
Enterprise Java
Development on a Budget:
Leveraging Java Open
Source Technologies

BRIAN SAM-BODDEN AND CHRISTOPHER JUDD

1259_Sam-Bodden Judd front.fm Page i Friday, February 27, 2004 5:05 PM

ii

Enterprise Java Development on a Budget: Leveraging Java Open Source Technologies
Copyright © 2004 by Brian Sam-Bodden and Christopher Judd

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-125-9

Printed and bound in the United States of America 10987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Jeff Linwood

Editorial Board: Steve Anglin, Dan Appleman, Gary Cornell, James Cox, Tony Davis,
John Franklin, Chris Mills, Steve Rycroft, Dominic Shakeshaft, Julian Skinner, Jim Sumser,
Karen Watterson, Gavin Wray, John Zukowski

Project Manager: Sofia Marchant

Copy Manager: Nicole LeClerc

Copy Editor: Mark Nigara

Production Manager: Kari Brooks

Production Editor: Janet Vail

Compositor: Susan Glinert

Proofreader: Linda Seifert

Indexer: Rebecca Plunkett

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229,
e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

1259_Sam-Bodden Judd front.fm Page ii Friday, February 27, 2004 5:05 PM

To the memory of my father Gilberto,
To the courage of my mother Arlene,

To the love of my sisters Karen and Krystel,
To my “Tia” Donna,

To my wife and best friend Anne,
And to my baby boy Michael.

—Brian

To my supportive wife and best friend Sue,
To all the individuals and organizations who have contributed

their time, talents, and treasures to Open Source,
And to my Heavenly Father for all the blessings

he has bestowed upon me.
—Chris

1259_Sam-Bodden Judd front.fm Page iii Friday, February 27, 2004 5:05 PM

1259_Sam-Bodden Judd front.fm Page iv Friday, February 27, 2004 5:05 PM

v

Contents at a Glance

Foreword .. xi

About the Authors ... xiii

About the Technical Reviewer ...xv

Acknowledgments .. xvii

Preface .. xix

Chapter 1 The Open Source and Java Synergy 1

Chapter 2 Design with ArgoUML ... 27

Chapter 3 Development and Build System with Ant 79

Chapter 4 Testing ... 125

Chapter 5 Business Tier with JBoss .. 149

Chapter 6 Data Storage Options ... 265

Chapter 7 Object-Relational Mapping .. 333

Chapter 8 MVC Frameworks and the PresePntation Tier 407

Chapter 9 Web Services and Mobile Clients 449

Chapter 10 Rich Clients with the SWT and JFace 481

Appendix A Open Source Catalog ... 561

Appendix B CVS Primer ... 565

Index .. 579

1259_Sam-Bodden Judd front.fm Page v Friday, February 27, 2004 5:05 PM

1259_Sam-Bodden Judd front.fm Page vi Friday, February 27, 2004 5:05 PM

vii

Contents

Foreword ... xi

About the Authors ... xiii

About the Technical Reviewer ...xv

Acknowledgments .. xvii

Preface ... xix

Chapter 1 The Open Source and Java Synergy 1

Official Open Source Definition ... 2
Open Source Licenses ... 3
Advantages and Disadvantages of Open Source 6
Contributing to Open Source .. 9
Strategic Uses of Open Source ... 9
Useful Open Source–Related Resources .. 11
Case Study ... 12
Technology Conference Management System

Case Study Background .. 13
Open Issues and Assumptions .. 23
Summary ... 25

Chapter 2 Design with ArgoUML ... 27

Object-Oriented Analysis and Design Overview 28
The Unified Modeling Language ... 31
Code Generation and Round-Trip Engineering 37
Methodologies, Processes, and the UML .. 37
Design Roadmap .. 40
ArgoUML ... 42
Case Study: Modeling the TCMS with ArgoUML 53
Best Practices .. 76
Summary ... 77

1259_Sam-Bodden Judd front.fm Page vii Friday, February 27, 2004 5:05 PM

Contents

viii

Chapter 3 Development and Build System
with Ant .. 79

The Build Process .. 80
Continuous Integration ... 82
Automating the Build Process with Apache’s Ant 83
Case Study: Building the Technology Conference

Management System with Ant ... 103
Conclusions ... 124

Chapter 4 Testing .. 125

Testing Best Practices ... 125
JUnit Principles .. 127
JUnit Extensions .. 138
Conclusions ... 148

Chapter 5 Business Tier with JBoss 149

J2EE: A Different Development Paradigm .. 150
Considerations for the Business Tier .. 153
JBoss: The Open Source Choice for the Business Tier 162
Case Study: Technology Conference Management System

Business Tier on JBoss .. 171
Summary .. 264

Chapter 6 Data Storage Options ... 265

Choosing Between Object and Relational Databases 268
Relational Database Choices .. 271
Pure Java Databases ... 273
Java Object-Oriented Database Management System 284
Other Data-Storage Technologies ... 330
Conclusion ... 332

Chapter 7 Object-Relational Mapping 333

The Object-Relational Impedance Mismatch .. 334
Object-Relational Mapping .. 335
Apache DB Project’s Object Relational Bridge 339
Hibernate ... 381
Conclusions ... 404

1259_Sam-Bodden Judd front.fm Page viii Friday, February 27, 2004 5:05 PM

ix

Contents

Chapter 8 MVC Frameworks and the
PresePntation Tier .. 407

Model-View-Controller Frameworks ... 408
Struts Overview .. 409
Tiles .. 417
Struts .. 424
Conclusion ... 447

Chapter 9 Web Services and Mobile Clients 449

Web Services and Axis ... 449
Producing Services ... 453
Consuming Services ... 463
Mobile Consumer .. 465
Conclusion ... 480

Chapter 10 Rich Clients with the SWT and JFace 481

Java on the Desktop ... 482
The Eclipse User Interface Frameworks .. 484
SWT Primer ... 488
JFace Primer .. 502
Case Study: TCMS Admin System ... 509
Conclusions ... 559

Appendix A Open Source Catalog ... 561

Appendix B CVS Primer .. 565

CVS Architecture .. 565
CVS Concepts .. 567
CVS Commands .. 567
CVS Clients ... 569
Conclusion ... 576
Further Reading .. 577

Index ... 579

1259_Sam-Bodden Judd front.fm Page ix Friday, February 27, 2004 5:05 PM

1259_Sam-Bodden Judd front.fm Page x Friday, February 27, 2004 5:05 PM

xi

Foreword

J2EE DEVELOPMENT IS HARD. I’ve been developing with Java for the past six years,
and there are areas of the enormous API that I haven’t touched. J2EE covers security,
distributed transactions, persistence, messaging, web services, interoperability,
and much, much more. Enterprise Java development doesn’t mean coding only
with this API, but rather involves the entire suite of Java editions. J2EE layers on
top of the standard edition (J2SE). And to make your head spin even further, J2ME
entered the rapidly growing mobile world.

To exacerbate matters, our industry still reels from the great .com shakeout.
Like many of you, I experienced the joy of being dot bombed…twice. We rise from
the ashes to contend with more complexity and fewer resources than ever. Our

teams are smaller and budgets are tighter. Failure is not an option. Do not despair,
however.

In fact, times have never been better! Smaller teams allow us to act and react more
quickly. Attention to fiscal responsibility means that we focus on client satisfaction
and quality workmanship. From our need to simplify, the agile methodologies
speak to us at an instinctive level. “The hard and stiff will be broken. The soft and
supple will prevail.”1 We create software. As such, it is malleable. Refactoring keeps
code clean as requirements change. As code evolves, keeping top-notch quality
demands that we test. Testing addresses complexity, partly. We can focus on a
single unit at a time, test it thoroughly, and build upon it with confidence.

Kent Beck said, “Any program feature without an automated test simply doesn’t
exist,” which speaks to the importance of confidence and another facet, automation.2
Repetitive tasks are vital, such as a heart beating. Such repetitive tasks, though,
should be effortless. The failure of such tasks elicits grave concern. Effortless, yet
unmistakably vital—otherwise the complexity would overwhelm us and suffocate
our projects.

Open Source factors into both the testing and automation realms of Java
development. JUnit and Ant are the de facto standards, and are built into all modern
development environments. These projects, and the others discussed in this book
such as Struts, Hibernate, and XDoclet represent more than just free software to
use. Communities are thriving around these projects, and you benefit from the
collective contributions of individuals around the world. Besides addressing the
problems of a limited budget, Open Source addresses the complexity and quality

1. Tao Te Ching.

2. Beck, Kent. Extreme Programming Explained: Embrace Change (Addison-Wesley, 1999) p. 57.

1259_Sam-Bodden Judd front.fm Page xi Friday, February 27, 2004 5:05 PM

Foreword

xii

issues from several angles. Common problems generally have open source alter-
natives; avoid the reinvention of the wheel and concentrate on adding business
value, not plumbing. Many Open Source projects have comprehensive test suites,
thereby relieving you of reliability concerns. And when the inevitable bug appears in
an Open Source library, or a need for enhancement, robust test suites make opening
the hood a real joy. Tune in to the mailing lists, and other avenues of collaboration
including wikis and blogs, of the Open Source projects you leverage. It’s common-
place that questions are answered within minutes, putting to shame most commercial
support contracts.

All of this philosophizing leaves us wondering what to do next. We have real
work to do, and real deadlines to meet. Deriving from a Greek word meaning “to do,”
pragmatic is what we must be. As pragmatic programmers, books are a fundamental
part of our craft. The book you’re holding contains many gems of wisdom gleaned
from hard work. There’s no substitute for experience, but it would be foolish not to
learn from the experiences of others. I prefer practical examples and the voice of
experience on technical topics, and this book provides both. Chris and Brian have

made one of life’s greatest sacrifices, the authoring of a book. I commend them for
their effort, and applaud them for the quality.

—Erik Hatcher
Coauthor of Java Development with Ant (Manning 2003) and Lucene in Action
(forthcoming from Manning 2004)
Member, Apache Software Foundation
Committer, Ant, XDoclet, Lucene, and Tapestry

1259_Sam-Bodden Judd front.fm Page xii Friday, February 27, 2004 5:05 PM

xiii

About the Authors

Brian Sam-Bodden has been working with object technologies for the last nine
years with a strong emphasis on the Java platform. He holds dual bachelor degrees
from Ohio Wesleyan University in computer science and physics. He currently
serves as president and chief software architect for Integrallis Software, LLC
(http://www.integrallis.com). He has worked as an architect, developer, mentor, and
trainer for several Fortune 500 companies in industries such as taxes, insurance, retail
sciences, telecommunications, distribution, banking, finance, aviation, and scientific
data management. As an independent consultant, Brian has promoted the use of
Open Source in the industry by educating his clients on the cost benefit and pro-
ductivity gains achieved by it. He is a Sun Certified Java programmer, developer,

and architect. Brian is a frequent speaker at Java user groups and at conferences
throughout the country. You can contact him at bsbodden@integrallis.com.

Christopher Judd is the president and primary consultant for Judd Solutions, LLC
(http://www.juddsolutions.com), and is an international speaker, Open Source
evangelist, Central Ohio Java Users Group (http://www.cojug.org) board member
and JBuilder-certified developer and instructor. He has spent the last nine years
developing software in the insurance, retail, government, manufacturing, service,
and transportation industries. His current focus is consulting, mentoring, and training
with Java, J2EE, J2ME, web services, and related technologies. He also holds a
bachelor’s degree from Ashland University in computer information systems with
minors in accounting and finance. You can contact Chris at cjudd@juddsolutions.com.

1259_Sam-Bodden Judd front.fm Page xiii Friday, February 27, 2004 5:05 PM

1259_Sam-Bodden Judd front.fm Page xiv Friday, February 27, 2004 5:05 PM

xv

About the
Technical Reviewer

Jeff Linwood is a software developer and
consultant for the Gossamer Group, LLC in
Austin, TX. As a consultant, he has designed
and developed J2EE content management
solutions for several Fortune 500 companies.
Jeff is the coauthor of the book Professional
Struts Applications: Building Web Sites with Struts,

Object-Relational Bridge, Lucene, and Velocity
(Apress 2003), and has written articles for
JavaWorld (http://www.javaworld.com/) and
Dr. Dobb's Journal.

1259_Sam-Bodden Judd front.fm Page xv Friday, February 27, 2004 5:05 PM

1259_Sam-Bodden Judd front.fm Page xvi Friday, February 27, 2004 5:05 PM

xvii

Acknowledgments

THIS BOOK HAS BEEN a long time coming and, like an Open Source project, is the
labor of many. It would not be in your hands without the kind help of many people.

We wish to extend our gratitude to the hardworking folks at Apress, including
Jason Gilmore for getting us started down the path of authorship, our editors John
Zukowski, Craig Berry, and Steve Anglin, all of whom contributed to shape the big
picture of what this book was to become. A million thanks to the team that molded
our technology ramblings into a coherent body of work: our tireless and forgiving
project manager Sofia Marchant, our copy editor Mark Nigara, our production editor
Janet Vail, and our copy manager Nicole LeClerc. Thanks also to Bobby Harris and
Rob Warner, the authors of The Definitive Guide to SWT and JFace (forthcoming

from Apress 2004), for their help.
As consultants we’re engaged in an endless cycle of learning and teaching and

without the input and opinions of numerous colleagues who have reviewed and
engaged in dialogue with us this work would not be what it is. We wish to thank Jeff
Linwood, our technical reviewer for sticking with us for what must have seemed
like an eternity. We also wish to thank some of the informal reviewers who took
time out of their busy lives to comb through our work, including Erik Hatcher,
Craig Asplund, Chris Asplund, David Vu, Bret McGee, Matt Arnett, and Tim Hatfield.

While writing this book, we experienced one of the aspects of Open Source that
you would never get from a commercial vendor: free help unencumbered from the
greed of profit. We wish to thank many of the members of the Open Source com-
munity for their assistance, including Per Nyfelt, Leo Mekenkamp, Thomas Mahler,
Robert Muir Coup, Armin Waibel, Thomas Dudziak, Klaus Wuestefeld, Michael Glogl,
and Aleksey Aristov.

Finally, we want to thank you the reader, for without you this book would be a
pointless exercise.

1259_Sam-Bodden Judd front.fm Page xvii Friday, February 27, 2004 5:05 PM

1259_Sam-Bodden Judd front.fm Page xviii Friday, February 27, 2004 5:05 PM

xix

Preface

TODAY THE JAVA 2 PLATFORM, Enterprise Edition (J2EE) is the most complete and
effective platform for enterprise development. J2EE unifies and embodies the
knowledge gained from building up-to-date, multitier applications, and provides
this knowledge as a standardized set of modular components and services. We
believe that J2EE simplifies many aspects of enterprise computing, but it is by no
means a simple technology to master. The technology choices, techniques, APIs,
and patterns can be overwhelming.

Open Source has had a profound effect on the Java community. As consultants,
we know that every new assignment brings new challenges. During our day-to-day
work we’ve found Open Source to be invaluable for simplifying the work of our

teams and helping us to concentrate on what really matters.
Enterprise Java Development on a Budget: Leveraging Java Open Source

Technologies is a book for Java professionals who look beyond the tools placed
in their hands by their employers. It’s a book for those trailblazers who time and
again tell their colleagues, “I’ve been playing with this tool…and I think this could
really make our lives easier.” This book compiles the experiences of two seasoned
Java developers and gives the reader a roadmap of best practices and Open Source
tools that will support those practices. Open Source is more than just free software;
it’s a force that’s shaping the way we think about software and how software is
made. Open Source and Java are a perfect combination to tackle the challenges of
enterprise development with an open, extensible, nonproprietary arsenal that
reflects the best that the industry has to offer.

What This Book Is About

This book is about Open Source in the world of J2EE development and how it can
give you choices to replace or enhance what is commercially available. The book
covers tools and projects that encompass many aspects of building an enterprise
application, from development and testing to deployment. We focused on delivering
real code for real programmers, but wanted to give you a sound foundation on the
topics covered as well.

1259_Sam-Bodden Judd front.fm Page xix Friday, February 27, 2004 5:05 PM

Preface

xx

What This Book Is Not

This book isn’t another rehash of online documentation and it doesn’t cover every
esoteric feature of the tools used. Instead it’s an example of how to use Open Source
tools in synergy while developing a real application. Only relevant features are
covered and whenever there’s a topic or feature that we don’t cover, we attempt to
point you in the right direction so that you can expand your knowledge.

Who Should Read This Book

This book is aimed at moderately experienced Java developers who have an inter-
mediate knowledge of J2EE, and who are looking to learn how to maximize their
productivity. Additionally, this book offers readers a guide to explore some of the
roads less traveled when it comes to enterprise Java development.

Guide for Readers

Like the software covered in this book, the book itself was written in an agile fashion,
with many rounds of refactoring involved. One of the consequences of agile devel-
opment and XP is that software is no longer built in a linear or waterfall fashion,
yet books have to be clearly divided into chapters. We attempted to divide the
book into chapters so that each chapter deals with an aspect of the design and
development of the application as it relates to a specific tool or the specific framework
being used. In areas of the application where there may be implementation choices in
terms of which Open Source project to use, we’ll show one or more possible paths
and explain why, in the context of the application, we chose one tool vs. a similar
one. The book is composed of ten chapters.

• Chapter 1: This chapter begins by briefly talking about Open Source and
Java and then moves to explain the case study system that you’ll be
constructing throughout the rest of the book.

• Chapter 2: This chapter covers the UML design tool ArgoUML and intro-
duces some of the techniques used to produce the design of the case study
application.

• Chapter 3: This chapter sets out to create a solid Ant-based build system
that will be used in the rest of the book. This chapter offers “best practices”
and a collection of Ant-based tools that can improve your builds.

1259_Sam-Bodden Judd front.fm Page xx Friday, February 27, 2004 5:05 PM

xxi

Preface

• Chapter 4: This chapter offers a concise look at testing in J2EE by introducing
JUnit, Cactus, and DBUnit testing.

• Chapter 5: This chapter sets out to build the business tier of the case study
application using EJBs on JBoss. This chapter sets the stage for subsequent
chapters by showing alternative ways to tackle different tiers of the application.

• Chapter 6: This chapter covers the different choices available to store enter-
prise data in J2EE. From relational databases to object-oriented databases,
in this chapter you’ll learn how to integrate and work with data storage
technologies.

• Chapter 7: This chapter covers object-relational mapping tools with OJB
and Hibernate and gives you an introduction to the sometimes frustrating
task of mapping objects to relational databases.

• Chapter 8: This chapter shows how to use the Struts and Tiles frameworks to
create the web tier of the case study application.

• Chapter 9: This chapter delves into web services and how you can produce
and consume them in a J2EE application. A J2ME mobile client is also created
to show how you can integrate different channels into a J2EE application.

• Chapter 10: This chapter deals with the creation of a management utility
application for the case study application using the SWT/JFace user
interface frameworks.

Enterprise Java developers are usually grouped into myriad categories, including
architects, presentation tier developers, server-side developers, and data devel-
opers to name a few of the commonly used monikers. If you’re in management or
the tools that you use depend on somebody in management we strongly suggest
you read Chapter 1. If you’re an architect or a designer, Chapter 2 might give you
some techniques that you might not have encountered before. For anybody dealing
with the creation or maintenance of a build system, Chapter 3 is a must. For the
server-side developer, Chapters 4 and 5 will provide a good foundation. For those
involved with data, Chapters 6 and 7 deal with many of the issues you’ll encounter.
For those wanting to learn about presentation technologies, Chapter 8 provides a
good introduction to the Struts framework. For those wanting to explore the world
of Web Services as they relate to J2EE, Chapter 9 gives a good introduction to the
Axis web services framework. For those looking to build a great-looking adminis-
tration interface or rich UI clients, Chapter 10 provides an alternative to Swing
and AWT.

1259_Sam-Bodden Judd front.fm Page xxi Friday, February 27, 2004 5:05 PM

Preface

xxii

Companion Website and Contact Information

The official companion website where you can get software, updates, errata, and
other materials is http://www.ejdoab.com. We realize that tools evolve rapidly,
especially in the Open Source arena, so we’ll strive to give you tips and suggestions
on this site that will keep you abreast of the major changes in any of the tools used
in this book.

We also invite you to inquiry, debate, and discuss your opinions about this and
any other topic at the Apress Forums located at http://forums.apress.com/.

1259_Sam-Bodden Judd front.fm Page xxii Friday, February 27, 2004 5:05 PM

1

CHAPTER 1

The Open Source
and Java Synergy

“We’ll outsmart Open Source.”

—Microsoft’s Steve Ballmer in an interview with ZDNet1

DEFINING OPEN SOURCE is in the eye of the beholder; for some it means a way to
develop software, but for others it means a twist on traditional business models.
On a larger scale, it can be seen as a social movement. Open Source has its roots in
the same spirit of cooperation that has driven computer science advances since
the end of the Second World War. Projects like the Linux operating system and the
Apache web server are prime examples of shared innovation and the freedom of
choice that Open Source brings to the table.

Separating the hype from reality isn’t easy when it comes to Open Source. Not
only has it become the technological buzzword du jour, but it has also become the
epicenter of a great deal of controversy: from copyright laws and intellectual property
debates to freedom of speech and arguments about free-market competition.
Steve Ballmer’s comment only reiterates the impact that the Open Source movement
has had on the business of software as a whole. When the best funded, 400-pound
gorilla of proprietary software acknowledges the need to “outsmart” a “ragtag
band of software geeks” (as Open Source collaborators are sometimes referred to)
there is no need to emphasize that Open Source is making inroads socially, tech-
nologically, and economically.

This book is primarily about tapping into the large set of Open Source resources
available to you, the developer. Particularly when it comes to the J2EE platform,
Open Source is leading the pack and going beyond the confines of the specifications
by providing technical innovations not seen in commercial products as well as a
solid and stable infrastructure for enterprise-level applications.

The J2EE market has evolved swiftly, first by going through a phase of consol-
idation and now by entering a phase of commoditization. This second phase has
been driven largely by the fact that in order to show value, application server vendors
can no longer rely on their core application server. This has created a market of
value-added offerings, particularly in the area of development tools and development

1. See http://zdnet.com.com/2100-1104-959112.html.

1259c01.fm Page 1 Friday, February 27, 2004 12:57 PM

Chapter 1

2

productivity. Many of the Open Source tools and frameworks showcased in this
book are in this category.

Open Source is also changing the way programming is being studied in
universities around the world; new generations of programmers leaving academia
and entering the workplace have either used or contributed to Open Source. Students
nowadays can learn by examining enterprise-level software that displays contri-
butions from a great many sources from around the world.

At corporate IT departments worldwide, programmers are rallying behind
Open Source projects like Ant, JUnit, Tomcat, and JBoss. Though the battle for the
acceptance of Open Source has been largely fought at the level of the programmer
and middle management, upper management, given the recent impact of Linux
on corporations, is beginning to see the many advantages of Open Source, especially
in the area of enterprise Java. Organizations seeking to reduce software development
expenses have found that Open Source software (OSS) provides a lower cost of
ownership when compared to commercial offerings, primarily because Open Source
software is free, both in price and restrictions.

Official Open Source Definition

The universally accepted definition of Open Source is promoted by OSI, a non-
profit corporation originally created by Bruce Perens and Eric Raymond with the
sole purpose of guarding and promoting the Open Source Definition. OSI also
provides a certification mark that is awarded (on request) to projects under an
OSI-accepted license.

The Open Source Definition (version 1.9) defines Open Source software as
software that adheres to the following list of criteria:

• Free redistribution: The software can be freely redistributed without
requiring any royalty payments to the original authors.

• Source code: The software’s source code should be easily obtainable in
order to allow the code to evolve.

• Derived works: The software can be modified and the modifications must
be redistributed under the same terms as the original.

• Integrity of the author’s source code: The software’s license might require
that modifications are distributed as patches to some well-known base
distribution. This ensures that users know the origin of the software
they’re using.

1259c01.fm Page 2 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

3

• Discrimination against persons or groups: The software license must not
discriminate on the bases of national origin, race, religion, and so on. Because
many countries, including the United States have export restrictions on
cryptographic software, the license can warn or advise the licensees of
the legal ramifications of their actions but it cannot directly enforce said
restrictions.

• Discrimination against fields of endeavor: This prevents the license from
preventing the usage of the software based on the field that it’s being used in
such as insurance, banking, and so on.

• Distribution of license: The license applies to whoever the software is dis-
tributed to without the need of any additional licenses or clauses. This prevents
the software rights, as granted by the license, from being overridden by an
additional license or usage clause.

• License must not be specific to a product: The rights granted cannot depend
on the software being part of a particular distribution or configuration.

• License must not restrict other software: The license can’t place restrictions
on other software that might be distributed together.

• License must be technology-neutral: Acceptance of the license should not
depend on specific technological means of distribution. This prevents “click
wrap” in which a user must agree to the terms of a license before using or
obtaining the software. This is another area of controversy, for example, the
Uniform Computer Information Transactions Act (UCITA) legalizes click-
wrap licenses.

NOTE For more information on the Open Source Definition and the
Open Source Initiative visit http://www.opensource.org.

Open Source Licenses

The Open Source Definition sets guidelines for the characteristics of an Open Source
licenses. There are over 37 licenses that meet the requirements for certification. Not all
OSI-certified licenses apply to Java development. See Table 1-1 for a comparison
of the most common Java Open Source project licenses and the JDK/JRE license.

1259c01.fm Page 3 Friday, February 27, 2004 12:57 PM

Chapter 1

4

Table 1-1. Comparison of Open Source and the JDK/JRE License

License OSI
Certified

Free Available
Source

Distributable
Source

Java JDK/JRE N Y Y N

Apache Software Y Y Y Y

GNU General Public (GPL) Y Y Y Y

GNU Lesser General Public

(LGPL)

Y Y Y Y

BSD Y Y Y Y

Artistic Y Y Y Y

Sun Public (SPL) Y Y Y Y

IBM Public Y Y Y Y

1259c01.fm Page 4 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

5

Distributable
Binary

Modifiable URL Projects

N N http://java.sun.com/j2se/1.4.1/

j2sdk-1_4_1_01-license.html

JDK 1.4.1, JRE 1.4.1

Y Y http://www.opensource.org/

licenses/apachepl.php

Ant, Tomcat, Log4j

Y Y http://www.fsf.org/licenses/

gpl.html

jEdit, Jext

Y Y http://www.fsf.org/licenses/

lgpl.html

JBoss

Y Y http://www.opensource.org/

licenses/bsd-license.php

Castor, HSQL database

Y Y http://www.opensource.org/

licenses/artistic-license.php

Jetty

Y Y http://www.opensource.org/

licenses/sunpublic.php

NetBeans

Y Y http://www.opensource.org/

licenses/ibmpl.php

Eclipse

1259c01.fm Page 5 Friday, February 27, 2004 12:57 PM

Chapter 1

6

Organizations desiring to use, embed, or distribute Open Source projects and
frameworks will find most of the common Open Source license restrictions and
requirements acceptable. Like commercial products, they all contain a warranty
disclaimer protecting them against any liability expressed or otherwise. They also
require the inclusion of the license agreement and copyright in either the documen-
tation or an appropriate place in the running applications, such as an about box.
Most of the applications also require that the source of the Open Source portion be
made available when it’s distributed.

The two exceptions to the acceptability of the license agreements are the GNU
General Public (GPL) and the GNU Lesser General Public (LGPL). The dependency
or embedding on a project or framework with a GPL license automatically relin-
quishes intellectual property rights by forcing the dependent code or module to
also be distributed under the GPL license. This includes making the source code
available. Therefore, this license wouldn’t be appropriate for commercial vendors.
The LGPL was developed in an effort to offer some of the rights and freedoms of
the GPL yet allow commercial products to use common libraries. In the case of

Java, the LGPL would allow commercial products to use JARs with the LGPL license
without giving up intellectual property rights. However, if the JAR was to be incor-
porated into an executable (library didn’t remain a separate entity) intellectual
rights would be lost, the source file would be forced to be made available, and the
product would have to fall under the LGPL.

Software licensing is a complicated issue. Lawyers should be consulted before
using, embedding, and distributing Open Source or commercial software. Although
these licenses are similar, you should make sure to read and understand the license
details before incorporating the licenses into any corporate or enterprise appli-
cation. Fortunately, these licenses encompass many bodies of work and should
only need to be approved once. This can reduce time and expense.

Advantages and Disadvantages of Open Source

Many organizations are using Open Source projects to varying degrees in daily
development. Some organizations allow Open Source to be used only during
the development phases so that it doesn’t affect any production environment.
These organizations might use Open Source for building, unit testing, or integrated
development environments (IDE). Organizations may also use Open Source libraries
as a form of reuse for activities such as logging and XML parsing. Open Source
application servers, web containers, and Common Object Request Broker Archi-
tecture (CORBA) servers can be used to provide the infrastructure. Organizations
using Open Source are discovering there are some compelling reasons for using
Open Source besides the financial benefits. Unfortunately, these organizations are
also discovering that there are some disadvantages as well.

1259c01.fm Page 6 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

7

Advantages

The most obvious and compelling reason to use Open Source is the initial lower
cost of ownership. Organizations are free to copy and distribute software to multiple
developers and users. Consider an application with an installed base of 100 users
and a 10-person development team using a $500 licensed commercial product.
This would total $55,000 in expenses. Now consider the use of a competing Open
Source product. The organization could immediately eliminate the large expense
and increase the install base without incurring additional expenses. Other financial
benefits can be realized as well. Because Open Source is free to copy, the expense
of license management isn’t incurred. In addition, legal departments only have to
review and approve an Open Source license once for all projects using that license
rather than each time for each commercial product license. Using popular Open
Source projects can reduce training expenses by providing a larger resource pool.
Developers can be hired from outside the company with existing knowledge of
Open Source frameworks or projects. It’s often difficult to hire developers that
have knowledge of a proprietary commercial framework.

Industry support is another reason to consider Open Source. Many major
companies such as IBM, Sun, Oracle, BEA, and Borland are using Open Source
projects. These organizations have a vested interest in the project’s success because
their products rely on it. Contributors to the Java Open Source projects aren’t nec-
essarily the independent programmers writing code in their spare time anymore.
Many of these large companies have departments dedicated to Open Source. In
addition, many of the Open Source projects such as Eclipse, NetBeans, and Tomcat
were initially donated by large corporate backers. Consider the use of Open Source
as a means of expanding your development team to include some of the best
resources from all around the world. Access to the source is an important advantage
of Open Source. The source code is the only 100 percent–accurate documentation.
JavaDocs, marketing material, architectural diagrams, and instructions often
aren’t kept up to date.

Open Source projects are more agile than commercial products in their
evolution. Often Open Source projects have shorter release cycles than their
commercial counterparts, if for no other reason than the fact that most projects
provide nightly snapshots or direct access to the source code repository. In addition,
organizations don’t have to wait for a vendor’s next release to get a bug fixed. Having
the source code provides a means for the organization to fix the bug itself. Organi-
zations willing to contribute to Open Source projects can also have influence on
the future direction of the project. Unlike proprietary development, Open Source
has the advantage of being reviewed and tested by potentially hundreds or thousands
of users.

Unit and regression testing is an important part of software quality. Some
Open Source projects such as the Jakarta Commons project require that JUnit tests

1259c01.fm Page 7 Friday, February 27, 2004 12:57 PM

Chapter 1

8

be available and passed before version releases. Having access to JUnit tests can
reduce risks by providing a means of testing new releases against the unit tests of
the currently utilized release. The results of the tests can be used as a risk management
tool to determine the impact of an upgrade on a project.

Open Source can contribute to an individual’s career development. Developers
can use the source code to learn new techniques or APIs. Open Source can also
lower the barriers of entry by allowing for more economical means of evaluating
new technologies. For inexperienced Java developers, contributing to an Open
Source project may be a way of demonstrating knowledge to an employer or potential
employer. It’s common for developers to evaluate a technology and prototype
proof-of-concept applications using an Open Source project as a development
environment while deploying on a commercial platform for production use.

Disadvantages

Historically, Open Source projects have been documented poorly. In addition,
Open Source software usually doesn’t have a recognized company behind it to
provide support, whether it’s free or paid for. These disadvantages are changing
though. A new market has grown up around Open Source to provide quality docu-
mentation and support—for a price. In addition, many of the projects have active
newsgroups or forums that can be effectively used to troubleshoot an Open Source
application.

Open Source projects can also be plagued with backward-compatibility
problems. Open Source projects don’t seem to take backward compatibility into
consideration as much as commercial organizations. Yet, at the same time open
source projects tend to be more daring when it comes to innovation and trying
radically different ways to approach a problem.

The biggest disadvantage of Open Source is lack of marketing dollars. Often,
organizations aren’t aware of the existence of an Open Source project or how it
might apply. Open Source projects don’t have conference booths, magazine adver-
tisements, or salespeople explaining the problems they can solve. Open Source
projects also depend on the enthusiasm and number of collaborators as well as the
areas that their efforts are focused on. For example, lack of documentation and
administrative tools is a common complaint with regards to Open Source projects.
This brings to mind the successful emergence of Open Source projects with heavy
commercial backers such as the Eclipse project, which is backed by IBM and thus
has very good documentation given the resources available, namely, IBM staff
technical writers and editors.

1259c01.fm Page 8 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

9

Contributing to Open Source

Contributors to Open Source projects can typically be divided into particular roles.
Each project refers to these roles differently. The most commonly found roles are
as follows:

• User: Contributes defects and feature requests

• Developer: Contributes source code or document patches

• Contributor: Also called a committer, is a proven developer with direct write
access to the source code repository

• Committee member: Determines the direction and focus of the project

• Project manager: Determine and organize release schedules

Getting involved in an Open Source project usually requires subscribing to a
mailing list or newsgroup to stay current with the rapid changes. It also requires
you to read documents that refer to contributing and coding conventions. In
addition, the project requires access to the source code. Most Open Source projects
use Concurrent Versions System (CVS) as a source-code management system.

NOTE Appendix B provides an introduction to CVS primer to learn how
to learn how to access a project maintained in a CVS repository.

Strategic Uses of Open Source

Depending on an organization’s acceptable level of risk and the needs of a particular
project, you may decide to incorporate Open Source into some aspects of the devel-
opment life cycle. Open Source may be incorporated as early in a project’s life cycle
as in the technology evaluation and training stages or as late as the production stage.

Evaluation Technologies

Evaluating technologies is a great time to use Open Source. Organizations can
implement an entire prototype or application using a technology without getting
locked into a particular vendor’s product. Many organizations have a tendency to

1259c01.fm Page 9 Friday, February 27, 2004 12:57 PM

Chapter 1

10

make a platform or vendor selection based on marketing before they determine
their technology needs. Fortunately, many of the Java APIs are based on standard
interfaces that allow multiple vendors or Open Source projects to implement the
technology. Using Open Source as a means of evaluating the technology allows an
organization to make an informed decision. Part of an application can be written
and evaluated using Open Source and then tested on different vendor products.

Training Technologies

A popular and economical means of providing training is through the use of
computer-based training (CBT). Unfortunately, CBT doesn’t provide an effective
means of applying the knowledge. Using a commercial product may not provide
the best method of application because of the expense or number of licensed
copies. Open Source can fill the gap by allowing students to build real applications
on a shoestring budget.

Development

Organizations concerned about using Open Source in a situation where it could
affect the runtime behavior of an application can still reap the benefits during the
development process. Many of the Open Source projects are development tools
written by developers for developers. The Open Source projects can increase
developer productivity without affecting an application’s runtime behavior.

Production

Some Open Source projects have been proven to be of “production” quality. Orga-
nizations are incorporating them into mission-critical applications. Incorporating
Open Source frameworks or libraries in an application can improve productivity
and quality. Using an Open Source framework or library is basically a form of
reuse. An investment of time and money isn’t required to reinvent the wheel.
Likewise, there can be an increase in quality because the framework and library
has been already thoroughly test and debugged by many developers and users.

1259c01.fm Page 10 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

11

Useful Open Source–Related Resources

There are many sites on the Internet dedicated to managing Open Source projects
and providing news concerning Open Source.

• http://jakarta.apache.org: The Jakarta project (jakarta.apache.org) is a
collection of Java projects, referred to as subprojects. Many of the projects
are frameworks that can be incorporated into applications. For example,
regular expressions are covered by the Jakarta Commons project. Other
subprojects are intended for web development and some are development
tools. As projects mature and become mainstream, they might be promoted
to “top-level” projects such as Ant, which you can find at
http://ant.apache.org.

• http://xml.apache.org: The XML projects are a collection of subprojects for
parsing and transforming XML documents.

• http://sourceforge.net: SourceForge.net is the world’s largest repository of
Open Source projects. Many but not all the projects are Java-based. Many of
the hosted projects are stable, production-quality projects, but even more of
them are still in the planning or early development stage.

• http://www.exolab.org: ExoLab hosts Java and XML enterprise projects.

• http://www.tigris.org: A mid-sized Open Source community focused on
building better tools for collaborative software development.

• http://gjt.org: Giant Java Tree is a collection of unrelated Java packages.

• http://www.objectweb.org: ObjectWeb.org hosts Open Source middleware
projects and adaptable components.

• http://www.codehaus.org: An up-and-coming Open Source community that
caters to projects that aren’t under the GPL or other business-hostile
licenses. Projects such as Middlegen and XDoclet2 are making codehaus
their home.

• http://www.newsforge.com: NewsForge is an online newspaper reporting the
news about Linux and Open Source.

1259c01.fm Page 11 Friday, February 27, 2004 12:57 PM

Chapter 1

12

Case Study

One of the reasons the Open Source community is so productive is the fact that for
all but the most trivial of applications, software is difficult and expensive to
produce. The complexity of building software systems is a direct consequence of
the nature of real-world business problems. Business problems are driven by
changing requirements, rapidly evolving technologies, multiple data sources,
service-level agreements, interoperability, time to market, return on investment,
and many other factors. The inability to cope and balance all these forces results
in projects that go over budget, over schedule and don't deliver in functionality.
These projects quickly spiral out of control due to their inability to cope with com-
plexity and change.

Even if such systems deliver in a specific area of business functionality, their
overall business value is diminished by their maintenance costs. These horror
stories aren’t rare, on the contrary, they’re the norm; 84 percent2 of all enterprise
software systems are considered failures. This failure rate is a characteristic
signature of the “software crisis” that’s plaguing the industry. Projects fail due to
a combination of poor engineering and management choices. A 2002 study by
the Carnegie Mellon Software Engineering Institute (SEI) lists the following top
ten reasons why software projects fail:

• Inexperienced staff

• Lack of team cohesion and experience

• Lack of emphasis in using modern software-engineering practices

• Lack of a process or incorrect emphasis in the application of a process

• Inadequate project management methodology

• Unclear, misunderstood, and undiscovered requirements

• Size; the larger the projects the more likely they are to fail

• Lack of planning and estimating

2. According to a Standish Group survey, which studied about 8,000 software projects in the
U.S. in 1995.

1259c01.fm Page 12 Friday, February 27, 2004 5:01 PM

The Open Source and Java Synergy

13

• System-specific and technology-related issues are considered too late in
the process.

• New technologies and unforeseen problems.

The IT industry has championed several approaches for dealing with the
inherent complexity of designing, building, and maintaining software-intensive
enterprise systems. Object-oriented, component-based, distributed systems rep-
resent state-of-the-art in enterprise-level systems technology. This book deals
with some of the issues of building enterprise applications at a practical level
when the “silver bullet” that has been handed to the information technologist is
Java, specifically J2EE. J2EE poses some dangers to the inexperienced because it
makes a perfect technological silver bullet due to its countless APIs. The real-world
experiences are far from software utopia, as a recent study by the Seybold Group
suggests that there is a gap in management between the expectations of adopting
J2EE and the achieved results. One of the reasons for this is the lack of tools that
cover the many aspects of J2EE development. Open Source enterprise Java tools
and frameworks are emerging to help bridge this gap.

Learning how to build enterprise applications with a combination of Open
Source frameworks and tools provides a low-cost, low-risk, ideal prototyping envi-
ronment in which to master distributed computing technologies. Open Source
lowers the entry barrier into the Java and J2EE worlds by providing choices besides
the traditional proprietary offerings.

The rest of this chapter introduces a real-world example that puts the appli-
cation of J2EE technologies into clearer perspective. It introduces a realistic
business problem to be used as the backdrop for the learning process of designing,
building, and deploying an enterprise Java system using Open Source technologies.
The rest of this chapter serves as a vision document and a high-level architectural
blueprint, which provides a conceptual analysis and highlights the requirements
for the system.

Technology Conference Management System
Case Study Background

The TCMS case study presented in this chapter is a collection of systems and
utilities used to advertise, prepare, and support a technology conference. A tech-
nology conference is an event that spans a predetermined period of time and
consists of one or more sessions (presentations, keynotes, and so on).

1259c01.fm Page 13 Friday, February 27, 2004 12:57 PM

Chapter 1

14

NOTE The technology conference chosen here is especially well suited
for the purposes of this book. The main stakeholders, that is, the people
who have a vested interest in the system, are technologists, just like the
authors and readers, who make it easier to relate to the needs of the
user, and consequently, make the gathering of requirements, analysis,
and design processes clearer.

Technically, a technology conference presents some unique challenges in the
fields of distributed computing and enterprise development due to the dynamic
nature of the information requirements and the logistics involved in running such
an event.

Defining the Stakeholders

To understand the dynamics of such a system it’s important to determine who the
stakeholders of the system are and how their individual information needs change
over time. The main stakeholders to be considered in the context of a technology
conference are as follows:

• Attendees: Individuals attending the conference

• Presenters: Individuals presenting one or more sessions at a conference

• Sponsors: Organizations sponsoring and promoting the conference

• Administrators: The person or persons organizing and running the
conference

To create a clear picture of the changing needs of the stakeholders it’s useful to
view the conference as three separate periods of time: the preconference, the con-
ference, and the postconference periods.

Preconference

During the preconference period, data is collected, evaluated, and created. Collected
data includes documents such as calls for papers, abstracts, and outlines for the
different presentations. From the collected documents, content must be created

1259c01.fm Page 14 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

15

and also maintained as the source documents change. Aside from the document
management needs, facilities must be provided for attendees to register and
manage the schedule of events they plan to attend. At this time it’s also crucial to
provide information in a timely manner to make the process of registering and
getting to the conference easier. Among the experience-enhancing utilities are
items that allow you to obtain driving directions or information about special
conference rates for travel and hotel accommodations.

Conference

The information needs at conference time are crucial to the success of the con-
ference. Satisfied attendees are more likely to return the following year. Being able
to cut through the noise, pinpoint areas of interest, and choose sessions to attend
are factors of great importance to maximizing an attendee’s experience. Providing
interactivity and constant feedback ensures that attendees are always in tune with
the heartbeat of the conference. At the beginning of the conference, attendees
need to be checked in and given conference badges. Changes or updates to any
sessions or presentations need to be communicated effectively in order for attendees
to manage their schedules.

Postconference

Once the conference has closed its doors, a large amount of work remains to be
performed. Attendees are now alumni and as such they’re a prime target audience
for future conferences. Providing a sense of continuity is important to alumni and
future attendees of a technology conference. There should be a bridge from the
topics and content of previous conferences to ongoing and future conferences.

In the realm of document management, these requirements translate to the
management of the transition of dynamic documents into static documents or
archives. The numerous documents such as presentation slides, notes, follow-up
discussions, and supporting materials related to different presentations or sessions
must now be made available to the conference alumni and possibly to the general
public. For the organizers of the conference, information such as the number of
attendees, the popularity of topics for courses, and other statistical information is
a crucial business indicator that will determine the future changes and enhance-
ments made to the conference.

1259c01.fm Page 15 Friday, February 27, 2004 12:57 PM

Chapter 1

16

Figure 1-1. Stakeholders’ requirements timeline

The Business Problem

To manage the information needs of a technology conference, a software system is
needed that will provide an interactive information channel to manage the needs
of the different stakeholders. There is a business drive mandating that the systems
that will be developed serve as the basis for a new line of products tailored to the
organization, execution, and maintenance of technology conferences. These
products are to be sold as a collection of components or subsystems that can be
adapted to the particular needs of a customer.

The separation of roles and functionality needs to be clear in order to have a
system that can be easily customized and enhanced. It’s important for the system
to account for the fact that attendees and presenters are geographically dispersed.
There should be no need (or as little need as possible) for users to install or configure
any software.

1259c01.fm Page 16 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

17

General Application Requirements

This section outlines the general business requirements that the system must meet.
Based on the general software distribution and configuration requirements, the
primary medium chosen for the application is the Internet, in particular the Web.
The Web provides the advantage of nearly zero cost for distribution and configuration.
As the design process gets underway, refinements based on real-world constraints
will be factored in. The following requirements have been organized on a per-
stakeholder basis to facilitate the separation of functionality at the design stages.

Attendees

Attendees are the primary focus of the system and as such, greater priority is
placed on the functionality that affects them. The requirements of attendees
encompass the majority of the functionality of the system.

• General information: Prospective attendees (the general public) need an
easy and intuitive way to learn about the details of the conference. A web-
based application should provide an intuitive way for users to learn about
the conference details. The application must be easy to navigate and the
addition of common website functionality such as news and printable views
of content must be easily accomplished.

• Registration: Attendees should be able to securely register for the conference
and receive confirmation via email. The system should accommodate both
individual and group registrations.

• Session browsing and selection: The system should provide intuitive and
powerful searching capabilities to assist users in the selection of sessions
to attend.

• Session evaluations: Presenters should be able to review session evaluations
online.

• Scheduling: The system should provide users with the ability to easily view
and manage their schedules. The schedule data should be available in a
variety of formats that target different mediums and devices (for example,
the Web, PDAs, emails on demand).

1259c01.fm Page 17 Friday, February 27, 2004 12:57 PM

Chapter 1

18

• Notification and reminders: The system should provide users with the
ability to subscribe to a conference notification service. These notices can
include mailing lists, schedule-related reminders, and session-related news.

• Accommodation assistance: The system should provide a way for attendees
to find area maps, venue maps, hotel directions, locations of interest, restau-
rants, and other information to enhance their experience at the conference.

Presenters

Properly assisting and serving presenters will result in a higher quality of content
for the conference. This in turn, benefits the primary stakeholders, that is, the con-
ference attendees.

• Registration: Presenters should be able to securely register for the
conference and receive confirmation via email.

• Profile information: Presenters should be able to enter contact information
and biographical information, upload a picture, and provide other infor-
mation of interest.

• Call for papers: Potential presenters should be able to submit abstracts for a
session. The system should allow the presenter to select the target audience,
the session track (session category), and the room requirements for a session.

• Speaker availability: Presenters should be able to schedule the office hours
during which they can be available to assist presentation attendees with
questions or problems related to a session.

• Books by a presenter: Presenters who are published authors can select one
or more books from a list of their published books, and associate them with
a session. The list of books will be presented as part of the session information.
The list of books and the detailed information for each book is obtained
from an external provider at runtime.

Sponsors

Sponsors make a financial investment in a conference. Their interest is based on
the rewards of public exposure and an improved industry image. It gives them an
opportunity to connect with the community and provides them with a forum to
present their products and services. The presence of high-profile industry players

1259c01.fm Page 18 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

19

as sponsors legitimizes a technology conference. Ensuring that it’s easy for sponsors
to participate in the conference is of the utmost importance to the success of
the event.

• Registration: The system should allow sponsors to register and select a level
of sponsorship.

• Booth selection: The system should allow sponsors to select a conference
booth. Booths are allocated based on sponsorship level.

Administrators

Managing the complex interactions of a conference is a challenging process. One
of the goals of the system is to ease the tasks of management and reduce the amount
of personnel needed.

• Check-in and registration: Administrators need to check in attendees as
they arrive at the conference and provide them with badges and other
materials.

• Speaker evaluations: The system should provide administrators with the
ability to create and view the results of speaker evaluations.

• News: Administrators should have an easy interface to update conference-
related news.

• Booth assignment: Administrators should have the ability to select a booth
for a sponsor based on sponsorship level and physical requirements.

• Conference closing: An interface must be provided for conference adminis-
trators to easily transition the selected content into a static site. Specific data
now becomes legacy data and must be relocated or archived appropriately.

• Dashboard: Utilities must be provided for conference administrators to
gather statistics and performance indicators for the conference. These tools
should be able to provide a snapshot view of the overall health and success
indicators of the conference.

1259c01.fm Page 19 Friday, February 27, 2004 12:57 PM

Chapter 1

20

Architectural Requirements

Architectural requirements refer to the infrastructure needs that must be present
for the system to achieve the desired business goal. A multitude of factors are
involved in determining these requirements, such as experience with similar
systems, operational constraints, existing physical infrastructure, and appli-
cation services needed across multiple systems (cross-cutting concerns). These
requirements are useful in performing a gap analysis of infrastructure features
when selecting a product or set of products on which to build enterprise applica-
tions. It’s the architect’s job to then determine the build vs. buy decisions.

A set of general architectural requirements can be listed from the general
application requirements previously outlined and the experience gained while
building similar systems.

• Data management and persistence: Data must be easy to store, retrieve,
search, and modify. Data integrity shouldn’t be compromised in the face of
multiple sources that are attempting to modify the same data.

• Maintainability and extensibility: The system must be easy to maintain and
extend. Pieces of functionality should be easily added or removed, or turned
on or off, depending on the operational characteristics applicable to a
specific deployment.

• Security: Data must be stored and retrieved in a secure and efficient fashion.
Users of the system must have access to functionality according to their
roles or security levels.

• Scalability and reliability: Multiple users should be able to interact with the
system. The performance characteristics of the system shouldn’t change
dramatically with an increase in the concurrent user base.

• Personalization and customization: The user-interfacing elements of the
system should have a customizable look and feel, allowing for branding and
dynamic changes based on the identity of the interacting user.

• Document and content management: The system should provide facilities
to manage the variety of documents used and also allow for the manipu-
lation, classification, editing, and transformation of document-based
information.

1259c01.fm Page 20 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

21

• Administration: The system should provide a framework to easily add man-
agement capabilities to individual components. Administrative functions
should be relatively easy to create and customize.

• Messaging: Asynchronous communication facilities are expected to be
required between certain subsystems. The architecture must provide a
messaging framework or the ability to seamlessly integrate one.

• Integration with legacy and external resources: The system should facil-
itate the acquisition of data from external and legacy sources, as well as the
ability to publish data to external entities in an industry-standard fashion.

Figure 1-2. Architectural requirements diagram

1259c01.fm Page 21 Friday, February 27, 2004 12:57 PM

Chapter 1

22

...

A Word on Architecture

Architecture is by far one of the most misunderstood and misused terms in the
field of software engineering. The role of the software architect and the products
necessary for the process of architecting a software system aren’t consistent from
one organization to another.

The role of the software architect can be defined as the bridge between the stake-
holders’ needs and the builders of a software system. The architect is a client
advocate who possesses and owns the vision of a soon-to-be-built system, and at
a high level he understands the risks involved in the construction process. An
architect knows and understands the client’s language and concerns and is the
one responsible for balancing the multitude of forces involved in the process of
planning, constructing, and maintaining a system.

In this book software architecture represents the highest level of abstraction of a
system. It entails the definition of the largest identifiable parts and the interfaces
or contracts needed among those parts in order to satisfy the requirements of the
stakeholders. As a whole, a system’s architecture should enable you to analyze
and predict the major forces that will impact the design and implementation
decisions with an acceptable degree of confidence. More rigorous ways of spec-
ifying a system’s architecture exist; for example, there are approaches based on
the use of an architecture description language (ADL).

An example of one such formal approach for modeling and documenting a
system’s architecture is the Reference Model for Open Distributed Processing
(RM-ODP), which is quickly evolving as an internationally acceptable object-
based architecture standard for use in architecting distributed systems. RM-ODP
provides a consistent way to generate a well-formed architectural specification.
More information about RM-ODP can be found in Janis Putman’s Architecting

...

with RM-ODP.3

Based on the architectural requirements outlined in the previous section, you
should begin to see a clearer architectural vision for the system. The system’s
architecture should accommodate both the functional (business and application
requirements) and nonfunctional requirements (architectural requirements). The
architecture diagram for the TCMS is divided into tiers of functionality, which can
represent a logical or physical partitioning of the system.

The architecture consists of the following tiers (following the well-known
partitioning of the J2EE platform):

3. Janis Putman, Architecting with RM-ODP (San Francisco: Prentice Hall PTR, 2001).

1259c01.fm Page 22 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

23

• Client tier: Represents client-facing portions of the system

• Presentation tier: Represents subsystems responsible for the generation of
the user interface presentation-handling logic

• Business tier: Represents subsystems responsible for the handling of
business logic

• Integration tier: Represents subsystems responsible for integrating external
sources and destinations of information, including any legacy systems

Figure 1-3 shows the application tiers and how messages are exchanged
between them.

Figure 1-3. Architectural tiers

Open Issues and Assumptions

The dynamic nature of enterprise development forces you to make assumptions
based on previous experiences and to delay dealing with certain aspects of the
system until later in the development stages.

1259c01.fm Page 23 Friday, February 27, 2004 12:57 PM

Chapter 1

24

Assumptions

Some of the assumptions made are the result of implied requirements gathered
from stakeholders’ meetings and projections about the future usage of the system.
Some of these assumptions include the following:

• Concurrency requirements are expected to increase over time.

• A large percentage of attendees are technologically savvy.

• Applications will be accessed remotely via the Internet using a browser-
based interface.

• The conference internal network will be protected with an HTTP firewall.

• A large percentage of attendees carry network-ready personal digital assistants
(PDAs) or other mobile computing devices.

Open Issues

It’s expected that as the system is designed and developed your understanding
about the dynamics governing its behavior will coalesce. New relationships and
interfaces will be discovered and previously unidentified usage scenarios will
appear. Preparing for such discoveries by infusing flexibility in your designs is key
for any system that will evolve in a controlled fashion. Some of expected open
issues are as follows:

• Unidentified stakeholders.

• With multiple channels being serviced by the application, you need to find a
way to produce channel-specific content.

• You need to create several system-level systems for authentication, regis-
tration, and the handling of payments.

• Large number of implementation choices available.

• Unidentified alternate usage scenarios.

• Unidentified requirements.

1259c01.fm Page 24 Friday, February 27, 2004 12:57 PM

The Open Source and Java Synergy

25

Summary

Java has emerged as the number one language and environment for enterprise
computing, and it has also become one of the most widely used languages in the
Open Source community. At the time of this writing there are upward of 10,000
Java Open Source projects on SourceForge—second only to C++. Though not
every Java Open Source project is applicable to the creation of enterprise applications,
you’ll nevertheless find a largely untapped set of resources for the J2EE platform.
This chapter also introduced the Technology Conference Management System,
which presents a fairly complex and representative problem that encompasses
several areas of enterprise development.

The rest of the book will guide you through the process of designing and
developing the applications to fulfill some of the requirements of the case study
system. The case study weaves together the knowledge gained in the individual
chapters. By tackling the software development process one layer at a time in an
incremental and iterative fashion, this book will provide you with insight about the
planning involved at various stages of the software-development life cycle. By
using open-sourced J2EE offerings and supporting tools you’ll be able to build a
basic, yet representative enterprise system. Each subsequent chapter is devoted to
a tier of the application and to one or more stages (or activities) of the software
development process. Wherever necessary, multiple solutions to a particular
problem will be demonstrated to provide the reader with some insight into the
typical decisions encountered while developing an enterprise Java application.

1259c01.fm Page 25 Friday, February 27, 2004 12:57 PM

1259c01.fm Page 26 Friday, February 27, 2004 12:57 PM

27

CHAPTER 2

Design with ArgoUML

“Luck is the residue of design.”

—Branch Rickey

JAVA HAS FOUND a niche in the server side of contemporary distributed computing,
in which the most prevalent service model is the browser-based application or
web application. The rise of the Internet as a global network for business has given
enterprise computing its greatest weapon and also its greatest challenge. More
power and possibilities mean more challenges and complexity.

Software engineers have realized that without a solid architecture and some
semblance of a process that emphasizes analysis and design, a project’s failure is
all but imminent. Keeping with the demands of the evolving “connected” enterprise
is no easy task; applications not only need to work well, but have to work well
together. Interoperability, maintainability, scalability, and performance are now
implied characteristics when one speaks about an enterprise system. When designs,
in the form of models reflecting an architectural vision, are the driving force
behind implementations, systems evolve in a controlled fashion. The opposite
scenario, implementation-driven systems that grow in an organic fashion, are
destined to head down a certain path of “architectural drift” in which an application
moves further away from its intended goal of servicing the needs of stakeholders
with each development iteration.

This chapter aims to be a brief overview of the practical application of object-
oriented analysis and design (OOAD) concepts and the Unified Modeling Language
(UML). OOAD techniques are used to provide a solution to the problems presented
in the case study. You’ll tackle the initial design of the Technology Conference
Management System (TCMS) system using ArgoUML, a freely available Open
Source modeling tool. Object modeling tools have historically been fairly high
priced. Open Source offerings such as ArgoUML diminish the high entry cost for
adopting a modeling tool.

The initial analysis and design of the system is performed in this chapter by
elaborating and expanding upon the knowledge gained about the TCMS case study
system introduced in Chapter 1. In the interest of an iterative and incremental
development process, subsequent chapters introduce, elaborate, or re-factor the
design of a specific subsystem, feature, or component.

1259c02.fm Page 27 Friday, February 27, 2004 1:13 PM

Chapter 2

28

Object-Oriented Analysis and Design Overview

OOAD is a combination of problem solving mechanisms that facilitates the two
following primordial tasks of software engineering:

• Understanding and describing a particular problem and its domain

• Formulating a conceptual solution to a problem

The results of OOAD are expressed in the language of objects. These results
should be independent of the process or methodology used. Yet OOAD doesn’t
work in a vacuum, for the principles and guidelines it promotes are meant to be
used in the larger context of a software development process. Always keep in mind
that the models produced by analysis and design are used both to understand the
problems and to formulate a design that must eventually become code. The final
product is in the trade code; without code there is no measurable level of completion.

That said, it’s important to remember that technologies come and go and that
many times the same problem gets solved over and over during the life of a company.
Code isn’t the best artifact to carry knowledge and problem-solving lessons into
the future—models are.

The case-study application introduced in this book is a tad more complex that
the typical trade book example, yet it’s still simple enough to be understood in its
entirety by one individual. This is far from the norm; rarely do you start with a
manageable set of requirements, and only in rare cases is it possible for one individual
to have a complete understanding of every detail of a system. You’ll use models for
managing the complexity of systems, which further your understanding of the
systems as artifacts of knowledge continuity.

Understanding the Problem with Object-Oriented Analysis

Object-oriented analysis (OOA) is concerned with developing requirements and
specifications expressed in terms of objects that accurately represent a particular
problem domain. OOA helps determine what is to be built rather than how to
build it. Analysis aims at capturing the essence of a problem without introducing
implementation-specific artifacts that can taint future design decisions. The process
of analysis can be further qualified into requirements gathering and object analysis.

During the requirements-gathering phase you should be concerned with
the discovery and understanding of the requirements. Use-case modeling is the

1259c02.fm Page 28 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

29

primary technique used in this book to gather, evolve, and manage requirements.
Although use-case modeling isn’t specifically an object-oriented activity, it has
proven extremely beneficial when used in conjunction with OOAD techniques.

In the real world, requirements aren’t set in stone and the discovery of new
requirements goes on for as long as or even longer than the lifetime of most software
systems. Most methodologies have come to accept this fact and acknowledge
changing requirements as a primary driving force in the software development life
cycle. In iterative development an iteration involves the management of require-
ments. The number of requirements discovered and the changes to existing
requirements are expected to diminish as the system evolves iteratively.

During object analysis, the focus shifts to the discovery of the domain entities
at the conceptual level, with an “emphasis on defining software objects and how
they collaborate to fulfill the requirements.”1 The products of this activity are con-
ceptual object models that provide a visual organization of the concepts needed to
create a coherent design.

Solving the Problem with Object-Oriented Design

Abstraction, encapsulation, information hiding, and generalization play a primary
role in design. Software design hinges on the ability to disregard inessential details
and focus on the essential. The goal of OOD is to arrive at a system as simple as
possible that meets the stakeholders’ requirements while allowing a certain amount
of flexibility. OOD entails the modeling of a system’s structure and behavior in
terms of objects and interactions among objects. OOD tackles the development of
object models that represent a solution to a problem in a specific problem domain.
These object models represent a solution to a problem in the solution domain
(technology-specific, less abstract, geared toward being implemented in code)
while maintaining conceptual consistency with the problem domain.

OOD builds on the products developed during analysis by refining and mapping
these into an object-oriented programming language (OOPL). Analysis, design,
and coding are closer to each other in the world of objects than in other paradigms.
For this reason, the notations used during analysis and the early stages of design
are very similar. However, in OOD, technology-specific concepts that were nonex-
istent in analysis need to be specified, such as the datatypes of the attributes of a
class, or the business logic in a class’s methods. Knowing when analysis ends and
design begins is usually hard for those new to modeling. Some would argue that it’s
more of an art than a science.

1. Craig Larman, Applying UML and Patterns (Prentice Hall PTR, 2001).

1259c02.fm Page 29 Friday, February 27, 2004 1:13 PM

Chapter 2

30

TIP When in doubt about whether a piece of information belongs in
the analysis or design model, ask yourself the following questions: If
removed, will it diminish the understanding of the problem? Will it
prevent a developer from correctly implementing a feature?

Models and Modeling

The main artifacts of OOAD models are visual representations of a system’s com-
ponents and the interactions between those components. Edward Tufte, a pioneer
in the field of information design tells you that “graphics reveal data.”2 This statement
is particularly truthful when applied to software models. Models can reveal hidden
characteristics of a system. They can help you see a system at different resolutions,
and different angles. A model can focus on structure, behavior, or both. Simply
speaking, a model is a visual abstraction for the purpose of understanding some-
thing before it is to be built.

The power of models lies both in their visual expressiveness and their ability
to focus on a particular view or concern of a system at a time. Textual descriptions
are great to enhance or clarify the description of an entity or process, but as with
any representation based on natural language, ambiguities are easily introduced.
Visual models reduce the ambiguity of textual descriptions by infusing objectivity
through a constrained but extensible set of syntactical and semantical rules.

Models are vital tools in understanding and conveying problems and their

solutions. They provide structure and a measurement of feasibility that isn’t easily
captured in textual descriptions alone. A model can help pinpoint areas of risk in a
soon-to-be-developed system and it can determine what components or subsystems
might need to be prototyped in advance before making an implementation, tech-
nology, or vendor decision. Models encourage experimentation and enable the
evaluation of different ways of solving a problem without incurring the expenses
of building an actual system.

Models also help focus the level of concern and detail. They can give you the
50,000-foot view or a detailed view of a system, subsystem, component, or process.
Used properly, a model is a formidable weapon in coping with the inherent com-
plexity of software-intensive systems.

Software modeling refers to the practice of visually creating and documenting
the results of the analysis and design processes using suitable object models.

2. Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, CT:
Graphics Press, 1983).

1259c02.fm Page 30 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

31

Model-driven development has proven effective in reducing time-to-market,
decreasing development costs, and managing the risk of software projects.

TIP The goal of OOAD is to simplify the understanding of a problem
and its solution. Overly complex models go against this very principle.
Therefore, it’s important to keep your models as simple as possible.
Whenever possible we try to follow George A. Miller’s heuristic for the
human capacity to assimilate, retain, and process information.3 Models
with around seven elements (give or take two) convey enough information
without overwhelming your senses.

The Unified Modeling Language

The UML is a general-purpose visual modeling language used in the analysis,
design, and maintenance of software-intensive systems. It’s a refinement of several
modeling notations used by the most prevalent object methodologies. The core
concepts are derived primarily from Grady Booch’s OOAD, James Rumbaugh’s
object modeling technique (OMT), and Ivar Jacobson’s object-oriented software
engineering (OOSE). In the late 1990s the Object Management Group (OMG)
embraced and promoted the UML as a standard modeling language for object-
oriented systems. The OMG is a nonprofit consortium of nearly 800 members that
includes major industry players, developers, and users of object technologies
worldwide.

The UML plays an extremely important role in OOAD; it standardizes the
visual vocabulary of software architects, designers, and developers by providing
software-modeling artifacts born out of best practices and notations that have
successfully been used to model complex business problems throughout the years.
The OMG defines the UML as follows: “[A] graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive
system. The UML offers a standard way to write a system’s blueprints, including
conceptual things such as business processes and system functions as well as
concrete things such as programming language statements, database schemas,
and reusable software components.”4

The UML represents the de facto standard and lingua franca for visually doc-
umenting the processes of OOAD in a methodology- and process-independent.

3. G.A. Miller, “The magical number seven, plus or minus two: Some limits on our capacity for
processing information” (The Psychological Review, vol. 63, 1956) pp. 81–97.

4. Object Management Group, “OMG Unified Modeling Language Specification,” Version 1.5
(March 2003), p. 1–1.

1259c02.fm Page 31 Friday, February 27, 2004 1:13 PM

Chapter 2

32

It’s relatively easy to learn, semantically rich, and it addresses several contem-
porary development issues such as scalability, distribution, and concurrency.

It also represents a natural evolution of the software-engineering industry
toward standardization. If you make an analogy to the construction industry, it’s
easy to see the benefit and need for the UML. In the construction industry, an
architect designs a building. The result of the design process is a set of blueprints
that the builders use to construct the building. Different blueprints are tailored to
different tasks. For example, structure builders need to know about load-bearing
walls, plumbers need to know about waterlines, and electricians are concerned
with the electrical layouts. In construction, models specify the level of detail and
areas of concern for specific construction tasks. The more complex the building,
the more crucial it is for the information embodied in the blueprints to be easily
understood by the builders.

The UML is the unifying force behind making blueprints in the software trade
as commonplace as they are in the construction trade. The rewards of the UML are
many, including standardization, globalization, and the emergence of a modeling-

tool marketplace that has increased the acceptance of modeling as a standard
practice of software engineering.

The semantics of the UML align well with the semantics of object-oriented
languages; after all, it was the object-oriented paradigm that triggered the events
that eventually led to the creation of the UML. The UML doesn’t present a very
steep learning curve for Java developers accustomed to “thinking in objects.” For a
comprehensive introduction to the UML in the context of a methodology (such as
Unified Process), we recommend Craig Larman’s Applying UML and Patterns.5

As implementations rapidly develop in complexity, the design decisions and
lessons learned are quickly lost in the noise of the construction details. The UML
fosters an industrywide memory by providing a vehicle in which designs (both good
and bad) in the form or patterns and antipatterns, can outlive implementations
and provide value in the present as well as the future. The debates about notation
don’t exist nowadays. Thanks to the wide adoption of the UML, the debate centers
on methodologies and processes.

Java and the UML

The Java community has benefited enormously from the revolution in modeling
that the UML has created. Among the many benefits that the UML has brought are
the following:

5. Craig Larman, Applying UML and Patterns (Prentice Hall PTR, 2001).

1259c02.fm Page 32 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

33

• Java’s open, accessible core enables developers to take advantage of the now
extensive UML tool market support for reverse engineering as a technique
for understanding the APIs.

• In general terms, the UML has elevated the communication level between
stakeholders, business analysts, architects, and developers.

• Industrial-strength automation via source-code generation from predefined
UML design templates is commonly achieved with many UML tools.

• Templates for well-known design patterns are available along with facilities
that turn generic models into J2EE components.

• The lost art of documentation has been given a new breath of life; most tools
support the creation of comprehensive documentation suites from models
and source code. Most Java tools support the creation of JavaDoc documen-
tation enhanced with UML.

UML Diagrams Used in This Book

In its current incarnation (version 2.0), the UML has a set of 13 diagrams that can
be classified in three categories: behavior, interaction, and structure. The original
9 diagrams (pre-UML 2.0) are the class, component, deployment, object, package,
sequence, state machine, and use case diagrams. The new additions to the specifi-
cation include the communication, composite structure, interaction overview,
and timing diagrams.

There are also three-model management diagrams tailored to the modeling of
different aspects or views of a system at different levels of detail. Stand-alone UML
diagrams in isolation lack cohesion without a higher level of organization. They
become disconnected pieces of a puzzle. The UML model management constructs
bring a set of diagrams together in a coherent way, thereby imparting a higher level
of understanding by grouping and further classifying individual diagrams in a
model. The model management elements include packages, model, and subsystems
and will be used throughout this book when needed in conjunction with some of
the core UML diagrams. Table 2-1 shows a list of the different diagrams used
throughout the book for the design and development of the TCMS system and a
short description of their intended usage.

1259c02.fm Page 33 Friday, February 27, 2004 1:13 PM

Chapter 2

34

These four diagrams provide a comprehensive coverage of a system’s structure
and behavior from multiple perspectives. The core concepts of the UML enable these
perspectives to be used together to build a self-consistent system. These diagrams
represent the primary artifacts used in the analysis and design of the system. Knowing
which diagrams to use and when to use them is one of lessons that you’ll eventually
learn. The basic approach is to find a combination of diagrams that both reflect
the static structure of the domain you’re trying to model as well as the interaction
and behavior of the system entities. Throughout this chapter and the rest of the
book you’ll learn the diagrams shown in Table 2-1 in greater detail in the context of
the TCMS case study.

UML Stereotypes

An important quality of the UML is its extensibility, which gives the UML the
ability to grow in a controlled fashion to meet future demands while remaining
true to the object-oriented paradigm. At the core of the UML, you’ll find the meta-
model that defines the basic abstractions from which all modeling elements are
defined. The UML extensions exist to enable the enhancement of the UML expres-
siveness without affecting or changing its core, that is, the metamodel.

Of these extension mechanisms UML stereotypes are by far the most powerful
and popular extension mechanism to date. They characterize UML components
that are imparting specialized semantics. In other words, UML stereotypes are
used to further qualify an element of a UML diagram. The simplest way to explain
a stereotype is as a label or tag that can be attached to a model element in order to
enhance its meaning in the context of a given diagram. Stereotypes can be used
with most elements of an UML diagram, including classes, components, operations,
and associations.

Table 2-1. UML Diagrams Used in the Analysis and Design of the TCMS System

Diagram Type Used for Modeling

Use case Requirements/

High-Level Behavior

Relationships of actors and use cases

within a system

Class Static Structure Class structure and relationships

among classes

Sequence Interaction Message exchanges (time perspective)

Component Implementation Organization and dependencies of

components

1259c02.fm Page 34 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

35

Many methodologies use stereotypes to add extra levels of expressiveness to
UML diagrams. UML stereotypes allow the semantics of the UML to be extended
in a way that models become more expressive. Stereotypes “brand” other model
elements by imparting a set of values, constraints, and optionally, a different
representation. Stereotypes have many possible representations, with the most
commonly used being a string enclosed in guillemets (that is, << >>). You make
extensive use of stereotypes when modeling components in the J2EE environment
and in general by adopting Peter Coad’s modeling-in-color technique and the
domain-neutral component (DNC), which are techniques used to produce better
object models and enterprise components.

...

Model-Driven Architecture and the UML

Where is the UML headed? How will it affect enterprise Java development in the
future? These are questions that many developers think about. Field experience
tells you that the UML currently has an impact on the initial stages of analysis
and design of a J2EE system, but its usage sharply dies off after this stage. The
OMG is strongly promoting the concept of a Model-Driven Architecture (MDA)
in which applications (with the help of the UML) are defined in a completely
technology-independent fashion and are then realized in an given platform such
as CORBA, .Net, or J2EE.

The MDA is the next step in the evolution of the software-engineering practice
and places the model as the centerpiece of your trade. In essence the MDA
concerns itself with specifying a system independently of a platform, specifying
platforms, and then transforming a system’s specification into an implementation
given a chosen platform. Its primary goals are portability, interoperability, and
reusability.

Open Source MDA tools are beginning to emerge, such as AndroMDA, which
generates Enterprise JavaBeans (EJB) components from a properly annotated
(using stereotypes) component model file in eXtensible Metadata Interchange

...

(XMI) format.

Future of the UML and Java

As with any committee-driven initiative, it’s expected that the OO languages that
the UML is meant to support will evolve at a faster pace than the UML. Emerging
component architectures like EJB and new service-oriented paradigms like web
services are currently partially supported via some of the extension mechanisms

1259c02.fm Page 35 Friday, February 27, 2004 1:13 PM

Chapter 2

36

previously mentioned in this chapter. Using a UML profile such as the one proposed
by JSR 26 (UML/EJB Mapping Specification) will standardize the extensions used
and enable tool interoperability.

NOTE JSR 26, the UML profile for EJB, defines extensions that will enable
tool vendors to standardize on a set of UML extensions used to annotate
models in a way that they can be used to generate EJB components.
Also the extension will enable the reverse engineering of a system
composed of EJBs into a UML model. The EJB-JAR format is targeted as
a possible carrier for a “UML Descriptor for EJB,” which is an XML file
that “identifies UML models stored in the same EJB-JAR and their relation-
ship to EJBs in the EJB-JAR”.6 Enterprise tools could then use these store
descriptors for automation and reflection.

But you could argue that if UML profiles proliferate at too high a rate, the UML
will become a fragmented beast representative of the problems it was created to
solve in the first place. A delicate balance must be achieved by the OMG between
adding new concepts to the core of the UML and the liberal use of the extension
mechanisms.

Like any general-purpose technology in the rapidly changing landscape of
today’s technology, the UML is still a work in progress and it will probably remain
that way for the foreseeable future.

Expect Java development to further benefit and extend from the new enhance-
ments to the UML. Problems such as the impedance mismatch between objects
and relational databases are being addressed at a conceptual level within the
UML. Tool interoperability is slowly becoming a reality with XMI, which goes to
show how XML is slowly finding a place within the UML. The ability of business
rules to be expressed in the context of an object model is gaining ground with the
usage of the Object Constraint Language (OCL).

The notion of executable UML models is rapidly gaining followers in the world
of embedded and real-time systems. Executable UML models are an attempt to
once again raise the level of abstraction at which humans deal with problems and
their solutions. Several efforts are underway to make executable UML a reality, and
it’s expected that yet another breed of tools will emerge and that the lessons learned
will trickle down into the UML specifications. The OMG and their MDA envisions
the complete specification of systems using models. These models are built on a
Platform-Independent Model (PIM) that models a solution without any ties to a
specific implementation technology. In the fall of 2001, the OMG extended the

6. Jack Greenfield (Rational Software Corporation), “UML Profile For EJB” [JSR-000026
UML/EJB(TM) Mapping Specification 1.0 Public Review Draft] (2001), p. 8.

1259c02.fm Page 36 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

37

semantics of the UML with a very complete set of semantics for actions defined at
a very high level of abstraction. UML models will rely on these actions to accurately
translate models into executable systems. Executable UML is more that just mere
forward engineering; it’s a move upwards to a higher level of abstraction that makes
code a rarely seen low-level entity as obscure as CPU registers are to a Java developer.

Code Generation and Round-Trip Engineering

Many of the OOAD CASE tools available nowadays feature both code generation
and forward and reverse (round-trip) engineering of models to code and vice
versa. Knowing when to use those features is a judgment call that must be based
mostly on the capabilities of a given tool.

In the Java world, round-trip engineering is gaining new ground as tool vendors
experiment with the concepts of MDA, Metadata (see Java Metadata Interface
(JMI) specification, JSR 40) and the previously mentioned UML profile for EJB.

Tools like AndroMDA are paving the way for the creation of J2EE components from
a UML model.

In iterative development, reverse engineering can help in the discovery of
potential areas of code reuse, in the application of design patterns, and with possible
structural problems such as high coupling and low cohesion. Possible encapsu-
lation and the discovery of component interfaces are activities that can also benefit
from a process of reverse engineering. Also, in the case for which there is an existing
code base—which is a typical case in the industry because unfortunately most
projects seem to go through more than one attempt—reverse engineering can
help you determine what code can be reused and what needs to be thrown away.
In the absence of documentation, some of the lessons learned in any previous
attempts might be revealed for the benefit of the current effort.

In combination with forward engineering, CASE tools can help a system
remain true to its architectural vision by providing near-instant feedback on the
results of an iteration, and allowing for corrective and preventive measures to
be taken.

That said, it’s important to point out that code generation and round-trip
engineering are in their infancy and you must take care not to get caught in a cycle
of manually correcting poor, skeletal code.

Methodologies, Processes, and the UML

Most modern methodologies have adopted the UML as the foundation for their
notations. That said, it’s important to note that the UML doesn’t impose a specific
methodology or process, yet it enables a model-driven, architecture-centric, iterative

1259c02.fm Page 37 Friday, February 27, 2004 1:13 PM

Chapter 2

38

and incremental process especially suited to work with distributed, object-oriented,
component-based systems. The UML is therefore an enabling force that encourages
the application of methodologies in the form of processes.

There are a variety of methodologies and processes, and an equally large set of
reasons why one might be a better fit for a particular development effort. Factors
such as the personality makeup of a development team, the size and scope of a
system, and the target architecture all weigh heavily in deciding what method-
ology to follow. Experience shows that no methodology is a perfect fit for every
organization and for every system. But most experts in the industry seem to agree
that any semblance of a process is better than no process at all. Of course,
devotion to process for the sake of process leads to what Steve McConnell refers to
as “cargo cult organizations”7 in which there is the perception that the production
of process-related documentation guarantees a project’s success. But the reality is
that the combination of a committed team and the right amount of process are key
to a project’s success.

Most successful contemporary methodologies share one common trait: None

are linear. Iterations, with discovery, assessment, and enhancement cycles, are the
norm. Waterfall or “big-bang” development has proven ineffective and inflexible
when dealing with the dynamic nature of contemporary applications. Incremental
development with small, well-defined models and test-driven deliverables are
winning the race and delivering on-time and on-budget quality software systems.

In the neverending debate over methodologies, contrasting lines have been
drawn between the so-called heavyweight methodologies and their counterparts:
the lightweight or agile methodologies. Describing and comparing both method-
ologies and process types is rather difficult. No proponent of a methodology refers
to it as a heavyweight methodology; the term has been coined in a negative context to
mean that a methodology focuses excessively on the actual process and documen-
tation and not on the results. Agile methodologies have risen out of the frustrations
caused by negative experiences in trying to follow rigid and predictive methodologies.
By adapting rather than predicting, agile methodologies acknowledge that a map
is hard to follow when the landscape is constantly changing. Agile methodologies
focus on people first by accommodating the way programmers work and viewing
coding not as a construction-only phase but also in large part as a design-refinement
phase. This notion is a notable departure from the usual analogies to the construction
trade, in which design is thought of as a creative process and construction is a
repetitive, manual process. Agile methodologies view coding as an extension of
the design as well as an equally creative process. Because creative processes are
quite hard to predict, as agile proponents claim, it’s very hard to control such a
process with a methodology that’s rigidly designed to control predictable processes.

7. Steve McConnell, “From the Editor,” (IEEE Software, March/April 2000). Available online at
http://www.stevemcconnell.com/CargoCultSe.pdf.

1259c02.fm Page 38 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

39

NOTE It bears mentioning that proponents of methodologies considered
heavyweight or formal are quick to show that their methodology can be
implemented as a light or agile process. One common example is the
Rational Unified Process (RUP) for which there are several references in
the literature on how to implement an “RUP instance” in an agile fashion.

In this book you’ll draw ideas and best practices from several of the most
prevalent methodologies. You’ll use ideas from the Unified Process (UP)8, Feature-
Driven Development (FDD),9 and Extreme Programming (XP).10 As a guide for
newcomers to the modeling world, the OMG suggests that you first select a meth-
odology and then find a UML modeling tool that best supports it. Your approach
will be simpler and much more cost effective, when possible, and for the sake of
continuity you’ll use a tool that will enable you to evolve your models as your system
development gets under way. Current tools aren’t as flexible as you’ll want them to
be and aren’t conducive to collaborative work in the way that a simple whiteboard
and a set of markers are. Therefore, if the tool is getting in the way of progress put
it aside and go the low-tech way!

Methodology Lessons Learned

We’ve listed a brief set of best practices or general guiding principles from the
methodologies previously outlined. These methodologies share many common

traits that can be used by anyone to improve the quality of software.
A development model is needed to guide, document, and provide feedback to

the customer, stakeholder, or client. In the race to deliver quality software on time
and on budget, several methodologies have evolved to mitigate the often drastic
trade-off between quality, time, and cost of construction. Most contemporary
methodologies acknowledge the following:

• Feedback to the customer in the form of working software, as opposed to
reports or mockups, is of the utmost importance for a project to remain alive.

• Any processes need to strive to minimize the overhead of applying the
process. Programming is a creative endeavor and an overly constrained
process is a quick way to kill creativity.

8. Jacobson et al, The Unified Software Development Process (Addison-Wesley, 1999).

9. Coad et al, Java Modeling In Color With UML: Enterprise Components and Process
(Prentice Hall PTR, 1999).

10. Kent Beck, Extreme Programming Explained (Addison-Wesley, 1999).

1259c02.fm Page 39 Friday, February 27, 2004 1:13 PM

Chapter 2

40

• Models are only good if they guide the development of a system. A model is
nearly useless in practice if the resulting code base isn’t a reflection of the
models.

• No methodology is a one-size-fits-all solution. Some work better with dif-
ferent team personalities, different project domains, and different levels of
project complexity and different team sizes. If a model-driven methodology
is selected hastily, it’s never too late to switch into a more appropriate meth-
odology. The UML can make this transition smoother by enabling models to
be universally usable by any methodology or process.

• If at all possible, reinforce a methodology by selecting a CASE tool that
enforces the values and practices of said methodology. But if no available
CASE tool fits your team’s work methodology you can always rely on low-
tech approaches to successfully mitigate the task of modeling.

We encourage teams to borrow practices from different methodologies. After
all, only the application of a practice can help you discern those based purely on
theory from those based solely on practice. For example, we usually borrow ideas
from Jeff Sutherland’s SCRUM project’s management methodology, which includes
daily SCRUM meetings in which we ask ourselves what has been accomplished
since our last meeting, what roadblocks we’ve encountered, and what we plan on
doing between now and the next meeting. Other practices we subscribe to include
the minimization of static modeling and active on-the-job knowledge transfer.

NOTE SCRUM is a lightweight, agile way to manage a project that shares
many of its ideals with XP. Like XP, it’s centered on the concept of an
iteration as a period of planning and execution that results in a perceiv-
able and measurable value. In SCRUM, a daily iteration is called a
“scrum” though the external iteration is termed a “sprint,” which is a
manageable “scrum” collection that makes up a milestone (usually not
more than 30 days).

Design Roadmap

To tackle the ongoing design process of the TCMS system, you should follow a
simple design roadmap that will guide the reader through the creation of the
models and the consequent production of the code that will materialize those
models into a working software system. The roadmap consists of several steps or
activities, many of which can be accomplished in parallel as follows:

1259c02.fm Page 40 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

41

• Creation of an analysis object model (domain model): An understanding of
the domain is documented in the form of a static model (class model) that
will serve as guidance during the requirements analysis and creation of the
design models. This step gives a high-level foundation from which it’s easier
to see subsystems of related objects and components emerge. A domain
model also serves as a way to validate any assumptions or preconceived
notions about the domain and solidifies and centralizes the knowledge
about the problem domain.

• Requirement analysis: Actors are defined from the analysis and architectural
documents. User use cases (a use case that fulfills a specific feature) are
created for high-level interactions of the primary actors with the system.
User use cases are then decomposed into system-level use cases if necessary.
System-level use cases depict actions taken by specific components in the
system to accomplish a task needed for the fulfillment of a user use case.
Quick assessment of the reuse of system-level use cases is performed. High-
priority use cases are written in detail to curtail major risks (detail doesn’t
mean implementation-specific details). Analysis of requirements continues
iteratively for as long as the project or product is alive.

• Iteration planning: Iterations are planned based on a group of use cases.
Integration planning is performed to determine points of integration and
modifications, or enhancements to the overall automation of the integration
process are made. In this book each chapter is set as an iteration that sets
out to fulfill a certain number of use cases.

• Iteration execution: Detail is added to use cases, both user and system use
cases. Tests are written for each feature, and integration code or scripts are
created or enhanced. Detailed dynamic models are created (detailed enough
to be implemented and detailed enough to utilize any forward-engineering
features of the CASE tools available to the maximum). Class diagrams for
any subsystems created are defined and the overall model diagram is updated
to reflect the results of the iteration. Whenever necessary, component diagrams
and subsystem diagrams are created, thereby displaying the component
interfaces and their relationships to the object models.

The activities described provide a baseline for the development plan. As the
system evolves, the choices of the models and diagrams created have a high impact
on how a specific problem is solved. Experience is the best guide as to how to pick
the number and types of diagrams needed. Again, always remember that the code
is the final product and no amount of diagrams will make a customer happy.
Figure 2-1 shows a diagram depicting the activities followed for the TCMS system.

1259c02.fm Page 41 Friday, February 27, 2004 1:13 PM

Chapter 2

42

ArgoUML

The OMG, in its introduction to the UML, recommends that when getting started
with OOAD and modeling you should first select a methodology or process and
then select a modeling tool that properly supports the chosen methodology. The
reality is that it’s hard to judge what methodology will be a better fit for a certain
project. It’s only after working with the same team on a similar system that you can
say with confidence whether a methodology is a good fit or not. Consequently,
choosing an OOAD, UML-compliant CASE tool is also no easy task and the high
price tags associated with the leading CASE tools could make a bad decision in this
area have a negative impact on the bottom line, especially for mid-sized and small
businesses.

Figure 2-1. TCMS system-design roadmap

Analysis Iterative Design and Development

Initial Understanding and
Knowledge Gathering

Validates

Design and Create Tests, Design a Little, Code a Little
(test driven)

Actor2

Actor1

UC1

UC1

UC3

UC4

Refine understanding

Active Participation

Approval

Stakeholders

Active Participation

Plan Next Iteration, Adjust to Reality

Iteration

Release
and

Iteration
Planning

All tests pass?

Yes

Completes

Too much for one iteration?
Assess plan

Tests to pass are written

Design enough to pass the
tests

Code enough to pass the
tests

1259c02.fm Page 42 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

43

NOTE Although a set of models as depicted in this book might give you
the impression that the design was done in a “big design up front”
(BDUP) fashion as Scott Ambler of agile modeling fame refers to it. 11
The reality is that the models depicted in this chapter are the result of
an evolutionary process that took a nontrivial amount of time and
involved throwing away many intermediate models. The result of this
process is displayed in this chapter, and then we will concentrate on
development-centric issues in the rest of the book.

It’s important to understand that many times a modeling tool just gets in the
way of modeling. Many times a whiteboard, some markers, and a couple of Post-it
notes are all you need to successfully model a system.

TIP A common practice is to bring a digital camera and take snap-
shots of a model on a whiteboard as the modeling process progresses.
CASE tools haven’t yet matched the level of collaboration that sharing a
marker with a colleague achieves.

 To fill the void for a low-cost CASE tool, the Open Source community has
ArgoUML. ArgoUML is a 100-percent Java, Open Source (under the Berkeley
Software Design License, or BSD) UML-based CASE tool. Jason Robbins and David
Redmiles (Robbins’s advisor) started the ArgoUML Open Source project as part of
Robbins doctoral work on cognitive issues in software design at the University of
California, Irvine in the late 1990s. ArgoUML is quickly evolving as the Open Source
alternative in the CASE tool world and its rapid adoption has had a compounding
effect on the quality of the tool.

ArgoUML, although feature-rich, still lacks some of the features of high-end
commercial tools. The good news is that it’s built on pluggable modules that allow
it to grow in a controlled fashion. ArgoUML is part of the Tigris.org Open Source
project, a mid-sized Open Source community focused on collaborative development
tools (http://www.tigris.org). ArgoUML is the most prominent and active project
on the Tigris.org site.

11. Scott Ambler et al, Agile Modeling (John Wiley & Sons, 2002). For more information on agile
modeling also visit http://www.agilemodeling.com/.

1259c02.fm Page 43 Friday, February 27, 2004 1:13 PM

Chapter 2

44

ArgoUML is a very active project and the tool is rapidly evolving. Bugs and
instabilities are being fixed at a fairly fast pace. It’s built on a solid foundation that
uses other high-profile and stable Open Source projects like Ant (Another Neat Tool)
for building and ANTLER (ANother Tool for Language Recognition).

ArgoUML is currently compliant with version 1.3 of the UML standard. ArgoUML
modular architecture employs a pluggable metamodel library that enables fast
adoption of new versions of the UML standard. It also supports other standards
like the XMI format (version 1.0) for the exchange of models with other tools (XMI
is the standard mechanism used by ArgoUML to save models.) ArgoUML also has
full support for OCL syntax and type checking as well as limited support for code
generation via the ANTLR project.

Jason Robbins initially built ArgoUML as a test bed for ideas in cognitive psy-
chology and their applications to software design. These features are unique to
ArgoUML and include design critics, corrective automations, to-do lists, usage-based
tool adaptation and design checklists among others. Several of these features help
you keep the task of modeling focused on results rather than on the process that

aligns well with the philosophy of XP. As Scott Ambler of agile modeling fame explains,
a model is agile when it’s sufficiently understandable, accurate, consistent, and
detailed (the emphasis being in the word “sufficiently”).12 In XP terms a model
should be as simple as possible but not simpler.

Obtaining and Installing ArgoUML

It’s recommended that the Java Web Start (JWS) enabled version of ArgoUML is
used given the simplicity and power that the JWS launching platform provides.
With the JWS version of ArgoUML, installation and upgrades are automatic. To
find out how to obtain and install the JWS-enabled version of ArgoUML or the
stand-alone version, see http://argouml.tigris.org/servlets/ProjectDocumentList.

NOTE For more information on Java Web Start see
http://java.sun.com/products/javawebstart/.

User Interface Overview

ArgoUML is a 100 percent swing-based Single Document Interface (SDI) application.
The main application window consists primarily of four main panes, a menu bar,
toolbar and status bar as shown in Figure 2-2.

12. Ambler et al, Agile Modeling.

1259c02.fm Page 44 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

45

Figure 2-2. The ArgoUML UI

Now would be a good time to launch ArgoUML and begin exploring the user
interface. There are many panes and controls available, and you’ll need to remember
a few of them in order to effectively work in ArgoUML. ArgoUML comes packaged
with an array of sample models for you to explore in the www/models directory,
under the installation directory.

The Navigator Pane

The Navigator pane provides a tree-based view of the model elements that can be
dynamically changed based on the desired view and working model of the designer.
The Navigator pane is the main navigational mechanism. The tree view allows you
to expand and collapse nodes, thereby revealing or hiding model elements as
needed. It allows the tree view to be structured using several options. The Package-
centric and Diagram-centric views will cover most of your needs. Table 2-2 shows
the different model views available in the Navigator pane.

1259c02.fm Page 45 Friday, February 27, 2004 1:13 PM

Chapter 2

46

Table 2-2. ArgoUML Navigator Pane Model Views

Navigator View Description

Package-centric The default view, it provides a hierarchical view of all

packages, diagrams, and contained modeling elements.

Class-centric Shows classes in their package hierarchy as well as

datatypes and use case diagram elements. Similar to the

Package-centric view but it doesn’t show connecting or

associating elements.

Diagram-centric A rootless view showing only diagrams as top-level

elements.

Inheritance-centric Shows a hierarchy of modeling elements based on

inheritance. This view is relevant mostly when dealing

with a hierarchy of class elements.

Class Associations Shows a hierarchy of classes and their associations

(circular associations will be expanded ad infinitum!).

It also shows all diagrams at the top level.

Navigable Associations Supposed to show associations among classes (not

working as of version vPRE-0.14.a1).

State-centric This view shows relationships between elements of a

state diagram.

Transitions-centric Shows all transitions between elements of a state

diagram at the top level with their elements connected

by the transition as children. It also shows the state

diagrams in the model at the top level.

Transitions paths This view shows all transition paths between elements of

a state diagram in a tree hierarchy. Circular paths can

also be expanded ad infinitum.

Collaboration-centric A rootless tree showing all collaboration diagrams in the

model and their elements.

Dependency-centric This view shows a hierarchy of dependencies between

diagram elements (currently not working).

1259c02.fm Page 46 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

47

Package-centric is the default view, and it shows a hierarchy of objects for
which the root is the model. Child nodes can include packages, diagrams, and any
top-level but independent elements of any diagram (such as actors for a top-level
use case diagram). The Diagram-centric view provides a rootless organization,
which shows only diagrams at the top level and all other elements as children of
the diagrams they’re used in.

The Editing Pane

The Editing pane is the designer’s main work area, where UML diagrams are dis-
played and edited. A diagram-specific toolbar shows common operations and
elements that can be added to the active diagram. You’ll learn about the operations
and elements relevant to the creation of the models for the TCMS system throughout
the rest of the chapter.

The Details Pane

The Details pane shows specific properties for the diagram or a selected model
element. It’s presented as a tab pane with tabs for the following:

• To-Do Items: Shows outstanding critic-generated and user-generated items
for the selected model object. This pane allows the user to add new to-do
items, resolve a to-do item (wizards guide you through the process), snooze
the critic (temporarily ignore the item), or email a human expert for advice
on how to resolve a critic-generated to-do item (partially implemented).

• Properties: Displays the main, model-related properties of a model object
such as name, stereotype, namespace, visibility, and association.

• Documentation: Allows the designer to enter\JavaDoc tags for items such
as author, version, or whether an item is deprecated.

• Style: Controls the appearance of the model object. Characteristics such as
line and fill colors as well as size and shadow depth can be controlled from
this pane.

• Source: Displays the equivalent Java or UML definition of the selected item.

• Constraints: Contains the UML Constraints Editor. UML constraints are
invariants written (preferably) using the OCL.

1259c02.fm Page 47 Friday, February 27, 2004 1:13 PM

Chapter 2

48

• Tagged Values: Contains the Tagged Values Editor. Tagged values are name-
value pairs that can be associated with a model’s element. A property that
has been tagged with a given name will be assigned the value associated
with the tagged value. There are several predefined UML tags provided that
can be used in a model.

• Checklist: Will eventually provide a “user-level” to-do list. In the current
release of ArgoUML this tab is currently grayed out.

The most important tab, and the one you’ll use the most is the Properties tab,
which displays and enables you to edit any major features of the selected model
element.

The To-Do Pane

The To-Do pane displays all to-do items (see the “Design Critics” section later in
this chapter) in a tree-based view that can be dynamically sorted and grouped by
priority, decision, goal, offender, poster, or knowledge type. To-do items can be of
high, medium, or low priority. To-do items are categorized by design issue according
to 16 predefined decision categories including Class Selection, Design Patterns,
Code Generation, and others.

As you’ll learn later in this chapter, the To-Do pane also holds the output of the
design critics. The grouping options By Decision, By Goal, By Offender, By Poster,
and By Knowledge Type are intimately related to the work of the design critics.

The Menu Bar and Toolbar

The menu bar or main menu is organized around the following categories, and the
toolbar offers shortcuts to commonly used menu items.

• File: From here you can manage your ArgoUML projects and import source
code to be reverse engineered into UML class diagrams. You’ll also find other
utility functions like printing, saving a graphic of a given diagram, and others.

• Edit: Provides the typical edit functions applied to the selected artifact(s) of
the active diagram.

• View: This menu provides navigation features like tab pane navigation, and
enables you to switch to a given diagram. It also provides the more familiar
view controls like zooming and diagram grid management. There is also an
option to toggle notations between UML 1.3 and Java.

1259c02.fm Page 48 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

49

• Create Diagram: From this menu you can create class, use case, state, activity,
collaboration, deployment, and sequence diagrams.

• Arrange: Provides functions for the alignment, distribution, z-order, and
fine positional adjustments of diagram artifacts.

• Generation: From this menu you can generate code for a class or all classes
in a diagram.

• Critique: From this menu you can control ArgoUML’s unique Design Critics
feature as explained later in the chapter.

• Tools: Currently unavailable, it will eventually provide a plug-in point for
external tools.

• Help: System information and the About screen. ArgoUML doesn’t ship with
a program-accessible documentation set or a context-driven help system.

Initial State

Once started, ArgoUML will create a brand new project or open the last saved
project automatically, as long as you configure it to do so by choosing Edit ➤
Settings and selecting Reload Last Saved Project on Startup.

Cognitive Features in ArgoUML

ArgoUML provides some powerful features not found in any other UML CASE
tools. Many of these features stem from the field of cognitive psychology and
attempt to make the software adapt to the working habits of the designer and in
many areas it assists by making predictions on what the designer might do next.

The cognitive features of ArgoUML can be categorized as follows:

• Reflection in action: Acknowledges that complex systems evolve and
designers heavily reflect on their designs. To support reflection in action
ArgoUML contains features like Design Critics, Corrective Automations,
To-Do Lists, Checklists, and the partially implemented User Model.

1259c02.fm Page 49 Friday, February 27, 2004 1:13 PM

Chapter 2

50

• Opportunistic design: Is based on the concept that designers follow a path
of the least “cognitive cost”13 rather than a structured, hierarchical path. To
support opportunistic design ArgoUML features To-Do Lists and Checklists
and in the near future, a feature called Work Breakdown Structure. These
tools help designers’ natural tendency to evolve their designs via a path of
least resistance.

• Comprehension and problem solving: ArgoUML includes multiple views or
perspectives of the working model in order to help designers rapidly gain an
understanding of a model and help them discern new connections between
model elements. Features of ArgoUML supporting this theory include the
navigational perspectives as shown in the Navigator and To-Do panes as
well as many wizards.

Design Critics

Design Critics are an automated user interface feature that provides assistance to
a designer. Design Critics are a process that works in the background as the design
process is being carried out by the designer. Using a series of heuristics, Design
Critics provide feedback on the decision-making process. You can think of them as
a set of rules that are applied by a rule engine to the state of a model, which produces
a set of actions in a form that the user can choose to ignore. It’s a very unobtrusive
feature. Feedback from the Design Critics is called critiques and appears as to-do
items in the To-Do pane.

Design critics act as a guide and automated mentor. It’s expected that as the
designer gains more experience the number of critiques will diminish. Design
Critics can flag perceived anomalies in a model and automatically correct them at
the user’s request. Critics can also integrate with other expert human designers via
email. This feature is currently partially implemented and it will default to sending
an email to the discussion list for users of ArgoUML.

Each critic monitors a specific design criterion and the result of its work is
called a critique, which is a recommendation or statement about an aspect of a
model that doesn’t appear to follow good design practices.

ArgoUML Design Critics are configured via the Critique menu item. By default
the option is turned on, but you can turn it off by selecting Critique ➤ Toggle Auto-
Critique. The Critique menu also contains the following options that you’ll need to
configure:

13. ArgoUML online user manual, Chapter 8.

1259c02.fm Page 50 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

51

• Design issues: Design issues have different categories and priorities assigned
to them. In this particular window a list of the decision types with priorities
ranging from zero to five (zero being off and five being the highest priority)
is shown. The setting here is applied globally to all critics. Setting all decision
priorities to zero will effectively deactivate the critics. The decision types
available include Class Selection, Naming, Storage, Planned Extensions,
State Machines, Design Patterns, Relationships, Instantiation, Modularity,
Expected Usage, Methods, Code Generation, Stereotypes, Inheritance, and
Containment.

• Design goals: Higher-level guidance for the application of critiques. The
same priority system used for the design issues applies to the goals of a
critic. The setting on this window applies globally to all design goals. Currently
there is only one design goal category: Unspecified. Setting the priority of
this category to zero will effectively deactivate all critics.

ArgoUML also provides an option for browsing the existing critics by selecting
Critique ➤ Browse Critics. In this window you can modify certain properties of a
critic such as headline (name), priority, and long description. You can also turn a
critic on or off (“snoozing” a critic in ArgoUML terms).

Critics also manifest themselves graphically on certain modeling elements.
For example, in the case of a class element, a yellow note symbol will appear in the
upper-left corner of the class when there are critiques associated with the class.

For example, on a newly added class, a critique telling you to name the class
will appear.. To view the critique you can right-click the class and select Critiques ➤
Choose a Name. This will select the critique in the To-Do pane.

There are 85 built-in critics in ArgoUML. Some of them watch over the naming
of model elements as well as the aesthetic aspects of the model—for example, in
preventing overlapping graphical elements. Other critics watch for places in a
model where a pattern like the singleton can be applied or decide whether two or
more classes should be combined. Still other critics check more fundamental flaws
and the correctness features of a model, such as, for example, circular composition,
illegal generalization, nonpublic interface operations, and interfaces with attributes.

Drawing Diagrams in ArgoUML

The ArgoUML interface should be familiar to anyone who has used a drawing tool
or another UML CASE tool. Diagrams are drawn using the tools available on the
Editing pane toolbar, by selecting an artifact and clicking the diagram to place it at

1259c02.fm Page 51 Friday, February 27, 2004 1:13 PM

Chapter 2

52

the desired position. Most model artifacts are meant to be associated with other
artifacts in a diagram. In ArgoUML you have access to the most used association
for a given element right from the element itself. By selecting a model artifact or
hovering with the mouse over an already selected model artifact, you’ll see squares
appear on the artifact’s periphery that hint at the possible associations available.
To use them, simply click and hold the desired association hint (square) and drag
it to another artifact in the diagram. Figure 2-3 shows the association hints for a
class artifact.

Besides UML artifacts, the toolbar also provides general drawing tools to
create rectangles, circles, lines, polygons, curves, and free-flowing text. These can
be used to complement and supplement the expressiveness of a given diagram.

One of the features unique to ArgoUML is the Broom Alignment tool, which
supplements the usual array of positioning- and alignment-related commands.
This tool enables you to sweep several diagram elements horizontally or vertically,
thereby aligning them. The Broom tool is the rotated T-shaped button (second
from the left on the toolbar). The Broom’s orientation is determined by the initial
mouse gesture. After you select the direction, you can move the mouse and sweep
elements against the edge of the broom. Moving the mouse perpendicularly in the
direction of the broom increases the size of the broom’s edge, thereby allowing you
to cover a larger area with possibly more elements.

Figure 2-3. Association hints

1259c02.fm Page 52 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

53

Case Study: Modeling the TCMS with ArgoUML

The next step is to create an analysis object model, also known as a domain model,
based on the design roadmap. The choice of whether to model structure or behavior
first is a hotly debated topic in object-oriented circles. In cases where the domain
is well understood it’s beneficial to start by consolidating the domain knowledge
into a domain model. Well-chosen abstractions that are a true reflection of the
business domain will naturally fall into the right roles when modeling behavior.

In ArgoUML, select File ➤ New Project (or press Ctrl-N). A new project will be
created with a root element model that contains two children nodes, a class diagram,
and a use case diagram, as shown in Figure 2-4.

Figure 2-4. New project

1259c02.fm Page 53 Friday, February 27, 2004 1:13 PM

Chapter 2

54

Next you can rename the model root element by selecting it on the Navigator
pane and then selecting the Properties tab in the Details pane. Alternatively, you
can right-click the Navigator node and select Properties. In the Name field on the
Properties tab, enter Tcms. Notice that the To-Do pane (lower left-hand corner)
has changed to the By Goal view for critiques or to-do items, and Unspecified is
the root node of the tree view. Expanding the Unspecified node will reveal the fol-
lowing two subitems:

• Revise Package Name Tcms

• Add Elements to Package Name Tcms

Select the Revise critique and the text will appear on the To-Do tab of the
Details pane, explaining the critique, as shown in Figure 2-5.

The design critic tells you that it’s a good practice for package names to be
written in lowercase. To automatically fix the package name, select the Next button,
which will show the suggested new package name as “tcms”. You can now select
the Finish button and the change will be automatically applied. Remember that
the critiques are suggestions, which you can choose to ignore. Also you can choose
to manually rename the model as stated in the critique explanation.

Under the tcms package you’ll want to create two packages. One package will
contain all diagrams for the domain analysis and the other will keep all the solution-
space design diagrams. To create a package, right-click the tcms package and
select Add package. A new package will appear with the name “(anon Package)”.
Select the new package on the tree view and, using the Properties tab, change the
name to “domain”. Repeat this operation and create another package under the
tcms named “solution”. You’ll also want to remove the current default diagrams
and create new diagrams under the newly created packages. To remove a diagram
you can right-click it and select Delete from Model. Notice that you can only delete
one of the diagrams. For a model to be valid, ArgoUML requires at least one diagram

Figure 2-5. Critique details

1259c02.fm Page 54 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

55

to be present. Before you remove the remaining diagram in the model, you need to
create a diagram under the domain package.

To add a class diagram select the domain package on the Explorer and from
the menu select Create Diagram ➤ Class Diagram. Rename the new class diagram
“Class Diagram”. Now you can proceed to remove the remaining diagram at the
root of the project. The resulting project should look like the one depicted on
Figure 2-6.

Figure 2-6. TCMS ArgoUML project

Finding and Refining Candidate Domain Model Elements

Based on the TCMS vision documents and high-level architectural blueprints
introduced earlier, you can compile a list of candidate domain models. For this
one you could use Class-Responsibility-Collaboration (CRC) cards or simply (as
performed here) create a list of nouns and verbs by manually scanning the source
documents. This process isn’t merely a manual process, because it entails analyzing
the understanding of the system and eliminating and discovering new candidate

1259c02.fm Page 55 Friday, February 27, 2004 1:13 PM

Chapter 2

56

classes and new operations that weren’t present in the source documents. This newly
discovered domain knowledge can then be added to the source documents to
ensure that it isn’t lost.

The resulting filtered list of nouns is obtained by collapsing synonyms and
eliminating nonentities (candidates that might be properties or modifiers, or may
represent a state of an object). After analysis the resulting list shrinks in size. Now,
the structural relationships between the candidate objects can be modeled. This
process will further refine the candidate objects and will resolve many ambiguities
about the understanding of the problem domain that you haven’t previously
encountered. The list of Nouns representing candidate entities is show in Table 2-3.

Table 2-3. TCMS Candidate Entities (Nouns)

Noun Description

Sponsor A sponsor is an individual or company that is

“sponsoring” a conference.

Conference administrator An administrator is an individual that has privileged

access to conference-related functions.

Presenter A presenter is an individual that presents one or more

sessions.

Attendee An attendee is a registered user who is attending a

conference.

Organization A nonindividual legal entity.

Conference An event that consists of one or more sessions.

Conference Track A high-level classification of the topics covered in

a conference.

Presentation A collection of materials and information to be conveyed

to an audience in a predetermined amount of time.

Session An event that embodies the act of “presenting” a

presentation.

Schedule A list of events that an attendee or a presenter will

attend during a conference.

Venue A physical location where a conference takes place.

1259c02.fm Page 56 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

57

Following Peter Coad’s domain neutral component, you start the modeling of
the actions embodied in the verbs (action phrases) gathered as objects in your
domain model. Based on research into parallel object-oriented programming lan-
guages conducted at Stanford University14 it was concluded that real-time tasks
such as making a reservation or purchasing an airplane ticket should be modeled

as objects that encapsulate (facade) the complexity of the task and simplify the
associations between participating objects.

The question of whether to model the structure or behavior first is one that
many beginning and intermediate modelers deal with during every new project.
We recommend doing both simultaneously because modeling behavior validates
the structural integrity of the model, and well-defined entities that reflect a domain
naturally fall into place when modeling behavior.

TIP Don’t overanalyze with the noun and verb exploration. Concen-
trate on finding the principal candidates; others will emerge as you
refine the analysis and design.

With this preliminary list of nouns you’ll begin to construct a static model and
the behavioral part of the domain model will begin to emerge. We emphasize that
this is an iterative process and that the models produced will evolve as the system
is constructed. In addition, certain assumptions made are validated while others
are refuted. Remember, the analysis of the system helps you gain a deeper under-
standing of it, but doesn’t prevent you from deducing knowledge that might be
erroneous and based on naive, preconceived notions.

Booth A temporary structure where sponsors can showcase

their products during a conference.

Room A room that is part of a venue.

Abstract A document that explains the intent of a given

presentation in compressed form.

14. R. Chandra, A. Gupta, and J. L. Hennessy, “Integrating Concurrency and Data Abstraction in
the Cool Parallel Programming Language” (IEEE Computer, February 1994).

Table 2-3. TCMS Candidate Entities (Nouns) (Continued)

Noun Description

1259c02.fm Page 57 Friday, February 27, 2004 1:13 PM

Chapter 2

58

Object Modeling Using Archetypes and Color in UML

An insightful and useful technique that hasn’t received the level of recognition it
deserves is the use of color, as proposed by Peter Coad in his book Java Modeling in
Color with UML: Enterprise Components and Process (Prentice Hall PTR). The
color in UML technique hinges on the notion of an archetype, which is a concept
similar to the concept of a stereotype in UML with the difference being in the
rigidity of the definition and its effect on the target class. An archetype is a way to
tag a class as something that more or less adheres to a certain set of characteristics.
(This is a looser definition than inheritance for example.) Coad started using 3M
Post-it Notes, which come in four colors, pink, yellow, blue, and green, to label
model elements. Coad assigns a color to each one of the archetypes or class categories.
The addition of color gives you a sense of spatial layering that enables designers to
quickly capture both structure and behavior and helps you to see dynamism in an
otherwise static class diagram. Coad defined the following four main archetypes
and associated them with four colors:

• Moment-Interval (pink): The moment-interval archetype represents an
activity that can be tracked in time, something that occurs at a moment in
time or over an interval of time. Registering for the conference, submitting
payment, and browsing sessions are all examples of Moment-Intervals.

• Role (yellow): The role archetype represents the way something participates
in a moment-interval, for example, a person can participate in a conference
while playing the role of attendee.

• Description (blue): The catalog-entry description archetype represents a
value or set of values that can be used to label a set of things. The easiest way
to think of the description archetype is to think of information that classifies
an entity but that doesn’t define its identity. For example, nationality and
immigration status can be considered descriptions for a person while a
passport number or green card number will be a part of that person’s
identity information.

• Party, place, or thing (green): The party, place, or thing archetype, PPT for
short, represents the things that can play a role in the different activities of
the system.

The four basic archetypes are interconnected in a way that repeats over and
over in models. This pattern in its simplest form entails a PPT playing a role in a
moment-interval, which might affect other PPTs. PPT also might have descrip-
tions associated with them. In this pattern physical entities such as PPT never
interact directly but instead are participants (as role players) in an activity.

1259c02.fm Page 58 Friday, February 27, 2004 5:01 PM

Design with ArgoUML

59

For example, in the conference attendee example a person (party) is an attendee
(role) in the context of a conference (moment-interval). The temporal relationship
between the conference and the person is fulfilled by the attended role. This basic
pattern is depicted in Figure 2-7.

NOTE In this book the colors for the Coad Archetypes are represented
as shades of gray. Visually the power of the technique hinges on the use
of color. To see the images in color visit http://www.ejdoab.com.

Figure 2-7. Basic relationships between the Coad archetypes

1259c02.fm Page 59 Friday, February 27, 2004 1:13 PM

Chapter 2

60

As you’ll see later in more detail the main formula is to find an activity
(moment-interval), find the participants in that activity (roles), and find who or
what is playing that role (party, place, or things). You begin by making a list of possible
m-i classes that are central to the system in question. Eventually you’ll arrive at a
model for which all classes belong to one of the four archetypes. Table 2-4 shows
your initial list of m-i candidates. As you can see you started at the highest level
and moved toward moments-intervals of finer and finer detail. For example, at
the highest level you have the conference as the top m-i class. Conference is an
m-i class because it’s something that happens over a period of time and can be
tracked for legal and business reasons. You can also see that your four main stake-
holders are roles played by either a person or an organization of some kind.

NOTE In their book Java Modeling in Color with UML: Enterprise
Components and Process, Coad et al use an archetype called a moment-
interval detail, which is also colored pink and labeled with the stereotype
mi-detail. Moment-interval details are classes that hold information
about a moment-interval class. They are usually associated with a
moment-interval via aggregation. In this book we don’t use m-i details
for the sake of simplicity.

Table 2-4. TCMS Candidate Moment-Interval Classes

Moment-Interval Participants (Roles) Role Player

Conference Sponsors, Administrator,

Presenter, Attendee

Person/Organization

Conference Registration Attendee, Presenter Person

Conference Track Attendee, Presenter Person

Schedule Attendee, Presenter Person

Session Attendee, Presenter Person

Session Evaluation Attendee Person

Call for Papers Presenter Person

1259c02.fm Page 60 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

61

The Domain-Neutral Component

A more encompassing set of interconnections between the four basic archetypes
is the domain-neutral component (DNC), which is a template built upon the four
archetypes based on roles being played by the three different entitylike elements
(PPTs): party, place, and thing. This results in a template model with three legs or
branches: the party branch, the place branch, and the thing branch. The DNC, as
originally introduced by Coad, is shown in Figure 2-8.

Figure 2-8. The domain-neutral component

1259c02.fm Page 61 Friday, February 27, 2004 1:13 PM

Chapter 2

62

The result is a flexible, semantic-based class diagram template that you can
use to build any kind of model. The best part is that it’s remarkably simple to use.
You don’t have to fit your model into the DNC, rather, the DNC will guide you to
make your model more complete. The trick about using the DNC is an understanding
that archetypes are very flexible definitions, and that elements of the DNC template
can be dropped out to simplify the model. Basically you start with a very complete
model and progressively collapse or drop archetypes as you go along.

This takes a bit of effort in the beginning because programmers tend to model
interactions or temporal relationships between elements as a method in one of the
participating elements. The DNC and the four archetypes hinge on the notion of
representing these relationships as elements themselves.

You might be asking yourself where we’re going with all this color stuff. The
truth is that it takes a bit of time and a couple of models to begin to grasp the power
of the technique. But once it sinks in it will help you produce better, more accurate,
and complete models. To an extent it’s a completeness theorem of sorts, especially
when it comes to modeling. That’s the main goal of the technique—to make you a

better modeler.

Adding Modeling Elements to the Class Diagram

The next step is to graphically construct the model. Renowned object technologist
Martin Fowler defines a domain model as “an object model of the domain that
incorporates both behavior and data.”15

A domain model creates a web of interconnected objects, where each object
represents some meaningful entity, whether it’s as large as a corporation or as
small as a single entry in a user’s schedule. This seemingly static model is represented
with a class diagram that shows the basic relationships between the candidate
elements. A class diagram models structure and contents using design elements
such as classes, packages, and objects. It also displays relationships such as con-
tainment, inheritance, associations, and others.

The slight difference in this approach from the traditional static domain entity
model is that you’ll be adding relationships between entity classes in the form of
moment-interval classes, and you’ll be identifying any other classes as belonging
to one of the four Coad archetypes.

Let’s start with a small section of the domain, focusing on the session m-i
candidate as shown in Table 2-3. Your basic strategy is to identify some m-i classes
and plug other archetypes around them using the DNC as guide.

To add a new class to the diagram, follow these simple steps:

15. Martin Fowler, Patterns of Enterprise Application Architecture (Addison-Wesley, 2002).

1259c02.fm Page 62 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

63

• Select the diagram on the Navigator pane (entitled “Class Diagram”).

• Click the class icon in the toolbar (yellow square with three compartments).

• Click anywhere on the Editor pane.

The new unnamed class element should appear on the Editor pane at the
location of the last mouse click as well as in the Explorer. Select the Properties
tab on the Details pane and in the Name field enter person. Repeat these steps
for the following classes: Presenter, Attendee, Session, SessionLocation,
ContentToBePresented, Room, and Presentation. The class diagram should now
resemble Figure 2-9.

Figure 2-9. Newly created classes

The next step is to associate the created classes with one of the four archetypes. To
date the only tool that includes built-in support for the Color in UML techniques,
the four basic archetypes, and the DNC is Borland’s Together line of products,
formerly TogetherSoft’s TogetherJ. ArgoUML enables the creation of custom

Person

Presenter

Session

SessionLocation

Room Presentation

ContentToBePresented

Attendee

1259c02.fm Page 63 Friday, February 27, 2004 1:13 PM

Chapter 2

64

stereotypes and also enables a class color to be selected. Although at this point it
isn’t possible to associate a specific stereotype with a class color or any other
attribute. Therefore, for each class you need to manually assign a color. This is a
small price to pay for the extra expressiveness that color brings into the process.

Creating a Custom Stereotype

Adding a new stereotype to ArgoUML is a little trickier than it needs to be (we
expect the procedure to be simplified in future versions):

• Select any class in the class diagram.

• On the Details pane choose the Property tab and select any stereotype from
the stereotype drop-down list.

• Click the button next to the drop-down list. The button is unlabeled with
a graphic of an arrow with a 90-degree bend. This should take you to the
stereotype Property tab.

• Click the New Stereotype button (the one adorned with guillemets).

• Enter the name of the new stereotype, in this case enter party.

Repeat the last two steps shown previously for the following stereotypes:
place, thing, role, moment-interval, and description.

NOTE The ArgoUML manual cautions about a known bug. Apparently,
in certain versions of ArgoUML the newly created stereotypes will not
appear in the class property stereotype drop-down list until the entire
model is saved and then reloaded.

Assigning Archetypes and Creating Associations

Now that the Coad archetypes have been added to the model, you can proceed to
label your classes with the appropriate archetypes and create meaningful associa-
tions between the classes following the guidelines of the DNC.

To assign an archetype, simply select a class in the diagram and change its ste-
reotype value to the appropriate archetype name on the Stereotype drop-down
list. For the classes currently in your class diagram you should use the values shown
in Table 2-5.

1259c02.fm Page 64 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

65

Now that you’ve defined the archetypes that your classes fall into, you can add
color to your classes by using the Style tab and selecting the appropriate color
for each of the archetypes using the Fill drop-down list. Table 2-6 shows a quick
summary of the archetypes, their color, and the position of the color in the Fill
drop-down list in the version of ArgoUML that you’re using.

Table 2-5. Archetype Selection

Class Archetype Explanation

Session Moment-Interval A session is something you want to

track for business purposes.

Person Party People are role players in the

context of a session.

Presenter Role A person presenting a session

plays the role of a presenter.

Attendee Role A person attending a session plays

the role of an attendee.

Room Place A room is a place that plays a role

in the context of a session.

Session Location Role Is the role played by a room in the

context of a session.

ContentToBePresented Role Is the role played by the material

and content in the context of

a session.

Presentation Thing The material being presented.

Table 2-6. Coad Archetypes and Their Corresponding Colors

Archetype Name Color Position in Drop-Down List

Party-Place-Thing Green 11th

Role Yellow 7th

Moment-Interval Pink 8th

Description Blue 10th

1259c02.fm Page 65 Friday, February 27, 2004 1:13 PM

Chapter 2

66

After choosing the Archetypes and corresponding colors you can make simple
connections in your model following the basic archetypes relationship, which tells
you that a PPT plays a role in the context of an m-i. This forms chains of PPT-role-
m-i in your model. In the current case you have the following:

• Person-Presenter-Session

• Person-Attendee-Session

• Room-SessionLocation-Session

• Presentation-ContentToBePresented-Session

It’s now easy to see the pattern. In the case of the presenter role you can read
the pattern as follows: “A person plays the role of a presenter in the context of a
session.” Now proceed to associate the classes by clicking the Association icon in

the toolbar, and then click one class and drag the cursor to the other class in the
desired association. If you select an association you can change the name of the
association as well as assign a stereotype to the association. All associations are
one-to-one associations by default. To change the cardinality of either end of an
association, right-click the association line closer to the end you want to affect,
and select one of the options under the Multiplicity submenu. You can also change
the nature of the association to be a composite or aggregate from the Aggregate
submenu. Association directionality can also be changed from the same context
menu by using the Navigability submenu.

TIP Don’t worry too much about getting all multiplicity and cardinali-
ties of the relationships in the domain model right the first time or even
in there at all. This can lead to analysis paralysis.

The resulting class diagram should resemble Figure 2-10.

1259c02.fm Page 66 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

67

Figure 2-10. Archetypes, color, and the DNC applied to the partial model

At this point you can further simplify the model by correlating the model with
the structural information and with the needs of the system in order to maintain
certain information. For example, in the case of the Room-SessionLocation-Session
and the Presentation-ContentToBePresented-Session legs of the diagram, you can
drop both the SessionLocation and the ContentToBePresented roles because you
don’t need that level of detail or flexibility in the model. Therefore, you can directly
connect the Green and the Pink elements in both legs of the diagram. The resulting
simplified diagram is shown in Figure 2-11.

<<party>>

Person

<<role>>

Attendee

<<role>>

Presenter

<<moment-interval>>

Session

<<role>>

ContentToBePresented

<<thing>>

Presentation

<<place>>

Room

<<role>>

SessionLocation

1259c02.fm Page 67 Friday, February 27, 2004 1:13 PM

Chapter 2

68

Figure 2-11. Simplified class diagram

After repeating this discovery and refinement process to the other moment-
intervals identified, you’ll see the domain model shown in Figure 2-12. As you can
see the strategy boils down to finding the pink, then yellow, then blue and green
archetypes. Then for each leg of the model you should remove any classes where
complexity outweighs the flexibility provided by the class. In the case of an analysis
model, remove the class only if the meaning and understanding of the model is
unaffected by the removal of the class. For a design model determine if the class
can be collapsed onto one of the associated classes or if it can be removed altogether
without affecting the functionality of the system or component.

<<party>>
Person

<<role>>
Attendee

<<role>>
Presenter

<<moment-interval>>
Session

<<thing>>
Presentation

<<place>>
Room

1259c02.fm Page 68 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

69

Figure 2-12. The TCMS domain model class diagram

<<party>>
Party

<<party>>
Person

<<party>>
Organization

<<thing>>
Profile

<<thing>>
AttendeeProfile

<<thing>>
PresenterProfile

<<role>>
Attendee

<<role>>
ConferenceAdministrator

<<role>>
Sponsor

<<role>>
Presenter

<<moment-interval>>
Conference

<<moment-interval>>
Schedule

<<moment-interval>>
SessionEvaluation<<moment-interval>>

Session

<<moment-interval>>
CallForPapers

<<moment-interval>>
ConferenceEvent

<<moment-interval>>
ConferenceTrack

<<moment-interval>>
ConferenceRegistration

0..1

0..1 0..10..10..1

0..*

0..*

0..*

0..*

1..*

1..*

1..* 1..*

ScheduleEntry

<<place>>
Room

<<place>>
Booth

<<thing>>
Outline

<<place>>
Venue

<<thing>>
Content

<<thing>>
Presentation

<<thing>>
PresentationAbstract

1259c02.fm Page 69 Friday, February 27, 2004 1:13 PM

Chapter 2

70

The beauty of the DNC, archetypes, and color technique is that they all greatly
enhance the expressiveness of a model, imparting a level or dynamism to an
otherwise static class diagram.

Use Case Modeling

The main goal of use case modeling is to understand user needs and to enable you
to view a system from the customer’s point of view. Use cases describe how actors
interact with the system in order to achieve some business purpose. They are pro-
cedural descriptions of the process of functional decomposition.

Even though use cases aren’t object-oriented in nature, this doesn’t mean that
use cases have no value in OOAD, on the contrary, they are good vehicles for the
understanding of user requirements and for the planning of deliverable milestones
in a system.

That said, it’s important to use caution when modeling with use cases because

they could lead to the definition of procedures without a proper understanding of
the problem domain. This can lead to the creation of many “artificial” classes to
support a specific use case that taints and distorts the essence of the domain being
modeled. As long as you understand this you should have no problem with use cases.

In our experience use cases are of great value to the implementation of test
cases and they promote a test-driven (test-first approach) process. In this sense
the completion of a use case becomes a tangible deliverable that can provide
instant feedback to the system’s stakeholders. With the current emphasis on
service-driven architectures, use cases are a good vehicle to define the goals of services
and are useful in the definition of service-oriented components (like session facades,
as you’ll see in Chapter 5).

Use Cases and the Domain-Neutral Component

Applying the DNC makes for a great preamble to modeling use cases because it
helps prevent one of the cardinal sins of use case modeling: uses cases dictating an
object-model’s structure. When use cases drive a model’s shape the model effec-
tively becomes a slave of the current functionality being addressed and no longer
is a true representation of the business. This means that although a use case might
give you a clear understanding of a single interaction between an actor(s) and the
system, it doesn’t give you an understanding of the problem domain (as the domain
model does), which can lead to “design tunnel vision.”

1259c02.fm Page 70 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

71

To an extent, you can equate the Moment-Interval classes with either a use
case, part of a use case, or an encapsulation of one or more use cases. Use cases
are typically documented as short but concise textual descriptions or scenarios—
a concept similar to XP’s User Stories, which represents a “story” about how a system
solves a particular problem.

Use Cases Overview

Use cases are primarily delivered as documents. There are many “templates”
floating around in the industry that do a good job of explaining use cases, from
flowing textual descriptions to enumerated bullet point step-by-step descriptions.
These descriptions are usually structured around a normal flow of events, which
are often referred to as a success scenario. These scenarios differ from the normal
flow of events, which are documented as extensions or variations. For a sample
template see Alistair Cockburn’s website (http://www.usecases.org/).

In use case modeling the concept of an actor plays a central role. An actor is a
role that some entity plays while the system is being analyzed or designed. Typi-
cally, actors are classified as primary and secondary actors. Primary actors are
those that are deriving business value from an interaction with the system, while
secondary actors are those that the system interacts with in order to fulfill the
needs of a primary actor. In the case of the TCMS system, your defined stakeholders
map directly to primary actors in your use cases.

At a higher level, a use case diagram can show the associations among use
cases and the primary and secondary actors involved. In the case of the TCMS
system you started with a high-level use case diagram to get a birds-eye view of the
functionality that the system must satisfy. Like class diagrams, use case diagrams
provide display associations between the use cases in the system. A use case diagram
helps you organize the functionality of a system. A use case diagram is the primary
artifact used in defining the services and the components that fulfill them.

Use case diagrams consist of actors (usually represented by a stick figure), use
cases (represented as an ellipse), and optionally, a rectangle enclosing the use cases,
which denotes a system boundary or simply groups the use case model. There are
three relations between use cases: extend, include, and generalization.

• Extend: Represents an extension on behavior and not in structure. It signifies
that the extending use case contains added behavior, not alternatives or
exceptions. The new use case doesn’t alter the behavior produced by the
base use case. Extension points are used to determine when the extended
case applies inside the base case.

1259c02.fm Page 71 Friday, February 27, 2004 1:13 PM

Chapter 2

72

• Include: Represents containment of behavior. Think of it as a use case that
“invokes” the behavior of another use case at a specific point in a use case.

• Generalization: Implies an “is like” relationship between use cases. Generali-
zation is used whenever a use case is conceptually similar to another
use case.

Creating a Use Case Diagram in ArgoUML

To create a use case diagram in ArgoUML you follow steps similar to those used to
create a class diagram:

1. Select the use case diagram. In the Explorer, under the tcms model, expand
the domain package under the model and select Usecase Diagram. The
toolbar should now change to the use case diagram controls.

2. Add actors. Using the toolbar controls, you can add different elements
to the diagram including actors. Add four actors: attendee, presenter,
administrator, and sponsor. This is similar to working with classes. If you
select an actor on the diagram its properties (such as the name) can be
changed in the Details pane on the Property tab.

3. Add use cases. Using the toolbar controls, you select the use case (white
ellipse) and click anywhere on the diagram. Next, rename the use case to
Browse Schedule. Repeat this step for a use case named Add Schedule
Reminder.

4. Add associations. Using the Association drop-down list on the toolbar,
select the directed association (on first row, right-most element in the
drop-down list, which is an arrow pointing to the right). Connect the
attendee actor to the Browse Schedule use case. Next, using the extend
association in the toolbar (the upward-pointing segmented arrow with
an “E” on the left) connect the Add Schedule Reminder use case to the
Browse Schedule use case.

The use case diagram should now resemble Figure 2-13.

1259c02.fm Page 72 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

73

Figure 2-13. Partial use case diagram

If you feel adventurous you can complete the use case diagram using the list of
use cases shown in Table 2-7. A use case diagram consisting of the collection of all
actors and all use cases. It’s referred to as the use case model.

Table 2-7. TCMS Preliminary List of Use Cases

Use Case ID Name Actors Extends Includes

UC-1 Browse Schedule Attendee, Presenter N/A N/A

UC-2 Add Schedule Reminder Attendee, Presenter UC-1 N/A

UC-3 Remove Schedule Entry Attendee, Presenter UC-1 N/A

UC-4 Mail Schedule Attendee, Presenter UC-1 N/A

UC-5 Browse Sessions Attendee, Presenter N/A N/A

UC-6 Add Session To Schedule Attendee, Presenter UC-5 N/A

UC-7 Browse Presenter Session Presenter N/A N/A

Attendee

Presenter

Browse Schedule

Add Schedule Reminder

Administrator

Sponsor

<<extend>>

1259c02.fm Page 73 Friday, February 27, 2004 1:13 PM

Chapter 2

74

The resulting use case diagram—the TCMS use case model—is shown in
Figure 2-14.

UC-8 Log In Attendee, Presenter N/A N/A

UC-9 Register Attendee, Presenter N/A N/A

UC-10 View Profile Attendee, Presenter N/A N/A

UC-11 Edit Profile Attendee, Presenter UC-10 N/A

UC-12 Submit Abstract Presenter N/A N/A

UC-13 Browse Abstracts Presenter N/A

UC-14 Edit Abstract Presenter UC-13 N/A

UC-15 Evaluate Abstract Administrator N/A UC-15

UC-16 View News Anyone N/A N/A

UC-17 Edit News Administrator UC-16 N/A

UC-18 Process Registration

at Venue

Administrator N/A N/A

UC-19 View Statistics Administrator N/A N/A

UC-20 Process Booth Request Administrator N/A N/A

UC-21 Browse Booths Sponsor N/A N/A

UC-22 Request Booth Sponsor UC-21 N/A

Table 2-7. TCMS Preliminary List of Use Cases (Continued)

Use Case ID Name Actors Extends Includes

1259c02.fm Page 74 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

75

Figure 2-14. The TCMS use case diagram

Technology Conference Management System (TCMS)

Browse
Schedule

Browse Presenter
Sessions

Login

Register

View
Profile

Edit
Profile

Submit
Abstract

Browse
Abstract

Evaluate
Abstract

View
News

Edit
Abstract

Add Schedule
Reminder

Review Schedule
Entry

Mail
Schedule

Add Session
to Schedule

Sponsor Browse
Booths

Request
Booth

<<extend>>

<<extend>>

<<include>>

Edit
News

Process
Registration

at Venue

View
Statistics

Process
Booth Request

Presenter

Attendee

Browse
Sessions

Administrator

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

1259c02.fm Page 75 Friday, February 27, 2004 1:13 PM

Chapter 2

76

Refining Use Cases with Sequence Diagrams

The UML sequence diagram models the dynamic behavior of a system by depicting
object interactions over time. These interactions are expressed as a series of messages
between objects. UML sequence diagrams are ideal for elaborating a use case
execution in terms of objects from your domain model. One sequence diagram is
typically used to represent a single use case scenario or flow of events. The message
flow of a sequence diagram matches the narrative of the corresponding use case.

Sequence diagrams are an excellent way to document use case scenarios and
refine and synchronize a use case diagram with respect to a domain model. A
sequence diagram typically shows a user or actor and the object and components
they interact with in the context of a use case execution.

NOTE Sequence diagrams aren’t working in ArgoUML as of the release
of version v0.14. As an alternative, we suggest using the community
edition of Poseidon UML, which is a commercial offering based on
ArgoUML. We expect sequence diagrams to be available in the near
future (hopefully by the time you read this!).

Whenever necessary use-sequence diagrams are used in the book to refine
and validate a use case against the application’s domain model.

TIP Don’t assign operations to a class without first refining complex
use cases with sequence or interaction diagrams. By refining what
capabilities a given class should have, you avoid the eventual generation of
unneeded code. This practice aligns well with test-driven development
and XP's You-Ain't-Gonna-Need-It (YAGNI).

Best Practices

Model-driven development is a practice that takes time to master, but the results
are well worth the effort. We’ve compiled a list of best practices taken from the
literature and from our own experiences to help you get started.

• Keep models simple: Don’t over-model.

1259c02.fm Page 76 Friday, February 27, 2004 1:13 PM

Design with ArgoUML

77

• Use color in your models. As seen in this chapter color greatly enhances
your ability to quickly grasp the both the static and dynamic elements of
a model.

• Choose model element names carefully. A model name can greatly
influence the person that has to turn it into code.

• Avoid design or implementation-specific constructs in the analysis model.

• Keep models and source code synchronized: incremental changes are easier
to incorporate.

• In modeling, no single view is sufficient. Approach a complex system with a
small set of independent views.

• The best models are connected to reality and reality is all about trade-offs.
Flexibility and performance are sometimes at odds when modeling a system.

• There will be a point in a model’s life when the level of detail can only be
expressed directly in code. Make sure that you don’t waste valuable time
trying to overmodel something graphically that can be explained with a
code sample or an annotation. UML notes are a great way to address some
of these issues at the model level.

Summary

As you prepare for a journey into the J2EE world it’s important to remember that
sound design practices—not technology—should drive the development of
enterprise applications. Although at specific points you might have to make an
implementation decision that’s driven by the shortcomings of a particular tech-
nology, you should always keep in mind the greater picture of a solid design based
on the problem space rather than the solution space.

In this era of agile methodologies and techniques, many are quick to dismiss
software modeling. But as Scott Ambler (http://www.agilemodeling.com) and others
have demonstrated, software modeling can be just another weapon in your
arsenal of agile methods.

In this chapter you’ve learned a solid set of techniques and with the help of
Open Source modeling tools you can make your models more robust and resilient
to requirements and technology changes.

1259c02.fm Page 77 Friday, February 27, 2004 1:13 PM

1259c02.fm Page 78 Friday, February 27, 2004 1:13 PM

79

CHAPTER 3

Development and Build
System with Ant

Our “Age of Anxiety” is, in great part, the result of trying to do today’s job with
yesterday’s tools—with yesterday’s concepts.

—Marshall McLuhan1

SOFTWARE DEVELOPMENT is a creative, fluid endeavor. In order to develop good
software, developers need tools that will enable them to work effectively as indi-
viduals and as part of a team. Software development is all about people; people
building tools for other people. One emerging realization of most modern meth-
odologies is that people are the most important factor, regardless of methodology,
and that every developer works differently but all of them have the same goal in
mind: to create working software that satisfies a need.

In Chapter 2 we emphasized that methodologies are independent of tools, yet
a tool that supports your chosen methodology will likely increase your team’s pro-
ductivity. Very few developers like to have a process or methodology imposed on
them. By making the processes and practices supporting a given methodology
transparent and mostly automatic, a team of developers can work as an orchestra
against the backdrop of a supporting set of best practices.

The contributions of the Open Source community have greatly enhanced the way
Java developers perform their daily work. Nowadays, for most aspects of the devel-
opment process there seems to be an offering from the Open Source community,
which is ready to take on the task of simplifying the job of developers worldwide.
The rapid evolution of the Open Source tool market has been driven by many factors,
whether it’s to commoditize a market segment dominated by a commercial offering,
to promote and research new ideas, or to embrace a new business model based
partly on Open Source.

Development tools is probably the area you would most likely explore first
when trying to incorporate Open Source in the enterprise. In this chapter you’ll learn
about some of the tools that are available from the Java Open Source community
and explore how they can help you create high-quality software in a predictable

1. Marshall McLuhan and Quentin Fiore, The Medium Is the Massage: An Inventory of Effects
(HardWired Books, 1996).

1259c03.fm Page 79 Friday, February 27, 2004 1:22 PM

Chapter 3

80

and reproducible fashion. The highlighted tools cover most of the critical areas of
the software construction process and show how Open Source can support and
enhance the productivity of a development team. With agility as your guiding
principle, you’ll explore tools that can foster a productive, cost-effective environment
to help enterprise developers excel at what they do.

The Build Process

The traditional definition of a build process entails converting source code into an
executable deliverable. In the world of enterprise Java development this definition
falls short. A production J2EE application build system will typically need to do
much more than that. Some sample tasks that can be performed by a build include
the following:

• Version control: Obtaining the latest version of a project’s source code from
a version control repository

• Build plan: Determining what to build

• Generate: Generating any source code from several sources such as anno-
tated code, database tables, UML diagrams

• Formatting: Correcting syntax and style

• Checking: Validating syntax and style

• Compiling: Generating .class files from .java files

• Testing: Running automated tests

• Validating: Verifying components’ validity

• JavaDoc: Generating API documentation

• Metrics: Generating code metrics reports

• Packaging: Generating JAR, WAR, and EAR files

• Deploying: Deploying applications to servers

• Distributing: Distributing packaged applications

• Notifying: Notifying developers and managers of important build-related
events

1259c03.fm Page 80 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

81

This relatively short list of activities should give you an idea of how involved
the build process can become. How many times have you heard the dreaded “But
it was working just fine on my machine!” A reproducible build is of paramount
importance for keeping your code base healthy and your project in a known state
at all times. Having a reproducible and stable build process takes more than just
having a dedicated team of developers. Without automation even a small project
with few developers can rapidly get out of hand.

By using an automated build tool, developers can define the steps in the
process of building their software and execute those steps reliably under different
environments and circumstances. Typically such tools will account for individual
configuration differences between developers’ environments and production
systems. Most build tools have some sort of configuration or script that describes
the build process in discrete, atomic steps.

A typical build process also covers aspects of both the production and the
development stages of an application. For example, in a database-driven application,
individual developers might need to initialize a database with sample data needed

for testing, while in a production environment such a step would not be required.
Although integrated development environments (IDEs) have always provided

a level of support for the building process, this support usually falls short of devel-
opers’ needs and expectations. Most of these build solutions aren’t portable across
environments; it’s hard enough to get one developer’s IDE project file to work on
any environment except for its creator’s. Not only are these facilities IDE-dependent,
but they’re also very different from the work that an application assembler or
deployer has to do for a production application. Common sense should tell you
that the closest your development environment is to the production environment
the least amount of problems you’ll have going into production. By having a build
process that is consistent across development and production environments
(and any other environments in between), you can eradicate many of the devel-
opment difficulties of using multiple IDEs, operating systems, and Java versions.

As the build process is automated and becomes transparent to programmers,
other issues such as testing and documentation generation find their way into the
build process. Most developers find that they begin with a simple build system that
evolves to accomplish more than simply “building.” From testing to document
generation, a finely crafted build process eventually becomes a reflection of a team’s
development process.

In J2EE a consistent build system brings together the roles of the application
developer, assembler, and deployer. As part of the J2EE specification, Sun defined
several roles in its definition of the J2EE platform. Newcomers to J2EE might quickly
put themselves in one these categories and disregard the details of the other roles.
But the reality is that unless you have an understanding of every role’s responsibility,
your understanding of the J2EE platform will not be complete. In particular, the roles
of the “application assembler” and the “application deployer” are reflected in the

1259c03.fm Page 81 Friday, February 27, 2004 1:22 PM

Chapter 3

82

build process, and unless your developers can duplicate what happens in production
you’re likely to experience a painful transition from development into production.

Continuous Integration

One modern software development practice that’s embraced by many methodol-
ogies and promoted, particularly by the Extreme Programming (XP) movement, is
the practice of continuous integration. This practice might be one of the most
important lessons you’ll ever learn from the XP and agile movement. The main
idea is that developers working on a project should integrate changes to their code
at least on a daily basis. In Chapter 4, the topic of testing is covered in the context of
continuous integration. The basic steps to accomplish continuous integration
are simple:

• Integrate: Changes are checked into a central repository (code that adds
new features requires new test cases that must also be checked in).

• Test: All tests are performed. A successful integration is bound by a
100-percent success of the testing stage. If any tests fail, the offending code
is rolled back and code is refactored until it passes the respective test(s).

• Repeat: With the help of automation, you can run this process at well-defined
intervals (ideally a minimum of once a day). This ensures that the system’s
codebase remains fully tested at all times and that bugs and missing features
are addressed as soon as possible.

Continuous Integration, as championed by XP and agile-methodology propo-
nents, is one of those concepts that most developers agree with, but few teams
ever implement. You should only build what’s necessary and it should be tested for
compliance with the requirements as often as possible. You also should under-
stand that making lots of changes at once leads to hours of “big-bang” integration
testing later on.

By never holding on to changes in the code for more than a day, a team can
minimize the chances that the code will become fragmented. These “unofficial
forks” to a code base (they occur when a developer never integrates changes to the
code base and is effectively working on an older version) lead to hard-to-find bugs
and countless hours of integration effort.

1259c03.fm Page 82 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

83

By adopting a test-driven approach to development (see Chapter 4) in combi-
nation with build-process automation, a team can achieve Continuous Integration
and build only what’s needed when it’s needed, and build it right. Continuous
Integration increases the team’s knowledge about the system being built, thereby
boosting its reaction time to feedback from the system and the system’s stakeholders.

Automating the Build Process with Apache’s Ant

A project with a few files and very little dependencies makes the process of building
almost not a process at all. By simply using the Java compiler and maybe the JAR
command-line utility, you can build simple Java applications.

Before Ant, developers typically started with a set of simple batch files or shell
scripts as an initial step towards automation. But as the number of files, components,
target platforms, and View Mail (VM) versions increases so does the build time, the
complexity of the build, and the likelihood that human errors will contribute to

irreproducible and inconsistent builds. After a while you end up realizing that main-
taining a nonportable, platform-dependent homemade solution is cumbersome
and error prone.

For the few teams in which developers actually agree on a choice of an IDE, the
first choice is usually to use the build facilities provided. Most IDEs provide wizards
that build simple applications. These wizards cover only part of the equation and
they tie your team to the particular IDE.

Besides the aforementioned problems, both approaches treat development
and production environments as being conceptually separate. What’s needed is
a low-level tool that can unify the build process across multiple IDEs, stages of
development, platforms, and so on.

For many years UNIX programmers have had a way to build their applications
via the make utility and all of its variants (GNU Make, nmake, and so on). Like
make, Ant (Another Neat Tool) is at its core a build tool, but as the Ant website
states that Ant “is kind of like Make, but without Make’s wrinkles.”2

Ant’s simplicity has contributed to its rapid adoption and made it the de facto
standard for building applications in the Java world. Ant, together with the Con-
current Versions System (CVS), has played an important role in fostering Open
Source by providing a universal way for individuals to obtain, build, and contribute
to the Open Source community. Ant has also become an indispensable tool for
most Java developers, especially those developing J2EE applications.

2. See http://ant.apache.org/.

1259c03.fm Page 83 Friday, February 27, 2004 1:22 PM

Chapter 3

84

History

Ant is a pure Java application that was originally developed by James Duncan
Davidson during a transatlantic flight back to the United States in 1999. Duncan,
also the original author of the Apache Tomcat Servlet reference implementation
(and one of the J2EE architects), wrote Ant as a tool to ease Tomcat’s building
process. As a Sun engineer, he lobbied for Sun to make both projects Open Source
by donating the code to the Apache Software Foundation’s Jakarta project. As a
reflection of its rising popularity, Ant became an Apache Software Foundation top-
level project late in 2002.

Ant has made life easier for Java developers worldwide. Although far from
perfect, it has demonstrated that it can cover what Java developers need, from
gaining control over the build process to cutting the umbilical cord from proprietary
build systems.

...

The Make Utility and Ant

The make utility is a command-line utility that uses a descriptor or script file
(referred to as a “makefile”) that contains dependency rules, macros, and suffix
rules that build and test a program. Makefiles contain inference ”rules” that
describe how to create a “target.” A target is either a file to be created or an action
to be taken. Targets can have dependencies, which might also be targets. Rules in
a makefile can form a chain of dependencies that are traversed to accomplish the
build. In the C/C++ world, makefiles build object files from source files and then
link the object files to create an executable.

A great utility, make does have some “wrinkles,” such as its dependency on UNIX
shell scripting and the correlation of targets with files. The make utility’s flexi-
bility and power comes from the fact that it can become a full-blown scripting
language that at the same time makes it easier for a makefile to grow rapidly out
of control. The same can be said of an Ant build description file, but it seems
more likely that problems could occur with the make utility. The make utility’s
extensibility comes from the capabilities of the UNIX shell. Ant on the other hand
is extended with simple Java classes.

Comparing Ant with the make utility is similar to comparing Java and C or C++.
Java was born from some of the lessons learned with C++: Too much flexibility
can lead to trouble. Most Ant build scripts are somewhat easier to understand
than a corresponding makefile. You’ve probably seen makefiles ranging from dif-
ficult to plain cryptic. Makefiles have many features of a bygone developer era
such as the need to use control characters like Tab as part of the syntactic rules of
the file.

1259c03.fm Page 84 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

85

Ant provides a simpler and cleaner way to handle the process of building a Java
application. It’s important to acknowledge that the make utility has been around
for many years and has benefited from the lessons developers have learned from
building a countless number of applications. Some of these lessons are reflected
in Ant’s design.

Another marked difference between Ant and the make utility is the fact that Ant
is 100-percent Java and thus inherits all of the pros and cons of platform inde-
pendence. The make utility on the one hand depends on the operating system
shell, which gives you all of the power of the UNIX shell but at the same time makes
the shell platform dependent. If an application isn’t a Java application there is
very little reason to switch from the make utility to Ant. Ant is certainly a Java-
centric tool and benefits of its use are seen on Java applications. Although you can
make it work with any language due to its extensibility, it isn’t clear that doing so

...

will contribute greatly to the build process of a non-Java application.

Why Choose Ant?

Many people, especially those coming from the UNIX world, ask this question, but
the answers seem rather extreme, ranging from the evangelization of Ant to total
avoidance. The main point is that Ant does simple things very well. It isn’t perfect
and it doesn’t cover every conceivable scenario that can occur in a build, but for
the majority of cases it does the job well. The most relevant reasons to choose Ant
are as follows:

• Platform independence: A typical corporate Java environment includes
development teams that work on Wintel machines and deploy to UNIX
machines for production. Ant, being a pure Java tool, makes it possible to
have a consistent build process regardless of the platform, thereby making
the development, staging, integration, and production environments closer
to each other. Ant also has built-in capabilities that handle platform differ-
ences. Your Java code is portable, therefore your build should be, too!

• Adoption: Ant is everywhere! Yes, by itself this is a poor reason to favor a
technology but the strengths that ubiquity brings to the table are many
including hiring, training, and skills marketability. Ant also has been easily
incorporated into many of the leading IDEs, thereby making it the one con-
sistent factor between developers. This is partly due to the choice, for good
and bad reasons, of XML as its language.

1259c03.fm Page 85 Friday, February 27, 2004 1:22 PM

Chapter 3

86

• Functionality and flexibility: For the majority of Java projects, Ant is exten-
sible and highly configurable; it provides the required functionality right out
of the box. For Java developers any class can easily become an Ant task,
although in our experience we seldom have to write our own tasks (because
someone in the Open Source community always seems to beat you to the
punch). If desired, you can plug scripting engines (see the Bean Scripting
Framework) and run platform-specific commands.

• Syntax: Like it or not, XML has become a globally recognized data format.
Most Java developers have worked with XML, and J2EE developers deal with
XML on a daily basis. XML makes Ant buzzword-compliant. But XML also
has some positive advantages. XML is ideal for representing structured data
because of its hierarchical nature. The abundance of commercial and Open
Source parsers, and the ability to easily check an XML file for well-formness
and validation has made the use of XML pervasive in the industry. For more
on the debate over XML in Ant see the “Ant’s Future” section later in this
chapter.

Introduction to Ant

Ant’s architecture is similar to the make utility in that it’s based on the concept of a
target. In Ant a target is a modular unit of execution that uses tasks to accomplish
its work. An Ant target has dependencies and can be conditionally executed. A build
is usually composed of some main targets that will typically accomplish some
coarse-grain process related to an application’s build, such as compiling the code
or packaging a component. These main targets might make use of other subtargets
(usually via dependencies) to accomplish their job.

Underneath the covers, tasks are plain Java classes that extend the
org.apache.tools.ant.Task class although any class that exposes a method with the
signature void execute() can become an Ant Task. One of Ant’s great advantages is
its extensibility. Ant tasks are pluggable plain Java classes. To write a task all you
need to do is extend the Task class and add some code to the execute method. Ant
comes loaded with myriad tasks to accomplish many of the things needed during
a typical build. These tasks are referred to as the “core tasks” and the “optional
tasks.” There are also a countless number of third-party tasks, whether they’re
commercial, freeware, or open-sourced.

The scope of Ant’s contribution to Java development isn’t obvious at first,
especially on small projects. But once complexity begins to creep in and you have
multiple developers, you’ll find that Ant becomes the glue that can help your team
work in synchronization. It can basically remove the need for a full-time build
“engineer.” This is largely the case with most Open Source Java projects and their

1259c03.fm Page 86 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

87

success should be a testament to the effectiveness of continuous integration
using Ant.

Ant isn’t without its critics, however. Many have failed to understand that Ant
was never meant to be a full-fledged scripting language but a Java-friendly way to
automate the build process in a simple declarative, goal-oriented fashion. Since its
inception, many scripting-like features have been added to Ant in the form of
custom tasks, and the arguments between camps that want a full-scripting language
and ones that want a simple, dependency-driven build system continue to this
day. In our opinion there is no right answer; scripting is programming and you
know the issues that arise with that. On the other hand, Ant’s simple declarative
ways make it hard to do write-once and reuse builds across different projects. Ant’s
reusability is at the task level. In his essay, “Ant in Anger,” Steve Loughran recom-
mends that to achieve the level of complexity that most developers turn to scripting
to achieve, Ant builds can be dynamically generated on a per-project basis using
something like eXtensible Stylesheet Language Transformations (XSLT).3 For
those looking for a full-fledged scripting engine based on XML, the Apache Jakarta

Commons project provides Jelly.

Obtaining and Installing Ant

Ant can be obtained from http://www.ant.apache.org in binary and source distri-
butions, or you can obtain the source code through CVS. Ant is a pure Java
application, therefore the only requirement to run it is that you have a compliant
JDK installed and a Java API for XML Processing (JAXP)–compliant parser (Ant ships
with the latest Apache Xerces2 parser). Ant is distributed as a compressed archive
(.zip, tar.gz, and tar.bz2). Once the archive has been uncompressed to a directory
(this directory is referred to as ANT_HOME), it’s recommended that you add the
environment variable ANT_HOME to your system and the bin directory under the
ANT_HOME directory to your system’s executable path. The bin directory contains
scripts in many different formats for the most popular platforms. These scripts
facilitate the execution of Ant and include DOS batch, UNIX shell, and Perl, and
Python scripts. Ant also relies on the JAVA_HOME environment variable to determine
the JDK to be used.

CAUTION If you only have the JRE installed (a rare case for most Java
developers) many of Ant’s tasks will not work properly.

3. See http://ant.apache.org/ant_in_anger.html.

1259c03.fm Page 87 Friday, February 27, 2004 1:22 PM

Chapter 3

88

To verify that Ant is installed correctly, at the command prompt type:

ant -version

If the installation was successful you should see a message showing the
version of Ant and the compilation date:

Apache Ant version 1.6.0 compiled on December 18 2003

Ant’s Command-Line Options

Ant is typically used from the command line by running one of the scripts in the
bin directory. Ant’s command line can take a set of options (prefixed with a dash)
and any number of targets to be executed, as follows:

ant [options] [target target2 ... targetN]

Table 3-1 shows the options available from the command line. You can access
them by typing ant -help. By default Ant will search for a file named build.xml
unless a different file is specified via the Buildfile option.

Table 3-1. Ant Command-Line Options

Option Purpose

help Prints the help message showing all available options.

projecthelp Displays all targets for which the description attribute

has been set.

version Prints the version of Ant.

diagnostics Prints a diagnostics report that shows information like

file sizes and compilation dates; useful for reporting

bugs.

quiet Minimizes the amount of console output produced

by Ant.

verbose Maximizes the amount of console output produced

by Ant.

1259c03.fm Page 88 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

89

A Simple Ant Example

Figure 3-1 shows a simplified view of what a simple Ant build entails. The root of
an Ant build is the project element, which contains one or more targets and at
least one default target. In this case the simple build contains three targets named
Target A, Target B, and Target C, with Target C being the default target. As shown in
the zoomed view of Target B, a target can contain zero or more tasks.

debug Prints debugging information to the console.

emacs Removes all indentation and decorations from the

console output.

lib A path to search for libraries including Jars and

Java classes.

logfile <file>, l <file> Redirects all console output to the specified log file.

logger <classname> Uses the specified class for logging (it must implement

org.apache.tools.ant.BuildLogger).

listener <classname> Adds an instance of a class that can receive logging

events from the build (it must implement

org.apache.tools.ant. BuildListener).

noinput Does not allow the user to interact with the build.

buildfile <file>, file <file>,

f <file>

Specifies the build file to be processed.

D <property>=<value> Passes a property to the build.

propertyfile <filename> Loads all properties in a properties file. Properties

passed with the D option take precedence.

inputhandler <class> Ant will use this class to handle input request. By default

input requests are handled via the standard in (stdin).

find <file> Ant will search for the given filename by traversing

upwards from the current directory until it finds the file.

s The file system to use.

Table 3-1. Ant Command-Line Options (Continued)

Option Purpose

1259c03.fm Page 89 Friday, February 27, 2004 1:22 PM

Chapter 3

90

Figure 3-1. A simplified view of an Ant build

Ant controls the build process with a description file. In Ant the description
file is typically referred to as a “buildfile” or “build script.” The Ant buildfile is an
XML file whose root is the project element that contains child nodes that represent
the targets. An Ant buildfile representing a build similar to the one depicted in
Figure 3-1 would look like this:

<?xml version="1.0" encoding="UTF-8"?>

<project basedir="." default="Target C" name="MyProject">

 <target name="Target A" description="Performs Step A">

 <echo>Performing Step A</echo>

 </target>

 <target name="Target B" depends="Target A" description="Performs Step B">

 <echo>Performing Step B</echo>

 <echo>Echo is one of many Core Tasks</echo>

 </target>

1259c03.fm Page 90 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

91

 <target name="Target C" depends="Target B" description="Performs Step C">

 <echo>Performing Step C</echo>

 </target>

</project>

As you can see, for a simple buildfile the XML format makes it easier to discern
targets from one another.

Project

The project element can have three attributes: name, default, and basedir. Only
the default attribute is required, but we recommend that you use the name attribute
especially because many IDE Ant editors use this attribute for display purposes.
The name attribute comes in handy when dealing with more than one buildfile.

BEST PRACTICE For a project with a single buildfile (build.xml) we rec-
ommend that you use the name of the project for the name attribute of
the project element. For projects with multiple buildfiles we recommend
that you name each one according to its intended functionality and that
the name attribute should be the same as the filename without the .xml
extension.

The default attribute determines the default target to be executed for the
buildfile. Finally the basedir attribute determines the base directory for all file-
related operations during the course of a build. In the previous example it’s simply
the current directory where the buildfile resides, and because this is the default
value the attribute could have been omitted. This setting is important especially if
you’re using multiple buildfiles in different subdirectories of an application directory
structure and you want a uniform way to refer to paths across all buildfiles.

The Build Stages

An Ant build has two stages: the parsing stage and the running stage. During the
parsing stage the XML buildfile is parsed and an object model is constructed.
This object model reflects the structure of the XML file in that it contains one
project object at the root with several target objects, which themselves contain
other objects representing the contents of a target such as tasks, datatypes, and
properties.

1259c03.fm Page 91 Friday, February 27, 2004 1:22 PM

Chapter 3

92

NOTE Ant scripts can contain top-level items other than targets. These
can include certain tasks and datatypes. These elements are grouped in
order of appearance into an implicit target that gets executed right after
the parsing process ends and before any other targets are executed.

During the runtime phase Ant determines the build sequence of targets to be
executed. This sequence is determined by resolving the target’s dependencies. By
default, unless a different target is specified, Ant will use the default target
attribute as the entry point so it can determine the build sequence.

Let’s execute the sample buildfile for the sample build shown in Figure 3-1 in
order to get acquainted with Ant and some of the command-line options shown in
Table 3-1. First type the contents shown in the listing to a text file and save it as
build.xml. To run it, simply change to the directory where the buildfile is located
and type the following:

ant

The output should look like this:

Buildfile: build.xml

Target A:

 [echo] Performing Step A

Target B:

 [echo] Performing Step B

 [echo] Echo is one of many Core Tasks

Target C:

 [echo] Performing Step C

BUILD SUCCESSFUL

Total time: 1 second

The output shows that Ant executed the build file successfully and that it took
1 sec to execute (execution times will vary from system to system.) From the output,
you can see that the targets were executed in the following sequence: Target A,
Target B, and Target C. To see a bit more detail you can run Ant again using the -v
command-line option, which will show you some extra information as shown:

1259c03.fm Page 92 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

93

Apache Ant version 1.5.3 compiled on April 16 2003

Buildfile: build.xml

...

Build sequence for target `Target C' is [Target A, Target B, Target C]

Complete build sequence is [Target A, Target B, Target C]

...

BUILD SUCCESSFUL

Total time: 1 second

First, notice that the output shows that the intended target is Target C, which
was defined as the build’s default target. Ant resolved the default target depen-
dencies to arrive at the build sequence [Target A, Target B, Target C] as shown at
the top of the console output.

The text enclosed in the <echo> elements in each of the targets is shown on
the console as each target is executed. The <echo> task is one of many built-in
tasks provided by Ant. For example, a quick browse of the online documentation

shows that the Echo task sends the text enclosed to an Ant logger. By default Ant
uses the DefaultLogger, which is a class that “listens” to the build and outputs to
the standard out. Specific loggers can be selected on the command line by using
the –logger option. Further examination shows that the Echo task is well integrated
with the logging system and that it can be provided with a level attribute to control
the level at which the message is reported.

NOTE We decided against regurgitating the contents of the online
documentation, therefore we’ll explain some of Ant’s tasks in context
as you set out to build the tiers of the TCMS system. The best place to
learn about all the available Ant tasks is from the online manual located
at http://ant.apache.org/manual/index.html.

The previous run of the sample script assumed that you wanted to run the
default target. To run a specific target you can indicate the target in the command
line as follows:

ant "Target A"

Notice that target names are case sensitive and that double quotes are required
for any target names that contain spaces. The resulting output should look like this:

1259c03.fm Page 93 Friday, February 27, 2004 1:22 PM

Chapter 3

94

Buildfile: build.xml

Target A:

 [echo] Performing Step A

BUILD SUCCESSFUL

Total time: 1 second

More on Targets

Targets are meant to represent a discrete step in the build process. Targets use
tasks, datatypes, and property declarations to accomplish their work. Targets
are required to have a name attribute and an optional comma-separated list of
dependent targets.

BEST PRACTICE Use action verbs to name your targets, such as
“build,” “test,” or “deploy.”

A typical buildfile is composed of several main targets: those that are meant
to be called directly by the user and subtargets, which are targets that provide
functionality to a main target.

BEST PRACTICE Add a description attribute to a build’s main targets.
Targets containing a description are shown in the automatic project
help, which is displayed when Ant is invoked with the -projecthelp
command-line option. For subtargets, prefix the name with a hyphen
to make it easy to differentiate them from main targets.

Targets can be conditionally executed, for this purpose Ant supports the if and
unless attributes. Targets using either or both of these are said to be conditional
targets. Both if and unless take the name of a property as value, which is tested for
existence. You can see an example of this if you modify Target A from the sample
buildfile and add an if attribute with a value of do_a as shown here:

 <target name="Target A" description="Performs Step A" if="do_a">

 <echo>Performing Step A</echo>

 </target>

1259c03.fm Page 94 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

95

The target should only be executed if the Ant property by the name do_a exists
in the context of the build. Executing the buildfile produces the following result:

Buildfile: build.xml

Target A:

Target B:

 [echo] Performing Step B

 [echo] Echo is one of many Core Tasks

Target C:

 [echo] Performing Step C

BUILD SUCCESSFUL

Total time: 1 second

Notice that the output shows the banner for Target A but the echo tasks
contained within were never executed. You can run the buildfile again using
the -D option to pass the property do_a to the build as shown:

ant -D"do_a="

The output now shows that Target A is being executed. You add the double
quotes around the name-value pairs for the command-line argument parser so
you can recognize the end of the argument. Any value could have been passed and
the results would have been the same. Remember with if and unless, the value of
the property is irrelevant; what matters is whether the property has been defined
or not.

Target Dependencies

From the simple buildfile shown previously you can see that targets can depend
on other targets. This example shows a very simple and linear dependency chain
in which Target C depends on Target B, which in turn depends on Target A.

Ant will resolve any circular dependencies and will consequently fail the build.
For example, you can modify the sample script to add Target C as a dependency of
Target A as shown in the following buildfile target:

<target name="Target A" depends="Target C" description="Performs Step A">

 <echo>Performing Step A</echo>

</target>

1259c03.fm Page 95 Friday, February 27, 2004 1:22 PM

Chapter 3

96

The resulting execution of the script will produce output similar to the following:

Buildfile: build.xml

BUILD FAILED

Circular dependency: Target C <- Target A <- Target B <- Target C

Total time: 1 second

Dependencies are resolved recursively using a topological sorting algorithm.
The resulting build sequence ensures that a target in the dependency chain will
only get executed once. You can see a great example of this in the Ant online manual,
which shows a build with dependencies as shown in Figure 3-2.

Figure 3-2. Script dependencies

A buildfile for the build in Figure 3-2 would look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<project basedir="." default="D" name="dependencies">

 <target name="A"/>

 <target name="B" depends="A"/>

 <target name="C" depends="B,A"/>

 <target name="D" depends="C,B,A"/>

</project>

Understanding how dependencies work is very important as your build process
grows in complexity. Figure 3-3 shows a depiction of the dependency resolution
process.

1259c03.fm Page 96 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

97

Figure 3-3. Dependency resolution in Ant

To test the dependencies example, save the buildfile as dependencies.xml and
run it using Ant’s -f parameter in order to indicate the buildfile as follows:

ant -f dependencies.xml -v

The output should look like this:

...

Buildfile: dependencies.xml

...

Build sequence for target `D' is [A, B, C, D]

Complete build sequence is [A, B, C, D]

A:

B:

1259c03.fm Page 97 Friday, February 27, 2004 1:22 PM

Chapter 3

98

C:

D:

BUILD SUCCESSFUL

Total time: 1 second

BEST PRACTICE Whenever possible keep a build’s dependencies as
simple and linear as possible.

Tasks

Tasks are used within a target to achieve certain functionality. Think of a task
element as a way to invoke a Java class’s functionality. Ant provides a plethora
of tasks that are divided in the following two categories:

• Core: Core tasks include basic foundational facilities needed in the build
process like file manipulation, file dependencies, directory operations,
source-code compilation, API document generation, archiving and pack-
aging, XML file manipulation, SQL execution, and others.

• Optional: This includes tasks for some commercial products (like EJB/J2EE
servers and third-party Version Control Systems) as well as nonbuild-specific
tasks like unit testing, XML validation, and others.

Properties

Ant provides the ability for a project to have a set of properties. Properties are
simple strings that you can access using the ${propertyName} notation. Whether
you need to specify the location of a needed library many times or the name of a
CVS repository, properties give you the flexibility to defer until runtime a set of
values to be used in the build.

There are several ways to set a property. You can set it individually to the Ant
buildfile via the D command-line option (see Table 3-1), or in bulk, from standard
Java properties files by using the propertyfile option.

There are also several tasks that deal with properties. The property task enables
the setting of a property by name. All property tasks are idempotent, which means
that once a property’s value has been set it will remain unchanged for the remainder
of the build. The immutability of properties in Ant is often a source of confusion,

because as developers you often tend to think of them as variables.

1259c03.fm Page 98 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

99

NOTE The <ant> and <antcall> tasks both span a new build by starting
another instance of an Ant project. The <ant> task calls an external
buildfile, and the <antcall> task calls a target on the current buildfile.
For both tasks, all of the properties of the calling project become avail-
able on the spawned projects, unless you set the inheritAll attribute to
false, in which case only those properties passed on the command line
become available to the spawned projects.

The simplest way to set a property’s value is to use the property task. For
example. To set a property named src, which could be later accessed using ${src},
you would use the property task as follows:

<property name="src" location="src" />

The src property would be an absolute path that refers to the location of the
src directory relative to the basedir directory.

BEST PRACTICE Properties should be used with care. The two main
uses of properties are, for items whose value might change from build
to build or for items whose value is calculated and used more than once
during the build.

Many Ant properties are also available implicitly and are composed from the
system properties such as ${java.version}.

For any but the simplest project you can load a property file using the file
attribute of the property task, thereby taking into account differences in user
configurations, as follows:

 <property file="build.properties"/>

Other tasks that deal directly with properties include the following:

• LoadProperties: Loads the contents of a file as properties (equivalent to
using the file attribute for the property task.

• LoadFile: Loads a text file into a single property.

• XMLProperty: Loads properties from an XML file. See the Ant documen-
tation for the specific format of the XML file.

• EchoProperties: Displays all available properties in the project.

1259c03.fm Page 99 Friday, February 27, 2004 1:22 PM

Chapter 3

100

Many other tasks use properties as a way to take parameters in or out. For
example, a common practice is for a task to have an attribute that takes the name
of an nonexistent property to be set in case of a specific event, such as the possi-
bility of the task failing.

BEST PRACTICE We recommend using a properties file named
build.properties to store any overridden default values. This property
file shouldn’t be kept in the source-code repository, but instead you
should add a sample properties file named build.properties.sample
along with instructions on how to configure the build.properties file.

Datatypes

Ant’s datatypes are primitive constructs that provide frequently required information
in the processing of a buildfile. Their purpose is to simplify a task by encapsulating
some information required and providing a simple way to manipulate it.

Several of Ant’s built-in datatypes provide a structure that encapsulates infor-
mation about a set of related resources such as files, environment variables, or
even complex mappings between input and output files. Knowing how to properly
use the Ant’s datatypes will help you kept your buildfiles simple and efficient.

Datatypes and Properties in Action: A Simple Example

Many of Ant’s tasks need to manipulate a file or groups of files. A typical need in a
build is to specify a set of JAR files to be included in the classpath for certain tasks.
Imagine that you’re building a simple application with a directory structure, as
shown in Figure 3-4.

Figure 3-4. Sample directory structure for datatypes and properties

1259c03.fm Page 100 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

101

The following sample buildfile snippet shows a build for which two path struc-
tures (datatypes) are defined, one with an id of class.path and the other with an id
of all.source.path. These two datatypes are then used in the target named compile,
which uses the javac task to compile the classes referenced by the path reference
by the id all.source.path.

<?xml version="1.0"?>

<project name="My Build" default="all" basedir=".">

...

 <property name="lib" location="lib"/>

 <property name="src" location="src"/>

 <property name="classes" location="classes"/>

 <property name="build" location="build"/>

 <property name="src-java" location="${src}/java"/>

 <property name="src-generated" location="${build}/generated-code/java"/>

 <property name="struts-lib" location="${lib}/struts"/>

...

 <path id="class.path">

 <fileset dir="${lib}">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${struts-lib}">

 <include name="*.jar"/>

 </fileset>

 </path>

 <path id="all.source.path">

 <pathelement path="${src-java}"/>

 <pathelement path="${src-generated}"/>

 </path>

...

 <target name="compile" description="Compiles all sources.">

...

 <javac

 destdir="${classes}"

 classpathref="class.path"

 debug="on"

 deprecation="on"

 optimize="off">

 <src>

 <path refid="all.source.path"/>

 </src>

 </javac>

 </target>

1259c03.fm Page 101 Friday, February 27, 2004 1:22 PM

Chapter 3

102

The class.path path structure uses two instances of the fileset datatype to
group under a common classpath all the JAR files included in the directories refer-
enced by the lib and struts-lib properties. The path element is an example of an
indispensable datatype that enables you to reuse path information in your builds.
The fileset datatype is a typical example of Ant’s pathlike structures. It encapsulates
a group of files defined via nested patternset structures. For example, to create a
fileset that includes all JAR files under the ${lib} directory, you can use the following
fileset definition:

<fileset dir="${lib}">

 <patternset>

 <include name="*.jar"/>

 </patternset>

</fileset>

The fileset datatype contains an implicit patternset structure, which means
that you can use shorthand to rewrite the fileset definition as follows:

<fileset dir="${lib}">

 <include name="*.jar"/>

</fileset>

You can further compact the fileset definition by using the include in the
property form, rather than as a nested element:

<fileset dir=”${lib} include=”*.jar” />

The path datatype can also make use of nested pathelements, as shown in the
definition of the all.source.path path structure. It uses the pathelement datatype
to reference the locations defined by src-java and src-generated properties.

Path is a typical Ant pathlike structure. When dealing with paths or classpaths,
Ant provides pathlike structures that can be used as nested elements on most tasks.
In the previous example, you can see that the two pathelements defined at the
top of the buildfile are then used by reference in the context of the javac task.
The class.path path is passed to the classpathref attribute of javac to determine
the classpath for compilation and the all.source.path is used by creating a new
pathelement, which is nested inside the src nested element of the javac task.

As a build’s complexity increases so do the patterns for selecting files. Pathlike
structures enable the reuse of path information and help keep the growth of
buildfiles under control.

1259c03.fm Page 102 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

103

NOTE One of the criteria used in choosing many of the tools in this
chapter was whether the tool provided an Ant task.

Case Study: Building the Technology Conference
Management System with Ant

To set the stage for the development throughout the rest of the book, you need to
first create a suitable directory structure (see Figure 3-5) as well as an initial Ant
buildfile for the TCMS system.

Figure 3-5. Sample directory structure for the TCMS project

The project’s root directory is tcms. Under this directory you’ll place the project’s

main buildfile named build.xml. The subdirectories under tcms are organized as
follows:

• lib: Contains any libraries required at runtime by the application(s).

• lib/development: Contains any libraries required at development time.

• src: The root directory for all nongenerated sources.

• src/java: The root directory for all Java sources.

From the previous directory structure, it should be clear that you must take
measures to differentiate the needs of the application at development or build
time vs. the needs of the runtime environment.

Now that you have a suitable directory structure, your next step should be to
start putting together the tcms buildfile. The project element contains the name of
your project and a nested description element.

1259c03.fm Page 103 Friday, February 27, 2004 1:22 PM

Chapter 3

104

BEST PRACTICE Use the project element nested description. This
description is shown on the console when invoking Ant with the
-projecthelp command-line option.

The default target will be the all target, which you’ll develop later in the chapter.
The basedir is set to be the directory where the buildfile resides, which in this case
is the tcms directory.

<?xml version="1.0"?>

<project

 name="Enterprise Java Development on a Budget"

 default="all"

 basedir="."

 >

 <description>

 This build script was developed to be a generic enterprise development

 build script using ANT 1.5.3 (ant.apache.org). To customize it or use it for

 other projects modify the build.properties file.

 </description>

...

Next, properties are defined for the created directories. Notice that you can
define properties using other properties as with the lib-dev property. Properties
that represent a directory are defined using the location attribute instead of the
value attribute. The location attribute gets resolved to the full path relative to the
basedir specified in the project element.

BEST PRACTICE Making all paths relative to the project’s basedir
directory and avoiding the use of absolute paths guarantees that your
buildfile will work anywhere. If your build depends on a resource whose
location might change from environment to environment, you should
place the location of said resource in a properties file or use environment
variables such as ${os.name}.

The build directory is the root directory for all products of the build process,
such as the classes directory, where the results of compiling the classes under
src/java will be placed.

1259c03.fm Page 104 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

105

<!-- === -->

<!-- Initialization -->

<!-- === -->

<property name="build" location="build"/>

<property name="lib" location="lib"/>

<property name="lib-dev" location="${lib}/development"/>

<!-- Directories -->

<property name="src" location="src"/>

<property name="src-java" location="${src}/java"/>

<property name="classes" location="${build}/classes"/>

<property name="docs" location="docs"/>

<property name="api" location="${docs}/api"/>

Paths representing all the JAR files under the lib directory (class.path) and all

class files under the classes directory are created.

BEST PRACTICE A common practice in Ant buildfiles is to have an init
task that all other tasks depend on. We advocate not using the init task
for setting up properties, loading properties files, paths, patternsets, or
taskdefs. Instead just place them before the first target and they will be
added to the implicit target. As mentioned earlier, the contents of the
implicit target always get called and you don’t have to remember
making all other targets dependent on an init target.

A patternset is also used to filter a directory for nonsource files. In the case
where resources are part of the source directory, such as property files or images,
you can use a patternset to copy them to the location of the compiled classes,
which will require said resources.

<!-- Paths -->

<path id="class.path">

 <fileset dir="${lib}">

 <include name="*.jar"/>

 </fileset>

</path>

<path id="app.class.path">

 <pathelement location="${classes}"/>

 <path refid="class.path"/>

</path>

1259c03.fm Page 105 Friday, February 27, 2004 1:22 PM

Chapter 3

106

<!-- Patternsets -->

<patternset id="non.source.set">

 <exclude name="**/*.java"/>

 ...

 <exclude name="**/read-me.txt"/>

 <exclude name="**/package.html"/>

</patternset>

Compiling

Now it’s time to add the first target to the buildfile, the compile target. This target
will make use of the javac task, which is a wrapper to the javac command. Notice
that before the javac task is invoked, all files under the ${src-java} directory that
match the patternset non.source.set are copied to the ${classes} directory. This is
done so that any resources such as Java properties files, images, and others are
available to the compiled code under the classes directory. This is a common
practice for many IDEs.

<!-- === -->

<!-- Compiles all the classes -->

<!-- === -->

<target

 name="compile"

 depends="compile-init"

 description="Compiles all classes.">

 <javac

 destdir="${classes}"

 classpathref="class.path"

 debug="on"

 deprecation="on"

 optimize="off"

 >

 <src>

 <path refid="ejb.source.path"/>

 </src>

 </javac>

1259c03.fm Page 106 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

107

 <!-- copy non-source resources only if the compilation is successful -->

 <copy todir="${classes}">

 <fileset dir="${src-java}">

 <patternset refid="non.source.set"/>

 </fileset>

 </copy>

</target>

<target name="compile-init">

 <mkdir dir="${classes}"/>

</target>

<target name="compile-clean">

 <delete dir="${classes}"/>

</target>

Notice that you added two more targets other than compile. These are
compile-init and compile-clean. The compile-init target simply creates the classes
directory by making use of the mkdir task. The compile-clean uses the delete task
to remove the directory and all of its contents.

BEST PRACTICE For each main target in the buildfile, add a target-init
and a target-clean, where target is the name of the main target. This
makes it fairly straightforward to determine the resources needed and
created by a target and also makes it easier to maintain large buildfiles.
For simple buildfiles a single clean target will usually suffice.

JavaDoc Generation

For proper team communication and for enabling code reuse you must have a
consistent up-to-date set of API documentation. The Javadoc tool has existed for
as long as Java has been around and all developers are well acquainted with it. The
problem has been that developers feel that they can run Javadoc only after they’re
finished with the code (which might be never). Running Javadoc at the end of a
project provides very little help to others in the team and moves documentation to
the end of process, when it isn’t as helpful (waterfall).

With Ant you can ensure that Javadoc is generated as part of the daily build
and that you don’t hide the documentation process until the “end” of the devel-

1259c03.fm Page 107 Friday, February 27, 2004 1:22 PM

Chapter 3

108

opment phase. The Ant Javadoc task provides a convenient way to generate Javadoc
from within Ant, as shown here:

<!-- === -->

<!-- JavaDocs -->

<!-- === -->

<target

 name="docs"

 depends="compile,docs-init"

 description="Generate JavaDocs."

 >

 <javadoc

 destdir="${api}"

 author="true"

 version="true"

 use="true"

 windowtitle="${ant.project.name}"

 sourcepathref="all.source.path"

 classpathref="doc.class.path"

 packagenames="com.*"

 verbose="false">

 <doctitle><![CDATA[<h1>${ant.project.name}</h1>]]></doctitle>

 <bottom>

 <![CDATA[<i>Copyright © 2003 All Rights Reserved.</i>]]>

 </bottom>

 <tag name="todo" scope="all" description="To do:"/>

 </javadoc>

</target>

<target name="docs-init">

 <mkdir dir="${api}"/>

</target>

<target name="docs-clean">

 <delete dir="${api}"/>

</target>

Notice that the doctitle and the bottom nested elements make use of the XML
character data (CDATA) section in order to be able to use HTML markup and not
have it interfere with the markup of the buildfile.

1259c03.fm Page 108 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

109

Formatting Source Code with Jalopy

Code format and style is a subject that is sometimes discussed with religious fervor
and it’s one of places where developers feel they shouldn’t be forced to follow a
standard. Yet determining how clean a piece of code is seems to be a subjective
task, and a code base that is in disarray will prevent teamwork and the XP ideal of
collective code ownership. We suggest that instead of forcing programmers to
code a certain way, you should simply automate the process of formatting the code
to a known standard that has been agreed on. For the TCMS system you format all
source code as part of the build process. To do so you rely on a handy utility called
Jalopy. Jalopy is a Java source-code formatter that reads an XML configuration file
that determines the style to apply to the code. By default it’s configured to follow
the Sun code conventions for the Java programming language (see http://
java.sun.com/docs/codeconv/). Jalopy can format brace style, spacing, indentation,
code separation (blank lines), as well as control the generation of missing Javadoc
comments, and Java file headers and footers.

Jalopy provides an Ant plug-in that is distributed as a single ZIP file (for Ant 1.4
or higher) that can be downloaded from http://jalopy.sourceforge.net/. Unzip
the file to a suitable directory. You should have a bin, docs, and a lib directory. The
first step is to run the Jalopy GUI configuration utility to fine-tune the settings for
the purposes of the application. To do so, change directories to the Jalopy distribution
bin directory and execute the preferences script (in this case preferences.bat)
as follows:

preferences.bat

The Jalopy GUI configuration utility should now be up and running as shown
in Figure 3-6.

The GUI utility allows you to modify the settings for a given code convention.
The application is a simple tree-driven GUI. As you can see from the General node,
the default loaded is the Sun Java Coding Convention (simply named “Sun”). Jalopy
allows you to save your settings on a “per-project” basis or by modifying the con-
figuration via the GUI and exporting the configuration to an XML file using the
export utility in the General node. You can then use the resulting XML file from
within Ant with the Jalopy task.

1259c03.fm Page 109 Friday, February 27, 2004 1:22 PM

Chapter 3

110

Figure 3-6. The Jalopy GUI configuration utility

The only customization needed for the TCMS system is to add an appropriate
header that will be placed on all source files in the application. To accomplish this,
switch to Printer ➤ Header (all formatting options are under the Printer node). The
Header pane has two tabs, Options and Text. Select the Text tab and enter the
header text as shown in Figure 3-7.

1259c03.fm Page 110 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

111

Figure 3-7. Configuring Java Headers in Jalopy.

The Jalopy preview window should display a sample of what the header will
look like after it has been applied to a Java file, as shown in Figure 3-8.

Figure 3-8. Jalopy Header preview

1259c03.fm Page 111 Friday, February 27, 2004 1:22 PM

Chapter 3

112

Next, you need to make sure that Jalopy doesn’t add the header to a file that
already contains it. To accomplish this you need to give Jalopy a sequence of char-
acters that it can use to determine whether the file has a header or not. In this case, the
string selected is “Copyright (c) 2003 Brian Sam-Bodden, Christopher M. Judd,” as
shown in Figure 3-9.

Figure 3-9. Jalopy Header identifying key configuration

You’re now ready to export the configuration to an XML file that you can use
from within Ant. Switch to the General pane and click the Export button. Save the
file as jalopy-sun-convention.xml under the lib/development/jalopy directory
under the TCMS project root.

For the purposes of the TCMS application you’ll place the files under the Jalopy
distribution’s lib directory in a directory under the TCMS project root directory
named lib/development/jalopy.

1259c03.fm Page 112 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

113

Now it’s time to modify the Ant buildfile to format the source code as part of
the build. The first step is to load the Jalopy task so that it can be used in the context
of the build. To load an external task you use one of Ant’s built-in tasks, the taskdef
task, which is specially designed to load other tasks. Notice that you’ve set two
properties and a pathelement to simplify the format target. The jalopy-lib property
points to the location of the Jalopy JAR files. The jalopy-convention-file property
points to the XML file that you previously saved with your modified source-code
conventions. Finally, the jalopy taskdef loads the Task class by specifying the
classname and the classpath to search for the specified class, as shown here:

<property name="jalopy-lib" location="${lib-dev}/jalopy" />

<property

 name="jalopy-convention-file"

 location="${jalopy-lib}/jalopy-sun-convention.xml"

 />

<path id="jalopy.class.path">

 <path refid="class.path"/>

 <fileset dir="${lib-dev}/jalopy">

 <include name="*.jar"/>

 </fileset>

</path>

<!-- Jalopy - jalopy.sourceforge.net -->

<taskdef

 name="jalopy"

 classname="de.hunsicker.jalopy.plugin.ant.AntPlugin"

 classpathref="jalopy.class.path"

 />

You can now define the format target. The format target is dependent on the
compile target. You don’t want to try to format code that doesn’t compile. The
jalopy task takes the name of the convention file to use and a fileset that contains
all the Java source files that will be formatted. Notice the use of a nested patternset
to filter out unwanted files. The target definition looks like this:

1259c03.fm Page 113 Friday, February 27, 2004 1:22 PM

Chapter 3

114

<!-- === -->

<!-- Formats all non-generated source code -->

<!-- === -->

<target

 name="format"

 depends="compile"

 description="Formats all source code."

 >

 <jalopy

 convention="${jalopy-convention-file}"

 loglevel="warn"

 classpathref="class.path"

 failonerror=”no”

 >

 <fileset dir="${src-java}">

 <patternset refid="non.generated.source.set"/>

 </fileset>

 </jalopy>

</target>

Checking Code Conventions with Checkstyle

Even if you’re using formatting tools such as Jalopy there are still style checks
beyond the realm of formatting. Checkstyle is a tool that enables code to be checked
against a convention. Like Jalopy it supports the Sun convention by default, although
it can check for more than just simple formatting. For example, it can check for
illegal regular expressions in the code, inline conditionals, double-checked locking,
and other idioms or patterns that might be considered unsafe or problematic.

You can download Checkstyle from http://checkstyle.sourceforge.net. On the
root of the checkstyle distribution you’ll find the checkstyle-all-3.1.jar file. Place this
file in a directory named checkstyle under the lib/development/ of the TCMS project
directory. The file containing the XML configuration representing the Sun con-
vention is named sun_checks.xml and it’s located under the docs directory of the
distribution directory. Copy this file to the lib/development/checkstyle directory also.

Checkstyle writes its output to the standard out by default or to a file in plain
text or XML format. The checkstyle distribution also provides several XSL stylesheets
that can be used to convert the XML reports to HTML format for easier viewing.
You can find these stylesheets in the checkstyle distribution under the contrib
directory. Copy the checkstyle-noframes-sorted.xsl file to the lib/development/
checkstyle directory.

1259c03.fm Page 114 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

115

To use Checkstyle from within Ant you first need to load the Checkstyle task.
You also should define some properties and an Ant path to simplify the loading
and execution of the task. You define properties for the location of the Checkstyle
JARs and the generated reports. You also define the name of the generated XML
report and the resulting HTML report.

<property name="checkstyle-reports" location="${docs}/checkstyle" />

<property name="checkstyle-lib" location="${lib-dev}/checkstyle" />

<property

 name="checkstyle-xml-report-file"

 location="${checkstyle-reports}/checkstyle-report.xml"

 />

<property

 name="checkstyle-html-report-file"

 location="${checkstyle-reports}/checkstyle-report.html"

 />

<property

 name="checkstyle-checks-file"

 location="${checkstyle-lib}/sun_checks.xml"

 />

<property

 name="checkstyle-stylesheet"

 location="${checkstyle-lib}/checkstyle-noframes-sorted.xsl"

 />

<path id="checkstyle.class.path">

 <path refid="class.path"/>

 <fileset dir="${lib-dev}/checkstyle">

 <include name="*.jar"/>

 </fileset>

</path>

<!-- Checkstyle - checkstyle.sourceforge.net -->

<taskdef

 resource="checkstyletask.properties"

 classpathref="checkstyle.class.path"

 />

Notice that the taskdef task for the Checkstyle task uses the resource attribute
instead of the name or classname combination used for the Jalopy task. The target
named checkstyle uses the checkstyle task to check the code under the ${src-java}
directory against the conventions specified by the file ${checkstyle-checks-file}
and uses a formatter of type XML to generate the report referred to

1259c03.fm Page 115 Friday, February 27, 2004 1:22 PM

Chapter 3

116

${checkstyle-xml-report-file}. The failureProperty attribute is the property that’s
set if there are any errors encountered during the checking process. You can use
this value to determine if any action is to be taken in the case of an error, such as
emailing the report.

The second part of the target uses the style task to transform the generated
XML into a HTML report. The complete target is shown here:

<!-- === -->

<!-- Checks source code for convention violations -->

<!-- === -->

<target

 name="checkstyle"

 depends="checkstyle-init"

 description="Generates Code Convention Violations Report."

 >

 <checkstyle

 config="${checkstyle-checks-file}"

 failureProperty="checkstyle.failure"

 failOnViolation="false"

 >

 <formatter type="xml" tofile="${checkstyle-xml-report-file}"/>

 <fileset dir="${src-java}">

 <patternset refid="non.generated.source.set"/>

 </fileset>

 </checkstyle>

 <style

 in="${checkstyle-xml-report-file}"

 out="${checkstyle-html-report-file}"

 style="${checkstyle-stylesheet}"

 />

</target>

<target name="checkstyle-init">

 <mkdir dir="${checkstyle-reports}"/>

</target>

<target name="checkstyle-clean">

 <delete dir="${checkstyle-reports}"/>

</target>

A sample checkstyle report is shown in Figure 3-10.

1259c03.fm Page 116 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

117

Figure 3-10. Checkstyle HTML report

Generating Source-Code Metrics

Although we don’t advocate counting code lines, classes, or methods as a measure
of a project’s success, static code analysis can help you pinpoint some areas of
unnecessary complexity that can lead to the discovery of potential bugs or high-
maintenance code.

JavaNCSS is a simple source-measurement tool for Java that provides the
following basic types of analysis:

1259c03.fm Page 117 Friday, February 27, 2004 1:22 PM

Chapter 3

118

• NCSS: Noncommenting source statements provide counts of many features
of the code such as lines of code, declarations, methods, statements,
constructors, and so on.

• CCN: Cyclomatic complexity number (McCabe metric). McCabe’s cyclomatic
complexity metric looks at a program’s control flow graph as a measure of its
complexity.

You can download JavaNCSS from http://www.kclee.com/clemens/java/javancss/
as a simple ZIP file that includes an Ant task. Place all JAR files located under the
distribution’s lib directory in a directory named javancss under the lib/development
directory of the TCMS project. Next, create a directory named xslt under the
lib/javancss and copy the contents of the xslt directory under the JavaNCSS distri-
bution directory.

The Ant task can generate a report in plain text of the XML format. As with the
Checkstyle target, you’ll use the style task to transform the reports to HTML, as
shown here:

<!-- Javancss - kclee.com/clemens/java/javancss -->

<taskdef

 name="javancss"

 classname="javancss.JavancssAntTask"

 classpathref="javancss.class.path"

 />

<!-- === -->

<!-- Source Code Metrics -->

<!-- === -->

<target

 name="metrics"

 depends="metrics-init"

 description="Generates Code Metrics Reports."

 >

1259c03.fm Page 118 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

119

 <!-- business tier source metrics -->

 <javancss

 srcdir="${src-java}"

 includes="**/*.java"

 excludes="**/entities/*Bean.java"

 generateReport="true"

 outputfile="${javancss-xml-business}"

 format="xml"

 functionMetrics="false"

 />

 <style

 in="${javancss-xml-business}"

 out="${javancss-html-business}"

 style="${javancss-stylesheet}"

 />

/>

<target name="metrics-init">

 <mkdir dir="${metrics-reports}"/>

</target>

<target name="metrics-clean">

 <delete dir="${metrics-reports}"/>

</target>

The generated HTML reports look like the one shown in Figure 3-11.

1259c03.fm Page 119 Friday, February 27, 2004 1:22 PM

Chapter 3

120

Figure 3-11. A JavaNCSS HTML report

1259c03.fm Page 120 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

121

Generating Browseable Source Code

One useful feature for sharing knowledge about a project is the ability to generate
a browseable version of the code for viewing online. Many Open Source projects
use this as a way to allow others to view the source to a particular class without
having to download a source distribution or having to use CVS. Java2Html is a tool
that enables you to take a Java class or a snippet of Java code and generate a syntax-
highlighted HTML version of the code.

The Java2Html tool can be obtained from http://www.java2html.de as a single
ZIP file that contains one JAR file (java2html.jar). As with the other third-party Ant
tasks, place the JAR file in a directory named java2html under the TCMS lib directory.

As mentioned previously, you should load the task using the taskdef task. The
generated HTML source will be placed under the location pointed to by the property
${browseable-source}, as shown here:

<!-- Java2Html - java2html.de -->

<taskdef

 name="java2html"

 classname="de.java2html.anttasks.Java2HtmlTask"

 classpathref="java2html.class.path"

 />

<property name="browseable-source" location="${docs}/browseable-source" />

<!-- === -->

<!-- Generates browseable source code in HTML format -->

<!-- === -->

<target

 name="java2html"

 depends="java2html-init"

 description="Generates browseable HTML version of the source code."

 >

 <java2html

 srcdir="${src}"

 destdir="${browseable-source}"

 includes="**/*.java"

 outputFormat="html"

 tabs="4"

 style="eclipse"

 showLineNumbers="true"

 showFileName="true"

 showTableBorder="true"

 includeDocumentHeader="true"

1259c03.fm Page 121 Friday, February 27, 2004 1:22 PM

Chapter 3

122

 includeDocumentFooter="true"

 addLineAnchors="true"

 lineAnchorPrefix="fff"/>

</target>

<target name="java2html-init">

 <mkdir dir="${browseable-source}"/>

</target>

<target name="java2html-clean">

 <delete dir="${browseable-source}"/>

</target>

Figure 3-12 shows an example of an HTML page generated by Java2HTML

Cleaning Up

The build process produces many files and directories. Getting the project directory
to the same state as when the source was checked out of a repository is important
for determining what has changed. Many Ant users recommend having a “clean”
target that can remove all the products of the build process.

The problem with this approach is that for large builds it’s easy to accidentally
delete files that are needed and it’s also easy to miss files or directories that need to
be deleted. For this reason you should include a clean subtarget for each main
target in the buildfile. By doing this you’ll easily be able to determine what needs
to be clean at the target level. Then for the global clean target you can simply
invoke all individual clean subtargets by adding them to its list of dependencies as
shown here:

<!-- === -->

<!-- Cleans everything -->

<!-- === -->

<target

 name="clean"

 depends="compile-clean,...,target N"

 description="Cleans all build products"

 >

 <delete dir="${build}"/>

</target>

1259c03.fm Page 122 Friday, February 27, 2004 1:22 PM

Development and Build System with Ant

123

Figure 3-12. An HTML page generated by Java2HTML

The all Target

Finally, it’s a common practice to make the buildfile default target a target named
“all,” which has in its dependencies a list of the targets that represented a full build
of the system. If your build process has any noncritical targets that take a fair
amount of time to generate, you can create new targets that will do whatever the
all target does in addition to any extra work a target such as all-with-docs does.
The point is that you want to minimize the amount of time that it takes to build the

1259c03.fm Page 123 Friday, February 27, 2004 1:22 PM

Chapter 3

124

application so that developers don’t have noticeable interruptions in the flow of
their work. A typical all target looks like this:

<!-- === -->

<!-- Does it all -->

<!-- === -->

<target

 name="all"

 depends="compile,..."

 description="Generates, compiles, packages and deploys."

/>

Conclusions

In this chapter you learned the importance of having a solid build system in place,
the basics of the Ant build tool. You tailored an Ant buildfile to automate the build
process of the TCMS system. The resulting buildfile reflects our experiences
building many Java and J2EE applications. You can apply most of the ideas used in
this file to your existing and future projects.

As a programmer, you strive to write reusable software components and it’s
natural to attempt to do the same with a system’s build scripts. It’s important to
understand that Ant isn’t a scripting language and that complex tasks are meant to
be encapsulated inside of Ant tasks. Therefore, if your buildfiles become too complex
don’t feel compelled to stick solely with what’s distributed with Ant. Feel free to
explore the countless commercial and Open Source Ant tasks available or begin
writing your own.

1259c03.fm Page 124 Friday, February 27, 2004 1:22 PM

125

CHAPTER 4

Testing

“Whenever you are tempted to type something into a print statement
or a debugger expression, write it as a test instead.”

—Martin Fowler1

HISTORICALLY, TESTING AND PERFORMANCE are activities saved for the end of a project.
For example, testing is the last step of a project in the traditional waterfall approach.
But agile methodologies such as Extreme Programming (XP) have proven that testing-
and-performance checking early and often leads to better quality software.
Testing and performance checking from day one of development can help developers
to locate defects and bottlenecks when they’re introduced, thereby reducing the time
and expense of correcting them. In addition, unit testing improves the refactoring
and debugging process. Automated unit testing supports refactoring by quickly
determining how small changes affect the entire system. Debugging becomes
more challenging as applications grow in size. Debugging failed unit tests rather
than debugging entire applications can save valuable time.

Many applications and frameworks have been developed to automate repeatable
unit testing and performance checking. The most notable and extended framework
is the Open Source JUnit framework. This chapter explains how JUnit and its Cactus
and DBUnit extensions can be used to increase software quality.

Testing Best Practices

Even though there are many approaches and philosophies to testing, you can apply
the following basic best practices that can immediately improve the software
quality and the process of developing it:

• Establish test harnesses before development begins: Determine the type of
testing needed before the development begins. Download the necessary
frameworks and JUnit extensions necessary to support each type of testing.

1. Refactoring: Improving the Design of Existing Code (Reading, MA: Addison-Wesley, 1999).

1259c04.fm Page 125 Friday, February 27, 2004 1:27 PM

Chapter 4

126

• Task is complete when unit test is complete: Just like code shouldn’t be
checked into version control without properly compiling, code shouldn’t
be checked in unless its unit tests pass.

• Test first: Get in the habit of writing the tests before the implementation
based on a business interface implemented by a class or against a skeleton
class. Then implement enough functionality to pass the tests.

• Don’t over-test: Write just enough tests to test functionality. Add new tests as
defects arise to prevent them from reoccurring.

• Continuous Integration: All unit tests should be run by developers before
the code is checked into version control. In addition, all unit tests should be
executed on version-controlled software at least once a day, but preferably
more often than that. If unit tests are run once a day all defects found must
have been introduced during the last 24-hour period. This enables you to
react more quickly to problems in your codebase.

• Map test cases to use cases or user stories: To make sure all use cases are
validated at least create a test case for each use case.

NOTE Applying these best practices had a major impact on the
development of the Technology Conference Management System
(TCMS) application. We were able to identify and communicate defects
extremely early in the process.

...

Open Source Project Testing

Many Open Source projects have adopted the practice of unit testing. Many of the
Jakarta Commons projects will not release new versions unless each class is
accompanied by a unit test. This practice is very advantageous for those using
Open Source. When Open Source JARs are upgraded they can be tested against
previous-version unit tests to verify consistency and possible problems before
the upgrade is even applied. Commercial vendors should consider providing this

...

peace of mind.

1259c04.fm Page 126 Friday, February 27, 2004 1:27 PM

Testing

127

JUnit Principles

For many years, unit testing has consisted of System.out.println() functions or
testing code in a class’s main method. Though this form of testing can be effective,
it is a reactive measure that has some drawbacks: it requires human intervention and
interpretation, it taints production code and deploys testing code, and the results
aren’t very repeatable. Today, the de facto standard in unit testing Java is the Open
Source framework JUnit, which is hosted at http://www.junit.org. The framework
includes extendable classes used to create tests and test runners that run the tests
and present the results.

The junit.framework package contains the interface and classes used to develop
unit tests. The Test interface is a simple interface used to define a test. Rather than
implement the Test interface directly, most users extend the abstract base class
junit.framework.TestCase or the concrete class junit.framework.TestSuite. A TestCase
contains the tests for a single unit while a TestSuite is a collection of Test classes.

In Java, a unit is a class. Therefore, a TestCase typically contains all the tests for
a single class. A test tests a single method of a class or a single unit of work. Tests
have one of three outcomes: pass, fail, or error. If a test passes, the method or unit
of work implements all the functionality as expected. A failure occurs when an
expected value doesn’t equal an actual value. For example, a test might be written
to check that the size is incremented when an object is added to a collection.
Assertions are used to compare the actual value to the expected value. Uncaught
Exceptions are the cause of errors. A test runner can be used to execute a TestCase
and report the results. There are many test runners available; several will be intro-
duced throughout this chapter.

To define a test, extend the junit.framework.TestCase class and add the appro-
priate test methods similar to those shown in Listing 4-1. A test is a method with no
return value, no parameter, and the name testXXXX. In the test method, the Assert
class static methods are used to determine if actual result values of a test equal the
expected values. The Assert class contains many static assert methods. Aside from
the expected and actual parameters, most of the methods have an optional message
parameter for describing the failure. An example is the overloaded assertEquals
method for comparing just about every defined datatype. In addition to the
assertEquals there are assertNotNull, assertFalse, assertNotSame, assertNull, and
assertTrue. The Assert class also contains a fail method for explicate failures. The
TestCase class extends Assert so it isn’t necessary to directly use the Assert class in
the TestCase. Adding a throws Exception to a test method makes error and exception
handling easy. A Test class can also optionally override the setUp and tearDown
methods to prepare and clean up the state of a test. The setUp method is called
prior to every execution of a test method and the tearDown is called immediately
afterward.

1259c04.fm Page 127 Friday, February 27, 2004 5:02 PM

Chapter 4

128

Listing 4-1. PageTest.java test for Page

package com.ejdoab.tcms.services.dto.page;

import com.ejdoab.tcms.services.dto.page.Page;

import junit.framework.TestCase;

import java.util.*;

public class PageTest extends TestCase {

 private Collection list = new ArrayList();

 private static final int SIZE = 10;

 protected void setUp() throws Exception {

 for(int i = 1; i <= SIZE; i++) {

 list.add(new Integer(i));

 }

 }

 protected void tearDown() throws Exception {

 list.clear();

 }

 /**

 * Test getSize, getTotalSize and getIndex

 */

 public void testGetSize() {

 Page page;

 page = new Page(list,0,10);

 assertEquals("Get Size of entire collection.",

 SIZE, page.getSize());

 assertEquals("Get Total Size of entire collection.",

 SIZE, page.getTotalSize());

 page = new Page(list,2,4);

 assertEquals("Get Size of index 2 and size 4.",

 4, page.getSize());

 assertEquals("Get Total Size of index 2 and size 4.",

 SIZE, page.getTotalSize());

 }

1259c04.fm Page 128 Friday, February 27, 2004 1:27 PM

Testing

129

 /**

 * Test Page boundaries.

 */

 public void testBoundaries() {

 Page page;

 try {

 page = new Page(list, -5, 2);

 fail("Invalid index -5,2");

 } catch (ArrayIndexOutOfBoundsException abex) { /* expected */ }

 try {

 page = new Page(list, -1, 2);

 fail("Invalid index -1,2");

 } catch (ArrayIndexOutOfBoundsException abex) { /* expected */ }

 page = new Page(list, 9, 1);

 assertEquals("Valid range 9,1", 1, page.getSize());

 }

}

Listing 4-1 shows the TestCase for com.ejdoab.tcms.services.dto.page.Page.
The Page class is a subset of a larger collection defined by an initial index and number
of elements. This class is useful for listing pages of conference sessions on a website.
The PageTest class extends TestCase and contains two tests, testBoundaries and
testGetSize. The class also overrides the setUp and tearDown methods to ensure
consistent test data in the list Collection, because tests aren’t guaranteed to run in
any order. Notice that in testGetSize pages of elements from the list Collection are
created. Immediately following this, assertEquals is used to test the actual size of
the Page and total size of the collection to the expected values. If the numbers
aren’t equal, a failure occurs.

Even though a TestCase may be run individually, it’s often advantageous to
run a complete set of tests at one time. JUnit supports a collection of TestCases
with the TestSuite class. Listing 4-2 shows the TCMS AllTests class, which creates
a TestSuite in the static suite method and adds the TestCases to it using the
addTestSuite() method.

1259c04.fm Page 129 Friday, February 27, 2004 1:27 PM

Chapter 4

130

Listing 4-2. TCMS’s TestSuite

/**

 * Executes all tests in the System.<p>

 * Useful for creating a single JUnit test report to review.

 */

public class AllTests {

 public static Test suite() {

 TestSuite suite = new TestSuite("Test for default package");

 // Plain old Java Object Tests

 suite.addTestSuite(PageTest.class);

 suite.addTestSuite(PageCacheTest.class);

 // Session Bean Tests

 suite.addTestSuite(ConferenceServicesBeanTest.class);

 // In-container Tests

 suite.addTestSuite(PageFactoryTest.class);

 suite.addTestSuite(AddressBeanTest.class);

 return suite;

 }

}

Tests must be run and the results must be evaluated. This is the responsibility
of the test runners. JUnit contains three test runners. It contains an Abstract Window
Toolkit (AWT) implementation in junit.awtui.TestRunner, a Swing implementation in
junit.swingui.TestRunner, and a plain text implementation in junit.textui.TestRunner.
The text TestRunner displays the text summary of the results unless an error or
exception occurs. Listing 4-3 shows an example of a text summary containing a
failure. Notice the failure prints out the reason for the failure and the call stack.
Likewise, an error would also print out a reason and call stack.

Listing 4-3. Example of a Failure Using the Text TestRunner

..F............

Time: 4.826

There was 1 failure:

1259c04.fm Page 130 Friday, February 27, 2004 1:27 PM

Testing

131

1) testBoundaries(com.ejdoab.tcms.services.dto.page.PageTest)junit.framework.

AssertionFailedError:

Valid range 9,1 expected:<6> but was:<1>

 at com.ejdoab.tcms.services.dto.page.PageTest.testBoundaries(PageTest.java:90)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.

java:25)

 at AllTests.main(AllTests.java:46)

FAILURES!!!

Tests run: 14, Failures: 1, Errors: 0

The Swing TestRunner shown in Figure 4-1 is a more user-friendly TestRunner.
In this example, the TestSuite AllTests is run by executing 14 tests. The results were
6 errors and 5 failures. Besides the results, this TestRunner provides a status bar
that grows as the tests are executed. By selecting the errors or failures in the Results
list, the appropriate message and call stack are displayed in the bottom text box.

Figure 4-1. Swing TestRunner

1259c04.fm Page 131 Friday, February 27, 2004 5:03 PM

Chapter 4

132

IDE Integration

Many IDEs including Eclipse and NetBeans include some kind of JUnit integration.
Typically the integration includes wizards to create TestCases and TestSuites and a
customized TestRunner.

NOTE Before you begin creating TestCases or TestSuites in Eclipse, the
junit.jar should be in your project build classpath.

Eclipse’s TestCase and TestSuite wizards are available by selecting File ➤
New ➤ Other ➤ Java ➤ JUnit. The TestCase wizard is a two-step process. The first
step shown in Figure 4-2 involves setting the source folder where the test source
file will be placed. It’s a good idea to keep testing code and production code in sep-
arate directories but corresponding packages. For example, many projects such as
the TCMS put the main source in a src/java directory and JUnit tests in a src/test
directory. This helps to reduce the size of the deployable application and prevents
testing code from accidentally being executed in production. Likewise, the testing

source should also be compiled into a separated directory.
The next couple of fields define package and class names. If a class is selected

in the Navigator or Package Explorer these values will automatically be filled in. It’s
customary to make the Test class name the same as the class being tested followed
by the word Test. The wizard also makes it easy to generate a main method that
runs a selectable TestRunner. Checking the setUp and tearDown boxes generates
setUp and tearDown stubs.

The second step shown in Figure 4-3 makes it easy to create the stub test
methods by selecting existing methods of the class that’s being tested.

1259c04.fm Page 132 Friday, February 27, 2004 1:27 PM

Testing

133

Figure 4-2. First step in Eclipse TestCase wizard

Figure 4-3. Second step in Eclipse TestCase wizard

1259c04.fm Page 133 Friday, February 27, 2004 1:27 PM

Chapter 4

134

Integrated development environments (IDEs) typically include a custom
TestRunner so developers don’t have to leave the environment to execute the tests.
Eclipse is no exception. After selecting a TestCase or TestSuite in the Navigator,
Java Editor, or Package Explorer, select Run ➤ Run As ➤ JUnit Test. A view like the
one in Figure 4-4 is displayed containing the results of the test and a progress bar
similar to the Swing TestRunner included with JUnit.

Figure 4-4. Eclipse custom TestRunner

Setting Up a Test Harness

Testing early and often is an important aspect of agile methodologies. A test
harness provides necessary automation and repeatability. A test harness usually
consists of TestCases, TestSuite(s), and integration with a build tool such as Ant.
Depending on the type of code being tested, it may also rely on additional JUnit
extensions. Setting the test harness up early before development begins estab-
lishes a positive tone for the entire development process. Though it’s possible to
add automated unit testing in the middle or end of a project, it isn’t fun or advisable.

Integration with the build process helps make the test harness automated and
repeatable. Ant ships with optional JUnit and JUnitReport tasks to simplify inte-
gration. The JUnit task is optional because it requires the junit.jar to be copied to
the ANT_HOME/lib directory. The JUnit task can execute a Test class or batch of
Test classes. The results of the tests are written to a report file as either plain text or
XML. The report file name, unless overwritten, is TEST—followed by the name of
the package and Test class with a .txt or .xml extension depending on the formatter
type. In the case of batched tests, a separate report file is created for each test,

1259c04.fm Page 134 Friday, February 27, 2004 1:27 PM

Testing

135

thereby making it difficult to find failures and errors. So, it’s a good practice to use
the XML formatter and transform the XML results using the JUnitReport into
HTML pages. If the harness is run in an automated way, the reports can be uploaded
to a web server, or placed in a web archive (WAR) file and deployed to an appli-
cation server for everybody to see. Figure 4-5 shows an example of the unit test
results as a web page.

Figure 4-5. Unit test results

The TCMS application relies heavily on the JUnit task to produce results of
unit tests throughout the development process. Listing 4-4 shows the testing targets
used in the TCMS build.xml file. The details of the test-deploy and test-war targets
will be discussed in the “Cactus” section.

1259c04.fm Page 135 Friday, February 27, 2004 1:27 PM

Chapter 4

136

Listing 4-4. TCMS Ant Targets from build.xml

<target name="test"

 depends="deploy,test-properties,test-compile,test-run"

 description="Executes unit tests." />

<target name="test-run" depends="test-deploy">

 <junit printsummary="on">

 <classpath>

 <path refid="test.class.path"/>

 </classpath>

 <formatter type="xml"/>

 <batchtest fork="yes" todir="${test-reports}">

 <fileset dir="${src-test}">

 <include name="**/*Test*.java"/>

 </fileset>

 </batchtest>

 </junit>

 <junitreport todir="${test-reports}">

 <fileset dir="${test-reports}">

 <include name="TEST-*.xml"/>

 </fileset>

 <report format="frames" todir="${test-reports}"/>

 </junitreport>

</target>

<target name="test-deploy" depends="test-war">

 <copy file="${test-war-file}"

 todir="${deploy-dir}"

 />

</target>

<target name="test-war" depends="test-compile">

 <war destfile="${test-war-file}"

 webxml="${test}/WEB-INF/web.xml">

 <lib dir="${lib}">

 <patternset refid="test.lib.set"/>

 </lib>

 <classes dir="${test}"/>

 </war>

</target>

1259c04.fm Page 136 Friday, February 27, 2004 1:27 PM

Testing

137

<target name="test-properties" depends="test-init">

 <concat destfile="${test}/db.properties">

 db.url=${global.db.url}

 db.driver=${global.db.driver}

 db.user=${global.db.userid}

 db.password=${global.db.password}

 </concat>

</target>

<target name="test-compile" depends="test-init">

 <copy todir="${test}">

 <fileset dir="${src-test}">

 <patternset refid="non.source.set" />

 </fileset>

 </copy>

 <javac destdir="${test}"

 classpathref="test.class.path"

 debug="on"

 deprecation="on"

 optimize="off"

 >

 <src>

 <path refid="test.source.path" />

 </src>

 </javac>

</target>

<target name="test-init">

 <mkdir dir="${test}" />

 <mkdir dir="${test-reports}" />

</target>

<target name="test-clean">

 <delete dir="${test}" />

 <delete file="${test-war-file}" />

</target>

The TCMS build.xml file contains a collection of testing targets. The test-init
target is responsible for creating the output directory used in the test-compilation
process. The test-clean target removes all the generated stuff like the class files and
directory as well as the report file and testing WAR file used by Cactus. To compile
the test code, test-compile first copies all the non-Java files to the test output

1259c04.fm Page 137 Friday, February 27, 2004 1:27 PM

Chapter 4

138

directory and then uses javac to compile the testing code. The javac process must
include the application classes to be tested, as well as the JAR junit.jar and any
JUnit extension JARs used. The test-run target executes the JUnit tests. The target
forks a new JUnit process. It also enables a summary of the results to be printed to
the Ant standard out. The summary contains the TestCase names along with the
number of tests run, failures, errors, and the time elapsed. The summary saves time
by not requiring the viewing of the report file if all tests complete successfully.

The formatter tag is used to define the format of the report as XML. The XML
output is used as the input to a junitreport task to transform the documents into
HTML reports. The batchtest is used to instruct JUnit to run all Java files with the
Test in the name. The final target is the compressive test target. The test target will
even ensure that the application is up to date and if it isn’t, the test target will
rebuild and redeploy it before it executes.

All the JUnit resources, including the TestCase and TestSuite classes, are con-
tained in the junit.jar file. This JAR file must be included in the classpath when
testing. In the case of tests needing to be tested in the context of a application

server, the junit.jar must be deployed with the tests or in the classpath of the appli-
cation server. JUnit extensions will also require the inclusion of JARs in the classpath.
Later, the Cactus and DBUnit extension JARs will be discussed. We recommend
you review other JUnit extensions to determine if they cover any of your testing needs.

...

Continuous Integration

Some organizations have integrated unit testing with version-control software
so that they can provide a Continuous Integration test harness. Some version-
control software like Concurrent Versions System (CVS, see Appendix B) can sup-
port custom listeners. Organizations have developed custom listeners that wait
for a duration of time (15 minutes for example) after the last file has been checked
in. The custom listener then executes an Ant script, which builds, deploys, and
executes unit tests. Systems like AntHill, Centipede, and CruiseControl can be

...

used in conjuction with Ant and JUnit to achieve continuous integration.

JUnit Extensions

JUnit is primarily capable of unit testing plain old Java objects. Because JUnit is a
framework and not a product many groups have extended JUnit to test other units
such as J2EE components, web components, and SQL scripts. You can find JUnit
extensions at http://www.junit.org/news/extension/index.htm. The next two
sections cover the Cactus and DBUnit extensions.

1259c04.fm Page 138 Friday, February 27, 2004 1:27 PM

Testing

139

Jakarta Cactus

Many enterprise applications contain components such as Enterprise JavaBeans
(EJB), servlets, tag libraries, and filters that must execute in the context of an appli-
cation server, thereby making unit testing a challenge. One solution is to create
mock or simulated objects to act like those found in an application server. This is a
long and difficult process, plus it doesn’t test the components in a real application
server environment. A better option is to run the tests within the application server
itself (referred to as in-container unit testing). The Jakarta Cactus project, found at
http://jakarta.apache.org/cactus/index.html, is a JUnit extension for server-side
testing.

Cactus’s support for in-container testing is almost transparent. The difference
is the tests must extend ServletTestCase instead of TestCase (see Listing 4-5). Tests
must be deployed to the application server and some additional configuration files
are needed.

Listing 4-5. Example of a Cactus Unit Test

package com.ejdoab.tcms.services.dto.page;

import com.ejdoab.tcms.entities.*;

import com.ejdoab.tcms.services.dto.*;

import junit.framework.*;

import org.apache.cactus.*;

import java.util.*;

public class PageFactoryTest extends ServletTestCase {

 private SessionDTOFactory dtoFactory = null;

 public void setUp() {

 dtoFactory = (SessionDTOFactory) DTOAbstractFactory

 .getInstance()

 .getDTOBuilder(

 SessionDTO.class);

 }

 public void testBuildPage() throws Exception {

 SessionLocalHome slh;

 slh = SessionUtil.getLocalHome();

 Collection c = slh.findAll();

1259c04.fm Page 139 Friday, February 27, 2004 1:27 PM

Chapter 4

140

 Page page = PageFactory.buildPage(c, 0, 5, dtoFactory);

 assertNotNull("Page object", page);

 assertEquals("Page size", 5, page.getSize());

 assertEquals("Page total size", 16, page.getTotalSize());

 while(page.hasNext()) {

 Object obj = page.next();

 assertTrue("Instance of Session",

 obj instanceof SessionDTO);

 }

 }

 public void testEmptyCollection() throws Exception {

 Page page;

 page = PageFactory.buildPage(new ArrayList(), 0, 5, dtoFactory);

 assertEquals("Page size", 0, page.getSize());

 assertEquals("Page total size", 0, page.getTotalSize());

 assertEquals("Page.EMPTY_PAGE", Page.EMPTY_PAGE, page);

 }

}

The only required code change to implement in-container testing, rather than
testing in the TestRunner JVM, is extending test classes from ServletTestCase. By
extending ServletTestCase, the life cycle of the testing changes slightly. Figure 4-6
shows a UML sequence diagram of a Cactus test life cycle.

For JUnit, the life cycle involves a TestRunner that executes the run method,
which calls the setUp, test, and tearDown methods before returning the results.
This all takes place in the Java Virtual Machine (JVM) of the TestRunner. In the case
of a Cactus test life cycle though, the run method is invoked on the ServletTestCase
which causes an HTTP request to be sent to the ServletTestRedirector that’s running
in the application server. To see an example of a Cactus request, after deploying
the test WAR you can use the an HTTP request like http://localhost:8080/tcms_test/
ServletRedirector?Cactus_TestMethod=testBuildPage&Cactus_TestClass=com.ejdoab.

tcms.services.dto.page.PageFactoryTest&Cactus_AutomaticSession=true&

Cactus_Service=CALL_TEST to manually execute a server side unit test. Notice that
the URL contains the class and method to test which will be executed by the
CALL_TEST service. The ServletTestRedirector acts as a proxy and invokes the
tests on the same ServletTestCase class but in the context of the application
server. The tests run as any other JUnit test would, but in the container. When
the test is complete, the ServletTestCase makes a second request to get the
results of the test using the following URL: http://localhost:8080/tcms_test/
ServletRedirector?Cactus_Service=GET_RESULTS. This URL just requests the
GET_RESULTS service.

1259c04.fm Page 140 Friday, February 27, 2004 1:27 PM

Testing

141

Figure 4-6. Cactus sequence diagram

For the tests to run in the context of an application server, they must be
packaged and deployed to the application server just like the application. As
mentioned earlier, keeping the tests separate from the production application is a
good idea. This is accomplished by creating and deploying a separate WAR file that
contains only the testing code. In the TCMS project, the build.xml file contains
test-war and test-deploy targets used for packaging and deploying a tcms_test.war
file (see Listing 4-6).

1259c04.fm Page 141 Friday, February 27, 2004 1:27 PM

Chapter 4

142

Listing 4-6. TCMS test-deploy and test-war Targets

<target name="test-deploy" depends="test-war">

 <copy

 file="${test-war-file}"

 todir="${deploy-dir}"

 />

</target>

<target name="test-war" depends="test-compile">

 <war destfile="${test-war-file}" webxml="${test}/WEB-INF/web.xml">

 <lib dir="${lib}">

 <patternset refid="test.lib.set"/>

 </lib>

 <classes dir="${test}"/>

 </war>

</target>

Cactus does require a certain amount of configuration, which includes JAR files,
properties files, and a web.xml file used in the WAR file.. Both the client and server
will need to have cactus-VERSION.jar, commons-logging.jar, httpunit-VERSION.jar,
aspectjrt-VERSION.jar, log4j-VERSION.jar, and junit-VERSION.jar files in the
classpath. In addition, the client-side classpath needs to include commons-http-
client-VERSION.jar. The test-war target in Listing 4-7 shows how using the lib tag
can automatically include the JARs in the server-side classpath. Cactus includes
three properties files. You can place all three files in the root of the testing source
directory. Two of the files configure logging. The log_client.properties shown in
Listing 4-7 configures Log4j in the TestRunner JVM.

Listing 4-7. Cactus Client-Side Log4j Configuration File log_client.properties

Properties for configuring Log4j

This is the configuration for logging on the JUnit side (i.e. the client side)

log4j.appender.cactus = org.apache.log4j.FileAppender

log4j.appender.cactus.File = cactus_client.log

log4j.appender.cactus.Append = false

log4j.appender.cactus.layout = org.apache.log4j.PatternLayout

log4j.appender.cactus.layout.ConversionPattern = %d{ABSOLUTE} [%t] %-5p %-

30.30c{2} %x - %m %n

Any application log which uses Log4J will be logged to the Cactus log file

log4j.rootCategory=DEBUG, cactus

1259c04.fm Page 142 Friday, February 27, 2004 1:27 PM

Testing

143

By default we don't log at the DEBUG level for Cactus log, in order not to

generate too many logs. However, should a problem arise and logs need to be

sent to the Cactus dev team, then we will ask you to change this to DEBUG.

log4j.category.org.apache.cactus = WARN, cactus

log4j.additivity.org.apache.cactus=false

The log_server.properties shown in Listing 4-8 configures Log4j in the appli-
cation server JVM.

Listing 4-8. Cactus Server-Side Log4j Configuration File log_server.properties

Properties for configuring Log4j

This is the configuring for logging on the JUnit side (i.e. the client side)

log4j.appender.cactus = org.apache.log4j.FileAppender

log4j.appender.cactus.File = cactus_client.log

log4j.appender.cactus.Append = false

log4j.appender.cactus.layout = org.apache.log4j.PatternLayout

log4j.appender.cactus.layout.ConversionPattern =

%d{ABSOLUTE} [%t] %-5p %-30.30c{2} %x - %m %n

By default we don't log at the DEBUG level for Cactus log, in order not to

generate too many logs. However, should a problem arise and logs need to be

sent to the Cactus dev team, then we will ask you to change this to DEBUG

then we will ask you to change this to DEBUG.

log4j.category.org.apache.cactus = WARN, cactus

log4j.additivity.org.apache.cactus=false

In addition to the logging configuration, the client needs a cactus.properties
file that contains the information necessary to create the URL that’s used to request
the ServletTestRedirector. Listing 4-9 is an example of the cactus.properties file,
which requests the servlet from the local machine, using the ServletRedirectorName
specified in the web.xml file that’s discussed in the next paragraph, and the name
of the test WAR file. Logging may also be enabled here.

Listing 4-9. Example of the cactus.properties File

cactus.contextURL=http://localhost:8080/tcms_test

cactus.servletRedirectorName=ServletRedirector

cactus.enableLogging=true

The cactus-X.jar contains the ServletTestRedirector Servlet. A web.xml file is used
to map org.apache.cactus.server.ServletTestRedirector to the /ServletRedirector URL.
An example of the web.xml file is shown in Listing 4-10.

1259c04.fm Page 143 Friday, February 27, 2004 1:27 PM

Chapter 4

144

Listing 4-10. Cactus web.xml File

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app id="WebApp">

 <display-name>TCMS Unit Testing</display-name>

 <servlet>

 <servlet-name>ServletRedirector</servlet-name>

 <servlet-class>

 org.apache.cactus.server.ServletTestRedirector

 </servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ServletRedirector</servlet-name>

 <url-pattern>/ServletRedirector</url-pattern>

 </servlet-mapping>

</web-app>

NOTE Cactus 1.5 contains a cactifywar Ant task that can create the
web.xml in Listing 4-10.

DBUnit

Most enterprise applications store data in a relational database. Conducting valid
unit tests of classes that depend on database interaction requires you to have a way
to know the database state before the tests are performed. In addition, changes to
the state of the database must be verified. You can set the initial database state by
loading SQL scripts. Unfortunately, JUnit doesn’t guarantee the order in which
tests are run so tests may adversely affect the state of the database. DBUnit, found
at http://www.dbunit.org/, extends JUnit functionality to provide data loading and
change verification using XML files.

1259c04.fm Page 144 Friday, February 27, 2004 1:27 PM

Testing

145

You can use DBUnit in one of two ways to configure the state of the database.
The first method allows the JUnit framework to implicitly do the loading by extending
DatabaseTestCase rather then TestCase and overriding the getConnection() and
getDataSet() methods. The alternative is to call the DBUnit methods explicitly
from the setUp method. Listing 4-11 shows how the TCMS project explicitly calls
the DBUnit code in order to load the database from ConferenceServicesBeanTest.java.
The TCMS project uses the explicit method so that tests can easily be modified to
not use Cactus if necessary.

Listing 4-11. The ConferenceServicesBean Explicit Calls to DBUnit Classes

public class ConferenceServicesBeanTest extends TestCase {

 private Context ctx = null;

 private ConferenceServices cs = null;

 public void setUp() throws Exception {

 if(ctx == null) {

 ctx = new InitialContext();

 }

 if(cs == null) {

 // look up the home interface

 Object obj = ctx.lookup("ejb.ConferenceServicesHome");

 assertNotNull("ejb.ConferenceServiceHome lookup", obj);

 // cast and narrow

 ConferenceServicesHome csHome =

 (ConferenceServicesHome) PortableRemoteObject.narrow(

 obj,

 ConferenceServicesHome.class);

 assertNotNull(

 "ejb.ConferenceServiceHome interface",

 csHome);

 cs = csHome.create();

 assertNotNull("ConferenceServices remote interface", cs);

 }

1259c04.fm Page 145 Friday, February 27, 2004 1:27 PM

Chapter 4

146

 IDatabaseConnection conn =

 DatabaseConnectionFactory.createConnection();

 try

 {

 DatabaseOperation.CLEAN_INSERT.execute(

 conn,

 DatabaseConnectionFactory.createBaseDataSet());

 }

 finally

 {

 conn.close();

 }

 }

 ...

}

In Listing 4-11, explicit calls are made to DBUnit to set the database in a
known state before each test run. This is done by getting a DBUnit specific
IDatabaseConnection. To reduce redundant code, TCMS uses an internal
DatabaseConnectionFactory class to get DBUnit IDatabaseConnections and
IDataSets. After the connection is established, different DBUnit DatabaseOperations
can be performed. The CLEAN_INSERT operation causes all the database rows to
be deleted and inserts records from the XML document.

To load the data, you must initially put it into a specific XML format. The
easiest way is to export the data from an existing database in the desired state.
DBUnit includes an export utility and Ant task for performing this activity. The
build.xml file contains an export task that exports the data to a file named
exportFile.xml in the src/test/data directory. This task provides a good starting
point. The XML file can be renamed and edited for a specific state.

NOTE The TCMS initial XML dataset had to be organized so tables
were inserted in the proper order because of referential integrity
constraints.

DBUnit can also be used to compare changes to the database. Listing 4-12
is a test that submits an abstract to a Session Bean, thereby ultimately causing a
SQL insert. DBUnit is used to verify that the insert is made by comparing the
contents of the database with an exported and edited XML file named
AfterAbstractSubmitted.xml, using an Assertion class from DBUnit.

1259c04.fm Page 146 Friday, February 27, 2004 1:27 PM

Testing

147

Listing 4-12. Submit Abstract Test Using DBUnit to Verify the Insert

public void testSubmitAbstract() throws Exception {

 Page page;

 ConferenceAbstractDTO ca;

 page = cs.getAbstracts(0, 5);

 int totalAbstracts = page.getTotalSize();

 String aBody =

 "A panel of experts discuss the future of the Java platform";

 ConferenceAbstractDTO dto =

 new ConferenceAbstractDTO(

 "The future of Java",

 "Panel",

 "Management",

 "Intermediate",

 aBody,

 "bsb@isllc.com");

 boolean submitted = cs.submitAbstract(dto);

 assertTrue("Submitted abstract", submitted);

 // An uncached result

 page = cs.getAbstracts(0, 6);

 assertEquals(

 "Uncached total size",

 totalAbstracts + 1,

 page.getTotalSize());

 // compare contents ignoring PK_ID because it’s generated

 IDatabaseConnection conn =

 DatabaseConnectionFactory.createConnection();

 ITable actualTable = conn.createQueryTable(

 "ABSTRACTS",

 "select TITLE,TYPE,TOPIC,LEVEL,BODY,STATUS,FK_PRESENTERID from ABSTRACTS");

1259c04.fm Page 147 Friday, February 27, 2004 1:27 PM

Chapter 4

148

 IDataSet expectedDataSet =

 DatabaseConnectionFactory.createDataSet(

 "AfterAbstractSubmit.xml");

 ITable expectedTable = expectedDataSet.getTable("ABSTRACTS");

 Assertion.assertEquals(expectedTable, actualTable);

 }

Conclusion

This chapter explained the importance of unit testing and identified some of the best
practices to consider while unit testing. The chapter also demonstrated how JUnit
can be used in combination with Ant to create an automated test harness that can
produce repeatable results. You learned how to use JUnit to create unit tests for
plain old Java objects, and the Cactus JUnit extension was used to test components
within a J2EE application server. You also learned how to perform a database-
dependent test using DBUnit to set the database to a known state before a test and
checking the state after the test. To learn more about unit testing and the many
JUnit extensions available, we recommend that you visit http://www.junit.org.

1259c04.fm Page 148 Friday, February 27, 2004 1:27 PM

149

CHAPTER 5

Business Tier
with JBoss

“I choose a block of marble and chop off whatever I don’t need.”

—Francois-Auguste Rodin

THE BUSINESS TIER is where the application logic or business rules reside. It’s a slice
of functionality that represents a solution to a set of problems in a particular
business domain. There are many names being used today for the business tier,
such as the middle tier, the application tier and the server tier. But they all imply
the same thing: the brains of your application where the computation of business
rules occurs. The business tier performs business processing on behalf of the
presentation tier (either a web tier or a client tier). To fulfill those processes it com-
municates with back end data stores and the Enteprise Information Systems tier
(EIS) to retrieve any persistent business data that needs to be manipulated or
transformed during the course of a business transaction.

In contemporary enterprise development the J2EE application server is posi-
tioned at the heart of it all and has come to replace the operating system as the new
layer of abstraction upon which enterprise applications and services are created.
The J2EE architecture represents the state of the art in middleware technology,
drawing on the lessons learned from the fields of transaction processing (TP)
monitors, object request brokers (ORBs), component technologies, distributed
computing and relational and object databases.

There are many considerations and choices faced by Java developers when
designing and implementing an enterprise application business tier. The J2EE
platform is a highly modular, well-integrated yet loosely coupled set of APIs that
gives developers the ability to “chop off” whatever they don’t need.

This chapter focuses on extracting the essential services and processes from
the design of the Technology Conference Management System (TCMS) and trans-
lating them into a system of components that provide business services to the
user-facing areas of the system. The complicated nature of enterprise development
and the high entry cost typically associated with J2EE applications has made it an
ideal area for the Open Source movement to tackle. This chapter will show you
how to develop your application’s business tier using the JBoss application server

1259c05.fm Page 149 Friday, February 27, 2004 1:39 PM

Chapter 5

150

in conjunction with Open Source tools. You’ll combine them in synergistic ways
to streamline, simplify, and reduce the overall cost of developing enterprise Java
applications.

J2EE: A Different Development Paradigm

There are many new aspects that make J2EE development different from traditional
application development, especially when it comes to developing Enterprise
JavaBeans (EJB). The J2EE platform does, in general, make programmers’ lives
easier by removing a great deal of the complexity previously required to handle
the needs of an enterprise application.

A consequence of the effort to simplify enterprise computing is that it forces
certain restrictions and radical changes to the way programmers do their jobs.
There are three prominent factors that J2EE development introduces that rep-
resent a radical departure from the traditional ways of developing applications.

These are as follows:

• Declarative control: J2EE introduces the notion of declarative control of
the runtime environment. This is by far the most radical of departures for
newcomers to the J2EE world. J2EE uses XML deployment descriptors that
declare the way applications and components interact with the application
server and clients. Declarative control is used in many areas including
security, naming, transactions, and intracomponent relationships. In
J2EE a great deal of the runtime behavior of an application is decided at
deployment time. This flexibility leads to a more complex code-compile-
debug cycle than most programmers are used to.

• Programmatic restrictions: EJBs are restricted in several ways to ensure
that they don’t interfere with the responsibilities of the container they live
in. These restrictions, in combination with the fact that EJBs only work in
the context of an EJB container, prevent programmers from using typical
development techniques (like unit testing a class) by adding a simple
main() method (console-driven testing). These restrictions aren’t handled
at compilation time, therefore developers who are unaware of them have
no way of knowing they’re violating the specification.

• Indirection levels: J2EE introduces a level of abstraction and indirection
that most developers aren’t accustomed to. A single EJB includes several
Java files and deployment descriptors that can distract the developer from
its “development”-time responsibilities, which should be the creation of
business logic of value to the enterprise. It’s important to understand that
these extra layers of abstraction are usually the result of the flexibility and
vendor independence designed from the ground up into the J2EE platform.

1259c05.fm Page 150 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

151

J2EE effectively changes the way programmers work, but without the right
combination of tools it can be an overwhelming experience. The most common
complaints from beginners about J2EE, and EJB development in particular, involve
the differences in the day-to-day development processes that most programmers
have grown accustomed to. At first it might seem that most of the old techniques
for rapid prototyping learned in the J2SE world no longer apply, but as you continue
exploring enterprise Java you’ll learn that most of these techniques are adapted
to work in this new environment.

NOTE The EJB specification lays the groundwork for tool developers
to automate and streamline EJB development. Unfortunately, the
state of the existing tools isn’t at the point where all of the benefits
promised by the many vendors are a reality. The J2EE tools market is
evolving rapidly and vendors are learning to read between the lines of
the specifications and have begun to implement time-saving tech-
niques for the development of J2EE-based applications. The Open
Source movement has been one of the primary forces in the evolution
of the J2EE tool landscape. It’s now common to see an API reference
implementation emerge as an Open Source project and vice versa
(Open Source projects driving new JSRs).

The development of a J2EE application requires a certain amount of planning
and preparation. J2EE development centers on the construction of J2EE compo-
nents such as Java Server Pages (JSP), servlets, and EJBs. These components are
then packaged with a module-level deployment descriptor to create what is
referred to as a J2EE module. J2EE modules, in the form of Java JAR files (for EJBs)
and WAR files (for servlets and JSPs), are autonomous deployable units that can
also be assembled with other modules to form J2EE applications (EAR files).
Unfortunately, the J2EE assembly and packaging processes have been, until
recently, a very manual process, which by its very nature hinders some of today’s
accepted best practices for development such as Continuous Integration. Ant,
the now de facto, independent development environment (IDE)-independent
way to build a Java application, has streamlined many of these manual processes.
Later in this chapter you’ll expand on your use of Ant to deal with the particulars
of a J2EE application.

EJB—to some the cornerstone of enterprise Java development—can be difficult
and cumbersome to develop. Besides the creation of the numerous deployment
descriptors required, EJBs require the creation of many other “glue” files. The
creation, maintenance, and synchronization of these files present a significant
amount of overhead. Figure 5-1 shows a breakdown of the activities involved in
J2EE-component development. As a developer you should know which of these
activities you can automate and which ones you can streamline by using the right

1259c05.fm Page 151 Friday, February 27, 2004 1:39 PM

Chapter 5

152

tools such as XDoclet for the generation of many of the supporting glue files and
descriptors. You’ll explore XDoclet in greater detail later in this chapter.

Figure 5-1. Business tier J2EE development

Open Source tools like Ant, XDoclet, and Middlegen can help streamline and
reduce the overhead of J2EE development. In combination with freely available
J2EE servers and EJB containers from projects like JBoss, OpenEJB, and JOnAS,
these tools lessen the complexity of entering into J2EE. Open Source provides
zero cost for infrastructure and a large pool of worldwide developer resources
behind the refinement and troubleshooting of the tools and frameworks. Open
Source makes the rapid development of enterprise Java applications on a budget
a reality. After all, development time—not application server cost—usually has
the highest impact on a new J2EE project.

1259c05.fm Page 152 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

153

Considerations for the Business Tier

The J2EE platform was born out of the lessons learned through the years in
component-oriented technologies. Originally, Sun envisioned a thriving reusable
component market that would rapidly evolve. This dream hasn’t come to fruition
like it happened with the visual-component market created by products like
Visual Basic and Delphi Rapid Application Development (RAD) tools. Although
Sun strongly directed the early push toward building reusable components, the
emphasis has shifted toward ease of development and performance as the J2EE
technology has been battle tested. The early analogies with the visual RAD world
have proved a little misguided. Visual components are radically different than
middleware components and visual-application developers work in very different
ways than middle-tier developers. Visual component developers usually have a
much better defined environment, well-established contracts for containment,
and a much simpler set of resources to manage for their components. When one
adds distribution, fault tolerance, data awareness, and many more degrees of
freedom in terms of component usage, it’s easy to see the differences. We predict
that the market for reusable components will flourish after the tools market matures
and we, as an industry, find the right paradigm for the component-based rapid
construction of enterprise applications.

Before you get started building the business tier for the TCMS system it’s
important to get a basic understanding of the issues and choices that you’ll be
faced with in a typical J2EE project. The considerations are many, from the actual
processes involved in the day-to-day development, to the choices between the
different API and technologies offered by the J2EE platform. Issues such as which
design patterns and which best practices to apply to a project are key ingredients
in building a successful J2EE application. This section provides some insight into
some of these issues and offers some general guidance for those who are relatively
new to the J2EE platform.

Write Once Run Anywhere

The concept of Write Once Run Anywhere (WORA) is one of the stated goals of
J2EE and Java in general. WORA still isn’t something that you automatically get
simply because you’re using J2EE technologies, and how much importance you
place into attaining it can be crucial to the success of a J2EE project. You must
work to achieve WORA and in the current state of affairs being able to just switch
application servers or databases isn’t a matter of hours or days but rather a task
that can take weeks . Portability most of the time is an afterthought to the driving
forces of corporate America and it’s rarely a business requirement for most projects.
If your application isn’t solving a particular business problem well, odds are that

1259c05.fm Page 153 Friday, February 27, 2004 1:39 PM

Chapter 5

154

it won’t survive long enough to be ported anyways. WORA is a more important
consideration if you’re planning to sell off-the-shelf packaged third-party
components.

In general you should strive to make your applications as portable as possible
without hampering their capability to deliver business value. The next two sections
discuss the two most likely places where you might be faced with a decision
between maximizing functionality and marginalizing portability.

Proprietary J2EE Container Features

The J2EE specification aims at creating competition amongst vendors’ imple-
mentations while adhering to a standard set of APIs. Unfortunately, there are
plenty of gaps in the J2EE specifications that vendors must fill without the guidance
of a well-defined set of APIs. Poor planning in the usage of these value-added
features can become a major roadblock if you decide to port your J2EE application to

a different vendor’s server. Yet, for most companies switching, an application
server is a rarely seen concern ranking very low in comparison with having an
application that truly fulfills a business need.

Many times you’ll find that a particular vendor implements a specific non-J2EE
value-added feature based on a submitted JSR. In the case of a company that is
leading the pack, it might submit a JSR for a particular feature. The point here is
that choosing an implementation that is aligned closely with a JSR makes the
portability issues less marked. Also, good object orientation should tell you that
when plugging a proprietary feature into an application, the standard approach
is to “adapt” it using an existing API or JSR as a guideline.

Proprietary Database Features

Although EJBs make a natural choice for caching data, for certain types of operations
on data it’s just much more efficient to let the database handle them. Store pro-
cedures and custom-database functions might be the best choice when dealing
with bulk management of data. For example, for data that’s read repeatedly from
the database, store procedures provide a tremendous performance boost by
taking advantage of precompilation, in which each store procedure is compiled
once and the execution plan is reused many times. Store procedures have access
to query optimizers and other performance-boosting facilities that application
programmers cannot access from the confines of the application server.

It’s important to understand the difference between business logic and persis-
tence logic (with data-integrity logic spread between the two). Persistence logic

1259c05.fm Page 154 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

155

deals with how to reflect the effect of a business process on the persistent data.
If your application deals primarily with persistence logic and if your database
structure is likely to change often, then store procedures provide a convenient
extra layer of abstraction between your application and the data. EJB-based
applications (CMP 2.0) are strongly coupled to the database structure (one-to-one,
table-to-Bean relationships).

CMP 2.0 Entity Beans provide a place at the application level to handle per-
sistence logic and handle complex data model relationships better than the previous
versions of the specification. But you have to remember that the strength of the
J2EE platform is in providing an enterprise-level execution environment for
business logic—persistence logic is just a necessary evil. One of the greatest
problems in enterprise development is the object-relational impedance mismatch;
CMP 2.0 is J2EE’s answer to that problem. But it should be carefully evaluated as
a solution. Java code cannot provide the level of optimization that you can achieve
at the database level.

NOTE It’s relevant to mention that the CMP specification provides
several commit options that provide the flexibility to optimize the
interaction with the database. For example when there is prior
knowledge that the database will only be accessed by the EJB con-
tainer, the container can cache a Bean’s state between transactions
using commit Option A. The CMP commit options are transparent
to the Entity Bean developer and are specified by the J2EE server
administrator. To learn more about CMP commit options see EJB 2.1
Specification section 10-5-10.

That said, it’s important to plan in the event that the underlying database
needs to be replaced. One key example of the differences between database
vendor implementation is unique key generation, which you’ll explore later in
this chapter.

Enterprise JavaBeans

Typically the first question that many developers ask when making the transition
into the J2EE platform is whether to use EJB or not. EJBs are distributed, network-
aware components for developing secure, scalable, transactional, and multiuser
applications in a J2EE environment. EJBs, as part of the J2EE architecture, advocate
a 3+ tier architecture, which, according to a Software Engineering Institute (SEI)
article, “has been shown to improve performance for groups with a large number

1259c05.fm Page 155 Friday, February 27, 2004 1:39 PM

Chapter 5

156

of users (in the thousands) and improves flexibility when compared to the two
tier approach.”1

But, what does that mean to you? And how do you determine whether you
need EJBs in your current application? To start with, it’s important to understand
that EJBs aren’t the core or foundation of the J2EE platform; they’re just one of the
APIs available, though one that can cover a wide range of enterprise-application
needs. Also it’s important to understand that there are several different types of
EJBs and though some might be applicable to certain problems others might not
be. There is still a lot of fear, uncertainty, and doubt being spread in the industry
about EJBs. The opinions in the industry can be classified on three different levels:

• The Good: Based on real limitations or questionable designs in the EJB
specification. Like any approach to distributed computing, EJBs are far
from perfect and are under greater scrutiny than most technologies given
the extent of their usage. The EJB specification is evolving to cover web
services integration (JavaBeans as SOAP-based services) and better inte-
gration with legacy and third-party messaging systems.

• The Bad: Those based on problems found in earlier EJB specifications,
but which are still driving newcomers away from the technology. Problems
like the dreaded n+1 database call problem present in early Entity Bean
specifications (caused by containers requiring n+1 database calls and
network trips to load an Entity Bean and its dependent child objects in a
parent-child relationship).

• The Ugly: As with any far-reaching technology, there are opinions that
are market driven or based on a lack of understanding of the needs of
enterprise applications in general. EJBs are by far the most controversial
technology in Sun’s repertoire and we’ve seen both sides of the spectrum,
from high praise to no-holds-barred bashing.

One of the key considerations when deciding whether to use EJBs is distri-
bution. How will your application be architected? How would the tiers be partitioned
physically? Are the web container and the EJB container running on the same
machine? How would you handle concurrency and load issues? How would your
transactions be distributed? What level of security will your business services
need? What about quality-of-service requirements? The J2EE EJB container is a
marvelous piece of middleware that does a lot of the things that as programmers
you previously had to deal with on every application that was built. Before the rise
of the J2EE application server most companies slowly and painfully built the

1. Carnegie Mellon University, Software Engineering Institute (SEI), Jan 1997.
See http://www.sei.cmu.edu/str/descriptions/clientserver_body.html.

1259c05.fm Page 156 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

157

equivalent infrastructure on an as-needed basis. These efforts usually distracted
application developers from their goal: the development of applications that
improve the bottom line of their employers. Also, the consistency in the quality of
the plumbing code produced is always questionable. The resulting products were
usually a clear case of jack-of-all-trades and master-of-none syndrome.

The main goal of EJBs is to simplify enterprise-server computing. But it’s
important to understand where this “simplification” takes place. Entity Beans hide
the complexities of multithreading, transactions, connection pooling, scalability,
object-relational mapping, and security. Hiding these complexities comes with a
price. The price is in the form of overhead and complexity in other areas such as
development, testing, and deployment. Achieving the enterprise capabilities on
your own, without an EJB container, is extremely difficult, yet at the same time
EJBs are still more complex to develop and use than plain JavaBeans or simple
Java Objects. The common rule that the more generic a solution the slower it will
perform holds particularly well for EJBs if used in the wrong scenario.

The earlier EJB specification went through a lot of criticism for issues such as

forcing every interBean interaction to be a remote call at the specification level.
This has now changed with the introduction of local interfaces. EJB 1.1 generalized
the remoteness and distribution aspects, making all JavaBeans locations inde-
pendent (also know as location transparency). Local interfaces allow co-located
clients and EJBs to be accessed using pass-by-reference semantics instead of
pass-by-value semantics.

NOTE Contemporary programming languages implement two common
parameter passing models: pass by value and pass by reference. Pass
by value entails that the parameters and return values are copied for
each method call, and pass by reference passes a reference to the actual
object to the method. Pass by reference improves performance by not
having to clone objects. Pass by reference also allows the caller to
modify the state of the passed object.

EJB, as with any other standard, makes you fit your problem into a specific

solution space. Even if you use EJBs, you don’t have to make everything an EJB.
It’s obvious that if your application needs a large percentage of the capabilities
that are provided by EJBs then you should consider EJBs as a viable solution. It’s
important to understand the point of diminishing returns with EJBs and where
on that line your application lies. It’s typical to hear claims of projects that have
seen performance gains in order of ten or more by not using EJBs, yet once you
examine their architectures it’s hard to see why they used them in the first place.

1259c05.fm Page 157 Friday, February 27, 2004 1:39 PM

Chapter 5

158

Later on, in Chapter 7, you’ll see what technologies you can use in conjunction or
as alternatives to EJBs. Compelling reasons to go the EJB route are as follows:

• Transactions: If your application deals with well-defined transactions
against a data store. Container-managed transactions are one of the most
powerful features of EJB technology. Declarative-transaction management,
the ability to change transactional characteristics without changing code,
is one of the jobs that Enterprise JavaBeans does well.

• Concurrency: Concurrency control for operation on shared data.

• Expected load: If you expect more than a thousand users, EJBs offer
advanced, tunable instance pooling to effectively manage resources in
such conditions.

• Components: If you’re looking for a platform that encourages the use of
third-party components.

• Data integrity: If data integrity is a must, container-managed persistence
provides a reliable, proven solution.

• Session management: If you need reliable session management.

• Layering: If you need strong separation of presentation and business tiers.

• Support: Easier to find qualified people. As with any standard, it’s easier to
discern a person’s level of understanding of a particular technology. Most
proprietary in-house approaches are rarely documented well enough to be
learned in a reasonable amount of time. Prospective candidates might shy
away from working with a proprietary framework (job portability).

• Channels: If you’re expecting to handle many different types of
client applications.

On the other hand reasons to avoid EJBs are as follows:

• Testing: More complex testing.

• Development time: More complex development and longer
deployment cycles.

• Cost: EJB container cost (see the discussion of JBoss later in this chapter).

• Training: Steeper learning curve.

1259c05.fm Page 158 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

159

• Expected load: If you have a fairly small user load, and performance is your
primary goal, the overhead of the container services might not be worth
the performance penalties incurred.

• Tabular data: If you’re only providing a nonobject-oriented view of a set of
database tables, your application can tolerate stale data and the data is
mostly read-only, nontransactional.

• Data warehousing: Massive data-manipulation operations such as a data-
warehousing aren’t well suited for EJBs. This is an area where programming to
the database excels.

• Prototypes: If you're prototyping a simple application or a proof of
concept, use a lighter, nonenterprise solution.

• Complex object models: EJBs don’t support complex object models well.
They don’t support domain inheritance and aren’t truly polymorphic. A com-
plaint from purists is that the resulting object models are overly data-driven,
which makes it difficult to implement nontrivial best practices when it
comes to modeling your application.

EJBs, like any other technology, aren’t perfect and aren’t a perfect fit for every
problem. They’re by far the most complex technology in the J2EE stack and might
not be the best entry point into the J2EE arena. If you’re prototyping an appli-
cation, EJBs might not be the best choice. You can build a simple prototype using
Struts or JSPs, servlets, JavaBeans, and JDBC in a fraction of the time that it takes
you to get a simple EJB-based application up and running.

Entity Beans

Of all the EJB types, Entity Beans are the ones that have been criticized the most.
Given that a large percentage of applications will be database-driven applications,
it’s no surprise that this API has fallen under such scrutiny. One of the arguments
against Entity Beans that you can find in discussion groups is that everything that
you can do with EJBs can also be accomplished with JSP, servlets, JavaBeans,
TagLibs, and plain JDBC. Though this is certainly true in a lot of cases, the problem
with this type of overgeneralization is that the gains of Entity Beans aren’t easily
perceived in systems with a small number of users (< 1000). To reap the benefits
you have to be past the point where a typical JSP/servlet/JavaBeans application
that does straight JDBC begins to have problems. These problems are typically
related to the ability for the application to cache data. The main culprit when it
comes to the performance problems of a multitier application is serialization.

1259c05.fm Page 159 Friday, February 27, 2004 1:39 PM

Chapter 5

160

Entity Beans, for example, minimize the amount of serialization by providing a
cache for database data. With smart container optimizations, Remote Procedural
Call (RPC) optimizations, and a well-architected CMP engine, EJBs provide a
viable choice for caching data.

The introduction of container-managed relationships has alleviated some
of the complaints about EJBs being poor object-oriented artifacts by allowing
complex relationships in the data model to be mirrored at the EJB level. As you
learned in the “design” chapter, a sound object-oriented design should always
prevail over any technology-specific workaround. We see the difficulty of imple-
menting a complex object model in EJBs as one of the main detracting points for
using the technology. On the other hand, the enterprise Java community is very
skilled and very proactive at taking what it has been given by the specifications
and making it work in the real world. As a result a lot of “design patterns” have
emerged to deal with the shortcomings of the J2EE platform, mainly in the area
of EJB development. Some of these so-called “design patterns” could be better
labeled as “implementation patterns” or “strategies” to deal with the shortcomings

of the technology, while they attempt to support a sound object-oriented design.
With the now available EJB 2.1 specification and the introduction of container-
managed relationships, you can now use Entity Beans to model finer-grained
domain entities. The object-relational impedance mismatch existed long before
the introduction of EJBs, and as long as your data continues to live in the relational
world the problem will exist.

...

Asynchronous Processing

Synchronous processing is the primary modus operandi of contemporary
computing. The traditional client-server paradigm of the Web is a perfect
example of the request-response synchronous system in which a caller blocks
until receiving a response from the server. As you know, the Web is a stateless
environment and a synchronous one. This means that long-running processes
aren’t well suited for this environment. In stand-alone applications you can use
background threads and callbacks for long-running processes. In a synchronous
invocation environment such as the Web, the server side of the equation must
process and return a response before the client on the other end of the line
times out.

At the application level, a synchronous call between processes is handled with
RPC-like mechanisms. In Java and J2EE this is accomplished via the Remote
Method Invocation (RMI) subsystem, which provides synchronous RPC services.

Another way for processes to communicate with one another is asynchronously, in
which one process sends a message and doesn’t block for an answer. For a long-
running process such as calculating a credit score for a home loan, a client
could send the request and later (without blocking) receive a message contain-
ing the result of the requested operation.

1259c05.fm Page 160 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

161

You can extend this paradigm further by decoupling the senders from the receiv-
ers by placing an entity in the middle that enables both parties to be unaware of
each other. In enterprise messaging this entity is referred to as the message broker.
A message broker offers a very flexible type of interapplication communication
by simplifying the logical connections among multiple application systems.
Message brokers are logical entities, distinct from senders and receivers, which
coordinate message distribution.

Going back to the credit score example, imagine that the entity that processes
the credit applications is the credit processor. In an enterprise-messaging scenario
the credit processor will be able to process “credit application” messages. Now
you can see that by decoupling the credit processors from the client applications,
you now have the ability to scale the system by simply adding more credit
processors.

TIP A system’s scalability will typically increase as you decouple its
components and remove any unnecessary “state” that’s being kept.

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. Java
Message Service (JMS) provides a common API and a provider framework that
enables the development of portable, message-based applications.

One of the missing ingredients in the EJB mix was a better integration
with message-oriented middleware (MOM). With the introduction of JMS and
message-driven Beans (MDBs) to the J2EE and EJB specifications respectively,
Enterprise Java developers now have at their disposal the tools of enterprise
messaging. MDBs made their debut in version 2.0 of the EJB specification. As
you learned in the J2EE primer, unlike Session and Entity Beans, MDBs aren’t
directly accessible by a client. Instead they operate on messages received either
from a JMS queue (point-to-point) or a JMS topic (publish-subscribe).

The use of messaging can change the perceived performance of an EJB-based
application by providing a way to accomplish parallelism in an otherwise (from
the point of view of the developer) single-threaded environment. JMS can enable
coordination of long-running tasks by allowing developers to handle specific
workflow items in “set-it-and-forget-it” fashion.

Integration with external non-J2EE sources is also facilitated with MDBs. For
example, imagine a J2EE system that needs to interact with a non-J2EE order-
fulfillment subsystem. In such a case you could expose an HTTP interface or a
web service that in turn uses messaging in the form of an MDB to alert a J2EE
application of a relevant event in the processing flow of an order.

Another advantage of messaging systems is that messaging technologies have
been around for quite a while now. And with the reliability of the mature MOM
systems, along with features like “guaranteed delivery” and “durable subscribers,”
recovery from failure is easier to accomplish than with traditional RPC-based

...

architectures.

1259c05.fm Page 161 Friday, February 27, 2004 1:39 PM

Chapter 5

162

JBoss: The Open Source Choice for the Business Tier

The JBoss application server started life as the EJBoss project back in March 1999.
Spearheaded by Marc Fleury, a former Sun Microsystems engineer, along with an
enthusiastic group of programmers ready to embrace the then-new EJB specifi-
cation, it has grown to be the most popular Open Source application server in the
market and a worthy contender to the likes of BEA WebLogic, IBM Websphere,
and the Borland application server.

Distributed under the GNU Lesser General Public License (LGPL) Open
Source license, JBoss is a 100-percent compliant clean-room implementation
that provides the full gamut of J2EE services, and it’s built on a pluggable archi-
tecture that leverages the Java Management Extensions (JMX) specification and
recent academia-driven advances in software engineering such as aspect-oriented
programming (AOP). JBoss was also one of the first application servers tailored to
developers, with dynamic features like hot deployment. It featured the ability to
load and unload libraries at runtime as well as dynamic generation of container
stubs and skeletons. Many of these features aren’t found in commercial offerings.

JBoss is more than an application server. It’s a full-featured platform for
enterprise development that provides the full J2EE stack of services. Under the
umbrella of the JBoss project you’ll find the following:

• JBossServer: An advanced EJB container and JMX “bus”

• JBossMQ: A JMS provider

• JBossTX: For Java Transaction API (JTA) and Java Transaction Service (JTS)
transactions

• JBossCMP: Container-managed persistence engine

• JBossSX: For JAAS-based security

• JBossCX: For Java Connector Architecture (JCA) connectivity

• JBossMail: Java mail provider

• JBossWeb: A slightly customized version of the popular Jetty web
container for servlets/JSPs (or alternatively Tomcat or another container
for which a JBoss service exists)

The JMX specification allows for the control and configuration of managed
Beans (MBeans). MBeans are components that wrap the network entities, which

1259c05.fm Page 162 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

163

include other components, applications, and hardware devices. MBeans, just
like EJBs, live in a container that abides by the JMX server standard: the MBean
server. The MBean server is a lightweight process, similar to a Common Object
Request Broker Architecture (CORBA) ORB, which serves as a repository or reg-
istry for MBeans. The JMX server in JBoss is the spinal cord of the system where
MBeans plug in and interact with other MBeans. JMX was designed as a bridge
and a consolidation point for other network management systems, just like JMS
and JDBC are for the areas of enterprise Messaging and database connectivity.

MBeans are designed for management and they provide clients with the
ability to receive notifications of relevant management events by registering with
the MBean. JBoss’s JMX-based flexible architecture allows you to select which
components (or services) you want in a running server. JBoss enables developers
to mix and match different implementations of specific J2EE services as long as
there is a compliant JMX MBean. MBeans are registered and instantiated using
MLets. MLets are management applets; the MBeans server provides an MLet
service that loads a text file that specifies the information on the MBean(s) that

will be loaded. JBoss can be extended and customized by creating MBean services.
Since its inception JBoss’s extreme flexibility has greatly contributed to its

meteoric rise to stardom. It’s consider by many in the industry as a prime example
of the viability of the Open Source model in the area of enterprise infrastructure.
The JBossGroup, headed by Fleury, is also one of the first in a breed of companies
embracing the Open Source service-oriented revenue model. Many commercial
vendors of J2EE value-added software and development tools are partnering
with JBoss—a testament to its success. You could argue that the JBoss application
server’s success has been one of the main driving forces in the recent drop in
application server prices and licensing flexibility. Today major vendors are offering
“community” editions or giving the application servers away as part of a bundle
that might include an operating system or hardware.

JBoss is an application-server build for developers by developers. JBoss uses
dynamic proxies during deployment to generate the server-side “glue” code
dynamically. No longer do you have to run a proprietary server-side code generator
as you would with many commercial application servers. Static glue approaches
tend to muddy the business objects in a swamp of proprietary files. Dynamic
glue generation facilitates fast prototyping and supports the evolution of the
codebase in short phases (Continuous Integration).

JBoss is leading the pack as an enterprise platform that’s moving towards
embracing aspect-oriented concepts such as enabling developers to work with
plain old Java objects (POJOs) in the context of an enterprise application that’s
still gaining all the advantages of distributed-component architectures.2 Expect
to see many new advanced features in the upcoming 4.0 versions of the platform.

2. Fowler. Patterns of Enterprise Application Architecture (Boston, MA: Addison-Wesley, 2003).

1259c05.fm Page 163 Friday, February 27, 2004 1:39 PM

Chapter 5

164

Readers interested in finding out more on the inner working of the JBoss
application server should start by getting an overview of the JMX API, the Dynamic
Proxy API and Rickard Oeberg’s “Interceptor Stack,” which is the pattern at the
heart of the JBoss containers. To learn more about the JBoss server architecture
see Stark et al. JBoss Administration and Development.3 Figure 5-2 shows an
overview of the JBoss server architecture.

Figure 5-2. JBoss architecture

Setup and Configuration

As with most other Open Source projects, you can obtain JBoss in source form or
in binary form. In this chapter you’ll use the binary ready-to-run distribution.
To obtain the latest development release you can use the Concurrent Versions
System (CVS).

In this book we’re promoting the collocation of the EJB container and the
web container; therefore you’ll be using JBoss and the embedded JBossWeb web
container.

3. Stark, Fleury, et al. JBoss Administration and Development (SAMS, March 2002).

1259c05.fm Page 164 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

165

NOTE Collocating the web tier and the EJB container was sometimes
frowned upon as a technically incorrect layering of the architecture.
An underlying reason not to collocate was the fact that licensing costs
normally made such an arrangement cost-prohibitive. Remember,
with JBoss the cost per CPU is always constant: zero dollars and the
performance gains due to container-to-container optimizations
(reduction in serialization) are remarkable. If your network topology
and security constrains enable you to collocate the two tiers we highly
recommend that you do so.

Properly configuring and fine-tuning your application is one the most
important aspects of a J2EE deployment. In this chapter though you’ll concen-
trate only on the definitions and development of the components.

Download and Install JBoss

The JBoss distribution consists of one single compressed archive following the
naming convention jboss-[JBoss-Version].zip. In this case the archive file is
jboss-3.2.1.zip and you can obtain it from http://www.jboss.org/downloads.jsp.
The following instructions should work on any JBoss 3.2.x distribution.

NOTE In this book we’ve decided to use the JBoss version that uses
the JBossWeb web container. The JBossWeb container, a customized
version of the Open Source Jetty web container, is reported to provide
better performance that the Tomcat reference implementation.

Next, proceed to extract or unzip the downloaded file to a suitable directory
using the Java JAR tool (on any platform), Winzip, the Windows XP built-in
extract utility, or unzip in Linux. In this case we’re using c:\java\ so the JBoss
distribution directory (JBOSS_DIST) is C:\java\jboss-3.2.1.

CAUTION The JBoss group recommends that you select a directory
structure that contains names without spaces, which seem to cause
problems with certain Sun Java Virtual Machines (JVMs).

The resulting directory structure should resemble the one shown in Figure 5-3.

1259c05.fm Page 165 Friday, February 27, 2004 1:39 PM

Chapter 5

166

Figure 5-3. JBoss directory structure

Next, proceed to start the JBoss server by opening a command prompt under
Windows, or the shell terminal under Linux, or the console under UNIX. Change
the active directory to the bin directory under the JBoss installation and enter
the following:

C:\java\jboss-3.2.1\bin>run

If the server starts correctly you should see a great deal of logging information
scroll by without any Java exceptions. If you’re a longtime Java developer you’re
probably going to be able to catch a glimpse of a Java exception scrolling
regardless of how fast is goes by.

The batch file run.bat (or run.sh if running under Linux or Unix) uses the
default configuration, which is located in the JBOSS_DIST/server/default. JBoss
also ships with “minimal” and “all” services–enabled configurations under the
JBOSS_DIST/server/ directory.

NOTE For those familiar with the WebLogic application server, the
directories under the JBoss distribution “server” directory serve a similar
function to the concept of a domain in WebLogic. The domain can
host a collection of applications under a common set of resources and
configuration options.

Let’s examine some of the console output to get an understanding of the
JBoss runtime environment. At the very top you should see the definition of the
environment variable JBOSS_HOME, your current JAVA_HOME—the classpath
available to JBoss at startup—as well as some other environment variables. You
would see several MBean services go through a progression of states, typically
the following: creating, created, starting, and started.

The output results for a successful server startup should resemble the
following:

1259c05.fm Page 166 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

167

...

21:28:11,495 INFO [Server] Starting JBoss (MX MicroKernel)...

21:28:11,515 INFO [Server] Release ID: JBoss [WonderLand] 3.2.1 (build:

CVSTag=JBoss_3_2_1 date=200305041533)

...

21:28:11,525 INFO [Server] Root Deployemnt Filename: jboss-service.xml

21:28:11,535 INFO [Server] Starting General Purpose Architecture (GPA)...

21:28:12,006 INFO [ServerInfo] Java version: 1.4.2_03,Sun Microsystems Inc....

...

21:28:42,099 INFO [Server] JBoss (MX MicroKernel) [3.2.1 (build:

CVSTag=JBoss_3_2_1

date=200305041533)] Started in 30s:564ms

To test the installation and inspect the runtime environment go to
http://localhost:8080/jmx-console/, which should display the JBoss JMX
console as shown in Figure 5-4.

Figure 5-4. The JBoss JMX console

1259c05.fm Page 167 Friday, February 27, 2004 1:39 PM

Chapter 5

168

A more comprehensive set of tests is available in the JBoss TestSuite, which is
a collection of unit tests used by the JBoss team to provide Continuous Integration
to their development process. Running the TestSuite is outside of the scope of
this book but we recommend doing so, especially when building JBoss from CVS
or a source-code distribution.

JBoss Management with Java Management Extensions

The runtime management of the JBoss server is currently performed via the
JBoss JMX console web application shown in Figure 5.4. The JBoss services are
exposed as MBeans, which you can inspect with the console. The console pro-
vides a listing of all JBoss services (JMX agent view). From this list of services you
can drill down to an individual view of the service to the MBean view in order to
perform an operation on a particular MBean.

For example, to view the contents of the Java Naming and Directory Interface

(JNDI) tree select the service=JNDIView hyperlink under the JBoss heading,
which will take you to the MBean view for the JNDIView service. MBean opera-
tions are exposed in the raw in the JBoss console as method signatures that you
can click to execute. On this page you’ll see a list of MBean operations; select the
list() operation. The list() operation will give you a listing of the items in the JNDI
tree. Notice that you’re able to select the value of the Boolean parameter. If you
wonder about the meaning of the parameter, check the JavaDoc documentation
for the org.jboss.naming.JNDIView class and you’ll find that the parameter is a
verbose flag.

public java.lang.String list(boolean verbose)

The JavaDoc also reveals the purpose of the method: “List deployed appli-
cation java:comp namespaces, the java: namespace as well as the global
InitialContext JNDI namespace.”

TIP It comes in handy to bookmark the JBoss JavaDoc API because
the JMX console doesn’t provide MBeans method details.

1259c05.fm Page 168 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

169

The java:comp/env namespace, also referred to as the environment naming
context (ENC), provides a namespace that links logical resource names to their
physical counterparts, thereby avoiding the hard coding of values in EJB lookups.
The logical-physical mapping is configured via the ejb-ref, ejb-local-ref, resource-
ref, and resource-env-ref elements of the ejb-jar deployment descriptor.

TIP Always use the java:comp/env namespace for looking up other
components and resources from within a Bean. This technique allows
applications to be deployed without the components having any
knowledge of the actual JNDI names of the components they reference.

The JMX standard makes it relatively simple for any JMX-compliant man-
agement application to be used with JBoss. The JBoss Group is working on
JBossMGT, an advanced management console project based on the JSR-77,
which specifies a management specification for the J2EE platform.

As mentioned before, MBeans live in the JMX container. In JBoss they provide

a way for JMX-compliant tools to manage services through management inter-
faces exposed through an MBean. MBeans can notify registered listeners of
changes to a managed service. By writing custom MBeans you can access and
control certain advanced features of the application server such as cache-
invalidation schemes and advanced clustering techniques.

JMX management tools are slowly appearing in the market both from com-
mercial vendors and from the Open Source community. One such JMX Open
Source management console is provided by the EJTools project, hosted on
SourceForge. It provides both web-based and Java swing client-management
tools that work with the JBoss server. The EJTools utilities will give you better
control over the deployment of the TCMS application.

Go to http://www.ejtools.org/ and download the current distributions of
jmx.browser and the jndi.browser WAR archives: At the time of this writing these
were jmx.browser-1.1.1.sar and jndi.browser-1.0.1.war. To deploy them simply
copy both archives to the JBOSS_DIST/server/default/deploy directory. JBoss
monitors this directory for changes; when it detects a deployable file it attempts
to locate a suitable deployer for it.

1259c05.fm Page 169 Friday, February 27, 2004 1:39 PM

Chapter 5

170

To view the EJTools JMX browser, point your web browser to
http://localhost:8080/jmx.browser/ as shown in Figure 5-5. As you can see, the
functionality is very similar to that which is provided by the JBoss JMX console.

Figure 5-5. The EJTools JMX browser

More useful than the EJTools JMX browser is the JNDI browser, which you
can see at http://localhost:8080/jndi.browser-1.0.1/. The view it provides of
the JBoss JNDI tree is a little cleaner than the one provided by the JBoss JMX
console as it’s shown in Figure 5-5.

As you can see the JMX API creates the same type of open standards–based
competition that you see in other areas of J2EE development.

1259c05.fm Page 170 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

171

Figure 5-6. The EJTools JNDI browser

Case Study: Technology Conference Management System
Business Tier on JBoss

The architectural guidelines and initial design produced in Chapters 1 and 2
will guide the decisions made in the implementation of the business tier. The
business tier encapsulates the system’s business rules and logic. The business
tier provides services needed for the realization of the use cases or user stories. In
developing the business components necessary to fulfill the use cases, you typi-
cally move back and forward between different levels of abstraction, namely, the
abstract object model, the concrete Java classes representing that model, the
J2EE components built from the concrete classes, and the higher level of services
provided by collaborating sets of components. Figure 5-7 shows the different
levels of abstraction J2EE developers find themselves dealing with.

1259c05.fm Page 171 Friday, February 27, 2004 1:39 PM

Chapter 5

172

Figure 5-7. Levels of abstraction in J2EE development

Mapping the UML Object Model to J2EE Components

The following set of simple guidelines can help you arrive at the initial J2EE com-
ponent diagram. These rules for turning your domain model into a set of J2EE
components are as follows:

• Coarse components: Group fine-grained objects into coarse components.
Objects that exhibit high cohesion are good candidates to be part of the
same component.

• Uses cases to facades: Group related use cases (look at the Moment-Interval
classes in your domain model) under the control of a Session or Message
Facade.

• Entities with Entity Beans: Party, Place, or Things classes are usually good
candidates to become Entity Beans.

1259c05.fm Page 172 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

173

Mapping a UML model to the J2EE framework is a very subjective task. Take
three different architects and you’re likely to end up with three completely different
systems. By following the guidelines in this section we hope that you can repeatedly
and consistently produce sound J2EE systems. The approach is simple; after
obtaining a suitable representation of your problem space in the form of a domain
class diagram (structure plus implicit dynamism), uses cases, and interaction
diagrams (explicit dynamism), you should use the previous three rules to arrive
at a first draft of an object-oriented component-based solution. From there you
apply design and implementation patterns or strategies to refine the application.

Plain Old Java Objects and the Business Tier

Just because we’ve chosen to use Enterprise JavaBeans in the TCMS system
doesn’t mean that everything will be an EJB. Actually, most EJBs of medium to
high complexity are actually patterns of Plain Old Java Objects (POJOs) that

interact with each other and use the services provided by the EJB container to
expose a cohesive set of functions to a client.

What does that mean to you? First, it means that some of the complex
business logic interactions of a J2EE system can be coded and tested outside of
the realm of the J2EE application server. Many introductory books, for the sake of
brevity, choose to show all the relevant operations of an EJB in the code of the EJB
itself. Again, good object-oriented practices tell you that this will lead to business
code that’s tightly coupled with your choice of technologies. What if that function-
ality needs to be reused in a personal, nonnetworked version of the system such
as a commercial swing application?

Using well-designed POJOs in your J2EE application will lead to easier testing
(see “JUnit” in the “Testing” chapter), and they will let you easily discern if
adding distribution into the equation is what might be causing problems in
your application. Remember the harder something is to test the less likely it will
be thoroughly tested.

Many projects using aspect-oriented techniques are hinting toward using
J2EE technologies as aspects that apply to POJOs. If this prediction becomes a
reality, expect to see enterprise-level J2EE applications being produced without
developers having to write a single EJB.

Configuring the TCMS JBoss Server

Before you get started with the development you need to configure JBoss for the
TCMS system. To configure an application domain or server for the TCMS system
under JBoss you’ll use the “default” configuration as a base. To get started, copy the
JBOSS_DIST/server/default directory recursively into a JBOSS_DIST/server/tcms

1259c05.fm Page 173 Friday, February 27, 2004 1:39 PM

Chapter 5

174

directory. This directory will be the tcms server directory for the remainder of
the chapter.

Earlier in the chapter the JBoss installation section described how to start the
“default” server by using the run.bat or run.sh scripts under the bin directory. To
start the tcms server type the following:

run �c tcms

The output should resemble the output previously seen when starting the
default server.

Data Model and Database Setup

The database for the TCMS system is composed of the following tables, as
shown in Table 5-1:

Table 5-1. TCMS System Database Tables

Table Name Description

Abstracts Holds a list of all submitted presentation abstracts and

their status.

AbstractStatus Holds a list of the possible status for a submitted abstract.

Addresses Holds addresses for any entity in the system that can have

an address.

Answers Holds answers to evaluations submitted by attendees of a

conference session.

Attendees Holds a list of all conference attendees (role).

Booths Holds a list of conference booths associated with a venue.

Conferences Holds a list of the conferences being managed by the system.

GroupPricingRules Holds the pricing structure for groups of attendees.

PresentationLevels Holds a list of the levels that can be associated with

a presentation.

Presentations Holds information related to a presentation.

PresentationTopics Holds a list of the topics that can be associated with

a presentation.

PresentationTypes Holds a list of the types of presentations available.

1259c05.fm Page 174 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

175

In this chapter you’ll create the tables needed for the examples. As part of the
source-code distribution you’ll find the SQL scripts needed to configure the
entire database under several different relational database management system
(RDBMS) vendors.

In the case of the TCMS systems we had the luxury of creating a database
schema from scratch suitable to our application’s business-data needs. This is
rarely the case; typically most people end up working with an existing schema
that might not map quite directly to an object model. As mentioned previously in
this chapter, the object-relational impedance mismatch is a problem that you as
an architect or developer will encounter over and over. The TCMS database is
shown in Figure 5-8.

Presenters Holds a list of all conference presenters (role).

Questionnaires Maps a group of questions to a particular presentation.

Questions Holds a collection of reusable questions.

RegistrationDatePricingRules Holds the pricing structure for registration based on

registration date.

Reminders Holds reminders to be sent for a given scheduled item.

Roles Holds a description of the available roles.

Rooms Holds a list of conference rooms associated with a venue.

ScheduleEntries Holds a list of the sessions to be attended for an attendee

or presenter.

Sessions Holds a list of all available sessions (an instance in time of

a presentation).

Tracks Holds a list of the available tracks for a given conference.

UserRoles Holds a map of users to roles (one role per user in our current

implementation).

Users Holds a list of all users in the system and their identity and

authentication information.

Venues Holds a list of venues where conferences are held.

Table 5-1. TCMS System Database Tables (Continued)

Table Name Description

1259c05.fm Page 175 Friday, February 27, 2004 1:39 PM

Chapter 5

176

Figure 5-8. TCMS database Entity Relationship Diagram (ERD)

1259c05.fm Page 176 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

177

As guidelines for the creation of the TCMS schema, you should follow these
simple rules:

• Use numeric primary keys: It will speed up access and indexing times.

• Do not over-constrain tables: Over-constraining a set of tables might lead
to applications that are difficult to test. Focus on the functionality of the
application first and then move on to database-integrity issues. It will
make for an easier time during the initial iterations or prototyping stages
of development.

• Denormalize for performance: If query performance is a high priority,
then it’s sometimes useful to denormalize a table. Several vendors offer the
option of mapping an Entity Bean to database objects other than a table
such as a View.

Creating the Database Tables

The JBoss server distribution comes with the hsqldb (formerly HypersonicDB). The
hsqldb is a 100-percent Java relational database that supports both in-memory
and file-based database tables and it can be run in embedded and server modes.
It implements a large subset of the ANSI-SQL 92 standard. Hsqld is a very popular
database platform that’s being used in a large variety of commercial as well as
Open Source offerings, including both JBoss and Middlegen. You can find more
information on the Open Source catalog or at http://hsqldb.sourceforge.net.

The next step is to create the tables. To do this you need a SQL client and the
right JDBC driver. Using iSQL or your favorite SQL client along with the following
parameters in Table 5-2 to get a connection to the embedded hsqldb database:

Table 5-2. TCMS System JDBC Connection Properties

Property Value

JDBC driver org.hsqldb.jdbcDriver

JDBC URL jdbc:hsqldb:hsql://localhost:1701

Username sa

Password -- blank --

Driver JAR JBOSS_DIST\server\tcms\lib\hsqldb.jar

1259c05.fm Page 177 Friday, February 27, 2004 1:39 PM

Chapter 5

178

NOTE For JBoss version 3.0.X the port for the embedded HSQLDB
is 1476.

Once you’ve established a connection, execute the SQL statements to create
the tables Conference and Tracks. Note that the foreign key and constraint to the
Venues table is commented out for purpose of this example. The create statements
for the Conferences and Tracks tables are as follows:

CREATE TABLE Conferences (

 pk_Id INTEGER NOT NULL PRIMARY KEY,

 Name varchar(64),

 Description LONGVARCHAR,

 StartDate DATETIME,

 EndDate DATETIME,

 AbstractSubmissionStartDate DATETIME,

 AbstractSubmissionEndDate DATETIME

 -- fk_VenueId int NULL,

 -- CONSTRAINT ConferencesVenuesFK FOREIGN KEY(fk_VenueId) REFERENCES Venues(pk_Id)

);

CREATE TABLE Tracks (

 pk_Id INTEGER NOT NULL PRIMARY KEY,

 fk_ConferenceId INTEGER,

 Title VARCHAR(32),

 Subtitle VARCHAR(32),

 Description LONGVARCHAR,

 CONSTRAINT TracksConferencesFK FOREIGN KEY(fk_ConferenceId) REFERENCES

 Conferences(pk_Id)

);

1259c05.fm Page 178 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

179

Creating a JBoss Datasource

Now that you’ve created the tables, you need to provide a way for your components
to access them. For this you need to define a JBoss service, in particular a JBoss
datasource. JBoss services are defined as XML files located in the deploy directory
under the server directory. For the tcms example look at the file hsqldb-ds.xml,
which is located in the deploy directory of the tcms JBoss server (JBOSS_DIST/
server/tcms/deploy/hsqldb-service.xml).

Make a copy of this file and rename it tcms-ds.xml. Using a text editor, edit
the file and find the element <jndi-name> under the <local-tx-datasource> tag.
Change the value to tcmsDS. Also, near the end of the file you’ll find an element
of type mbean. Comment-out this element because the MBean is already regis-
tered in the file hsqldb-ds.xml.

NOTE For JBoss version 3.0.X edit the file hsqldb-service.xml. Find
the element <depends optional-attribute-name="ManagedConnec-
tionFactoryName"> under the <server> tag. Change the value of the
JndiName attribute to tcmsDS and save the file.

There’s no need to stop the server for the tcmsDS Data Source to be available.
Simply make the changes, save the file, and you should see the changes take
place on the console.

The Project Directory Structure

To facilitate the development of the tcms system, you need a suitable directory
structure. By following the guidelines set in Chapter 3 you should have the
directory structure shown in Figure 5-9. As the chapter progresses you’ll learn the
role played by each of the directories shown.

1259c05.fm Page 179 Friday, February 27, 2004 1:39 PM

Chapter 5

180

Figure 5-9. TCMS project directory structure

Entities with Entity Beans

Entity Beans are components that model business concepts from the domain
whose lifespan extends beyond the scope of the running application. They play a
dual role as an object-oriented window into the data stored in a database and
serve as general-purpose business objects in a system. This dual role brings a lot
of confusion to new Bean developers, especially when they take the definition of
a pattern like the Session Facade (see the “TCMS Services” section) and blindly
apply it without understanding it. The fact is that Entity Beans should follow
common rules of good object-oriented design, which tells you that an object is
composed of data and behavior that applies to the data.

With that in mind you’ll notice that the Entity Beans provide a window into
one or more database tables, and they also provide methods that act upon that
data. Selecting which methods belong in the Entity Bean and which methods
belong in a Session Facade can be a little confusing. A good design mnemonic is

1259c05.fm Page 180 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

181

to question whether an action that is represented by a method is a defining char-
acteristic of what it means to be a particular entity. If the method represents an
action performed as a collaborative activity with other entities or processes then
it’s probably wiser to place it in a Session Facade. Also, from the Session Facade
point of view, choosing an appropriate name for your facade will help you determine
whether a method belongs in there.

For the Entity Beans in this example, we’ve chosen to use container-
managed persistence (CMP 2.0). CMP 2.0 supports new features that provide
powerful data management and persistence functionality while allowing the EJB
developer to focus on business logic.

BEST PRACTICE When possible, you should use CMP Entity Beans
instead of Bean-managed persistence (BMP) to take advantage of the
container optimizations and the deployment time flexibility they
provide.

For those familiar with previous versions of CMP, it’s important to note that
in the 2.x specification CMP fields aren’t declared using class fields in the Bean
implementation, but instead are declared with a set of abstract assessor methods.
This is a good addition to the specifications in that it forces strict encapsulation,
thereby making a clearer separation between the persistence part of an Entity
Bean and the business- or application-logic parts of it.

Using the domain class diagram in conjunction with the use cases created
during the analysis and design, two design diagrams are created that describe the
structure and behavior of the system in terms of components. The first diagram
contains the domain-entity components, as shown in Figure 5-10. You might be

wondering about the similarities with the database schema diagram shown in
Figure 5-8. If you worked with CMP EJBs prior to version 2.0, you know that a
well-known best practice was to only model coarse-grained components using
EJBs, and you also know that Sun didn’t recommend direct one-to-one mappings
to a database schema. CMP 2.0 changes all of that in that Entity Beans are now
well suited to represent fine-grained persistent objects thanks to the addition of
local interfaces and EJB relationships.

1259c05.fm Page 181 Friday, February 27, 2004 1:39 PM

Chapter 5

182

Figure 5-10. TCMS domain entity components

1259c05.fm Page 182 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

183

Writing the Beans

For a practical example of building a J2EE component-based business tier, you’ll
now implement a nontrivial set of Entity Beans and the corresponding Session
Facade Bean. We’ve chosen to use the ConferenceEJB and TrackEJB Entity Beans
as part of the ongoing development of the TCMS system. The ConferenceEJB and
the TrackEJB Beans map to the “Conferences” and “Tracks” tables, respectively.

This simple example shows a very typical situation in EJB Entity Bean
development—that of having a one-to-many relationship among Beans that
highlights many of the new facilities found in the new EJB specifications, in
particular the CMP 2.0 specification for container-managed relationships.

The next sections will walk you through the manual process of creating the
Conference CMP 2.0 Entity Bean and its deployment under the JBoss application
server. In order to make the example easier to understand the Bean has been
greatly simplified and the amount of code has been reduced for the purposes of
the example.

Remote and Local Interfaces

Both the remote and local interfaces serve to expose methods that a Bean’s client
can call to perform work. These two classes expose the methods of a Bean to the
outside world (remote) or to its immediate neighborhood (local).

NOTE The remote interface must abide by the limitations imposed by
the Java to IDL Mapping Specification, which dictates what types of
return values, parameters, and exceptions are valid. For more infor-
mation see http://java.sun.com/j2se/1.4.2/docs/guide/idl/
mapping/jidlMapping.html.

The remote interface declares methods available remotely using Remote
Method Invocation (RMI) syntax. It plays the role of a proxy and provides the Bean
with location transparency. Remote interfaces embody the notion of a distributed
component and all of the implications of distribution such as the following:

• Pass-by-value semantics.

• Strong isolation between caller and callee.

• Acknowledgment of remote communication errors.

• Overhead of network latency, client-and-server marshaling and demar-
shaling code, argument handling, and so on.

1259c05.fm Page 183 Friday, February 27, 2004 1:39 PM

Chapter 5

184

You must take these implications into account when designing a component’s
remote interface. The main factor in whether to provide remote access to a com-
ponent must be the distribution requirement. In stateless environments there’s
little to no reason to distribute an object that has no identity.

The EJB container is responsible for providing an implementation to this
interface, which is either generated statically or dynamically (JBoss does this
dynamically at deployment time).

Notice the package definition for the remote interface
(com.ejdoab.tcms.entities). For the rest of this example this package will contain
all domain-entity components, therefore under tcms\src\java you’ll now need to
create a com\ejdoab\tcms\entities set of directories in which you’ll place the
files you’re about to create.

The code for the remote interface is as follows:

package com.ejdoab.tcms.entities;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

import java.util.Date;

/**

 * Conference Bean - Remote Interface

 */

public interface Conference extends EJBObject {

 public Integer getId() throws RemoteException;

 public String getName() throws RemoteException;

 public String getDescription() throws RemoteException;

 public Date getStartDate() throws RemoteException;

 public Date getEndDate() throws RemoteException;

 public Date getAbstractSubmissionStartDate() throws RemoteException;

 public Date getAbstractSubmissionEndDate() throws RemoteException;

 public void setId(Integer id) throws RemoteException;

 public void setName(String name) throws RemoteException;

 public void setDescription(String description) throws RemoteException;

 public void setStartDate(Date startDate) throws RemoteException;

 public void setEndDate(Date startDate) throws RemoteException;

 public void setAbstractSubmissionStartDate(Date abstractSubmissionStartDate)

 throws RemoteException;

 public void setAbstractSubmissionEndDate(Date abstractSubmissionEndDate)

 throws RemoteException;

}

1259c05.fm Page 184 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

185

The local interface provides in-JVM access to a component. As opposed to
the remote interface in all methods of the local interface (and the local home
interface), return values and parameters are passed by reference. This brings up
an interesting difference between the use of local interfaces and the use of remote
interfaces. With local interfaces there’s a strong coupling between the caller and the
callee. This requires extra care from the programmer for there exists the potential
to unknowingly have the same instance of a component referenced in another
context. For this reason it’s recommended that you avoid storing references to
a Bean obtained locally as part of the state of another component. Whenever
possible the specification recommends using the local reference only in the
scope of the method that obtained it.

For the Conference Bean the local interface is identical to the remote
interface with the exception being that it doesn’t have to declare its methods as
throwing a RemoteException, as shown in the following code:

package com.ejdoab.tcms.entities;

import javax.ejb.EJBLocalObject;

import java.util.Date;

/**

 * Conference Bean - Local Interface

 */

public interface ConferenceLocal extends EJBLocalObject {

 public Integer getId();

 public String getName();

 public String getDescription();

 public Date getStartDate();

 public Date getEndDate();

 public Date getAbstractSubmissionStartDate();

 public Date getAbstractSubmissionEndDate();

 public void setId(Integer id);

 public void setName(String name);

 public void setDescription(String description);

 public void setStartDate(Date startDate);

 public void setEndDate(Date startDate);

 public void setAbstractSubmissionStartDate(Date abstractSubmissionStartDate);

 public void setAbstractSubmissionEndDate(Date abstractSubmissionEndDate);

}

1259c05.fm Page 185 Friday, February 27, 2004 1:39 PM

Chapter 5

186

Home Interfaces

The home interface specifies how a new Bean is created and how existing Beans
are found and deleted. It’s a factory for Beans of a given type. In the home interface
you define creation and finder methods. In the case of the conference Bean you’ve
defined a create method, which takes the ID and name of the conference, and a
finder, which locates a conference Bean given its primary key. The code for Con-
ferenceBean Remote Home Interface is shown here:

package com.ejdoab.tcms.entities;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

import java.rmi.RemoteException;

/**

 * Conference Bean - Remote Home Interface

 */

public interface ConferenceHome extends EJBHome {

 public Conference create(int id, String name)

 throws CreateException, RemoteException;

 public Conference findByPrimaryKey(Integer pk)

 throws FinderException, RemoteException;

}

The local Home Interface is again very similar to its remote counterpart, as
shown here:

package com.ejdoab.tcms.entities;

import javax.ejb.EJBLocalHome;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

/**

 * Conference Bean - Local Home Interface

 */

public interface ConferenceLocalHome extends EJBLocalHome {

 public ConferenceLocal create(int id, String name) throws CreateException;

 public ConferenceLocal findByPrimaryKey(Integer pk) throws FinderException;

}

1259c05.fm Page 186 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

187

Notice that the main difference between the home and remote interface is
that the possible consequence of remote communication is removed from the
interface definition. Mainly there’s no need to worry about RemoteExceptions.

Bean Implementation

The Bean implementation defines the methods specified by the exposed inter-
faces. The code for your CMP 2.0 Bean provides pairs of abstract setters and
getters that the container will use (most likely by extending the Bean class) in
order to save and populate the Bean’s data to and from the database. Notice that
it isn’t necessary to provide any class members to store the data; this is handled
by the EJB container’s internal representation of the Bean. The Entity Bean
implementation class is also marked abstract (a consequence of the CMP field
getters and setters being abstract).

package com.ejdoab.tcms.entities;

import javax.ejb.EntityBean;

import javax.ejb.CreateException;

import javax.ejb.EntityContext;

import java.util.Date;

/**

 * The conference EJB maintains information related to the conference

 */

public abstract class ConferenceEJB implements EntityBean {

 // ----------

 // CMP Fields

 // ----------

 public abstract Integer getId();

 public abstract String getName();

 public abstract String getDescription();

 public abstract Date getStartDate();

 public abstract Date getEndDate();

 public abstract Date getAbstractSubmissionStartDate();

 public abstract Date getAbstractSubmissionEndDate();

1259c05.fm Page 187 Friday, February 27, 2004 1:39 PM

Chapter 5

188

 public abstract void setId(Integer id);

 public abstract void setName(String name);

 public abstract void setDescription(String description);

 public abstract void setStartDate(Date startDate);

 public abstract void setEndDate(Date startDate);

 public abstract void setAbstractSubmissionStartDate(

 Date abstractSubmissionStartDate);

 public abstract void setAbstractSubmissionEndDate(

 Date abstractSubmissionEndDate);

 // -----------------------

 // EJB Methods - Callbacks

 // -----------------------

 public Integer ejbCreate(int id, String name) throws CreateException {

 this.setId(new Integer(id));

 this.setName(name);

 return null; // See 14.1.2 of the EJB 2.1 specification

 }

 public void ejbPostCreate(int id, String name) throws CreateException {}

 public void setEntityContext(EntityContext ctx) {}

 public void unsetEntityContext(EntityContext ctx) {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbLoad() {}

 public void ejbStore() {}

}

An ejbCreate (and a corresponding ejbPostCreate) method must be defined
and implemented for each way that you want a new instance of an enterprise
Bean to be created. Each ejbCreate method corresponds to a create method in the
home interface. The client actually uses the home-interface counterparts to the
ejbCreate method; the container then invokes the ejbCreate method followed by
the ejbPostCreate method. If both methods execute successfully an EJB object is
instantiated and the persistent data associated with that object is inserted into
the database.

For CMP Entity Beans the container handles the required interaction between
the Entity Bean instance and the datasource. For BMP Beans, the ejbCreate method
must contain the code to directly handle the interaction with the database. For
more information on writing BMP Entity Beans, see Enterprise Java Beans 2.1.4

4. Denninger, Peters, and Castaneda. Enterprise Java Beans 2.1 (Berkeley, CA: Apress, 2003).

1259c05.fm Page 188 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

189

The EJB specification lays out the following rules for the ejbCreate and
ejbPostCreate methods:

• Both methods must be public and must return the same type as the primary
key. Yet the actual value returned must be null. This is required for backward
compatibility in order to enable a BMP Entity Bean to inherit from a
CMP Bean.

• The arguments must be valid RMI-IIOP types. These include Java primi-
tives, strings, java.rmi.Remote types, and any class that implements the
serializable interface.

• Both methods must be prefixed with ejbCreate and ejbPostCreate,
respectively.

• Both methods must be nonfinal and nonstatic.

The ejbPostCreate method must have the same arguments as the matching
ejbCreate method. Both methods can throw the javax.ejb.EJBException exception
or one of its subclasses, typically a CreateException. It was customary in EJB 1.0
specification to throw a java.rmi.RemoteException exception to indicate nonappli-
cation exceptions; this practice is deprecated in EJB 1.1 or higher specifications.

Deployment Descriptors

The J2EE platform takes a declarative programming approach that isolates the
developer from runtime details or the specific use of a component and frees the
developer to concentrate on the actual functionality of the component.

Container-managed persistence is an example of the declarative pro-
gramming paradigm at work. EJB CMP enables the developer to access persistent
datasources for Entity Beans by declaring the mappings and relationships in
XML deployment descriptors rather than by hand-coding complex data-access
logic in the actual components. The components are then deployed as a unit that
includes the deployment descriptors, which are then used by the EJB container
to handle the complex logic of synchronizing the Entity Bean’s state with that of
its source of data.

The deployment descriptors contain structural and application assembly
information for an enterprise Bean. You specify this information by specifying
values for the deployment descriptors in three XML files. These files are as follows:

1259c05.fm Page 189 Friday, February 27, 2004 1:39 PM

Chapter 5

190

ejb-jar.xml

This file is a vendor-independent J2EE deployment descriptor as defined in the
EJB 2.1 specification. It can hold the definitions of one or more enterprise Beans
that will be packaged together in the same JAR file.

Each Bean declaration is contained under the <enterprise-beans> element
and falls under one of the three categories: entity, session, or message (you’ll learn
about session Beans later in this chapter as you implement the Session Facade
pattern). A Bean declaration consists of a description of the Bean, the full class
name for Home, Remote, HomeLocal, and Local interfaces.

For CMP Entity Beans the CMP version, schema name, primary key field,
primary key Java type as well as a complete list of all CMP fields must be present
as you can see in the following ejb-jar.xml for the Conference Bean:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC

 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar >

 <description><![CDATA[Conference Entity Bean]]></description>

 <display-name>Conference Entity Bean</display-name>

 <enterprise-beans>

 <entity>

 <description><![CDATA[Conference]]></description>

 <ejb-name>Conference</ejb-name>

 <home>com.ejdoab.tcms.entities.ConferenceHome</home>

 <remote>com.ejdoab.tcms.entities.Conference</remote>

 <local-home>com.ejdoab.tcms.entities.ConferenceLocalHome</local-home>

 <local>com.ejdoab.tcms.entities.ConferenceLocal</local>

 <ejb-class>com.ejdoab.tcms.entities.ConferenceEJB</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>Conference</abstract-schema-name>

 <cmp-field>

 <field-name>id</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

1259c05.fm Page 190 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

191

 <cmp-field>

 <field-name>description</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>startDate</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>endDate</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>abstractSubmissionStartDate</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>abstractSubmissionEndDate</field-name>

 </cmp-field>

 <primkey-field>id</primkey-field>

 </entity>

 </enterprise-beans>

</ejb-jar>

jboss.xml

The jboss.xml file provides a mapping between the Beans declared in the ejb-jar.xml
and the JNDI names used in the application. In the following code sample both
the remote and local interface JNDI names are defined as ejb/Conference and
ejb/ConferenceLocal, respectively.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss PUBLIC

 "-//JBoss//DTD JBOSS 3.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_3_0.dtd">

<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>Conference</ejb-name>

 <jndi-name>ejb/Conference</jndi-name>

 <local-jndi-name>ejb/ConferenceLocal</local-jndi-name>

 </entity>

 </enterprise-beans>

 <resource-managers>

 </resource-managers>

</jboss>

1259c05.fm Page 191 Friday, February 27, 2004 1:39 PM

Chapter 5

192

jbosscmp-jdbc.xml

The jbosscmp-jdbc.xml provides the actual mapping between the Entity Bean
and a table and between the CMP fields and the table columns. It also specifies
the datasource that you should use to connect as well as an optional database-
type to Java-type mapping.

In the following sample, you can see that you’re using the java:/tcmsDS data-
source to connect to the database and that you’re also using the Hypersonic SQL
mapping. In the <enterprise-beans> section you have the mapping of the Bean to
the table in the <ejb-name> and <table-name> elements as well as the list of the
CMP fields in one or more <cmp-field> elements.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jbosscmp-jdbc PUBLIC "-//JBoss//DTD JBOSSCMP-JDBC 3.0//EN"

 "http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd">

<jbosscmp-jdbc>

 <defaults>

 <datasource>java:/tcmsDS</datasource>

 <datasource-mapping>Hypersonic SQL</datasource-mapping>

 </defaults>

 <enterprise-beans>

 <entity>

 <ejb-name>Conference</ejb-name>

 <table-name>CONFERENCES</table-name>

 <cmp-field>

 <field-name>id</field-name>

 <column-name>pk_Id</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>name</field-name>

 <column-name>Name</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>description</field-name>

 <column-name>Description</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>startDate</field-name>

 <column-name>StartDate</column-name>

 </cmp-field>

1259c05.fm Page 192 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

193

 <cmp-field>

 <field-name>endDate</field-name>

 <column-name>EndDate</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>abstractSubmissionStartDate</field-name>

 <column-name>AbstractSubmissionStartDate</column-name>

 </cmp-field>

 <cmp-field>

 <field-name>abstractSubmissionEndDate</field-name>

 <column-name>AbstractSubmissionEndDate</column-name>

 </cmp-field>

 </entity>

 </enterprise-beans>

</jbosscmp-jdbc>

Packaging and Deployment

The next step is to compile, package, and deploy the ConferenceEJB. EJBs are
packaged in the JAR format, which is a subset of the widely known ZIP compression
format. This can be accomplished by using the JAR tool that ships with the JVM.

The first step is to compile the source code. Make sure that the jbossall-client.jar
file (located under the JBOSS_DIST/client directory) is in your classpath by either
modifying your classpath globally or by using the -classpath option with javac.
Once your classpath is properly set, switch directories to tcms\src\java and use
the following command to compile the sources:

javac -d ..\..\classes com\ejdoab\tcms\entities\Conference*.java

Notice that you’re using the -d switch with javac to specify the destination for
your compiled classes. Place the three xml deployment descriptors in a directory
named META-INF, which should be at the same level as the com directory where
your compiled code resides (in this case the classes directory). After successful
compilation, you should package the compiled classes and the deployment
descriptor in a JAR file named conference-ejb.jar by using the following command:

jar cf conference-ejb.jar com\ejdoab\tcms\entities*.class META-INF*.xml

The JAR file should now be in classes directory. Next, deploy the JAR by copying
the file to the deploy directory under tcms/deploy directory. If everything goes as
planned you should see output on the console similar to the following:

1259c05.fm Page 193 Friday, February 27, 2004 1:39 PM

Chapter 5

194

18:32:07,615 INFO [MainDeployer] Starting deployment of package:

 file:/C:/java/jboss-3.2.1/server/tcms/deploy/conference-ejb.jar

18:32:07,665 INFO [EjbModule] Creating

18:32:07,675 INFO [EjbModule] Deploying Conference

18:32:07,695 INFO [EjbModule] Created

18:32:07,695 INFO [EjbModule] Starting

18:32:07,805 INFO [Conference] Table 'CONFERENCES' already exists

18:32:07,805 INFO [EjbModule] Started

18:32:07,805 INFO [MainDeployer] Deployed

 package: file:/C:/java/jboss-3.2.1/server/tcms/deploy/conference-ejb.jar

JBoss by default verifies all EJB deployments against the specifications for
compliance. This is a needed feature that reflects the error-prone nature of the
EJB manual code–compile-declare-package-deploy cycle. Also notice the message
[Conference] Table 'CONFERENCES' already exists. If desired, you can configure

a JBoss deployment to automatically create the tables.

Testing the Conference Bean

Now you’re ready to test the conference Bean. There are two ways to access the Bean:

• Locally: From within the container of another J2EE component by using
the local home and local interfaces.

• Remotely: From outside of the container over a network by using the
remote home and remote interfaces.

For this first example you’ll access the Entity Bean remotely. There is rarely a
need to access an Entity Bean remotely from a client. As previously mentioned
we’re promoting a service-based architecture where the details of the domain
entities and the underlying data store are hidden from the outside world. A service-
based architecture exposes services to its clients.

Our simple test class ConferenceEJBTest.java performs the following steps:

• Obtains a JNDI initial context.

• Looks up the conference remote home interface using its JNDI name.

• Obtains a remote reference to the conference it creates via the home
interface create method.

1259c05.fm Page 194 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

195

• Manipulates the Bean by setting some of its fields.

• Looks up the previously created instance using the findByPrimaryKey
method.

The simple client is shown here:

package com.ejdoab.tcms.entities;

...

/**

 * Simple EJB Test - ConferenceEJBTest.java

 */

public class ConferenceEJBTest {

 private static final String ICF = "org.jnp.interfaces.NamingContextFactory";

 private static final String SERVER_URI = "localhost:1099";

 private static final String PKG_PREFIXES =

 "org.jboss.naming:org.jnp.interfaces";

 public static void main(String args[]) {

 Context ctx;

 ConferenceHome confHome;

 Conference conf;

 // initial context JBossNS configuration

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, ICF);

 env.put(Context.PROVIDER_URL, SERVER_URI);

 env.put(Context.URL_PKG_PREFIXES, PKG_PREFIXES);

 try {

 // ----------

 // JNDI Stuff

 // ----------

 ctx = new InitialContext(env);

 // look up the home interface

 System.out.println(

 "[jndi lookup] Looking Up Conference Remote Home Interface");

 Object obj = ctx.lookup("ejb/Conference");

1259c05.fm Page 195 Friday, February 27, 2004 1:39 PM

Chapter 5

196

 // cast and narrow

 confHome = (ConferenceHome) PortableRemoteObject

 .narrow(obj, ConferenceHome.class);

 // ----------

 // Write Test

 // ----------

 System.out.println("[write test] begin...");

 System.out.println(

 "[ejb create] Create an Instance of Conference Bean");

 // create

 conf = confHome.create(0, "EJDOAB");

 // add some data

 conf.setDescription("Enterprise Java Development on a Budget");

 // null to reuse

 conf = null;

 // ---------

 // Read Test

 // ---------

 System.out.println("[read test] begin...");

 // find the bean - pk has to be an object

 conf = confHome.findByPrimaryKey(new Integer(0));

 System.out.println("[ejb find] Retrieved conference with id (pk) = "

 + conf.getId());

 System.out.println(" [name] " + conf.getName());

 System.out.println(" [description] " + conf.getDescription());

 }

 catch (RemoteException re) {

 System.out.println("[rmi] remote exception: " + re.getMessage());

 }

 catch (NamingException ne) {

 System.out.println("[naming] naming exception: " + ne.getMessage());

 }

 catch (FinderException fe) {

 System.out.println("[ejb] finder exception: " + fe.getMessage());

 }

 catch (CreateException ce) {

 System.out.println("[ejb] create exception: " + ce.getMessage());

 }

 }

}

1259c05.fm Page 196 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

197

Now it’s time to run the test. Your test class needs to find the jbossall-client.jar
and the log4j.jar in its classpath to be able to run. Both of these are located in the
JBOSS_DIST\client directory. The client also needs some of the compiled classes
under the tcms\classes directory.

TIP If you’re using a J2SE version prior to 1.4.x you’ll also need the
jnet.jar file. This is a utility that provides implementation for the Java
Secure Socket Extension (javax.net.ssl).

Compile the test client class using the following command from the
tcms\src\java directory (the -d parameter places the compiled class under
the classes directory):

javac -d ..\..\classes com\ejdoab\tcms\entities\ConferenceEJBTest.java

Execute it by issuing the following command:

java com.ejdoab.tcms.entities.ConferenceEJBTest

During the first run you should see the following output:

[jndi lookup] Looking Up Conference Remote Home Interface

[write test] begin...

[ejb create] Create an Instance of Conference Bean

[read test] begin...

[ejb find] Retrieved conference with id (pk) = 0

 [name] EJDOAB

 [description] Enterprise Java Development on a Budget

Running it a second time should throw an EJBCreate exception and tells
you that a Bean with the primary key 0 is already in the database as shown in the
following output:

[jndi lookup] Looking Up Conference Remote Home Interface

[write test] begin...

[ejb create] Create an Instance of Conference Bean

[ejb] create exception: Entity with primary key 0 already exists

1259c05.fm Page 197 Friday, February 27, 2004 1:39 PM

Chapter 5

198

Attribute-Oriented Programming with XDoclet

By this time you should realize that there must be a faster way to develop an
enterprise Java component. Although there are many IDEs in the market with
EJB Creation wizards, their solutions are proprietary and mostly confined to the
“preferred” application server of the IDE vendor (normally the one that they
make!). IDEs are wonderful tools that can increase an individual’s productivity.
But enterprise development is about more than just the productivity of a single
programmer but rather the productivity of the team as a whole. In the “Devel-
opment and Build System with Ant” chapter you learned that Ant is a powerful
ally when it comes to fulfilling the task of Continuous Integration because you
can help a team to have a project-level build that you can run on a daily basis (or
as often as possible), and it’s independent of any particular IDE.

In the previous example you had to create three separate Java files with syn-
tactic interdependencies that are hard to keep in synchronization, even for the
simplest of Beans. Even for the simple ConferenceEJB.java we made more than
three passes until we had all of the errors corrected. The most common mistake
we’ve seen is mismatched method signatures. This simple problem has plagued
EJB development and it certainly has had an effect in terms of lost productivity.

Aside from the interfaces you also had to create three XML deployment
descriptors. Although most developers never write an XML descriptor from scratch,
most use an existing one as a template for their work. This practice can lead to
potential oversights in the configuration parameters, which might have been
well suited for the original Bean but not for the work at hand (the same reuse by
copy-and-paste antipattern that gets programmers in trouble very often). If it
wasn’t bad enough already, vendors add their own, fairly dissimilar XML deployment
descriptors to the mix, thereby increasing the likelihood of mistakes.

To cope with the deficiencies (in terms of the development process) in the
EJB specification, several code generators have appeared in the market, the most
popular being XDoclet. XDoclet reduces the workload to the writing of just the
Bean implementation code and the annotating of the source by adding JavaDoc
style comments that determine the generation of all the other plumbing files. This
is referred to as attribute-oriented programming (AOP) (not to be confused with
the other AOP, aspect-oriented programming). Attribute-oriented programming
is a method by which metadata attributes are used to guide a code-generation
engine to produce otherwise redundant plumbing code. It works under the Don’t
Repeat Yourself (DRY) principle, given the dynamically enforced redundancy
between all the EJB glue files and deployment descriptors. The DRY principle tells

1259c05.fm Page 198 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

199

you that there should exist a single representation of a specific piece of knowledge
(for more on the DRY principle see The Pragmatic Programmer: From Journeyman
to Master.)5

XDoclet is a Java doclet. A doclet is a pluggable component written to the
doclet API specification that determines the content and format of the output
resulting from running the Javadoc tool on a Java source file. By default the
Javadoc tool is configured to use the “standard” doclet, which generates the
familiar HTML API documentation you’re all accustomed to.

XDoclet instead is configured to read XDoclet specific javadoc tags (also know as
@ tags), which control the creation of other Java files, XML deployment descriptors,
primary key classes, data-access objects, web-services code, web-application
descriptors, and many more. XDoclet started as a project by Rickard Oeberg’s
(same person who brought you the interceptor stack in JBoss along with most of
JBoss’s new architecture) named EJBDoclet. XDoclet, like many of the projects
used in this book, is hosted at sourceforge. Like other Open Source projects, XDoclet
is built on a customizable, modular design that enables developers to create and

plug their own modules if the need arises. XDoclet has a wide array of plug-ins for
generating many application server–specific files as well as files for presentation
engines and persistence frameworks.

XDoclet runs within the context of an Ant build only. This is by no means a
limitation; on the contrary Ant is probably the best delivery vehicle for any utility
that touches any part of the build process because Ant is the de facto standard for
performing Java builds. XDoclet requires an Ant version greater or equal to 1.5
and a J2SE version 1.2 or higher (for a comprehensive coverage of Ant see Chapter 3).

Download and Installation

In this book you’ll be using version 1.2 of XDoclet. The XDoclet distribution consists
of a single ZIP file that you can obtain from http://xdoclet.sourceforge.net.
Download and unzip the file. The file contains all the necessary JAR files in the lib
directory as well as samples that show you how to use XDoclet.

For the purpose of your application you’ll copy the JAR files contained in the
XDoclet distribution lib directory under the /lib/development/xdoclet directory
of the TCMS project. As you learned in the “Development and Build System”
chapter, this is the directory where all of your third-party development time
libraries reside.

5. Hunt, Thomas, and Cunningham. The Pragmatic Programmer: From Journeyman to Master
(Addison-Wesley, 1999).

1259c05.fm Page 199 Friday, February 27, 2004 1:39 PM

Chapter 5

200

XDoclet Ant Tasks

XDoclet is organized as a set of Ant tasks that include the following:

• ejbdoclet: Executes various specific subtasks for the business and inte-
gration tiers. Includes subtasks that handle several application servers
such as JBoss, JOnAS, JRun, Resin, Orion, Pramati, Borland EAS, Sybase
EAServer, and WebLogic. It enables the creation of all EJB “glue” files,
deployment descriptors, data objects for Entity Beans, and some appli-
cation server-specific descriptors.

• webdoclet: Executes various specific subtasks for the presentation tier
such as the creation of XML web-deployment descriptors for generic WAR
files as well as descriptors for presentation frameworks like Struts and
WebWork and web-container descriptors for JBossWeb, JOnAS, Resin,
WebLogic, and Websphere.

• hibernatedoclet: Executes various subtasks to integrate the hibernate
object-relational persistence and query service, including automatic
integration with JBoss by creating a JBoss-specific service.

• jdodoclet: Executes various specific subtasks for the integration tier
related to the generation and integration of JDO-compliant persistence
frameworks such as Lido, Kodo, and Triactive.

• jmxdoclet: Executes various specific subtasks for the management tier
related to the JMX standard such as MBean interface and MLet descriptor
generation as well as JBoss-specific JMX files.

• doclet: The base class for all other tasks. It can be used standalone to
execute a template file without having to write a new task.

• documentdoclet: Executes subtasks related to the profiling of XDoclet use
in an application.

In this chapter you’ll concentrate on the <ejbdoclet> task.

XDoclet Tags

XDoclet tags are JavaDoc block style tags and as such are contained inside a doc
comment. XDoclet tags start with the @ symbol, followed by a combination of
namespace and name. Specific namespaces map to specific XDoclet doclets. For

1259c05.fm Page 200 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

201

example, the namespace ejb map to the doclet EJBDoclet. The name of the tag is
unique within a given namespace. The name and the namespace are separated
by a colon or a period and followed by one or more attributes. Attributes are
simple name-value pairs that further define the purpose of the tag. For example
an XDoclet tag to define a CMP Entity Bean with a logical name “Conference”
would look like this:

/**

 * @ejb.bean type="CMP" name="Conference"

 */

Tags are also differentiated based on their positioning within the file. Just like
with JavaDoc tags there are class-level tags and method-level tags. XDoclet provides
tags under many namespaces. The XDoclet project is a thriving Open Source
project and it’s easy to get lost in the sea of new tag namespaces. Figure 5-11 provides
a map of sorts that should give readers a bird’s-eye view of the most relevant XDoclet
tag namespaces.

Figure 5-11. XDoclet namespace map

ConferenceEJB with XDoclet

As an example of XDoclet usage the previously hand-coded glue files and
deployment descriptors for the ConferenceEJB Bean will be generated automat-
ically by coding only the Bean implementation and annotating it with XDoclet
tags. As mentioned before XDoclet only works from within a Ant script.

1259c05.fm Page 201 Friday, February 27, 2004 1:39 PM

Chapter 5

202

Before you get on with creating a suitable Ant script for your XDoclet example
you need to place the needed JARs in the classpath.

Configuring the ClassPath

The <ejbdoclet> needs several classes to be available in the classpath in order to
function correctly. To execute the <ejbdoclet> target XDoclet is dependent on the
following:

• Jakarta Commons: Collections (commons-collections-2.0.jar) and logging
(commons-logging.jar).

• XDoclet: xdoclet-1.2.jar, xdoclet-jboss-module-1.2.jar, xdoclet-
xjavadoc-1.2.jar, xdoclet-ejb-module-1.2.jar, xdoclet-jmx-module-1.2.jar,
xdoclet-web-module-1.2.jar.

• J2EE implementation: As with the previous example you need to add the
JBoss implementation of the javax.* classes required for EJBs contained in
jbossall-client.jar.

You can find both the Jakarta Commons and XDoclet-specific JAR in the lib
directory of the xdoclet distribution. The JBoss JAR is located in the client directory of
the JBoss distribution. For this example copies of those JARs are placed in the
tcms lib (jbossall-client.jar) and lib/development (all Xdoclet jars) directories.

Simple Ant Script

To use XDoclet you need a simple Ant script, which needs to accomplish the fol-
lowing tasks:

1. Load the needed JARs needed for the <ejbdoclet> task.

2. Add the <ejbdoclet> task to the context of the Ant script.

3. Execute the <ejbdoclet> task on the annotated ConferenceEJB.java.

4. Compile the sources (both the annotated class and the generated ones).

5. Package the Bean in the JAR file conference-ejb.jar.

 The Ant script is shown here:

1259c05.fm Page 202 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

203

<?xml version="1.0"?>

<project name="xdoclet test" default="package" basedir=".">

 <!-- === -->

 <!-- Configures the ClassPath -->

 <!-- === -->

 <path id="class.path">

 <fileset dir="lib">

 <include name="*.jar"/>

 </fileset>

 <!-- Step 1 -->

 <fileset dir="lib/development/xdoclet">

 <include name="*.jar"/>

 </fileset>

 </path>

 <!-- === -->

 <!-- Initializes the Project Paths -->

 <!-- === -->

 <target name="init">

 <echo>initializing...</echo>

 <property name="root" location="${basedir}" />

 <property name="src" location="${root}/src/java" />

 <property name="lib" location="${root}/lib" />

 <property name="classes" location="${root}/classes" />

 <property name="generated-ejb" location="${root}/generated/ejb-src" />

 <property name="descriptors-ejb"

 location="${root}/generated/descriptors/ejb"

 />

 <property name="dist-jar" location="${root}/dist/jar" />

 <property name="build" location="${root}/build" />

 <!-- Step 2 -->

 <taskdef

 name="ejbdoclet"

 classname="xdoclet.modules.ejb.EjbDocletTask"

 classpathref="class.path"

 />

 </target>

1259c05.fm Page 203 Friday, February 27, 2004 1:39 PM

Chapter 5

204

 <!-- === -->

 <!-- Prepares the directory structure -->

 <!-- === -->

 <target name="prepare" depends="init">

 <echo>preparing...</echo>

 <mkdir dir="${classes}"/>

 <mkdir dir="${generated-ejb}"/>

 <mkdir dir="${descriptors-ejb}"/>

 <mkdir dir="${build}"/>

 <mkdir dir="${dist-jar}"/>

 </target>

 <!-- === -->

 <!-- Generate EJB glue files using XDoclet's ejbdoclet - Step 3 -->

 <!-- === -->

 <target name="generate" depends="prepare">

 <echo>generating...</echo>

 <ejbdoclet

 destdir="${generated-ejb}"

 excludedtags="@version,@author,@todo"

 ejbspec="2.0"

 force="true"

 >

 <fileset dir="${src}">

 <include name="com/ejdoab/tcms/entities/*EJB.java"/>

 </fileset>

 <remoteinterface/>

 <localinterface/>

 <homeinterface/>

 <localhomeinterface/>

 <valueobject/>

 <entitycmp/>

 <utilobject cacheHomes="true" includeGUID="true"/>

 <deploymentdescriptor

 destdir="${descriptors-ejb}"

 validatexml="true"

 />

1259c05.fm Page 204 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

205

 <jboss

 version="3.0"

 unauthenticatedPrincipal="nobody"

 xmlencoding="UTF-8"

 destdir="${descriptors-ejb}"

 validatexml="true"

 preferredrelationmapping="relation-table"

 typemapping="Hypersonic SQL"

 datasource="java:/tcmsDS"

 />

 </ejbdoclet>

 </target>

 <!-- === -->

 <!-- Compiles all the classes - Step 4 -->

 <!-- === -->

 <target name="compile" depends="generate">

 <echo>compiling...</echo>

 <javac

 destdir="${classes}"

 classpathref="class.path"

 debug="on"

 deprecation="on"

 optimize="off"

 >

 <src path="${src}"/>

 <src path="${generated-ejb}"/>

 </javac>

 </target>

 <!-- === -->

 <!-- Package the EJB JAR - Step 5 -->

 <!-- === -->

 <target name="package" depends="compile">

 <echo>packaging...</echo>

 <jar jarfile="${dist-jar}/conference-ejb.jar">

 <metainf dir="${descriptors-ejb}" includes="*.xml"/>

 <fileset dir="${classes}">

 <include name="com/ejdoab/tcms/entities/*.class" />

 <exclude name="com/ejdoab/tcms/entities/*Test.class" />

 </fileset>

 </jar>

 </target>

</project>

1259c05.fm Page 205 Friday, February 27, 2004 1:39 PM

Chapter 5

206

Notice that you purposely placed all generated files in a separate location
from the annotated Bean class (tcms/generated/src). This makes for a leaner,
easier-to-understand project.

Annotating ConferenceEJB.java with XDoclet Comments

Besides automating the creation of the interfaces for the ConferenceEJB Bean,
you’ll also do a bit of refactoring about the way the Bean is accessed. In the previous
incarnation of the ConferenceEJB Bean all CMP fields were exposed through the
interfaces. It’s easy to see that with such an approach a remote client would have
to make several remote calls to set all the values of the Bean (or you would have to
provide a bloated create method that could take all the parameters needed).
Instead you’ll be using XDoclet to implement a very common inter-tier imple-
mentation pattern known as the data transfer object (DTO). For an extensive
coverage of this pattern see Floyd Marinescu’s EJB Design Patterns: Advanced
Patterns, Processes, and Idioms. The DTO pattern, as Marinescu points out, is a

“deprecated pattern” in a local invocation scenario, but it’s a perfectly valid one
for intratier communications.6 It enables the transfer of data in bulk, therefore
minimizing the “chattiness” over the wire.

An example of some XDoclet annotated fields in the ConferenceEJB is shown
in the following code segment:

...

/**

 * // ------------

 * // XDOCLET Tags

 * // ------------

 *

 * @ejb.bean

 * name="Conference"

 * type="CMP"

 * jndi-name="ejb/Conference"

 * local-jndi-name="ejb/ConferenceLocal"

 * primkey-field="id"

 * schema="Conferences"

 * cmp-version="2.x"

 * view-type="both"

 * @ejb.value-object

 * name="Conference"

 * match="*"

6. Marinescu, Floyd. EJB Design Patterns: Advanced Patterns, Processes, and Idioms
(John Wiley & Sons, 2002)

1259c05.fm Page 206 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

207

 * @ejb.transaction

 * type="Required"

 * @ejb.util

 * generate="physical"

 * @ejb.persistence

 * table-name="Conferences"

 * @ejb.finder

 * signature="Collection findAll()"

 * @ejb.finder

 * signature="Conference findByName(java.lang.String name)"

 * query="SELECT OBJECT(c) FROM Conferences c WHERE c.name = ?1"

 */

public abstract class ConferenceEJB implements EntityBean {

 // ----------------

 // Business methods

 // ----------------

 /**

 * @ejb.interface-method

 */

 public abstract ConferenceValue getConferenceValue();

 /**

 * @ejb.interface-method

 */

 public abstract void setConferenceValue(ConferenceValue data);

 // ----------

 // CMP Fields

 // ----------

 /**

 * @ejb.pk-field

 * @ejb.persistence

 * column-name="pk_id"

 * @ejb.transaction

 * type="Supports"

 */

 public abstract Integer getId();

 public abstract void setId(Integer id);

1259c05.fm Page 207 Friday, February 27, 2004 1:39 PM

Chapter 5

208

 /**

 * @ejb.persistence

 * column-name="name"

 */

 public abstract String getName();

 public abstract void setName(String name);

 ...

}

Let’s analyze the differences between the annotated XDoclet version and the
previous version. Table 5-3 shows the different tags used in the Bean and each
tag’s purpose.

Table 5-3. XDoclet EJB Tags Used in ConferenceEJB.java

Tag Level Purpose

@ejb.bean class Required tag that provides general information

about the EJB such as name, type, JNDI name(s),

primary key field, abstract schema name, and

CMP version.

@ejb.value-object class Generates a value-object (DTO) and defines

its name.

@ejb.transaction class | method Provides transaction attributes on a per-class or

per-method level. The type attribute corresponds

to the <trans-attribute> value in the <container-

transaction> section of the assembly descriptor.

It’s typical to set a default value for all methods at

the class level and then apply a per-method value

to customize the transaction attributes of a given

method.

@ejb.util class Generates a utility class. This attribute works

in conjunction with the <utilobject/ > task at the

Ant buildscript level. The generated utility class

serves as a cache for home objects among other

miscellaneous uses.

@ejb.persistence class | method Information about CMP persistence. When used at

the class level it provides bean-to-table mapping

and at the method level it provides field-to-

column mapping.

1259c05.fm Page 208 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

209

From the Ant script you control what you want XDoclet to generate, then,
using the tags in the Bean implementation, XDoclet determines how to generate
the code. Now you can get an understanding of how the ejbdoclet task performs
its work in the Ant script. In the Ant script the subtasks <remoteinterface/>,
<localinterface/>, <homeinterface/>, <localhomeinterface/>, <valueobject/>,
and <entitycmp/> control the generation of the interfaces and other classes.

For example, to stop generating the remote interfaces, you can choose to not
include the <remoteinterface/> subtask. Also notice the jboss subtask, which
enables you to generate JBoss-specific source and deployment descriptors.

Looking back to the Java code, you’ll notice the value of the view-type attribute
in the @ejb.bean tag. It’s set to the value both, which instructs XDoclet’s interface-
creation subtasks to generate both remote and local versions of the interfaces.

At the class level you have the declaration of a custom finder method. The
@ejb.finder defines a finder named findByName, which takes as parameters a
string representing the name of the conference. Notice that to define a finder you
must declare its signature and the associated EJB QL query as attributes of the
@ejb.finder tag.

EJB QL stands for Enterprise JavaBeans Query Language, which defines the
queries for the finder and select methods of an Entity Bean in a container-managed
scenario. EJB QL is an objectified subset of SQL92, which allows navigation over
the relationships defined in an Entity Bean’s abstract schema. You’ll learn more
about relationships later in the chapter.

@ejb.finder class Defines an EJB-QL query.

@ejb.interface-method method Denotes a method to be exposed in the interfaces

(local and remote).

@ejb.pk-field method Denotes a field as being the primary key for

the Bean.

@ejb.create-method method Denotes a method as being an ejbCreate method.

XDoclet will create methods with matching signa-

tures in the home interfaces and in the Bean

implementation.

Table 5-3. XDoclet EJB Tags Used in ConferenceEJB.java (Continued)

Tag Level Purpose

1259c05.fm Page 209 Friday, February 27, 2004 1:39 PM

Chapter 5

210

TIP Notice that the EJB QL query for the findAll() method wasn’t
specified. This is a special case for which XDoclet generates the query
for you. You could include something like query="SELECT OBJECT(c)
FROM Conferences AS c", but it will be the same as what XDoclet is
doing behind the scenes.

XDoclet also supports the inclusion of Ant-style properties (${my-property})
in the context of an XDoclet tag, which further increases the flexibility of the
system. The XDoclet design also acknowledges that not all information should
exist at the source-code level in XDoclet tags. The design introduces the concept
of “merge points” by which you can merge in a template file at a specific point in
the source.

Testing the Bean

Before running the Ant script you need to remove the manually generated files
that you created for the non-XDoclet example. Delete the files Conference.java,
ConferenceHome.java, ConferenceLocal.java, and ConferenceLocalHome.java.
Only the Bean implementation and the test client should remain.

To test your new implementation you also need to modify the previously
written test client in order to use the DTO pattern to get and set the values of the
Bean. As previously mentioned the DTO pattern is a strategy more than a pattern
that serves to ease the passing of data from the EJB tier to a remote client. A DTO
serves as a carrier of data between tiers in bulk fashion, thereby minimizing the
“chattiness” over the wire caused by the invocation of multiple methods that will
retrieve an object’s state.

In the TCMS system (because you’re taking advantage of the collocation of
the web and EJB tiers) the main advantage of using the DTO pattern is to provide
a lightweight transport for custom presentation objects; this effectively decouples
the client from the specifics of how the data is stored in the database. Custom
DTOs provide strongly typed objects that the client can access just like any other
object. One possible drawback of the custom DTO strategy is that you could
potentially end up with a larger number of objects to be maintained. Other strat-
egies for implementing a DTO layer include the use of Java Collections to create
weakly typed data containers in which data items are retrieved by name or some
sort of index.

In most cases the data for a single DTO comes from a variety of sources,
including multiple Entity Beans, Session Beans, or by calculations. DTOs are
meant to be lightweight objects and you should refrain from implementing
business logic in them. Limit your DTOs’ behavior to simple activities like internal

1259c05.fm Page 210 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

211

consistency checks and basic validation that the client can perform to avoid the
perils of multiple trips to the server for validation.

TIP You should base your use of DTOs on an understanding of how
the data is being used across tier boundaries, that is, how much data
goes back and forth, its size, and the frequency of the communication.

The modifications to the ConferenceEJBTest class are as follows:

...

// create

conf = confHome.create(0, "EJDOAB");

// add some data using DTO

ConferenceValue cvalue = conf.getConferenceValue();

cvalue.setDescription("Enterprise Java Development on a Budget");

conf.setConferenceValue(cvalue);

// nulled to reuse

cvalue = null;

conf = null;

// ---------

// Read Test

// ---------

System.out.println("[read test] begin...");

// find the bean

conf = confHome.findByPrimaryKey(new Integer(0));

// retrieve the DTO

cvalue = conf.getConferenceValue();

System.out.println("[ejb find] Retrieved conference with id (pk) = "

 + cvalue.getId());

System.out.println(" [name] " + cvalue.getName());

System.out.println(" [description] " + cvalue.getDescription());

...

To run the Ant script, open a command prompt, change the directory to the
root of the TCMS project and type the following:

ant

1259c05.fm Page 211 Friday, February 27, 2004 1:39 PM

Chapter 5

212

The output of the Ant build script is shown here:

Buildfile: build.xml

init:

 [echo] initializing...

prepare:

 [echo] preparing...

generate:

 [echo] generating...

[ejbdoclet] Running <remoteinterface/>

[ejbdoclet] Generating Remote interface for

 'com.ejdoab.tcms.entities.conference.ConferenceEJB'.

[ejbdoclet] Running <localinterface/>

[ejbdoclet] Generating Local interface for

 'com.ejdoab.tcms.entities.conference.ConferenceEJB'.

[ejbdoclet] Running <homeinterface/>

[ejbdoclet] Generating Home interface for

 'com.ejdoab.tcms.entities.conference.ConferenceEJB'.

[ejbdoclet] Running <localhomeinterface/>

[ejbdoclet] Generating Local Home interface for

 'com.ejdoab.tcms.entities.conference.ConferenceEJB'.

[ejbdoclet] Running <valueobject/>

[ejbdoclet] Generating Value Object class:

 'com.ejdoab.tcms.entities.conference.ConferenceEJB-->

 com.ejdoab.tcms.entities.conference.ConferenceValue'.

[ejbdoclet] Running <entitycmp/>

[ejbdoclet] Generating CMP class for

 'com.ejdoab.tcms.entities.conference.ConferenceEJB'.

[ejbdoclet] Running <utilobject/>

[ejbdoclet] Generating Util class for

 'com.ejdoab.tcms.entities.conference.ConferenceEJB'.

[ejbdoclet] Running <deploymentdescriptor/>

[ejbdoclet] Generating EJB deployment descriptor (ejb-jar.xml).

[ejbdoclet] Running <jboss/>

[ejbdoclet] Generating jboss.xml.

[ejbdoclet] Generating jbosscmp-jdbc.xml.

compile:

 [echo] compiling...

 [javac] Compiling 7 source files to C:\java\tcms\classes

1259c05.fm Page 212 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

213

package:

 [echo] packaging...

 [jar] Building jar: C:\java\tcms\dist\jar\conference-ejb.jar

BUILD SUCCESSFUL

Total time: 5 seconds

To deploy the new conference-ejb.jar simply copy it to the tcms server
deploy directory.

 Next, compile the modified ConferenceEJBTest.java class using the following:

javac -d ..\..\classes com\ejdoab\tcms\entities\ConferenceEJBTest.java

Alternatively, if the class is in the same location as the source that will be
compiled by the Ant script, you can skip the manual compilation step. To run the
same tests as before you need to delete the records previously inserted in the

database. Using you favorite SQL client, execute the following statement:

delete from conferences;

Now you can run the test client again by using the following command:

java com.ejdoab.tcms.entities.ConferenceEJBTest

Running the class should produce the exactly the same behavior as in the
prior run.

Container-Managed Relationships

At the onset of the current example you’ll set out to create two Beans, the
ConferenceEJB and the TrackEJB, both of which share a one-to-many, bidirectional
relationship (or a many-to-one depending on the direction).

Container-managed relationships (CMR) help you model complex database
schemas using Entity Beans. As you’ve seen, the entity components for the TCMS
system are interconnected by many relationships.

In the case of the ConferenceEJB and the TrackEJB you need a way for a
ConferenceEJB to return all of its associated Tracks and for a Track to return its
associated Conference. At the database level you’ll see a foreign key on the Tracks
table that points to the Conferences table as shown here:

1259c05.fm Page 213 Friday, February 27, 2004 1:39 PM

Chapter 5

214

CREATE TABLE Tracks (

 ...

 fk_ConferenceId INTEGER,

 ...

 CONSTRAINT TracksConferencesFK FOREIGN KEY(fk_ConferenceId)

 REFERENCES Conferences(pk_Id)

);

Both the cardinality and direction of a relationship in EJBs is defined in the
deployment descriptors in the form of <cmr-field>. In CMP 2.0 specification
there are a few restrictions that you must abide by when defining Bean relation-
ships. Those are as follows:

• Only CMP 2.0 Beans can participate in a relationship.

• Both Beans in a relationship must be declared in the same descriptor. This
requirement also implies that Beans in a relationship need to be contained
in the same JAR file.

• Relationships are forced to use the local, pass-by-reference interfaces.

• For relationship methods returning more than one reference, you can only
use the java.util.Collection and the java.util.Set classes to package collections
of references.

The steps required for the creation of the relationship are as follows:

• Define the abstract accessor methods for each relationship field.

• Define the relationship cardinality and direction in the deployment
descriptor.

• Select whether to cascade delete for one-to-one, one-to-many, and many-
to-many relationships.

The ejb-jar <relationships> section for the ConferenceEJB and TrackEJB
relationship is shown here. Notice that there can be many <ejb-relation>
descriptors inside the <relationships> descriptors. Each <ejb-relation>
descriptor has two participants that play the <ejb-relationship-role>.

1259c05.fm Page 214 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

215

<relationships>

 <ejb-relation>

 <ejb-relation-name>conference-tracks</ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 track-belongs_to-conference

 </ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <cascade-delete/>

 <relationship-role-source>

 <ejb-name>Track</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>conference</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role >

 <ejb-relationship-role-name>

 conference-has-tracks

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source >

 <ejb-name>Conference</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>tracks</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

As you can see there are two roles: the track-belongs-to-conference, which
has the multiplicity of Many (read it as [multiplicity] + [role-name], that is, “Many
Tracks belong to a Conference”). The <cascade-delete> descriptor tells the CMP
engine to delete all Tracks when their associated Conference is deleted (ejbRemove).
Role player is defined in the <relationship-role-source> and the <cmr-field>
descriptors tell you that the conference (getConference method) field provides
the linkage from a track back to its parent conference.

1259c05.fm Page 215 Friday, February 27, 2004 1:39 PM

Chapter 5

216

The second <relationship-role> conference-has-tracks can be read as
“One conference has [many] tracks.” You see again that the role player is
Conference and its cardinality in the relationship is One. The link from the
One Conference to the Many Tracks is provided by the tracks field, which maps to
a java.util.Collection type.

Before you can “wire” the Beans together in a relationship you need to create
the TrackEJB Bean. The source code for TrackEJB.java is shown here:

package com.ejdoab.tcms.entities;

...

/**

 * @ejb.bean

 * name="Track"

 * type="CMP"

 * local-jndi-name="ejb/TrackLocal"

 * primkey-field="id"

 * schema="Tracks"

 * cmp-version="2.x"

 * view-type="local"

 * @ejb.value-object

 * name="Track"

 * match="*"

 * @ejb.transaction

 * type="Required"

 * @ejb.util

 * generate="physical"

 * @ejb.persistence

 * table-name="Tracks"

 * @ejb.finder

 * signature="Track findByTitle(java.lang.String title)"

 * query="SELECT OBJECT(t) FROM Tracks AS t WHERE t.title = ?1"

 */

public abstract class TrackEJB implements EntityBean {

 // ----------------

 // Business methods

 // ----------------

...

 // ----------

 // CMP Fields

 // ----------

...

1259c05.fm Page 216 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

217

 // ----------

 // CMR fields

 // ----------

 /**

 * @ejb.interface-method

 * @ejb.relation

 * name="conference-tracks"

 * role-name="track-belongs_to-conference"

 * cascade-delete="yes"

 *

 * @jboss.relation

 * fk-column="fk_ConferenceId"

 * related-pk-field="id"

 * fk-constraint=true

 */

 public abstract ConferenceLocal getConference();

 public abstract void setConference(ConferenceLocal conference);

...

}

Notice the section following the method getConference and the JavaDoc
comment before it. Compare the values with the expected XML descriptor that
was shown previously.

You also need to modify the ConferenceEJB and add the relationship to
TrackEJB. The relevant code changes are shown here:

package com.ejdoab.tcms.entities;

...

// need implicit imports to avoid warning

import com.ejdoab.tcms.entities.ConferenceValue;

import com.ejdoab.tcms.entities.TrackValue;

/**

...

 */

public abstract class ConferenceEJB implements EntityBean {

1259c05.fm Page 217 Friday, February 27, 2004 1:39 PM

Chapter 5

218

 // ----------------

 // Business methods

 // ----------------

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="Supports"

 */

 public abstract ConferenceValue getConferenceValue();

 /**

 * @ejb.interface-method

 */

 public abstract void setConferenceValue(ConferenceValue data);

 /**

 * @ejb.interface-method

 */

 public void addTrack(int i, String title)

 throws FinderException, CreateException {

 try {

 TrackLocal track = TrackUtil.getLocalHome().create(i, title);

 getTracks().add(track);

 }

 catch (NamingException ne) {

 CreateException ce = new CreateException(ne.getMessage());

 // uncomment this line if using JDK 1.4 or greater

 // ce.initCause(ne);

 throw ce;

 }

 }

 /**

 * @ejb.interface-method

 */

 public Collection getAllTrackValues() {

 List trackValues = new ArrayList();

 for (Iterator i = getTracks().iterator(); i.hasNext();) {

 TrackLocal track = (TrackLocal)i.next();

 trackValues.add(track.getTrackValue());

 }

 return (Collection)trackValues;

 }

1259c05.fm Page 218 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

219

 /**

 * @ejb.interface-method

 */

 public int getHowManyTracks() {

 return getTracks().size();

 }

...

 // ----------

 // CMR fields

 // ----------

 /**

 * @ejb.interface-method

 * view-type="local"

 * @ejb.relation

 * name="conference-tracks"

 * role-name="conference-has-tracks"

 */

 public abstract Collection getTracks();

 public abstract void setTracks(Collection tracks);

...

}

In order to test the relationship you’ll modify the ConferenceEJBTest class
one final time. The final version of the test client code is shown here:

package com.ejdoab.tcms.entities;

...

public class ConferenceEJBTest {

 ...

 public static void main(String args[]) {

 ...

 try {

 // ----------

 // JNDI Stuff

 // ----------

 ...

 // ----------

 // Write Test

 // ----------

1259c05.fm Page 219 Friday, February 27, 2004 1:39 PM

Chapter 5

220

 System.out.println("[write test] begin...");

 System.out.println(

 "[ejb create] Create an Instance of Conference Bean");

 // create

 conf = confHome.create(0, "EJDOAB");

 // add some data using DTO

 ConferenceValue cvalue = conf.getConferenceValue();

 cvalue.setDescription("Enterprise Java Development on a Budget");

 conf.setConferenceValue(cvalue);

 // get the track count

 System.out.println(

 "[ejb cmr access] There are ("+

 conf.getHowManyTracks() +") tracks");

 // create 3 new tracks

 System.out.println(

 "[ejb create] Creating three Instances of Track Bean");

 // add the tracks to the collection of tracks

 conf.addTrack(0, "J2SE");

 conf.addTrack(1, "J2EE");

 conf.addTrack(2, "J2ME");

 // nulled to reuse

 cvalue = null;

 conf = null;

 // ---------

 // Read Test

 // ---------

 System.out.println("[read test] begin...");

 // find the bean

 conf = confHome.findByPrimaryKey(new Integer(0));

 // retrieve the DTO

 cvalue = conf.getConferenceValue();

 System.out.println("[ejb find] Retrieved conference with id (pk) = "

 + cvalue.getId());

 System.out.println(" [name] " + cvalue.getName());

 System.out.println(" [description] " + cvalue.getDescription());

1259c05.fm Page 220 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

221

 // get the tracks

 System.out.println(

 "[ejb cmr access] Retrieving all tracks for conference");

 Collection tracks = conf.getAllTrackValues();

 for (Iterator i = tracks.iterator(); i.hasNext();) {

 TrackValue tv = (TrackValue)i.next();

 System.out.println("[ejb cmr access] track title = "

 + tv.getTitle());

 }

 }

 catch (RemoteException re) {

 System.out.println("[rmi] remote exception: " + re.getMessage());

 }

 catch (NamingException ne) {

 System.out.println("[naming] naming exception: " + ne.getMessage());

 }

 catch (FinderException fe) {

 System.out.println("[ejb] finder exception: " + fe.getMessage());

 }

 catch (CreateException ce) {

 System.out.println("[ejb] create exception: " + ce.getMessage());

 }

 }

}

Run the Ant build script and deploy the conference-ejb.jar file. Delete any
records from the Conference table as shown previously and run the test class
again. The output should resemble the following:

[jndi lookup] Looking Up Conference Remote Home Interface

[write test] begin...

[ejb create] Create an Instance of Conference Bean

[ejb cmr access] There are (0) tracks

[ejb create] Creating three Instances of Track Bean

[read test] begin...

[ejb find] Retrieved conference with id (pk) = 0

 [name] EJDOAB

 [description] Enterprise Java Development on a Budget

[ejb cmr access] Retrieving all tracks for conference

[ejb cmr access] track title = J2SE

[ejb cmr access] track title = J2EE

[ejb cmr access] track title = J2ME

1259c05.fm Page 221 Friday, February 27, 2004 1:39 PM

Chapter 5

222

Automating the Database Setup

As part of the effort to achieve Continuous Integration you need to automate the
database table creation and initial configuration. For this we’ve created three
SQL scripts that are executed with Ant (using the script that we’ll introduce in the
next section). The three SQL scripts are as follows:

• tcms-create.sql: This script creates the 25 tables required for the TCMS
system. The script is an exact representation of the database-schema
diagram seen earlier in the chapter (see Figure 5-8). It correctly defines all
relationships among the entities by using foreign key constraints. Notice
that you use the prefix “pk_” for primary key fields and “fk_” for foreign keys.

• tcms-populate.sql: This script’s purpose is to delete the contents of all
TCMS tables and insert some sample data.

• tcms-drop.sql: This script removes all tables from the TCMS database.

These scripts are available online as part of the book source code. The three
SQL scripts must be placed in the setup/db/hsqldb directory under the TCMS
project directory. In the next section you’ll learn how to have Ant execute the scripts.

Database-Driven Code Generation with Middlegen

Until now, the direction of the development effort has been moving from the
domain and the service abstractions to defining the database tables in order to
honor the contracts you’ve established between the entities. Middlegen is a tool
that takes the approach of building an application beginning with the data tier
and moving outward to the business and presentation tiers.

Middlegen, originally developed by Aslak Hellesøy, is a tool capable of taking
several database tables, resolving the relationships between them (using database
metadata), creating the corresponding Java code, and marking it up with XDoclet
comments. Middlegen is capable of working with many JDBC-compliant data-
bases and can generate EJB, JDO, and Struts modules. Middlegen uses Velocity
templates to generate XDoclet-annotated code and it provides an Ant task to
invoke the code generation as part of the build process. Middlegen is especially
useful in an application where there are multiple relationships between tables,
because it can handle the creation of all the necessary @ejb.relation XDoclet tags.

Code generated by Middlegen relies on further processing by XDoclet and
takes full advantage of XDoclet’s capabilities to generate interfaces, primary key
classes, and deployment descriptors. Middlegen works by using several plug-ins

1259c05.fm Page 222 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

223

that perform different types of code generation. Middlegen ships with the
following plug-ins:

• cmp20: Generates one or more CMP Entity Beans based on a set of database
tables. It can also create code for handling database-independent primary-
key generation schemes (GUID-based or table-sequence-block) as well as
Oracle-specific sequence. One of its greatest features is that it correctly
generates CMR fields representing the relationships among the tables.
You’ll cover this plug-in extensively in this chapter.

• sunjdo10: Generates Sun JDO 1.0–compliant classes and descriptors.
It generates one JDO class per table in the database.

• struts: Generates Struts actions, forms, and JSP. The generated pages
provide basic functionality to create, list, and delete records in each table.

• servlet: Generates a simple servlet that provides a simple way to list the
contents of the database table with an Entity Bean.

• html: Generates a set of HTML pages describing a database; it’s provided
as an example of how easy it is to extend Middlegen.

• simple: The simple plug-in enables the use of custom Velocity templates
without having to write a custom plug-in.

• java: Base plug-in class from which all plug-ins that generate Java code
descend.

Middlegen provides a <fileproducer> nested tag that serves as a way to pipe
the input (tables) to a custom Velocity plug-in in order to generate Java code or
other file types. Both the simple and java plug-ins make use of <fileproducer>.

Download and Installation

In this book you’re using the version 2.0 of Middlegen. The Middlegen distribution
consists of a single ZIP file that you can obtain from http://boss.bekk.no/boss/
middlegen/. Download and unzip the file. The file contains all the necessary JAR
files in the lib directory as well as a sample application (Middlegen Airlines) that
shows you how to use Middlegen.

For the purpose of your application you’ll copy the JAR files contained in the
Middlegen root directory to the lib/development/middlegen and also copy all the
JAR files contained under the samples/lib to the lib/development/middlegen/util
directory of the TCMS project.

1259c05.fm Page 223 Friday, February 27, 2004 1:39 PM

Chapter 5

224

Using Middlegen

Middlegen is currently being used in two very different ways; one way (and by far
the easiest) is to let it generate a baseline version of your code, which you can
then manipulate and further customize to fit your application’s needs. The other
alternative is to use Middlegen in a Continuous Integration scenario where you
run Middlegen as part of every build and you use its extension mechanisms (as
well as those of XDoclet) to obtain the level of customization required for your
application’s needs.

In this section you’ll concentrate on the use of the CMP 2.0 Middlegen plug-
in to create all of the domain entities using the TCMS database as the source of
the information. Because you’re using a fairly small subset of Middlegen’s capabil-
ities, it isn’t as complicated to implement the previously mentioned Continuous
Integration scenario.

Although Middlegen ships with a version of hsqldb, it doesn’t work particu-
larly well with the version of hsqldb that comes with the JBoss distributions.
Due to this incompatibility, in order to use Middlegen, a file-based mirror image
of the TCMS database was created using the version of hsqldb that ships with
Middlegen. This was done only for the purposes of keeping the build script inde-
pendent of the JBoss version being used.

Middlegen and Ant

As with XDoclet, Middlegen works from within the confines of an Ant build.
To use Middlegen you’ll need Ant version 1.5 or greater. The Ant script for this
example builds on the Ant script created previously. The new script will add some
new features needed to simplify the TCMS system build process.

The new Ant script will do the following:

• Init: Load all the necessary libraries for XDoclet and Middlegen.

• Db-Setup: Automate the creation and deletion of all database tables (both
for the main TCMS database and for the replica use for Middlegen purposes).

• Middlegen: Generate all CMP EJBs using Middlegen.

• XDoclet: Run XDoclet on the generated CMP EJBs.

• Compile: Compile all Java sources.

• Package: Package all CMP EJB in a JAR file.

1259c05.fm Page 224 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

225

• Verify: Verify the EJB JAR by implicitly using the JBoss verifier. JBoss provides a
class that you can use to verify a J2EE module before deployment. This
class is actually what JBoss uses during deployment to check a deployed
archive against the specification.

• Deploy: Deploy the JAR file to the JBoss tcms server.

In order to avoid hard coding specific paths in the Ant script, you’ll also make
use of a Properties file named tcms.properties, which will reside at the root of the
TCMS project directory. For your current configuration, the tcms.properties file
is as follows:

// app

app.name=tcms

database.type=hsqldb

// jboss specific

jboss.home=c:/java/jboss-3.2.1

jboss.server=tcms

jboss.datasource=java:/tcmsDS

jboss.datasource.mapping=Hypersonic SQL

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099"

// middlegen

mgen.gui=true

// db properties

global.db.url=jdbc:hsqldb:hsql://localhost:1701

global.db.userid=sa

global.db.password=

global.db.driver=org.hsqldb.jdbcDriver

global.db.driver.file=${jboss.home}/server/tcms/lib/hsqldb.jar

// middlegen db properties

mgen.db.url=jdbc:hsqldb:${build}/hsqldb/tcms

mgen.db.userid=sa

mgen.db.password=

mgen.db.driver=org.hsqldb.jdbcDriver

mgen.db.driver.file=${lib-dev}/middlegen/util/hsqldb.jar

// middlegen CMP properties

mgen.cmp.package=com.ejdoab.tcms.entities

1259c05.fm Page 225 Friday, February 27, 2004 1:39 PM

Chapter 5

226

The <middlegen> Task

The Ant task that executes Middlegen is the middlegen.MiddlegenTask class. As
with XDoclet it needs to be loaded into the context of the executing Ant script
using the taskdef task. The attributes of the middlegen task provide relevant
high-level information such as application name, where to store user preferences,
and details on how to connect to the database. The Middlegen task, as used in the
TCMS Ant script, is shown here:

<middlegen

 appname="${app.name}"

 prefsdir="${middlegen-prefs}"

 gui="${mgen.gui}"

 databaseurl="${mgen.db.url}"

 providerURL="${java.naming.provider.url}"

 driver="${mgen.db.driver}"

 username="${mgen.db.userid}"

 password="${mgen.db.password}"

 >

...

</middlegen>

The attribute gui determines whether Middlegen will show the graphical
interface that allows you to visually manipulate the relationships between the tables.

The <cmp20> middlegen Plug-in Subtask

Middlegen plug-ins are specified as nested elements of the <middlegen> task.
The cmp20 plug-in subtask dictates how Middlegen will generate CMP Entity
Beans from the structure of the source database specified in the <middlegen> task.

The <cmp20> attributes include the following:

• destination: Where to place the generated CMP EJB source files.

• package: The package where the EJB implementation source files
will reside.

• interfacepackage: The package where the generated remote and local
interfaces will reside.

• jndiprefix: The prefix for the generated EJBs relative to the ENC
(java:comp/).

1259c05.fm Page 226 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

227

• pkclass: Whether to instruct XDoclet to generate a Primary Key class.

• dataobject: Whether to instruct XDoclet to generate a Data Object class.

• viewtype: Passed to the XDoclet view-type parameter in the @ejb.bean
view-type attribute.

• mergeDir: A directory where snippets of code that will be merged into the
generated files are located.

• readonly: Whether the generated EJBs are read-only CMP EJBs.

• fkcmp: Stands for foreign key CMP. Application servers such as JBoss don’t
allow a CMP field to also participate in a container-managed relationship.
Therefore fkcmp is set to false for JBoss.

• guid: Whether to add automatic string GUID generation for fields with
string primary keys.

You also make use of the <sequenceblock> nested element for <cmp20>,
which enables the usage of the sequence blocks pattern for creating incre-
menting, integer primary keys using a stateless Session Bean and a CMP Entity
Bean. For more information on this primary-key generation strategy see EJB
Design Patterns: Advanced Patterns, Processes, and Idioms by Floyd Marinescu.7
The cmp20 subtask is show here:

...

<cmp20

 destination="${src-java}"

 package="com.ejdoab.tcms.entities"

 interfacepackage="com.ejdoab.tcms.entities"

 jndiprefix="ejb"

 pkclass="false"

 dataobject="true"

 viewtype="local"

 mergedir="${middlegen-merge}"

 readonly="false"

 fkcmp="false"

 guid="true"

 >

7. Ibid.

1259c05.fm Page 227 Friday, February 27, 2004 1:39 PM

Chapter 5

228

 <!-- use The Sequence Block PK generation pattern -->

 <sequenceblock

 blocksize="5"

 retrycount="2"

 table="SEQ_BLOCK"

 />

 <jboss/>

</cmp20>

...

The Ant Script

Now that you’ve set the stage for using Middlegen it’s time to introduce the Ant
script changes, which will perform the bulk of the work of generating the CMP
classes using Middlegen and processing them using XDoclet. The source for the
script is shown here (sections of the script already covered in Chapters 3 and 4

are omitted for brevity using ellipses).

<?xml version="1.0"?>

<project name="Enterprise Java Development on a Budget" default="all" basedir=".">

...

 <!-- === -->

 <!-- Initialization -->

 <!-- === -->

 <property name="build" location="build" />

 <property name="lib" location="lib" />

 <property name="lib-dev" location="${lib}/development" />

...

 <property file="build.properties"/>

...

 <property name="src" location="src" />

 <property name="src-java" location="${src}/java" />

 <property name="src-test" location="${src}/test" />

 <property name="src-conf" location="${src}/conf" />

...

 <property name="generated-dir" location="${build}/generated" />

 <property name="generated-ejb" location="${generated-dir}/ejb-src" />

...

 <property name="descriptors-ejb" location="${generated-dir}/ejb-desc" />

...

1259c05.fm Page 228 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

229

 <property name="dist" location="dist" />

 <property name="middlegen" location="${src}/middlegen" />

 <property name="middlegen-merge" location="${middlegen}/merge" />

 <property name="middlegen-prefs" location="${middlegen}" />

...

 <property

 name="server-dir"

 location="${jboss.home}/server/${jboss.server}"

 />

 <property name="server-lib-dir" location="${server-dir}/lib" />

 <property name="server-conf-dir" location="${server-dir}/conf" />

 <property name="deploy-dir" location="${server-dir}/deploy" />

...

 <!-- Files -->

 <property name="ear-filename" value="${app.name}.ear" />

 <property name="ear-file" value="${dist}/${ear-filename}" />

 <property name="ejb-jar-filename" value="${app.name}-ejb.jar" />

 <property name="ejb-jar-file" value="${dist}/${ejb-jar-filename}" />

...

 <!-- Paths -->

 <path id="class.path">

 <fileset dir="${lib}">

 <include name="*.jar"/>

 </fileset>

...

 </path>

 <path id="xdoclet.class.path">

 <path refid="class.path"/>

 <fileset dir="${lib-dev}/xdoclet">

 <include name="*.jar"/>

 </fileset>

 </path>

...

 <path id="middlegen.class.path">

 <fileset dir="${lib-dev}/middlegen/util">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${lib-dev}/middlegen">

 <include name="*.jar"/>

 </fileset>

 </path>

1259c05.fm Page 229 Friday, February 27, 2004 1:39 PM

Chapter 5

230

 <path id="verifier.class.path">

 <fileset dir="${server-lib-dir}">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${jboss.home}/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement location="${server-conf-dir}"/>

 </path>

 <path id="app.class.path">

 <pathelement location="${classes}" />

 <path refid="class.path"/>

 </path>

...

 <path id="jdbc.class.path">

 <pathelement location="${jdbc-driver-jar}" />

 </path>

...

 <path id="ejb.source.path">

 <pathelement path="${src-java}"/>

 <pathelement path="${generated-ejb}"/>

 </path>

...

 <path id="all.source.path">

 <path refid="test.source.path" />

 <path refid="ejb.source.path" />

 </path>

 <!-- Patternsets -->

 <patternset id="bean.set">

 <include name="**/*Bean.java" />

 </patternset>

...

 <patternset id="jar.set">

 <include name="*.jar" />

 </patternset>

 <patternset id="ear.set">

 <include name="${ejb-jar-filename}" />

 <include name="${war-filename}" />

 </patternset>

1259c05.fm Page 230 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

231

 <patternset id="web.classes.set">

 <include name="**/web/**" />

 </patternset>

 <patternset id="ejb.classes.set">

 <exclude name="**/web/**" />

 </patternset>

 <!-- Task Definitions -->

 <!-- XDoclet - www.xdoclet.org -->

 <taskdef

 name="ejbdoclet"

 classname="xdoclet.modules.ejb.EjbDocletTask"

 classpathref="xdoclet.class.path"

 />

...

 <!-- Targets -->

 <!-- === -->

 <!-- Middlegen -->

 <!-- === -->

 <target name="middlegen"

 depends="middlegen-init"

 if="middlegen.required"

 description="Generate CMP Entity Beans."

 >

 <middlegen

 appname="${app.name}"

 prefsdir="${middlegen-prefs}"

 gui="${mgen.gui}"

 databaseurl="${mgen.db.url}"

 providerURL="${java.naming.provider.url}"

 driver="${mgen.db.driver}"

 username="${mgen.db.userid}"

 password="${mgen.db.password}"

 >

1259c05.fm Page 231 Friday, February 27, 2004 1:39 PM

Chapter 5

232

 <cmp20

 destination="${src-java}"

 package="${mgen.cmp.package}"

 interfacepackage="${mgen.cmp.package}"

 jndiprefix="ejb"

 pkclass="false"

 dataobject="false"

 viewtype="local"

 mergedir="${middlegen-merge}"

 readonly="false"

 fkcmp="false"

 guid="true"

 >

 <!-- use The Sequence Block PK generation pattern -->

 <sequenceblock

 blocksize="5"

 retrycount="2"

 table="SEQ_BLOCK"

 />

 <jboss/>

 </cmp20>

 </middlegen>

 </target>

 <target name="middlegen-init"

 depends="middlegen-check"

 if="middlegen.required">

 <!--

 Typically task definitions are outside the scope of a target and get

 Initialized everytime the script is run. In this case, the middlegen

 tasks generate a lot of unnecessary standard output when initialized.

 So to reduce the amount of output the initialization is place here

 and only called when necessary.

 -->

 <taskdef

 name="middlegen"

 classname="middlegen.MiddlegenTask"

 classpathref="middlegen.class.path"

 />

 <mkdir dir="${build}"/>

 </target>

1259c05.fm Page 232 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

233

 <target name="middlegen-check" depends="db-middlegen-setup">

 <condition property="middlegen.required">

 <uptodate>

 <srcfiles dir="${src-java}" includes="**/entities/*.java" />

 <!--fileset-->

 <mapper

 type="merge"

 to="${build}/hsqldb/${jboss.server}.script"

 />

 </uptodate>

 </condition>

 </target>

 <!-- === -->

 <!-- Generate EJB glue files using XDoclet's ejbdoclet -->

 <!-- === -->

 ...

 <!-- === -->

 <!-- Compiles all the classes -->

 <!-- === -->

...

 <!-- === -->

 <!-- EJB Package -->

 <!-- === -->

 <target name="ejb"

 depends="ejb-verify"

 description="Creates deployable EJB jar." />

 <target name="ejb-package" depends="compile,dist-init">

 <jar jarfile="${ejb-jar-file}">

 <metainf dir="${descriptors-ejb}" includes="*.xml"/>

 <fileset dir="${classes}">

 <patternset refid="non.test.classes.set"/>

 <patternset refid="ejb.classes.set"/>

 </fileset>

 </jar>

 </target>

 <target name="ejb-package-clean">

 <delete file="${ejb-jar-file}"/>

 </target>

1259c05.fm Page 233 Friday, February 27, 2004 1:39 PM

Chapter 5

234

 <target name="ejb-verify" depends="ejb-package">

 <java

 classname="org.jboss.verifier.Main"

 fork="yes"

 failonerror="true"

 classpathref="verifier.class.path"

 >

 <arg value="${ejb-jar-file}"/>

 </java>

 </target>

...

 <!-- === -->

 <!-- Ear -->

 <!-- === -->

 <target name="ear" depends="war" description="Creates a deployable ear.">

 <ear

 destfile="${ear-file}"

 appxml="${src-conf}/application.xml"

 >

 <fileset dir="${dist}">

 <patternset refid="ear.set"/>

 </fileset>

 </ear>

 </target>

 <target name="ear-clean">

 <delete file="${ear-file}" />

 </target>

 <!-- === -->

 <!-- Distribution -->

 <!-- === -->

 <target

 name="dist"

 depends="dist-init,ear"

 description="Builds distributable versions of the application." />

 <target name="dist-init">

 <mkdir dir="${dist}" />

 </target>

1259c05.fm Page 234 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

235

 <target name="dist-clean">

 <delete dir="${dist}" />

 </target>

 <!-- === -->

 <!-- Deploy - Deploys the Application to server -->

 <!-- === -->

 <target name="deploy" depends="ear" description="Deploys EJB Jar.">

 <copy

 file="${ear-file}"

 todir="${deploy-dir}"

 />

 </target>

 <target name="undeploy" description="Undeploys EJB Jar.">

 <delete file="${deploy-dir}/${ear-filename}" />

 </target>

 <!-- === -->

 <!-- Testing -->

 <!-- === -->

...

 <!-- === -->

 <!-- Setup the database - file based db for Middlegen Purposes -->

 <!-- === -->

 <target name="db-middlegen-setup"

 depends="db-middlegen-check"

 unless="db-middlegen.notRequired"

 description="Sets up database for Middlegen."

 >

 <antcall target="db-setup">

 <param name="db.url" value="${mgen.db.url}"/>

 <param name="db.userid" value="${mgen.db.userid}"/>

 <param name="db.password" value="${mgen.db.password}"/>

 <param name="db.driver" value="${mgen.db.driver}"/>

 <param name="jdbc-driver-jar" value="${mgen.db.driver.file}"/>

 </antcall>

 </target>

1259c05.fm Page 235 Friday, February 27, 2004 1:39 PM

Chapter 5

236

 <target name="db-middlegen-clean">

 <delete dir="${build}/${database.type}" />

 </target>

 <target name="db-middlegen-check">

 <uptodate property="db-middlegen.notRequired"

 srcfile="setup/db/${database.type}/${app.name}-create.sql"

 targetfile="${build}/hsqldb/${jboss.server}.script"

 >

 </uptodate>

 </target>

 <!-- === -->

 <!-- Setup the database - runtime db under JBoss -->

 <!-- === -->

 <target name="db-runtime-setup" description="Sets up runtime database.">

 <antcall target="db-setup">

 <param name="db.url" value="${global.db.url}"/>

 <param name="db.userid" value="${global.db.userid}"/>

 <param name="db.password" value="${global.db.password}"/>

 <param name="db.driver" value="${global.db.driver}"/>

 <param name="jdbc-driver-jar" value="${global.db.driver.file}"/>

 </antcall>

 </target>

 <!-- === -->

 <!-- Setup the database -->

 <!-- gets called from db-setup-middlegen, db-setup-runtime -->

 <!-- === -->

 <target name="db-setup">

 <sql

 src="setup/db/${database.type}/${app.name}-drop.sql"

 url="${db.url}"

 userid="${db.userid}"

 password="${db.password}"

 driver="${db.driver}"

 print="yes"

 onerror="continue"

 >

 <classpath>

 <path refid="jdbc.class.path" />

 </classpath>

 </sql>

1259c05.fm Page 236 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

237

 <sql

 src="setup/db/${database.type}/${app.name}-create.sql"

 url="${db.url}"

 userid="${db.userid}"

 password="${db.password}"

 driver="${db.driver}"

 print="yes"

 >

 <classpath>

 <path refid="jdbc.class.path" />

 </classpath>

 </sql>

 <sql

 src="setup/db/${database.type}/${app.name}-populate.sql"

 url="${db.url}"

 userid="${db.userid}"

 password="${db.password}"

 driver="${db.driver}"

 print="yes"

 >

 <classpath>

 <path refid="jdbc.class.path" />

 </classpath>

 </sql>

 </target>

 <!-- === -->

 <!-- JavaDocs -->

 <!-- === -->

...

 <!-- === -->

 <!-- Formats all non-generated source code -->

 <!-- === -->

...

 <!-- === -->

 <!-- Generates browseable source code in HTML format -->

 <!-- === -->

...

 <!-- === -->

 <!-- Checks source code for convention violations -->

 <!-- === -->

...

1259c05.fm Page 237 Friday, February 27, 2004 1:39 PM

Chapter 5

238

 <!-- === -->

 <!-- Source Code Metrics -->

 <!-- === -->

...

 <!-- === -->

 <!-- Cleans everything -->

 <!-- === -->

...

 <!-- === -->

 <!-- Does it all -->

 <!-- === -->

 <target

 name="all"

 depends="dist,deploy"

 description="Generates, compiles, packages and deploys."

 />

</project>

As you can see, this script covers every task required. It can initialize the
hsqldb database both for your runtime environment under JBoss and for the
purposes of Middlegen. The target db-setup is a parameterized target that takes
as parameters the details necessary to connect to a database and then executes
the tcms-drop.sql, tcms-create.sql, and tcms-populate.sql using the Ant <sql>
task. The targets db-setup-middlegen and db-setup-runtime invoke the db-setup
target using the <antcall> task and passing the parameters for the Middlegen file-
based database and for the JBoss-embedded database.

The verify target uses the JBoss EJB JAR verifier to check the generated JAR file
before deployment. It uses the Java task to execute the class org.jboss.verifier.Main
on the generated EJB JAR file.

You also want the generated Java source to have a specific JavaDoc comment.
To accomplish this you use the mergedir attribute in the cmp20 subtask. The
value of the mergedir attribute is set to ${middlegen-merge}, which you defined
previously as ${src}/middlegen/merge in the init target of the Ant script. In this
directory (/src/middlegen/merge) you place a text file named cmp20-ALL-class-
comments.txt with the following contents:

* A TCMS domain entity for table: ${table.sqlName}

* Generated by Middlegen CMP2.0 Plugin

*

1259c05.fm Page 238 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

239

The Middlegen cmp20 plug-in will use the contents of this file in the class-
level JavaDoc comment for each generated Bean. For example, for the generated
ConferenceBean.java the merging of the comment results is the following code:

package com.ejdoab.tcms.entities;

/**

 * A TCMS domain entity for table: CONFERENCES

 * Generated by Middlegen CMP2.0 Plugin

 *

 * @author Middlegen

 *

 *

 * @ejb.bean

 * type="CMP"

 * cmp-version="2.x"

 * name="Conference"

 * local-jndi-name="ejb.ConferenceLocalHome"

 * view-type="local"

 * primkey-field="id"

...

Running the Ant Script

You’re now finally ready to use the Ant script. First, you want to initialize the data-
bases by running the db-setup-all target from the root of the TCMS project
directory type as follows:

ant db-setup-runtime

You should see output similar to the following:

Buildfile: build.xml

init:

 [echo] initializing...

db-setup-runtime:

...

db-setup:

 [echo] setting up the database...

 [sql] Executing file: C:\java\tcms\setup\db\hsqldb\tcms-drop.sql

...

1259c05.fm Page 239 Friday, February 27, 2004 1:39 PM

Chapter 5

240

 [sql] 2 of 24 SQL statements executed successfully

 [sql] Executing file: C:\java\tcms\setup\db\hsqldb\tcms-create.sql

 [sql] 25 of 25 SQL statements executed successfully

 [sql] Executing file: C:\java\tcms\setup\db\hsqldb\tcms-populate.sql

 [sql] 89 of 89 SQL statements executed successfully

BUILD SUCCESSFUL

Total time: 1 second

Notice that you’ll get several Exceptions of type java.sql.SQLException when
the tcms-drop.sql script tries to delete any nonexistent tables.

Similarly, running the db-setup-middlegen should produce the following
results:

Buildfile: build.xml

init:

 [echo] initializing...

db-setup-middlegen:

...

db-setup:

 [echo] setting up the database...

 [sql] Executing file: C:\java\tcms\setup\db\hsqldb\tcms-drop.sql

 [sql] 24 of 24 SQL statements executed successfully

 [sql] Executing file: C:\java\tcms\setup\db\hsqldb\tcms-create.sql

 [sql] 25 of 25 SQL statements executed successfully

 [sql] Executing file: C:\java\tcms\setup\db\hsqldb\tcms-populate.sql

 [sql] 89 of 89 SQL statements executed successfully

BUILD SUCCESSFUL

Total time: 2 seconds

Now that you have both databases created you can run the all target. To do
this you can use the ant all or simple ant command (because the all target is the
default target for your script). If everything goes according to plan you should see
output on the console resembling the following:

1259c05.fm Page 240 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

241

Buildfile: build.xml

init:

 [echo] initializing...

prepare:

 [echo] preparing...

 [mkdir] Created dir: C:\java\tcms\generated\ejb-src

 [mkdir] Created dir: C:\java\tcms\generated\web-src

 [mkdir] Created dir: C:\java\tcms\generated\descriptors\ejb

middlegen:

...

[middlegen] Database URL:jdbc:hsqldb:C:\java\tcms\build/hsqldb/tcms

[middlegen] (entitybean.CMP20Plugin ?) WARNING: When

fkcmp="false", you will not be able to use compound primary keys where some of

the columns are also foreign keys. This is because all columns of a primary key

must be CMP fields. See EJB 2.0. spec section 10.8.2

[middlegen] No <table> elements specified. Reading all tables.

 This might take a while...

[middlegen] (middlegen.Middlegen 396) Validating cmp20

...

[middlegen] **

[middlegen] * CTRL-Click relations to modify their cardinality *

[middlegen] * SHIFT-Click relations to modify their directionality *

[middlegen] **

At this point the Middlegen GUI client should appear. The Ant script exe-
cution is blocked until the GUI is closed. The GUI enables you to customize the
relationships in the generated code. Any changes made with the GUI are
reflected in the tcms-prefs.properties (see the prefsdir attribute of the middlegen
task in the Ant script). The GUI is shown in Figure 5-12.

1259c05.fm Page 241 Friday, February 27, 2004 1:39 PM

Chapter 5

242

Figure 5-12. The Middlegen GUI

1259c05.fm Page 242 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

243

The GUI shows all the relations between the tables in the database, including
cardinality and direction. You can change a relationship’s cardinality by doing a
Ctrl-click closer to the end of the relationship connector between two tables. You
can also change the directionality by doing a Shift-click.

Obviously, in a Continuous Integration scenario you wouldn’t want the GUI
blocking the execution of the script every time that it’s run. Once you’ve refined
the relationships you can disable the GUI from appearing by changing the value
of the gui attribute of the middlegen task to false. In the Ant script you set that
value using the mgen.gui Ant property, which is read from the project’s properties
file (tcms.properties).

Subsequent runs will use the values in the tcms-prefs.properties file. You can
also modify this file manually if needed. For the TCMS project we modified the
names of the generated EJBs to names more suitable to our purposes. Middlegen
uses an algorithm to take a table name (usually in plural form) and generates a
Bean name in singular form. It also keeps the names of the generated EJBs to a
certain length, which in this case wasn’t long enough for our purposes. The fol-

lowing table highlights the changes made using the Middlegen GUI. For example,
because you have a table called Abstracts you need to change the name of the
generated Bean to ConferenceAbstractBean as shown in Table 5-4 in order to
prevent Middlegen from generating any source using the reserved Java keyword
abstract.

Table 5-4. Middlegen Table-to-Bean Mappings

Table Bean Name Other Changes

Addresses AddressBean None

Answers AnswerBean None

Attendees AttendeeBean None

Booths BoothBean None

Conferences ConferenceBean Changed all

java.sql.Timestamp

to java.util.Dates

Abstracts ConferenceAbstractBean Rename Bean

AbstractStatus ConferenceAbstractStatusBean None

GroupPricingRules GroupPricingRuleBean None

Presentations PresentationBean None

PresentationLevels PresentationLevelBean None

1259c05.fm Page 243 Friday, February 27, 2004 1:39 PM

Chapter 5

244

You also changed any java.sql.Timestamp types to java.util.Date. Also, you’re
going to notice that the positioning of the tables isn’t auto-arranged in the GUI.
Any changes made to the position of a table on the display are also saved to the
properties file. Therefore, if you want to see the tables neatly arranged as in
Figure 5-12 you must either arrange them manually or you can just use the tcms-
prefs.properties file that’s distributed with the example source.

PresentationTopics PresentationTopicBean None

PresentationTypes PresentationTypeBean None

Presenters PresenterBean None

Questions QuestionBean None

Questionnaires QuestionnaireBean None

RegistrationDatePricingRules RegistrationDatePricingRuleBean Changed all

java.sql.Timestamp

to java.util.Dates

Reminders ReminderBean Changed all

java.sql.Dates to

java.util.Timestamp

Roles RoleBean None

Rooms RoomBean None

Sessions SessionBean Changed all

java.sql.Dates to

java.util.Timestamp

ScheduleEntries ScheduleEntryBean None

Tracks TrackBean None

Users UserBean None

UserRoles UserRoleBean None

Venues VenueBean None

Table 5-4. Middlegen Table-to-Bean Mappings (Continued)

Table Bean Name Other Changes

1259c05.fm Page 244 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

245

CAUTION As of the time of this writing, the Middlegen team cautions
users to use only the local view option when generating interfaces.
Apparently, the remote view generation is broken.

Once all customizations to the relationships and the generation parameters
are made, press the generate button at the upper-left corner of the application and
then simply close the client using the window-closing decoration for whichever
operating system you’re running.

After closing the GUI you should see the rest of the Ant script execute. The
output should resemble the following:

(middlegen.Middlegen 414) Invoking plugin cmp20

(middlegen.FileProducer 404) Generating

C:\java\tcms\src\java\com\ejdoab\tcms\entities\SequenceBean.java

using template from

jar:file:C:\java\tcms\lib\development\middlegen\util\middlegen-entitybean.jar!

/middlegen/plugins/entitybean/sequence-bean.vm

(middlegen.FileProducer 404) Generating

C:\java\tcms\src\java\com\ejdoab\tcms\entities\SessionBean.java using

 template from jar:file:C:\java\tcms\lib\development\middlegen\util\middlegen-

entitybean.jar!/middlegen/plugins/entitybean/entity-cmp-20.vm

(middlegen.FileProducer 404) Generating

C:\java\tcms\src\java\com\ejdoab\tcms\entities\ConferenceAbstractStatusBean.java

 using template from

 jar:file:C:\java\tcms\lib\development\middlegen\util\middlegen-entitybean.jar!

/middlegen/plugins/entitybean/entity-cmp-20.vm

...

[middlegen] Updated preferences in C:\java\tcms\src\middlegen-prefs\tcms-

prefs.properties

xdoclet:

 [echo] generating...

[ejbdoclet] Running <utilobject/>

[ejbdoclet] Generating Util class for 'com.ejdoab.tcms.entities.AttendeeBean'.

...

[ejbdoclet] Generating Util class for 'com.ejdoab.tcms.entities.QuestionBean'.

[ejbdoclet] Running <remoteinterface/>

[ejbdoclet] Running <localinterface/>

[ejbdoclet] Generating Local interface for

 'com.ejdoab.tcms.entities.AttendeeBean'.

...

1259c05.fm Page 245 Friday, February 27, 2004 1:39 PM

Chapter 5

246

[ejbdoclet] Generating Local interface for

 'com.ejdoab.tcms.entities.QuestionBean'.

[ejbdoclet] Running <homeinterface/>

[ejbdoclet] Running <localhomeinterface/>

[ejbdoclet] Generating Local Home interface for

 'com.ejdoab.tcms.entities.AttendeeBean'.

...

[ejbdoclet] Generating Local Home interface for

 'com.ejdoab.tcms.entities.QuestionBean'.

[ejbdoclet] Running <valueobject/>

[ejbdoclet] Running <entitycmp/>

[ejbdoclet] Generating CMP class for 'com.ejdoab.tcms.entities.AttendeeBean'.

...

[ejbdoclet] Generating CMP class for 'com.ejdoab.tcms.entities.QuestionBean'.

[ejbdoclet] Running <session/>

[ejbdoclet] Generating Session class for

 'com.ejdoab.tcms.entities.SequenceSessionBean'.

[ejbdoclet] Running <entitypk/>

[ejbdoclet] Generating PK class for 'com.ejdoab.tcms.entities.UserRoleBean'.

[ejbdoclet] Running <dataobject/>

[ejbdoclet] Generating Data Object class for

 'com.ejdoab.tcms.entities.AttendeeBean'.

...

[ejbdoclet] Generating Data Object class for

 'com.ejdoab.tcms.entities.QuestionBean'.

[ejbdoclet] Running <utilobject/>

[ejbdoclet] Generating Util class for

 'com.ejdoab.tcms.entities.AttendeeBean'.

...

[ejbdoclet] Generating Util class for 'com.ejdoab.tcms.entities.QuestionBean'.

[ejbdoclet] Running <deploymentdescriptor/>

[ejbdoclet] Generating EJB deployment descriptor (ejb-jar.xml).

[ejbdoclet] Running <jboss/>

[ejbdoclet] Generating jboss.xml.

[ejbdoclet] Generating jbosscmp-jdbc.xml.

compile:

 [echo] compiling...

 [javac] Compiling 162 source files to C:\java\tcms\classes

package:

 [echo] packaging...

 [jar] Building jar: C:\java\tcms\dist\jar\tcms-ejb.jar

1259c05.fm Page 246 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

247

verify:

 [java] Attendee: Verified.

 [java] ScheduleEntry: Verified.

...

 [java] Question: Verified.

 [java] SequenceSession: Verified.

deploy:

 [copy] Copying 1 file to C:\java\jboss-3.2.1\server\tcms\deploy

all:

BUILD SUCCESSFUL

Total time: 23 seconds

On the console where JBoss is running you should see the following output:

03:02:04,842 INFO [MainDeployer] Starting deployment of package:

 file:/C:/java/jboss-3.2.1/server/tcms/deploy/tcms-ejb.jar

03:02:05,353 INFO [EjbModule] Creating

03:02:05,393 INFO [EjbModule] Deploying UserRole

03:02:05,503 INFO [EjbModule] Deploying Room

03:02:05,513 INFO [EjbModule] Deploying Booth

03:02:05,523 INFO [EjbModule] Deploying Attendee

03:02:05,543 INFO [EjbModule] Deploying Question

03:02:05,553 INFO [EjbModule] Deploying User

03:02:05,573 INFO [EjbModule] Deploying Venue

03:02:05,583 INFO [EjbModule] Deploying Track

03:02:05,603 INFO [EjbModule] Deploying ScheduleEntry

03:02:05,613 INFO [EjbModule] Deploying PresentationTopic

03:02:05,623 INFO [EjbModule] Deploying Presentation

03:02:05,633 INFO [EjbModule] Deploying Reminder

03:02:05,643 INFO [EjbModule] Deploying ConferenceAbstract

03:02:05,653 INFO [EjbModule] Deploying PresentationLevel

03:02:05,673 INFO [EjbModule] Deploying Questionnaire

03:02:05,683 INFO [EjbModule] Deploying Conference

03:02:05,693 INFO [EjbModule] Deploying RegistrationDatePricingRule

03:02:05,703 INFO [EjbModule] Deploying Sequence

03:02:05,723 INFO [EjbModule] Deploying GroupPricingRule

03:02:05,733 INFO [EjbModule] Deploying ConferenceAbstractStatus

03:02:05,743 INFO [EjbModule] Deploying PresentationType

03:02:05,753 INFO [EjbModule] Deploying Role

03:02:05,763 INFO [EjbModule] Deploying Session

03:02:05,773 INFO [EjbModule] Deploying Presenter

1259c05.fm Page 247 Friday, February 27, 2004 1:39 PM

Chapter 5

248

03:02:05,783 INFO [EjbModule] Deploying Answer

03:02:05,793 INFO [EjbModule] Deploying Address

03:02:05,813 INFO [EjbModule] Deploying SequenceSession

03:02:06,094 INFO [EjbModule] Created

03:02:06,094 INFO [EjbModule] Starting

03:02:07,526 INFO [Conference] Table 'CONFERENCES' already exists

...

03:02:08,197 INFO [EjbModule] Started

03:02:08,197 INFO [MainDeployer] Deployed package:

 file:/C:/java/jboss-3.2.1/server/tcms/deploy/tcms-ejb.jar

You can also confirm that the Beans have been deployed correctly by exam-
ining the JNDI tree for the JBoss tcms server as shown earlier in the chapter.

Pattern-Driven Development

In this section you’re establishing the patterns of communication between the
interacting components of a subsystem, and between the subsystems that make
up your system. For this you’re relying on tried-and-true design and implemen-
tation patterns arranged together to fulfill the basic strategy.

• Facades: System services are exposed via Session and Message Facades.

• Service locator: Clients locate services via a service locator.

• Data transfer object (aka value objects): DTOs are responsible for carrying
data between processes.

• Data transfer object factory: An implementation of the Mapper and
Assembler objects used to generate custom DTOs for the presentation
layer.

• Page-by-page iterator/page controller: A type of DTO that’s suited for
the transport and manipulation of large sets of tabular data that will be
retrieved in an incremental fashion.

• EJBHomeFactory: Used for caching of Home Interface objects thereby
minimizing JNDI initial context lookups and home lookups.

1259c05.fm Page 248 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

249

NOTE We prefer the name “data transfer object” over “value object.”
For value objects you should follow Fowler’s definition instead: “A
small simple object, like money or a date range, whose equality isn’t
based on identity.” 8 Value objects are primitive values in the scope
of a specific domain or application. For example, in the domain of a
banking application, money would be a value object.

TCMS Services

Now that you have a solid EJB-based set of domain entities developed using CMP 2.0
with all the required CMR relationships and support files automated using
Middlegen and XDoclet, you can move to the service-oriented part of the system.

The TCMS services, in the form of facades are the main entry point into the
EJB-based portion of the application. In the very first examples in this chapter
external clients were allowed access to the ConferenceEJB Entity Bean directly.
This exposed a lot of intimate knowledge about the persistence and the structure
of the database behind the scenes.

Now you’re going to expose a set of services via a commonly used pattern in
EJB development: the Session Facade. You’ll also prevent external clients from
accessing the Entity Beans directly. You might be asking yourself, why wrap your
Entity Beans with a Session Bean? Aren’t Entity Beans legitimate business objects
and not just a window into a database table? The answer is yes and no.

The move to a service-oriented architecture places emphasis on applications
providing a well-defined set of services to its clients. In the context of a service
request, clients will need to have knowledge or certain entities involved in the
processing and exchange of information between the client and the applications.
If these services are tightly coupled to your Entity Beans then later changes to the
database will abruptly cascade all the way out to the application’s presentation
tier as well as to any other non-HTTP clients.

The facade encapsulates the workflow interactions between the client and
the application by presenting clients with a business-driven coarse-grained
unified interface to the underlying business components. This has the positive
side-effect of reducing the network traffic by minimizing the chattiness over the
wire, which is always a great concern when developing distributed applications.
Facades also simplify transaction management by removing the need for the client
to coordinate transaction boundaries at the component level. Using the facade
you minimize the amount of objects exposed to the clients. The communication

8. Fowler. Patterns of Enterprise Application Architecture (Addison-Wesley, 2003).

1259c05.fm Page 249 Friday, February 27, 2004 1:39 PM

Chapter 5

250

between the facade and other components (other facades and Entity Beans) is
performed using EJB local interfaces.

A facade comes in two flavors: Session and Message Facades. For use cases
that are synchronous in nature you’ll use the Session Facade pattern, though for
anything asynchronous you’ll use the Message Facade. As mentioned earlier in
the chapter, we’ve opted to keep all facades in the system stateless both for sim-
plicity and performance reasons.

For the TCMS system you’ll develop several Stateless Session Facades to
fulfill the following subset of the TCMS use cases (as defined in Chapter 2):

• Register

• Authenticate

• View Profile

• Edit Profile

• Browse Sessions

• Browse Presenter Sessions

• Submit Abstract

• Browse Abstracts

• Edit Abstracts

• Browse Schedule

• Add Session to Schedule

• Remove Schedule Entry

• Add Schedule Reminder

• Remove Schedule Reminder

Most of the remaining use cases will be fulfilled in the “Presentation Tier,”
“Web Services Tier,” and “Client Tier.” The complete services diagram is shown in
Figure 5-13.

1259c05.fm Page 250 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

251

Figure 5-13. TCMS services diagram

From the previous list of use cases you can separate the use cases into
Conference, User, and Schedule use cases. This leads naturally to the creation
of the following Session Facades:

• UserServicesBean: Encapsulates interaction with any attendee and pre-
senters information.

• ConferenceServicesBean: Provides general access to conference
information.

• ScheduleServicesBean: Encapsulates interaction between a user and their
conference schedule information.

1259c05.fm Page 251 Friday, February 27, 2004 1:39 PM

Chapter 5

252

All three facades will reside under the com.ejdoab.tcms.services package.
Let’s tackle each facade one at a time and explain in detail the decisions and
patterns used.

UserServicesBean.java

You begin by creating a file named UserServicesBean.java in the
com.ejdoab.tcms.services package this class should be an abstract class imple-
menting the javax.ejb.SessionBean interface. Next you add class level XDoclet
comments to define this Bean as a Stateless Session Bean as follows:

/**

 * @ejb.bean

 * name="UserServices"

 * type="Stateless"

 * view-type="both"

 * jndi-name="ejb.UserServicesHome"

 * local-jndi-name="ejb.UserServicesLocalHome"

 * @ejb.transaction

 * type="Required"

 * @ejb.util

 * generate="physical"

 */

public abstract class UserServicesBean implements SessionBean {

 // add methods here

}

By setting the type attribute of the @ejb.bean tag you tell XDoclet to make
this a Stateless Session Bean. XDoclet will also make the Bean interface available
both locally and remotely as defined in the view-type attribute by setting its value
to both.

Also notice that you’re setting the transaction type to Required at the class
level. The transaction type specifies how the container must manage transaction
scopes for the enterprise Bean’s method invocations. The value Required specifies
that the method is always executed in the context of a transaction. Consequently,
if the client invoking the method is making the call in the context of a transaction
then that context is used, otherwise the EJB container will execute the method in
a newly started global transaction.

1259c05.fm Page 252 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

253

TIP Although you’ve set the default value for the transactions to
Required, it’s important to note that running a method in the context
of a global transaction is much more resource intensive than in a non-
transactional scenario. As a rule of thumb, methods that only read data
are marked with the NotSupported transaction type. The exception to the
rule is when using a CMR collection, which requires that access to the
collection (or the iterator for the collection) occur within the transac-
tion in which it was created (this is to guarantee the freshness of the
data). Otherwise the familiar java.lang.IllegalStateException is thrown
by the container.

Other XDoclet attributes whose default values can be set at the class level
include the view-type attribute. In the code for UserServicesBean.java, unless it’s
specified at the method level, all methods marked with @ejb.interface-method
will be available to both remote and local clients.

Now that you have the skeleton for your User Services Facade you can define
the operations you wish to make available to the clients. At this point it’s relevant

to mention that all results to and from our services layer will be handled via DTOs
as reflected by the method signatures. You’ll delve into the details of DTO layers
shortly.

Table 5-5 shows a mapping between the use cases that you’re trying to fulfill
in this facade and the facade methods implementing them.

From the use case–method table you can see that the UserProfileDTO is
central to delivering and updating data between the application and its clients.
For the TCMS system you’ve implemented a very simple DTO layer. Clients
interact with DTOs to get and set values and to create and submit new entities.
Your DTOs also simplify the client code needed to manipulate any associated
CMR values. In addition, they provide an easy way for clients to validate the

Table 5-5. Facade Methods for User Services

Use Case Method

Register boolean registerUser(UserProfileDTO up)

Authenticate boolean authenticate(String email, String password)

View Profile UserProfileDTO getUserProfile(String email)

Edit Profile boolean setUserProfile(UserProfileDTO userProfile)

1259c05.fm Page 253 Friday, February 27, 2004 1:39 PM

Chapter 5

254

contents of a DTO before the contents are sent down the wire to the appropriate
facade, thereby reducing the possibility of having to perform multiple network trips.

All DTOs in the system implement a simple interface,
com.ejdoab.tcms.services.dto.DTO, which extends the java.io.Serializable
interface and provides a single method DTOValidationResults validate() that
returns an object, which provides a convenient way to report errors to the user.
DTOs are very simple objects that act as envelopes to transport data to and from
the client.

On the server side, you have utility objects that correspond to each of the DTO
objects in the system and serve as factories for a specific DTO. These factories are an
example of the Transfer Object Assembler Pattern,9 which is a specialized imple-
mentation of the Mapper Pattern.10 The DTO factories can generate a DTO given
a Local EJB object and can also update the underlying database when given a DTO.
All DTO factories implement the com.ejdoab.tcms.services.dto.DTOFactory inter-
faces, which defines two methods: getDTO (DTO getDTO(Object obj) throws
DTOCreateException) and saveDTO (boolean saveDTO(DTO dto) throws

DTOUpdateException).
It’s important to note that when using the DTO pattern you effectively couple

the clients to the DTO layer. In the TCMS system the DTO layer and the Session
Facades define the contract between the clients and the server.

For this implementation you should group both the attendee and presenter
information in a single DTO to simplify the code in the clients and reduce the
number of dependencies. The UserProfileDTO is an example of a custom data
transfer object a common intertier data transfer pattern. For more information
on DTOs, custom DTOs, and domain DTO patterns, see Floyd Marinescu’s
EJB Design Patterns: Advanced Patterns, Processes, and Idioms.11

One of the drawbacks of the DTO pattern is that although it’s relatively easy
to create and populate a DTO, the reverse operation, which takes a DTO and
updates one or more domain entities, is typically cumbersome, especially if
you’re dealing with a complicated graph of objects. This is evident in the imple-
mentation of the setDTO methods in the DTOFactory classes.

9. Alur, Crupi, Malks. Core J2EE Patterns: Best Practices and Design Strategies. 2nd ed.
(Upper Saddle River, NJ: Prentice Hall PTR, 2003).

10. Fowler. Patterns of Enterprise Application Architecture (Addison-Wesley, 2003).

11. Marinescu, Floyd. EJB Design Patterns: Advanced Patterns, Processes, and Idioms
(John Wiley & Sons, 2002)

1259c05.fm Page 254 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

255

NOTE With the use of an object-relational mapping tool (ORM) the
complexity of using DTOs vanishes since you only deal with POJOs.
Chapter 7 shows how the concept of “transparent” persistence can
alleviate some of the complexity of storing and retrieving objects in
relational databases.

With a clearer picture of the infrastructure needed for your facades, you can
now explore the implementation of the UserServicesBean class. Let’s begin with
the simplest method in the facade, the authenticate method. This method takes
as parameters the email and the password of a registered user and determines
whether the password matches the password stored in the database. The code
for the method is as follows:

/**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

public boolean authenticate(String email, String password)

 throws NoSuchUserException {

 UserLocal user = findUserByEmail(email);

 return (password == null)

 ? (user.getPassword() == null)

 : password.equals(user.getPassword());

}

First, note the XDoclet method-level tags. The @ejb.interface tags mark this
method as being exposed in the generated interfaces (local and remote as deter-
mined by the class-level attribute view-type attribute). Second, you’ll override
the default transaction type set at the class level with the NotSupported attribute,
which will make this method perform faster because it won’t be running in the
context of a transaction.

Notice that you’re making use of the local interface of the UserBean appro-
priately named UserLocal, which was generated by Middlegen and XDoclet.
You’ll also create a utility method findUserByEmail that returns a local User
object given a user’s email. The findUserByEmail method is shown here:

1259c05.fm Page 255 Friday, February 27, 2004 1:39 PM

Chapter 5

256

/**

 * @ejb.interface-method

 * view-type="local"

 * @ejb.transaction

 * type="NotSupported"

 */

public UserLocal findUserByEmail(String email) throws NoSuchUserException {

 try {

 UserLocalHome home = UserUtil.getLocalHome();

 Collection c = home.findByEmail(email);

 if (!c.isEmpty()) {

 UserLocal user = (UserLocal) c.iterator().next();

 return user;

 } else {

 throw new NoSuchUserException(

 "[findUserByEmail] No user with email= " + email);

 }

 } catch (NamingException ne) {

 throw new EJBException(

 "[findUserByEmail] Error retrieving user information",

 ne);

 } catch (FinderException fe) {

 throw new NoSuchUserException(

 "[findUserByEmail] No user with email= " + email);

 }

}

Notice that this method is restricted only to the local view as determined by
the view-type attribute of the @ejb.interface tag. This is a requirement of the EJB
specification because the return value of this method is a local EJB interface. The
first line after the opening try statement shows how you obtain the local home
interface for the user object using the UserUtil.java object. In the Ant script you
instructed XDoclet to create these utility objects for each of the Beans in the
TCMS system. The subtask <utilobject kind="physical" includeGUID="true"/>
accomplished this. The XDoclet generated util object represents a specific EJB-
HomeFactory pattern for a given Bean. Although you provide an implementation
of the ServiceLocator pattern that can also cache local home interfaces, you can
also use the utility objects for this purpose.

The next method that you want to highlight is the getUserProfile method,
which takes as input the email of the user and returns a UserProfileDTO for the
user (which includes any attendee- or presenter-specific data also).

1259c05.fm Page 256 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

257

/**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

public UserProfileDTO getUserProfile(String email)

 throws NoSuchUserException {

 UserProfileDTO up = null;

 try {

 UserLocalHome home = UserUtil.getLocalHome();

 UserLocal user = findUserByEmail(email);

 if (user != null) {

 Object source = user.getAttendee();

 if (source == null) {

 source = user.getPresenter();

 }

 if (source != null) {

 UserProfileDTOFactory builder =

 (UserProfileDTOFactory) DTOAbstractFactory

 .getInstance()

 .getDTOBuilder(

 UserProfileDTO.class);

 try {

 up = (UserProfileDTO) builder.getDTO(source);

 } catch (DTOCreateException dce) {

 dce.printStackTrace();

 }

 } else {

 new EJBException("no role found");

 }

 } else {

 throw new NoSuchUserException(

 "[getUserProfile] No user with email= " + email);

 }

 } catch (NamingException ne) {

 new EJBException("Error accessing User Information", ne);

 }

1259c05.fm Page 257 Friday, February 27, 2004 1:39 PM

Chapter 5

258

Notice the use of the DTOAbstractFactory class, which is a simple abstract
factory for DTOFactory objects. To obtain a DTOFactory, uses the singleton
instance of the abstract factory and calls the getDTOBuilder method by passing
the class object of the desired DTO for which a factory is required. Once you have
a DTOFactory, you can invoke the getDTO method to obtain a DTO from a Local
EJB object or you can call the setDTO method to reflect the changes in the DTO to
the database.

ConferenceServicesBean.java

Similarly to the UserServicesBean the ConferenceServicesBean provides a simple
interface to the access conference data such as session and abstract information.
Table 5-6 maps the use cases fulfilled to the methods in the Bean.

The method getSession implements a rather simple (and at this point ineffi-
cient) version of the page-by-page iterator without doing any caching of the
obtained result set. The page-by-page iterator design pattern breaks up a larger
result set into smaller pages that can be handled one page at a time by the receiving
clients. In the TCMS system the number of sessions can be rather large, depending
on the size of the conference, and a client might only want to see a smaller set of
sessions to be shown on a web page. The code for the getSessions method is
shown here:

Table 5-6. Facade Methods for Conference Services

Use Case Method

Browse Sessions Page getSessions(int start, int size)

Browse Presenter Sessions Page getSessionsByPresenter(String email, int start, int size)

Submit Abstract boolean submitAbstract(ConferenceAbstractDTO dto)

Browse Abstracts Page getAbstracts(int start, int size)

Browse Presenter Abstracts Page getAbstractsByPresenter(String email, int start, int size)

1259c05.fm Page 258 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

259

/**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

public Page getSessions(int start, int size) {

 SessionLocalHome slh;

 Page page = Page.EMPTY_PAGE;

 Collection c = null;

 try {

 slh = SessionUtil.getLocalHome();

 c = slh.findAll();

 } catch (NamingException ne) {

 throw new EJBException("Error accessing Session Information", ne);

 } catch (FinderException fe) {

 throw new EJBException("Error accessing Session Information", fe);

 }

 SessionDTOFactory dtoFactory =

 (SessionDTOFactory) DTOAbstractFactory.getInstance().getDTOBuilder(

 SessionDTO.class);

 if (c != null) {

 try {

 page = PageFactory.buildPage(c, start, size, dtoFactory);

 } catch (DTOCreateException dce) {

 throw new EJBException("Error building page", dce);

 }

 }

 return page;

}

Notice that as part of your DTO layer you have a Page and a PageFactory class.
The Page represents a subset of a larger result set and the PageFactory builds
Pages containing DTOs by using as input a collection of Local EJB interfaces and
a DTOFactory. It then uses the DTOFactory to build the DTOs out of the Local EJB
objects and returns them as part of the Page object.

1259c05.fm Page 259 Friday, February 27, 2004 1:39 PM

Chapter 5

260

The next method of interest in this facade is getSessionByPresenter. In
this method you’re using a ServiceLocator to access the UserServices Bean
findPresenterByEmail method, and the page-by-page iterator to return a con-
strained result set. It also makes extensive use of CMR collection fields
(consequently this method is forced to run within a transaction).

/**

 * @ejb.interface-method

 */

public Page getSessionsByPresenter(String email, int start, int size)

 throws NoSuchUserException {

 UserLocalHome ulh = null;

 UserServicesLocal us = null;

 Page page = Page.EMPTY_PAGE;

 ServiceLocator sl;

 try {

 sl = ServiceLocator.getInstance();

 UserServicesLocalHome usHome =

 (UserServicesLocalHome) sl.getLocalHome(

 "ejb.UserServicesLocalHome");

 us = usHome.create();

 } catch (ServiceLocatorException e) {

 new EJBException("could not access user services", e);

 } catch (CreateException e) {

 new EJBException("could not access user services", e);

 }

 Collection c = new ArrayList();

 PresenterLocal presenter = us.findPresenterByEmail(email);

 Collection abstracts = presenter.getConferenceAbstracts();

 Iterator i = abstracts.iterator();

 for (int index = 0, n = abstracts.size(); index < n; index++) {

 PresentationLocal presentation =

 ((ConferenceAbstractLocal) i.next()).getPresentation();

 if (presentation != null) {

 Collection sessions = presentation.getSessions();

 c.addAll(sessions);

 }

 }

1259c05.fm Page 260 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

261

 SessionDTOFactory dtoBuilder =

 (SessionDTOFactory) DTOAbstractFactory.getInstance().getDTOBuilder(

 SessionDTO.class);

 if (c != null) {

 try {

 page = PageFactory.buildPage(c, start, size, dtoBuilder);

 } catch (DTOCreateException dce) {

 throw new EJBException("Error building page", dce);

 }

 }

 return page;

}

The ServiceLocator provides a way for objects in the system to look up com-
ponents (both local and remote) and other resources that the application might
need such as datasources, connections, and connection factories. By centralizing
lookups the ServiceLocator pattern simplifies lookup code in the application and
it can also serve as a per-JVM cache that eliminates redundant lookups, which in
turn improve application performance.

The ServiceLocator is implemented as a singleton, although it isn’t a truly
“distributed” singleton, the ServiceLocator is a per-JVM singleton (or per-class
loader). Contrary to popular belief it’s safe to use the singleton pattern in J2EE
development as long as the singleton is implemented in a stateless read-only
fashion. That is, there’s no need for a user of the singleton to be associated with a
particular instance of it.

NOTE The classic notion of a singleton cannot be achieved with plain
Java classes in J2EE. Application servers have fairly complex class-
loading behaviors. It’s typical for each ejb-jar and/or each EAR file to
have its own class loader, in which case it would have its own class
instance of a singleton. Therefore if the singleton’s state is modified,
your code will only see changes to the instance that was loaded in
your application’s class loader. You can achieve a truly distributed
singleton in J2EE by using Entity Beans or JNDI, but that could poten-
tially introduce a single point of failure for your application, or a
performance bottleneck.

1259c05.fm Page 261 Friday, February 27, 2004 1:39 PM

Chapter 5

262

ScheduleServicesBean.java

The schedule services are provided by the ScheduleServicesBean, which
provides the following two methods for accessing and updating schedule
information:

• ScheduleDTO getUserSchedule(String email)

• boolean setUserSchedule(ScheduleDTO dto)

These two methods are used to satisfy all of the use cases shown in Table 5-7.

The ScheduleServicesBean depends heavily on the ScheduleDTO, which in
turn uses the ScheduleEntryDTO and the ScheduleReminderDTO. The schedule
hierarchy of objects represents a fairly complex object graph, and as we mentioned
before, one of the disadvantages of the DTO pattern comes when you try to update
or create an interrelated set of domain entities with a compound DTO.

The following code for the updateSchedule method should give you an idea
of the issues:

private boolean updateSchedule(ScheduleDTO dto) throws DTOUpdateException {

 boolean retValue = true;

 UserLocal user = null;

 UserLocalHome ulh = null;

 UserServicesLocal us = null;

 ServiceLocator sl;

 try {

 sl = ServiceLocator.getInstance();

 UserServicesLocalHome usHome =

 (UserServicesLocalHome) sl.getLocalHome(

 "ejb.UserServicesLocalHome");

Table 5-7. Facade Methods for Schedule Services

Use Case Method

Browse Schedule ScheduleDTO getUserSchedule(...)

Add Sessions to Schedule getUserSchedule(...) + setUserSchedule(...)

Remove Schedule Entry getUserSchedule(...) + setUserSchedule(...)

Add Schedule Reminder getUserSchedule(...) + setUserSchedule(...)

Remove Schedule Reminder getUserSchedule(...) + setUserSchedule(...)

1259c05.fm Page 262 Friday, February 27, 2004 1:39 PM

Business Tier with JBoss

263

 us = usHome.create();

 } catch (ServiceLocatorException e) {

 new EJBException("could not access user services", e);

 } catch (CreateException e) {

 new EJBException("could not access user services", e);

 }

 // find the user

 String email = dto.getUserEmail();

 try {

 user = us.findUserByEmail(email);

 } catch (NoSuchUserException nsue) {

 throw new DTOUpdateException(

 "There is no user with email " + email,

 nsue);

 }

 ScheduleEntryDTOFactory dtoBuilder =

 (ScheduleEntryDTOFactory) DTOAbstractFactory

 .getInstance()

 .getDTOBuilder(

 ScheduleEntryDTO.class);

 if (user != null) {

 // you need to do a comparison of the items in the schedule and those

 // in the database and remove any items that are in the database but

 // not in the schedule

 Collection c = user.getScheduleEntries();

 Iterator items = c.iterator();

 for (int index = 0; index < c.size(); index++) {

 ScheduleEntryLocal se = (ScheduleEntryLocal) items.next();

 int seId = se.getId().intValue();

 if (!dto.hasEntry(seId)) {

 try {

 se.remove();

 } catch (RemoveException re) {

 throw new DTOUpdateException(

 "Could not remove schedule item with id" + seId,

 re);

 }

 }

 }

1259c05.fm Page 263 Friday, February 27, 2004 1:39 PM

Chapter 5

264

 // loop through the schedule items

 Iterator dtos = dto.getEntries();

 for (int index = 0; index < dto.getEntryCount(); index++) {

 DTO item = (DTO) dtos.next();

 retValue = retValue && dtoBuilder.setDTO(item);

 }

 }

 return retValue;

}

Summary

From the development of the business tier of the TCMS system you’ve learned
that CMP 2.0 Entity Beans are much better suited to represent a fairly complex
database schema that their 1.X counterparts. You also learned how two very

powerful Open Source tools, XDoclet and Middlegen, can drastically reduce the
amount of work needed to get an EJB-based project up and running. By using
these tools in conjuction with your well-crafted Ant buildfile and some well-known
design and implementation patterns and strategies, you’ve taken the TCMS
business tier from specification to development.

Throughout the chapter you’ve learned about JBoss and how to configure
and deploy an EJB-based application and you briefly delved into the world of
J2EE management with Java Management Extensions.

Earlier in the chapter you also learned about the different choices developers,
designers, and architects face when creating an enterprise application, and you
learned that using J2EE doesn’t equate to using EJBs. You learned that EJBs offer
a good solution to a wide range of problems, but there are many factors that you
should weigh when making the decision to go with EJBs.

You also learned about CMP 2.0 and CMR relationships, which formed the
basis for the domain entities of the TCMS system. J2EE is a deep and wide tech-
nology stack, and experience will teach you, as quoted at the beginning of the
chapter, when to “chop off whatever you don’t need.”

1259c05.fm Page 264 Friday, February 27, 2004 1:39 PM

265

CHAPTER 6

Data Storage Options

The best way to have a good idea is to have a lot of ideas.1

—Linus C. Pauling

DATABASES ARE EVERYWHERE in modern society and represent the backbone of the
information age. In a J2EE application, choosing the right database platform can
mean the difference between a successful application and a failed one.

How do you go about choosing where to put your data? The criteria for choosing
a database are as complex as those for choosing an application server or an operating
system. The fact that the largest percent of applications end up using a relational
database doesn’t automatically mean that it’s the best solution to your particular
problem. For the majority of corporate applications the data that will be manipu-
lated is already living in a relational database, therefore the choice has already
been made for you. But for those applications that you’re starting from scratch,
there are a lot of ideas you can try. Some of the issues that you should weigh before
making a decision about which database to choose for your next J2EE application
include the following:

• Cost: Proprietary or Open Source? The total cost of ownership (TCO) is what
determines the impact on the bottom line. Hidden costs can, depending on
your application needs, surpass the initial price tag. Sorting through the
licensing and support schemes for proprietary databases can be a daunting
experience. Proprietary database vendors have artfully devised myriad
schemes based on developer seats, CPUs, concurrent users, and connection
modes (intranet and/or Internet) to get the most money out of their customers.

• Maintenance/Administration: From installation to day-to-day maintenance,
a database administrator (DBA) needs tools to ease the tasks of adminis-
tration, including security, auditing, backup/restore, replication, recovery,
and remote databases. Documentation and support, both traditional and
online are important for the daily work of a DBA.

1. Safire, William and Leonard Safir. Leadership: A Treasury of Great Quotations for Those Who
Aspire to Lead (Galahad Books: September 2000).

1259c06.fm Page 265 Friday, February 27, 2004 1:42 PM

Chapter 6

266

• Performance/Scalability: Although many performance problems attributed
to the database are usually caused by poor database design, poorly structured
queries and a lack of indexing (in the case of relational databases), relative
database performance is usually more a factor of the architecture and real-
time demands of an application. Understanding how your application
works with data is the first step toward performance analysis. Scalability
on the other hand is a more concrete and quantifiable feature. Do the
things that work for a few users work for many? How do you respond to an
increase in the demand for resources? Can your database support intelligent
partitioning or clustering?

• Features: Database vendors compete based on a value-added market for
features such as multiuser access, storage transparency, query optimization,
transactions and concurrency (locking) controls, stored procedures, XML
support, and others.

• Standards: Whether you’re planning to use a relational database or an
object database, a basic adherence to standards can mean the difference
between the portability of both data and the code that’s manipulating the
data. For relational databases and Java the question is to what version of
the Structured Query Language (SQL) standard does the database adhere?
Is the compliance only for a subset of the SQL features? For object databases,
do they follow the Object Data Management Group (ODMG) standards?

• Channels: Who is consuming the application’s information? Are the target
clients web-based, wireless handheld devices, or rich GUI clients? What
about connectivity? Are they connected continuously or are their connections
intermittent?

• Productivity: How would choosing a particular database affect your appli-
cation development? What’s the impact on existing code? What’s the learning
curve for the technology like? Development man hours can quickly surpass
the cost of runtime resources. The combination of documentation, devel-
opment tools, and an adherence to standards can minimize the risk of
switching database technology.

Figure 6-1 shows some of the options available when storing and retrieving
data in J2EE.

1259c06.fm Page 266 Friday, February 27, 2004 1:42 PM

Data Storage Options

267

Figure 6-1. Java/J2EE and data storage

Understanding the strengths and weakness of the various choices is a very
application-specific task. As you learned in Chapter 2, a solid application design
and an understanding of the domain that the data belongs to and the context in
which it will be used are the most accurate ways to find requirements for a data-
storage technology.

In this chapter some of the open-sourced choices for data storage are covered.
In Chapter 7 you’ll learn about object-relational mapping (ORM) tools, which
can be used to implement your persistence layer when your J2EE applications
are confined to work with relational databases.

This chapter begins with some of the pros and cons between choosing a
relational or an object database and then moves on to show you some of the
choices available from the Open Source community. We use the following four
categories of technologies when it comes to storing data:

• Java (embedded) relational database management system (RDBMS)

• Java object-oriented database management system (OODBMS)

• Java XML DBMS (XDBMS)

• Object serialization (including Java Prevalence/Prevayler)

1259c06.fm Page 267 Friday, February 27, 2004 1:42 PM

Chapter 6

268

This chapter isn’t an attempt to cover all the choices listed in depth, but it’s
intended as an introduction that should help you gain an understanding of some
of the differences between the storage technologies at the conceptual and practical
levels, as they apply to the J2EE platform. In particular, this chapter concentrates
on the installation, configuration, and usage issues for each tool as they apply to
the JBoss application server.

Choosing Between Object and Relational Databases

The relational model proposed by E. F. Codd and the subsequent SQL standard
are based on an abstracted model of the data based on the mathematical principles
of set theory. In the relational model, data is decoupled from the application
logic that uses it. Relational databases provide optimized storage and retrieval
of data at the expense of “flattening” the richer semantical connections that the
data might have when it’s coupled with behavior in the realm of objects. Relational

databases are designed with the concept of normalization in mind. Normalization
is based on the simple idea that it’s more efficient and safer to keep a piece of
data in one place only, as proposed by Codd’s “Information Rule.”

Part of the success of the relational database is due to the SQL standard (an
ANSI/ISO standard), which is to an extent the only reason that makes porting an
application from one relational database to another a feasible endeavor. Of course,
database vendors deviate from the standard in the race to provide market differ-
entiators and value-added features, or when they’re simply trying to cover holes
left in the standard (such as stored procedures and database triggers).

...

Comparison of Terms

In the relational model, a relation (a table) is a concept similar to that of an
object’s class, yet classes can support inheritance and complex composition
with statically and dynamically defined datatypes, although, in the relational
model, relationships are based on foreign keys. The concept of a tuple (a table
row) can be contrasted with an instance of an object, but, although a tuple is a
set of values, an object encompasses any type of data and the operations to
manipulate it. A column in a database is similar to an object’s attribute, but
again, in the case of an object, the possible datatypes are only restricted by the

...

programming language base types and the user-defined types.

1259c06.fm Page 268 Friday, February 27, 2004 1:42 PM

Data Storage Options

269

Relational databases go hand in hand with procedural languages and have
been proven to work particularly well when dealing with complex queries, when
adding or modifying large volumes of data, or when working with data for which
only simple datatypes are required. Relational databases are an obvious choice
for data warehousing, and high-volume Online Transaction Processing (OLTP),
in which the data is combined and queried in very predictable ways.

Yet for certain domains it has been proven that the relational model falls
short, especially when data needs to be manipulated and analyzed in highly
complex ways. This is clearly seen in the fields of financial analysis and forecasting,
in the chemical and biological sciences, in game theory, network management,
process control, computer-aided design/manufacturing (CAD/CAM), and
multimedia storage and analysis, among many others. Generally speaking,
object-oriented databases are better suited for storing data with complex datatypes
and numerous relationships. The differences between the two models are brought
to light when you try to use the relational model to store medium to complex
object hierarchies given that the concepts of data abstraction, inheritance, and

encapsulation can’t be easily represented using the relational model.
These differences are the root of the object-relational impedance mismatch

that you’ll learn how to deal with in Chapter 7. With an object database there’s no
need for any kind of “mapping” between your objects and their storage format.

The answers to the following questions can guide you in the decision between
a relational database and an object-oriented database:

• Simple data: If your data has a natural tendency to be organized in table
form, then use a relational database.

• Complex data: If your data is highly complex and it makes little sense to
manipulate it outside of the realm of an object, then use an object database.

• Transactions: If you have a high number of concurrent users performing
short-lived transactions, then use a relational database.

• Volume of data: If you’re dealing with large volumes of data that need to be
queried in complex ways—often to provide specific pieces of information—
and the manipulation of the data is left to the client, then use a relational
database.

• Reporting: Reporting tools in general use SQL to gather data to produce
reports. Ad hoc query tools expose SQL-like constructs so that users can
create their own customized reports. Data stored in relational databases is
usually easier to manipulate in order to produce tabular reports, therefore,
if your business depends on reporting, use a relational database.

1259c06.fm Page 269 Friday, February 27, 2004 1:42 PM

Chapter 6

270

• Legacy concerns: If your company already has a heavy investment in rela-
tional technology, legacy data, legacy applications, and in-house expertise,
it’s very likely that unless your application can work in isolation you’ll have
to use a relational database.

NOTE If you’re working with an already-designed object model and
you’re now faced with the decision of what database technology to
use, it’s important to understand what the guiding forces where when
the model was created. You can usually tell this by the granularity of
the objects in the model. Typically with data-driven models, you tend
to have large, coarse-grained objects that reflect the “normalized”
nature of relational databases and look very much like an Entity Relation
Diagram (ERD) that has been infused with behavior by the addition of
methods. On the other hand, an object-driven model tends to have
smaller, finer-grained, more reusable objects that are the result of the
process of object-oriented analysis and design (OOAD), as you learned
in Chapter 2.

Figure 6-2 shows the relationship between data and query complexity and
the choice between a relational and an object database. In Figure 6-2 you can see
that as query complexity increases you’re better served by a relational database,
although increased object model or data complexity calls for an object database.
The problem arises when you need a combination of both; for those situations,
the safest bet is to use a relational database couple with a strong ORM tool.

There are, however, applications that can benefit from using a combination
of both technologies. For example, for data that’s only manipulated as objects
you can use an object database, though for data used in ad hoc queries, or data
that’s purely descriptive and doesn’t represent the state of an object or for data
that is used in objects that are simple data wrappers you can use a relational
database. Caching is another area where an in-memory object-database in the
middle tier can improve performance without introducing a great deal of com-
plexity. Of course, using both technologies together in certain scenarios requires
a tight integration between the relational and object systems, especially if there’s

a need to share data stored using both technologies. In such cases, issues such as
data synchronization and replication become relevant.

1259c06.fm Page 270 Friday, February 27, 2004 1:42 PM

Data Storage Options

271

Figure 6-2. Trade-offs between relational and object databases

Relational Database Choices

The relational database is the standard for data storage in the enterprise. Regardless
of its advantages or disadvantages, there’s a great deal invested in the technology,
and products have attained levels of maturity that are deemed to be at the enter-
prise level. Relational-database technology has proven itself in countless fields.
The fact that it’s decoupled from the applications has proven to be a blessing
when it comes to adapting itself to the changing needs and trends of enterprise
computing. From the mainframe, through the client-server, to the world of web
services and service-oriented architectures, there’s a good chance that you’ll be
using a relational database in your next project.

When choosing a relational database, take into account the following factors:

• SQL: What level of the SQL standard (SQL-92/SQL-99) does it support?

• Features: Store procedures, triggers, clustering, and replication available.

• Optimizations: Dynamic query optimization, caching.

1259c06.fm Page 271 Friday, February 27, 2004 1:42 PM

Chapter 6

272

• Connectivity: Level (type) of JDBC driver supported. See sidebar on
JDBC drivers.

• Datatypes: Are special or custom datatypes supported?

Also, there are other choices that come into play when you use a relational
database, because you need to take data from the relational world of tables to the
Java world of objects. The strategies available for enterprise applications are
as follows:

• ORM: Uses a relational database adapted with an ORM tool to turn relational
data into objects and back (bridging the so called object-relational
impedance mismatch), as shown in Chapter 7.

• CMP: Uses a coarser-grained component-based approach, as shown in
Chapter 5.

• JDBC: Uses the JDBC API in either Session Beans or BMP Entity Beans.

BEST PRACTICE When using a relational database, regardless of the
method of access (ORM, CMP) it’s a good idea to test, with handwritten
JDBC, the queries that will be the bread and butter of your application
against several different databases, using different drivers with the
help of a qualified DBA. If performance is a concern these numbers
can give you a baseline for choosing your database, driver, and mapping/
access strategy. Also, by comparing any generated SQL against the
hand-optimized queries you can judge the relative efficiency of a tool.

...

JDBC Drivers

The quality of the connectivity solution you choose can have dramatic effects
on application performance, scalability, and reliability. Most database vendors
bundle a JDBC driver with their products, and experience has demonstrated
that frequently they are subpar to both commercial and open-sourced third-
party drivers.

1259c06.fm Page 272 Friday, February 27, 2004 1:42 PM

Data Storage Options

273

The type of the driver supported by the database is also important. The JDBC
specification mandates a set of interfaces to be implemented. How they are
implemented is left to the vendors. The different types of implementation are
officially categorized as follows:

• Type 1: Uses a call to native libraries typically written in a lower-level
language like C.

• Type 2: Uses a hybrid approach of Java code and native libraries.

• Type 3: Uses only Java, but it has to map SQL calls to a vendor-specific
protocol using an adaptor on the server side.

• Type 4: Pure client-side Java implementation that requires no mapping
adaptors.

JDBC Type 4 drivers are typically recommended because they are usually more
efficient, more portable, require less maintenance, and have easier installation
procedures (no client-side binaries, no server-side adaptors, just put it in the

...

classpath).

Pure Java Databases

Most J2EE servers come with an integrated/embedded pure-Java database. An
embedded Java database is normally running in the same Java Virtual Machine
(JVM) as the processes using it, therefore it gets a boost in performance by avoiding
interprocess communication. Also, most of the time the JDBC driver can intelli-
gently talk to the database without incurring any network overhead. The pure
Java databases that are currently available provide a lightweight solution that’s
SQL compliant and requires a minimal amount of administration. There are a
few pure Java-embedded SQL databases that have gained acceptance, among
them hsqldb, McKoi SQL, and Axion DB. Table 6-1 shows a comparison of features
in all three open-sourced databases.

NOTE This section covers hsqldb and McKoi SQL databases. The
Axion DB product is, at the time of this writing, not ready to be used
with JBoss.

1259c06.fm Page 273 Friday, February 27, 2004 1:42 PM

Chapter 6

274

hsqldb

The hsqldb database engine is the successor to the now-closed Hypersonic SQL
project, and it’s the most-used open-sourced Java RDBMS. It’s bundled with
many Open Source and commercial projects and distributed under an Apache/
BSD-like license. It’s a fairly fast and small database.

In Chapter 5 you learned how to set up a JBoss datasource using the embedded
version of hsqldb in Server mode. The original version of the TCMS case study
system was developed using hsqldb given its availability and its support for a
large percent of the SQL-92 standard.

hsqldb Operating Modes

hsqldb can operate in several modes:

• In-memory: In this mode hsqldb keeps data in memory only and serves as
a relational application cache. The data is never saved to disk, therefore
this option is useful for testing scenarios where you would normally need
to flush the database after each test. It’s also useful for applications that
don’t need persistent data but want the advantages of SQL in order to
manipulate transient data.

• In-process: Also referred to as stand-alone mode. In this mode hsqldb
writes data to the file system once as part of its shutdown sequence.

Table 6-1. Pure Java Databases Feature Matrix

Database URL SQL Level

hsqldb http://hsqldb.sourceforge.net SQL-92 subset

McKoi SQL http://mckoi.com/database SQL-92 subset

Axion DB http://axion.tigris.org/ SQL-92 subset

1259c06.fm Page 274 Friday, February 27, 2004 1:42 PM

Data Storage Options

275

• Client/Server: Supports server, web server, and servlet modes. The server
mode allows TCP/IP connections to the database and it’s the preferred mode
for “production” applications using hsqldb in JBoss. The web server mode
uses HTTP, effectively serving as a proxy/gateway to go through firewalls or
for general connections over the Internet. The servlet mode is similar to
the web server mode, but it’s encapsulated in a Java servlet (and isn’t meant
to be used by servlet-based applications necessarily, but it can be deployed
in a web container).

By creating appropriate hsqldb datasources in JBoss you can use a combi-
nation of the modes to cover your application needs. For example for volatile
session information you can use the in-memory mode in combination with the
server mode for your enterprise data.

TIP In the JBoss configuration file hsqldb-ds.xml (as well as in the
file tcms-ds.xml created in Chapter 5), the hsqldb operating mode is
defined by the connection-url element of the local-tx-datasource ele-
ment. Setting the value to “jdbc:hsqldb:.” uses the in-memory mode
or a value in the form “jdbc:hsqldb:database” where “database” is the
name of the database file for in-process mode.

hsqldb Database Manager

The hsqldb distribution includes a database manager that’s a Swing-based appli-
cation that let’s you administer to your databases. Typically, you can start this
application by using the following command line (assuming that hsqldb.jar is in
your classpath):

java org.hsqldb.util.DatabaseManager

Multithreaded Transactions JDBC License Client/Server Mode

No Yes HSQL Development Group

License (include copyright/

no implied endorsements)

Yes

Yes Yes GPL Yes

No Yes Axion License (include copyright/

no implied endorsements)

No

1259c06.fm Page 275 Friday, February 27, 2004 1:42 PM

Chapter 6

276

But because you’re running hsqldb embedded in JBoss, you can use the
JBoss JMX Admin console to take advantage of the hsqldb MBean integration
to launch the application. To accomplish this from the JBoss console
(http://localhost:8080/jmx-console) find the service named “Hypersonic”
as shown in Figure 6-3.

Figure 6-3. JBoss JMX Admin console

1259c06.fm Page 276 Friday, February 27, 2004 1:42 PM

Data Storage Options

277

Next, click the link that will take you to the MBean view for the Hypersonic
service. Here you can invoke the startDatabaseManager() MBean operation as
shown in Figure 6-4.

Figure 6-4. JBoss JMX MBean view for Hypersonic service

Invoking the method should launch the HSQLDB Database Manager, as
shown in Figure 6-5, in which a typical SQL query is shown against one of the
TCMS tables.

1259c06.fm Page 277 Friday, February 27, 2004 1:42 PM

Chapter 6

278

Figure 6-5. HSQLDB Database Manager

CAUTION When launching the HSQLDB Manager from the JMX
Admin console the Database Manager executes in the server process
and if the MBean method is invoked several times then there will be as
many instances of the Database Manager as the number of times the
startDatabaseManager() method was invoked. Therefore it’s impor-
tant to secure the JBoss console because a simple script could easily
compromise your server.

McKoi SQL

The McKoi SQL database is another pure-Java RDBMS that, like hsqldb, can be
used in embedded stand-alone mode or in client/server mode. One of the features
that make the McKoi SQL database more suited for an enterprise production
system is that it offers support for the highest level of transaction isolation
(TRANSACTION_SERIALIZABLE). Although not as popular as hsqldb, the McKoi
database is informally reported to be a stronger database platform both in per-

formance and scalability.

1259c06.fm Page 278 Friday, February 27, 2004 1:42 PM

Data Storage Options

279

CAUTION Before you consider embedding a Java database such as the
McKoi SQL database in your product, it would be wise to seek legal
counsel (at least informal) on the intricacies of the GPL and LGPL
licenses when it comes to Java applications. This is especially impor-
tant if you’re planning to use the software in a commercial fashion or
are planning to distribute it outside of your organization.

Creating a McKoi JBoss Datasource

Datasource deployments in JBoss are handled by the JBoss JCA implementation.
Most databases, especially those that are open-sourced, include a custom JCA
adapter in the form of a configuration file and one or more MBeans (for other
databases you can use one the two generic JDBC JCA adaptors for regular “local”
drivers and for XA (2PC) drivers). McKoi DB ships with a JBoss JCA MBean adaptor
contributed by Howard Lewis Ship (creator of the Tapestry web framework).

The rest of this section shows you how to configure and deploy the McKoi DB
in JBoss.

Make the McKoi JAR File Available to JBoss

The first step is to copy the mckoidb.jar to the tcms/lib directory (or the lib
directory of the JBoss server that you’re using).

Create a Database

To create a database, change directories to the location of the McKoi distribution
and on the command line enter the following command:

java -jar mckoidb.jar -create "sa" "admin"

This will create a database with the username sa and the password admin.
The console output should look like this:

Mckoi SQL Database (1.0.2)

Copyright (C) 2000, 2001, 2002, 2003 Diehl and Associates, Inc. All rights

reserved.

Use: -h for help.

 Mckoi SQL Database comes with ABSOLUTELY NO WARRANTY.

 This is free software, and you are welcome to redistribute it

 under certain conditions. See LICENSE.txt for details of the

 GPL License.

1259c06.fm Page 279 Friday, February 27, 2004 1:42 PM

Chapter 6

280

Under the McKoi distribution directory you should now have a subdirectory
named data, which contains the newly generated database files. Create a new
directory under the tcms/data directory and name it mckoi (you should see an
hsqldb directory at that level also). Copy the data directory under the newly created
mckoi directory. The resulting directory structure is shown in Figure 6-6. It isn’t
necessary to copy the log directory because this directory is automatically created.

Figure 6-6. McKoi directory in JBoss

The McKoi database uses a properties file called db.conf to control the runtime
behavior of the database engine. In the mckoi directory created in the previous
step, create a new text file and name it db.conf. The sample db.conf provided
here should suffice (notice that the standard port is 9157, if you use any other
port number you would have to specify it in the connection URL used in your
code or connection configuration files):

###

#

Configuration options for the Mckoi SQL Database.

#

###

database_path=./data

log_path=./log

root_path=configuration

jdbc_server_port=9157

ignore_case_for_identifiers=disabled

regex_library=gnu.regexp

data_cache_size=4194304

max_cache_entry_size=8192

maximum_worker_threads=4

debug_log_file=debug.log

debug_level=20

1259c06.fm Page 280 Friday, February 27, 2004 1:42 PM

Data Storage Options

281

Create the Datasource File

The McKoi JCA adaptor is contained in the package net.sf.tapestry.contrib.mckoi,
which is part of the current McKoi distribution. This package contains the
MBean used to interact with the database.

An XML descriptor with the -ds.xml suffix is needed for deployment so that
the JBoss JCA deployer can recognize it. Next, create a file with the contents as
shown here and save it as mckoi-ds.xml in any directory. Notice that the connection-
url element doesn’t specify a port because you’re using the default port 9157.

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <depends>jboss:service=McKoi</depends>

 <jndi-name>mckoiDS</jndi-name>

 <connection-url>jdbc:mckoi://localhost</connection-url>

 <driver-class>com.mckoi.JDBCDriver</driver-class>

 <user-name/>

 <password/>

 <min-pool-size>5</min-pool-size>

 </local-tx-datasource>

 <mbean code="net.sf.tapestry.contrib.mckoi.McKoiDB"

 name="jboss:service=McKoi">

 <!--

 ConfigPath attribute is relative to the current working directory which

 is the %JBOSS_HOME%/bin directory

 -->

 <attribute name="ConfigPath">../server/tcms/data/mckoi/db.conf</attribute>

 </mbean>

</datasources>

Deploy the Datasource

To deploy the datasource simply copy the mckoi-ds.xml file to the tcms/deploy
directory. The output on the JBoss console should resemble the following:

01:01:21,314 INFO [MainDeployer] Starting deployment of package:

file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/mckoi-ds.xml

01:01:21,344 INFO [XSLSubDeployer] transformed into doc: [#document: null]

01:01:21,374 INFO [McKoiDB] Creating

01:01:21,384 INFO [McKoiDB] Created

01:01:21,384 INFO [RARDeployment] Creating

01:01:21,384 INFO [RARDeployment] Created

1259c06.fm Page 281 Friday, February 27, 2004 1:42 PM

Chapter 6

282

01:01:21,384 INFO [JBossManagedConnectionPool] Creating

01:01:21,384 INFO [JBossManagedConnectionPool] Created

01:01:21,384 INFO [TxConnectionManager] Creating

01:01:21,384 INFO [TxConnectionManager] Created

01:01:21,384 INFO [McKoiDB] Starting

01:01:21,454 INFO [McKoiDB] TCP JDBC Server (multi_threaded) on port: 9157

01:01:21,454 INFO [McKoiDB] Started

01:01:21,454 INFO [RARDeployment] Starting

01:01:21,464 INFO [RARDeployment] Started

01:01:21,464 INFO [JBossManagedConnectionPool] Starting

01:01:21,464 INFO [JBossManagedConnectionPool] Started

01:01:21,464 INFO [TxConnectionManager] Starting

01:01:21,474 INFO [mckoiDS] Bound connection factory for resource adapter for

ConnectionManager 'jboss.jca:service=LocalTxCM

,name=mckoiDS to JNDI name 'java:/mckoiDS'

01:01:21,474 INFO [TxConnectionManager] Started

01:01:21,474 INFO [MainDeployer] Deployed package: file:/C:/java/jboss/jboss-

3.2.1/server/tcms/deploy/mckoi-ds.xml

Now you can use the McKoi database in JBoss by using the datasource with
the JNDI name mckoiDS. The McKoi JDBC driver is contained in both the
mckoidb.jar (along with the database engine), and individually in the mkjdbc.jar,
which would be suitable for distribution to external clients.

The McKoi Query Tool

The McKoi query tool is a simple Swing-based tool that manipulates the database.
It’s included as part of the mckoidb.jar file. To launch the Query Tool type (with
JBoss started and the McKoi datasource deployed), enter the following:

java -cp mckoidb.jar com.mckoi.tools.JDBCQueryTool

 �url "jdbc:mckoi://localhost" -u "sa" -p "admin"

The console will display a short message showing the JDBC driver being used
and the URL of the database, as shown here:

Using JDBC Driver: com.mckoi.JDBCDriver

Connection established to: jdbc:mckoi:

Figure 6-7 shows the McKoi query tool in action.

1259c06.fm Page 282 Friday, February 27, 2004 1:42 PM

Data Storage Options

283

Figure 6-7. McKoi query tool

NOTE There are other up-and-coming, open-sourced, pure-Java
databases, many of which came out of the original Hypersonic project
created by Thomas Mueller (like hsqldb). The Axion database, hosted
at http://axion.tigris.org, doesn’t have a formal 1.0 release yet, but
it’s one project to keep in mind in the near future.

...

Non-Java Relational Databases and Java

Typically, after the prototyping and development stages of a project you’ll
have to move to a non-Java database to handle the increasing loads. Many
Internet sites looking for an open-sourced alternative have settled on using
MySQL (http://www.mysql.com) including Yahoo! and NASA. Following
behind MySQL is PostgreSQL (http://www.postgresql.org), Firebird
(http://firebird.sourceforge.net), which is a fork of Borland’s
Interbase 6.0 during its short stint as an open-sourced database. MaxDB
(http://www.mysql.com/products/maxdb) is an enhanced version of the former
SAP DB (SAP AG’s Open Source database).

1259c06.fm Page 283 Friday, February 27, 2004 1:42 PM

Chapter 6

284

PostgreSQL, Firebird, and MaxDB all cover a broader portion of the SQL-92
standard than MySQL does, and they offer more enterprise features such as
stored procedures, triggers, distributed 2-phase commit (2PC) support, among
other features. MySQL offers great speed (provides RAM tables), which makes it
suitable for e-commerce websites, where most data is read. All four databases
are supported by JBoss and provided under the docs/examples/jca directory of
the JBoss distribution (3.2.X), where you’ll find -ds.xml files for each of them.
The procedure for using these databases is similar to the steps taken to enable
the use of the McKoi and hsqldb databases.

For a fine-grained, feature-by-feature comparison you can use the MySQL

...

online tool located at http://www.mysql.com/information/crash-me.php.

Java Object-Oriented Database Management System

In Chapter 7 we cover some of the intricacies of object-relational mapping. If you
work with objects and are using a relational database you’ll have to deal with
mapping sooner or later. The more complex and rich your object model becomes,
the more complex the mapping between it and a relational database will be. The
ORM tools covered in Chapter 7, as an implied goal, have to sit between your
object model and a relational database by providing your objects with an interface
for persistence that, for all intents and purposes, isn’t any different from an
OODBMS.

In Chapter 7 you’ll also read about orthogonal persistence (also called trans-
parent persistence), which is the idea that at the code level, you deal with a
system that knows objects only, and that you shouldn’t need to be very aware of
the fact that some objects are persistent and some others are transient. Although
this isn’t completely the case with either OODBMS or ORM tools, their APIs
provide a natural extension for persistence in an object-oriented environment.
ORM tools ease the object-relational impedance mismatch although OODBMS
completely make it disappear. Without the layer of convoluted JDBC code
embedded in your object models, or the maintenance of OR mappings required
for ORM tools you gain the following:

• Ease of development: A reduction of complexity in your development
process by making object persistence a natural feature of the system.

• Performance: A common misconception is that OODBMSs are naturally
slower and less scalable that RDBMSs. In reality, given the right appli-
cation, an OODBMS can be much more efficient than an RDBMS.

1259c06.fm Page 284 Friday, February 27, 2004 1:42 PM

Data Storage Options

285

• Integration: Just like a CORBA ORB can provide access to remote objects,
an OODBMS can serve as a repository of active objects in a system com-
posed of many applications.

• Simplicity: Complex data is better handled by an object database. Many-
to-many relationships are dealt with naturally, without normalization.
Traversing an object hierarchy is much easier and efficient than in the
relational model.

The relational model is simple and elegant but it’s fundamentally different
from the object model. As the complexity of applications increase, a good object
model calls for fine-grained objects. For such highly complex object models, an
OODBMS can provide ease of development (no data mapping), better perfor-
mance, and scalability. OODBMS can provide features such as fast navigation
and retrieval of information, versioning, and support for long transactions.

...

The ODMG Standard

Interest in OODBMS prompted the formation in 1991 of the Object Database
Management Group (ODMG), which comprised most major OODBMS vendors
at the time. The last version of the standard was specified in 1999 and it’s referred to
as ODMG 3.0. The ODMG standard defines an Object Definition Language
(ODL), an Object Query Language (OQL), and language mappings. The JDO
specification is the replacement or continuation for the Java language mappings
work started by the ODMG.

TIP A possible low-risk entry point for an OODBMS in your enter-
prise application is the storage of session state information. Object
databases make excellent middle-tier databases for use by EJBs or
servlets. An e-commerce architecture using an object database for
session state will likely provide better performance and reliability
than if no database or a relational database was used instead.

...

Ozone Object-Oriented Database

The Ozone Database project (http://www.ozone-db.org) is a pure-Java OODBMS
distributed under the GNU GPL/LGPL licenses (GPL for the core database engine
and LGPL for the access API). The Ozone Database project started as a research

1259c06.fm Page 285 Friday, February 27, 2004 1:42 PM

Chapter 6

286

project by Falko Braeutigam and is rapidly evolving into a full-fledged OODBMS.
Ozone provides a multithreaded, multiuser, transactional, cached and clustered
database environment that provides both an ODMG 3.0 interface as well as a
native API to store and retrieve Java objects, binary large objects (BLOBs), and
XML documents. Ozone integrates with J2EE environments by providing JTA/XA
support and JMX-based management of services. It provides fine-grained access
rights (at the object level), deadlock recognition, garbage collection, and an
advanced collections API with support for lazy loading using dynamic proxies.

Ozone uses a central activation architecture in which objects never physi-
cally leave the database but are manipulated by reference with proxy objects
using Ozone RMI (Ozone’s version of Remote Method Invocation) in conjunction
with Java serialization and runtime reflection, which makes persistence as trans-
parent as possible. This architecture is better suited for application where the
state of the objects is constantly being modified by client applications because
only the data for the specific mutating operation needs to be transported over
the wire.

Ozone works by storing the root object (referred to as “named objects”) of an
object graph, from which you can, by using normal Java constructs, navigate and
retrieve related objects. Because Ozone uses Java serialization and RMI, your
objects (at least the Ozone-aware implementations) need to implement and
extend certain Ozone classes and interfaces. Ozone promotes that persistence
logic should be executed in the database server to reduce the network overhead,
which is similar to Entity Beans being fronted by a Session Facade. For an object
to be stored in Ozone it must provide an interface that extends the Ozone remote
interface (org.ozoneDB.OzoneRemote) and an implementation of said interface
that extends the Ozone remote object (org.ozoneDB.OzoneObject, which imple-
ments java.io.Serializable). After compiling your classes, the Ozone Post Processor
(OPP) is used to create stubs for the remote objects. Ozone RMI uses a remote
object’s stub class as a proxy in clients so that clients can manipulate a particular
database object. By working with the remote interface, the code that’s manipu-
lating an Ozone object is unaware that it’s dealing with a persistent object.

Download Ozone

In this chapter you’ll be using version 1.2-alpha of the Ozone DB, which can be
obtained from the project’s download page at http://sourceforge.net/projects/
ozone (at the SourceForge project page). The Ozone distribution is available in

1259c06.fm Page 286 Friday, February 27, 2004 1:42 PM

Data Storage Options

287

both source and binary forms. For the JBoss examples in this chapter you’ll need
the binary distribution contained in the ozone-1.2-alpha-bin.zip file. Download
the file and unzip the contents to a suitable location such as c:\java\ozone-1.2.

Embedding Ozone DB as a JBoss Service

For Ozone to work inside of JBoss you need to compile the provided Ozone
MBean (org.ozoneDB.embed.jboss.OzoneService) and deploy it as a JBoss
service archive (SAR). A JBoss SAR file contains a JBoss service definition
(jboss-service.xml) and its associated files.

NOTE A SAR file is a JAR archive with the extension .sar. They are
specific to JBoss and aren’t part of the J2EE specification.

The Ozone distribution provides a complete Java project that packages and
deploys the SAR file to your local JBoss server. This project is contained under the
thirdparty\jboss directory of the Ozone distribution.

TIP Under the Ozone JBoss MBean project directory (thirdparty\jboss)
the Ozone project distributes some of the JBoss JARs that are
needed to compile the MBean. These JARs are located under the
thirdparty\jboss\lib directory. We recommend that you overwrite
these JARs with the JARs from your JBoss distribution to avoid any
class incompatibilities. The JARs that need to be updated are
jboss-system.jar, jboss-common.jar, jboss-jmx.jar, and jboss.jar.
The first three can be found under the lib directory of the JBoss distri-
bution, and jboss.jar is found in the server/{JBOSS_SERVER}/lib
directory (in the case of the TCMS system that directory resolves to
server/tcms/lib).

At the root of the thirdparty\jboss directory you’ll find an Ant build script. On
the command line, use the now familiar projecthelp Ant command-line switch to
discover the available Targets, as follows:

ant -projecthelp

1259c06.fm Page 287 Friday, February 27, 2004 1:42 PM

Chapter 6

288

This should produce output similar to the following:

Buildfile: build.xml

Main targets:

Other targets:

 compile

 deploy

 package

 prepare

Default target: deploy

CAUTION The Ant script for the Ozone JBoss integration assumes that
you’re using the source distribution of OZONE and therefore looks for
the OZONE libraries in the server/build/lib directory. In the binary
distribution these files are located under the lib directory at the root
of the distribution. Therefore, for the Ant build to work you would
need to change the value of the Ant property server.lib.dir from ../../
server/build/lib to ../../lib.

As you can see from the output of the Ant projecthelp command the default
target is deployed, which on further examination of the Ant script, uses the
JBOSS_HOME environment property to deploy the packaged file to the deploy
directory of the “default” JBoss server. If you’re using the tcms server (or any
server besides “default”) you’ll have to execute the package target instead and
manually copy the file to the deploy directory of the tcms server (or you can
change the Ant script to use the “tcms” server rather than the default). To package
the OZONE JBoss SAR file type, enter the following:

ant package

The output of the Ant script should resemble the following:

Buildfile: build.xml

prepare:

 [delete] Deleting directory C:\java\ozone-1.2-alpha\thirdparty\jboss\dist

 [mkdir] Created dir: C:\java\ozone-1.2-alpha\thirdparty\jboss\dist

1259c06.fm Page 288 Friday, February 27, 2004 1:42 PM

Data Storage Options

289

compile:

 [javac] Compiling 2 source files to C:\java\ozone-1.2-

alpha\thirdparty\jboss\build

package:

 [jar] Building jar: C:\java\ozone-1.2-

alpha\thirdparty\jboss\dist\ozoneService.sar

BUILD SUCCESSFUL

Total time: 5 seconds

After running the Ant script, a directory named dist under the thirdparty\jboss
is created. In this directory you’ll find the SAR file ozoneService.sar. To deploy the
service simply copy the file to the deploy directory of the tcms JBoss server. The
output of the deployment should resemble the following:

00:59:45,914 INFO [MainDeployer] Starting deployment of package:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/ozoneService.sar

...

00:59:50,070 INFO [OzoneService] Creating

00:59:50,070 INFO [OzoneService] Created

00:59:50,120 INFO [OzoneService] Starting

00:59:50,120 INFO [OzoneService] Ozone ObjectServer - Starting up...

00:59:50,120 INFO [OzoneService]

 ** Starting Database in C:\java\jboss\jboss-3.2.1\server\tcms/db/OzoneDB **

00:59:50,320 INFO [OzoneService] No DB found, creating new Database...

...

00:59:50,671 INFO [Env] Ozone version 1.2-alpha

...

00:59:53,765 INFO [GarbageCollector] startup...

...

00:59:53,765 INFO [KeyGenerator] startup...

...

00:59:53,785 INFO [ClassManager] startup...

...

00:59:53,795 INFO [UserManager] startup...

00:59:53,795 INFO [UserManager] admin user: Brian Sam-Bodden

...

00:59:53,925 INFO [TransactionManager] startup...

...

00:59:54,086 INFO [WizardStore] startup...

...

00:59:54,086 INFO [WizardStore] checking for pending shadow clusters...

...

1259c06.fm Page 289 Friday, February 27, 2004 1:42 PM

Chapter 6

290

00:59:54,166 INFO [AdminManager] startup...

...

00:59:54,196 INFO [AdminManager] No admin object found. Initializing...

...

00:59:54,396 INFO [OzoneService] ** Database ready **

...

00:59:54,406 INFO [OzoneService] Started

00:59:54,426 INFO [MainDeployer] Deployed package:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/ozoneService.sar

You can check the deployment of the Ozone service by using the JBoss JMX
console Agent view as shown in Figure 6-8.

Figure 6-8. The Ozone service in the JBoss console

Clicking the hyperlink name=ObjectServer,type=Service will take you to the
MBean view where you can start and stop the Ozone service as shown in Figure 6-9,
which might come in handy during the testing stages of your application.

1259c06.fm Page 290 Friday, February 27, 2004 1:42 PM

Data Storage Options

291

Figure 6-9. The Ozone service MBean view

Exploring the Database with the Ozone AdminGui

Now that you have an Ozone database running you can use the included
AdminGui to manage and browse the contents of the database. The AdminGui
application is contained in the ozoneAdminGui-0.1.jar JAR file, which is located
in the lib directory of the Ozone distribution. A Windows batch file as well as a

1259c06.fm Page 291 Friday, February 27, 2004 1:42 PM

Chapter 6

292

UNIX shell script is provided in the bin directory. To launch the application (in
Windows) change directories to the Ozone bin directory and enter the following:

ozoneAdminGui

On the console you should see the following message:

Starting AdminGui

The AdminGui application should now be running, as shown in Figure 6-10.

CAUTION In the 1.2-alpha distribution of the Ozone DB the batch file
AdminGui.bat doesn’t work. Instead you can use the following
command line at the root of the Ozone distribution directory:
 java -cp "lib/ozoneAdminGui-0.1.jar;lib/ozoneServer-1.2-alpha.jar;lib/
log4j-1.2.jar" org.ozoneDB.adminGui.main.AdminGui.

Figure 6-10. The Ozone DB AdminGui tool

1259c06.fm Page 292 Friday, February 27, 2004 1:42 PM

Data Storage Options

293

The AdminGui connect dialog box has a field where you must enter the
database URL, which defaults to a remote Ozone DB running on the local host at
the default port (ozonedb:remote://localhost:3333). Because the Ozone DB
running under JBoss is running in local mode you would need to change the URL
to point to the directory where the DB is running. In the case of the tcms JBoss
server at C:/java/jboss/jboss-3.2.1/server/tcms/ the correct local URL would be
ozonedb:local://C:/java/jboss/jboss-3.2.1/server/tcms/db/OzoneDB.

From the AdminGui you have three main areas of functionality:

• Accounts: Allows you to create database accounts as well as list database
groups and database users.

• Server: Allows you to monitor transactions on the server, force the Ozone
garbage collector, or shut down the database server.

• Data: Allows you see a list of all named (root) objects, and provides functions
to back up and restore a database to and from a file.

At startup on an empty database, the only named object you should see
(by selecting Data ➤ named objects) is the ozonedb.admin object as shown in
Figure 6-11.

Figure 6-11. Ozone DB named object in an empty database

1259c06.fm Page 293 Friday, February 27, 2004 1:42 PM

Chapter 6

294

Session Bean Ozone Project

Now that you have the Ozone DB integrated and deployed as a JBoss service, it’s
time to write a J2EE application to use with the database. As you did in Chapter 5,
you’ll use the domain objects Conference and ConferenceTrack. You’ll create two
plain old Java objects (POJOs), one for Conference and one for Tracks and use
Ozone to store them.

Before coding begins you need a suitable project structure. Like the EJB CMP
examples shown in Chapter 5, Figure 6.12 shows the directory structure of the
Ozone/JBoss project (the complete project is available from the download site).

Figure 6-12. Ozone/JBoss project directory structure

The steps to create a typical Ozone/JBoss application are as follows:

• Remote interfaces: Create the remote interfaces for each one of your
business objects (which the POJOs will implement). This interface needs
to extend the org.ozoneDB.OzoneRemote interface.

• POJOs: For each remote interface, create a POJO that implements the
remote interface and extends the org.ozoneDB.OzoneObject class.

• DTOs: Data transfer objects are a flexible way to provide a “client” view of
the database. Well-designed DTOs can provide semantically rich objects as
return types for a service, and they can minimize network round-trips and
provide client-side validation.

• DatabaseManager: The DatabaseManager class represents your persistence
logic. It’s the only class that will directly deal with Ozone persistence APIs.
This class will represent the root of your application’s object hierarchy as
well as the facade for all database operations.

1259c06.fm Page 294 Friday, February 27, 2004 1:42 PM

Data Storage Options

295

• Session Facade: A stateless Session Bean will provide business logic and
will become the database client (just like a CMP EJB is the client to a rela-
tional database). All J2EE clients interact with your database objects through
the Session Bean Facade, thereby isolating your data and providing a
deterministic point of control.

The next few sections will walk you through the development of an
Ozone/JBoss sample application.

Creating the Remote Interfaces

For the example you’ll create two interfaces in the package com.ejdoab.pojos:
Conference and Track. A Conference can contain a collection of Track objects.

The code for the Conference class is shown here:

package com.ejdoab.pojos;

import java.util.Date;

import java.util.List;

import org.ozoneDB.OzoneRemote;

public interface Conference extends OzoneRemote {

 // getters

 public String getName();

 public String getDescription();

 public Date getStartDate();

 public Date getEndDate();

 public Date getAbstractSubmissionStartDate();

 public Date getAbstractSubmissionEndDate();

 public List getTracks();

 // setters / mutators

 public void setName(String value); /*update*/

 public void setDescription(String value); /*update*/

 public void setStartDate(Date value); /*update*/

 public void setEndDate(Date value); /*update*/

 public void setAbstractSubmissionStartDate(Date value); /*update*/

 public void setAbstractSubmissionEndDate(Date value); /*update*/

 public void addTrack(Track track); /*update*/

 public void deleteTrack(String name); /*update*/

}

1259c06.fm Page 295 Friday, February 27, 2004 1:42 PM

Chapter 6

296

The first thing to notice is that every method signature of a method that
changes the object is followed by the comment /*update*/. These comments are
used by the OPP tool to determine which methods in the generated proxies need
to be part of a transaction.

The code for the Track interface is similar to that of the Conference interface,
as shown here:

package com.ejdoab.pojos;

import org.ozoneDB.OzoneRemote;

public interface Track extends OzoneRemote {

 // getters

 public String getDescription();

 public String getSubTitle();

 public String getTitle();

 // setters

 public void setDescription(String value); /*update*/

 public void setSubTitle(String value); /*update*/

 public void setTitle(String value); /*update*/

}

Creating Data Transfer Objects

DTOs will be used as the transport mechanism for data in and out of a Session
Facade. Typically, your DTOs will represent a “client” view of the data, which is
structured in a way to make the client’s work easier and more efficient. In the
case of the example at hand the DTOs are merely POJOs with identical method
signatures, as the remote interfaces previously defined.

All DTOs for the sample application will be placed in the com.ejdoab.dto
package. The code for ConferenceDTO is shown here:

package com.ejdoab.dto;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.Date;

import java.util.Iterator;

import java.util.List;

import com.ejdoab.pojos.Conference;

import com.ejdoab.pojos.Track;

1259c06.fm Page 296 Friday, February 27, 2004 1:42 PM

Data Storage Options

297

public class ConferenceDTO implements Serializable {

 protected String _name;

 protected String _description;

 protected Date _startDate;

 protected Date _endDate;

 protected Date _abstractSubmissionStartDate;

 protected Date _abstractSubmissionEndDate;

 protected List _tracks;

 //

 // constructors

 //

 private ConferenceDTO() {

 _tracks = new ArrayList();

 }

 public ConferenceDTO(

 String name,

 String description,

 Date startDate,

 Date endDate,

 Date abstractSubmissionStartDate,

 Date abstractSubmissionEndDate) {

 this();

 _name = name;

 _description = description;

 _startDate = startDate;

 _endDate = endDate;

 _abstractSubmissionStartDate = abstractSubmissionStartDate;

 _abstractSubmissionEndDate = abstractSubmissionEndDate;

 }

 public ConferenceDTO(Conference conference) {

 this();

 _name = conference.getName();

 _description = conference.getDescription();

 _startDate = conference.getStartDate();

 _endDate = conference.getEndDate();

 _abstractSubmissionStartDate =

conference.getAbstractSubmissionStartDate();

 _abstractSubmissionEndDate = conference.getAbstractSubmissionEndDate();

1259c06.fm Page 297 Friday, February 27, 2004 1:42 PM

Chapter 6

298

 for (Iterator i = conference.getTracks().iterator(); i.hasNext();) {

 Track track = (Track) i.next();

 _tracks.add(new TrackDTO(track));

 }

 }

 //

 // getters

 //

 public String getName() {

 return _name;

 }

 public String getDescription() {

 return _description;

 }

 public Date getStartDate() {

 return _startDate;

 }

 public Date getEndDate() {

 return _endDate;

 }

 public Date getAbstractSubmissionStartDate() {

 return _abstractSubmissionStartDate;

 }

 public Date getAbstractSubmissionEndDate() {

 return _abstractSubmissionEndDate;

 }

 public List getTracks() {

 return _tracks;

 }

 //

 // setters

 //

1259c06.fm Page 298 Friday, February 27, 2004 1:42 PM

Data Storage Options

299

 public void setName(String value) {

 _name = value;

 }

 public void setDescription(String value) {

 _description = value;

 }

 public void setStartDate(Date value) {

 _startDate = value;

 }

 public void setEndDate(Date value) {

 _endDate = value;

 }

 public void setAbstractSubmissionStartDate(Date value) {

 _abstractSubmissionStartDate = value;

 }

 public void setAbstractSubmissionEndDate(Date value) {

 _abstractSubmissionEndDate = value;

 }

 public void addTrack(TrackDTO track) {

 _tracks.add(track);

 }

 public void deleteTrack(String name) {

 if (_tracks != null) {

 for (Iterator i = _tracks.iterator(); i.hasNext();) {

 Conference old = (Conference) i.next();

 if (old.getName().equalsIgnoreCase(name)) {

 _tracks.remove(old);

 }

 }

 }

 }

 //

 // utility

 //

1259c06.fm Page 299 Friday, February 27, 2004 1:42 PM

Chapter 6

300

 public String toString() {

 return new StringBuffer()

 .append("[Conference] name = ")

 .append(_name != null ? _name : "n/a")

 .append(", description = ")

 .append(_description != null ? _description : "n/a")

 .append(", start date = ")

 .append(_startDate != null ? _startDate.toString() : "n/a")

 .append(", end date = ")

 .append(_endDate != null ? _endDate.toString() : "n/a")

 .append(", # tracks = ")

 .append(_tracks != null ? _tracks.size() : 0)

 .toString();

 }

}

As you can see, the signature of ConferenceDTO is identical to that of the
remote interface Conference. The DTO also provides a constructor that takes an
instance of Conference to populate itself. This is an alternative approach to the
one taken in Chapter 5 when you used a DTOFactory to create DTOs from business
objects and vice versa. Notice that the ConferenceDTO contains a list of TrackDTOs,
thereby mimicking the structure in Conference (and ConferenceImpl, which
you’ll see in the next section).

The code shown here for the TrackDTO is equally simple:

package com.ejdoab.dto;

import java.io.Serializable;

import com.ejdoab.pojos.Track;

public class TrackDTO implements Serializable {

 protected String _title;

 protected String _subTitle;

 protected String _description;

 protected Integer _conferenceId;

 //

 // constructors

 //

1259c06.fm Page 300 Friday, February 27, 2004 1:42 PM

Data Storage Options

301

 public TrackDTO(String title, String subTitle, String description) {

 _title = title;

 _subTitle = subTitle;

 _description = description;

 }

 public TrackDTO(Track track) {

 _title = track.getTitle();

 _subTitle = track.getSubTitle();

 _description = track.getDescription();

 }

 //

 // getters

 //

 public String getDescription() {

 return _description;

 }

 public String getSubTitle() {

 return _subTitle;

 }

 public String getTitle() {

 return _title;

 }

 //

 // setters

 //

 public void setDescription(String value) {

 _description = value;

 }

 public void setSubTitle(String value) {

 _subTitle = value;

 }

 public void setTitle(String value) {

 _title = value;

 }

1259c06.fm Page 301 Friday, February 27, 2004 1:42 PM

Chapter 6

302

 public String toString() {

 return new StringBuffer()

 .append("[Track] title = ")

 .append(_title != null ? _title : "n/a")

 .append(", subTitle = ")

 .append(_subTitle != null ? _subTitle : "n/a")

 .append(", description = ")

 .append(_description != null ? _description : "n/a")

 .toString();

 }

}

NOTE Notice that the DTO doesn’t directly implement the remote
interface because that would introduce dependencies on Ozone in
the client side and it wouldn’t work in the case of using an Ozone
LocalDatabase as in the JBoss example. This is because proxies
cannot be passed from a LocalDatabase environment to an external
client.

Creating the POJOs

The Ozone-ready implementations of the business interfaces extend the
org.ozoneDB.OzoneObject class, which makes them database (server-side,
persistent) objects. The OzoneObject class provides a default implementation of
the OzoneCompatible interface, which binds the object to the database for life-
cycle management.

The code for the ConferenceImpl is shown here:

package com.ejdoab.pojos;

import java.util.ArrayList;

import java.util.Date;

import java.util.Iterator;

import java.util.List;

import org.ozoneDB.OzoneObject;

import com.ejdoab.dto.*;

1259c06.fm Page 302 Friday, February 27, 2004 1:42 PM

Data Storage Options

303

public class ConferenceImpl extends OzoneObject implements Conference {

 /**

 * set the serialization version to make it compatible

 * with new class versions

 */

 public static final long serialVersionUID = 1L;

 protected String _name;

 protected String _description;

 protected Date _startDate;

 protected Date _endDate;

 protected Date _abstractSubmissionStartDate;

 protected Date _abstractSubmissionEndDate;

 protected List _tracks;

 //

 // constructors

 //

 public ConferenceImpl() {

 _tracks = new ArrayList();

 }

 public ConferenceImpl(

 String name,

 String description,

 Date startDate,

 Date endDate,

 Date abstractSubmissionStartDate,

 Date abstractSubmissionEndDate) {

 this();

 ...

 }

 public ConferenceImpl(ConferenceDTO conference) {

 this();

 _name = conference.getName();

 _description = conference.getDescription();

 _startDate = conference.getStartDate();

 _endDate = conference.getEndDate();

 _abstractSubmissionStartDate =

 conference.getAbstractSubmissionStartDate();

 _abstractSubmissionEndDate = conference.getAbstractSubmissionEndDate();

1259c06.fm Page 303 Friday, February 27, 2004 1:42 PM

Chapter 6

304

 for (Iterator i = conference.getTracks().iterator(); i.hasNext();) {

 TrackDTO track = (TrackDTO) i.next();

 _tracks.add(new TrackImpl(track));

 }

 }

 //

 // getters

 //

 ...

 //

 // setters

 //

 ...

 public void addTrack(Track track) {

 _tracks.add(track);

 }

 public void deleteTrack(String name) {

 if (_tracks != null) {

 for (Iterator i = _tracks.iterator(); i.hasNext();) {

 Conference old = (Conference) i.next();

 if (old.getName().equalsIgnoreCase(name)) {

 _tracks.remove(old);

 }

 }

 }

 }

 //

 // utility

 //

 public String toString() {

 ...

 }

}

1259c06.fm Page 304 Friday, February 27, 2004 1:42 PM

Data Storage Options

305

Notice that at the beginning of the class serialVersionUID is set to the value 1L.
Because Ozone uses Java serialization, it’s important to set the serialVersionUID to
a unique value so that the objects stored in the server and those that are being
manipulated in the client are compatible (because compiling a Java class generates a
new serialVersionUID if one isn’t explicitly set).

The addTrack and deleteTrack methods are provided to add and remove a
Track object from a given Conference object. Also, a constructor is provided to
create a ConferenceImpl, given a ConferenceDTO. The TrackImpl class imple-
menting the Track interface follows the same pattern, except that because it
doesn’t hold any depended objects it’s actually simpler than the ConferenceImpl
class, as shown here:

package com.ejdoab.pojos;

import org.ozoneDB.OzoneObject;

import com.ejdoab.dto.TrackDTO;

public class TrackImpl extends OzoneObject implements Track {

 /**

 * set the serialization version to make it compatible

 * with new class versions

 */

 public static final long serialVersionUID = 1L;

 protected String _title;

 protected String _subTitle;

 protected String _description;

 protected Integer _conferenceId;

 //

 // constructors

 //

 public TrackImpl() {

 }

 public TrackImpl(String title, String subTitle, String description) {

 ...

 }

1259c06.fm Page 305 Friday, February 27, 2004 1:42 PM

Chapter 6

306

 public TrackImpl(TrackDTO track) {

 _title = track.getTitle();

 _subTitle = track.getSubTitle();

 _description = track.getDescription();

 }

 //

 // getters

 //

 ...

 //

 // setters

 //

 ...

 //

 // utility

 //

 public String toString() {

 ...

 }

}

Persistence Logic

To manage a collection of Conferences and provide create, read, update, and
delete (CRUD) operations you’ll need a database object to serve as the entry
point for your persistence-logic operations. This object will become the root
object of your hierarchy of objects in Ozone (a named object).

Like the two previous database objects (Conference and Track) the
ConferencesManager provides a remote interface and an implementation.
Because it’s a good idea to separate the persistence logic from the business logic,
the ConferencesManager interface and implementation are placed in the
com.ejdoab.db package. The ConferencesManager will provide the entry point
into the database for the Session Facade, as follows:

1259c06.fm Page 306 Friday, February 27, 2004 1:42 PM

Data Storage Options

307

package com.ejdoab.db;

import java.util.Collection;

import org.ozoneDB.OzoneRemote;

import com.ejdoab.dto.ConferenceDTO;

public interface ConferencesManager extends OzoneRemote {

 // getters

 public ConferenceDTO getConferenceByName(String name);

 public Collection getAllConferences();

 // setters / mutators

 public void addOrUpdateConference(ConferenceDTO conference); /*update*/

 public boolean deleteConference(String name); /*update*/

 public boolean deleteAllConferences(); /*update*/

}

The ConferencesManager provides several methods for retrieving one or
more Conference objects as well as methods for adding and deleting one or all
Conferences. Internally, the list of Conferences is kept in a Java List. Notice that
the implementation of the ConferencesManager interface enforces a persistence-
logic rule by enabling only uniquely named Conferences to be stored. The imple-
mentation of the ConferencesManager is shown here:

package com.ejdoab.db;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

import java.util.List;

import org.ozoneDB.OzoneInterface;

import org.ozoneDB.OzoneObject;

import com.ejdoab.dto.ConferenceDTO;

import com.ejdoab.pojos.Conference;

import com.ejdoab.pojos.ConferenceImpl;

public class ConferencesManagerImpl

 extends OzoneObject

 implements ConferencesManager {

1259c06.fm Page 307 Friday, February 27, 2004 1:42 PM

Chapter 6

308

 /**

 * set the serialization version to make it compatible

 * with new class versions

 */

 public static final long serialVersionUID = 1L;

 private List conferences;

 //

 // factory method

 // (to avoid the chicken-egg problem when building the app)

 //

 public static ConferencesManager create(OzoneInterface db) {

 return (ConferencesManager) db.createObject(

 ConferencesManagerImpl.class,

 OzoneInterface.Public,

 ConferencesManager.class.getName()

);

 }

 //

 // constructors

 //

 public ConferencesManagerImpl() {

 conferences = new ArrayList();

 }

 //

 // getters

 //

 public ConferenceDTO getConferenceByName(String name) {

 ConferenceDTO result = null;

 for (Iterator i = conferences.iterator(); i.hasNext();) {

 Conference conference = (Conference) i.next();

 if (conference.getName().equalsIgnoreCase(name)) {

 result = new ConferenceDTO(conference);

 }

 }

 return result;

 }

1259c06.fm Page 308 Friday, February 27, 2004 1:42 PM

Data Storage Options

309

 public Collection getAllConferences() {

 return conferences;

 }

 //

 // setters

 //

 public void addOrUpdateConference(ConferenceDTO conference) {

 if (conference.getName() != null) {

 for (Iterator i = conferences.iterator(); i.hasNext();) {

 Conference old = (Conference) i.next();

 if (old.getName().equalsIgnoreCase(conference.getName())) {

 conferences.remove(old);

 }

 }

 conferences.add(new ConferenceImpl(conference));

 }

 }

 public void removeConferences() {

 conferences.clear();

 }

 public boolean deleteConference(String name) {

 Conference target = null;

 for (Iterator i = conferences.iterator(); i.hasNext();) {

 Conference conference = (Conference) i.next();

 if (conference.getName().equalsIgnoreCase(name)) {

 target = conference;

 }

 }

 return conferences.remove(target);

 }

 public boolean deleteAllConferences() {

 conferences.clear();

 return conferences.isEmpty();

 }

}

The only method of particular interest is the static factory create method,
which takes an instance of an OzoneInterface as a parameter. This method’s
purpose is to construct a ConferencesManager object, which is bound to the
database. As mentioned before, the OPP generates a comprehensive factory

1259c06.fm Page 309 Friday, February 27, 2004 1:42 PM

Chapter 6

310

class, so technically this method isn’t required, but in order for the application
build process to have a single compilation target, this method should be added
here because it will be used in the Session Facade. Otherwise the Session Facade
would have to be compiled after the OPP target, which needs to happen before
compilation of the classes in the pojos and dto packages.

Creating the Session Facade

To work with the Ozone database you’ll use a stateless Session Bean that will
provide services to manipulate the Conferences and Track objects in the database
using their peer DTOs. The com.ejdoab.beans.ConferenceOzoneFacadeBean
will provide the following methods:

• ConferenceDTO getConferenceByName(String name)

• Collection getAllConferences

• void addOrUpdateConference(ConferenceDTO dto)

• boolean deleteConference(String name)

• boolean deleteAllConferences()

As you learned in Chapter 5, you’ll use XDoclet to automate the creation of
the EJB glue files. A private field will hold an instance of OzoneInterface, which is
looked up using JNDI in the Bean’s ejbCreate method. The OzoneInterface is
then used to find (or create if it doesn’t exist) the named object stored under the
com.ejdoab.db.ConferencesManager name, as shown here:

package com.ejdoab.beans;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Collections;

import java.util.Iterator;

import java.util.List;

import javax.ejb.CreateException;

import javax.ejb.EJBException;

import javax.ejb.SessionBean;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

1259c06.fm Page 310 Friday, February 27, 2004 1:42 PM

Data Storage Options

311

import org.ozoneDB.OzoneInterface;

import com.ejdoab.db.ConferencesManager;

import com.ejdoab.db.ConferencesManagerImpl;

import com.ejdoab.dto.ConferenceDTO;

import com.ejdoab.pojos.Conference;

/**

 * @ejb.bean

 * name="ConferenceOzoneFacade"

 * type="Stateless"

 * view-type="both"

 * jndi-name="ejb.ConferenceOzoneFacadeHome"

 * local-jndi-name="ejb.ConferenceOzoneFacadeLocalHome"

 * @ejb.transaction

 * type="Required"

 * @ejb.util

 * generate="physical"

 */

public abstract class ConferenceOzoneFacadeBean implements SessionBean {

 private OzoneInterface db;

 private ConferencesManager conferencesManager;

 //

 // business methods

 //

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

 public ConferenceDTO getConferenceByName(String name) {

 ConferenceDTO result = null;

 if (conferencesManager != null) {

 result = conferencesManager.getConferenceByName(name);

 }

 return result;

 }

1259c06.fm Page 311 Friday, February 27, 2004 1:42 PM

Chapter 6

312

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

 public Collection getAllConferences() {

 List results = Collections.EMPTY_LIST;

 if (conferencesManager != null) {

 Collection allConferences = conferencesManager.getAllConferences();

 if (!allConferences.isEmpty()) {

 results = new ArrayList(allConferences.size());

 for (Iterator iter = allConferences.iterator();

 iter.hasNext();

) {

 Conference conference = (Conference) iter.next();

 // return a DTO instead of a proxy object,

 // we don't want clients to have

 // direct access to the database objects

 results.add(new ConferenceDTO(conference));

 }

 }

 }

 return results;

 }

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

 public void addOrUpdateConference(ConferenceDTO dto) {

 if (conferencesManager != null) {

 conferencesManager.addOrUpdateConference(dto);

 }

 }

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

1259c06.fm Page 312 Friday, February 27, 2004 1:42 PM

Data Storage Options

313

 public boolean deleteConference(String name) {

 boolean result = false;

 if (conferencesManager != null) {

 result = conferencesManager.deleteConference(name);

 }

 return result;

 }

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 */

 public boolean deleteAllConferences() {

 boolean result = false;

 if (conferencesManager != null) {

 result = conferencesManager.deleteAllConferences();

 }

 return result;

 }

 //==

 // EJB callbacks

 //==

 /**

 * @ejb.create-method

 */

 public void ejbCreate() throws CreateException {

 Context context = null;

 // Lookup the Ozone DB Interface

 try

 {

 context = new InitialContext();

 db = (OzoneInterface) new InitialContext()

 .lookup(OzoneInterface.class.getName());

 conferencesManager = (ConferencesManager) db

 .objectForName(ConferencesManager.class.getName());

 if (conferencesManager == null) {

 conferencesManager = ConferencesManagerImpl.create(db);

 }

1259c06.fm Page 313 Friday, February 27, 2004 1:42 PM

Chapter 6

314

 } catch (NamingException e) {

 throw new EJBException(e);

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 public void ejbActivate() {

 try {

 db = (OzoneInterface) new InitialContext()

 .lookup(OzoneInterface.class.getName());

 db.reloadClasses();

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 public void ejbPassivate() {

 db = null;

 }

 public void ejbPostCreate() throws CreateException {}

}

Notice that the connection to the database is managed via the EJB callback
methods ejbCreate, ejbActivate, and ejbPassivate. In ejbCreate an OzoneInterface
(to the database) is looked up using JNDI. The OzoneInterface is used to locate
the instance of ConferencesManager, which is bound to the database under
the name com.ejdoab.db.ConferencesManager (the result of using
ConferencesManager.class.getName method). If the object isn’t found then it’s
created using the factory method in ConferencesManagerImpl. In ejbActivate
the ConferenceManager is retrieved again and the classes are reloaded using the
reloadClasses method.

The Session Bean business methods in turn use the instance of
ConferencesManager to perform their functions.

Putting It All Together with Ant

Let’s walk through the Ant build script that will accomplish the build tasks
required for the example. The build script is located at the root of the project
directory. A sample of the build.properties file shown here has a section that
defines the ejb-jar that will be generated. It also has a section for the JBoss-
specific settings (refer to Chapter 5 for JBoss configuration instructions), and
finally, it has a section that defines the location of the Ozone distribution.

1259c06.fm Page 314 Friday, February 27, 2004 1:42 PM

Data Storage Options

315

// app

jar-name=ozone-jboss-test.jar

// jboss specific

jboss.home=c:/java/jboss/jboss-3.2.1

jboss.server=tcms

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

// OZONE specific

OZONE_HOME=c:/java/ozone-1.2-alpha

The first section of the script deals with loading and configuring the build
properties:

<?xml version="1.0"?>

<project name="ozone-jboss" default="all" basedir=".">

 <!-- === -->

 <!-- Configures Project's Properties -->

 <!-- === -->

 <property file="build.properties"/>

 <property name="server-dir"

 location="${jboss.home}/server/${jboss.server}" />

 <property name="server-lib-dir" location="${server-dir}/lib" />

 <property name="server-conf-dir" location="${server-dir}/conf" />

 <property name="server-client-dir" location="${jboss.home}/client" />

 <property name="deploy-dir" location="${server-dir}/deploy" />

 <property name="root" location="${basedir}" />

 <property name="src" location="${root}/src/java" />

 <property name="classes" location="${root}/classes" />

 <property name="generated" location="${root}/generated" />

 <property name="generated-ejb" location="${generated}/ejb-src" />

 <property name="generated-ozone" location="${generated}/ozone-src" />

 <property name="descriptors-ejb" location="${generated}/descriptors/ejb" />

 <property name="dist" location="${root}/dist" />

 <property name="conf" location="${root}/conf" />

 <property name="build" location="${root}/build" />

 <property name="lib" location="lib" />

 <property name="lib-dev" location="${lib}/development" />

1259c06.fm Page 315 Friday, February 27, 2004 1:42 PM

Chapter 6

316

Next, several path elements are created for all the project dependencies,
including Ozone, JBoss, and XDoclet. Notice that throughout the build you make
use of the ${jboss.home} and ${OZONE _HOME} properties. Both of these prop-
erties are defined in the build.properties file.

 <!-- === -->

 <!-- Configures the ClassPath -->

 <!-- === -->

 <path id="class.path">

 <fileset dir="lib">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${server-lib-dir}">

 <include name="*servlet.jar"/>

 </fileset>

 <fileset dir="${server-client-dir}">

 <include name="jbossall-client.jar"/>

 </fileset>

 <pathelement location="${classes}" />

 </path>

 <path id="xdoclet.class.path">

 <path refid="class.path"/>

 <fileset dir="${lib-dev}/xdoclet">

 <include name="*.jar"/>

 </fileset>

 </path>

 <path id="ozone.class.path">

 <path refid="xdoclet.class.path"/>

 <fileset dir="${OZONE_HOME}/lib">

 <include name="*.jar"/>

 </fileset>

 </path>

The taskdefs for the XDoclet ejbdoclet are loaded and the tasks for preparing
and cleaning the project directories are provided. The Ozone distribution provides
an Ant task to execute OPP. The task class is OPPTask and it’s contained in the
org.ozoneDB.tools.OPP directory. In the script you’ll load the task under the
name oppdoclet, as shown here:

1259c06.fm Page 316 Friday, February 27, 2004 1:42 PM

Data Storage Options

317

 <!-- === -->

 <!-- Declare taskdefs -->

 <!-- === -->

 <taskdef

 name="ejbdoclet"

 classname="xdoclet.modules.ejb.EjbDocletTask"

 classpathref="xdoclet.class.path"

 />

 <taskdef

 name="oppdoclet"

 classname="org.ozoneDB.tools.OPP.OPPTask"

 classpathref="ozone.class.path"

 />

 <!-- === -->

 <!-- Prepares the directory structure -->

 <!-- === -->

 <target name="prepare" description="prepares the project's directories">

 <echo>preparing project's directories...</echo>

 <mkdir dir="${classes}"/>

 <mkdir dir="${generated-ejb}"/>

 <mkdir dir="${generated-ozone}"/>

 <mkdir dir="${descriptors-ejb}"/>

 <mkdir dir="${build}"/>

 <mkdir dir="${dist}"/>

 </target>

 <!-- === -->

 <!-- Cleans the directory structure -->

 <!-- === -->

 <target name="clean" description="removes all build products">

 <echo>cleaning...</echo>

 <delete dir="${classes}"/>

 <delete dir="${generated}"/>

 <delete dir="${build}"/>

 <delete dir="${dist}"/>

 </target>

The generate task uses the loaded XDoclet ejbdoclet to generate the required
EJB files from the annotated ConferenceOzoneFacadeBean, as shown here:

1259c06.fm Page 317 Friday, February 27, 2004 1:42 PM

Chapter 6

318

 <!-- === -->

 <!-- Generate EJB glue files using XDoclet's ejbdoclet -->

 <!-- === -->

 <target name="generate" description="uses XDoclet to generate EJB files">

 <echo>generating ejbs glue...</echo>

 <ejbdoclet

 destdir="${generated-ejb}"

 excludedtags="@version,@author,@todo"

 ejbspec="2.0"

 force="true"

 >

 <fileset dir="${src}">

 <include name="**/*Bean.java"/>

 </fileset>

 <utilobject kind="physical" includeGUID="true"/>

 <remoteinterface/>

 <localinterface/>

 <homeinterface/>

 <localhomeinterface/>

 <valueobject/>

 <entitycmp/>

 <session/>

 <entitypk/>

 <utilobject cacheHomes="true" includeGUID="true"/>

 <deploymentdescriptor

 destdir="${descriptors-ejb}"

 validatexml="true"

 />

 <jboss

 version="3.0"

 unauthenticatedPrincipal="nobody"

 xmlencoding="UTF-8"

 destdir="${descriptors-ejb}"

 validatexml="true"

 />

 </ejbdoclet>

 </target>

1259c06.fm Page 318 Friday, February 27, 2004 1:42 PM

Data Storage Options

319

The compile target depends on the generate task and it compiles both the
files in the ${src} directory as well as the generated EJB files in the directory
${generated-ejb}, as shown here:

 <!-- === -->

 <!-- Compiles all the classes -->

 <!-- === -->

 <target name="compile" depends="generate"

 description="compiles all sources">

 <echo>compiling...</echo>

 <javac

 destdir="${classes}"

 classpathref="ozone.class.path"

 debug="on"

 deprecation="on"

 optimize="off"

 >

 <src path="${src}"/>

 <src path="${generated-ejb}"/>

 </javac>

 </target>

Generating the Proxies with the Ozone Post Processor

The OPP is a postprocessor that creates the actual proxy classes, as well as factory
classes, which the database direct clients manipulate. OPP is a code generator
and it doesn’t perform any kind of bytecode manipulation. OPP inspects your
Ozone implementation classes (those extending OzoneObject) and creates a
proxy peer class, which is actually what the clients interact with. The methods in
these proxy classes invoke the server-side object using Ozone RMI.

The target OPP, which depends on the compile target, uses the oppdoclet
task to invoke the OPP processor executable, which is contained in the
org.ozoneDB.tools.OPP.OPP class. To learn about the command-line options
for OPP at the Ozone distribution bin directory, enter the following:

opp

1259c06.fm Page 319 Friday, February 27, 2004 1:42 PM

Chapter 6

320

This should produce the OPP command-line help as shown here:

Ozone Post Processor

usage: opp [-ks] [-st] [-p<pattern>] [-ni] [-nf] [-nc] [-q] [-h] [-o<directory>]

[-odmg] [-ip] class [class]*

 -ks save the generated resolver files

 -KS save the generated resolver files; do not invoke compiler

 -st print stack trace

 -p regular expression to specify update methods

 -ni do not search interface code for update methods

 -nf do not create a Factory class

 -q supress output of any messages

 -o output directory

 -s resolver directory

 -odmg create proxies for the ozone ODMG interface

 -ip ignore package names

 -nc do not create code needed for direct invokes and ClientCacheDatabase

 -version shows version information

 -h shows this help

The OPP target executes OPP using the loaded task. The cache attribute tells
OPP to keep the generated source files, the equivalent of using the –KS switch, as
shown in the command-line help. The source element tells OPP where the Java
source tree containing the implementation files are located; in this case, it’s in
the ${src} directory. The output attribute option determines where the generated
files are to be placed; in this case, they go in the ${generated-ozone} directory.

 <!-- === -->

 <!-- Builds the proxies -->

 <!-- === -->

 <target name="OPP" depends="compile">

 <oppdoclet output="${generated-ozone}" cache="true">

 <source dir="${src}">

 <include name="**/*Impl.java"/>

 </source>

 <classpath refid="ozone.class.path"/>

 </oppdoclet>

 </target>

The ejb-jar uses the jar task to create a JAR file that can be deployed to JBoss,
as follows:

1259c06.fm Page 320 Friday, February 27, 2004 1:42 PM

Data Storage Options

321

 <!-- === -->

 <!-- Package the EJB JAR -->

 <!-- === -->

 <target name="ejb-jar" depends="OPP"

 description="packages the ejb-jar file">

 <echo>packaging ejb-jar...</echo>

 <jar jarfile="${dist}/${jar-name}">

 <metainf dir="${descriptors-ejb}" includes="*.xml"/>

 <fileset dir="${classes}">

 <include name="com/ejdoab/**/*.class" />

 <exclude name="com/ejdoab/client/*" />

 </fileset>

 </jar>

 </target>

Finally, a convenience target called deploy is added to perform all of the

build tasks and to copy the resulting ejb-jar file to the JBoss deploy directory, as
shown here:

 <!-- === -->

 <!-- Deploys EJB-JAR -->

 <!-- === -->

 <target name="deploy" depends="clean,prepare,ejb-jar"

 description="deploys the EJB-JAR file to JBoss">

 <copy file="${dist}/${jar-name}" todir="${deploy-dir}"/>

 </target>

To execute the build file on a command line, type the following:

ant deploy

This should produce output similar to what’s shown here:

Buildfile: build.xml

clean:

 [echo] cleaning...

...

prepare:

 [echo] preparing project's directories...

...

generate:

 [echo] generating ejbs glue...

...

1259c06.fm Page 321 Friday, February 27, 2004 1:42 PM

Chapter 6

322

compile:

 [echo] compiling...

...

OPP:

[oppdoclet] Loader is set

[oppdoclet] Begin build

[oppdoclet] Begin Processing com.ejdoab.db.ConferencesManagerImpl...

[oppdoclet] Begin Resolving update methods...

[oppdoclet] No ocd was found!

[oppdoclet] End Resolving update methods

[oppdoclet] update method [4]: addOrUpdateConference

[oppdoclet] update method [4]: deleteAllConferences

[oppdoclet] update method [4]: deleteConference

[oppdoclet] Begin Generating factory for:

 com.ejdoab.db.ConferencesManagerImpl...

[oppdoclet] End Generating factory for: com.ejdoab.db.ConferencesManagerImpl

[oppdoclet] Begin Generating proxy for:

 com.ejdoab.db.ConferencesManagerImpl...

[oppdoclet] End Generating proxy for: com.ejdoab.db.ConferencesManagerImpl

[oppdoclet] End Processing com.ejdoab.db.ConferencesManagerImpl

 generated in 0.17 seconds.

[oppdoclet] Generation completed with 0 warnings and 0 errors

[oppdoclet] End build

[oppdoclet] Loader is set

[oppdoclet] Begin build

[oppdoclet] Begin Processing com.ejdoab.pojos.ConferenceImpl...

[oppdoclet] Begin Resolving update methods...

[oppdoclet] No ocd was found!

[oppdoclet] End Resolving update methods

[oppdoclet] update method [4]: setName

[oppdoclet] update method [4]: setDescription

[oppdoclet] update method [4]: setStartDate

[oppdoclet] update method [4]: setEndDate

[oppdoclet] update method [4]: setAbstractSubmissionStartDate

[oppdoclet] update method [4]: setAbstractSubmissionEndDate

[oppdoclet] update method [4]: addTrack

[oppdoclet] update method [4]: deleteTrack

[oppdoclet] Begin Generating factory for: com.ejdoab.pojos.ConferenceImpl...

[oppdoclet] End Generating factory for: com.ejdoab.pojos.ConferenceImpl

[oppdoclet] Begin Generating proxy for: com.ejdoab.pojos.ConferenceImpl...

[oppdoclet] End Generating proxy for: com.ejdoab.pojos.ConferenceImpl

[oppdoclet] End Processing com.ejdoab.pojos.ConferenceImpl

 generated in 0.14 seconds.

[oppdoclet] Generation completed with 0 warnings and 0 errors

1259c06.fm Page 322 Friday, February 27, 2004 1:42 PM

Data Storage Options

323

[oppdoclet] End build

[oppdoclet] Loader is set

[oppdoclet] Begin build

[oppdoclet] Begin Processing com.ejdoab.pojos.TrackImpl...

[oppdoclet] Begin Resolving update methods...

[oppdoclet] No ocd was found!

[oppdoclet] End Resolving update methods

[oppdoclet] update method [4]: setDescription

[oppdoclet] update method [4]: setSubTitle

[oppdoclet] update method [4]: setTitle

[oppdoclet] Begin Generating factory for: com.ejdoab.pojos.TrackImpl...

[oppdoclet] End Generating factory for: com.ejdoab.pojos.TrackImpl

[oppdoclet] Begin Generating proxy for: com.ejdoab.pojos.TrackImpl...

[oppdoclet] End Generating proxy for: com.ejdoab.pojos.TrackImpl

[oppdoclet] End Processing com.ejdoab.pojos.TrackImpl generated in 0.121 seconds.

[oppdoclet] Generation completed with 0 warnings and 0 errors

[oppdoclet] End build

ejb-jar:

 [echo] packaging ejb-jar...

...

deploy:

 [copy] Copying 1 file to C:\java\jboss\jboss-3.2.1\server\tcms\deploy

BUILD SUCCESSFUL

Total time: 11 seconds

On the JBoss console you should see the archive being deployed with output
similar to the following:

...

13:39:50,387 INFO [MainDeployer] Starting deployment of package:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/ozone-jboss-test.jar

13:39:51,038 INFO [EjbModule] Creating

13:39:51,048 INFO [EjbModule] Deploying ConferenceOzoneFacade

13:39:51,058 INFO [StatelessSessionContainer] Creating

13:39:51,068 INFO [StatelessSessionInstancePool] Creating

13:39:51,068 INFO [StatelessSessionInstancePool] Created

13:39:51,068 INFO [StatelessSessionContainer] Created

13:39:51,068 INFO [EjbModule] Created

13:39:51,078 INFO [EjbModule] Starting

13:39:51,078 INFO [StatelessSessionContainer] Starting

13:39:51,118 INFO [StatelessSessionInstancePool] Starting

13:39:51,118 INFO [StatelessSessionInstancePool] Started

1259c06.fm Page 323 Friday, February 27, 2004 1:42 PM

Chapter 6

324

13:39:51,118 INFO [StatelessSessionContainer] Started

13:39:51,118 INFO [EjbModule] Started

13:39:51,118 INFO [EJBDeployer] Deployed:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/ozone-jboss-test.jar

13:39:51,128 INFO [MainDeployer] Deployed package:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/ozone-jboss-test.jar

...

Test Client

Finally, you’ll need a test client similar to the one used in Chapter 5. In this client
you’ll look up the ConferenceOzoneFacade Session Bean and manipulate the
Conference objects stored in the database. First, you’ll retrieve all existing con-
ferences. Next, you’ll search for a Conference object by its name. If it isn’t found,
then you’ll create the Conference object and store it in the database, as follows:

package com.ejdoab.client;

...

import com.ejdoab.beans.ConferenceOzoneFacade;

import com.ejdoab.beans.ConferenceOzoneFacadeHome;

import com.ejdoab.dto.ConferenceDTO;

import com.ejdoab.dto.TrackDTO;

/**

 * Simple EJB Test � ConferenceOzoneFacade Test
 */

public class Client {

 private static final String ICF = "org.jnp.interfaces.NamingContextFactory";

 private static final String SERVER_URI = "localhost:1099";

 private static final String PKG_PREFIXES =

 "org.jboss.naming:org.jnp.interfaces";

 public static void main(String args[]) {

 Context ctx;

 ConferenceOzoneFacadeHome confHome;

 ConferenceOzoneFacade conf;

1259c06.fm Page 324 Friday, February 27, 2004 1:42 PM

Data Storage Options

325

 // initial context JBossNS configuration

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, ICF);

 env.put(Context.PROVIDER_URL, SERVER_URI);

 env.put(Context.URL_PKG_PREFIXES, PKG_PREFIXES);

 try {

 // ----------

 // JNDI Stuff

 // ----------

 ctx = new InitialContext(env);

 // look up the home interface

 System.out.println(

 "[jndi lookup] Looking Up ConferenceOzoneFacade� +
 � Remote Home Interface");
 Object obj = ctx.lookup("ejb.ConferenceOzoneFacadeHome");

 // cast and narrow

 confHome = (ConferenceOzoneFacadeHome) PortableRemoteObject

 .narrow(obj, ConferenceOzoneFacadeHome.class);

 conf = confHome.create();

 // ----------

 // Tests

 // ----------

 //

 // getAllConferences

 //

 Collection c = conf.getAllConferences();

 if (!c.isEmpty()) {

 Iterator i = c.iterator();

 System.out.println(

 "[getAllConferences] listing conferences in the database:");

 while (i.hasNext()) {

 ConferenceDTO conference = (ConferenceDTO) i.next();

 System.out.println(conference.toString());

 }

 }

1259c06.fm Page 325 Friday, February 27, 2004 1:42 PM

Chapter 6

326

 else {

 System.out.println(

 "[getAllConferences] there are no conferences �
 + �in the database");
 }

 //

 // Find Conference by Name

 //

 String confName = "Apress OSC";

 System.out.println("[getConferenceByName] searching with "

 + confName);

 ConferenceDTO conference = null;

 try {

 conference = conf.getConferenceByName(confName);

 } catch (Exception e) {

 e.printStackTrace();

 }

 Date today = new Date();

 if (conference == null) {

 System.out.println(

 "[getConferenceByName] Conference was not found�
 + �, creating it");
 ConferenceDTO newConf =

 new ConferenceDTO(

 "Apress OSC",

 "Apress Open Source Conference",

 today,

 today,

 today,

 today);

 newConf.addTrack(

 new TrackDTO(

 "J2SE",

 "Java 2 Standard Edition",

 "Learn how to build powerful Java desktop applications"));

1259c06.fm Page 326 Friday, February 27, 2004 1:42 PM

Data Storage Options

327

 newConf.addTrack(

 new TrackDTO(

 "J2EE",

 "Java 2 Enterprise Edition",

 "Enterprise Applications powered entirely by Open Source"));

 newConf.addTrack(

 new TrackDTO(

 "J2ME",

 "Java 2 Micro Edition",

 "Java brings cell phones and PDAs to life"));

 conf.addOrUpdateConference(newConf);

 }

 else {

 System.out.println(

 "[getConferenceByName] Conference was found\n" +

 conference + "\n");

 System.out.println("Here are the tracks:\n");

 Collection tracks = conference.getTracks();

 for (Iterator iter = tracks.iterator(); iter.hasNext();) {

 TrackDTO track = (TrackDTO) iter.next();

 System.out.println(track);

 }

 }

 }

 catch (RemoteException re) {

 System.out.println("[rmi] remote exception: " + re.getMessage());

 }

 catch (NamingException ne) {

 System.out.println("[naming] naming exception: " + ne.getMessage());

 }

 catch (CreateException ce) {

 System.out.println("[ejb] create exception: " + ce.getMessage());

 }

 }

}

Results

To run the test, as you’ve done previously with all JBoss test clients, you’ll need
the jbossall-client.jar in the classpath. Compile the test client class (the included
Ant build script should have already compiled the class) and execute it by issuing
the following command:

1259c06.fm Page 327 Friday, February 27, 2004 1:42 PM

Chapter 6

328

java �cp classes;%JBOSS_HOME%\client\jbossall-➥

client.jar;%OZONE_HOME%\lib\ozoneServer-1.2-➥

alpha.jar com.ejdoab.client.Client

where JBOSS_HOME refers to the JBoss distribution and OZONE_HOME
refers to the Ozone distribution. The results of running the test-client application
for the first time are shown here:

[jndi lookup] Looking Up ConferenceOzoneFacade Remote Home Interface

[getAllConferences] there are no conferences in the database

[getConferenceByName] searching for Apress OSC

[getConferenceByName] Conference was not found, creating it

As you can see on the first run, the Conference object isn’t found by either
of the methods selected, so it’s created. On the second run, as you can see in the
following output, the newly created Conference object is now found along with
its associated Tracks:

[jndi lookup] Looking Up ConferenceOzoneFacade Remote Home Interface

[getAllConferences] listing conferences in the database:

[Conference] name = Apress OSC,

 description = Apress Open Source Conference,

 start date = Sun Feb 01 05:34:03 EST 2004,

 end date = Sun Feb 01 05:34:03 EST 2004,

 # tracks = 3

[getConferenceByName] searching with Apress OSC

[getConferenceByName] Conference was found

[Conference] name = Apress OSC,

 description = Apress Open Source Conference,

 start date = Sun Feb 01 05:34:03 EST 2004,

 end date = Sun Feb 01 05:34:03 EST 2004,

 # tracks = 3

Here are the tracks:

[Track] title = J2SE,

 subTitle = Java 2 Standard Edition,

 description = Learn how to build powerful Java desktop applications

[Track] title = J2EE,

 subTitle = Java 2 Enterprise Edition,

 description = Enterprise Applications powered entirely by Open Source

[Track] title = J2ME,

 subTitle = Java 2 Micro Edition,

 description = Java brings cell phones and PDAs to life

1259c06.fm Page 328 Friday, February 27, 2004 1:42 PM

Data Storage Options

329

You can now use the Ozone AdminGUI tool to browse the database. Figure 6-13
shows the newly created named object ConferencesManager.

Figure 6-13. ConferenceManager object on the AdminGui tool

An object-oriented alternative to a relational database, the Ozone DB can
handle the complexities of a rich object model. If you’re accustomed to working
with RMI or EJBs, the Ozone DB will make you feel at home. We expect that in the
near future the creation of the remote interface, implementation classes, and
OCD files will be automated further with the use of an attribute-oriented pro-
gramming (AOP) tool such as XDoclet. There are, of course, countless features of
the Ozone DB that aren’t covered in this chapter. You can learn more about them
by visiting the Ozone website (http:// http://www.ozone-db.org) or reading through
the posts in the Ozone user newsgroup (comp.java.ozone.user).

1259c06.fm Page 329 Friday, February 27, 2004 1:42 PM

Chapter 6

330

Other Data-Storage Technologies

There are other data-storage technologies worthy of mention that this chapter
doesn’t cover. This section briefly mentions the choices available and points you
to the right places to gather more information.

Java Prevalence

Java Prevalence, as embodied by the Prevayler project (http://www.prevayler.org),
is a new take on the idea of a totally in-memory database that provides transparent
persistence, fault-tolerance, and load-balancing capabilities. The Prevayler
project was started by Klaus Wuestefeld, and it’s rapidly gaining both supporters
and detractors at a very high rate. Prevayler works on the assumption that the
available amount of physical memory is sufficient to keep all objects in the
system in memory.

Prevayler uses object serialization at set intervals (or on demand) to produce
a snapshot of the system. Atomic changes to the state of the working memory are
logged as serialized “transactions” before they’re applied to the system. If the
system crashes, the last snapshot is loaded and any commands logged after the
time of the snapshot creation are executed against the snapshot in order to bring
the system to its last known state.

For usage purposes, Prevayler works like an object-oriented database except
that if you want to mutate the data in a Prevayler system (similar to a named
object in Ozone) you must encapsulate the operations that perform the changes
in a transaction, which in Prevayler is a serializable class that represents a command
object. Each command is applied in a serialized fashion to the system. A Prevayler
transaction must be deterministic, meaning that it should always produce the
same final state when applied to a Prevayler system in certain state.

Prevayler is a very simple, robust, and fast system that can be used to provide
transparent persistence in a J2EE system in certain scenarios. It shares the
advantages of object-databases in that it let’s you work with POJOs (it’s actually
one of the least intrusive tools we tested). It can be a great choice for a fault-tolerant
in-memory solution or for an object graph that doesn’t grow wildly. As mentioned
previously the only imposition on the development is in the semantics of the
interactions that mutate your prevalent system.

Prevayler can be a great way to prototype your system and gain a baseline for
what the performance could be with a complete in-memory solution. Development
is fairly simple, it doesn’t require any pre- or postprocessing of your classes,
bytecode manipulation, or the need to inherit or implement any proprietary
classes or interfaces (except for the marker interface java.io.Serializable).

1259c06.fm Page 330 Friday, February 27, 2004 1:42 PM

Data Storage Options

331

The semantics of a Prevayler transaction are easily applied to a service-oriented
architecture.

So, if all of the criteria for using an object-oriented database apply to your
system, your object graph can comfortably fit in memory, and if your system has
no distribution requirements then Prevayler can be a great choice to provide
unparalleled performance to your users.

Native XML Databases

XML is rapidly become the lingua franca for business-to-business transactions,
and a new breed of database that’s tailored for the efficient storage, retrieval, and
management of XML is surfacing. Just as object and relational systems have
impedance mismatches, XML, with its document-centric hierarchical paradigm,
also has incompatibilities at certain levels with object systems and relational
databases. XML databases provide a way to store XML in its natural state. These

databases typically create indexes for each document stored, which eases the
task of querying and aggregating data.

The XML:DB initiative for XML databases (http://www.xmldb.org/) is a group
that’s looking to standardize the definition of an XML database. It identifies the
following areas as examples of applications that could benefit from using a native
XML database:

• Corporate information portals

• Membership databases

• Product catalogs

• Parts databases

• Patient-information tracking

• Business-to-business document exchange

A native XML database will ideally enable you to work with native XML
technologies and tools such as (in the case of Java) XSLT, XPath, XQuery, JAXP,
Xerces/Xalan, JDOM, and XOM. Currently two Open Source implementations
exist. They are mature enough (there are many mature commercial XML database
such as Software AG’s Tamino) and are close to being ready for use in production
environments. These are as follows:

1259c06.fm Page 331 Friday, February 27, 2004 1:42 PM

Chapter 6

332

• Xindice (http://xml.apache.org/xindice): The Xindice native XML database
(formerly dbXML) is an Apache project that provides a pure-Java XML
database that supports the XML:DB API. It uses the XML:DB XUpdate for
updates and the W3C’s XPath for queries.

• eXist (http://exist.sourceforge.net): The eXist project provides a native
XML database that supports XQuery, autoindexing, and extensions for full-
text searching. An XQuery processing servlet (XQueryServlet) can be used
in combination with XSLT to generate content such as HTML with simple
XQuery files.

XML provides a way for modeling document-based unstructured or semi-
structured data that’s sometimes difficult to model in the object and relational
models. A native XML database can ease the complexity of working with XML by
offering a native way to store and work with your XML documents.

Conclusion

In this chapter you’ve learned that deciding where and how to store your data can
be a daunting decision. The storage mechanism you choose will have a deep
impact in the way you develop your applications. Although not an in-depth
treatise on Java data-storage choices, this chapter should have given you a place
to start the quest for the right database for your application.

The lesson of this chapter is that you should understand your application’s
needs when it comes to storing and manipulating data, and the best way to do
this is to prototype and test the main features of your application by using
different approaches including CMP EJBs, ORM tools, embedded in-memory
SQL databases, OODBMS, and XDBMS.

1259c06.fm Page 332 Friday, February 27, 2004 1:42 PM

333

CHAPTER 7

Object-Relational
Mapping

In theory, there is no difference between theory and practice.
In practice, there is.

—Jan L.A. van de Snepscheut1

TODAY, OBJECT AND COMPONENT technologies are the reigning programming para-
digms. They give you the ability to build understandable, maintainable, and scalable
systems. The early 1990s saw the emergence of object databases as an ideal
counterpart for the up-and-coming object-oriented and object-based languages.
In theory, it seemed like a no-brainer because object-oriented languages create
and manipulate objects; what better place to store those objects’ states than in a
database that’s specialized for that purpose?

Several problems soon became apparent for those early pioneers that decided
to forego their relational database management systems (RDBMS) in favor of an
object-oriented database management system (OODBMS). The lesson is that for
data that’s heterogeneous and hierarchical or for highly complex structured data
(think a 3D scene or a molecular structure) an OODBMS (or a native XML database)
is a perfect fit. But for the majority of the data that drives corporate systems, the
only feasible storage option is an RDBMS. OODBMS have poor query support, are
still relatively young, and the data stored in them tends to be tightly coupled to a
specific application. The normalized, tabular nature of the data stored in relational
systems enables it to efficiently perform the most common operations needed for
enterprise-level systems, and at the same time it ensures the integrity of the data.

As a Java developer it’s very likely that you’ll find yourself retrieving data from
a relational database and you’ll want to look at ways to move that data to and from
your objects and components. There’s also a very high probability that you’ll be
working with an existing database schema that might predate any sort of object-
oriented system. The question is how to approach the problem of storing your
objects’ state in an RDBMS. In Chapter 5 you explored in detail the use of J2EE

1. van de Snepscheut, Jan L.A. “What Computing Is All About (Texts & Monographs in
Computer Science S.)” (Springer-Verlag Berlin and Heidelberg GmbH & Co. KG,
July 31, 1993).

1259c07.fm Page 333 Friday, February 27, 2004 1:45 PM

Chapter 7

334

CMP EJBs as a persistence solution for the state of the TCMS domain model that
you designed in Chapter 2. CMP EJBs provide a coarse-grain component-oriented
approach to persistence.

In this chapter you’ll explore some of the alternatives to EJB CMPs using
more fine-grained approaches and receive some guidance on how to choose
between the technologies and tools available.

The Object-Relational Impedance Mismatch

As the title of this section points out, there’s a certain amount of work that needs
to happen for your objects to be stored and retrieved from a relational database.
The problems that arise during this process are the result of several factors, and
incredibly, one of the greatest roadblocks is of a cultural nature. In many a project,
object technologists seem to take the database for granted and database profes-
sionals end up designing relational schemas in a vacuum. Although a proper

separation of concerns will lead you to the conclusion that this is acceptable, in
reality however, for an object-oriented system to work efficiently with a relational
database these two groups most work together. As pointed out by Scott Ambler,
there’s certain amount of predisposition from the part of both camps. The typical
objection from “object developers that claim relational technology either shouldn’t
or can’t be used to store objects” and their counterparts the “data professionals
that claim that your object/component models must be driven by their data
models.”2

Aside from the cultural impedance mismatch there are some very real tech-
nical issues to consider, as you learned in Chapter 6. At the root of the problem
you have the two paradigms that are focused on very different goals. An object
system focuses on providing the best representation of the problem in terms of
objects in order to solve a set of business requirements. But with relational tech-
nologies, schemas are created to provide a normalized and “flattened” set of data
that can be efficiently stored and accessed. Relational databases work on the
mathematical principle of relations, in which you work with a matrix of tuples
(rows) and domains (columns), but in object-oriented systems you work by tra-
versing relationships that interconnect objects producing an object graph. With
relational technology you work with relations between types, but in the object
world you work with relations between entities. Objects are encapsulated entities
and it’s this encapsulation that sometimes causes havoc on performance when
objects are mapped to relational databases.

Object technologists know well that data models tend to be very poor drivers
for an object model, because an object model not only deals with data but also

2. Ambler, Scott. Agile Database Techniques: Effective Strategies for the Agile Software
Developer (John Wiley & Sons, 2003).

1259c07.fm Page 334 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

335

behavior, and the relationships between data tend to be semantically shallower
than the relationships encountered when modeling behavior. This makes the
impedance between a data model and an object model a matter of fidelity. It’s
possible in the early stages of design for an object model and a relational model
to look very similar, but as the system matures these similarities become only
superficial.

Object-Relational Mapping

Object-Relational mapping (ORM) is the name given to the technologies, tools,
and techniques used to bridge the divide between objects and relational data-
bases. ORM tools allow you to declaratively map data objects to data and relations
in a relational database. This breed of tools generates all of the SQL code needed
to interact with the database. Developers work at the object level and the concept
of queries and transactions are applied to the objects rather than database objects.

Although under the same umbrella the tools can vary greatly in the way they
work, from the level of “transparency” to whether they work by generating code,
modifying bytecode, or using runtime inspection. Some of the tools covered in
this chapter adhere to committee-based standards like JDO though others have
their own nonstandard APIs.

NOTE The concept of transparency as applied to ORM tools is still
very vague in the industry. Persistence transparency or orthogonality
implies that objects are treated without any implicit notion of persis-
tence. Most of the existing tools aren’t truly transparent yet they provide
a good separation of concerns by isolating the persistence of objects
behind very simple object-oriented constructs.

Also worthy of consideration is how to fit the way a certain tool works with
the rest of your development process. With some tools, you start with an object
model and derive a relational persistence model; with others, you start with a
relational model and derive an object model. Most of the time you’ll find that you
have both an existing object model and a relational model, in which case most
tools fall short of expectations and most of the mapping work will be done man-
ually. Sometimes it’s impossible to avoid the situation when trade-offs need to be
made between your object model and the database schema. It’s important that
both models are developed in cooperation. An ORM tool can help this collabo-
rative work but it’s the human factor that plays the larger role.

The Open Source ORM tool market has evolved considerably. At the time of
this writing the following ORM tools listed in Table 7-1 were available.

1259c07.fm Page 335 Friday, February 27, 2004 1:45 PM

Chapter 7

336

...

Using JDBC

At both ends of the spectrum; for extremely simple object models and for
extremely complex object models, there’s the choice of going with lower-level,
fine-grained control provided by using straight SQL through JDBC. Sometimes
your application’s success might hinge on its performance and that performance
might depend on a proprietary database feature. JDBC will let you tap into features
like stored procedures and other database functions. We recommend that you
take this approach only as a last resort because embedding SQL into Java code
leads to code that’s very hard to maintain and the quality of the SQL is most of
the time very questionable.

In case you decide to use straight JDBC for your enterprise application we rec-
ommend that you follow these guidelines to ensure that your JDBC code is
efficient and maintainable:

• Understand how the data is to be used by the most critical parts of
the application. Use the 80-20 rule as it applies to code optimizations,
whereby 80 percent of the time a system is being used is spent on
20 percent of the code.

• Use parameterized queries with prepared statements. This can keep your
code cleaner and can help you handle other nuances of regular state-
ments such as escaping quotes and dates.

• Use a database-connection pool package. Database connections are an
expensive resource to create; by pooling connections you can give your
applications a performance boost.

Table 7-1. Open-Sourced ORM Tools

Tool URL JDO

OJB http://db.apache.org/ojb Partial

Hibernate http://hibernate.org No

Castor http://www.castor.org No

Torque http://db.apache.org/torque No

Cayenne http://objectstyle.org/cayenne No

Jaxor http://jaxor.sourceforge.net No

iBATIS SQL Maps http://www.ibatis.com No

TJDO http://tjdo.sourceforge.net Yes

XORM http://xorm.org Yes

1259c07.fm Page 336 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

337

• Use well-known patterns to isolate persistence logic from business logic.
Decoupling persistence logic from business logic will make your applica-
tions maintainable and flexible to change.

• Test several different database drivers, preferably type 4 JDBC drivers.
JDBC driver compliance varies widely from driver to driver.

• Turn off the JDBC connection Auto-Commit option and plan transaction
boundaries and levels carefully.

• Never allow a database transaction to span multiple user requests.
Whenever possible make a long transactional operation asynchronous
and provide a notification mechanism.

• Use optimistic locking whenever possible. With optimistic locking, data-
base rows and objects are never actually locked. If a retrieved record is to
be changed and the underlying database data has changed, the update
will fail. An advantage of optimistic locking is that it’s easy to use and it
doesn’t require any extra database resources.

• Avoid distributed transactions whenever possible. Distributed database
transactions are complex and expensive.

• Minimize database round-trips by batching your queries. As with learned
with EJBs it’s cheaper to get a lot of data once than getting small chunks
at a time.

• Don’t be afraid of using store procedures if they prove to provide a signif-
icant performance gain. Well-written store procedures usually outperform
SQL queries and, if written by a well-seasoned DBA, they can guarantee a
higher level of data integrity.

...

Table 7-1. Open-Sourced ORM Tools

ODMG J2EE Style Query Language

Yes Yes Runtime OQL (partial)

Partial Yes Runtime Proprietary (SQL-like/SQL)

No Yes Runtime OQL (ODMG 3.0 subset)

No Yes Code Generator Proprietary

No Yes Runtime/Code Generator Proprietary

No Yes Code Generator SQL

No Yes Runtime SQL

Yes Yes Bytecode Enhancer JDOQL

Yes Yes Runtime JDOQL

1259c07.fm Page 337 Friday, February 27, 2004 1:45 PM

Chapter 7

338

Regardless of the tool chosen they all have to deal with several technical
questions. Object persistence is, like most hard problems, all about the trade-
offs. The theme with Java persistence is about choices, as with many things in
Java. No tool is perfect for every persistence scenario. Some tools trade trans-
parency for performance or simplicity for capabilities. Some of the questions
that arise during the selection (or creation) of an object-relational tool include
the following:

• How to convert column values to Java objects and primitives. For example,
a Java Date object can be mapped to many database types.

• How to model object relationships (such as inheritance, aggregation, and
composition) on a database schema or how to model relations between
tables in an object or group of objects.

• How to deal with database keys and object identity, which might not exist
in the object model.

• How to optimize the resultant SQL calls.

• How to take advantage of proprietary database features such as updateable
views and stored procedures.

• How to guarantee referential integrity without limiting the behavioral
expressiveness of the object model.

• How to deal with transactions when the database is accessed concurrently
from multiple sources. From a relational point of view, an object is nothing
but an in-memory cache of the database data that must be invalidated and
refreshed when appropriate.

• How to deal with expensive operations like loading many child objects in a
one-to-many relationship (lazy loading or proxy objects or caching).

Obviously, as the object graphs get more complex the tools have to be more
“intelligent.” You’ve seen countless companies that start with a very simple
system for which they write their own persistence layer from the ground up. We
equate this to writing your own application server. Sooner or later you’ll run into
some of technical questions pondered previously by others and discover that
you’re spending most of your time “fine tuning” your persistence framework.
ORM tools take away the complexity of mapping classes in memory to databases.
They provide interfaces that automatically select, insert, update, and delete
tables in the database in order to reflect changes made to an object model.

1259c07.fm Page 338 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

339

Therefore we recommend that you choose a mapping tool earlier rather than
later before any “temporary” persistence logic in your application starts to look
like a homemade framework. Using an ORM layer has proven to increase pro-
ductivity by moving developer focus away from figuring out how to store objects
(a nonfunctional concern) to solving the real business problems. Another pos-
itive side-effect of using an ORM tool is that, like JDBC, it provides an isolating
layer between the database and the application by providing an objectified view
of the database. In a better case, it completely makes persistence “transparent,”
without the complexity of writing and maintaining straight JDBC code.

ORM tools also have drawbacks, including performance, portability (does the
tool implement any of the known standards?), and the initial learning curve. If
performance is of paramount importance in your application, isolate the key
components of your application and test them against a significant amount of data.

Apache DB Project’s Object Relational Bridge

OJB is an Open Source object-relational mapping tool that allows for transparent
persistence of Java objects using relational databases. OJB works using runtime
reflection and therefore doesn’t need to generate code or modify bytecode at
compile time. OJB allows you to use plain old Java objects (POJO) by transparently
mapping them to the underlying data store.

OJB started as the brainchild of Thomas Mahler in mid-2000 after discovering
how much easier database access was while using ODMG-compliant object
databases (Poet and Objectivity). OJB eventually became part of Apache’s DB
project, which is an effort to group all database-related work under Apache
(http://db.apache.org).

At its heart an OJB mapping relies on an XML metadata file that details how
to map objects to tables. This file is referred to as the “repository” and it’s equiv-
alent to the ejb-jar.xml files you worked with in Chapter 5. OJB provides value-added
features besides O/R mapping such as object caching, lazy loading using virtual
proxies, and distributed lock management.

As with many of the well-architected Apache projects, OJB provides many
plug-in and extensibility points that make it an ideal platform to build more
complex transactional object brokers. OJB uses a microkernel architecture that
allows it to support multiple “personalities” or database APIs. You can use OJB in
three different modes supported by the following four different APIs:

• PersistenceBroker: The PersistenceBroker (PB) is the simplest and most
straightforward. This API is at a lower level than the ODMG and JDO APIs
and provides the foundation for higher-level APIs to be implemented.

1259c07.fm Page 339 Friday, February 27, 2004 1:45 PM

Chapter 7

340

• ODMG implementation: Implements the ODMG 3.0 object persistence
API, which is a portability specification designed to allow for portable
applications. It provides a higher-level API build on top of the Persistence-
Broker API.

• JDO RI plug-in: The OjbStore StoreManager is a plug-in to the JDO ref-
erence implementation that makes OJB a fully JDO 1.0–compliant solution
for stand-alone applications (nonmanaged). Currently, you cannot use the
JDO features from within an application server. OJB 2.0 will provide a
fully compliant JDO solution. For more information on the JDO RI see
http://jcp.org/en/jsr/detail?id=12.

• OTM: The OTM is an abstracted object-level transaction API used by both
the ODMG and JDO implementation. This API will be exposed as an offi-
cially supported API in the near future.

Figure 7-1 shows a simplified view of the OJB architecture.

Figure 7-1. OJB architecture

OJB provides other features such as the following:

• Object cache: An object caching facility

• Sequence manager: Pluggable primary key generation

1259c07.fm Page 340 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

341

• Complex object graphs: Automatic persistence of dependent or “children”
objects

• Locking: Support for multiple locking strategies

• J2EE integration: Easy integration with managed environments (J2EE)

Creating an OJB Distribution

You can obtain OJB from the Apache DB project website at http://db.apache.org/ojb
in both binary and source distributions. For stand-alone applications OJB instal-
lation is very simple, because it only requires a few JARs and the XML configuration
files, which define the database(s) being used and the mappings between your
objects and the tables.

We recommend that you use the source distribution because it will allow you

to build a distribution tailored to your needs. For the examples in this section we
obtained the 1.0 version candidate release 5 (db-ojb-1.0.rc5-src.zip), which is the
last candidate release before the highly anticipated 1.0 release. Simply unzip the
file to a suitable location, for example c:\java\ojb. To build a binary distribution
you need a working version of Ant.

For an enterprise example you’ll need OJB working within the confines
of a J2EE application server. Fortunately, OJB integrates with most application
servers. It fully supports JNDI lookup of data sources and it provides JTA and JCA
integration. For the purpose of this chapter you’ll build a distribution that will
contain the needed JBoss MBeans, which will allow for using OJB as a JBoss
service. JBoss’s JMX microkernel allows for pretty much any kind of Java code to
be wrapped with an MBean, thereby making integration a snap.

As with any Ant-based Java project we recommend that you first run Ant with
the -projecthelp switch to learn about the options available in the build. Doing so
will also help you discover other features that are sometimes packaged as part of
the build such as unit tests, performance tests, and targets that can help you get
started with your own projects.

At a command prompt, change directories to the OJB directory and type
the following:

ant -projecthelp

The output should resemble the following (targets that aren’t relevant to the
example have been omitted and output has been formatted for readability):

1259c07.fm Page 341 Friday, February 27, 2004 1:45 PM

Chapter 7

342

Buildfile: build.xml

Main targets:

all rebuild all sources (incl. preprocessing)

clean Cleans the build and distribution directories.

ejb-examples Generate the sample session bean ejb-app jar

jar Builds the binary ojb-xxx.jar in the dist directory.

junit Performs all JUnit regression tests.

main Compile all Java sources with debugging on.

main-opt Same as main, but with debugging off and

 optimizations on.

ojb-blank Build a sample project

perf-test Simple performance benchmark and stress test

 for PB- and ODMG api

performance Performance benchmark, compare the PB-api/ODMG-api

 with direct JDBC calls

performance2 Performance benchmark and stress test for PB-

 and ODMG-api

performance3 Stress test for PB- and ODMG-api using multiple

 databases

prepare-jboss Copy jboss mbeans to code base

rar Builds the RAR for the OTM in optimized mode

reverse-db Starts the OJB RDBMS reverse engineering tool

reverse-db2 Starts the next generation OJB RDBMS reverse

 engineering tool

war Builds a sample war-file for deployment in tomcat

with-jdori Compile OJB JDORI

Default target: all

Of significance to getting started with OJB is the ojb-blank task, which will
create a blank stand-alone Java OJB project including an Ant build script and all
required libraries. If you’re evaluating OJB and performance is one of your con-
siderations you can run the performance targets to get an idea of how the OJB’s
APIs compare against using direct JDBC calls and also how they compare to each
other. For more information on the performance targets see http://db.apache.org/
ojb/performance.html.

1259c07.fm Page 342 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

343

For the purposes of this chapter you need to get OJB working from within JBoss.
To accomplish this, you’ll need to run the OJB Ant build script with the targets
prepare-jboss and jar. The prepare-jboss target copies the code for the PB and
ODMG APIs JBoss MBeans to the code base for compilation, while the jar target
invokes all the needed targets to compile and package the OJB distribution JARs.

Before executing the Ant targets you need to determine what target database
you’ll be using. OJB doesn’t impose any restrictions on the target database other
than a compliant JDBC driver, but for certain functions OJB uses several internal
database tables that need to be created. These internal tables are used for
sequencing (autoincrementing primary keys), locking, and several ODMG-
specific structures. The schema for these tables varies slightly from database
platform to platform, therefore OJB uses a profile to define the target database
(which is defined by a build property, which in turn enables the selection of a
profile file from the directory named profile under the OJB distribution). In the
case of the TCMS samples that will be created, the target database is HSQLDB,
which happens to be the default as defined in the build.properties file located at

the root of the OJB directory.
OJB also needs to know the location of certain JAR files that aren’t distributed

as part of OJB such as the J2EE API JARs, which are needed for compiling the
MBeans and the JDO reference implementation JARs if you decide to use JDO.
For the TCMS examples you’ll be using the JBoss J2EE JAR file jboss-j2ee.jar,
which is located in the JBOSS_HOME/client directory. Copy this file to the OJB lib
directory. To instruct OJB to use this JAR file change the value of the property
j2ee.jars in the build.properties to jboss-j2ee.jar.

You’ll also need to copy to the OJB lib directory, the following files, which are
located in the JBOSS_HOME/lib directory:

• jboss-common.jar

• jboss-jmx.jar

• jboss-system.jar

With these preliminary configuration tasks finished you can now run Ant
with the appropriate targets to build the OJB distribution JARs. At the command
prompt type the following:

ant prepare-jboss jar

1259c07.fm Page 343 Friday, February 27, 2004 1:45 PM

Chapter 7

344

The output should resemble the following:

Buildfile: build.xml

prepare-jboss:

prepare-jboss:

jar:

...

main-opt:

 [javac] Compiling 600 source files to C:\java\ojb\target\classes

 [javac] Note: Some input files use or override a deprecated API.

 [javac] Note: Recompile with -deprecation for details.

 [javac] Compiling 242 source files to C:\java\ojb\target\classestest

...

init:

jar-internal:

 [delete] Deleting: C:\java\ojb\dist\db-ojb-1.0.rc5.jar

 [delete] Deleting: C:\java\ojb\dist\db-ojb-1.0.rc5-junit.jar

 [delete] Deleting: C:\java\ojb\dist\db-ojb-1.0.rc5-src.jar

 [delete] Deleting: C:\java\ojb\dist\db-ojb-1.0.rc5-tools.jar

 [delete] Deleting: C:\java\ojb\dist\db-ojb-1.0.rc5-tutorial.jar

 [delete] Deleting: C:\java\ojb\target\classes\MANIFEST.MF

 [copy] Copying 1 file to C:\java\ojb\target\classes

 [jar] Building jar: C:\java\ojb\dist\db-ojb-1.0.rc5.jar

 [jar] Building jar: C:\java\ojb\dist\db-ojb-1.0.rc5-tools.jar

 [jar] Building jar: C:\java\ojb\dist\db-ojb-1.0.rc5-tutorial.jar

 [jar] Building jar: C:\java\ojb\dist\db-ojb-1.0.rc5-junit.jar

 [jar] Building jar: C:\java\ojb\dist\db-ojb-1.0.rc5-src.jar

BUILD SUCCESSFUL

Total time: 1 minute 40 seconds

As a result of the build, you’ll end up with several JAR files in the OJB dist
directory. The main JAR needed for the examples is (in the case of the rc5
distribution) db-ojb-1.0.rc5.jar.

1259c07.fm Page 344 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

345

One-to-Many Example with OJB and JBoss

As you did in Chapter 5 you’ll use the domain objects Conference and Confer-
enceTrack. But instead of using CMP Entity EJBs, you’ll create POJOs and use OJB
to persist them to the underlying TCMS database. As seen before, these two
classes share a one-to-many relationship in which a Conference can have many
associated Tracks. The table schema for the two existing tables is shown here (the
relationship to the Venue table, via the foreign key fk_VenueId is ignored for the
purpose of this example):

CREATE TABLE Conferences (

 pk_Id INTEGER NOT NULL PRIMARY KEY,

 Name varchar(64),

 Description LONGVARCHAR,

 StartDate DATETIME,

 EndDate DATETIME,

 AbstractSubmissionStartDate DATETIME,

 AbstractSubmissionEndDate DATETIME,

 fk_VenueId int NULL,

 CONSTRAINT ConferencesVenuesFK FOREIGN KEY(fk_VenueId) REFERENCES Venues(pk_Id)

);

CREATE TABLE Tracks (

 pk_Id INTEGER NOT NULL PRIMARY KEY,

 fk_ConferenceId INTEGER,

 Title VARCHAR(32),

 Subtitle VARCHAR(32),

 Description LONGVARCHAR,

 CONSTRAINT TracksConferencesFK FOREIGN KEY(fk_ConferenceId) REFERENCES

 Conferences(pk_Id)

);

Before coding begins you need a suitable project structure. Similar to the
EJB CMP examples in Chapter 5, Figure 7.2 shows the directory structure of the
OJB/JBoss project.

1259c07.fm Page 345 Friday, February 27, 2004 1:45 PM

Chapter 7

346

Figure 7-2. OJB and JBoss project directory structure

The basic premise of the example is to map two POJOs, one for the table
Conferences and one for the table Tracks and perform some create, read, update,
and delete (CRUD) operations. For this you’ll use a simple stateless Session Bean,
which in turn will use OJB’s PersistenceBroker API to manipulate the objects.
Figure 7-3 shows a sequence diagram with the interactions between the classes.

Figure 7-3. OJB and JBoss project sequence diagram

1259c07.fm Page 346 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

347

In this example you’ll use OJB to map one table per class. Each table closely
aligns with the EJB CMP solution previously implemented and could ease the
transition from one to the other. As with the generation of EJB’s glue files, you’ll
use XDoclet with the ojbdoclet module, which will enable you to mark up the
POJOs with JavaDoc comments, which will drive the generation of the OJB
mappings.

Creating the Plain Old Java Objects

The first class to be created is the Conference class, which will be part of the
com.ejdoab.pojos package. This simple class contains several fields that will be
mapped to the CONFERENCES database table, which was shown previously.
Notice the addition of a field named tracks, which is a vector that will contain a
collection of Track objects associated with the Conference. Also notice that this
class is made to implement the serializable interface so that you can use it
remotely. The only requirement for a class to be made persistence-aware in OJB
is to provide a no-args constructor. To make the classes more usable and to make
object creation simpler add an all-args constructor as well as JavaBeans-style
getters and setters.

OJB can access data from a class by using reflection to access a class member
or using the object’s getters and setters methods. OJB doesn’t need getters and
setters to work; it can actually work directly on the class members regardless of
their visibility. Direct field access is the fastest way for OJB to access an object.
Use getter and setter if you need to abstract how the data is actually handled, and
need to do some precomputation with the values from the database or for any
other required side effects.

TIP You configure how OJB handles reading and writing to and from
a Java class with the PersistentFieldClass attribute in OJB.properties.
The default value is the PersistentFieldDefaultImpl class, which is
located in the org.apache.ojb.broker.metadata package. This class uses
Java reflection. To use the object’s getters and setters set this value to
org.apache.ojb.broker.metadata.PersistentFieldPropertyImpl.

1259c07.fm Page 347 Friday, February 27, 2004 1:45 PM

Chapter 7

348

The code for the Conference class is shown here:

package com.ejdoab.pojos;

import java.io.Serializable;

import java.util.*;

public class Conference implements Serializable {

 protected int id;

 protected String name;

 protected String description;

 protected Date startDate;

 protected Date endDate;

 protected Date abstractSubmissionStartDate;

 protected Date abstractSubmissionEndDate;

 protected Vector tracks;

 public Conference() {}

...

 public List getTracks() {

 return tracks;

 }

...

 public void addTrack(Track track) {

 if (tracks == null) {

 tracks = new Vector();

 }

 tracks.add(track);

 }

 public void deleteTrack(int trackId) {

 if (tracks != null) {

 boolean found = false;

 Iterator i = tracks.iterator();

 Track trackToRemove = null;

 while ((!found) && (i.hasNext())) {

 Track t = (Track) i.next();

 if (t.id == trackId) {

 trackToRemove = t;

 found = true;

 }

 }

1259c07.fm Page 348 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

349

 if (trackToRemove != null) {

 tracks.remove(trackToRemove);

 }

 }

 }

}

Similarly, the Track class provides an object-oriented view of the TRACKS
table, as follows:

package com.ejdoab.pojos;

import java.io.Serializable;

public class Track implements Serializable {

 protected int id;

 protected String title;

 protected String subTitle;

 protected String description;

 protected int conferenceId;

 protected Conference conference;

 public Track() {}

 //

 // getters

 //

...

 //

 // setters

 //

...

}

1259c07.fm Page 349 Friday, February 27, 2004 1:45 PM

Chapter 7

350

O/R Mapping: The OJB Repository File

In order to map both the Conference.java and Track.java classes to their respective
tables, you need to provide OJB with a descriptor of how the object’s fields map to
the table columns. OJB looks for this information on the repository.xml file, which is
defined by the document type declaration (DTD) repository.dtd. The repository.xml
file also contains information about JDBC connections and OJB’s mappings for
internal tables. For the purposes of using OJB in the context of a JBoss application
the repository.xml file is packaged in as part of a JBoss service archive (SAR) as
explained later in the chapter.

TIP The OJB repository file is very well documented at
http://db.apache.org/ojb/repository.html.

In order to simplify the configuration file, you include XML fragments using
entity references as shown in this sample repository.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE descriptor-repository PUBLIC

 "-//Apache Software Foundation//DTD OJB Repository//EN"

 "repository.dtd"

[

<!ENTITY database SYSTEM "repository_database.xml">

<!ENTITY internal SYSTEM "repository_internal.xml">

<!ENTITY user SYSTEM "repository_user.xml">

]>

<descriptor-repository

 version="1.0"

 isolation-level="read-uncommitted"

 proxy-prefetching-limit="50"

 >

 <!-- include all used database connections -->

 &database;

 <!-- include ojb internal mappings here -->

 &internal;

 <!-- include user defined mappings here -->

 &user;

</descriptor-repository>

1259c07.fm Page 350 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

351

Notice that there are three fragments included: database (which maps
to repository_database.xml), internal (repository_internal.xml), and user
(repository_user.xml). As you can probably guess, repository_user.xml contains
the object-relational mappings for the POJOs. For the Conference-Track example
the repository_user.xml file is made up of two class-descriptor elements, one for
each of the classes.

For a concrete class, the class-descriptor element defines a mapping between
a Java class and a database table. Each class-descriptor can contain several dif-
ferent types of elements, including the following:

• field-descriptor: Represents a mapping of a class field to a table column.

• collection-descriptor: Represents a mapping of a collectionlike field to a
set of records in a table referenced by a foreign key.

• reference-descriptor: Represents a mapping from a field in the current
class to another OJB mapped class.

• extent-class: Used to model object inheritance. OJB is flexible enough to
allow for a multiple approach to mapping inheritance relationships
including one table per class and one table per class hierarchy.

The basic skeleton for the class-descriptor element for the Conference class
shown here, tells you that the com.ejdoab.pojos.Conference class is to be mapped
to the table conferences:

<class-descriptor

 class="com.ejdoab.pojos.Conference"

 table="conferences"

>

 <field-descriptor>...</field-descriptor>

...

</class-descriptor>

Table 7-2 provides the specifics of mapping Conference.java to the Conferences
table. For most Java-type to JDBC-type conversions, OJB guesses the correct
transformation. For more complex types that require explicit transformation,
OJB provides the ability to use conversion classes. An OJB conversion class
implements the org.apache.ojb.broker.accesslayer.conversions.FieldConversion,
which declares the javaToSql and sqlToJava methods.

1259c07.fm Page 351 Friday, February 27, 2004 1:45 PM

Chapter 7

352

The PK_ID field is the primary key for the table conferences. It’s declared
NOT NULL in the table schema. In order to map the Java field ID to the column
PK_ID you need a field-descriptor element as shown here:

<field-descriptor

 name="id"

 column="PK_ID"

 jdbc-type="INTEGER"

 primarykey="true"

 nullable="false"

 autoincrement="true"

/>

Notice that a field-descriptor element enables you to define the name of the
Java field, the table column it maps to, and whether it’s a primary key and nullable.
The last attribute is especially important because it tells OJB to generate the value for
the primary key for new objects being persisted. This value gets automatically
incremented as new objects are persisted to the database. Later in this section
you’ll learn how to configure OJB’s autoincrement feature.

Table 7-2. Object Fields to Table Column Mappings for Conference.java

Object Field Java Type Table Column

id int PK_ID

name String NAME

description String DESCRIPTION

startDate Date STARTDATE

endDate Date ENDDATE

abstractSubmissionStartDate Date ABSTRACTSUBMISSIONSTARTDATE

abstractSubmissionEndDate Date ABSTRACTSUBMISSIONENDDATE

tracks Vector TRACKSCONFERENCESFK (TRACKS Table)

1259c07.fm Page 352 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

353

BEST PRACTICE When choosing a primary key for a new table, espe-
cially if you know that the table will be used in an object-oriented
system by an ORM tool, use surrogate primary keys whenever possible.
Surrogate primary keys are small, simple keys that have no business
meaning and are normally not updated or even seen by end users.
They provide an audit trail, result in small indexes, make joins easier
to write and faster to execute, are more resilient to business changes
(because they have no business meaning), and make referential integrity
easier to maintain. An example of dangerous business-key usage as a
primary key would be using telephone numbers as account identifiers.
Because telephone numbers can and do change, maintenance or
some sort of mapping would be required when a customer’s telephone
number changes.

Characterlike JDBC types like VARCHAR and LONGVARCHAR map directly
to Java Strings as shown in the field-descriptor elements for the name and
description columns. Notice that the lengths are specified using the length
attribute. If no length is specified OJB will assign a default value, as follows:

Table 7-2. Object Fields to Table Column Mappings for Conference.java

JDBC Type Special Processing

INTEGER None

VARCHAR(64) None

LONGVARCHAR None

TIMESTAMP Java Date >> SQL Timestamp

TIMESTAMP Java Date >> SQL Timestamp

TIMESTAMP Java Date >> SQL Timestamp

TIMESTAMP Java Date >> SQL Timestamp

INTEGER One-to-many mapping

1259c07.fm Page 353 Friday, February 27, 2004 1:45 PM

Chapter 7

354

<field-descriptor

 name="name"

 column="NAME"

 jdbc-type="VARCHAR"

 length="64"

/>

<field-descriptor

 name="description"

 column="DESCRIPTION"

 jdbc-type="LONGVARCHAR"

 length="255"

/>

For the Java fields of java.util.Date type a conversion from the SQL
type TIMESTAMP is required. If you examine the OJB JavaDocs under the
org.apache.ojb.broker.accesslayer.conversions package you’ll find the
JavaDate2SqlTimestampFieldConversion class. As the name implies this class
can convert between java.util.Date and SQL TIMESTAMP. To use the OJB’s con-
version feature you need to use the conversion attribute as shown in the descriptor
of the field startDate, as follows:

<field-descriptor

 name="startDate"

 column="STARTDATE"

 jdbc-type="TIMESTAMP"

 conversion="(...).JavaDate2SqlTimestampFieldConversion"

/>

To map the one-to-many relationship between Conference and Track you
use a collection-descriptor element, as shown here:

<collection-descriptor

 name="tracks"

 element-class-ref="com.ejdoab.pojos.Track"

 auto-retrieve="true"

 auto-update="true"

 auto-delete="true"

 >

 <orderby name="pk_Id" sort="ASC"/>

 <inverse-foreignkey field-ref="conferenceId"/>

</collection-descriptor>

1259c07.fm Page 354 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

355

The collection-descriptor element maps the tracks field of type Vector to a
collection of objects of com.ejdoab.pojos.Track type, for which the conferenceId
field matches the value of the Conference object primary key (the ID field). Under
the covers, the collection-descriptor is a specialized type of reference-descriptor
for working with collections of related objects such as the case of the one-to-many
relationship in the example.

Most of the fields in the Track object are mapped in similar fashion, with the
only special case being the mapping of the field conference, which should return
the object of type Conference to which a given Track object belongs. For this
you’ll use a reference-descriptor that maps the field conference to the object of
the Conference class for which the primary key matches the conferenceId foreign
key as shown here:

<class-descriptor

 class="com.ejdoab.pojos.Track"

 table="tracks"

>

...

 <field-descriptor

 name="conferenceId"

 column="fk_ConferenceId"

 jdbc-type="INTEGER"

 />

...

 <reference-descriptor

 name="conference"

 class-ref="com.ejdoab.pojos.Conference"

 >

 <foreignkey field-ref="conferenceId"/>

 </reference-descriptor>

</class-descriptor>

The mappings shown in this example are a very simple example of the
mapping capabilities of OJB. For example, when mapping inheritance you can
use the extent-class element with different mapping strategies such as one class
per table, one class per hierarchy, and one class per table with foreign keys. Lazy
loading and proxy classes are some of the advanced concepts not covered in this
chapter that you might want to investigate at the OJB website.

1259c07.fm Page 355 Friday, February 27, 2004 1:45 PM

Chapter 7

356

Generating OJB Mappings with XDoclet

OJB provides a faster and more streamlined way to generate the repository_user.xml
file by using the OJB XDoclet module, which ships as part of the OJB distribution.
By using XDoclet attributes on the POJOs you only need to maintain the mappings
at the place that’s most likely to change often, the source code. As with EJBs,
XDoclet lets you stay true to XP’s “Once and Only Once” rule by eliminating the
work of manually maintaining the XML mapping file.

The module is contained in the xdoclet-ojb-module-1.2.jar file and provides
you with the ojbdoclet Ant task. Place this file in the lib/development/xdoclet
directory of the sample project along with the base XDoclet JARs (you can just
copy all of the files under the XDoclet distribution lib directory) as follows:

• commons-collections-2.0.jar

• commons-logging.jar

• log4j.jar

• xdoclet-1.2.jar

• xdoclet-ejb-module-1.2.jar

• xdoclet-java-module-1.2.jar

• xdoclet-jboss-module-1.2.jar

• xdoclet-web-module-1.2.jar

• xdoclet-xdoclet-module-1.2.jar

• xjavadoc-1.0.2.jar

For the sample project, you can use the path declaration shown to gain
access to all the necessary OJB JARs from within Ant. Notice the use of the
${OJB_HOME} property, as follows:

1259c07.fm Page 356 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

357

<path id="ojb.class.path">

 <path refid="xdoclet.class.path"/>

 <fileset dir="${OJB_HOME}/lib">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${OJB_HOME}/dist">

 <include name="*.jar"/>

 </fileset>

</path>

Load the Doclets

 <!-- === -->

 <!-- Declare taskdefs -->

 <!-- === -->

 <taskdef

 name="ejbdoclet"

 classname="xdoclet.modules.ejb.EjbDocletTask"

 classpathref="xdoclet.class.path"

 />

 <taskdef

 name="ojbdoclet"

 classname="xdoclet.modules.ojb.OjbDocletTask"

 classpathref="ojb.class.path"

 />

To use the ojbdoclet task in your Ant script to create the OJB mappings file
repository_user.xml, you use the Ant target shown here. The ojbdoclet task has
two subtasks: ojbrepository and torqueschema. For the examples in this chapter
you’ll only need the ojbrepository subtask, which creates the XML fragment con-
taining the user descriptors. The torqueschema subtask creates Torque XML
schemas, which can be transformed into SQL statements for a particular
database.

1259c07.fm Page 357 Friday, February 27, 2004 1:45 PM

Chapter 7

358

NOTE Torque is also a persistence layer that can generate code to
map an object model to a set of databases. Torque, which came from
the Apache Turbine framework, is a less flexible O/R mapping tech-
nology than OJB. It uses an XML file that describes the object model
and generates both Java classes and SQL scripts. It can operate with
many databases and it’s used by OJB to generate database-specific
SQL scripts. Torque can also reverse engineer existing database schemas
into a Java object model.

Similar to the previously used ejbdoclet, ojbdoclet requires a set of source
files so that you can scan for XDoclet tags. It also requires the name and desti-
nation of the generated XML fragment, as shown here:

<!-- === -->

<!-- Generates OJB repository_user.xml using OJB XDoclet's Task -->

<!-- === -->

<target name="ojb-mapping" depends="clean,prepare"

 description="generates OJB repository file using ojbdoclet task">

 <echo>generating repository_user.xml...</echo>

 <ojbdoclet destdir="${descriptors-ojb}">

 <fileset dir="${src}"/>

 <ojbrepository destinationFile="repository_user.xml"/>

 </ojbdoclet>

</target>

Finally, all you have to do now is annotate your POJOs with XDoclet tags.
Most attributes map directly to the attributes found in the OJB repository file.
To generate an OJB class-descriptor element simply add a class-scoped xdoclet
comment using the @ojb.class tag. Similarly, for field-descriptor elements, use
@ojb.field; for collection-descriptor use @ojb.collection, and so forth.

...

/**

 * @ojb.class

 * generate-table-info="true"

 * table="conferences"

 */

1259c07.fm Page 358 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

359

public class Conference implements Serializable {

 /**

 * @ojb.field

 * column="PK_ID"

 * jdbc-type="INTEGER"

 * primarykey="true"

 * autoincrement="true"

 * nullable="false"

 * id="0"

 */

 protected int id;

 /**

 * @ojb.field

 * column="NAME"

 * jdbc-type="VARCHAR"

 * length="64"

 * id="1"

 */

 protected String name;

...

 /**

 * @ojb.field

 * column="STARTDATE"

 * jdbc-type="TIMESTAMP"

 * id="3"

 * conversion="org.apache.ojb.broker.accesslayer➥

 .conversions.JavaDate2SqlTimestampFieldConversion"

 */

 protected Date startDate;

...

 /**

 * @ojb.collection

 * element-class-ref="com.ejdoab.pojos.Track"

 * foreignkey="conferenceId"

 * auto-retrieve="true"

 * auto-update="true"

 * auto-delete="true"

 * orderby="pk_Id"

 */

 protected Vector tracks;

...

}

1259c07.fm Page 359 Friday, February 27, 2004 1:45 PM

Chapter 7

360

TIP Before the 1.0 release of OJB, the XDoclet module documentation
wasn’t available on the OJB site. To obtain the module documentation
run the doc target of the OJB build script. The xdoclet-module.html
file should now be in the doc directory of your OJB distribution.

Putting It All Together with Ant

Let’s walk through the Ant build script that will accomplish the build tasks required
for the example. The build script is located at the root of the project directory. A
sample of the build.properties file shown here has a section that defines the ejb-jar
to be generated, a section for the database type (hsqldb in our case), a section for
the JBoss-specific settings (refer to Chapter 5 for JBoss configuration instructions),
and finally a section that defines the location of the OJB distribution.

// app

jar-name=ojb-jboss-test.jar

// database (for OJB profile)

database.type=hsqldb

// jboss specific

jboss.home=C:/java/jboss-3.2.1

jboss.server=${app.name}

jboss.datasource=java:/tcmsDS

jboss.datasource.mapping=Hypersonic SQL

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

// db properties

global.db.url=jdbc:hsqldb:hsql://localhost:1701

global.db.userid=sa

global.db.password=

global.db.driver=org.hsqldb.jdbcDriver

global.db.driver.file=${jboss.home}/server/${jboss.server}/lib/hsqldb.jar

// OJB specific

OJB_HOME=C:/java/ojb

1259c07.fm Page 360 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

361

The first section of the script deals with loading and configuring the build
properties, as follows:

<?xml version="1.0"?>

<project name="ojb-jboss" default="all" basedir=".">

 <!-- === -->

 <!-- Configures Project's Properties -->

 <!-- === -->

 <property file="build.properties"/>

 <property name="server-dir"

 location="${jboss.home}/server/${jboss.server}" />

 <property name="server-lib-dir" location="${server-dir}/lib" />

 <property name="server-conf-dir" location="${server-dir}/conf" />

 <property name="server-client-dir" location="${jboss.home}/client" />

 <property name="deploy-dir" location="${server-dir}/deploy" />

 <property name="root" location="${basedir}" />

 <property name="src" location="${root}/src/java" />

 <property name="classes" location="${root}/classes" />

 <property name="generated" location="${root}/generated" />

 <property name="generated-ejb" location="${generated}/ejb-src" />

 <property name="descriptors-ejb" location="${generated}/descriptors/ejb" />

 <property name="descriptors-ojb" location="${generated}/descriptors/ojb" />

 <property name="generated-sql" location="${root}/generated/sql" />

 <property name="dist" location="${root}/dist" />

 <property name="conf" location="${root}/conf" />

 <property name="build" location="${root}/build" />

 <property name="lib" location="lib" />

 <property name="lib-dev" location="${lib}/development" />

Next, several path elements are created for all the project dependencies,
including OJB, JBoss, and XDoclet. Notice that throughout the build you make
use of the ${jboss.home} and ${OJB_HOME} properties. Both of these properties
are defined in the build.properties file.

1259c07.fm Page 361 Friday, February 27, 2004 1:45 PM

Chapter 7

362

 <!-- === -->

 <!-- Configures the ClassPath -->

 <!-- === -->

 <path id="class.path">

 <fileset dir="lib">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${server-lib-dir}">

 <include name="*servlet.jar"/>

 </fileset>

 <fileset dir="${server-client-dir}">

 <include name="jbossall-client.jar"/>

 </fileset>

 <pathelement location="${classes}" />

 </path>

 <path id="jdbc.class.path">

 <pathelement location="${global.db.driver.file}" />

 </path>

 <path id="xdoclet.class.path">

 <path refid="class.path"/>

 <fileset dir="${lib-dev}/xdoclet">

 <include name="*.jar"/>

 </fileset>

 </path>

The jdbc.class.path path element points to the location of the hsqldb JDBC
drivers.

OJB Internal Tables

For the JBoss and OJB example you’ll be using the PersistenceBroker API, and
because you’ll be using OJB’s autoincrement feature you’ll need to have the
certain OJB internal tables in your database. The autoincrement feature auto-
matically creates primary keys (object identifier from the object’s point of view)
for new objects being persisted. OJB will detect that the object field that repre-
sents the primary key isn’t assigned (typically by checking for null) and assign a
new primary key based on the selected policy. The O/R mappings for these tables
are contained in the XML repository_internal.xml fragment. Instead of re-creating
a lot of the work performed by the OJB build script (build-torque.xml) you can
use the Ant task to invoke the OJB build and generate the needed tables.

1259c07.fm Page 362 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

363

NOTE The PersistenceBroker API only requires the OJB_HL_SEQ
table. Because you’re calling the OJB build script you’ll actually end up
with all of OJB internal tables, including those for APIs that aren’t used
in the examples.

The Ant target shown here invokes the OJB build-torque.xml build script and
executes the project-sql-classpath target. This will generate a SQL script in the
target/src/sql directory of the OJB distribution, which you’ll then run against
your database using the SQL Ant task. All Torque-related OJB targets use the value
of the profile property (hsqldb for this example) to generate the database-specific
SQL, therefore you load the OJB property file for the selected profile before
invoking the targets, as shown here:

 <!-- === -->

 <!-- Create OJB Internal Tables -->

 <!-- === -->

 <target name="ojb-internal-tables"

 description="uses the OJB build to generate the OJB's internal tables">

 <property file="${OJB_HOME}/build.properties"/>

 <!-- load the profile set in build.properties -->

 <property file="${OJB_HOME}/profile/${profile}.profile"/>

 <ant dir="${OJB_HOME}"

 antfile="build-torque.xml"

 target="project-sql-classpath"

 />

 <!-- use the sql task to execute the ojbcore-schema.sql file -->

 <sql

 driver="${global.db.driver}"

 url="${global.db.url}"

 userid="${global.db.userid}"

 password="${global.db.password}"

 src="${OJB_HOME}/target/src/sql/ojbcore-schema.sql"

 autocommit="true"

 onerror="continue">

 <classpath refid="jdbc.class.path"/>

 </sql>

 </target>

1259c07.fm Page 363 Friday, February 27, 2004 1:45 PM

Chapter 7

364

OJB SAR File

For OJB to work inside of JBoss you need to deploy the following OJB MBeans:

• PBFactoryMBean: If you’re using the PB API

• ODMGFactoryMBean: If you’re using the ODMG API

Both classes are part of the org.apache.ojb.jboss package and are located in
the src/connector directory of the OJB distribution. The OJB distribution created
previously contains both of these MBeans.

To deploy OJB as a JBoss service you need to create an OJB SAR file. A JBoss
SAR file contains a JBoss service definition (jboss-service.xml) and its associated
files.

NOTE A SAR file is a JAR archive with the extension .sar. SAR files are
specific to JBoss and aren’t part of the J2EE specification.

Figure 7-4 shows the structure of the OJB service SAR file. As you can see, it
contains the service definition jboss-service.xml along with a simple manifest in
the META-INF directory. In the root directory you’ll find the OJB distribution files
(previously created) and their dependencies and configuration files.

Figure 7-4. OJB JBoss service archive

1259c07.fm Page 364 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

365

Table 7-3 provides a brief explanation of the configuration files needed for
OJB to work correctly.

OJB.properties

The OJB.properties file handles runtime environment configuration items
such as execution mode (single instance vs. client-server), the initial size of
the PersistenceBroker, locking, caching, and logging. In the OJB.properties file
you’ll need to set the value of the ConnectionFactoryClass property to the
org.apache.ojb.broker.accesslayer.-ConnectionFactoryManagedImpl class.
The connection factory is used to obtain a database connection in a managed
environment like JBoss through the JBoss data source that was created previously
for the TCMS application in Chapter 5 (tcmsDS). Also, for OJB to integrate
with the JBoss transaction manager you’ll need to set the value of the
OJBTxManagerClass property to org.apache.ojb.odmg.JTATxManager. Finally,
to enable OJB to obtain a transaction manager, a factory class is defined in
the JTATransactionManagerClass property by setting its value to
org.apache.ojb.odmg.transaction.JBossTransactionManagerFactory.

To make your life easier during deployment of the OJB and JBoss application
an Ant target is provided that will take care of creating and deploying the OJB
SAR. In order to generate the SAR archive you’ll need to place the OJB.properties

Table 7-3. OJB JBoss SAR Configuration Files

File Purpose Where to Find It

OJB.properties OJB runtime environment

configuration

doc directory (under the

name OJB.properties.txt)

repository.xml Used to generate the metadata layer

using by OJB at runtime

doc directory

repository_database.xml XML fragment included in

repository.xml, contains JDBC

connection information

doc directory

repository_internal.xml XML fragment included in

repository.xml, contains O/R

mappings for OJB internal tables

repository_user.xml XML fragment containing application-

specific O/R mappings

Generated by Ant script

jboss-service.xml JBoss service configuration file Hand-coded

1259c07.fm Page 365 Friday, February 27, 2004 1:45 PM

Chapter 7

366

files, repository.xml, repository_database.xml, and jboss-service.xml in the conf
directory of the application.

repository_database.xml

The repository_database.xml file contains information about the databases,
which OJB will interact with. For the example, you’ll be using the tcmsDS data
source created in Chapter 5. As mentioned earlier in the chapter you’ll be using
OJB’s autoincrement feature.

NOTE HSQLDB doesn’t support database-based key generation
so a sequence manager such as SequenceManagerHighLowImpl or
SequenceManagerInMemoryImpl is required. For more information
on OJB sequence managers see http://db.apache.org/ojb/
sequencemanager.html.

This feature requires you to configure a specific sequence manager
class. You’ll be using the SequenceManagerHighLowImpl, which uses the
OJB_HL_SEQ table.

<jdbc-connection-descriptor

 jcd-alias="tcms"

 default-connection="true"

 platform="Hsqldb"

 driver="org.hsqldb.jdbcDriver"

 jdbc-level="2.0"

 jndi-datasource-name="java:tcmsDS"

 username="sa"

 password=""

 eager-release="true"

 batch-mode="false"

 useAutoCommit="0"

 ignoreAutoCommitExceptions="false"

>

 <sequence-manager

 className=

 "org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl"

 />

</jdbc-connection-descriptor>

1259c07.fm Page 366 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

367

jboss-service.xml

The jboss-service.xml file defines the MBeans that will be deployed. For the
example you’ll need to deploy the PBFactory MBean, which will be used to obtain
an instance of a PBBroker. This PBFactory is bound to the JNDI name obj/PBAPI,
as follows:

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <mbean code="org.apache.ojb.jboss.PBFactory"

 name="DefaultDomain:service=PBAPI,name=ojb/PBAPI">

 <depends>jboss.jca:service=RARDeployer</depends>

 <attribute name="JndiName">ojb/PBAPI</attribute>

 </mbean>

</server>

Packaging the SAR File

Once all the configuration files have been modified, generating the SAR file is as
simple as invoking the Ant target, which simply uses the jar task to create a JAR
file with the .sar extension, as shown here:

 <!-- === -->

 <!-- Package the SAR -->

 <!-- === -->

 <target name="sar" depends="ojb-mapping"

 description="packages a jboss SAR file for OJB deployment">

 <echo>packaging sar...</echo>

 <jar jarfile="${dist}/ojb.sar">

 <metainf dir="${conf}" includes="jboss-service.xml"/>

 <fileset dir="${OJB_HOME}/lib">

 <include name="commons-*.jar" />

 <include name="antlr.jar" />

 </fileset>

 <fileset dir="${OJB_HOME}/dist">

 <include name="db-ojb-1.0*.jar" />

 </fileset>

 <fileset dir="${conf}">

 <include name="repository*.xml" />

 <include name="repository.dtd" />

 <include name="OJB.properties" />

 </fileset>

1259c07.fm Page 367 Friday, February 27, 2004 1:45 PM

Chapter 7

368

 <fileset dir="${descriptors-ojb}">

 <include name="repository_user.xml" />

 </fileset>

 </jar>

 </target>

Deploying the SAR File to JBoss

To deploy the SAR file to JBoss you simply need to copy it to the tcms deploy
directory. The Ant target shown takes care of deploying both the SAR file and the
generated EJB-JAR file.

 <!-- === -->

 <!-- Deploys SAR and EJB-JAR -->

 <!-- === -->

 <target name="deploy" depends="sar,ejb-jar"

 description="deploys both the SAR and EJB-JAR files to JBoss">

 <copy file="${dist}/ojb.sar" todir="${deploy-dir}"/>

 <!-- give JBoss time to deploy the SAR -->

 <sleep seconds="5"/>

 <copy file="${dist}/${jar-name}" todir="${deploy-dir}"/>

 </target>

After copying the SAR file to the JBoss deploy directory the console will show
the PBFactory being created and started as follows:

...

00:12:22,277 INFO [MainDeployer] Starting deployment of package:

 file:/C:/java/jboss/ /server/tcms/deploy/ojb.sar

00:12:22,327 INFO [SARDeployer] nested deployment: file:...

...

00:12:24,079 INFO [PBFactory] Creating

00:12:24,079 INFO [PBFactory] Created

00:12:24,089 INFO [PBFactory] Starting

00:12:24,099 INFO [PBFactory] PBFactory: org.apache.ojb.jboss.PBFactory /

DefaultDomain:service=PBAPI,name=ojb/PBAPI

00:12:24,109 INFO [PBFactory] Lookup PBFactory via 'java:/ojb/PBAPI'

00:12:24,109 INFO [PBFactory] Started

00:12:24,109 INFO [MainDeployer] Deployed package: file:/C:/java/jboss/jboss-

3.2.1/server/tcms/deploy/ojb.sar

...

1259c07.fm Page 368 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

369

Session Bean

To work with the PersistenceBroker API you’ll use a stateless Session Bean that
will provide services to manipulate the Conferences and Track objects. The
com.ejdoab.beans.ConferenceOJBFacadeBean will provide the following methods:

• Collection getAllConferences

• Conference findConferenceMatching(Conference searchTemplate)

• Conference findConferenceByCriteria(Criteria criteria)

• boolean saveConference(Conference conference)

• boolean deleteConference(Conference conference)

The first step is to create a skeleton for the Session Bean, as you did in
Chapter 5. You’ll use XDoclet to automate the creation of the EJB glue files. A
private field will hold an instance of PersistenceBrokerFactoryIF which is looked
up using JNDI in the Bean’s ejbCreate method. Notice that the PBFactoryIF class
provides a static public field PBFACTORY_JNDI_NAME that contains the JNDI
name, as shown:

package com.ejdoab.beans;

import org.apache.ojb.broker.PersistenceBroker;

import org.apache.ojb.broker.PersistenceBrokerException;

import org.apache.ojb.broker.core.PBFactoryIF;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

import org.apache.ojb.broker.query.Criteria;

import org.apache.ojb.broker.query.Query;

import org.apache.ojb.broker.query.QueryByCriteria;

import com.ejdoab.pojos.Conference;

import com.ejdoab.pojos.Track;

1259c07.fm Page 369 Friday, February 27, 2004 1:45 PM

Chapter 7

370

/**

 * @ejb.bean

 * name="ConferenceOJBFacade"

 * type="Stateless"

 * view-type="both"

 * jndi-name="ejb.ConferenceOJBFacadeHome"

 * local-jndi-name="ejb.ConferenceOJBFacadeLocalHome"

 * @ejb.transaction

 * type="Required"

 * @ejb.util

 * generate="physical"

 */

public abstract class ConferenceOJBFacadeBean implements SessionBean {

 private PersistenceBrokerFactoryIF pbf;

 //==

 // EJB callbacks

 //==

 /**

 * @ejb.create-method

 */

 public void ejbCreate() throws CreateException {

 Context context = null;

 // Lookup the PBF implementation

 try {

 context = new InitialContext();

 pbf = ((PBFactoryIF)context

 .lookup(PBFactoryIF.PBFACTORY_JNDI_NAME))

 .getInstance();

 }

 catch (NamingException e) {

 throw new EJBException(new PersistenceBrokerException(e));

 }

 }

}

1259c07.fm Page 370 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

371

Retrieving a Collection of Objects

The getAllConference method instantiates a PersistenceBroker by calling the
defaultPersistenceBroker method of the PersistenceBroker factory. To retrieve a
collection of all conferences an org.apache.ojb.broker.query.QueryByCriteria is
constructed using the Conference class as the target class and null for the criteria,
which will return all available Conference objects. Notice that all PersistenceBroker
methods throw a PersistenceBrokerException, which is a runtime exception and
the base class for all OJB exceptions, as follows:

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return a Collection of all Conferences in the database

 */

 public Collection getAllConferences() {

 PersistenceBroker broker = pbf.defaultPersistenceBroker();

 Collection allConferences = Collections.EMPTY_LIST;

 try {

 Query query = new QueryByCriteria(Conference.class, null);

 allConferences = broker.getCollectionByQuery(query);

 } catch (PersistenceBrokerException pbe) {

 throw new EJBException("Could not retrieve list of conferences", pbe);

 } finally {

 if (broker != null)

 broker.close();

 }

 return allConferences;

 }

Finding an Object Using a Template

The findConferenceMatching method takes a Conference object, which is
created by the client code and partially populated with the values that are being
searched for. The Conference object is then passed as a parameter, which is used
to create a QueryByCriteria that’s passed to the getObjectByQuery, which will
return the first object in the database that matches the field values set on the
searchTemplate Conference object, as follows:

1259c07.fm Page 371 Friday, February 27, 2004 1:45 PM

Chapter 7

372

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return a Conference object matching the

 * searchTemplate or null if none is found

 */

 public Conference findConferenceMatching(Conference searchTemplate) {

 PersistenceBroker broker = pbf.defaultPersistenceBroker();

 Conference conference;

 try {

 Query query = new QueryByCriteria(searchTemplate);

 conference = (Conference) broker.getObjectByQuery(query);

 } catch (PersistenceBrokerException pbe) {

 throw new EJBException("Could not retrieve list of conferences", pbe);

 } finally {

 if (broker != null)

 broker.close();

 }

 return conference;

 }

Find an Object by Criteria

Similar to the findConferenceMatching method, the findConferenceByCriteria
method takes an object of type org.apache.ojb.broker.query.Criteria and uses it
to construct a QueryByCriteria object, which will be used in the getObjectByQuery
call. The Criteria object represents search attributes that are linked using logic
operators (like AND and OR) and can be precompiled for efficient searching
(instead of having to parse a string query). The code for the findConferenceBy-
Criteria method is shown here.

NOTE The OJB distribution doesn’t intend for the Criteria object to be
passed as a remote parameter, and doing so couples your client code
to an OJB-specific class. A more reasonable choice would be to accept
an application-specific Criteria-like object and use this to create an
OJB criteria object on the server side.

1259c07.fm Page 372 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

373

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return

 */

 public Conference findConferenceByCriteria(Criteria criteria) {

 PersistenceBroker broker = pbf.defaultPersistenceBroker();

 Conference conference;

 try {

 Query query = new QueryByCriteria(Conference.class, criteria);

 conference = (Conference) broker.getObjectByQuery(query);

 } catch (PersistenceBrokerException pbe) {

 throw new EJBException("Could not retrieve list of conferences", pbe);

 } finally {

 if (broker != null)

 broker.close();

 }

 return conference;

 }

Saving an Object

So far you’ve seen how to retrieve an object from the database using OJB. But to
get those objects to the database in the first place is even simpler—all you need
to do is invoke the PersistenceBroker store method. If an object’s primary key
attribute isn’t set, OJB will detect this and autogenerate a primary key for the
object, which makes the underlying operation an INSERT. If the primary key is
set then the operation becomes an UPDATE if the object exists, and an INSERT if
it doesn’t, as shown here:

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return

 */

1259c07.fm Page 373 Friday, February 27, 2004 1:45 PM

Chapter 7

374

 public boolean saveConference(Conference conference) {

 PersistenceBroker broker = pbf.defaultPersistenceBroker();

 boolean result = true;

 try {

 broker.store(conference);

 } catch (PersistenceBrokerException pbe) {

 result = false;

 } finally {

 if (broker != null) broker.close();

 }

 return result;

 }

Deleting an Object

Deleting a persistent object in OJB is as simple as invoking the PersistenceBroker
delete(Object object) method. Dependent object deletion, such as in the case
of the collection of Tracks belonging to a Conference depends on the value of the
auto-delete attribute in the reference-descriptor element or the collection-
descriptor elements of the class-descriptor.

You can tell OJB what to do with object references by setting retrieve (auto-
retrieve), update (auto-update), and delete (auto-delete) attributes in the reference
and collection descriptors. For deletion in a one-to-many scenario, you need to
take into account the nature of the relationship. For example, in the Conference-
Track case you don’t want a Track to exist without a corresponding Conference so
the auto-delete attribute is set to true. In the case where the related objects aren’t
going to be deleted, like in a Department-Employee scenario, you would want
the Employee objects to be deleted when the Department object is deleted
(although you probably would want to reassign them to another Department
object or a “dummy” Department object that represents the state when an Employee
doesn’t officially belong to any department). The code for the deleteConference
method is shown here:

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return

 */

1259c07.fm Page 374 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

375

 public boolean deleteConference(Conference conference) {

 PersistenceBroker broker = pbf.defaultPersistenceBroker();

 boolean result = true;

 try {

 broker.delete(conference);

 } catch (PersistenceBrokerException pbe) {

 result = false;

 } finally {

 if (broker != null) broker.close();

 }

 return result;

 }

Test Client

Finally, you’ll need a test client similar to the one used in Chapter 5. In this client
you’ll look up the ConferenceOJBFacade Session Bean and invoke the exposed
methods. First, you’ll retrieve all existing conferences. If you ran the SQL scripts
provided in Chapter 5 you should have one Conference object and three associated
Tracks in the database. Next you’ll search for a Conference object using the two
different methods provided and create the Conference object if it doesn’t exist, as
shown here:

package com.ejdoab.client;

import org.apache.ojb.broker.query.Criteria;

import com.ejdoab.beans.ConferenceOJBFacade;

import com.ejdoab.beans.ConferenceOJBFacadeHome;

import com.ejdoab.pojos.Conference;

import com.ejdoab.pojos.Track;

/**

 * Simple OJB/JBoss Test Client

 */

public class Client {

 private static final String ICF = "org.jnp.interfaces.NamingContextFactory";

 private static final String SERVER_URI = "localhost:1099";

 private static final String PKG_PREFIXES =

 "org.jboss.naming:org.jnp.interfaces";

1259c07.fm Page 375 Friday, February 27, 2004 1:45 PM

Chapter 7

376

 public static void main(String args[]) {

 Context ctx;

 ConferenceOJBFacadeHome facadeHome;

 ConferenceOJBFacade facade;

 // initial context JBossNS configuration

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, ICF);

 env.put(Context.PROVIDER_URL, SERVER_URI);

 env.put(Context.URL_PKG_PREFIXES, PKG_PREFIXES);

 ...

}

The first step is to locate the Facade Session Bean using JNDI, as follows:

 ...

 try {

 // ----------

 // JNDI Stuff

 // ----------

 ctx = new InitialContext(env);

 // look up the home interface

 System.out.println(

 "[jndi lookup] Looking Up ConferenceOJBFacade " +

 "Remote Home Interface");

 Object obj = ctx.lookup("ejb.ConferenceOJBFacadeHome");

 // cast and narrow

 facadeHome = (ConferenceOJBFacadeHome) PortableRemoteObject

 .narrow(obj, ConferenceOJBFacadeHome.class);

 // create the facade

 facade = facadeHome.create();

 ...

Now you use the ConferenceOJBFacade Session Bean to retrieve a list of
all conferences:

1259c07.fm Page 376 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

377

 // ----------

 // Tests

 // ----------

 System.out.println("[retrieving all conferences]");

 Collection c = facade.getAllConferences();

 Iterator i = c.iterator();

 while (i.hasNext()) {

 Conference conference = (Conference)i.next();

 System.out.println(conference.toString());

 }

To find a conference using a search template you simply need to construct a
Conference object, set some of its values, and invoke the findConferenceMatching
method:

 //

 // Find using a search template

 //

 System.out.println("[searching using template object]");

 Conference searchTemplate = new Conference();

 searchTemplate.setId(1);

 // searchTemplate.setName("Apress OSC"); <-- can search on any field

 Conference conference = facade.findConferenceMatching(searchTemplate);

 if (conference != null) {

 System.out.println(conference);

 }

 else {

 System.out.println("could not find a conference matching = "

 + searchTemplate);

 }

For more control over the search results you can use the OJB Criteria object.
In the code snippet shown here, a Conference is searched for by name:

 //

 // Find by criteria

 //

 System.out.println("[searching using criteria]");

 Criteria criteria = new Criteria();

 criteria.addEqualTo("name", "Apress OSC");

 conference = facade.findConferenceByCriteria(criteria);

1259c07.fm Page 377 Friday, February 27, 2004 1:45 PM

Chapter 7

378

If the object is found then it’s displayed, along with any associated Track
object, as follows:

 if (conference != null) {

 //

 // Conference found, displaying it

 //

 System.out.println("Conference was found\n" + conference + "\n");

 System.out.println("Here are the tracks:\n");

 Vector tracks = (Vector) conference.getTracks();

 for (Iterator iter = tracks.iterator(); iter.hasNext();) {

 Track track = (Track) iter.next();

 System.out.println(track);

 System.out.println("This track belongs to conference " +

 track.getConference().getName());

 }

 }

If the object isn’t found then you can create it. The code snippet adds three
new tracks to the newly created Conference object and it then invokes the
saveConference method to persist the object, as shown:

 ...

 else {

 Date today = new Date();

 //

 // Conference not found, creating it

 //

 System.out.println("Conference was not found, creating it");

 // create the new conference object

 Conference newConf =

 new Conference("Apress OSC", "Apress Open Source Conference",

 today, today, today, today);

 // add some tracks

 newConf.addTrack(

 new Track("J2SE",

 "Java 2 Standard Edition",

 "Learn how to build powerful Java desktop applications"));

 newConf.addTrack(

 new Track(

 "J2EE",

 "Java 2 Enterprise Edition",

 "Enterprise Applications powered entirely by Open Source"));

1259c07.fm Page 378 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

379

 newConf.addTrack(

 new Track(

 "J2ME",

 "Java 2 Micro Edition",

 "Java brings cell phones and PDAs to life"));

 // invoke the session bean to save the conference

 boolean result = facade.saveConference(newConf);

 System.out.println(

 "The conference was " + (result ? "saved" : "NOT saved"));

 }

 }

 catch (RemoteException re) {

 System.out.println("[rmi] remote exception: " + re.getMessage());

 }

 catch (NamingException ne) {

 System.out.println("[naming] naming exception: " + ne.getMessage());

 }

 catch (CreateException ce) {

 System.out.println("[ejb] create exception: " + ce.getMessage());

 }

 }

}

Results

The results of running the test client application for the first time are shown here:

[jndi lookup] Looking Up ConferenceOJBFacade Remote Home Interface

[retrieving all conferences]

[searching using template object]

could not find a conference with id = 1

[searching using criteria]

Conference was not found, creating it

The conference was saved

As you can see, on the first run the Conference object isn’t found by either of
the methods selected so it’s created. On the second run you can see that the
newly created Conference object is now found along with its associated Tracks:

1259c07.fm Page 379 Friday, February 27, 2004 1:45 PM

Chapter 7

380

[jndi lookup] Looking Up ConferenceOJBFacade Remote Home Interface

[retrieving all conferences]

[Conference] id = 1,

 name = Apress OSC,

 description = Apress Open Source Conference,

 start date = Wed Jan 07 16:53:15 EST 2004,

 end date = Wed Jan 07 16:53:15 EST 2004,

 tracks = 3

[searching using template object]

Conference was found

[Conference] id = 1,

 name = Apress OSC,

 description = Apress Open Source Conference,

 start date = Wed Jan 07 16:53:15 EST 2004,

 end date = Wed Jan 07 16:53:15 EST 2004,

 tracks = 3

Here are the tracks:

[Track] id = 1,

 title = J2SE,

 subTitle = Java 2 Standard Edition,

 description = Come and learn how to build powerful

 Java desktop applications

This track belongs to conference Apress OSC

[Track] id = 2,

 title = J2EE,

 subTitle = Java 2 Enterprise Edition,

 description = Enterprise Applications powered entirely by Open Source

This track belongs to conference Apress OSC

[Track] id = 3,

 title = J2ME,

 subTitle = Java 2 Micro Edition,

 description = Java brings cell phones and PDAs to life

This track belongs to conference Apress OSC

1259c07.fm Page 380 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

381

As you can see, OJB covers most of the needs of an enterprise application
when it comes to persistence. There are features of OJB that aren’t covered in this
chapter and you can learn more about them by visiting the OJB website (http://
db.apache.org/ojb) or reading through the post in the OJB user newsgroup
(comp.jakarta.ojb.user). Among these features are proxy classes which enable
lazy loading for performance purposes.

Hibernate

Hibernate is an ORM tool billed as a “relational persistence for idiomatic Java,”
which can be translated as a way of saying “object-oriented transparent persistence
mechanism for Java.” Hibernate provides both persistence and object-querying
capabilities that allow you to work in a fine-grained fashion with rich object models.
It provides an object-oriented declarative programming model that doesn’t depend
on code generation or bytecode modification (). Like OJB, Hibernate uses runtime

reflection and its O/R mappings are XML documents. (Hibernate also provides
the ability to define the mappings in the Java code, which can be useful for tool
automation or query building tools.) Hibernate works equally well in stand-alone
applications or in managed environments such as a J2EE server.

The Hibernate project got started by Gavin King in late 2001 as the result of
his experiences working with the earlier versions of CMP EJBs. Hibernate’s easy-
to-use SQL-like query language makes it easier for developers who are accustomed
to writing SQL to make the transition from either CMP EJBs or straight JDBC.
Hibernate has become a successful example of an Open Source project because
it provides a large, clean amount of documentation, and has very responsive
community support. In late 2003, Hibernate became part of the JBoss project
and will be used as the foundation for JBoss’ CMP engine.

As opposed to OJB, Hibernate doesn’t support multiple personalities or APIs.
Hibernate provides a single, simple API that strives for familiarity (to SQL) rather
than standards compliance. Figure 7-5 shows a simplified view of Hibernate’s
architecture.

1259c07.fm Page 381 Friday, February 27, 2004 1:45 PM

Chapter 7

382

Figure 7-5. Hibernate architecture

In Hibernate, O/R mappings are compiled and cached by the Session factory,
which is used to retrieve Hibernate Sessions. A Session’s role is similar to a stateless
Session Bean in that it’s a short-lived object used as a bridge between an appli-
cation and the underlying data storage (similar to OJB’s PersistenceBroker). The
Hibernate Session embodies the concept of a persistence service that can be
used to insert, update, and delete operations on instances of a class mapped by
Hibernate.

As you can see from Figure 7-5, however much you use Hibernate depends
on your needs. At its simplest level Hibernate provides a lightweight architecture
that only deals with ORM. Although a full-blown Hibernate architecture fully
abstracts most aspects of persistence such as transaction, caching, and
connection pooling. To learn more about Hibernate’s architecture go to
http://www.hibernate.org/hib_docs/reference/html/architecture.html or get
Hibernate in Action: Practical Object/Relational Mapping by Christian Bauer and
Gavin King.3

3. Bauer, Christian and Gavin King. Hibernate in Action, Practical Object/Relational Mapping
(Greenwich, CT: Manning, 2004).

1259c07.fm Page 382 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

383

Obtaining Hibernate

You can download Hibernate (version 2.1.1) from http://www.hibernate.org in
both binary and source distributions. For the examples, you’ll need the binary
distribution file hibernate-2.1.1.zip, which you can unzip and save to any location,
for example c:\java\hibernate.

Configuring the Sample Project

For the Hibernate example you’ll mimic the directory structure created for the
OJB example shown in Figure 7-2. Hibernate’s dependencies are all contained in
the lib directory under the Hibernate distribution. As you did in the OJB example,
you’ll now access the required Hibernate libraries with an Ant script that will do
most of the work of copying and configuring your Hibernate and JBoss project.

NOTE For stand-alone Hibernate applications you need to configure
the file hibernate.properties, which controls the runtime behavior of
Hibernate and must be found in the classpath. In the case of the JBoss
examples there’s no need to do so because most runtime parameters
are defined at the JBoss service level or are dynamically guessed by
Hibernate.

There are also some minor changes required to the POJOs used in this example.
In the OJB example, you used the int primitive Java type for the object’s IDs. With
Hibernate’s way of detecting whether an object has been saved or not, nonprim-
itive nullable IDs result in easier configuration of the mappings. Therefore you’ll
need to change the int fields in favor of Integer fields for the Conference.java and
Track.java as shown here:

�
public class Conference implements Serializable {

 protected Integer id;

 �
 public Integer getId() {

 return id;

 }

�
 public void setId(Integer value) {

 id = value;

 }

…

1259c07.fm Page 383 Friday, February 27, 2004 1:45 PM

Chapter 7

384

NOTE Hibernate doesn’t require the use of object identifiers, if one
isn’t provided Hibernate will keep track of the objects internally. How-
ever, as pointed out in the Hibernate online documentation, having a
simple and consistent object identifier per class is a good practice,
and some of Hibernate’s optional optimizations, such as cascaded
updates and dynamic “save or update” functionality, might require them.

Hibernate O/R Mappings

Let’s take a brief look at the Hibernate mappings needed for the Conference
and Track objects. Hibernate strives for simplicity of the metadata. If something
is missing in a mapping, Hibernate attempts to guess the appropriate values or
defaults using reflection. This makes the Hibernate mapping process more for-
giving than most other ORM tools.

Remember with the Conference and Tracks classes you have a bidirectional
one-to-many association, therefore you need a way to get all Tracks for an asso-
ciated Conference and the associated Conference for a given Track.

The Hibernate mappings are very similar to the OJB mappings, with the
exception that Hibernate promotes the use on one mapping file per class, which
eases collaborative work, especially in the early stages of ORM process. This
effectively changes the way you work with the persistence framework, thereby
giving you a class-driven view of the system as opposed to a database-driven one.

The skeleton for the Conference.hbm.xml file (all Hibernate mappings have
the hbm prefix before the .xml extension) should resemble the following:

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD 2.0//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

 <class

 name="com.ejdoab.pojos.Conference"

 table="conferences"

 dynamic-update="false"

 dynamic-insert="false"

 >

 <!-- field mappings go here -->

 </class>

</hibernate-mapping>

1259c07.fm Page 384 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

385

The root element is named hibernate-mapping and for each mapped class
you’ll have a class element. The main properties to notice in the class element are
the fully qualified name of the class that will be mapped under the name property,
and the table that will be used to map the said class.

To map the individual fields of an object to columns in a table there are
several elements that you can use depending on the function of the given field.
Table 7-4 shows the field mapping elements that you’ll use in the example.

Mapping Identity Columns

For the Conferences class the id field is of type Integer. Hibernate provides a
flexible framework for unique identifier generation. The element generator
determines the class used to generate unique identifiers.

Table 7-5 shows a quick summary of the generator strategies provided by
Hibernate.

Table 7-4. Hibernate Mapping Elements Used in the Example

Element Purpose

id Defines a mapping between an object identity property and a

primary key column in the database

property Defines a mapping between an object property and a column

in the database

set One of the many collection mapping elements that include

list, map, bag, array, and primitive-array

many-to-one Defines a simple object reference in a many-to-one

relationship

Table 7-5. Hibernate’s Identifier Generation Strategies

Strategy Description

increment identity

identity Uses database identity columns for those databases that

support it. Use it with an integer-type object property.

sequence Uses a database sequence or internal database generator for

those databases that support these features.

1259c07.fm Page 385 Friday, February 27, 2004 1:45 PM

Chapter 7

386

In the case of the Conference class the “increment” generator class is chosen,
primarily for ease of use because it doesn’t require the creation of any Hibernate-
specific tables.

CAUTION There seems to be a bug with the HSQLDB database version
and the use of IDENTITY columns of type BIGINT that shipped with
JBoss 3.0.x and 3.2.x. If the generation strategy chosen is “identity” or
“native” you’ll experience SQL errors. Because the TCMS schema is
designed for maximum portability IDENTITY columns aren’t used.

The id element for the Conference table is shown here:

 <id

 name="id"

 column="PK_ID"

 type="java.lang.Integer"

 >

 <generator class="increment">

 </generator>

 </id>

hilo Uses an algorithm to determine the next value based on a

column in a given table.

seqhilo Uses a named database sequence and the hilo algorithm.

uuid.hex Uses a pseudo globally unique identifier algorithm and returns

a hex encoded 32 digit number

uuid.string Uses a pseudo globally unique identifier algorithm and returns

a 16-character string.

foreign Uses the identifier of an associated object.

native Intelligently chooses the appropriate strategy. It’s the

recommended strategy for maximum portability.

assigned Used for applications that use provided business unique keys.

Table 7-5. Hibernate’s Identifier Generation Strategies (Continued)

Strategy Description

1259c07.fm Page 386 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

387

Mapping Field to Columns

The mapping of regular (nonidentity) field-to-database columns is very straight-
forward in Hibernate. Hibernate handles most types of conversions automatically.
The following example shows the mappings of some Conference.java fields as
well as the name field of type String, and the startDate field, which is a java.util.Date.
These two fields map respectively to VARCHAR(64) and DATETIME SQL types,
as shown:

 <property

 name="name"

 type="java.lang.String"

 update="true"

 insert="true"

 column="name"

 length="64"

 />

...

 <property

 name="startDate"

 type="java.util.Date"

 update="true"

 insert="true"

 column="startDate"

 />

If you remember, with OJB you had to specify a conversion class between the
java.util.Date fields and the DATETIME (or TIMESTAMP) fields. Hibernate takes
care of this conversion automatically.

One-to-Many Mapping Using the set Element

To map the one-to-many relationship between the Conference and Track
objects, you use a set element, as shown here:

1259c07.fm Page 387 Friday, February 27, 2004 1:45 PM

Chapter 7

388

 <set

 name="tracks"

 table="tracks"

 lazy="false"

 inverse="false"

 cascade="all"

 sort="unsorted"

 >

 <key

 column="fk_ConferenceId"

 />

 <one-to-many

 class="com.ejdoab.pojos.Track"

 />

 </set>

Different from OJB, the foreign key that’s used is the actual database foreign
key column and not an object field mapped to the foreign key column. This is an
example of one of the core differences in approaches between these two ORM
tools. OJB takes more of a purist-object approach, though Hibernate embraces
SQL as a side-by-side complement to your object’s model.

Many-to-One Mapping

To retrieve a given Track object associated with the Conference object, you need
an object reference that will return the Conference object. The object’s identity
should match the value of the column fk_ConferenceId. The many-to-one element
provides such a link. Notice the hybrid nature of this declaration. On the one
hand you refer to a class that will be linked but you’ll use a table column value to
determine the lookup, as follows:

 <many-to-one

 name="conference"

 class="com.ejdoab.pojos.Conference"

 cascade="none"

 outer-join="auto"

 update="true"

 insert="true"

 column="fk_ConferenceId"

 />

1259c07.fm Page 388 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

389

NOTE To decide whether to use outer-join fetching see section 3.5.2
of the Hibernate2 Reference Documentation
(http://www.hibernate.org/hib_docs/) and section 20 for related
Best Practices. Outer joins can significantly reduce the amount of calls
against the database but it can possibly increase the server load. A
decision to use outer joins should be based on the particular tables,
how they’re configured, and how they’re related.

Hibernate and XDoclet

As for many of the projects covered in this book, there’s a Hibernate XDoclet
module that’s shipped with the XDoclet distribution. The Hibernate doclet simplifies
the creation and maintenance of Hibernate mapping files (hbm.xml files) as well
as the deployment of Hibernate on JBoss. The Ant script is this section is based
on the build used in the OJB examples. For the sake of brevity, only the portions
that need to be changed are shown.

NOTE You can find the documentation for both the Hibernate
XDoclet task and the Hibernate tags at the XDoclet website at
http://xdoclet.sourceforge.net. The first is under /ant/xdoclet/
modules/hibernate/HibernateDocletTask.html and the latter is under
/tags/hibernate-tags.html.

XDoclet JARs

The project’s directory contains a lib/development/xdoclet directory under
which you need to copy the following the xdoclet-hibernate-module-1.2.jar file
(for version 1.2 of XDoclet), in addition to the base XDoclet files used in the
OJB example.

Annotating the Plain Old Java Objects

Adding Hibernate XDoclet tags to the Conference and Track classes is very
similar to the work you did previously with OJB. The most noticeable difference
between the OJB and Hibernate XDoclet mappings is the default data-access
method used. In OJB, direct field access is the default, but in Hibernate, access
with getters and setters is the default, as shown here:

1259c07.fm Page 389 Friday, February 27, 2004 1:45 PM

Chapter 7

390

...

/**

 * @hibernate.class

 * table="conferences"

 */

public class Conference implements Serializable {

...

 //

 // getters

 //

 /**

 * @hibernate.id

 * column="PK_ID"

 * generator-class="increment"

 */

 public Integer getId() {

 return id;

 }

Hibernate’s intelligent guessing of the default attributes makes it easy
to keep XDoclet tags to a minimum. In some cases, as shown next in the
hibernate.property tag, it’s all that’s required:

 /**

 * @hibernate.property

 * length="64"

 */

 public String getName() {

 return name;

 }

 ...

 /**

 * @hibernate.property

 */

 public Date getStartDate() {

 return startDate;

 }

The XDoclet tag for the mapping of the Tracks collection that belongs to a
Conference is the most complex. The cascade attribute enables operations such
as updates and deletes to “cascade” appropriately to child objects.

1259c07.fm Page 390 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

391

...

 /**

 * @hibernate.set

 * role="tracks"

 * table="tracks"

 * cascade="all"

 * inverse="true"

 * @hibernate.collection-key

 * column="fk_ConferenceId"

 * @hibernate.collection-one-to-many

 * class="com.ejdoab.pojos.Track"

 */

 public Collection getTracks() {

 return tracks;

 }

Finally, to make the addition of Tracks to a Conference object simple, you
can provide an addTrack method as shown:

 ...

 public void addTrack(Track track) {

 if (tracks == null) {

 tracks = new HashSet();

 }

 track.setConference(this);

 tracks.add(track);

 }

}

Ant Script

The first item that needs to be addressed is the project’s properties. A sample of
the relevant entries in the build.properties is shown. See the OJB example for the
jboss and db properties section.

// app

jar-name=hibernate-jboss-test.jar

// jboss specific

...

1259c07.fm Page 391 Friday, February 27, 2004 1:45 PM

Chapter 7

392

// db properties

...

// hibernate properties

HIBERNATE_HOME=C:/java/hibernate-2.1

hibernate.dialect=net.sf.hibernate.dialect.HSQLDialect

hibernate.service.jndi.name=java:/hibernate/HibernateFactory

In the Ant script, replace the ${descriptors-ojb} property, which indicates
where the generated O/R mappings are to be placed with the ${descriptors-
hibernate} property, as shown here:

<?xml version="1.0"?>

<project name="hibernate-jboss" default="all" basedir=".">

 <!-- === -->

 <!-- Configures Project's Properties -->

 <!-- === -->

...

 <property name="descriptors-hibernate"

 location="${generated}/descriptors/hibernate" />

To be able to use the hibernatedoclet you need to first load the task using
Ant’s taskdef task as shown here:

 <!-- === -->

 <!-- Declare taskdefs -->

 <!-- === -->

...

 <taskdef

 name="hibernatedoclet"

 classname="xdoclet.modules.hibernate.HibernateDocletTask"

 classpathref="hibernate.class.path"

 />

1259c07.fm Page 392 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

393

Generating the Mappings and the JBoss Service Definition

The following Ant target uses the hibernatedoclet to generate the O/R mappings
using the annotated POJO classes. The hibernatedoclet task is very simple to use,
and only requires that you point it to the location where you want to place the
generated mappings and the location that contains the annotated Java classes.
The nested fileset element, further qualifies the files that will be processed to be
the source files located in the pojos directory under the directory specified by ${src}.

NOTE For the hibernatedoclet to work correctly you’ll need to specify
the Hibernate version in a nested element as shown here:

 <!-- === -->

 <!-- Generates Hibernate's HBM.XML files using Hibernate XDoclet's Task -->

 <!-- === -->

 <target name="hibernate-mapping"

 description=

 "generates Hibernate repository file using hibernatedoclet task">

 <echo>

 generating hibernate mappings and JBoss service descriptor...

 </echo>

 <hibernatedoclet

 destdir="${descriptors-hibernate}"

 excludedtags="@version,@author,@todo,@see,@desc"

 addedtags="@xdoclet-generated at ${TODAY}"

 force="${xdoclet.force}"

 mergedir="${conf}"

 verbose="false"

 >

 <fileset dir="${src}">

 <include name="**/pojos/*.java"/>

 </fileset>

 <hibernate version="2.0"/>

 ...

1259c07.fm Page 393 Friday, February 27, 2004 1:45 PM

Chapter 7

394

The rest of the Target uses the jbossservice nested element to create the
jboss-service.xml file, which is used to deploy Hibernate as a JBoss, as follows:

 ...

 <jbossservice

 destdir="${descriptors-hibernate}"

 serviceName="Hibernate"

 jndiName="${hibernate.service.jndi.name}"

 dataSource="${jboss.datasource}"

 dialect="${hibernate.dialect}"

 useOuterJoin="true"

 showSql="true"

 transactionManagerStrategy

 ="net.sf.hibernate.transaction.JBossTransactionManagerLookup"

 transactionStrategy

 ="net.sf.hibernate.transaction.JTATransactionFactory"

 userTransactionName="UserTransaction"

 />

 </hibernatedoclet>

 </target>

TIP For debugging purposes the jbossservice nested tag provides an
attribute that tells Hibernate to show the SQL statements generated
for every operation. This is an invaluable feature when debugging and
profiling your application.

Deployment on JBoss

With the O/R mappings generated now all you need is a way to make Hibernate
available in your J2EE environment. There are several options for how to deploy
Hibernate on JBoss:

• JCA adaptor: An archive with a .rar extension that implements the Java
Connector Architecture

• SAR archive: A JBoss-specific service archive

In this example you’ll use the SAR deployment. As you did previously with
OJB, the jar task is used to generate the SAR file. In the SAR file you’ll need the
following:

1259c07.fm Page 394 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

395

• hibernate2.jar: The Hibernate JAR file.

• commons-collections.jar: Provides replacements and enhancements to
the core Java collections classes.

• commons-logging.jar: A thin API that abstracts logging implementations.

• cglib2.jar: Used to enhance classes at runtime in combination with
Java reflection.

• jcs.jar: JCS cache implementation.

• odmg.jar: ODMG 3.0 API. ODMG semantics are used to map collections.

• dom4j.jar: Used to parse the XML configuration and mapping files.

• ehcache.jar: EHCache cache implementation.

• jboss-service.xml: The generated JBoss service definition.

• hbm.xml files: The generated hibernate mapping XML files.

All the needed JAR files are part of the Hibernate distribution. The
hibernate2.jar file is located at the root of the distribution, but all other JARs are
found in the lib directory. The Ant target will take care of copying the appropriate
files from the Hibernate distribution directory, as long as you’ve set the
${HIBERNATE_HOME} property.

 <!-- === -->

 <!-- Package the SAR -->

 <!-- === -->

 <target name="sar" depends="hibernate-mapping"

 description="packages a jboss SAR file for Hibernate deployment">

 <echo>packaging sar...</echo>

 <jar jarfile="${dist}/hibernate.sar">

 <metainf dir="${descriptors-hibernate}" includes="jboss-service.xml"/>

 <fileset dir="${HIBERNATE_HOME}/lib">

 <include name="commons-collections.jar" />

 <include name="commons-logging.jar" />

 <include name="cglib2.jar" />

 <include name="jcs.jar" />

 <include name="odmg.jar" />

 <include name="dom4j.jar" />

 <include name="ehcache.jar" />

1259c07.fm Page 395 Friday, February 27, 2004 1:45 PM

Chapter 7

396

 </fileset>

 <fileset dir="${HIBERNATE_HOME}">

 <include name="hibernate2.jar" />

 </fileset>

 <fileset dir="${descriptors-hibernate}">

 <include name="**/*.hbm.xml" />

 </fileset>

 </jar>

 </target>

There are several ways to deploy the SAR archive. The Hibernate mappings
are compiled during deployment (although you can precompile them).
Therefore the classes that they map must be available in the classpath. Because
these classes are contained in the ejb-jar as part of the application, the ejb-jar
should be deployed first. Note that the SAR archive can also be deployed as part
of an EAR archive, as shown here:

Deploying the hibernate.sar on JBoss results in output similar to the
following:

2004-01-18 15:16:37,346 INFO [org.jboss.deployment.MainDeployer]

 Starting deployment of package:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/hibernate.sar

2004-01-18 15:16:37,416 INFO [org.jboss.deployment.SARDeployer]

 nested deployment:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/tmp/deploy/server/tcms/deploy/

 hibernate.sar/2.hibernate.sar-contents/cglib2.jar

...

2004-01-18 15:16:37,506 INFO [org.jboss.deployment.SARDeployer]

 nested deployment:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/tmp/deploy/server/tcms/deploy/

 hibernate.sar/2.hibernate.sar-contents/odmg.jar

2004-01-18 15:16:37,556 INFO [org.jboss.deployment.SARDeployer]

 nested deployment:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/tmp/deploy/server/tcms/deploy/

 hibernate.sar/2.hibernate.sar-contents/hibernate2.jar

2004-01-18 15:16:38,207 INFO [org.jboss.deployment.MainDeployer]

 Deployed package:

 file:/C:/java/jboss/jboss-3.2.1/server/tcms/deploy/hibernate.sar

1259c07.fm Page 396 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

397

Session Bean

The com.ejdoab.beans.ConferenceHibernateFacadeBean will provide capabilities
similar to the OJB facade that you created for the OJB example. The Hibernate
stateless Session Bean will provide the following methods to manipulate the
Conferences and Track objects:

• Collection getAllConferences

• Conference findConferenceMatching(Conference searchTemplate)

• boolean saveConference(Conference conference)

• boolean deleteConference(Conference conference)

First, you’ll create a skeleton for the Session Bean and use XDoclet to
automate the creation of the EJB glue files. A private field will hold an instance
of SessionFactory, which is looked up using JNDI in the Bean’s ejbCreate method.
The hibernate.service.jndi.name property defined in the build.properties with
the value java:/hibernate/HibernateFactory determines the jndi name of the
Hibernate JBoss service. As you can probably guess, the SessionFactory is a
factory for Hibernate Session objects, as follows:

package com.ejdoab.beans;

import java.util.Collection;

import java.util.Collections;

import javax.ejb.CreateException;

import javax.ejb.EJBException;

import javax.ejb.SessionBean;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import net.sf.hibernate.Criteria;

import net.sf.hibernate.HibernateException;

import net.sf.hibernate.Session;

import net.sf.hibernate.SessionFactory;

import net.sf.hibernate.expression.Example;

import com.ejdoab.pojos.Conference;

1259c07.fm Page 397 Friday, February 27, 2004 1:45 PM

Chapter 7

398

/**

 * @ejb.bean

 * name="ConferenceHibernateFacade"

 * type="Stateless"

 * view-type="both"

 * jndi-name="ejb.ConferenceHibernateFacadeHome"

 * local-jndi-name="ejb.ConferenceHibernateFacadeLocalHome"

 * @ejb.transaction

 * type="Required"

 * @ejb.util

 * generate="physical"

 */

public abstract class ConferenceHibernateFacadeBean implements SessionBean {

 private SessionFactory sessionFactory;

 //==

 // EJB callbacks

 //==

 /**

 * @ejb.create-method

 */

 public void ejbCreate() throws CreateException {

 Context context = null;

 // Lookup the SessionFactory implementation

 try {

 context = new InitialContext();

 sessionFactory =

 (SessionFactory)context.lookup("java:/hibernate/HibernateFactory");

 }

 catch (NamingException e)

 {

 throw new EJBException(e);

 }

 }

 ...

}

1259c07.fm Page 398 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

399

Retrieving a Collection of Objects

The getAllConference method instantiates a Session method by calling the
openSession method of the Session factory. Figure 7-6 shows how the Session
bean interacts with the SessionFactory to retrieve a Session and perform its work.

Figure 7-6. The getAllconference Sequence diagram

To retrieve a Collection of all Conferences the find method is used, which can
take a String containing a Hibernate object-oriented query, which is syntactically
similar to a regular SQL query. Notice that all Session methods throw a
HibernateException, which is a Checked Exception as opposed to OJBs use of
Runtime Exceptions.

1259c07.fm Page 399 Friday, February 27, 2004 1:45 PM

Chapter 7

400

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return

 */

 public Collection getAllConferences() {

 Collection allConferences = Collections.EMPTY_LIST;

 Session session = null;

 try {

 session = sessionFactory.openSession();

 allConferences =

 session.find(

 "FROM conferences IN CLASS com.ejdoab.pojos.Conference"

);

 } catch (HibernateException hex) {

 throw new EJBException("Could not retrieve the list of conferences",

hex);

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (HibernateException e) {

 // do nothing, just log it

 }

 }

 }

 return allConferences;

 }

Finding an Object Using a Template

Hibernate provides an API query that supports both string-based queries as well
as objectified-aggregate query expressions. String queries as defined by the
Hibernate Query Language (HQL). The Criteria is built by aggregating Criterion
object which are clauses defining the query.

The findConferenceMatching method takes a Conference object as a
parameter that’s used to create an Example object, which is a type of Criterion
that you can add to an object of type Criteria to perform a search. The uniqueResult

1259c07.fm Page 400 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

401

method will return the first object in the database that matches the field values
set on the searchTemplate Conference object, as shown:

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return

 */

 public Conference findConferenceMatching(Conference searchTemplate) {

 Conference conference = null;

 Session session = null;

 try {

 session = sessionFactory.openSession();

 Example example = Example.create(searchTemplate);

 Criteria criteria = session.createCriteria(Conference.class);

 criteria.add(example);

 conference = (Conference) criteria.uniqueResult();

 } catch (HibernateException hex) {

 throw new EJBException("Could not find the object", hex);

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (HibernateException e) {

 // do nothing, just log it

 }

 }

 }

 return conference;

 }

Saving an Object

Hibernate’s Session object provides several methods that persist the state of an
object to the database, including save, update, and saveOrUpdate. If an object’s
primary key attribute isn’t set, Hibernate will detect this and autogenerate a
primary key for the object based on the strategy selected on the id element. This
will make the underlying operation an INSERT.

1259c07.fm Page 401 Friday, February 27, 2004 1:45 PM

Chapter 7

402

NOTE Hibernate detects that an object hasn’t been saved by checking
the primary key value for null, which is the default of the unsaved-value
attribute. If your class required a value other than null, set this value
in the unsaved-value attribute.

If the primary key is set then the operation becomes an UPDATE if the object
exists, and an INSERT if it doesn’t, as shown here:

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 * @return

 */

 public boolean saveConference(Conference conference) {

 boolean result = true;

 Session session = null;

 try {

 session = sessionFactory.openSession();

 session.saveOrUpdate(conference);

 session.flush();

 } catch (HibernateException hex) {

 result = false;

 throw new EJBException("Could not save the conference", hex);

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (HibernateException e) {

 // do nothing, just log it

 }

 }

 }

 return result;

 }

Notice that for any methods that modify the database, the flush method of
the Session object has to be called in order for the transaction to be committed.

1259c07.fm Page 402 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

403

Flush synchronizes the state of any of the objects in the Session cache that are
being modified with the state of the underlying database.

Deleting an Object

To delete an object in Hibernate the Session object provides a delete method.
Dependent object deletion, such as in the case of the collection of Tracks belonging
to a Conference object, depends on the nature of the relationship. In this case the
Conference-Track represents a parent-child relationship so it would be expected
that if the Conference is to be deleted the Tracks associated with it will be deleted
as well.

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="NotSupported"

 *

 * @return

 */

 public boolean deleteConference(Conference conference) {

 boolean result = true;

 Session session = null;

 try {

 session = sessionFactory.openSession();

 session.delete(conference);

 session.flush();

 } catch (HibernateException hex) {

 result = false;

 throw new EJBException("Could not delete the conference", hex);

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (HibernateException e) {

 // do nothing, just log it

 }

 }

 }

 return result;

 }

1259c07.fm Page 403 Friday, February 27, 2004 1:45 PM

Chapter 7

404

Testing

The test client used in the OJB example needs very little modification to work
with the Hibernate Session Facade Bean. Simply change the name of the Bean
classes and replace the JNDI lookup string with that of the Hibernate Session
Bean. The results should match the results obtained previously with OJB.

...

Where Are the Java Data Object Tools and Examples?

The marketing around the JDO specification sounds like it could become one of
the main alternatives to CMP EJBs for those who are looking for a portable per-
sistence solution. JDO is a standard specification of a generic API for transparent
and store-neutral persistence of Java objects that’s brought together in an effort
to simplify Java. The JDO initiative came out of the early Java persistence work
done by the Object Data Management Group (ODMG), and continued with the
creation of Java specification request 12 (JSR 12), which is overseen by the Java
Community Process (JCP). The current version of the specification is the 1.0.1
maintenance release, which you can find at http://www.jcp.org. Behind-the-
scenes JDO works with existing objects by using bytecode manipulation or
runtime reflection to “enhance” Java classes with persistence capability.

We gathered opinions from those in the know. People who work with persis-
tence frameworks, like TopLink and Cocobase, or the open-sourced OJB and
Hibernate, every day, feel that JDO isn’t ready for prime time. The main concern
from many is that as a committee-driven standard it will take some time to
evolve. This is one of the drawbacks of committee-driven standards.

The JDO 2.0 is expected to cover some of shortcomings of the current 1.0.1
release. Yet, the opinion of most is that the missing features are already present
in many commercial and open-sourced offerings. OJB is already planning a full
JDO implementation in the future and the Hibernate team would consider an
implementation, if most of the limitations of the specification are overcome in
the new release.

Although Open Source projects that cover the JDO specifications, including
JORM, TJDO, XORM, OJB, and now JBossDO are emerging, their usability in an
enterprise environment does warrant their inclusion as a practical alternative
to other persistence solutions.

...

Conclusions

In this chapter you learned about some of the problems you’ll encounter when
objects and relational databases come together. Nowadays an unacceptably

1259c07.fm Page 404 Friday, February 27, 2004 1:45 PM

Object-Relational Mapping

405

large amount of time is spent by developers tweaking and “hacking” the data-
access tier of their applications. Architects and developers can avoid most of
these problems if they understand early in the process how the data is used by
their applications. There truly isn’t a one-size-fits-all solution.

The Open Source community has two powerful tools in OJB and Hibernate,
both of which deal with the object-relational impedance mismatch. OJB and
Hibernate are the two leading open-sourced ORM tools. The best way to make an
informed decision about which of the two might be better suited for your project
is to do a small prototype by mapping the classes and tables that are the bread
and butter of your application. To get you started, the following guidelines can
help you with the decision:

• Configuration: Both OJB and Hibernate are relatively easy to configure.

• Performance: With ORM tools, performance is usually in direct correlation
to the SQL generated by the tool. Although you have no concrete testing
numbers the SQL generated by both tools is more or less the same.

• License: OJB is an Apache project and therefore has the more business-
friendly Apache license. Hibernate is licensed under the LGPL.

• JDO: OJB is designed to support multiple “personalities,” with JDO being
one of them. In contrast, the Hibernate project doesn’t support or plan to
support JDO (unless the specification is significantly improved).

• ODMG: Both OJB and Hibernate to some extent support the ODMG standard.

• Querying capabilities: HQL provides for a smoother transition for
programmers who are already accustomed to SQL.

• Tools: Both OJB and Hibernate provide several tools for facilitating the
creation of mapping files, schemas, and complete object models.

For a feature comparison of several ORM tools (both commercial and open-
sourced) see the Portland Pattern Repository’s Wiki ORM tool-comparison page
at http://c2.com/cgi/wiki?ObjectRelationalToolComparison, where you’ll see that
both tools offer similar capabilities. Therefore, for most projects, you can use
either OJB or Hibernate in conjunction with Session Beans and seamlessly inte-
grate them into your J2EE applications so that you can replace or complement an
EJB CMP-based architecture.

1259c07.fm Page 405 Friday, February 27, 2004 1:45 PM

1259c07.fm Page 406 Friday, February 27, 2004 1:45 PM

407

CHAPTER 8

MVC Frameworks and the
Presentation Tier

That was a surprise to me—that people were prepared to painstakingly
write HTML.1

—Tim Berners-Lee

MANY ENTERPRISE APPLICATIONS support large numbers of users. Rather than manage
the complexities of client-application installation and upgrades, organizations
have opted for web-based applications. For this reason, Java Server Pages (JSP)
and servlets are key components of the J2EE specification.

Many organizations start developing the web tier using JSP or servlets. Orga-
nizations that start by developing servlets quickly learn that it’s difficult to create
and even more difficult to change the look and feel of the application. Often devel-
opers receive mocked-up HTML pages from designers. Then the developer has to
decompose the HTML and put them in out.println() statements and escape common
HTML characters like double quotes. Add the deployment cycle and developing or
changing a servlet-based application to this, and you’ll see that it can take a long
time or require a complete rewrite. When JSPs were released, they changed the
way web applications were developed in Java. Instead of embedding HTML in
Java, the metaphor changed to embedding Java into HTML. Productivity increased
because there was no longer a need to redeploy and because JSPs are dynamically
compiled to a servlet when they’re requested after a modification. However, using
JSPs leads to bad practices such as putting business logic in the presentation tier.
In addition, JSPs don’t provide any good means of reusing code that’s often placed
in scriptlets. This can lead to duplicate code and dual maintenance.

To reduce the problems of developing web applications with JSPs and servlets,
developers started applying the model-view-controller (MVC) design pattern. This
design pattern separates the data (model) from the presentation (view) and the
workflow (controller). Unfortunately, without careful design, this practice can also
turn into a difficult-to-manage web application. Servlets become large nested if/else

1. Berners-Lee, Tim. World Wide Web Journal (W3J), vol. 1, issue 3, Summer 1996.

1259c08.fm Page 407 Friday, February 27, 2004 1:56 PM

Chapter 8

408

statements that are difficult to read and maintain. Many Open Source MVC
frameworks have been developed to minimize bad practices that were initially
introduced by JSPs and servlets. This chapter will introduce some popular MVC
frameworks and then focus on the popular de facto standard Struts framework.

Model-View-Controller Frameworks

MVC frameworks have changed the way web applications are developed.
Separating an application into models, views, and controllers enables a separation
of responsibility. Developers are able to focus on writing Java code while designers
focus on the look and feel.

Many Open Source MVC frameworks have been developed to fill the gap left
open by commercial software vendors. Table 8-1 contains a list of just some of
the popular frameworks.

Most of the MVC frameworks use a similar approach, as shown in Figure 8-1.
The controller is implemented as a servlet. The controller implementation is
extended to perform application-specific functionality by creating custom classes
usually called actions. A configuration file read by the controller servlet is used to
configure how a request is redirected to the application-specific functionality,
which is responsible for looking up information from a data source such as a
relational database through JDBC, EJB, and/or data-access objects. The results
are then placed into a model, which is implemented as a JavaBean or plain old
Java object (POJO). The model is passed to the view layer as an attribute of the
request object. The view is commonly implemented as JSP or Velocity templates.
The view gets the model out of the request attribute and displays it appropriately.
The view should never contain any business logic, so it should contain mostly
HTML and simple Java constructs such as loops and calls to the model accessors.

Table 8-1. Popular Open Source MVC Frameworks

Framework Struts Turbine WebWork

Model Action Forms, JavaBeans JavaBeans Java Objects

View JSP, Velocity JSP, Velocity JSP, Velocity

Controller ActionServlet, Action

mapping

TurbineServlet Actions, Dispatcher

URL jakarta.apache.org/

struts/

jakarta.apache.org/

turbine/

www.opensymphony.com/

webwork/

1259c08.fm Page 408 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

409

Figure 8-1. MVC pattern

Most of the MVC frameworks don’t just provide an implementation of MVC;
they also provide value-added services. Some of the services include validation,
templating, web services, security, localization, pooling, caching, and scheduling.

Struts Overview

Although Apache Struts isn’t a Java standard technology, it has become the de facto
standard MVC implementation for Java web application. Struts is even singled
out in Sun’s J2EE BluePrints as a best practice. It’s likely that Struts will continue
to lead the MVC pack until the long-anticipated standard JavaServer Faces specifi-
cation is completed.

Struts Components

As discussed earlier and depicted in Figure 8-2, Struts implements MVC patterns
by using the standard servlet, JavaBean, and JSP technologies. To be specific,
Struts includes an ActionServlet that uses a standard servlet configuration in the
web.xml file to receive requests. The ActionServlet uses the configuration loaded
from the struts-config.xml file at startup to determine how to route requests to
application-specific classes called Actions. The Action class may use a combi-
nation of JDBC, EJBs, or data-access objects to perform application-specific
functionality. The Action class may take the results of JDBC, EJB, or data-access
object calls and in turn create JavaBeans that contain the results. Struts also contains

1259c08.fm Page 409 Friday, February 27, 2004 1:56 PM

Chapter 8

410

a special JavaBean called an ActionForm, which is used to encapsulate the data
on an HTML form. ActionForms will be discussed in greater detail later in the
chapter. When an Action class finishes, it returns a forward, which is used
to determine the View page or template to use. The ActionServlet receives the
forward and, again using the struts-config.xml file, determines which view com-
ponent to forward the request to. Typically the view is a JSP, but you can use other
view technologies such as Velocity or XSLT.

Figure 8-2. Struts MVC implementation

NOTE Struts provides a number of components, thus it can initially
seem difficult and overwhelming. However, once the initial learning
curve is overcome, Struts becomes an easy-to-use, flexible, and
predictable framework.

Struts includes some important value-added features that make web devel-
opment easier, including the validator service, Tiles framework, and tag libraries.
The Struts validator service, which as of Struts 1.1 is based on another Open Source

1259c08.fm Page 410 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

411

framework, Jakarta Commons Validator, which makes simple HTML form vali-
dation simple and requires no coding. The validator framework uses XML to
describe validation rules. The ActionServlet can automatically call the validator
service prior to invoking the Action class. This prevents the Action class from ever
being called if data in an HTML form is invalid. The framework can also automat-
ically repopulate the HTML form and display validation errors.

As of Struts 1.1 the template framework has been replaced by the more flexible
Tiles framework. The Tiles framework helps you create layouts with placeholders
for elements such as headers, footers, menus, and content. At runtime a tiles def-
inition file is used to determine which component referred to as tiles belongs in
each placeholder. A tile is commonly a reusable JSP. So the Tiles framework is
really just a more flexible way of doing JSP includes.

In an effort to remove as much Java code as possible from JSPs and to automate
some of the more mundane code, Struts includes several tag libraries: bean, html,
logic, nested, and tiles. The html and tiles libraries will be discussed later in the
chapter. Some of the tags in the Struts bean and logic libraries will become dep-

recated and replaced by functionality provided by the JSP Standard Tag Library
(JSTL). So whenever possible use the JSTL tags over the Struts tags. The Apache
Taglibs project includes an Open Source implementation of the JSTL.

For applications requiring multiple language support, Struts also includes a
Message Resource framework for looking up text based on the language choice of
a specific user.

Setting Up a Web Application with Struts and the Java
Standard Tag Library

Setting up a web application involves creating a proper directory structure and
configuring a web.xml file. Adding Struts and JSTL involves updating the web.xml
and gathering configuration and JAR files. To wrap up the setup an ant target
should be included so that you can package the necessary files into the standard
web archive file (WAR), which you can also include in a deployable enterprise
archive (EAR) if it’s a part of a larger enterprise application.

You should keep the Java code and web files separate, so the first step in
creating a directory structure is to create a web directory under the src directory.
All web-related files such as HTMLs, JSPs, images, and configuration files belong
here. The Java files related to a web application like the custom Action classes
discussed later still belong in the src/java directory structure. These files will later
be packaged in a JAR file and included in the web application. You can also add
common web application directories such as images, style, and scripts to the web
directory. Lastly, there is an important Java web application directory, the WEB-INF.

1259c08.fm Page 411 Friday, February 27, 2004 1:56 PM

Chapter 8

412

According to the servlet spec, the WEB-INF directory isn’t addressable with an
HTTP request. Therefore this directory is the primary place for configuration files
such as the web.xml and tag library definition files. However, due to the behavior
of the ANT War task, which will be discussed later, the web.xml file must be in a
separate location at development time. At build time the ANT War task will place
the web.xml file in the WAR file under the WEB-INF directory. A common place to
put configuration files such as the web.xml file until build time is in a src/conf
directory. Figure 8-3 illustrates a web-application directory structure.

Figure 8-3. Common web-application directory structure

NOTE You can use XDoclet to generate a web.xml.

The next step is configuring the web application. Web-application configu-
rations reside in a web.xml deployment descriptor. This file is stored in a src/conf
directory, then at build time the ANT War task includes the file in the WAR file’s
WEB-INF directory. Initially, this file may not include anything but the standard
doctype reference and an empty web-app tag. Listing 8-1 shows an example of a
simple web.xml file with an optional display name of the web application.

Listing 8-1. Original web.xml File

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app id="WebApp">

 <display-name>TCMS Web Application</display-name>

</web-app>

1259c08.fm Page 412 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

413

The display name element of the web.xml file is primarily used by devel-
opment and deployment tools. However in some versions of JBoss, if a context
isn’t provided when making an HTTP request, JBoss uses the display name, if
provided, when listing all the installed web applications and their contexts. See
Figure 8-4 for an example of the TCMS web-application display name.

Figure 8-4. JBoss using the display name to list installed web-application contexts

The Struts and JSTL configuration requires that their JAR files be included in
the WEB-INF/lib directory. The WEB-INF/lib directory is a special directory in
which the application server automatically appends the JAR files to the web
application’s class loader. The Ant task discussed later will automatically include
the required JAR files at build time. The required JAR files for Struts 1.1 are
commons-beanutils.jar, commons-collections.jar, commons-digester.jar,
commons-fileupload.jar, commons-lang.jar, commons-logging.jar,
commons-validator.jar, jakarta-oro.jar, and struts.jar. Jakarta’s JSTL 1.1 imple-
mentation only requires that jstl.jar and standard.jar be included.

1259c08.fm Page 413 Friday, February 27, 2004 1:56 PM

Chapter 8

414

To use the tag libraries found in Struts and JSTL, the associated tag-library
definition (TLD) files must be included in the WEB-INF directory. The TLD files
are basically tag-library deployment descriptors that tell the application server
about the tags and tag attributes. Depending on the application, it may not be
necessary to include all the TLDs if only certain libraries are being used. For
example, in the TCMS application, not all the JSTL libraries are being used. TCMS
only uses the core and format libraries. Therefore, only the c.tld and fmt.tld files
are copied to the WEB-INF directory.

Continuing the Struts and JSTL configuration the web.xml file must be
updated to include a servlet mapping for the Struts ActionServlet and tag-library
declarations. The ActionServlet is the primary controller for Struts. It must be
configured to do three things. The ActionServlet must load on startup, read a
Struts configuration file, and be configured to direct requests to it. Listing 8-2
shows a portion of the web.xml file that contains a typical configuration for the
Struts ActionServlet.

Listing 8-2. ActionServlet Mapping in the web.xml.

<!-- Servlet definitions -->

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

</servlet-mapping>

Listing 8-2 shows the ActionServlet being defined with the name action. The
ActionServlet is also passed an initialization parameter named config, which
points to the Struts configuration file. The Struts config file contains, among
other things, a mapping between virtual URLs and Action classes. The Struts
config file will be discussed in detail later in the chapter. Notice that the Struts
config file is placed in the WEB-INF directory so that it can’t be externally addressed.
In addition, the file is named struts-config.xml. Although this name isn’t a
requirement, it’s a common practice. As mentioned earlier, the ActionServlet
must be started as soon as the application is started. The load-on-startup element
takes an ordinal value that tells the application server the order in which to load

1259c08.fm Page 414 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

415

servlets. Without a load-on-startup a servlet isn’t loaded until the first time it’s
requested.

The last step in configuring the ActionServlet is to map requests to it. The
servlet-mapping in Listing 8-2 shows that any request ending in a .do extension
is passed to the ActionServlet. Any extension or URL pattern can work but .do is
the standard Struts convention.

The tag libraries must also be declared in the web.xml to be available to the JSPs.
Tag-Library declarations are found after servlet mappings in the web.xml file. The
declaration includes a taglib element that contains taglib-uri and taglib-location
elements. The taglib-uri is a name used by taglib directives in the JSP. Basically,
the taglib-uri is a dereference of the taglib-location so the location can be changed
without requiring a change to every JSP using the tag library. The taglib-location
is the location of the TLD file associated with the tag library. The TLD files are
often placed in the WEB-INF directory with other configuration files so they
aren’t externally addressable. Listing 8-3 shows the tab library declarations from
the TCMS project.

Listing 8-3. The Tag-Library Declaration Found in the web.xml File

<!-- Tag libraries declarations -->

<taglib>

 <taglib-uri>struts-html</taglib-uri>

 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>struts-tiles</taglib-uri>

 <taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>struts-bean</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>struts-logic</taglib-uri>

 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>jstl-core</taglib-uri>

 <taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>jstl-format</taglib-uri>

 <taglib-location>/WEB-INF/fmt.tld</taglib-location>

</taglib>

1259c08.fm Page 415 Friday, February 27, 2004 1:56 PM

Chapter 8

416

Ultimately the web application has to be packaged in a WAR file. For true
enterprise applications it’s likely the WAR file will be included in an EAR file. You
can use an Ant target to automate the packaging activity. Listing 8-4 shows the
war target from the TCMS project.

Listing 8-4. Ant Target Responsible for Packaging the Web Application

<patternset id="jar.set">

 <include name="*.jar" />

</patternset>

<patternset id="web.classes.set">

 <include name="**/web/**" />

</patternset>

<target name="war"

 depends="ejb,war-jar"

 description="Creates a deployable war.">

 <war destfile="${war-file}" webxml="${src-conf}/web.xml">

 <lib dir="${struts-lib}">

 <patternset refid="jar.set"/>

 </lib>

 <lib dir="${dist}">

 <include name="${war-jar-filename}"/>

 </lib>

 <fileset dir="${src-web}"/>

 </war>

</target>

<target name="war-jar">

 <jar jarfile="${war-jar-file}">

 <fileset dir="${classes}">

 <patternset refid="web.classes.set"/>

 </fileset>

 </jar>

</target>

1259c08.fm Page 416 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

417

The example in Listing 8-4 shows a war target that’s dependent on ejb and
war-jar targets. The ejb target builds an EJB JAR file that’s also packaged in the
EAR file. The WAR-JAR file builds a JAR file containing all the classes from the web
package and subpackages. It uses a patternset with an include filter of **/web/**
to the JAR of the classes. This is necessary because depending on the application
server Struts isn’t always able to find classes in other class loaders. To create this
special web JAR file put the necessary Action classes in the same class loader as
Struts. After all the dependencies have been completed, the War task builds the
WAR file. The war target requires the destfile attribute to identify the output of
the task. The webxml attribute identifies where to find the web.xml. Next, the lib
element is used to include the JAR files in the WEB-INF/lib directory. The first lib gets
all the Struts and JSTL JAR files. The second includes the JAR file created in the
dependant war-jar target. The fileset includes all the files found in the src/web
directory.

Tiles

Many websites have comment elements on every page such as the header, footer,
and menu. Figure 8-5 is an example from the TCMS application that includes a
common header, footer, and menu. JSP applications commonly use include
directives or actions to include common elements. Unfortunately, the include
technique requires includes and sometimes even layout information on every
page. Depending on how the pages are organized, adding or removing elements
can require updating every page.

1259c08.fm Page 417 Friday, February 27, 2004 1:56 PM

Chapter 8

418

Figure 8-5. TCMS page containing common header, footer, and menu elements

1259c08.fm Page 418 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

419

The Struts Tiles framework simplifies common elements and page layouts.
Using Tiles, a separate JSP is created that contains the layout information of all
the pages. The layout JSP contains placeholders identified with tags from the
Tiles tag library. An XML-based tiles definition file is used to determine which
components are placed in which placeholder. Therefore, when elements are
added or removed, you only have to update the layout JSP.

Tiles Layout

Creating a tiles layout first involves some planning. A layout diagram like the one
shown in Figure 8-6 should be used to get feedback from all the stakeholders of a
project. Using the layout diagram, a web designer can create a template containing
the reusable elements and example content.

Figure 8-6. TCMS layout diagram

Once the designer is finished with the template, a developer can decompose
the template into the common components and master layout. The master layout
contains the look and feel of the application with the placeholders. Listing 8-5 is
an example of a master layout from the TCMS application.

1259c08.fm Page 419 Friday, February 27, 2004 1:56 PM

Chapter 8

420

Listing 8-5. TCMS Master Layout

<%@ taglib uri="struts-tiles" prefix="tiles" %>

<html>

 <head>

 <title><tiles:getAsString name="title"/></title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

 <link href="style/default.css" rel="stylesheet" type="text/css">

 </head>

 <body>

 <table width="660">

 <tr>

 <td>

 <tiles:insert attribute='header'/>

 </td>

 </tr>

 </table>

 <table width="660">

 <tr>

 <td width="120" class="menu">

 <!-- menu begin -->

 <tiles:insert attribute='menu'/>

 <!-- menu end -->

 </td>

 <td width="540" class="content">

 <!-- content begin -->

 <tiles:insert attribute='body' />

 <!-- content end -->

 </tr>

 </table>

 <table width="660">

 <tr>

 <td>

 <tiles:insert attribute='footer'/>

 </td>

 </tr>

 </table>

 </body>

</html>

1259c08.fm Page 420 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

421

Notice that Listing 8-5 looks like a typical HTML page that uses a table to
layout the header, footer, and menu. A couple of noticeable differences are that
the page begins with a taglib directive and includes some JSP tags from the Tiles
tag library. The directive tells the application server that this page is using JSP
tags from the Struts Tiles tag library. In particular, this page uses two Tiles tags as
placeholders. The first is the getAsString tag in the HTML title. This tag gets a
string value from the Tiles definition file, which will be displayed in the browsers
caption bar. The page also includes four insert tags identified with an attribute of
the four primary parts of the layout diagram. These insert tags represent the
placeholders that will be filled by other JSP pages. The particular page that will be
used is defined in the tiles definition file.

Depending on the size of the web application there may be a large number of
JSP files. Keeping them well organized makes maintenance easier. It’s a good idea
to name the main layout page masterLayout.jsp and place it in a src/web/WEB-
INF/jsp/layout/ directory. You should place other common elements such as
headers, footers, and the menu in a src/web/WEB-INF/jsp/tiles/ or src/web/

WEB-INF/jsp/commons/ directory.

BEST PRACTICE It’s a good idea to put JSP pages related to Struts
applications in a directory under the WEB-INF directory. This is
because most pages will require you to call Actions first. If the JSP
pages are in the WEB-INF directory, you cannot access them directly,
which would present the user with errors.

After the master layout is complete you can place each of the common
elements in their own file. Most of these will look very simple like the footer
found in Listing 8-6.

Listing 8-6. TCMS Footer

<div class="copyright">

 Enterprise Java Development on a Budget

 www.ejdoab.com

 Copyright (c) 2003 Brian Sam-Bodden, Christopher M. Judd

</div>

1259c08.fm Page 421 Friday, February 27, 2004 1:56 PM

Chapter 8

422

Tile Definitions

Tiles uses a definition file to configure the elements used by the getAsString and
insert tags in the master layout, as discussed in the previous section. The defi-
nition file is an XML file with a root element of tiles-definition; it contains zero or
more definitions. Basically each definition represents a page a user would see.
Listing 8-7 is an example of the tiles-defs.xml file from the TCMS application.

Listing 8-7. TCMS Tiles Definition File

<!DOCTYPE tiles-definitions PUBLIC

 "-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"

 "http://jakarta.apache.org/struts/dtds/tiles-config_1_1.dtd">

<tiles-definitions>

 <!-- ======================================= -->

 <!-- Master definition -->

 <!-- ======================================= -->

 <!-- Master index page description -->

 <definition name="master" path="/WEB-INF/jsp/layout/masterLayout.jsp">

 <put name="title" value="Technical Conference Management System" />

 <put name="header" value="/WEB-INF/jsp/tiles/header.jsp" />

 <put name="menu" value="/WEB-INF/jsp/tiles/menu.jsp" />

 <put name="footer" value="/WEB-INF/jsp/tiles/footer.jsp" />

 <put name="body" value="" />

 </definition>

 <!-- Page Descriptions -->

 <definition name="index" extends="master">

 <put name="body" value="/WEB-INF/jsp/index.jsp" />

 </definition>

 <definition name="sessions" extends="master">

 <put name="body" value="/WEB-INF/jsp/sessions.jsp" />

 </definition>

 <definition name="speakers" extends="master">

 <put name="body" value="/WEB-INF/jsp/speakers.jsp" />

 </definition>

1259c08.fm Page 422 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

423

 <definition name="call" extends="master">

 <put name="body" value="/WEB-INF/jsp/call.jsp" />

 </definition>

 <definition name="registration" extends="master">

 <put name="body" value="/WEB-INF/jsp/registration.jsp" />

 </definition>

 <definition name="registrationThanks" extends="master">

 <put name="body" value="/WEB-INF/jsp/speakerThanks.jsp" />

 </definition>

 <definition name="speakerThanks" extends="master">

 <put name="body" value="/WEB-INF/jsp/speakerThanks.jsp" />

 </definition>

 <definition name="sessionsByPresenter" extends="master">

 <put name="body" value="/WEB-INF/jsp/sessionsByPresenters.jsp" />

 </definition>

</tiles-definitions>

Listing 8-7 contains nine definitions. One of the definitions is a master defi-
nition that defines all the default elements. Just like Java objects, tile definitions
can be inherited. The remaining eight definitions extend the master definition by
using the extends attribute.

The master definition declares a path equal to the masterLayout.jsp, as
described earlier. In addition, it uses put elements to put values into the Tiles
tags of the masterLayout.jsp. The put with the name title contains a string value
that replaces the getAsString tag. The header, menu, and footer puts have values
equal to JSP pages that contain the appropriate content. The body put is associated
with the content of a page. Because each page has different content the body has
a value of nothing. Definitions that extend the master layout will override the
empty body with a specific JSP.

CAUTION If an insert tag renders content on some pages but not on
others the put value in the master layout should point to an empty JSP
rather than an empty value. Otherwise an error finding the page can
occur. The actual error differs according to application server.

1259c08.fm Page 423 Friday, February 27, 2004 1:56 PM

Chapter 8

424

The remaining definitions like index and sessions have a name attribute ref-
erenced in the Struts configuration file mapping, which is discussed later in this
chapter. As discussed in the previous paragraph the extends attribute contains
the name of another definition that contains the default puts. A definition may
override any put from the super definition. In Listing 8-7 each of the definitions
only overrides the body to display the appropriate content.

Setting Up Tiles

Most of the Tiles setup was actually accomplished by setting the web application
up with Struts. By making the Struts JAR files available to the web application
class loader, declaring the Tiles tag library in the web.xml, and placing its TLD file
in the WEB-INF directory, most of the work is done. One additional step is required.
The Tiles plug-in must be defined in the struts-config.xml file. The struts-config.xml
file will be discussed later in the chapter but an example of the plug-in declaration is

shown in Listing 8-8.

Listing 8-8. Tiles Plug-in Definition Found in struts-config.xml

<plug-in className="org.apache.struts.tiles.TilesPlugin">

 <set-property property="definitions-config"

 value="/WEB-INF/tiles-defs.xml" />

</plug-in>

The Tiles plug-in declaration in Listing 8-8 tells Struts to load Tiles. This is
necessary when using Tiles definitions like the ones described earlier. The Tiles
plug-in has a required definitions-config property. The property value is the
name of the XML file or comma-delimited list of XML files that contain the Tiles
definitions.

Struts

The remainder of this chapter focuses on becoming productive with Struts. Entire
books have been dedicated to the subject so one chapter cannot possibly be a
definitive guide. Definitive Struts books are likely to cover alternative configura-
tions, details of additional Struts JSP tags, and alternative view technologies such
as Velocity. To make Struts easier to digest, you’ll examine the process behind
three different page requests. You’ll begin by requesting a page that contains
nothing but HTML so the focus is on the mapping aspect of Struts. Next, a page
displaying information will be requested to emphasize Action classes and JSTL’s

1259c08.fm Page 424 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

425

role. Lastly, a page containing an HTML form will explain ActionForms and vali-
dation. Of course all of the pages will contain the common header, footer, and
menu elements provided by Tiles.

Struts Mapping

Many web applications contain pages with content that is static HTML. Examples
might include an index or confirmation page. These types of pages are a great
place to start. They enable you to focus on how Struts performs simple mapping.
They also allow you to start looking at the struts-config.xml.

The struts-config.xml file is an XML file used by the Struts ActionServlet,
among other things, to map virtual URLs that typically end in a .do extension to
Struts components such as an Action class, JSP page, or Tiles definition. Listing 8-9
shows an entire struts-config.xml file used in the TCMS project. Every aspect of
Listing 8-9 will be explained throughout the remainder of this chapter.

Listing 8-9. TCMS’s struts-config.xml File

<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

 <form-beans>

 <form-bean name="attendeeForm"

 type="org.apache.struts.validator.DynaValidatorForm">

 <form-property name="firstname" type="java.lang.String"/>

 <form-property name="lastname" type="java.lang.String"/>

 <form-property name="email" type="java.lang.String"/>

 <form-property name="password" type="java.lang.String"/>

 <form-property name="homephone" type="java.lang.String"/>

 <form-property name="workphone" type="java.lang.String"/>

 <form-property name="fax" type="java.lang.String"/>

 <form-property name="street" type="java.lang.String"/>

 <form-property name="city" type="java.lang.String"/>

 <form-property name="state" type="java.lang.String"/>

 <form-property name="zip" type="java.lang.String"/>

 </form-bean>

 <form-bean name="registrationForm"

 type="com.ejdoab.tcms.web.forms.RegistrationForm" />

 </form-beans>

1259c08.fm Page 425 Friday, February 27, 2004 1:56 PM

Chapter 8

426

 <action-mappings>

 <action path="/index" forward="index" />

 <action path="/speakers"

 type="com.ejdoab.tcms.web.actions.ListSpeakersAction">

 <forward name="success" path="speakers" />

 </action>

 <action path="/sessions"

 type="com.ejdoab.tcms.web.actions.ListSessionsAction">

 <forward name="success" path="sessions" />

 </action>

 <action path="/sessionsByPresenter"

 type="com.ejdoab.tcms.web.actions.SessionByPresenterAction">

 <forward name="success" path="sessionsByPresenter" />

 </action>

 <action path="/registration" forward="registration" />

 <action path="/submitRegistration"

 type="com.ejdoab.tcms.web.actions.SubmitRegistrationAction"

 name="registrationForm"

 scope="request"

 input="registration"

 validate="true"

 >

 <forward name="success" path="registrationThanks" redirect="true" />

 <forward name="failure" path="registration" redirect="true" />

 </action>

 <action path="/call" forward="call" />

 <action path="/submitPresenter"

 type="com.ejdoab.tcms.web.actions.SubmitPresenterAction"

 name="attendeeForm"

 scope="request"

 input="call"

 validate="true"

 >

 <forward name="success" path="speakerThanks" redirect="true" />

 <forward name="failure" path="call" redirect="true" />

 </action>

1259c08.fm Page 426 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

427

 </action-mappings>

 <message-resources parameter="com.ejdoab.tcms.web.ApplicationResources"/>

 <!-- Plug ins -->

 <plug-in className="org.apache.struts.tiles.TilesPlugin">

 <set-property property="definitions-config"

 value="/WEB-INF/tiles-defs.xml" />

 </plug-in>

 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">

 <set-property property="pathnames"

 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

 </plug-in>

</struts-config>

Initially, Listing 8-9 may seem overwhelming so you should focus on mapping a
single index.do request that contains nothing but static HTML in the content
area. The resulting page will look like Figure 8-7.

Figure 8-7. TCMS index page

Listing 8-10 shows the action element found in the action-mappings element
of the struts-config.xml file that’s responsible for mapping the incoming index.do

1259c08.fm Page 427 Friday, February 27, 2004 1:56 PM

Chapter 8

428

request to a Tiles definition. For simple HTML pages like this one, the action
element will contain a path and forward attribute. The path represents the incoming
request. Notice that the path doesn’t include the .do extension. This is because
the .do extension is already assumed because of the discussed web.xml servlet
mapping. The forward attribute contains the name of the Struts component to
forward the request to. This can be either a JSP page or a Tile definition. In this
case the forward is to the index Tile definition shown in Listing 8-7.

Listing 8-10. index.do Action Mapping

<action path="/index" forward="index" />

NOTE The web.xml’s welcome-file-list doesn’t appear to work in all
versions of JBoss. Therefore, Listing 8-11 shows a simple index.html
file that uses JavaScript to redirect a directory request to index.do.

Listing 8-11. index.html Page to Redirect Directory Requests to index.do

<html>

<head>

 <script type="text/javascript">

 function redirect() {

 location.replace("index.do");

 return true;

 }

 </script>

 </head>

 <body onload="setTimeout('redirect()', 0);" >

</html>

Actions and the JSP Standard Tag Library

Most pages in an enterprise web application aren’t going to contain static HTML.
Instead, many pages will interact with a data source or service such as a database
or EJB. The simplest example would be a page that displays data. For example,
Figure 8-5 displays conference sessions in the TCMS application. Displaying a
listing of sessions requires code that will retrieve and display the list. Instead of
directly accessing the data model that’s holding the sessions information in the
JSP, you’re going to use Struts actions to put the data into the request scope.
You’re also going to simplify the JSP pages by using the JSTL instead of writing

1259c08.fm Page 428 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

429

scriptlets of JSP code in the JSP. An Action class will contain the necessary infor-
mation to get the data and build a model. The Action class then puts the collection of
models in the request attribute list. The Action class also determines which JSP
page to use by returning a forward. Once the ActionServlet gets the forward from
the Action class and forwards the request to the view, the JSTL in the JSP page
is able to get the collection from the request attributes and iterate through it
appropriately.

An Action class must extend org.apache.struts.action.Action or one of its
descendants. The Action should override one of the two execute methods to
implement the application-specific functionality. The only difference between
the execute methods is that one passes a ServletRequest and ServletResponse
parameter and the other passes an HttpServletRequest and HttpServletReponse
parameter. Typically, most Struts applications are HTTP based and the latter is
appropriate. The execute method is also passed an ActionMapping and ActionForm
parameter. The ActionMapping parameter represents the information about the
mapping found in the struts-config.xml file. The ActionForm is a specialized

Bean representing data from an HTML form. The ActionForm classes will be
discussed later in the chapter. Actions can perform any application-specific
functionality that’s necessary. Actions commonly use values from the request
parameters to determine behavior and the request attributes are used to pass
models to the view. Actions can also get to the HTTP session attributes by calling
the request’s getSession() method. Listing 8-12 is an example of an Action class
from the TCMS application that builds a model of conference sessions.

Listing 8-12. Action That Lists the First 1000 Sessions

package com.ejdoab.tcms.web.actions;

import com.ejdoab.tcms.services.ConferenceServicesLocal;

import com.ejdoab.tcms.services.ConferenceServicesLocalHome;

import com.ejdoab.tcms.services.ConferenceServicesUtil;

import com.ejdoab.tcms.services.dto.page.Page;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

import java.util.ArrayList;

import java.util.List;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

1259c08.fm Page 429 Friday, February 27, 2004 1:56 PM

Chapter 8

430

/**

 * List conference sessions.

 * @author cjudd

 */

public class ListSessionsAction extends Action {

 public ActionForward execute(ActionMapping mapping, ActionForm form,

 HttpServletRequest request, HttpServletResponse response)

 throws Exception {

 ConferenceServicesLocalHome csHome =

 ConferenceServicesUtil.getLocalHome();

 ConferenceServicesLocal cs = csHome.create();

 Page page = cs.getSessions(0, 1000);

 List sessions = new ArrayList();

 while (page.hasNext()) {

 sessions.add(page.next());

 }

 request.setAttribute("sessions", sessions);

 return (mapping.findForward("success"));

 }

}

In Listing 8-12, the ListSessionAction extends Action and overrides the
execute method in order to access a stateless session Bean, which in turn is used
to get a collection of conference sessions. Once the collection is received as a
Page, an ArrayList is created and each conference session in the page is added to
the ArrayList. The ArrayList is added to the request attributes so that it can be
used later by the view. The execute method concludes by looking up a success
forward in the struts-config.xml file. The success forward represents a view based
on the mapping shown in Listing 8-13.

Listing 8-13. Sessions Action Mapping from the struts-config.xml File

<action path="/sessions"

 type="com.ejdoab.tcms.web.actions.ListSessionsAction">

 <forward name="success" path="sessions" />

</action>

Listing 8-13 shows the mapping for an HTTP request of sessions.do. When
the ActionServlet receives a request for sessions.do it forwards the request to the

1259c08.fm Page 430 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

431

ListSessionsAction, which is presented in Listing 8-12 based on the type attribute.
When the ListSessionsAction returns a forward of success, the ActionMapping
object maps to a forward element with the name of success. The path attribute
represents a view that may be either a JSP page or, as in this example, a Tiles
definition.

The Tiles definitions in Listing 8-7 shows that the sessions definition extends
the master layout and overrides the body with a sessions.jsp page. Listing 8-14 is
the sessions.jsp, which uses the JSTL to render session information.

Listing 8-14. sessions.jsp View Using the JSTL

<%@ taglib uri="jstl-core" prefix="c" %>

<%@ taglib uri="jstl-format" prefix="fmt" %>

<h2>Sessions</h2>

<c:forEach var="session" items="${sessions}">

 <c:out value="${session.title}"/>

 Presenter:

 <a href="sessionsByPresenter.do?presenter=

 <c:out value="${session.presenterId}"/>">

 <c:out value="${session.presenter}"/>

 Day:

 <fmt:formatDate value="${session.dtBegin}" type="date" dateStyle="full"/>

 Time:

 <fmt:formatDate value="${session.dtBegin}" pattern="hh:mm a"/>

 - <fmt:formatDate value="${session.dtEnd}" pattern="hh:mm a"/>

 Location: <c:out value="${session.where}"/>

 Track: <c:out value="${session.topic}"/>

 <p>

</c:forEach>

In Listing 8-14, the JSP begins by defining taglib directives for the JSTL core
and format tag libraries. After the sessions heading, the JSP uses the core’s forEach
tag to iterate though the sessions list from the request attributes. Remember that
the sessions list was added to the request attributes at the end of the ListSession-
sAction in Listing 8-12. Each iteration of a session instance is put in a session
variable, which can be used by other JSTL tags such as the core’s out tag. The first
item displayed is a bolded session title. Next a presenter name is listed in a hyperlink.
A hyperlink is built using the core’s out tag to add the presenters id as a presenter

1259c08.fm Page 431 Friday, February 27, 2004 1:56 PM

Chapter 8

432

parameter value. This way, when the hyperlink is clicked by a user, another Action
can build a list of sessions based on a particular presenter. Other information
about the session is presented including dates and times that use the formatDate
tags from the format library to properly format them.

Struts Forms

Getting information from a user requires the use of an HTML form like the TCMS
registration form shown in Figure 8-8. In a typical web application, JSPs or servlets
must get the values of a form from the request parameter list. Because each of the
values from the parameter list is returned as a String, you must take care to
convert the values to another type if something other then a String is required.

Figure 8-8. TCMS registration form

1259c08.fm Page 432 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

433

Struts makes working with forms more object oriented by introducing a
concept of an ActionForm. The ActionForm is JavaBean with properties that
relate to each of the form fields. Struts takes care of calling the ActionForm
mutators with form values from the parameter list, and it even converts the
values if necessary. The instance of the ActionForm is passed to the Action
execute method as a parameter. Listing 8-15 shows an example of the TCMS
RegistrationForm.

Listing 8-15. TCMS RegistrationForm

package com.ejdoab.tcms.web.forms;

import org.apache.struts.action.*;

import javax.servlet.http.*;

/**

 * Registration Form

 *

 * @author cjudd

 */

public class RegistrationForm extends ActionForm {

 private String city;

 private String email;

 private String fax;

 private String firstname;

 private String homephone;

 private String lastname;

 private String password;

 private String state;

 private String street;

 private String workphone;

 private String zip;

 public String getCity() {

 return city;

 }

 public void setCity(String city) {

 this.city = city;

 }

1259c08.fm Page 433 Friday, February 27, 2004 1:56 PM

Chapter 8

434

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public String getFax() {

 return fax;

 }

 public void setFax(String fax) {

 this.fax = fax;

 }

 public String getFirstname() {

 return firstname;

 }

 public void setFirstname(String firstname) {

 this.firstname = firstname;

 }

 public String getHomephone() {

 return homephone;

 }

 public void setHomephone(String homephone) {

 this.homephone = homephone;

 }

 public String getLastname() {

 return lastname;

 }

 public void setLastname(String lastname) {

 this.lastname = lastname;

 }

 public String getPassword() {

 return password;

 }

1259c08.fm Page 434 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

435

 public void setPassword(String password) {

 this.password = password;

 }

 public String getState() {

 return state;

 }

 public void setState(String state) {

 this.state = state;

 }

 public String getStreet() {

 return street;

 }

 public void setStreet(String street) {

 this.street = street;

 }

 public String getWorkphone() {

 return workphone;

 }

 public void setWorkphone(String workphone) {

 this.workphone = workphone;

 }

 public String getZip() {

 return zip;

 }

 public void setZip(String zip) {

 this.zip = zip;

 }

 public ActionErrors validate(ActionMapping actionMapping,

 HttpServletRequest httpServletRequest) {

 /**@todo: finish this method, this is just the skeleton.*/

 return null;

 }

}

1259c08.fm Page 435 Friday, February 27, 2004 1:56 PM

Chapter 8

436

In Listing 8-15, the RegistrationForm is a JavaBean that contains getters and
setters for each of the form fields in the HTML form. Struts forms must also extend
ActionForm or one of its descendants as the RegistrationForm does. You can put
validation code into the optional validate method, which is called before the Action
execute method. If the validate method returns ActionErrors then the Action
execute method is never called. An alternative to putting validation code in the
validate method is to extend the form class from ValidatorForm. The implemen-
tation of the validate method in the ValidatorForm knows how to validate against
rules in an XML file. Validation will be covered in more detail later in this chapter.

Once the form class is created, it must be declared in the form-beans section
of the struts-config.xml file. Listing 8-16 shows an example of the declaration of
the RegistrationForm. The form Bean name will be used by action mappings and
validation. The type is the fully qualified class name.

Listing 8-16. RegistrationForm Declaration in struts-config.xml

<form-beans>

 <form-bean name="registrationForm"

 type="com.ejdoab.tcms.web.forms.RegistrationForm" />

</form-beans>

Using an ActionForm in the Action class is easy. In the execute method the
ActionForm must be typecast to the specific ActionForm descendant in order to
have access to the bean properties. Listing 8-17 shows the SubmitRegistrationAction,
which uses the RegistrationForm.

NOTE You can also use XDoclet to generate the form Bean declaration,
action mappings, and form validation.

Listing 8-17. SubmitRegistrationAction, Which Uses the RegistrationForm

package com.ejdoab.tcms.web.actions;

import com.ejdoab.tcms.services.*;

import com.ejdoab.tcms.services.dto.*;

import com.ejdoab.tcms.services.exceptions.*;

import com.ejdoab.tcms.web.forms.*;

1259c08.fm Page 436 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

437

import org.apache.struts.Globals;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

 * @author cjudd

 */

public class SubmitRegistrationAction extends Action {

 public ActionForward execute(ActionMapping mapping, ActionForm form,

 HttpServletRequest request, HttpServletResponse response)

 throws Exception {

 ActionErrors errors = new ActionErrors();

 RegistrationForm rf = (RegistrationForm) form;

 UserServicesHome uslh = UserServicesUtil.getHome();

 UserServices us = uslh.create();

 UserProfileDTO attendee = new UserProfileDTO();

 try {

 attendee.setUserType(UserProfileDTO.UserType.ATTENDEE);

 attendee.setPassword(rf.getPassword());

 attendee.setFirstName(rf.getFirstname());

 attendee.setLastName(rf.getLastname());

 attendee.setEmail(rf.getEmail());

 attendee.setHomePhone(rf.getHomephone());

 attendee.setWorkPhone(rf.getWorkphone());

 attendee.setFax(rf.getFax());

 attendee.setAddressStreet(rf.getStreet());

 attendee.setAddressCity(rf.getCity());

 attendee.setAddressState(rf.getState());

 attendee.setAddressZipCode(rf.getZip());

1259c08.fm Page 437 Friday, February 27, 2004 1:56 PM

Chapter 8

438

 us.registerUser(attendee);

 } catch (DuplicateEmailException ex) {

 errors.add(ActionErrors.GLOBAL_ERROR,

 new ActionError("error.register.duplicate"));

 }

 if (errors.isEmpty()) {

 return (mapping.findForward("success"));

 } else {

 request.setAttribute(Globals.ERROR_KEY, errors);

 return (mapping.findForward("failure"));

 }

 }

}

In Listing 8-17, the execute method typecasts the form reference from an
ActionForm to a RegistrationForm. The rf instance of the registration form is
used to map the form fields to an attendee data transfer object before it’s registered
with the UserService stateless session bean.

To make all the magic work in the JSP, tags from the Struts html tag library
must be used rather then the standard HTML form input elements. There is almost
a one to one correlation between the Struts html tags and the HTML form tags.
Listing 8-18 shows the JSP code for the registration form.

Listing 8-18. registration.jsp, Which Uses the RegistrationForm

<%@ taglib uri="struts-html" prefix="html" %>

<%@ taglib uri="struts-bean" prefix="bean" %>

<%@ taglib uri="struts-logic" prefix="logic" %>

<h2>Registration</h2>

<p>Join us at the Enterprise Java Conference.

</p>

<logic:messagesPresent>

 <bean:message key="errors.header"/>

 <html:messages id="error">

 <bean:write name="error"/>

 </html:messages>

 <hr>

</logic:messagesPresent>

1259c08.fm Page 438 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

439

<html:form action="submitRegistration.do">

 <table border="0" width="100%">

 <tr>

 <td align="right" width="30%">First Name:</td>

 <td align="left"><html:text property="firstname" size="30"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Last Name:</td>

 <td align="left"><html:text property="lastname" size="30"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Email:</td>

 <td align="left"><html:text property="email" size="30"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Password:</td>

 <td align="left"><html:text property="password" size="30"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Home Phone:</td>

 <td align="left"><html:text property="homephone" size="14"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Work Phone:</td>

 <td align="left"><html:text property="workphone" size="14"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Fax:</td>

 <td align="left"><html:text property="fax" size="14"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">Street:</td>

 <td align="left"><html:text property="street" size="50"/></td>

 </tr>

 <tr>

 <td align="right" width="30%">City:</td>

 <td align="left">

 <html:text property="city" size="20"/>

 State: <html:text property="state" size="2"/>

 Zip: <html:text property="zip" size="10"/>

 </td>

 </tr>

1259c08.fm Page 439 Friday, February 27, 2004 1:56 PM

Chapter 8

440

 <tr>

 <td align="right">

 <html:submit>Submit</html:submit>

 </td>

 <td align="left">

 <html:reset>Reset</html:reset>

 </td>

 </tr>

 </table>

</html:form>

Notice that in Listing 8-18, registration.jsp begins by declaring the Struts
html, bean, and logic tag libraries. The bean and logic tag libraries will be used to
display validation errors. The html library will be used to get the properties values
out of the ActionForm and generate standard HTML form tags. After a page title

and message, the logic tags are used to display validation errors—more on this in
the validation session of this chapter.

Just like HTML forms, which must be surrounded by an HTML form tag, a
Struts form must be surrounded by a Struts form tag. The Struts form tag like the
HTML form tag contains an action that tells the browser the URL to submit the
form to. Within the Struts form tag, other Struts html tags can be used such as the
text, password, textarea, checkbox, hidden, and radio tags. These tags generate
standard HTML input tags with the value of the property if there is any. At the
bottom of most forms the submit and reset tags can be used to generate HTML
input types of submit and reset.

The struts-config action mapping ties the Action class, ActionForm class,
and Tiles definition together. Listing 8-19 shows an example of a mapping that
ties the SubmitRegistrationAction and RegistrationForm together with the post
from the registration.jsp.

Listing 8-19. submitRegistration Mapping

<action path="/submitRegistration"

 type="com.ejdoab.tcms.web.actions.SubmitRegistrationAction"

 name="registrationForm"

 scope="request"

 input="registration"

 validate="true"

>

 <forward name="success" path="registrationThanks" redirect="true" />

 <forward name="failure" path="registration" redirect="true" />

</action>

1259c08.fm Page 440 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

441

Validation

Giving feedback about invalid form data early in the process provides a better
user experience. Users can be given an opportunity to correct the data before the
database becomes corrupt. Implementing such a feedback loop is a lot of effort.
On every form field a check has to be made to determine if a previous value had
been entered, and if so, it needs to be redisplayed. In addition, it’s often difficult
to determine where validation code belongs and how to make it easily reusable.
Fortunately, Struts already includes a validation framework that takes the com-
plexity out of validating HTML forms. The Struts validation framework is a reusable
XML-based framework that extends the Jakarta Commons Validator project.

NOTE Originally, the Jakarta Commons Validator project came from
Struts 1.0 as many of the other Jakarta Commons projects did.

Struts already contains a number of built-in validation rules, including required,
minlength, maxlength, mask, and many more. These built-in rules are defined in
the validator-rules.xml file that’s found in the Struts lib directory. These rules are
a great place to start. However, with little effort you can add other rules easily.

The framework has to be told how to validate specific forms. This is typically
done in a separate XML file called validation.xml. Separating the files for each
form make them easier to work with, but it’s possible to combine them into a
single file. The validation.xml file contains a root tag of form-validation and an
element of formset. The form set is a collection of form elements. Each form
element represents a form Bean. The name of the form element should match
the name of the Bean declared in the struts-config.xml. Listing 8-20 shows an
example of the validation.xml file that contains the registrationForm.

Listing 8-20. RegistrationForm Validation

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE form-validation PUBLIC

 "-//Apache Software Foundation//

 DTD Commons Validator Rules Configuration 1.0//EN"

 "http://jakarta.apache.org/commons/dtds/validator_1_0.dtd">

1259c08.fm Page 441 Friday, February 27, 2004 1:56 PM

Chapter 8

442

<form-validation>

 <formset>

 <form name="registrationForm">

 <field property="firstname"

 depends="required">

 <arg0 key="firstname.label"/>

 </field>

 <field property="lastname"

 depends="required">

 <arg0 key="lastname.label"/>

 </field>

 <field property="email"

 depends="required,email">

 <arg0 key="email.label"/>

 </field>

 <field property="password"

 depends="required">

 <arg0 key="password.label"/>

 </field>

 <field property="street"

 depends="required">

 <arg0 key="street.label"/>

 </field>

 <field property="city"

 depends="required">

 <arg0 key="city.label"/>

 </field>

 <field property="state"

 depends="required">

 <arg0 key="state.label"/>

 </field>

 <field property="zip"

 depends="required">

 <arg0 key="zip.label"/>

 </field>

 </form>

 </formset>

</form-validation>

Listing 8-20 contains a registrationForm with validation rules for the regis-
trationForm that’s declared in the struts-config.xml file. For each property of the
RegistrationForm that requires validation, there’s a field element. The field element
contains the property name and the validation rule. In the case of the firstName
property, it depends on passing the required rule. If the required rule fails, it uses

1259c08.fm Page 442 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

443

the arg0 element to help build the validation error message. The firstName key of
firstname.label is a property name found in the Struts message resource.

NOTE The message resources is a property file declared in the
message-resource element of the struts-config.xml file as shown in
Listing 8-9.

To make a form automatically validate against the validation.xml file the
ActionForm must extend ValidatorForm rather than ActionForm. Listing 8-21
shows an updated RegistrationForm that extends the ValidatorForm class.

CAUTION ValidatorForm descendants must not include a validate
method unless it calls the super validate method.

Listing 8-21. Validating RegistrationForm

package com.ejdoab.tcms.web.forms;

import org.apache.struts.validator.*;

/**

 * Registration Form

 *

 * @author cjudd

 */

public class RegistrationForm extends ValidatorForm {

 private String city;

 private String email;

 private String fax;

 private String firstname;

 private String homephone;

 private String lastname;

 private String password;

 private String state;

 private String street;

 private String workphone;

 private String zip;

1259c08.fm Page 443 Friday, February 27, 2004 1:56 PM

Chapter 8

444

 public String getCity() {

 return city;

 }

 public void setCity(String city) {

 this.city = city;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public String getFax() {

 return fax;

 }

 public void setFax(String fax) {

 this.fax = fax;

 }

 public String getFirstname() {

 return firstname;

 }

 public void setFirstname(String firstname) {

 this.firstname = firstname;

 }

 public String getHomephone() {

 return homephone;

 }

 public void setHomephone(String homephone) {

 this.homephone = homephone;

 }

 public String getLastname() {

 return lastname;

 }

1259c08.fm Page 444 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

445

 public void setLastname(String lastname) {

 this.lastname = lastname;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

 public String getState() {

 return state;

 }

 public void setState(String state) {

 this.state = state;

 }

 public String getStreet() {

 return street;

 }

 public void setStreet(String street) {

 this.street = street;

 }

 public String getWorkphone() {

 return workphone;

 }

 public void setWorkphone(String workphone) {

 this.workphone = workphone;

 }

 public String getZip() {

 return zip;

 }

 public void setZip(String zip) {

 this.zip = zip;

 }

}

1259c08.fm Page 445 Friday, February 27, 2004 1:56 PM

Chapter 8

446

The validation framework is called before the Action class. If the validation
fails the page is redirected to the input attribute of the action mapping. In most
cases, this is probably the same Tiles mapping as the submitted form. The form
should repopulate the fields with the previous values and display the validation
errors. When you use the Struts tag libraries, this work is already handled. The
Struts html tags take care of repopulating the fields. You can use the Struts logic
and bean tags to display the validation errors. Listing 8-22 is a snippet from reg-
istration.jsp that shows a common example of displaying the validation errors.

Listing 8-22. Displaying Validation Errors

<logic:messagesPresent>

 <bean:message key="errors.header"/>

 <html:messages id="error">

 <bean:write name="error"/>

 </html:messages>

 <hr>

</logic:messagesPresent>

Listing 8-22 uses the Struts logic tag libraries messagesPresent tag to determine
if any messages or errors need to be displayed. If there are any messages or errors,
the body of the tag is executed, otherwise nothing is rendered. The Struts bean
tag is used to display a property value from the message resources property file.
Then the Struts html messages tag is used to iterate through all the messages or
errors. The Struts bean write tag is used to actually render the message.

NOTE The validation error presentation logic in Listing 8-22 would
make a great reusable tile.

Setting Up Validation

To use the validation framework, you must configure a plug-in in the
struts-config.xml file just like the Tiles plug-in. Listing 8-23 shows an example
of configuring the validator plug-in. The primary purpose of configuring the
validator plug-in is to tell the Struts where to find the validation rules and form
validations.

1259c08.fm Page 446 Friday, February 27, 2004 1:56 PM

MVC Frameworks and the Presentation Tier

447

Listing 8-23. struts-config.xml Validator Plug-in Configuration

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

 <set-property property="pathnames"

 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>

The only other requirement for the validation is to provide the validation rules.
As mentioned earlier, the easiest way to start is by copying the validator-rules.xml
from the Struts lib directory to the location defined in the validator plug-in con-
figuration, which is commonly the WEB-INF directory.

Conclusion

Without a good model-view-controller framework, the presentation tier can
become impossible to maintain. There are many good MVC frameworks to
choose from. Struts is the most-common and possibly most-documented
framework, but choose the one that meets your needs and stick with it.

1259c08.fm Page 447 Friday, February 27, 2004 1:56 PM

1259c08.fm Page 448 Friday, February 27, 2004 1:56 PM

449

CHAPTER 9

Web Services and
Mobile Clients

Web services is the best way we know to create a service-oriented architecture.1

—Bob Sutor

MANY ORGANIZATIONS ARE now developing service-oriented architectures (SOA) or
exposing parts of their applications as services. Web services are often used to
expose services and the most popular form of web services is the W3C standard
Simple Object Access Protocol (SOAP). SOAP is a messaging framework that uses
XML and Internet standard transfer protocols such as HTTP to make remote pro-
cedure calls or transfer data rather than language-proprietary mechanisms. Rather
than explain all the nuances and formats of a SOAP message in this chapter, we’ll
focus on how to expose parts of a J2EE-based application as web services and how
to consume web services using the Open Source Apache Axis framework. The
chapter concludes by developing a J2ME/MIDP web services consumer.

Web Services and Axis

In the TCMS application parts of the application lend itself very well to being
exposed as a service. Imagine being able to expose news or attendees’ schedules as
web services. Attendees could write consumers to notify them of new news regarding
the conference rather than forcing them to view the conference website on a daily
basis. Also, imagine a web services consumer who could take attendees’ individual
online schedules and update their PDA or Outlook calendars with them. Web
services could also be used to expose the same information to cell phones so that
attendees could easily determine the next room or get updated on session cancel-
lations and room changes.

Figure 9-1 illustrates the web services model. Producers expose services, for
example the TCMS application exposes the service getNews, which returns the

1. Sutor, Bob. “A Web Services Wish List” (CNET News.com, January 14, 2004).
See http://news.com.com/2010-7345-5139148.html.

1259c09.fm Page 449 Friday, February 27, 2004 2:02 PM

Chapter 9

450

current news items. The consumer can make requests of the producer. The pro-
ducer fulfills the request and response with the appropriate answer such as a
collection of new items. This is the traditional client/server model. One advantage of
using SOAP is that the requests and responses are both implemented as XML-
based SOAP messages, and the communication between the consumer and
producer occurs because of HTTP. The combination of XML and HTTP allows
web services to be language independent. In addition, web services doesn’t rely
on commercial products or frameworks. For these reasons, web services are ideal
for integrating Java with non-Java systems such as .NET.

Figure 9-1. Web services model

SOAP uses an XML file called a web service description language (WSDL) to
define a set of abstract operations that are tied to a concrete set of endpoints,
which in turn, are deployed as a web service. The WSDL can also describe complex
datatypes that are similar to structures or data transfer objects (DTOs). Listing 9-1
shows the WSDL of the News service, which will be used later in the chapter.

Listing 9-1. News Service WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://localhost:8080/tcms/services/News"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:apachesoap="http://xml.apache.org/xml-soap"

 xmlns:impl="http://localhost:8080/tcms/services/News"

 xmlns:intf="http://localhost:8080/tcms/services/News"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:tns1="services.tcms.ejdoab.com"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

1259c09.fm Page 450 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

451

 <wsdl:types>

 <schema targetNamespace="services.tcms.ejdoab.com"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

 <complexType name="NewsItemDTO">

 <sequence>

 <element name="body" nillable="true" type="xsd:string"/>

 <element name="creationDate" nillable="true" type="xsd:dateTime"/>

 <element name="creationdate" nillable="true" type="xsd:dateTime"/>

 <element name="date" nillable="true" type="xsd:dateTime"/>

 <element name="newsItemId" type="xsd:int"/>

 <element name="published" type="xsd:boolean"/>

 <element name="removeDate" nillable="true" type="xsd:dateTime"/>

 <element name="removedate" nillable="true" type="xsd:dateTime"/>

 <element name="title" nillable="true" type="xsd:string"/>

 </sequence>

 </complexType>

 </schema>

 <schema targetNamespace="http://localhost:8080/tcms/services/News"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

 <complexType name="ArrayOf_tns1_NewsItemDTO">

 <complexContent>

 <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType"

 wsdl:arrayType="tns1:NewsItemDTO[]"/>

 </restriction>

 </complexContent>

 </complexType>

 </schema>

 </wsdl:types>

 <wsdl:message name="getNewsResponse">

 <wsdl:part name="getNewsReturn" type="impl:ArrayOf_tns1_NewsItemDTO"/>

 </wsdl:message>

 <wsdl:message name="getNewsRequest">

 </wsdl:message>

1259c09.fm Page 451 Friday, February 27, 2004 2:02 PM

Chapter 9

452

 <wsdl:portType name="News">

 <wsdl:operation name="getNews">

 <wsdl:input message="impl:getNewsRequest" name="getNewsRequest"/>

 <wsdl:output message="impl:getNewsResponse" name="getNewsResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="NewsSoapBinding" type="impl:News">

 <wsdlsoap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getNews">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getNewsRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://ws.tcms.ejdoab.com" use="encoded"/>

 </wsdl:input>

 <wsdl:output name="getNewsResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://localhost:8080/tcms/services/News"

 use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="NewsService">

 <wsdl:port binding="impl:NewsSoapBinding" name="News">

 <wsdlsoap:address location="http://localhost:8080/tcms/services/News"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Listing 9-1 was generated using the AxisServlet, which will be discussed later
in the chapter. The wsdl:service element at the bottom of the WSDL file iden-
tifies the service you’re exposing as the NewsService. SOAP clients can bind
to the NewsService to access the TCMS application using the URL
http://localhost:8080/tcms/services/News/ in the wsdlsoap:address element.
wsdl:operation elements identify the exposed methods. In this example there’s a
single getNews method. The getNews on the NewsService doesn’t except any
parameters but does return an array of NewsItemDTO. NewsItemDTO is a complex
type described by the complexType elements. The NewsItem object contains the
properties you might expect—body, title, date, and so on.

1259c09.fm Page 452 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

453

Axis is an Open Source SOAP framework that’s available as a part of the Web
Services project at Apache (http://ws.apache.org/axis/). Axis can be used by
either the producer or consumer. Axis can use WSDL to generate skeletons and
stubs, which are responsible for making what appears to be local method calls
from SOAP requests and responses. Axis accomplishes this by marshaling the
Java objects to XML before the message is sent. When Axis receives SOAP messages
it unmarshals the XML and turns them into Java objects or primitive datatypes.

Producing Services

Axis can be used to expose plain old Java objects (POJOs) or EJBs as SOAP
producers. Axis requires an HTTP server. Axis includes an internal HTTP server
but a web container such as Tomcat or the web container in a J2EE application
server is commonly used. If a web container is used, two servlets are used.
One of the servlets responds to SOAP requests and the other manages Axis.

The servlets are org.apache.axis.transport.http.AxisServlet
and org.apache.axis.transport.http.AdminServlet.

Setting Up Axis

Setting up Axis 1.1 and deploying it in a web container such as JBoss involves cre-
ating a web application or adding the Axis servlet definitions to an existing web
application. Chapter 8 already describes how to create a web application so the
discussion will be expanded in this chapter to support web services.

Like other servlet-based frameworks, Axis involves installing the required
JAR files in the WEB-INF/lib directory so that they become a part of the web
application class loader. Then the servlet or servlets must be configured in the
web.xml file. Axis is no different. Axis requires the axis.jar, jaxrpc.jar, saaj.jr,
commons-logging.jar, commons-discovery.jar, wsdl4j.jar, and an XML parser.
Listing 9-2 shows the common web.xml configuration for the AxisServlet and
AdminServlet.

1259c09.fm Page 453 Friday, February 27, 2004 2:02 PM

Chapter 9

454

Listing 9-2. Axis web.xml Configuration

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app id="WebApp">

 <display-name>TCMS Web Application</display-name>

 <!-- Servlet definitions -->

 <servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <param-name>application</param-name>

 <param-value>com.ejdoab.tcms.web.ApplicationResources</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>AxisServlet</servlet-name>

 <display-name>Apache-Axis Servlet</display-name>

 <servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>AdminServlet</servlet-name>

 <display-name>Axis Admin Servlet</display-name>

 <servlet-class>org.apache.axis.transport.http.AdminServlet</servlet-class>

 <load-on-startup>100</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

1259c09.fm Page 454 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

455

 <servlet-mapping>

 <servlet-name>AxisServlet</servlet-name>

 <url-pattern>/services/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>AdminServlet</servlet-name>

 <url-pattern>/servlet/AdminServlet</url-pattern>

 </servlet-mapping>

 <mime-mapping>

 <extension>wsdl</extension>

 <mime-type>text/xml</mime-type>

 </mime-mapping>

 <!-- Tag libraries declarations -->

 <taglib>

 <taglib-uri>struts-html</taglib-uri>

 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>struts-tiles</taglib-uri>

 <taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>struts-bean</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>struts-logic</taglib-uri>

 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>jstl-core</taglib-uri>

 <taglib-location>/WEB-INF/c.tld</taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>jstl-format</taglib-uri>

 <taglib-location>/WEB-INF/fmt.tld</taglib-location>

 </taglib>

</web-app>

1259c09.fm Page 455 Friday, February 27, 2004 2:02 PM

Chapter 9

456

The common configuration in Listing 9-2 shows that the AxisServlet is mapped
to the /services/* URL. The AdminServlet is mapped to the /servlet/AdminServlet
URL. In addition, there is mime typing of wsdl to text/xml in case the web
container doesn’t already have the mapping.

To ensure that the web application has been configured correctly and that all the
JAR files are located in the class loader, Axis provides a happyaxis.jsp file. If every-
thing is configured correctly, accessing http://localhost:8080/tcms/happyaxis.jsp
should look like Figure 9-2.

Figure 9-2. Correctly configured Axis application

Exposing Services

Assuming Axis has been deployed correctly in an existing application with either
POJOs or EJBs, there’s only one step that will expose the functionality as a SOAP

1259c09.fm Page 456 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

457

service. An Axis proprietary web services deployment descriptor or deploy.wsdd
file must be created in any directory. The WSDD file tells the Axis engine what
services to expose and how to expose them. Using an admin client tool this file
can be sent to the Axis engine to enable the service. Likewise an undeploy.wsdd
file can be used to disable the service. However, this enabling is only a runtime
enabling. If the application is redeployed or the application server restarted, the
service will have to be re-enabled. So the deploy.wsdd method is only practical
for testing or temporary purposes. The WSDD file can be used as input to another
admin tool to generate a server-config.wsdd. When placed in the WEB-INF directory,
the server-config.wsdd autostarts a service when the application is started.

The deploy.wsdd file is an XML file that contains the service and possible Bean
mappings. The service describes the service name and provider. The provider
may be either java:RPC for POJOs or java:EJB for EJBs. The service also contains
parameters describing which class to expose and which methods should be
exposed. The Bean mapping is used to describe complex web service types.
Listing 9-3 illustrates the news service deploy.wsdd from the TCMS project.

Listing 9-3. News service deploy.wsdd.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="News" provider="java:RPC">

 <parameter name="className" value="com.ejdoab.tcms.ws.News"/>

 <parameter name="allowedMethods" value="*"/>

 </service>

 <beanMapping qname="ns:NewsItemDTO"

 xmlns:ns="services.tcms.ejdoab.com"

 languageSpecificType="java:com.ejdoab.tcms.services.dto.NewsItemDTO"/>

</deployment>

Notice that in Listing 9-3, the news service is indicated to be a POJO because
it uses the java:RPC provider. You may be asking yourself why use a POJO when
the system has EJBs that implement the functionality? Well, the answer is type
conversions. SOAP doesn’t have all the rich datatypes that Java offers due to its
language neutrality. The com.ejdoab.tcms.services.ConferenceServices Bean
returns a collection of NewsItemDTOs as a Page collection. Interoperability
with SOAP is easier when a collection is an array. Therefore, a
com.ejdoab.tcms.ws.News class was created to convert the NewsItemDTO in the
Page collection to an array of NewsItemDTOs. Notice that the new class is spec-
ified in the className parameter. Listing 9-4 contains the source code for the
News class.

1259c09.fm Page 457 Friday, February 27, 2004 2:02 PM

Chapter 9

458

Listing 9-4. News Class That Converts NewsItemDTOs from a Page to an Array

package com.ejdoab.tcms.ws;

import com.ejdoab.tcms.services.*;

import com.ejdoab.tcms.services.dto.*;

import com.ejdoab.tcms.services.dto.page.*;

import java.rmi.*;

import java.util.*;

/**

 * Web service for getting news.

 */

public class News {

 /**

 * Gets all current news items

 *

 * @return An array of news items

 *

 * @throws RemoteException Any possible exception.

 */

 public NewsItemDTO[] getNews() throws RemoteException {

 try {

 Calendar currentCalendar = Calendar.getInstance();

 Calendar newsCalendar = Calendar.getInstance();

 List currentNews = new ArrayList();

 ConferenceServicesLocalHome cslh = ConferenceServicesUtil.getLocalHome();

 ConferenceServicesLocal csl = cslh.create();

 Page page = csl.getNews(0, csl.getNewsCount());

 while (page.hasNext()) {

 NewsItemDTO item = (NewsItemDTO) page.next();

 newsCalendar.setTime(item.getRemovedate());

1259c09.fm Page 458 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

459

 if (item.isPublished() && currentCalendar.before(newsCalendar)) {

 currentNews.add(item);

 }

 }

 NewsItemDTO[] items = new NewsItemDTO[currentNews.size()];

 int i = 0;

 for (Iterator iter = currentNews.iterator(); iter.hasNext(); i++) {

 items[i] = (NewsItemDTO) iter.next();

 }

 return items;

 } catch (Exception ex) {

 throw new RemoteException(ex.getMessage(), ex);

 }

 }

}

Listing 9-4 also shows the Bean mapping, which enables access to turn the
com.ejdoab.tcms.services.NewsItemDTO class into a complex type. Axis uses
introspection to get the properties of the class to build element sequences in the
WSDL file.

Once this deploy.wsdd file has been created you can invoke the
org.apache.axis.client.AdminClient on the command line by passing the
deploy.wsdd file to it. Listing 9-5 shows an example of running the utility.

Listing 9-5. Deploying the deploy.wsdd File

java org.apache.axis.client.AdminClient deploy.wsdd

Once the web service has been deployed, you verify that it was enabled by
using Axis’s AxisServlet. Use the http://localhost:8080/tcms/servlet/AxisServlet
URL to see all enabled services. Figure 9-3 shows the News service with the
exposed getNews method that was deployed along with the Axis AdminService
and Version services.

1259c09.fm Page 459 Friday, February 27, 2004 2:02 PM

Chapter 9

460

Figure 9-3. List of enabled services

In Figure 9-3, notice that next to each of the service names is a wsdl link. The
link displays the corresponding wsdl, which describes the service. Clicking the
News wsdl will present the wsdl found in Listing 9-1. In the next section, when
the consumer is created you’ll see how the URL to the wsdl can be used to
generate the necessary classes that make requests to the service.

Now that the service has been verified it can be invoked with a web browser. Axis
enables its services to be invoked by an HTTP get method, not just a traditional post
method. To invoke the News with a browser enter the http://localhost:8080/tcms/
services/News?method=getNews URL. The services path indicates that the
AxisServlet receives the request. The following News path is the exposed service
and getNews is the method or operation on the News service that will be invoked.
The results should be similar to Listing 9-6.

Listing 9-6. Response from the News Service’s getNews

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

1259c09.fm Page 460 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

461

 <soapenv:Body>

 <getNewsResponse

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <getNewsReturn

 xsi:type="soapenc:Array"

 soapenc:arrayType="ns1:NewsItemDTO[4]"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:ns1="services.tcms.ejdoab.com">

 <item href="#id0"/>

 <item href="#id1"/>

 <item href="#id2"/>

 <item href="#id3"/>

 </getNewsReturn>

 </getNewsResponse>

 <multiRef id="id1" soapenc:root="0"

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xsi:type="ns2:NewsItemDTO"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:ns2="services.tcms.ejdoab.com">

 <body xsi:type="xsd:string">Cancelled</body>

 <creationdate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</creationdate>

 <date xsi:type="xsd:dateTime">2004-06-03T05:00:00.000Z</date>

 <newsItemId xsi:type="xsd:int">1</newsItemId>

 <published xsi:type="xsd:boolean">true</published>

 <removedate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</removedate>

 <title xsi:type="xsd:string">Session 12</title>

 </multiRef>

 <multiRef id="id3" soapenc:root="0"

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xsi:type="ns3:NewsItemDTO"

 xmlns:ns3="services.tcms.ejdoab.com"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <body xsi:type="xsd:string">

 Brian and Chris will be signing books in the vendor area at 12:00 noon.

 </body>

 <creationdate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</creationdate>

 <date xsi:type="xsd:dateTime">2004-06-05T05:00:00.000Z</date>

 <newsItemId xsi:type="xsd:int">4</newsItemId>

 <published xsi:type="xsd:boolean">true</published>

 <removedate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</removedate>

 <title xsi:type="xsd:string">Book signing</title>

1259c09.fm Page 461 Friday, February 27, 2004 2:02 PM

Chapter 9

462

 </multiRef>

 <multiRef id="id2" soapenc:root="0"

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xsi:type="ns4:NewsItemDTO"

 xmlns:ns4="services.tcms.ejdoab.com"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <body xsi:type="xsd:string">

 Keep a close eye on your laptops.

 Several have been stolen thoughout the conference.

 </body>

 <creationdate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</creationdate>

 <date xsi:type="xsd:dateTime">2004-06-04T05:00:00.000Z</date>

 <newsItemId xsi:type="xsd:int">3</newsItemId>

 <published xsi:type="xsd:boolean">true</published>

 <removedate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</removedate>

 <title xsi:type="xsd:string">Caution with laptops</title>

 </multiRef>

 <multiRef id="id0" soapenc:root="0"

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xsi:type="ns5:NewsItemDTO"

 xmlns:ns5="services.tcms.ejdoab.com"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <body xsi:type="xsd:string">

 Lunch will be box lunches in the main lobby at 12:00 noon

 </body>

 <creationdate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</creationdate>

 <date xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</date>

 <newsItemId xsi:type="xsd:int">0</newsItemId>

 <published xsi:type="xsd:boolean">true</published>

 <removedate xsi:type="xsd:dateTime">2004-06-02T05:00:00.000Z</removedate>

 <title xsi:type="xsd:string">Lunch</title>

 </multiRef>

 </soapenv:Body>

</soapenv:Envelope>

Listing 9-6 shows the results of invoking the getNews method of the News
service. These results include four news items. Each news item contains an ID,
title, body, date, creation date, expiration date, and published status.

As mentioned earlier, using the deploy.wsdd isn’t the most efficient or effective
way to enable a web service because it must be re-enabled each time the appli-
cation is redeployed or the web container is restarted. Instead, the admin utility
can be used to convert the deploy.wsdd into a server-config.wsdd, which is read

1259c09.fm Page 462 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

463

by the AxisServlet at runtime to determine which services to autostart. Listing 9-7
shows the command line for running the admin utility.

Listing 9-7. Command-line Admin Utility for Generating the server-config.wsdd

java org.apache.axis.utils.Admin server deploy.wsdd

The admin utility takes two parameters. The first parameter indicates that
the configuration file is read by the server at startup. The second parameter is the
input deploy file, which is used to determine the services and operations to expose
at startup. The resulting server-config.wsdd should be placed in the WEB-INF
directory of the web application. The next time the application is redeployed the
services will automatically be enabled.

...

TCP Monitor

Axis includes a great utility for debugging SOAP communications called TCP
Monitor, which acts as a proxy by capturing the requests and the responses
between a consumer and producer. TCP Monitor isn’t limited to SOAP applica-
tions. It can be helpful in any TCP-based application, including standard web
applications. To run TCP Monitor type java org.apache.axis.utils.tcpmon 8082
localhost 8080 on the command line. The tcpmon takes three parameters.
The first parameter is the port requested in the browser. The second and third
parameters are the server name and port to redirect the request to. To demon-
strate this, hit http://localhost:8082/tcms/happyaxis.jsp and you’ll see the HTTP
request and response.

...

Consuming Services

Axis makes consuming a SOAP service really easy, and it isn’t for just another Axis
service, but any service that follows the standard SOAP Protocol. Just execute the
WSDL2Java utility and tell it where to find a local or remote wsdl. Axis will
generate all the necessary stub classes. Axis will even turn the complex types
into JavaBeans.

To generate the client side classes for the News service type java org.apache.
axis.wsdl.WSDL2Java –p com.ejdoab.tcms.services http://localhost:8080/tcms/
services/News?wsdl. The –p option identifies the package in which to place the
generated classes. The second parameter can either be a local or remote WSDL
file. Axis will generate a remote interface for the service, a remote procedure call

1259c09.fm Page 463 Friday, February 27, 2004 2:02 PM

Chapter 9

464

interface, a service locator, and a SOAP-binding stub along with any necessary
JavaBean that represents complex SOAP types. The generated classes can be used
to create any type of client necessary to interact with the web service. Listing 9-8
shows a simple client that gets the news and prints the results of the title and
body to standard out.

Listing 9-8. Simple Web Servcies Client

package com.ejdoab.tcms;

import com.ejdoab.tcms.services.*;

/**

 * Simple News Web Services Client

*/

public class NewsClient {

 public static void main(String[] args) throws Exception {

 NewsServiceLocator locator = new NewsServiceLocator();

 News news = locator.getNews();

 NewsItemDTO[] items = news.getNews();

 System.out.println("Conference News");

 for(int i = 0; i < items.length; i++) {

 System.out.println("*** " + items[i].getTitle() + " ***");

 System.out.println(items[i].getBody());

 }

 }

}

The client in Listing 9-8 starts by using the NewsServiceLocator to look
up the remote web service. By using getter methods, it gets a reference to the
News service. Once it has a reference to the service it can invoke the methods of
that service. In this case, the getNews() operation is called and the method returns a
collection of NewsItemDTOs. The NewsItemsDTO is a JavaBean created to rep-
resent the complex type defined in the WSDL file. In the previous example the
collection is iterated through and printed out, but the results could have been
used on another web page, put in a database, or used for any other necessary
behavior.

1259c09.fm Page 464 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

465

...

JBoss.NET

JBoss 3.0 provides an optional plug-in called JBoss.NET, which wraps Apache
Axis as an alternative way of deploying web services. JBoss.NET uses web
service archives (WSR) to deploy web services.

...

Mobile Consumer

As society and devices become more mobile, there’s a push to provide more func-
tionality to users on the go. Applications are being extended for use on devices
such as PDAs and phones. Java’s micro edition (J2ME) combined with web services is
a great way to solve the mobile problem.

J2ME Overview

J2ME is a scaled-down version of Java that runs on consumer devices. J2ME is
divided into profiles that target specific types of devices. The mobile information
device profile (MIDP) targets cell phones and PDAs such as the Palm. J2ME has
many advantages over the alternative web-based Wireless Access Protocol (WAP),
including the following:

• Offline capability

• Performance

• Reduces air time

• Reduces service charges

• Richer user experience

J2ME has an internal data store that can be used to hold data, thereby allowing
the device to be used when a service is unavailable. Because the application exe-
cutes in the memory of the device and doesn’t need to make a round-trip to the
server for every request, J2ME performs better and saves money by reducing the
amount of used airtime. In addition, J2ME provides access to the canvas so that
custom components, screen, and functionality can be developed. WAP is limited
to a small number of HTML components and a simple scripting language.

1259c09.fm Page 465 Friday, February 27, 2004 2:02 PM

Chapter 9

466

To develop MIDP applications you’ll need to install the J2ME Wireless Toolkit
1.0.4, which contains the J2ME API and emulators. The Wireless toolkit isn’t Open
Source but is freely available at http://java.sun.com/products/j2mewtoolkit/. If
you want your J2ME application to be a SOAP consumer, you’ll also need kSOAP
and kXML from http://ksoap.enhydra.org and http://kxml.enhydra.org. There
are version 2 releases of these frameworks developed by a separate group at
http://www.kobjects.org, but they don’t appear to work in all emulators and may
not work on all devices.

...

Unit Testing J2ME

As discussed in Chapter 4, unit testing is an important part of developing quality
applications. Therefore, it only makes sense that you would want to create unit
tests for mobile applications as well. However, due to the limited J2ME API,
JUnit can’t be run in a J2ME environment. So instead of bring JUnit to a J2ME
environment, how about bringing the J2ME environment to JUnit. An Open
Source framework called ME4SE does just that. ME4SE is available at
http://www.kobjects.org and it makes the J2ME API available on the J2SE plat-
form. This enables developers to continue using JUnit to develop unit tests for
the J2ME platform. ME4SE, combined with Personal Java can also be used to port
J2ME applications to the Pocket PC. However, the results aren’t as aesthetically
pleasing as if the application was directly developed for the Pocket PC using
Personal Java.

...

J2ME applications are deployed as two files, a JAR and a Java Application
Descriptor (JAD). Like other Java applications the JAR file contains Java classes
and related files such as images. The JAD file is basically a deployment descriptor
in a property file format with attributes that describe things about the appli-
cation such as its name, vendor, version, URL location, and size. See Listing 9-9
for the example from the TCMS application.

Listing 9-9. TCMS JAD file

MIDlet-Name: tcms

MIDlet-Vendor: tcms

MIDlet-Version: 1.0

MIDlet-1: tcms, , com.ejboab.tcms.midp.TCMSMidlet

MIDlet-Jar-URL: tcms-midp.jar

MIDlet-Jar-Size: 76701

1259c09.fm Page 466 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

467

The JAD file in Listing 9-9 shows a JAD file describing a MIDlet, a J2ME
application with a name of tcms, and a vendor of tcms. The version of this appli-
cation is 1.0. A JAD file can have a collection of MIDlets referred to as a MIDlet
suite. In this case there’s only one MIDlet. If there were multiple MIDlets, there
would be more MIDlet-# attributes. The MIDlet-# attributes contain three char-
acteristics. The first characteristic is the title that will be displayed in the list of
available applications. Each device might present the list differently. The second
is an image that will be displayed next to the name and the third is the class to invoke
when the application is executed. In this example the title is tcms and the class
to invoke is com.ejboad.tcms.midp.TCMSMidlet. The image characteristic is left
blank, and therefore the default device icon will be displayed. The MIDlet-Jar-
URL is a URL to the JAR file that contains the MIDlet. This may either be a local or
remote URL, depending on the device installation, which can vary from Over-the-Air
(OTA) to serial connection with a proprietary application. See the phone instruc-
tions for specific information. The last required attribute is the MIDlet-Jar-Size.
This is the size in bytes of the JAR file. Some devices use this size to determine

whether the application can be installed before it’s even downloaded. If it’s over
the minimum limit, an error message will be displayed. In addition, if the size
attribute doesn’t match the size of the JAR file, an error message may also be
displayed.

...

Application Size

Due to the limited amount of space on J2ME devices, many of them have a limit
of how large the application can be. Phones often have a 100 kb limit. On some
devices this limit is only for the class files. On other devices it’s size is determined
by the size of the JAR file, which might also contain images and other resources.
Either way, size is a concern. Reducing the size of the class files can increase the
amount of functionality that can be deployed to the device. Using an obfuscator
can reduce the size of class files by 30 to 40 percent. Obfuscators are often used
to name mangled classes to make them more difficult to reverse engineer. As a
side-effect they reduce class-file sizes by changing variable and method names
from a human-readable name to names such as A and AA. Because all the refer-
ences are changed, the application still works like it should. Using an obfuscator is
critical to J2ME development. Two commonly used Open Source obfuscators
are ProGuard and RetroGuard, which can be found at http://proguard.
sourceforge.net and http/www.retrologic.com, respectively.

...

Building a deployable MIDP application involves additional build steps not
required by standard J2SE applications. For example, a preverification process,

1259c09.fm Page 467 Friday, February 27, 2004 2:02 PM

Chapter 9

468

which verifies the application, is secure from the standpoint of not accessing
resources it doesn’t have access to, such as pointers. J2SE applications are verified
at runtime, but due to the limited nature of J2ME devices, preverification must
occur as part of the build. Rather than manually performing all the build details,
it’s recommended that you use the Ant Antenna extension. Antenna provides
tasks for building, packaging, creating a JAD, running the application in an emu-
lator, preverifying, obfuscating, and creating a Palm application. Antenna can be
downloaded from http://antenna.sourceforge.net. Listing 9-10 shows the use of
Antenna in the TCMS application.

Listing 9-10. MIDP Targets

<!-- Antenna - antenna.sourceforge.net -->

<taskdef name="wtkjad" classname="de.pleumann.antenna.WtkJad"/>

<taskdef name="wtkbuild" classname="de.pleumann.antenna.WtkBuild"/>

<taskdef name="wtkpackage" classname="de.pleumann.antenna.WtkPackage"/>

<taskdef name="wtkmakeprc" classname="de.pleumann.antenna.WtkMakePrc"/>

<taskdef name="wtkrun" classname="de.pleumann.antenna.WtkRun"/>

<taskdef name="wtkpreverify" classname="de.pleumann.antenna.WtkPreverify"/>

<taskdef name="wtkobfuscate" classname="de.pleumann.antenna.WtkObfuscate"/>

<taskdef name="wtksmartlink" classname="de.pleumann.antenna.WtkSmartLink"/>

<taskdef name="wtkpreprocess" classname="de.pleumann.antenna.WtkPreprocess"/>

<!-- == -->

<!-- MIDP Client -->

<!-- == -->

<target name="midp" depends="jar-midp"

 description="Creates a deployable MIDP application" />

<target name="compile-midp" depends="compile-init-midp">

 <wtkbuild srcdir="${src-midp}"

 destdir="${build-midp}"

 preverify="false"/>

 <copy todir="${build-midp}">

 <fileset dir="${src-midp}">

 <patternset refid="non.source.set"/>

 </fileset>

 </copy>

</target>

1259c09.fm Page 468 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

469

<target name="jad">

 <wtkjad jadfile="${jad}"

 name="${app.name}"

 vendor="${app.name}"

 version="1.0">

 <midlet name="${app.name}"

 icon=""

 class="${midlet-class}"/>

 </wtkjad>

</target>

<target name="jar-midp" depends="compile-midp,jad">

 <wtkpackage jarfile="${midp-jar}"

 jadfile="${jad}"

 obfuscate="${midp-obfuscate}"

 autoversion="false">

 <fileset dir="${build-midp}"/>

 </wtkpackage>

 <wtkpreverify jarfile="${midp-jar}"

 jadfile="${jad}"/>

</target>

<target name="compile-init-midp">

 <mkdir dir="${build-midp}" />

</target>

Listing 9-10 begins by defining all the Antenna targets followed by the MIDP-
specific targets. The midp target is the overall target that builds the entire appli-
cation. The compile-midp target compiles the classes and copies all related
material to the build directory. The jad target uses the application name property
to build a JAD file. The jar-midp target packages the classes and related files into
a JAR file and obfuscates the JAR. It then performs the necessary preverification
process.

NOTE Due to the difference in APIs, J2SE and J2ME source code and
classes should remain in separate source and build directories.

The resulting JAR and JAD files can be deployed to a multitude of J2ME-
enabled devices or emulators.

1259c09.fm Page 469 Friday, February 27, 2004 2:02 PM

Chapter 9

470

kSOAP

The TCMS J2ME application enables attendees to get current news items about the
conference they’re attending by using their cell phones. The application uses the
web service described earlier to get the current news items. The application then
lists the news titles as shown in Figure 9-4.

Figure 9-4. List of current news titles

To view the details of a news item, the attendee can select a title. Figure 9-5
shows what a detailed news item looks like.

1259c09.fm Page 470 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

471

Figure 9-5. News details

To begin using kSOAP and kXML, the Java source code in those packages
should be copied to the MIDP application source directory. It’s advisable to use
the source directly because these packages are rather large and can take advantage
of source compression through obfuscation (see the “Application Size” sidebar).

A MIDP application requires a MIDlet class. This class is similar to the main
class of a J2SE application. The MIDlet class is the starting point of the appli-
cation and contains several life-cycle methods including startApp, pauseApp,
and destroyApp. Listing 9-11 contains the source code for the TCMSMidlet class.

1259c09.fm Page 471 Friday, February 27, 2004 2:02 PM

Chapter 9

472

Listing 9-11. TCMSMidlet Class

package com.ejboab.tcms.midp;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TCMSMidlet extends MIDlet {

 private static TCMSMidlet instance;

 private NewsDisplayable displayable = new NewsDisplayable();

 public TCMSMidlet() {

 instance = this;

 }

 /** Start method */

 public void startApp() {

 setCurrent(displayable);

 }

 /** Handle pausing */

 public void pauseApp() {

 }

 /** Clean up */

 public void destroyApp(boolean unconditional) {

 }

 /** Exit */

 public static void quitApp() {

 instance.destroyApp(true);

 instance.notifyDestroyed();

 instance = null;

 }

 public static void setCurrent(Displayable next) {

 Display.getDisplay(instance).setCurrent(next);

 }

 public static void setCurrent(Alert alert, Displayable next) {

 Display.getDisplay(instance).setCurrent(alert, next);

 }

}

1259c09.fm Page 472 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

473

The TCMSMidlet class in Listing 9-11 is a very basic MIDlet. As a matter of
fact, most of the life-cycle methods are empty so they don’t even do anything.
This class does provide a couple of convenient methods. The first is quitApp. It
provides a lean way of exiting the application. The second two are mechanisms
for setting the current screen. A screen in MIDP is referred to as a Displayable.
Only one Displayable can be visible at a time and it takes up the entire screen.
MIDP includes two descendants of Displayable. The first is the Canvas, which
provides the most freedom but also requires the most implementation. The
second is the Screen, which is further subclassed into the Form, List, and TextBox
for developing business-oriented applications. The setCurrent method, which
takes a single Displayable parameter, simply sets the current screen. The second
one accepts an alert, which is basically a message dialog box that briefly shows
and then displays the Displayable, which is passed as the second parameter.

The TCMS application uses a NewsDisplayable screen to display all the news
titles. See Figure 9-4 to see what this screen looks like. The source code for
NewsDisplayable is listed in Listing 9-12.

Listing 9-12. NewsDisplayable Class

package com.ejboab.tcms.midp;

import javax.microedition.lcdui.*;

import java.util.*;

/**

 * Displays a list of news items

 */

public class NewsDisplayable extends List implements CommandListener {

 public static Command getCommand = new Command("Get", Command.SCREEN, 1);

 public static Command selectCommand = new Command("Select", Command.ITEM, 1);

 public static Command exitCommand = new Command("Exit", Command.EXIT, 3);

 private Vector news = null;

 /** Constructor */

 public NewsDisplayable() {

 super("Conference News", List.IMPLICIT);

 try {

 init();

 }

1259c09.fm Page 473 Friday, February 27, 2004 2:02 PM

Chapter 9

474

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 private void init() throws Exception {

 setCommandListener(this);

 addCommand(getCommand);

 addCommand(selectCommand);

 addCommand(exitCommand);

 listNews();

 }

 /** Handle events*/

 public void commandAction(Command command, Displayable displayable) {

 if (command == exitCommand) {

 TCMSMidlet.quitApp();

 } else if (command == getCommand) {

 news = SyncAgent.getAgent().getNews();

 listNews();

 } else if (command == selectCommand) {

 if(news != null) {

 Hashtable item = (Hashtable)news.elementAt(getSelectedIndex());

 NewsItemDisplayable nid = new NewsItemDisplayable(item, this);

 TCMSMidlet.setCurrent(nid);

 }

 }

 }

 private void listNews() {

 Hashtable item = null;

 if(news != null) {

 for (Enumeration e = news.elements() ; e.hasMoreElements() ;) {

 item = (Hashtable)e.nextElement();

 append((String)item.get("title"), null);

 }

 }

 }

}

The NewsDisplayable in Listing 9-12 extends javax.microedition.lcdui.List,
which is similar to a javax.swing.JList component except that it fills the entire
screen because it extends Displayable. In this example each item in the list is a
news title. This Displayable also contains three commands. Commands create

1259c09.fm Page 474 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

475

menu items and events in a MIDP application. So in this case there’s a getCommand
that downloads all the news items from the web service using a SyncAgent class.
There is also a selectCommand that displays the details of the currently selected
news item title, and lastly, there’s an exitCommand, which exits the application
by calling the TCMSMidlet’s quitApp method. When this class is created, it sets the
title of the application to be ConferenceNews and adds all the commands. This
class also uses the commandAction method to handle each of the commands/
events. The method uses the command parameter to determine which command
was executed and then performs the appropriate action. The class ends by including
a method to iterate through all the news items on the device and appends or adds
the title to the displayed list.

The TCMS MIDlet also contains a NewsItemDisplayable to view the
details of the selected news item. Listing 9-13 contains the source code for
the NewsItemDisplayable.

Listing 9-13. NewsItemDisplayable

package com.ejboab.tcms.midp;

import java.util.*;

import javax.microedition.lcdui.*;

/** Displays an individual News Item */

public class NewsItemDisplayable extends Form implements CommandListener {

 StringItem date;

 StringItem body;

 Displayable returnTo;

 Hashtable item = null;

 /**

 * Display a news item

 * @param item News Item to display.

 */

 public NewsItemDisplayable(Hashtable item, Displayable prev) {

 super((String)item.get("title"));

 this.item = item;

 returnTo = prev;

 try {

 init();

 }

1259c09.fm Page 475 Friday, February 27, 2004 2:02 PM

Chapter 9

476

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 private void init() throws Exception {

 String sDate = ((String)item.get("date")).substring(0,10);

 date = new StringItem("Date:", sDate);

 body = new StringItem("", (String)item.get("body"));

 date.setLabel("Date");

 setCommandListener(this);

 addCommand(new Command("Back", Command.BACK, 1));

 this.append(date);

 this.append(body);

 }

 /**Handle events*/

 public void commandAction(Command command, Displayable displayable) {

 if(command.getCommandType() == Command.BACK) {

 TCMSMidlet.setCurrent(returnTo);

 }

 }

}

The NewsItemDisplayable in Listing 9-13 extends the
javax.microedition.lcdui.Form. The Form class is able to include form
elements such as text fields and radio buttons for import, or in this example,
just StringItems for displaying content. This Displayable sets the form title to
the title of the news item and adds the date and body to string items. The only
command this Displayable contains is the back command, which returns to
the NewsDisplayable to display the list of news-item titles.

All the web services’ work is contained within the SyncAgent class in
Listing 9-14.

1259c09.fm Page 476 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

477

Listing 9-14. SyncAgent Class

package com.ejboab.tcms.midp;

import java.util.*;

import org.ksoap.SoapObject;

import org.ksoap.SoapFault;

import org.ksoap.transport.HttpTransport;

import org.kobjects.serialization.*;

import org.ksoap.ClassMap;

import org.ksoap.*;

/**

 * Wraps SOAP calls

 */

public class SyncAgent {

 private static SyncAgent agent = null;

 private static final String SERVER = "localhost:8080";

 private SyncAgent() {}

 public static SyncAgent getAgent() {

 if(agent == null) {

 agent = new SyncAgent();

 }

 return agent;

 }

 /**

 * Retrieves Current News Items

 * @return Collection of news items as a Hashtable

 */

 public Vector getNews() {

 HttpTransport ht = null;

 String method = "getNews";

 Vector requests = null;

1259c09.fm Page 477 Friday, February 27, 2004 2:02 PM

Chapter 9

478

 try {

 ht = createTransport(method);

 SoapObject request = createObject(method);

 Vector result = (Vector)ht.call(request);

 requests = mapSoapToHash(result);

 } catch (SoapFault sf) {

 System.out.println(sf.faultcode + " - " + sf.faultstring);

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

 }

 return requests;

 }

 /**

 * Converts Soap objects to Hashtables

 * @param requests Collection of soap objects to convert

 * @return Collection of objects as a Hashtable

 */

 private Vector mapSoapToHash (Vector requests) {

 Vector v = new Vector(requests.size());

 Hashtable ht = null;

 Object value = null;

 PropertyInfo pi = new PropertyInfo();

 for (Enumeration e = requests.elements(); e.hasMoreElements();) {

 Object item = e.nextElement();

 if(item instanceof SoapObject) {

 SoapObject so = (SoapObject)item;

 ht = new Hashtable();

 ht.put("class", so.getName());

 for (int i = 0; i < so.getPropertyCount(); i++) {

 so.getPropertyInfo(i, pi);

 value = so.getProperty(i);

 if(value instanceof SoapPrimitive) {

 value = ((SoapPrimitive)value).toString();

 }

1259c09.fm Page 478 Friday, February 27, 2004 2:02 PM

Web Services and Mobile Clients

479

 ht.put(pi.name, value);

 }

 v.addElement(ht);

 }

 }

 return v;

 }

 /** Factory method for creating new HttpTransport intances

 * with url to prefered server.

 * @param action SOAP action placed in

 * HTTP header (typically remote method name)

 * @return new HttpTransport instance

 * @throws Exception Unable to determine server from preferences

 */

 private static HttpTransport createTransport(String action) throws Exception {

 HttpTransport ht;

 ht = new HttpTransport("http://" + SERVER + "/tcms/services/News", action);

 ht.debug = true;

 return ht;

 }

 /** Factory method for creating new SoapObjects with the appropriate user name

 * and password.

 * @return new SoapObject instance

 * @param name name of soap object

 * @throws Exception

 */

 private static SoapObject createObject(String name) throws Exception {

 SoapObject so = new SoapObject("", name);

 return so;

 }

}

The SyncAgent in Listing 9-14 uses the kSOAP framework directly, and the
kXML framework indirectly in order to communicate over HTTP with web services
with the server. The SyncAgent is a singleton, so only one instance of it can reside
in memory at any one time. To get a reference to the instance, use the getAgent
method. The SyncAgent contains a getNews() convenience method that can
be called by the rest of the application to the current news. The getNews() method

1259c09.fm Page 479 Friday, February 27, 2004 2:02 PM

Chapter 9

480

wraps the complexities of using kSOAP. The getNews() method gets a
org.ksoap.transport.HttpTransport instance by calling a factory method on the
SyncAgent. The HttpTransport represents the connection to the News web
service. The action parameter represents the method on the service that will be
called. In this case the getNews method. The method then creates a SoapObject
to pass to the web service when it’s called. A SoapObject is basically a set of
name/value pairs. The call method on the HttpTransport object is used to invoke
the web service using the request SoapObject. The call method creates a SOAP
request and sends it by HTTP to the web service. The web service builds a SOAP
response and sends it back. The call method then turns the SOAP response into
one of several object types and returns the result as an object. Depending on the
SOAP response, the returned object may be a SoapObject (name/value pair),
String, or Vector of SoapObjects for complex types. In this case, the result is a
Vector of SoapObjects representing a news item complex type. The mapSoapToHash
method is used to convert the Vector of SoapObjects to a Vector of HashTables, so
the values of the news items can be easily used by the Displayables.

NOTE All MIDP 1.0 devices are required to support HTTP but don’t all
support HTTPS. In MIDP 2.0 HTTPS becomes a requirement. You
should consider the HTTPS capability of the device when selecting
devices and when tight security is required.

To run the application in the emulator, you can either select Run MIDP
Application in the Start menu or execute emulatorw –gui –Xdescriptor: from the
toolkits bin directory. A dialog box will prompt you for a JAD file. Once the JAD
file is selected the emulator will start the application specified in the JAD file.
The toolkit comes with multiple emulators. To switch emulators, use either the
–Xdevice: option on the command line or select Default Device Selection from
the Start menu.

Conclusion

Environments are no longer homogeneous. Systems must integrate with systems
written in different languages and support new platforms. Web services and Axis
combine to provide a great solution to the integration challenge.

1259c09.fm Page 480 Friday, February 27, 2004 2:02 PM

481

CHAPTER 10

Rich Clients with
the SWT and JFace

And now for something completely different...

—Monty Python's Flying Circus

UP TO THIS POINT in the book we’ve focused on the server side and the relatively
simple HTML user interfaces. This chapter’s aim is to delve into the creation of
rich user interfaces in Java with the help of the Open Source community.

The rise of the Internet and the web browser as the universal computing client
forced user-interface development and the overall user experience to take a
step backwards. Web applications, due to their ease of maintenance in terms of
deployment and upgrading, allow you to reach a larger audience. Yet, they deny
the user the experience that a full-fledged desktop application can provide. The
raw power of today’s personal computers is mostly untapped when it comes to
browser-based enterprise applications. The browser-based application is to a
certain extent a glorified version of the dumb terminal of days gone by. Although
Java made its debut with applets, which promised many of the features of rich
native applications combined with the ease of maintenance of web applications,
the applets’ tumultuous evolution has relegated them to a limited functionality—
stock tickers and news feeds. This has led many to argue that browser-side Java is
effectively dead. The technology wasn’t completely to blame because Java on the
browser was a casualty of the browser wars and the early problems faced by VM
integration in the two leading browsers, Internet Explorer and Netscape Navigator.

Java’s client-side technologies have all had their share of criticisms and never
conquered the share of the desktop market that many predicted. As with applets,
many believe that the rough transition from the Abstract Window Toolkit (AWT) to
the early days of Swing, coupled with the overall complexity and paradigm change
in UI development introduced by Java (in comparison to the MVC-less world of
Visual Basic, Delphi, and other RAD environments) caused Java to lose the battle
for the desktop.

1259c10.fm Page 481 Friday, February 27, 2004 2:07 PM

Chapter 10

482

In this chapter we introduce the Open Source community’s answer to the
rich client conundrum in the form of the Eclipse project UI frameworks, namely
the Standard Widget Toolkit (SWT) and JFace. This chapter is an introduction by
example that sets out to build the administrative interface to the TCMS system.
The Eclipse frameworks provide a Java alternative to building robust, responsive,
and great-looking desktop applications.

Java on the Desktop

The reality of Java on the desktop is that it hasn’t flourished as the community
expected. Most discussions put the blame on Sun and the choices made in the
AWT and the Swing toolkit implementations.

Abstract Window Toolkit

AWT, by using large chunks of code written in C (referred to as “fat native peers”),
relegates work to native implementations of a component. At first the approach
seems intelligent but the perils of multiple language implementations and the
fact that Sun never opened the native code for the peers implementations made
AWT a toolkit that was pretty hard to debug. AWT applications also suffered from
the lowest-common-denominator approach, giving them a very inconsistent
user experience and a rather primitive look and feel. AWT mitigates OS differences
in the C code implementations of a widget, which resulted in a large amount of
code that was difficult to diagnose and debug. AWT was light years behind well-
established UI toolkits like those provided by OWL, Visual Basic, Delphi, and the
plethora of OLE/COM components. Many companies paid dearly by jumping
into the AWT world. Nowadays it’s very rare to find AWT applications in the wild.
AWT has only remained around as a foundational layer to Swing.

Swing

Sun’s reaction to AWT’s problems was to team up with Netscape’s Internet
Foundation Classes (IFC) team and come up with a design that would cover all
the bases. The Swing toolkit was supposed to put an end to the agony of Java on
the desktop. Swing took a completely different approach than AWT. Where AWT
relied on peers, Swing’s components are pure Java lightweight implementations

1259c10.fm Page 482 Friday, February 27, 2004 5:26 PM

Rich Clients with the SWT and JFace

483

that use the Java 2D API for rendering. This eradicated the least-common-
denominator syndrome and ensured that UIs look consistent from platform to
platform. The initial releases, although far better than AWT, lacked in many
areas, partly because it was ahead of its time, and partly because it took a purist
object-oriented approach to UI development by disregarding the way that most
UI developers were building applications. The reality is that creating a UI toolkit
is an evolutionary process, and the Java community needed something fast and
responsive immediately. Instead it took around five years to get Swing to a state
that the generated UIs could compete and blend in with native applications.
Throw on top of that, distribution and installation efforts and it’s clear to see how
the desktop wars were lost.

From the design point of view, as pointed out by Erich Gamma, Swing took
an extremely academic, big-design-up-front approach. This approach generated
a toolkit that was rather large for a developer to comprehend in a reasonable
amount of time. Swing’s design is in some people’s opinion an excessive use of
patterns scenario in which too many layers of indirection are forced onto the

developer. We learned this lesson with web applications when it became clear
that for some large web applications a strong MVC foundation is indispensable,
especially when it comes to maintenance and ease of development. But on the
other hand there are also many successful non-MVC applications written in PHP,
Perl, or Python. Web developers have choices; Java desktop developers, until
recently, did not. Swing gave developers no choice but the MVC way, even for
simple applications. At this point in Swing’s life, most major problems have been
resolved and the increasing computing power on today’s PC makes it a viable UI
application platform. Yet there’s still a sense of lack of acceptance for Swing
applications from the general user population. It seems that most Swing applica-
tions are used by Java developers. Yet, there are great examples of what it’s possible
to create with the Swing toolkit such as IDEA’s IntelliJ IDE, Borland’s JBuilder, and
Karsten Lentzsch’s JGoodies line of products (http://www.jgoodies.com), some of
which have been open sourced with the help of Sun.

We believe that there is room for both Swing and the Eclipse technologies to
thrive. As former Delphi developers, we perceive a level of resistance from users
when they interact with Swing applications that we don’t see when they use
Eclipse-based applications. Although the Swing team has made great strides in
minimizing the look-and-feel fidelity issues (because Swing draws its own widgets),
it’s in a constant state of playing catch-up with the different platforms’ look and
feel, resulting in awkward-looking applications.

1259c10.fm Page 483 Friday, February 27, 2004 2:07 PM

Chapter 10

484

The Eclipse User Interface Frameworks

The Eclipse project is described on its website as an “IDE for anything and for
nothing in particular.” The use of the term IDE in the previous sentence might be
a bit misleading because although the composing subsystems of the Eclipse
framework have at certain points in their API an IDE-ish flavor to them, the
majority of the framework is usable as a general desktop application framework.

The Eclipse project spawned out of the early work of Erich Gamma and the
folks at Object Technology International (OTI), which is now an IBM subsidiary.
OTI is well known for their work in the areas of development tools (VisualAge)
and object languages like Smalltalk and Java.

This chapter deals with using the underlying frameworks created by OTI and
IBM to deliver a fast, responsive Java desktop application. Many pages can be
written about the controversies surrounding the Eclipse project, its underlying
APIs (particularly the SWT), the design choices and the impact that Open Sourcing
the code base has created in the community. Instead, you’ll focus on building a
robust application using Eclipse. For more information on SWT and JFace visit
http://www.eclipse.org.

The following are the two main frameworks that you’ll learn about:

• SWT: A widget set and graphics library that provides a portable graphics
API independent of the OS but that relies on the native widgets.

• JFace: A model-based UI toolkit that simplifies common UI programming
tasks.

Standard Widget Toolkit

SWT is the foundation on which the Eclipse IDE is built upon. SWT delivers the
richness and responsiveness of an application build using native widgets, yet it
manages to do so in an operating system–independent fashion.

The Eclipse team realized early that creating a cross-platform set of widgets
is a daunting task, both in the areas of matching the functionality of mature
operating-system widgets and in making the application seamlessly blend with
the native applications. SWT takes a hybrid approach between those taken by
AWT and Swing. Instead of using “fat native peers,” SWT uses a procedural pass-
through layer to the OS graphics API. This thin Java Native Interface (JNI) layer
enables SWT to control the native widgets. This approach minimizes the amount
of native code involved, thereby making debugging SWT a lot easier. SWT also
avoids the need for a pluggable look and feel because it adopts and immediately
reflects any changes to the underlying OS look and feel.

1259c10.fm Page 484 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

485

NOTE Pluggable look and feel is another hotly debated topic. The
Eclipse mentality is one of “uniform is better” and we certainly agree
with this when it comes to commercial business software. Many other
applications can certainly benefit from a pluggable look and feel in
the same way that many applications benefit from the use of “skins.”
If your application needs to support a customizable or personalized
look then Swing is the obvious choice.

The SWT approach not only makes the API simpler, but also provides tight
integration with hard-to-integrate features such as drag and drop. Drag-and-drop
support is another area in which Swing’s implementation was plagued for a long
time by bugs and inconsistencies. With SWT any improvements in the drag-and-
drop behavior of the OS are reflected in your Java applications immediately.

To resolve the least common denominator problem, in SWT widgets that
aren’t present in a specific platform are emulated using lightweight techniques in
the way that it’s done in Swing, yet the components are unencumbered by any
built-in patterns. A good example is the Tree widget. In Windows, Tree widgets
are native components, but in Motif they’re emulated. The SWT implementation
in Motif contains the Java code to provide the Tree functionality, but in Windows
using a Tree widget is simply a matter of calling the correct Windows graphics
device interface (GDI) commands. Figure 10-1 shows the three different approaches.

Figure 10-1. Rendering approaches of AWT, SWT, and Swing

1259c10.fm Page 485 Friday, February 27, 2004 2:07 PM

Chapter 10

486

The SWT API is the same on all different supported platforms. Behind the
scenes SWT uses a factory pattern of sorts to plug the right implementations for
a given platform. Not only do SWT applications look like they belong among
other native applications, but they also feel like native applications. Figure 10-2
provides a graphical overview of the SWT architecture.

Figure 10-2. SWT packages

At this the time of this writing, SWT has been ported to the following plat-
forms (operating systems and windowing systems): aix/motif, hpux/motif,
linux/gtk, linux/motif, linux/qt, macos/carbon, qnx/photon, solaris/motif,
win32/win32, and win32-ce/win32. SWT is also a very lightweight API, which
makes it ideal for embedded devices as demonstrated by the Windows CE port.

1259c10.fm Page 486 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

487

JFace

From the previous description of SWT you should have gotten the impression
that it provides a raw widget set. But what about all of the advancements imple-
mented in Swing, such a strong MVC microarchitectures for complex, often-used
widgets such as Trees and Tables? To provide a more advanced, model-driven
interaction with SWT, the Eclipse team created the JFace toolkit. JFace is a higher-
level user interface toolkit that uses the raw SWT widgets to provide model-
driven widgets, and to some extent some functionality that isn’t available in the
Swing libraries such as advanced editors, dialog boxes, and wizards. JFace covers
many areas of UI development that developers encounter over and over, and it
provides a clean way to accomplish those tasks. JFace depends on SWT, but it
doesn’t hide SWT widgets. For example JFace viewers, which are model-based
content adapters for SWT widgets, provide methods to access the underlying
SWT widgets. This duality provides developers with the separation and ability to
choose between model-driven UI development and raw widget manipulation.

Figure 10-3 shows a graphical overview of the JFace API.
Some of the packages shown in Figure 10-3 and a short explanation of their

functionality are shown here:

• Window: The org.eclipse.jface.window package provides window creation
and management facilities. Of particular interest is the ApplicationWindow
class, which provides a higher-level application window and encapsulates
the SWT event loop.

• Viewers: The org.eclipse.jface.viewers package provides a framework of
Viewers such as TreeViewer and TableViewer, which are model-driven
components that make use of SWT widgets and adapt content of a model
to the widget.

• Dialogs: The org.eclipse.jface.dialogs package provides several commonly
used dialog boxes.

• Actions: The org.eclipse.jface.actions package provides a UI action framework
that’s similar to Swing’s action framework in order to implement shared
behavior between two or more user interface components such as a menu
item and toolbar button.

• Wizards: The org.eclipse.jface.wizard package provides an advanced
framework to create wizards (the familiar dialog boxes that automate
repetitive and complex tasks).

1259c10.fm Page 487 Friday, February 27, 2004 2:07 PM

Chapter 10

488

• Resource: The org.eclipse.jface.resource package provides support for
managing resources such as SWT fonts and images.

• Text: The org.eclipse.jface.text package and its subpackages provide a
framework for creating, manipulating, displaying, and editing text
documents.

Figure 10-3. JFace packages

SWT Primer

The first step you need to take to start building SWT applications is to get the
latest SWT release for your platform. If you’ve installed the Eclipse IDE on your
system, then you already have all the necessary JARs and native libraries. If you
don’t have Eclipse installed, you can obtain SWT as a separate distribution

1259c10.fm Page 488 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

489

(since release 2.1). You can obtain SWT in binary or source form from
http://www.eclipse.org/downloads.

The downloaded file is swt-2.1.1-win32.zip, which is a drop containing the
SWT libraries and source code for stand-alone SWT application development.
The ZIP file contains a JAR file (swt.jar), a Windows DLL file (or the native library
for your chosen platform), a ZIP file with the source code, and an about.html file.

For the following simple examples let’s place the contents of the SWT distri-
bution file in a directory named lib and the example Java files in the parent directory
of the lib directory. Let’s start by looking at the simplest SWT application, which
simply shows an empty application window:

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

public class SimplestSWTExample {

 public static void main(String[] args) {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setText("Simplest SWT Example");

 shell.pack();

 shell.open();

 while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

 }

 display.dispose();

 }

}

To compile the application use the javac command as usual, and include the
swt.jar file in the classpath, as follows:

javac -classpath .;lib\swt.jar SimplestSWTExample.java

Let’s try to run the example using the java command as follows:

java -classpath .;lib\swt.jar SimplestSWTExample

The console output should produce the following stack trace.

1259c10.fm Page 489 Friday, February 27, 2004 2:07 PM

Chapter 10

490

Exception in thread "main" java.lang.UnsatisfiedLinkError: no swt-win32-2135 in

java.library.path

 at java.lang.ClassLoader.loadLibrary(Unknown Source)

 at java.lang.Runtime.loadLibrary0(Unknown Source)

 at java.lang.System.loadLibrary(Unknown Source)

 at org.eclipse.swt.internal.Library.loadLibrary(Library.java:108)

 at org.eclipse.swt.internal.win32.OS.<clinit>(OS.java:46)

 at org.eclipse.swt.widgets.Display.internal_new_GC(Display.java:1291)

 at org.eclipse.swt.graphics.Device.init(Device.java:547)

 at org.eclipse.swt.widgets.Display.init(Display.java:1310)

 at org.eclipse.swt.graphics.Device.<init>(Device.java:96)

 at org.eclipse.swt.widgets.Display.<init>(Display.java:291)

 at org.eclipse.swt.widgets.Display.<init>(Display.java:287)

 at SimplestSWTExample.main(SimplestSWTExample.java:10)

The error shown is telling you that in order to run the SWT example you need the

swt-win32 DLL. Notice that as part of the SWT distribution for Windows you have the
swt-win32-VERSION.dll file where VERSION denotes the particular version of the
DLL. To make the DLL available to the running JVM use the –Djava.library.path
parameter as part of the Java command line as follows (the same applies to other
environments such as Linux or Mac OS X):

java -classpath .;lib\swt.jar -Djava.library.path=lib SimplestSWTExample

The output should now resemble what’s shown in Figure 10-4.

Figure 10-4. A simple SWT example

TIP If you want to eliminate the need for specifying the classpath
and java.library.path options in the Java command line you can inte-
grate the SWT JAR and DLL (for Windows) with your Java Runtime
Environment (JRE) by copying the JAR files to the JRE’s lib/ext directory
and the DLL to the JRE’s bin directory (the same procedure can be
applied to other platforms).

1259c10.fm Page 490 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

491

Let’s examine the example’s code to gain an understanding of how
SWT works under the covers. The first object instantiated is of type
org.eclipse.swt.widgets.Display, although it’s in the SWT Widgets package this
class actually isn’t a widget but rather a bridge that widgets and other SWT classes
use to communicate with the underlying operating system. The Display class
extends org.eclipse.swt.graphics.Device (which also has a child class named
Printer).

The next class instantiated is the Shell. A SWT Shell is an encapsulation of an
operating system’s window. Notice that the code sample sets the window title by
invoking the setText method on the Shell. The Shell is then told to pack (force the
layout of children components) and to open (show) itself.

The next segment of code in the example is at first rather strange for Java
developers. If you work with Swing you might be asking yourself why there is a
while loop and the end of the example.

while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

}

display.dispose();

Actually, the while loop is the event loop or message pump of the application.
In AWT or Swing the event loop is actually hidden from the developer. In SWT the
Display class is responsible for the event loop; it forwards all OS events affecting
the shell or any of its child widgets to the application until the shell is disposed. If
you were to leave that code segment out, your application wouldn’t be able to
respond to any events. This is another example of how the SWT design doesn’t
hide any of the raw features of the toolkit. This feature, although strange at first,
gives developers greater flexibility in their interaction with the underlying OS.

CAUTION In SWT the UI thread isn’t protected or hidden from the
developer. In fact, whatever thread creates the Display class becomes
the UI thread. This approach facilitates the debugging of threading
and timing issues yet it can be confusing to developers accustomed to
working with a UI toolkit that hides threading issues from the devel-
oper. It’s the developers’ responsibility to fork a new thread to perform
non-UI computationally intensive operations in response to an event.
Also, all interaction with the UI must originate from the UI thread,
otherwise an org.eclipse.swt.SWTException is thrown.

1259c10.fm Page 491 Friday, February 27, 2004 2:07 PM

Chapter 10

492

Working with Widgets

All design issues aside, the essence of any UI toolkit is its available components
or widgets. Table 10-1 lists the available SWT widgets and their Swing
equivalents.

Table 10-1. SWT Widgets

Widget Swing Equivalent Description

Tracker None Provides tracking rectangles that provide

visual feedback

Menu JMenu A container for MenuItems

Button JButton A simple button

Label JLabel A simpler JLabel with no Image or Border

capabilities

ProgressBar JProgressBar The traditional progress bar

Sash JSplitPane A Sash is actually the Splitter portion, not

a container

Scale JSlider Selects a value by sliding a knob within a

bounded interval

Slider JSlider, JScrollBar More like a scrollbar than a Slider

List JList A list of strings

Text JTextField, JPasswordField,

JTextArea

A multipurpose text entry field

Combo JComboBox A drop-down list for select string values

Group JPanel Titled Border

1259c10.fm Page 492 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

493

In combination with the classes in the JFace packages, the Eclipse UI frame-
works provide most of the functionality required to build modern user interfaces.
Figure 10-5 provides a graphical representation of the SWT widget and custom
packages.

Figure 10-5 shows a partial hierarchy of SWT widgets.

Tree JTree The classical tree view interface

Table JTable A table of elements

TabFolder JTabbedPane A simpler JTabbedPane

ToolBar JToolBar A simpler JToolBar

CoolBar JToolBar A detachable more configurable toolbar

CLabel JLabel A simple label

AnimatedProgress None Deprecated instead use ProgressBar with

the style SWT.INDETERMINATE

CCombo JComboBox A combo box

ViewForm JPanel Equivalent to a custom JPanel with three

subpanels arrange vertically; used in

Eclipse to create a view

SashForm JSplitPane A JSplitPane that allows more than two

children

CTabFolder TabFolder Like TabFolder but with more Style

choices

TableTree None A combination of a JTree and JTable

Table 10-1. SWT Widgets (Continued)

Widget Swing Equivalent Description

1259c10.fm Page 493 Friday, February 27, 2004 2:07 PM

Chapter 10

494

Figure 10-5. SWT widgets

1259c10.fm Page 494 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

495

At the top you have the Widget class, which is the top-level class from which
all other user interface objects descend. It’s analogous to the AWT’s Component
and the Swing’s JComponent. One recurring pattern of usage in SWT is that most
new components aren’t created by subclassing but by using composition. Fur-
thermore, most SWT classes aren’t meant to be extended outside the confines of
the SWT implementation. The Widget class also provides a dispose() method
that relinquishes any operating-system resources associated with the widget and
the widget’s children.

Within the Widget class you have the Control class, which represents a win-
dowed user interface class such as Buttons and Labels. Within Control you have
Scrollable and down at the bottom of the hierarchy you have Composite and Canvas.
These last two classes form the basis for creating your own widgets. Canvas is
used when the widget is owner-drawn and Composite is used when you’re creating
a compound widget.

Probably the most radical difference between working with SWT and working
with Swing is how the widgets are constructed. SWT has strict parenting rules for

the creation of a widget, that is, you cannot create a widget without a having a
parent already created. This is just a natural consequence of the widgets being
thin veneers to the native widgets, because the OS resources need to be allocated
at construction time. A typical widget constructor takes two arguments: the parent
widget and the style bits (which can be constructed by OR-ing together individual
integer values). Style bits are a hint to the underlying OS of how the widget should
be rendered. The org.eclipse.swt.SWT class contains a large collection of constants
that are used for setting the style of a particular widget. Because this is a loosely
typed way to set a widget’s look and feel, it’s important to consult the JavaDoc on
a particular widget to learn which styles are applicable because passing an erro-
neous style wouldn’t cause an exception; the styles are simply ignored.

CAUTION For certain widgets the style is an idempotent property.
That is, a widget style cannot be changed after its creation.

Further examination of Figure 10-5 shows that whole-part widgets such as
Trees and Tables contain parts that are descendants of the Item class. For example
in the case of a Table, the composing parts are TableColumns and TableItems.

Notice that the Shell class is just a specialization of a Composite (a subclass
of Decorations, which provides appearance and behavior for Shell classes). In an
SWT application the Shell class is the top-level container that can hold widgets.

The last item to point out is the org.eclipse.swt.custom package, which pro-
vides custom widgets that extend in the capabilities of the basic widgets. Also not
shown in Figure 10-5 is the Dialog hierarchy, which provides commonly used

1259c10.fm Page 495 Friday, February 27, 2004 2:07 PM

Chapter 10

496

dialog boxes, including ColorDialog, DirectoryDialog, FileDialog, FontDialog,
MessageBox, and PrintDialog.

SWT Layouts

Like AWT and Swing, SWT uses the concept of layouts (or layout managers) to
determine the position and size of widgets in a container. An SWT Composite has
an associated Layout, and child widgets have associated layout data that enables
a layout to make decisions about the size and positioning of a widget. You can
find SWT Layouts classes in the org.eclipse.swt.layout package.

Table 10-2 lists the available Layouts in SWT and their equivalent layout in
AWT and Swing.

SWT Events

The SWT event model is similar to the AWT or Swing event models in that there
are listener interfaces for different types of events. Events are handled by imple-
menting one of the listener interfaces and registering the listener implementation
with the widget that’s producing the event.

The listener registers methods follow the naming convention addXXXListener
where XXX is the type of the listener such as Selection, Modify, and so on. All SWT
events extend the java.util.EventObject class with information specific to the event.

Table 10-2. SWT Layouts

Layout Description Swing Equivalent

FillLayout The default layout; arranges components

horizontally on a row or vertically on a column

BoxLayout

RowLayout Similar to FillLayout but more flexible, allowing

multiple rows, fill, wrapping, and custom spacing

FlowLayout

GridLayout Lays components on a grid; offers many options for

fine grained control

GridBagLayout

FormLayout Relative layout that uses attachments to a container

edge or a sibling widget’s edge

None

PageBookLayout Indirectly used with org.eclipse.ui.part.PageBook;

not part of SWT or JFace

CardLayout

StackLayout Stacks components, only top component is visible CardLayout

1259c10.fm Page 496 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

497

Untyped Events and Event Handling

Besides having typed methods for all supported types of events, all classes
descending from the Widget class have a generic way to add a listener using the
method void addListener(int eventType, Listener listener), which adds the lis-
tener to the collection of listeners who will be notified when an event of the given
type occurs. Also the complement method void removeListener(int eventType,
Listener listener) can remove the given listener for a given type of event.

This facility comes in handy when testing event-handling code or if you need
to manipulate different types of listeners as a group. For example the following
three snippets of code are all equivalent ways to add a selection listener to a
Tree widget:

// use addListener to add a Listener

tree.addListener(SWT.Selection, new Listener() {

 public void handleEvent(Event arg0) {

 System.out.println("SWT.Selection Event!");

 }

});

// use addSelectionListener and implement the SelectionListener Interface

tree.addSelectionListener(new SelectionListener() {

 public void widgetSelected(SelectionEvent arg0) {

 System.out.println("SWT.Selection Event!");

 }

 public void widgetDefaultSelected(SelectionEvent arg0) {

 System.out.println("SWT.Selection Event!");

 }

});

// use addSelectionListener and override the widgetSelectedMethod of

SelectionAdapter

tree.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent arg0) {

 System.out.println("SWT.Selection Event!");

 }

});

Equally, for testing purposes only, you could implement a generic event
handler by using a case style construct using the integer value of the event type,
as the following snipped shows:

1259c10.fm Page 497 Friday, February 27, 2004 2:07 PM

Chapter 10

498

Listener listener = new Listener() {

 public void handleEvent(Event e) {

 switch (e.type) {

 case SWT.Selection:

 if (e.widget instanceof Table) {

 // handle Selection event on a Table

 }

 else if (e.widget instanceof Tree) {

 // handle Selection event on a Tree

 }

 break;

 case SWT.Expand :

 // handle Expand event

 break;

 }

 }

};

You can see that for a large number of widgets and event types this solution
can result in a large procedural-looking piece of code. Again, common sense and
good programming practices will tell you that a natural progression would be to
first try anonymous inner classes by extending an adaptor and alternatively
(based on the complexity of the event-handling code) creating a stand-alone
event-handling class.

SWT Resources

The next piece of SWT theory you need to explore before moving to the higher
level world of JFace is the management of SWT resources. This is an area of great
controversy in UI development circles and some clarifications are in order.

In AWT or Swing resource deallocation is handled by the garbage collector,
although you can null a resource so that it isn’t reachable, which makes it eligible
for garbage collection. This is merely a way to provide a hint to the garbage col-
lector. Garbage collection is a good thing when it doesn’t get in the way of your
user’s experience. Garbage-collected languages such as Java tend to foster pro-
ductivity by removing the burden of programmatically tracking resources. Although
garbage-collection algorithms have made great strides most of them aren’t fine-
tuned for the needs of user interfaces. SWT instead places the burden of deallo-
cating operating-system resources on the programmer. Because SWT objects
allocate operating system resources at construction time, a general guideline is
that the code that created the resource must dispose of it. This translates to
SWT’s first rule for resource management:

1259c10.fm Page 498 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

499

“If you create it, you dispose it.”1

As a side effect of SWT’s use of the platform’s native widgets, SWT resources are
bound by the memory allocation and deallocation rules of the operating system.
Previously, we mentioned that all SWT widgets are required to have a parent widget
at construction time and that the Widget class provides a dispose method. When
the dispose method of a Widget class is invoked the disposed methods of all of
its children are also invoked, which leads to the second rule of SWT resource
management:

“Disposing the parent, disposes of the children.”2

From the two rules you can see that resources are either disposed explicitly
by using the dispose method, which is the case typically with resources like fonts
and colors. The disposal of resources like fonts and colors depends on whether
they were acquire from the system with the getSystemXXXXX() methods. Even
though these resources are usually parented by the display and by rule number
two they will be disposed of at the time when the display is disposed. In non-
garbage-collected languages, when you ask the OS for a resource you eventually
have to give it back. Like Java some of these languages will have an operator
similar to the “new” operator in Java, and they also provide a way to “free” the
allocated memory for the resource. You know that OS resources are limited,
which is why the dispose method in SWT gives you the control to decide when a
resource is no longer needed, instead of allowing the garbage collector to decide.
Visual controls are typically parented to a Shell class, so for example if you have a
shell with a label, a text field, and a button when the shell is disposed of, all of its
contained children are, too. These two simple rules will guarantee that your
applications are resource conscious, which will translate to a better user experience.

A More Elaborate SWT Example

The essence of using any UI toolkit boils down to knowing how to create UI ele-
ments, how to arrange them, and how to wire them together to accomplish a
meaningful task in response to a user action. A great source of SWT examples is
the SWT Controls application, which is part of the Example Plug-ins distribution,
which is available from the Eclipse downloads page. Figure 10-6 shows the
ControlExample.java application, which is akin to Swing’s SwingSet2 demo. This
application provides a good introduction to the available SWT widgets and it will

1. “SWT: The Standard Widget Toolkit” by Carolyn MacLeod and Steve Northover
(see http://www.eclipse.org/articles/swt-design-2/swt-design-2.html).

2. Ibid.

1259c10.fm Page 499 Friday, February 27, 2004 2:07 PM

Chapter 10

500

help you get familiarized with the different styles bits available and the events
produced by the different widgets.

Figure 10-6. SWT controls example

There are two ways to launch the different example applications. As with
any other Eclipse plug-in, you can simply unzip the contents of the eclipse-
examples-2.1.1.zip file to the location of your Eclipse installation. Once you
restart the Eclipse Work Bench from the menu you can select Window ➤ Show
View ➤ Other at which point the Show View dialog box will appear, as shown in
Figure 10-7.

1259c10.fm Page 500 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

501

Figure 10-7. Eclipse’s Show View dialog box

From the dialog box, select the SWT Example Launcher view, which launches
an Eclipse view from which you can choose several example applications, including
the SWT controls example that was shown in Figure 10-6.

Of course you don’t need Eclipse to run an SWT application, as shown earlier
in the chapter. The Eclipse plug-in just makes it easier for you to execute the
applications. To launch the controls example application directly from the
command line use the following:

java -classpath .;swtexamples.jar;c:\swt\swt.jar

 -Djava.library.path=c:\swt

 org.eclipse.swt.examples.controlexample.ControlExample

The previous command assumes that the swt.jar and the SWT DLL are in a
directory named swt on the drive c:\. Modify accordingly for your platform and
the location of the SWT files.

1259c10.fm Page 501 Friday, February 27, 2004 2:07 PM

Chapter 10

502

JFace Primer

As mentioned earlier JFace is a collection of helper classes for developing user
interface features. One of these helper classes is the ApplicationWindow, which is
a high-level Window. The ApplicationWindow class provides support for commonly
needed items such as a menu, toolbar, and a status line. Internally, it uses a
custom layout to set the menu, toolbar, and the status-line positioning.

Simple JFace Application

Let’s start with an empty shell and build on it. The following code snippet will
produce the simplest JFace application:

import org.eclipse.jface.window.ApplicationWindow;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

/**

 * JFace example

 */

public class MyApplicationWindow extends ApplicationWindow {

 public MyApplicationWindow() {

 this(null);

 }

 public MyApplicationWindow(Shell shell) {

 super(shell);

 }

 public static void main(String[] args) {

 MyApplicationWindow window = new MyApplicationWindow();

 window.setBlockOnOpen(true);

 window.open();

 Display.getCurrent().dispose();

 }

}

1259c10.fm Page 502 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

503

ApplicationWindow

Notice that ApplicationWindow has a constructor that takes a shell (that is the
parent shell). If you pass null to this constructor you’re simply stating that the
shell that contains this window has no parent shell. To run the application you
will need the JAR file jface.jar in addition to the SWT files. JFace isn’t available as
an individual download. If you install Eclipse, the jface.jar file is located under
<eclipse-installation>\plugins\org.eclipse.jface_2.1.1.

NOTE Eclipse is able to keep multiple versions of a plug-in in its plug-
in repository. In the case of our install we had versions 2.1.0 and 2.1.1
of the JFace plug-in.

To compile the simple JFace application use the following command line:

javac -classpath .;lib\swt.jar;lib\jface.jar MyApplicationWindow.java

At this point the running application isn’t very exciting. The
ApplicationWindow class was designed to be subclassed and as such there are
a number of protected methods that can be overridden to provide specific
functionality to the window. These methods include the following:

• initializeBounds: Sets the location and size of the window.

• configureShell: Customizes the window’s Shell class.

• createContents: Returns the contents of the effective client area of the
window.

• createMenuManager: Returns a new menu manager for the window.

• createToolBarManager: Returns a new toolbar manager for the window.

• createStatusLineManager: Returns a new status-line manager for the
window.

The menu, toolbar, and status line–related methods only configure their
respective widgets. In order for them to appear in the window, the class provides
corresponding add methods. For example, once you configure the menu using
createMenuManager you can add it on the window by using the addMenuBar
method.

1259c10.fm Page 503 Friday, February 27, 2004 2:07 PM

Chapter 10

504

Let’s modify the simple JFace example to experiment with some of the features
of ApplicationWindow. Because the menu and toolbar can share actions let’s
create a couple of Action classes. The first will set the background color of a
Composite widget. Let’s place it in the client area of the window and the other
will handle the closing of the window. Let’s use the status line to signal that the
widget’s color has been changed.

First, let’s add the imports necessary to the sample application, as follows:

import java.util.Random;

import org.eclipse.jface.action.Action;

import org.eclipse.jface.action.MenuManager;

import org.eclipse.jface.action.ToolBarManager;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.swt.SWT;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Control;

Next you should add a declaration for Composite—it should be placed in
the client area of the ApplicationWindow class. Also you’re creating two
ImageDescriptors, which are lightweight descriptions of an image that you can
use to create an image on demand. These will be used by the actions (the images
used are 16×16). For the purpose of the example, you can use any two
16 ×16 images.

 private Composite _composite;

 ImageDescriptor greenImageDesc = ImageDescriptor.createFromFile(

 MyApplicationWindow.class,

 "green.gif"

);

 ImageDescriptor redImageDesc = ImageDescriptor.createFromFile(

 MyApplicationWindow.class,

 "red.gif"

);

JFace Actions

Now, you can implement the actions. One possible way to do so is by using static
inner classes. First, there’s the ExitAction class. Notice that you set the constructor of
the ExitAction to take a parameter of type ApplicationWindow, which is used
in the run method to close the given window. Also notice the use of the
ImageDescriptor class to assign an image to the action. The ImageDescriptor
is a lightweight class that can create an image on demand.

1259c10.fm Page 504 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

505

 private ExitAction _exitAction = new ExitAction(this);

 private class ExitAction extends Action {

 ApplicationWindow _window;

 public ExitAction(ApplicationWindow window) {

 _window = window;

 setText("E&xit@Ctrl+X");

 setToolTipText("Exit Application");

 setImageDescriptor(greenImageDesc);

 }

 public void run() {

 _window.close();

 }

 }

The ChangeColorAction uses an array of five colors (obtained using the
Display method getSystemColor and the appropriate SWT integer constant). In
the run method of the action you generate a random number in the range 0 to 4
and use it to assign one of the five colors to the background of the Composite that
was previously declared. You also set the ApplicationWindow status bar to the
String representation of the chosen color. (The Color class toString method
returns a String in the form Color {R, G, B} where R, G, and B are the red, green,
and blue components of the color.)

 private ChangeColorAction _changeColorAction = new ChangeColorAction();

 private class ChangeColorAction extends Action {

 private Color[] colors;

 public ChangeColorAction() {

 Display d = Display.getDefault();

 setImageDescriptor(redImageDesc);

 setText("Change C&olor@Alt+C");

 setToolTipText("Change Color");

 colors = new Color[] {

 d.getSystemColor(SWT.COLOR_BLACK),

 d.getSystemColor(SWT.COLOR_BLUE),

 d.getSystemColor(SWT.COLOR_RED),

 d.getSystemColor(SWT.COLOR_YELLOW),

 d.getSystemColor(SWT.COLOR_GREEN)};

 }

1259c10.fm Page 505 Friday, February 27, 2004 2:07 PM

Chapter 10

506

 public void run() {

 Random generator = new Random();

 int index = generator.nextInt(4);

 Color color = colors[index];

 _composite.setBackground(color);

 setStatus(color.toString());

 }

 }

Configuring the Shell

You can override the configureShell method to modify the appearance of the
shell; in this case you’ll set the application window title like you did with the first
SWT example, as follows:

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 shell.setText("JFace Example");

 }

You can override the initializeBounds methods to set the initial size and
location of the window. Notice that to access the shell you make use of the
ApplicationWindow’s utility method getShell.

 protected void initializeBounds() {

 getShell().setSize(640, 480);

 getShell().setLocation(0, 0);

 }

Configuring the Application’s Menu

To create a menu you override the createMenuManager method. The MenuManager
class is used to add the traditional File menu. Notice that a MenuManager instance
is created for each individual submenu. The _changeColorAction and the
_exitAction methods are then added to the fileMenu submenu. The submenu
MenuManagers are then added to the main MenuManager, which is the return
value of the method.

1259c10.fm Page 506 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

507

 protected MenuManager createMenuManager() {

 MenuManager menuManager = new MenuManager();

 MenuManager fileMenu = new MenuManager("&File");

 fileMenu.add(_changeColorAction);

 fileMenu.add(_exitAction);

 menuManager.add(fileMenu);

 return menuManager;

 }

Configuring the Application’s Toolbar

Similar to the Menu construction, the ToolBar method is created by instantiating
a ToolBarManager. The Action methods are then added to the ToolBarManager
instance, as follows:

 protected ToolBarManager createToolBarManager(int style) {

 ToolBarManager toolBarManager = new ToolBarManager(style);

 toolBarManager.add(_changeColorAction);

 toolBarManager.add(_exitAction);

 return toolBarManager;

 }

Enabling UI Elements

To enable the menu, toolbar, and status-line methods, you need to invoke the
addMenuBar, addToolBar, and addStatusLine methods and add them to the
ApplicationWindow constructor, as follows:

 public MyApplicationWindow(Shell shell) {

 super(shell);

 addMenuBar();

 addToolBar(SWT.FLAT | SWT.WRAP);

 addStatusLine();

 }

1259c10.fm Page 507 Friday, February 27, 2004 2:07 PM

Chapter 10

508

Creating the Application’s Contents

Finally, you override the createContents method, instantiate the Composite that
was previously declared (notice that the method takes a Composite as the parent,
in this case the parent Composite represents the “client area” of the
ApplicationWindow). You create the composite parented on the client’s area. The
parameter SWT.NONE is one of many integer constants used in the context of
appearance-related aspects of widgets, as follows:

 protected Control createContents(Composite parent) {

 _composite = new Composite(parent, SWT.NONE);

 return _composite;

 }

The running application should resemble Figure 10-8.

Figure 10-8. JFace application

1259c10.fm Page 508 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

509

Case Study: TCMS Admin System

Now that you have an understanding of how SWT and JFace applications are
built it’s time to apply the knowledge gained to create a robust implementation of
a client application that will support some of the administrative functions
needed for the TCMS application.

For the sample application you should implement a subset of the Use Cases
discovered during the design phase. You’ll set out to fulfill use cases 13 to 17 as
shown in Table 10-2.

Building a Simple Framework for Your Application

The first step in the design of the TCMS Admin application is to find a suitable UI
paradigm to work with. For ideas you should look at the Eclipse platform itself
and you’ll see that an interface similar to the “perspectives” interface of Eclipse
will fit the requirements of the TCMS application.

In the Eclipse IDE, perspectives are a combination of editors and views that
represent a way to work with a particular aspect of development. For example,
there’s a Java perspective, a Debug perspective, and a CVS perspective among
others. Figure 10-9 shows the Eclipse IDE with the Java perspective active.

The vertical toolbar on the left side of the Eclipse workbench application is
referred to as a shortcut bar. Based on the Eclipse UI paradigm we’ve determine
that we need an application window that has a menu, a status Line, a toolbar and
a shortcut bar.

Table 10-2. TCMS Admin Application Use Cases

Use Case ID Name

UC-13 Browse abstracts

UC-14 Edit abstract

UC-15 Evaluate abstract

UC-16 View news

UC-17 Edit news

1259c10.fm Page 509 Friday, February 27, 2004 2:07 PM

Chapter 10

510

Figure 10-9. Eclipse IDE

To make our work easier we take advantage of the fact that we are working
with an open source application and examine the code for the Eclipse Work
Bench for ideas. After a quick browse of the source code you should zero in
on efforts on the org.eclipse.ui.internal.WorkbenchWindow class. Further
examination shows that this class is a subclass of the now familiar JFace
application window, which uses a custom layout to accommodate for the
shortcut bar. The custom layout, like any other layouts in SWT, extends
org.eclipse.swt.widgets.Layout. The layout is a good example of how to build a
customized layout for an application. The code for this custom layout is quite
extensive so we’ll refer you to the book code for further examination. The fol-
lowing code snippet shows the skeleton of the Layout class. Aside from setting
the shortcut bar, the code is nearly identical to the one found in the
org.eclipse.jface.window.Window class.

1259c10.fm Page 510 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

511

class TCMSWindowLayout extends Layout {

 protected Point computeSize(Composite composite,

 int wHint,

 int hHint,

 boolean flushCache) {

 // code omitted

 }

 protected void layout(Composite composite, boolean flushCache) {

 // code omitted

 }

}

NOTE We chose not to display the code for the TCMSWindowLayout
because it’s fairly long and complex. For those adventurous readers,
you can browse the source for the Window class.

You can set the layout on the TCMSAdmin window in the configureShell
method as shown here:

public class TCMSAdmin extends ApplicationWindow {

...

protected void configureShell(Shell shell) {

super.configureShell(shell);

shell.setLayout(new TCMSWindowLayout());

shell.setText("TCMS Admin");

...

}

...

}

TIP When building applications with SWT or JFace a great place to
look for inspiration and ideas is the Eclipse Work Bench code itself,
especially because the number of SWT or JFace applications available
as examples is still fairly small.

1259c10.fm Page 511 Friday, February 27, 2004 2:07 PM

Chapter 10

512

The About Dialog Box

A typical element of modern UIs is the about box or about dialog box, which is a
dialog box that’s usually used to display copyright information as well as the
application version and system information. For the TCMSAdmin application
you’ll create a generic about dialog box. The final product is shown in Figures 10-10a
and 10-10b.

Figures 10-10a and 10-10b. About TCMS dialog box

As you can see, the about dialog box is a simple dialog with a TabFolder
that contains two tabs. One tab has text information about the application
and the other has a table that displays the system’s properties (from
java.lang.System.getProperties). The first step is to find a suitable class for the
base class for the about dialog box. If you explore the JFace JavaDoc, you’ll
encounter the org.eclipse.jface.dialogs.TitleAreaDialog class, which is described
as a dialog box that has a title area (with an optional image) and a common area
for displaying a description or message.

The TitleAreaDialog class provides a createDialogArea method that can be
overridden to create the contents of the dialog box. In this method the TabFolder,
which is a class that implements the traditional notebook user interface metaphor,
is created. One tab contains the _toolPage composite, which will contain a
StyleText widget with some text about the application. The other tab will have the
_systemPage composite, which will display a JFace TableViewer showing the
system properties.

The buildToolPage method creates a composite named Page using a
FormLayout. You’ll use a FormLayout in order to be able to customize the border

1259c10.fm Page 512 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

513

between the StyleText field and the TabItem by setting a margin of 20 pixels. The
buildToolPage method of the TCMSAdmin window is shown here:

StyledText _text;

private Composite buildToolPage(Composite c) {

 Composite page = new Composite(c, SWT.NONE);

 FormLayout formLayout = new FormLayout();

 formLayout.marginHeight = 20;

 formLayout.marginWidth = 20;

 page.setLayout(formLayout);

...

Next, the StyleText widget is created and configured. The style is set to
SWT.MULTI—so that the text field can handle multiple lines—and

SWT.READ_ONLY, so that it cannot be edited, as shown here:

 _text = new StyledText(page, SWT.MULTI | SWT.READ_ONLY);

 _text.setBackground(page.getBackground());

 _text.setCaret(null);

 _text.setFont(c.getFont());

 _text.setCursor(null);

To lay out the StyleText widget, you use a FormData object (which works in
conjunction with the FormLayout that was previously created). The FormLayout
uses FormAttachments, which define how a side of the widget attaches to the
parent Composite or to another sibling element. The FormData defines four attach-
ments: top, bottom, left, and right. In the following snippet, you set the StyleText
widget to attach itself to the very top (0 percent on the vertical) and to the very
bottom (100 percent on the vertical). The second number in the FormAttachment
constructor defines an offset in pixels, set to 0. If you recall, previously the margins
of the FormLayout were set to 20 pixels. (You could have accomplished the same
effect by using the offset values in the FormData.)

 FormData formData = new FormData();

 formData.top = new FormAttachment(0,0);

 formData.bottom = new FormAttachment(100,0);

 formData.left = new FormAttachment(0,0);

 formData.right = new FormAttachment(100,0);

 _text.setLayoutData(formData);

1259c10.fm Page 513 Friday, February 27, 2004 2:07 PM

Chapter 10

514

Next, the StyleWidget is set with the application information text, as
shown here:

 String LINE_SEP = _text.getLineDelimiter();

 String title = "TCMS Admin 1.0";

 StringBuffer sb = new StringBuffer();

 sb.append(title)

 .append(LINE_SEP)

 .append("Enterprise Java Development on a Budget")

 .append(LINE_SEP)

 .append("Technology Conference Management System")

 .append(LINE_SEP)

 .append("http://www.ejdoab.com")

 .append(LINE_SEP)

 .append("Licensed under The Apache Software License, Version 1.1")

 .append(LINE_SEP)

 .append("Copyright (c) 2003 Brian Sam-Bodden, Christopher M. Judd")

 .append(LINE_SEP)

 .append("All rights reserved.");

 _text.setText(sb.toString());

The StyleText widget is a very versatile component that provides for great
control of the displayed text. Let’s bold part of the text displayed on the Tool page
of the about dialog box. To accomplish this, you use a StyleRange object. You use
the StyleRange to select the text represented by the String title (see previous code
snippet) and set the fontStyle to SWT.BOLD as shown here:

 StyleRange styleRange = new StyleRange();

 styleRange.start = 0;

 styleRange.length = title.length();

 styleRange.fontStyle = SWT.BOLD;

 _text.setStyleRange(styleRange);

 return page;

}

With the control page of the about dialog box ready, it’s time to move to build
the more interesting system page. The system page will contain a table displaying
all of the available system properties. To accomplish this, you use a JFace viewer
TableViewer.

1259c10.fm Page 514 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

515

JFace TableViewer

The JFace TableViewer is a model-based viewer built on top of an SWT Table control.
As with other viewers in JFace, the TableViewer has an associated content provider
(a class implementing the org.eclipse.jface.viewers.IStructuredContentProvider
interface). The content provider is the class that will typically interact with a
model to provide the table with data (or for simple cases the model itself can
implement the content-provider interface). You can customize the TableViewer
further by providing a table label provider, element filters, and element sorters.
Figure 10-11 shows the JFace TableViewer and its supporting classes.

Figure 10-11. JFace TableViewer

As depicted in the figure, the Table viewer uses a ViewerSorted and a
ViewerFilter. To retrieve the contents that will be displayed it invokes the
getElements method of the ContentProvider, and to retrieve the text for a column
header, it invokes the getColumnText method of the LabelProvider.

Table ContentProvider

In the case of the about dialog box, an implementation of an
IStructureContentProvider is created that will take an object of type
java.util.Properties and return an array of objects containing a name-value
pair that will be displayed by the table. For this purpose, a simple class
called NameValue was created to encapsulate a name-value pair of Strings.

1259c10.fm Page 515 Friday, February 27, 2004 2:07 PM

Chapter 10

516

The loadProperties method takes a Property object and converts its entries into
NameValue objects, which are stored in a List object. The content of the list is
then returned as an array of objects by the getElements method, as shown here:

public class SystemPropertiesTableContentProvider

 implements IStructuredContentProvider {

 private List properties = new ArrayList();

 public Object[] getElements(Object element) {

 if (element instanceof Properties) {

 loadProperties((Properties)element);

 }

 return properties.toArray();

 }

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 if (oldInput != null) {

 properties.clear();

 }

 if (newInput != null) {

 Properties newModel = (Properties) newInput;

 loadProperties(newModel);

 }

 }

 public void dispose() {}

 private void loadProperties(Properties props) {

 Iterator i = props.keySet().iterator();

 for (int index = 0, n = props.size(); index < n; index++) {

 String name = (String) i.next();

 String value = props.getProperty(name);

 NameValue nv = new NameValue(name, value);

 properties.add(nv);

 }

 }

}

1259c10.fm Page 516 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

517

Table LabelProvider

Now that the viewer has a source from which to get its data, you must tell it how
to display it. The ITableLabelProvider returns a String value given an element and
a column index. The element is of type NameValue and the method must return
the name for the first column and the value for the second column, as follows:

 public String getColumnText(Object element, int column) {

 String result = null;

 if (element instanceof NameValue) {

 NameValue nv = (NameValue)element;

 switch (column) {

 case 0 :

 result = nv.getName();

 break;

 case 1 :

 result = nv.getValue();

 break;

 }

 }

 return result;

 }

Completing the TableViewer

The buildSystemPage method sets the TableViewer as done previously with the
StyleText widget. The TableViewer is created and its content and label providers
are set. To further customize the look of the table the getTable method of the
Viewer is used to gain access to the table and customize it.

Next, you add two columns to the Viewer’s underlying Table. Finally, you add
data to the table by invoking the setInput method and passing the Properties
object, which is returned by the System.getProperties method, as shown here:

private Composite buildSystemPage(Composite c) {

 Composite page = new Composite(c, SWT.NONE);

 FormLayout formLayout = new FormLayout();

 formLayout.marginHeight = 20;

 formLayout.marginWidth = 20;

 page.setLayout(formLayout);

 _tableViewer = new TableViewer(page, SWT.BORDER);

 _tableViewer.setContentProvider(new SystemPropertiesTableContentProvider());

 _tableViewer.setLabelProvider(new SystemPropertiesTableLabelProvider());

1259c10.fm Page 517 Friday, February 27, 2004 2:07 PM

Chapter 10

518

 Table table = _tableViewer.getTable();

 table.setLinesVisible(true);

 table.setHeaderVisible(true);

 TableColumn propertyColumn =

 new TableColumn(_tableViewer.getTable(), SWT.LEFT);

 propertyColumn.setText("Property");

 propertyColumn.setWidth(210);

 TableColumn valueColumn = new TableColumn(_tableViewer.getTable(), SWT.LEFT);

 propertyColumn.setText("Value");

 propertyColumn.setWidth(500);

 FormData formData = new FormData();

 formData.top = new FormAttachment(0,0);

 formData.bottom = new FormAttachment(100,0);

 formData.left = new FormAttachment(0,0);

 formData.right = new FormAttachment(100,0);

 formData.width = 320;

 formData.height = 200;

 _tableViewer.getTable().setLayoutData(formData);

 _tableViewer.setInput(System.getProperties());

 return page;

}

Finishing the Dialog Box

To finish the dialog box override the following methods provided by TitleAreaDialog:

• configureShell: To add a title to the dialog window

• createContents: To customize the title and message on the title area of
the dialog

• createButtonsForButtonBar: To add a Close button to the button bar
(instead of the default OK and Cancel buttons)

• createDialogArea: To set the TabFolder with the tool and system pages

The source code for the dialog box is shown here:

1259c10.fm Page 518 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

519

public class AboutDialog extends TitleAreaDialog {

 TabFolder _tabs;

 Composite _toolPage;

 Composite _systemPage;

 StyledText _text;

 TableViewer _tableViewer;

 protected AboutDialog(Shell shell) {

 super(shell);

 }

 protected void configureShell(Shell shell) {

 super.configureShell(shell);

 shell.setText("TCMS Admin");

 }

 protected Control createContents(Composite parent) {

 Control contents = super.createContents(parent);

 setTitle("About TCMS Admin");

 setMessage("Information about the version and the system's state");

 return contents;

 }

 protected Control createDialogArea(Composite parent) {

 Composite outer = (Composite) super.createDialogArea(parent);

 Composite c = new Composite(outer, SWT.NONE);

 c.setLayoutData(new GridData(GridData.FILL_BOTH));

 FormLayout formLayout = new FormLayout();

 formLayout.marginHeight = 10;

 formLayout.marginWidth = 10;

 c.setLayout(formLayout);

 FormData formData = new FormData();

 formData.top = new FormAttachment(0,0);

 formData.bottom = new FormAttachment(100,0);

 formData.left = new FormAttachment(0,0);

 formData.right = new FormAttachment(100,0);

 _tabs = new TabFolder(c, SWT.FLAT);

 _tabs.setLayoutData(formData);

1259c10.fm Page 519 Friday, February 27, 2004 2:07 PM

Chapter 10

520

 TabItem toolTab = new TabItem (_tabs, SWT.NULL);

 toolTab.setText("Tool");

 Composite toolPage = buildToolPage(_tabs);

 toolTab.setControl(toolPage);

 TabItem systemTab = new TabItem(_tabs, SWT.NULL);

 systemTab.setText("System");

 Composite systemPage = buildSystemPage(_tabs);

 systemTab.setControl(systemPage);

 return c;

 }

 protected void createButtonsForButtonBar(Composite parent) {

 // create Close button

 createButton(

 parent,

 IDialogConstants.CLOSE_ID,

 IDialogConstants.CLOSE_LABEL,

 true);

 }

 protected void buttonPressed(int buttonId) {

 super.buttonPressed(buttonId);

 if (IDialogConstants.CLOSE_ID == buttonId) {

 okPressed();

 }

 }

 private Composite buildToolPage(Composite c) {

 ...

 }

 private Composite buildSystemPage(Composite c) {

 ...

 }

}

1259c10.fm Page 520 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

521

In the case of the TCMSAdmin application the Action AboutAction method is
responsible for launching the about dialog box, as follows:

private class AboutAction extends Action {

 public AboutAction() {

 setToolTipText("About this Application");

 setText("&About");

 ...

 }

 public void run() {

 AboutDialog dialog = new AboutDialog(getShell());

 dialog.open();

 }

}

Application Preferences

Because the application will need to connect to a J2EE server to retrieve information,
and the server can be on the local machine or on a remote location, there’s a need
to have a flexible way to store the server host address and port that’s being used.

A Java programmer’s first approach to this would be to use a Java properties
file. Yet, when it comes to a rich UI application a properties file isn’t enough. You
need to find a consistent way for application users to modify application values
from the UI.

JFace provides such a facility in the org.eclipse.jface.preference package.
This package provides a generic framework to store and retrieve preferences
(IPreferenceStore) as well as dialog boxes and individual field editors for specific
types of preference values. Field editors are classes used to modify, present, and
validate the value of a preference and they are designed to work with a preference
store implementation. The following code snippet creates a static inner class
(part TCMSAdmin Window) that creates a FieldEditorPreferencePage. To add
fields for the two preferences, the createFieldEditors method is overridden and
the addField method is invoked.

Notice that you use a StringFieldEditor for the “host” property and an
IntegerFieldEditor for the “port” value, as shown here:

1259c10.fm Page 521 Friday, February 27, 2004 2:07 PM

Chapter 10

522

private static class ServerPreferencesPage extends FieldEditorPreferencePage {

 public ServerPreferencesPage() {

 super("Server", FieldEditorPreferencePage.GRID);

 }

 protected void createFieldEditors() {

 addField(

 new StringFieldEditor(

 "host",

 "&Host:",

 getFieldEditorParent()));

 addField(

 new IntegerFieldEditor(

 "port",

 "&Port:",

 getFieldEditorParent()));

 }

}

The Preferences dialog box is launched from an aptly named
ShowPreferenceAction class. The preferences need a store backing them; in this
implementation you use the simple PreferenceStore implementation, which is
backed by a Java properties file. A PreferenceManager is the class that maintains
the hierarchy of preference nodes that in turn contain preference pages in which
preferences are displayed and edited, as follows:

private class ShowPreferencesAction extends Action {

 public ShowPreferencesAction() {

 setToolTipText("Brings up the Application Preferences Dialog");

 setText("&Preferences");

 }

 public void run() {

 PreferenceStore store = getPreferenceStore();

 try {

 store.load();

 } catch (IOException ex) {

 // do nothing

 }

1259c10.fm Page 522 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

523

 PreferenceManager manager = new PreferenceManager();

 PreferencePage serverPage = new ServerPreferencesPage();

 PreferenceNode serverNode = new PreferenceNode("serverNode");

 serverNode.setPage(serverPage);

 manager.addToRoot(serverNode);

 PreferenceDialog dialog = new PreferenceDialog(getShell(), manager);

 dialog.setPreferenceStore(store);

 dialog.open();

 }

}

The getPreferenceStore method takes care of initializing the Store and
setting any default values, as shown here:

 public PreferenceStore getPreferenceStore() {

 if (_preferenceStore == null) {

 _preferenceStore = new PreferenceStore("tcms-gui.properties");

 _preferenceStore.setDefault("host", REMOTE_HOST);

 _preferenceStore.setDefault("port", Integer.parseInt(REMOTE_PORT));

 }

 return _preferenceStore;

 }

The running Preferences dialog box is shown in Figure 10-12.
Accessing the values is a simple matter or getting access to the store and

using one of the property accessor methods. The getString method retrieves a
value from the preferences store as a String (notice that conversions between
datatypes are automatically handled by the framework), as shown here:

PreferenceStore store = getPreferenceStore();

String host = store.getString("host");

String port = store.getString("port");

When changes to a preference value need to be automatically propagated,
you can use a listener of type IPropertyChangeListener to listen to changes on an
IPropertyStore implementation.

1259c10.fm Page 523 Friday, February 27, 2004 2:07 PM

Chapter 10

524

Figure 10-12. Preferences dialog box

Dealing with Resources

As mentioned in the SWT section, the disposal of SWT OS-bounded resources is
managed programmatically. This is reflected in SWT’s rule about resource man-
agement: “If you created it, you dispose of it.” Many programmers are taken
aback by the outlook of having to manage countless numbers of images and
fonts. For this, JFace provides, as part of the org.eclipse.jface.resource package, a
set of utility classes to simplify the management of resources.

For the TCMS Admin application you’ll be making use of JFace’s ImageRegistry
class, which is a simple maplike structure that’s used to keep a list of named
resources. An ImageRegistry can have both Images and ImageDescriptors.
Because Images handled by an ImageRegistry are shared, they aren’t to be dis-
posed of programmatically. Instead the registry disposes of the images when the
application shuts down (actually, this occurs when the Display object used to
create the images is disposed of, which is often when the application shuts down,
but not necessarily so). Consequently, the resources used by the registry aren’t
released until the application terminates so it’s important to only place images

1259c10.fm Page 524 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

525

that you use often in the registry. You can manage their images programmatically
instead.

For the TCMS application the Resources class was created, which is used to
wrap and initialize the contents of an ImageRegistry with the Images contained
in a set of directories. To provide Images or ImageDescriptors to the application,
you simply retrieve an instance of the ImageRegistry using the static method
getImageRegistry and one of the methods get (for Images) or getDescriptor
(for ImageDescriptors).

For example, in the code for the Splash screen shown in the Splash Screen
section, the following call is used to get the splash image:

Resources.getImageRegistry().get("image_splash");

Splash Screen

Another commonly needed feature in an application is a splash screen. A splash
screen usually consists of a graphic that’s shown a few moments before the main
window makes its appearance. This is usually required if your application has an
initialization period that takes more than a few seconds. It’s also customary to
use the splash screen to provide the user with feedback on the initialization process.

The following class provides a simple implementation of a splash screen. It
uses a graphic and a ProgressBar widget. The increment and scale of the progress
bar is configurable and a method to increment the progress bar is provided. For
the layout of the ProgressBar a GridLayout is used and an associated GridData
object. The GridLayout provides a great amount of flexibility by letting you place
widgets in a grid of cells.

public class Splash extends Composite {

 ProgressBar _bar;

 Label _label;

 int _increment;

 public Splash(Composite parent, int style) {

 super(parent, style);

 GridLayout layout = new GridLayout();

 layout.numColumns = 1;

 setLayout(layout);

1259c10.fm Page 525 Friday, February 27, 2004 2:07 PM

Chapter 10

526

 _label = new Label(this, SWT.NONE);

 _label.setImage(Resources.getImageRegistry().get("image_splash"));

 GridData gridData = new GridData();

 gridData.horizontalAlignment = GridData.FILL;

 gridData.grabExcessHorizontalSpace = true;

 _bar = new ProgressBar(this, SWT.NONE);

 _bar.setLayoutData(gridData);

 this.pack();

 }

...

 public void increment() {

 _bar.setSelection(_bar.getSelection() + _increment);

 }

}

You can invoke the splash screen from an application’s main method as shown
here. This example also demonstrates an important concept in SWT; namely,
how to modify a UI element from a thread other than the UI thread. Similarly to
Swing’s invokeAndWait(Runnable) and invokeLater(Runnable) methods found
in the class SwingUtilities, SWT provides the methods syncExec and asynchExec
as part of the Display class. In the following example an artificial delay has been
added (approximately 7.5 seconds) to simulate a long-running initialization period:

final int loops = 15;

final Shell splashShell = new Shell(SWT.ON_TOP);

final Splash splash = new Splash(splashShell, SWT.NONE);

splash.configureProgressBar(loops, 1);

splashShell.pack();

SWTUtil.centerShellOnDisplay(splashShell, display);

splashShell.open();

display.asyncExec(new Runnable() {

 public void run() {

 for (int i = 0; i < loops; i++) {

 splash.increment();

 try {

 Thread.sleep(500); // half a second

 } catch (Throwable e) {}

 }

1259c10.fm Page 526 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

527

 splashShell.close();

 splashShell.dispose();

 }

});

NOTE During the development of the TCMS Admin application a
utility class for performing common SWT and JFace operations was
created. This class is called SWTUtil.java and consists entirely of static
methods. It provides methods for manipulating tables, labels, colors,
fonts, and shells among others. This class is available on the online
source-code distribution.

The running splash screen is shown in Figure 10-13.

Figure 10-13. TCMS Admin splash screen

Use Case: Abstracts Page

The Abstracts page should enable users to do the following:

• View all abstracts in a Table format

• Edit an abstract’s text

• Modify other details about an Abstract

1259c10.fm Page 527 Friday, February 27, 2004 2:07 PM

Chapter 10

528

Figure 10-14 shows the final rendition of the Abstracts page. The page is
divided into three areas:

• Navigator view: Consisting of a TableViewer that will display the available
Abstract pages

• Text Editor: Consisting of a StyleText widget that’s used to display and edit
the Abstract page’s text

• Details Editor: Consisting of a custom widget that’s used to display and
edit the values of other Abstract page properties (excluding the Abstract
page’s text)

Figure 10-14. Abstracts page

1259c10.fm Page 528 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

529

Window Layout

Before jumping into coding the three components of the Abstracts page described
previously, you need to create a window that will provide a canvas on which to
work. The layout, and look-and-feel requirements for the Abstracts page are
as follows:

• All views and editors can be manually resized using splitters.

• All views and editors can be maximized by double-clicking their titles.

• The active view and active editor should display a color gradient on its title
bar (this will be demonstrated later in the chapter).

To handle the manual resizing and maximizing you use a Splitter
(org.eclipse.compare.Splitter), which is a type of SashForm with support for
nesting. A SashForm is a form that can hold multiple children widgets that are
separated by splitters. One interesting feature of a Splitter is that maximizing a
child component of a Splitter makes the child as large as the topmost enclosing
Splitter.

NOTE The org.eclipse.compare package is contained in the JAR file
compare.jar, which is located in the Eclipse plug-ins repository under
the folder org.eclipse.compare_2.1.0. You’ll need to add this JAR to
your classpath.

The AbstractsPage class is a Composite that contains two such Splitters. The
_mainForm Splitter is constructed to lay out its two children horizontally. The
child farthest to the left of the _mainForm will be the Navigator view. The child
farthest to the right will be the _subForm Splitter, which lays out its children
vertically. The top child of the _subForm will be the TextEditor and the bottom
child will be the DetailsEditor. The createTableViewForm, createTextEditorForm,
and createDetailsForm methods will build the views and editors.

For the individual viewers, you use a CompareViewerPane
(org.eclipse.compare.CompareViewerPane), which is a specialized ViewForm
(org.eclipse.swt.custom.ViewForm) that adds a Title (CLabel) and a ToolBar.
Double-clicking the title bar of a CompareViewer pane maximizes it to the size
of the outermost Splitter.

1259c10.fm Page 529 Friday, February 27, 2004 2:07 PM

Chapter 10

530

public class AbstractsPage extends Composite {

 Splitter _mainForm;

 Splitter _subForm;

 CompareViewerPane _detailsForm;

 Composite _detailsSubForm;

 CompareViewerPane _textForm;

 Composite _textSubForm;

 CompareViewerPane _abstractsTableForm;

 Composite _abstractsTableSubForm;

...

 public AbstractsPage(Composite parent, int style) {

 super(parent, style);

 setLayout(new FillLayout());

 _mainForm = new Splitter(this, SWT.HORIZONTAL);

 createTableViewForm(_mainForm);

 _subForm = new Splitter(_mainForm, SWT.VERTICAL);

 createTextEditorForm(_subForm);

 createDetailsForm(_subForm);

 }

...

}

Navigator View

The navigator view uses the TableViewer class. In the TableViewer class example
earlier, you’ll recall that when you used the TableViewer the dataset was fairly
simple to display. In the case of the Abstracts page, you have a more complex sit-
uation for which you need to implement a custom data model.

Figure 10-15 shows a sequence diagram of how the
AbstractsTableContentProvider uses the AbstractModel to provide content to the
TableViewer. Changes to the model are reported to the provider using a simple
listener interface, which the provider class implements.

1259c10.fm Page 530 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

531

Figure 10-15. TableViewer, Content Provider, and Model

The following code section shows part of the createTableViewForm method.

CompareViewerPane

The CompareViewerPane is constructed using the SashForm as a parent
passed as a parameter:

...

private void createTableViewForm(SashForm sashForm) {

 _abstractsTableForm = new CompareViewerPane(sashForm, SWT.BORDER);

 _abstractsTableForm.setText("Abstracts");

_abstractsTableForm.setImage(Resources.getImageRegistry().get("icons_abstracts")

);

 _abstractsTableSubForm = new Composite(_abstractsTableForm, SWT.NONE);

 _abstractsTableSubForm.setLayout(new FillLayout());

...

 _abstractsTableForm.setContent(_abstractsTableSubForm);

}

TableViewer

The TableViewer is created and, as shown in the previous example, the content
and label providers are assigned:

1259c10.fm Page 531 Friday, February 27, 2004 2:07 PM

Chapter 10

532

TableViewer _tableViewer = null;

_tableViewer = new TableViewer(_abstractsTableSubForm, SWT.BORDER);

_tableViewer.setContentProvider(new AbstractsTableContentProvider());

_tableViewer.setLabelProvider(new AbstractTableLabelProvider());

_tableViewer.getTable().setHeaderVisible(true);

To enable the table to be sorted by clicking on a column heading, an
AbstractViewerSorter that extends the class org.eclipse.jface.viewers.ViewerSorter is
created. During construction the sorted table takes an integer parameter, which
determines the criteria used to sort the table (the criteria being the possible
column types), as shown here:

public class AbstractsViewerSorter extends ViewerSorter {

 public final static int SORT_CRITERIA_TITLE = 0;

 public final static int SORT_CRITERIA_TYPE = 1;

 public final static int SORT_CRITERIA_LEVEL = 2;

 public final static int SORT_CRITERIA_PRESENTER = 3;

 private int _criteria;

 public AbstractsViewerSorter(int criteria) {

 super();

 _criteria = criteria;

 }

 public int compare(Viewer viewer, Object o1, Object o2) {

 ConferenceAbstractDTO dto1 = (ConferenceAbstractDTO) o1;

 ConferenceAbstractDTO dto2 = (ConferenceAbstractDTO) o2;

 switch (_criteria) {

 case SORT_CRITERIA_TITLE :

 return collator.compare(dto1.getTitle(), dto2.getTitle());

 case SORT_CRITERIA_TYPE :

 return collator.compare(dto1.getType(), dto2.getType());

 case SORT_CRITERIA_LEVEL :

 return collator.compare(dto1.getLevel(), dto2.getLevel());

 case SORT_CRITERIA_PRESENTER :

 return collator

 .compare(dto1.getPresenter(), dto2.getPresenter());

1259c10.fm Page 532 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

533

 default:

 return 0;

 }

 }

...

}

Now you can create the columns and assign a sorter to them, as follows:

TableColumn typeColumn = new TableColumn(_tableViewer.getTable(), SWT.LEFT);

typeColumn.setText("Type");

typeColumn.setWidth(60);

typeColumn.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent e) {

 tableViewer.setSorter(

 new AbstractsViewerSorter(AbstractsViewerSorter.SORT_CRITERIA_TYPE)

);

 }

});

...

SelectionChanged Listener

When the user selects an Abstracts page on the TableViewer, it’s expected that the
corresponding information for the Abstracts page will be shown on the two editors
to the right. To accomplish this, the selection event of the TableViewer need to be
detected and the inputs to the editors need to be modified accordingly:

StyledText _text;

AbstractsDetailsWidget _details;

...

_tableViewer.addSelectionChangedListener(new ISelectionChangedListener() {

 public void selectionChanged(SelectionChangedEvent event) {

 if (_details.isModified() || _textModified) {

 // prompt to save modifications

 checkToSave(_selected);

 }

 IStructuredSelection selection =

 (IStructuredSelection) event.getSelection();

 _selected = (ConferenceAbstractDTO) selection.getFirstElement();

 _text.removeModifyListener(_textModifiedListener);

1259c10.fm Page 533 Friday, February 27, 2004 2:07 PM

Chapter 10

534

 if (_selected != null) {

 _text.setText(_selected.getBody());

 _text.addModifyListener(_textModifiedListener);

 _details.setModel(_selected);

 }

 }

});

Details Editor

The Details Editor is an example of a custom Widget class. In the Details Editor
the “details” about a particular abstract selected in the TableViewer are shown.
As a base class you should choose the ScrolledComposite class
(org.eclipse.swt.custom.ScrolledComposite), which is a Composite that provides
scrollbars and will scroll its contents as needed.

For the Details Editor a combination of widgets is used, including Text,
CCombo, Label, and Button, and they’re arranged using a GridLayout.

public class AbstractsDetailsWidget extends ScrolledComposite {

 private Text _title;

 private CCombo _type;

 private CCombo _topic;

 private CCombo _level;

 private CCombo _status;

 private Button _presentations;

 private Text _presenter;

 private ConferenceAbstractDTO _model;

 private boolean _modified = false;

 public AbstractsDetailsWidget(Composite parent) {

 super(parent, SWT.H_SCROLL | SWT.V_SCROLL);

 // take as much client area as possible

 setExpandHorizontal(true);

 setExpandVertical(true);

 // internal composite in which to layout the children widgets

 // using a grid layout

 Composite grid = new Composite(this, SWT.NONE);

1259c10.fm Page 534 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

535

 // set the background color

 grid.setBackground(SWTUtil.getSystemColor(SWT.COLOR_LIST_BACKGROUND));

 // create and set the grid layout

 GridLayout layout = new GridLayout();

 layout.numColumns = 2;

 layout.verticalSpacing = 4;

 layout.horizontalSpacing = 6;

 grid.setLayout(layout);

 // add a title label

 Label label =

 SWTUtil.createLabel(

 grid,

 "Abstract Information:",

 SWT.WRAP,

 SWT.COLOR_LIST_BACKGROUND);

 label.setFont(SWTUtil.getFont(JFaceResources.BANNER_FONT));

 // separator

 Composite separator = new Composite(grid, SWT.NONE);

 separator.setBackground(

 SWTUtil.getColor(separator, SWT.COLOR_TITLE_BACKGROUND_GRADIENT));

 GridData separatorGridData = new GridData();

 separatorGridData.horizontalSpan = 2;

 separatorGridData.horizontalAlignment = GridData.FILL;

 separatorGridData.grabExcessHorizontalSpace = true;

 separatorGridData.verticalAlignment = GridData.BEGINNING;

 separatorGridData.heightHint = 2;

 separator.setLayoutData(separatorGridData);

 // title field

 GridData titleGridData = new GridData();

 titleGridData.widthHint = 215;

 SWTUtil.createLabel(grid, "Title", SWT.FLAT, SWT.COLOR_LIST_BACKGROUND);

 _title = SWTUtil.createText(grid, "", SWT.SINGLE | SWT.BORDER);

 _title.setLayoutData(titleGridData);

 // type field

 GridData typeGridData = new GridData();

 typeGridData.widthHint = 200;

1259c10.fm Page 535 Friday, February 27, 2004 2:07 PM

Chapter 10

536

 SWTUtil.createLabel(grid, "Type", SWT.FLAT, SWT.COLOR_LIST_BACKGROUND);

 _type = new CCombo(grid, SWT.FLAT | SWT.BORDER);

 _type.setLayoutData(typeGridData);

 // topic field

 GridData topicGridData = new GridData();

 topicGridData.widthHint = 200;

 SWTUtil.createLabel(grid, "Topic", SWT.FLAT, SWT.COLOR_LIST_BACKGROUND);

 _topic = new CCombo(grid, SWT.FLAT | SWT.BORDER);

 _topic.setLayoutData(topicGridData);

 // level field

 GridData levelGridData = new GridData();

 levelGridData.widthHint = 200;

 SWTUtil.createLabel(grid, "Level", SWT.FLAT, SWT.COLOR_LIST_BACKGROUND);

 _level = new CCombo(grid, SWT.FLAT | SWT.BORDER);

 _level.setLayoutData(levelGridData);

 // status field

 GridData statusGridData = new GridData();

 statusGridData.widthHint = 200;

 SWTUtil.createLabel(

 grid,

 "Status",

 SWT.FLAT,

 SWT.COLOR_LIST_BACKGROUND);

 _status = new CCombo(grid, SWT.FLAT | SWT.BORDER);

 _status.setLayoutData(statusGridData);

 // presentations field

 SWTUtil.createLabel(

 grid,

 "has Presentations",

 SWT.FLAT,

 SWT.COLOR_LIST_BACKGROUND);

 _presentations = new Button(grid, SWT.CHECK | SWT.FLAT);

1259c10.fm Page 536 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

537

 _presentations.setBackground(

 SWTUtil.getColor(_presentations, SWT.COLOR_LIST_BACKGROUND));

 _presentations.setText("");

 _presentations.setSelection(true);

 _presentations.setEnabled(false);

 // presenter field

 GridData presenterGridData = new GridData();

 presenterGridData.widthHint = 215;

 SWTUtil.createLabel(

 grid,

 "Presenter",

 SWT.FLAT,

 SWT.COLOR_LIST_BACKGROUND);

 _presenter = SWTUtil.createText(grid, "");

 _presenter.setLayoutData(presenterGridData);

 // create and set internal listeners

 ModifyListener modifyListener = new ModifyListener() {

 public void modifyText(ModifyEvent e) {

 onTextModified(e);

 }

 };

 FocusListener focusListener = new FocusListener() {

 public void focusGained(FocusEvent e) {

 onFocusGained(e);

 }

 public void focusLost(FocusEvent e) {

 onFocusLost(e);

 }

 };

 MouseListener mouseListener = new MouseAdapter() {

 public void mouseDown(MouseEvent event) {

 notifyListeners(SWT.FocusIn, new Event());

 _title.setFocus();

 }

 };

1259c10.fm Page 537 Friday, February 27, 2004 2:07 PM

Chapter 10

538

 _title.addModifyListener(modifyListener);

 _type.addModifyListener(modifyListener);

 _topic.addModifyListener(modifyListener);

 _level.addModifyListener(modifyListener);

 _status.addModifyListener(modifyListener);

 _presenter.addModifyListener(modifyListener);

 _title.addFocusListener(focusListener);

 _type.addFocusListener(focusListener);

 _topic.addFocusListener(focusListener);

 _level.addFocusListener(focusListener);

 _status.addFocusListener(focusListener);

 _presenter.addFocusListener(focusListener);

 label.addMouseListener(mouseListener);

 grid.addMouseListener(mouseListener);

 // to ensure that scrollbars show up when needed

 Point pt = grid.computeSize(SWT.DEFAULT, SWT.DEFAULT);

 setMinWidth(pt.x);

 setMinHeight(pt.y);

 // add the grid to the widget

 setContent(grid);

 }

ModifyListeners (added to each editable field) are used to trigger a method
that sets a modified flag on the editor. If the user selects another abstract from
the TableViewer and the modified flag is true for either the TextEditor or the
DetailsEditor the checkToSave method is invoked, which brings up the dialog
box shown in Figure 10-16.

Figure 10-16. Check to Save dialog box

1259c10.fm Page 538 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

539

The checkToSave method also illustrates the usage of a JFace MessageDialog.

private void checkToSave(ConferenceAbstractDTO selected) {

 MessageDialog dialog =

 new MessageDialog(

 getShell(),

 "Abstract Modified",

 null,

 "Abstract Information for ["

 + selected.getTitle()

 + "] has been modified. Commit changes to the server?",

 MessageDialog.QUESTION,

 new String[] {

 "&Commit",

 "&Ignore Changes",

 IDialogConstants.CANCEL_LABEL

 },

 0

);

 dialog.open();

 int rc = dialog.getReturnCode();

 switch (rc) {

 case 0 : // save the changes

 ...

 break;

 case 1 : // don't save the changes

 _details.setModified(false);

 _textModified = false;

 case 2 : // cancel

 break;

 }

 }

Loading Data: Keeping the UI Responsive with Threads

Widgets without meaningful data to display are useless. The TCMS application
must be able to communicate with a J2EE server and access the service layer
created in Chapter 8 to populate the UI. Because the quality and amount of data
in the communications with the J2EE server aren’t known, the data you retrieve
from the server in a synchronous fashion can result in a UI that appears to be frozen.

1259c10.fm Page 539 Friday, February 27, 2004 2:07 PM

Chapter 10

540

The obvious alternative is to run the possibly long process in a separate
thread. In the case of the TCMSAdmin application the intent is to prevent
the user from interacting with the UI during the data-loading phase, but
at the same time informing periodically on the progress of the data-loading
operation. This is accomplished by the LoadData class, which implements the
IRunnableWithProgress interface, which in turn encapsulates a long-running
operation for which the user receives visual feedback. The run method takes an
IProgressMonitor, which is the interface used to provide feedback on the status
of the operation.

The IProgressMonitor interface provides status notification methods that
enable you to programmatically partition a task into a sequence of subtasks and
then report on their progress. To mark the beginning of a Task the beginTask method
is used. Later, to signal the beginning of a subtask, you use the subTask method.
The IProgressMonitor interface also provides the ability to cancel an operation
that’s in progress programmatically by checking the isCancelled method period-
ically (in this example you should choose to ignore the cancellation request).

private class LoadData implements IRunnableWithProgress {

 public void run(IProgressMonitor monitor)

 throws InvocationTargetException, InterruptedException {

 monitor.beginTask("Contacting Server", IProgressMonitor.UNKNOWN);

 if (_activeView != null) {

 try {

 Object[] data = null;

 String[] topics = null;

 String[] levels = null;

 String[] types = null;

 String[] status = null;

 if (_serviceFactory == null) {

 PreferenceStore store = getPreferenceStore();

 String host = store.getString("host");

 String port = store.getString("port");

 _serviceFactory = new ServiceProxyFactory(host, port);

 monitor.subTask("Obtained Service Proxy Factory");

 }

 if (_serviceFactory != null) {

 _conferenceService = _serviceFactory

 .getConferencesServices();

 monitor.subTask("Obtained Conference Service Proxy");

1259c10.fm Page 540 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

541

 if (_activeView.equals(_abstracts)) {

 _abstracts.setService(_conferenceService);

 data = _conferenceService.getAbstractAsArray();

 monitor.subTask("Retrieved Abstracts List");

 topics = _conferenceService.getValidTopics();

 monitor.subTask("Retrieved Topics");

 levels = _conferenceService.getValidLevels();

 monitor.subTask("Retrieved Levels");

 types = _conferenceService.getValidTypes();

 monitor.subTask("Retrieved Types");

 status =

 _conferenceService.getValidAbstractStatus();

 monitor.subTask("Retrieve Status");

 _shell

 .getDisplay()

 .syncExec(

 new AbstractsViewUpdater(_abstracts

 ,data

 ,topics

 ,levels

 ,types

 , status)

);

 } else if (_activeView.equals(_news)) {

 _news.setService(_conferenceService);

 data = _conferenceService.getNewsAsArray();

 monitor.subTask("Retrieved News Articles");

 _shell

 .getDisplay()

 .syncExec(new NewsViewUpdater(_news, data));

 }

 }

 monitor.subTask("Data Loaded");

 monitor.done();

 } catch (RemoteServerException e) {

...

 } catch (DTOCreateException e) {

...

 }

 }

 }

1259c10.fm Page 541 Friday, February 27, 2004 2:07 PM

Chapter 10

542

The _serviceFactory object is an instance of the ServiceProxyFactory class,
which is an abstract factory that’s used to retrieve a local proxy to one of the
Session Facades developed in Chapter 8. The specific proxy used to retrieve
the data is the ConferenceServicesProxy class, which is a proxy to the
com.ejdoab.tcms.services.ConferenceServicesBean class. Notice that the use of
the syncExec command to update either the Abstracts page or the News page.
The runnable classes shown next are what is executed to actually populate the UIs.

 class AbstractsViewUpdater implements Runnable {

 Object[] _data;

 String[] _topics;

 String[] _levels;

 String[] _types;

 String[] _status;

 AbstractsPage _abstracts;

 public AbstractsViewUpdater(

 AbstractsPage abstracts,

 Object[] data,

 String[] topics,

 String[] levels,

 String[] types,

 String[] status) {

 _abstracts = abstracts;

 _data = data;

 _topics = topics;

 _levels = levels;

 _types = types;

 _status = status;

 }

 public void run() {

 _abstracts.setTopics(_topics);

 _abstracts.setLevels(_levels);

 _abstracts.setTypes(_types);

 _abstracts.setStatus(_status);

 _abstracts.loadData(_data);

 }

 }

1259c10.fm Page 542 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

543

 class NewsViewUpdater implements Runnable {

 Object[] _data;

 NewsPage _news;

 public NewsViewUpdater(NewsPage news, Object[] data) {

 _news = news;

 _data = data;

 }

 public void run() {

 _news.loadData(_data);

 }

 }

 }

To actually display the progress of the IRunnableWithProgress implemen-

tation, you use a ProgressMonitorDialog, which is the typical modal dialog box
that displays progress to the users during a long-running operation. It displays
the typical progress bar and a status message. The following code snippet shows
how you can launch the ProgressMonitorDialog from within an Action:

private class RefreshDataAction extends Action {

 public RefreshDataAction() {

 setToolTipText("Refresh the Active Page Data from the Server");

 setText("&Refresh@Alt+R");

 setImageDescriptor(

 Resources.getImageRegistry().getDescriptor("icons_refresh"));

 }

 public void run() {

 ProgressMonitorDialog dialog = new ProgressMonitorDialog(getShell());

 try {

 dialog.run(true, true, new LoadData());

 } catch (InvocationTargetException ex) {

 ...

 } catch (InterruptedException ex) {

 ...

 }

 }

}

Figure 10-17 shows the ProgressMonitorDialog that’s being controlled by the
IRunnableWithProgress LoadData class.

1259c10.fm Page 543 Friday, February 27, 2004 2:07 PM

Chapter 10

544

Figure 10-17. The Progress Information dialog box (ProgressMonitorDialog)

Use Case: News Page

The next use case on the UI that you’ll work with is the use case for viewing and
editing news. The design on the page has a TreeViewer that organizes news articles
and items under the date in which they will appear on the web application’s
News page.

Figure 10-18 shows the final result of the News page.

Figure 10-18. The News page

1259c10.fm Page 544 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

545

TreeViewer

Another JFace class that’s frequently used in applications is the TreeViewer. Like
the TableViewer uses the SWT Table widget, the TreeViewer uses an SWT Tree
widget for display purposes. Also similar to the TableViewer, the TreeViewer
makes use of a content provider (ITreeContentProvider) and a label provider
(ILabelProvider).

The News page layout is almost identical to the Abstracts page layout with
the exception being that the navigator view contains a TreeViewer instead of a
TableViewer. As with the Abstracts page there’s a method to create the navigator
form as shown here:

 private void createTreeViewForm(SashForm sashForm) {

 _newsTreeForm = new CompareViewerPane(sashForm, SWT.BORDER);

 _newsTreeForm.setText("News");

 _newsTreeForm.setImage(Resources.getImageRegistry().get("icons_news"));

 _newsTreeSubForm = new Composite(_newsTreeForm, SWT.NONE);

 _newsTreeSubForm.setLayout(new FillLayout());

 _treeViewer = new TreeViewer(_newsTreeSubForm); // create the TreeViewer

 // get the SWT Tree for further customizations

 Tree tree = _treeViewer.getTree();

 // set the content provider

 _treeViewer.setContentProvider(new NewsTreeContentProvider());

 // set the lable provider

 _treeViewer.setLabelProvider(new NewsTreeLabelProvider());

 _newsTreeForm.setContent(_newsTreeSubForm);

...

As with the Abstracts page there’s a need to detect when the user selects an
item on the tree and update the two editors (NewsItemText and NewsItemDetails).
For this selection a listener is registered with the TableViewer (implemented as
an anonymous inner class) as follows:

1259c10.fm Page 545 Friday, February 27, 2004 2:07 PM

Chapter 10

546

...

 // handle selection events

 _treeViewer

 .addSelectionChangedListener(new ISelectionChangedListener() {

 public void selectionChanged(SelectionChangedEvent event) {

 IStructuredSelection selection =

 (IStructuredSelection) event.getSelection();

 Object o = selection.getFirstElement();

 if (o instanceof NewsItemDTO) {

 if (_details.isModified() || _textModified) {

 // prompt to save modifications

 checkToSave(selected);

 }

 selected = (NewsItemDTO) o;

 _text.removeModifyListener(_textModifiedListener);

 _text.setText(selected.getBody());

 _text.addModifyListener(_textModifiedListener);

 _details.setModel(selected);

 }

 }

 });

...

Another feature that’s commonly added to a TreeViewer is the ability to change
the appearance of a Tree node when it’s expanded. To accomplish this, you create
listeners for two events, SWT.Expand and SWT.Collapse. The following code changes
the image associated with the TreeItem based on receiving an expanding or
collapsing event. (Notice the use of untyped listeners in this particular case.)

...

 // handle tree expansion events

 tree.addListener(SWT.Expand, new Listener() {

 public void handleEvent(Event e) {

 TreeItem item = (TreeItem) e.item;

 item.setImage(

 Resources.getImageRegistry().get("icons_folder_open"));

 }

 });

1259c10.fm Page 546 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

547

 // handle tree collapsing events

 tree.addListener(SWT.Collapse, new Listener() {

 public void handleEvent(Event e) {

 TreeItem item = (TreeItem) e.item;

 item.setImage(

 Resources.getImageRegistry().get("icons_folder_close"));

 }

 });

...

ContentProvider, LabelProvider, and Data Model

For the News TreeViewer a custom data model was created to organize the data
in the hierarchy required. The NewsModel class takes a list of NewsItemsDTO
(data transfer objects) and organizes them by their publication date.

NOTE The NewsModel is an example of a custom data model in an
MVC relationship that provides a business representation of the data
to be used by the view, which in this case is a TreeViewer. A custom
data model provides an intelligent structure for your data when the
simple structures provided by the Java Collections API aren’t enough.

An important aspect of a UI data model is that it needs to communicate
changes to the widgets displaying the model. For the current application there
isn’t a need for fine-grained notification of changes, therefore a simple listener
interface is used (NewsModelListener) with a single method that signals a change
in the model (any change, being an addition, deletion, or modification). The
NewsModel class is shown here:

public class NewsModel {

 private List _newsItems;

 private Map _model = new HashMap();

 private NewsModelListener _listener;

 public NewsModel(Object[] newsItems) {

 super();

 _newsItems = new ArrayList(newsItems.length);

 CollectionUtils.addAll(_newsItems, newsItems);

 createModel();

 }

1259c10.fm Page 547 Friday, February 27, 2004 2:07 PM

Chapter 10

548

 public void add(NewsItemDTO newsItem) {

 Date date = newsItem.getDate();

 String key = Dates.format(date, "MM-dd-yyyy");

 List items = null;

 if (!_model.containsKey(key)) {

 items = new ArrayList();

 _model.put(key, items);

 }

 if (items == null) items = (List)_model.get(key);

 items.add(newsItem);

 fireModelChanged();

 }

 public void remove(NewsItemDTO newsItem) {

 Date date = newsItem.getDate();

 String key = Dates.format(date, "MM-dd-yyyy");

 List items = (List)_model.get(key);

 if (items != null) {

 items.remove(newsItem);

 fireModelChanged();

 }

 }

 private void createModel() {

 if (_newsItems != null) {

 // build a list of dates to be used as the key in the map

 Iterator iter = _newsItems.iterator();

 for (int i=0, n = _newsItems.size(); i < n; i++) {

 NewsItemDTO dto = (NewsItemDTO)iter.next();

 Date date = dto.getDate();

 String key = Dates.format(date, "MM-dd-yyyy");

 List items = null;

 if (!_model.containsKey(key)) {

 items = new ArrayList();

 _model.put(key, items);

 }

 if (items == null) {

 items = (List)_model.get(key);

 }

 items.add(dto);

 }

 }

 }

1259c10.fm Page 548 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

549

 public Object[] getChildren(Object object) {

 if (object instanceof String) {

 if (_model.containsKey(object)) {

 List children = (List)_model.get(object);

 return children.toArray();

 }

 }

 return Arrays.EMPTY_OBJECT_ARRAY;

 }

 public Object getParent(Object object) {

 if (object instanceof NewsItemDTO) {

 NewsItemDTO dto = (NewsItemDTO)object;

 return Dates.format(dto.getDate(), "MM-dd-yyyy");

 }

 return null;

 }

 public boolean hasChildren(Object object) {

 if (object instanceof String) {

 if (_model.containsKey(object)) {

 List children = (List)_model.get(object);

 return !children.isEmpty();

 }

 }

 return false;

 }

 protected void fireModelChanged() {

 if (_listener != null) {

 _listener.modelChanged();

 }

 }

 public Object[] getDates() {

 return _model.keySet().toArray();

 }

 ...

}

Because the TreeViewer relies on the ContentProvider to get its data,
the ContentProvider will use the NewsModel to provide the content. Also, the
ContentProvider needs to listen for changes on the model in order to keep the UI
up to date. Once the TreeViewer has been set with a Label and a ContentProvider

1259c10.fm Page 549 Friday, February 27, 2004 2:07 PM

Chapter 10

550

the root element of the tree is set by invoking the setInput method and passing a
NewsModel instance. The ContentProvider class NewsTreeContentProvider is
shown here:

public class NewsTreeContentProvider

 implements ITreeContentProvider, NewsModelListener {

 private NewsModel _model = null;

 private TreeViewer _viewer = null;

 public NewsTreeContentProvider() {}

 public Object[] getChildren(Object object) {

 if (_model != null) {

 return _model.getChildren(object);

 }

 return Arrays.EMPTY_OBJECT_ARRAY;

 }

 public Object getParent(Object object) {

 if (_model != null) {

 return _model.getParent(object);

 }

 return null;

 }

 public boolean hasChildren(Object object) {

 if (_model != null) {

 return _model.hasChildren(object);

 }

 return false;

 }

 public Object[] getElements(Object object) {

 if (object instanceof NewsModel) {

 NewsModel model = (NewsModel)object;

 _model = model;

 return _model.getDates();

 }

 return Arrays.EMPTY_OBJECT_ARRAY;

 }

 public void dispose() {}

1259c10.fm Page 550 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

551

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {

 _viewer = (TreeViewer) viewer;

 if (oldInput != null) {

 NewsModel oldModel = (NewsModel)oldInput;

 oldModel.removeChangeListener(this);

 }

 if (newInput != null) {

 NewsModel newModel = (NewsModel)newInput;

 newModel.addChangeListener(this);

 }

 }

 public void modelChanged() {

 _viewer.refresh();

 }

}

Finally, the LabelProvider class (NewsTreeLabelProvider) handles the
resolution of the text and image for each of the TreeViewer’s items. The
NewsTreeLabel class is shown here:

public class NewsTreeLabelProvider extends LabelProvider {

 public String getText(Object element) {

 if (element instanceof NewsItemDTO) {

 NewsItemDTO dto = (NewsItemDTO)element;

 return dto.getTitle();

 }

 return element.toString();

 }

 public Image getImage(Object element) {

 if (element instanceof NewsItemDTO) {

 return Resources.getImageRegistry().get("icons_news_item");

 }

 return Resources.getImageRegistry().get("icons_folder_close");

 }

}

1259c10.fm Page 551 Friday, February 27, 2004 2:07 PM

Chapter 10

552

Adding a News Item: JFace Wizards

The last item of functionality to implement is a convenient way for users to add a
new news item under a given date. For this you use a JFace wizard. A wizard pro-
vides a convenient way to deal with complex or unfamiliar tasks or it streamlines
a task by providing a well-defined set of steps that are needed to complete a task.
A wizard consists of a series of pages where each page represents a step in the
overall process.

The wizard extends the org.eclipse.jface.wizard.Wizard class. To add pages to
the wizard, the method addPages is overridden and the addPage method is used
to add instances of WizardPage. The Wizard must also provide code to determine
if the process can finish (enabling the finish button) by overriding the canFinish
method. When the user presses the Finish button, the performFinish method is
invoked. The code for the NewsItemWizard class is shown here:

public class NewsItemWizard extends Wizard {

 // wizard page instances

 private NewsItemBasicInfoPage basicInfoPage = new NewsItemBasicInfoPage();

 private NewsItemTextPage textPage = new NewsItemTextPage();

 ...

 public NewsItemWizard(NewsModel model, String date) {

 ...

 setWindowTitle("New News Article");

 }

 public void addPages() {

 addPage(basicInfoPage);

 addPage(textPage);

 }

 public boolean performFinish() {

 String title = basicInfoPage.getArticleTitle();

 Date creationDate = basicInfoPage.getCreationDateAsDate();

 String creationDateAsString = basicInfoPage.getCreationDate();

 Date removalDate = basicInfoPage.getRemoveDateAsDate();

 String removalDateAsString = basicInfoPage.getRemoveDate();

 String body = textPage.getArticleBody();

 ...

 return submitted;

 }

1259c10.fm Page 552 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

553

 public boolean canFinish() {

 return basicInfoPage.canFlipToNextPage()

 && (StringUtils.isNotEmpty(textPage.getArticleBody()));

 }

 /**

 * Convenience utility method to display the Wizard

 */

 public void showWizard() {

 WizardDialog dialog = new WizardDialog(getShell(), this);

 dialog.open();

 }

 ...

}

For the New News Article wizard there are two pages, the NewsItemBasicIn-

foPage and the NewsItemTextPage. In a WizardPage the createControl method is
overridden to create the contents of the Page. To determine if the user can flip to
the next page (enable the Next button) the canFlipToNextPage method is overriden.

 private class NewsItemBasicInfoPage extends WizardPage implements Listener {

 public NewsItemBasicInfoPage() {

 super("NewsItemBasicInfoPage");

 setTitle("News Article");

 setMessage("Create a New News Article");

 }

 public void createControl(Composite parent) {

 Composite composite = new Composite(parent, SWT.NULL);

 GridLayout layout = new GridLayout();

 layout.numColumns = 2;

 composite.setLayout(layout);

 // title field

 SWTUtil.createLabel(composite, "Article's Title:", SWT.NULL);

 _title = SWTUtil.createText(composite, "", SWT.SINGLE | SWT.BORDER);

 {

 GridData gridData = new GridData(GridData.FILL_HORIZONTAL);

 _title.setLayoutData(gridData);

 }

 ...

1259c10.fm Page 553 Friday, February 27, 2004 2:07 PM

Chapter 10

554

 setControl(composite);

 setDefaults();

 addListeners();

 }

 ...

 public boolean canFlipToNextPage() {

 ...

 return result;

 }

 ...

 }

Typically the change and modify listeners will be added to the widgets of
a WizardPage. You can then implement an untyped listener to validate the
current page.

NOTE In SWT an untyped event listener refers to an instance of the
org.eclipse.swt.widgets.Listener interface that you can add to a
widget using the addListener(int eventType, Listener handler)
method, which registers the listener to listen to a particular type
of event (determined by the integer eventType value). Typically,
widgets will also provide a typed listener API that has methods like
addSomeEventListener(SomeEventListener handler), which take a
specific type of listener.

You can use the setErrorMessage and setMessage methods to display feedback
information to the user as the validation takes place. The Eclipse UI guidelines
recommend that you validate wizard data in tab order. You can use the setMessage
method to display a message when a piece of information is missing, and you can
use the setErrorMessage method to signal the user that an input value is incorrect.
To refresh the state of the Wizard buttons from within a WizardPage, you can use
the updateButtons method:

// update the wizard buttons by invoking canFinish and canFlipToNextPage

getWizard().getContainer().updateButtons();

Figure 10-19 shows the Wizard dialog box’s New News Article page.

1259c10.fm Page 554 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

555

Figure 10-19. New News Article wizard’s Basic Info page

Figure 10-20 shows the effect of invoking the setErrorMessage method
during the data-validation method.

Figure 10-20. Wizard data validation

1259c10.fm Page 555 Friday, February 27, 2004 2:07 PM

Chapter 10

556

After the user completes the Basic Info page the next step in the process
of adding news items is on the Text page in which users can use the contents
of a file as the body of the news item that’s being created. In addition, they can
type the contents directly into a text field. The text page makes use of the
org.eclipse.jface.preference.FileFieldEditor class, which is a convenient class
that pairs a single-line text field with a button. When the button is pressed, a
native OS File dialog box appears and the selected file will appear on the Text
widget, as shown here:

_fileFieldEditor = new FileFieldEditor("fileFieldEditor", "File Name:",

Composite);

_fileFieldEditor.setEmptyStringAllowed(false);

Figure 10-21 shows the Text Page wizard page after selecting a text file. The
filename is then used to load the file contents onto the multiline Text widget, as
shown in the Text page.

Figure 10-21. New News Article wizard’s Text page

Putting It All Together

With the Abstracts page and the News page in place all you need to do is wire
them to the main application. The two actions shown here will set the respective
pages (tabs) on the PageBook pages.

1259c10.fm Page 556 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

557

private class ShowAbstractsPageAction extends Action {

 public ShowAbstractsPageAction() {

 setToolTipText("Switch to the Abstract's Page");

 setText("&Abstracts@Alt+A");

 setImageDescriptor(

 Resources.getImageRegistry().getDescriptor("icons_abstracts"));

 }

 public void run() {

 _pages.showPage(_abstracts);

 _activeView = (TCMSView)_abstracts;

 setStatus("Abstracts Page Loaded");

 }

}

private class ShowNewsPageAction extends Action {

 public ShowNewsPageAction() {

 setToolTipText("Switch to the News Page");

 setText("&News@Alt+N");

 setImageDescriptor(

 Resources.getImageRegistry().getDescriptor("icons_news"));

 }

 public void run() {

 _pages.showPage(_news);

 _activeView = (TCMSView)_news;

 setStatus("News Page Loaded");

 }

}

Adding a Gradient to the CompareViewerPane

With the core functionality finished now you can invest some time toward making
the application look better. One feature commonly found in most modern versions
of a graphical operating system is a color gradient on application windows and
child windows.

For the TCMSAdmin application a gradient, matching the OS gradient (for
those OSs that use gradients) is used. The intended behavior is for a gradient to
appear on the navigator view, or on one of the editors for each of the pages in the
application based on Focus. For example, if the user clicks the News TreeViewer
the title bar will display the gradient. To accomplish this a FocusListener is
implemented; in its constructor it takes an instance of a CompareViewerPane.

1259c10.fm Page 557 Friday, February 27, 2004 2:07 PM

Chapter 10

558

The method getTopLeft of the CompareViewerPane returns the CLabel that’s
part of the pane’s title. The CLabel (org.eclipse.swt.custom.CLabel) provides a
setBackground method that takes an array of Color objects and an integer array
of percentages. This method specifies a gradient of colors that will be used as the
background of the CLabel, as shown here in the code for the FocusListener:

public static class CLabelFocusListener implements FocusListener {

 private CLabel _clabel;

 public CLabelFocusListener(CompareViewerPane cwp) {

 _clabel = (CLabel) cwp.getTopLeft();

 }

 public void focusGained(FocusEvent e) {

 Display display = Display.getDefault();

 _clabel.setForeground(

 display.getSystemColor(SWT.COLOR_TITLE_FOREGROUND));

 _clabel.setBackground(GRADIENT_COLORS, GRADIENT_PERCENTAGES);

 }

 public void focusLost(FocusEvent e) {

 Display display = Display.getDefault();

 _clabel.setForeground(

 display.getSystemColor(SWT.COLOR_INFO_FOREGROUND));

 _clabel.setBackground(null, null);

 }

 }

The array of colors and integers are set using SWT constants, which strive to
obtain the appropriate colors depending on the platform you’re running on.

public static Color[] GRADIENT_COLORS;

public static int[] GRADIENT_PERCENTAGES;

private static void initializeColors() {

 // Define active view gradient using same OS title gradient colors.

 Display display = Display.getDefault();

 Color low = display.getSystemColor(SWT.COLOR_TITLE_BACKGROUND);

 Color medium = display.getSystemColor(SWT.COLOR_TITLE_BACKGROUND_GRADIENT);

 Color high = display.getSystemColor(SWT.COLOR_WIDGET_BACKGROUND);

 GRADIENT_COLORS = new Color[] {low, medium, high};

 GRADIENT_PERCENTAGES = new int[] {50, 100};

}

1259c10.fm Page 558 Friday, February 27, 2004 2:07 PM

Rich Clients with the SWT and JFace

559

Finally, in the code for the Abstracts page and the News page you can assign,
to any child components such as the TableViewer for the Abstracts page, the
gradient-handler focus listener, which will effectively set the pane’s gradient
when the user interacts with the TableViewer, as shown here:

_abstractsTableForm = new CompareViewerPane(sashForm, SWT.BORDER);

...

CLabelFocusListener gradientHandler = new

CLabelFocusListener(_abstractsTableForm);

...

_tableViewer.getTable().addFocusListener(gradientHandler);

Conclusions

In this chapter you learned how to build a commercial-quality GUI application
using Java and the Eclipse GUI APIs. SWT and JFace provide a viable alternative
to AWT and Swing for certain types of applications. Although SWT and JFace
applications are slightly less portable than Swing applications, most modern
platforms are currently available. For example, Figure 10-22 shows the TCMS
Admin application running under Red Hat Linux.

For experienced Swing developers, SWT and JFace require a fairly flat learning
curve. Although it’s true that feature by feature Swing is a much more complete
toolkit, SWT and JFace provide for most of the needs of modern UI applications.
Swing is improving with every new version of the J2SE and we don’t expect any
one toolkit to reign supreme; they’re all just options. Remember in the end it’s all
about the user. So use whatever will bring you the most return on investment.

1259c10.fm Page 559 Friday, February 27, 2004 2:07 PM

Chapter 10

560

Figure 10-22. The TCMS Admin running under Red Hat Linux

1259c10.fm Page 560 Friday, February 27, 2004 2:07 PM

561

APPENDIX A

Open Source Catalog

TABLE A-1 CONTAINS A LIST of all the Open Source Java projects discussed in Enterprise
Java Development on a Budget: Leveraging Java Open Source Technologies, and all
the projects used by the Technology Conference Management System project.
Visit http://www.ejdoab.com for a comprehensive list of valuable Open Source Java
projects and discussions.

Table A-1. Open Source Projects

Project URL License

Ant http://ant.apache.org Apache

Antenna http://antenna.sourceforge.net LGPL

ArgoUML http://argouml.tigris.org BSD

AspectJ http://eclipse.org/aspectj/ CPL

Axis http://xml.apache.org/axis/ Apache

Cactus http://jakarta.apache.org/cactus/ Apache

Checkstyle http://checkstyle.sourceforge.net LGPL

Cocoon http://cocoon.apache.org Apache

Commons

Collection

http://jakarta.apache.org/commons/ Apache

Commons File

Upload

http://jakarta.apache.org/commons/ Apache

Commons IO http://jakarta.apache.org/commons/ Apache

Commons Lang http://jakarta.apache.org/commons/ Apache

Commons

Logging

http://jakarta.apache.org/commons/ Apache

Commons

Validator

http://jakarta.apache.org/commons/ Apache

DbUnit http://dbunit.sourceforge.net LGPL

1259AppA.fm Page 561 Thursday, February 26, 2004 2:47 PM

Appendix A

562

DTDParser http://www.wutka.com/dtdparser.html LGPL or

Modified Apache

Eclipse http://www.eclipse.org CPL

eXML http://exml.sourceforge.net Eiffel Forum Freeware

Hibernate http://www.hibernate.org LGPL

hsqldb http://hsqldb.sourceforge.net Modified Apache

Jalopy http://jalopy.sourceforge.net BSD

Java2Html http://www.java2html.de GPL or CPL

JavaNCSS http://www.kclee.com/clemens/java/javancss/ GPL

JBoss http://www.jboss.org LGPL

jCVS http://www.jcvs.org LGPL

JSTL http://jakarta.apache.org/taglibs/ Apache

JUnit http://www.junit.org CPL

kXML http://kxml.enhydra.org Enhydra Public

kSOAP http://ksoap.enhydra.org Enhydra Public

Log4j http://jakarta.apache.org/log4j/ Apache

Maven http://maven.apache.org Apache

McKoi SQL

Database

http://mckoi.com/database/ GPL

Middlegen http://boss.bekk.no/boss/middlegen Modified Apache

NetBeans http://www.netbeans.org SPL

OJB http://db.apache.org/ojb Apache

OzoneDB http://www.ozone-db.org LGPL

Prevayler http://www.prevayler.org LGPL

ProGuard http://proguard.sourceforge.net GPL and LGPL

RetroGuard http://www.retrologic.com LGPL

Struts http://jakarta.apache.org/struts/ Apache

Turbine http://jakarta.apache.org/turbine/ Apache

Table A-1. Open Source Projects (Continued)

Project URL License

1259AppA.fm Page 562 Thursday, February 26, 2004 2:47 PM

Open Source Catalog

563

Velocity http://jakarta.apache.org/velocity/ Apache

WebWork http://www.opensymphony.com/webwork/ Modified Apache

XDoclet http://xdoclet.sourceforge.net Modified Apache

Xindice http://xml.apache.org/xindice/ Apache

Table A-1. Open Source Projects (Continued)

Project URL License

1259AppA.fm Page 563 Thursday, February 26, 2004 2:47 PM

1259AppA.fm Page 564 Thursday, February 26, 2004 2:47 PM

565

APPENDIX B

CVS Primer

MULTIPLE DEVELOPER projects required a shared source-code repository. Because
Open Source projects have many contributors, they definitely require a central
repository. Typically these contributors are distributed throughout the world and
only connected via the Internet. The de facto standard for Open Source version
control is the Concurrent Versions System (CVS). CVS, an Open Source project
itself, provides secure multiuser version-control access over networks, including
the Internet. This chapter isn’t intended to be a comprehensive introduction to
CVS and its features, instead the intention is to provide an overview of CVS for the
purpose of gaining access to the current source code of Open Source Java projects.
A lot of times this is needed because the latest version of the source code is only in
CVS, and isn’t released in another form. Some well-managed projects release the
latest source code every night as ZIP files. An explanation of the CVS architecture
and basic commands will be followed by the demonstration of popular Open
Source Java CVS clients.

CVS Architecture

Understanding the CVS architecture can provide insight into the CVSROOT envi-
ronment variable used to connect to CVS servers. The distributed and multiuser
nature of CVS makes client/server the ideal model. Similar to the World Wide Web
where different types of clients (web browsers) access servers (web servers), you
can use different types of CVS clients to access CVS servers (see Figure B-1). Clients
can include the command line cvs, WinCVS, jCVS, or IDEs such as Borland
JBuilder, Eclipse, and NetBeans. Developers are able to use their CVS client of
choice just as web surfers are able to use their web browser of choice.

CVS servers are computers running the CVS server software just like web
servers are computers running web-server software such as the Apache web server or
Microsoft’s IIS. The CVS server is TCP/IP-based and provides access over the
Internet from anywhere in the world. The CVS server hosts a Repository. This
Repository is a directory on the server machine. Contained within the Repository
are multiple modules. Each module is often a separate application or project.

Figure B-1 illustrates the architecture of CVS using the Apache projects as an
example. The Apache CVS server is hosted on a computer with the domain name

1259AppB.fm Page 565 Friday, February 27, 2004 1:54 PM

Appendix B

566

of cvs.apache.org. The CVS Repository is located in the /home/cvspublic directory
and separated into more than 50 modules. Figure B-1 only illustrates the two
popular modules, Ant and Struts. For the complete list of modules visit
http://cvs.apache.org/viewcvs.cgi/.

Figure B-1. CVS architecture

NOTE The authors choose to manage versions of this book using CVS.

Connecting to a CVS Repository requires a properly formatted CVSROOT.
The format is as follows:

:pserver:[[user][:password]@]host[:[port]]/pathToRepository

The :pserver: indicates that the pserver protocol is being used for the con-
nection. The pserver protocol is used for remote connections via the password
authenticating server, and it’s the most commonly used way to remotely access a
CVS Repository. Another connect type is :ext: for remote shells, which can be
useful for running CVS through secure shell (SSH) for secure access to sources
over the open Internet. The CVSROOT can optionally contain user and password
information. If they aren’t provided, the CVS client will prompt you for them. The
host is the domain name or IP address of the server. If the CVS server isn’t listening

1259AppB.fm Page 566 Friday, February 27, 2004 1:54 PM

CVS Primer

567

on the standard 2401 port, an optional port can be included. The CVSROOT is
completed with the directory of the CVS Repository on the server.

In the developer’s local workspace, CVS directories are used to keep track
of version-controlled files and the Repository. The CVS directory contains the
following three files:

• Entries: Contains a list of version-controlled files, their version, date,
and type.

• Repository: Contains the corresponding directory in the Repository.

• Root: Contains CVSROOT.

CVS Concepts

CVS attempts to foster collaboration by providing developers access to all files in
the Repository. Each developer checks out a copy of the Repository to a local
workspace. All changes are made and unit tested in the workspace. When changes
are applied to the Repository, the file version is incremented. A version history is
maintained.

CVS doesn’t require files to be locked in order to change them. It allows mul-
tiple developers to work on the same file in their local workspace. When multiple
developers make changes to the same file, CVS handles the merging of those files.

CVS Commands

Understanding the basic CVS commands for authentication, checking out, com-
mitting, updating, and comparing can make the CVS clients more understandable.

A CVS Repository is a collection of intellectual property that requires restricted
access. In the case of Open Source projects, the Repository is available for anyone
to view. However, security is used to determine who is authorized to make changes
directly to the Repository. The CVS login command is used to authenticate users
through username and password verification.

NOTE CVS authentication doesn’t protect files from being viewed
during file transfers over the Internet. SSH should be used to protect
file transfers in sensitive repositories.

1259AppB.fm Page 567 Friday, February 27, 2004 1:54 PM

Appendix B

568

The checkout command maybe the most confusing of all CVS commands
because it doesn’t have the same meaning as it does in other version-control
software (VCS). In CVS, the checkout command is used to get an initial local copy
of the module from the CVS Repository Some other VCS software requires files to
be locked and refers to this process as “checking out,” which causes the confusion.

After the local copy of the source has been modified and unit tested it must
be submitted back to the Repository. The commit command is used to apply the
local changes or new files to the Repository. The commit command should also
be accompanied by a short explanation of the change. The explanation becomes
associated with the version change for auditing and communication purposes.

The update command is used to synchronize the local copy with the current
version in the Repository. This means that files committed to CVS by other members
of the development team will replace the local files. Files that have been modified
locally will be noted as modified and may require merging. It’s a good idea to
update on a daily basis and prior to running a final unit test and commit. Some
clients have a query update that identifies the differences between the local copy

and the Repository.
CVS provides the diff command to compare files. You can use the diff command

to compare local files with those in the Repository. You can also use it to identify
differences between versions of the same file.

...

Open Source Contributing

Open Source repositories typically provide read-only access to developers. To
become authorized to commit, a developer must be promoted to committer.
The details of the promotion process differ between projects but all projects
generally use the same process. Developers create patches and submit them to
project-specific mailing lists. Patches are created using the diff command, which
compares local changes to the current version in the Repository. Contributors
on the mailing list are responsible for applying the patches and committing
them. After many successful patch contributions, a developer may be nomi-
nated to become a committer. Nominations are put to a vote. There’s no need to
worry about hanging chads. Voting often occurs through the mailing list. A +1

...

indicates a vote of support, a –1 is a vote against, and 0 is used to abstain.

1259AppB.fm Page 568 Friday, February 27, 2004 1:54 PM

CVS Primer

569

CVS Clients

You can use a variety of CVS clients to access CVS repositories. Some clients’ sole
purpose is to interact with CVS repositories such as the command line and jCVS
applications. CVS integration is a popular feature of many IDEs such as Eclipse
and NetBeans.

The command line, jCVS, Eclipse, and NetBeans clients will be demonstrated
by downloading the source code from the Apache Ant project.

NOTE The Apache Ant project contains over 20 MB of source code
and may take a while to check out over a small bandwidth.

Command Line

The command line CVS client isn’t a Java application but remains a popular
means of accessing CVS repositories. The command-line client is also Open
Source and it’s distributed under the GNU General Public License. Source and
binary versions of the command-line client are available from the primary CVS
website (http://www.cvshome.org).

NOTE Most UNIX environments include the command-line version
of the CVS client.

Before you can use the command-line client, you must install it. To install it
for Windows, first unzip cvs-1.11.4.zip. Next copy cvs-1.11.4.exe to a directory on
the system path and rename it to cvs.exe.

The cvs executable operates by passing options and command parameters.
The most common option is the –d option, which specifies the CVSROOT. In
these examples, the public Apache CVSROOT of :pserver:anoncvs@cvs.apache.org:/
home/cvspublic is used.

To download the Apache Ant source code follow these steps:

1259AppB.fm Page 569 Friday, February 27, 2004 1:54 PM

Appendix B

570

1. Open a command prompt such as CMD on Windows NT/2000, or bash
in Linux.

2. Log in using the login command. cvs will prompt you for a password.
Use anoncvs, as follows:

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login

3. Check out the Ant module using the checkout command, as follows:

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic checkout ant

An ant directory will be created that contains subdirectories of source code,
documentation, JARs, shell scripts, and more. To build the project just run the
build.bat or build.sh scripts (depends on your operating system). To synchronize
the local copy with the Repository use the cvs -d :pserver:anoncvs@cvs.apache.org:/

home/cvspublic update from the ant directory.

CAUTION It can be risky to use the source code directly from an Open
Source project’s CVS repository in production. Consider using versions
certified as stable releases otherwise it may contain undocumented
defects.

jCVS

jCVS is an Open Source and a 100-percent Java swing CVS client. You can download
it from http://www.jcvs.org. Aside from the desktop client, jCVS is also available
as a web client using servlets.

The jcvsii.jar is an executable JAR that you can launch by double-clicking it
in Microsoft Windows, or by executing java -jar jcvsii.jar on the command line.
jCVS organizes many of the CVS commands by tabs. For example, to check out a
module, use the Checkout tab shown in Figure B-2. Supplying the username,
password, module, server, repository, and checkout directory, and pressing the
Checkout Module button will create a directory with the name of the module in
the checkout directory. Then a copy of the current version of each of the files in
the repository will be copied to the new directory.

1259AppB.fm Page 570 Friday, February 27, 2004 1:54 PM

CVS Primer

571

Figure B-2. jCVS Checkout tab

NOTE To test a connection use the Test tab.

Once a project has been checked out, you can use the WorkBench tab to
maintain a reference to the project for easy updates. To add the project to the
WorkBench follow these steps (see Figure B-3):

1. Select the Work Bench node.

2. Click the Add New Project button.

1259AppB.fm Page 571 Friday, February 27, 2004 1:54 PM

Appendix B

572

3. When the Select Project To Add dialog box appears, locate the Entries file
in the CVS directory of the checkout directory.

4. Enter a brief name. Usually the short version of the project name such
as ant.

5. Enter a display name such as ant.

6. Optionally, you can provide a description of the project.

7. Click OK.

Figure B-3. ant available in the jCVS Work Bench

Accessing the CVS commands, including the update, involves opening the
project by either double-clicking the project node or clicking the Open Project
button. jCVS provides a project window (see Figure B-4) displaying the files,
version, and modified date. The CVS commands are available by right-clicking
and opening the context menu. Updating the project with changes in the Repository
involves right-clicking the root project node and selecting the Update All Files
menu item.

1259AppB.fm Page 572 Friday, February 27, 2004 1:54 PM

CVS Primer

573

Figure B-4. jCVS project window

NOTE Due to a MindBright incompatibility with the new IO in
JDK 1.4, SSHServer connections don’t work correctly. If an SSHServer
connection is required, run jCVS under JDK 1.3.

Eclipse

Eclipse is a popular Open Source Java IDE that contains CVS integration. You can
download it from http://www.eclipse.org.

Like many of the Eclipse features, CVS integration is implemented as a view.
To display CVS connections or establish a new connection, select Window ➤
Show View ➤ Other. A dialog box opens. Expand the CVS folder, and choose CVS
Repositories. After you’ve done this once, it will appear directly in the Show View
window. To establish a CVS connection right-click in the CVS Repositories view
and select New ➤ Repository Location. The Add CVS Repository dialog box
prompts you for the common connection string elements (see Figure B-5).
Clicking the Finish button adds the connection to the CVS Repository list but
doesn’t perform a checkout. Unlike many of the other CVS clients, Eclipse provides
direct access to all the modules in the CVS Repository.

1259AppB.fm Page 573 Friday, February 27, 2004 1:54 PM

Appendix B

574

Figure B-5. Eclipse Add CVS Repository dialog box

Expanding the new repository node reveals a Branch, HEAD, and Versions
node. You can use the HEAD node to check out and create a new Eclipse project.
Expand the HEAD node and locate the desired module from the list of available
modules. Right-clicking the desired module reveals the Check Out as Project and
the Check Out As options. The Check Out as Project option automatically checks
the module out to the Eclipse workspace. If an alternative location is required,
use the Check Out As option. Either option will copy the files from the CVS Repos-
itory, create a project, and add the project to the navigator.

Once the project is added to the navigator, the CVS commands are available
as a submenu on the Team context menu. You can update the project by right-
clicking the project and choosing Team ➤ Update.

NetBeans

NetBeans is another popular Open Source Java IDE. NetBeans is available from
http://www.netbeans.org.

1259AppB.fm Page 574 Friday, February 27, 2004 1:54 PM

CVS Primer

575

NetBeans integrates with CVS and other version-control software by mounting
the CVS Repository as a virtual file system. To mount a Repository select Versioning
➤ Mount Version Control ➤ CVS from the main menu. NetBeans uses a wizard
to configure the connection. The first step in the wizard is to choose a local
directory to contain the source code. The second step prompts you for connection
string information (see Figure B-6).

Figure B-6. NetBeans New wizard—CVS

NetBeans provides both a command-line and built-in CVS client. The third
step allows you to choose the client interface of choice. The built-in client only
works with pserver, which most Open Source CVS servers provide. The fifth step
prompts you for a password and includes a login button for checking authenti-
cation. If login fails, a message describing the problem will appear under the
Password text field. The last step in the wizard asks if an initial checkout should
occur. Checking the Check Out a Copy of the Repository Files to Your Working
Directory option will copy the contents of the module locally. Checking the box is
highly recommended. The checkout command requires some additional infor-
mation such as the desired module in the CVS Repository, so the Arguments for
Checkout Command dialog box will prompt you for the additional information.
Enter the desired module name in the Checkout text field (see Figure B-7).

1259AppB.fm Page 575 Friday, February 27, 2004 1:54 PM

Appendix B

576

Figure B-6. NetBeans Arguments for Checkout Command dialog box

The CVS commands are available in the CVS submenu by right-clicking and
opening the context menu of the mounted file system or the directories and files
contained within it. So to update the files with the most current version in the
CVS Repository right-click and choose CVS ➤ Update. Some of the CVS commands
may have additional arguments. To change the arguments, hold down the Ctrl
key while selecting the CVS menu item.

Conclusion

Having access to a project's source code is one of the most compelling reasons
for using Open Source. Although most projects provide source bundles in either
ZIP or TAR formats, you can gain insight into the project’s direction and allow for
contribution if you have access to the current source code. If you’re familiar with
a CVS client, then you know that commands and architecture are necessary for
interacting with CVS Repositories.

1259AppB.fm Page 576 Friday, February 27, 2004 1:54 PM

CVS Primer

577

Further Reading

• Open Source Development with CVS by Karl Fogel: See
http://cvsbook.red-bean.com/cvsbook.html.

• Introduction to CVS by Jim Blandy: See http://www.cvshome.org/docs/
blandy.html.

• CVS manual: See http://www.cvshome.org/docs/manual/cvs-1.11.10/
cvs.html.

1259AppB.fm Page 577 Friday, February 27, 2004 1:54 PM

1259AppB.fm Page 578 Friday, February 27, 2004 1:54 PM

579

Index

Symbols
<<>> (guillemets), 35

@ tags, 200–201, 255–256

A
About dialog box (TCMS Admin System),

512–521

building tool page, 512–513

customizing text, 513–514

finishing, 518–521

illustrated, 512

JFace TableLabelProvider, 517

JFace TableViewer and content
providers, 515–516, 517–518

launching, 521

Abstract Modified dialog box, 538

Abstract Window Toolkit (AWT), 482

Abstracts page (TCMS Admin System),
527–544

areas of, 528

Details Editor, 534–538

illustrated, 528

navigator view using TableViewer class,
530–534

saving, 538–539

SelectionChangedListener, 533–534

window layout, 529–530

wiring to TCMS, 556–557

Action class (Struts)

about, 409–410

building conference session model,
429–430

mapping sessions action from struts-
config.xml file, 430

using, 428–429

ActionForm

form validation with, 443

function of in Struts, 410

typecasting to form reference, 436–438

using, 432–436

Actions

AboutAction method, 521

implementing JFace, 504–506

launching ProgressMonitorDialog form
with, 543–544

ActionServlet, 409, 410, 414

Admin System application (TCMS),
509–560

About dialog box, 512–521

building tool page, 512–513

finishing, 518–521

illustrated, 512

JFace TableLabelProvider, 517

JFace TableViewer and content
providers, 515–516, 517–518

launching, 521

Abstracts page, 527–544

areas of, 528

Details Editor, 534–538

illustrated, 528

navigator view of, 530–534

SelectionChangedListener, 533–534

window layout, 529–530

application Use Cases, 509

building framework from Eclipse IDE,
509–511

color gradient for CompareViewerPane,
557–559

creating Preferences dialog box,
521–524

1259_Sam-Bodden Judd index.fm Page 579 Friday, February 27, 2004 4:13 PM

Index

580

displaying dialog box while loading
data, 539–544

implementing splash screen, 525–527

News page, 544–556

adding news item with JFace wizard,
552–556

illustrated, 544

JFace TreeViewer class, 545–551

use case for viewing and editing
news, 544

resource handling with JFace, 524–525

running under Red Hat Linux, 559, 560

SWTUtil.java class and its methods, 527

wiring Abstracts and News pages to,
556–557

administrative requirements for TCMS case
study, 14, 19, 21

AdminServlet, 453, 454–455

analysis object model, 41, 53–55

analysis vs. design, 29, 30

annotating tasks in XDoclet

fields in ConferenceEJB.java, 206–210

Hibernate XDoclet tasks, 389–391

POJO tasks in XDoclet, 389–391

Ant, 83–103

build scripts

automating JBoss database setup, 222

contents of, 92

Hibernate, 391–392

OJB/JBoss, 360–368

Ozone/JBoss, 288, 314–319

builds in, 83, 89–90, 91–92

options with -projecthelp switch,
341–342

command-line options, 88–89

datatypes, 100–102

demonstrating CVS clients in, 569

dependency resolution, 97

description files, 90

downloading Jalopy plug-in for, 109

generating

ConferenceEJB Bean files and
descriptors in XDoclet, 202–206

JavaDocs, 107–108

history of, 84

loading Jalopy tasks into, 113–114

make utility and, 84–85

Middlegen script, 224–248

<cmp20> plug-in subtask,
226–228, 239

<middlegen> task, 226

avoiding hard coding paths, 225

code listing for, 228–239

features of, 224–225

output executed after closing of GUI,
245–248

running, 239–241

obtaining and installing, 87–88

overview of, 86–87

project element in, 90, 91

properties, 98–100

reducing overhead of J2EE
development in, 152

software advantages of, 85–86

targets

Antenna extension for MIDP, 468–469

build sequence of, 92–94

default, 123–124

Struts WAR task and, 412, 416–417

target dependencies, 95–98

testing TCMS, 136–138

using, 94–95

tasks, 98

organized by XDoclet in AOP, 200

using Checkstyle from within, 115

XDoclet requirements for, 199

See also build process; buildfiles

<ant> task, 99

<antcall> task, 99

Antenna for MIDP targets, 468–469

1259_Sam-Bodden Judd index.fm Page 580 Friday, February 27, 2004 4:13 PM

Index

581

AOP (attribute-oriented programming),
198–213

files and descriptors generated for
ConferenceEJB Bean, 201–213

overview, 198–199

XDoclet

Ant tasks organized by, 200

downloading, 199

tags and namespaces, 200–201

See also XDoclet

Apache Axis. See Axis

Apache DB project. See OJB

Apache Struts. See Struts

ApplicationWindow application (JFace)

code listing for, 502

configuring

application menu, 506–507

application’s toolbar, 507

shell, 506

creating

application content, 508

Preferences dialog box, 521–524

modifying features of, 504

archetypes

applying to class diagrams, 67–69

assigning in ArgoUML, 64–70

associating with stereotypes, 66

corresponding colors of Coad, 65

defined, 58

domain-neutral component in, 61–62

illustrated, 59

architecture

CVS, 565–567

Hibernate, 382

JBoss application server, 163–164

requirements for TCMS case study, 20–21

role and requirements of software,
22–23

SWT user interface, 486

UML and model-driven, 35

using EJB with J2EE, 155–159

ArgoUML, 42–77

archetypes and their associations in,
64–70

best practices with, 76–77

Broom Alignment tool, 52

cognitive features of, 49–50

creating

custom stereotypes, 64

packages, 54–55

use case diagram, 72–75

Design Critics, 50–51, 54

drawing diagrams in, 51–52

modeling TCMS, 53–76

adding modeling elements to class
diagram, 62–70

creating analysis object model, 53–55

determining domain model
elements, 55–57

object modeling using archetypes
and color, 58–62

use case modeling, 70–76

obtaining and installing, 44

overview, 43–44

sequence diagrams in, 76

system-design roadmap for TCMS,
40–42

UML diagrams for TCMS analysis and
design, 33–34

user interface, 44–49

creating new project, 49, 53

Details pane, 47–48, 54

Editing pane, 47, 51–52

illustrated, 45

menu bar and toolbar, 48–49

Navigator pane, 45–47

reloading projects, 49

To-Do pane, 48

See also UML

Arguments for Checkout Command dialog
box (NetBeans), 576

asynchronous processing, 160–161

1259_Sam-Bodden Judd index.fm Page 581 Friday, February 27, 2004 4:13 PM

Index

582

@ tags

@ejb.interface tag, 255–256

about, 200–201

attendees’ requirements in TCMS case
study, 14, 17–18

attribute-oriented programming. See AOP

AWT (Abstract Window Toolkit), 482

Axion databases, 274, 275, 283

Axis

about, 453

exposing services, 456–463

converting collections to array,
457–459

converting deploy.wsdd to server-
config.wsdd, 462–463

with deploy.wsdd files, 457

JBoss.NET plug-in with, 465

response from News service’s getNews
method, 460–462

setting up and deploying, 453–456

TCP Monitor, 463

web services

client for, 463–464

model of, 449–450

viewing list of enabled, 459–460

See also AxisServlet

AxisServlet

about, 453

generating News Service WSDL with, 452

web.xml configuration for, 454–455

B
Broom Alignment tool (ArgoUML), 52

build process

automating with Ant, 83

build stages for Ant, 91–92

sample tasks in, 80–82

build.xml file, 136–138

buildfiles

adding target-init and target-clean in, 107

Ant, 89–90

avoiding init task dependencies in, 105

build sequence of targets, 92–94

cleaning up directories and, 122

naming, 91

options and tasks available for
complex, 124

sample, 92

business problem in TCMS case study, 16

business tier development, 171–264

automating database setup, 222

business tier defined, 23, 149

CMP Entity Beans, 180–182

configuring TCMS JBoss server,
173–174

container-managed relationships,
213–221

data model and database setup, 174–179

creating database tables, 177–178

creating JBoss datasource, 179

entity relationship diagram, 175–176

TCMS system database tables,
174–175

exposing TCMS services via facades,
249–264

ConferenceServicesBean.java, 251,
258–261

ScheduleServicesBean.java, 251,
262–264

UserServicesBean.java, 251, 252–258

using facades, 249–250

levels of abstraction in J2EE
development, 171–172

mapping UML object model to J2EE,
172–173

Middlegen database-driven code
generation, 222–248

Ant script for, 224–248

pattern-driven development, 248–249

1259_Sam-Bodden Judd index.fm Page 582 Friday, February 27, 2004 4:13 PM

Index

583

Plain Old Java Objects on, 173

project directory structure, 179–180

TCMS domain entity components,
181–182

writing Entity Beans, 183–198

deployment descriptors, 189–193

home interfaces, 186–187

implementation, 187–189

packaging and deploying
ConferenceEJB, 193–194

remote and local interfaces, 183–185

testing conference Bean, 194–197

XDoclet AOP programming, 198–213

Ant tasks organized by XDoclet, 200

downloading XDoclet, 199

generating automatic ConferenceEJB
Bean files and descriptors,
201–213

overview, 198–199

XDoclet tags and namespaces,
200–201

See also JBOSS; Middlegen

C
cactifywar Ant task, 144

Cactus, 138–144

configuring

log_client.properties, 142–143

log_server.properties, 143

example of cactus.properties file, 144

testing

sample unit test, 139–140

sequence diagram for, 140–141

server-side, 139

TCMS test-deploy and test-war
targets, 141–142

cactus.properties file, 144

candidate moment-interval classes, 60

case study. See Technology Conference
Management System case study

CASE tools

choosing, 42–43

features of ArgoUML, 43–44

round-trip engineering with, 37

Checkstyle, 114–117

checkToSave method of Abstracts page,
538–539

class diagrams

adding modeling elements to, 62–70

adding to ArgoUML domain package, 55

archetypes, color, and DNC applied to,
67–69

TCMS domain model class diagram, 69

UML, 33–34

client tier, 22

Client/Server mode (hsqldb), 275

clients

Axis web services, 463–464

client-side testing with
log_client.properties, 142–143

creating OJB test, 375–380

criticisms of Java client-side
technologies, 481

CVS, 569–576

command-line client, 569–570

Eclipse, 573–574

jCVS, 570–573

NetBeans, 574–576

Java client-side technologies, 481

Middlegen GUI, 242, 243–248

Ozone test, 324–327

rich clients in SWT, 482

See also MIDP; web services and mobile
clients

CMP 2.0 Entity Beans. See Entity Beans

Coad Archetypes, 58–59, 60

codehaus.org, 11

cognitive features of ArgoUML, 49–50

1259_Sam-Bodden Judd index.fm Page 583 Friday, February 27, 2004 4:13 PM

Index

584

color

adding color gradient to user interface,
557–559

applying to class diagrams, 67–69

assigning in UML object modeling,
58–60

corresponding colors of Coad
archetypes, 65

columns in Hibernate, 385–386, 387

command-line client for CVS, 569–570

command-line options in Ant, 88–89

commands in CVS, 567–568

CompareViewerPane

for Abstracts page, 529–531

adding color gradient to, 557–559

illustrated, 531

compile target for TCMS, 106–107

component diagrams, 33–34

Concurrent Versions System. See CVS

Conference class (OBJ), 347–349, 351–353

Conference.hbm.xml file, 384

conference period, 15

ConferenceEJB Bean

generating XDoclet files and
descriptors, 201–213

adding XDoclet annotated fields,
206–210

Ant script for, 202–206

configuring class path, 202, 203

testing implementation, 210–213

managing relationship with TrackEJB,
213–221

adding relationship to TrackEJB
Bean, 217–219

deploying conference-ejb.jar file, 221

testing relationship, 219–221

packaging and deploying, 193–194

testing, 194–197

XDoclet tags used in, 208–209

conference-ejb.jar file, 221

ConferenceOJBFacadeBean, 369–375

ConferenceOzoneFacadeSession Bean,
324–327

ConferenceServicesBean.java, 145–146,
251, 258–261

configuring

ApplicationWindow application,
506–507

ConferenceEJB Bean class path, 202,
203

Hibernate sample project, 383

Jalopy headers, 110–112

JFace application menu, 506–507

master layout with definitions file,
422–424

TCMS JBoss server, 173–174

containers

collocating JBossWeb and EJB web,
164–165

container-managed relationships, 160,
213–221

deploying Axis in web, 453–456

J2EE features, 154

content providers

NewsTreeContentProvider, 549–551

Table ContentProvider, 515–516

Continuous Integration

build automation and, 82–83

testing and, 82–83, 126, 138

contributing to Open Source repositories,
9, 568

ControlExample.java application, 499–501

controller in MVC frameworks, 408–409

custom listeners, 138

custom TestRunner, 134

customization for TCMS case study, 20

CVS (Concurrent Versions System), 9, 83,
565–577

about, 9, 83, 565

access to current Open Source, 565, 576

architecture, 565–567

1259_Sam-Bodden Judd index.fm Page 584 Friday, February 27, 2004 4:13 PM

Index

585

commands for using Repository,
567–568

contributing to Open Source
repositories, 568

CVS clients, 569–576

command-line client, 569–570

Eclipse, 573–574

jCVS, 570–573

NetBeans, 574–576

file access and file protection, 567

See also CVS Repository

CVS Repository

checking files out of, 567, 568

client commands for using, 567–568

connecting to, 566–567

contributing to Open Source
repositories, 568

defined, 567

location of, 566

D
data storage options, 265–332

choosing database solutions, 265–268

evaluating quality of JDBC drivers,
272–273

Firebird, 283, 284

J2EE, 267

Java OODBMS, 284–329

ODMG standard, 285

overview, 284–285

Ozone Database project, 285–286

Java Prevalence, 329–330

MaxDB, 283, 284

MySQL, 283, 284

native XML databases, 330–331

non-Java relational databases, 283–284

object vs. relational databases, 268–271

PostgreSQL, 283, 284

pure Java databases, 273–284

Axion, 274, 283

hsqldb, 274–278

McKoi SQL, 274, 278–283

relational database choices, 271–273

tailoring database to existing object
models, 270

See also databases; OODBMS; Ozone;
RDBMS

data transfer objects. See DTOs

databases

checking state after test, 146–148

choosing database storage solutions,
265–268

entity relationship diagram, 175–176

McKoi JBoss datasource, 279–280

native XML, 330–331

non-Java relational, 283–284

Ozone AdminGUI, 291–294

preparing for testing, 145–146, 148

proprietary features in J2EE, 154–155

reverse engineering schemas into
Java, 356

setting up TCMS, 174–179

creating database tables, 177–178

creating JBoss datasource, 179

schema guidelines for TCMS, 177

system database tables, 174–175

storing session state information in
OODBMS, 285

tailoring to existing object models, 270

See also data storage options;
OODBMS; RDBMS

datatypes in Ant, 100–102

db.conf properties file, 280

DBUnit extension for JUnit, 144–148

database state

checking after test, 146–148

setting before testing, 145–146, 148

overview, 144–145

submitting abstract test to verify insert,
147–148

deallocating resources in SWT, 498–499

debugging JBoss applications, 394

1259_Sam-Bodden Judd index.fm Page 585 Friday, February 27, 2004 4:13 PM

Index

586

declarative control in J2EE, 150

default “all” target, 123–124

deleting

Hibernate objects, 403

persistent objects, 374–375

dependencies

resolution in Ant, 97

target and script, 95–98

deploy.wsdd files

converting to server-config.wsdd,
462–463

deploying, 459–460

exposing services in Axis, 457

deploying

Axis deploy.wsdd files, 457, 459–460,
462–463

Entity Beans deployment descriptors,
189–193

ejb-jar.xml, 190–191

jbosscmp-jdbc.xml, 192–193

jboss.xml, 191

Hibernate on JBoss, 394–396

McKoi JBoss datasource, 281–282

description files, 90

design

analysis vs., 29, 30

system-design roadmap for TCMS,
40–42

UML diagrams used in TCMS, 33–34

See also OOAD

Design Critics, 50–51, 54

Details Editor in SWT, 534–538

Details pane (ArgoUML), 47–48, 54

development and build system

Ant automated build processes, 83–84

build process, 80–82

Continuous Integration, 82–83, 126, 138

overview, 79–80

See also Ant

development in Open Source, 10

directories

cleaning up buildfile, 122

common structure of WEB-INF,
411–412

JBoss

project directory structure, 179–180

structure of, 165–166

making TCMS paths relative to basedir
directory, 104

McKoi directory in JBoss, 280

structure for TCMS, 103

structure of OJB/JBoss project, 345–346

TCMS build directory, 104

disadvantages

make utility, 84–85

OODBMS, 333

Open Source, 6, 8

DNC (domain-neutral component)

in archetypes, 61–62

use case modeling and, 70–71

doclets. See XDoclet

documentation

Open Source projects, 7, 8

requirements for TCMS case study, 20

XDoclet, 389

domain models

defined, 62

determining elements of TCMS, 55–57

developing, 66

TCMS domain model class diagram, 69

domain-neutral component. See DNC

downloading

Ant, 87–88

Checkstyle, 114

Hibernate, 383

Jalopy plug-in for Ant, 109

Java2Html tool, 120

JavaNCSS, 118

JBoss, 165–168

jCVS, 570

1259_Sam-Bodden Judd index.fm Page 586 Friday, February 27, 2004 4:13 PM

Index

587

Middlegen, 223

Ozone, 286–287

SWT, 489

XDoclet, 199

drawing diagrams in ArgoUML, 51–52

DRY (Don’t Repeat Yourself) principle,
198–199

DTOs (data transfer objects)

advantages of, 210–211

creating

Ozone, 296–302

Ozone/JBoss application, 294,
296–302

handling service layers with, 253–254

ScheduleServicesBean use of, 262–264

using, 206

E
Eclipse

building TCMS Admin System
framework from, 509–511

as client for CVS, 573–574

custom TestRunner in, 134

JFace user interface frameworks

defined, 484

features of, 487

functionality of packages in, 487–488

graphical overview of API, 487

launching SWT ControlExample.java
application, 500–501

org.eclipse.compare package, 529

Show View dialog box, 501

Splitters and SashForms, 529–530

SWT user interface framework

architecture, 486

defined, 484

JNI layer, 484, 485

overview, 484–486

platform support for, 486

TestCase wizard, 132–134

See also JFace; SWT

Editing pane (ArgoUML)

drawing diagrams from, 51–52

overview, 47

EJB (Enterprise JavaBeans)

advantages of, 158–159

collocating JBossWeb and EJB web
containers, 164–165

component development in, 151–152

JDO alternative to CMP EJBs, 404

looking up components and
resources with java:comp/env
namespace, 169

persistence of CMP EJBs, 334

programmatic restrictions in J2EE
platform, 150

pros and cons of Entity Beans, 159–160

UML and, 35, 36

using with J2EE architecture, 155–159

EJB QL (Enterprise JavaBeans Query
Language), 209

ejbdoclet, function of, 200

ejb-jar.xml, 190–191

EJTools, 170, 171

embedding Ozone as JBoss service,
287–291

Ant script for, 288

service in MBean view, 291

viewing service in JBoss console, 290

Enterprise JavaBeans. See EJB

Enterprise JavaBeans Query Language, 209

Entity Beans

CMP 2.0 specification, 183, 188,
190–191

<cmp20> plug-in subtask,
226–228, 239

CMP as relational database
approach, 272

CMP commit options for, 155

CMP vs. BMP, 181

1259_Sam-Bodden Judd index.fm Page 587 Friday, February 27, 2004 4:13 PM

Index

588

deployment descriptors, 189–193

ejb-jar.xml, 190–191

jbosscmp-jdbc.xml, 192–193

jboss.xml, 191

overview, 180–181

pros and cons, 159–160

TCMS domain entity components,
181, 182

writing, 183–198

home interfaces, 186–187

implementation, 187–189

packaging and deploying
ConferenceEJB, 193–194

remote and local interfaces, 183–185

testing conference Bean, 194–197

entity relationship diagram (ERD), 175–176

ERD (entity relationship diagram), 175–176

evaluation technologies in Open Source,
9–10

events

event model for SWT, 496–498

SWT while loop as event loop, 491

untyped events and event handling in
SWT, 497–498

eXist, 331

ExoLab, 11

extend relation in use cases, 71

eXtensible Markup Language. See XML

F
facades, 249–264

creating Session

ConferenceServicesBean.java, 251,
258–261

ScheduleServicesBean.java, 251,
262–264

UserServicesBean.java, 251, 252–258

grouping related cases under Session or
Message, 172

methods

ConferenceServicesBean, 258

UserServicesBean, 253

using, 249–250

See also Session Facades

factory for Hibernate Session objects,
397–398

files

build.properties, 100

cactus.properties, 144

checking out and updating CVS
Repository, 567–568

cleaning up buildfile directories and, 122

creating McKoi JBoss datasource, 281

deploy.wsdd, 457, 459–460, 462–463

OJB repository, 350–355

SAR, 287, 364–365

testing TCMS targets from build.xml,
136–138

See also buildfiles; JAR files; struts-
config.xml file

finding objects

by criteria, 372–373

using template, 371–372, 400–401

Firebird, 283, 284

footers, 419, 421

format target, 113–114

forms in Struts, 432–440

ActionForms used, 432–436

automatically validating, 443

JSP code for registration form, 438–440

RegistrationForm declaration in struts-
config.xml, 436

submitRegistration mapping, 440

tags used, 438–440

TCMS registration form example, 432,
433–436

typecasting ActionForm to form
reference, 436–437

1259_Sam-Bodden Judd index.fm Page 588 Friday, February 27, 2004 4:13 PM

Index

589

G
generalization relation in use cases, 72

getAllconference sequence diagram, 399

Giant Java Tree, 11

GPL (GNU General Public) license
agreement, 6

GUI client (Middlegen)

illustrated, 242

output executed after closing, 245–248

relationships illustrated in, 243–245

table-to-Bean mappings, 243–244

guillemets (<<>>), 35

H
headers, 110–112, 419

helper classes in JFace, 502

Hibernate, 381–404

Ant script, 391–392

architecture, 382

configuring sample project in, 383

deploying on JBoss, 394–396

downloading, 383

generating ORMs and JBoss service
definition, 393–394

object identifiers not required in, 384

ORMs, 384–388

about, 384–385

identifier generation strategies,
385–386

many-to-one mapping, 388

mapping elements used in
example, 385

mapping field to columns, 387

mapping identity columns, 385–386

one-to-many mapping using set
element, 387–388

server load and outer joins, 389

overview, 381–382

stateless Session Bean, 397–403

deleting objects, 403

factory for Hibernate Session objects,
397–398

finding object using template,
400–401

retrieving collection of objects,
399–400

saving objects, 401–403

testing, 404

XDoclet module task, 389–391

annotating POJO, 389–391

documentation for, 389

XDoclet jar file, 389

hierarchy of widgets, 494–496

home interfaces, 186–187

hsqldb databases, 274–278

defining JBoss operating modes, 275

invoking and launching HSQLDB
Manager, 275–278

JBoss port for embedded, 178

Middlegen version of, 224

operating modes, 274–275

overview, 274

HSQLDB Manager, 275–278

Hypersonic project, 274, 283

I
identity columns, 386

ImageRegistry class (JFace), 524–525

include relation in use cases, 72

index.do

mapping in Struts, 427–428

redirecting directory request to, 428

indirection in J2EE, 150

init task dependencies, 105

in-memory mode (hsqldb), 274–275

in-process mode (hsqldb), 274

1259_Sam-Bodden Judd index.fm Page 589 Friday, February 27, 2004 4:13 PM

Index

590

installing

Ant, 87–88

ArgoUML, 44

command-line client for CVS, 569–570

See also downloading

integration tier, 23

interfaces

cautions generating Middlegen, 245

Entity Bean

home, 186–187

local, 185

remote, 183–184

See also user interface

Internet resources for Open Source, 11

IProgressMonitor interface, 540–541

iteration execution, 41

iteration planning, 41

J
J2EE

about, 1, 25

application tiers for, 22–23

architecture of, 249

business tier development in, 150–152

component development in, 151–152

data storage options for, 267

dealing with levels of abstraction in,
171–172

Entity Beans deployment descriptors,
189–193

ejb-jar.xml, 190–191

jbosscmp-jdbc.xml, 192–193

jboss.xml, 191

mapping UML object model to,
172–173

MDBs and messaging in, 161

proprietary container and database
features, 154–155

sample tasks for build process in, 80–82

services in JBoss, 162

singletons in, 261

using EJBs with, 155–159

Write Once Run Anywhere concept of,
153–154

J2ME applications, 465–480

about J2ME, 465–466

application size, 467

developing with J2ME Wireless Toolkit,
466

JAD files, 466–467

listing news titles, 470

midlet classes for MIDP applications,
471–473

running in emulator, 480

source code for NewsDisplayable
screen, 473–475

SyncAgent class, 477–480

unit testing J2ME, 466

viewing details

of news items, 470–471

on NewsDisplayable screen, 475–476

JAD (Java Application Descriptor) files,
466–467

Jakarta Cactus. See Cactus

Jakarta Commons Validator project, 441

Jakarta project, 11

Jalopy, 109–114

about, 109

configuring headers, 110–112

downloading plug-in for Ant, 109

illustrated, 110, 111, 112

loading tasks into Ant, 113–114

JAR files

integrating SWT JAR and DLL with Java
Runtime Environment, 490

JAR compression format, 193–195

needed for OJB/JBoss Ant build script,
343–344

in Ozone JBoss service, 287

XDoclet, 389

Java2HTML tool, 121–123

java:comp/env namespace, 169

1259_Sam-Bodden Judd index.fm Page 590 Friday, February 27, 2004 4:13 PM

Index

591

Java

AWT influence on, 482

CASE tools and round-trip engineering
in, 37

criticisms of client-side technologies, 481

features of pure Java databases,
273–284

Axion, 274, 283

hsqldb, 274–278

McKoi SQL, 274, 278–283

future of UML with, 35–37

integrating with .NET via web
services, 450

Open Source projects in, 25, 561–563

Swing toolkit and, 482–483

UML benefits for, 32–33

Java Naming and Directory Interface tree.
See JNDI tree

Java Prevalence, 329–330

Java Server Pages. See JSP

Java Standard Tag Library. See JSTL

JavaDocs, 107–108

JavaNCSS, 118–120

JBoss

architecture of application server, 163–164

business tier development, 171–264

abstraction levels in J2EE
development, 171–172

automating database setup, 222

CMP Entity Beans, 180–182

configuring TCMS JBoss server,
173–174

container-managed relationships,
213–221

data model and database setup,
174–179

facades exposing TCMS services,
249–264

mapping UML object model to J2EE,
172–173

Middlegen database-driven code
generation, 222–248

pattern-driven development, 248–249

POJO on, 173

project directory structure, 179–180

TCMS domain entity components,
181–182

writing Entity Beans, 183–198

XDoclet AOP programming, 198–213

collocating JBossWeb and EJB web
containers, 164–165

creating McKoi JBoss datasource,
279–283

creating database, 279–280

creating datasource file, 281

deploying datasource, 281–282

directory, 280

making McKoi JAR file available to
JBoss, 279

using query tool, 282–283

downloading and installing, 165–168

Hibernate

deploying on JBoss, 394–396

generating ORMs and JBoss service
definition, 393–394

hsqldb databases

defining operating modes with
connection-url element, 275

JBoss port for embedded, 178

J2EE services in, 162

jbossall-client.jar in classpath for test
clients, 327

JMX management tools, 167, 168–171

listing installed web-application
contexts for web.xml file, 413

OJB/JBoss project

Ant build script for, 360–368

directory structure, 345–346

one-to-many example in, 345–357

project sequence diagram, 346

table schema for Conference and
Tracks domain objects, 345

working within JBoss, 343–344

1259_Sam-Bodden Judd index.fm Page 591 Friday, February 27, 2004 4:13 PM

Index

592

Ozone/JBoss application

Ant script building, 314–319

embedding Ozone as JBoss service,
287–291

writing application to use Ozone
database, 294–295

setting up directory structures, 165–166

source or binary forms of, 164

support for non-Java relational
databases, 283–284

JBoss JMX Admin console

about, 167, 168

cautions launching HSQLDB
Manager, 279

launching HSQLDB Manager from,
276–278

JBoss.NET plug-in with Axis, 465

jbossall-client.jar, 327

jbosscmp-jdbc.xml, 192–193

JBossJavaDoc API, 168

jbossservice nested tag, 394

jboss_service.xml, 367

JBossWeb web container, 164–165

jboss.xml, 191

jCVS, 570–573

adding project to WorkBench, 571–572

checking out module with, 570–571

downloading, 570

project window, 573

JDBC

connection properties for TCMS
system, 177

evaluating quality of drivers, 272–273

handling object models through,
336–337

JDBC drivers for pure Java databases, 273

as relational database approach, 272

JDO (Java Data Object) tools, 404

OJB support for, 340, 405

JFace

ApplicationWindow application code
listing, 502

configuring

application menu, 506–507

application’s toolbar, 507

shell, 506

content provider in About dialog box,
515–516

creating

application content, 508

Preferences dialog box, 521–524

tool page for About dialog box, 512–513

defined, 484

enabling UI elements, 507

features of, 487

finding application ideas in Eclipse
Work Bench code, 511

functionality of packages in, 487–488

graphical overview of API, 487

helper classes in, 502

implementing actions, 504–506

modifying features of
ApplicationWindow, 504

SWTUtil.java class and its methods, 527

TableLabelProvider, 517

TableViewer, 515, 517–518

TreeViewer class for News page,
545–551

utility classes simplifying resource
management, 524–525

wizard for adding news item, 552–556

JMX browser, 170

JNDI (Java Naming and Directory
Interface) tree

downloading browser, 170, 171

viewing contents of, 168, 170–171

jnet.jar file, 197

JNI layer for SWT, 484, 485

1259_Sam-Bodden Judd index.fm Page 592 Friday, February 27, 2004 4:13 PM

Index

593

JSP (Java Server Pages)

defining taglib directives using JSTL, 431

placing Struts application pages in
WEB-INF directory path, 421

Struts registration form code listing,
438–440

See also sessions.jsp

JSR 26, 36

JSTL (Java Standard Tag Library), 411–417

rendering session information with, 431

Tag-Library declaration found in
web.xml, 415

using tag libraries found in Struts
and, 414

JUnit, 127–131

extensions, 138

Cactus, 138–144

DBUnit, 144–148

IDE integration with Eclipse and
NetBeans, 132–134

illustrated, 131

Swing TestRunner, 130–131

testing

defining in PageTest.java listing, 127,
128–129

executing TCMS’s TestSuite, 129–130

principles for, 127–131

TCMS targets from build.xml,
136–138

See also Cactus; DBUnit extension
for JUnit

K
kSOAP, 470–480

J2ME applications with, 466

SyncAgent class use of kXML and,
479–480

using Java source code in, 471

See also SOAP

kXML

J2ME applications with, 466

SyncAgent class use of kSOAP and,
479–480

using Java source code in, 471

L
launching SWT Controls application,

500–501

layouts in SWT, 496

legacy systems and TCMS integration, 21

LGPL (GNU Lesser General Public) license
agreement, 6

licenses for Open Source, 3–6

listeners

custom, 138

SelectionChangedListener, 533–534

untyped SWT event, 554

ListSessionsAction, 430, 431

log_client.properties, 142–143

log_server.properties, 143

M
maintenance requirements for TCMS, 20

make utility, 84–85

managed Beans. See MBeans

mapping

Hibernate

elements used in example, 385

field to columns, 387

identity columns, 385–386

many-to-one, 388

Struts, 425–428

redirecting directory request to
index.do, 428

sessions action mapping from struts-
config.xml file, 430

single index.do request, 427–428

submitRegistration, 440

1259_Sam-Bodden Judd index.fm Page 593 Friday, February 27, 2004 4:13 PM

Index

594

via TCSM’s struts-config.xml file,
425–427

See also one-to-many mapping;
ORM tools

master layout

creating in Struts Tile framework,
417–419

defining with sessions.jsp, 422, 431

definitions file configuring elements of,
422–424

planning, 419–421

sample listing of TCMS, 420–421

See also Tiles framework

masterLayout.jsp, 422–423

MaxDB, 283, 284

MBeans (managed Beans)

defined, 162–163

deploying OJB, 364

writing custom, 169

McKoi SQL databases, 278–283

creating JBoss datasource, 279–283

creating database, 279–280

creating datasource file, 281

deploying datasource, 281–282

directory, 280

making McKoi JAR file available to
JBoss, 279

using query tool, 282–283

features of, 274, 275

licensing embedded databases in
product, 279

overview, 278

MDA (model-driven architecture), 35

MDB (message-driven Beans), 161

menu bar and toolbar for ArgoUML, 48–49

message-driven Beans (MDB), 161

messaging requirements for TCMS, 21

methodologies

borrowing practices from different, 40

lessons learned about, 39–40

varieties using UML, 37–39

<middlegen> task, 226

Middlegen, 222–248

Ant script for, 224–248

<cmp20> plug-in subtask,
226–228, 239

<middlegen> task, 226

avoiding hard coding paths, 225

code listing for, 228–239

features of, 224–225

output executed after closing of GUI,
245–248

running, 239–241

cautions generating interfaces, 245

downloading and installing, 223

GUI client

illustrated, 242

relationships illustrated in, 243–245

table-to-Bean mappings, 243–244

overview of, 222–223

plug-ins, 223

reducing overhead of J2EE
development in, 152

reliance on XDoclet, 222

using, 224

midlets

about, 466–467

midlet classes for MIDP applications,
471–473

MIDP (mobile information device profile)

Antenna extension for MIDP targets,
468–469

developing applications in J2ME, 466

function of, 465

J2ME midlet classes for applications,
471–473

running applications in emulator, 480

support for HTTP and HTTPS, 480

mobile clients. See MIDP

mobile information device profile.
See MIDP

model-driven architecture (MDA), 35

1259_Sam-Bodden Judd index.fm Page 594 Friday, February 27, 2004 4:13 PM

Index

595

modeling, 53–76

adding modeling elements to class
diagram, 62–70

agile methods with, 77

ArgoUML archetypes and color for,
58–62

candidate moment-interval classes, 60

creating analysis object model, 53–55

determining domain model elements,
55–57

guiding principles, 39–40

preliminary list of TCMS use cases, 73–74

See also class diagrams; models

models

model views in Navigator pane, 46–47

in MVC frameworks, 408–409

NewsModel custom data, 547–549

power of, 30–31

sharing, 43

simplicity of, 31

moment-interval classes, 60

MVC (Model-View-Controller) frameworks

components and functions of, 408

illustrated, 409

implementation components in Struts,
409–411

NewsModel example in, 547–549

overview, 407–409

popular Open Source, 408

Struts as, 408, 409

TCMS Master Layout, 420–421

See also Struts; Tiles framework; web
applications

MySQL, 283, 284

N
namespaces in XDoclet, 200–201

naming

buildfiles, 91

properties files, 100

targets, 94

native XML databases, 330–331

Navigator pane (ArgoUML), 45–47

illustrated, 45

model views in, 46–47

NetBeans

Arguments for Checkout Command
dialog box, 576

client for CVS, 574–576

JUnit integration with, 132–134

New Wizard-CVS dialog box, 575

New News Article wizard, 554–556

New Wizard-CVS dialog box (NetBeans), 575

News page (TCMS Admin System), 544–556

adding news item with JFace wizard,
552–556

illustrated, 544

JFace TreeViewer class, 545–551

use case for viewing and editing
news, 544

wiring to TCMS, 556–557

NewsForge.com, 11

NewsModel class, 547–549

NewsTreeContentProvider, 549–551

O
obfuscators, 467

objdoclet, 357–358

Object Database Management Group
(ODMG), 285, 340

object identifiers not required in
Hibernate, 384

Object Management Group (OMG), 31,
36, 42

object serialization, 329–330

object-oriented analysis and design. See
OOAD

object-oriented database management
systems. See OODBMS

object-relational mapping. See ORM tools

1259_Sam-Bodden Judd index.fm Page 595 Friday, February 27, 2004 4:13 PM

Index

596

objects

bridging divide between relational
databases and, 335

handling object models through JDBC,
336–337

Hibernate

finding using template, 400–401

retrieving collection, 399–400

saving, 401–403

object serialization, 329–330

object-relational mismatch for, 333,
334–335

OJB

deleting persistent, 374–375

finding by criteria, 372–373

finding using template, 371–372

retrieving collection of, 371

saving, 373–374

working with PersistenceBroker API,
369–370

Ozone handling of, 286

ObjectWeb.org, 11

obtaining ArgoUML, 44

ODMG (Object Database Management
Group), 285, 340

OJB (Object Relational Bridge), 339–381

Ant build script for OJB/JBoss, 360–368

deploying SAR file to JBoss, 368

jboss_service.xml, 367

OJB internal tables, 362–363

OJB.properties file, 365–366

OJB SAR file, 364–365

packaging SAR file, 367–368

repository_database.xml, 366

creating

OJB distribution, 341–344

test client, 375–380

deleting persistent objects, 374–375

finding objects

by criteria, 372–373

using template, 371–372

loading doclets, 357–360

one-to-many example with JBoss and,
345–357

creating POJOs, 347–349

directory structure for OJB/JBoss
project, 345–346

generating OJB mappings with
XDoclet, 356–357

OJB repository file, 350–355

OJB/JBoss project sequence
diagram, 346

table schema for Conference and
Tracks domain objects, 345

overview, 341, 381

retrieving collection of objects, 371

saving objects, 373–374

stateless Session Bean to work with
PersistenceBroker API, 369–370

support for JDO, 340, 405

test client results, 379–380

viewing Ant build options, 341–342

working within JBoss, 343–344

XDoclet module documentation for, 360

OJB.properties file, 365–366

OJB repository file, 350–355

OMG (Object Management Group), 31,
36, 42

one-to-many mapping

in Hibernate, 387–388

OJB/JBoss example, 345–357

creating POJOs, 347–349

directory structure for OJB/JBoss
project, 345–346

generating OJB mappings with
XDoclet, 356–357

OJB repository file, 350–355

OJB/JBoss project sequence
diagram, 346

table schema for Conference and
Tracks domain objects, 345

1259_Sam-Bodden Judd index.fm Page 596 Friday, February 27, 2004 4:13 PM

Index

597

OOAD (object-oriented analysis and
design), 28–31

goal of, 31

models and modeling in, 30–31

overview, 28

problem definition with, 28–29

solving problems with, 29–30

UML’s role in, 31

OODBMS (object-oriented database
management systems), 284–329

disadvantages of, 333

ODMG standard, 285

overview, 284–285

Ozone

data transfer objects, 296–302

downloading, 286–287

embedding as JBoss service, 287–291

exploring database with Ozone
AdminGUI, 291–294

generating proxies with Ozone post
processor, 319–324

overview, 285–286

persistence logic, 306–310

POJOs, 302–306

putting application together with Ant
build script, 314–319

remote interfaces, 295–296

Session Facade, 310–314

test client to look up
ConferenceOzoneFacadeSessio
n Bean, 324–327

writing application to use Ozone
database, 294–295

RDBMS terminology and, 268

relational databases vs., 269–271

storing session state information, 285

tailoring database to existing object
models, 270

open issues in TCMS case study, 24

Open Source

access to source code through CVS,
565, 576

advantages of, 6–8

contributing to Open Source
repositories, 9, 568

criteria for software in, 2–3

disadvantages of, 6, 8

impact on programming community,
1–2

Internet resources for, 11

JBoss application server, 162–164

licenses for, 3–6

list of all projects discussed, 561–563

native XML databases, 331

obfuscators in, 467

ORM, 336–337

popular MVC frameworks, 408

reasons for project failures in, 12–13

selecting data storage options from, 265

strategic uses of, 9–10

testing projects in, 126

tools

about, 79

JDO, 404

non-Java databases, 283

streamlining J2EE development, 152

See also CVS; and specific tools by name

Open Source Definition, 2–3

opening new projects in ArgoUML, 49, 53

operating modes for hsqldb, 274–275

OPP (Ozone Post Processor), 286, 319–324

org.eclipse.compare package, 529

ORMs (object-relational mappings)

Hibernate, 384–388

about, 384–385

identifier generation strategies,
385–386

many-to-one mapping, 388

mapping elements used in
example, 385

1259_Sam-Bodden Judd index.fm Page 597 Friday, February 27, 2004 4:13 PM

Index

598

mapping field to columns, 387

mapping identity columns, 385–386

one-to-many mapping using set
element, 387–388

server load and outer joins, 389

OJB repository file, 350–355

ORM tools, 333–405

about, 335

choosing, 338–339

Hibernate, 381–404

Ant script, 391–392

architecture, 382

configuring sample project in, 383

deploying on JBoss, 394–396

downloading, 383

generating ORMs and JBoss service
definition, 393–394

object identifiers not required in, 384

ORMs in, 384–388

overview, 381–382

stateless Session Bean, 397–403

testing, 404

XDoclet module task, 389–391

implementing persistence layer, 267

JDBC for enterprise applications,
336–337

object-relational impedance mismatch,
334–335

OJB, 339–381

Ant build script for OJB/JBoss build,
360–368

creating OJB distribution, 341–344

creating test client, 375–380

deleting persistent objects, 374–375

features and architecture of, 339–341

finding object by criteria, 372–373

finding object using template,
371–372

loading doclets, 357–360

one-to-many example with JBoss
and, 345–357

overview, 341, 381

retrieving collection of objects, 371

saving objects, 373–374

Session Bean with PersistenceBroker
API, 369–370

support for JDO, 340, 405

test client results, 379–380

viewing Ant build options, 341–342

working within JBoss, 343–344

XDoclet module documentation
for, 360

Open Source, 336–337

overview, 333–334, 404–405

readiness of Java Data Object tools, 404

as relational database strategy, 272

selecting, 405

orthogonal persistence, 284

Ozone

AdminGUI, 291–294

Ant build script for Ozone/JBoss
application, 314–319

downloading, 286–287

embedding as JBoss service, 287–291

Ant script for, 288

service in MBean view, 291

viewing service in JBoss console, 290

exploring database, 291–294

generating proxies, 319–324

overview, 285–286, 329

test client to look up
ConferenceOzoneFacadeSession
Bean, 324–327

writing Ozone/JBoss application,
294–314

data transfer objects, 296–302

overview, 294–295

persistence logic, 306–310

POJOs, 302–306

project directory, 294

remote interfaces, 295–296

Session Facade, 310–314

1259_Sam-Bodden Judd index.fm Page 598 Friday, February 27, 2004 4:13 PM

Index

599

P
PageTest.java test, 127, 128–129

parsing stage of Ant build, 91

paths

avoiding hard coding in Middlegen
script, 225

configuring ConferenceEJB Bean class,
202, 203

pattern-driven development, 248–249

PDAs (personal data assistants), 465–466

See also MIDP

persistence logic

about, 154–155

function of OJB PersistenceBroker, 339,
369–370

Ozone, 306–310

persistence layer for J2EE
applications, 267

supporting with mapping tools,
338–339

PersistenceBroker API, 339, 362, 363,
369–370

PersistenceBroker Exception method, 371

platform independence, 85

plug-ins

Entity Beans <cmp20> plug-in subtask,
226–228, 239

Jalopy, 109

JBoss.NET for Axis, 465

Middlegen, 223

See also struts-config.xml file

POJOs (Plain Old Java Objects)

annotating

Hibernate XDoclet tasks, 389–391

OJB objects with XDoclet tags,
358–359

creating

OJB, 347–349

Ozone/JBoss, 302–306

defined, 173

portability, 153–154

postconference period, 15

PostgreSQL, 283, 284

preconference period, 14–15

Preferences dialog box (TCMS Admin
System), 521–524

presentation tier

defined, 23

maintaining with MVC frameworks,
407–408

See also MVC frameworks

presenters’ requirements in TCMS, 14, 18

Prevayler project, 329–330

problem definition with OOAD, 28–29

problem solving with OOAD, 29–30

production of Open Source projects, 10

Progress Information dialog box (TCSM
Admin System), 539–544

project element nested description,
103–104

project failures in Open Source, 12–13

project window (jCVS), 573

proxy generation with Ozone Post
Processor, 319–324

Q
query tool in McKoi SQL, 282–283

R
Rational Unified Process (RUP), 39

RDBMS (relational database management
systems)

about relational databases, 268–269

bridging divide between objects
and, 335

comparison of OODBMS terminology
and, 268

evaluating quality of JDBC drivers with,
272–273

factors in choosing relational
databases, 271–273

hsqldb, 274–278

1259_Sam-Bodden Judd index.fm Page 599 Friday, February 27, 2004 4:13 PM

Index

600

McKoi SQL, 278–283

non-Java relational databases, 283

object databases vs., 269–271

problems storing object states in, 333

testing queries for performance when
choosing, 272

See also hsqldb databases; McKoi SQL
databases

Reference Model for Open Distributed
Processing (RM-DOP), 22

RegistrationForm

declaring in struts-config.xml, 436

extending ValidatorForm class for,
443–446

features of, 436

sample listing for, 433–436

typecasting SubmitRegistrationAction
to, 436–438

validating, 441–443

reloading last saved project in ArgoUML, 49

remote interfaces

creating Ozone/JBoss, 295–296

methods in CMP 2.0 Entity Beans,
183–184

Ozone/JBoss application, 294

Remote Method Invocation (RMI)
subsystem, 160

repository_database.xml, 366

requirement analysis of system-design
roadmap, 41

resource management

JFace utility classes simplifying,
524–525

SWT, 498–499

reusable code for Ant build scripts, 87, 124

RM-DOP (Reference Model for Open
Distributed Processing), 22

round-trip engineering, 37

running

J2ME applications in emulator, 480

methods as global transactions, 253

Middlegen script, 239–241

running stage of Ant build, 92

RUP (Rational Unified Process), 39

S
sample listings

action servlet mapping web.xml, 414

Ant target for packaging web
application, 416–417

Antenna extension for MIDP targets,
468–469

Axis web.xml configuration, 454–455

Cactus client-side Log4j configuration
file, 142–143

Cactus server-side Log4j configuration
file, 143

Cactus unit test, 139–140

CompareViewerPane, 530

ConferenceServicesBean explicit calls
to DBUnit classes, 145–146

converting NewsItemDTOs from page
to array, 458–459

defining test in PageTest.java listing,
127, 128–129

deploying deploy.wsdd file, 459–460

displaying validation errors, 446

example of cactus.properties file, 144

failure using text TestRunner, 130–131

generating server-config.wsdd, 463

index.do mapping in Struts, 427–428

JFace ApplicationWindow
application, 502

News Service WSDL, 450–452

News service’s getNews method,
460–462

1259_Sam-Bodden Judd index.fm Page 600 Friday, February 27, 2004 4:13 PM

Index

601

redirecting directory request to
index.do, 428

RegistrationForm declaration, 436

RegistrationForm validation, 441–443

sessions action mapping, 430

sessions.jsp view, 431

simple SWT application, 489–490

source code for TCMS Admin System
dialog box, 519–520

Struts action building model, 429–430

struts-config.xml validator plug-in
configuration, 447

submitRegistration mapping, 440

SubmitRegistrationAction, 436–438

submitting abstract test, 147–148

SyncAgent class, 477–480

Tag-Library declaration found in
web.xml, 415

TCMS footer, 421

TCMS JAD file, 466–467

TCMS Master Layout, 420–421

TCMS RegistrationForm, 433–436

TCMS test-deploy and test-war targets,
141–142

TCMS Tiles definition file, 422–423

TCMSMidlet class, 472–473

TCMS’s TestSuite, 129–130

TCSM’s struts-config.xml file, 425–427

testing TCMS Ant targets, 136–138

Tiles plug-in definition in struts-
config.xml, 424

validating RegistrationForm, 443–446

web.xml file, 412

SAR files, 287, 364–365

SashForm, 529–530

saving

Hibernate objects, 401–403

OJB objects, 373–374

scalability, 161

scripts

content of Ant, 92

dependencies in, 95–98

difficulty reusing Ant build, 87, 124

See also Ant

SCRUM, 40

security requirements for TCMS, 20

SelectionChangedListener for Abstracts
page, 533–534

sequence diagrams

refining use cases with, 76

for testing in Cactus, 140–141

UML, 33–34

servers

configuring TCMS JBoss, 173–174

CVS, 565–566

server load and outer joins in
Hibernate, 389

server-side testing, Cactus, 139, 143

WebLogic application, 166

_serviceFactory object, 542–543

Session Beans

Hibernate stateless, 397–403

deleting objects, 403

factory for Hibernate Session objects,
397–398

finding object using template,
400–401

retrieving collection of objects,
399–400

saving objects, 401–403

OJB stateless

deleting persistent objects, 374–375

finding object by criteria, 372–373

finding object using template,
371–372

retrieving collection of objects, 371

saving objects, 373–374

working with PersistenceBroker API,
369–370

1259_Sam-Bodden Judd index.fm Page 601 Friday, February 27, 2004 4:13 PM

Index

602

writing Ozone/JBoss application,
294–314

data transfer objects, 296–302

overview, 294–295

persistence logic, 306–310

POJOs, 302–306

project directory, 294

remote interfaces, 295–296

Session Facades

creating

ConferenceServicesBean.java, 251,
258–261

ScheduleServicesBean.java, 251,
262–264

UserServicesBean.java, 251, 252–258

Ozone, 310–314

Ozone/JBoss application, 295

using, 249–250

sessions.jsp

defining master layout with, 422, 431

defining master layout with
sessions.jsp, 422, 431

using JSTL to render session
information, 431

set element, 387–388

Show View dialog box (Eclipse), 501

Simple Object Access Protocol. See SOAP

singletons, 261

SOAP (Simple Object Access Protocol)

about, 449

Axis framework for, 453

converting collections to array in Axis,
457–459

debugging with TCP Monitor, 463

exposing services in Axis, 456–463

See also kSOAP

software

advantages of Ant, 85–86

advantages of Open Source, 6–8

criteria for Open Source, 2–3

Open Source impact on, 1–2

reasons for Open Source project
failures, 12–13

strategic uses of Open Source, 9–10

See also Open Source

software modeling, 30–31

source code

access to current Open Source, 565, 576

checking out module with jCVS,
570–571

checking with Checkstyle, 114–117

formatting TCMS source code with
Jalopy, 109–114

generating browseable, 121–123

risks of using in-production, 570

SourceForge.net, 11

splash screen for TCMS Admin System,
525–527

Splitter, 529–530

sponsors’ requirements in TCMS case
study, 14, 18–19

SQL (Structured Query Language)

hsqldb databases, 274–278

McKoi SQL databases, 274, 278–283

query tool in McKoi, 282–283

relational databases and, 268, 271

server load and outer joins in
Hibernate, 389

SQL scripts automating database
setup, 222

SSHServer connections to jCVS, 573

stakeholders in TCMS case study, 14, 16

Standard Widget Toolkit. See SWT

standards, UML, 31–32

stereotypes

associating with archetypes, 66

creating custom, 64

in UML, 34–35

Structured Query Language. See SQL

1259_Sam-Bodden Judd index.fm Page 602 Friday, February 27, 2004 4:13 PM

Index

603

Struts, 409–447

actions, 428–432

about Action class, 409–410, 428–429

building conference session model,
429–430

sessions action mapping, 430

sessions.jsp view using JSTL, 431

ActionServlet, 409, 410, 414

components of MVC implementation,
409–411

forms, 432–440

JSP code for registration form,
438–440

RegistrationForm declaration, 436

submitRegistration mapping, 440

TCMS registration form example,
432, 433–436

typecasting ActionForm to form
reference, 436–437

using ActionForm, 432–436

using tags, 438–440

mapping, 425–428

redirecting directory request to
index.do, 428

single index.do request, 427–428

via TCSM’s struts-config.xml file,
425–427

as MVC framework, 408, 409

placing JSP pages in WEB-INF directory
path, 421

setting up Web application with JSTL
and, 411–417

Tag-Library declaration, 415

using tag libraries found in JSTL
and, 414

web-application directory
structure, 412

Tiles framework, 417, 419–424

creating common elements and page
layouts with, 417–419

defining layout elements, 422–424

defining master layout, 422, 431

defining plug-in, 424

function of, 410, 411

planning a master layout, 419–421

sample layout diagram, 419

validation, 441–447

automatically validating form, 443

built-in validation rules, 441

displaying validation errors, 446

overview, 410–411

registrationForm validation, 441–443

setting up validator plug-in, 446–447

See also ActionForm;
struts-config.xml file

struts-config.xml file

declaring form element names in, 441

mapping virtual URLs to Struts
components, 425–427

plug-in definition found in, 424

sessions action mapping from, 430

Tiles plug-in definition in, 424

validator plug-in configuration, 447

StyleText widget, 513–514

SubmitRegistrationAction, 436–438

subtargets, 94

surrogate primary keys, 353

Swing

about, 482–483

comparison with SWT and JFace, 559

developing applications with custom
user interface, 485

SWT layout equivalents for, 496

SWT widget equivalents in, 492–493

Swing TestRunner, 131

SWT (Standard Widget Toolkit)

architecture, 486

customizing text with StyleText widget,
513–514

defined, 484

Details Editor, 534–538

downloading, 489

event model, 496–498

finding application ideas in Eclipse, 511

1259_Sam-Bodden Judd index.fm Page 603 Friday, February 27, 2004 4:13 PM

Index

604

hierarchy of widgets, 494–496

implementing TCMS splash screen,
525–527

integrating JAR and DLL with JRE, 490

JNI layer, 484, 485

layouts, 496

managing resources, 498–499

overview of, 484–486

platform support for, 486

rich clients in, 482

simple application example in, 489–490

SWT Controls application, 499–501

SWTUtil.java class and its methods, 527

UI thread visible to developer, 491,
526–527

untyped event listeners, 554

untyped events and event handling,
497–498

while loop as event loop in, 491

widgets, 492–493

SWTUtil.java class, 527

SyncAgent class for web services, 477–480

synchronous processing, 160

system-design roadmap for TCMS, 40–42

T
Table ContentProvider, 515–516

TableLabelProvider, 517

tables, choosing primary keys for new, 353

TableViewer

in About dialog box, 515, 517–518

navigator view of Abstracts page,
530–534

tags

@, 200–201

@ejb.interface tag, 255–256

Struts html, 438–440

XDoclet, 200–201, 208–209

targets

adding compile target to TCMS,
106–107

Ant sequence of build, 92–94

Cactus test-deploy and test-war,
141–142

creating

clean, 122

default “all,” 123–124

defining format, 113–114

naming, 94

setting up for TCMS, 104

using, 94–95

tasks

Ant, 98

available for complex buildfiles, 124

avoiding init dependencies in
buildfiles, 105

dealing with properties, 99–100

loading Jalopy tasks into Ant, 113–114

sample tasks in build process, 80–82

TCMS. See Technology Conference
Management System case study

tcms.properties file, 225

tcms-create.sql script, 222

tcms-drop.sql script, 222

tcms-populate.sql script, 222

TCP Monitor (Axis), 463

Technology Conference Management
System (TCMS) case study

administrators’ requirements, 14, 19

Antenna extension for MIDP targets,
468–469

architectural requirements for, 20–21

assumptions in, 24

attendees’ requirements, 14, 17–18

business problem in, 16

business tier on JBoss, 171–264

automating database setup, 222

configuring JBoss server, 173–174

1259_Sam-Bodden Judd index.fm Page 604 Friday, February 27, 2004 4:13 PM

Index

605

container-managed relationships,
213–221

data model and database setup,
174–179

exposing services via facades,
249–264

J2EE abstraction levels, 171–172

mapping UML object model to J2EE,
172–173

Middlegen database-driven code
generation, 222–248

pattern-driven development, 248–249

POJO on, 173

project directory structure, 179–180

TCMS domain entity components,
181–182

writing Entity Beans, 183–198

XDoclet AOP programming, 198–213

checking coding conventions with
Checkstyle, 114–117

cleaning up files and directories, 122

compiling, 106–107

conference period, 15

directory structure for, 103

formatting source code with Jalopy,
109–114

generating

browseable source code, 121–123

JavaDocs, 107–108

initial organization of XML dataset, 146

JAD file, 466–467

JavaNCSS source-measurement tools
in, 118–120

modeling with ArgoUML, 53–76

adding modeling elements to class
diagram, 62–70

candidate moment-interval classes, 60

creating analysis object model, 53–55

determining domain model
elements, 55–57

domain model class diagram, 69

object modeling using archetypes
and color, 58–62

preliminary list of use cases, 73–74

UML diagrams, 33–34

use case diagram for, 75

use case modeling, 70–76

MVC frameworks

index page, 427–428

listing for footer in master layout, 421

mapping with struts-config.xml file,
425–427

registration form, 432, 433–436

tiles definitions file, 422–424

tiles layout diagram, 419

open issues in, 24

overview, 13–14

postconference period, 15

preconference period, 14–15

presenters’ requirements, 14, 18

setting up

buildfile default target, 123–124

test harness, 134–138

sponsors’ requirements, 14, 18–19

stakeholders for, 14, 16

system-design roadmap for, 40–41

TCMS Admin System, 509–560

Abstracts page, 527–544

adding color gradient to
CompareViewerPane, 557–559

application Use Cases, 509

building framework from Eclipse
IDE, 509–511

creating About dialog box, 512–521

News page, 544–556

running under Red Hat Linux, 559, 560

wiring Abstracts and News pages to,
556–557

testing

Ant targets from build.xml, 136–138

best practices, 126

test-deploy and test-war targets,
141–142

See also Admin System application

1259_Sam-Bodden Judd index.fm Page 605 Friday, February 27, 2004 4:13 PM

Index

606

TestCases

com.ejdoab.tcms.services.dto.page.-
Page, 129

defined, 127

Eclipse TestCase wizard, 132–134

using in test harness, 134

testing, 125–148

best practices for, 125–126

Cactus

components and objects, 138–144

sequence diagram of, 140–141

TCMS test-deploy and test-war
targets, 141–142

ConferenceEJB Bean, 194–197

Continuous Integration and, 82–83,
126, 138

DBUnit database, 144–148

Hibernate, 404

JUnit

extensions, 138

IDE integration, 132–134

principles for, 127–131

mobile application unit, 466

OJB test client, 375–380

overview, 125

Ozone test client, 324–327

projects in Open Source, 126

test harnesses

best practices for, 125

setting up for TCMS, 134–138

unit test results as web pages, 135

XDoclet automatically generated files,
210–213

See also Cactus; DBUnit extension for
JUnit; JUnit

TestRunner

Eclipse custom, 134

life cycle of JUnit, 140

Swing, 131

test, 130–131

TestSuite

defined, 127

sample listing for TCMS,’ 129–130

in test harness, 134

threads

responsive UI while loading data,
539–544

visible to SWT developer, 491, 526–527

tigris.org, 11

Tiles framework, 417, 419–424

creating common elements and page
layouts, 417–419

defining

layout elements, 422–424

master layout, 422, 431

plug-in in struts-config.xml, 424

function of, 410, 411

planning a master layout, 419–421

sample layout diagram, 419

as Struts component, 410, 411

See also Struts

To-Do pane (ArgoUML), 48

tool page for About dialog box, 512–513

tools

CASE, 37

Java2HTML, 121–123

JavaNCSS source-measurement,
118–120

JMX management, 168–170

Open Source, 79

Open Source MDA, 35

selecting ORM, 405

See also ORM tools

Torque, 357–358

TrackEJB Bean, 213–221

adding relationship to ConferenceEJB,
217–219

source code for, 216–217

testing relationship with
ConferenceEJB, 219–221

1259_Sam-Bodden Judd index.fm Page 606 Friday, February 27, 2004 4:13 PM

Index

607

training technologies in Open Source, 10

TreeViewer class for News page, 545–551

NewsModel class of News, 547–549

NewsTreeContentProvider, 549–551

Turbine, 408

U
UML (Unified Modeling Language), 31–37

about ArgoUML, 43–44

assigning color in object modeling,
58–60

diagrams used in TCMS analysis and
design, 33–34

future of Java and, 35–37

Java and, 32–33

mapping object model to J2EE
components, 172–173

model-driven architecture and, 35

overview, 31–32

stereotypes, 34–35

various methodologies using, 37–40

Unified Modeling Language. See UML

unit testing. See testing

unsaved-value attribute, 402

untyped event listeners in SWT, 554

untyped events and event handling in SWT,
497–498

use case modeling, 70–76

creating use case diagram in ArgoUML,
72–75

diagrams used in TCMS system, 34

domain-neutral component and, 70–71

goal of, 70

illustrated, 73, 75

overview, 71–72

refining use cases with sequence
diagrams, 76

TCMS Admin System application use
cases, 509

TCMS preliminary list of use cases,
73–74

user interface

ArgoUML, 44–49

creating new project in, 49, 53

Details pane, 47–48, 54

Editing pane, 47, 51–52

illustrated, 45

menu bar and toolbar, 48–49

Navigator pane, 45–47

reloading projects, 49

To-Do pane, 48

displaying dialog box while loading
data, 539–544

enabling UI elements for JFace, 507

Middlegen GUI client, 242

Ozone AdminGUI, 291–294

SWT

thread visible to developer, 491,
526–527

widgets, 492–493

V
validation framework in Struts, 441–447

automatically validating form, 443

built-in validation rules, 441

declaring form element names, 441

displaying validation errors, 446

overview, 410–411

registrationForm validation, 441–443

setting up validator plug-in, 446–447

validation.xml file, 441

value objects, 249

view in MVC frameworks, 408–409

1259_Sam-Bodden Judd index.fm Page 607 Friday, February 27, 2004 4:13 PM

Index

608

W
WAR target, 412, 416–417

web applications

Ant target responsible for packaging,
416–417

configuring layout elements, 422–424

creating common page layouts with
Tiles, 417–419

master layout

defining, 422, 431

planning, 419–421

sample TCMS layout diagram, 419

setting up with JSTL and Struts,
411–417

web containers

collocating JBossWeb and EJB, 164–165

deploying Axis in, 453–456

web pages for unit test results, 135

web services and mobile clients, 449–480

about SOAP, 449

Axis

about, 453

converting deploy.wsdd to server-
config.wsdd, 462–463

exposing services, 456–463

JBoss.NET plug-in with, 465

response from News service’s
getNews method, 460–462

setting up and deploying, 453–456

TCP Monitor, 463

viewing list of enabled services,
459–460

web services client for, 463–464

web services model, 449–450

developing J2ME applications, 465–480

about J2ME, 465–466

application size, 467

JAD files, 466–467

listing news titles, 470

midlet classes for MIDP applications,
471–473

running in emulator, 480

source code for NewsDisplayable
screen, 473–475

SyncAgent class, 477–480

unit testing J2ME, 466

viewing news item details, 470–471,
475–476

web.xml file

listing installed web-application
contexts in JBoss, 413

mapping, 414

sample listing of original, 412

Tag-Library declaration found in, 415

WEB-INF directory, 411–412

WebLogic application server, 166

WebWork, 408

widgets

customizing text with StyleText,
513–514

description of SWT, 492–493

Details Editor example of custom class,
534–538

hierarchy of, 494–496

See also SWT

window layout for Abstracts page, 529–530

wizards in JFace, 552–556

WORA (Write Once Run Anywhere)
concept, 153–154

1259_Sam-Bodden Judd index.fm Page 608 Friday, February 27, 2004 4:13 PM

Index

609

WorkBench window (jCVS), 571–572

WSDD (web services deployment
descriptor) files, 457, 459–460,
462–463

WSDL (web service description language)

function of, 450

News Service WSDL sample listing,
450–452

X
XDoclet

about, 198–199

annotating ConferenceEJB.java fields,
206–210

Ant tasks organized by, 200

documenting modules for OJB
distributions, 360

downloading, 199

generating

automatic files and descriptors,
201–213

declarations, action mappings, and
form validation in, 436

generating OJB mappings with,
356–357

loading OJB doclets, 357–360

Middlegen reliance on, 222

module tasks

Hibernate, 389–391

annotating POJO, 389–391

documentation for, 389

XDoclet jar file, 389

reducing J2EE overhead in, 152

tags and namespaces, 200–201,
208–209

Xindice database, 331

XML:DB initiative for XML databases, 331

XML (eXtensible Markup Language)

generating HTML reports from,
118–120

initial organization of TCMS dataset, 146

native XML databases, 330–331

News Service WSDL sample listing,
450–452

repository_database.xml, 366

validation framework in Struts, 441

XML Open Source projects, 11

See also kXML; struts-config.xml file

1259_Sam-Bodden Judd index.fm Page 609 Friday, February 27, 2004 4:13 PM

“...this is still the best book on end-to-end
development of enterprise applications that I’ve seen.”

Ernest J. Friedman-Hill, JavaRanch Sheriff

“Beginning POJOs was a complete pleasure to read.
It teaches a way of Java-based development that is

very much up-to-date and cutting edge.”
Thomas Wagner, wagnerblog.com

Beginning POJOs introduces you to open source lightweight web development using Plain Old Java Ob-
jects (POJOs) and the tools and frameworks that enable this. Tier by tier, this book guides you through

the construction of complex but lightweight enterprise Java-based web applications. Such applications are
centered around several major open source lightweight frameworks, including Spring, Hibernate, Tapestry,

and JBoss (including the new lightweight JBoss Seam).

Additional support comes from the most successful and prevalent open source tools: Eclipse and Ant,
and the increasingly popular TestNG. This book is ideal if you’re new to open source and lightweight

Java. You’ll learn how to build a complete enterprise Java-based web application from scratch, and how to
integrate the different open source frameworks to achieve this goal. You’ll also learn techniques for rapidly

developing such applications.

Beginning POJOs
Lightweight Java Web Development Using Plain Old

Java Objects in Spring, Hibernate, and Tapestry

Brian Sam-Bodden
1-59059-596-3 | 424 pp. | Mar 2006 | $39.99

For more information about Apress titles,
please visit www.apress.com

Save 50% off the cover price!
Get the eBook instantly at: http://eBookshop.apress.com

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

1259_Sam-Bodden Judd index.fm Page 610 Friday, February 27, 2004 4:13 PM

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Appendix A
	Appendix B
	Index

