the order effects to be neutralized by counterbalancing, or any
similar device. Thus the repeated measures design should only be used when we
judge the order effects to be symmetrical or insignificant. For a critical
discussion of this point, see Poulton (1980).

(2)
THE MATCHED SUBJECTS DESIGN

Sometimes it is possible to ‘imitate’ the repeated measures design without
actually using the same subjects in each condition. This can be done when we
have pairs of very similar individuals (e.g. identical twins), or where we can
select pairs who are very similar on the variables that influence the behaviour
under study. Suppose, for example, we were conducting an experiment to
compare the effects of two different types of instructions on the speed with
which a problem is solved. It would be nice if we could equate the two
conditions on subject variables by using a repeated measures design. But since we
cannot test a subject twice on the same problem, this design is inappropriate. The
next best thing is to use a matched subjects design (see table 3) in which each
pair of subjects is matched on, say, intelligence and creativity. We would then
allocate one member of each pair to the first condition, and the other

Table 3 The layout of a matched subjects design

Independent variable

Level I Level II

Pair 1 S1a S1b

Pair 2 S2a S2b

Pair 3 S3a S3b

Pair 4 S4a S4b

· · ·

· · ·

· · ·
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Independent variable

Level I Level II

Note: S1a stands for the subject in pair 1 who was allocated to level I of the experiment;
S1b stands for the subject allocated to level II. Similarly for other pairs of
subjects.

 member to the second condition—the allocation being made on a random basis.
The difference between each pair of scores would then reflect the influence of
type of instructions, and would be largely free of subject effects. But note that
this would only be true if the subjects were matched on the right variables, i.e.
those that have a large effect on problem solving behaviour. If we match subjects
on variables that are unrelated to the dependent variable this design becomes
extremely insensitive.

A major drawback of the matched subjects design is the difficulty of knowing
which subject variables should form the basis of the matching. And even if we
can identify the most influential variables, it is often a difficult and time
consuming matter to actually recruit pairs of subjects whose scores on these
variables are closely matched. Consequently this design is not met very
frequently outside the literature on twin studies.

(3)
INDEPENDENT GROUPS DESIGN

It should be clear by now that rigorous control over subject variables cannot
always be achieved. Often we have to fall back on a third method of control—the
independent groups design (table 4)—which is less sensitive to the effects of the
independent variable, but can be used freely for almost any experiment.

In this design subjects are divided into two entirely separate groups on the
basis of a strictly random procedure. This could

Table 4 The layout of an independent groups design

Independent variable

Level I Level II

S1 S2

S3 S4

S5 S6

S7 S8

· ·

· ·

· ·

Note: S1, S2, S3, etc. stand for different subjects.
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 be done by asking each subject to draw a number from a hat, there being as
many numbers as subjects. The subjects who draw even numbers are then
assigned to one condition, and those who draw odd numbers to the other
condition. An obviously non-random technique would be to place all the female
subjects in one condition and all the male subjects in the other. Not quite so
obvious, but equally non-random, is the procedure of allocating the front rows of
a room full of subjects to one condition, and the back rows to the other
condition. There could easily be a systematic difference, say in personality,
between subjects who gravitate to the front of a room and those who sit at the
back.

Provided that the subjects are randomly allocated to the two conditions we
would expect the groups to be fairly well matched on the subject variables. That
is, they should have about the same overall levels of intelligence, attentiveness,
creativity, etc. Note that randomization doesn’t ensure that the two groups will
be perfectly matched on any particular subject variable. All we can say is that
there will be no systematic bias in favour of one group. In the long run, if we
were to continue the random allocation indefinitely, all the differences would
balance out. But given the small numbers of subjects typically available in
psychology experiments we cannot expect this to happen. We therefore have to
try to decide whether the difference between our two groups of scores is due to
the independent variable or simply to the irrelevant variables that did not quite
balance out in the randomization process. The greater the variation caused by the
subject variables, the more difficult this decision becomes.

Unlike the previous designs, the independent groups design does not allow us
to remove the effects of subject variables from the background random variation.
Hence this design is rather insensitive. Using more advanced techniques it is
possible to improve on the basic independent groups design, but these techniques
are beyond the scope of this book (see Myers, 1962, ch. 12). One improvement
that can be made, however, is to remove the random effects of some subject
variables by holding them constant. Thus if we felt that variations in our
subjects’ visual acuity might ‘swamp’ the effects of the independent variable in a
visual perception experiment, we could improve the sensitivity of our design by
restricting the study to subjects whose visual acuity fell between some specified
limits. In this way fluctuations in visual acuity would not contribute to the
random variation in the data.

THE CONTROL OF SUBJECT VARIABLES—A
SUMMARY

The three methods of control may now be ranked in the following order from most
effective to least effective:

1 Repeated measures
2 Matched subjects
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3 Independent groups

All three methods eliminate systematic differences between the conditions of an
experiment as far as subject characteristics are concerned. But they differ in the
amount of random variation which remains to obscure the experimental effect.
The repeated measures design allows us to remove all the random variation
between subjects; the matched subjects design eliminates some, but not all, of
this random variation; and the independent groups design eliminates none at all
(although by selecting subjects with a uniform rating on certain variables we can
remove the random variation they would have produced).

Although our order of preference between these techniques is now clear, the
actual choice will consist of finding the best method appropriate to the particular
study. We have summarized how this choice can be made in figure 1.

The control of situational variables

Variations in the characteristics of our subjects are not the only factors that may
jeopardize an experiment. We also need to control the variables associated with
the experimental situation itself—background noise, apparatus changes, the
experimenter’s behaviour, and so forth. Such factors could easily confound the
effects of the independent variable if they changed systematically from one
condition to another. The most effective way of avoiding this is to hold the
variables in question constant throughout the experiment. Thus we could remove
variations in background noise by conducting the experiment in a sound-proof
cubicle. Clearly once we have held such variables constant they cannot interfere
in any way with the effects of the independent variable. But the effort involved in
holding situational variables constant tends to make us reluctant to use it, except
for variables which are likely to produce large fluctuations in performance. For
example, we would probably hold background noise constant in an experiment
on the perception of weak sounds, but we might not consider it worthwhile in a
memory experiment or a study of problem solving.

Apart from the effort involved, there will be some variables that simply cannot
be held constant. For example, it may be necessary to test subjects on different
days of the week, or to use several experimenters during the course of the study.
We may even change some variables intentionally, say the vehicles used in a
driving experiment, in order to give the findings more general applicability. The
way to deal with such variables is to balance their effects across the two
conditions of the experiment. Thus if two experimenters were used we would
make sure that half the subjects in each group were tested by each experimenter.
This procedure removes the ‘experimenter’ variable as a source of bias, but its
effects are not completely eliminated. The important point, however, is that
variables controlled in this way cannot produce systematic changes in the
dependent variable.
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There is a limit to the number of factors that can be controlled by these more
rigorous methods. In a typical experiment it would only be feasible to control a
small proportion of situational variables by balancing or by holding them
constant. Hence we need a technique for ‘mopping up’ all the situational
variables that we are unwilling or unable to control in other ways. This technique
is randomization. In the case of situational variables this means testing our
subjects in a random order rather than dealing with each condition in turn. In this
way any variables that might change systematically through time, such as the
experimenter’s temper or the functioning of the apparatus, will affect the two
conditions about equally.

Figure 1 How to control subject variables
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Other aspects of experimental design

In this chapter we have discussed the control of irrelevant variables in some
detail, and yet we have said next to nothing about certain other features of the
experiment. For example, how do we select subjects for an experiment? How
many subjects should be tested under each condition? Can we compare several
levels of the independent variable, or must it always be two? And what about the
dependent variable? Are some ways of measuring behaviour more suitable than
others? Such questions need to be answered, and will be in the remaining
chapters (particularly chapter 10). But we have singled out the question of
experimental control because this is fundamental to the very logic of an
experiment. The success of the whole exercise depends on our ability to treat
both conditions alike in all respects other than the independent variable. 

Chapter summary

1 Experimental psychology is concerned with the objective testing of
predictions about behaviour using experimental methods.

2 A prediction is a statement that a change in certain conditions (the
independent variable) will produce a change in some aspect of a person’s
behaviour (the dependent variable).

3 The most effective method of testing a prediction is to manipulate the
independent variable, hold all other variables constant, and observe the
changes in the dependent variable. This constitutes an experiment.

4 When conducting an experiment there are very many variables that could
influence behaviour apart from the independent variable. These other
variables are known as irrelevant variables, and can be subdivided into
subject variables (e.g. intelligence, personality characteristics, etc.) and
situational variables (e.g. background noise, experimenter’s tone of voice,
etc.).

5 It is impossible to hold all irrelevant variables constant throughout an
experiment. But it is essential that no variable is allowed to change
systematically with the independent variable. When this happens the
experiment is said to be confounded, i.e. we cannot disentangle the effects of
the independent variable and the irrelevant variable that changes with it.

6 The purposes of experimental control are (1) to eliminate any risk of
confounding, and (2) to minimize the random effects of irrelevant variables.

7 In the case of subject variables these aims are achieved by carefully
controlling the way in which subjects are allocated to the experimental
conditions. The three basic designs, in order of effectiveness, are: (1)
repeated measures, (2) matched subjects and (3) independent groups (least
effective).

8 Situational variables may be physically held constant through the experiment,
balanced across the two conditions, or allowed to vary randomly from
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subject to subject. We can ensure random variation by testing subjects from
the two groups in random order.
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2
Data presentation and the normal distribution

An example of an experiment

Let us briefly review the various steps involved in conducting an experiment.
(1) We begin with a prediction that we are interested in testing—say the

prediction that traffic noise impairs performance in a logical reasoning task.
(2) We then have to select an appropriate experimental design—that is, a ‘blue

print’ for the collection of data which will allow us to confirm or refute the
prediction being tested. In this case our design will involve the comparison of
two different levels of the independent variable—traffic noise or no traffic noise
during the performance of a task. These constitute the two conditions or
treatments in the experiment.

Sometimes one condition may be thought of as a ‘baseline’ against which the
effect of the other condition is to be judged. A special terminology is then used.
We call the baseline condition the control, and the other the experimental
condition. Hence, in this case, ‘no traffic noise’ is the control condition, and
‘traffic noise’ is the experimental condition. However, if we were comparing the
effects of hot and cold environments, for example, neither treatment could be
considered more ‘basic’ than the other, so that the experimental/control
distinction would be inappropriate. Instead we would refer simply to the ‘hot’
and ‘cold’ conditions.

Having defined the conditions of an experiment we must decide on the general
layout—that is, the manner in which subjects will be allocated to the two
conditions. From the point of view of controlling subject variables a repeated
measures design would be preferable (see pp. 10–12). But since a logical
reasoning test cannot be employed twice on the same subjects—at least not if the
second assessment is to be meaningful—this option must be rejected. Let us also
suppose that we do not have the time to set about finding subjects who can be
matched on appropriate variables like intelligence and perseverance. This rules
out the matched subjects design, and leaves us with the independent groups
design in which subjects are randomly divided into two groups—one for each
condition of the experiment. This design is clearly appropriate, although it is
rather insensitive to the effects of the independent variable. We can improve



matters a little, however, by restricting our experiment to, say, mathematics
students at a particular university. This will considerably reduce the amount of
random variation in the data because individual differences in logical reasoning
ability will be quite small. Hopefully, then, the effects of traffic noise on
performance will not be masked by large random fluctuations between subjects’
scores.

We have now outlined the basic design of the experiment two independent
groups of subjects will be used, with say, twenty people in each group. Subjects
in the experimental group will be required to complete a logical reasoning test
while traffic noise can be heard. The control group will perform the same task but
will not be exposed to the traffic noise. The difference between the performance
of the two groups will provide the evidence required to test our prediction.

Now this basic design is all very well, but it does not enable us to go away and
actually run an experiment. We have to decide on a large number of procedural
matters first. For example, how, exactly, are we going to manipulate traffic
noise? What test will be used to measure logical reasoning, and how will it be
scored? Precisely what instructions will be given to the subjects? Will they have
a time limit, and if so will they be kept informed of the time they have left? In
what type of surroundings will the subjects be tested?

(3) Answering these questions is equivalent to translating the basic
experimental design into a concrete specification of exactly what has to be done
to run the experiment. We shall refer to this as operationalizing the experiment.
Many of these operational details will appear trivial, for example, specifying the
features of the experimental room, but other aspects make us think more
precisely about exactly what it is we are trying to discover. For example, the
question of how we are going to manipulate traffic noise makes us think about
the inferences we wish to draw from the experiment. Are we interested in
showing that unusually high levels of noise can impair mental performance
relative to near silence? Or are we more interested in the effects of a ‘typically’
noisy environment (say an office adjacent to a major road) compared with a
quiet, but realistic, work environment (say an office in a side road with good
sound insulation)? Both of these questions are perfectly legitimate, although the
second is obviously more relevant to practical problems of noise control.
Assuming we chose the second approach we would probably go out and make
tape recordings of background noise in the two types of environment, and use
these recordings to define the two conditions of the experiment.

Turning now to the dependent variable, we should ask ourselves precisely how
we expect performance to be impaired. Are we anticipating that noise will
gradually wear our subjects down during the course of the task, or do we expect
a fairly constant level of impairment throughout the task? Is traffic noise likely to
induce an increase in errors on the reasoning test, or a slowing of performance,
or some of both? Perhaps our theoretical ideas about the effects of noise are not
advanced enough to allow us to make such specific predictions. In this case we
might decide to measure performance in a general way—say the number of
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correct solutions achieved in thirty minutes on a particular logical reasoning test.
We could analyse the effects more thoroughly in a later experiment.

As a final example of procedural detail we shall consider the instructions
given to the subjects. We shall have a standardized set of instructions about the
completion of the test itself. These can probably be taken directly from the test
manual and will obviously be held constant across all subjects. The question is,
how much do we tell the subjects about the aims of the experiment and about the
noise itself? Here again we have to think about the conclusions we wish to draw.
If our results are to suggest what happens when people perform mental tasks
under ‘natural’ conditions of noise, it would be best not to alert our subjects to
the fact that we are actually studying this problem. Otherwise we may induce
unnatural reactions, such as an increased effort to overcome the effects of noise,
or even a heightened sensitivity to noise. The best strategy is to say something
general at the outset, e.g. ‘We are investigating the way people solve logical
reasoning problems of various kinds.’ After the experiment we can, of course,
reveal the true nature of the study. Indeed it is a matter of etiquette that we
should do so, provided the subject is at all interested. But during the experiment
itself the best policy is to keep the subject ‘naive’ with regard to the aims of the
experiment. This means, in the present case, that the tape recorded ‘noises’
should appear to be perfectly natural, and not contrived for the experiment,
otherwise our subjects will quickly guess what we are up to, however carefully
we word the instructions.

These examples should give you a reasonable idea of the steps that must be
taken to plan the procedure of an experiment after the basic design has been
chosen. Many of the details of procedure will be settled quite arbitrarily, and will
appear rather trivial. Nevertheless, it is most important that these details be
permanently recorded so that other researchers can come along and check our
findings, or search for an explanation as to why an apparently similar experiment
has produced contradictory results.

(4) Having framed a prediction, designed an experiment, and settled the details
of procedure, we are now ready to go ahead and run the experiment itself. Some
hours, days or even weeks later we will have produced some figures or data
representing the performance of each subject under the various conditions of the
experiment. These are our results.

There are two distinct aspects to the treatment of results. First we want to
display the important features of the data in a clear and precise form. This is the
province of descriptive statistics. Secondly we want to interpret the data, i.e. use
them to decide whether the experimental effect we predicted has
actually occurred. This is the province of inductive or inferential statistics. In
this chapter we shall focus on the description of data, but many of the concepts
and tools to be developed will be important for our understanding of statistical
inference, which is discussed in later sections.
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Descriptive statistics, I: organizing the data

Raw data

Having completed our experiment on traffic noise we shall have two sets of
figures representing the scores of experimental and control subjects on the logical
reasoning test. These are the raw data—‘raw’ because nothing has been done to
extract any meaning from the numbers (see table 5).

Table 5 Hypothetical raw data for an experiment on the effects of traffic noise

Scores on logical reasoning test (maximum 20) for subjects exposed to two levels of
traffic noise

Experimental group (high noise level) Control group (minimal noise level)

5 15

12 11

13 12

10 13

7 10

9 14

10 12

12 13

8 9

6 11

10 13

9 14

14 12

8 12

11 10

9 11

11 13

13 9

10 12

12 14

 
With as many as twenty scores in each set it is very difficult to get the ‘feel’ of

the data merely by inspecting a long column of figures. With a little effort we
can discover that the lowest score in the control group is 9, and that the highest is
15. But it is difficult to see how the scores are distributed between these two
numbers. Are they spread evenly between 9 and 15? Are the scores ‘bunched’ in
the middle, around 12? Or what? Obviously we can’t tell this by looking at the
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haphazard arrangement of scores in table 5. We need a more readily
comprehensible format for the data.

Frequency distribution

Looking at the scores in more detail it can be seen that some values occur more
than once. For example, in the control group four subjects achieve a score of 13;
that is, the frequency of occurrence of the score 13 is 4. This is a clue to a more
economical and meaningful way of organizing the data. We can go through the
various scores in order, from lowest to highest, counting how many times each
score occurs. The result is a frequency distribution. Table 6 shows the frequency
distributions for the experimental and control data. It is useful to record

Table 6 Data of table 6 reorganized in the form of frequency distributions

Experimental group Control group

Score Frequency Score Frequency

5 1

6 1

7 1 9 2

8 2 10 2

9 3 11 3

10 4 12 5

11 2 13 4

12 3 14 3

13 2 15 1

14 1

N=20 N=20

 the total number of observations (N) at the foot of the frequency column. Of
course N equals the sum of the frequencies.

Now looking at the data of table 6 we get a much clearer impression of the
characteristics of each set of scores, and of the relationship between the two sets.
Thus we can see that the experimental group’s scores fall in the range 5–14, but
tend to be bunched in the centre of this range. The control group achieves
somewhat higher scores (as we predicted) in the range 9–15, and are even more
closely bunched around the central values. Note that this method of presenting the
data retains all the information in the original table, but in a clearer and more
concise form.

What would happen however if we had 100 scores in each group, and if the
range of scores was much wider—say between 1 and 50? Even after the data
were organized into a frequency distribution they would still be difficult to
assimilate, because there would be a large number of different scores each with a
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very low frequency of occurrence. In this case it is usual to reclassify the data
into groups or classes (e.g. 1–5, 6–10, 11–15, etc.) and to record the frequency
of scores falling within each class interval. We then obtain a grouped frequency
distribution, as illustrated in table 7.

Table 7 Hypothetical data arranged in the form of a grouped frequency distribution

Class interval Midpoint Frequency

1–5 3 1

6–10 8 0

11–15 13 5

16–20 18 12

21–25 23 20

26–30 28 32

31–35 33 23

36–40 38 5

41–45 43 1

46–50 48 1

N=100

 
Grouping the data in this way does lose us some information, i.e. the raw data

cannot be recovered exactly from the frequency table. On the other hand, we do
achieve a more manageable description of the data than would have been
possible otherwise. It is generally agreed that the total range of scores should be
divided into something like 10–15 equal-width classes to achieve the best
results; this number of classes gives a reasonably accurate representation of the
original data without overtaxing our ability to comprehend their features.
Obviously if the range of scores in the data is below 10 anyway (as in table 6),
there is no point in grouping before we construct the frequency distribution.

In setting out a grouped frequency distribution it is conventional to indicate
the midpoint of each class of scores. The midpoint is used to represent the
numerical value of all the scores in that class, for the purposes of further analysis.
This is necessary because when we are working with grouped data we do not
know the individual scores within each class, only the interval in which they fall.

Histograms

We can display the data in a frequency distribution even more vividly by
drawing a picture of the scores. One way of doing this is to mark off a horizontal
line (or axis) in units corresponding to the scores. We then draw vertical ‘boxes’
above each score to represent the number of times it occurs in the data. This
graphical form of the frequency distribution is known as a histogram or bar
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chart. Figure 2 shows the data from our noise experiment in the form of two
histograms which have been constructed from the frequency distributions shown
in table 6. We can now see at a glance that the control scores tend to be higher
than the experimental scores (i.e. further towards the right-hand end of the axis)
and more closely bunched around the centre of the range.

Grouped data can also be represented in this way, except that the horizontal axis
of the histogram is marked off in class intervals instead of individual scores. You
could draw out a histogram for the data in table 7 as an exercise. 

Frequency polygons

If we replace the ‘bars’ of a histogram by dots plotted at the midpoint of the top
of each bar, we have a frequency polygon. The height of the dots on the vertical
axis then represents the frequency of occurrence of the scores on the horizontal
axis. By joining up the dots with straight lines we obtain a very similar visual
effect to that given by the histogram. There is, perhaps, a slight advantage to
using frequency polygons when we want to compare two or more sets of data.
This is because we can plot two frequency polygons on the same pair of axes
without them interfering with each other visually. Indeed this is a very effective
method of comparing two sets of data, as is shown in figure 3. Note the practice
of bringing the two ‘tails’ of each polygon down to zero to create a neater visual
effect.

Which technique should be used?

All of the above methods give a reasonably clear impression of the main features
of the data, and it is largely a matter of personal preference as to which one
should be used in any particular case. The only requirements are that the data
should be displayed concisely, in a clearly labelled form, and in such a way that
the reader can easily comprehend the pattern of results. Further details of
techniques for displaying and organizing data are given in Wallis and Roberts
(1963) and Blalock (1972).

Figure 2 Histograms of the test scores of experimental and control subjects in the traffic
noise experiment
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Descriptive statistics, II: summarizing the data

The methods described in the previous section were simply ways of reorganizing
the data with little or no loss of information. An alternative approach is to attempt
to summarize the important features of a set of data in terms of single measures
or indices. The question then is: What features of the data need to be summarized
in this way? You can probably answer this question for yourself by looking back
at the histograms shown in figure 2, and trying to summarize the features of each
set of scores in one or two sentences. You would almost certainly want to report
whereabouts on the scale from 0 to 20 most of the scores fell. This is known as
the central tendency of the data and may be summarized by quoting a ‘typical’ or
representative score for the whole set. A second, important feature is how widely
spread the scores are on either side of the typical value; this is the dispersion or
variability of the data. We may also notice other features of the distribution, such
as whether its shape is symmetrical or not, but these aspects of the data are less
important; for the purposes of describing our results and drawing inferences from
them, we are mainly interested in central tendency and dispersion. 

Measures of central tendency

How can we best characterize the typical value of a set of scores using a single
figure? The answer depends to some extent on what we are going to do with the
figure when we get it, and also on the shape of the distribution being considered.
We shall now consider the three most commonly used measures of central
tendency.

(1)
THE MEAN

The mean is the technical term for what is usually called the average in everyday
language. It is found by adding together every score and dividing the total by the
number of scores. Thus the mean of the four scores 3, 4, 4, 6 is given by (3+4+4
+6) divided by 4. This equals 17/4 or 4·25. There is really no need to say

Figure 3 Frequency polygons for the test scores of experimental and control subjects in
the traffic noise experiment
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anything more about the calculation of the mean, it is so simple. However, when
we come on to calculating other statistical quantities it will be extremely
cumbersome to describe all the procedures in words—the operations become
much too complicated for this. So we shall now introduce some statistical symbols
which may appear to complicate matters at first, but which will ultimately
provide you with an extremely useful shorthand for recording the steps in a piece
of statistical analysis.

Returning to the definition of the mean as the sum of all the scores divided by
the number of scores, we shall now translate this into symbols. Firstly let the
symbol X stand for any score in the set; let  stand for the mean; and let N stand
for the number of scores in the set. We can then rewrite our definition in the
following form:

The instruction to sum all the Xs is still rather cumbersome, and we can simplify
the formula even further by introducing the Greek letter sigma (� ) to stand for the
operation of summing a set of numbers. Hence the expression � X tells us to add
together all the different numbers that X can stand for. Our definition of the mean
then becomes:

As a further example, suppose our values of X are: 4, 5, 2, 4, 5. The mean of this
set of scores is then given by:

(2)
THE MEDIAN

The median is an alternative measure of the central value of a set of scores. It is
defined very simply as that value which has as many scores above it as below it.
Hence if our set of scores is 2, 3, 3, 5, 7, 9, 13, then 5 is the median score
because it has exactly 3 scores falling above and 3 scores falling below it. If we
happened to have an even number of scores then we define the median as the
point halfway between the two middle scores. Thus the set of scores 3, 4, 5, 6, 8,
11, yields a median value of 5·5, i.e. the point halfway between 5 and 6.

It can be seen that calculating the median value of a set of scores is even
simpler than finding the mean. All we have to do is to rank the scores in order
from lowest to highest, and then read off the middle score (or the midpoint
between the two middle scores if there is an even number).
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(3)
THE MODE

The mode is defined as the most frequently occurring value in a set of scores. It
can be found very simply by inspection of the data. Obviously if there are only a
few scores (e.g. 5,6,8,3,3) the one that occurs most frequently does not tell us
very much. However, with large numbers of observations the mode becomes a
somewhat more useful index of the central value of the scores.

Calculating the mean, median and mode from frequency
distributions

The simple methods given above are perfectly adequate for the calculation of
mean, median and mode in all circumstances. However, if you have large
quantities of data, say upwards of thirty observations in each condition of an
experiment, these methods become rather laborious. It is then more efficient to
cast the data in the form of a frequency distribution and to calculate the measure
of central tendency from this. The saving of time (and errors) is particularly
marked if you are doing the calculations by hand, rather than with the aid of a
calculating machine, and once the data are arranged in the form of a frequency
distribution the computation of other statistics is also facilitated. The appropriate
formulae and techniques are set out in detail in appendix 1 (p. 162).

Choosing between the mean, median and mode

The purpose of these measures of central tendency is to give, in a single figure,
an idea of the typical value of a set of scores.

(1) When the scores are fairly symmetrically distributed about the central
value then the arithmetic average (mean), the most common score (mode), and
the middle score in the sequence from low to high (median) will all have about
the same value. This can be demonstrated visually using a histogram of the
experimental scores from the traffic noise experiment on which the values of
mean, median and mode have been superimposed (see figure 4). These values
were calculated using the basic methods described above on the data of table 6.
To check that you understand these methods you should calculate the three
measures for yourself.

From the point of view of describing the experimental results there is
obviously very little to choose between the three measures of central tendency,
and one would be inclined to use the one that is simplest to compute, that is, the
mode. However, if we wish to undertake further analysis of these data—
for example, to test the prediction that the experimental scores are significantly
lower than the control scores—then the mean is the preferred measure of central
tendency. This is because the mean summarizes all the data from which it is
derived—a change in any one score will change the value of the mean. It is
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therefore a more reliable index of the underlying features of the data. Also the
mean has certain mathematical properties which make it suitable for more
advanced statistical analyses.

(2) Now let us see what happens when the shape of the distribution of scores is
markedly asymmetrical. The technical term for this is skewness. A distribution
may be skewed in either of two directions: positively skewed if the right-hand
tail is extended and negatively skewed if the left-hand tail is extended (see
figure 5).

The effect of skewness is to separate out the three measures of central
tendency. As can be seen, the mode stays at the ‘peak’ of the distribution
irrespective of its shape. The mean moves a considerable distance outwards in
the direction of the extended tail. And the median falls between the mean and the
mode.

We can see why this happens by considering the following two distributions: 

Figure 4 Histogram of the test scores of experimental subjects showing the positions of
the mean, median and mode

Figure 5 Symmetrical and skewed distributions and the three measures of central
tendency
 

26



(a) 76, 77, 78, 78, 79, 80
(b) 1, 3, 76, 77, 78, 78, 79, 80

Distribution (a) is symmetrical and the mean, median and mode all have the
value 78. Distribution (b) has been given an extended left hand tail relative to (a),
i.e. it is negatively skewed. Now in (b) the mode is still 78, the most frequent score.
But the mean, which is the average of all the scores, is naturally pulled down by
the introduction of the two low values; it is now 59. The median is also lowered,
but only to 77·5. But note that this reduction in the value of the median is not
influenced by the particular values of the two low scores, only by their effect on
the position of the middle item. In the case of a highly skewed distribution, such
as (b), this insensitivity to extreme values is helpful; the median still retains the
characteristic of being a ‘typical’ or central value, whereas the mean gives a
misleading picture of the typical value because it is very sensitive to the value of
extreme scores. Hence for highly skewed distributions the median is the
preferred measure of central tendency.

The mode is useful whenever a quick but very approximate index of central
tendency is needed. Since its value depends on just a few of the scores it cannot
be regarded as a very stable measure of the features of the data; indeed, if an
experiment is repeated a number of times the modal score will tend to vary much
more from occasion to occasion than the mean or even the median. Hence the
mode is used infrequently in psychological research.

Measures of dispersion

The second important feature of a set of scores in the extent to which they are
spread out on either side of the central value. Looking back at the data from the
traffic noise experiment (figure 2) we can see two different levels of dispersion;
the control data are closely packed around the central values, whereas the
experimental scores are more widely dispersed. This difference in dispersion is
quite independent of any differences that may exist in central tendency. The
control group could have had an identical mean score to the experimental group,
but this would have no bearing on the relative dispersion of the two sets of
scores.

Our interest in dispersion cannot be explained quite as easily as our interest in
central tendency. After all, most psychological predictions relate to an expected
difference between the central tendency of two groups (e.g. traffice noise
produces lower reasoning performance than no noise), so it is obvious that we
need to devise measures like the mean and median to test such hypotheses. But
why do we need to describe the dispersion in a set of scores?

The answer is that we need to know the dispersion of two sets of scores in
order to evaluate a predicted difference between their means. This will become
clearer in the next chapter when we discuss inferential statistics. For the time
being we can appreciate, perhaps intuitively, that if each group of scores is
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widely dispersed we can place little reliance on any given difference between the
means; it is likely to have arisen just by chance. However, if each group of
scores is fairly homogeneous, a given difference becomes that much more
convincing, i.e. it is likely to be fundamental to the two conditions of the
experiment rather than just a chance affair. This is why we need some way of
measuring the amount of variation or dispersion in the data. We shall now
consider the various alternatives.

THE RANGE

The most obvious index of spread is the range of values covered by the scores.
Thus inspection of figure 2 tells us immediately that the range of the
experimental scores is 9 points (the highest score, 14, minus the lowest score, 5).
Similarly the range of the control scores is 6 (15 minus 9). This measure is very
simple to derive and it can be readily understood, but there are occasions when it
gives a very misleading impression of spread. Consider the following two
distributions arranged in order from lowest to highest scores:

(a) 62, 63, 63, 64, 65, 66, 67
(b) 62, 64, 65, 65, 66, 67, 85

Distribution (a) has a range of 5 whereas distribution (b), because of a single
unusually high score, has a range of 23—a figure which is quite atypical of the
variability in most of the data. Hence the range suffers from being sensitive only
to the two extreme values, telling us nothing about the variability of the scores in
between. 

THE INTERQUARTILE RANGE

We can overcome some of the instability of the simple range by employing the
interquartile range, which is effectively the range of the middle half of the
scores. This is calculated by arranging the scores in order from lowest to highest
and then finding the difference between the score 25 per cent of the way along the
series (the first quartile) and the score 75 per cent of the way along (the third
quartile). These scores are found using the same procedures as were outlined for
finding the median which is, of course, the point 50 per cent of the way through
the series of scores.

The difference between the first and third quartiles is a somewhat more stable
measure of dispersion than the range, but it still makes use of only a small
proportion of the information in the data. Furthermore, the interquartile range
does not possess the mathematical properties needed for more complex statistical
analysis. We shall therefore move on to more acceptable measures of dispersion.
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THE MEAN DEVIATION

Suppose we want our measure of dispersion to reflect the distance of every
observation from the mean of the scores, rather than just the distance of two
arbitrarily chosen points. The simplest way to do this would be to calculate the
distance between each observation and the mean, and then to find the average of
all these distances. This is precisely the definition of the mean deviation. In
symbols this is:

where X stands for any score,  for the mean of the scores, and N for the
number of scores. The symbol �  tells us to add together all individual deviations
between each score and the mean. The two vertical lines | | tell us to take the
absolute value of the difference between each score and the mean and not to
treat some of these differences as negative. Obviously if we did not do this then
the positive deviations of all those scores above the mean would exactly cancel
out with the negative deviations of all those below the mean. 

We can demonstrate the calculation of this measure on the following data: 5, 7,
6, 7, 9, 8. The mean of these scores is:

Hence the sum of the deviations from the mean is given by:

We now have a potentially useful measure of dispersion; it takes account of all
the data, it is easily calculated, and it is easy to interpret. Thus we can summarize
the amount of dispersion in the above data by saying that on average the scores
differ from the mean by one unit. This even ‘feels’ right when we look at the
original set of scores. However, this is another case of a measure which lacks the
mathematical properties we need for statistical inference. Returning to the earlier
point that measures of dispersion are used to help us evaluate the difference
between the means of two groups, it turns out that the mean deviation cannot be
used for this purpose. In fact it is rarely used at all.

THE VARIANCE

We noted in the previous section that the quantity  the difference between
each score and the mean, is sometimes negative and sometimes positive, so that
the deviations will tend to cancel each other out. This problem was overcome by
taking only the absolute value of the deviations, and ignoring the signs. An
alternative approach would be to square each deviation, thereby making the
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negative ones positive, and then add together the squared deviations. This leads
to an alternative measure of dispersion known as the variance. The formula for
the variance is:

In words this amounts to: (1) squaring the deviations between each score and
the mean, (2) adding together the squared deviations, and (3) dividing by N, the
number of observations. This gives us the mean squared deviation rather than the
more simple mean deviation which was discussed above.

Now, like the mean deviation, the variance takes account of every individual
score in representing the amount of spread in the data. But, unlike the mean
deviation (and the range for that matter), it has no obvious practical meaning. It
is simply an abstract measure which increases as the amount of dispersion in the
data increases. If all the scores were the same, the variance would be zero. And if
one set of scores has a variance twice as large as a second set of scores we can
say that it has twice the variability or spread. But we cannot actually attach a
simple meaning to a particular variance. We cannot say that, because the
variance is 3, the average deviation of a score from the mean is 3. Nor can we
make any other simple statement from a knowledge of the variance. This is
something that often puzzles newcomers to statistics. Since the meaning of the
term is difficult to grasp intuitively you may wonder why the variance has
become the most important and frequently used measure of dispersion. The answer
to this question will be considered in some detail in the final section of this
chapter. For the time being we shall simply note that the variance, or more
correctly the square root of the variance, known as the standard deviation, can
often be used to determine what proportion of a distribution of scores falls
between any given pair of values. As we shall see, this facility is immensely
important for testing predictions about the difference between two sets of scores.
Before expanding on these ideas we shall consider the mechanics of calculating
the variance and standard deviation.

Calculating the variance and standard deviation

We have defined the variance as the mean squared deviation—in symbols:

In practice the square root of this quantity, the standard deviation, is used just as
frequently as the variance to measure dispersion. Obviously it doesn’t matter
particularly which index is used; we can get from one to the other quite easily.
But it is important that we indicate clearly in each case which one we are
referring to. We shall use the symbol S2 to denote the variance of a set of scores,
and S to denote the standard deviation. Remember both of these measures will
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increase with the amount of spread in the data, and both will be zero when there
is no spread—that is, when all the scores are the same. We have to get used to
these two related measures since they are both in common use. In the same way
that you might describe the size of a square either by its area, say 9 cm2, or by
the length of its side, 3 cm, so we can describe dispersion either by the variance
or the standard deviation. Both measures reflect the same basic notion of
dispersion.

To calculate the variance from the above formula would be a rather laborious
task because it would involve subtracting the mean from every individual score
X, and then squaring the results of each subtraction. Since the mean may turn out
to be a number containing several decimals, this formula can lead to some
complex arithmetic. Fortunately there is an alternative version of the formula
which allows us to square each value of X as it is, to add the squares, and then to
subtract the square of the mean just once at the end of the computation. This
formula is:

In words, this formula tells us to: (1) square each value of X, (2) add the squares
together, (3) divide the sum of squares by N, the number of observations, and (4)
subtract the mean squared. The use of this formula, and a convenient way of
setting out the calculations, is shown in table 8 for a set of imaginary scores.
Note that it is, of course, necessary to compute the mean before the variance or
standard deviation can be found.

A NOTE ON THE INTERPRETATION OF � X2

When we met the term � X in connection with the mean its interpretation was
fairly obvious—add together every value of X. But the term � X2 could, on the
face of it, mean either of two things. It could tell us to add together every value of
X and then square the total. Or it could tell us to square each value of X, and then
add the squares. Some students get confused between these 

Table 8 Computation of variance and standard deviation: basic method

Scores Scores squared Mean

X X2

12 144 Variance
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Scores Scores squared Mean

X X2

14 196

16 256

14 196

13 169

15 225

18 324

� X=102 � X2=1510

Standard deviation (if required)

two interpretations. It is the second one that is correct; square each X and then
add the squares. If we wanted to add first and then square, the appropriate
expression would be (� X)2.

Calculating the variance from a frequency distribution

We mentioned earlier, when discussing the mean, that large quantities of data
can be processed more efficiently if the scores are set out in the form of a
frequency distribution, and calculations are based on this format. The appropriate
techniques for calculating the variance and standard deviation from a frequency
distribution are given in appendix 2 (p. 168).

Descriptive statistics, III: the normal distribution

So far we have discussed various ways of organizing and summarizing the data
obtained from a psychological experiment. We have made no assumptions about
the type of distribution that could arise; instead we have focused on the simple
description of whatever data happen to emerge from our study. Perhaps you are
now wondering whether the shape of a distribution of scores is likely to fluctuate
wildly from one experiment to another, or whether there are basic patterns
that tend to recur time and again in the measurement of behaviour. Certainly the
central tendency and the dispersion of the data will change from one study to
another, but there is a basic shape which does tend to recur in the distributions of
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many different sorts of data. This shape is known as the normal distribution and
is illustrated in figure 6. As you can see, it is a symmetrical distribution of scores
with most values falling in the central region of the curve (i.e. near the mean) and
the frequency of scores falling off fairly rapidly on either side of the central area.
The general shape of the curve is sometimes described as bellshaped, and
because it is symmetrical, the mean, median and mode will all have the same
value.

The significance of the normal distribution

There are a number of reasons for paying particular attention to this type of
distribution. First, the curve is interesting because so many different variables—
psychological, physical and biological—have normal, or close to normal,
distributions. We know, for example, that such diverse characteristics as height,
intelligence, and the life of electric lamps all follow a normal curve. Secondly,
the normal distribution has some very interesting and useful properties which
help us in the description of data and in the interpretation of standard deviations.
And thirdly, the distribution is basic to the formulation of many of the statistical
tests we shall be considering in later chapters. Before expanding on the
descriptive uses of this distribution we shall consider precisely what the curve
represents.

The normal curve as a limiting frequency distribution

If normal distributions are so ubiquitous you may be wonder ing why none of the
data we have discussed so far conforms to the smooth curve shown in figure 6.
The reason is that we have been concerned with finite numbers of observations,
whereas the normal curve represents an ‘ideal’ distribution which would be
obtained from an indefinitely large (i.e. infinite) number of observations. It is
patently obvious that we could never attain this ideal, but we can grasp the
concept by imagining a histogram in which more and more observations are
added to the distribution and in which the width of the class intervals is
continuously reduced. Suppose, for example, we measured the heights of 100 male
adults and grouped the data into a frequency distribution involving five intervals.

Figure 6 The normal distribution curve
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A histogram of this distribution might look something like that shown in figure 7
(a). We could gain a more accurate impression of the distribution of heights by
making the class intervals narrower—which would make the measurement scale
more sensitive—and by increasing the number of cases, N. This might produce
the distribution shown in figure 7(b). (Note. If we had narrowed the class
intervals without increasing N, the distribution would assume an irregular shape.)
A further increase in N accompanied by a further narrowing of class intervals
would produce the distribution shown in figure 7(c), and so on. It can be seen that
this process leads to closer and closer approximations to the smooth curve which
has been drawn through the midpoints of the top of each bar. And we can now
imagine that, if we went on doing this indefinitely, we would produce the smooth
curve itself, which is therefore known as the limiting frequency distribution. The
normal curve is an example of one particular limiting frequency distribution, but,
as we have said, a rather important one.

When histograms were first discussed earlier in this chapter (p. 26) we defined
the height of each bar as being proportional to the frequency of observations
within that interval. However, since the widths of the bars are all equal we can
also use the area of each one to represent frequency. And if we regard the total
area of the histogram as representing all the observations, then the area of each
bar represents the proportion of observations falling in that particular interval. In
the same way we can regard the area under the normal curve as representing 100
per cent of the cases in the distribution, and the area between any two vertical
lines will represent the proportion of cases falling within  those limits. Hence the
shaded area in figure 8 represents the proportion of adult males whose heights
are within the range 70–72 inches. This interpretation of the area under a curve is
used repeatedly in various aspects of statistics.

Areas under the normal curve and the standard deviation

The interesting thing about the normal curve is that there are only two things we
need to know in order to draw it—its mean and its standard deviation. In other
words, the equation giving the height of the curve (y) for any particular point on
the horizontal axis (x) can be solved provided that we know the values of the
mean and the standard deviation. The practical significance of this point is that
once we know a variable is normally distributed, with a particular mean and
standard deviation, we have a perfect description of the entire distribution. We
can, in effect, specify precisely what proportion of the observations will fall
between any two values we care to specify.

To be more specific, all normal distributions have the following property: if
we draw a vertical line a fixed number of standard deviations above the mean,
we shall cut off a constant proportion of the distribution of scores. For example,
a line one standard deviation above the mean cuts off the upper 15·87 per cent of
the scores; a line two standard deviations above the mean cuts off the top 2–28
per cent of the scores; a line three standard deviations above the mean cuts off
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0·13 per cent, and so on. For any number (integral or otherwise) of standard
deviations above the mean it is possible to specify what proportion of scores fall
above this value, and what proportion fall below it (since the total area covers
100 per cent of the scores). Also, since the curve is symmetrical, a line drawn a
given distance below the mean will cut off the same proportion of scores as one
drawn that distance above the mean. These relationships are illustrated in
figure 9. Fortunately we do not have to rely on measuring areas from a graph to
determine the appropriate proportion of scores falling above any point. These
figures have been worked out mathematically and are readily available in the
form of a table of areas under the normal curve (see pp. 172–3).

Figure 7 Successive approximation of histograms to a smooth curve as the width of class
intervals is decreased and the number of observations increased

Figure 8 Graphical representation of proportion of people with heights between 70 inches
and 72 inches
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We can now begin to appreciate the descriptive uses of the normal distribution.
First, it provides a useful basis for visualizing the meaning of the standard
deviation. Previously we said this measure of dispersion was entirely abstract, but
this was not quite true. We now know that, provided a distribution is normal, or
approximately normal, the standard deviation tells us what proportion of scores
fall within any particular limits we are interested in. Using figure 9 we can see
that approximately two-thirds of the scores will fall within one standard
deviation on each side of the mean. So we now have a more concrete way of
thinking about the standard deviation of a set of scores.

Secondly, the properties we have just outlined enable us to answer practical
questions about a set of scores with great ease. Suppose we know that the heights
of adult males are normally distributed with a mean of 68 inches and a standard
deviation of 2·5 inches; we can now discover exactly what proportion of people
will be, say, 70 inches or taller. We proceed as follows: (1) 70 inches is 2 inches
above the mean of 68 inches; (2) 2 inches is 0·8 of a standard deviation (since S=2·5
inches); (3) so our question becomes: What proportion of a normal distribution
falls beyond 0·8 standard deviations from the mean? Our table of areas under the
normal curve tells us that this proportion is 21·19 per cent. Note that all we had
to do to solve this problem was to transform the score we were interested in to a
distance from the mean measured in units of standard deviation. This distance is
known as a Z score and may be expressed algebraically as: 

where X is the score,  the mean, and S the standard deviation.
Now suppose we are interested in the proportion of people who will have

heights between, say, 63 and 66 inches. We can answer this question by finding
the proportion of scores below 63 inches, the proportion below 66 inches, and
subtracting the first proportion from the second. Thus 63 inches is two standard
deviations below the mean (Z=(63–68)/2·5). From the tables we discover that
2·28 per cent of cases fall below this value of Z. The height of 66 inches is 0·8

Figure 9 Proportion of scores falling above and below particular values in the normal
distribution
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standard deviations below the mean (Z=(66–68)/2·5). We already know that
21·19 per cent of cases fall below this value of Z. So the proportion of people
with heights between 63 and 66 inches will be (21·19–2.28 per cent) which is
18·91 per cent (see figure 10).

As a final example, suppose we wish to know which height is so extreme that
only 10 per cent of people will fall beyond this value. To solve this problem we
have to work backwards from the general properties of normal distributions to
specific features of our height distribution. Firstly we use the normal tables to
find out how many standard deviations above the mean we have to go to cut off
the upper 10 per cent of cases. The appropriate Z value is 1·28. Since the
standard deviation of height is 2·5 inches, the tallest 10 per cent of people will
have heights at least 1·28×2·5 (=3·2) inches above the mean. Hence the height
we require is 71.2 inches. (Note: This result could have been obtained by
substituting Z=1·28, S=2·5 and =68 in the above formula and solving for X.)

Another way of expressing the result we have just obtained is to say that there
is a 10 per cent chance, or a probability of 0·1, that a person picked at random
from the population of adult males will be 71·2 inches or more in height. This
shift from proportions to probabilities is important when we come to use the
normal distribution to evaluate the significance of the difference between two
means. Then we shall be asking such questions as: What is the probability that
two means would differ by such an amount just by chance? The normal
distribution can help us to answer such questions in certain circumstances. But this
will be discussed more fully in chapter 4. In this section our purpose was simply
to establish the properties of the normal distribution and to show how it can be
used to provide very precise descriptive information about data which is known
to approximate to the normal distribution.

Figure 10 Proportion of cases falling between two values in a normal distribution of
heights
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Chapter summary

1 There are four major steps in the design and analysis of experiments:

1 Stating the prediction to be tested.
2 Selecting an appropriate experimental design.
3 Operationalizing the experiment.
4 Analysing the results.

2 The analysis of results may be subdivided into descriptive statistics
(displaying the important features of the data) and inferential statistics
(deciding whether the results confirm the predicted effects of the
independent variable).

3 Descriptive statistics involves the organization of data in a readily
comprehensible form. This may be achieved by retabulating the raw data in
a systematic form such as a frequency distribution, or using graphical
methods such as the histogram and frequency polygon.

4 A second function of descriptive statistics is to summarize important
features of the data using numerical indices. The most important features of
a set of scores are the central tendency (the ‘typical’ or central value) and
the dispersion (the amount of spread or variability).

5 The three most commonly used measures of central tendency are the mean
(arithmetical average), the mode (most common score), and the median
(middle score in the sequence from low to high). When the distribution of
scores is fairly symmetrical these three measures have approximately equal
values. In this case the mean is the most useful and reliable index of central
tendency. However, if the distribution of scores is markedly asymmetrical
(i.e. skewed), the median gives a more reasonable indication of the typical
value.

6 The dispersion in a set of scores may be measured by the range (difference
between the lowest and highest scores), the interquartile range (range of the
middle half of the scores), the mean deviation (the average deviation
between each score and the mean), and the variance (the average of the
squared deviations between each score and the mean). The variance, and its
square root, the standard deviation, are the most useful indices of dispersion
because of their relationship to the normal distribution.

7 The normal curve is a symmetrical, bell-shaped frequency distribution
which is found to fit fairly closely many real distributions of psychological
and other variables. The curve is completely defined by its mean and
standard deviation, and the standard deviation has a special relationship to
the area under the curve; a fixed proportion of the curve falls beyond any
value which is expressed in terms of its deviation from mean, measured in
units of standard deviation.
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8 This property is useful both in the analysis and description of real
distributions of data, and in the formulation of many of the statistical tests to
be considered in later chapters.
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3
Basic concepts of statistical testing

Statistical inference

In the mind of the layman the field of statistics is normally associated with the
collection of great volumes of numerical information which is subsequently
tabulated, charted and summarized in various ways. Hence we learn of the
‘average number of children in a British family’, or the ‘median wage of
industrial workers in south-east England’. To be sure, the use of statistics to
describe large collections of numerical information is perfectly legitimate.
Indeed the psychologist takes over these methods of description when presenting
the results of his experiments, as we saw in the last chapter. But we also use
statistics in a much more fundamental way to draw inferences from the results of
an experiment. We don’t simply want to report the scores of our two groups of
subjects, or to give the mean and standard deviation and leave it at that. We want
to use the data to test our original prediction—to decide whether the independent
variable is having the effect we supposed, or whether, perhaps, there is no real
difference between the performance of the two groups. This is the function of
inferential statistics. 

To see more precisely what we mean by this term let us return to our
imaginary experiment on the effects of noise on mental performance. Our
prediction was that subjects exposed to traffic noise (the experimental group)
would produce lower scores on a logical reasoning test than those who worked in
quieter surroundings (the control group). To test this prediction or experimental
hypothesis we obtained the scores of the two groups, which were presented in
table 6 (p. 23). The scores of the control subjects do indeed seem to be higher on
average, but we can see from the frequency polygons of figure 3 (p. 28) that
there is considerable overlap between the two sets of scores. This leaves us in a
quandary; if the experimental subjects had all scored around 5 on the reasoning
test, and the control subjects had all produced scores of 15 or 16, we would
almost certainly decide that our prediction was correct—that noise really does
impair mental performance in this particular task. But the results are not that clear
cut. We can’t say, just by looking at the data, that there is obviously a difference
between the groups due to the independent variable.



Why can’t we say this? After all, there is some difference between the two sets
of scores. What else could have caused this, other than the independent variable?
To answer these questions let us look at the variation within each set of scores.
This variation cannot be due to the independent variable, because, within a group,
the independent variable is constant. We know from chapter 1 that the random
variation within a set of scores is caused by irrelevant variables that have not
been held constant, for example, differences between subjects or between testing
conditions. Now if the subjects in the control group differ among themselves,
and the subjects in the experimental group differ among themselves, then it is
possible that the average characteristics of the two groups will also differ from
each other. For example, perhaps the control group happens to contain some
slightly more intelligent subjects, or maybe the cubicles used to test the control
subjects were, on average, a bit cooler than those used by the experimental group.
Remember that even if we randomize the effects of irrelevant variables, we
cannot guarantee that these effects will balance out perfectly between the two
groups (see p. 14). So the problem before us is to decide (1) whether the superior
performance of the control group was caused simply by irrelevant variables that
did not quite balance out in the randomization process, or (2) whether the
difference between the groups is so large that it must have been caused by the
difference in noise levels, i.e. the independent variable.

This is the fundamental issue in statistical inference, and it is important that
you understand it fully before proceeding to the mechanics of statistical testing.
We shall therefore repeat the above argument in a slightly different, but logically
equivalent, form. When comparing the scores of two groups of subjects we wish
to know whether the differences have been caused by the independent variable.
We would not expect the two sets of scores to be absolutely identical—there are
bound to be some differences just by chance. The problem for statistical
inference is to decide whether the actual differences are caused by chance, or
whether these differences are so large that we can ascribe them, at least in part, to
the effects of the independent variable. In this description of statistical inference
we are using the word ‘chance’ as a shorthand for ‘the effects of irrelevant
variables that are not perfectly matched across the two groups’. We shall
continue to use the term in this sense.

To sum up, then, we shall be using statistical inference to infer from the data
whether the predicted effect of the independent variable actually occurred in the
experiment. We are making inferences from observable data to causal
relationships between variables.

Significance level

Let us immediately qualify the impression you may have gained that we can
actually decide whether the difference between our two sets of scores was caused
by the independent variable or by chance factors. We would like to make a
categorical decision of this kind, but the logic of scientific method does not allow

41



us to do so. We can never prove beyond any doubt that chance was not
responsible for the superior performance of the control group. Even if every
control subject far surpassed the performance of every experimental subject, the
sceptic could still justifiably claim that we happened—just by chance—to
allocate the most intelligent twenty subjects to the control group. We would then
claim that the allocation was made completely at random, but he could again
reply that using a random procedure the most intelligent subjects would end up in
the control group once in 780 times, just by chance (this probability may be
found using elementary probability theory; see Kolstoe, 1973). Maybe our
experiment happens to be that one time in 780. At this point we should have to
admit defeat. It is, indeed, just possible that even a very marked difference
between the two sets of scores could happen by chance.

Accepting, then, that we cannot prove beyond any doubt that the independent
variable was responsible for the differences between our two groups, can we
prove beyond reasonable doubt that this was the case? This is precisely what
statistical testing tells us. By conducting a statistical test on the data of an
experiment we shall be able to say how likely it is that any given difference is due
to chance. If it is very unlikely that the difference could be caused by chance—
say the probability is one in 780 then we would conclude that the independent
variable is responsible for the difference. The difference is then said to be
significant. If, on the other hand, the difference between the two groups could
easily have arisen by chance, then there is no reason to ascribe it to the effect of
the independent variable. The findings are non-significant. Naturally we usually
hope for significance, since this implies that our prediction is correct.

Now, you may ask, how unlikely must the chance explanation be before we
reject it, and regard the results as significant? This is essentially an arbitrary
matter—a matter of convention rather than basic principle. Most experimental
psychologists choose a significance level of 0·05 or 1/20. This means that a
difference between two groups will be assumed to reflect chance factors unless
the results could only arise by chance one time in twenty, or less. However, in
certain circumstances—for example, when our prediction contradicts an
established theory—we may set outselves more demanding levels of significance,
say 0·01 or even 0·001, so as to be that much more confident in any findings that
reach our chosen level of significance.

Statistical tests

If you have properly understood the concepts presented in the previous section
you should be in a good position to master the practical aspects of statistical
testing that are to follow. A statistical test is simply a device for calculating the
likelihood that our results are due to chance fluctuations between the groups.
Different tests calculate this likelihood in different ways, depending on the
design of the experiment and the nature of the dependent variable. But these are
technical—almost trivial— matters. You need to master them in the same way that
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you need to select and use the right tools to repair a car. But the basic principle
of statistical testing—analogous to knowing how a car works—has already been
covered. In the sections that follow we shall try to maintain this distinction
between the principle of assessing the probability that chance factors can explain
the results, and the mechanics of actually measuring this probability.

The terminology of statistical testing

Probability

What do we mean when we say that the probability (p) of getting our results by
chance is, for example, 0·25? Well, the probability of an event is the likelihood
that it will occur, expressed on a scale ranging from 0 to 1; 0 represents no
chance of it occurring and 1 means that it is certain to occur. The above statement
would then imply that if chance alone were operating our results would occur
one in four times over a very large number of replications of the experiment.
This is all that statistical testing can tell us. We then have to decide whether a p
value of 0·25 is low enough for us to conclude that chance factors did not
produce the results obtained in our experiment. As we saw in the last section,
this p value is not low enough. We only reject the chance explanation when it is
extremely improbable, i.e. when p is less than or equal to 0·05. (Note: we can
express this as p� 0·05; similarly, p greater than or equal to 0·05 is written p� 0·05.)

Null and alternate hypothesis

We have represented the process of statistical inference as deciding between two
competing explanations of the difference between our two sets of scores:

1 The differences arise because of purely chance fluctuations in the two
groups of scores. 

2 The differences are caused, at least in part, by the independent variable.

It is rather cumbersome to spell out these explanations in detail every time we
wish to refer to them. Instead we shall use the conventional terms null hypothesis
and alternate hypothesis to refer to the first and second explanations respectively.
Thus in the experiment on noise, our null hypothesis would be that there is no
fundamental difference between performance under experimental and control
conditions; any differences that do arise are due to chance. The alternate
hypothesis is that traffic noise does cause an impairment in performance relative
to the quieter, control conditions. The alternate hypothesis, therefore,
corresponds to the experimenter’s prediction and is sometimes called the
experimental hypothesis.
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Using this terminology, we can now say that a statistical test tells us the
probability that the results could have occurred under the null hypothesis, i.e.
purely by chance. The whole process of statistical inference may then be
summarized as follows:

1 State the null and alternate hypotheses.
2 Calculate the probability, p, that our results could have been obtained under

the null hypothesis. This involves:

(a) Selecting the right statistical test.
(b) Executing the test.

3 Reject null hypothesis if p� 0·05 (i.e. accept the alternate hypothesis that the
difference between the groups is caused by the independent variable). Do
not reject null hypothesis if p>0·05.

Type I and type II errors

As we said earlier, we can never be absolutely certain about a statistical decision.
Suppose we reject the null hypothesis whenever its probability of accounting for
the results falls below 0·05. Most of the time we shall be making the correct
decision. But occasionally we shall reject the null hypothesis when it is, in fact,
correct. This is known as a type I error. The probability of committing such an
error is actually equivalent to the significance level we select. If we reject the
null hypothesis whenever the chance of it being true is less than 0·05, then
obviously we shall be wrong 5 per cent of the time. 

The most obvious defence against the type I error is to choose a more
stringent significance level, say 0·01 or 0·001. The problem with this is that we
then increase the risk of another type of error—the failure to detect significance
when it is present. This is known as the type II error. Obviously we don’t want to
set the probability required for significance (usually called a) at such a low level
that we rarely get the chance to reject the null hypothesis and accept a result as
significant. The a value of 0·05 is normally considered to give about the right
balance between the risks of these two errors.

Samples and populations

So far we have said nothing about the way in which we set about the calculation
of p, the probability that our results could have been obtained purely by chance.
This will be discussed fully in the next chapter, but we should introduce here
some basic concepts which underlie virtually all the statistical tests you will be
meeting. In particular you need to be familiar with the notions of sample and
population as they are used in statistical testing.
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The term population is used in statistics to refer to all possible objects of a
particular type. For example, we might talk of the population of people in Great
Britain, or the population of people in a particular town. But the objects in a
population needn’t be people, they could be measurements. Thus we might refer
to the population of intelligence quotients of students in a particular university or
college. It is not even necessary for the number of objects in a population to be
finite, or for the objects to actually exist. Thus we have a population of all the
possible outcomes to the traffice noise experiment, which is a conceptual
population of scores, infinite in number.

Even if a population is of finite size, it is rarely possible to study every object
within it. Imagine the time and expense involved in testing the IQs of all 10,000
students within a particular university. Instead sociologists, statisticians, market
researchers and other observers of large groups take samples of observations
from the populations of interest, from which they seek to make inferences about
the populations themselves. Suppose, for example, we wished to know the
average IQ of the 10,000 students mentioned above. We might select a
random sample, i.e. one in which every student had an equal chance of being
selected from the population. If the mean of the sample was 123·6 we could
suppose that the mean of the population would also be around this figure. In
formal terms we would be using the value of a sample statistic to estimate the
value of a population parameter. Provided the sample was selected randomly
this estimate would be a fair or unbiased one—that is, just as likely to over-estimate
as underestimate the true value. But naturally the accuracy of the estimate would
depend on the size of the sample; the larger the sample, the more accurate the
estimate of the population mean.

Now let us consider how the notions of sample and population are used in
statistical testing. When we conduct an experiment, such as the one relating noise
to mental performance, we are not, in any obvious sense, collecting a random
sample of scores from a real population. Nevertheless, we can make use of the
properties of samples and populations in the following way.

First, it is possible to regard each set of scores as a randomly selected sample
from an imaginary population of scores. For example, the experimental scores
may be thought of as a sample from the population of scores that would be
obtained if an infinite number of subjects—identical in characteristics to the forty
subjects used in our experiment—were to have performed the logical reasoning
test under noisy conditions. A similar, imaginary population of scores exists for
the subjects tested under the quieter (control) condition. Now the means of these
two populations represent the true levels of performance under the two conditions
of the experiment; they are true measures because they summarize the
performance of all the people typified by our subjects. The standard deviations
of the populations represent the variability in performance caused by
uncontrolled subject characteristics and situational variables.

Secondly, suppose for a moment that the null hypothesis is correct—that the
difference between the two samples is due to chance. Another way of saying this
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is that the two populations defined above are, in fact, identical. The underlying
distribution of scores is the same for experimental and control conditions. We
can then explain the observed difference between the means of the two samples
in terms of sampling variability; the fact that whenever we draw two random
samples from the same population, the means of those samples are bound to vary
slightly just by chance.

We have now translated our original problem—finding the probability that our
two groups of scores differ by chance—into a slightly different form: namely,
finding the probability that the two samples come from the same underlying
population. In other words, we are now asking whether the difference between
the two samples is small enough to arise from sampling variability in a single
population (the null hypothesis), or whether the observed difference is so large
that we must assume an underlying difference in the means of the populations
from which the samples have been figuratively drawn (the alternate hypothesis).
These alternatives are represented diagrammatically in figure 11.

We have already said that we make the choice between null and alternate
hypotheses on the basis of the probability that our results could be obtained
under the null hypothesis alone. Using the notions of sample and population, we
can say that each statistical test is a means of computing the probability that two
samples, which differ as much as the observed samples, could have been
randomly selected from the same population of scores. The exact way in which
we calculate this probability depends on the assumptions which are made about
the underlying populations. We shall deal with this in the context of each
statistical test.

Selecting the appropriate statistical test

There are two major factors that determine the correct test for any particular set
of experimental results: (1) the research design and (2) the nature of the
dependent variable, that is, the actual data. We shall now consider each of these
factors in turn. The major statistical tests are classified according to these two
factors in table 9.

Choosing a test to fit your design

Do not be alarmed into thinking that there is a separate test for every different
method of controlling irrelevant variables: there isn’t. But there are different
tests for the six basic research designs shown at the head of table 9. We give here
a brief definition of each type of design, but further details are given in the
appropriate chapters. 

Table 9 Classification of the statistical techniques used in simple research designs
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ONE-SAMPLE DESIGN

This approach is not commonly encountered in experimental research because
the results may be difficult to interpret. Essentially a single sample of data is
collected and this is compared with a level of performance established in previous
research (or predicted by a specified theory). For example, a new method of
teaching children to read may produce 60 per cent success within one year in a
sample of 100 children. We can assess the effectiveness of the new method by
comparing this level of performance with the previously established success rate

Figure 11 The relationship between samples and populations under the null and alternate
hypotheses (data from the traffice noise experiment)
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using the old method. Thus only one experimental condition is needed since
reading norms under the old method will have been clearly established before the
study. Statistical tests for this type of design are described in chapter 6.

TWO-SAMPLE DESIGNS

This is the main focus of our attention since it is the simplest form that a true
experiment can take. In a two-sample design we compare the performance of
subjects under two levels of the independent variable (e.g. noise-no noise) in
order to see whether the IV is affecting the subjects’ behaviour. Two-sample
designs are sub-divided into related and independent sample designs.

A related samples design is one in which some effort has been made to equate
the subject characteristics influencing each set of scores. This may have been
done either by matching pairs of subjects on appropriate variable(s) and
assigning one member of each pair to each condition (the matched subjects
design) or by using each subject twice, once in each condition, having
counterbalanced the order of performance of the two conditions (the repeated
measures design). The details of these procedures are described in chapter 1 (pp.
10–12). Our only concern here is to note that whenever the same set of subjects,
or matched pairs, are used under the two conditions of an experiment we use the
tests appropriate to related samples. These tests are also occasionally described
as tests for correlated samples or groups.

A design is said to involve independent samples or independent groups when
two entirely separate groups of individuals are assigned to the two conditions. In
this design, subject variables are controlled by random allocation of subjects to
the two conditions (see chapter 1, pp. 13–15). It is not even necessary for the
same number of subjects to be allocated to each group, although this is usually
done. Here again there is a specific set of tests appropriate to independent
samples.

Tests for independent samples are described in chapters 4 (means and
medians) and 7 (variances). Tests for related samples are given in chapter 5.

k SAMPLE DESIGNS

Many experiments involve comparisons between more than two conditions or
levels of the independent variable. Such experiments are called k sample designs,
where k can stand for any number of conditions from three upward. As with the
two-sample design we may have either independent groups of subjects tested
under each condition or related groups (i.e. matched sets of k individuals or,
more likely, repeated measures on the same subjects). Different tests apply to
these two cases. We have not attempted to cover the entire range of k sample
tests, but two specific examples are described in chapter 7.
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CORRELATION

A correlation is not really an experiment at all—at least not in its usual form. In a
correlation the investigator measures the independent variable rather than
manipulating it, and looks for a relationship between these measurements and the
values of the dependent variable. For example, we may be interested in whether
intelligence is related to how quickly people speak. We could measure both
variables in a set of volunteer subjects and try to plot the relationship between
these two aspects of behaviour. This situation differs from the previous examples
in two respects: (1) the investigator cannot manipulate intelligence as he would
in a true experiment; (2) the number of levels of the IV is completely outside our
control and will depend on the particular levels of intelligence that happen to
occur in our sample.

Techniques for analysing these kinds of relationships are described in chapters
8 and 9.

Choosing a test to fit the characteristics of the data

PARAMETRIC TESTS

There are basically two types of statistical test—parametric and non-parametric.
Parametric tests are based on highly restrictive assumptions about the type of
data which are obtained in the experiment: (1) it is assumed that each sample of
scores has been drawn from a normal population; that is, if a very large number
of observations was obtained under each condition of the experiment, then the
resulting distributions would follow a normal curve; (2) these populations are
assumed to have the same variance; (3) the variable is assumed to have been
measured on an interval scale. We shall consider the meaning of each of these
requirements in turn.

Normality How do we know, on the basis of perhaps a few observations, that
our data may be regarded as a sample from a normal population? Unless the
features of the data are well known from previous research (e.g. it is known that
intelligence is approximately normal in distribution), there is no way we can be
certain that this requirement is met. It is possible to sketch out a histogram of the
data to see whether they ‘look’ very markedly skewed or non-normal, and we
can also do a statistical test (not covered in this book) to assess whether the sample
distribution is significantly different from what would have been expected using
a normal population. But we cannot actually prove that a particular sample is
drawn from a normal population.

Equal variances Here again it is impossible to prove that two samples come
from populations with equal variances, but we can detect obvious violations of
the rule. This can be done by inspection of the spread in the two sets of data, or
better still, by a test designed to assess the probability that the two samples come
from populations with equal variance (see the F-test, pp. 128–30).
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Interval measurement In order to discuss this requirement for parametric tests
we shall have to introduce a new concept—the idea of levels of measurement.
Consider, for a moment, some of the different types of measure that may be used
in a psychological experiment: reaction time, the number of items remembered
correctly, whether a subject does one thing or another (e.g. looks directly at an
interviewer or away from him), the subject’s judgement of an object’s size, the
rating of a subject on a scale of talkativeness, or authoritarianism, and so on. The
scales on which these variables are measured have different properties: that is,
the numbers used to represent some variables will have more meaning than those
used to represent other variables.

The weakest level of measurement is known as the nominal scale. Here we use
numbers merely to classify behaviour into different classes but without implying
that one class is numerically related to any other. For example, we might
represent direction of gaze by the numerals 0, 1, 2, where 0 represents looking
downwards, 1 represents looking upwards, and 2 represents looking directly at an
interviewer. These three numbers are then being used simply to classify the
responses of the subjects; it would be meaningless to say that 2 represented
‘more’ of something than 1 or 0, or that 1 represents the average performance of
two subjects rated 0 and 2 respectively. Nominal scaling is a method of
identifying qualitatively different responses and obviously cannot be given any
quantitative meaning.

Consider now the ranking of a group of ten foods in order of ‘tastiness’ by a
particular subject. We could assign the rank of 1 to the least tasty and the rank of
10 to the most tasty. Now here the numbers do have some quantitative meaning;
we can say that there is more tastiness in the food ranked in position 8 than that
ranked 7, and so on. But we cannot say anything about the relative differences
between pairs of rankings; it would be meaningless to say that the difference in
tastiness between the foods ranked 2 and 3 was equivalent to the difference in
tastiness of items ranked 7 and 8. The scale simply doesn’t contain such detailed
information—items ranked 1 and 2 could be much closer in terms of tastiness
than items ranked 7 and 8, but the measurements would not reflect this. They
simply indicate the order of items on a particular attribute, but not their
separations on the scale. Hence this level of measurement is known as ordinal
scaling.

The highest level of measurement usually attained in psychology is known as
interval scaling. Here we not only represent the ordering of items on the
characteristic being measured, but also the relative separation of items in the
scale. To take a non-psychological example, temperature as measured on the
centigrade scale represents interval scaling. The three temperatures 10°C, 20°C
and 30°C represent increasing levels of heat that is, they possess ordinality. But
also we can say that the difference between 10° and 20° is the same as the
difference between 20° and 30°. Hence this scale achieves an interval level of
measurement. It now makes sense to use arithmetic operations on the intervals,
such as addition and division. Hence we say that the average of 10° and 20° is
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15° without violating the properties of the attribute being measured. In order to
do this, it is clear that the measurements must be based on some agreed units
such as degrees, feet, seconds, and so forth. It is the unit that enables us to equate
intervals between points on the scale. Now it is evident that psychological
variables such as intelligence, prestige or neuroticism cannot be measured in
terms of established, standard units analogous to degrees or seconds.
Nevertheless, under certain circumstances it is possible to make a case for a
particular measurement procedure satisfying the requirements of interval scaling;
such claims have been made for measures of intelligence, attitudes and other
variables (see, for example, Stone and James, 1965).

In the case of variables such as reaction time, number of errors, magnitude of
response, there is no question but that interval measurement has been achieved.
Quite obviously we can regard the difference between  and second as equivalent
to the difference between second and 1 second. Indeed such measures are said to
have the characteristics of a ratio scale, by which we mean that one can
meaningfully talk of the ratio of two measures as well as the interval between
them. Thus a reaction time of 2 seconds is, in a real sense, twice as long as a reaction
time of 1 second. A pressure on the response key of 3 lb is three times as great as
a pressure of 1 lb, and so on. In order to make such statements it is necessary for
the scale to have an absolute zero point corresponding to no time, no pressure, or
whatever.

Having defined the various levels of measurement, we can now return to the
measurement requirements for parametric tests. As stated above, all parametric
tests assume that the data has at least interval scaling. The reason for this is that
parametric tests involve the calculation of means and standard deviations—
statistics that involve the addition and division of sets of numbers. As we have
seen above, these operations only make sense when the numbers represent units
of constant size; it does not make sense to add together rankings obtained from
the ordering of items on a scale.

To summarize, parametric tests assume that the two samples of data are drawn
from populations that have normal distributions and equal variances (sometimes
called homogeneity of variance). It is also assumed that the dependent variable
has been measured on an interval scale or a ratio scale.

NON-PARAMETRIC TESTS

In contrast, non-parametric tests make very few assumptions about the nature of
experimental data. Most tests assume only an ordinal level of measurement.
Suppose, for example, we wished to compare the aggressiveness ratings of two
groups of subjects. Our scale of aggression might be based on the judgements of
trained observers using a scale from 1 (low aggression) to 7 (high aggression). It
would seem unlikely that the points on this scale are separated by equal
increments in aggressiveness (interval scaling). All we are prepared to say is that
the ordering of aggressiveness is reflected by the ratings; 7 represents more
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aggressiveness than 6, and so on. In this case we have an ordinal level of
measurement, allowing us to use non-parametric tests, but not parametric tests. As
we shall see later, some non-parametric tests even permit the testing of
hypotheses about nominal data.

As far as population distributions are concerned, non-parametric tests make no
assumptions about the shape of these distributions, nor do they assume that the
two populations have equal amounts of spread. Hence these tests are sometimes
referred to as distribution-free tests of significance. A very useful bibliography
of the many non-parametric tests developed in recent years is provided by Singer
(1979).

Choosing between parametric and non-parametric tests

If non-parametric tests are so generally applicable, and make relatively weak
assumptions about the data, why do we not simplify matters by making exclusive
use of these techniques, and ignore the parametric tests? The answer is that
parametric tests are generally more powerful than the corresponding non-
parametric tests. Loosely speaking, the power of a test is its ability to detect a
significant difference between two sets of scores. The greater power of
parametric tests should not be too surprising; these tests make use of all the
information in the data, whereas the equivalent non-parametric tests simply take
account of the rank order of the scores.

As experimenters we shall naturally wish to maximize our chances of
demonstrating the effects of the independent variable. This means we shall
always use a parametric test when the properties of the data allow us to do so.
But what happens if one or more of the requirements of these tests is violated?
Strictly speaking we should settle for the somewhat less powerful non-parametric
tests. However, statisticians have recently examined what happens to the
accuracy of certain parametric tests (i.e. the t-tests) when the basic assumptions
of normality and homogeneity of variance are systematically violated. Happily
these studies show that the results of the t-test are not seriously distorted even
when quite marked departures from the basic assumptions are introduced. In this
respect the t-test is said to be highly robust, and may be used generally without
much attention to anything other than the most glaring departures from normality
and homogeneity of variance. (There is one exception to this rule, demonstrated
by Boneau (1960), who showed that very misleading results can occur when
marked differences in variance occur together with unequal sample sizes. Thus,
if the sample sizes are different, it is useful to check that the variances are not
significantly different using an F-test (see pp. 128–30). If the difference does
approach significance, it is then safer to use a non-parametric test.)
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An overview

Table 9 gives a summary of the various tests to be covered in this book. Your
choice is determined by the design of the experiment and the nature of the data
(suitable for parametric or non-parametric tests). The way in which these
classifications are made has been discussed above. However, you will see that
for some conditions there are two tests listed in the table. The reasons for having
two alternative tests in these cases will be given when the particular tests are
discussed.

The principles underlying the selection of tests are difficult to assimilate on
first presentation. We shall therefore reconsider the question of choice as we
come to discuss each test in the following chapters.

Chapter summary

1 Statistical inference seeks to go beyond the mere description of
experimental data, and to establish the cause of the difference between the
results of the experimental and control groups.

2 There are two possible explanations for the difference between the mean
performance of the two groups: (1) that the difference arises from chance
factors, such as the slightly different composition of the two groups of
subjects (null hypothesis); (2) that the difference is caused by the
independent variable (alternate hypothesis).

3 A statistical test is used to determine the probability that the observed
results could have occurred under the null hypothesis. If this probability is
less than, or equal to, 0·05 the null hypothesis is rejected in favour of the
alternate hypothesis, and the results are said to be significant.

4 There are two types of error that may arise in the process of statistical
inference. We may decide to reject the null hypothesis when it is, in fact,
correct—a type I error. Alternatively, we may decide not to reject the null
hypothesis when it is false—a type II error. If we seek to reduce the risk of a
type I error (by lowering the probability required for significance) we
automatically increase the risk of a type II error.

5 A population is defined as a collection of all the possible objects, people or
scores of a particular type. Statisticians use the characteristics of randomly
selected samples to estimate the characteristics of the populations from
which the samples have been drawn. The characteristics of a sample are
known as sample statistics. The characteristics of a population are known as
population parameters.

6 In statistical testing the two groups of data may be regarded as randomly
selected samples from imaginary populations of scores. Under the null
hypothesis these two populations should be identical, and the difference
between the two samples is explained by sampling variability—the fact that
any two random samples from a single population will differ slightly just by
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chance. Hence a statistical test may be regarded as a means of computing the
probability that the two samples have been drawn from a single population.

7 The selection of an appropriate statistical test for a two-sample experiment
depends on (1) whether the samples are related (matched subjects and
repeated measures designs) or independent and (2) whether the data are
suitable for parametric or non-parametric tests.

8 Ideally a parametric test demands that the underlying populations of scores
should be normally distributed and with equal variances. It is also assumed
that the scores have been obtained from at least an interval scale of
measurement—that is, a scale in which the distance between any two
numbers is made up of units of known size.

9 A non-parametric test makes no assumptions about the shape or variability of
the population distributions. The level of measurement required is usually
ordinal—that is, the numbers need only represent the rank order of objects
on a scale from high to low.

10 Parametric tests are to be preferred to non-parametric tests because of their
greater power to detect a significant difference between two sets of scores.
Hence parametric tests are used whenever the characteristics of the data
permit. The robustness of some parametric tests (e.g. the t-test) make it
possible to use these techniques even when the assumptions of normality
and equal variance have been violated.
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4
Independent two-sample tests

The tests described in this chapter deal with the analysis of experiments in which
the scores of two independent groups of subjects are to be compared. As
suggested in Chapter 1, this design is not particularly sensitive to the effects of
the independent variable because subject differences tend to obscure the
experimental effects. Nevertheless, much psychological research is based on the
independent groups design. This is due partly to its simplicity—one merely
divides the subjects into two groups on a random basis—and partly to the lack of
any practicable alternative in certain situations, for example, when performance
in one condition of an experiment destroys a subject’s usefulness in the other.

There are four tests which may be used with this design:

1 Normal distribution (Z) test for independent samples (parametric)
2 t-test for independent samples (parametric)
3 Mann-Whitney test (non-parametric)
4 Chi-square test (non-parametric)

We shall deal with these tests in turn, showing the procedures to be followed and
the circumstances under which each test should be used. But before doing this
the rationale underlying the first two will be discussed in some detail; this will
introduce a number of points which are of general importance.

Rationale of the independent Z and t-tests

Choosing the tests

Consider the experiment on traffic noise and reasoning performance. The data
for this study were obtained from two independent groups of subjects and should
therefore be analysed using one of the four tests listed above. Since parametric
tests are more powerful we should consider whether the Z or t-test can be used
before looking at the non-parametric alternatives. This means we must decide
whether the samples have been drawn from normal populations with equal
variance and with measurements on an interval scale (see p. 61). Inspection of



the histograms for the two sets of scores (see figure 12) gives us no reason to
suppose that the populations are not normal—both samples have reasonably
symmetrical distributions of the sort one would obtain from a normal population.
There appears to be some difference in the variability of the samples, but we
have already learned that these tests are robust  enough to cope with modest
violations of the equal variance rule, and in this case the difference does not seem
very dramatic. (If in doubt, the size of the difference can be assessed statistically;
see chapter 7.) Finally, if we assume that each problem on the logical reasoning
test is of equal difficulty, then the ‘units’ of the scale become equal in size,
giving us measurement at the interval level. With these assumptions we may now
proceed with one of the parametric tests, i.e. either the t-test or the Z test. How
we choose between these alternatives will become clear later.

The test statistic

Using the original data from the traffic noise experiment (see p. 25) we find that
the control group’s mean score was 12·0, whereas the experimental group
produced a mean of 9·95. As we learned in the last chapter, the purpose of the
statistical test is to discover the probability that this difference arose by chance
rather than being caused by the different noise levels. If this probability turns out
to be 0·05 or less we shall reject the chance explanation (null hypothesis) and
conclude that the traffic noise did have an effect on performance. If the
probability exceeds 0.05, the chance explanation cannot be ruled out.

The next step, then, is to calculate p, the probability that the results occurred
by chance. In all statistical tests this is done in two stages:

1 The difference between the two sets of scores is converted into a
standardized measure of deviation known as the test statistic. This stage is
performed by the experimenter using the appropriate test formula.

Figure 12 Scores of experimental and control subjects in the traffic noise experiment
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2 The value of the test statistic is then converted into a probability, p, using
specially prepared tables.

There is a different test statistic and a different set of tables for each of the tests
outlined in this book, but they all involve the same two stages. Thus the t-test,
for example, converts the difference between two means into a test statistic
known (not surprisingly!) as t. The t value is then looked up in the t tables to find
the probability that the observed difference arose entirely by chance.

The procedures for doing this are set out on pp. 79–86. That section is
completely self-contained, and the reader who simply wishes to analyse some
data should turn directly to the computational procedures. However if you are
interested in the derivation of the tests themselves—read on!

Derivation of the Z and t-tests

In the previous chapter we saw that it was possible to regard a group of scores as
a randomly selected sample from an imaginary population. Under the null (or
chance) hypothesis the two groups of scores are samples from the same
population and they differ because of sampling variability—the tendency for any
two samples to vary slightly. On the other hand, the alternate hypothesis states that
the two samples come from two different populations, and the sample means
differ because the population means differ.

The purpose of a statistical test is to find the probability that the chance
hypothesis is true, i.e. the probability that the two samples came from a single
population. To find this probability in the traffice noise experiment we need to
know how likely it is that two samples drawn from the same population would
have means that differed by as much as 2·05 (this is the control mean of 12·0
minus the experimental mean of 9·95). Before we can calculate this probability
we need to learn some more about the properties of populations and samples.

WHAT DOES THE DISTRIBUTION OF SAMPLE MEANS
LOOK LIKE?

Suppose we drew a very large number of random samples from a population and
calculated the mean of each one. If we knew what the distribution of these means
looked like, we might be able to work out the probability that any two of them
could differ by as much as the two means obtained in our experiment. We shall
now perform a mental ‘experiment’ to discover the properties of this distribution
of sample means.

Imagine that you measured the logical reasoning ability of thousands of
people, wrote each score on a small piece of paper, and placed all the pieces in a
gigantic hat. This could represent our population of scores; it might be normally
distributed with a mean of say, 25, and a standard deviation of 10, as shown in
figure 13(a). Now suppose that you took a random sample of twenty scores from
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this population and found the sample mean. This might be, say, 24·6. A second
sample might yield a mean of 25·1. And so on. If you worked at this task for long
enough you would eventually build up a frequency distribution of the sample
means. This would approximate to the smooth curve shown in figure 13(b). This
distribution is known as the sampling distribution of the mean.

Note that, like the original population, the sampling distribution is also normal
in form. (This is hardly surprising, but actually it can be shown that a sampling
distribution tends towards normality as the sample size increases, irrespective of
the shape of the population being sampled. This is known as the central limit
theorem.) A second point to note is that the mean of the sampling distribution is
the same as the mean of the population. Again this is fairly obvious; although the
sample means will vary slightly, we would expect them to average out at the
value of the population mean. Finally, note that the variability of the sample
means is very much less than the variability among the individual scores in the
population. You can see intuitively why this should be so by considering the
chance of observing an ‘extreme’ value. In the original population one might
occasionally come across an extremely high or extremely low score. But the
chance of obtaining a sample mean of this value would be very much smaller,
because one would have to select, just by chance, twenty extreme scores in the
same sample, and this would be virtually impossible. Rather the tendency is for
the high and low scores to cancel each other out in any one sample, so that the
sample means will cluster much more closely around the value of the population
mean than do the individual scores themselves. Naturally this gravitation towards
the mean will depend on the size of the sample, N; the larger the samples, the
more tightly clustered the sample means will be around the value of the
population mean. This is reflected by the standard deviation of the sampling

Figure 13 The relationship between a normal population of scores and the distribution of
sample means drawn from the population
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distribution (known as the standard error) which is less than the standard
deviation of the population. In fact a very simple relationship obtains: the
standard error is equal to the standard deviation of the population divided by 
 That is:

where �  stands for the standard deviation of the population, (�  is used in
preference to s to indicate that we are referring to a feature of the population
rather than an individual sample. Similarly the symbol µ . is used for the
population mean, whereas  is used for the sample mean.)

Now that we know about the distribution of the sample means we can return to
the question of whether any two particular means are likely to differ by as much
as the two means obtained in our experiment. Unfortunately the sampling
distribution shown in figure 13(b) does not tell us exactly what we want to know.
We could use this distribution to find the probability of obtaining, by chance, a
sample mean within some specified range of values, but this is not what is
needed here. We wish to know the probability of getting a difference between
two sample means of some particular value. In order to find this we need to
consider a slightly different sampling distribution– namely, the sampling
distribution for the difference between two means.

THE SAMPLING DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO MEANS

This would be obtained in a similar way to the distribution of a single sample
mean. We would again take a large number of random samples from the
population, but this time we would select the samples in pairs and calculate the
difference between the means of each pair of samples. These differences would
sometimes be positive and sometimes negative, but the average difference would
be zero and the shape of the distribution would be normal. As we are taking two
means into account when calculating each difference, the variability of the
differences will be somewhat greater than the variability of the individual sample
means. In fact it can be shown that the standard error of the difference between
two means is equal to the standard deviation of the population multiplied by

 That is:

where N1 and N2 represent the size of the two samples. (If you are interested in
the proof of this relationship, see Goodman, 1962, p. 140). These features of the
sampling distribution of the difference between two means are summarized in
figure 14.

We are now well on the way to being able to calculate the probability that the
two samples obtained in our experiment could differ by as much as they do,
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under the assumption that they were both randomly selected from the same
population of logical reasoning scores. Figure 14 represents all the possible
differences between pairs of means that could be obtained when sampling from a
single population. Using our knowledge of the normal distribution (see p. 43) we
can find the probability of obtaining a difference as large or larger than any given
value. All we need to know is the distance of that difference from the mean value
(zero) expressed in units of standard deviation or, in this case, standard error.
The difference obtained in the traffic noise experiment was 2·05, and his value
has been marked on the sampling distribution of differences in figure 14. The
distance between the mean of the sampling distribution and 2.05, expressed in units
of standard error, is given by:

Or in general terms using 1 and 2 to represent the two sample means, the
extent to which any difference exceeds zero, measured in units of standard error,
is given by:

(A)

Armed with this Z score we may enter table I (p. 172) and find the area of the
normal curve which falls above this value. This corresponds to the probability of
obtaining a difference as large or larger than ( 1– 2) under the null hypothesis
that the two samples were drawn from a single population, i.e. the probability, p,
that the difference arose by chance. If p is less than 0·05 then we shall reject the
null hypothesis in favour of the alternate hypothesis that the samples were drawn
from different populations, i.e. we conclude that there is a real difference
between the two samples caused by the change in noise level.

Figure 14 Sampling distribution of the difference between the means of two samples
selected from the same population (N1=N2=20)
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The need for two tests—Z and t

The general formula (A) above is fine so long as we know the value of � , the
standard deviation of the population from which the samples have been drawn. In
demonstrating the formula above we just invented a value for � , namely 10. But
we could not do this in a real statistical test; we would need the true value. 

Unless some previous research on very large numbers of subjects had
established this standard deviation (an unlikely state of affairs) the value of �
would be unknown, and we should have to estimate it from the standard
deviations of the scores in the samples themselves. There are two ways this can
be done: (1) If the samples are reasonably large, say thirty or more observations,
the �  term in formula A is brought inside the square root and simply replaced by
the standard deviations of the two samples. The resulting test statistic can still be
looked up in the normal distribution (Z) tables and the formula becomes:

where S1 and S2 are the standard deviations of the two samples whose means are
being compared. The zero in the numerator has no effect on the calculation, and
is there to remind us that we are comparing the difference in the means with the
difference that would be expected if the samples came from the same population,
i.e. 0. For practical purposes the formula for a two-sample Z test is therefore:

(B)

The Z statistic is then referred to the normal distribution tables to determine the
probability that the samples came from the same population of scores.

(2) If the samples are small, say less than thirty observations in each group,
the estimate of �  used above is too inaccurate. For small samples it can be shown
that the best estimate of the population standard deviation is given by:

where the symbol ^ means ‘an estimate of’.
When this expression is substituted in formula A the result is a more

complicated test statistic which deviates slightly from the normal distribution.
This statistic is known as t and is given by:

(C)

As with Z, the value of t is converted into a probability by reference to the
appropriate tables (t tables). In this case, however, the sample sizes N1 and N2 as
well as the t value are needed when looking up the probability (see pp. 83–6).
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We can summarize this section on the derivation of Z and t-tests as follows.
Under the null hypothesis the two samples of scores have been drawn from a
single population. By making certain assumptions about that population we can
discover the distribution that would be obtained if many pairs of samples were
randomly selected and their means compared. The observed difference between
the two means obtained in an experiment is then compared with these expected
differences by using the Z or t formula. If the observed difference is well within
the range of differences expected by chance then Z or t will have low values. If
the observed difference in means is larger than would normally be obtained by
taking two samples from the same population, then the Z or t value will be high.
By referring to the appropriate tables the exact probability of the samples coming
from the same population can be obtained. If this value is less than 0·05 the
samples are said to differ significantly and the alternate hypothesis of a real
difference between the mean scores is accepted.

One- and two-tailed tests

The idea of one- and two-tailed tests is important for the understanding of the Z
and t-tests, and indeed for all the statistical tests included in this book. The
distinction between these two types of test hinges on the nature of the prediction
made at the outset of the experiment. If we had predicted the direction of the
difference between the two conditions (e.g. that noise impairs performance
relative to no noise) then we have a one-tailed test. If, on the other hand, we
cannot be so specific (e.g. we predict that noise will have some effect on
performance, but we don’t know whether it will be positive or negative) then we
have a two-tailed test.

Now how does this distinction affect the statistical analysis? To answer this
question we must consider all the possible results of the experiment. For any
given difference between the means there will be a corresponding value of the
test statistic. Let us suppose that the appropriate test is a t-test. Then we can
represent the possible outcomes to the experiment by the distribution of possible
t values that could have been obtained if the two samples were drawn from the
same population (the null hypothesis). The most likely result is a t of zero—no
difference between the means—and the probability falls off on either side of t=0
(see figure 15). The two tails of the distribution represent extreme cases—either

1 is much larger than 2 (the right-hand tail) 2 or is much larger than 1 (the
left-hand tail). Where on this distribution do we regard the most extreme 5 per
cent of the cases to fall? Do we take the most extreme 2  per cent of the cases
at each tail? Or do we take the most extreme 5 per cent of the cases at one tail?
Obviously if the test is one-tailed we shall only be interested in extreme cases at
one end of the distribution (say the right-hand tail) because we made the specific
prediction that 1 will be larger than 2. Thus we shall consider the results
significant if they produce a t value in the upper 5 per cent of the distribution (A
or more in figure 15). If the test is two-tailed then we shall be interested in
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extreme cases at both ends of the distribution because we predicted a difference
between 1 and 2 in either direction. Thus we shall consider our results
significant if they produce a t value in the upper 2  per cent or  lower 2  per
cent of the distribution (B or more extreme in figure 15). Thus the critical value
of t for 5 per cent significance will depend on whether the test is one- or two-
tailed. For a one-tailed test we need a less extreme value than for a two-tailed
test.

It may be difficult to see why this is so without some further thought. With a
one-tailed prediction (or directional hypothesis) there is no point in testing
results in the ‘wrong direction’—e.g. noise enhancing performance—but we
require a less extreme value off for significance (A in figure 15) if our results are
in the predicted direction. With a two-tailed prediction (non-directional
hypothesis) we shall analyse the data whichever direction the difference happens
to be in, but we shall require a correspondingly more extreme value of t before we
accept that the observed difference is significant (B in figure 15). Putting this
another way, if we obtain a particular value of t from a statistical test, say the
value B in figure 15, this will be 5 per cent significant using a two-tailed test, but
2  per cent significant using a one-tailed test. Obviously it is important that you
decide before conducting the experiment whether your prediction is directional
or non-directional, otherwise you may ‘convince yourself after the experiment
that whatever happened was what you predicted.

The normal distribution (Z) test for independent samples

Choice of test

This test is the most powerful device for detecting a difference between the
means of two independent samples of scores. A typical application might be a
test of whether the mean reaction time of fifty subjects to the onset of a red light
is significantly faster than the mean reaction time of fifty other subjects to a
green light. Since the test is parametric it assumes that the two sets of scores come
from normal populations with equal variance, although slight violations of these

Figure 15 t distribution showing the critical values of t at the 5 per cent level for a one-
and two-tailed test
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rules are not critical. It is also assumed that the measurements are on an interval
scale.

The above requirements are common to the Z and t-tests. However the Z test
also requires large samples—that is, at least thirty subjects in each group—
whereas the t-test can accommodate smaller samples. These considerations are
discussed more fully in the previous section (see pp. 75–6). 

Rationale

The Z formula converts the difference between the two sample means into a
standardized measure of deviation. Hence the larger the value of Z, the more
discrepant are the two sets of scores and the lower the probability that the
differences arose by chance. If this probability falls below 0·05 the chance
hypothesis may be rejected in favour of the alternate hypothesis of a real
difference between the mean levels of performance in the two conditions. The
rationale of the test is described in detail on pp. 73–7.

Z test for independent samples: computation

GENERAL PROCEDURE

I Calculate the two sample means  and  using the formula

II Calculate the two sample variances S1
2 and S2

2 using the formula

III Substitute the values of , , S1
2, S2

2, N1, N2 in the computational formula
for Z

IV Convert Z into a probability that the difference in means arose by chance.
Use the normal distribution tables, p. 172. (If the test is two-tailed the
probability shown in the tables should be doubled.)

V If the probability of obtaining the difference by chance is less than 0·05 (or
some other preferred level of significance) then the null hypothesis is
rejected and the alternate hypothesis accepted, i.e. the independent variable
is presumed to have caused the difference between the sample means.
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EXAMPLE

Effect of red and green light signals on reaction time. Experimenter predicts that
red signals will produce fasterresponses than green signals.

IV The negative value of Z is of no particular significance: it arises from the fact
that 2 is larger than 1. Had the samples been set out in the reverse order
Z would have been positive, and we can therefore ignore the minus sign.
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Using table I: A Z value of 3·35 corresponds to a probability smaller than
0·0005. (As the test is one-tailed, this probability level is not adjusted.)

V Conclusion. The probability that these two samples could have been
randomly selected from the same population is very low,* and we can
therefore reject the null hypothesis at the 0·05 level of significance. We
conclude that the difference between the two sets of reaction times did not
arise by chance but was produced by the difference in the colours of the
light signals.

The t-test for independent samples

Choice of test

This is a parametric test of the difference between the means of two independent
samples. It might be used, for example, to determine whether a random sample
often patients treated with drug A recovered more rapidly from an infection than
another sample of twelve patients treated with drug B. Like the Z test, the t-test
assumes that the two sets of scores come from normal populations with equal
variance, but the test is not affected by minor violations of these rules. It is also
assumed that the measurements are on an interval scale.

Although both the Z and t-tests are parametric two-sample tests, the t-test is
specially adapted for small samples (where one or both samples are smaller than
thirty) and is somewhat less powerful than the Z test. Further details are given on
pp. 75–6.  

Rationale

In essence the t formula measures the size of the difference between the means
of two samples and converts this into a standard measure of deviation. Hence a
large value of t signifies a marked difference between the sample means and,
correspondingly, a low probability that the samples vary purely by chance. If this
probability falls below 0·05 the chance hypothesis may be rejected in favour of
the alternate hypothesis that there is a genuine and reliable difference between
the levels of performance in the two experimental conditions. The rationale of
the test is described more fully on pp. 69–77.

* Note that this probability is much lower than the critical value of 0·05 (or 5 per cent) which
is normally required for significance. The result obtained here is therefore very highly
significant and we can be very confident that the observed difference is a reliable one.
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Degrees of freedom

Unlike the Z test, the t statistic cannot be converted into a probability without
taking account of the sample sizes, or more precisely the degrees of freedom of
the test. Before dealing with the computational procedure we therefore define
this term.

Suppose we calculate the standard deviation of a set of N scores. How many
of those scores are actually free to vary and to contribute to the value of S? There
is a sense in which only N−1 of the scores are free to vary. The reason for this is
that we use the value of the mean in computing the value of S. Once the mean is
fixed for N numbers, only N−1 of them are free to take any value—the value of
the Nth score must be such as to give the whole set the predetermined mean. So
when we calculate S1 and S2 in the t-test, the number of observations that are
truly free to vary are (N1−1) plus (N2−1) or (N1+N2−2). Now the shape of the t
distribution depends directly on the number of freely varying scores that were
used in the calculation of S1 and S2. Consequently, when we come to interpret t
in terms of a probability (p), we need to find the p value that is appropriate for (N1

+N2−2) degrees of freedom or df. This requirement is embodied in the
computational formula by writing the number of degrees of freedom as a
subscript to t. 

t-test for independent samples: computation

GENERAL PROCEDURE

I Calculate the two samples means 1 and 2 using formula:

II Calculate the two sample variances S1
2 and S2

2 using the formula:

III Substitute the values of 1, 2, S1
2, S2

2, N1, N2 in the computational
formula for t:

IV Find the number of degrees of freedom using the formula: df=N1+N2−2.
V Find the value of t needed for your chosen level of significance using

table II, p. 174. This critical value will depend on (1) the number of degrees
of freedom, and (2) whether the prediction is directional or not.

VI If the observed value of t is equal to or greater than the critical value of t,
reject the null hypothesis in favour of the alternate hypothesis, i.e. conclude
that the independent variable had an effect on behaviour.
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EXAMPLE

Effects of two drugs on a perceptual-motor skill. Experimenterpredicts that Drug
1 will produce higher scores than Drug 2.

IV df=5+7−2=10
V Using table II: For ten degrees of freedom the value of t required for the 5

per cent level of significance (one-tailed) is 1–812. 
VI Conclusion. As the observed t is greater than 1·812 it is unlikely* that our

results could have arisen by chance. We may therefore accept the alternate
hypothesis that Drug 1 produces higher performance than Drug 2.
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The Mann-Whitney test

Choice of the test

This test is frequently used as an alternative to the t-test for independent
samples. It has very similar functions, but can be used with data that are
measured on an ordinal scale, and the test makes no assumptions about the shape
of population distributions. Even when it is used with data that are appropriate to
the t-test, its power to detect significance is not very much less than that of the t-
test itself. Hence this technique is extremely useful.

A typical application of the test might involve the comparison of two
independent groups of subjects who were taught to read by different methods and
subsequently rated on a scale of reading ‘fluency’ from 1 to 10. It is unlikely that
such measurements would possess interval scaling, since there is nothing
approximating to a ‘unit’ of fluency. Hence the t-test would not be strictly
appropriate. However, the ratings would almost certainly achieve ordinal
scaling; that is, they could be used to rank individuals in order of fluency. Hence
the Mann-Whitney test could be applied to the data. Once ordinal scaling is
assumed it is no longer sensible to calculate the mean of a set of ratings. For this
reason the Mann-Whitney test cannot be used to decide whether two groups of
scores differ specifically in their means, and in this respect it is not perfectly
analogous to the t-test. However, the Mann-Whitney does allow us to test the more
general hypothesis that one set of scores tends to be higher (or lower) than
another set. This is perfectly adequate for most psychological predictions.  

Rationale

Like most non-parametric tests the rationale behind the Mann-Whitney test is
extremely simple. Imagine two samples of scores drawn from the same
population. If we combine these samples into one larger group and then rank the
scores from lowest to highest we would expect to find the scores from both
original samples randomly arranged in the combined ranking. If, however, most
of the scores from one sample were lower in rank than most of the scores from
the other sample, we should begin to suspect that the two samples were not
drawn from the same underlying population. By finding the sum of the ranks of
one of the samples, the Mann-Whitney test allows us to determine the probability
that a given separation between the ranks of the two samples could have arisen
by chance. If this probability is very low (i.e. � 0·05) we may reject the null
hypothesis that the ordering of ranks is purely random, in favour of the alternate
hypothesis that the independent variable has produced a difference in the levels

* To be precise, the probability that the difference between the means arose by chance is
less than 0·05.
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of performance of the two groups. As with the t-test a given difference between
the two sets of rankings is regarded as more significant if the direction of the
difference was predicted before the experiment (one-tailed test), than if it was
not (two-tailed test). 

The Mann-Whitney test: computation

GENERAL PROCEDURE

I Let N1 be the size of the smaller group of scores and N2 the size of the larger
group.

II Rank the combined set of N1+N2 scores from the lowest to highest value.
Use rank 1 for the lowest, 2 for the next lowest, and so on.

III Find the sum of the ranks for the smaller group and call this R1.
IV Substitute the values of N1, N2 and R1 in the following formula and calculate

U:

V Substitute the values of U, N1 and N2 in the following formula and calculate
U�:

U�=N1N2−U
VI Find the critical value of U needed for significance at the desired level using

table VI (p. 177). The critical value will depend on (1) the values of N1 and
N2, and (2) whether or not the prediction was directional.

VII If the observed value of U or U� (whichever is the smaller) is less than or
equal to the critical value of U, reject the null hypothesis.

TIES

If two or more scores have the same value we give each score the average of the
ranks that would have been used if there was not a tie. Thus if two scores would
have occupied rank positions 6 and 7, but are equal, they both receive the rank of
A·5. But note that these two scores have ‘used up’ two ranks, 6 and 7, so that the
next highest score will receive rank 8.

The presence of ties tends to lower the chance of obtaining a significant result,
but this effect is very slight. For large numbers of ties, or when the results are on
the borderline of significance, it may be worthwhile applying a correction for ties
to the formula. The details are given in Siegel (1956). 
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EXAMPLE

Ratings of fluency for children taught to read by two different methods.
Experimenter predicts that there will be a difference between the effectiveness of
Methods A and B.

Ratings of group taught by
Method A (N1=6)

Ranks Ratings of group taught by
Method B (N2=8)

Ranks

5 6 4 5
1 10 6 8
1 10 3 4
6 8 5 6
9 13 2 2
10 14 1 1

R1=63 2 2
8 12

IV

V U�=N1N2−U=6×8−6=42
VI Using table VI: For N1=6, N2=8, the critical value of U for 5 per

cent significance (two-tailed) is 8.
VII Conclusion. As the (smaller) observed U is less than the critical

value of U for 5 per cent significance, we can conclude that there
is a significant difference between the two groups: the effects of
the two teaching methods are different.

LARGE SAMPLES: N2 LARGER THAN 20

Table VI does not give critical values for U when N2 is larger than 20. When this
occurs it is possible to approximate U to a Z score, and to use the normal
distribution table (table I, p. 173) to find the significance of the results. In order
to find the 

appropriate value of Z we substitute in the following formula:

Suppose, for example, we obtained a U value of 264 after completing step IV in
the general procedure. If N1, was 16 and N2 was 24 the Z score would be:
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We can now look up Z in table I to find the probability that the observed
difference between the rankings could have occurred by chance. This probability
is 0·0233, indicating a significant difference between the two groups. (Note that
table I gives one-tailed probabilities; if the experimenter’s prediction was non-
directional, it would be necessary to double the p value before stating the
significance of the results.)

The chi-square (�2 ) test for independent samples

Choice of the test

So far we have considered two sample tests which can be used to compare the
scores of two groups on various types of quantitative variable—logical reasoning
scores, fluency ratings, and so forth. Quite often, however, we are interested in
some non-quantitative aspect of a subject’s behaviour, for example, does a
subject ‘think aloud’ or not? Does he consciously use mnemonics in a memory
experiment, or doesn’t he? Does he maintain eye contact with an interviewer, or
does he look away? These measurements, in so far as they are measurements at all,
are said to constitute nominal scaling (see p. 62). It is readily apparent that we
cannot compare two groups with regard to their average performance on such
variables—what is the ‘average’ score of two subjects, of whom one thinks aloud
and one doesn’t? All we can say is whether the groups differ in the proportion of
subjects who come into one category rather than another. Thus we might predict
that subjects who are tested by members of their own sex in a problem solving
task would be more likely to think aloud than subjects who are tested by
members of the opposite sex. To test this prediction we would record the
frequency of occasions on which subjects in each group did or did not think
aloud and then compare the relative frequency of thinking aloud across the two
groups of subjects.

Whenever our data consist of frequency counts of the number of times
different events occur, the � 2 test can be used to compare the proportions of these
events in two independent samples. Even if the data are truly quantitative—e.g.
reaction times under two levels of stress—there is nothing to stop us converting
these scores into frequencies. For example, we could choose some arbitrary
value of reaction time, and categorize subjects as fast or slow according to
whether their performance was above or below this value. We could then conduct
a � 2 test to see if the proportion of fast subjects was any higher under one level of
stress than another. This approach is perfectly legitimate, but it does, of course,
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waste most of the information in the original data, and our chance of detecting a
significant result is accordingly reduced.

Rationale

Suppose we test thirty subjects using the ‘same sex’ experimenter (i.e. a male
experimenter for a male subject, female experimenter for female subject), and
twenty-seven subjects using the ‘opposite sex’ experimenter. We assume, of
course, that subjects have been allocated to the two conditions at random, and we
record the number of subjects who were observed to ‘think aloud’ in both groups.
We can present the results in the form of a 2×2 contingency table, as illustrated
in table 10. Our task, as with all statistical tests, is to compute the probability
that the difference between the two groups could have arisen purely by chance.
The approach used in the � 2 test is to compute the frequencies that would have
occurred if the two groups were identical with respect to the proportion of
people 

Table 10 Imaginary results of an experiment on the proportion of people who think aloud
under different circumstances (table shows frequencies)

Same sex
experimenter

Different sex
experimenter

(Marginal
frequencies)

Thought aloud 20 9 29

Didn’t think aloud 10 18 28

Marginal
frequencies

30 27 57

who think aloud (these are the expected frequencies). The � 2 value is then
calculated on the basis of the difference between the expected frequencies (E
values) and the observed frequencies (0 values). The statistical tables then tell us
the probability that a difference as large or larger than that represented by � 2

could have occurred by chance.
The only difficulty here is in establishing the value of the expected

frequencies under the hypothesis that the two groups are identical with respect to
the dependent variable. To find the expected frequency for the top, left-hand cell
of the contingency table, we reason as follows:

1 Overall, 29/57 of the total group of subjects think aloud (this is obtained
from the marginal frequencies shown in the table).

2 There were thirty subjects in the ‘same sex’ condition.
3 Therefore, if there was no difference between the groups 29/57 of the thirty

subjects should have thought aloud: i.e. 29/57×30(=15·26).
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The same procedure can be used to find the remaining expected frequencies. In
general, then, the E value for any cell is given by:

But note that we could obtain the expected frequencies for all the other cells by
subtraction, since the expected frequencies must add up to the marginal totals.
This demonstrates quite graphically that there is only one degree of freedom in a
2×2 � 2 test. The assumptions needed to do the test mean that only one value is
really free to vary. Since � 2 is one of those statistics whose significance depends
on df, we need to note this point.

Having obtained the expected frequencies we can now compute the difference
between these and the observed values. � 2 is not based on the simple quantity � (O
−E), but on a slightly more complex measure of the difference between O and E,
thus:

In words, we are required to square the difference between each observation and
its expected value, divide this square by the expected value, and then add
together the different values of (O−E)2/E corresponding to the four cells.

The above formula ‘assumes’ that the quantity O can take on any value—that
it is continuous. But, in point of fact, we know that O can only take on integral
values—3, 4, 5, etc.—and not values that fall between whole numbers (we can’t
observe half a person!). In order to correct for this lack of continuity we should
adjust the above formula, as follows:

Note that we now take the absolute value of (O−E), whether this is positive or
negative, and subtract from it, before squaring. This correction, known as
Yates’s correction, is incorporated in the computational formula given in the
next section. When the sample size is very small the value of � 2 cannot be
meaningfully interpreted, even after Yates’s correction has been made, and it is
necessary to use another test which gives an exact measure of the probabilities of
various outcomes (see Siegel, 1956, or Edgington, 1969). As a rough guide � 2

should not be used when one or more of the expected frequencies falls below
five. 
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�2  test: computation

GENERAL PROCEDURE

(Note. The rationale of the test can best be seen from the formulae given in the
previous section. However, a more convenient ‘computational formula’ has been
devised, and this will be used here.)

I Let the values of the cell frequencies be represented as follows:

A B A+B
C D C+D
A+C B+D N

II Substitute the values of A, B, C, D and N in the following formula, and
calculate � 2:

(Note that the quantity |AD–BC| is taken as positive even if BC is larger than
AD.)

III Find the critical value of � 2 needed for significance at the desired level using
table III (p. 175). The critical value will depend on (1) the degrees of
freedom (=1), and (2) whether the direction of the difference in proportions
was predicted in advance of the experiment.

IV If the observed value of � 2 is greater than or equal to the critical value the
difference between the proportions in the two groups is significant. 

EXAMPLE

Effect of the experimenter on the subjects’ enjoyment of a task. The prediction is
that a higher proportion of subjects will enjoy a task conducted by Experimenter
1 rather than by Experimenter 2.

Subjects tested  by
Experimenter 1

Subjects tested  by
Experimenter 2

Enjoyed 15 10 25
Not enjoyed 10 12 22

25 22 47

I A=15, B=10, C=10, D=10, N=47
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II

III Using table III: for one degree of freedom the value of � 2 required for the 5
per cent level of significance (one-tailed) is 2.71.

IV Conclusion. As the observed � 2 is less than 2.71 there is no significant
evidence for the prediction that Experimenter 1 is more likely to induce
enjoyment in his subjects than Experimenter 2. We cannot reject the null
hypothesis. (Note that we do not speak of accepting the null hypothesis;
since our results are not significant we cannot confidently reject the null
hypothesis, but we have certainly not proved it correct.)

One final point needs to be made concerning the interpretation of the p value
obtained from the � 2 statistics. Since � 2 measures the discrepancy between actual
results and those expected by chance, it takes only positive values. The
probability associated with a particular value of � 2 therefore tells us the chance
of a given difference arising, whatever the direction of the difference between the
two groups. Hence the probability values are two-tailed. If we are able to predict
which of two proportions will be larger we must divide the p value associated
with our � 2 by two, to get the one-tailed probability. (Note: don’t be confused
into thinking that because we are only interested in high values of � 2 we must be
using a one-tailed test; these high values represent differences in both directions,
so the probabilities associated with them are two-tailed.)

The above distinction between one- and two-tailed interpretations of � 2 only
makes sense in a 2×2 contingency table. It is, however, possible to extend � 2 to
more elaborate designs—say where there are three groups and the dependent
variable takes one of four discrete values (e.g. Labour, Conservative, Liberal,
other). In these cases we cannot talk about the direction of a difference and the
question of one- and two-tailed tests does not arise.

Non-experimental uses of the �2  test

The example given in the previous section involved the manipulation of an
independent variable (the experimenter) and the observation of its effect on a
dependent variable (enjoyment); this is a genuine experiment in the sense defined
in Chapter 1. However, � 2 is used more frequently in psychology to look at
correlations or associations between naturally occurring changes in two or more
factors. For example, we might be interested in the relationship between
personality type (introvert or extrovert) and employment record (frequent or
infrequent job changes). We could not manipulate either of these variables
directly, but we could certainly classify a group of subjects on both variables,
and place the results in a 2×2 contingency table in the normal way. These data
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could then be analysed by the � 2 test in the manner described in previous
sections. Although the procedure would be identical, the interpretation of a
significant result would be somewhat different. Significance would represent a
stronger than chance relationship between the two variables, but it would not
imply any causal connection between them, as is the case in an experiment. A
correlation coefficient, which measures the strength of the relationship between
two variables (see chapter 8) can be derived from a 2×2 table (see Chambers,
1982.)

When � 2 is used to search for associations between variables, it is often used to
analyse tables with more than two rows and columns. For example, we may be
interested in the relationship between social class (upper/middle/lower) and
drinking habits (frequent/occasional/never). This would constitute a 3×3
contingency table. In order to test for relationships between variables in such
tables one calculates � 2 from the basic formula without using Yates’s correction,
i.e.:

The values of E can still be found from the formula:

When looking up � 2 for these more elaborate tables it is necessary to calculate
the degrees of freedom from the formula: df=(number of rows−1) (number of
columns−1). In all other respects the normal procedures apply (see pp. 91–4).

Chapter summary

The tests described in this chapter apply to the analysis of differences between
two independent samples of scores. Of the four tests covered, the Z and t-tests
are the most powerful—that is, the most likely to detect significance when it is
present in the data. However, these tests depend on assumptions which are often
violated by psychological data i.e. normality, homogeneity of variance and
interval scaling. It is therefore better, on occasions, to use the non-parametric
equivalent of these tests, the Mann-Whitney, which is almost as powerful as the
t-test. The Mann-Whitney makes no assumptions about the populations from
which the samples have been drawn, and can be used with ordinal or interval
scaling. Finally, the � 2 test is useful for the comparison of groups in which
subjects’ behaviour has been classified into discrete, qualitatively different
categories. The observations are then frequency counts of the number of
individuals coming within each category. The test may be used to determine
whether two groups differ in terms of the proportion of individuals falling into
one category rather than another. 
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5
Related two-sample tests

In chapter 4 we were interested in comparing two independent groups of subjects
on some variable of interest. If a difference was obtained we wished to show that
this was probably caused by the independent variable, and not by chance
differences in the abilities or motivations of the members of the two groups. In
practice this task is a difficult one, because subjects tend to vary so dramatically
on some variables that we require very large groups before we can expect the
group differences to balance out and allow us to draw inferences about the
experimental manipulations. The related samples designs come to our aid in this
dilemma by providing us with pairs of observations that come from closely
matched subjects tested under the two conditions of the experiment. Statistical
analysis of the difference score for each pair is thus more sensitive to the effects
of the independent variable than the gross comparisons of highly variable groups
of scores. Thus, when they are appropriate (see p. 16), related group designs are
much to be preferred over the independent groups design.

In this chapter, then, we are concerned with tests appropriate to data coming
from related samples—that is, designs in which individual subjects are matched
in some way across the two conditions of the experiment. This may be done
using a repeated measures design in which each subject performs in both
conditions of the experiment. Alternatively, pairs of individuals may be selected
on the basis of possessing very similar ratings on one or more characteristics.
This is the matched subjects design. Both designs are treated identically as far as
statistical testing is concerned.

We shall now consider the three tests for comparing related samples:
The t-test for related samples
The Wilcoxon test
The sign test



The t-test for related samples

Choice of the test

The t-test is the most powerful of the related sample tests and should be
considered first. The assumptions underlying this test are: (1) that the difference
scores (one for each pair of observations) may be regarded as a random sample
of differences from a normal population; and (2) that the measurements are on an
interval scale. We have already mentioned the robustness of the t-test with
respect to violations of these assumptions, and the same latitude applies here.
Provided that the sample of differences obtained in an experiment does not
suggest glaring deviations from normality in the population, and that the
measurement of the dependent variable approximates to interval scaling, the t-
test may be used.

Rationale

Suppose we wish to compare the effects of two drugs on the drinking behaviour
of rats. We have ten rats available, and it is decided to test each rat under both
drugs, i.e. a repeated measures design is used (of course, we must take care to
separate the two tests in time so that no interactions between the effects of the
drugs are possible). Having completed the experiment we shall have a list of ten
pairs of scores (call then X1s and X2s) representing, say, the amounts drunk in the
30 minutes following the administration of each drug.

Now let us consider the values of the difference scores for each pair of
observations. Call these differences d, where d=X1 −X2. If two drugs are having
equal effects on behaviour (null hypothesis), then the average value of d 
should be about zero; that is, by chance alone X1 will exceed X2 about as often as
X2 will exceed X1. If, however, one drug is having more effect than the other
(alternate hypothesis), then we should get a substantial value of  —either
negative or positive depending on which drug is the more effective. Now in the t-
test the observed ds are regarded as a random sample from a normal population
of ds. Under the null hypothesis this population has a mean value of zero and any
deviation from zero in the sample mean,  is assumed to reflect sampling
variability. Under the alternate hypothesis the non-zero value of is, of course,
ascribed to a real difference between the effects of the two drugs, equivalent to
postulating a non-zero mean in the population of differences. In order to decide
between these alternatives, we proceed as usual to calculate the probability of
obtaining our results under the null hypothesis. At this point we can forget that
the ds represent differences, and simply regard them as the raw data. The
question then is: what is the probability of getting a sample of observations (ds)
with a mean as large or larger than  from a population in which the mean is
zero? Using the notion of the sampling distribution of the mean (see p. 71) it can
be shown that this probability corresponds to a t value, thus:
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where N is the sample size (number of ds) and sd is the standard deviation of the
ds, and N−1 is the number of degrees of freedom. 

t-test for related samples: computation

GENERAL PROCEDURE

I Calculate the difference, d, between each pair of scores: (X1−X2). Subtract
consistently and be sure to record the minus signs.

II Calculate the mean difference using:

III Calculate the standard deviation of the differences using the formula:

IV Substitute the values of the mean difference  the standard deviation of the
differences (Sd), and the sample size (N) in the following formula and
calculate t:

V Find the critical value of t for the desired level of significance using table II,
p. 174. This value will depend on (1) the number of degrees of freedom (N
−1 in this test) and (2) whether the direction of the difference between the
two conditions was predicted before the experiment.

VI If the observed value of t is equal to or greater than the critical value, reject
the null hypothesis in favour of the alternate hypothesis—i.e. conclude that
the independent variable has had an effect on behaviour.

EXAMPLE

Effect of drugs on drinking behaviour in rats. The experimenter predicts a
difference between the effects of Drug I and Drug II.
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Rat Amount drunk under
Drug I (cc)
X1

Amount drunk under
Drug II (cc)
X2

Differences
(X1−X2)
d

Differences squared
d2

1 4 6 −2 4

2 7 8 −1 1

3 5 4 1 1

4 4 8 −4 16

5 9 8 1 1

6 7 10 −3 9

7 6 8 −2 4

8 7 7 0 0

9 5 9 −4 16

10 7 9 −2 4

� d=−16 � d2=56

II

III

IV

V Using table II: For nine degrees of freedom the value of t required for the 5
per cent significance (two-tailed) is 2·262.

VI Conclusion. As the observed value of t is greater than 2·262, we can
conclude that there is a significant difference between the effects of the
drugs on drinking behaviour.  

The Wilcoxon test

Choice of the test

The Wilcoxon matched-pairs signed-ranks test is the non-parametric equivalent
of the t-test for related samples. Although the Wilcoxon makes no assumptions

* The negative value of t is of no particular significance. If we had defined the
difference as X2−X1 instead of X1−X2, the t value would have come out positive. The
t value is treated as positive when it is compared with the critical value required for
significance.
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about population distributions it is nevertheless almost as powerful as the t-test in
situations where both tests could be used.

The only requirement for this test is that it should be possible for us to rank the
difference scores; that is, to make the judgement that one pair of scores differs
more (or less) than another pair. The level of measurement implied by this is almost
that of interval scaling, that is measurement in units. Since the t-test also requires
interval measurement, the main justification for using the Wilcoxon in
preference to t is to avoid the normality assumption, and, at a more mundane
level, to save time.

Wilcoxon test: computation

GENERAL PROCEDURE

I Calculate the difference, d, between each pair of scores: (X1–X2). Subtract
consistentlyand be sure to record the minus signs.

II Rank the differences in order from the smallest (rank 1) to the largest (rank
N). Ignore the sign of the differences when ranking their magnitude.*

III Add together the ranks corresponding to the differences with the less
frequent sign. Call this T.

IV Find the critical value of T needed for significance at the desired level using
table V, p. 176. The critical value will depend on (1) the size of the sample
(i.e. the number of pairs, N), and (2) whether the direction of the difference
between conditions was predicted before the experiment.

V If the observed value of T is less than or equal to the critical value, reject the
null hypothesis in favour of the alternate hypothesis.

Rationale

Consider the set of difference scores. Some differences will be positive, some
negative. Some differences will be large, others small. If the experimental
conditions are equivalent we should expect about the same number of negative
as positive differences, and we should expect the sizes of the negative
differences to be about the same as the sizes of the positive differences. On the
other hand, if there is a significant effect, we should expect to find many, large,

* Ties. There are two sorts of ties that can occur in this test: (1) the two scores in a pair
may be tied, in which case d=0, and (2) two (or more) ds may be tied. If a pair of scores is
tied, the pair is dropped from the analysis, and the value of N is reduced accordingly. If
two or more ds are tied, each one is given the average of the ranks that would otherwise
have been used (see p. 88).
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positive differences and only a few, smaller, negative differences (or vice versa,
depending on the way the subtraction was done). Thus if we rank the differences
according to their size, and find the sum of the ranks of the differences with the
less frequent signs, we shall have a statistic which has low values when there is a
significant effect in the data. This statistic can then be compared with the critical
‘low’ value which should only occur 5 per cent of the time by chance.

EXAMPLE

Effect of drugs on drinking behaviour in rats. The experimenter predicts a
difference between the effects of Drug I and Drug II.

Rat Amount drunk
Drug I (cc)
X1

Amount drunk
Drug II (cc)
X2

differences (X1–X2)
d

Ranked differences

1 4 6 −2 5

2 7 8 –1 2

3 5 4 1 2

4 4 8 −4 8

5 9 8 1 2

6 7 10 −3 7

7 6 8 −2 5

8 7 7 0 (omitted)

9 5 9 −4 8

10 7 9 −2 5

III T=Sum of ranks of differences with less frequent sign =2+2=4
(In this example the positive differences are the less frequent.)

IV Using table V: For N=9 (one pair discarded) the critical value of T for 5 per
cent significance (two-tailed) is 6. 

V Conclusion. As the observed value of T is less than 6, we can conclude that
there is a significant difference between the effects of the drugs on drinking
behaviour.

LARGE SAMPLES: N LARGER THAN 25

Table V only gives critical values of T for 25 or fewer pairs. When N is larger
than 25 the distribution of T is almost exactly normal with a mean of [N(N+1)]/4
and a standard deviation of:
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Thus the probability of getting a T as small or smaller than the observed value,
under the null hypothesis, can be found from the normal distribution table,
where:

Thus if N is 30, and T is calculated to be 100, then the Z score would be:

Now table I shows the critical value of Z for 5 per cent significance to be 1·64
(one-tailed). As the observed value of Z exceeds this value the results would be
judged significant at the 5 per cent level. (Note: Z will usually be negative using
the above formula, but this does not affect its interpretation.) 

The sign test

Choice of the test

The previous tests took account both of the direction of the difference between
each pair of scores, and also of the magnitude of the difference. This is obviously
reasonable when the scores represent a variable like ‘volume of liquid
consumed’. Thus it makes sense to say that the difference between the effects of
the two drugs was greater for rat 9 (4 cc difference) than for rat 2 (1 cc
difference). But what if the scores had represented ratings of ‘beauty’ or
‘sincerity’? Suppose we had asked ten subjects each to rate the beauty of two
paintings A and B on a scale from 0 to 10. We might find our results looking very
much like those reported above for the drinking experiment. But it is doubtful
whether the magnitude of the differences could now be taken so seriously. We
would not wish to say that subject 9 (in place of rat 9) experienced a greater
difference in the beauty of the two paintings than subject 2 (in place of rat 2).
Obviously each subject might be using the scale in his own way, thereby
invalidating any comparisons of the magnitude of differences. Nevertheless, the
direction of each difference is meaningful. A subject who rates painting A as 5
and painting B as 7 presumably prefers B. So we can make use of the directions
of the differences in order to assess whether painting B is judged significantly
more beautiful than painting A. In these circumstances—provided, of course, we
have a related samples design—we would make use of the sign test.

84



As with other non-parametric tests, the sign test may be used with data that
would justify a more powerful test. Thus, we could use the sign test to analyse
the experiment on drinking under the two drugs, but this would be wasteful of
information and there would be a lower chance of reaching significance.

Rationale

The sign test simply makes use of the number of differences which are in one
direction relative to the number which are in the other. If ten subjects each rate
the two paintings A and B, we would expect about five subjects to prefer A, and
about 5 to prefer B on a purely chance basis. If the ‘split’ was 6 for A and 4 for
B, the null hypothesis of equal preference could hardly be rejected. But if as
many as nine out of ten subjects, acting independently, gave higher ratings to A
than B, then we might conclude that painting A produced significantly higher
ratings than painting B. Using elementary probability theory (see, for example,
Kolstoe, 1973, ch. 6) it is possible to calculate the chance of getting nine or more
preferences for A under the null hypothesis that the subjects are drawn from a
population in which A and B are equally popular. This is equivalent to
calculating the probability of getting nine or more heads in ten tosses of a coin. If
this probability is below 0·05 we may reject the null hypothesis that the two
paintings are equally popular (or that the coin is fair) in favour of the alternate
hypothesis that painting A induces significantly higher ratings than painting B (or
that the coin is biased in favour of heads). The theoretical distribution underlying
such situations is known as the binomial distribution. Tables of binomial
probabilities may be used to determine the significance of the results.

Sign test: computation

GENERAL PROCEDURE

I Inspect the difference between each pair of scores. Put a plus sign (+) next to
the differences in one direction, and a minus sign (−) next to the differences
in the other direction.*

II Find the total number of either +s or −s, whichever occurs less frequently.
Let this number be x.

III Find the critical value of x for the desired level of significance using
table IV (p. 176). This value will depend upon (1) N, the total number of
pairs, and (2) whether the prediction is directional.

IV If x is less than or equal to the critical value, reject the null hypothesis in
favour of the alternate hypothesis that the independent variable has had an
effect on behaviour.
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EXAMPLE

A comparison of ratings of beauty for two paintings. The experimenter predicts a
difference between the ratings given to paintings A and B.

Subject Ratings of painting A
X1

Ratings of painting B
X2

Direction of difference
(X1−X2)

1 4 6 −
2 7 8 −
3 5 4 +
4 4 8 −
5 9 8 +
6 7 10 −
7 6 8 −
8 7 7 (omitted)
9 5 9 −
10 7 9 −

II Less frequent sign is +. x=number of +s=2.
III Using table IV: The critical value of x for 5 per cent significance (two-

tailed) is 1.
IV As the observed x value is larger than 1 we cannot reject the null hypothesis.

There is no reason to assume that the paintings produce different responses
in the subjects.

LARGE SAMPLES: N LARGER THAN 25

If N is larger than 25 table IV may not be used. However, the variable x, after
certain corrections have been made, is normally distributed with a mean of  N
and a standard deviation  We can find the probability of obtaining a value as
low or lower than x by using the normal distribution table, where

Thus if a sample of fifty subjects is tested in a repeated measures design, and if
only ten subjects produce differences in one direction (and forty in the other),
then the Z score is given by:

* Ties. If a pair of scores are equal they should be dropped from the analysis, and the
value of N reduced accordingly.
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Now table I shows the critical value of Z for significance at the 5 per cent level to
be 1·64 (one-tailed). As the observed value of Z exceeds this value the results
would be judged significant at the 5 per cent level.

Chapter summary

The tests described in this chapter apply to the analysis of differences between
related samples of scores. The t-test and the Wilcoxon test are both powerful
techniques since they take account of the direction of differences between the
pairs of scores, and also the magnitude of these differences. The t-test makes
additional assumptions about the normality of the data, which renders it slightly
more powerful than the Wilcoxon when the normality assumptions are met. The
sign test is a much cruder statistical technique, based only on the direction of the
differences between pairs of scores. Nevertheless, this test may be the only
possibility when the level of measurement is particularly crude. The relative power
of the three tests is reflected in the outcomes to the three examples computed in
the body of the chapter. Using identical data, 5 per cent significance was
achieved with the t-test and the Wilcoxon, but with the sign test the p value was
above 0·1. 
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6
One-sample tests

A one-sample experiment?

An experiment should involve the comparison of at least two sets of scores
obtained under different experimental conditions. The idea is to vary the
conditions (independent variable) and to examine the effects on the subjects’
behaviour; so we may need to compare two, three or even more samples in the
course of an experiment; but what, then, would be the purpose of testing just one
sample of scores? The answer is a simple one. Suppose we already know how
subjects perform in a given condition and we wish to examine the effects of
changing that condition. It would be tedious—and sometimes impracticable—to
reassess performance in the basic condition when an established norm already
exists. So we would simply test a random sample of subjects in the modified
condition and compare their performance with the previously established norm.
We know, for example, that children have a mean score of 100 on certain
standardized tests of reading ability. If a new method of teaching is introduced,
we can assess its effectiveness by comparing the reading scores of a random
sample of children taught by the new method with the previous norm of 100.
Thus a one-sample test could be used to determine whether the performance of
the sample was significantly better than the well-established norm of 100. A
significant difference would imply an effect of teaching method even though
only one condition has been directly investigated.

Difficulties of interpretation

The interpretation of a one-sample study is not, of course, quite as
straightforward as that of a genuine experiment. The main problem is to know
whether the single sample is equivalent, in terms of subject characteristics, to the
original group on which the norm has been based. Unless the sample has been
randomly selected from that group—call it the population—there will be
difficulty in pinning down the cause of any difference that is obtained. For
example, a significant improvement in the reading scores might be due to the
new method of teaching, but it could also occur if the sample contained brighter



children than the population on which the norm was based. Even if the sample
matched the population perfectly with regard to background characteristics, it
might well have been influenced by the ‘Hawthorne Effect’—that is, the
tendency for individuals to respond to special attention or a change in routine.
Thus the subjects taught to read by the new method might become more highly
motivated simply because they felt themselves to be involved in something new,
irrespective of the nature of the teaching method itself. These kinds of effect
make it very difficult to achieve experimental rigour in a one-sample design
unless the sample and population are properly matched in all respects—a
condition which is virtually unattainable.

Non-experimental use of one-sample tests

Problems of matching do not arise when the intention is to compare the
performance of one type of subject in the sample with that of another type of
subject in the population. For example, we might wish to know whether airline
pilots have faster reaction times than the general population of adult males, or
whether extroverts change their jobs more frequently than others. Such questions
can be answered by comparing the relevant sample mean with a previously
established mean for the population. There is no pretence here to show a causal
connection between the type of subject and the response measure, but only a
correlation which could be mediated in many different ways. Thus although
extroverts may change their jobs more frequently than others, we cannot say
whether this is because they are extroverts or because of some other factor
related to extroversion. By accepting this more modest conclusion we do not
have to assume that sample and population are perfectly matched on all but one
variable as we did in the experimental study of teaching methods.

Testing a sample against a theoretical population

Perhaps the most straightforward case of all occurs when we wish to compare the
performance of a sample with a mean score based on a theory of some kind rather
than on past measurement. Suppose, for example, we wished to teach children to
discriminate between nouns and verbs. Before training we would expect such
children to achieve half-marks in a test that required them to classify a set of
words into nouns and verbs, i.e. they should get half right by chance if they had
no idea how to perform the task and had to guess. In order to discover whether
the teaching was successful we should therefore compare the actual scores of our
sample after training, with the mean score of an untrained population—that is, 50
per cent. In this case there is also no problem of interpretation—if the sample
mean is significantly greater than the level of performance expected by chance,
then the training has been effective.
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The relation between the sample and the population

From what has been said so far it should be clear that the sample does not have to
be a physical part of the population in order for a statistical comparison to be
made. All of the following examples qualify for a one-sample test, although only
in the first case is the sample actually part of the population.

(1) Is the mean IQ of a random sample of psychologists higher than the mean IQ
of university graduates generally? 

(2) Is the mean income of a random sample of female doctors lower than the
previously established mean income for all male doctors?

(3) Is the mean score of a sample of ‘psychics’ on an ESP test higher than the mean
of the population of scores that would be expected by chance?

What is being tested in each of these cases is whether the statistical properties of
the sample are significantly different from the statistical properties of the
population. The physical relationship between the sample and population is
irrelevant in this context.

We shall now consider three tests that may be used to compare sample and
population parameters:

the one-sample Z test (parametric)
the one-sample t-test (parametric)
the one-sample proportions test (non-parametric)

The one-sample Z test

Choice of test

This is the one-sample analog of the two-sample Z test and is used to determine
whether a sample mean is significantly different from the mean of some
specified population of scores. The usual parametric assumptions are made,
namely that the scores in the sample come from a normal population and meet
the requirements of an interval scale of measurement. In addition the Z formula
takes account of the standard deviation of the population with which the sample
is being compared. If this standard deviation is not known it may be replaced by
the standard deviation of the sample scores themselves, but only if the sample is
large (� 30).

To summarize, the Z test may be used if:

(1) sample scores come from a normal (or near normal) population;
(2) measurement is on an interval scale; and
(3) population standard deviation is known or sample size is at least thirty.
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Rationale

In essence, the Z test measures the probability that the sample could have been
obtained by random selection from a given population of scores. The Z value
represents, in standardized form, the size of the difference between the sample
mean and the population mean. Hence the larger the Z value, the lower is the
probability that the sample came from the specified population. If the probability
falls below the critical value required for significance (say 0·05) then the sample
is presumed to come from a different population with a different mean. The
derivation of the Z formula was described earlier (see p. 71–3).

One-sample Z test: computation

GENERAL PROCEDURE

I Let µ  be the mean of the population.
Calculate the mean of the sample, using

where N is the sample size.
II Let �  be the standard deviation of the population.

If �  is not known, then calculate the standard deviation of the sample of
scores (s), using the formula:

III Substitute the values of X, µ , N and �  (or S) into the formula: 

IV Convert Z into a probability that the sample has been randomly selected from
the population. Use the normal distribution tables, p. 172–3. (If the test is
two-tailed the probability shown in the tables should be doubled.)

V If the probability falls below the critical value for significance (say 0·05) we
may reject the null hypothesis that the sample comes from the specified
population. Instead, we conclude that the sample comes from a different
population with regard to its mean.
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EXAMPLE

Performance on a selection test is known to be normally distributed with a mean
score for all applicants of 28 and with a standard deviation of 5 points. An
investigator wishes to determine whether late applicants have significantly lower
scores on the test than the general population of applicants.

Test scores of a random sample of late applicants (N=25)
24, 27, 29, 30, 32, 26, 25, 26, 29, 30
28, 29, 26, 28, 27, 28, 30, 33, 22, 24

31, 20, 18, 35, 26

I Population mean, µ =28 (given)

II Population standard deviation, � =5 (given). (If �  had not been specified, the
sample standard deviation, S, would be calculated and used in its place.)

III

IV We can ignore the minus sign. It shows that the sample mean is smaller than
the population mean, but has no bearing on the magnitude of the difference. 

Using table I: A Z value of 0·68 corresponds to a probability of 0·248. (As
the test is one-tailed this probability is not adjusted.)

V Conclusion. A random sample from the general population of applicants’
scores is quite likely to have a mean as low as—or lower than –27·32. The
probability of getting such a sample from the population is almost 25 per
cent. Hence the results are not significant and we cannot conclude that late
applicants have lower scores than the general population of applicants.

The one-sample t-test

Choice of test

The one-sample t-test is used to compare the mean of a sample of scores with the
mean of a specified population from which the sample may have been drawn.
For example, the t-test could be used to compare the mean score of a random
sample of professors on a memory test with a previously obtained mean for a
large population of normal adults. The purpose is to discover whether the sample
can be regarded as being randomly selected from the specified population, or
whether it is likely to have come from another population with a different mean.
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Like the Z test, the t-test is parametric; it assumes an interval level of
measurement and also that the sample has been drawn from a normal population,
but this requirement can be relaxed. Unlike the Z test, the t-test does not require a
large sample, nor does it assume that the standard deviation of the population is
known. Thus the t-test can be used when the Z test cannot, i.e. with a small
sample and an unknown population standard deviation.

Rationale

The t-test measures the probability that a sample of scores could have been
obtained by random selection from a given population. The value of t increases
as the difference between the sample and population means increases. Thus a
large t value implies a large difference between the sample and population and
therefore a low probability that the sample comes from the population. If the
probability falls below the critical value required for significance (say 0·05) then
the sample is presumed to come from a different population with a different
mean. The derivation of the t formula is described in some detail in chapter 4
(see pp. 83–4).

The translation of the t value into a probability depends on the degrees of
freedom (see p. 174) in the test. For a one-sample test the degrees of freedom are
one less than the sample size.

One sample t-test: computation

GENERAL PROCEDURE

I Let µ  be the mean of the population.
Calculate the mean of the sample,  using

where N is the sample size.
II Calculate the standard deviation of the sample, S, using the formula:

III Substitute the values of , µ , N and S into the t formula:

IV Find the number of degrees of freedom from the formula: df=N−1
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V Find the value of t needed to achieve your selected level of significance
using table II, p. 174. The critical value will depend on (1) the degrees of
freedom, and (2) whether the prediction is one- or two-tailed.

VI If the observed value of t is equal to, or greater than, the critical value, we
may reject the null hypothesis and conclude that the sample does not come
from the population specified in the test.

EXAMPLE

The mean time required to answer a questionnaire is known to be 13·5 minutes
and the distribution is normal. A modified version is developed and the designer
wishes to test whether the completion time has changed significantly.

Time required to complete the modified questionnaire by a random sample
of 20 respondents (time in minutes)
17, 18, 21, 12, 16, 9, 13, 17, 14, 15
11, 14, 7, 18, 19, 9, 17, 19, 20, 18

I Population mean, µ =13·5 minutes (given).

II Sample standard deviation,

III

IV df=20−1=19
V Using table II: For 19 degrees of freedom the value of t required for the 5

per cent level of significance (two-tailed) is 2·093.
VI Conclusion. The observed value of t is just less than 2·093 and the results

are therefore not quite significant at the 5 per cent level. We do not have
enough evidence to conclude that the modified questionnaire requires a
significantly different completion time (i.e. this sample of completion times
could have come from the original population with a mean of 13·5 minutes).
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The one-sample proportions test

Choice of test

The mean is not the only attribute of a sample that may be of interest. If the
behaviour we are studying is on a nominal scale (e.g. happy/sad, agree/disagree,
etc.) we cannot represent the average score of the group by a mean, but only by a
proportion. Thus a sample in which the proportion of happy people is 0·8 could
be regarded as happier than a sample in which only 0·5 of the members are
happy.

Now just as we might want to compare a sample mean with a population mean,
so we might want to compare a sample proportion with a population proportion.
Here are some example comparisons which make the point more clearly:

Is the proportion of vegetarians in a random sample of clergymen higher than
the proportion of vegetarians in the general population?

Is the proportion of men in a random sample of smokers greater than 0·5?
(This being the proportion expected under the hypothesis that men and women
have an equal propensity to smoke.)

A random sample of patients is treated with a new drug. Is the proportion of
patients in this sample who recover within a month higher than the proportion
that used to recover under the old drug?

In each of these cases a one-sample test will determine whether the proportion
in the sample differs significantly from a specified population proportion. As
with tests on means, the population proportion may be based on a theory of some
kind, or it may have been established by empirical research. In both cases the
intention is to see whether the sample could feasibly be regarded as a random
sample from the population. The only assumptions of the test are that the
measurements constitute a dichotomy (e.g. smokes/doesn’t smoke) and that at
least ten subjects would be expected to fall into each category if the population
proportion was true of the sample. Suppose, for example, that the proportion of
smokers in a population was 0·8 and that a random sample of fifty was to be
compared with the population. If the population proportion is applied to the
sample we expect to find 40 smokers (0·8×50) and 10 non-smokers (0·2×50) in
the sample. Since both of these frequencies are at least 10 we may proceed with
the test. However, if the population proportion was 0·9, a sample of size 50
would be too small to qualify for the test because the expected number of non-
smokers would be only 5 (0·1×5·0). Note that the actual number of smokers and
non-smokers in the sample is irrelevant, it is only the expected numbers, based
on the population proportion, that count.

Rationale

The one-sample proportion test is technically non-parametric because it does not
assume normality or interval scaling. Nevertheless, the test statistic turns out to
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be a Z score with a similar interpretation to the Z obtained in the one-sample Z
test. Thus the magnitude of the difference between the sample proportion and the
population proportion is represented by Z. A large value of Z corresponds to a
low probability that the sample could have been randomly selected from the
population. If this probability is below 0·05 (or another chosen level) we
conclude that the observed proportion in the sample could not have arisen by
random sampling of the population. The sample is then presumed to come from
another population with a different characteristic proportion. 

One-sample test: computation

GENERAL PROCEDURE

I Let P be the proportion in the population with a given characteristic.
Let p be the proportion in the sample with this characteristic.
Let N be the sample size.

II To check whether the test can be applied:
Calculate the expected number in the sample with the characteristic.
This is N×P.
Calculate the expected number without the characteristic.
This is N(1−P).
If N×P� 10 and N(1−P)� 10, then the test may be applied.
(Note: this is just an algebraic statement of the rules given under Choice of

test.)
III Substitute the values of P, p and N into the formula:

IV Convert Z into a probability that the sample has been randomly selected from
the population. Use the normal distribution tables, pp. 172–3. (If the test is
two-tailed the probability shown in the tables should be doubled.)

V If the probability falls below the critical value for significance (say 0·05), we
may reject the null hypothesis that the sample comes from the specified
population. Instead, we conclude that the sample comes from a population
with a different proportion of individuals having the characteristic.

EXAMPLE

The proportion of science students who are female is 0·3. After a publicity
campaign designed to attract women into science a random sample of ninety
science students is found to contain forty females. Does this constitute a
significant rise in the proportion of female science students?
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I

II Expected number of female scientists (using population proportion) is given
by: N×P=90×0·3=27

Expected number of male scientists=N(1−P)=90×0·7 =63
Both expected frequencies exceed 10, therefore test can be performed.

III

IV Using table I: A Z value of 2·99 corresponds to a probability of 0·0014. (As
the test is one-tailed this probability is not adjusted.)

V Conclusion. The probability of obtaining a sample proportion as high as
0·444 from a population with proportion 0·3 is very low. Hence it is very
unlikely that this sample could have been drawn randomly from the
population of science students that existed before the publicity campaign.
Instead we conclude that the true proportion of science students who are
female is significantly greater than 0·3 after the campaign.

(Note: we have not demonstrated a causal connection between the
campaign and the increased proportion of female scientists. The difference
may have been caused by some other factor linked to the campaign, e.g. the
passage of time.)

Chapter summary

The tests described in this chapter examine whether an observed sample of
scores could have come from a specified population. The features of the
population are either defined a priori, for example on the basis of a theory, or
they are established from previous research on very large numbers of subjects.
The one-sample Z test assesses the probability that the sample has been randomly
selected from a population with a specified mean. It assumes (1) interval data,
(2) normality and (3) either a large sample or knowledge of the population
standard deviation.

The t-test has the same function as the Z test and makes the same assumptions
except that (3) is omitted. Both tests are parametric, but the Z test is naturally more
powerful than t.

The one-sample proportions test assesses whether a sample could have been
randomly selected from a population with a specified proportion of elements
having some characteristic. It is non-parametric and assumes only that the
measures are nominal and that the sample size meets certain criteria (see p.
121). 
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7
Tests for trend and spread

Trend tests for three or more samples

The main emphasis in this book has been on the analysis of two-sample designs.
It is however desirable to extend these designs in order to be able to compare the
effects of three or more levels of the independent variable. The circumstances
under which this might be done are discussed in the final chapter.

Once we have more than two conditions in the experiment the range of
possible predictions is increased. Suppose we conduct an experiment to compare
rate of learning of three tasks, A, B and C. One prediction might be that we
expect a difference between at least two of these conditions. This is the most
general prediction we could make. Alternatively we could predict a trend such that
performance in task C is better than performance in task B, which in turn is
better than performance in task A. The designs which might be used in such
experiments are analogous to those described in chapter 1 in the two-sample case.
Thus we could have the same group of subjects performing under all three (or k)
treatments—a related k-sample design; or we could compare the performance of
separate, randomly selected groups of subjects—an independent k-sample design.
The choice between these alternatives depends on precisely the same
considerations that were discussed in connection with two-sample designs.

The statistical analysis of k-sample designs is generally far beyond the scope of
this book, involving more complex procedures such as analysis of variance,
which are discussed in more advanced texts. (For a good introduction to analysis
of variance, see Meddis, 1973). However since the use of k-sample designs is
extremely common in introductory experimental work a brief summary of the
computational procedures for k-sample trend tests has been included here.
Further details and derivations are given in Page (1963) and Jonckheere (1954).

Jonckheere trend test for independent samples

This is a non-parametric test assuming an ordinal level of measurement. The test
may be used to evaluate a predicted trend across the k groups of scores, where k
has a maximum value of 6. This presentation assumes equal numbers of subjects



in each sample, but the test may be generalized to designs with unequal sample
sizes.

GENERAL PROCEDURE

I Arrange the samples of scores in the predicted order, from the lowest scores
on the left, to the highest scores on the right.

II Write next to each score the number of scores in all the columns to the right
that exceed the value of the score being considered. (Note: the final column
will not have any scores to the right.) When counting the number of scores
which exceed each score do not include ties.

III Find the sum of the figures obtained in II. Let this sum be A.
IV Now find the maximum value that A could take (B) using the formula:

where N=number of scores in each sample,
k=number of samples. 

V Substitute A and B in the following formula and compute S the test statistic:
S=2A−B

(Note: if there is no trend the expected value of S is zero; the more marked
the trend, the larger the value of S.)

VI Find the critical value of S for the desired level of significance using
table IX, p. 180. The tabled values assume that the direction of trend was
predicted. The critical value will depend on k and N.

VII If the observed value of S is larger than, or equal to, the critical value reject
the null hypothesis in favour of the alternate hypothesis that there is a trend
across the k samples of scores.

EXAMPLE

The relationship between degree of neuroticism and errors in a learning task. The
experimenter predicts an increase in the error rates from low to middle to high
levels of neuroticism (N=5 for each group).

Low Medium High

2 (10) 5 (5) 11
3 (10) 4 (5) 6
1 (10) 6 (4) 8
4 (8) 4 (5) 9
2 (10) 9 (1) 7

� �
Number of times scores are exceeded by values to the right

99



III A=10+10+10+8+10+5+5+4+5+1 = 68
IV

V S=2A−B=2×68−75=61
VI Using table IX: For k=3, N=5, the minimum value of S required for

significance at the 5 per cent level is 33.
VII Conclusion. As the observed value of S exceeds 33, we can conclude that

there is a significant trend across the three groups of scores.

Page’s L trend test for related samples

This is a non-parametric test assuming an ordinal level of measurement. The test
may be used to evaluate a predicted trend across k-related samples.

GENERAL PROCEDURE

I Arrange the samples of scores in the predicted order from the lowest scores
on the left, to the highest on the right.

II Let k=number of related samples; and let N=number of subjects.
III Rank the scores in each row of the table (i.e. for each subject) in order from

lowest score (=1) to highest score (=k).
IV Add together the rankings in each column. Call these totals R values.
V Find � Ru, where u is the number of each column from 1 (on extreme left) to

k (on extreme right). Let L=� Ru.
VI Find the critical value of L for the desired significance level using table X,

p. 181. The tabled values assume the direction of trend was predicted. The
critical value will depend on k and N.

VII If the observed value of L is larger than, or equal to, the critical value, reject
the null hypothesis in favour of the alternate hypothesis that there is a trend
across the k samples of scores.

EXAMPLE

The relationship between level of reward and ‘hits’ in an aiming task. The
experimenter predicts that hit rate will increase with level of reward (N=4).

u 1 2 3

Low Medium High

Figures in brackets are rankings 4 (1) 7 (2) 11 (3)

6 (2) 4 (1) 8 (3)

3 (1) 5 (2) 6 (3)

2 (1) 7 (2) 9 (3)
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u 1 2 3

Low Medium High

IV R 5 7 12

V � Ru=(5×1)+(7×2)+(12×3)=5+14+36=55=L

VI Using table X: For k=3, N=4, the minimum value of L required for
significance at the 5 per cent level is 54.

VII Conclusion. As the observed value of L exceeds 54, we can conclude that
there is a significant trend across the three groups of scores.

Testing for differences between variances

The vast majority of psychological theories lead to predictions about the effect of
independent variables on the level of a subject’s performance. In order to
compare the levels of performance under various conditions we normally conduct
tests on differences between means or other measures of central tendency. It
sometimes happens, however, that we can make a prediction about changes in
the variability of performance under the different conditions of an experiment.
For example, rather than predict a drop in the level of mental performance during
noise (a prediction about means), we might expect the subjects to become more
variable in their performance under noisy conditions. In this case we could
conduct an identical experiment to that devised in chapter 2. We would again
measure the performance of two independent groups under different levels of
noise, but this time we would wish to test for a difference between some measure
of the variability of the groups, rather than their means. If we can assume that the
two samples are drawn from normal populations of scores, we can test the
hypothesis about differences in variability using an F-test.

We might also use this test as a preliminary to the computation of a t-test. In
this case we would be using it to discover whether the assumption of
homogeneity of variance (equal variance) was violated by our data. If it was not,
we would be justified in continuing with the t-test.

Neither of the above applications would justify the inclusion of the F-test in this
short, introductory text. However, the test has a much more important function in
the branch of statistics known as analysis of variance. Since analysis of variance
techniques are particularly useful in experimental psychology, and will be met at
more advanced levels, the basic idea of the F-test will be introduced here. 

Rationale

Suppose we wish to decide whether two samples with differing variances could
have been drawn by chance from a single population (or two populations with
the same variance). We could adopt the same strategy that was used in
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developing the t-test (see p. 71). We begin by considering the repeated sampling
of a hypothetical population, draw up the sampling distribution for the property
we are interested in, and then use this to decide whether any observed value, or
difference in values, could be obtained by chance from the specified population.
If this procedure is followed in the case of differences between sample variances,
it can be shown that the ratio of the two sample variances follows a distribution
known as F. This distribution can then be used to determine the probability of
obtaining a difference as large or larger than the observed difference by chance.
The test assumes normality of the underlying population distribution and interval
measurement.

F-test: computation

GENERAL PROCEDURE

I Let S1
2 and S2

2 be the two variances; let N1 and N2 be the corresponding sample
sizes.

II Calculate the values of S1
2 and S2

2 using the formula:

III Find:

Then calculate: F=A/B or B/A, whichever is the larger.
IV Find the critical value of F for the desired level of significance using

table VIII, pp. 178–9. This value will depend on: (1) the degrees of freedom
for the numerator [(N1−1) if the numerator is A] and the degrees of freedom
for the denominator [(N2−1) if the denominator is B] of the F ratio; and (2)
whether the experimenter predicted which sample would have the larger
variance in advance.

V If the value of F is larger than or equal to the critical value, reject the null
hypothesis in favour of the alternate hypothesis that the independent variable
has produced a difference in the variance of the two groups of scores.

EXAMPLE

Effect of noise on the variability of performance in a cognitive task. The
experimenter predicts that performance will be more variable under noise
(N1=10, N2=8).
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I

Scores Scores

under noise conditions under no noise conditions

X1 X1
2 X2 X2

2

8 64 4 16

4 14 5 25

6 36 6 36

7 49 5 25

5 25 6 36

6 36 4 16

9 81 7 49

10 100 5 25

8 64

4 16

� X1=67 � X1
2=485 � X2=42 � X2

2=228

II

III

IV Using table VIII: For (N1−1)=9, (N2−1)=7 the critical value of F for
significance at the 5 per cent level (one-tailed) is 3.68.

V As the observed value of F exceeds 3.68, we can conclude that there is a
significant difference between the variances of the two samples.

(Note: if the tables do not give the critical value of F for the degrees of
freedom you require, use the next lowest values of df given in the table. For
example, if the degrees of freedom were 14, 32 you would look up the
critical value of F for df=12, 30. This procedure reduces the level of
significance very slightly, i.e. the test becomes more conservative. But this
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is preferable to rounding up the values of the df which would artificially
boost the significance of the results.)
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8
Measuring the relationship between two

variables

Correlation

In Chapter 1 a distinction was drawn between experimental and correlational
research: in an experiment we manipulate one variable and measure the
consequential changes in another variable; in a correlational study we measure
both variables— that is, we try to relate naturally occurring variations in one
variable, say income, to naturally occurring variations in another, say
intelligence. Thus experiments lead to the discovery of direct, causal
connections between variables whereas correlations may be mediated by a string
of intervening variables and do not necessarily reflect causation at all. None the
less, correlational research can yield interesting and theoretically useful findings
in circumstances where experimental manipulations would be impossible, e.g.
where social and personality variables are being studied (see p. 6).

To obtain the correlation between such variables, say, income and
intelligence, we would measure the IQs and incomes of a large sample of people,
and then inspect the data to see if people with high IQs also tended to have the
high incomes, and people with low IQs, low incomes. A good way to present the
results of such a study is by means of a scattergram—that is, a graph in which
the two scores of each person are represented by a dot. The coordinates of each
dot on the horizontal (X) axis and the vertical (Y) axis would represent that
person’s scores on the two variables, IQ and income. By looking at the complete
pattern of dots we get a visual impression of the degree to which the two
variables are correlated with each other. Some possible outcomes are shown in
figure 16. In figure 16(a) there is a high, positive correlation—the dots are
closely packed around an imaginary line representing an increase in intelligence
with income. In figure 16(b) the correlation is equally high, but this time negative
—as one variable increases, the other decreases.

Figures 16(c) and (d) show weaker positive and negative correlations—the
dots are less closely packed around the line relating IQ to income. Another way
of saying this is that it would be more difficult to predict a person’s score on one
variable from a knowledge of his score on the other in the situations represented
in figures 16(c) and (d). Finally, figures 16(e) and (f) represent the complete



absence of a linear correlation between two variables. In figure 16(e) there is no
relationship at all, but in (f) there is a very strong non-linear relationship
between the variables. In the latter situation the usual measures of correlation do
not apply, since these only detect linear relationships. 

Measures of correlation

Although inspection of a scattergram gives a clear impression of the degree of
relationship between two variables, we often want to quantify this more precisely
using a single numerical index that will allow us to compare the strength of
several different correlations. To do this we calculate the descriptive statistic
known as the coefficient of correlation, usually represented by r. There are a
number of different procedures for calculating r, but they all yield a measure
which varies on a scale between +1 and −1. The size of the coefficient represents
the degree of relationship, and the sign represents the direction of the
relationship. Thus an r of +1 is obtained for a perfect, positive correlation, −1
signifies a perfect, negative correlation, and an r of zero is obtained when there
is no linear relationship between the two variables. Appropriate values of r for
the data in figure 16 are shown at the top of each scattergram. As shown in
figure 16(f) an r of zero does not necessarily imply no relationship between the
variables, only that there is no linear relationship.

The product-moment correlation coefficient (Pearson r)

The Pearson r is the most commonly used measure of correlation. It represents
the strength of the linear relationship between two variables and can only be
properly applied in cases where both variables are measured on an interval or
ratio scale (p. 62). Thus one could use the product-moment correlation coefficient
to assess the strength of the relationship between the height and the weight of a

Figure 16 Scattergrams illustrating different types of relationship between two variables
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set of individuals, but not the relationship beween their level of extroversion and
their self-confidence.

As indicated above, the r value varies between +1 and −1. A positive value
means that individuals obtaining high scores on one variable will tend to have
high scores on the other. Similarly, those subjects having low scores on one
variable will tend to have low scores on the other. A negative r value indicates
the reverse pattern: high scores on one variable go with low scores on the other.

We shall not discuss the statistical basis of the correlation coefficient, but
there are two general ideas about the meaning of r which are worth noting: 

(1) r may be thought of as measuring the amount of spread of the points in a
scattergram around an imaginary line going through the centre of these
points. Reference to figure 16 will illustrate the idea that the closer the
points are to the imaginary line, the larger the value of r. When r is +1 (or
−1) the points all fall exactly on a line. In this case a person’s score on Y can
be predicted perfectly from his or her score on X.

(2) If the value of r is squared the resulting statistic is known as the coefficient of
determination. This indicates the proportion of the variation in the Y scores
that can be accounted for by knowing X. For example, if the correlation
between a child’s height and age is 0·8 then 64 per cent (0·82×100) of the
variation in children’s heights can be predicted by knowing their ages.
Obviously a perfect correlation allows one to predict all the variation in Y
from a knowledge of the subjects’ X scores since when r=1, r2×100=100 per
cent.

Pearson r: computation

GENERAL PROCEDURE

I Draw a scattergram. This will give you a good idea whether the relationship
is linear. (If it is obviously non-linear stop here.) The scattergram also tells
you whether to expect a positive or negative correlation and whether to
expect a high or a low value.

II Set out the two measures for each of the subjects as follows:

X Y XY X2 Y2

S
1

— —

S
2

— —

S
3

— —
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X Y XY X2 Y2

. . .

. . .

. . .

S
N

— —

� X � Y � XY � X2 � Y2

Call the independent or causative variable X, and the dependent variable Y
(e.g. in a correlation between children’s ages and heights, X would represent
age and Y would represent height since age determines height).*

III Fill in the rest of the table shown in II. The XY column contains the products
of each subject’s X and Y scores. The X2 and Y2 columns contain the squares
of each subject’s two scores.

IV Find the totals of the entries in each column, i.e. � X, � Y, � XY, � X2, � Y2.
V Substitute these totals together with the value for N (the number of subjects)

into the formula for r:

VI r is then an index of the strength of the linear relationship between X and Y.
To check whether the observed relationship is a reliable one (i.e.
significantly above zero) use table XI. The critical value, p. 182, of r
required for significance will depend on (1) N and (2) whether the test is
one- or two-tailed, i.e. whether the direction of the correlation—positive or
negative—was predicted.

EXAMPLE

The relationship between children’s ages and their reading speeds (words read in
30 seconds). The experimenter predicts a positive correlation for children in the
5–12 years age range.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Age (years) 5 7 6 8 9 5 10 6 8 9
Words read in 30 sees 7 9 8 11 11 6 13 8 9 12

I Scattergram
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The scattergram leads us to expect a strong, positive correlation. The
relationship is clearly linear and suitable for Pearson r II and III.

X Y XY X2 Y2

S
1

5 7 35 25 49

S
2

1 9 63 49 81

S
3

6 8 48 36 64

S
4

8 11 88 64 121

S
5

9 11 99 81 121

S
6

5 6 30 25 36

S
7

10 13 130 100 169

S
8

6 8 48 36 64

S
9

8 9 72 64 81

S
1

0

9 12 108 81 144

� X=73 � Y=94 � XY=721 � X2=561 � Y2=930
IV

 

* If neither variable can be regarded as the cause or predictor of the other then either
variable may be treated as X and the other as Y.
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V

VI Using table XI: The critical value of r for 1 per cent significance (one-tailed)
is 0·716. As the observed r exceeds this value, we conclude that there is a
highly significant positive correlation between age and reading speed in
children.

Spearman's rank order correlation (rs)

In our previous discussion we emphasized the use of r as an index of a linear
relationship between two variables. But in most psychological research,
particularly where a correlation is being used in preference to an experiment, the
variables are not measureable on an interval scale, i.e. in standard units.
Variables like extraversion, neuroticism or creativity are, at best, measured on an
ordinal scale. The idea of a linear relationship between two such variables does
not really make sense because of the lack of uniform scaling. However it does
make sense to consider a more general question, namely whether one variable
tends to increase (or decrease) as the other increases—that is, whether the
relationship is monotonic. A linear relationship is a special case of the more
general, monotonic relationship between two variables.

Spearman’s rs is a non-parametric coefficient of correlation which is
specifically designed to measure the degree of a monotonic relationship between
two variables. It is used with data which are in the form of ranks, or can be
meaningfully converted to ranks.

The scattergrams below show various relationships which are all non-linear.
However some of them are perfect monotonic relationships, i.e. those in which
an increase in X is always associated with an increase (or in some cases
decrease) in Y. Scattergrams (a) and (b) both illustrate perfect positive monotonic
relationships and the data would produce an rs value of 1. Scattergram (c) shows
a perfect negative monotonic trend and would be described by rs=−1. Scattergram
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(d)  illustrates a reverse in the upward trend leading to an imperfect monotonic
relationship. The expected rs value would therefore be less than 1.

Rationale

If two variables are correlated we would expect those people who obtain the
lower scores on one variable to obtain the lower scores on the other, and those
who have high scores on one variable to obtain high scores on the other. In
calculating Spearman’s r, all we do is to rank the subjects from low to high on
both variables and then look at the differences (D) between the pairs of ranks.
The formula is so constructed that r will be +1 when the Ds are all zero; that is,
when the two variables are perfectly correlated. When there is a perfect negative
correlation the Ds will tend to be very large, and r becomes −1. When there is no
relationship between the variables the Ds will be intermediate in value, and r has
the value zero.
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Spearman’s rs: computation

GENERAL PROCEDURE

I Draw a scattergram.
II Rank the scores on variable A, in order, from low to high. Rank the scores

on variable B in the same way. (Tied ranks are computed by giving each
score the arithmetic mean of the ranks that would have been received had
there been no ties.)

III Calculate the differences (D) between each pair of ranks.
IV Square these differences and sum to obtain the quantity � D2. 
V Substitute the value of � D2 and N (the number of subjects) in the following

formula and compute rs:

VI rs is then an index of the degree of relationship between the two variables.
Its significance may be assessed using table VII, p. 177. The critical value of
rs required for significance at the desired level will depend on (1) N and (2)
whether the direction of the correlation was predicted before the study was
conducted.

EXAMPLE

The relationship between intelligence and reading speed in a sample of seven 5-
year-olds. The investigator predicted a positive relationship between these two
variables.

I Scattergram 
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Child Speed
(word
s per
minut
e)

Intelli
gence
(IQs)

Speed
rankin
gs

IQ
ranki
ngs

D D2

A 8 135 6 7 −1 1

B 6 132 5 6 −1 1

C 10 126 7 5 2 4

D 4 105 2 2 0 0

E 5 120 3 4 −

F 5 115 3 3

G 1 95 1 1 0 0

� D2 =6
V

VI Using table VII: The critical value of rs for significance at the 2 per cent
level (one-tailed) is 0·79. As the observed rs exceeds this value, we can
reject the null hypothesis that there is no relationship between reading speed
and intelligence.

(Note: if the proportion of ties is substantial a correction factor must be
incorporated into the formula for rs. Details of this are given in Siegel
(1956), p. 207.)

The significance of a correlation coefficient

If r is thought of as a descriptive statistic, you may be wondering why it is
possible to calculate its significance. Although r describes the relationship
between two variables in a sample of pairs of scores, we may still be interested in
making inferences about the value of r in the population being sampled. Usually,
we wish to know whether an underlying relationship between the two variables,
say reading speed and intelligence, can be inferred from the correlation obtained
in the sample. Under the null hypothesis the r value for the population is zero. We
can test this hypothesis by finding the probability of obtaining a random sample
from this population with an r value as high as the one obtained. If this
probability is 0·05 or less we have a significant correlation, i.e. we can conclude
that speed of reading and intelligence are related in the population.

When interpreting the significance of a correlation coefficient we should, of
course, remember that associations between variables are not necessarily
evidence for cause-and-effect relationships. For example we might obtain a
highly significant correlation between height and spelling ability in a sample of
school-children. This is unlikely to reflect a direct causal connection between the
two variables, but rather the influence of a third variable, age, on both spelling
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ability and height. This feature of correlational research was discussed in
chapter 1. 
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9
Predicting one variable from another

In some psychological research the objective is simply to discover whether two
variables are related to each other. For example, a personality theorist may wish
to know whether extraversion is related to the frequency with which people
change their jobs, or whether a person’s level of neuroticism is correlated with
his or her accident record. In this kind of research a correlation either supports or
disproves some theoretical view of the world, and that is all that is required.

In contrast, a psychological practitioner will wish to make use of correlational
data to predict or influence some aspect of human performance. To do this it is
not enough to know that two variables are related, one needs to know the exact
form of the relationship in order to make practical use of it. For example, a
psychologist working in the field of personnel selection might be interested in
the correlation between neuroticism and accident proneness. But he would need
to know what levels of neuroticism correspond with various accident rates before
he could make use of the relationship. What is needed is a formula or equation
that will allow the psychologist to predict a person’s accident rate from a
knowledge of his or her neuroticism score. The purpose of this chapter is to show
how such an equation can be derived,

The topic we are concerned with here is known as regression—that is, the
prediction of unknown values of one variable from known values of another. By
convention the variable we are trying to predict is represented as the Y variable
and the variable on which the prediction is based is always the X variable. So in
the example above we would be predicting a person’s accident rate (Y) from a
knowledge of his neuroticism score (X). Thus the problem reduces to finding an
equation for y in terms of X.

The equation of a straight line

Let us immediately simplify matters by restricting the discussion to linear
relationships of the kind measured by the Pearson r correlation. What does the
equation relating X to Y look like if the connection between the variables is
linear? We can answer this by plotting some imaginary scattergrams (see
figure 17) which show a perfect linear relationship and trying to deduce the
appropriate equation for each one. We shall assume that the scattergrams



represent children’s ages (X) and maximum time-span of attention (Y). As the
correlation is perfect in each case a straight line has been drawn through the data
points.

Looking first at figure 17(a) we can immediately see the connection betwen X
and Y. A 2-year-old can attend for 2 minutes, a 3-year-old for 3 minutes, and so
on. So a child’s age in years is equivalent to his attention span in minutes. The
equation relating age (X) to attention (Y) must therefore be:

Y=X (a)
In figure 17(b) we find that a 1-year-old attends for . minutes, a 2-year-old for 4
minutes and a 3-year-old for 6 minutes. So attention time is always twice a
child’s age in years. Thus:

Y=2X (b)
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Figure 17(c) is also quite straightforward. A 1-year-old attends for 3 minutes, a 2-
year-old for 4 minutes and a 3-year-old for 5 minutes. So attention time is 2
minutes greater than age in years. 

Thus:
Y=X+2 (c)

Figure 17(d) is slightly more complex. The relations between age and span of
attention are: 3 years-3 minutes, 6 years-4 minutes and 9 years-5 minutes. It is
clear that attention time goes up by 1 minute for every additional 3 years of age,
or equivalently every extra year of age produces  minute rise in attention. But Y
is not simply X, because even when X is 0, Y still has a value of 2. A few
minutes’ trial-and-error algebra will show that in this case:

(d)
You can check that this is correct by substituting various values for X in the
equation. If X is replaced by 3 years, Y becomes  which is correct.

Figure 17 Imaginary scattergrams relating age (X) to attention time (Y)
 

117



If X is replaced by 6 years, Y becomes  which also fits the original
data. So the equation must be a correct description of figure 17(d).

Finally, we turn to figure 17(c) which shows a negative relationship between
age and attention—the older the child, the shorter his or her span of attention.
Specifically a 3-year-old has 4 minutes, a 6-year-old has 2 minutes and a 9-year-
old has 0 minutes! So attention span is declining by 2 minutes every 3 years, or
by  minute per year. Again a little experimentation will show that the correct
equation is:

(e)
If you wish to prove this is correct, substitute the original values of X and check
whether the right values of Y are generated.

Now what have we learned about the equation of a straight line? The first point
to note is that all the equations conform to a standard pattern, namely:

Y=bX+a (1)
where a and b are constants. Sometimes a is 0 and does not appear (as in
figure 17(a)). Sometimes b is 1 and is therefore not obvious (as in figure 17(c)).
But any equation of a straight line will conform to the general format of equation
(1).

By comparing each equation with its graph we can also see that a and b have
meanings in terms of the features of figure 17. In figures 17(a) and (b) a is 0 and
the lines pass through the origin. In figures 17(c) and (d) a is 2 and the lines pass
through the y axis at Y=2. In figure 17(e) a is 6 and the line passes through the Y
axis at Y=6. For all straight line equations it can be shown that a corresponds to
the value of Y where the line crosses the y axis, i.e. the intercept.

By a similar process we can learn the meaning of b. In figures 17(a) and (c) b
is 1 and the lines increase by 1 unit of Y for every 1 unit increase in X. In
figure 17(b) b is 2 and the line rises 2 units of Y for every 1 unit increase in X. In
figure 17(d) b  is and the line rises  units of Y for every unit increase in X.
And in figure 17(e) b is  and the line falls by  units of Y for every unit
increase in X. All this shows that b represents the gradient or slope of the graph,
i.e. the number of units of Y by which the line rises or falls per unit increase in X.

The least squares regression line

We have now established the general form of the equation of a straight line. The
equation is, in effect, a formula for calculating the value of Y for any given value
of X. This is exactly what is needed for the purposes of regression, since
regression involves predicting a subject’s score on Y given that you know his score
on X.

If all samples of data exhibited the perfect correlations shown in figure 17, the
process of regression would be remarkably simple. We would just have to draw
the scattergram, rule in the single line going through all the data points, measure
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the gradient and intercept (b and a) and write out the equation Y=bX+a. This
equation would predict perfectly the value of Y for any conceivable value of X.

However the typical correlation observed in psychology is far from perfect,
and it will produce a scattergram more like the example shown in figure 18. The
problem then is to find the best fitting line going through this scatter of points; that
is the line which would involve the smallest errors if we used it to predict Y from
X.

There are, in fact, several criteria that might be used to define the line of best
fit. It might be argued that the line which  minimizes the horizontal distances
between the points and itself (i.e. the hs is figure 18) was the best fit. Or perhaps
we might try to find the line which minimizes the shortest distances between
each data point and itself (i.e. the as). Or should we minimize the vertical
deviations—the vs? Given that our aim is to predict Y as accurately as possible,
we make use of the third criterion of what constitutes the best fit. More
precisely, we define the regression line as that line which minimizes the squared
deviations between the points and the line measured in the Y direction; i.e. the
line that minimizes � v2. This line is known as the least squares regression line.

Finding the equation of the regression line

With the scatter of points shown in figure 18 it is obviously not possible to draw
in the best fitting line by eye. Fortunately there are standard formulae which
determine the values of a and b for any given set of data. Once a and b have been
determined they can be substituted in the general equation Y=bX+a to give the
regression equation for predicting Y from X.

GENERAL PROCEDURE

I Draw a scattergram. This will indicate whether the relationship is
approximately linear and will give you a rough idea—by looking at the
slope and intercept of the points—what kind of equation to expect. (If the

Figure 18 Typical scattergram showing three types of deviation from the regression line
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relationship is obviously non-linear the regression equation will be virtually
useless for prediction.)

II Set out the two measures for each subject as follows, being sure to label the
predictor variable X and the variable to be predicted Y:

X Y XY X2

S1 — —

S2 — —

S3 — —

• . .

• . .

• . .

• . .

SN — —

� X � Y � XY � X2

(Note: we do not need to calculate the Y2 values to get the regression
equation.)

III Fill in the rest of the table shown in II. The X Y column contains the
products of each subject’s X and Y scores. The X2 column contains the
squares of each subject’s X scores.

IV Find the totals of the entries in each column, i.e. � X, � Y, � XY, � X2.
V Substitute these values in the formulae for b and a:

(Note: the formula for a makes use of the value obtained for b from the
previous formula.)

VI The regression equation for predicting Y from X is then given by substituting
a and b into:

Y=bX+a

EXAMPLE

A psychologist wishes to develop an equation to predict a child’s span of
attention on the basis of the child’s age. He obtains the following pairs of
observations using a sample often children.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Age (in years) 3 1 5 4 8 3 9 4 6 11
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Attention span (minutes) 6 11 8 7 13 5 15 7 10 18

I Scattergram

It is clear from the scattergram that a strong linear relationship exists between
age and attention span. The gradient of the regression line will be approximately
1·5 (attention span rises by about 13 minutes over an age range of 8 years, so the
gradient is about 13/8 or >1.5). The intercept on the Y axis appears to be about 1
(this is estimated by placing a ruler through the data points and extending the
approximate ‘regression line’ back to the Y axis). So a quick inspection leads us
to expect a regression line something like: Y=1·5X+1. If the final outcome is
dramatically different from this estimate we would suspect a mistake in the
calculations.

II and III

Age (years) Attention (minutes)

X Y XY X2

S1 3 6 18 9

S2 7 11 77 49

S3 5 8 40 25

S4 4 7 28 16

S5 8 13 104 64

S6 3 5 15 9

S7 9 15 135 81

S8 4 7 28 16

S9 6 10 60 36

S10 11 18 198 121

IV � X=60 � Y=100 � XY=703 � X2=426
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V

VI Hence the regression equation for predicting attention span given a child’s
age is:

Y=1·56X+0–64
Thus a 5-year-old, for example, would be expected to have a span of
attention of:

Y=1·56×5+0–64=844 minutes
We note that the final equation is similar to the estimated equation of the
regression line based on inspection of the scattergram.

The use of the regression line

This chapter only provides a simple introduction to the topic of linear regression.
The least squares equation can be used to predict one variable from another when
the relationship is linear and reasonably strong. If the first limitation is broken, a
non-linear regression technique must be employed. If the relationship between X
and Y is a weak one, it may be that predictability can be improved by using two
or more variables as the basis for prediction. Indeed, in most practical
applications you will find that behaviour can only be predicted well by taking
account of many different variables. Think for a moment of the number of
factors that influence your own performance, say, in an examination. Predictions
based on several variables are covered by the topic of multiple regression. This
area is fully discussed in the companion text Multivariate Design and Statistics
(Miller, forthcoming). 
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10
Experimental design and beyond

In the earlier chapters of this book we have followed through various aspects of
the design and analysis of simple experiments. In this final chapter we shall
provide an overview of the sequence of decisions which need to be made, and
elaborate on those which have not yet been discussed. We shall also emphasize
the interconnections between some of the stages. In the final section some
thought will be given to the question of generalization beyond the specific
findings of a particular study.

An overview of experimental design

There are a number of ways one could set out the steps involved in the design
and analysis of experiments. The format used here agrees with that adopted by
Gardiner and Kaminska (1975), in their practical examples of experimental
design in psychology.

(1)
Conceptualization of the problem

The first step in designing an experiment was blithely described in chapter 2
thus: ‘We begin with a prediction that we are interested in testing’. It would be
more accurate to say that we end the first stage of scientific inquiry with a
prediction that we are interested in testing. A prediction is a specific statement
about the relationship between two variables which is the outcome of earlier
thinking of a more general and disorganized kind. We know surprisingly little
about the processes which underly this kind of thinking. But certainly the
formulation of predictions is a more creative and intuitive endeavour than we are
often led to believe in journal articles and scientific reports. Very few
psychological hypotheses are actually formulated by direct deductions from
some more general theory. They must surely arise from some kind of interaction
between the experimenter’s intuitions, theoretical ideas and factual knowledge.
In contrast to the more formal aspects of experimental design, the generation of a
research problem defies logical analysis, and there are certainly no guidelines for
the formulation of fruitful or successful approaches.



Nevertheless we can say that the hypothesis arising out of this activity must be
testable, that is, we must be able to obtain some factual evidence which has the
potential to support, or refute, the theory being tested. Otherwise the problem
falls outside the realm of scientific inquiry. The prediction is a guarantee of
testability. By requiring a statement of the predicted relationship between two
variables, we ensure that the conceptual activities of the experimenter produce
something that can be evaluated using scientific methods.

(2)
Experimental design

The design of an experiment is the general plan which is to be used in testing a
given prediction. This plan specifies the way in which the relevant data are to be
collected. Many of the important points were discussed in chapter 1. These will
not be summarized here, but certain other points will be discussed.

(A)
HOW MANY CONDITIONS?

Once a prediction has been framed the first step is to decide on the number of
levels of the independent variable. We have assumed in this book that you will
normally be comparing just two conditions, which makes life easier from the
statistical point of view. But there are obvious advantages to taking several levels
into consideration especially if the independent variable is of a quantitative
nature, such as noise level or drug dosage. In such cases we may be interested in
knowing the functional relationship between the independent and dependent
variables. If this relationship is a complex one, such as the U-shaped function
depicted in figure 16(f) (p. 134) the information obtained from just two
experimental conditions will tell us virtually nothing about the intervening
sections of the curve. Indeed, if we were unlucky in the choice of values for the
independent variable we might be misled into thinking that there was no
relationship at all. In a k-sample design, even where k is only three, these risks
are substantially reduced. But on the other hand the practical problems of time,
money and the recruitment of extra subjects must be set against the extra
precision inherent in these designs.

If the independent variable is qualitative in nature—such as ‘training method’
or ‘concrete versus abstract nouns’—then the arguments for choosing several
different levels are obviously inappropriate. In such cases the levels have been
selected because of their intrinsic interest to the experimenter and not as a means
of plotting out the functional relationship between the two variables.
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(B)
THE ALLOCATION OF SUBJECTS TO CONDITIONS

The second step in setting out the design of the experiment concerns the choice
between the three methods of allocating subjects to conditions—repeated-
measures, matched-subjects and independent-groups designs. The relative
effectiveness of these designs in the control of subject variability was discussed
quite fully in chapter 1. We might add here, however, that considerations other
than control efficiency will creep into the final choice between them. Thus a
decision to study the effects of many different levels of the independent variable
may cause us to adopt a non-optimal design, say the independent groups design,
because of the difficulty of obtaining subjects for a long enough time to complete
all k conditions in the repeated measures design.

Another consideration in the choice of design is the question of the availability
of appropriate statistical techniques. With the limited repertoire of two-group
designs included in this book it is unlikely that you could choose a design that
was incapable of being analysed. But the risk of this happening increases in
proportion to the ambitiousness of your experiments. It is therefore essential that
you plan the statistical analysis at the design stage of the experiment.

(C)
THE SUBJECTS

There are two decisions to be made regarding subjects. First we wish to know
how many subjects should be recruited in order to be reasonably confident of
detecting the experimental effect, if there is one. Secondly we need to consider
how the subjects are to be selected.

Suppose, for a moment, that we know the independent variable is having an
effect on the dependent variable. Equivalently, we could say that we know two
hypothetical populations have different means. What factors will influence the
chance of our getting significance from a statistical test based on samples from
these populations? Fairly obviously the separation of the population means will
be relevant. The greater the difference, the more likely we are to get
significance. A second factor is the variability in the two populations; the greater
the variability, the lower the chance of significance. As we learned in chapter 1,
this variability will be determined in large part by the design of the experiment. A
third factor is the size of the two samples: the larger the samples, the greater the
chance of detecting the underlying difference in the populations. Unfortunately
we are very unlikely to know, before the experiment, what value to place on the
variability of the scores, or the probable difference in population means. Thus we
cannot actually calculate the sample sizes needed to stand a good chance of
detecting significance. All we can say is that the prospects grow better as the
sample is increased. In practical terms this normally means that we should run as
many subjects as our time and resources allow. At least this is so until we have
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established from past research the sort of distribution of scores that are likely to
arise. With this knowledge one can develop a ‘feel’ for the number of subjects
needed to produce significant results. A ‘pilot’ study can be immensely useful in
this respect.

A second point which must be decided is the method of selecting subjects for
the experiment. In theoretical terms we should select our subjects randomly from
the population of people or animals to which we intend to generalize our
experimental findings. In practice, the choice of subjects is determined by the
availability of particular individuals and perhaps also by decisions to reduce
subject variability by holding a given characteristic constant. Hence we purchase
practical convenience and increased precision at the expense of random sampling
from the broad population of interest. This crucial decision influences our
freedom to generalize from the experiment to a wider context, as will be
discussed in the final section of the book.

(D)
THE CONTROL OF SITUATIONAL VARIABLES

Another important aspect of experimental design is the strategy used to control
environmental factors, such as noise, which might possibly contaminate the
experimental effect we are interested in. The relevant methods are discussed in
chapter 1. We might note here, however, that strict control in the form of holding
particular variables constant can be overdone. To be sure, this method of control
reduces random variations in the data, which is desirable, but if too many
variables are controlled in this way the experiment becomes unduly ‘pure’—
almost over-sensitive to the effects of the independent variable. There is
something to be said for the view that an experimental effect should be robust
enough to emerge over and above the random effects that operate in real life. If
an experiment is very rigorously controlled we simply cannot know how robust
the findings are. This is a matter of some importance when the research is meant
to inform practical decision-making.

A second drawback of rigorous control is discussed in the final section.

(3)
Operationalizing the experiment

The basic experimental design must be translated into a concrete specification of
the experiment. The nature of these procedural details is illustrated at the
beginning of chapter 2. One important decision which may be made at this stage
relates to the measurement of the independent variable. If the prediction specifies
the dependent variable fairly precisely, our decision at this stage may simply
concern the number of individual responses which will be combined to form
the measure of performance. Thus, if the dependent variable is reaction time, the
decision might be to take the mean of 100 reaction times as an index of the
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subject’s performance in each condition. However, if the dependent variable
mentioned in the prediction is something like ‘learning’, we shall have to give
considerable attention to the choice between such measures as ‘trials to
criterion’, ‘speed of performance’, ‘error rate’ and so forth. The nature of the
theory underlying the prediction will be a major influence on this choice, as will
more practical considerations such as the time available to test the subjects. In
addition we should be concerned with the reliability, validity, sensitivity and
statistical characteristics of the measure that is to be selected. Reliability refers to
the consistency of the measurement; that is, the extent to which the measure
would remain constant for any particular subject if he or she were repeatedly
tested under identical conditions. Lack of reliability in the measurement
technique will simply add to the random effects in the data, further reducing the
clarity of the experimental effect. We can often improve the reliability of a
measure by taking the mean of several independent observations on the same
subject. In this way any ‘freak’ circumstances which might have influenced one
observation will tend to balance out over the set. Thus one reaction time is a highly
unreliable measure of a subject’s characteristic speed of responding, whereas the
mean of 100 reaction times is a remarkably stable index of performance.

Validity refers to the correspondence between the operational procedures used
in measurement and the theoretical construct which is supposedly being
measured. Thus the measurement of intelligence on the basis of ‘head size’
would be perfectly reliable, but totally lacking in validity. We can measure head
size consistently, but it simply does not reflect intelligence. A test of reasoning
would be more valid. When the dependent variable is something like ‘creativity’
or ‘aggressiveness’ the problems of measurement validity may be quite acute. In
these cases the idea of construct validity is important. This involves the
judgement of the validity of a measure on the basis of many interrelated
experimental findings. If a series of predictions are confirmed using a particular
measure of creativity then the underlying theory and the validity of the measure
gain credence simultaneously. This approach is necessary when a construct has
no obvious independent criterion against which its measurement may be
validated. Of course, when our predictions concern directly observable
characteristics such as reaction time or pupil dilation, the problem of establishing
construct validity does not arise.

The sensitivity of a variable refers to the extent to which it changes in response
to changes in the independent variable. Thus we might find that the skill in
manipulating a vehicle was not impaired under certain levels of alcohol
consumption, whereas the tendency of drivers to take risks was increased. Other
things being equal, one might then adopt the risk-taking measure as a criterion of
performance in future studies of drinking and driving.

Finally, we should consider the level of measurement (see p. 62) and the form
of the distribution of all potential response measures. Naturally those which
satisfy the requirements for the more powerful, parametric techniques of analysis
are to be preferred.
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(4)
Analysis and interpretation of results

In this book we have focused on the statistical analysis of results, leading to
inferences concerning the reliability of the difference between groups of scores.
There is a grave danger that statistical significance may blind the experimenter to
possible weaknesses of design and conceptualization which underly the
numerical results. The question to be answered at the end of an experiment is not
—what level of significance was obtained? Rather we should ask the question—
to what extent do these results confirm the original prediction and throw light on
the theoretical notions which gave rise to that prediction? The point we wish to
emphasize here is that many considerations external to the statistical analysis
will determine the practical and theoretical significance of the results. These
considerations include: the adequacy of the design; the magnitude of the
experimental effect (as distinct from its purely statistical significance); the nature
of the subject population; the extent to which the naivety of the subjects was
maintained; the introspective reports of the subjects; the possibility of the
experimenter ‘inducing’ results which confirm his predictions, and so forth. 

Generalizing from experiments

Many experiments end with a high significance level and a smiling
experimenter. But what exactly does a significant result tell us about the world at
large? About human behaviour outside the laboratory? Or even about other
people who might have been tested inside the laboratory? These are questions
concerning our ability to generalize from experimental results. The issues raised
are controversial and a full discussion would be impossible within the confines
of this book. Nevertheless, there are a few basic points which should be made.

Strictly speaking, there is only one basis in scientific method for generalizing
outside of the specific circumstances in which the experiment takes place. This
basis is random sampling. If we select the subjects to be used in an experiment at
random from some population of interest, then it is legitimate to generalize our
findings back to that population of people. But the requirement of random
sampling does not apply only to populations of people. Our findings are equally
tied to the physical context of the experiment. If we want to say that variable A
influences variable B generally—that is, in various places, at various times, in
various climates, using various experimenters, etc.—then, as far as statistical
inference is concerned, we must randomly sample these various times, places,
experimenters, and so on. Now although the sampling of subject populations may
sometimes be feasible, it is patently impossible to sample these other aspects of
the experimental environment. Does this mean that our findings are rigidly tied
to the particular circumstances in which our experiment took place? The answer
is both yes and no. As far as statistical inference is concerned, the answer must
be yes. But we are, of course, free to make discretionary judgements outside of
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the strict confines of scientific method, i.e. non-statistical inferences. If it seems
to us that a particular feature of the subject’s behaviour is unlikely to be
influenced by a change of experimenter, temperature, or whatever, then we shall
treat our results as though they applied in these different circumstances. On the
other hand, if a result does seem, on intuitive or other bases, to be dependent on
some circumstance of the experiment—say a pretty experimenter, or an
unusually hot day—then we should tread much more warily. The point is, then,
that the extent to which particular findings are held to be generally applicable is a
matter for you and the scientific community to decide, on the basis of what
seems likely from our knowledge and intuitions about behaviour, but not on the
basis of any formal procedures of inference, which can only be used when
random sampling from the population of interest has taken place.

Perhaps the most critical restriction on our ability to generalize comes from
the fact that the vast majority of psychological experimentation makes use of
‘volunteers’ drawn from very specific populations such as other experimenters,
psychology students, or third-year civil engineering students whose grants have
run out! Nobody could possibly claim that such groups approximate to random
samples from any population, certainly not from any population of general
relevance to mankind. So we cannot make statistical inferences, and we have to
be especially careful about making non-statistical inferences to ‘the larger
population’. We might feel reasonably happy about extending some findings, say
in the field of physiological psychology, but our conclusions about human
intellectual functioning may be quite erroneous if applied uncritically to non-
student populations.

Unfortunately there is an aspect of statistics which tends to obscure the
problem. You will appreciate by now the central importance of the concepts of
sample and population in statistical inference. The typical statistical test ends
with a statement of the form: ‘This result shows that the two samples of scores
come from populations with different means.’ What could be better designed to
suggest to you, and the reader, that you have discovered something which may
be generalized to some larger population? Indeed many statistics texts encourage
you to think this is so. For example, statistical inference is often introduced as a
topic which will ‘allow you to generalize the specific findings of your experiment
to larger populations’. This, of course, is true only if the experimental scores
really are random samples from existing populations. But in most experiments
this is not the case. Our samples are typical of nobody but themselves. And the
‘populations’ of statistical inference are not populations of people, but purely
imaginary, conceptual populations—populations of hypothetical scores which
are used in statistical thinking but which have no relevance to any physical entity
outside of the experiment itself. Using other methods (see, for example,
Edgington, 1969) it is possible to calculate significance levels without even using
the theoretical notions of sample and population. If these methods were in
general use we might be less likely to confuse inferences about the effects of the
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independent variable, which are legitimate products of statistical testing, with
inferences about ‘larger populations’, which are not.

Although the only scientific justification for generalization is properly
organized random sampling from the populations of interest, there is a sort of
spurious sampling which takes place anyway. For example, if you choose to
allow, say, temperature to vary during your experiment there is a sense in which
you have sampled different levels of this variable. This ‘sampling’ will make it
easier for you to claim generality for your results, but it will simultaneously
prejudice your chances of gaining significance. As we have said many times, the
more random variation in each group of scores, the less likely it is that the effects
of the independent variable will emerge above the ‘noise’. When you consider
that there are vast numbers of irrelevant variables that could either be rigorously
controlled, or allowed to vary randomly, a difficult decision has to be made. At
one extreme we could hold all the relevant variables we can manage constant—
yielding a sensitive design but a highly unrealistic base from which to generalize
—and at the other we could allow everything to vary randomly—yielding a very
insensitive design, but a very strong base from which to generalize (always
assuming that significance is obtained). This choice exemplifies an important
feature of the field of experimental design: There is rarely a single, ideal solution
to a design problem. The most reliable measure may involve the greatest
inconvenience for the experimenter. The most sensitive design may require
assumptions about the data which cannot be substantiated. Experimental design
involves the weighing of such factors and the choice between the alternatives.
The rules by which we can reach these decisions will obviously depend on the
circumstances of each study. We can, however, identify the factors which should
influence our decision making, and this has been the aim of much of this book.
No doubt you will find these issues somewhat academic in the early stages, but
they should become relevant, and even exciting, as soon as you become involved
in your first research project. And you will gradually find that your own
experience leads you towards the optimal choices. 
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Appendix 1:
calculating the mean, median and mode from a

frequency distribution

The mean: method I

Suppose we measure the scores of 100 students on a particular test. The raw data
are illustrated in table A.1. Now we could, of course, work through this table,
adding together all the different scores and then dividing by 100. This would
give us the mean by the method described in chapter 2. Alternatively, we could

Table A.1 Scores of 100 students on a psychological test

42 53 54 47 54 47 50 50 51 52

49 50 52 50 53 49 53 50 45 51

51 46 52 49 48 46 47 47 51 48

52 53 51 50 45 51 50 49 43 53

46 50 49 48 51 50 49 51 50 48

50 43 50 46 50 49 51 52 49 50

49 45 52 50 49 54 50 48 45 52

48 51 50 52 48 51 49 52 49 48

51 49 51 48 47 53 50 52 48 52

50 47 48 48 50 49 46 47 52 51

 

Table A·2 Frequency distribution of the test scores of 100 students

Score Frequency

42 1

43 2

44 0

45 4

46 5

47 7

48 12



Score Frequency

49 14

50 20

51 14

52 12

53 6

54 3

N=100

construct the frequency distribution shown in table A.2, and then compute the
mean (and other statistics such as the variance) from the tabulated data.

First we shall derive the appropriate formula for use with a frequency
distribution. As usual, the mean will be defined as the sum of all the scores
divided by the total number of scores. Looking at table A.2 we can see that the
sum of all the scores will be given by:

(42×1)+(43×2)+(44×0).......... (54×3) (A)
(This is just another way of saying that the total of the scores is given by 42+43
+43+45+45+45 and so on.) In words, we are simply multiplying each score by
the number of times it occurs and then adding all these products together.

How can we express this in symbols? If x stands for any score in the table and
f stands for its frequency of occurrence then fx stands for the product of the score
times its frequency. Now we want to add all these products together as shown in
the expression (A) above. We can express this in symbols by � fx, i.e. multiply
each score by its frequency and add all the products together.

Having obtained the sum of all the scores, we simply have to divide by the
number of scores, N. Hence the formula for the mean of data presented in a
frequency distribution is:

The use of this formula is illustrated in table A.3. If the data had been grouped
into classes, as in table 8, we would proceed in exactly the same way, but using
the midpoints of each class as the x values.

Table A·3 Computation of the mean from a frequency distribution of 100 test scores

Score
x

Frequency
f

Score×frequency
fx

42 1 42

43 2 86

44 0 0

45 4 180

46 5 230
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Score
x

Frequency
f

Score×frequency
fx

47 7 329

48 12 576

49 14 686

50 20 1000

51 14 714

52 12 624

53 6 318

54 3 162

N=100 � fx=4947

(Note: We have used the symbol x to stand for each possible score, rather than
X which was used previously. This is because we are now talking about all the
possible values that a score could take, and not all the actual scores. Thus in the
data of table A.3 there are thirteen values of x, including 44, which is a possible
value even though it doesn’t actually occur. On the other hand, there are 100
values of X—that is, all the actual scores. Naturally if every value of x occurred
just once then x would have the same meaning as X.)

The mean: method II

CODING SCORES FOR COMPUTATION

Looking at table A.3 it can be seen that even with this method of computation we
still have to do some rather complicated arithmetic. There is yet a further
simplification we can introduce to alleviate much of the labour, by subtracting a
constant from each value of x, calculating the mean using the new values of x
(usually called x�) and then adding on the constant again at the end. We can
subtract any constant we like, but the best value to choose is one that seems
fairly close to the mean, say 50 in the present example. This allows us to work
with much smaller numbers, some of which will be negative and will therefore
‘cancel out’ with the positive entries. If we represent the constant by the letter c,
then the formula for calculating the mean becomes:

The use of this formula is illustrated in table A·4. Note that it produces the same
result as the previous method but involves much simpler computations. This is
useful if you are working without a desk calculator, but otherwise the labour of
coding the data is hardly offset by the time saved in computing.
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The median

Once the data are arranged in the form of a frequency distribution the median can
be obtained fairly easily. First we decide which is the middle position in the
series of N scores. When N=100 this will fall between the 50th and 51st scores in
the order from lowest to highest. We then move down the column of frequencies
until we reach a total frequency of 50 and 

Table A.4 Computation of the mean from a frequency distribution of 100 test scores using
coded data

Score
x

Frequency
f

Score–50
x�

Frequency×coded score
fx�

42 1 −8 −8

43 2 −7 −14

44 0 −6 0

45 4 −5 −20

46 5 −4 −20

47 7 −3 −21

48 12 −2 −24

49 14 −1 −14

50 20 0 0

51 14 1 14

52 12 2 24

53 6 3 18

54 3 4 12

N=100 � fx�=−53

read off the score corresponding to this point. We also note the score
corresponding to the 51st observation. The point halfway between the 50th and
51st scores will be the median.

Looking down the frequency distribution in table A.2 we find that the scores
between 42 and 49 account for the lowest 45 observations. The score of 50
accounts for the next 20 observations, including of course the 50th and 51st
items. Thus the median score has a value of 50.

A more sensitive measure of the median can be obtained by treating the score
of 50 as though it were a class of scores spread between 49·5 and 50·5. We can
then locate the ‘true’ median within this class interval. Since 45 per cent of the
scores are already accounted for, we wish to move into the interval between 49·5
and 50·5 to the point where a further 5 per cent of the scores have been passed. As
20 per cent of all the scores fall into this interval we must move exactly one-quarter
of the way through it to cover an extra 5 per cent of the scores. Thus the median
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is . For most purposes the simpler method described above
provides a good enough approximation to the median.

The mode

The mode is defined as the most frequently occurring value in a set of scores.
Obviously this value can be read directly from the frequency distribution. Thus
the mode of the data in table A.2 is 50.

(Note: the mean, median and mode have very similar values for the
distribution of scores considered in this section. This is because the distribution
is almost perfectly symmetrical in shape; see p. 31.) 
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Appendix 2:
calculating the variance and standard deviation

from a frequency distribution

Method I

Consider again the raw data given in table A.1 (p. 162). The basic formula for
calculating the variance  would require us to square each score
and then find the sum of these squares. However, since many scores occur
several times, it would be wasteful to repeatedly square and add the same figure.
Using a frequency distribution we can square each possible score, x, just once,
and then multiply by the number of times x occurs in the data, that is, f. The formula
for the variance then becomes:

The use of this formula to find the variance (and standard deviation) of the 100
test scores is demonstrated in table A.5. Note that the mean is also calculated
from the formula appropriate to frequency distribution. 

Table A.5 Computation of the variance and standard deviation of 100 test scores based on
a frequency distribution

Score
x

Frequency
f

Frequency×scor
e
fx

Frequency×scor
e2

fx

42 1 42 1764

43 2 86 1698

44 0 0 0

45 4 180 8100

46 5 230 10580

47 7 329 15463

48 12 576 27648

49 14 686 33614

50 20 1000 50000

51 14 714 36414



Score
x

Frequency
f

Frequency×scor
e
fx

Frequency×scor
e2

fx

52 12 624 32448

53 6 318 16854

54 3 162 8748

N=100 � fx=4947 � fx2=245331

Method II

Coding scores for computation

As we did with the mean, it is possible to reduce the arithmetical labour involved
in a computation by subtracting a constant from every score in the distribution.
In the case of the mean we had to add this constant back on again at the end of the
calculation. This is an obvious step; if we subtract 50 from every score the mean
of the ‘new’ scores will clearly be 50 less than the mean of the original data. But
in the case of the variance there is no need to add back the constant at the end of
the calculation. The reason is, of course, that the variance is a measure of spread,
and the spread in a set of score has nothing to do with their absolute values; the
variability of the scores 1, 2, 3, will be exactly the same as the variability of the
scores 1001, 1002, 1003. It is the differences between the scores that determines
spread, so that the addition or subtraction of any figure from all the scores will
not change the value of the variance (or any other measure of dispersion).

Armed with this knowledge we can now go ahead and calculate the variance
of the 100 test scores using data which have been coded in a more convenient
form. As with the mean, the greatest simplification will occur if we subtract a
constant that seems fairly close to the mean say 50 in the present case. The
appropriate calculations are demonstrated in table A.6.

Do not forget, when using this method, that although the variance is
unchanged by subtracting a constant, the mean is not. Thus the mean of the
coded data-which is used in the process of finding the variance is not the mean
of the original data. To make this clear we shall refer to it as . Hence the
formula for the variance of coded data is:
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Table A.6 Computation of variance and standard deviation of 100 test scores using a
coding procedure

Score
x

Frequency
f

Score−50
x�

Frequency×coded
score
fx�

Frequency×coded
score
fx�2

42 1 −8 −8 64

43 2 −7 −14 98

44 0 −6 0 0

45 4 −5 −20 100

46 5 −4 −20 80

47 7 −3 −21 63

48 12 −2 −24 48

49 14 −1 −14 14

50 20 0 0 0

51 14 1 14 14

52 12 2 24 48

53 6 3 18 54

54 3 4 12 48

N=100 � fx�=−53 � fx�2=631

Mean of
coded
scores

Variance

Standard
deviation
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Appendix 3:
statistical tables

Table I The normal distribution

Proportion of total area under the normal curve which is beyond any given Z score. Table
is approprrare for a one-tailed test. (For a two-tailed test the probabilities should be
doubled.)

The left hand margin gives values of Z to one decimal place.
The top row gives values of Z to the second decimal place. 

Z ·00 ·01 ·02 ·03 ·04 ·05 ·06 ·07 ·08 ·09

·0 ·5000 ·4960 ·4920 ·4880 ·4840 ·4801 ·4761 ·4721 ·4681 ·4641

·1 ·4602 ·4562 ·4522 ·4483 ·4443 ·4404 ·4364 ·4325 ·4286 ·4247

·2 ·4207 ·4168 ·4129 ·4090 ·4052 ·4013 ·3974 ·3936 ·3897 ·3859

·3 ·3821 ·3783 ·3745 ·3707 ·3669 ·3632 ·3594 ·3557 ·3520 ·3483

·4 ·3446 ·3409 ·3372 ·3336 ·3300 ·3264 ·3228 ·3192 ·3156 ·3121

·5 ·3085 ·3050 ·3015 ·2981 ·2946 ·2912 ·2877 ·2843 ·2810 ·2776

·6 ·2743 ·2709 ·2676 ·2643 ·2611 ·2578 ·2546 ·2514 ·2483 ·2451

·7 ·2420 ·2389 ·2358 ·2327 ·2296 ·2266 ·2236 ·2206 ·2177 ·2148

·8 ·2119 ·2090 ·2061 ·2033 ·2005 ·1977 ·1949 ·1922 ·1894 ·1867

·9 ·1814 ·1841 ·1788 ·1762 ·1736 ·1711 ·1685 ·1660 ·1635 ·1611

1·0 ·1587 ·1562 ·1539 ·1515 .1492 ·1469 ·1446 ·1423 ·1401 ·1379

1·1 ·1357 ·1335 ·1314 ·1292 ·1271 ·1251 ·1230 ·1210 ·1190 ·1170

1·2 ·1151 ·1131 ·1112 ·1093 ·1075 ·1056 ·1038 ·1020 ·1003 ·0985

1·3 ·0968 ·0951 ·0934 ·0918 ·0901 ·0885 ·0869 ·0853 ·0838 ·0823

1·4 ·0808 ·0793 ·0778 ·0764 ·0749 ·0735 ·0721 ·0708 ·0694 ·0681

1·5 ·0668 ·0655 ·0643 ·0630 ·0618 ·0606 ·0594 ·0582 ·0571 ·0559

1·6 ·0548 ·0537 ·0526 ·0516 ·0505 ·0495 ·0485 ·0475 ·0465 ·0455

1·7 ·0446 ·0436 ·0427 ·0418 ·0409 ·0401 ·0392 ·0384 ·0375 ·0367

1·8 ·0359 ·0351 ·0344 ·0336 ·0329 ·0322 ·0314 ·0307 ·0301 ·0294

1·9 ·0287 ·0281 ·0274 ·0268 ·0262 ·0256 ·0250 ·0244 ·0239 ·0233

2·0 ·0228 ·0222 ·0217 ·0212 ·0207 ·0202 ·0197 ·0192 ·0188 ·0183



Z ·00 ·01 ·02 ·03 ·04 ·05 ·06 ·07 ·08 ·09

2·1 ·0179 ·0174 ·0170 ·0166 ·0162 ·0158 ·0154 ·0150 ·0146 ·0143

2·2 ·0139 ·0136 ·0132 ·0129 ·0125 ·0122 ·0119 ·0116 ·0113 ·0110

2·3 ·0107 ·0104 ·0102 ·0099 ·0096 ·0094 ·0091 ·0089 ·0087 ·0084

2·4 ·0082 ·0080 ·0078 ·0075 ·0073 ·0071 ·0069 ·0068 ·0066 ·0064

2·5 ·0062 ·0060 ·0059 ·0057 ·0055 ·0054 ·0052 ·0051 ·0049 ·0048

2·6 ·0047 ·0045 ·0044 ·0043 ·0041 ·0040 ·0039 ·0038 ·0037 ·0036

2·7 ·0035 ·0034 ·0033 ·0032 ·0031 ·0030 ·0029 ·0028 ·0027 ·0026

2·8 ·0026 ·0025 ·0024 ·0023 ·0023 ·0022 ·0021 ·0021 ·0020 ·0019

2·9 ·0019 ·0018 ·0018 ·0017 ·0016 ·0016 ·0015 ·0015 ·0014 ·0014

3·0 ·0013 ·0013 ·0013 ·0012 ·0012 ·0011 ·0011 ·0010 ·0010 ·0010

3·1 ·0010 ·0009 ·0009 ·0009 ·0008 ·0008 ·0008 ·0008 ·0007 ·0007

3·2 ·0007

3·3 ·0005

3·4 ·0003

3·5 ·00023

3·6 ·00016

3·7 ·00011

3·8 ·00007

3·9 ·00005

4·0 ·00003

Table II The t distribution
Critical values of t for a two-tailed test*

Level of significance Level of significance

df ·10 ·05 ·02 df ·10 ·05 ·02

1 6·314 12·706 31·821 18 1·734 2·101 2·552

2 2·920 4·303 6·965 19 1·729 2·093 2·539

3 2·353 3·182 4·541 20 2·086 2·086 2·528

4 2·132 2·776 3·747

5 2·015 2·571 3·365 21 1·721 2·080 2·518

22 1·717 2·074 2·508

6 1·943 2·447 3·143 23 1·714 2·069 2·500

7 1·895 2·365 2·998 24 1·711 2·064 2·492

8 1·860 2·306 2·896 25 1·708 2·060 2·485

9 1·833 2·262 2·821

10 1·812 2·228 2·764 26 1·706 2·056 2·479

27 1·703 2·052 2·473

11 1·796 2·201 2·718 28 1·701 2·048 2.467
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Level of significance Level of significance

df ·10 ·05 ·02 df ·10 ·05 ·02

12 1·782 2·179 2·681 29 1·699 2·045 2·462

13 1·771 2·160 2·650 30 1·697 2·042 2·457

14 1·761 2·145 2·624

15 1·753 2·131 2·602 40 1·684 2·021 2·423

60 1·671 2·000 2·390

16 1·746 2·120 2·583 120 1·658 1·980 2·358

17 1·740 2·110 2·567 � 1·645 1·960 2·326

*For a one-tailed test the significance levels should be divided by 2.
Abridged from Table III of Fisher, F.A. and Yates, F. (1974) Statistical Tables for

Biological, Agricultural and Medical Research 6th edn, London, Longman
(previously published by Oliver & Boyd, Edinburgh) by permission of the
authors and publisher.

Table III Chi-square
Critical values of chi-square (for one degree of freedom the significance levels are two-
tailed, see p. 96)

Level of significance Level of significance

df ·10 ·05 ·01 df ·10 ·05 ·01

1 2·71 3·84 6·64 16 23·54 26·30 32·00

2 4·60 5·99 9·21 17 24·77 27·59 33·41

3 6·25 7·82 11·34 18 25·99 28·87 34·80

4 7·78 9·49 13·28 19 27·20 30·14 36·19

5 9·24 11·07 15·09 20 28·41 31·41 37·57

6 10·64 12·59 16·81 21 29·62 32·67 38·93

7 12·02 14·07 18·48 22 30·81 33·92 40·29

8 13·36 15·51 20·09 23 32·01 35·17 41·64

9 14·68 16·92 21·67 24 33.20 36.42 42·98

10 15·99 18·31 23·21 25 34·38 37·65 44·31

11 17·28 19·68 24·72 26 35·56 38·88 45·64

12 18·55 21·03 26·22 27 36·74 40·11 46·96

13 19·81 22·36 27·69 28 37·92 41·34 48·28

14 21·06 23·68 29·14 29 39·09 42·56 49·59

15 22·31 25·00 30·58 30 40·26 43·77 50·89

Abridged from Table IV of Fisher and Yates (op. cit), by permission of the authors and
publisher.

141



Critical values of x (the number of cases with the less frequent sign) for a one-tailed test*
N is the total number of cases.

Level of significance Level of significance

N ·05 ·025 ·01 N ·05 ·025 ·01

5 0 — — 16 4 3 2

6 0 0 — 17 4 4 3

1 0 0 0 18 5 4 3

8 1 0 0 19 5 4 4

9 1 1 0 20 5 5 4

10 1 1 0

21 6 5 4

11 2 1 1 22 6 5 5

12 2 2 1 23 7 6 5

13 3 2 1 24 7 6 5

14 3 2 2 25 7 7 6

15 3 3 2

*For a two-tailed test the significance levels should be multiplied by 2.

Table V Wilcoxon test
Critical values of T for a two-tailed test*

Level of significance Level of significance

N ·05 ·02 ·01 N ·05 ·02 ·01

6 0 — — 16 30 24 20

7 2 0 — 17 35 28 23

8 4 2 0 18 40 33 28

9 6 3 2 19 46 38 32

10 8 5 3 20 52 43 38

11 11 7 5 21 59 49 43

12 14 10 7 22 66 56 49

13 17 13 10 23 73 62 55

14 21 16 13 24 81 69 61

15 25 20 16 25 89 77 68

*For a one-tailed test the significance levels should be divided by 2.
Adapted from Table I of Wilcoxon, F. (1949) Some Rapid Approximate Statistical

Procedures, New York, American Cyanamid Company, by permission of the
publisher.
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Critical values of U for a two-tailed test at 5 per cent significance*

N1

N2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 13 15 17 19 22 24 26 29 31 34 36 38 41

9 17 20 23 26 28 31 34 37 39 42 45 48

10 23 26 29 33 36 39 42 45 48 52 55

11 30 33 37 40 44 47 51 55 58 62

12 37 41 45 49 53 57 61 65 69

13 45 50 54 59 63 67 72 76

14 55 59 64 67 74 78 83

15 64 70 75 80 85 90

16 75 81 86 92 98

17 87 93 99 105

18 99 106 112

19 113 119

20 127

*For a one-tailed test the values are significant at the 2 per cent level.

Table VII Critical values of Spearman’s rs
Critical values of rs for a two-tailed test*

Level of significance Level of significance Level of significance

N ·05 ·01 N ·05 ·01 N ·05 ·01

5 1·00 — 14 ·54 ·69 23 ·42 ·54

6 ·89 1·00 15 ·52 ·66 24 ·41 ·53

7 ·79 ·93 16 ·51 ·64 25 ·40 ·52

8 ·74 ·88 17 ·49 ·62 26 ·39 ·51

9 ·68 ·83 18 ·48 ·61 27 ·38 ·50

10 ·65 ·79 19 ·46 ·60 28 ·38 ·49

11 ·61 ·77 70 ·45 ·58 29 ·37 ·48

12 ·59 ·75 21 ·44 ·56 30 ·36 ·47

13 ·56 ·71 22 ·43 ·55

*For a one-tailed test significance levels should be divided by 2.
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Table VIII The F-test: Critical values of F at 5 per cent significance (one-tailed)*

df
in
den
omi
nat
or

Degrees of freedom in numerator

1 2 3 4 5 6 7 8 9 10 15 20 30 60 120

1 16
1·4
0

19
9·5
0

21
5·7
0

22
4·6
0

23
0·3
0

23
4·0
0

23
6·8
0

23
8·9
0

24
0·5
0

24
1·9
0

24
5·9
0

24
8·0
0

25
0·1
0

25
2·2
0

25
3·3
0

2 18·
51

19·
00

19·
16

19·
25

19·
30

19.
33

19·
35

19·
35

19·
38

19·
43

19·
43

19·
45

19·
46

19·
48

19·
49

3 10·
13

9·5
5

9·2
8

9·1
2

9·0
1

8·9
4

8·8
9

8·8
5

8·8
1

8·7
9

8·7
0

8·6
6

8·6
2

8·5
7

8·5
5

4 7·7
1

6·9
4

6·5
9

7·7
8

6·2
6

6·1
6

6·0
9

6·0
4

6·0
0

5·9
6

5·8
6

5·8
0

5·7
5

5·6
9

5·6
6

5 6·6
1

5·7
9

5·4
1

5·1
9

5·0
5

4·9
5

4·8
8

4·8
2

4·7
7

4·7
4

4·6
2

4·5
6

4·5
0

4·4
3

4·4
0

6 5·9
9

5·1
4

4·7
6

4·5
3

4·3
9

4·2
8

4·2
1

4·1
5

4·1
0

4·0
6

3·9
4

3·8
7

3·8
1

3·7
4

3·7
0

7 5·5
9

4·7
4

4·3
5

4·1
2

3·9
7

3·8
7

3·7
9

3·7
3

3·6
8

3·6
4

3·5
1

3·4
4

3·3
8

3·3
0

3·2

8 5·3
2

4·4
6

4·0
7

3·8
4

3·6
9

3·5
8

3·5
0

3·4
4

3·3
9

3·3
5

3·2
2

3·1
5

3·0
8

3·0
1

2·9
7

9 5·1
2

4·2
6

3·8
6

3·6
3

3·4
8

3·3
7

3·2
9

3·2
3

3·1
8

3·1
4

3·0
1

2·9
4

2·8
6

2·7
9

2·7
5

10 4·9
6

4·1
0

3·7
1

3·4
8

3·3
3

3·2
2

3·1
4

3·0
7

3·0
2

2·9
8

2·8
5

2·7
7

2·7
0

2·6
2

2·5
8

11 4·8
4

3·9
8

3·5
9

3·3
6

3·2
0

3·0
9

3·0
1

2·9
5

2·9
0

2·8
5

2·7
2

2·6
5

2·5
7

2·4
9

2·4
5

12 4·7
5

3·8
9

3·4
9

3·2
6

3·1
1

3·0
0

2·9
1

2·8
5

2·8
0

2·7
5

2·6
2

2·5
4

2·4
7

2·3
8

2·3
4

13 4·6
7

3·8
1

3·4
1

3·1
8

3·0
3

2·9
2

2·8
3

2·7
7

2·7
1

2·6
7

2·5
3

2·4
6

2·3
8

2·3
0

2·2
5

14 4·6
0

3·7
4

3·3
4

3·1
1

2·9
6

2·8
5

2·7
6

2·7
0

2·6
5

2·6
0

2·4
6

2·3
9

2·3
1

2·2
2

2·1
8

15 4·5
4

3·6
8

3·2
9

3·0
6

2·9
0

2·7
9

2·7
1

2·6
4

2·5
9

2·5
4

2·4
0

2·3
3

2·2
5

2·1
6

2·1
1

16 4·4
9

3·6
3

3·2
4

3·0
1

2·8
5

2·7
4

2·6
6

2·5
9

2·5
4

2·4
9

2·3
5

2·2
8

2·1
9

2·1
1

2·0
6

17 4·4
5

3·5
9

3·2
0

2·9
6

2·8
1

2·7
0

2·6
1

2·5
5

2·4
9

2·4
5

2·3
1

2·2
3

2·1
5

2·0
6

2·0
1

144



18 4·4
1

3·5
5

3·1
6

2·9
3

2·7
7

2·6
6

2·5
8

2·5
1

2·4
6

2·4
1

2·2
7

2·1
9

2·1
1

2·0
2

1·9
7

19 4·3
8

3·5
2

3·1
3

2·9
0

2·7
4

2·6
3

2·5
4

2·4
8

2·4
2

2·3
8

2·2
3

2·1
6

2·0
7

1·9
8

1·9
3

20 4·3
5

3·4
9

3·1
0

2·8
7

2·7
1

2·6
0

2·5
1

2·4
5

2·3
9

2·3
5

2·2
0

2·1
2

2·0
4

1·9
5

1·9
0

25 4·2
4

3·3
9

2·9
9

2·7
6

2·6
0

2·4
9

2·4
0

2·3
4

2·2
8

2·2
4

2·0
9

2·0
1

1·9
2

1·8
2

1·7
7

30 4·1
7

3·3
2

2·9
2

2·6
9

2·5
3

2·4
2

2·3
3

2·2
7

2·2
1

2·1
6

2·1
0

1·9
3

1·8
4

1·7
4

1·6
8

40 4·0
8

3·2
3

2·8
4

2·6
1

2·4
5

2·3
4

2·2
5

2·1
8

2·1
2

2·0
8

1·9
2

1·8
4

1·7
4

1·6
4

1·5
8

60 4·0
0

3·1
5

2·7
6

2·5
3

2·3
7

2·2
5

2·1
7

2·1
0

2·0
4

1·9
9

1·8
4

1·7
5

1·6
5

1·5
3

1·4
7

12
0

3·9
2

3·0
7

2·6
8

2·4
5

2·2
9

2·1
7

2·0
9

2·0
2

1·9
5

1·9
1

1·7
5

1·6
6

1·5
5

1·4
3

1·3
5

*If the larger variance was not predicted (i.e. test is two-tailed) the significance level is
10 per cent.

From Merrington, M. and Thompson, C.M. (1943) ‘Tables of percentage of the inverted
beta (F)distribution’, Biometrika (33), 73–88.

Table IX Jonckheere trend test: minimum values of S (one-tailed)*

Significance level 0·05

No. of
sample
s

No. per sample

2 3 4 5 6 7 8 9 10

3 10 17 24 33 42 53 64 76 88

4 14 26 38 51 66 82 100 118 138

5 20 34 51 71 92 115 140 166 194

6 26 44 67 93 121 151 184 219 256

3 — 23 32 45 59 74 90 106 124

4 20 34 50 71 92 115 140 167 195

5 26 48 72 99 129 162 197 234 274

6 34 62 94 130 170 213 260 309 361

*For a two-tailed test (where direction of trend is not predicted) significance levels
should be doubled.

From Jonckheere, A.R. (1954) Biometrika (41), 133–5.
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Table X Table of critical values of L

·05 Level of significance
k

·01 Level of significance
k

N 3 4 5 6 7 8 3 4 5 6 7 8

2 28 58 103 166 252 362 — 60 106 173 261 376

3 41 84 150 244 370 532 42 87 155 252 382 549

4 54 111 197 321 487 701 55 114 204 331 501 722

5 66 137 244 397 603 869 68 141 251 409 620 893

6 79 163 291 474 719 103
7

81 167 299 486 737 106
3

7 91 189 338 550 835 120
4

93 193 346 563 855 123
2

8 104 214 384 625 950 137
1

106 220 393 640 972 140
1

9 116 240 431 701 106
5

153
7

119 246 441 717 108
8

156
9

10 128 266 477 777 118
0

170
3

131 272 487 793 120
5

173
6

11 141 292 523 852 129
5

186
8

144 298 534 869 132
1

190
5

12 153 317 570 928 141
0

203
5

156 324 581 946 143
7

207
2

4·25 6·60 9·50 12·9 16·8 21·2 4·34 6·75 9·68 13·1 17·0 21·6

For N>12, the value of L is significant if L/kN exceeds the value in the last row of the
table.

From Page, E.E. (1963), J. Amer. Statist. Assoc. (58), 216–30.

Table XI Critical values of the product-moment correlation coefficient*
The size of the sample is given in the left-hand column. An obtained correlation
coefficient must be as large as or larger than the value in the body of the table to be
significant at the level of significance stated for the column.

Level of significance for two-tailed test

N ·10 ·05 ·02 ·01

3 ·988 ·997 ·9995 ·9999

4 ·900 ·950 ·980 ·990

5 ·805 ·878 ·934 ·959

6 ·729 ·811 ·882 ·917

7 ·669 ·754 ·833 ·874

8 ·622 ·707 ·789 ·834

9 ·582 ·666 ·750 ·798

10 ·549 ·632 ·716 ·765

11 ·521 ·602 ·685 ·735
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Level of significance for two-tailed test

N ·10 ·05 ·02 ·01

12 ·497 ·576 ·658 ·708

13 ·476 ·553 ·634 ·684

14 ·458 ·532 ·612 ·661

15 ·441 ·514 ·592 ·641

16 ·426 ·497 ·574 ·623

17 ·412 ·482 ·558 ·606

18 ·400 ·468 ·542 ·590

19 ·389 ·456 ·528 ·575

20 ·378 ·444 ·516 ·561

21 ·369 ·433 ·503 ·549

22 ·360 ·423 ·492 ·537

23 ·352 ·413 ·482 ·526

24 ·344 ·404 ·472 ·515

25 ·337 ·396 ·462 ·505

26 ·330 ·388 ·453 ·496

27 ·323 ·381 ·445 ·487

28 ·317 ·374 ·437 ·479

29 ·311 ·367 ·430 ·471

30 ·306 ·361 ·423 ·463

*Abridged from Fisher and Yates (op. cit.), by permission of the authors and publisher.
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