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PREFACE

At a meeting in Moscow in June 2005, Gil Strang suggested that there be a
collection of Gene Golub's work to highlight his many important contributions
to numerical analysis. The three of us were honored to undertake this pleasant
task, with publication timed for February "29", 2007, the 75th anniversary of
Gene's birth.

Gene chose 21 papers to include here, and we are grateful to the publishers
for permission to reprint these works. We asked each of the coauthors to write
about how the paper came to be written. These short essays reveal a lot about
Gene's working style - his quickness and creativity, his ability to draw together
threads from diverse areas, and the beauty of his ideas. They also illustrate
the serendipity of mathematical discovery and demonstrate that mathematics
research can be done anywhere from an office to an amusement park.

Gene's work is broad as well as deep, and we have divided the papers into five
groups: iterative methods for linear systems, solution of least squares problems,
matrix factorizations and applications, orthogonal polynomials and quadrature,
and eigenvalue problems. To put the work in context, we asked a leading expert
to write a commentary on each group of papers, putting them into historical
perspective. It is a testimony to the high regard in which Gene is held by his
colleagues, that the first five people we contacted agreed to write these commen-
taries. We are very grateful to Anne Greenbaum, Ake Bjorck, Nicholas Higham,
Walter Gautschi, and G. W. (Pete) Stewart; their careful work will be a great
aid to numerical researchers now and in the future.

We are also pleased to be able to include a biography of Gene, drawn from
conversations with him, as well as photos collected from Gene and his friends.

And so we present this volume as a gift to Gene, gathering some of his many
important gifts to the community. We treasure his friendship, look forward to
his 19th birthday in 2008, and wish him many more happy and productive years.

Raymond H. Chan
Chen Greif
Dianne P. O'Feary
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1
GENE H. GOLUB BIOGRAPHY

CHEN GREIF

The Early Years, 1932 1953

Gene Howard Golub was born on February 29th, 1932 to Bernice and Nathan
Golub. His mother was from Latvia and his father from Ukraine. They both came
to the United States independently of one another in 1923, and both settled in
Chicago for family reasons: they each had an older sibling in the city.

Gene was born in the depth of the Great Depression. He has one brother,
Alvin, who is three years older and currently lives in Chicago. Gene's father
worked as a "bread man". His mother stayed home the first few years. At the
age of 4^ his mother needed to work so she took a job in a shop, sewing baseball
caps, and Gene was admitted to kindergarten and spent 1^ years there. Quite
a solid kindergarten education! Gene was a student at the Haugan Elementary
School for nine years. He skipped a grade, but makes a point of saying that
he was not an exceptional student. At the age of 12 he started working at his
cousin Sidney's pharmacy as a delivery boy, and later as a soda jerk. It was not
unusual in those years for children to have to work, although he started working
a little earlier than his other friends. At that point, says Gene, he was sure he
was headed in the pharmacy direction. Little did he know...

Gene had a fairly well developed Jewish identity as a child. He went to
Hebrew school ("Heder") from 3:15pm to 5:30pm almost every day. He learned
the Hebrew alphabet and a few things about Jewish culture. His parents were
very Jewish-centric. They were not religious and did not keep kosher, but Jewish
holidays were observed. Gene would not go to school on Rosh Hashana and Yom
Kippur, and special holiday events like the Seder, the Passover dinner, were cele-
brated every year. Gene's mother, whose maiden name was Gelman, had a large
family in Chicago, and there were many get-togethers which kept the family close.

Gene had his Bar Mitzvah in February 1945. He did not have a sense o
what was going on immediately after the war in Europe, although later on,
as an adult, the holocaust greatly influenced him, his view of the world, and
his personal identity. But at the age of 13, life just went on. He attended the
Theodore Roosevelt High School from 1945 to 1949. The school had quite 
rigid course program, without much in the way of extra-curricular activities.
Three years of mathematics included algebra and geometry but no calculus.
Gene remembers this period as an unremarkable one. He just "went along" as
a student. He played baseball, basketball, and football but was not passionate
about them.
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During Gene's high school period his mother and father divorced, and after
the divorce Gene saw his father only a couple of times. In December 1948 his fa-
ther died, a year after the divorce. Gene continued to work in the pharmacy, and
also had a job at a large department store. Following high school, he attended
a community college for two years: Wright Junior College. Gene fondly remem-
bers this period in his life. He took a variety of courses and was pretty happy.
He wanted to be a chemist; and he loved political science. Then came analytic
geometry and calculus, and the fun began! The teachers were good, and he made
some good friends. After the two years passed he decided to go to the University
of Chicago. He was admitted as a junior, and worked on a degree in mathemat-
ics. It was a big change, and an hour and a half of commuting each way did not
make it easier. It was then that Gene decided to go to the University of Illinois
in Urbana-Champaign for his final undergraduate year: a life-changing decision.

The University of Illinois, 1953 1959

Gene enjoyed the school, and living in a small town. He took the usual required
courses such as biology and French, along with a few other courses that changed
his life. Among those, one was a course on matrix theory from Franz Hohn, a very
good teacher and kind man. In his first year as a graduate student, Gene took a
course from the famous statistician C.R. Rao, who was at Illinois for a year. It
was an advanced course in multivariate statistics, but in fact Gene learned in that
course more about matrices than about statistics. Block Gaussian elimination
and other matrix algorithms were introduced, and the course helped Gene gain
a knowledge of matrix manipulations.

Gene had a part-time job working for a physicist at the accelerator center. In
the final semester he took a programming course in the mathematics department,
and learned how to program for the ILLIAC. Professor John Nash offered him
a position as an assistant at the computing lab. It was 1953 and times were a
little different than today: not everything revolved around computing.

Gene's first task was to program Milne's method. Given the primitive comput-
ing environment, it was hard! And given the method's weak stability properties,
the program Gene had written was not used extensively later on. Gene went on
to write a lot of statistical applications. This included a variety of matrix algo-
rithms, and he became very familiar with the library and started feeling very
comfortable around matrices. Many of the computer programs were in "half
precision" arithmetic: 20 bits, and 1,024 words of memory.

Gene remembers very fondly his days at the University of Illinois and the
many friendships formed. Several of the people he met, such as Bill Gear who
was also a student at the same time and ended up having the same PhD advisor
as Gene, became lifelong friends. People were sociable, cultured, and liked music
and books. There were superb people around in terms of academic ability: David
Wheeler from Cambridge (the inventor of the subroutine) came from the UK
and developed the basic libraries. Gene in fact never took a course in numerical
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analysis per se, but studied a great deal from the elegant programs of Wheeler
simply by looking at the code and trying to understand it. Stanley Gill of the
famed Runge-Kutta-Gill method then came. David Muller was a faculty mem-
ber of the computing lab, and his method for solving nonlinear equations was very
well known and a source of interest. In addition, Gene met Charles Wrigley, who
was born in New Zealand and received his PhD in London. Wrigley was a psycho-
metrician who was tremendously interested in computing and taught Gene about
factor analysis. Through Wrigley Gene met Harry Harman, Louis Guttman, and
many other distinguished psychometricians. It was a stimulating environment.

Gene was going to study statistics, but it was initially unclear under whose
supervision. Bill Madow, whom he was considering, was on sabbatical, and
Rao was around for a year but then left. Madow came back from California
(where he had his sabbatical), but he eventually decided to go back to Califor-
nia. Abe Taub took Gene as a student. He was an applied mathematician, and
had a close connection with John von Neumann. He gave Gene a paper written
by von Neumann and others, about the use of Chebyshev polynomials in solving
linear systems. As it turned out later, that paper had a decisive effect on Gene's
research direction. So, even though he was working on a degree with a specialty
in statistics, he ended up doing numerical analysis.

Gene's relationship with Taub was complex, but clearly Taub's influence on the
direction Gene's career took was instrumental. Gene got financial support,
attended conferences, and worked in the summers in various places. In summer 1955
he worked at the RAND corporation in California. He met George Dantzig and
worked on the simplex method. Many other prominent people were around: Ken
Arrow, Richard Bellman, David Blackwell, Herbert Scarf, and so on. The following
summer he went to work for TRW in Los Angeles. His boss there was David Young,
and George Forsythe as well as other prominent numerical analysts were around.

For his "6th" birthday in 1956 Gene had a special surprise: a few of his friends
bought him a 1940 Chrysler with automatic transmission. We will reveal here
that they paid the whopping amount of $50 for the car. Gene learned to drive
and in summer 1956, while in California, he bought a Plymouth and drove it
back to Illinois. In summer 1957 he worked at Bell Labs in New Jersey.

During his work on his thesis, Gene programmed the Chebyshev method
and noticed that one of the parameters was converging, and then discovered it
converged to the SOR parameter. The work of James Riley, whom he had met
at TRW and who showed how the Richardson second order method was related
to SOR, was helpful for Gene in simplifying the Chebyshev method for matrices
with Property A.

Interestingly, while working on his thesis, Gene noticed that red/black order-
ing applied to a tridiagonal matrix had the property that the reduction leaves
you with a tridiagonal matrix. It never appeared in his thesis. But it was an
important idea which also prepared him for his singular value decomposition
(SVD) work and the Fast Poisson Solver.

In 1959 Gene's advisor, Taub, invited Richard Varga to visit Illinois. Varga
was a rising star, and when Gene talks about this he laughs and says that he
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suspects that Taub invited Varga to check him out! Gene and Varga discovered
that they were working on similar things and Varga invited him to write a paper
together. Collaboration started later on that year when the two met in Paris at
a meeting. This led to what later turned out to be the first influential and major
paper in Gene's career.

After the PhD, 1959 1962

Towards the end of his PhD studies, Gene applied for fellowships. He was awarded
an NSF fellowship, and decided to go to Cambridge, England. He was at
Cambridge for 15 months, from the spring of 1959 until July 1960. He renewed
his acquaintance with Velvel Kahan who was also there as a postdoc. They were
in a small office together for a while. It was a very nice experience: a period of
"chilling out" after an intense term at Illinois. Velvel had a car and they drove
around. They would often go to the National Physical Laboratory in London,
where Jim Wilkinson was. One of the lectures was given by Cornelius Lanczos.
It was there when Gene took note of the singular value decomposition. He may
have heard about it earlier, but Lanczos was a great lecturer, and it stuck into
Gene's head that you could use this decomposition. A few years later, the mem-
ory of this lecture would play a pivotal role in Gene's seminal work on comput-
ing the SVD.

While at Cambridge, Jim Snyder (a physicist who later became the head of
the Computer Science Department at Illinois) mentioned that he was consult-
ing at Berkeley and asked if Gene wanted to apply to the Berkeley National
Laboratory. Gene did. He returned to the USA, bought a new car and drove off
to Berkeley, to start his job in July 1960. It was a data analysis type of job,
and Gene did not like it. But he did meet Paul Concus, and that began a long
friendship and a collaboration. In December 1960, Gene decided to quit his job.
In January 1961 he went down to Los Angeles to work again for TRW, which
had become STL: Space Technology Laboratories. There were approximately a
dozen mathematicians around, and consultants from Berkeley, UCLA, and other
places were coming and going. But despite enjoying his job, Gene felt that he
wanted eventually to be in a university.

The Stanford Years, 1962

In the spring of 1962, STL sent Gene to a few places for recruiting. He went to
Michigan, Wisconsin, Case, and in each of these places he himself was offered
a job! In the meantime, he wrote to Forsythe and inquired about a position at
Stanford. Forsythe wrote back, offering either a visiting assistant professorship,
or a research associate position. Gene never received the letter. At some point
Forsythe called him, to ask if Gene had the habit of answering his mail. Gene took
on the visiting assistant professor position and started in the math department
at Stanford in August 1962. Later on, Forsythe converted his position into a
permanent one.
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Gene fondly remembers the early years at Stanford: Forsythe was a magnet
to other people, and there was an influx of visitors. Forsythe had wonderful
students: Cleve Moler, James Ortega, Beresford Parlett, Jim Varah, and others.
As Forsythe took on more administrative responsibilities, Gene took a lot of his
responsibilities in the numerical analysis area. Gene acknowledges how much he
learned from Forsythe about how to run things at a place like Stanford and how
to aspire to be a good colleague and member in the community. Unfortunately,
Forsythe died in 1972, after 15 years at Stanford. Gene describes Forsythe as
an early founder of the numerical analysis community and praises his vision,
wisdom and integrity.

The first years at Stanford marked Gene's rise to prominence. Ideas and
papers were generated, collaborations and friendships formed. Gene graciously
gives much of the credit for his success to his collaborators, their abilities, their
collegiality, and their friendship. He describes the great work of Forsythe in form-
ing the Computer Science Department of Stanford in 1966 (from the Computer
Science Division of the Mathematics Department): Stanford was one of the first
places to form such a department. People like John Herriot, John McCarthy and
Donald Knuth came early on. Visitors like Jim Wilkinson, Peter Henrici, Ger-
mund Dahlquist and many others would come often, made life interesting and
formed collaborations.

Gene went on to have a remarkable career. In three separate interviews and
several hours of face to face and phone conversations, he vividly recalled many
milestones. The success of his work on semi-iterative methods with Varga in the
early 1960s, the computation of the SVD with Kahan in the mid-1960s and the
fast Poisson solver in the early 1970s, followed with several milestone papers that
have made an impact not only on the field of numerical linear algebra but on
the broad areas of science and engineering in a variety of disciplines. His work
on the preconditioned conjugate gradient method in the late 1970s (joint work
with Paul Concus and Dianne O'Leary) helped popularize the method among
large circles of scientists and practitioners. He put the total least squares problem
on the map (joint work with Charlie Van Loan, after introducing the problem
earlier in his work with Christian Reinsch). He worked on moments and quadra-
ture rules with a variety of collaborators, work of great mathematical beauty.
One of his latest contributions is his work on Google's PageRank algorithm;
a technique for accelerating the convergence of the algorithm (joint work with
Sep Kamvar, Taher Haveliwala and Christopher Manning) has received much
attention.

The Birth of Papers

Gene has many anecdotes to offer on how some of his strongest papers came
to life, and makes interesting connections that illustrate how some of his most
important work started almost accidentally, just by way of paying attention to
a comment, or resurrecting ideas that he had earlier in a different context.
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An intriguing story is how the project on the computation of SVD came to
life. We mentioned earlier that while in England Gene heard Lanczos speak on
the SVD and kept it at a corner of his mind. Much later, in 1963, Ben Rosen
talked at Stanford about computing pseudo-inverses via projections. At the end
of the talk Forsythe got up and said, "Well, will somebody please figure out
how to compute the pseudo-inverse of a matrix?!" Gene remembered Lanczos's
lecture in this context. And it got him interested in the SVD. The combination
of having heard Lanczos years earlier, and those stirring words, marching orders,
by Forsythe, began an important component of Gene's career. He worked with
Peter Businger, who was a research assistant, and he asked Peter to compute
the eigenvalues of

r o A ]
k o J -

The absolute values of the eigenvalues of this matrix are indeed the singular
values of A. Peter put that into an eigenvalue routine and they saw zeros on
the diagonal of the tridiagonal matrix that was generated. From studying David
Young's work on Property A and from his own work on cyclic reduction Gene
knew that one could reorder the matrix, and get a bidiagonal matrix. So Gene
started thinking hard about ways to bidiagonalize the matrix, and figured out
how to do it using left and right orthogonal transformations, while he visited
Boeing in Seattle in the summer of 1963. Perhaps the fresh Pacific Northwest
air helped with it.

In October 1963 there was a meeting at the University of Wisconsin. Gene
saw Kahan and told him about the work he had been doing. Kahan was working
on similar ideas, and they decided to collaborate. Kahan came to visit Stanford
with Forsythe's support, and the famous Golub and Kahan paper was written.

Computing the singular values of a bidiagonal matrix efficiently came a little
later. Gene thought that Householder transformations could do the trick. He
and Christian Reinsch worked on this problem independently around the same
time, and eventually an algorithm using QR with double shifts was published
under joint authorship. In their paper the total least squares problem was also
introduced. (The catchy name was given to it much later, by Charlie Van Loan.)

Years after the seminal work on the SVD, Paul Van Dooren was at Stanford and
was scheduled to give a talk. In the audience were Wilkinson, Dahlquist, and Gene.
At some point during the talk Paul asked, a little nervously: "Do you know what
the SVD is?" The immediate answer came: "You are at the SVD Headquarters!"
Nick Trefethen later designed a T-shirt with "SVD HQ" written on it.

The story of how the Fast Poisson Solver was born is also fascinating. Roger
Hockney came as a research fellow to Stanford. He was working for Forsythe
and the plasma physicist and engineer Oscar Buneman. He told Gene about
the problems he was working on, that required solving a sequence of tridiago-
nal matrices. Gene remembered his playing with cyclic reduction as a graduate
student. It was possible to apply cyclic reduction to a tridiagonal matrix, to
get another tridiagonal matrix. Gene and Hockney realized that in fact a block
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version could be derived, as long as the blocks commute. Hockney programmed
it but it seemed unstable if more than one step of cyclic reduction was carried
out. Later on, Buneman gave a talk at Los Alamos and showed how to form the
full procedure of cyclic reduction. He provided a two-page long program for do-
ing it. This caused excitement. When Gene visited a little later, he and Buzbee
were discussing it, when Glair Nielson came in and said he would like to use
the method, but with different boundary conditions. This forced the three to sit
down and deeply understand the method. Nielson came up with a way to solve
the resulting difference equations. Later on, Alan George was very helpful and
showed how to modify the right-hand side so that the method is stable. The pa-
per of Buzbee, Golub and Nielson was at one point the most cited mathematics
paper in the SIAM Journal on Numerical Analysis.

Buzbee, Dorr, George, and Golub went on to write their well-known paper
on applying the solver to irregular domains. A package called FISHPACK, based
on these ideas, was written by Paul Schwarztrauber and Roland Sweet. (Why
"FISHPACK"? Translating the word "Poisson" from French might shed light on
this mystery!)

The above mentioned work, along with an earlier paper of Gene with David
Mayers at a conference in INRIA, have been an important part of the early adva-
nces of domain decomposition, and embedding techniques (fictitious domains).
The rise of parallel computing at the time, and the attractive concept of sub-
dividing a complex domain into simple subdomains, caught on thanks to work of
Gene and many other people who played a pivotal role, such as Olof Widlund.

Another important work that followed was Gene's joint work with Concus
and O'Leary on the preconditioned conjugate gradient (CG) method. In an ear-
lier paper, Gene and Concus used the Chebyshev method for solving the Poisson
equation as a means to solve the Helmholtz equation on a rectangular domain.
Paul, Gene and Dianne presented the idea of using CG in its preconditioned
version, and derived an elegant short algorithm that worked extremely well. In
their paper the term "generalized CG" is actually used. The term "precondi-
tioned CG" caught on later.

The Fast Poisson Solver and what followed it is a nice example of the seren-
dipity of science: you never know where your research may take you. This work
made a contribution to advances in domain decomposition techniques and in pre-
conditioned iterative solvers, merely due to the need to find ways to overcome
difficulties that arose in applying the solver, either due to a complicated compu-
tational domain, or due to a difficult underlying partial differential equation.

Finally, we mention the "accidental birth" of the work on moments and
quadrature. Gene spent a year in 1965-66 at the Courant Institute. He ar-
rived there shortly after meeting Dahlquist in Sweden and learning from him
about the topic. Interestingly, a talk of Hans Weinberger given at Maryland that
Gene had missed (and heard about from colleagues) about error bounds using
residuals, stimulated his interest in error estimates, and he thought of ways to
put it in the framework of moments. One day, he was sitting in Peter Lax's
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office. His mind started wandering. He picked up a book of Herbert Wilf, and
started reading the section about Gaussian Quadrature. It was then and there
that Gene realized that the weights were the squares of the first elements of the
eigenvectors of the Jacobi matrix, obtained from orthogonal polynomials. (The
eigenvalues were the nodes.) These mathematical facts may have been known
to some experts, but Gene figured out how to do the computation: compute
the weights by reorganizing the QR method. When recalling this story, Gene
smiles and says that sometimes being "semibored" is all that it takes to make a
discovery...

Service and the Book

Gene has a tremendous record of service to the scientific computing commu-
nity. He served as President of SIAM, and played a central role in forming the
International Council for Industrial and Applied Mathematics. He is the founding
editor of two important SIAM journals - SIAM Journal on Scientific Comput-
ing and SIAM Journal on Matrix Analysis and Applications, and has been on a
large number of advisory boards and committees. It's hard to imagine the com-
munity without the journals he founded, but their formation was not trivial and
came after careful thought, taking into account the nature of existing journals
in the field. Gene mentions a few little-known anecdotes. For example, he was
influenced by Bellman when making the choice "matrix analysis." We should
also mention that Gene founded the NA-NET and the NA-Digest, indispensable
working and networking tools for many in the community for years to come.

Gene's devotion to his community has been demonstrated many times throu-
ghout the years in terms of time, energy and financial support. For his work on
acceleration of the PageRank algorithm Gene received Google stock; he donated
most of these funds to found the Paul and Cindy Saylor Chair at the University
of Illinois. Gene says his gift is a way for him to acknowledge the important part
that the university played in his life, and at the same time it was an opportunity
to give tribute to Paul and Cindy for being such supportive friends that do so
much for the academic community. Previous to this, Gene funded the Hohn/Nash
student fellowship at the University of Illinois to honor two of his early mentors.

And how did the Golub and Van Loan book come about? Roger Horn was
the founder of the Department of Mathematical Sciences at Johns Hopkins. In
cooperation with Johns Hopkins Press, he held a series of short courses each
documented in a monograph. He had invited Gene to teach one of these courses.
Charlie Van Loan was there. They decided to try to write a monograph. As the
book was being written, they wrote several papers together. The book now has
three editions, has sold over 50,000 copies and has been cited over 10,000 times.
According to Gene, Charlie Van Loan was the principal writer of the book and
the force behind it, and Gene remembers the period of working with Van Loan
on the book as a wonderful one.
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People

When asked what has defined his career, Gene does not point out this or that
paper, but rather he talks about people. He praises his students and says they
have made him a better person. He admires their personalities, behavior,
scholarship, and integrity, and says he feels fortunate to have met many of them.
He attributes his hospitality and the endless number of parties he hosted at his
home and back yard to the welcoming and open culture he had experienced at
Illinois as a graduate student decades earlier. He also says that part of his success
has to do with geography: people like coming to Stanford, they like the climate
and the food and all the small pleasures that the area offers, and as a result the
traffic of visitors has never stopped for over 40 years. There has been a lot of
collaboration and a lot of scientific matchmaking at Stanford.

Gene has many anecdotes about his interaction with his colleagues and his
students. Some of them are not necessarily related to inverting a matrix or com-
puting eigenvalues but have made a great impact on Gene's life. Take email,
for example. As the Computer Science Department grew, the numerical analysis
group moved to the ground floor of Serra House, a building that had served as
the home of the University President. The terminals were in the kitchen. "The
person who shamed me into using email was Dan Boley," recalls Gene with a
laugh. He came by and said "You are the only professor in the department who
doesn't use email actively." Gene smiles and says that this statement was slightly
exaggerated, but the seed was planted and there was no way back. Email became
a big part of Gene's life.

Many of the first students who took Gene's courses are now very familiar
names and great forces in the numerical community: Richard Bartels, Richard
Brent, Jim Daniel, Alan George, Roger Horn, Victor Pereyra, Michael Saunders,
Jim Varah, Margaret Wright, and others. He gives them credit for forcing him
to "dot the i's and cross the t's" when he taught his first advanced numerical
analysis course: this later helped in setting the stage for the Golub and Van Loan
book.

Gene was married for a few years in the 1990s to Barbara Morris, whom he
had met in England approximately 40 years earlier. His brother lives in Chicago
(with a convenient escape route to Phoenix when winter hits). Most of Gene's
waking hours in the last 50 or so years have been devoted to being with members
of his extended family of the numerical linear algebra community.

Conclusion

This book's theme is about the impact that Gene's work has made in our field.
Many more pages would be necessary to describe in full Gene's contributions.
He has written many excellent papers, has become a member of the National
Academy of Sciences and the National Academy of Engineers, founded SIAM
Journal on Scientific Computing and SIAM Journal on Matrix Analysis and
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Applications, was President of SIAM, founded the Scientific Computation and
Computational Mathematics Program at Stanford, and has received ten honorary
doctorates. But beyond all his honors, what makes Gene special is his dedication
and his commitment to promoting numerical analysis and scientific computing,
and his great support of young people.

In the last few years Gene has traveled a lot, being in many ways an ambas-
sador of our community. We cherish the impact that Gene has had on our careers
in so many ways: by hearing him give a talk that has made an impact in terms
of selecting a research direction (or even a research career!), by accepting Gene's
cordial invitation to visit at Stanford and experiencing that feeling of being at
the "headquarters", or by meeting via Gene a colleague who has later become
an important collaborator.

It is appropriate to close by going back to the roots: the "founding fathers"
of numerical linear algebra. Gene has a lot of kind words to say about them.
He singles out two seminal figures: Wilkinson and Householder. In particular, he
takes time to talk about the role Jim Wilkinson had played. Wilkinson laid the
foundations for pure numerical linear algebra, says Gene. He extracted the basic
numerical problems and showed how to construct good numerical algorithms.
Gene always felt that his own area of interest was in applied numerical linear
algebra and that he was trying to take the lessons taught by Wilkinson and
use them in different applications. That would include, for example, working
out the stabilized version of the LU factorization for use in the simplex method
(joint work with Richard Bartels). This work showed that one can get a reliable
solution, and it is based on principles worked out by Wilkinson. "I see myself
as an applied Wilkinsonian" says Gene. "Wilkinson is the one who really led
the way for many in terms of error analysis, and by pointing out the important
issues in matrix computations."
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COMMENTARY, BY ANNE GREENBAUM

From the very early days, Gene Golub has been a driving force in the develop-
ment and analysis of iterative methods for solving large sparse linear systems -
problems for which Gaussian elimination is often prohibitive in terms of both
storage and computation time. We review five of his seminal papers in this field.

Chebyshev semi-iterative methods, successive over-relaxation
iterative methods, and second-order Richardson iterative methods,
Parts I and II, by Golub and Varga [10]

This paper is probably less well-known today than it should be. In it the authors
show the remarkable similarity between the Chebyshev semi-iterative method,
the successive overrelaxation (SOR) method applied to an expanded matrix equa-
tion, and the second-order Richardson iterative method. They conclude that the
Chebyshev semi-iterative method is to be preferred over the other two, since its
iteration matrix has the smallest spectral norm, while the work per iteration is
the same as that for the other methods. They present numerical results with the
different methods used to solve elliptic difference equations.

The authors start with the simple iterative method

which has been derived from the linear system Ax = k through a matrix split-
ting, giving rise to a convergent iteration matrix B; that is p(B) < 1, where p(-)
denotes the spectral radius. They assume that the iteration matrix B (which
today might be called the preconditioned matrix) is real symmetric and positive
definite. From this they derive the Chebyshev semi-iterative method by taking
a linear combination of the iterates ci<W and choosing the coefficients so that the
error in the linear combination is

where pi is the Chebyshev polynomial for the interval [-p(B), p(B)], normalized
so that Pi(l) = I .

Next they consider the SOR method applied to the expanded linear system
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whose solution for x and y is the same as that of the original linear system, and
whose iteration matrix,

changes at each iteration. Even more interestingly, they demonstrate that the
limit of the Chebyshev parameters is equal to the optimal SOR parameter w&:

Finally the authors consider the Richardson iterative method:

where ff-0*1 and -if1*1 are given initial guesses and a and [3 are fixed acceleration
parameters. Using the analysis of Frankel and Riley [6,15,19], they demonstrate
that with the best choice for the parameters a and /?, this method is also equiv-
alent to the SOR method applied to the extended linear system, with w = w&.
Thus, they have established the high degree of similarity among the three meth-
ods.

Writing the error at step m of each method in the form qm(B)€^ for a
certain polynomial qm, the authors show that the Chebyshev polynomialm(B)
has smaller spectral norm than the polynomial rm(B) associated with the SOR
method (or equivalently the second-order Richardson iteration), when £(°) is
arbitrary and C^1) = B£(°) + g, as well as with several other starting strategies.
This establishes the superiority of the Chebyshev method in reducing the error
at each step, assuming the worst-case initial error. Numerical experiments in
part II of the paper illustrate this result in practice for cyclic matrices. Since
the method requires the same amount of work per iteration as the others, the
authors conclude that it is to be preferred.

A generalized conjugate gradient method for the numerical
solution of elliptic partial differential equations, by Concus, Golub,
and O'Leary [5]

In this paper and in a paper with Concus [4], Golub turns his attention from
the Chebyshev method to the conjugate gradient algorithm. In fact, these were
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has the same spectral radius as B. Since this matrix is real, symmetric, cyclic,
and consistently ordered, the standard SOR theory due to Young [19] is applied
to determine the optimal relaxation parameter: W& = l/\/l — P2(B). Defining
the vectors £(2') = x^ and £(2'+1) = yW, the authors show that these vectors
satisfy a recurrence of the same form as that for the Chebyshev iterates, except
that in this case the parameter u is fixed while in the Chebyshev method the
parameter
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two very influential papers helping to revive interest in the conjugate gradient
algorithm, long after its invention in the early f950s [12]. Another early pa-
per showing the advantages of the conjugate gradient algorithm was written by
Reid [14]. Never content to simply develop iterative methods and prove theorems
about their convergence, Golub made it a personal mission to see that the engi-
neers, physicists, statisticians, and others who were actually solving large linear
systems learned about this new method and implemented it in their codes. The
result was a revolution in the way large linear systems were being solved. I was
a beginning graduate student, working at Lawrence Livermore National Labora-
tory at the time, and I saw the physics codes at the Lab quickly change from
an ADI (alternating direction implicit) philosophy of iterating with PDEs (par-
tial differential equations) to rigorously solving the large systems of difference
equations using the conjugate gradient algorithm. That change (along with the
implementation of more advanced preconditioners) remains in effect today.

Although [4] is dated slightly earlier, I will begin with [5] since it describes
the basic preconditioned conjugate gradient (CG) algorithm and its properties
(although the authors did not use the word "preconditioned" at the time but
referred to it as the "generalized conjugate gradient algorithm"). In this paper
it is assumed that the coefficient matrix A of the linear system Ax = b is real
symmetric and positive definite. The authors - Paul Concus, Gene Golub, and
Dianne O'Leary - first point out the advantages of the CG algorithm when used
as an iterative method:

• It does not require estimation of parameters.
• It takes advantage of the distribution of the eigenvalues of the iteration

matrix.
• It requires fewer restrictions on the matrix A for optimal behavior than do

such methods as SOR.

The paper includes a derivation of the preconditioned CG algorithm and its
optimality property: The A-norm of the error at step 1+ I satisfies

where K is the preconditioned matrix M~1A, and the minimum is over all poly-
nomials p£ of degree i. The authors note that comparison with the Chebyshev
polynomial gives the upper bound

but they also note that this bound may be pessimistic.
The paper also mentions the relation between the CG algorithm and the

Lanczos algorithm and how eigenvalue estimates can be obtained from a tri-
diagonal matrix derived from the CG recurrence coefficients. A hybrid algorithm
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is suggested, where one initially uses CG and obtains approximations to the
extreme eigenvalues of the iteration matrix, at which point one could switch to
the Chebyshev semi-iterative method with these eigenvalue estimates as param-
eters.

The paper also discusses various options for the preconditioner M (still
referred to here as a matrix splitting, since A is written in the form A = M — N).
For example, if A has the form

where linear systems with coefficient matrices MI and M^ are easy to solve, then
the authors suggest taking

They note that for certain elliptic boundary value problems the iteration matrix
K then has only a few distinct eigenvalues, even though Amax(-K")/Amin(.K") is
not especially small. They also mention the possibility of fast direct solvers for
separable operators as preconditioners for nonseparable operators.

They further discuss the use of CG in combination with SSOR; that is, taking

M = (D + uL)D-l(D + u;LT),

where A = D + L + LT and D is diagonal or block diagonal. Finally, they discuss
the incomplete Cholesky decomposition of Meijerink and van der Vorst [13] as a
preconditioner for CG.

A number of numerical examples are presented where the CG and Chebyshev
algorithms are used to solve elliptic difference equations.

A generalized conjugate gradient method for non-symmetric
systems of linear equations, by Concus and Golub [4]

In this paper, Concus and Golub deal with the case of nonsymmetric coefficient
matrices. They make the ingenius observation that if one takes the symmetric
part of the matrix(A +AT)/2as the preconditionerfor a nonsymmetric
problem, then one can develop an algorithm very much like the symmetric CG
method. This algorithm was later expressed more directly in terms of the Lanczos
process by Widlund [18], and it is sometimes referred to as the CGW method.

To derive the algorithm, we write the iterates Xj as they are written in the
conjugate gradient algorithm (although Concus and Golub derived the algorithm
in a slightly different form). Starting with an initial guess XQ, an initial residual
TO = 6 — AXQ, a preconditioned residual ZQ = M~iro, and an initial search
direction po = 20, pproximationsXj+can be written in the form
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where ay is chosen to force M-orthogonality among the preconditioned residuals
Zj. Since

it follows that

The next search direction PJ+I is written in the form

where (3j is chosen to make PJ+I M-orthogonal to M~lApj\

Assuming that the symmetric part of A is positive definite, this algorithm is
guaranteed to find the exact solution in at most n steps (assuming exact arith-
metic), since zj Mzj, = 0 for k ^ j implies that zn (or an earlier z^) must be
zero. Moreover, if A has only p < n distinct eigenvalues, then it finds the exact
solution in p steps.

Concus and Golub consider expressions for the M-norm of the error, (e^,
Mefc}1/2. They show that, as for the symmetric case, the error at step k can
be written in the form e^ = [I — Kpk-i(K)]eo, where K is the preconditioned
matrix M~1A, and Pk-i is a certain (k — l)st degree polynomial. Unlike the
symmetric case, however, pk-i is not the polynomial that minimizes the M-norm
of the error, although it can be shown to come fairly close to this. Concus and
Golub derive a bound on the error in terms of that in the optimal second-order
Richardson iterate.

Inner and outer iterations for the Chebyshev algorithm, by Giladi,
Golub, and Keller [7]

In this paper, Giladi, Golub, and Keller return to the Chebyshev algorithm
and ask the question: Suppose the preconditioning system Mz = r is solved
inexactly, perhaps using an iterative method inside the outer Chebyshev iter-
ation. How accurately should it be solved in order to minimize the total work
of the algorithm? They conclude that among all sequences of slowly varying
tolerances for the inner iteration, a constant one is best.

This paper is among a group of papers dealing with inner and outer iterations.
An earlier significant paper is by Golub and Overton [9]. A more recent outgrowth
has been the study of the question of tolerances for inner iterations in the CG
algorithm, where it has been shown, surprisingly, that while the initial tolerance
should be at the level of accuracy desired in the final approximate solution, the
tolerance at later iterations can be relaxed [2, 3, 16, 17].

The Giladi, Golub, and Keller paper stands out in that it precisely defines
the cost function that they wish to minimize and then establishes a strong result
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about how that cost function can be minimized. They start by presenting an
error bound for the inexact Chebyshev iteration. They then consider a decreasing
sequence of tolerance values Sk —>• r\ and show that the asymptotic convergence
rate for the algorithm with these inner tolerances is the same as that for the
scheme with fixed tolerance Sk = r/. They then use this result to determine the
optimal sequence of tolerance values.

Let S = {Sj}°^be a decreasing sequence of tolerance values with 0 < r\ <
Sj < 1. The number of inner iterations at outer iteration j is [log 6j / log r~\,
where r is the convergence factor of the method used for the inner iteration. If
N(c, 6) denotes the number of outer iterations needed to reduce the error to c
using the strategy defined by 6, then the goal is to minimize the total number
of inner iterations,

Approximating this sum by an integral, and defining the set S of slowly varying
sequences by

where 6 € C2 and (3 > 0 is a small positive parameter, the authors attempt to
find the sequence 6* € S that minimizes

Since the number N(c, 6) cannot be determined precisely, they replace it by an
upper bound NB(C, 6) and instead minimize the associated cost CB(C, $)• They
show that if S is any sequence in S, then there is a constant tolerance 6 for which
CB(C, S) < CB(C, S). The constant 6 can be determined adaptively while solving
the linear system.

The authors generalize their analysis to other iterative schemes, and finally
they present numerical results demonstrating that a constant tolerance results
in a smaller total number of inner iterations.

Hermitian and skew-Hermitian splitting methods for non-Hermitian
positive definite linear systems, by Bai, Golub, and Ng [1]

This is a more recent paper on nonsymmetric problems. Here the authors again
consider a splitting involving the Hermitian and skew-Hermitian part of the
matrix, and, under the assumption that the Hermitian part is positive definite,
they are able to prove a bound on the contraction factor of the method that
depends only on the spectrum of the Hermitian part. Much recent work has
focused on the effect of eigenvectors as well as eigenvalues on the convergence
of nonsymmetric iterative methods such as the GMRES algorithm, so it is quite
exciting to have a method whose convergence rate depends on the eigenvalues
of the Hermitian part and not on the eigenvalues of A* A (as with solving the
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normal equations) or on the possibly ill-conditioned eigenvectors of A (as with
the GMRES algorithm).

The basic HSS (Hermitian/skew-Hermitian splitting) iteration is very simple:
Let H = (A + A*)/Iand S = (A - A*)/I.Given an initial guess x
0,1 , . . . , compute

where a is a given positive constant. Looking at the equation for the error e.]. =
A~1b — Xk, it can then be seen that

The method converges provided the spectral radius of the iteration matrix,
M(a) = (aI + S)~l(a.I-H)(aI+H)~l(a.I-S),s less than 1, and the amount
by which the error is reduced at each iteration is bounded by the norm of the
iteration matrix. The authors first note that the spectral radius p(M(a)) is the
same as the spectral radius of (al — H)(aI + H)~l(aI — S)(aI+S)~l,and since
the spectral radius is less than or equal to the 2-norm of the matrix:

Next the authors note that the 2-norm of the second matrix is 1, since (al — S)
(al -\- S)~l is a unitary matrix. Since the first matrix is Hermitian, its 2-norm
is the largest absolute value of an eigenvalue:

Since this quantity is always less than 1 when H is positive definite and a > 0,
the method is unconditionally convergent.

The contraction factor, or the amount by which the error norm is reduced at
each iteration, depends on the norm being used. While it cannot be guaranteed
that the 2-norm of the error decreases at each iteration, the authors define a new
norm: | | |w | | | = \\(al + S)v\\2, for all v € C™. Then since

it follows that

Hence in this norm, the contraction factor is bounded in the same way as the
spectral radius of the iteration matrix.
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Next it is shown that the optimal a can be expressed in terms of the largest
and smallest eigenvalues of H:

and for this a, the spectral radius and the contraction number in the new

While the theoretical analysis of the HSS iteration is impressive, it does
require solution of linear systems with coefficient matrices al + H and al + S.
This can be costly. The remainder of the paper is devoted to a discussion of the
IHSS (inexact Hermitian/skew-Hermitian splitting) iteration. Here the linear sys-
tems are solved inexactly using the conjugate gradient method for the Hermitian
positive definite coefficient matrix al + H and using any of several Krylov
space methods for the system with coefficient matrix al + S. Analysis of this
inexact iteration is followed by some practical numerical examples illustrating
the efficiency of the method.

Summary

This group of five papers, while far from a complete list of contributions, is indica-
tive of the breadth and depth of Golub's work in the area of iterative methods.
Prom early work on SOR and Chebyshev iteration to more recent contributions
on the conjugate gradient algorithm, preconditioning, error estimation and its
relation to Gauss quadrature [8, 11], inner and outer iterations, and methods
for solving nonsymmetric linear systems, Golub has played a leading role in
the development and advancement of iterative solution methods for large linear
systems.
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CHEBYSHEV SEMI-ITERATIVE METHODS, SUCCESSIVE
OVER-RELAXATION ITERATIVE METHODS, AND

SECOND-ORDER RICHARDSON ITERATIVE METHODS,
PARTS I AND II (WITH R. S. VARGA)

NUMER. MATH. (3), 147-168 (1961).

I was invited, in 1960 I believe, by Abe Taub at the University of Illinois, to a colloquium
lecture there, and before the lecture, I was asked by Professor Taub what my current
research was. I mentioned two areas, one being the use of Chebyshev polynomials in
the theory of iterative methods in linear algebra. Taub mentioned then that he had a
student (who turned out to be Gene Golub) working on similar ideas. What I learned
later was that Taub told Gene that "if Varga publishes first, you will have to write a
new thesis". During that visit, I later met Gene, who was visibly shaken about all of
this, and I suggested that we discuss this further over coffee. There was indeed overlap
in our results, but Gene did things that I hadn't done, and conversely. We then agreed
to write a paper, in two parts, which appeared in Numerical Mathematics in 1961. This
paper was surely better than either of us could have done alone, and it was quite a
successful research paper, which was highly referenced. Adding to all of this is that
Gene has often said that "Varga saved my life," meaning that he didn't have to write
a second thesis! I have often been asked why Gene and I didn't write more papers
together. Sincerely, it would have been nice, but I wandered, as time went by, more
into approximation theory and complex function theory, where my PhD thesis arose,
and Gene had chosen other interesting areas in which to work. He had been a stellar
figure in the area of numerical analysis, and this field owes him much for his deep and
useful research results.

Dick Varga
Kent, Ohio, USA
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Chebyshev semi-iterative methods,
successive overrelaxation iterative methods,

and second order Richardson iterative methods
Parti

By

GENE H. GOLUB* and RICHARD S. VARGA

§ 1. Introduction
One of the major areas of interest in numerical analysis is concerned with

the numerically efficient solution of the matrix equation

(1.1)

where A is a given N x N real symmetric and positive definite matrix, and k is a
given column vector. The matrix equation (1.1) can be readily reduced to the
analogous matrix equation

where B is an N xN real symmetric matrix which is convergent, i.e., if the eigen-
values of the matrix B are //;-, 1^/^JV, then the spectral radius [9] g(B) of B
satisfies

At this point, one can consider the different convergent systematic iterative
methods in the title of this paper, and basically, the literature on the analysis
of these methods can be conveniently separated on the following classification
of the matrix B. With B symmetric, we say [20] that B is cyclic (of index 2)
if there exists an N X N permutation matrix A such that

where the non-vacuous diagonal blocks of B are square, with zero entries. In
the more familiar notation of YOUNG [24, 26], B satisfies property A, and B
is consistently ordered with the cfj ordering. If no such permutation matrix A
exists, we say that B is •primitive**.

* This paper includes work from the doctoral dissertation [7] of the first author,
who wishes to thank Professor A. H. TAUB of the University of Illinois for guidance
and encouragement in the preparation of that dissertation.

** Usually, the terms primitive and cyclic are reserved (see [23]) for irreducible
matrices with non-negative entries. In the case that the matrix B of (1.2) is symmetric
and irreducible, with non-negative entries, these definitions agree with the classical
terminology.
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If B is primitive, then the only systematic iterative methods of the title
which have been analysed* and used in large scale digital machine codes arc
the Chebyshev semi-iterative method [5', 11, Ifi, 18, 2,5], and the second order
Richardson iterative method [6,13]. Actually, one can also define the successive
overrelaxation iterative method [6, 26] for an expanded matrix equation of the
form (1.2), and in §2, our first result is that all three methods, when optimized
with respect to acceleration parameters, are from a certain point of view remark-
ably similar**. In §3, we shall compare these three systematic iterative methods,
using the spectral norms of the respective matrix operators as a basis for com-
parison, and we shall show that the matrix operator for the Chebyshev semi-
iterative method possesses the smallest spectral norm. Since the practical
application of the Chebyshev semi-iterative method in the primitive case requires
effectively no additional arithmetic operations or vector storage over the other
iterative methods, it would appear that of these three systematic iterative
methods, there is no practical or theoretical reason for not always using the
Chebyshev semi-iterative method for the primitive case.

If B is cyclic, then several results already exist in the literature [13, 18, 25, 27]
comparing the three basic systematic iterative methods of the title. In §4, we
shall define a new systematic iterative method, called the cyclic Chebyshev
semi-iterative method for cyclic matrices B, which again requires effectively no
more additional arithmetic operations or vector storage over the other iterative
methods. This new systematic iterative method, which has combined the ob-
servations of several others, will be shown in §5, using spectral norms of matrix
operators as a basic for comparison, to have the smallest spectral norm. Again,
of the three systematic iterative methods of the title, it would appear that the
modified Chebyshev semi-iterative method is the best choice in the cyclic case.

In §6, we shall show how these results can be used in conjunction with
various block methods [7, 8, 12, 21] to numerically solve elliptic difference
equations, and finally in § 7, we shall give some of the results of recent numerical
experiments on the comparison between the systematic iterative methods of
the title.

§ 2. Primitive Matrices
We assume in this section that the matrix B of (1.2) is primitive. If a(0) is

a given vector guess of the unique solution "x of (1.2), then we iteratively form
the vectors ot(t+1>, defined by

Since Q (B) < 1, the sequence vectors a( t) converges [,9] to the solution vector ~x.
If "e"'l)=?—a(l), «2iO, is the error vector associated with the iterate ot(l), then

and thus, by induction

* A notable exception to this is KAHAN'S theoretical extension [10] of the suc-
cessive overrelaxation iterative method to the case where B is primitive, and has
non-negative entries.

** It has been generally assumed that the successive overrelaxation iterative
method could not be applied in as general cases as could the Chebyshev semiiterative
method. See [27, p. 291].
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We now consider forming linear combinations* of the vectors oc( l) in order
to accelerate the convergence of (2.1). Let

i -> ->
As in [18], we impose the natural condition that 2X A = l - Thus, if *(i) = *v—/3(1),
iS:0, then *=° '

i

If &W =2a» *^*» then (2.4) becomes formally
s=o '

where ^(l) = l. Let {yi}fLi be an orthonormal set of eigenvectors of B, where
N

Byi = fiiyi, \<*i<*N. If t(0> = 2 c^y*. then it follows that
A-l

If all the eigenvalues fif of B were known a priori, then we could determine
a polynomial pN(x) such that ^v(,«fc) = 0 for 1 JJA^SAT. Since this is seldom the
case, let SM be the set of all polynomials fm(x) of degree m, normalized so that
PmW = \- Since B is symmetric and convergent, all its eigenvalues /^ satisfy
— K — p(S)|SJM i^g(B)< 1, and we seek** the polynomial pm(x) for which

where £>=g(S). As is well known [4], the unique solution of this problem is
given explicitly by

48

is the Chebyshev polynomial of degree m. Since the Chebyshev polynomials
satisfy the well-known recurrence relation

where C0(x} = \, Cl(x) = x, we can use (2.8') to deduce a recurrence relation for
the polynomials pm(x) which, when inserted into (2.4'), leads to the following

* This is called "linear acceleration" by FORSYTHE [5]. Professor A. H. TAUB
has kindly pointed out to us that these results were known much earlier to VON NEU-
MANN. See [2].

** If B is known to be non-negative, irreducible, and primitive, then the smallest
interval a^x^b which contains the eigenvalues of B is such [23] that \a <6=g(B).
While this change in the problem of (2.6) would result in improved convergence rates,
it is in general difficult to obtain the lower bound in practical problems.

where

)
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relationship* for the vectors /3(t):

where

With <w1 = l, (2.9) reduces to /?(1' = B^<°>+gr=5ot(0)+|', since j3(0>=a(0>. Using
(2.8'), we can also express the parameters a>i+1 as

which is more convenient for actual computations. From (2.9), we notice that

the determination of vector iterates /J(l* does not require the computation or
storage of the auxiliary vector iterates oc(t) of (2.1).

Having described the Chebyshev semi-iterative method, we now consider
the successive overrelaxation iterative method of YOUNG and FRANKEL [6, 26],
applied to the matrix equation (1.2) where B is primitive. Without making
further assumptions on the matrix B, such as B having entries only of one sign
[10], successive overrelaxation applied directly to (2.1) has not as yet been
completely rigorously analysed. We now show that by considering matrix
equations with twice as many components, successive overrelaxation can be
rigorously applied to a system of equations derived from (1.2). From (1.2),
we consider the coupled pair of matrix equations

which in matrix notation becomes

then the matrix / is also convergent, and g(J) = (>(B). Since j>(B)<l , there
is a unique solution of (2.12'), and evidently % = y.

The successive overrelaxation iterative method applied to (2.12') is defined by

i

where a> is the relaxation factor, and 3c<0), y(0) are initial guess vectors. Since
the matrix / of (2.13) is evidently real, symmetric, cyclic, and consistently ordered
in the sense of YOUNG [26], then we can apply the general theory of successive

* This is a somewhat simpler computational form of the recurrence relationship
than is found, say, in [5', 16, IS].
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overrelaxation due to YOUNG [26] to (2.12'), and the optimum value of w is
given by

To show the similarity of (2.14) to (2.9), we now define a sequence of vectors f''',
where

In terms of the vectors f(", we can write (2.14) in the compact form

where f(0), and £<l) are given vectors guesses. Thus, we conclude that the suc-
cessive overrelaxation iterative method applied to (2.12') is in the same form
as the Chebyshev semi-iterative method of (2.9), except that in (2.9) the
relaxation factors vary with iteration, whereas in (2.17) the relaxation factor
to is fixed. Even more interesting is the fact that the numbers o>£ of (2.11) are
strictly decreasing for i~2i2 (0<g(fi)<l), and, as can be readily exhibited,

where <ab is defined in (2.15).
We now consider the second order Richardson iterative method [6, 13},

which is defined from (1.2) by

where rj<0>, rj(*> are given initial vector guesses to the unique solution ~x of (1.2),
and a. and ft are fixed acceleration parameters. If fj' = /? — a, this is equivalent to

One can extend the analysis of FEANKEL and RILEY [6, 26], and the best
acceleration parameters, those giving the fastest asymptotic convergence, are
given* by

With this choice of parameters a and ft', we see that the second order Richardson
iterative method of (2.19') is identical with the successive overrelaxation iterative
method of (2.17), witha> = o);,. Of course, RILEY [13] pointed out this correspond-
ence in the case of the numerical solution of the Dirichlet problem.

Having compared three systematic iterative methods for solving (1.2) when
B is primitive, we see that each method, when optimized, bears a strong resem-
blance to the other methods. In the next section, we shall compare these three
iterative methods using the spectral norms of the corresponding matrix operators
as a basis for comparison.

* See also [22, p. 485].
Numer. Math. Bd. 3 11
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§ 3. Primitive Matrices: Comparison of Methods
As in the previous section, we assume that B is real, primitive, and symmetric,

if
with {yi}JLi as an orthonormal set of eigenvectors of B. If, as in §2, ~e(0)= Zci y*.
then Euclidean norm of ^<0) is defined by *=1

To review some facts [9] concerning norms of matrices and vectors, let M be
any real NxN matrix. For any real vector * with N components, then from
y"= MX, we have

where

The quantity r(M) is called the spectral norm of the matrix M. Characterized
in a different manner, we have that

It is clear that if M is symmetric, then the spectral norm r (M) of M coincides
with the spectral radius Q (M) of M.

For the Chebyshev semi-iterative method of (2.9), we have that e(°>="e<°>i

andf('"> = £,f,(B)t«». Thus,

Since the matrix B is symmetric, so is the matrix pm(B), and we can express
r(pm(B)}

From (2.7) and (2.8), it follows that

and from (1.3) and (2.8),

Tosimplify the expression in (3-7'), we recall from (2.8) that C

cosh (wo-), where cosh0 = -^—, and q(B)<\. Thus, CM(l/e (B)) =«»°(J-±£ll!!Lj >
and since<r=ln|-^-+l/—s^jr-ll, we have that e~ma=.

le(B) K es(S) I Ij + j/j-g^B)/
From YOUNG'S basic formula \_26~] we can relate e~ma to the quantity cuj in
(2.15), and we have that e~ma= (u>b— 1)TO/2. Combining, we now write (3-7') as

Since "* 2 <1 for Og#<l, it follows that the right side of (3.8) is less than
\-\-x

unity, and is strictly decreasing with increasing m. Thus, we conclude that the
matrix operator pm (B} for the Chebyshev semi-iterative method is norm reducing
for all mS: 1.
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For the successive overrelaxation iterative method, or equivalently for the
second order Richardson iterative methods with GC---CO and ft— — 1, we have
the following recurrence relation for the error vectors of the iterates of (2.17):

where ~Bfm^ = ~x — £(m), wSiO, so that fi'(0) and 1;(1> are dependent on the given vectors

?°> and?11. If oc0(B)=J, and a1(B)=coB, we define now the polynomials a.m(B]
from the recurrence relation

By induction, v.m (B) is, for o> =}=0, a polynomial of degree m in B, and it is easily
verified that

Upon replacing the matrix B by the variable x in (3-10), the linear difference
equation of (3-10) can be solved, and a.m(x) can be explicitly represented by

It is clear from (3-11) that e'"1' depends on the relationship between s(0> and e(1).
For example, if "£(1)= — "E(O) and (a = aib, then

where

From the symmetry of the matrix B, we have that

but from (3-14), we can directly express r[qm-i(B)] as

We note that this spectral norm can actually initially increase with m, if wb is
sufficiently large*.

* An analogous observation was made by SHELDON [75] in the cyclic case. See
also §5.

11*

where(x)  amd ex  ( )a re  t j e  rpp ts  p f  t j eeq ia topm

id w=w pf (2.13 and ajske then as shown in [6] a;; tthe roots
of (3.13) are comp conjugates of the form where cos
Consequently,

}}
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We shall now show that the situation of (3.17') can be considerably improved.
Let

so that

For £(1> selected in this way, then

where rm(B) is a polynomial of degree m in B defined recursively, using (3.11)
and (3.19), by

with r0 (B) = /, and ̂  (B) = B.
Again,

and, for the case u)=mb, a short calculation [7, pp. 22—23] based on (3.14)
shows that

(3.23) T[rm(B)]----\rmS(B)\ = ((ab-ir>2{\ + m}fr^e*(B)}, m^O.
It is readily verified \7, pp. 23 — 24] that the right side of (3.23) is monotone
decreasing for all m^Q, showing that the matrix operator for the successive
overrelaxation iterative method of (2.17) is also norm reducing for m^\ with

£(1) chosen according to (3-18).
While the Chebyshev semi-iterative method of (2.9) requires but one

vector guess /?0>=f(0), (2.9) shows that /S*1' also satisfies (3.18), so that we can
directly compare the spectral norm (3.8) of the Chebyshev semi-iterative
method with the spectral norm (3-23) of the primitive successive overrelaxation

iterative with f(1) chosen according to (3-18) method. Now, since f0 (#) = !, and
rt(x)~x, it follows easily from (3-21) and (3-10) that rm(\) = \ for all m^O.
But from (2.7), the same is true of the polynomials pm(x). Moreover, since
r[rm(B)]= rm(9(B))\, and similarly r\}m(B)} = \ p m ( q ( B ) } \ , we can use, as in
(2.6), the well known property of the Chebyshev polynomials that among
all polynomials gm (x) of degree m with gm (1) = 1, fim (x) is the unique polynomial
whose maximum absolute value on the interval — Q ( B } ^ , X^-\-Q (B) is minimal.
This gives us

Lemma 1. In the primitive case where f<0) is arbitrary and £<1) = B£<0'+'g,

We shall now consider the successive overrelaxation iterative method with
another starting procedure*. Let

* Such a starting procedure is suggested for the primitive case from results in
the cyclic case by SHELDON [12]. See also §5.
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and £(w>l (wig}) we generated by (2.17). Then

and in general

where the matrix tm(B) is a polynomial of degree m in the matrix B, and is
defined recursively by

where tj(B) = Bi for 0^/g2. Again,

and for o.) = o)b, a short calculation based on (3.14) shows that

With 5m (<) = t", corresponding to the basic iterative method of (2.1), it is not
difficult to show that

Consequently, we have

Theorem 1. In the primitive case where C(0> is arbitrary and fi^ — B tf®+~g,
then for 0< p (B) < 1, and m>\,

Thus, the spectral norm of the matrix operator for m>\ iterations of the
Chebyshev semi-iterative method is less than the spectral norms of the matrix
operators for m iterations of the two variants (3.18) and (3.25) of the successive
overrelaxation iterative method, as well as the spectral norms for m iterations of
the iterative method of (2.1).
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where 3j1) = .F*£)) + jfi, and ~x£}=Fr*J0) + fo, and these equations determine the
vector sequences {x[m)}^=0, and {^M|}™=0. It is interesting to observe that the
proper subsequences {xj2MI+1|}^=o, and {If m)}^=0 can be iteratively determined
frnm

We can also apply to (4.1) the Chebyshev semi-iterative method of (2.9),
which eives. bv vector components.

where If, ?|0) are arbitrary guesses. The best choice of on is given by

Without using vectors with twice as many components, as was the case in §2,
the successive overrelaxation iterative method can be rigorously applied directly
to (4.1), giving

§ 4. Cyclic Matrices: The Cyclic Chebyshev Semi-Iterative Method

We now suppose that the NxN matrix B is cyclic, and in the form of (1.4).
As we have already pointed out, the matrix B in this form satisfies YOUNG'S
property A, and is consistently ordered. Because B is real and symmetric,
YOUNG'S theory [26] can be applied to the solution of the matrix equation of
(1.2). With B in the form (1.4), we partition the vectors 3" and g" of (1.2) in a
manner compatible with the partitioning in (1.4), and (1.2) is equivalent to

Numer, Math. Brt. 3
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where again ~x^=F'x!p+]?1. Thus, this iterative method requires no additional
vector storage over the successive overrelaxation iterative method*, and requires
but the single vector guess 4^0).

We shall call this iterative method, obtained by selecting appropriate sub-
sequences of Chebyshev semi-iterative method, the cyclic Chebyshev semi-
iterative method for the matrix equation (4.1).

In the primitive case of §3, we considered the (primitive) successive over-
relaxation iterative method, or equivalently the second order Richardson method
<x=o> and /?= — 1, with the starting procedures

and

Here again, it is only necessary in the cyclic case to compute the proper sub-
sequences {^2M>+1|}m=o and {xfm)}^n, and the starting procedures (4.6) and
(4.6') become in this case

and

If <om==(u then we see that (4.5) reduces to (4.2). Thus, for the cyclic
Chebyshev semi-iterative method, a sequence of parameters a>m is necessary
whereas for the successive overrelaxation method, only one parameter is necessary.
The variant of the successive overrelaxation method with the starting procedure
(4-7') has been studied by SHELDON [15] and the corresponding matrix operator
for m iterative is denoted by 2*"1 2i. The relationship between the cyclic
Chebyshev semi-iterative method and the successive overrelaxation method
is quite close. Indeed, as given by (2.18), lima>m = a>j, and it is in fact shown

m—K»
in [7], under simple assumptions, that the cyclic Chebyshev semi-iterative
method must degenerate numerically into the successive overrelaxation iterative
method.

As in §3, we will compare the successive overrelaxation iterative method
of (4-2) for the starting procedures of (4-7) and (4.7') with the cyclic Chebyshev
semi-iterative method of (4-5), and as we shall see, using spectral norms as a
basis for comparison, the cyclic Chebyshev semi-iterative method is superior**
to the successive overrelaxation iterative method.

* This idea has already been used by RILEY [13] to make the second order
Richardson iterative method competitive in storage with the successive overrelaxation
iterative method.

** In relationship to [18], Theorem 1 of [18] shows with spectral radii as a basis
for comparison, that the iterative method of (4.2) with o> = to6 is at least twice as
fast as the iterative method of (4.4). Using the cyclic Chebyshev semi-iterative
method of (4.5) eliminate this factor of 2 since, from (4.5), each complete iteration
of (4.5) increases the iteration indices of the vectors x^ and xl by two.
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where s|0) = "s^0) and e^0) = l^0) are the vector components of the initial error
vector. For these methods, we have that

where the matrix operator pm (B) corresponds respectively to the matrix operators
Pm(B), rm(B), tm(B) and sm(B) of §3. For the cyclic Chebyshev semi-
iterative method, and the (cyclic) successive overrelaxation iterative method
with the starting procedures of (4-7) and (4.7'). the corresponding error vector
for the jw-th complete iteration of these methods is defined by

From (2.8'), (3-21), and (3.28), it follows that the polynomials pm(x) of odd
degree contain only odd powers of x, while the polynomials of even degree contain
only even powers of x. Thus, we define polynomials Um and Vm through

Since the matrix has the form (4.1), then

and the definitions of (5.4) and the properties of the powers of the matrix B

allow us to express 5(*"' in the simple form

Defining the matrix above as Pm(B), this becomes

12*
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§ 5. Cyclic matrices. Comparison of methods

The results in this section depend strongly upon the methods and results
of §3, as well as the recent works of SHELDON [15]. For the Chebyshev
semi-iterative method, the successive overrelaxation iterative method, and the
second order Richardson iterative method of §2, we partition the error vector

e (m) in a manner compatible with the form of the matrix B in (4.1), and we
define



Chebyshev semi-iterative methods

160 GENE H. GOLUB and RICHARD S. VARGA:

We analogously define the 2 X 2 matrix Qm (/<) as

whose spectral norm is easily seen to be

From (5.4), this becomes

We now employ what is essentially a converse of Theorem 2 of the recent work
of SHELDON [15]*. Denoting the eigenvalues of the matrix B by //,•, IsSifSJV,
then

Let us now denote the matrix operator of (5-6') associated with the polynomials
pm(B), rm(B), tm(B). and sm(B) of §3 as Pm(B). Rm(B), Tm(B), and Sm(B),
respectively. Then it follows immediately from the results of §3 that

Since r(pm(B)'), T(rm(B)), r(tm(B)) and r(sM(B)) decrease monotonically with
m, so do r[Pm(B)], r [ R m ( B } ] , r[Tm(B}]**, and r[Sm(B)[. Furthermore, by
Theorem 1, for w>1 and 0<g<l ,

so that

Lemma 2. For all f«>l and 0<Q<i,

The spectral norm of the successive overrelaxation iterative method of (4.2)
for the case when CD is fixed equal to cob has been recently calculated by SHELDON

* Specifically, in the notation of SHELDON [15], the result we are using is given
in the following

Theorem. If A is a non-zero eigenvalue of L, then A is also an eigenvalue of some
T([i;) where //,• is an eigenvalue of the matrix B.

This result is tacitly assumed in [75], and we are indebted to Dr. SHELDON for
supplying us with a proof of this result.

** The quantity t[Tm(B)] in (5.10) is algebraically equivalent to the expression
for TfSJf^'Si]i\l'l>\hus, the monotonicity noted above strengthens SHELDON'S
Theorem 4 in [15].
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[75], and if £™6 represents the corresponding matrix operator for m iterations,
tlien *

where /„ is the larger root of

I

and r2=ft)(, — 1, so that

We observe that in obtaining the spectral norms for the four iterative methods
just considered, no assumption has been made about a special form of the initial
error £T<0>, and thus the four iterative methods can be directly compared.

Then we have
Theorem 2. In the cyclic case for all m>i and 0<p<l , with no special

assumption on the form of the initial error vector 1?(0),

Thus, the spectral norm of the matrix operator for the cyclic Chebyshev
semi-iterative method is less than the spectral norm of the matrix operators for
the successive overrelaxation iterative method and its modification by SHELDON.

Proof. From Lemma 2, it suffices to show that r[Pm(B)~\<r[$%t] for all
m>\ and 0<g<l . By using the expressions of (3.8), (5-10), and (5.12'), this
inequality reduces to

which is easily shown to be true for all m~>\, and 0<p<l . In fact, the proof
of the above inequality shows that the ratio r [iiJUJ/T [Pm (B}~\ is a strictly increasing
function of m, m>\, for all 0<g<1. We strengthen the inequalities of (5-14)
by including

Theorem3. In the cyclic case with 0<g<l , and no special assumptions
on the form of the initial error vector "E(O>, then the ratios

are strictly increasing for m> 1, and

* Theorem 3 of [15] contains minor misprints, which we are now correcting.

60



162

Chebyshev semi-iterative methods

GENE H. GOLUB and RICHARD S. VARGA:

Proof. It is an easy computation to show that T[Pm(B)]<2r2m{'[+d
that 2r2 m( l+r~2) is smaller than either r[Rm(B)] or r[2*J. The statements of
(5.16) and (5.17) then follow immediately*.

§ 6. Applications
A great many physical and engineering problems lead to the numerical solution

of matrix equations of the form

where A is an ATxJV real symmetric and positive definite matrix which can
after a suitable permutation of indices, be partitioned so that

where the diagonal blocks Aiif are MJ-XM., matrices, n,-^\ for \<^j<$, and
s

^•Hj — N. ARMS, GATES, and ZONDEK [/] extended the original analysis of
/=!

YOUNG [26] and FRANKEL [6] to what is called the successive block overrelaxation
iterative method, and it can be verified that the assumptions on the matrix A

above'are sufficient for the application of their theory. Let the vectors ~x and k
of (6.1) be partitioned in a manner compatible with (6.2). Then, we can write
(6.1) as

The square submatrices A^, 1r£;';Ss, are evidently non-singular, so that if
the block diagonal matrix C is defined by

* Mr. DAVID FEINGOLD of Klectricite de France (Paris) has recently proved
(private communication) that the ratio {T[2iy/T[ffM(-6)]} is strictly increasing for
m>\, 0<S<1, which strengthens Theorems 2 and 3.
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then C is also non-singular. Now, C~1A has unit diagonal entries, and we define
the matrix B as

so that the matrix B has zero diagonal entries. More precisely, B has the form

Equation (6.9') shows that, in order to carry out the successive block over-
relaxation iterative method, we have assumed that matrix equations of the form

can be solved directly for X;-, given G f .
The matrix C defined in (6.4) is symmetric and positive definite, so that

the matrices C* and C~^ are uniquely defined. Forming the product C~^A C~l,
we see that this product matrix also has unit diagonal entries, and in analogy

with (6.5), we define the matrix B by

62

where

where the .XJ0), lS/:gs, are given vector components of the given initial vector
guess ^(0>. The optimum value of m is computed from (4-3)j where the NxN
matrix B is defined in (6.5). Equivalently, the iterations of (6.8) can be defined

The successive block overrelaxation iterative method applied to (6.7) is
defined by

With the definition of the matrix B in (6.5), (6.1) becomes
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i+~

The matrix B has the same cyclic form as does B of (6.7), and since C"^AC~^
is a definite and symmetric matrix, it follows from (6.11) that B is symmetric
and convergent. Defining

and using (6.11), (6.1) reduces to

The matrix B is similar to B, with

Summarizing, we have reduced our original problem (6.1) by means of a change
of variables to the form (6.13), where B is symmetric, cyclic, and convergent.

We now apply the cyclic Chebyshev semi-iterative method to the numerical
solution of (6.13). If the vector components .̂(0), 1 ̂ f^p, are given, then

defines the cyclic Chebyshev semi-iterative method. The co's are calculated
from (2.10), where g(B) = g ( B ) , since B is similar to B. To show now the
relationship of this method to the successive block overrelaxation iterative method
of (6.9) —(6.9'), we write (6.15) equivalently as

By using the definitions of (6.11) and (6.12), it follows that (6.15) is equivalent
to (6.9) —(6.9'), provided the proper oj's are used in each step. In essence then,
we can indirectly carry out the modified Chebyshev semi-iterative method
of (6.15) by performing the iterations

*
where Xf^, \<j^s, is defined in (6.9').
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_+ /•g(2«) \
In terms of spectral norms, let 5(Bl)= [ A , , _ , . ) denote the error vector for

\gfwMV
the m-th complete iterate of (6.15), relative to the matrix B. From §5, we can
state that

_v /ix (2m) \
If er(m) = I * I is the error for the wz-th complete iteration of (6.9"), relative

\a.fm+1'}
to the matrix B, then from C'^x' = 'y, we have

Since both C* and C~* are symmetric and positive definite, their spectral radii
coincide with their spectral norms, so that

and

where equality is possible in both (6.19) and (6.19'). Combining these inequalities,
we have*

From the results of §5, of the iterative methods studied, the cyclic Cheby-
shev semi-iterative method of (6.16) — (6.16') gives the smallest spectral norm
relative to the matrix equation of (6.13). Since actually iterating by means
of (6.9') —(6-9") is equivalent to iterating by means of (6.16) —(6.16'), we arrive
at the conclusion that the iterations of (6.9') —(6.9") are quite efficient.

We now list some well known problems which numerically give rise to matrix
equations of the form (6.1), where the matrix A can be written as in (6-2).
Clearly, such a list would include all problems which have been previously
rigorously attacked by the successive overrelaxation iterative method, and its
extensions.

A. Dinchlet problem in a plane bounded region, using a five point approxi-
mation to LAPLACE'S equation. Here, one can use successive point overrelaxation
[6,19, 26], successive line relaxation [1, 3, 8], or successive two line overrelaxation
[12, 21], all these methods corresponding to different partitionings of the matrix A.

B. Dinchlet problem in a plane bounded region, using a ninepoint approxi-
mation to LAPLACE'S equation. Here, one can use successive line overrelaxation
[1, 21], or successive two line overrelaxation [8, 12, 21].

C. Biharmonic problem in a plane bounded region, using a thirteen point
approximation to the biharmonic equation. Here, one can use successive two
line overrelaxation [8, 12, 21].

* The quantity (^(M^1)) • g(M) is also called the P-condition number [17] for a
non-singular matrix M, and is denoted by P(M).
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In all these problems, the cyclic Chebyshev semi-iterative method can
be used, and from the results of § 5, this iterative method gives the smaller
spectral norm than the successive overrelaxation iterative methods.

Finally, matrix equations (6.1) do arise in which the matrix A cannot, after
a permutation of indices, be put into the form of (6.2), even with proper parti-
tioning. For example, in [21], a class of iterative methods called primitive
iterative methods are studied, and for this class the results of § 2 — 3 are pertinent.
It should also be said that even though the matrix A of (6.1) can be partitioned
so that (6.2) holds, it can very well be the case that the diagonal blocks A,- { ,
which must be directly inverted, as in (6.10), in order to apply the cyclic theory,
are either too large in size or too complicated to permit such direct inversion.
Thus, in solving the Dirichlet problem in a plane bounded region, if one chooses
to use a nine point approximation to LAPLACE'S equation, but is unwilling to
directly invert more than one equation in one unknown, a primitive iterative
method results. Here too the results of § 2—3 arepertinent.

§7. Numerical Results
We will now give results from both algebraic and numerical investigations,

comparing the Chebyshev semi-iterative method with variants of the suc-
cessive overrelaxation iterative method in the cyclic case. First, if ~e(0' is the

vector error of our initial estimate 3T0 of the unique solution of Ax'= k, and 5(m)

is the error vector for the m-ih. complete iteration, then from (5.6'),

Thus, if m (6) is the least positive integer for which

then m(d) is an upper bound for the number of iterations necessary to reduce
the Euclidean length of the initial error by the factor d. Let m^S), mz(d), w3(<5),
and m^(d) denote m(6) when Pm(B) is taken to be respectively Pm(B), Rm(B),
Tm(B) and 8™t. The tables 1—4 give m^d) for various values of 6 and (>(B).

Table 1. eu6 = 1.8195; e = 0.99507 Table 2. wb=\.93419; e = 0.999421

mM
«2(<5)
«3(<5)
m4(<5)

6=0.1

18
22
23
37

,5=0.05

21
27
27
41

4-0.01

29
36
37
50

(S-0.0051 i— 0.001

33
40
41
54

41
49
50
63

mi(S)
WJ2(<5)
«S(«)
mt(d)

s-=o.t

50
64
65
126

d=o.os

60
77
77

137

d— 0.01

84
104
105
163

(5=0.005

94
116
116
174

c5 = 0.001

117
142
143
200

Table 3- cu6=1.95218; e(5)=0.9997 Table 4. tos=1.972H; g(B) = 0,9999

nh(S)
m2(S)
ms(d)
mt(d)

« = 0.1

69
89
89

(5=0.05 i5=0.01

93
106
107

182 i 198

116
144
145
234

s-o.oos

130
160
161
250

a— 0.001

163
197
198
285

mi(S)
ms(S)
m3(S)

»,(«)

d-0.1

119
154
154
337

(5=0.05

143
183
184
364

(5-0.01 | (5 = 0.005 1(5 -0.001

200
249
250

225
277
278

426 453

282
341
341
514
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It is interesting to point out that the following

can be proved* for all i, j. Thus, the cyclic Chebyshev semi-iterative method
cannot require, for very small <5>0, percentagewise substantially different
numbers of iterations than those required by the successive overrelaxation
method. However, for slowly convergent problems, @ (B) close to unity, there
is a considerable advantage in using the cyclic Chebyshev in practical problems
where <5 is approximately 1CT2.

The above, while constituting an algebraic study of the various methods,
does not give a complete picture of the comparison between these methods,
because of the inequalities in (7.1) and (7.2). Although equality is attainable
in (7.1) and (7.2), so that the numbers of iterations in Tables 1—4 are also
attainable, we include results of numerical experiments in the cyclic case. In
an effort to make the numerical experiments as up-to-date and practical as
possible, we have compared the successive two line over-relaxation iterative
method [8,12, 21} with the cyclic Chebyshev semi-iterative method for the
same partitioning of the matrix A of (6.2), in the numerical solution of
self-adjoint partial differential equation

in a plane bounded region Q, where D and a are positive in Q, with boundary
conditions

on the boundary P of Q. These numerical problems involved non-constant
mesh spacings. In part 1 of each problem, S (x, y) =- 0, so that the unique solution
of the matrix problem of (6.1) is the null vector. With all the components of
the initial vector *(0) taken as 103, the iterations were continued until the maximum
component of ̂ ("*) was less than or equal to 6. In part 2 of each problem, 5 (x, y) = 1
and with the same initial vector ~x^ as in part 1, the iterations were continued until

satisfied fl<«+1> ̂  <5tf(0).

Because the norms of both parts of the experiment are convenient in com-
putation, but not the spectral norms of the comparison, the following comparisons
are of interest in connection with the relationships exhibited in §6. The suc-
cessive overrelaxation method is applied to two different orderings of the matrix
A: the first, the GI ordering, is the ordering of (6.2); the second is the "normal"
ordering in which the double lines of mesh points are swept serially through
the mesh.

* See 17] for details.
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Table 5. Problem A 121 interior mesh points, cot = 1.8l95

Part 1

Method

Cyclic Chebyshev .
SHELDON'S Modified SOR . . .
SOR with to6 , ax Ordering . . .
SOR with wb , Normal Ordering .

6=0.1

17
21
20
17

d ==0.01

28
35
34
30

(5=- 0.005

11
39
37
34

6 = 0.001

39:>-'
48
46
43

Part 2

Method

Cyclic Chebyshev . . . . . .
SHELDON'S Modified SOR . . .
SOR with cuj,, CT! Ordering . . .
SOR with coj, Normal Ordering .

A = 0.1

30
39
33
32

(5 ==0.01

41
52
46
45

<i =0.005

44
55
50
49

Table 6. Problem B 667 interior mesh points, o)j = 1.93419

Part 1

Method 6-0.1

Cyclic Chebyshev 
SHELDON'S Modified SOR . . . 88
SOR with coj, (Tj Ordering . . . 93
SOR with (Of,, Normal Ordering . 81

(5=0.01

106
123
127
121

6=0.005 ' 6=0.001

110
134
137
133

Part 2

Method ; 6=0.1 i <S=0.01

Cyclic Chebyshe
SHELDON'S Modified SOR . . .
SOR with o>f, , o1! Ordering . . .
SOR with a>b , Normal Ordering .

83 113
113 147

97 133
91 127

133
157
160

I 155

d = 0.005

119
157
143
137

For references, see Part I 3, 147 (1961).
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and

Gene H. Golub
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0. Introduction

In a related paper [3] we discuss a generalized conjugate gradient (CG)

iterative method for solving a system of real, linear, algebraic equations

Ax = b , (l-l)

where A is symmetric and positive definite. The method is based on splitting off

from A an approximating symmetric, positive-definite matrix M that corresponds

to a system of equations more easily solvable than is (l.l), and then accelerating

the associated iteration using CG. The method appears to be especially effective

for sparse matrices A arising from the discretization of boundary-value problems

for elliptic partial differential equations. For these cases, naturally arising

selections for M often result in iteration matrices possessing eigenvalue distri-

butions for which CG acceleration is effective.

The CG method has a number of attractive properties when used as an iterative

procedure:

(i) It does not require an estimation of parameters.

(ii) It takes advantage of the distribution of the eigenvalues of the iteration

operator,

(ill) It requires fewer restrictions on the matrix A for optimal behavior than

do such methods and successive overrelaxation.

In this paper we remove the restriction that A be symmetric, and

require only that its symmetric part (A + AT)/2 be positive definite. We derive

the generalized CG method for this case, taking for the approximating matrix -M the

symmetric part of A. We find that the method then simplifies, in that the computa-

tion of only one of the two CG parameters is required.

1. Derivation of the Method

We consider the system of linear equations

Ax = b , (l.l)

*Note added in electronic transfer: The generalized conjugate gradient method discussed here has
become known more popularly as the preconditioned conjugate gradient method.
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where A is a given n X n real matrix and b is a given real n-vector. We re-
write (1.l) as the system

where M = MT = (A + AT)/2 is the symmetric part of A, and H = 
is the negative of its skew-symmetric part. We assume that M is positive definite.

In [3],we discuss the solution of equations of the form (1.2) by a generalized CG

method, for the case in which M is symmetric and positive definite and N is symmetric.

In this paper, we derive the corresponding algorithm for the case in which N is

skew-symmetric.

Our interest is in those situations for which it is a simpler computational

task to solve

than it is to solve (l.l), and for which, in a sense to be described later, M~*N is

not too large.

Consider an iteration of the form

where

with

the residual at the kth step. The quantities a and mfc+, are scalar parameters.

Many iterative methods can be described by (l.'t-), e.g., if N were symmetric,

the Chebyshev semi-iterative method and Richardson second order method would be of

this form (cf. [5]). The generalized conjugate gradient method described below,

which is also of this form, has the advantage over those two methods that no a priori

information about the spectral radius of M N is needed for estimating parameters.

Furthermore, it takes advantage of the actual distribution of the eigenvalues of

M'1!?.

From (l.l)-) and (l.5), we obtain

For the generalized CG method, the parameters (a, "V+i) are computed so that

Since M is an n X n, symmetric,positive-definite matrix, (l.T) implies that for

some k < n

and hence
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3

71

(k)x = x .

That is,the iteration converges in no more than n steps.

We derive the above result by induction. Assume

Since N is skew-symmetric, there holds that for any real n-vector w

From (1.6), we have

and thus by (l.8) and (l.9),

Hence by choosing c^ = 1, we obtain z^M z^Similarly, z^ 
for the choice

We can simplify (l.io) by noting from (1.6), with (fc-i-l) replaced with (fc), that

so that

We obtain

Then for j <_ k-2, we obtain from (1.6), (1.8), and (l.9) that

But, since for a. = 1,
<j

there holds
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1*

Thus, since from (1.8) the l.h.s. of (1.12) is zero, we have for j < k-2

which implies

The desired result (l. 7) then follows by induction.

The generalizedCG method for the splitting M = (A + A )/2 is summarized

as follows:

Algorithm

Let xbe a given vector and arbitrarily d.
(1) Solve Mz(k)r(k), whe
(2) Compute

(3) Compute

(k) (k)
In the computation of m

k+-.> one need not recompute Mz since r can be saved

from step (l).

A simple induction argument shows that for all k, there holds

Tunlike thecaseN= 
NotethatinczP z'q=0 for p ̂  q and si

z(p) Hz(q)rp.q| ^ 1; there holds

Remarks concerning alternative forms of the generalized CG algorithm, which can be

more efficient for actual computation, can be found in [3]-

The calculated vectors (zill not generally
practice because of roundoff errors. One might consider forcing the newly calculated

vectors to be M orthogonal by a procedure such as Gram-Schmidt. However, this
would require the storage of all previously obtained vectors.
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5

Our basic approach is to permit the gradual loss of orthogonality and with it

the finite termination property of CG. We consider primarily the iterative aspects

of the algorithm. In fact for solving large sparse systems arising from the dis-

cretization of elliptic partial differential equations,the application of principal

interest for us and for which the generalized CG method seems particularly effec-

tive, convergence to desired accuracy often occurs within a number of iterations

small compared with a.

2. Some Properties of the Method

In [J], there are presented some optimality properties, convergence proper-

ties, and eigenvalue relationships for the case in which A is symmetric. We dis-

cuss in this section related matters for the case in which M is symmetric and

positive-definite and H is skew-symmetric.

2.1. From (l.6) with = 1 we obtain

which may be viewed as a relaxation of an iteration with iteration matrix

We note that L is similar to a skew-symmetric matrix and hence that all the eigen-

values of L are either pure imaginary and occur in conjugate pairs, or are zero.

The eigenvalues of L can be determined directly from the generalized CG

method in the same manner as for the symmetric case. We write fe.l) as
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6

In matrix notation, the above equation can be written as

Assuming the columns of Z are linearily independent, it follows that

It can be shown that the kth principal minor of J yields very good estimates of

the extreme eigenvalues of L, even in the presence of rounding errors. Note that

although the matrix J is not skew-symmetric it is diagonally similar to such a

matrix.

2.2 As in §2 of [}], define

Then we have, as for the symmetric case,

where

is a polynomial in K of degree k-1. Correspondingly, we have

As for the symmetric case, we define the weighted error function

where

For the present case, (2.2) becomes

Assuming that (M-N) is nonsingular, we obtain, using

and

the expression
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7

The result for the symmetric case, that the polynomials P _ vK) generated

"by CG minimize E(X ) over the choice of all polynomials of degree k-1, does

not hold here in general. Widlund [Y] has shown, however, that there does hold

for any y of the form

where S . (K) is a polynomial in K of degree k-1. Here i>,., j = 1,2,...,n, are the
K-J. j

eigenvalues of L.

We remark that, as for the symmetric case, the generalized CG method converges

in only p steps if K has only p < n distinct eigenvalues. This same result

holds also if K has a larger number of distinct eigenvalues "but e lies in a

subspace generated by the eigenvectors associated with only p of these eigenvalues.

2.3. Let us consider the polynomials S (K) generated by the Richardson
K.—J.

second order method, for which u> = 1 and ct> = o>, a fixed parameter, for k > 1.
1 fc~*"l ~

For this case, (l.U) with a s 1 becomes

and we have

We seek a value of <n for which the spectral radius of T ..(L) is a minimum.

Denote by p(x) the spectral radius of a matrix X. By using an argument

similar to that given in [k, pp. l8-2l4.],it can be shown that for

there holds

where
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To carry out the Richardson second order method we would need to have an

estimate of P(L). It is interesting to note that here also 0 < o> ^_ 1. As for

CG, underrelaxation is preferred for the case of skew-symmetric N.

2.14-. One can use for y in (2.̂ ) the optimal kth Richardson second-order

iterate to obtain an asymptotic error estimate for the generalized CG method.

Doing so yields, with the use of (2.5) and (2.6),

where C is a constant independent of k.

J. An Example

To illustrate the metnod, we give here a simple example for which one can

easily estimate the spectral radius of L. Consider the problem

where o is a constant and R is the unit square 0 < x,y < 1. We discretize

on a uniform mesh of width h, using for A the standard five-point approximation

A and for ux at the point ijj the approximation (U - - U. .)/(2h), where

U.. corresponds to u(x,y) at x = ih, y = jh.
i|J

We consider solving the discrete problem by the algorithm of 81, for which

and
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9

A fast direct method (cf. [l]) can be used in this case for the solution of the

system of equations Mz ̂  '= r . (Of course, a fast direct method could be used,

without iteration, to solve the entire problem for this simple example.)

To estimate the rate of convergence, we wish to determine the extremal

eigenvalues of L = M TJ, that is

For the corresponding differential operators, the equivalent eigenproblem is

for which one readily finds, by separation of variables, the eigenvalues to be

The first eigenvalues X provide the uniform estimate for the spectral radius
lj-1

P(L),

Direct computation of the eigenvalues of (3-l), which is somewhat more cumbersome

than for (3.2), shows (5.3) to be good asymptotically to within o(h ) as h -»0.

We remark that for the symmetric problem with ou replaced by Cu, and the

splitting M = -A and H = -01, the estimate corresponding to (j.j) is [2]

|x| ~ |a|/(2TT ) . Numerical experiments illustrating the behavior of the

modified CG method on related examples can be found in [7].
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The possibility of using CG on nonsymmetric matrices in the manner presented

here first occurred to us while listening to a presentation by T. Manteuffel of his

dissertation research [6]. We wish to thank 0. Wldlund for making available to us

his results to appear in [7] and to thank both 0. Widlund and I. Karasalo for their

helpful comments. This work was supported in part by the Energy Research and

Development Administration and by the National Science Foundation.
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Although Gene Golub and I first met in 1960, when he came to California, and have
been friends since, it was only in the early 1970s that we discovered that our scientific
interests had overlapped. The catalyst was the appearance of fast Poisson solvers. I
was interested in using them (or related fast Helmholtz solvers) to develop efficient
methods for obtaining numerical solutions of certain nonseparable elliptic partial dif-
ferential equations, and Gene Golub, from a numerical linear algebra point of view, was
interested in iterative methods that might exploit such solvers. Shortly after our first
joint results, which utilized Chebyshev acceleration, the conjugate gradient method
was beginning to receive fresh interest as an iterative method. Our attention turned
toward using that method as the convergence accelerator. Such a use was much in the
air then and was being looked at by others for particular underlying iteration split-
tings. At about the same time Dianne O'Leary appeared at Stanford as a graduate
student, and she was becoming interested in these subjects also. The following paper
ensued. We were very enthusiastic over the results, but as sometimes happens when
naming offspring, we called the method by a name that didn't stick. What is labeled
here as the generalized conjugate gradient method is designated more popularly, and
more descriptively, as the preconditioned conjugate gradient method.

Paul Concus
Berkeley, California, USA

Whenever I feel impatient with a graduate student, I think back to this project. Some-
times students need to hear the question explained multiple times. Sometimes they are
unable to separate the wheat from the chaff in their work. And sometimes the published
version bears little relation to their thesis writeup.
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All of this applies to this work, done when I was a graduate student in my early
twenties. Thankfully, Gene and Paul were exceptionally patient mentors.

Iterative methods for solving linear systems has been a recurring theme in my work,
and I always return to it with new appreciation for the revolutionary paper of Hestenes
and Stiefel upon which the subject of Krylov subspace methods was built, and for the
privilege of having Gene as my PhD advisor.

Dianne O'Leary
College Park, Maryland, USA
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A GENERALIZED CONJUGATE
GRADIENT METHOD FOR THE
NUMERICAL SOLUTION OF ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS*

Paul Concus, Gene H. Golub, and
Dianne P. O'Leary

Abstract

We consider a generalized conjugate gradient method for solving
sparse, symmetric, positive-definite systems of linear equations,
principally those arising from the discretization of boundary value
problems for elliptic partial differential equations. The method is
based on splitting off from the original coefficient matrix a sym-
metric, positive-definite one that corresponds to a more easily
solvable system of equations, and then accelerating the associated
iteration using conjugate gradients. Optimally and convergence

'Note added in reprinting: The generated conjugate gradient method discussed
here has been become known more popularly as the preconditioned conjugate
gradient method.
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properties are presented, and the relation to other methods is
discussed. Several splittings for which the method seems particu-
larly effective are also discussed and, for some, numerical examples
are given.

0. INTRODUCTION

In 1952, Hestenes and Stiefel [0] proposed the conjugate gradient
method (CG) for solving the system of linear algebraic equations

A\ = b,

where A is an n X n, symmetric, positive-definite matrix. This
elegant method has as one of its important properties that in the
absence of round-off error the solution is obtained in at most n
iteration steps. Furthermore, the entire matrix A need not be stored
as an array in memory; at each stage of the iteration it is necessary
to compute only the product Az for a given vector z.

Unfortunately the initial interest and excitement in CG was
dissipated, because hi practice the numerical properties of the
algorithm differed from the theoretical ones; viz., even for small
systems of equations (n «100) the algorithm did not necessarily
terminate in n iterations. In addition, for large systems of equations
arising from the discretization of two-dimensional elliptic partial
differential equations, competing methods such as successive over-
relaxation (SOR) required only O({n ) iterations to achieve a pre-
scribed accuracy [1]. It is interesting to note that in the proceedings
of the Conference on Sparse Matrices and Their Applications held
in 1971 [2] there is hardly any mention of the CG method.

In 1970, Reid [3] renewed interest in CG by giving evidence that
the method could be used in a highly effective manner as an
iterative procedure for solving large sparse systems of linear equa-
tions. Since then a number of authors have described the use of CG
for solving a variety of problems (cf. [4], [5], [6], [7], [8]). Curiously
enough, although CG was generally discarded during the sixties as
a useful method for solving linear equations, except in conjunction
with other methods [9], there was considerable interest in it for
solving nonlinear equations (cf. [10]).
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The conjugate gradient method has a number of attractive prop-
erties when used as an iterative method:

(i) It does not require an estimation of parameters,
(ii) It takes advantage of the distribution of the eigenvalues of

the iteration operator,
(iii) It requires fewer restrictions on the matrix A for optimal

behavior than do such methods as SOR.

Our basic view is that CG is most effective when used as an
iteration acceleration technique.

In this paper, we derive and show how to apply a generalization
of the CG method and illustrate it with numerical examples. Based
on our investigations, we feel that the generalized CG method has
the potential for widespread application in the numerical solution
of boundary value problems for elliptic partial differential equa-
tions. Additional experience should further indicate how best to
take full advantage of the method's inherent possibilities.

1. DERIVATION OF THE METHOD

Consider the system of equations

where A is an nXn, symmetric, positive-definite matrix and b is a
given vector. It is frequently desirable to rewrite (1.1) as

where M is positive-definite and symmetric and N is symmetric. In
section 4 we describe several decompositions of the form (1.2). We
are interested in those situations for which it is a much simpler
computational task to solve the system

than it is to solve (1.1).
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We consider an iteration of the form

where

Many iterative methods can be described by (1.4); e.g. the
Chebyshev semi-iterative method and the Richardson second-order
method (cf. [11]). The generalized CG method is also of this form.

For the Richardson or Chebyshev methods, the optimal parame-
ters (<•>*+i,aA.) are given as simple, easy-to-compute functions of
the smallest and largest eigenvalues of the iteration matrix M~*N
[11]; thus good estimates of these eigenvalues are required for the
methods to be efficient. The methods do not take into account the
values of any of the interior eigenvalues of the iteration matrix.

The CG method, on the other hand, needs no a priori informa-
tion on the extremal eigenvalues and does take into account the
interior ones, but at a cost of increased computational requirements
for evaluating <o*+1 and ak. In section 3, we describe a technique to
provide directly from the CG method good estimates for the
extreme eigenvalues of the iteration matrix.

From, equations (1.4) and (1.5), we obtain the relation

For the generalized CG method the parameters (ak,v>k+i} are
computed so that

Since M is n X n positive-definite, (1.7) implies that for some k « n
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and, hence,

That is, the iteration converges in no more than n steps.
We derive the above result by induction. Assume

Then if

there holds

and if

then

We can simplify the above expression for «AH.J as follows. From
(1.6) we obtain

and then from (1.9)

Since
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it follows

From (1.6), for j < k -1

But

so that

Thus, since JV = Nr,

Hence by induction we obtain (1.7) and (1.8).
The generalized CG method is summarized as follows.

ALGORITHM.

Let x(0) be a given vector and arbitrarily define x'"1'. For
fc = 0,l,...

(1) Solve Mza' = c-(M-JV)x(*'.
(2) Compute

86



A generalized conjugate gradient method

184 Paul Concur, Gene H. Golub, and Dianne P. O'Leary

(3) Compute

Note that the algorithm can be viewed as an acceleration of the
underlying firstorder iteration (« t+i^l), x(t+1) = x<*) + aA.z(*:).
As with other higher order methods, the storage requirements of the
algorithm are greater than those of the underlying first-order itera-
tion being accelerated.

The algorithm presented above is given primarily for expository
purposes. For actual computation, the following equivalent form
can be more efficient in terms of storage [3].

ALGORITHM (alternative form).

Let x(0) be a given vector and arbitrarily define p'"1'. For
fc = 0,l,...

(1) Solve Mz<(:1 = c-(M-N)\w .
(2) Compute

(3) Compute

In the computation of the numerators of ak and bk one need not
recompute Mz'*1, since it can be saved from step (1). Also, instead
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of computing the right-hand side of step (1) explicitly at each
iteration, it is often advantageous to compute it recursively from

which equation is obtained from step (3). The vector (M - JV)pU)

appearing in (1.12) may be saved from the computation of ak.
Similar remarks hold for the algorithm in its first form as well.
There is evidence that the use of (1.12) is no less accurate than use
of the explicit computation (see [18], [3] for particular examples).

The calculated vectors {z^'JJIo will not generally be .M-orthog-
onal in practice because of rounding errors. One might consider
forcing the newly calculated vectors to be M-orthogonal by a
procedure such as Gram-Schmidt. However, this would require the
storage of all the previously obtained vectors.

Our basic approach is to permit the gradual loss of orthogonality
and with it the finite termination property of CG. We consider
primarily the iterative aspects of the algorithm. In fact, for solving
large sparse systems arising from the discretization of elliptic partial
differential equations, the application of principal interest for us
and for which the generalized CG method seems particularly effec-
tive, convergence to desired accuracy often occurs within a number
of iterations small compared with n.

2. OPTIMALITY PROPERTIES

From (1.6), we obtain

Define
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We have z(1) = (/ - a0K)L(0}, and there follows by induction that

where

We denote

and from (2.1) we have for k = 2,3,..., /

and

The coefficients {/8/° }j_0 can be generated directly. From (2.3)
and the relation z('+1) = z(0) + AT(x('+l) -x(0)), there foUows

Then if

Consider the weighted error function:

Assuming that (M — N) is nonsingular, we obtain, using
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the relations

where

Equivalently, we can use (2.7) and re-write (2.8) as

The quantity £(x(/+1)) is minimized when we choose p(/) so that

where

Let

Then using arguments similar to those given in [12], the following
can be shown:

(B) The generalized CG method is optimal in the class of all
algorithms for which

That is, the approximation x"+1> generated by the generalized
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CG method satisfies

where the minimum is taken with respect to all polynomials P,
of degree /.

Recall that we have assumed that M and (M — N) are positive
definite and symmetric. Thus the eigenvalues of K = (I-M~1N)
are all real and K is similar to a diagonal matrix. Hence, if K has
only p < n distinct eigenvalues, there exists a matrix polynomial
Qf (K) so that

In this case, E(\<f}) = 0 and hence

so that the iteration converges in only p steps. The same result also
holds if K has a larger number of distinct eigenvalues but e(0) lies
in a subspace generated by the eigenvectors associated with only p
of these eigenvalues.

We remark also that statement (B) implies CG is optimal for the
particular eigenvector mix of the initial error e(0), taking into
account interior as well as extremal eigenvalues. As will be dis-
cussed in the next section, the extremal eigenvalues are approxi-
mated especially well as CG proceeds, the iteration then behaving
as if the corresponding vectors are not present. Thus the error
estimate (2.11), which is based on the extremal eigenvalues, tends to
be pessimistic asymptotically. One often observes, in practice (see
section 5), a superlinear rate of convergence for the CG method.

3. EIGENVALUE COMPUTATIONS

The CG method can be used in a very effective manner for
computing the extreme eigenvalues of the matrix K = I - M' 1N.
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thus defining ak, bk, and ck. In matrix notation, the above equa-
tion can be written as

KZ = ZJ. (3.2)

Assuming that the columns of Z are linearly independent, there
follows from (3.2) that

K = ZJZ-\

hence the eigenvalues of K are equal to those of J. As pointed out
in section 2, if K has repeated eigenvalues or if the vector z(0) is
deficient in the direction of some eigenvectors of K, iteration (3.1)
will terminate in k < n steps.

The process described by (3.1) is essentially the Lanczos algo-
rithm [13]. It has been shown by Kaniel [14] and by Paige [15] that
good estimates of the extreme eigenvalues of K often can be
obtained from the truncated matrix
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where k is considerably less than n. This result holds even in the
presence of round-off error [16].

It was pointed out in section 1 that the equation describing the
CG method is of the same form as that describing the Chebyshev
semi-iterative method and Richardson second order method, but
that a knowledge of the extreme eigenvalues of K is required for
obtaining parameters for the latter two methods. Thus one could
construct a polyalgorithm in which the CG method is used initially
to obtain good approximations to the solution and to the extreme
eigenvalues of K, after which the Chebyshev semi-iterative method,
say, is used, thereby avoiding the additional work of repeatedly
calculating CG parameters. This technique has been used in an
effective manner by O'Leary [17].

4. CHOICE OF M

For the splitting M = /, N = I — A one obtains the basic, un-
modified CG algorithm, for which

is simply the residual at the k th step. Since the rate of convergence
of the generalized CG method, as given by the estimate (2.11),
decreases with increasing

it is desirable to choose a splitting for which K is as small as
possible. If A = L + D + U, where D consists of the diagonal ele-
ments of A and L(U) is a strictly lower (upper) triangular matrix,
then it is reasonable to consider the choice

This M, which is equivalent to a reseating of the problem, is one for
which (1.3) can be solved very simply for z. It has been shown by
Forsythe and Straus [19] that if A is two-cyclic then among all
diagonal matrices this choice of M will minimize K.
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In many cases, the matrix A can be written in the form

where the systems

are easy to solve, and for such matrices, it is convenient to choose

Using (4.3), we can write the system (1.1) in the form

Let the initial approximation for Xj be xf, and obtain x2
0) as the

solution to (4.4b) so that

This implies that

and, hence, by (1.10)

and thus

94



A generalized conjugate gradient method

192 Paul Concus, Gene H. Colub, and Dianne P. O'Leary

A short calculation shows that z|1) = 0 and hence o,-l. Using
(1.6), a simple inductive argument then yields that for j — 0,1,2,...

This result was first observed by Reid [8] for the case in which Ml

and M2 are diagonal, i.e., in which the matrix A has "Property A"
and is suitably ordered. Other cases for elliptic boundary value
problems in which matrices of the form (4.3) arise will be discussed
in section 5. For these cases convergence can be rapid because K
has only a few distinct eigenvalues, even though K is not especially
small.

Various other splittings of the matrix A can occur quite naturally
in the solution of elliptic partial differential equations. For exam-
ple, if one wishes to solve

where R is a rectangular region and Au = 92u/dx2 + 32u/dy2, it
is convenient to choose M as the finite difference approximation to
a separable operator, such as the Helmholtz operator - A + C, for
which fast direct methods can be used [23]. A numerical example
for this case is discussed in section 5. If one wishes to solve a
separable equation, but on a nonrectangular region S, then by
extending the problem to one on a rectangle R in which S is
embedded, M can be chosen as the discrete approximation to the
separable operator on R, for which fast direct methods can be used.
Such a technique provides an alternative to the related capacitance
matrix method [25] for handling such problems. Forms of this
method utilising CG, but in a different manner than here, are
described hi [26] and [27].

Several authors [4], [20], [21] have used CG in combination with
symmetric successive overrelaxation (SSOR). For this method the
solution of the equation Afz"° = c-(M — A^)x(*) reduces to the
solution of
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where D, L, and V are as described previously in this section
(although D may be block diagonal), r ( t ) « = b — ^x'1*, and w is a
parameter in the open interval (0,2). SSOR is particularly effective
in combination with CG because of the distribution of the eigenval-
ues of K (cf. [22]).

Meijerink and van der Vorst [7] have proposed that the following
factorization of A be used:

so that

The matrix F is chosen with a sparsity pattern resembling that of
A. This splitting appears to yield a matrix K with eigenvalues that
also are favorably distributed for CG. A block form of this tech-
nique recently developed by Underwood [24] achieves a more
accurate approximate factorization of A with less computer storage
and about the same number of arithmetic operations per iteration.

Generally, in addition to the requirement that (1.5) be "easy" to
solve, M should have the following features if the generalized CG
algorithm is to be computationally efficient. For rapid convergence
one seeks a splitting so that

(i) M~1N has small or nearly equal eigenvalues
or (ii) M~*N has small rank.
Often a choice for M satisfying these restrictions comes about
naturally from the inherent features of a given problem.

5. NUMERICAL EXAMPLES

For the first example, we consider the test problem discussed in
[23]

where a(x, y) = [1 + %(x* + y*)]2 and R is the unit square 0 < x.
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y <1. After a transformation the problem becomes

where a(x, y) - 6(x2 + y*)/al/2. As in [23] we discretize (5.1) on a
uniform mesh of width h, using for A the standard five-point
approximation A,, (see Henrici's paper in this study for approxima-
tions to A), and we choose the splitting

with € = 0 = 0^ or C = 3 = i(amax + aIJliII).
In [23] Chebyshev acceleration was used, which requires an

estimate of the ratio of the extremal eigenvalues of the iteration
matrix. Here we use the modified CG algorithm of section 1. For an
initial guess W(0) =• 0 and choice of / and g corresponding to the
solution w = 2[(*-l/2)2+(.y-l/2)2], the results are given in
Table'1 for h =1/64. The results obtained for h =1/32 were
essentially identical, as the iteration is basically independent of h
for this problem (see [23]).

Note that the Chebyshev method is sensitive both to the value of
C and to the accuracy of the eigenvalues from which the parame-
ters are calculated. The parameters used for the middle column
were based on Gerschgorin estimates from the Rayleigh quotient.

TABLE 1
Maximum error vs. iteration number for first example.

iteration
1
2
3
4
5
6

Chebvshev (from [23])
C-0
exact

eigenvalues

2.4(-6)

C-3
approximate
eigenvalues

l.K-6)

C-3
exact

eigenvalues
1.6(-2)
7.4(-4)
l.l<-5)
2.7<-7)
4.3(-9)
1.2(-10)

CG

C-0
4.5(-2)
2.6(-3)
3.0<-5)
5.7(-7)
5.1(-9)
4.4(-ll)

C = 3
1.6(-2)
6.7(-4)
l.CH-5)
l.K-7)
8.2(-10)
5.7(-12)
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which gave a ratio of largest to smallest eigenvalue about three
times too large. The CG method appears to be less sensitive to the
value of C. After several iterations CG begins to converge more
rapidly than does the optimal Chebyshev method, which behavior is
typical of the CG superlinear convergence property discussed in
section 2. This example is one for which rapid convergence results
because the eigenvalues of M~ 1N are small.

We give as the second example

where T is the domain shown in Figure 1. For a uniform square
mesh of width h, and 0 < / < (2h)~l a whole number, so that all
boundary segments are mesh lines, the coefficient matrix A for the
standard five-point discretization and natural ordering has the form
(4.3). M! and M2 correspond to the mesh points in each of the two
squares, r, and T2, and F to the coupling between them. F has
non-zero entries in only p = 21 — 1 of its rows.

Ftc. 1. 7-shaped domain.
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According to the discussion following (4.3) we choose

Then for the generalized CG algorithm, there holds ak = 1 and that
z, and z2 are alternately zero, thereby reducing computational and
storage requirements. We use a fast direct Poisson solver for the
systems involving Ml and M2.

The results for U/0' uniformly distributed random numbers in
(0,2) and f ( x , y) and g(x, y) such that u = x2 + y2 is the solution
are given in Table 2. Here the average error per point, the two norrn
of the error divided by the square root of the number of interior
mesh points, is given for each of the test problems.

For this example, the eigenvalues of M~1N are not especially
small in magnitude; however, since M~1N has rank of only 2p,

TABLE 2
Average error per point vs. iteration number.

h
I
P

iteration
1
2
3
4
5

10
15

Case I
1/32

4
7

ave. error/pt
8.58(-2)
7.05<-2)
1.30<-2)
3.35<-3)
2.71(-4)
2.65(-7)
1.14(-13)

Case II
1/64

4
7

ave. error/pt
3.70(-2)
3.13(-2)
6.66(-3)
2.53(-3)
6.03(-4)
5.13(-8)
5.60(-13)

Case III
1/64

8
15

ave. error/pt
1.08(-1)
9.82(-2)
4.94(-2)
1.80(-2)
4.28(-3)
7.3S(-5)
4.71(-8)
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convergence is obtained in only a moderate number of iterations.
For Case I and Case II the last row represents full convergence to
machine accuracy subject to rounding errors, as would be expected
since 2p = 14 for these cases.

We wish to thank Myron Stein of the Los Alamos Scientific
Laboratory for his careful computer programming of the second
test problem. This work was supported in part by the Energy
Research and Development Administration, by the Hertz Founda-
tion, and by the National Science Foundation.
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It was in 1997 when I first met Gene at Hong Kong on the Workshop on Scientific
Computing dedicated to his 65th birthday. Then Gene introduced me to my first two
foreign teachers, Iain S. Duff and Andrew J. Wathen, whom I visited for one year
from August 1997 to August 1998. The communication and discussion with Gene, Iain,
and Andy on solving nonsymmetric linear systems arising from discretization of the
convection-diffusion equations by making use of efficient preconditioning techniques
changed my research interest and also my academic life, as I then began to study more
application-oriented problems and computation-based methods.

Gene said to me that the numerical linear algebra community is a very friendly one;
and the longer one is in this community, the more one will get this feeling. Later, I find
that what he told me is exactly right. Gene is always very kind, helpful, encouraging,
and concerned about young researchers.

About the Hermitian and skew-Hermitian splitting (HSS) iteration method coau-
thored with Gene and Michael, its embryonic form is a two-step iteration scheme
including two iteration parameters, like the classical alternating direction implicit
(ADI) iteration scheme for solving partial differential equations. Once this idea came
out, we immediately realized that this two-parameter iteration scheme lacks mathemat-
ical beauty and its convergence demands complicated conditions. We observed that its
equal-parameter case can completely avoid these shortcomings. This finally resulted in
the present version of the HSS iteration method.
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me just end this short essay with the following words using a Chinese idiom: Happy
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Beijing, P.R. China
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Abstract. We study efficient iterative methods for the large sparse non-Hermitian positive
definite system of linea.r equations based on the Hermitiaii a.nd skew-Hermitian splitting of the
coefficient matrix. These methods include a Hermitian/skew-Hermitian splitting (HSS) iteration and
its inexact variant, the inexact Herrnitian/skew-Hermitian splitting (IHSS) iteration, which employs
some Krylov subspace methods as its inner iteration processes at each step of the outer HSS iteration.
Theoretical analyses show that the HSS method converges unconditionally to the unique solution of
the system of linear equations. Moreover, we derive an upper bound of the contraction factor of the
HSS iteration which is dependent solely on the spectrum of the Hermitian part and is independent
of the eigenvectors of the matrices involved. Numerical examples are presented to illustrate the
effectiveness of both HSS and IHSS iterations. In addition, a model problem of a three-dimensional
convection-diffusion equation is used to illustrate the advantages of our methods.

Key words. non-Hermitian matrix, splitting, Hermitian matrix, skew-Hermitian matrix, itera-
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1. Introduction. Many problems in scientific computing give rise to a system
of linear equations

with A a large sparse non-Hermitian and positive definite matrix.
Iterative methods for the system of linear equations (1.1) require efficient split-

tings of the coefficient matrix A. For example, the Jacobi and the Gauss-Seidel
iterations [16] split the matrix A into its diagonal and off-diagonal (respectively,
strictly lower and upper triangular) parts, and the generalized conjugate gradient
(CG) method [7] and the generalized Lanczos method [27] split the matrix A into its
Hermitian and skew-Hermitian parts; see also [11, 17, 26, 1] and [2], respectively. Be-
cause the matrix A naturally possesses a Hermitian/skew-Hermitian splitting (HSS)

[7]
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where

we will study in this paper efficient iterative methods based on this particular matrix
splitting for solving the system of linear equations (1.1).

Now A = H(I + R-1S), and thus A-1 = (I + H~lS)'1 H~l. Thus, if we re-
place (I + H~1S)-1 by its first order approximation /- H~1S, then (I - H~lS)H~l

could be employed as a preconditioner to the matrix A. Of course, the precondi-
tioning effect is completely determined by the spectral distribution of the matrix
H~1S, and it is satisfactory if the Hermitian part H is dominant [1]. On the other
hand, if the skew-Hermitian part 5 is dominant, we can use an alternative precon-
ditioning strategy recently presented by Golub and Vanderstraeten in [15]. Their
basic idea is to invert the shifted skew-Hermitian matrix al + S and then employ
(J— (S + aI)~1(H — aI))(S + al)~l as a preconditioner to the matrix A. In fact, the
preconditioning effect for this preconditioner depends not only on the spectrum but
also on the eigenvectors of the matrix (S + aI)~1(H — «/), which is, however, closely
related to the shift a. For a nearly optimal a, numerical experiments in [15] on a vari-
ety of problems from real-world applications have shown that the reductions in terms
of iteration count largely compensate for the additional work per iteration when com-
pared to standard preconditioners. We remark that, for both preconditioners, exact
inverses of the matrices H and al + S are quite expensive, and, therefore, some fur-
ther approximations, e.g., the incomplete Cholesky (1C) factorization [21, 20] and the
incomplete orthogonal-triangular (IQR) factorization [3], to these two matrices may
be respectively adopted in actual applications. However, theoretical analysis about
existence, stability, and accuracy of the resulting iterative method are considerably
difficult.

Moreover, based on the HSS (1.2)—(1.3), in this paper we present a different
approach to solve the system of linear equations (1.1), called the HSS iteration, and
it is as follows.

The HSS iteration method. Given an initial guess x^°\ for k = 0,1, 2 , . . . ,
until {x^} converges, compute

where a is a given positive constant.
Evidently, each iterate of the HSS iteration alternates between the Hermitian

part H and the skew-Hermitian part S of the matrix A, analogously to the classical
alternating direction implicit (ADI) iteration for solving partial differential equations;
see Peaceman and Rachford [23] and Douglas and Rachford [8]. Results associated to
the stationary iterative method with alternation can be also found in Benzi and Szyld
[4]. Theoretical analysis shows that the HSS iteration (1.4) converges unconditionally
to the unique solution of the system of linear equations (1.1). The upper bound of the
contraction factor of the HSS iteration is dependent on the spectrum of the Hermitian
part H but is independent of the spectrum of the skew-Hermitian part S as well as
the eigenvectors of the matrices H, S, and A. In addition, the optimal value of the
parameter a for the upper bound of the contraction factor of the HSS iteration can
be determined by the lower and the upper eigenvalue bounds of the matrix H.

Note that we can reverse the roles of the matrices H and S in the above HSS
iteration method so that we may first solve the system of linear equations with coef-
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ficient matrix al + S and then solve the system of linear equations with coefficient
matrix al + H.

The two half-steps at each HSS iterate require exact solutions with the n-by-
n matrices al + H and al + S. However, this is very costly and impractical in
actual implementations. To further improve the computing efficiency of the HSS
iteration, we can employ, for example, the CG method to solve the system of linear
equations with coefficient matrix al + H and some Krylov subspacc method to solve
the system of linear equations with coefficient matrix al + S to some prescribed
accuracy at each step of the HSS iteration. Other possible choices of inner iteration
solvers are classical relaxation methods, multigrid methods or multilevel methods,
etc. This results in an inexact Hermitian/skew-Hermitian splitting (IHSS) iteration.
The tolerances (or numbers of inner iteration steps) for inner iterative methods may
be different and may be changed according to the outer iteration scheme. Therefore,
the fHSS iteration is actually a nonstationary iterative method for solving the system
of linear equations (f.l).

Model problem analysis for a three-dimensional convection-diffusion equation and
numerical implementations show that both HSS and IHSS iterations are feasible
and efficient for solving the non-Hermitian positive definite system of linear equa-
tions (1.1).

The organization of this paper is as follows. In section 2, we study the convergence
properties and analyze the convergence rate of the HSS iteration. In section 3, we es-
tablish the IHSS iteration and study its convergence property. The three-dimensional
convection-diffusion equation is employed as a model problem to give intuitive il-
lustration for the convergence theory for the HSS iteration in section 4. Numerical
experiments are presented in section 5 to show the effectiveness of our methods. And,
finally, in section 6, we draw a brief conclusion and include some remarks. Moreover,
the basic lemma used in the model problem analysis in section 4 and some illustrative
remarks can be found in the appendix.

2. Convergence analysis of the HSS iteration. In this section, we study the
convergence rate of the HSS iteration. We first note that the HSS iteration method
can be generalized to the two-step splitting iteration framework, and the following
lemma describes a general convergence criterion for a two-step splitting iteration.

LEMMA 2.1. Let A e Cnxn, A = M% - N, (i = 1,2) be two splittings1 of the
matrix A, and let x^ & C™ be a given initial vector. If {x^"1} is a two-step iteration
sequence defined by

k = 0 ,1 ,2 , . . . , then

Moreover, if the spectral radius p(M2 N2M1 NI) of the iteration matrix M2 N2M1 NI
is less than 1, then the iterative sequence {x(-k^} converges to the unique solution
x* 6 C" of the system of linear equations (1.1) for all initial vectors x^ € C".

For the convergence property of the HSS iteration, we apply the above results to
obtain the following main theorem.

1Here and in what follows, A = M — N is called a splitting of the matrix A if M is a nonsingular
matrix.
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THEOREM 2.2. Let A e C"x" be a positive definite matrix, let H = \(A + A*)
and S = ^(A — A*) be its Hermitian and skew-Hermitian parts, and let a be a positive
constant. Then the iteration matrix M(a) of the HSS iteration is given by

and its spectral radius p(M(a)) is bounded by

where \(H) is the spectral set of the matrix H. Therefore, it holds that

i.e., the HSS iteration converges to the unique solution x" e C" of the system of linear-
equations (1.1).

Proof. By putting

iri Lemma 2.1 and noting that al + H and al + S are rionsiiigular for any positive
constant a, we obtain (2.1).

By the similarity invariance of the matrix spectrum, we have

Letting Q(a) = (al - S)(al + S)"1 and noting that 5* = -5, we see that

That is, Q(ot) is a unitary matrix. (Q(a) is also called the Cayley transform of S.)
Therefore, ||Q(a)||2 = 1. It then follows that

Since A; > 0(i = 1,2, . . . ,re) and a is a positive constant, it is easy to see that
p(M(a)) < a (a) < 1. D

Theorem 2.2 shows that the convergence speed of the HSS iteration is bounded
by a-(a), which depends only on the spectrum of the Hermitian part H but does
not depend on the spectrum of the skew-Hermitian part 5, on the spectrum of the
coefficient matrix A, or on the eigenvectors of the matrices H, S, and A.

Now, if we introduce a vector norm |||x||| = \\(cel + S)x||2 (for all x G C") and
represent the induced matrix norm by |||X||| = ||(a/-|-S')X(a/-|-S')^1||2 (for all X €
C'ixn), then, from the proof of Theorem 2.2, we see that

|||M(a)||| = ||(a/-,ff)(a/ + fl-)-1(a/-S')(aJ + S)-1 | |2< (7(a),
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and it follows that

Therefore, cr(a) is also an upper bound of the contraction factor of the HSS iteration
in the sense of the | • 1 1 |-norm.

We remark that if the minimum and the maximum eigenvalues of the Hermitian
part H are known, then the optimal parameter a for IT (a) (or the upper bound of
p(M(a)} or |||M(a)|||) can be obtained. This fact is precisely stated as the following
corollary.

COROLLARY 2.3. Let A e Cnxn be a positive definite matrix, let H = ^(A + A*)
and S = ^(A — A*) be its Hermitian and skew-Hermitian parts, and let 7min and 7max

be the minimum and the maximum eigenvalues of the matrix H, respectively, and let
a be a positive constant. Then

and

where K(H) is the spectral condition number of H.
Proof. Now,

To compute an approximate optimal a > 0 such that the convergence factor p(M(a))
of the HSS iteration is minimized, we can minimize the upper bound a(a) of p(M(a))
instead. If a" is such a minimum point, then it must satisfy a" —7mjn > 0, a" —7max <
0, and

Therefore,

and the result follows.
We emphasize that, in Corollary 2.3, the optimal parameter a* minimizes only

the upper bound a (a) of the spectral radius of the iteration matrix but does not
minimize the spectral radius itself; for an illustration of this phenomenon, see, e.g.,
Table 2.

Corollary 2.3 shows that, when the so-called optimal parameter a* is employed,
the upper bound of the convergence rate of the HSS iteration is about the same as that
of the CG method, and it does become the same when, in particular, the coefficient
matrix A is Hermitian. It should be mentioned that, when the coefficient matrix A
is normal, we have HS = SH, and, therefore, p(M(a)) = |||M(a)||| = a(a). The
optimal parameter a* then minimizes all of these three quantities.
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3. The IHSS iteration. The two half-steps at each step of the HSS iteration
require finding solutions with the n-by-n matrices al + H and al + S, which is,
however, very costly and impractical in actual implementations. To overcome this
disadvantage and further improve the efficiency of the HSS iteration, we can solve
the two subproblems iteratively. More specifically, we may employ the CG method to
solve the system of linear equations with coefficient matrix al + H, because al + H is
Hermitian positive definite, and some Krylov subspace method [7, 24, 18] to solve the
system of linear equations with coefficient matrix al + S. This results in the following
IHSS iteration for solving the system of linear equations (1.1).

The IHSS iteration method. Given an initial guess x^\ for k = 0,1,2,... ,
until {x^y converges, solve x(k+?^approximately from

by employing an inner iteration (e.g., the CG method) with x^ as the initial guess;
then solve x^k+1^ approximately from

by employing an inner iteration (e.g., some Krylov subspace method) with x^+s) as
the initial guess, where a is a given positive constant.

To simplify numerical implementation and convergence analysis, we may rewrite
the above IHSS iteration method as the following equivalent scheme.

Given an initial guess x^, for k = 0,1, 2 , . . . , until {x^} converges,
1. approximate the solution of (al + H)z^ = f^ (f'*' = b — Ax^) by iterating

until z'fe' is such that the residual

satisfies

and then compute x^k+^ = x1-^ + z^;
2. approximate the solution of (al + S)z(fc+i) = f(-k+^ (f(~k+^ = b- Ax^+i))

by iterating until z^'+s) is such that the residual

satisfies

and then compute xl-k+1> = x^k+^ + z^+J) . Here || • || is a norm of a vector.
In the following theorem, we analyze the above IHSS iteration method in slightly

more general terms. In particular, we consider inexact iterations for the two-step
splitting technique (cf. Lemma 2.1). To this end, we generalize the norm ||| • ||| to
HI • HUf j , which is defined by |||x|||M2 = 11-^2^11 (for all x 6 C"), which immediately
induces the matrix norm |||X|||M2 = \\M2XM^l\\ (for all X e Cnx").

THEOREM 3.1. Let A e Cnxn and A = Mi-N, (i = 1,2) be two splittings of the
matrix A. If {x(-fc'| is an iterative sequence defined as
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satisfying -/..J < Sk, where f'*' = 6 — Ax^k\ andJU a ||r^J|| — ft-? ?

satisfying.,!. < %, where f^k+^=b — Ax^k+^,m

Moreover, if x* e C" is the exact solution of the system of linear equations (1.1),
then we have

ra/iere

/n particular, if

tten i/te iterative sequence {x^} converges to x* e Cn, where emax = niaxfcjej;} ond
»7max = maxfcj^}.

Proof. Prom (3.3), we obtain

Similarly, from (3.4), we get

Therefore, we have

which is exactly (3.5).
Because x" € C" is the exact solution of the system of linear equations (1.1), it

must satisfy
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and

By subtracting (3.10) from (3.8) and (3.11) from (3.9), respectively, we have

and

Taking norms on both sides of the identities (3.12) and (3.13), we can obtain

and

Noticing that

and

by (3.12), (3.14), and the definitions of the sequences {p^} and {q<~k+^}, we have

and

Through substituting (3.16) and (3.17) into (3.15), we finally obtain
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We remark that, if the inner systems can be solved exactly in some applications,
the corresponding quantities {e^} and {%}, and hence emax and rymax, are equal to
zero. It then follows that the convergence rate of the IHSS iteration reduces to the
same as that of the HSS iteration. In general, Theorem 3.1 shows that, in order to
guarantee the convergence of the IHSS iteration, it is not necessary for {e^} and {%}
to approach zero as k is increasing. All we need is that the condition (3.7) is satisfied.

By specializing Theorem 3.1 to the shifted Hermitian and skew-Hermitian split-
tings

we straightforwardly obtain the following convergence theorem about the IHSS iter-
ation method.

THEOREM 3.2. Let A e Cn x™ be a positive definite matrix, let H — \(A + A*)
and S = ^(A — A*) be its Hermitian and skew-Hermitian parts, and let a be a positive
constant. If {x^} is an iterative sequence generated by the IHSS iteration method
(cf. (3.1) and (3.2)) and if x* 6 C" is the exact solution of the system of linear
equations (1.1), then it holds that

| | |

where

In particular, if (o~(a) + 0/077IIlax)(l + #enlax) < 1, then the iterative sequence {x^}
converges to x* € Cn, where £max = max^e^} and »7max = max^T^}.

According to Theorem 3.1. we want to choose tolerances so that the computational
work of the two-step splitting iteration method is minimized. In fact, as we have
remarked previously, the tolerances {£&} and {%} are not required to approach zero
as k increases in order to get the convergence of the IHSS iteration but are required
to approach zero in order to asymptotically recover the original convergence rate
(cf. Theorem 2.2) of the HSS iteration.

The following theorem presents one possible way of choosing the tolerances {s^}
and \jlk} such that the original convergence rate (cf. Lemma 2.1) of the two-step
splitting iterative scheme can be asymptotically recovered.

THEOREM 3.3. Let the assumptions in Theorem 3.1 be satisfied. Suppose that both
{T\(k}} and {r^(k)} are nondecreasing and positive sequences satisfying Ti(k) > I ,
T2(k) > 1, and lim^oo supri(fc) = linij^oo supT2(fc) = +00, and that both Si and 82

are realconstantsinthenterval0,1)satisfying

where Ci and c2 are nonnegative constants. Then we have

where
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In particular, we have

i.e., the convergence rate of the inexact two-step splitting iterative scheme is asymp-
totically the same as that of the exact two-step splitting iterative scheme.

Proof. From (3.6) and (3.19), we obtain, for fc = 0 ,1 ,2 , . . . , that

The result follows straightforwardly. D
Theorems 3.2 and 3.3 immediately result in the following convergence result of

the IHSS iteration method.
THEOREM 3.4. Let the assumptions in Theorem 3.2 be satisfied. Suppose that both

(ri(fc)} and {T%(k)} are nondecreasing and positive sequences satisfyingTi(fc) > 1,
T2(k) > 1, and lim/i^oo supTi(fc) = lim^^oo supT2(fc) = +00, and that both Si and 6-2
are reaconstantsinthenterval0,1) satisfying(3.19).Then it holds that

where p and 8 are defined by (3.18), -r(fc) and S are defined by (3.20), and

In particular, we have

i.e., the convergence rate of the IHSS iteration method is asymptotically the same as
that of the HSS iteration method.

According to Theorem 3.4, we show that, if the tolerances {£k} and {%} are
chosen as in (3.19), then the IHSS iteration converges to the unique solution x* e
Cn of the system of linear equations (1.1), and the upper bound of the asymptotic
convergence factor of the IHSS iteration tends to <T(Q) of that of the HSS iteration
(cf. Theorem 2.2). Moreover, we remark that we may replace (3.19) by other rules
for which {e^} and {%} approach zero. See [14].
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TABLE 1
Work to compute a sweep of the IHSS method.

Operation
f (k> =b- A&W

(a/ + .ff)z<*+i> = f«
5(fc+i) = i ( fc) + 2(<=+|>

f < f c + i > = & - / l 2 < f c + i >

(al + S)z(k+V = f<' e+l>
g(fc+l) = j( f c+5) 4- ^(*+l)

Work
77. + O-

Xk(H)
n

n + a

Xfc(S)
n

Computational complexity. To analyze the computational complexity of the
HSS and the IHSS iterations, we need to estimate their computer times (via operation
counts) a,nd computer memories. Assume that a is the number of operations required
to compute Ay for a given vector y 6 C" and Xk(H) and Xk(S) are the numbers of
operations required to solve inner systems (3.1) and (3.2) inexactly with the tolerances
{efc} and {ilk}, respectively. Then the work to compute a sweep of the IHSS iteration
is estimated using the results of Table 1. Straightforward calculations show that the
total work to compute each step of the IHSS iteration is O(4:n + 2a + Xk(H) + X k ( S ) ) .

In addition, a simple calculation shows that the memory is required to store x'k',
b, f( fc ' , 2'*'. For the inexact solvers for inner systems (3.1) and (3.2), we require
only some auxiliary vectors; for instance, CG-type methods need about five vectors
[24]. Moreover, it is not necessary to store H and S explicitly as matrices, as all we
need are two subroutines that perform the matrix-vector multiplications with respect
to these two matrices. Therefore, the total amount of computer memory required is
O(n), which has the same order of magnitude as the number of unknowns.

4. Application to the model convection-diffusion equation. We consider
the three-dimensional convection-diffusion equation

on the unit cube fi = [0,1] x [0,1] x [0,1], with constant coefficient q and subject to
Dirichlet-type boundary conditions. When the seven-point finite difference discretiza-
tion, for example, the centered differences to the diffusive terms, and the centered
differences or the first order upwind approximations to the convective terms are ap-
plied to the above model convection-diffusion equation, we get the system of linear
equations (1.1) with the coefficient matrix

where the equidistant step-size h = ^W is used in the discretization on all of the
three directions and the natural lexicographic ordering is employed to the unknowns.
In addition, ® denotes the Kronecker product, and Tx, Ta, and Tz are tridiagonal
matrices given by

Tx = tridiag(i2,ii,ia), Ty = tridiag(t2, 0,£3), and Tz = tridiag(t2, 0, is),

with
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if the first order derivatives are approximated by the centered difference scheme and

if the first order derivatives are approximated by the upwind difference scheme. Here

is the mesh Reynolds number. For details, we refer to [9, 10] and [12, 13].
From (4.2), we know that the Hermitian part H and the skew-Hermitian part 5

of the matrix A are

and

where

From Lemma A.I, we know, for the centered difference scheme, that

Therefore, the quantities in Theorem 2.2 can be obtained by concrete computations.
THEOREM 4.1. For the system of linear equations (1.1) with the coefficient ma-

trix (4.2) arising from the centered difference scheme for the three-dimensional model
convection-diffusion equation (4.1) with the homogeneous Dirichlet boundary condi-
tion, the iteration sequence {x^} generated by the HSS iteration from an initial guess
x(o) g j-m converges to its unique solution x* e Cn and satisfies

We note that this bound is independent of q and the mesh Reynolds number.
The results for the upwind difference scheme can be obtained in an analogous fashion.
Since H and 5 in (4.3) and (4.4) can be diagonalized by sine transforms, the number
of operations required at each HSS iteration is about O(n3 log re). It follows that the
total complexity of the HSS iteration is about O(n4logra) operations. Here n is the
number of grid points in all three directions. Here the model problem is used as an
example to illustrate the convergence rate of the HSS iteration. We remark that there
may be other efficient methods for solving the model convection-diffusion equation
(see [12, 13, 6]).
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For a three-dimensional convection-diffusion system of linear equations arising
from performing one step of cyclic reduction on an equidistant mesh, discretized by
the centered and the upwind difference schemes, Greif and Varah [9, 10] considered two
ordering strategies, analyzed block splittings of the coefficient matrices, and showed
that the associated block Jacobi iterations converge for both the one-dimensional and
the two-dimensional splittings with their spectral radii bounded by

respectively. It is clear that these two bounds arc larger than those of the HSS and
the IHSS methods. Moreover, for the three-dimensional convection-diffusion model
equation, the number of operations required for each step of the block Jacobi iteration
is about O(n3) operations, and hence its total complexity is about O(n5) operations.
We remark that their methods can provide an ordering for block Jacobi which can be
used for preconditioning.

5. Numerical examples. In this section, we perform some numerical examples
to demonstrate the effectiveness of both HSS and IHSS iterations.

5.1. Spectral radius. In this subsection, we first show in Figures 1 and 2 the
spectral radiusp(M(a))heerationmatrixM(a)and its upper bound(a)
for different a.. Here the coefficient matrices A arise from the discretization of the
differential equation

with the homogeneous boundary condition using the centered and the upwind differ-
ence schemes. In the tests, the size of the matrix A is 64-by-64. We see from the
figures that both p(M(a)) and a(a) are always less than 1 for a > 0. These results
show that the HSS iteration always converges. Moreover, when q (or qh/2) is small,
cr(a) is close to p(M(a)), i.e., a(a) is a good approximation to p(M(a)). However,
when q (or qh/2) is large (the skew-Hermitian part is dominant), cr(a) deviates from
p(M(a)) very much. From Figures 1 and 2, we see that the optimal parameter «t,

is roughly equal to qh/2. To further investigate a(a), we examine the parameter a
in the HSS iteration in Figure 3. In the figure, we depict the spectral radii of the
iteration matrices for different q (or qh/2) by using a" in Corollary 2.3, a = qh/2,
and the optimal parameter at. It is clear that, when q (or qh/2) is small (i.e., the
skew-Hermitian part is not dominant), a* is close to at, and M(a*) is a good estimate
of M(at). However, when q (or qh/2) is large, a" is not very useful; see Table 2. In
contrast to a*, we observe that a is close to at when q (or qh/2) is large. In the
appendix, we give a remark to further explain why the spectral radius of M(a) is less
than <T(Q:*) by using a 2-by-2 matrix example.

In Figure 4, we depict the eigenvalue distributions of the iteration matrices using
at when q = 1,10,100,1000. We see that the spectral radius of the iteration matrix
for large q is less than that of the iteration matrix for small q.

5.2. Results for the HSS iteration. In this subsection, we test the HSS iter-
ation by numerical experiments. All tests are started from the zero vector, performed
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2

FIG. 1. The spectral radius p(M(a)) of the iteration matrices for different a: " " and the
upper bound a(a] for different a: " '' (centered difference scheme).

TABLE 2
The spectral radii of the iteration matrices M(o>*); M(a), and A/(at) when n — 64.

Difference
scheme

centered
centered
centered
centered
upwind
upwind
upwind
upwind

<l
1

10
100
1000

1
10

100
1000

a*
0.0966
0.0966
0.0966
0.0966
0.0974
0.1041
0.1710
0.8399

p(M(a>))
0.9516
0.9086
0.9438
0.9511
0.9517
0.9085
0.9388
0.9447

a
0.0077
0.0769
0.7692
7.6923
0.0077
0.0769
0.7692
7.6923

p(M(a))
0.9923
0.9264
0.6339
0.6445
0.9924
0.9314
0.7321
0.6092

at
0.0700
0.1300
1.160
5.800

0.0700
0.1300
1.450
10.75

p ( M ( a t ) )
0.9339
0.8807
0.4487
0.6389
0.9342
0.8874
0.5237
0.4466

in MATLAB with machine precision 10 16, and terminated when the current iterate
satisfies ||rW||2/||r(0)||2 < 10~6, where r ( f c> is the residual of the fcth HSS iteration.

We solve the three-dimensional convection-diffusion equation (4.1) with the ho-
mogeneous Dirichlet boundary condition by the HSS iteration. The number n of grid
points in all three directions is the same, and the n3-by-n3 linear systems with respect
to the coefficient matrices al + H and al + S are solved efficiently by the sine and
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FIG. 2. 77ie spectral radius p ( M ( a ) ) of the iteration matrices for different a:nd the
upper hound o~(a^ for different a: "- - - -" (upwind differencescheme).

FIG. 3. The spectral radius of the iteration matrices for different q: using at ",''' a* in
Corollary 2.3 "" and a — qh/2

117



Hermitian and Skew-Hermitian Splitting Methods

618 ZHONG-ZHI BAI, GENE H. GOLUB, AND MICHAEL K. NG

(b) upwind difference scheme

FIG. 4. The eigenvalue distributions of the iteration matrices when a = at.
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TABLE 3
Number of HSS iterat'io'us JOT the centered (left) and the upwind (rigfit) difference schemes

using a* m Corollary 2.3.

n
8
16
32
64

g
1
34
61
116
234

10
23
42
83
169

100
34
59
117
231

1000
35
62
123
244

n
8
16
32
64

g
1
33
59
114
226

10
22
42
82
158

100
27
52
102
205

1000
28
53
109
228

TABLE 4
Number of HSS iterations for the centered (left) and the upwind (right) difference schemes

using a = qh/2.

n
8
16
32
64

?
1
208
433
844
>1000

10
28
52
102
195

100
25
22
25
33

1000
193
106
76
66

n
8
16
32
64

9
1
220
446
852
>1000

10
40
63
115
208

100
22
26
33
48

1000
20
22
25
33

TABLE 5
Number of HSS iterations for the centered (left) and the upwind (right) differenceschemes

using the optimal at.

n
8
16
32
64

g
1
33
58
113
221

10
16
31
57
105

100
20
21
25
33

1000
37
48
46
51

n
8
16
32
64

<l
1
33
59
114
204

10
22
35
63
109

100
15
18
26
40

1000
15
18
23
33

the modified sine transforms, respectively (cf. Lemma A.I). In Table 3, we list the
numerical results for the centered difference and the upwind difference schemes when
q = 1,10,100,1000. Evidently, when q is large, the cell Reynolds number is also large
for each fixed n. Since the eigenvalues of H are known, the parameter a" can be
computed according to Corollary 2.3. We observe that the number of iterations is not
only increasing linearly with n but also roughly independent of q as predicted from
the convergence analysis in Corollary 2.3. We also test a and the optimal a given in
Table 2. In Tables 4 and 5, we present their numbers of HSS iterations. We see from
the tables that the number of iterations using the optimal a is less than that using
a" especially when q is large. Moreover, when q is large, the numbers of iterations
using the optimal a and a are about the same.

5.3. Results for IHSS iterations. The second test is for the three-dimensional
convection-diffusion equation

-(uxx + uyy + uzz) + gexp(x + 2/ + z)(xux + yuy + zuz) = f ( x , y , z )

on the unit cube f2 = [0,1] x [0,1] x [0,1], with the homogeneous Dirichlet bound-
ary conditions. For this problem, the n3-by-ra3 linear systems with respect to the
coefficient matrices al + H and al + S cannot be solved efficiently by the sine and
the modified sine transforms. Therefore, we solve the linear systems with coefficient
matrices al + H iteratively by the preconditioned CG (PCG) method with the sine
transform based preconditioner presented in [22], and we solve the linear systems
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TABLE 6
Number of IHSS iterations for the centered difference scheme using a* in Table 3.

n
8
16
32
64

9=1
S

0.9 0.8 0.7
38 37 36
72 65 60
171 160 142
462 339 298

q = 10
S

0.9 0.8 0.7
25 21 21
45 45 38
91 86 84
249 210 172

q = 100
S

0.9 0.8 0.7
28 28 28
55 55 54
105 104 103
205 202 202

q = 1000
S

0.9 0.8 0.7
35 39 35
59 59 59
114 114 114
237 233 233

TABLE 7
Number of IHSS iterations for the centered difference scheme using the optimal at in Table 5.

n
8
16
32
64

9=1
S

0.9 0.8 0.7
42 41 41
78 71 68
167 146 136
453 355 292

9= 10
S

0.9 0.8 0.7
24 24 24
42 38 38
81 75 73
161 150 137

q= 100
S

0.9 0.8 0.7
17 17 17
34 34 34
60 60 60
116 116 116

q = 1000
S

0.9 0.8 0.7
35 35 35
43 41 41
44 44 44
54 54 54

with the coefficient matrix oil + S iteratively by the preconditioned CG for normal
equations (PCGNE) method with the modified sine transform based preconditioner
given in [19]. This results in the IHSS iteration discussed in section 3. We choose
CGNE as the inner solver because it is quite stable, convergent monotonically, and
transpose-free. Therefore, as an inner iteration, it could produce an approximate
solution satisfying a prescribed rough accuracy in a few iteration steps.

In our computations, the inner PCG and PCGNE iterates are terminated if the
current residuals of the inner iterations satisfy

(cf. (3.19) and (3.20) in Theorem 3.3), where pW and q^ are, respectively, the resid-
uals of the jth inner PCG and iterates at the (k + l)st outer IHSS iterate, r^ is the
residual of the fcth outer IHSS iterate, and S is a control tolerance. In Tables 6-9, we
list numerical results for the centered difference and the upwind difference schemes
when q = 1,10,100,1000. Since the eigenvalues of H cannot be explicitly obtained,
the parameter a" is not exactly known, and we employ the corresponding parameters
used in HSS iterations in Tables 3 and 5 instead.

According to Tables 6-9, the number of IHSS iterations generally increases when
6 increases. We see that these increases in IHSS iterations for small q are more
significant than those for large q. We also observe that the number of IHSS iterations
again increases linearly with n and roughly independent of q. In the tables, the
number of iterations using the optimal a is again less than that using a.", especially
when q is large. Moreover, when the optimal a is used, the number of IHSS iterations
is about the same for q = 1,10,100,1000.

In Table 10, we list the average number of inner PCGNE iterations corresponding
to the centered difference scheme. In this case, the Hermitian linear systems with the
coefficient matrix al+H can be solved efficiently by the sine transform. Therefore, we
report only the average number of inner PCGNE iterations. In Tables 11 and 12, we
report the average number of inner PCG and inner PCGNE iterations corresponding
to the upwind difference scheme. It is obvious that, when the control parameter

120



Hermitian and Skew-Hermitian Splitting Methods

SPLITTING METHODS FOR NON-HERMITIAN SYSTEMS

TABLE 8
Number of IHSS iieraiions for the upwind difference scheme using a* in Table 3.
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n
8
16
32
64

9=1
S

0.9 0.8 0.7
33 33 32
78 68 68
171 155 129
460 348 306

q = 10
6'

0.9 0.8 0.7
24 23 23
46 42 42
103 87 82
263 180 164

q = 100
S

0.9 0.8 0.7
27 26 26
63 61 60
131 127 127
248 248 246

q = 1000
b

0.9 0.8 0.7
28 28 28
70 70 69
166 164 164
370 367 366

TABLE 9
Number of IHSS iterations for the upwind difference scheme using the optimal at in Table 5.

n
8
16
32
64

9=1
S

0.9 0.8 0.7
42 35 35
80 70 70
165 144 131
316 258 239

q= 10
S

0.9 0.8 0.7
24 24 22
44 44 44
83 82 80
179 143 141

q= 100
S

0.9 0.8 0.7
30 30 30
48 48 48
85 85 85
137 137 137

q = 1000
S

0.9 0.8 0.7
29 29 29
59 59 59
95 95 95
143 143 143

TABLE 10
Average number of PCGNE iterations for the centered difference scheme using (a) a* in Table 3

and (b) the optimal at in Table 5.

n
8
16
32
64

9 = 1
6

0.9 0.8 0.7
1.4 1.8 2.3
2.0 2.8 3.5
3.5 5.6 6.9
7.3 8.5 9.1

q= 10
S

0.9 0.8 0.7
3.4 4.0 4.5
5.9 7.4 8.6
10.2 14.1 17.6
22.4 31.2 34.1

q= 100
S

0.9 0.8 0.7
6.8 7.1 7.4
13.9 14.6 14.9
29.0 30.0 30.2
60.1 61.9 62.5

q = 1000
S

0.9 0.8 0.7
6.9 7.0 7.4
15.1 15.2 15.2
31.7 31.7 31.7
55.0 56.8 57.5

n
8
16
32
64

9 = 1
S

0.9 0.8 0.7
1.5 2.0 2.6
2.1 3.0 3.8
3.3 5.1 6.6
7.1 8.5 9.1

q = 10
S

0.9 0.8 0.7
2.8 3.4 4.1
4.4 5.8 7.1
6.7 9.7 12.6
10.8 17.1 21.1

q = 100
S

0.9 0.8 0.7
4.9 4.9 5.2
7.0 8.4 9.6
10.7 14.7 17.7
16.7 25.8 33.7

q = 1000
S

0.9 0.8 0.7
6.7 7.2 7.6
12.0 13.7 14.5
21.1 23.7 27.0
29.1 38.4 45.4

0)

S becomes small, the average number of inner PCG and inner PCGNE iterations
becomes large. We observe from the tables that the average number of inner PCGNE
iterations increases with q, but the average number of inner PCG iterations required is
almost nonchanging. The reason is that the parameter q in the convection part does
not affect the convergence rate of the Hermitian linear system but does affect the
convergence rate of the shifted skew-Hermitian linear system. Moreover, the average
number of inner PCGNE iterations using the optimal at is less than that of those
using a*, especially when q is large.

Moreover, we find that when S decreases, the number of inner (PCG or PCGNE)
iterations required increases in the numerical tests. In Figure 5, we show an example
of this general phenomenon. This is mainly because the inner PCG and the inner
PCGNE iterates are terminated if the current residuals of the inner iterations satisfy
(5.f). When S is small, more iterations are required to satisfy the stopping criterion.

Furthermore, instead of PCGNE, we solve the linear systems with the coefficient
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TABLE 11
Average number of PCG iterations for the upwind difference scheme using (a) a* in Table 3

and (b) the optimal at in Table 5.

n
8
16
32
64

9 = 1
6

0.9 0.8 0.7
1.5 2.3 3.1
2.8 4.3 5.3
5.4 6.6 7.0
7.9 8.3 8.5

q= 10
S

0.9 0.8 0.7
1.3 1.9 2.5
2.1 3.1 4.3
3.8 5.6 6.4
7.1 7.7 8.1

q= 100
S

0.9 0.8 0.7
1.4 2.0 2.7
2.5 4.0 5.1
4.6 6.3 7.0
7.0 8.1 8.4

q = 1000
S

0.9 0.8 0.7
1.4 2.1 2.8
2.6 4.4 5.3
5.3 6.7 7.2
7.6 8.4 8.6

(a)

n
8
16
32
64

g = l
S

0.9 0.8 0.7
1.3 1.6 2.1
1.6 2.3 2.6
3.0 3.5 3.6
4.3 4.6 4.7

q= 10
S

0.9 0.8 0.7
1.0 1.5 1.6
1.3 1.9 2.3
2.2 3.1 3.4
3.8 4.3 4.6

q = 100
S

0.9 0.8 0.7
1.0 1.6 2.0
1.4 2.0 2.4
2.2 3.1 3.4
3.4 4.3 4.5

q = 1000
S

0.9 0.8 0.7
1.0 1.6 1.9
1.5 2.2 2.5
2.3 3.2 3.5
3.5 4.3 4.6

(b)

TABLE 12
Average number of PCGNE iterations for the upwind difference scheme using (a) a* in Table 3

and (b) the optimal at in Table 5.

n
8
16
32
64

9 = 1
S

0.9 0.8 0.7
1.4 1.7 2.1
2.0 2.8 3.8
3.4 5.4 6.5
7.3 8.6 9.2

q = 10
<5

0.9 0.8 0.7
2.7 3.2 3.8
4.9 6.3 7.7
9.8 13.0 16.0
21.9 27.6 32.3

q = 100
S

0.9 0.8 0.7
4.6 4.9 5.5
10.4 12.5 13.9
24.6 28.6 29.8
55.8 59.9 61.2

q = 1000
S

0.9 0.8 0.7
4.7 5.2 6.0
11.6 13.8 14.6
28.4 29.9 30.5
62.5 63.2 63.5

(a)

n
8
16
32
64

9 = 1
6

0.9 0.8 0.7
1.5 1.9 2.3
2.1 2.9 3.9
3.3 5.0 6.5
5.1 7.1 8.0

9= 10
6

0.9 0.8 0.7
2.9 3.4 4.0
3.9 5.4 6.7
5.9 9.2 11.9
11.3 16.1 20.9

q= 100
S

0.9 0.8 0.7
3.1 3.9 4.4
5.5 7.4 8.8
9.1 13.2 16.8
15.3 24.0 31.0

q = 1000
S

0.9 0.8 0.7
3.6 4.2 4.9
6.1 7.9 9.9
10.8 15.3 19.8
19.7 30.5 38.3

(b)

matrix ctl + S iteratively by the preconditioned GMRES method (PGMRES [25, 24])
with the modified sine transform based preconditioner given in [19]. Using the same
stopping criterion as for the PCGNE, we report the average number of inner PGMRES
iterations in Table 13. We see from Tables 10 and 13 that, when q is small, the
average number of inner PCGNE iterations is slightly less than that of inner PGMRES
iterations. However, when q is large, the average number of inner PGMRES iterations
is less than that of inner PCGNE iterations.

6. Conclusion and remarks. For the non-Hermitian positive definite system
of linear equations, we present a class of (inexact) splitting iteration methods based
on the HSS of the coefficient matrix and the Krylov subspace iterations such as CG
and CGNE, and we demonstrate that these methods converge unconditionally to the
unique solution of the linear system. In fact, this work presents a general framework
of iteration methods for solving this class of system of linear equations. There are
several combinations in the framework of iterations. We can solve the Hermitian
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FIG. 5. The number of inner iterations required for each outer iteration when n = 32 and
q — 10 in the upwind difference scheme using the optimal at: (left) PCG inner iterations and
(right) PCGNE inner iterations. (b = 0.9), (6 = 0.8), (8 = 0.7).

TABLE 13
Average number of PGMRES iterations for the centered difference scheme using (a) a* in

Table 3 and (b) the optimal at in Table 5.

n
8
16
32
64

9 = 1
S

0.9 0.8 0.7
1.6 1.9 2.3
2.2 2.9 3.6
3.7 5.7 7.0
7.5 9.1 9.2

g = 10
6

0.9 0.8 0.7
4.0 4.3 4.9
6.4 7.5 8.6
10.9 14.5 17.6
23.6 31.3 34.1

q = 100
S

0.9 0.8 0.7
6.9 7.1 7.4
14.5 14.6 14.9
27.8 28.1 30.2
48.1 51.3 54.5

q = 1000
S

0.9 0.8 0.7
6.9 7.1 7.5
15.2 15.3 15.5
28.5 29.7 30.7
48.5 51.8 52.5

(a)

n
8
16
32
64

9 = 1
S

0.9 0.8 0.7
1.8 2.1 2.5
2.3 3.0 3.9
3.3 5.2 6.7
7.3 8.5 9.2

g = 10
<5

0.9 0.8 0.7
2.8 3.5 4.1
4.4 5.8 7.2
6.8 9.7 12.7
10.8 17.2 21.2

q = 100
S

0.9 0.8 0.7
4.9 5.0 5.2
7.0 8.5 9.5
9.1 12.5 15.1
13.3 19.4 24.9

q = 1000
S

0.9 0.8 0.7
6.8 7.4 7.7
12.1 13.9 14.5
16.5 18.3 21.0
19.9 23.8 33.5

(b)

part exactly or inexactly and the skcw-Hcrmitian part exactly or inexactly. The best
choice depends on the structures of the Hermitian and the skew-Hermitian matrices.
Convergence theories for the correspondingly resulted exact HSS or IHSS iterations
can be established following an analogous analysis to this paper with slight technical
modifications.

Moreover, instead of CG and CGNE, we can employ other efficient iterative meth-
ods of types of Krylov subspace [24, 7], multigrid, multilevel, classical relaxation, etc.
to solve the systems of linear equations with coefficient matrices al + H and al + S
involved at each step of the HSS iteration. In particular, we mention that, when
GMRES is applied to the linear system with coefficient matrix al+S, it automatically
reduces to a two-term recurrence process, and its convergence property is dependent
only on the eigenvalues, but independent of the eigenvectors, of the matrix al + S.

Appendix. The basic lemma used in the model problem analysis in section 4 is
shown in this section.
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LEMMA A.I (see [5, 19]). The matrix H in (4.3) can be diagonalized by the
matrix F^ (giF'1) <S>F^. Here F^ = ([F^]j,k) is the sine transform matrix defined
by

The corresponding eigenvalues of H are given by

The matrix S in (4.4) can be diagonalized by the matrix F^> ® F^2' <S> F^>. Here
p(2) = ([F^]jtk) is the modified sine transform matrix defined by

The corresponding eigenvalues of S are given by

Here i is used to represent the imaginary unit.
Remark. We consider the 2-by-2 matrix

as an example to illustrate the use of the iteration parameter a = a = qh/2. It is
clear that

We note that 2 + 2 COS(TT?I) and 2 — 2 COS(TT/I) are the largest and the smallest eigenval-
ues, respectively, of the Hermitian part of the discretization matrix of the differential
equation — u" + qu' = 0. In this case, the iteration matrix M(a) of the HSS iteration
is similar to the matrix

When a = a = qh/2, we have
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Then we compute the eigenvalues A of M(a), and they are given by

see Corollary 2.3. Hence, when q > 4yr, p(M(d)) is less than a(a*). From this
example, we see that a is a good iteration parameter when q is large. Figure 3 indeed
shows that a is close to at-

REFERENCES

[1] O. AXELSSON, Z.-Z. BAI. AND S.-X. Qiu. A class of nested iteration schemes for linear sys-
tems with a coefficient matrix with a dominant positive definite symmetric part, Nunier.
Algorithms, to appear.

[2] Z.-Z. BAI, Sharp error bounds of some Krylov subspace methods for non-Hermitian linear
systems, Appl. Math. Coinput., 109 (2000), pp. 273-285.

[3] Z.-Z. BAI, I. DUFF. AND A. J. WATHEN, A class of incomplete orthogonal factorization methods
I: Methods and theories, BIT, 41 (2001), pp. 53-70.

[4] M. BENZI AND D. SZYLD, Existence and uniqueness of splittings of sialionary iieraiive methods
with applications to alternating methods, Nurner. Math., 76 (1997), pp. 309-321.

[5] R. H. CHAN AND M. K. NG, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427-482.

[6] W. CHEUNG AND M. K. NG, Block-circulant preconditioned for systems arising from discretiza-
tion of the three-dimensional convection-diffusion equation, J. Comput. Appl. Math., 140
(2002), pp. 143-158.

[7] P. CONCUS AND G. H. GOLUB, A generalized conjugate gradient method for non-symmetric
systems of linear equations, in Computing Methods in Applied Sciences and Engineer-
ing, Lecture Notes in Econom. and Math. Systems 134, R. Glowinski and J.R. Lions,
eds., Springer-Verlag, Berlin, 1976, pp. 56-65; also available online from http://www-
sccm.stanford.edu.

[8] J. DOUGLAS, JR. AND H. H. RACHFORD, JR., Alternating direction methods for three space
variables, Numer. Math., 4 (1956), pp. 41-63.

[9] C. GREIF AND J. VARAH, Iterative solution of cyclically reduced systems arising from dis-
cretization of the three-dimensional convection-diffusion equation, SIAM J. Sci. Comput.,
19 (1998), pp. 1918-1940.

[10] C. GREIF AND J. VARAH, Block stationary methods for nonsymmetric cyclically reduced systems
arising from three-dimensional elliptic equations, SIAM J. Matrix Anal. Appl., 20 (1999),
pp. 1038-1059.

[11] M. EIERMANN, W. NIETHAMMER, AND R. S. VARGA, Acceleration of relaxation methods for
non-Hermitian linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 979-991.

[12] H. ELMAN AND G. H. GOLUB, Iterative methods for cyclically reduced non-self-adjoint linear
systems, Math. Comput., 54 (1990), pp. 671-700.

[13] H. ELMAN AND G. H. GOLUB, Iterative methods for cyclically reduced non-self-adjoint linear
systems II, Math. Comput., 56 (1991), pp. 215-242.

[14] E. GILADI, G. H. GOLUB, AND J. B. KELLER, Inner and outer iterations for the Chebyshev
algorithm, SIAM J. Numer. Anal., 35 (1998), pp. 300-319.

125

By using the series expansion of the above expression in terms of h, we obtain

However, if we use a* as the iteration parameter, the upper bound a(a*) of the
spectral radiusp(M(a"))of the iteration matrixM(a")igiven by

http://www-sccm.stanford.edu
http://www-sccm.stanford.edu


Hermitian and Skew-Hermitian Splitting Methods

626 ZHONG-ZHI BAI, GENE H. GOLUB, AND MICHAEL K. NG

[15] G. H. GOLUB AND D. VANDERSTRAETEN, On the preconditioning of matrices with a dominant
skew-symmetric component, Numer. Algorithms, 25 (2000), pp. 223-239.

[16] G. H. GOLUB AND C. VAN LOAN, Matrix Computations, 3rd ed.. The Johns Hopkins University
Press, Baltimore, 1996.

[17] G. H. GOLUB AND A. J. WATHEN, An iteration for indefinite systems and its application to the
Navier-Stokes equations, SIAM J. Sci. Comput., 19 (1998), pp. 530-539.

[18] A. GREENBAUM, Iterative Methods for Solving Linear Systems, Frontiers Appl. Math. 17, SIAM,
Philadelphia, 1997.

[19] L. HEMMINGSSON AND K. OTTO, Analysis of semi- Toeplitz preconditioners for first-order PDEs,
SIAM J. Sci. Comput., 17 (1996), pp. 47-64.

[20] T. MANTEUFFEL, An incomplete factorization technique for positive definite linear systems,
Math. Comput., 34 (1980), pp. 473-497.

[21] J. MEIJERINK AND H. VAN DER VORST, An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comput., 31 (1977), pp. 148-162.

[22] M. K. NG, Preconditioning of elliptic problems by approximation in the transform domain,
BIT, 37 (1997), pp. 885-900.

[23] D. W. PEACEMAN AND H. H. RACHFORD, JR., The numerical solution of parabolic and elliptic
differential equations, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28 41.

[24] Y. SAAD, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
[25] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving

nonsymmet'ric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856—869.
[26] C.-L. WANG AND Z.-Z. BAI, Sufficient conditions for the convergent splittings of non-Hermitian

positive definite matrices, Linear Algebra Appl., 330 (2001), pp. 215-218.
[27] O. WlDLUND, A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM

J. Numer. Anal., 15 (1978), pp. 801-812.

126



PART III

SOLUTION OF LEAST SQUARES PROBLEMS



This page intentionally left blank 



10

COMMENTARY, BY AKE BJORCK

The method of least squares has been the standard procedure for the analysis of
data from the beginning of the 1800s. A famous example of its use is when Gauss
successfully predicted the orbit of the asteroid Ceres in 1801. In the simplest case
the problem is: given A € Rmxn and b € Rm, find a vector x € R™ which solves

where || • [ [ 2 denotes the Euclidean norm. A least squares solution x is charac-
terized by r_LTl(A),wherer=b — Axis the residual andTt(A)the range
space of A.

The basic computational tool for solving (10.1) introduced by Gauss was
to form and solve the normal equations ATAx = ATb by symmetric Gaus-
sian elimination. After 1924 the Cholesky factorization [4] became the standard
solution algorithm. The drawback with these methods is that forming the nor-
mal equations may square the condition number of the original problem. In hand
computation this can be detected and compensated for by using variable preci-
sion. With the start of the computer age in the 1950s it soon became clear that
a more stable algorithm was desirable.

Gram-Schmidt orthogonalization methods were used in many early com-
puting centers. The great difference in behavior of the classical and modified
Gram-Schmidt was noted by Rice [82], but the numerical properties were not
fully understood at the time.

The five papers collected here are all related to various least squares problems.
The new, more accurate and efficient algorithms developed by Golub and his
coauthors in these papers meant a great leap forward in the ability to treat
these problems, and they have found widespread applications.

Numerical methods for solving least squares problems, by Golub [27]

The systematic use of orthogonal transformations to reduce matrices to simpler
form was initiated (in the same year!) by Givens [26] and Householder [54].
They had mainly eigenvalue computations in mind, but Householder also briefly
discussed least squares problems. In this seminal paper Golub [27] showed how
to compute the QR factorization of a rectangular m x n matrix A by Householder
transformations and use it to solve a linear least squares problem. A careful error
analysis of these transformations was published by Wilkinson [105] in 1965.



Commentary, by Ake Bjorck

Householder QR has been aptly characterized by Trefethen and Bau [90] as
being orthogonal triangularization, whereas Gram-Schmidt is triangular orthog-
onalization. Golub's paper came as a revelation at a time when the stability of
Gram-Schmidt and the need to reorthogonalize were current hot topics. Golub's
algorithm was elegant and provenly backward stable. The operation count and
storage requirement was lower than for MGS (the difference is small if m 3> n).
A factored representation of the full square orthogonal matrix Q and the upper
triangular factor R could both be stored in an m x n array.

An Algol procedure implementing the Golub-Householder least squares
algorithm, and incorporating simple iterative refinement, was published in a
companion paper [12]. Later this appeared as Contribution 1/8 in the famous
Handbook [107]. This was adopted in the LINPACK and later in the LAPACK
libraries.

Two years after the Golub paper appeared, Bjorck [6] proved that the MGS
algorithm is stable for solving the least squares problem, even without reorthog-
onalization. The final rigorous proof of backward stability of MGS both for least
squares and minimum norm problems came even later; see [10].

Several comparisons between between the accuracy of the MGS and Golub
algorithms for the least squares problem were published in late 1960s and early
1970s. According to evaluations by Jordan [58] at the Los Alamos Scientific Lab-
oratory and Wampler [103] at the National Bureau of Standards, MGS seemed
to be slightly more accurate than the Golub-Householder algorithm. In 1970
Peters and Wilkinson [79] wrote:

Evidence is accumulating that the modified Gram-Schmidt method gives better
results than Householder.

However, the Golub-Householder procedure has the edge over Gram-Schmidt
with respect to storage and operation count. The greater flexibility and simpler
stability analysis of this method has also contributed to the fact that it has
prevailed as the method of choice for solving linear least squares problems. Today
the MGS algorithm for least squares problems is much less known and used.

Although Golub's paper [27] is only 11 pages long, it outlines several further
developments, which we now briefly discuss.

• The implementation of two different column pivoting strategies is described.
Equivalent schemes had previously been used before with the Cholesky and
modified Gram-Schmidt algorithms. In the first strategy successive diago-
nal elements are maximized at each step. This is appropriate when treating
(nearly) rank-deficient problems. The second strategy is appropriate when
there is one vector b and one wishes to express it in as few columns of A
as possible. This is related to stepwise multivariate regression in statistics,
A detailed solution of this problem based on Golub's paper and including
an Algol program is given in an unpublished report by Elden [20].

• Iterative refinement is suggested as a way to increase the accuracy of
the computed solution. This topic was further investigated by Golub and
Wilkinson in [45] and [46]. Their scheme did not work as well as expected
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for problems with a large residual. The authors made the (at the time)
surprising discovery:

We conclude that although the use of the orthogonal transformations avoid
some of the ill effects inherent in the use of the normal equations the value
of K (A) is still relevant to some extent.

It was soon discovered that a more satisfactory refinement scheme could
be obtained by refining the solution to the augmented system satisfied
by the solution and its residual. This idea was communicated to the au-
thor during a visit by Golub in f966 to KTH, Stockholm. The modified
refinement scheme converges with a rate that is always proportional to
K(A); Bjorck [5]. An Algol procedure implementing the Golub-Householder
algorithm for the constrained linear least squares problem

and incorporating the modified iterative refinement appeared in the joint
paper [8].

• An implementation of a scheme for iterative regularization by Riley [83]
(also known as proximal point method) using QR factorization is described
and analyzed. It has the important property that the set of solutions that
can be reconstructed with optimal accuracy increases with each iteration;
see [50, Section 5.2]. A similar procedure is later discussed from a different
point of view by Rutishauser [85].

• Finally, the updating of the QR factorization when rows are added was
treated and algorithms for least squares problems with linear equality con-
straints discussed. Methods for modifying matrix factorizations were later
treated in great detail and generality by Golub et al. in [25].

The applications of the Golub-Householder QR algorithm since it appeared
more than 40 years ago have been numerous. Much of the algorithmic develop-
ment has been driven by needs in different application areas such as statistics,
optimization, signal processing, and control theory. Two fields of applications
treated early by Golub and coauthors are statistical computations [29; 42] and
quadratic programming [41].

A remarkable fact, shown by by Powell and Reid [80], is that with row and
column pivoting the Golub-Householder method is stable also for weighted least
squares problems. Cox and Higham [17] prove the important result that this
remains true using column pivoting only, provided that the rows of (A, b) are
pre-sorted by decreasing row norms. This allows for the use of standard QR
subroutines which give much faster implementations.

Extensions of the Golub-Householder algorithm to rank deficient systems
were given by Hanson and Lawson in [53] and later in the monograph [65].
Among these can be mentioned the complete orthogonal decomposition
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where U and V are orthogonal and T upper (or lower) triangular. This decompo-
sition can be updated much more cheaply than the singular value decomposition;
see Stewart [88]. It has therefore become an important tool in applications where
new data are added with time, e.g., in signal processing and control.

Kahan [59] gave an example showing that standard column pivoting will not
always reveal the numerical rank of a matrix. This started efforts to develop
algorithms for rank-revealing QR factorizations and subset selection. Heuristic
techniques are necessary since finding the optimal selection is an NP-complete
problem. The first improvement on the column pivoting scheme was given in the
report by Golub, Klema, and Stewart [33]. This work was refined and extended
by Tony Chan [14]. Important theoretical results were given by C. T. Pan and
P. T. P. Tang [77]. Chandrasekaran and Ipsen [16] derive a selection of heuristic
schemes that are shown to work well almost always. A survey of applications is
found in [15].

Applying the Golub-Householder QR factorization to a banded least squares
problem of size mxn with bandwidth w can take up to O(mnw) flops. Reid [81]
showed that by ordering and blocking the rows the operation count can be
reduced to at most 2(m + 3n/2)w(w + 1) flops. This is about twice as much
as for computing R by the Cholesky algorithm, as in the dense case. In the last
decade algorithms for general sparse QR factorization have been developed; see
the survey of algorithms and available software by Matstoms [70; 71].

Generalized cross-validation as a method for choosing a good ridge
parameter, by Golub, Heath, and Wahba [31]

Generalized cross-validation (GCV), due to Wahba [102], is a rule for choosing
the parameter A in the ridge estimate

for the standard regression model

where e is random with EC = 0, EeeT = a2!. The estimate is taken as the
minimizer of

and does not require an estimate <r2. This makes GCV convenient to use when
the number of degrees of freedom for estimating <r2 is small, or even in some
cases when the real model involves more than n parameters.

In this paper the GCV estimate is derived as a rotation-invariant version
of ordinary cross-validation and it is argued why it should be generally super-
ior. Statistical properties of the GCV estimate are examined using the singular
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value decomposition X = lfSVT. The use of GCV in subset selection, truncated
singular value methods, and more general model building is also discussed.

An attractive feature of GCV is that the expected value of the GCV value
can be shown to coincide with the optimal regularization parameter when the
number of data points goes to infinity; for details see [67; 68]. The paper gives
numerical results comparing GCV with ordinary cross-validation, the range risk
estimate, and maximum likelihood estimate.

For a fixed value of A the estimate /?(A) in (10.2) is the minimizer of

which is a regularized solution. The calculation of V(X) and /?(A) can be done
in O(p) operations from the SVD of X; see [30]. Elden [21] shows how the GCV
estimate can be efficiently computed from the cheaper bidiagonal decomposition
of X and notes that cancellation can be avoided by basing the computations on
the identity

It has been observed that the graph of the GCV functional V(X) often is
very flat with many tiny wiggles near the optimal value. This makes it some-
times difficult to determine the minimum. However, this is a property shared by
alternative rules for choosing A from the data. An up-to-date discussion is given
in Hansen [51].

In [47] are mentioned applications of GCV in remote sensing problems, multi-
variate smoothing spline regression, generalized likelihood estimation, penalized
log-density and log-hazard estimations.

According to the survey by Hanke and Hansen [50] from 1993, GCV is the
most widely used rule for choosing the regularization parameter in ill-posed prob-
lems. The rigorous analysis of such problems started in the early 1960s with the
introduction of regularization methods by Tikhonov [89] in 1963. Interest in this
field has been rapidly growing in science and industry. Application areas include
global scale weather prediction, astronomy and chemistry. Recent applications
include image processing [73; 74] and wavelet thresholding for noise reductio
[57].

GCV is used together with Golub-Kahan bidiagonalization in [7] for regu-
larization of large scale problems. An iterative method for approximating the
GCV function for large scale problems is developed by Golub and von Matt [35].
Their approach is based on the Lanczos process and Gauss quadrature with a
stochastic trace estimator by Hutchinson [56].

The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate, by Golub and Pereyra [37]

In many nonlinear least squares problems it is advantageous to separate the
parameters into two sets. Suppose that data (yi,U), i = 1 : m, are given and
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we want to determine parameters a, a that minimize the nonlinear functional
\\r(a, a) ||2, where the ith component of the residual is

Typical examples of nonlinear functions (f>j(a;ti) are exponential or rational
functions ^ = e"3'*, ^ = l/(t — otj). Since a is a vector of linear parameters,
the nonlinear functional to be minimized can be written in the form

where $(a) is a matrix whose elements in the jth column equal (j>j(a;ti). For any
fixed values of the nonlinear parameters a the optimal value of a can be expressed
as a = $(a)+y, where $(a)+ denotes the pseudo-inverse of $(a). This allows the
linear parameters to be eliminated in (10.3). The original minimization problem
can then be cast in the form

where P$(a) = $(a)(I>(a)+ is the orthogonal projector onto the column space
of $(a). This is a pure nonlinear problem of reduced dimension. The modified
functional to be minimized in (10.4) is known as a variable projection func-
tional. The variable projection method consists of solving (10.4), for example by
a Gauss-Newton-Marquardt method, obtaining the optimal vector a. The linear
parameters are then computed from a = $(a)+y.

This paper generalizes earlier work by Scolnik [86] and Guttman et al. [49].
Scolnik's original work dealt with the case in which the nonlinear functions de-
pended on one variable each and were of exponential type.

In the variable projection algorithm a formula for the derivative of an
orthogonal projection matrix is needed. Let the matrix A(a) be a function of the
scalar variable a and have local constant rank. Let A~ denote any symmetric
generalized inverse of A = A(a). Then P-R.(A) = AA~ is the orthogonal projector
onto the column space Ti(A) of A. The following fundamental formula is derived

In a digression from the main theme of the paper a related formula for the
derivative of the pseudo-inverse of a matrix A(a) is given in the paper:

(This formula actually had appeared, albeit a bit hidden, in Wedin [104, p. 21].)
Selected results from the paper were presented at the Advanced Seminar on
Generalized Inverses and Applications, October 8-10, 1973, University of
Wisconsin, Madison; see [38].

134



Commentary, by Ake Bjorck

The paper contains a detailed discussion of the implementation of a Gauss-
Newton-Marquardt algorithm for solving (10.4) using the techniques for solv-
ing linear least squares developed by Golub in [27]. In the Stanford report
[36] preceding the published paper there is included a carefully written For-
tran implementation called VARPRO. This was instrumental in the quick adap-
tion of the variable projection method and partly explains the paper's big
impact.

Golub and LeVeque [34] extended the VARPRO algorithm to the case when
several data sets are to be fitted to the model with the same nonlinear parameter
vector; see also Kaufman and Sylvester [62].

The variable projection approach not only reduces the dimension of the
parameter space but also leads to a better conditioned problem. Krogh [64] give
a slightly different implementation of the the variable projection algorithm. He
notes that it solved several problems at JPL, which could not be solved using
the old nonlinear least squares approach.

An important improvement of the algorithm was introduced by Kaufman
in [60]. The jth column of the Jacobian of the reduced problem can be written

Kaufman's simplification consists of using an approximate Jacobian obtained
by dropping the second term in this formula. The effect is to reduce the work
per iteration at the cost of marginally increasing the number of iterations.
Kaufman's simplifications were generalized to separable problems with constra-
ints in [61], with applications, e.g., in fitting data by splines with free knots.
More examples from system identification and nonlinear data fitting are
discussed in [63].

Ruhe and Wedin [84] consider separation of variables in more general nonlin-
ear least squares problems. They point out that separation may be of advantage
not only when some variables occur linearly, but also when the Jacobian of the
full nonlinear problem is structured. An example is the block angular structure
that occurs in orthogonal regression. They carefully analyze the following algo-
rithms: Algorithm G: the unseparated Gauss-Newton method; Algorithm I: the
original variable projection algorithm; Algorithm II; Kaufman's variant. They
find that the asymptotic convergence rate of Algorithm G is always the slowest.
Comparing Algorithms I and II, either may be faster depending on the data, but
the difference is small. The difference in work per step is rather small, except
in the case that the derivative d^/da has a complicated structure, when Algo-
rithm I can be considerably slower. These theoretical results are supported by
numerical tests.

The program VARPRO was later modified by John Bolstad, who improved
the documentation, included the modification of Kaufman and added the calcula-
tion of the covariance matrix. LeVeque later wrote a version called VARP2 which

135



Commentary, by Ake Bjorck

handles multiple right-hand sides. Both VARPRO and VARP2 are available in
the public domain from Netlib (www.netlib.org/opt).

In a topical review Golub and Pereyra [39] survey 30 years of developments
and applications of the variable projection algorithm for solving nonlinear least
squares problems. They give a historical account of the basic theory of variable
projection methods and survey various computer implementations. A list of 144
references is included, of which a large number are from the last decade. Appli-
cations in electrical engineering, medical and biological engineering, chemistry,
robotics and environmental sciences are among those listed. A recent application
to modelling and control of bilinear systems is described in [19]. This survey gives
a striking account of the big impact of this paper on scientific computing.

Singular value decomposition and least squares solution, by Golub
and Reinsch [40]

The singular value decomposition (SVD) of a matrix A € Cmxn is

where a\ > a-2 > • • • > 0, are the singular values of A. The corresponding left and
right singular vectors are the columns of the square unitary matrices U and V.
The SVD was independently developed by E. Beltrami 1873 and Camille Jordan
1874; see [87] for an interesting account of the early history of the SVD.

For a long time no stable algorithm for computing the SVD was known. First
attempts used the eigenvalue decomposition of the matrices

see, e.g, Householder [55, p. 3]. However, with this approach one cannot get accu-
rate values for the smaller singular values, which usually are the most important
ones. This situation changed completely with the publication of the Algol pro-
gram in this paper. The SVD is now regarded as one of the most fundamental
tools in computational linear algebra and has found many uses in scientific and
engineering application.

In the early 1960s Francis had developed the implicit-shift QR algorithm
for computing the eigenvalue decomposition of a matrix. For the Hermitian case
Wilkinson [106] proved the global convergence of the QR algorithm with a special
choice of shifts. The Handbook contribution of Bowdler, Martin, Reinsch and
Wilkinson [11] is based on these results.

An important step towards a stable algorithm for the SVD came in 1965 with
the paper by Golub and Kahan [32] of this selected works. Here it was shown
how to reduce any m x n complex matrix A to real bidiagonal form J using
(unitary) Householder transformations from left and right. By an observation of
Lanczos, the eigenvalues of the real symmetric matrix
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then are ±<7fc. A permutation of the rows and columns of K brings this matrix
into symmetric tridiagonal form with a zero diagonal and the QR algorithm can
now be applied to get the SVD of K. The left and right singular vectors are
retrieved from the eigenvectors of K and the initial transformation.

There still remained the problem of how to avoid the duplication of work
caused by the each singular value and singular vector appearing twice in the
eigendecomposition of K. A solution is outlined by Golub [28] and further
developed in this paper. An implicitly shifted QR algorithm on JT J is used
but all transformation are applied just to J using a "chasing" technique. By
using the "Wilkinson" shift, global convergence is ensured.

Two separate Algol procedures are given in the paper. Procedure svd com-
putes the SVD of a real matrix A. The computation of the singular vectors in U
and V is optional. Procedure minfit computes matrices £, V, and C such that
for given real m x n matrix A and m x p matrix B

Then X = VS+C is the solution of minimum Frobenius norm to the problem
of minimizing \\AX — B\\p. Businger and Golub [13] give a similar algorithm for
the SVD of a complex matrix A.

Applications of the SVD discussed in this paper are the solution of homo-
geneous equations, computing the least squares solutions of minimum length,
and total least squares problems. The SVD plays a key role in solving a number
of least squares problems and is the most versatile decomposition for treating
rank-deficient and ill-conditioned least squares problem.

Formally the rank of a matrix A is equal to the number k of positive singular
values of A. a^ > 0 and aj.+i = 0. This definition cannot be used in numerical
computations, because the rank is a discontinuous function of A; infinitely small
changes in its entries can make the rank of A trivial, viz. min(m,n). A more
meaningful question is: what is the distance of A to the set of M.k of all m x n
matrices of rank < kl In the metric defined by the spectral norm \\A\\2 = o\ or
the Euclidean or Frobenius norm\A\\p =v^S~^7F =V^2°~'

for k < min(m,n). Due to the triangle inequality, these distances are continuous
functions of A and the SVD gives accurate and reliable numerical values. The
minimizer is

where C/i = (MI, . . . , «&), V\ = ( v ± , . . . , Vk). The matrix X approximates A with
a sum of k rank one matrices. In statistical applications (factor analysis), where
A is a table of scores, these are called the factors and A — X is assumed to be
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random noise. Several related matrix approximation problems, whose solution
can be expressed in terms of the SVD, are discussed in Golub [28].

A good example of how the SVD can be used to extract the linearly indepen-
dent information in A to arrive at a more well-conditioned problem is given by its
application to ill-posed linear systems Ax = b. Here an alternative to Tikhonov
regularization is to use a truncated SVD (TSVD) solution, x = V^^U^b, for
a suitably chosen value of k. This solution is the least squares solution restricted
to the subspace 7£(Vi).

Some improvements in accuracy and efficiency have been achieved by mod-
ifications to the original QR-SVD algorithm. A survey of direct methods for
computing the SVD is given in [2, Section 6.2]. Demmel and Kahan [18] showed
that the singular values of a bidiagonal matrix are defined to full relative preci-
sion independent of their magnitude. They proceed to introduce a zero-shift QR
algorithm that can give full relative accuracy also in small singular values.

Gu and Eisenstat [48] give a divide-and-conquer algorithm for finding the
SVD of a bidiagonal matrix. This can speed up the bidiagonal part of the SVD
algorithm by a large factor. As implemented in the LAPACK subroutine xGESDD
it is faster than the QR algorithm already for bidiagonal matrices larger than
about 25 x 25. The speedup increases with the dimension and is about 9 for
n = 400.

The differential qd algorithm given by Fernando and Parlett [23] and von
Matt [72] is potentially even faster than the divide-and-conquer algorithm and
gives highly accurate singular values.

When only the singular values in a given interval and the corresponding
singular vectors are wanted then bisection and inverse iteration may be preferable
to use. Bisection algorithms rely on an accurate algorithm for counting singular
values of a bidiagonal matrix analyzed in [22].

Thirty years ago computing the SVD was considered an expensive option. The
rapid hardware development since 1970 has changed this—or rather, the defini-
tion of "a large problem" has changed. Subroutines for computing the SVD for
dense rectangular matrices are available in most mathematical software libraries;
see [51, Table 2.1] for a list. Typically, on a modern PC, the MATLAB command
[U,S,V] = svd(A) computes the SVD of a matrix of dimension 1000 x 500 in
less than ten seconds. However, since neither the bidiagonal factorization nor the
SVD can be cheaply updated, an option like the ULV decomposition might be
preferable when a sequence of modified problems is to be solved.

An analysis of the total least squares problem, by Golub and
Van Loan [43]

In Errors-in-Variable (EIV) modeling a linear model is sought that explains a
given set of multidimensional data points. The idea is to modify all data points
(vectors) in such a way that some norm of the modification is minimized, subject
to the constraint that the modified vectors satisfy a linear relation. The origin
can be traced back to the beginning of the previous century. Then it was used
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mainly in statistical and psychometric research, where it is also known as latent
root regression. Its relation to principal component analysis and factor analysis
also was investigated long ago. The special case of orthogonal regression was
studied already in 1878 by Adcock [1]; see also Pearson [78]. More on the history
of EIV modeling can be found in [97].

The EIV technique did not become popular in computational mathematics
and engineering until after the publication of this paper, with its efficient and
numerically robust SVD-based algorithm. The apt name Total Least Squares
(TLS), which was coined in this paper, may have contributed to its popularity!
In the standard linear least squares problem one assumes that the data vector
b € Rm is related to the unknown parameter vector x € R™ by a linear relation
Ax = b + e, where the matrix A is error free and e is a vector of uncorrelated
random errors with zero means and the same variance. These assumptions are
frequently unrealistic since sampling or modeling errors often affect the matrix
A. This motivates the TLS model

where || • \\p denotes the Frobenius matrix norm. In this model random errors
are allowed also in the data matrix A. The rows of the error matrix (E, r) are
assumed to be independently and identically distributed with zero mean and
the same variance. In typical applications, gains of 10-15% in accuracy can be
obtained by using a TLS model instead of standard least squares methods.

Golub and Van Loan analyze the TLS problem in terms of the singular value
decomposition. A slightly more general weighted TLS problem

is considered, where D and T are diagonal weighting matrices. It is shown that
if the smallest singular value of the matrix D(A, b)T is unique, then a unique
solution exists and can be expressed in terms of the corresponding right singular
vector. This follows by noting that the solution (E, r) equals the perturbation
of minimum norm ||-D(A 6)T||^ that lowers the rank of the matrix (A, 6). The
sensitivity of the TLS problem and its relationship to the standard least squares
problem is investigated in the paper. Algorithmic details are discussed, and a
generalization to the mixed LS-TLS problem when some columns are error free
is announced; see [76].

An algorithm for the TLS problem AX « B having multiple right-hand
side vectors is given in [44, Sec. 12.3]. A complication of the TLS problem is
that a solution may not exist. The treatment of such nongeneric problems is
discussed in [98]. Many other theoretical and computational aspects of the TLS
problems are treated in detail by Van Huff el in [91; 92] and in a series of papers
coauthored by Vandewalle [95; 99; 96; 97]. The state of the art in TLS modeling
in the early 1990s is summarized in the excellent and comprehensive monograph
by Van Huffel and Vandewalle [98]. Regularization algorithms based on TLS are
introduced in [52] and [24].
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A TLS algorithm based on rank-revealing two-sided orthogonal factorization
is developed in [101]. The solution of a sequence of TLS problems, where rows
are added and deleted, can be done more effectively with such factorizations; see
Barlow and Yoon [3]. Algorithms based on inverse iteration and preconditioned
conjugate gradient methods for large scale TLS problems are studied in [9].

Paige and Strakos [75] have studied a scaled linear least squares model which
unifies the treatment of least squares, total least squares, and data least squares.
(In the last model only perturbations in A are allowed.) It is shown how a generic
problem of minimal dimension can always be extracted from the upper bidiagonal
decomposition of the augmented matrix (6, A).

Several other extensions to the original TLS problem have been suggested.
The more difficult restricted TLS problem has been taken up in [100]. Struc-
tured TLS problems have attracted a lot of attention in the last decade; see [66;
69]. In particular Toeplitz and Hankel structured problems arise in many signal
processing and system identification applications. Properties of EIV models in
the presence of colored and non-Gaussian noise have been investigated.

TLS modeling remains a broad and active field. Four International Work-
shops on Total Least Squares and Errors-in-Variables modeling have been held
in August 1991, 1996, 2001 and 2006 in Leuven, Belgium; see the proceedings
from the 1996 and 2001 workshop [93; 94]. The 4th workshop featured nonlinear
and structured TLS modeling, statistical estimators, and TLS modeling with
bounded uncertainties.

Summary

The impact of the five papers reprinted in this section is hard to overstate. They
are still worth careful reading both for their lucid style and for the abundance of
ideas they contain, all of which may not yet have been followed up. It is hard to
imagine how we managed before backward stable algorithms for the linear least
squares problem and the SVD were available. These algorithms are now heavily
used not only by numerical analysts but have spread to statistics, control theory,
signal processing and numerous other application areas.
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Numerical Methods
for Solving Linear Least Squares Problems*

By

G. GOLUB

Abstract. A common problem in a Computer Laboratory is that of finding linear least
squares solutions. These problems arise in a variety of areas and in a variety of
contexts. Linear least squares problems are particularly difficult to solve because
they frequently involve large quantities of data, and they are ill-conditioned by their
very nature. In this paper, we shall consider stable numerical methods for handling
these problems. Our basic tool is a matrix decomposition based on orthogonal House-
holder transformations.

1. Introduction

Let A be a given mxn real matrix of rank r, and 6 a given vector. We
wish to determine a vector Si such that

where |...|| indicates the euclidean norm. If m^zn and »•<« then there is no
unique solution. Under these conditions, we require simultaneously to (1.1) that

Condition (1.2) is a very natural one for many statistical and numerical problems.
Ifm^n and r=n, then it is well known (cf. [4]) that oe satisfies the equation

Unfortunately, the matrix ATA is frequently ill-conditioned [6] and influenced
greatly by roundoff errors. The following example of LAUCHLI [3] illustrates
this well. Suppose

* Reproduction in Whole or in Part is permitted for any Purpose of the United
States government. This report was supported in part by Office of Naval Research
Contract Nonr-225(37) (NR 044-H) at Stanford University.
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then

Clearly for e=t=0, the rank of AJA is five since the eigenvalues of ATA are
5 + s2, s2, s2, e2, e2.

Let us assume that the elements of ATA are computed using double precision
arithmetic, and then rounded to single precision accuracy. Now let rj be the
largest number on the computer such that fl(\.0-\-rj) = 1.0 where //{...) indicates

the floating point computation. Then if E< -t5-, the rank of the computed re-

presentation of (1.4) will be one. Consequently, no matter how accurate the
linear equation solver, it is impossible to solve the normal equations (1-3).

In [2], HOUSEHOLDER stressed the use of orthogonal transformations for
solving linear least squares problems. In this paper, we shall exploit these trans-
formations and show their use in a variety of least squares problems.

2. A Matrix Decomposition
Throughout this section, we shall assume m^n=r.
Since the euclidean norm of a vector is unitarily invariant,

where c=Qb and Q is an orthogonal matrix. We choose Q so that

where R is an upper triangular matrix. Clearly,

where c is the first n components of c and consequently,

Since R is an upper triangular matrix and RTR=ATA, RTR is simply the
Choleski decomposition of ATA.

There are a number of ways to achieve the decomposition (2.1); e.g., one
could apply a sequence of plane rotations to annihilate the elements below the
diagonal of A. A very effective method to realize the decomposition (2.1) is
via HOUSEHOLDER transformations [2]. Let A =A(-1\ and let A^, A(3\ ..., A{n+V
be defined as follows:
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J*J is a symmetric, orthogonal matrix of the form

for suitable w(h) such that «>l*>Tttj<*> = l. A derivation of P(k} is given in [9].
In order to simplify the calculations, we redefine P(*> as follows:

where

Thus

After P(J) has been applied to A'*1, _4'*+1* appears as follows:

where J?(*+1) is &kxk upper triangular matrix which is unchanged by subsequent
transformations. Now ajj,*t1)=— (sgn a^ak so that the rank of A is less than n
ifo-A=0. Clearly,

and

although one need not compute Q explicitly.

3. The Practical Procedure

WILKINSON [Iff]has shown that the Choleski decomposition is stable for a
positive definite matrix even if no interchanges of rows and columns are per-
formed. Since we are in effect performing a Choleski decomposition of ATA,
no interchanges of the columns of A are needed in most situations. However,
numerical experiments have indicated that the accuracy is slightly improved
by the interchange strategies outlined below, and consequently, in order to
ensure the utmost accuracy one should choose the columns of A by some strategy.
In what follows, we shall refer to the matrix Am even if some of the columns
have been interchanged.
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One possibility is to choose at the k& stage the columns of A^ which will
maximize a^J1'). This is equivalent to searching for the maximum diagonal
element in the Choleski decomposition of A1A. Let

Then since la^l1'! =ak, one should choose that column for which sj*' is max-
imized. After ^l'*+1) has been computed, one can compute sj*+1* as follows:

since the orthogonal transformations leave the column lengths invariant. Na-
turally, the s'*''s must be interchanged if the columns of A^ are interchanged.
Although it is possible to compute <rk directly from the s^''s, it is best to com-
pute ffA at each stage using double precision inner products to ensure maximal
accuracy.

The strategy described above is most appropriate when one has a sequence
of vectors bj, b2, ..., bt for which one desires a least squares estimate. In
many problems, there is one vector 6 and one wishes to express it in as few
columns of A as possible. This is the stagewise multiple regression problem.
We cannot solve this problem, but we shall show how one can choose that
column of A{h) for which the sum of squares of residuals is maximally reduced
at the ftth stage.

Let C(»=b and c
(*+1) = Pwc('i). Now Rw x^^=cw where x(h^ is the

least squares estimate based on (k — 1) columns of A, and c1*1 is the first (k — 1)
elements of c1*', and consequently

Since length is preserved under an orthogonal transformation, we wish to find
that column of Am which will maximize cf+1>|- Let

Then since |cj?+1)|= Z>{?Ui*V<»j 
one should choose that column of A^ for

which (tfYJsf* is maximized. After P(K> is applied to A(K>, one can adjust tf1

as follows:

In many statistical applications, if (^)2/s(6) is sufficiently small then no further
transformations are performed.

Once the solution to the equations has been obtained then it is possible
to obtain an improved solution by a simple iterative technique. This technique,
however, requires that the orthogonal transformations be saved during their
application. The best method for storing the transformation is to store the
elements of uw below the diagonal of the kih column of A(k+1}.
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Let ar be the initial solution obtained, and let S = x-}-e. Then

where
r=6 — A x, the residual vector.

Thus the correction vector e is itself the solution to a linear least squares problem.
Once A has been decomposed then it is a fairly simple matter to compute T
and solve for e. Since e critically depends upon the residual vector, the com-
ponents of r should be computed using double precision inner products and
then rounded to single precision accuracy. Naturally, one should continue to
iterate as long as improved estimates of x are obtained.

The above iteration technique will converge only if the initial approximation
to x is sufficiently accurate. Let

with ae<0)=0. Then one should iterate only if ||e(1)||/||a!<l'||̂ ;c where c<£, i.e.
"at least one bit of the initial solution is correct"; otherwise there is little likeli-
hood that the iterative method will converge. Since convergence tends to be
linear, one should terminate the procedure as soon as

where V] is the maximum positive number such that fl(\-\-ri) = 1.

4. A Numerical Example
In Table 1, we give the results of an extensive calculation. The matrix con-

sists of the first 5 columns of the inverse of the 6x6 Hilbert matrix. The cal-
culations were performed in single precision arithmetic. The columns were chosen
so that the diagonal elements were maximized at each stage. The iteration
procedure was terminated as soon as ||e(*"fl)|>0.25|e<*)|. Three iterations were
performed but since |e(2)| > 0.25 Je^], as(2) was taken to be the correct solution.

In Table 2, we show the results of using double precision inner products
on the same problem. Note that the first iterate in Table 1 is approximately
as accurate as the first iterate in Table 2. The double precision inner product
routine converged to a solution for which all figures were accurate. The normal
equations were formed using double precision inner products but even with a
very accurate linear equation solver described by MCKEEMAN [5] no solution
could be obtained.

5. An Iterative Scheme
For many problems, even with the use of orthogonal transformations it may

be impossible to obtain an accurate solution. Or, the rank of A may truly be
less than n. In this section, we give an algorithm for finding the least squares
solution even if ATA is singular.

In [7], RILEY suggested the following algorithm for solving linear least
squares problems for r=n. Let »(0> be an arbitrary vector, then solve
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The sequence aj(*' converges to ae if <x> 0 since the spectral radius of <z(ATA +a/)~1

is less than 1. Again we may implement this algorithm more effectively by the
use of orthogonal transformations.

First, let us note that (5.1) is equivalent to the following:

The vector e(q) is itself the solution of a linear least squares problem since e(q)

minimize |db) —Ce t j )[ where

Thus the numerical procedure should go as follows. Decompose C by the
methods described in Section 2 so that

where PTP=I and S is an upper triangular matrix. Then let as(0>=0,

and /'*' is the vector whose components are the first n components of Pd®.
We choose a^0)=0 since otherwise there is no assurance that x^ will converge
to Si.

Now going back to the original process (5.1),

where

Thus

Amayb

where 2! is an mxn matrix with the singular values <r;- on the diagonal and
zeros elsewhere, and U and V are the matrices of eigenvectors of AAT and
ATA, respectively. Then

where P=f7r6, and r is the rank of A. Then from (5.4) we see that

Numer. Math. Bd. 7 15
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where

Thus as 5-^00

The choice of a will greatly affect the rate of convergence of the iterative
method, and thus one must choose a with great care. If a is too small then the
equations will remain ill-conditioned. If d is a lower bound of the smallest
non-zero singular value, then a should be chosen so that

This means at each stage, there will be at least one more place of accuracy in
the solution. There are a number of methods for accelerating the convergence
of (5.1) (cf. [J]).

It is easy to see that

Since e'?) lies in the space spanned by v1,...,»,, it follows immediately that

Thus a good termination procedure is to stop iterating as soon as ||ew|| increases
or does not change.

6. Statistical Calculations
In many statistical calculations, it is necessary to compute certain auxiliary

information associated with ATA. These can readily be obtained from the
orthogonal decomposition. Thus

Since

The inverse of R can be readily obtained since R is an upper triangular matrix.
WACGH and DWYEE [8] have noted that it is possible to calculate (ATA)~1

directly from R. Let

Then from the relationship

and by noting that {R~T}ii='\\r^, it is possible to compute xn,xn^, ...,0^.
The number of operations are roughly the same as in the first method but more
accurate bounds may be established for this method provided all inner products
are accumulated to double precision.

In some statistical applications, the original set of observations are augmented
by an additional set of observations. In this case, it is not necessary to begin
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the calculation from the beginning again if the method of orthogonalization is
used. Let R!,CI correspond to the original data after it has been reduced by
orthogonal transformations and let A%, bz correspond to the additional observa-
tions. Then the up-dated least squares solution can be obtained directly from

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only w(«+1)/2 memory
locations are required. By partitioning the matrix A by rows, however, then
similarly only n(n+i)j2 locations are needed when the method of orthogonali-
zation is used.

7. Least Squares Problems with Constraints

Frequently, one wishes to determine SS so that |6 — Ax\ is minimized subject
to the condition that Hx=g where H is a pxn matrix of rank p. One can,
of course, eliminate p of the columns of A by Gaussian elimination after a p xp
submatrix of H has been determined and then solve the resulting normal equa-
tions. This, unfortunately, would not be a numerically stable scheme since no
row interchanges between A and H would be permitted.

If one uses Lagrange multipliers, then one must solve the (n-{-p) x(n-\-p)
system of equations.

where X is the vector of Lagrange multipliers. Since a: = (ATA)~1ATb —
(ATA)-^HT\,

where

Note « is the least squares solution of the original problem without constraints
and one would frequently wish to compare this vector with the final solution *.
The vector z, of course, should be computed by the orthogonalization procedures
discussed earlier.

Since ATA=RTR, H(ATA)-iHT=WTW where W=R~THT. After W is
computed, it should be reduced to a pXp upper triangular matrix K by ortho-
gonalization which is the Choleski decomposition of WT W. The matrix equation

should be solved by the obvious method. Finally, one finds

where (ATA)~1H\ carvbe easily computed by using R-1.
15*
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SINGULAR VALUE DECOMPOSITION AND LEAST SQUARES
SOLUTIONS (WITH C. REINSCH)

NUMER. MATH. (14), 403-420 (1970).

SVD is the triple factorization of a given m x n matrix A e Cm 'n:

Here U e Cm 'm and V e Cn 'n are unitary: UHU = Im, VHV = In, £ = diag(o-fc).
cri > (72 > . . . > 0 are the so-called singular values of the matrix A in decreasing order.

(Equation 12.1) means that any linear map (Dn —» <Dm splits into separated one-
dimensional linear maps

provided we use the appropriate orthogonal coordinate systems in the spaces Cn and
Cm . (If rn > n then the last m — n equations in (12.2) are trivial: yk = 0 for fc > n.)

Of course, m one-dimensional maps are much simpler than a map from Cn into
Cm , so that the SVD is the great simplifier and therefore has applications in many
fields.

The SVD is one of the most fundamental tools in linear algebra and has found
therefore proper attention from the beginning of numerical analysis.

First attempts to compute the factors in (12.1) started with the diagonalization
of the matrices AH A = VH di&g(al) V and AAH = Udiag(o-fc) UH, using the Jacobi
method, then state of the art. We see that the singular values are the square roots of the
eigenvalues of the positive (semi)definite matrices AH A or AAH. This means numerical
difficulties with the accurate computation of the smaller singular values, which usually
are the more interesting ones and should be computed as precisely as possible. An
equally severe problem is the correct association of the eigenvectors of AH A (columns
of V) with the eigenvectors of A AH (columns of U) which are not unique in the event
of multiple eigenvalues. Thus, this method was soon abandoned.

In 1965 Golub and Kahan published an algorithm for the computation of the SVD
based on the (TO + n) x (TO + n) matrix

With the standard reduction of the complex A to real bidiagonal form B by applying
either Givens rotations or Householder reflections from left and right to A, and after
an obvious permutation of the rows and columns of the reduced C, we arrive at a real,
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tridiagonal, and symmetric (m + n) x (m + n) matrix T with spectrum <j\ > ... > ar >
0 = . . . = 0 > — ay > . . . > — <J\ and zeros along the diagonal. To this matrix Golub
and Kahan applied the symmetric version of the QR-transformation with a special
shift-strategy: a conventionally chosen shift s for one QR-step and the shift with — s
for the next QR-step, which restores the zero-diagonal. At that time the insight into
the convergence properties of the QR-iteration with shifts was not yet fully developed,
so that it was overlooked how disastrous this shift technique is for a special class of
tridiagonal matrices frequently encountered in physical applications. It was easy to find
sample matrices with unsatisfactory convergence rates and in some cases the algorithm
would not converge at all.

At this time, I had pushed the editors (F. L. Bauer, H. Rutishauser, J. Wilkinson
et al.~) to include the symmetric QR algorithm in their Handbook series of established
computer routines in linear algebra, where originally only a Jacobi routine and Givens
bisection method were included for solving the symmetric eigenvalue problem. This
QR-iteration would use as shift one of the two eigenvalues of the lower 2 x 2 diago-
nal block as Wilkinson had used in Francis' non-symmetric QR-iteration with double
steps. Instinct guided me, however, to use a different rule for selecting which of the two
eigenvalues should become the next shift. With this serendipitous choice Jim Wilkin-
son could then prove the global convergence of the QR-iteration for real, symmetric,
tridiagonal matrices in 1969.

For me, it was clear that a wonderful method for computing the SVD would result if
one could transform the bidiagonal matrix B mentioned above into a bidiagonal matrix
B', such that the transition from B1B to B' T B' were precisely the QR-step of the last
paragraph with its global convergence property and its unique convergence rate. The
problem was that a shift s had to be applied to B1B which would make the matrix
indefinite: there is no Cholesky decomposition of B1B — si. Thus a straightforward
path to follow was blocked. But J. G. F. Francis (1961/62) had invented his ingenious
way of applying the shift implicitly by the "chasing" technique. It turned out that this
technique could be used also for the transition B i—> B' so that the (never explicitly
formed) transition B1B i—> B' TB' would be as desired. The resulting SVD algorithm
was designed in 1967 and soon became very popular.

The editors of the mentioned Handbook series Linear Algebra now had the choice
between two proposals for an SVD routine: Gene Golub had submitted in 1967 a
program based on the Golub-Kahan algorithm (1965) and there was my routine with
its proven convergence properties. Their wise decision let them choose my algorithm
under joint authorship. Incidentally, in Matrix Computations by Golub and Van Loan,
one of the most popular textbooks in this field, that algorithm with the implicit shift
and the chasing technique is described under the heading Golub-Kahan SVD step, and
it is mentioned that the material is from Golub and Kahan (1965).

The evaluation process of the Handbook series with approval from several interna-
tional editors was a very slow process. The Internet did not exist at that time, and
snail mail had to be used, which back and forth across the Atlantic would take more
than two weeks in the most favorable cases. Thus, the Handbook article, although fin-
ished in 1967, did not appear in print before 1970. The complex version (the reduction
A e Cm 'n I-* B e Rm'n) was programmed in FORTRAN by Businger and Golub
(1968) and needed communication paths just within the Standford University Campus
to reach the A CM Communications editor. Therefore it overtook the Handbook article
and appeared earlier in print.
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Our joint paper Singular Value Decomposition and Least Squares Solutions (1970)
has been included in Part III, Least Squares Problems, rather than in Part IV, Matrix
Factorizations in this volume. The reason is perhaps that I included in the section
Applicability of that paper a reference to what I then called "A Generalization of
the Least Squares Problem". Nowadays the problem is known as the total least squares
problem, see Matrix Computations by Golub and Van Loan where the theory is outlined.
In particular, it is shown that the problem need not have a solution in all cases. Thus,
it must be ill-posed. Indeed, it is, and I regret now my attempt to demonstrate the
usage of the SVD.

Christian Reinsch
Munich, Germany
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Numer. Math. 14, 403-420 (1970)

Handbook Series Linear Algebra

Singular Value Decomposition and Least Squares Solutions*
Contributed by

G. H. GOLUB** and C. REINSCH

1. Theoretical Background

1.1. Introduction

Let A be a real wx» matrix with m^n. It is well known (cf. [4]) that

where

The matrix U consists of n orthonormalized eigenvectors associated with the
n largest eigenvalues of AAT, and the matrix F consists of the orthonormalized
eigenvectors of ATA. The diagonal elements of E are the non-negative square
roots of the eigenvalues of ATA; they are called singular values. We shall assume
that

Thus if rank(A)=r, <r,+1=or
f+2= ••• =an=0. The decomposition (1) is called

the singular value decomposition (SVD).

There are alternative representations to that given by (1). We may write

We use the form (I), however, since it is most useful for computational purposes.

If the matrix U is not needed, it would appear that one could apply the usual
diagonalization algorithms to the symmetric matrix ATA which has to be formed
explicitly. However, as in the case of linear least squares problems, the com-

* Editor's note. In this fascicle, prepublication of algorithms from the Linear
Algebra series of the Handbook for Automatic Computation is continued. Algorithms
are published in ALGOL 60 reference language as approved by the IFIP. Contributions
in this series should be styled after the most recently published ones.

** The work of this author was in part supported by the National Science Founda-
tion and Office of Naval Research.
28 Numer. Math., Bd. 14
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putation of ATA involves unnecessary numerical inaccuracy. For example, let

then

so that

1 1
If j82<E0, the machine precision, the computed ATA has the form I I , and
the best one may obtain from diagonalization is 6^ = ]/2, 5a= 0.

To compute the singular value decomposition of a given matrix A, Forsythe
and Henrici [2], Hestenes [8], and Kogbetliantz [9] proposed methods based
on plane rotations. Kublanovskaya [10] suggested a QR-type method. The
program described below first uses Householder transformations to reduce A to
bidiagonal form, and then the Q R algorithm to find the singular values of the
bidiagonal matrix. The two phases properly combined produce the singular value
decomposition of A.

1.2. Reduction to Bidiagonal Form

It was shown in [6] how to construct two finite sequences of Householder
transformations

and

(where *<*)'*(*) = yWy<*) = i) such that

an upper bidiagonal matrix. If we let A^ = ^4 and define

then P(*' is determined such that

and O(*J such that
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The singular values of /(0) are the same as those of A. Thus, if the singular
value decomposition of   

then

1.3. Singular Value Decomposition of the Bidiagonal Matrix
By a variant of the Q R algorithm, the matrix /(0) is iteratively diagonalized

sothat

where

and Sw, T'*1 are orthogonal. The matrices r(<) are chosen so that the sequence
Jlf(*) = yMryW converges to a diagonal matrix while the matrices $'*' are chosen
so that all /(*> are of the bidiagonal form. In [7], another technique for deriving
{S(l)} and {r(*>} is given but this is equivalent to the method described below.

For notational convenience, we drop the suffix and use the notation

The transition /—>/ is achieved by application of Givens rotations to / altern-
ately from the right and the left. Thus

where

and Tk is defined analogously to Sk with <ph instead of 9k.
Let the first angle, q>t, be arbitrary while all the other angles are chosen so

that / has the same form as /. Thus,

T2 annihilates nothing, generates an entry {/}2],
Sf annihilates {/}2i, generates an entry {/}13,
T3 annihilates {/}j 3, generates an entry {/}32, (3)

and finally

(See Fig. 1.)

28«

SJ annihilates {/}„,„_!, and generates nothing.
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Fig.1

This process is frequently described as "chasing". Since J=STJT,

and M is a tri-diagonal matrix just as M is. We show that the first angle, <p%,
which is still undetermined, can be chosen so that the transition M-^-M is a
QR transformation with a given shift s.

The usual QR algorithm with shifts is described as follows:

where TS
TTS—I and Rs is an upper triangular matrix. Thus Ms— T^MTS. It

has been shown by Francis [5] that it is not necessary to compute (4) explicitly
but it is possible to perform the shift implicitly. Let T be for the moment an
arbitrary matrix such that

(i.e., the elements of the first column of Ts are equal to the first column of T) and

Then we have the following theorem (Francis): If
i)M^TTMT,

ii) M is a tri-diagonal matrix,
iii) the sub-diagonal elements of M are non-zero,

it follows that M=DMSD where D is a diagonal matrix whose diagonal elements
are ±1.

Thus choosing 7"2 in (3) such that its first column is proportional to that of
M —si, the same is true for the first column of the product T = T2 T3 ... Tn which
therefore is identical to that of T,. Hence, if the sub-diagonal of M does not
contain any non-zero entry the conditions of the Francis theorem are fulfilled
and T is therefore identical to Ts (up to a scaling of column ±1). Thus the
transition (2) is equivalent to the Q R transformation of JTJ with a given shift s.

The shift parameter s is determined by an eigenvalue of the lower 2 X 2 minor
of M. Wilkinson [13] has shown that for this choice of s, the method converges
globally and almost always cubically.
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1.4. Test for Convergence
If \en\ 5»<5, a prescribed tolerance, then | qn\ is accepted as a singular value,

and the order of the matrix is dropped by one. If, however, \ek gJ5 for &4=«,
the matrix breaks into two, and the singular values of each block may be com-
puted independently.

If qk= o, then at least one singular value must be equal to zero. In the absence
of roundoff error, the matrix will break if a shift of zero is performed. Now,
suppose at some sta\a 

At this stage an extra sequence of Givens rotations is applied from the left
to / involving rows (k, k +1), (h, k + 2),..., (k, n) so that

«*+! = {/}*,*« is annihilated, but {/}s>w.2, {7}*+M are generated,
{/}*,*+* is annihilated, but {/}M+3, {/}*+2,ji are generated,

{/}*,« is annihilated, and {/}„_£ is generated.

The matrix obtained thusly has the form

Note that by orthogonality

Thus choosing 5 = |/(0)|coe0 (ea, the machine precision) ensures that all dk are
less in magnitude than ejll/'0'!^. Elements of / not greater than this are neg-
lected. Hence / breaks up into two parts which may be treated independently.

2. Applicability
There are a large number of applications of the singular value decomposition;

an extensive list is given in [7]. Some of these are as follows:

2.1. Pseudoinverse (Procedure SVD)
Let A be a real mxn matrix. An nxm matrix X is said to be the pseudo-

inverse of A if X satisfies the following four properties:
i) AXA^A,

ii) XAX = X,
iii) (AX)T = AX,
iv) (XA)T = XA.
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The unique solution is denoted by A*. It is easy to verify that if A= U EVT,
then A*=VZ*UT where 2+ = diag(of) and

Thus the pseudoinverse may easily be computed from the output provided by
the procedure SVD.

2.2. Solution of Homogeneous Equations (Procedure SVD or Procedure Minfit)
Let A be a matrix of rank r, and suppose we wish to solve

where 0 denotes the null vector.
Let

Then since A v± = aiui (i = \, 2, ... n),

and xi^=vi.
Here the procedure SVD or the procedure Minfit with p = 0 may be used

for determining the solution. If the rank of A is known, then a modification of
the algorithm of Businger and Golub f 1 ] may be used.

2.3. Solutions of Minimal Length (Procedure Minfit)
Let &! be a given vector. Suppose we wish to determine a vector x so that

If the rank of A is less than n then there is no unique solution. Thus we require
amongst all x which satisfy (5) that

and this solution is unique. It is easy to verify that

The procedure Minfit with p>0 will yield V, Z, clt ..., cp. Thus the user is able
to determine which singular values are to be declared as zero.

2.4. A Generalization of the Least Squares Problem (Procedure SVD)
Let A be a real mxn matrix of rank n and let i be a given vector. We wish

to construct a vector x such that

and
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Here K>0 is a given weight and the standard problem is obtained for K-+0.
Introducing the augmented matrices A=(A, Kb) and AA = (AA, KA b) and the
vector

we have to minimize tia.ce(AATAA) under the constraint (A -\-AA)x = Q. For
fixed x the minimum is attained for A A = — A x x T j x T x and it has the value
xTATAxjxTx. Minimizing with respect to x amounts to the computation of the
smallest singular value of the matrix A and x is the corresponding column of
the matrix V in the decomposition (1) with proper normalization [3].

3. Formal Parameter List

3.1. Input to Procedure SVD

m number of rows of A, m=zn.
n number of columns of A.
withu true if U is desired, false otherwise.
withv true if V is desired, false otherwise.
eps a constant used in the test for convergence (see Sec-

tion 5, (iii)); should not be smaller than the machine
precision £„, i.e., the smallest number for which
1 + ea> 1 in computer arithmetic.

M a machine dependent constant which should be set
equal to /?/e0 where /? is the smallest positive number
representable in the computer, see [11].

a[\:m, 1: n] represents the matrix A to be decomposed.

Output of procedure SVD.
j[1:«] a vector holding the singular values of A; they are non-

negative but not necessarily ordered ia decreasing se-
quence.

**[!: m, 1: n] represents the matrix U with orthonormalized columns
(if withu is true, otherwise u is used as a working
storage).

v[\:n, 1:»] represents the orthogonal matrix V (if withv is true,
otherwise v is not used).

3.2. Input to Procedure Minfit

m number of rows of A.
H number of columns of A.
P number of columns of B, p^0.
eps same as for procedure SVD.
M same as for procedure SVD.
ab['[:max(m,n),1:n-}-p] ab[i,j] represents «,•_,-, \^i^m, ISj/'Sjjt,

ab[i,n+j] represents &,-_,-, i^i^m, \^j^p.
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Output of procedure Minfit.
ab[l;max(m,n),i:n+p] ab[i,j] represents viif, lg;»si», l:£?sSj*,

ab\i, n +/] represents ct j , 1 ̂  i :g max(m, n), 1 ^j^p
viz.C = Uc

TB.
q[\ : n] same as for procedure SVD.

4. ALGOL Programs
procedure SVD (m, n, withu, withv, eps, tol) data: (a) result: (q, u, v);

value m, n, withu, withv, eps, tol;
integer m, n;
Boolean withu, withv;
real eps, tol;
array a, q,tt,v;

comment Computation of the singular values and complete orthogonal decom-
position of a real rectangular matrix A,

4=[7diag(?)FT, UTU=VTV = I,

where the arrays «[i:w,l:»], u[\\m,\:n\, v[i:n,i:n], q[i:n] re-
present A, U,V,q respectively. The actual parameters corresponding
to a, u, v may all be identical unless withu = withv — true. In this
case, the actual parameters corresponding to « and v must differ.
m^n is assumed;

begin
integer i, j , k,l, 11;
real c.f,g,h,s, x,y,z;
array e[l:»];
for i:— 1 step 1 until m do
for j := 1 step i until n do «[»', /] := a[i,;'];

comment Householder's reduction to bidiagonal form;
g:=*:=0;
for i:— i step l until n do
begin

e\i]:=g; s:=0; l:=i + \;
for j:—i step \ until m do s := s +u\j, »']|2;
if s< tol then g := 0 else
begin

/:= «[*',»]; g:= if/< 0 then s^(s) else — sqrt(s);
A:=/Xg-s; «[i,t] := /—g;
for / := I step 1 until w do
begin

s:= 0;
for & := » step 1 until m do s := s +u[k, i] Xu[k, /];
/:=*/*;
for k := i step 1 until m do «[A, j] := «[A, /] +/x«[As, t]

end;
end s;
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?[*]:= g; s:=o;
for / := / step 1 until n do s := s + «[»", j}\2',
if s<tol then g: = 0 else
begin

/:= «[»',i-H]; g:= if /<0 then sgrt(s) else — sqrt(s);
A : = / x g — s ; «[*,t-M]:=/ —g;
for j'.= I step 1 until w do e[j] := «[i, /]/A;
for j := I step 1 until m do
begin

s:=0;
for A:= / step 1 until » do s := s+«[/'» A]x»[», A];
for A := / step 1 until n do «[/, A] := «[/, A] +s Xe[A]

end /
end s;
y \= abs(q[i]) +abs(e[f\); if y> x then x:= y

end i;

comment accumulation of right-hand transformations;
if witkv then for i := n step — 1 until i do
begin

if g 4=0 then
begin

A:=«[» ,» + 1] xg ;
for ;' := / step 1 until n do t>[/, f] := «[*', ;']/*;
for f '•= I step 1 until » do
begin

s:= 0;
for ft := I step 1 until n do s := s + «[»', A] x«[A, 7];
for A := / step 1 until « do w[A, /] := o[A, /] +s x»[A,»']

end /
«nd g;
for / := Z step 1 until « do «[»', /] := »[/, i] := 0;
«[i,»'] := l; g:=«[fl; l:=i

end t;

comment accumulation of left-hand transformations;
if withu then for i:= n step —1 until 1 do
begin

/:=«+1; g :=?[«];
for j := I step 1 until « do «[t, /] := 0;
if g 4=0 then

begin
A:=«[*',*]xg;
for / := I step 1 until n do
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begin
s:= 0;
for k := I step 1 until m do s := s + u[k, i] xu[k,;'];
/:=*/*;
for & := t step 1 until »t do «[&, j] := «[&, 7] + /x«[&, »']

end /;
for /':=»' step 1 until w do «[j, t] := «[/, i]/g

end £
else for /:= i step 1 until m do »[/, t] := 0;
u [»',*'] := «[t, t]+l

end z;

comment diagonalization of the bidiagonal form;
eps:= epsxx;
for k;= n step — 1 until 1 do
begin

test f splitting:
for /:= A step —1 until 1 do
begin

if abs (e\l~\) g eps then goto fes< / convergence;
if «6s (<?[/ — 1]) ̂  eps then goto cancellation

end 2;

comment cancellation of «[/] if l> 1;
cancellation:

c:= o; s:=l; ll:=l — \;
for t := / step 1 until k do
begin

/:=sx«[*]; «[*']:= cxe[»];
if a6s(/) ̂  e^>s then goto fes< / convergence;
g:=q{i}\ k:=q[i]:=sqrt(fx.f + g x g ) ; c:=gjh; s:= —f/h;
if withu then for / := 1 step 1 until m do
begin

y := u[j, 11]; z := »[/,»'];
«[/, U] := yxc + ^xs; «[?', *'] := — y x s + 0 X c

end /
end i;

test f convergence:
z := q[k]; if / = k then goto convergence;

comment shift from bottom 2X2 minor;
*:=?W; y:=q\k-\}; g:=e\_k-i}; h:=e[k};
f:=((y-z)x(y+z)+(g-h)x(g+h))l(2xhxy);g:= s«rt(/x/ + l);
/:=((*-^)x(* + «)+Ax(y/(if/<Othen/-gel5e/+g)-A))/*;

comment next QR transformation;
c := s := 1;
for i:=l + i step \ until ft do
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begin
g :=«[*]; y :=?[*]; / t :=sxg; g :=cxg;
e[«'—i] := z:= s0rt(/x/ + Ax&); c:=//z; s:=kjz;
/ :=*xc + gxs; g : = — * x s + f X c ; A:= yxs; y := yxc;
if withv then for / := 1 step 1 until w do
begin

*:= v[/, » — 1]; *:=«[/,*];
»[/, f — 1] := #xe+zxs; i>[?',«']:= — #xs + zxe

end;;
q[i-l]:=z:=sqrt(fxf + hxh); c:=//z; s:=hjz;
f:=cxg + sxy; *: = — sxg + exy;
if z0»%« then for /:= 1 step 1 until w do
begin

y:=tt\j,i — 1]; z :=«[/,*];
»[/, i —1] := yxc + zxs; «[j, i] := — y xs+^Xc

end /
end z ;
«[q := o; «[A] := /; ?[/fe] := *; goto te< / splitting;

convergence:
if z<0 then
begin comment q[k] is made non-negative;

?[*] == -*;
if wf<A» then for j := 1 step 1 until n do »[/, ]̂ := —v\j, K]

end z
end k

end SFD;

procedure Minfit (m, n, p, eps, tot) trans', (ab] result: (q);
value m, n, p, eps, tol;
integer m,n,p;
real eps, tol;
array ab, q;

comment Computation of the matrices diag(g), V, and C such that for given
real mxn matrix A and mxp matrix B

UjA V = diag (q) and UjB — C with orthogonal matrices Uc and F.

The singular values and the matrices V and C may be used to de-
termine X minimizing (1) \AX— 5jp and (2) \X\F with the solution

X = V X Pseudo-inverse of diag (q) X C.

The procedure can also be used to determine the complete solution
of an underdetermined linear system, i.e., rank{^4) =m<.n.

The array q\\ \n\ represents the matrix diag{#). A and B together
are to be given as the first m rows of the array ab[\: max (m, n), \: n+p}.
V is returned in the first n rows and columns of ab while C is returned
in the last p columns of ab (if p > 0);
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begin
integer i, j, k, 1,11, nl, np;
real c,f,g,h,s, x,y,z;
array «[!:»];

comment Householder's reduction to bidiagonal form;
g := x := 0; np := n-\-p;
for i:= i step 1 until « do
begin

e[i]:—g; s:=0; / : = » " + !;
for 7 : = i step 1 until w do s := s + ab[j, i]|2;
if s < iol then g ; = 0 else
begin

/ := ab[i, i]; g := if /< 0 then sqrt(s) else — sqrt(s);
h:=fxg—s; ab[i,i]:= f—g;
for ; : = / step 1 until np do
begin

s:= 0;
for k := i step 1 until w do s:= s + ab[k, i]xab[k, /];
/:=*/*;
for & := j step 1 until »z do ab[k, /] := a6[A, j] +/x«6[A, i]

end /
end s;
?[»]:= g; s:=0;
tfi<,m then for /:= J step 1 until n do s:= s+«6[t, ;]f2;
If s<tol then g := 0 else
begin

/:= ab[i, * + !]; g:= If/<0 then sjrf(s) else — s{r<(s);
h:=fxg — s; ab[i,i + l] :=/—§•;
for /:= Z step 1 until » do «[/] := ai[», /]/A;
for / := I step 1 until in do
begin

s:=0;
for k := I step 1 until n do s := s + ab[j, K] x.ab[i, k];
for k:=l step 1 until » do ai[/, A] := «&[/, ft] +s x«[ft]

end /
end s;
y := «6s(j[i]) +aJs(e[z]); if y> x then ^ := y

end ;;

comment accumulation of right-hand transformations;
for i:=n step — 1 until 1 do
begin

if g 4=0 then
begin

h:= ab\i, i + l ]Xg;
for j := I step 1 until w do «6[j, t] := ab\i, ;]/A;
for / := I step 1 until n do
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begin
s:=0;
for k := I step 1 until n do s := s +ab\_i, k] xab[k, /];
for k := / step 1 until n do ab[k, j] := ab[k, j] + sxab[k, i]

endj
endg;
for j:= I step 1 until n do ab\i, /] := ab\j, i} := 0;
ab[i, i] := \; g := e[t]; / := i

end z;
eps:= epsxx; nl:=n + i;
for ;':= m + 1 step 1 until « do
for j:=nl step 1 until »^> do ab[i, j] := 0;

comment diagonalization of the bidiagonal form;
for k:= n step —1 until 1 do
begin

to< / splitting:
for / : = k step — 1 until 1 do
begin

if abs(e[l~\) g e/>s then goto test f convergence;
if abs (q [I — 1 ]) g «£shen gotocancellation

end /;

comment cancellation of «[/] if /> i;
cancellation:

c:= o; s:= 1; ll:=l — \;
for »' :=tep 1 untildo
begin

/ := sX0[>']; e[i] := cxe[i];
if abs(f)2^s then gototest f convergence;
?:=?[*]:q[i]:=>t:=sqrt(fxf g x g ) ; c:=gjh;s:= -//A;
for j := »7 step 1 until np do
begin

y : = ab[11, j]; z: = ab[i, /];
«6[U,;'] := cxy + sxz; ab[i,j]:= —sxy+cxz

end /
end ;';

test f convergence:
^:= q[k]; if / = & then goto convergence;

comment shift from bottom 2x2 minor;
x:=q[l]; y:=?[*-1]; g:=e[ft-l]; A:=«[*];
/:= ( (y_ z )X (y+^) + (g-A)x(g+A)) / (2xAxy); g: = sqrt(fxf + Jl);
/:= ((*-«) x(*+«)+Ax(y/(if/<0 then /-g else / + g)-A))/«;

comment next ^7? transformation;
c := s := 1;
for f := / +1 step 1 until A do
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begin
g:=«[»]; y :=?[«]; h:=sxg; g:=cxg;
e\i— 1] := z: = sqrt(txf + hxh}; c : = f j z ; s:=hjz;
/:= xxc+gxs; g:= — xxs + gxc; h:= yxs; y:= yxc;
for / := 1 step 1 until n do
begin

x := ab[j, i — 1]; z := ab\j, i];
«&[/,*' —1]:= *xc+zxs; «&[/,«]:= — *xs+zxc

end j;
q[i — i]:=z:=sqrt(fxf+ hxk); c:=//z; s := A/a;
/ :=cxg + sxy; *:= —sxg + cxy;
for / := «J step i until »p do
begin

y := ab[i — 1, /]; «:= «i[t, /];
«6[» — 1,/] := cxy+sx^ ; ab[i,j] := — s x y + cxa

end y
end v';
e[/] := 0; e[h] := /; y[A] := x; goto fos< / splitting;

convergence'.
if 2<0 then
begin comment g[&] is made non-negative;

?W := -*;
for j := 1 step 1 until n do «6[/, A] := —ab\j, K]

end z
end k

end Minfit;

5. Organizational and Notational Details

(i) The matrix U consists of the first n columns of an orthogonal matrix Ue.
The following modification of the procedure SVD would produce Ue instead of U:
After

comment accumulation of left-hand transformations;
insert a statement
if withu then for »:= n +1 step 1 until »z do
begin

for / :=« + ! step 1 until m do «[*', /] := 0;
«[*, »']:=!

end i;
Moreover, replace n by m in the fourth and eighth line after that, i.e., write
twice for / := / step 1 until m do.

(ii) m^in is assumed for procedure SVD. This is no restriction; if m<.n,
store A1', i.e., use an array at[\:n, \:m\ where at\i,j~\ represents «^,- and call
S VD (n,m, withv, withu, eps, tol, at, q, v, u) producing the mxtn matrix U and
the n x m matrix V. There is no restriction on the values of m and n for the
procedure Minfit.
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(iii) In the iterative part of the procedures an element of /(>) is considered
to be negligible and is consequently replaced by zero if it is not larger in magnitude
than s x where e is the given tolerance and

The largest singular value <TI is bounded by xj^Z SsOj S= *]/2.

(iv) A program organization was chosen which allows us to save storage loca-
tions. To this end the actual parameters corresponding to a and u may be identical.
In this event the original information stored in a is overwritten by information
on the reduction. This, in turn, is overwritten by « if the latter is desired. Like-
wise, the actual parameters corresponding to a and v may agree. Then v is stored
in the upper part of a if it is desired, otherwise a is not changed. Finally, all
three parameters a, u, and v may be identical unless withu — withv = true.

This special feature, however, increases the number of multiplications needed
to form U roughly by a factor m/n.

(v) Shifts are evaluated in a way as to reduce the danger of overflow or under-
flow of exponents.

(vi) The singular values as delivered in the array q are not necessarily ordered.
Any sorting of them should be accompanied by the corresponding sorting of the
columns of U and V, and of the rows of C.

(vii) The formal parameter list may be completed by the addition of a limit
for the number of iterations to be performed, and by the addition of a failure
exit to be taken if no convergence is reached after the specified number of itera-
tions (e.g., 30 per singular value).

6. Numerical Properties

The stability of the Householder transformations has been demonstrated by
Wilkinson [12]. In addition, he has shown that in the absence of roundoff the
Q R algorithm has global convergence and asymptotically is almost always cubically
convergent.

The numerical experiments indicate that the average number of complete
QR iterations on the bidiagonal matrix is usually less than two per singular
value. Extra consideration must be given to the implicit shift technique which
fails for a split matrix. The difficulties arise when there are small qh's or ek's.
Using the techniques of Section 1,4, there cannot be numerical instability since
stable orthogonal transformations are used but under special circumstances there
may be a slowdown in the rate of convergence.

7. Test Results

Tests were carried out on the UNI VAC 1108 Computer of the Andrew R. Jen-
nings Computing Center of Case Western Reserve University. Floating point
numbers are represented by a normalized 27 bit mantissa and a 7 bit exponent
to the radix 2, whence eps = i.$19~8, tol=la— 31. In the following, computed
values are marked by a tilde and m(A) denotes max|«,- ;-|.
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First example:

The homogeneous system Ax = 0 has two linearly independent solutions. Six
QR transformations were necessary to drop all off-diagonal elements below the
internal tolerance 46.4m—8. Table! gives the singular values in the sequence
as computed by procedures SVD and Minfit. The accuracy of the achieved de-
composition is characterized by

Because two singular values are equal to zero, the procedures SVD and Minfit
may lead to other orderings of the singular values for this matrix when other
tolerances are used.

Table 1

*k
0.9610~7

19.595916
19.999999
1-97,»-?

35-327038

"*-»*

-9.6
191
143

-19-7
518

XiO~8

The computed solutions of the homogeneous system are given by the first
and fourth columns of the matrix V (Table 2).

Table 2

»!

— 0.41909545
0.4405 0912

— 0.05200457
0.676O5915
0.41297730

»*

0
0.4185 4806
0.3487 9006
0.2441 5305

— 0.80221713

«i-

- .5
.7
.2
.0
-3

Sl </4-54

0 (Dei) "I
0.6

— 1.3 X 10~8

0.3
-0.8
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Procedure Minfit was used to compute the solutions of the minimization
problem of Section 2-3 corresponding to the three right-hand sides as given by
the columns of the matrix B. Table 3 lists the exact solutions and the results
obtained when the first and fourth values in Table 1 are replaced by zero.

Table 3

x-i

-1/12
0
1/4

-1/12
1/12

0

*2

0
0
0

0
0

Residual
8 VI

xs

-1/12
0
1/4

-1/12
1/12

8V5

*\

-0.08333333
-O.SSjo-8

0.2500 0002

-0.08333332
0.0833 3334

*2

0.17lo-8
-1.09,o-8

1.5510-8
0.7410-8
0.33m - 8

*8

-0.08333333
-l.Hio-8

0.2500 0003
-0.08333332

0.0833 3334

A second example is the 20 X 21 matrix with entries

which has orthogonal rows and singular values <%_k = ]/k(k + lj» k = 0,..., 20.
Theoretically, the Householder reduction should produce a matrix /<0) with
diagonal — 20, 0, ..., 0 and super-diagonal — j/20, o2, ...,(%. Under the influence
of rounding errors a totally different matrix results. However, within working
accuracy its singular values agree with those of the original matrix. Convergence
is reached after 32 QR transformations and the a/,, k = \, ...,20 are correct
within several units in the last digit, <T2i = 1.6110 —11.

A third example is obtained if the diagonal of the foregoing example is
changed to

This matrix has a cluster of singular values, orla to cr19 lying between 1.5 and 1.6,
°20 = V2, ffal = 0. Clusters, in general, have a tendency to reduce the number of
required iterations; in this example, 26 iterations were necessary for convergence.
5^ = 1.49^5, — 8 is found in eighteenth position and the corresponding column
of F differs from the unique solution of the homogeneous system by less than
3-410 — 8 in any component.

A second test was made by Dr. Peter Businger on the CDC 6600.
A third test was performed on the IBM 360/67 at Stanford University. The

example used was the 30X30 matrix with entries

The computed singular values are given in Table 4.

29 Numer. Math., Bd. 14
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Table 4. Singular values

18.2029055575292200
2.4904 5062 9660 3570
.8059191266123070
.6253 2089 2877 9290
.5 546 4889 0109 3 72O
.521780039063495O
.5060426207239700
.5002314347754370

6.2231 965226042340
2.2032075744799280
1-7411 357677479500
1.6018333566662670
1.54408471 40760510
1-51664741 28367840
1.5038042438126520
0.0000 0000 2793 9677

3-9134802033356160
2.0191 8365 4054 5860
1.6923 565443952610
1.5828695887136990
1-5352835655449020
1-5123854738996950
1.5021 129767540060

2.9767945025577960
1.8943415476856890
1.6547930273693370
1-5673921444800070
1.52792951 21603040
1-508880156801 8850
1-50O93071 19770610

Note that ojQ/ojfwf.53 Xl0~l° so that this matrix is very close to being a
matrix of rank 29 even though the determinant equals 1.

Acknowledgement. The authors wish to thank Dr. Peter Businger of Bell Telephone
Laboratories for his stimulating comments.
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THE DIFFERENTIATION OF PSEUDO-INVERSES AND
NONLINEAR LEAST SQUARES PROBLEMS WHOSE VARIABLES

SEPARATE*

G. H. GOLUBf AND V. PEREYRAJ

Abstract. For given data (l,,y,),i= 1, • • • , m, we consider the least squares fit of nonlinear models
of the form

For this purpose we study the minimization of the nonlinear functional

It is shown that by defining the matrix {Ofa)},; = <ffft;tt), and the modified functional r2(tt) = ||y
- <l>(a)4>+(ot)y||2, it is possible to optimize first with respect to the parameters «, and then to obtain,
a posteriori, the optimal parameters &. The matrix 4>+(«) is the Moore-Penrose generalized inverse of
<P(a). We develop formulas for the Frechet derivative of orthogonal projectors associated with <t(a)
and also for <D+(a), under the hypothesis that *(«) is of constant (though not necessarily full) rank.
Detailed algorithms are presented which make extensive use of well-known reliable linear least squares
techniques, and numerical results and comparisons are given. These results are generalizations of those
of H. D. Scolriik [20] and Guttman, Pereyra and Scolnik [9].

1. Introduction. The least squares fit of experimental data is a common tool
in many applied sciences and in engineering problems. Linear problems have been
well studied, and stable and efficient methods are available (see, for instance,
Bjorck and Golub [3], Golub [8]).

Methods for the nonlinear problems fall mainly in two categories: (a) general
minimization techniques; (b) methods of Gauss-Newton type. The latter type of
method takes into consideration the fact that the functional to be minimized is a
sum of squares of functions (cf. Daniel [5], Osborne [14], Pereyra [15]). The well-
known reliable linear techniques have been used mainly in connection with the
successive linearization of the nonlinear models. Very recently it has been noticed
that by restricting the class of models to be treated, a much more significant use of
linear techniques can be made (cf. [2], [9], [12], [13], [17], [20], [23]-[26], [36]

In this paper we consider the following problem. Given data (t,,y^, i = 1,
• • • , m, find optimal parameters a = (5,, • • • , aJT, at = (a,, • • • , Ak)

J that minimize
the nonlinear functional

Throughout this paper a lower-case letter in boldface will indicate a column
vector, while the same letter with a subscript will indicate a component of the

* Received by the editors April 13,1972, and in revised form September 26,1972.
t Computer Science Department, Stanford University, Stanford, California 94305. The work of

this author was supported in part by the Atomic Energy Commission.
Gene H. Golub is Professor of Computer Science at Stanford University where, since 1962, he

was a close colleague of Professor Forsythe.
t Departamento de Computacion, Universidad Central de Venezuela, Caracas, Venezuela.
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vector. Matrices which are not vectors are denoted by capital letters, and the (/, j)
element of (say) a matrix A will be indicated by either atj or {A}t j. The transpose of
a vector u is indicated by UT. Given a function f ( t ) , we shall denote by f the vector
whose components are (f(t1),f(t2),• • ,f(tm))J.The scalar product of two vectors
u and v is indicated by

The only norm which will be used is the Euclidean norm, viz. ||v||2 = <v, v>.
Given a matrix A and a vector b, then we say

if ||b - A*\\ g ||b - Ax\\ for all x 6 R".
We shall use the symbol D for the Frechet derivative of a mapping and V for

the gradient of a functional. We assume that the reader has some familiarity with
pseudo-inverses and Frechet derivatives and their properties. A useful reference
for the pseudo-inverse is [19]; for details on the formalism and manipulation of
Frechet derivatives, we suggest [6, Chap. 8].

Let

and

With the given notation, we can rewrite (1.1) as

Our approach to finding a critical point or a minimum of the functional (1.2)
requires an important hypothesis.

HI. The matrix ®(a) has constant rank r ^ min (m, n) for a e Q c #*, Q, being
an open set containing the desired solution.

We say that a matrix function satisfying HI on an open neighborhood of a
point«° has local constant rank at«°.

Our aim is firstly to minimize a modified functional which depends only on
the nonlinear parameters a, and then to proceed to obtain the linear parameters a.
In [9], [20] simpler models were treated, i.e., <pj$t; t) = t"J, and <;»/«; t) = vfa; t).
A similar point of view was used but different analytic tools were employed. The
reader should also note the independent results obtained by Perez and Scolnik
[17], who in addition deal with nonlinear constraints.

In order to obtain the separation of variables we consider, as in [9], [17], [20],
the modified functional

(1.3) r2(«) = ||y - d>(a)0»y||2,

which will be called the variable projection functional. Once optimal parameters a
have been obtained by minimizing (1.3), then the parameters a are obtained as a
solution of <t»(a)a ^ y.

We shall show in Theorem 2.1 the relationship between critical or minimal
points of the original functional r(a, a) and those obtained from the functional r2(a).
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Both for our proof and for the numerical algorithms of § 5 we need to develop
formulas for the gradient of the functional (1.3). In § 4 we develop these formulas
and obtain the derivatives of projectors, the Jacobian of the residual vector, and the
pseudo-inverse of a matrix function. The only hypothesis we make on the rank of
the matrix is that it must be locally constant at the point where the derivative is
calculated. This is necessary, since otherwise the pseudo-inverse is not a continuous
function, and therefore it could hardly be differentiable. Our proof and final
results are coordinate-free. For the full rank case similar formulas have been
obtained for the pseudo-inverse by Fletcher and Lill [7] (without proof), by Hanson
and Lawson [10], and by Perez and Scolnik [17]. In [7] and [17] this is used to deal
with constraints via penalty functions, while in [17] the authors also obtain a
formula for the rank deficient case in terms of a full rank factorization of the given
matrix. Our formula in turn is given exclusively in terms of the original matrix, its
derivative, and its pseudo-inverse, and it seems to be new.1

In § 5 we give a detailed explanation of how to implement the method in an
efficient way and in § 6 we present some numerical examples and comparisons.
Extensive use is made of linear least squares techniques. A FORTRAN program
based on the ideas of this paper is given in [25].

2. A class of nonlinear least squares problems whose parameters separate. We
are going to consider in this paper models of the form

where a e ̂ ", <x e ̂ *, and the functions <pj are continuously differentiable with
respect to a. We remark that the parameters a and at form two completely disjoint
sets.

The independent variable t could be a vector itself as in [9], [17]. This requires
only small notational changes and we shall not pursue it here.

Given the data ( f f , j;,), i = 1, • • • , m, m ^ n + k, our task is to find the values
of the parameters a, a, that minimize the nonlinear functional

The approach to the solution of this problem is, as in [9], [17], [20], to modify
the functional r(a, a), in such a way that consideration of the linear parameters
a is deferred.

In what follows we call O(a) the matrix function

For each a, the linear operator

is the orthogonal projector on the linear space spanned by the columns of the
matrix $(«). We denote the linear operator (/ — PQM) by P®M- The operator

1 As this paper was being sent to the printers, the authors learned that Decell and Fries [34] had
also obtained this result recently.
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P£(a[} is the projector on the orthogonal complement of the column space of
<D(ot). Similarly,

is the orthogonal projector on the row space of O, and 9P^ — I — ̂ P. When
there is no possibility of confusion we shall omit either the matrix subindex or the
arguments in projections and functions, or both.

For any given a we have the minimal least squares solution

Thus,

The modified functional is then the variable projection functional that we men-
tioned earlier and can be rewritten as

Once a critical point (or a minimizer) a is found for this functional, then a is
obtained by replacing a by a in (2.5).

The justification for employing this procedure is given by the following
theorem.

THEOREM 2.1. Let r(a, a) and r2(a) be defined as above. We assume that in the
open set fi c ^*, <D(a) has constant rank r ̂  min (m, n).

(a) //& is a critical point (or a global minimizer in Q) o/>2(«), and

then (3, a) is a critical point of r(a, a) (or a global minimizer for aeQ) and
HM)=r2(a).

(b) //(&, a) is a global minimizer o/r(a, a.) for a e SI, then a is a global minimizer
of r2(a) in Q and r2(a) = r(&, a). Furthermore, if there is an unique a among the
minimizing pairs o/r(a, a), then a must satisfy (2.8).

We shall postpone the proof of this theorem until the end of § 4, where we
obtain a convenient expression for the gradient of the functional r2(a).

Although separation of variables has been used elsewhere as indicated
earlier, the correspondence between the critical points of r(a, a) and r2(«) has
only been studied before in [9] for a simpler case. See also [36].

3. Algorithmia I. Residual calculation. One of our main points in the algo-
rithmic parts of this paper is to emphasize, when possible and appropriate, the
use of stable and efficient linear least squares techniques. Thus it is convenient to
review some of the tools and to introduce the necessary notation.

If Q is an orthogonal matrix, then for every vector z, ||Qz|| = ||z||. It is well
known (cf. [8], [10], [18], [22]) that every m x n matrix O (m ̂  n) of rank r g n
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can be orthogonally transformed into "trapezoidal" form. That is, there exists
an orthogonal matrix Q and a permutation matrix S such that

(3.1)

where ru is an r x r nonsingular upper triangular matrix. Naturally, O = QTr0S
T.

We indicate by <D~ any n x m matrix which satisfies the two properties

We observe (cf. [19], [22]) that

and hence O+ is not necessary for computing P9.
From the decomposition (3.1), we can obtain a <D~. Let

It is easy to verify that <DB satisfies (3.2) and also d^OO8 = <DB. Hence from (3.1)
and (3.3), it follows that

Due to the isometric properties of the orthogonal transformation Q, the
least squares problem Oa ^ y is equivalent to QOa ^ Qy. We define

A simple computation shows that

Therefore, one can evaluate the nonlinear functional r2(«) of (2.8) for any
value of a in the following way: First the orthogonal matrix Q(«) that is used in
the reduction of <t>(at) is determined; simultaneously, y = Qy is computed, and
finally

is evaluated.
For minimization techniques not requiring derivatives this is all that is needed.

For iterative techniques using the gradient of the functional or the Jacobian of
the residual vector function P<£(0,>y we shall provide in the next section formulas
which will also be useful in the proof of Theorem 2.1.
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4. Frechet derivatives of projectors, residual vectors, and pseudo-inverses, and
their applications. In this section we develop formulas for the Frechet derivative
of orthogonal projectors associated with differentiable matrix functions. This
leads to expressions for the derivatives of the vector function

and that of the pseudo-inverse of $(a). These expressions were developed in [25].
The arguments given here, however, are considerably simpler due to an observa-
tion of G. W. Stewart [27].

An m x n matrix function A(a.) is a nonlinear mapping between the linear
space of parameters, 3ik, and the space of linear transformations £f(^n,^n}.
Consequently, DA(a) will be, for each a, an element of £?(®k, %(ffl>, 3T)). Thus,
DA(a) could be interpreted as a tridimensional tensor, formed with k (m x n)
matrices (slabs), each one containing the partial derivatives of the elements of A
with respect to one of the variables «j. Still in another way, each column in the
fe-direction is the gradient of the corresponding matrix element.

Since all dimensions involved are different, it will be always clear in the
algebraic manipulations how the different vectors, matrices, and tensors interact.
We expect that our efforts in not burdening the reader with a more formal but
considerably heavier notation will be appreciated.

First we compute the Frechet derivative of the orthogonal projector PAM

associated with a differentiable m x n matrix function A(a.) of local constant
rank r.

LEMMA 4.1. Let A~(a.) be ann x m matrix function such that AA~ A = A and
(AA')J = AA~. Then

Proof. Since PAA = A,

and hence,

Thus, since PA = AA~,

Since

(the transposition being done within each symmetric slab (d/dai)PAofthetri-
dimensional tensor DP,,) we finally obtain from (4.3) and (4.4)

which completes the proof.
Lemma 4.1 is, of course, valid when A~ is replaced by A+. Also
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We now use the results of Lemma 4.1 to obtain the gradient of the variable
projection functional r2(«). Since

we have immediately by (4.2) and (4.5),

Now we assume that <t~ satisfies the additional hypothesis

Then

Hence,

D. Jupp has-independently developed (4.7) in the full rank case. This formula is
particularly useful in association with variable metric minimization procedures
(cf. [23], [24]).

Now we have the elements for proving Theorem 2.1.
Proof of Theorem 2.1. From (2.2) we have that r(a, a) = ||y - O(a)a||2. There-

fore,

where © stands for direct sum.
Assume that a is a critical point of r2(a), and that a is denned by

Then,

since yTP®O = 0. Thus (a, a) is a critical point of r(a, a).
Assume now that a is a global minimizer of r2(a) in Q, and a satisfies (4.9).

Then clearly, r(&,&) = r2(a). Assume that there exists (a*, «*),«* eQ, such that
r(a*, a*) < r(&,&). Since for any a we have r2(a) ^ r(a,a), then it follows that
r2(ot*) ^ r(a*, a*) < r(a, a) = r2(a), which is a contradiction to the fact that at
was a global minimizer of r2(«) in il Therefore (d, a) is a global minimizer of
r(a, a) in Q, and part (a) of the Theorem is proved.

Conversely, suppose that (a, a) is a global minimizer of r(a, a) in Q. Then as
above r2(&) ^ r(a,«). Now let a* = O+(%. Then we have r2(&) = r(a*. a)
^ Ka, a); but since (a, at) was a global minimizer we must have equality. If there
was an unique a among the minimizers of r(a, a), then a* = 5. We still have to

188



The differentiation of pseudo-inverses and non-linear least squares problems

420 G. H. GOLUB AND V. PEREYRA

show that a is a global minimizer of r2(«). Assume that it is not. Thus, there will be
oteQ, such that r2(8) < r2(a). Let a be equal to O+(«)y. Then r2(fi) = r(a,S)
< r2(&) = r(&, a), which is a contradiction to the fact that (a, a) was a global
minimizer of r(a, a). This completes the proof.

With Lemma 4.1 we have the machinery for obtaining the derivative of <I>+(a).
Although this is a digression from the main theme of this paper, we develop the
formula because of its novelty and its importance in related applications, some
of which we shall mention briefly.

In order to prove Theorem 4.3 we need the following corollary to Lemma 4.1.
COROLLARY 4.1 Let AP = A+A. Then

Proof. Since (P^)7 = (AJ(Ar)+)J = A + A = AP, then (4.11) follows readily
from (4.2) with A replaced by AJ.

THEOREM 4.3. Let fl a <%k be an open set and for a e Q let A(tt) be an m x n
Frechet differentiable matrix function with local constant rank r ^ min (m, n) in Q.
Then for any a 6 fl,

Proof. Since (P^)7 = (AJ(Ar)+)J = A+A = AP, then (4.11) follows readily

Combining this with (4.11), and observing that AP^A+ = 0, we obtain

Now

and thus,

Combining this last expression with (4.13), we have

But,

and therefore,

(4.15)

since

The theorem follows from the relationship

and from (4.14), (4.15).
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Formula (4.12) is new. Let B = A + dA where dA is an arbitrary incremental
matrix. Wedin [29], [30] has shown that

Formula (4.16) can be used for deriving (4.12) by letting dA -» 0 as was done in
the full rank case in [10]. This technique was pointed out to the authors by
W. Kahan [28].

There are many potential applications for the formulas developed in this
section, besides the one we explicitly give. We shall mention a few of them.

(a) Optimization with nonlinear equality constraints. Consider the problem

subject to

where /(x) is a functional.
In Fletcher and Lill [7] methods are proposed which require the derivative

of (Dc)+. Our formulas would permit (Dc)+ to be rank deficient, though the theory
of this problem is not well understood at the present time. See also [17].

(b) Generalized Newton's method for /(x) = 0. In [31] Ben-Israel considers
the following iterative procedure:

Formula (4.12) could allow a direct study of the convergence properties
of (4.17).

(c) Stability of the solution of perturbed linear least squares problems. Let
A(e) = A + sB. We assume

(i) rank (A(e)) = rank (A) for all « > 0 sufficiently small,
(ii) \\A\\ = \\B\\ = 1.

We wish to consider the behavior of x(s) satisfying

as s -> 0. Using Taylor's formula, we obtain

Now by (4.12) we have

by using the fact that (DA)(0) = B. Hence, using (4.18) and (4.19), we obtain by
the usual norm argument,

where f = b — Ax. Equation (4.20) is the rank deficient generalization of results
given in [32]. A similar treatment can be used to obtain more detailed estimates
of the type given in [16], [29], [30], [33].
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5. Algorithmia II. Detailed implementation of the Gauss-Newton-Marquardt
algorithm. Computation of the Jacobian of the variable projection vector. We shall
now explain in detail how to apply the results of § 4 to the Marquardt modification
of the Gauss-Newton iterative procedure; we make extensive use of linear least
squares techniques. We describe an economical implementation of the Marquardt
algorithm devised earlier by Golub (see also [11], [14]).

We define the vector

The generalized Gauss-Newton (G.N.) iteration with step control for the nonlinear
least squares problem

is given as follows:

The parameters t, > 0, which control the size of the step, are used to prevent
divergence. Usually t, = 1, unless r2(<x'+1) > r2(a'), in which case t, is reduced
Another use of the parameters (, is to minimize r2(a'+1) along the direction
-[Dr2(a')]+r2(a<).

Marquardt's modification calls for the introduction of a sequence of non-
negative auxiliary parameters v, ̂  0.

(G.N.M.) Define

where for each /, F, is the upper triangular Cholesky factor of a k x fc symmetric
positive definite matrix M,. Then the Gauss-Newton-Marquardt iteration is
given by

Reasons for this modification are well known. For more details and an
interesting study of the convergence of this method we refer to [14]. We wish to
make explicit now the "two-stage orthogonal factorization" given in [11] and [14],
in order to show how to take advantage of the special structure of the problem.

Calling

and dropping the superscript / from here on in, one step of the Marquardt algorithm
is equivalent to solving the linear least squares problem
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In the first stage of the orthogonal factorization of K an m x m orthogonal
matrix Q is chosen so that

Thus,

R'i and f are saved for future use.
In the second stage we choose an (m + k) x (m + /c) orthogonal matrix (22

to reduce A•[£Htriangular" form. For this purpose we shall use successive

Householder -transformations as in [3], from where we adopt the notation.
On reducing the first column of A, which is of the form

Now we observe that when Qm is applied to a vector, any component cor-
responding to a zero component of u(1) is left unchanged In particular, the band
of zeros in A is preserved. Thus, in this first step we only need to transform the
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elements of rows number 1 and m + 1. Consequently, Am = QWA will have the
schematic form

where the asterisks indicate the modified elements.
It is now clear that at step v, Aw will have the form

The matrix A(v+1\ v = 1, • • • , k, is obtained as follows:

Finally,

These formulas are similar to those given in [3], but are modified to take
advantage of the structure of the matrix A. A FORTRAN implementation can be
found in [25].

We shall evaluate Dr2(«) = DPi(a)y for a given a, according to

which is readily obtained from (4.2) and (4.5). The matrix OB is constructed as in
(3.3).

In many applications, each component function (pj depends only upon a few
of the parameters {«,}*= i, and therefore its derivatives with respect to the other
parameters will vanish. Those vanishing derivatives will produce m-columns of
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zeros in the tensor DO. In order to avoid a waste of storage and useless computation
with zeros it is convenient to introduce from the outset the k x n incidence matrix
E = (ejt). This matrix will be defined as follows:

f l if and only if parameter <x, appears in function <p};
ejt = <

(0, otherwise.

We shall also call p the number of nonzero derivatives in D<D:p = £,;£/«•
The nonzero derivative vectors can then be stored sequentially in a bidimensional
array B(m x p). In our implementation we chose to store the nonzero m-columns
varying first the index corresponding to the different differentiations, and then
that corresponding to the different functions. This information can then be decoded
for use in algebraic manipulations by means of the incidence matrix E.

We now introduce some notation in order to describe the compressed storage
of the nonzero columns of the tensor DO in a more explicit fashion. We define,
for t = 1, • • • , k,

S, = {set of ordered indices for which ejt ^ 0,j = 1, • • • , n};

We write the matrix B in partitioned form

where

A step-by-step description of the computation of DP^y follows. We assume
that the rank of O(<x) is computationally determined and equal to r ^ min (m, n).

(a) Compute O(«), DO(a).
(b) Form the m x (n + p + 1) array

(c) Obtain the orthogonal factorization of A (cf. § 3):

Also v = Qy; C = QB (Ti t, T12, v, and C will be stored in the array G). Note again
that (see § 3)

(d) Get the intermediary values:
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(i.e., remember that the nonzero information of D is stored in the last p columns
and last m — r rows of G);

(transposition in the tensor DO refers to transposition within the "slabs" corre-
sponding to the different derivatives, and must be interpreted adequately when
decoding the information from the compressed storage array G; the appropriate
ALGOL-60 code for computing U with our storage convention would be (assuming
that C = QB is stored in the same place B is):

end;).

(f) Compute Hnxk= SJU. Solve the k,r x r lower triangular systems:

where Hr x k contains the first r rows of H. Store W in the first r rows of the m x k
array B. Compute Dx and store the nonzero information in the last m — r rows of B.

(g) Finally, the m x k matrix B is obtained as

We emphasize the systematic use made of the triangular orthogonal decom-
position of the matrix O(«). We also warn the reader about the correct inter-
pretation of the algebraic operations in which any tridimensional tensor intervenes,
as we exemplified in (e).

Computation of the gradient of the variable projection functional for variable
metric minimization procedures. We recall (4.7):

Vr2(a)= -2yTPiwD<D(a)<I>-(a)y.
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In order to implement efficiently this formula, we proceed as in the case of DP^y,
which we have just described:

(a) and (b) as before;
(c) as before, except that C = QB is not necessary;
(d) x=771

1v1;

In order to use a variable metric minimization procedure such as the Davidon-
Fletcher-Powell method [5], it is simply necessary to compute the residual as in
§ 3 and its gradient as given above.

6. Numerical experiments. We have implemented four different algorithms
based on the developments of the previous sections. For each example rank (O(a))
= n. The methods minimize the variable projection functional r2(«) = H-Pi^yll2

first, in order to obtain the optimal parameters ai, and then complete the optimiza-
tion according to our explanation in § 2. The algorithms differ in the procedure
used for the ^minimization of r2(«). We also minimize the original functional
r(a, a) and compare the results.

Al. Minimization without derivatives. We use PRAXIS, a FORTRAN version of
a program developed by R. Brent [4], who very kindly made it available to us.
All that PRAXIS essentially requires from the user is the value of the functional
for any a. This is computed using the results of § 3. In fact, the user has only to
give code for filling the matrix <i> for any a, and our program will effect the triangular
reduction and so on. It turns out that many times (see the examples) the models
have some terms which are exclusively linear, i.e., functions q>j which are independ-
ent of «. Those functions produce columns in <D(«) which are constant throughout
the process. If they are considered first, then it is possible to reduce them once and
for all, saving the repetition of computation. This is done in our program.

A2. Minimization by Gauss-Newton with control of step (see (5.2)). The user
is required to provide the incidence matrix E and the array of functions <PJ and
nonvanishing partial derivatives G. See § 5 for a more detailed description.

A3. Minimization by Marquardt's modification. It is as explained in § 5 with
F, = /. User supplied information is the same as in A2.

A4. Variable metric procedure. We have used a FORTRAN program of M.
Osborne. The user supplied information is the same as for Al and A3, but here
only the gradient of r2(a) is required and this is computed according to § 5.

Test problems. Problems 1 and 2 are taken from Osborne [14], where the
necessary data can be found.

PI. Exponential fitting. The model is of the form

The functions <pt are obviously (^(a; t) = 1, (pj+1(ct; t) = e~"Jl, j = 1,2.
So the different constants, in the notation of § 2, are n = 3, k = 2. For the
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problem considered, m = 33. The number oj constant functions (NCF) equals 1.
The number of nonvanishing partial derivatives p equals 2.

In Table 1 we compare our results for methods Al, A2, A3, A4, and those
obtained by minimizing the full functional r(a, a).

TABLE 1
Exponential fit

Method Functional

Al FFA1 VP

A2 FFA2 VP

., FF
A3 yp

A4 VP

Number of

Function

Evaluations

1832
100

11
4

32
4

27

Number of

Derivative

Evaluations

—

11
4

26
4

18*

Time

(seconds)

191.00
9.00

5.05
3.20

12.55
3.12

8.94

r(a,a),r2(a)S 0.5465 x HT*

* This figure corresponds to gradient evaluations.

P2. Fitting Gaussians with an exponential background.

The functions <PJ are

Thus, n = 4, k = 7, m = 65, p = 7. Results for this problem appear in Table 2.

TABLE 2
Gaussianfit

Method

A3

A4

Functional

FF
VP

VP

Number of

Function

Evaluations

11

10

72

Number of

Derivative

Evaluations

9
8

65

Time

(seconds)

23.35
26.82

84.34

r(S,a), r2(&) g 0.048
Methods A\ and A2 were either slowly convergent or nonconvergent.
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P3. Iron Mossbauer spectrum with two sites of different electric field gradient
and one single line [21]. The model here is the following:

Clearly, <pj(x;t) = tj~l,j = 1,2,3; and <p4, <ps, <p6 are the functions inside the
square brackets.

Here n = 6, k = 8, NCF = 3, p = 8, m = 188.
For this example we wish to thank Dr. J. C. Travis of NBS who kindly

supplied the problem and results from his own computer program.
Comparisons are offered in Table 3.

TABLE 3
Mossbauer Iron Spectrum

Method

A2

A3

K«,«),r2(«)g
(jj° = (80, 49,

FF
VP

FF
VP
FF
VP

FF
VP
FF
VP

Initial

Values

P°

P°

P°

P°

P°

P°

P°

P°

P°

P°

Evaluations

65

4
4
7
6

16
3

18
6

Evaluations

0

4
4
7
6

16
3

18
6

*

70.00

34.34
41.64
52.27
59.60

118.22
35.35

130.50
61.92

3.0444 x 10"
5, 81, 24, 9.5, 100, 4)T)

* Did not converge in nnite amount of time.

The qualitative behavior of the four different minimization procedures used
in our computation follows the pattern that has been expounded in recent com-
parisons (Bard[l]). Gauss-Newton is fastest whenever it converges from a
good initial estimate. As is shown in the fitting of Gaussians (Table 2), if the
problem is troublesome, then a more elaborate strategy is called for. Brent's
program has the advantage of not needing derivatives, which in this case leads to
a big simplification. On the other hand, it is a very conservative program which
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really tries to obtain rigorous results. This, of course, can lead to a long search in
cases where it is not entirely justified. The variable metric procedure did not seem
to be competitive despite the simplification in the calculation of derivatives.

As a consequence of our Theorem 2.1, and of our numerical experience, we
strongly recommend, even in the case when our procedure is not used, to obtain
initial values for the linear parameters o,-,a° = O+(«°)y. This is done in our
program for the full functional and also, in the program of Travis with excellent
results.

The computer times shown in Table 1 and Table 2 correspond to the CPU
times (execution of the object code) on an IBM 360/50. All calculations were
performed in long precision; viz. 14 hexadecimal digits in the mantissa of each
number. We compare the results of minimizing the reduced functional when the
variable projection (VP) technique is used with that of minimizing the full functional
(FF) for various minimization algorithms. In order to eliminate the coding aspect,
we have used essentially the same code for minimizing the two functionals. The
only difference was in the subroutine DPA which computes in both cases the
Jacobian of the residual vector.

In the FF approach, the subroutine DPA computed the m x (n + k) matrix
B as follows: the first n columns consisted of the vectors cp/a) while the remaining
columns were the partial derivatives

These derivatives were constructed using the same information provided by the
user subroutine ADA. We also obtained from DPA in the FF case, the automatic
initialization of the linear parameters, viz. a° = <D+(a°)y.

For the numerical examples given here, the cost per iteration was somewhat
higher for the VP functional. However, we see that in some cases there has been
a dramatic decrease in the number of iterations (this has been observed previously
(cf. [12], [20])), thus in these cases the total computing time is much more favorable
for the VP approach. This was especially true for all three methods of minimization
when the exponential fit was made and when Marquardt's method was used in
the Mossbauer spectrum problem.

For the Mossbauer spectrum problem, we used two sets of initial values.
We used those given by Travis [21], (say) p°, and also j»° * P° ± 0.05 p°. For p°
the value of the functional is 3.04467 x 108 while for J5°, the value of the functional
is 6.405 x 10s; the final estimates of the parameters yielded a residual sum of
squares less than 3.0444 x 108. When Brent's method was used on the full function-
al, the method did not seem to converge, but for the reduced functional, Brent's
method converged reasonably well. In fact, after twenty minutes Brent's algorithm
applied to the full functional with P° did not achieve the desired reduction in the
functional.

The results we have obtained in minimizing the full functional for the first
two problems using the Marquardt method, and those of P3 with Newton's
method and P°, are consistent with the results reported by Osborne and Travis.

From a rough count of the number of arithmetic operations (function and
derivative evaluation per step are the same for both procedures, so that the work
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they do can be disregarded), it seems that for almost no combination of the
parameters (m, n, k, p) will the VP procedure require fewer operations per iteration
than the FF procedure. It is an open problem then to determine a priori under
what conditions the VP procedure will converge more quickly than the FF pro-
cedure when the same minimization algorithm using derivatives is used.

Another important problem is that of stability. The numerical stability of
the process and of the attained solution must be studied. By insisting on the use
of stable linear techniques, we have'tried to achieve an overall numerically stable
procedure for this nonlinear situation. Since the standards of stability for nonlinear
problems are ill-defined at this time, it is hard to say whether we have succeeded
in obtaining our goal.
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GENERALIZED CROSS-VALIDATION AS A METHOD FOR
CHOOSING A GOOD RIDGE PARAMETER (WITH M. HEATH

AND G. WAHBA)

TECHNOMETRICS (21:2), 215-223 (1979).

The paper I co-authored with Gene and Grace Wahba was written while I was a grad-
uate student at Stanford. The division of labor was roughly that Grace came up with
the background theory and motivating applications, Gene suggested the algorithmic
approach, and I did the implementation. Among the graduate students at Stanford at
the time, I suppose I was a natural choice for this project because I had previously
worked on ill-posed problems at Oak Ridge National Laboratory, so I already knew
about regularization, etc. I thought we made a very complementary team. Grace was
very much at home with reproducing kernel Hilbert spaces, which provided the theo-
retical framework for this research, whereas my knowledge of them is still rather fuzzy
to this day. But Grace wouldn't have been able to push her ideas through to concrete
fruition and prove their merit without the computational know-how that Gene and I
brought to the project.

I did not follow up with any subsequent work in that area, so in a sense that project
had relatively little impact on my subsequent career, but on the other hand, the paper
we wrote has been one of my most cited publications, so in that sense its impact has
been substantial.

Michael Heath
Urbana, Illinois, USA

Gene has been a valued mentor and very dear friend from my graduate student days
in the 1960s up to the present time, and I always looked forward then, and still do,
to the opportunity to talk to him whenever it presents itself. Sometime around 1975
Gene was visiting Zurich and invited me to visit him and to give a talk at ETH. Peter
Huber was there at the time and invited the two of us to join him and his wife at their
ski lodge in Klosters. Gene and I took the train from Zurich to Klosters, and there on
the train, the ideas in the paper were hatched. Gene then took them back to Stanford
where Michael Heath ran the experiments reported in the paper. It was a memorable
trip due to Gene's and Peter's warm hospitality and the exquisite beauty of the Swiss
mountains in the winter. I still remember watching the skiers from the Hubers' lodge
come down out of the mountains in the twilight and the excitement of the hatching of
our project. The results in this paper have been tremendously influential in my later
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work. The idea is a method for solving the so-called bias-variance tradeoff, and it or
various variants of it appear in almost everything I have done since.

Grace Wahba
Madison, Wisconsin, USA
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Consider the ridge estimate $(A) for /3 in the model y = X0 + t, t «- 31(0, <r7), <r2 unknown,
#(A) = (>FX + nX/)-1 Xfy. We study the method of generalized cross-validation (GCV) for
choosing a good value X for X, from the data. The estimate X is the minimizer of V(\) given by

KEY WORDS

Ridge regression
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1. INTRODUCTION

Consider the standard regression model

where y and e are column rt-vectors, /3 is a /^-vector
and X is an n X p matrix; € is random with Et = 0,
E((T = a1!, where / is the n X n identity.

For p > 3, it is known that there exist estimates of
ft with smaller mean square error than the minimum
variance unbiased, or Gauss-Markov, estimate 3(0)

where A(\) = X(^X + nXI)'1^. This estimate is a rotation-invariant version of Allen's
PRESS, or ordinary cross-validation. This estimate behaves like a risk improvement estimator,
but does not require an estimate of <rs, so can be used when n — p is small, or even if p > n in
certain cases. The GCV method can also be used in subset selection and singular value
truncation methods for regression, and even to choose from among mixtures of these methods.

= (XTX)~l ry. (See Berger [8], Thisted [39], for
recent results and references to the earlier literature.)
Allowing a bias may reduce the variance tremen-
dously.

In this paper we primarily consider the (one pa-
rameter) family of ridge estimates $(X) given by

Received June 1977; revised April 1978

The estimate $(A) is the posterior mean of /3 if ft has
the prior ft ~ 31(0, al), and X = tf/na. $(A) is also the
solution to the problem:

Find ft which satisfies the constraint

and for which

Here || • || indicates the Euclidean norm and we use
this norm throughout the paper. Introducing the
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Lagrangian we find that the above problem is equiva-
lent to finding the minimum over (3 of

where X is a Lagrange multiplier. Methods for com-
puting X given 7 are given in [17]. See [29] for dis-
cussion of (1.3). The method of minimizing equation
(1.3), or its Hilbert space generalizations, is called the
method of regularization in the approximation theory
literature (see [21, 44] for further references).

It is known that for any problem there is a X > 0
for which the expected mean square error E\\ff —
S(X) ||' is less than the Gauss-Markov estimate; how-
ever the X which minimizes, say E\\(l — /3(X)||2, or
any other given nontrivial quadratic loss function
depends on cr2 and the unknown ft.

There has been a substantial amount of interest in
estimating a good value of X from the data. See [10,
11, 12, 15,20,22,23,25,26,27,30,31,32,35,38,39].
A conservative guess might put the number of pub-
lished estimates for X at several dozen.

In this paper we examine the properties of the
method of generalized cross-validation (GCV) for
obtaining a good estimate of X from the data. The
GCV estimate of X in the ridge estimate (1.2) is the
minimizer of K(X) given by

where

A discussion of the source of K(X) will be given in
Section 2. This estimate is a rotation-invariant ver-
sion of Allen's PRESS or ordinary cross-validation,
as described in Hocking's discussion to Stone's paper
[36] (see also Allen [3], and Geisser [13]).

Let T\\) be the mean square error in estimating
X0, that is,

It is straightforward to show that

where

An unbiased estimator t{\) of ET(\), for n > p, is
given by

where

Mallows [28, p. 672] has suggested choosing X to
minimize Mallows' CL, which is equivalent to mini-
mizing n f(\)/a'. (This follows from [28] upon not-
ing that ||(/ — /4(X))jj||2 is the "residual sum of
squares.") The minimizer of fv/as also suggested by
Hudson [25], We shall call an estimate formed by
minimizing T an RR ("range risk") estimate.

We shall show that the GCV estimate is, for large
n, an estimate for the X which approximately mini-
mizes £7XX) of (1.7), without the necessity of estimat-
ing a'. As a consequence of not needing an estimate
of a1, GCV can be used on problems where « — p is
small, or (in certain circumstances), where the "real"
model may be

It is also natural for solving regression-like problems
that come from an attempt to solve ill-posed linear
operator equations numerically. In these problems
there is typically no way of estimating a1 from the
data. See Hanson [19], Hilgers [21], Varah [40] for
descriptions of these problems. See Wahba [44] for
the use of GCV in estimating X in the context of
ridge-type approximate solutions for ill-posed linear
operator equations, and for further references to the
numerical analysis literature. See Wahba, Wahba and
Wold, and Craven and Wahba [9, 42, 43, 45, 46] for
the use of GCV for curve smoothing, numerical dif
ferentiation, and the optimal smoothing of density
and spectral density estimates. At the time of this
writing, the only other methods we know of for esti-
mating X from the data without either knowledge of
or an estimate of ir2, are PRESS and maximum likeli-
hood, to be described. We shall indicate why GCV
can be expected to be generally better than either.
(PRESS and GCV will coincide if XX? is a circulant
matrix.)

A fundamental tool in our analysis and in our
computations is the singular value decomposition.
Given any n X p matrix X, we may write

where U is an n X n orthogonal matrix, V is a p X p
orthogonal matrix, and D is an n X p diagonal matrix
whose entries are the square roots of the eigenvalues
of XTX. The number of non-zero entries in D is equal
to the rank of X. The singular value decomposition
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arises in a number of statistical applications [18].
Good numerical procedures are given in [16].

In Section 2 we derive the GCV estimate as a
rotation-invariant version of Allen's PRESS and dis-
cuss why it should be generally superior to PRESS. In
Section 3 we give some theorems concerning its prop-
erties. In Section 4 we show how GCV can be used in
other regression procedures, namely, subset selection,
and eigenvalue truncation, or principal components.
Indeed GCV can be used to compare between the
best of the three different methods, or mixtures, of
them, if you will. In Section 5 we present the results
of a Monte Carlo example.

2. THE GENERALIZED CROSS-VALIDATION ESTIMATE

OF X AS AN INVARIANT

VERSION OF ALLEN'S PRESS

The Allen's PRESS, or ordinary cross-validation
estimate of A, goes as follows. Let J3'*'(\) be the ridge
estimate (1.2) of (3 with the tth data point yt, omit-
ted. The argument is that if X is a good choice, then
the /tth component [Xp*>(X)]t oW"(X) should be a
good predictor of yt. Therefore, the Allen's PRESS
estimate of X is the minimizer of

It has been observed by one of the referees that
P(\) may be viewed as a direct sample estimate of
kEy.\\y* - JT,S(A)||! = TUX) + <r2, where here jl(\) is
supposed fixed, y* is a future hypothetical observa-
tion vector, and Eyt denotes expectation over the
distribution of y*.

It can be shown, by use of the Sherman-Morrison-
Woodbury formula (see [24]), that

where B(\) is the diagonal matrix withji/th entry 1/(1
- a,/X)), a,/X) being the^'th entry of ̂ (X) = X(XTX
+ n\I)~'XT.

Although the idea of PRESS is intuitively appeal-
ing, it can be seen that in the extreme case where the
entries of X are 0 except for x,,,;' = 1,2, • • • , / > , then
[^'•'(X)]/, cannot be expected to be a good predictor
of y*. In fact, in this case A(\) is diagonal.

and so P(\) does not have a unique minimizer. It is
reasonable to conclude that PRESS would not do
very well in the near diagonal case. If ff and f both
have spherical normal priors, then various arguments
can be brought to bear that any good estimate of X
should be invariant under rotations of the (measure-

ment) coordinate system. The GCV estimate is a
rotation-invariant form of ordinary cross-validation.
It may be derived as follows: Let the singular value
decomposition [16] of X be

Let W be the unitary matrix which diagonalizes the
circulants. (See Bellman [7], Wahba [41].) In complex
form they'&th entry [W]n of Wis

The GCV estimate for X can be defined as the result
of using Allen's PRESS on the transformed model

The new "data vector" is y = (y,,- • -,yn)
T, and the

new "design matrix" is X = WDV1. XX* ("*" means
complex conjugate transpose) is a circulant matrix
(see [6,41]). Thus intuitively, [̂ '*'(X)]» should con-
tain a "maximal" amount of information about yf,
on the average. By substituting X and y into (2.2),
and observing that A~(\) = X(X*X + nXI)' X* is a
circulant matrix and hence constant down the diago-
nals, and A~(\) and A(\) have the same eigenvalues, it
is seen that P(\) becomes K(X) (see (1.4)) given by

wherez - (z^- •• ,zn) r = IFy and \m, v = 1 ,2 , - - - ,n ,
are the eigenvalues of XX7, Xm = 0, v > p.

It can also be shown that K(X) is a weighted version
of P(h), namely

where

We define the GCV estimate of X as the minimizer
of (1.4), equivalently (2.3), and proceed to an investi-
gation of its properties.
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3. PROPERTIES OF THE OCV ESTIMATE OF X

Theorem 1 (The GCV Theorem).

satisfies

Then

and so

whenever 0 < jit < 1.
Proo/- Since ET = b'+ a'^ EV = [A2 + tr*( 1 - 2M, +
M2>]/(1 - Mi)!, the result follows from

Remark: This corollary says that if A(X°) and A(X)
are small then the mean square error at the minimizer
of EV(\) is not much bigger than the minimum pos-
sible mean square error minx ET(\).

, Proof: Let A = {X: 0 < X < », EV(X) - ff
2 <

TWO + A(x«»).
Since

£7UX1 - *(A)) < EV(\)- a' < ET(\)(\ + h(\)),

0 ^ X < »,

and £7", £K and A are continuous functions of X, then
A is a non-empty closed set. If 0 is not a boundary
point of A, then EV(\) —a2 has at least one minimum
in the interior of A, call it X. (See Figure 1.) Now by
the theorem

£7-(XXl - A(X)) < £T(X) - ff2 < £T(A°)(1 + h(\°))

and so

Remark: This theorem implies that if

and

If A includes 0, then X may be on the boundary of A,
i.e., X = 0, but the above bound on /" still holds.
Example I . Note that

then the difference between £T(A) + a' and £K(X) is
small compared to £T(X). This result and the fact
that in the extreme diagonal case P(\) does not have
a unique minimum suggests that the minimizer of
K(X) is preferable to the minimizer of P(\) if one
wants to choose X to minimize

Corollary: Let

Let X° be the minimizer of £7"(X). Then £K(X) always
has a (possibly local) minimum X so that the "ex-
pectation inefficiency" P defined by

Then

Hence for p fixed and n —• <=, it follows
that

Example 2. p > n.
It is not necessary that/) « n for /" to tend to 1, as

this example suggests. What is required is that XXT

become ill conditioned for n large.

TECHNOMETRICS ©, VOL. 21, NO. 2, MAY 1979
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Let

with

Suppose

and suppose the eigenvalues (\,n, i> = 1, 2, • • • , « } of
XX? satisfy

say, for some m > \;(k, = £ »-""•

Then

FIOU RE 1. Graphical suggestion of the proof of the corollary to
the GCV theorem.

Theorem 2.
The minimizer of ESEV(\) is the same as the mini-

mizer of EpET(\) and is A = <r*/na.
Proof: Since Eg gT = E XfrfX1 = a XX*,

Now
calculation has appeared elsewhere 143 p. 81, and will

The proof proceeds by differentiating (3.3) with re-
spect to A and setting the remainder equal to 0. This

4. GCV IN SUBSET SELECTION AND GENERAL LINEAR
MODEL BUILDING

Let y = g + e, where g is a fixed (unknown) n-
vector and t ~ 31(0, a2/), a' unknown. Let A(v), v in
some index set, be a family of symmetric nonnegative
definite n X n matrices and let

As n -> <=, the minimizing sequence A" = A°(n) of
£T(A) = b\X) + ffV,(A) clearly must satisfy A" -. 0,
n(A°)"m -. », so that the GCV Theorem may be
applied. It is proved in [9, 44] in a different context Letting
that \ as well as A° satisfies (nA"1™) —> <*> so that h(X) -»
0, A(A°) -^ 0 and f [ 1 as n -. co.

Instead of viewing ^ as fixed but unknown, sup-
pose that & has the prior p ~ 31(0, a/). Let £0 be and V(v) as before with /1(A) replaced by A(v), then
expectation with respect to the prior. (We reserve E (3.1) clearly holds irrespective of the nature of A.
for expectation with respect to e.) Then A different way of dealing with ill conditioning in

TECHNOMETRICS ©, VOL. 21, NO. 2, MAY 1979
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the design matrix is to reduce the number of predictor
variables by choosing a subset 0Jt,@fa,f the
ft's. Let v be an index on the 2" possible subsets of ft,
• • •, |8B let A1"1 be the n X k(n) design matrix corre-
sponding to the «'* subset, and let

Then

/9(v) = (X<»TXM)->X">y

A(v) = X">(X">TX{"')X">y.

Mi = k/n, iiiViii = kin.

Mallows [28] suggestion to choose the subset mini-
mizing Cp becomes, in our notation, the equivalent of
minimizing /(•) of (1.8) with A(X) replaced by A(v),
see also Allen [2]. This assumes that an estimate of a2

is available. Parzen [33] has observed that, if one
prefers to choose a subset without estimating a1, (be-
cause one believed in the model (3.2), say), GCV can
be used. The subset of size < £„,,„ with smallest Kcan
be chosen, knowing that

even if the model (3.2) is nontrivially true.
In the subset selection case, GCV asymptotically

coincides with the use of Akaike's information crite-
rion AIC [1] since

AIC = (-2) log maximum likelihood + 2k

and so

We thank E. Parzen for pointing this out. M. Stone,
[37] has investigated the relations between AIC and
(ordinary) cross-validation.

Another approach, the principal components ap-
proach, is also popular in solving ill-posed linear
operator equations, see Baker et al. [6], Hanson [19],
Varah [40]). The method is to replace X by X(y)
denned by X(v) = V D(v) VT, where D(v) is the
diagonal matrix of singular values of V with all but
the Kth subset of singular values set equal to 0. Then

TECHNOMETRICS ©, VOL. 21, NO. 2, MAY 1979

where the ones are located at positions of the i*h

subset of singular values, and, again ji, < p/n, n'/ii*
< p/n, where p can be replaced by the number of
singular values in the largest subset considered.

In fact, it is reasonable to select from among any
family (A(t>)} of matrices for which the corresponding
\ii and iti*/it, are uniformly small, by choosing that
member for which V(v) is smallest. Mixtures of the
above methods, e.g. a ridge method on a subset, can
be handled this way. Note that the conditions jj,
small, it*/ii, small are just those conditions which
make it plausible that the "signal" g can be separated
from the noise. These conditions say that the A ma-
trix essentially maps the data vector (roughly) into
some much smaller subspace than the whole space.
Parzen [34] has also indicated how GCV can be used
to choose the order of an autoregressive model to fit a
stationary time series.

5. A NUMERICAL EXAMPLE

We choose a discretization of the Laplace trans-
form as given in Varah, [40, p. 262] as an example in
which XTX is very ill conditioned.

We emphasize that the following is nothing more
than a single example, with a single X and ft. It does
not indicate what may happen as X and |3 are varied.
It is intended as an indication of the type of Monte
Carlo evaluation study that an experimenter might
perform with the particular X that he has at hand,
and perhaps one or several 0 that represent the class
of 0's he believes he is likely to encounter. We suggest
that an experimenter with particular design matrix at
hand evaluate candidate methods (at least crudely),
perhaps including subset selection and/or principal
components, as well as ridge methods against his X
and against a realistic set of 0, before final selection
of a method. The values for n and p in the experiment
presented here were 21 and 10 and the condition
number of X, namely the ratio of the largest to the
smallest (non-zero) singular value, was 1.54 X 106.
The value of H^H'was 370.84.

Four values of <r', namely a' = 10~8,10~6, 10~4and
10~2 were tried and for each value of <r2 the experi-
ment was replicated four times, giving a total of 16
runs. The ei were generated as pseudo-random 31(0,
tr') independent r.v.'s, y(X) was computed using the
right-hand side of (2.3) and the Golub-Reinsch singu-
lar value decomposition [16]. The minimizer X of
K(A) was determined by a global search. 7"(X) was
also computed and the relative inefficiencies /„ and fK

of X defined by

were computed. (/> = "domain", R = "range.")
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TABLE I—Observed inefficiencies in sixteen Monle Carlo runs.

Replication 1 Replication 2 Replication 3

221

In R 

In R 

In

o2=10"8, S/N = 4200

R

Replication 4

In R

GCV
RR
MLE
PRESS
Min Sol'n
Min Data

4.43
1.46
1.67E3
2.31E3
1.00
1.20

1.06
1.00
1.31
4.8E4
1.02
1.00

1.65
1.66
1.45E2
6.31E2
1.00
2.89

1.03
1.03
1.23
8.6E4
1.54
1.00

16.71
8.69
2.00E3
3.84E3
1.00
5.97

1.10
1.01
1.53
2.1E5
2.27
1.00

1.02
1.22
9.12E3
2.87E3
1.00
1.00

1.01
1.03
1.51
1.2E5
1.00
1.00

GCV
RR
MLE
PRESS
Min Sol'n
Min Data

1.92
1.83
1.99E2
5.80
1.00
3.56

1.05
1.06
1.19
1.01
1.38
1.00

=10,-6 S/N =
1.32
1.90
1.70E2
2.41E2
1.00
1.28

1.00
1.01
1.45
1.39E4
1.02
1.00

1.51E2
7.03E1
1.76E2

36.37
1.00
7.85

1.26
1.10
1.29
2.43E3
1.20
1.00

2.20
1.18
1.49E2

67.00
1.00

41.29

1.02
1.00
1.32
6.07E2
1.03
1.00

=10" S/N = 42

GCV
RR
MLE
PRESS
Min Sol'n
Min Data

1.27
1.18
1.56
3.53
1.00
3.26

1.07
1.08
1.20
1.57
1.21
1.00

1.50
1.03

12.16
2.03
1.00
1.16

2.58
2.27
3.43
3.43
2.05
1.00

1.00
1.07
1.90
8.66
1.00
2.39

1.11
1.13
1.49
2.63
1.11
1.00

1.00
1.00
2.97
2.90
1.00
1.16

1.03
1.03
1.07

24.34
1.03
1.00

GCV
RR
MLE
PRESS
Min Sol'n
Min Data

1.40
1.38
2.13
1.04
1.00
1.02

2.47
2.39
3.56
1.01
1.31
1.00

2.01
2.41
3.81
2.02
1.00
1.00

a2=10-2,

1.
1.
1.
2.
1.

S/N = 4.2

60 1
70 1
87 2
68 1
01 1

The results of a comparison with three other meth-
ods are also presented. The methods are, respectively,

1. PRESS, the minimizer of P(\).
2. Range risk, (RR) the minimizer of 7\X).
3. Maximum likelihood (MLE).

The maximum likelihood estimate is obtained from
the model

with e ~ 31(0, a1!) and fi having the prior distribu-
tion (3 ~ 31(0, a/). Then the posterior distribution of
.vis

where X = a'/na. The ML estimate for X from the
model (5.2) is then the minimizer of M(\) given by

1.00 2.66

1.01
1.02
1.00
1.22
1.25
1.00

31.20
10.8
28.8
2.16
1.00
1.21

17.2
10.6
16.8
21.5

1.98
1.00

This estimate is the general form of the maximum
likelihood estimate suggested by Anderssen and
Bloomfield in the context of numerical differentiation
[4,5]. It can be shown that the minimizer of Ep E
M(\) is cr'/na. However, it can also be shown that if ft
behaves as though it did not come from the prior

then the minimizer of E M(\) may not be a good
estimate of the minimizer of ER(X).

ID and 1R of (5.1) were determined for each of these
three methods as well as GCV and the results are
presented in Table 1. The entries next to "Min Sol'n"
and "Min Data" are the inefficiencies (5.1) with X
replaced by the minimizers of ||/J-/§x||2 and T(\)
respectively. S/N, the "signal to noise ratio" is de-
nned by S/N = [l/n||A73||V<rT'! Figure 2 gives a
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FIGURE 2. V(\), T(\), f(\), M(\), F(X) and H0-0X||'.

plot of V(\), /(A), M(A), P(\), \\0-M* and T(\)
for Replicate 2 of the o-2 = It)-" case. The K(X), f[\)
and T(\) curves tend to follow each other as pre-
dicted.

D. I. Gibbons [14] has recently completed a Monte
Carlo comparison of 10 methods of choosing k.
Three estimators, GCV, HKB (described in [23]),
and RIDGM (described in [10,11]) were identified as
the best performers in the examples studied. HKB
and RIDGM use estimates of a1.

6. CONCLUSIONS

The generalized cross-validation method for esti-
mating the ridge parameter in ridge regression has
been given. This estimate does not require an esti-
mate of a1, and thus may be used when the number of
degrees of freedom for estimating tr2 is small or even;
in some cases, when the "real" model actually in-
volves more than « parameters. The method may also
be used to do subset selection or selection of principal
components instead of ridge regression, or even to
choose between various combinations of ridge, subset
selection or principal components methods. A nu-
merical example, briefly suggestive of the behavior of
the method, has been carried out. It illustrates what
an experimenter might wish to do to examine the
properties of the method with respect to his/her de-
sign matrix.
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AN ANALYSIS OF THE TOTAL LEAST SQUARES PROBLEM
(WITH C. VAN LOAN)

SIAM J. NUMER. ANAL. (17), 883-893 (1980).

Our total least squares work was prompted by my all-time favorite paper in numerical
linear algebra:

G. H. Golub, "Some Modified Matrix Eigenvalue Problems", SIAM REVIEW 15,
318-334 (1973).

This paper is included in this volume and was a thrill of read back in 1973 when I had
just completed graduate school. Privately, I have always called the paper "Look How Far
You Can Run with QR, SVD, and Schur", a title that reminds me of Gene's uncanny
ability to turn difficult problems into tractable ones with elegant solutions. Gene's
SIREV paper is filled with ideas that kept the whole field busy for years: generalized
eigenproblems, inverse eigenproblems, rank-1 modified eigenproblems, and of course,
total least squares (TLS). TLS is there as an example of an eigenproblem that is buried
inside a least squares problem and the paper we wrote was one of several that we did
during the production of the first edition of our book.

Charlie Van Loan
Ithaca, New York, USA
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AN ANALYSIS OF THE TOTAL LEAST SQUARES PROBLEM*

GENE H. GOLUBt AND CHARLES F. VAN LOANt

Dedicated to Professor Garrett Birkhojf on the occasion of his seventieth birthday

Abstract. Total Least Squares (TLS) is a method of fitting that is appropriate when there are errors in
both the observation vector b (m X 1) and in the data matrix A (m x n). The technique has been discussed by
several authors, and amounts to fitting a "best" subspace to the points (aj, 6,-), i = 1, • • • , m, where aj is the
/th row of A. In this paper a singular value decomposition analysis of the TLS problem is presented. The
sensitivity of the TLS problem as well as its relationship to ordinary least squares regression is explored. An
algorithm for solving the TLS problem is proposed that utilizes the singular value decomposition and which
provides a measure of the underlying problem's sensitivity.

1. Introduction. In the least squares (LS) problem we are given an m xn "data
matrix" A, a "vector of observations" b having m components, and a nonsingular
diagonal matrix D = diag (d\, • • • , dm), and are asked to find a vector x such that

Here || • ||2 denotes Euclidean length. It is well known that any solution to the LS
problem satisfies the following system of "normal equations:"

The solution is unique if rank (A) = n. However, regardless of the rank of A there is
always a unique minimal 2-norm solution to the LS problem given by

where (DA)+ denotes the Moore-Penrose pseudo-inverse of DA.
In the (classical) LS problem there is an underlying assumption that all the errors

are confined to the observation vector b. Unfortunately, this assumption is frequently
unrealistic; sampling errors, human errors, modeling errors, and instrument errors may
preclude the possibility of knowing the data matrix A exactly. Methods for estimating
the effect of such errors on *Ls are given in Hodges and Moore [11] and Stewart [19].
The representation of data errors in a statistically meaningful way is a difficult task that
can be appreciated by reading the survey article by Cochrane [2].

In this paper we analyze the method of total least squares (TLS), which is one of
several fitting techniques that have been devised to compensate for data errors. A good
way to motivate the method is to recast the ordinary LS problem as follows:

minimize \\Dr\\2

subject to b + r & Range (A)

If \\Dr\\2 = min and b + r = Ax, then x solves the LS problem (1.1). Thus the LS problem
amounts to perturbing the observation b by a minimum amount r so the b + r can be
"predicted" by the columns of A.

* Received by the editors February 22, 1980.
t Department of Computer Science, Stanford University, Stanford California, 94305. The work of this

author was supported in part by the U.S. Department of Energy under Contract DE-AC03-76SF00326 and
the U.S. Army Research Office under Grant DAAG 29-78-G-0179.

t Department of Computer Science, Cornell University, Ithaca, New York, 14853. The work of this
author was supported in part by the National Science Foundation under Contract MCS80-04106.
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Now simply put, the idea behind total least squares is to consider perturbations of
both b and A. More precisely, given the nonsingular weighting matrices

we seek to

Here, \\- \\F denotes the Frobenius norm, viz. ||B||F=S;I!;|6i/|2- Once a minimizing
[E | r] is found, then any x satisfying

is said to solve the TLS problem (1.4). Thus, the TLS problem is equivalent to the
problem of solving a nearest compatible LS problem min||(/4+.E)jc — (6+r)||2 where
"nearness" is measured by the weighted Frobenius norm above.

Total least squares is not a new method of fitting; the n = 1 case has been
scrutinized since the turn of the century. More recently, the method has been discussed
in the context of the subset selection problem, see [9], [10], and [20]. In Deming [3] and
Gerhold [4] the following more general problem is analyzed:

where E = (en), rT = (ri, • • •, rm), and the A, and &;„ are given positive weights.
The TLS approach to fitting has also attracted interest outside of statistics. For

example, many algorithms for nonlinearly constrained minimization require estimates
of the vector of Lagrange multipliers. This typically involves the solution of an LS
problem where the matrix is the Jacobian of the "active constraints." Because of
uncertainties in this matrix, Gill and Murray [5] have suggested using total least
squares. Similar in spirit is the work of Barrera and Dennis [1], who have developed a
"fuzzy Broyden" method for systems of nonlinear equations.

In the present paper we analyze the TLS problem by making heavy use of the
singular value decomposition (SVD). As is pointed out in Golub and Reinsch [7] and
more fully in Golub [6], this decomposition can be used to solve the TLS problem. We
indicate how this can be accomplished in § 2. An interesting aspect of the TLS problem
is that it may fail to have a solution. For example, if

then for every e>0, 6 e Range (A+Et) where E, =diag(0, e). Thus, there is no
"smallest" || [E \r]\\F for which b + r € Range (A + E) since b t Range (A). This kind of
pathological situation raises several important questions. Under what set of circum-
stances does the TLS problem lack a solution? More generally, what constitutes an
ill-conditioned TLS problem? Answers to these and other related theoretical questions
of practical importance are offered in § 3 and § 4. In § 5 some algorithmic considera-
tions are briefly mentioned.
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2. The TLS problem and the singular value decomposition. If b + r is in the range
of A + E, then there is a vector x€R" such that

i.e.,

This equation shows that the TLS problem involves finding a perturbation matrix
A€ j?mx("+1) having minimal norm such that C + A is rank deficient, where

The singular value decomposition can be used for this purpose. Let

be the SVD of C with UTU = Im and VTV = /„. A discussion of this decomposition and
its elementary properties may be found in Stewart [17]. In particular, it can be shown
that

Moreover, the minimum is attained by setting A = -Cvv T, where v is any unit vector in
the subspace 5C defined by

Suppose we can find a vector v in 5C having the following form:

if

and we define E and f by

then

In light of the remarks made after (2.1), it follows that x solves the TLS problem.
If en+i = (0, • • • , 0, l)r is orthogonal to Sc, then the TLS problem has no solution.

On the other hand, if crn+i is a repeated singular value of C, then the TLS problem may
lack a unique solution. However, whenever this is the case it is possible to single out a
unique "minimum norm" TLS solution which we denote by *TLS- In particular, let Q be
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an orthogonal matrix of order n—k + \ with the property that

If we set XTLS = -Tiy/(atn+1), and if we define the r-norm by

then it is easy to show that || XTLS ||T < I I * \\T for all other solutions x to the TLS problem

3. A geometric interpretation of the TLS problem. If the SVD of C = D[A\b] T is given
by (2.3), then it is easy to verify that

and that equality holds for nonzero v if and only if v is in the subspace Sc defined by
(2.5). Combining this fact with (2.6), we see that the TLS problem amounts to finding an
x e R" (if possible) such that

geometry of the TLS problem comes to light when we write

where aT = (#n, • • • , £*«)> the rth row of A. The quantity

is the square of the distance from [i|]e /?"+1 to the nearest point in the subspace P,
defined by

Here, the "distance" between two points u and v in R"+1 is given by || T(u — v)||2.
Thus, the TLS problem is tantamount to finding a "closest" subspace Px to the

(n + l)-tuples [£:], i = 1, • • • , m. The simple case when n = 1 and D and T are both
identities is worth illustrating. In Fig. 1 the LS and the TLS measures of goodness-of-fit
are depicted. In the LS problem it is the vertical distances that are important while in the
TLS problem it is the perpendicular distances that are critical. (When TV/, these
perpendiculars are "skewed".) To say that the TLS problem has no solution in the n = 1
case is to say that the TLS fitting line is vertical. This would be the case, for example, if
the three data points in Figure 1 are (1, 8), (2, - 2), and (4, -1), for then the line a = 3 is
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closest to the data in the sense of minimizing the sum of the squared perpendicular
distances.

FIG. 1. Least Squares versus Total Least Squares.

The fitting of straight lines when both variables are subject to error has received a
lot of attention in the statistics literature. We refer the interested reader to the papers by
Pearson [15], Madansky [14], Riggs et al. [16], and York [22], as well as Chapter 13 of
Linnik[13].

4. The sensitivity of the TLS problem. In this section we establish some inequalities
that shed light on the sensitivity of the TLS problem as well as on the relationship
between XLS and *TLS- The starting point in the analysis is to formulate the TLS problem
as an eigenvalue problem. Recall the definitions of the matrix C and the subspace Sc in
§ 2. It is easy to show that the "singular vectors" u, in (2.3) are eigenvectors of the CTC,
and that in particular, Sc is the invariant subspace associated with a\+i, the smallest
eigenvalue of this matrix. Thus, if x e R " is such that

then x solves the TLS problem. With the definitions

(4.1) is readily seen to have the following block structure:

Moreover, if

is the SVD of A, and if we define
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then (4.3) transforms to

From this equation we see that

and

With these reductions, we now obtain some useful characterizations of both XTLS
and owi- In order for the subsequent analysis to be uncluttered, we freely make use of
the notation established in (2.2)-(2.8) and (4.2)-(4.5).

THEOREM 4.1. If' an >o-n+i, then *TLS exists and is the only solution to the TLS
problem. Moreover,

and

where

Proof. The separation theorem [21, p. 103] for eigenvalues of symmetric matrices
implies that

The assumption <?„ > o~n+1 thus insures that crn+1 is not a repeated singular value of C. If
CTC[l] = o-2

n+l[S] and 05*ye#", then it clearly follows that ATAy=(rl+1y, a
contradiction since 6\ is the smallest eigenvalue of A TA. Thus, Sc must contain a vector
whose (n + l)st component is nonzero. This implies that TLS problem has a solution.
Since Sc has dimension 1, this solution is unique. The formula (4.9) follows directly
from the "top half" of (4.3).

To establish (4.10) we observe from (4.7) and (4.8) that

By using the definitions (4.5) and (4.11) this can be rewritten as
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This result coupled with the inequalities

establish (4.14).
To prove (4.15), note that

Now by (4.16),
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Inequality (4.10) now follows since

We shall make use of (4.10) in the next section. The characterization (4.9) points
out an interesting connection between total squares and ridge regression. Ridge
regression is a way of "regularizing" the solution to an ill-conditioned LS problem. (See
[12, pp. 190ff.].) Consider, for example, the minimization of

where /u is a positive scalar. It is easy to show that

solves this problem, and that ||Ti~1;icLS(/i)||2 = ||;tLs(AOllT becomes small as fj, becomes
large. This is the key to ridge regression; by controlling p we can control the r-norm of
*LS(AI)-

What is particularly interesting, however, is that XTLS = *LS( — <r^+i)- That is, total
least squares is a deregularizing procedure, a kind of "reverse" ridge regression. As we
shall see, this implies that the condition of the TLS problem is always worse than the
condition of the corresponding LS problem. For this reason it is interesting to compare
the LS and TLS fits with one another.

COROLLARY4.2. LetpI_s = \\D(b-Axuj)\\2. If a-n>crn+i, then

and

Proof. From (1.2) it is clear that *LS= Ti(ATA) lATb and so from (4.9) we have

Applying T\l to both sides of this equation and taking norms gives
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and so by invoking (4.17) and (4.18) we find

Inequality (4.15) follows by substituting this result into (4.19). D
The corollary shows that ^TLS-^LS AlO. Thus, by reducing the "observation

weight" A = tn+i, the TLS problem "converges" to the LS problem. Of course, if pLS = 0
and A has full rank, then *TLS = *LS regardless of A.

The bounds in (4.14) and (4.15) are large whenever an+\ is close to <rn. (This occurs,
for example, whenever crn+1 is a nearly repeated singular value.) Our next results
indicate the extent to which ((?„ - a-n+i)~l measures the sensitivity of the TLS problem.

LEMMA4.3. If {/ = [«!, • • • , um] is a column partitioning ofthe matrix Uin the SVD
(4.4) and ifcrn>trn+i, then

Proof. Substituting the SVD (4.4) into (4.9) and taking the r-norm of both sides
gives

The lemma follows from the inequalities 2 = ^</(<?<+fn+i) = l D
THEOREM 4.4. If A' zRmX" and b'eRm are such that

where

then the perturbed TLS problem

subject to b' + re Range (A' + E)

has a unique solution JCTLS. Moreover, !/*TLS ̂  0, then

Proof. Denote the singular values of the matrices A' = DAT and C' = D\_A'\ b']T
by <TI = • • • = <r'n and <r\ a • • • =£0^+1 respectively. Well-known perturbation results
for singular values ensure that

In view of Theorem 4.1, this implies that the perturbed TLS problem above has a
unique solution *TLS-
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Let [a](y 6/Z", a sR) be a unit right singular vector of C associated with crn+1.
Using the SVD perturbation theory of Stewart [18], it is possible to bound th
difference between [£] and [|], a corresponding singular vector of C' associated with
o-,',+i. Not surprisingly, the bound involves the separation of crn and trn+i:

Now from § 2 we have XTLS = — Tiy/(\a) and XTLS = —Tiz/(\fi), where A = tn+1 and
r1 = diag(f l l • • • ,tn). Thus,

and so

Set b' = Db'. From Lemma 4.3, (4.22), and the fact that \\\(£-b')\\2££/6, we have

and so

In order to get a lower bound on || y ||2, observe that

i.e.,

The assumption that xTLs^O implies that A||6||2>o-n+i for otherwise [£] = [?] is a
singular vector of C. The theorem now follows because

Both the lemma and the theorem suggest that the TLS problem is unstable
whenever <?„ is close to <rn+l. This is borne out by some results established in [23] where
it is shown that a change of order a \ in C can result in an insoluble TLS problem. Using
Lemma 4.3, this translates into the assertion that an -crn+\ is a measure of how close
(1.4) is to the class of insoluble TLS problems.

Finally, we remark that if the LS problem is ill-conditioned, i.e., <rn is small, then
the TLS problem is likewise sensitive.

5. Algorithmic considerations. Although a stable and efficient algorithm for
computing the SVD exists [7], there are numerical difficulties associated with the
determination of the dimension of Sc, i.e., the multiplicity of <rn+1. One approach is to
regard all computed singular values in the interval [crn+l, crn+1 + e] as being identical,
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where e > 0 is some small machine-dependent parameter. This leads to the following
overall procedure for computing the solution to the TLS problem:

1. Compute the SVD UT(D[A\b]T) V = diag (o-i, • • • , <rn+1). Accumulate V.
2. Define the index p by crp > crn+1 + E ̂  crp+1 s • • • a an+\.
3. Let V = [vi, • • • , vn] be a column partition of V, and compute a Householder

matrix Q such that

4. If a=0, then the TLS problem has no solution. Otherwise, XTLS =
-Tiy/(atn+l).

A shortcoming of this scheme is that it does not compute crn — <rn+\, which as we
have seen, is a measure of TLS sensitivity. To rectify this it may be more desirable to
compute the SVD UTAV = dia.g (<TI; • • • , < ? „ ) = ! and then make use of the TLS
"secular equation":

In view of (4.9) and (4.11), if a rr can be found that satisfies this equation and is less than
(?„, then

Standard root-finding techniques can be used for this purpose. (The function "V has
monotonicity properties in the bracketing interval [0, <?„].) Notice how easy it is to
compute the TLS solution for different values of the weight A = tn+l. A detailed
discussion of these and other algorithmic aspects of the TLS problem, such as the
choosing of the weights, will appear elsewhere.

Acknowledgments. We are grateful to the following people for calling our
attention to various aspects of the TLS problem: A. Bjork, R. Byers, P. Diaconis, C.
Moler, C. Paige, C. Reinsch, B. Rust, P. Velleman, and J. H. Wilkinson.

Note added in proof. In collaboration with R. Byers, a graduate student at Cornell,
the authors have recently shown how to solve the TLS problem for the case when some
of the columns of A are known exactly. The technique involves (a) computing a QR
factorization of the "known" columns and (b) solving a TLS problem of reduced
dimension. This work will be described elsewhere.
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COMMENTARY, BY NICHOLAS HICHAM

One of the fundamental tenets of numerical linear algebra is to exploit matrix
factorizations. Doing so has numerous benefits, ranging from allowing clearer
analysis and deeper understanding to simplifying the efficient implementation
of algorithms. Textbooks in numerical analysis and matrix analysis nowadays
maximize the use of matrix factorizations, but this was not so in the first half of
the 20th century. Golub has done as much as anyone to promulgate the benefits
of matrix factorization, particularly the QR factorization and the singular value
decomposition, and especially through his book Matrix Computations with Van
Loan [28]. The five papers in this part illustrate several different facets of the
matrix factorization paradigm.

On direct methods for solving Poisson's equations, by Buzbee,
Golub, and Nielson [9]

Cyclic reduction is a recurring topic in numerical analysis. In the context of
solving a tridiagonal linear system of order 2™ — 1, the idea is to eliminate the
odd-numbered unknowns, thus halving the size of the system, and to continue
this procedure recursively until a single equation remains. One unknown can
now be solved for and the rest are obtained by substitution. Cyclic odd-even
reduction - to give it its full name - is thus a particular instance of the divide
and conquer principle. The method was derived by Golub when he was a PhD
student, but it became widely known only through Hockney's paper on solving
the Poisson equation [32], in which he acknowledges the help of Golub.

This paper presents cyclic reduction for block tridiagonal systems arising in
the discretization of Poisson's equation on a rectangle or L-shaped region with
Dirichlet, Neumann, or periodic boundary conditions. The required properties
of the coefficient matrix are essentially that it be symmetric block tridiagonal
and block Toeplitz, with commuting blocks. Two variants of cyclic reduction
are described. The first, more straightforward one (Section 3), is found to be
"virtually useless" for practical computation, because of numerical instability,
the nature of which is analyzed in Section 10. The second variant, suggested by
Buneman, is shown to be mathematically equivalent to the first (Section 11),
and to be numerically stable (Section 13).

At the time this work was done, iterative methods were prevalent for solv-
ing linear systems arising in the discretization of partial differential equations.
The development of cyclic reduction and of methods exploiting the fast Fourier
transform represented a shift back to direct methods and created the research
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topic of "fast Poisson solvers". Indeed Hockney [32] was able to solve Poisson's
equation on a 48 x 48 mesh in 0.9 seconds on an IBM 7090, claiming a factor of
10 improvement in speed over the best iterative solvers of the time.

A flurry of papers followed this one, generalizing the method to irregular
regions and to different equations. See Swartztrauber [43] for a list of refe
ences. Swartztrauber also gives a detailed analysis of the FACR(^) method. This
method, originally suggested by Hockney, carries out i steps of cyclic reduction
and then uses the fast Fourier transform to diagonalize the blocks of the reduced
matrix (exploiting the fact that the blocks have the Fourier matrix as their eigen-
vector matrix), thereby producing a number of independent tridiagonal systems.
He shows that by a suitable choice of I, an operation count of O(mnloglogn)
can be achieved, where the original matrix is block n x n tridiagonal with m x m
blocks. This operation count beats the O(mnlogn) count for cyclic reduction
itself and is close to linear in the dimension of the matrix.

Cyclic reduction for a tridiagonal system Ax = b is equivalent to Gaussian
elimination on (PAPT)Px = Pb, where P is a certain permutation matrix [31].
This connection has proved useful in some more recent error analyses of the
method [1], [45].

Interest in cyclic reduction was rekindled by the advent of parallel comput-
ers, since the method produces smaller, independent "eliminated" systems that
can be solved in parallel [33]. More recently, cyclic reduction has been applied
to infinite block tridiagonal linear systems arising in the numerical solution of
Markov chains, in which context it is called logarithmic reduction; for details
and references see Bini, Latouche, and Meini [6, Chapter 7].

This is one of Golub's most highly cited papers. In 1992 it was deemed a
Citation Classic by the Institute for Scientific Information, who collate the Sci-
ence Citation Index. Buzbee wrote an article explaining the background to the
paper [10]. The collaboration began when Golub visited Los Alamos National
Laboratory and the three authors tried to understand a program written by
Buneman for solving the Poisson equation "at a speed and accuracy that far
exceeded established techniques such as relaxation and alternating directions".
Understanding the numerical stability properties of the two variants of block
cyclic reduction, and showing that they were mathematically equivalent, took
some time. Buzbee notes that "Over a period of about 18 months, with no small
amount of mathematical sleuthhounding, we completed this now-Classic paper.
During that 18 months, we were tempted on several occasions to publish interme-
diate results. However, we continued to hold out for a full understanding, and, in
the end, we were especially pleased that we waited until we had a comprehensive
report."

The simplex method of linear programming using LU
decomposition, by Bartels and Golub [4]

In the simplex method for linear programming, the basis matrix changes one
column at a time, and some linear systems involving each new basis matrix
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are solved to determine the next basis change. By 1957, implementations were
using sparse LU factors of an initial basis BQ [35] and updating the factors
a number of times before factorizing the current basis directly. The updates
were in product form: BQ = LU, Bj. = LUE\E<i... E/., where each Ej. differs
from the identity in only one column. (Most authors thought they were updat-
ing the inverse of each basis matrix, but the updates they used involved the
same numbers as in the product form given here.) Bartels and Golub recognized
that the product-form update is potentially unstable. They focused the linear
programming community on the importance of maintaining numerical stability
and the possibility of achieving it by updating the LU factors directly. Their
method replaces the old column by the new column, effectively creating a "col-
umn spike" in the U factor, then cyclically permutes the spike to make it the
last column of U, which becomes upper Hessenberg. Row operations, with row
interchanges for stability, are performed to restore the upper triangular form.
The L factor is updated in product form, but U is maintained as an explicit
triangle.

Various LU updates were proposed by subsequent authors, most of whom
were concerned with sparse problems. Forrest and Tomlin [15] store U column-
wise and update it by deleting a column and row of U and adding a new column
at the end, while generating a triangular matrix Ej (differing from the identity
in only one row) to update L in product-form. This was soon recognized to be
equivalent to the Bartels-Golub update but without any row interchanges for sta-
bility. (See Nocedal and Wright [37, Section 13.4] for an illustrated comparison
of the methods.) Reid [40] stores U row-wise and applies the cyclic permuta-
tion to both the rows and columns of U, creating a "row spike" that tends to
be sparse. Row operations are applied with row interchanges for stability, thus
achieving a sparse form of the Bartels-Golub update with reasonable efficiency.
Fletcher and Matthews [14] show how to update explicit LU factors in a stable
way (keeping both L and U triangular), but sparsity cannot be preserved. Sparse
forms of the Bartels-Golub update are in use today in Reid's code LA15 [39]
and in LUSOL [19] (and hence in MINOS [36] and SNOPT [20]), but commer-
cial linear programming codes flirt with instability by using the Forrest-Tomlin
update because of an overriding desire for speed. Fortunately the Bartels-Golub
viewpoint suggests a way to avoid significant instability: test if any element of
Ej above is large, and if so refactorize rather than update.

A curious feature of the Bartels and Golub paper is that it does not
describe the LU factorization updating that is proposed. Details of that are given
in an earlier paper of the same authors on Chebyshev solution of overdetermined
systems (the first paper in their reference list) and by Bartels [2], who gives a
detailed error analysis of it. The present paper accompanies CACM Algorithm
250, an Algol 60 code that appears a few pages later in the same issue of the
journal [3]. The Bartels-Golub method has comparable numerical stability prop-
erties to Gaussian elimination with partial pivoting, and so can in rare cases suffer
from exponential error growth. A detailed analysis of this phenomenon is given
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by Powell [38], who constructs pathological examples for both the Bartels-Golub
and the Fletcher-Matthews approaches.

Calculating the singular values and pseudo-inverse of a matrix, by
Golub and Kahan [22]

The singular value decomposition (SVD) is today so widely used and ubiquitous
that it is hard to imagine the computational scene in the early 1960s, when the
SVD was relatively little known, its utility for solving a wide range of problems
was unrecognized, and no satisfactory way of computing it was available. This
paper helped bring the SVD to prominence by explaining two of its major appli-
cations, pointing out pitfalls in the more obvious methods of computation, and
developing a strategy for a numerically stable SVD algorithm.

The paper begins by recalling the role of the pseudo-inverse in providing the
minimum-norm solution to a linear least squares problem. The necessity and
the difficulty of determining the rank when the matrix is (nearly) rank defi-
cient are then pointed out, by arguments and examples that are now standard,
but were only just beginning to be recognized. The use of the SVD to deter-
mine the pseudo-inverse and thereby to solve the rank-deficient least squares
problem is advocated, along with the now standard device, motivated by the
Eckart-Young theorem, of setting to zero any computed singular values that are
negligible.

The paper makes two main algorithmic contributions. The first is the
algorithm for bidiagonalizing a matrix by Householder transformations, given
in Section 2. This provides a numerically stable reduction of the SVD problem
to that of computing the SVD of a bidiagonal matrix. The second contribution
builds on an observation of Lanczos [34, Section 3.7] that the eigenvalues of
C = [A°« 0] are plus and minus the singular values of A. With A an upper
bidiagonal matrix, Golub and Kahan note that C can be symmetrically per-
muted into a tridiagonal matrix by the operation (in MATLAB notation) C(p,p),
where p = [n + 1, 1, n + 2, 2, . . . , 2n, n]. The available machinery for solv-
ing the symmetric tridiagonal eigenvalue problem is then applicable, and the
last part of Section 3, and Section 4, concentrate on describing and adapting
appropriate techniques (Sturm sequences and deflation). Here is where there
is a surprise: the paper makes no mention at all of the QR algorithm. Yet a
number of papers and textbooks state that this paper derives the complete
SVD algorithm! In fact, how to adapt the Francis QR algorithm [16], [17] to
the bidiagonal SVD was shown later by Golub in a less easily accessed paper
[21], and the fine details were published in a Fortran code [8] and subsequently
in [25].

Along with the Householder reduction to bidiagonal form, the use of the
Lanczos method is mentioned at the end of Section 2, anticipating later work
such as that in [23], where the Lanczos method would be developed for large-scale
SVD computations.
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Numerical methods for computing angles between linear
subspaces, by Bjorck and Golub [7]

Bjorck and Golub's paper treats the problem of computing the principal angles
between subspaces, along with associated principal vectors. This work is partic-
ularly aimed at the case where the subspaces are the ranges of given rectangular
matrices. The key observation (Theorem 1) is that the cosines of the angles and
the principal vectors are the singular values and transformed singular vectors of
the matrix product QlQz, where the columns of Qi form an orthonormal basis
for the ith subspace. The authors propose computing the required orthonormal
bases by Householder QR factorization or modified Gram-Schmidt.

The cosines of the angles are called canonical correlations in the statistics
literature, and prior to this work they were computed via a "normal equa-
tions" eigenproblem. This paper is illustrative of the theme in Golub's work that
orthogonalization methods should generally preferred because of their excellent
numerical stability properties.

Bjorck and Golub go on to analyze the sensitivity of the problem, obtaining
a perturbation bound for the errors in the angles that is proportional to the
sum of the condition numbers of the two rectangular matrices. Armed with this
information, they show via rounding error analysis that the numerical method
produces results with forward error consistent with the perturbation bound.
Special attention is given to the computation of small angles, since obtaining
them via their cosines is not numerically reliable. The case of rank deficient
matrices is also analyzed.

This is a remarkably thorough paper giving a beautiful, and relatively early,
example of the power of the QR factorization and the SVD. It has hardly aged
in the more than 30 years since publication. Only a few subsequent papers
have attempted to improve upon or extend it. Golub and Zha [29] give a more
detailed perturbation analysis, while in [30] they discuss equivalent characte
izations of the principal angles and algorithms for large sparse or structured
matrices. Drmac [13] shows that the Bjorck-Golub algorithm is mixed forward-
backward stable: the computed singular values approximate with small relative
error the exact cosines of the principal angles between the ranges of slight per-
turbations of the original two matrices.

Methods for modifying matrix factorizations, by Gill, Golub,
Murray, and Saunders [18]

This paper treats the updating of the Cholesky factorization and the complete
orthogonal decomposition after a rank-1 change, as well as (in the last section)
updating of a QR factorization after the addition or deletion of rows or columns.
Such changes are common in many applications, including in data fitting and
signal processing problems, in which the data may be generated in real time.
This paper was the first to emphasize the use of orthogonal transformations -
particularly Givens transformations, which it uses extensively - and to give
careful attention to the numerical stability of updating formulae. As such it
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has been very influential, as indicated by its being in Golub's top 10 most
cited papers.

For Cholesky updating the rank-1 perturbation is allowed to be positive or
negative semidefinite, but the perturbed matrix is assumed still to be positive
definite. The case of a negative semidefinite perturbation can be tricky numer-
ically, and in addition to the five different methods given here other methods
have subsequently been proposed and analyzed, including ones based on hyper-
bolic transformations, which originate in an observation of Golub [26]. For an
overview, see Stewart [41, Section 4.3].

It is tempting for the reader to skip over Section 2 of the paper, thinking that
this is now standard material. However, Lemma 1 is not well known and new
applications of it have recently been discovered. The lemma essentially says that
the orthogonal QR factor of a tridiagonal matrix T has semiseparable structure -
a property that can be exploited in computing trace(T^1), for example [5].

Summary

This section has reviewed just five of Golub's contributions on matrix factoriza-
tions. Others include [11], [12], [24], [27], [44]. Golub and Van Loan [28] remains
a standard reference for all aspects of matrix factorizations, including for what
Stewart [42] calls the "big six" matrix factorizations.
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CALCULATING THE SINGULAR VALUES AND PSEUDO-INVERSE
OF A MATRIX*

G. GOLUBf AND W. KAHANi

Abstract. A numerically stable and fairly fast scheme is described to compute the
unitary matrices U and V which transform a given matrix A into a diagonal form
S = U*AV, thus exhibiting A's singular values on S's diagonal. The scheme first
transforms A to a bidiagonal matrix /, then diagonalizes /. The scheme described
here is complicated but does not suffer from the computational difficulties which
occasionally afflict some previously known methods. Some applications are men-
tioned, in particular the use of the pseudo-inverse A * = Vs'U* to solve least squares
problems in a way which dampens spurious oscillation and cancellation.

1. Introduction. This paper is concerned with a numerically stable and
fairly fast method for obtaining the following decomposition of a given
rectangular matrix A:

where U and V are unitary matrices and S is a rectangular diagonal matrix
of the same size as A with nonnegative real diagonal entries. These diago-
nal elements are called the singular values or principal values of A; they are
the nonnegative square roots of the eigenvalues of A*A or AA*.

Some applications of the decomposition (1.1) will be mentioned in this
paper. In particular, the pseudo-inverse A1 of A will be represented in the
form

where S7 is obtained from S by replacing each positive diagonal entry by
its reciprocal. The properties and applications of A1 are described in papers
by Greville [15], Penrose [25], [26], and Ben-Israel and Charnes [3]. The
pseudo-inverse's main value, both conceptually and practically, is that it
provides a solution for the following least-squares problem.

Of all the vectors x which minimize the sum of squares || b — Ax [|2, which is
the shortest (has the smallest \\ x |[2 = x*x)?

The solution is x = A'b. If there were only one vector x which minimized

* Received by the editors July 14,1964, This paper was first presented at the Sym-
posium on Matrix Computations at Gatlinburg, Tennessee, in April, 1964.
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{ University of Toronto, Toronto, Ontario. The second author wishes to thank
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|| b — ATL || we would save a bit of work by using

instead of (1.2), and this is what we often try to do. But if A*A is (nearly)
singular then there will be infinitely many vectors x which (nearly) mini-
mize || b — Ax. |[ and the last formula will have to be modified in a way
which takes A's rank into account (cf. [4], [6], [7]). The methods considered
in this paper simplify the problem of assigning a rank to A.

In the past the conventional way to determine the rank of A was to con-
vert A to a row-echelon form, e.g.,

in which x's represent nonzero elements and O's represent zeros. The trans-
formation was accomplished by premultiplying A by a succession either of
elementary matrices (cf. [5]) or of unitary matrices (cf. [17]) designed to
liquidate the subdiagonal elements of each column in turn. In order to
obtain a simple picture like the one above it would have been necessary to
perform column-interchanges to ensure that the largest possible numbers
were being left on the diagonal (cf. "complete pivoting" as described by
Wilkinson [33]). It is certainly possible to arrange that in the row-echelon
form of A each row will have its largest element on the diagonal. Conse-
quently the rank of A is just the number r of consecutive nonzero terms on
the diagonal of its row-echelon form; all rows after the rth are zero. And S,
correspondingly, should have just r nonzero singular values on its diagonal.

But in floating-point calculations it may not be so easy to decide whether
some number is effectively zero or not. Rather, one will try to determine the
rank r by observing whether all rows after the rth are negligible in com-
parison to the first r, with the expectation that the same will be true of the
singular values. Even this criterion is hard to apply, as the following ex-
ample shows:

If this matrix, already in row-echelon form, has a sufficiently large number
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of rows and columns, then, although it may not appear to the naked eye to
be deficient in rank, it is violently ill-conditioned (it has a very tiny singular
value), as can be seen by applying the matrix to the column vector whose
elements are, in turn,

On the other hand, when all the — 1 's in the matrix are replaced by +1 '
then the resulting matrix is quite docile. Therefore, it would be very hard
to tell, by looking at only the diagonal elements of the row-echelon form,
whether or not the original matrix A had a singular value sufficiently small
to be deleted during the calculation of A'. In other words, without looking
explicitly at the singular values there seems to be no satisfactory way to
assign a rank to A.

The singular values of a matrix A are the nonnegative square roots of
the eigenvalues of A* A or A A*, whichever has fewer rows and columns
(see [1]). But the calculation of A*A using ordinary floating point arith-
metic does serious violence to the smaller singular values as well as to the
corresponding eigenvectors which appear in U and V in (1.1). A discussion
of these points can be found in a paper by Osborne [24], which also contains
a nice proof of the existence of the decomposition (1.1). Since the columns
of U are the eigenvectors of A A * and the columns of V are the eigenvectors
of A*A, there is some possibility that a simple calculation of the decompo-
sition (1.1) could be accomplished by using double-precision arithmetic to
deal with A* A and A A* directly in some way. Such a scheme would be con-
venient with a machine like the IBM 7094 which has double-precision
hardware. But for most other machines, and especially when a programming
language deficient in double-precision facilities is used, the complicated
scheme described in this paper seems to be the best we have.

Kogbetliantz [18], Hestenes [16], and Forsythe and Henrici [9] have
proposed rotational or Jacobi-type methods for obtaining the decomposition
(1.1). Kublanovskaja [19] has suggested a QR-type method. These methods
are accurate but are slow in terms of total number of operations.

Our scheme is based upon an idea exploited by Lanczos [20]; the matrix

has for its eigenvalues the singular values of A, each appearing with both a
positive and a negative sign. The representation A could not be treated
directly by a standard eigenvalue-vector program without dealing with the
problems which we shall discuss in detail in what follows.

2. A matrix decomposition. In order to facilitate the computation of the
singular values and the pseudo-inverse of the complex m X n matrix A, we
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describe a convenient matrix decomposition. We assume throughout our
discussion that m ^ n without any loss of generality.

THEOREM 1. Let A be any m Xn matrix with complex elements. Then A can
be decomposed as

where P and Q are unitary matrices and J is an m X n bidiagonal matrix of
the form

Proof. The proof will be a constructive one in which Householder trans-
formations (see [17], [21], [32]) are used. Let A = A(1) and let A(m\
Am, ••• , A(n\ A(n+m be defined as follows:

P<4) and Q(w are hermitian, unitary matrices of the form

The unitary transformation Pa) is determined so that

and <2(W is determined so that

and A(;b+1) has the form
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We illustrate the derivation of the formula for FW). In order not to disturb
those elements which have already been annihilated we set

Since P'*' is a unitary transformation, length is preserved and consequently

Also, since Pw is hermitian,

so that

and hence

(2.3)

Equations (2.1), (2.2), and (2.3) define two possible vectors xw) to within
scalar factors of modulus one. In the interest of numerical stability, let us
choose sgn ak so that xk

(k) is as large as possible. Thus

Summarizing, we have

with
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and

(If a* = 0, just set ak = 0 and x(w = 0.) Similarly,

with

and

An alternative approach to bidiagonalizing A is to generate the columns
of P and Q sequentially as is done by the Lanczos algorithm for tridiagonal-
izing a symmetric matrix. The equations

can be expanded in terms of the columns pi of P and q» of Q to yield

These lead to the following algorithm.
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Of course if ak (&) equals zero, one must choose a new vector pk (qk) which
is orthogonal to the previously computed p/s (q.'s). It is easy to show then
by an inductive proof that the p<'s and q*'s generated by (2.4) are the first
n columns of the desired unitary matrices P and Q.

Unless an on, or ft vanishes, the vector qi will completely determine the
rest of the vectors p, and q t- . Consequently qi could be so chosen that the
Lanczos-type algorithm would be mathematically identical to the House-
holder-type algorithm except for a diagonal unitary similarity transforma-
tion. But the Lanczos-type algorithm is unstable in the presence of rounding
error unless reorthogonalization along the lines suggested by Wilkinson
[30] is used. That is, one must restore the orthogonality of the generated
vectors by using the Gram-Schmidt method to reorthogonalize each newly
generated vector p; or q,- to the previously generated vectors p; or q;, re-
spectively. With the extra work involved in this reorthogonalization, the
Lanczos-type algorithm is noticeably slower than the previously described
Householder algorithm except possibly if A is a sparse matrix.

3. Computation of the singular values. The singular values of A and of J
are the same; they are the positive square roots of J*J. Let them be called,
in order,

These are the numbers which appear on the diagonal of the matrix S which
was introduced in (1.1), i.e.,

Analogous to (1.1) is the decomposition

in which X and Y are unitary matrices which, when they have been calcu-
lated, will lead via Theorem 1, A = PJQ*, to the desired decomposition
(1.1), namely,

with U = PX, V = QY.
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Evidently the last m — n rows of zeros in J do not contribute to the
singular values, nor do they have more than a trivial effect upon the de-
termination of X and Y. Therefore it is convenient to delete J's last m — n
rows and write

without introducing any new notation to distinguish this n X n matrix J
from the m X n matrix J. This can be done because the previous equations
remain valid after the following process of "abbreviation":

(i) delete the last m — n rows of zeros in,/ and S;
(ii) delete the last m — n columns of P and U;
(iii) delete the last m — n rows and columns of X; these coincide with

the last rows and columns of an m X m unit matrix. In this section and the
next we deal only with the abbreviated matrices.

The singular values <n of/ are known (cf. [20]) to be related to the eigen-
values of the 2n X 2n matrix

whose eigenvalues are just +<n and — <r,- for i = 1, 2, • • • , n. The calcu-
lation of the eigenvalues of J is simplified conceptually by a transformation
to tridiagonal form via a permutation similarity which will be exhibited
now.

Consider the matrix equation

which, when expanded, takes the form

that is, atyf + ft-2/j+i = aXi, ciiXi = ayi, anyn = <rxn , ft-i^i-i + onx{ = <ry, .
Now the substitution
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leads to the equation

in which T is a 2n X 2n tridiagonal matrix

Clearly there exists a unitary diagonal matrix D such that the similarity
transformation

yields a tridiagonal matrix S whose elements

are all real and nonnegative.
There are a number of methods for obtaining the eigenvalues of a tri-

diagonal symmetric matrix. One of the most accurate and effective methods
is to use Sturm sequences; an ALGOL program is given by Wilkinson [35].
One can simplify the algorithm, of course, by taking advantage of the fact
that the diagonal elements of T are zero.

Another method of computing the singular values of J is to compute the
eigenvalues of

Note again that since J*J is a tridiagonal hermitian matrix there exists a
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diagonal unitary matrix A such that

where s,- = a, and £» = | /?; . Hence K is a real, symmetric, positive semi-
definite, tridiagonal matrix and its eigenvalues can be computed by the
Sturm sequence algorithm.

Although the smaller eigenvalues of A A are usually poorly determined,
a simple error analysis shows that all the eigenvalues of K are as well-
determined as those of T. The reason for this is that the computation of the
Sturm sequences is algebraically the same for both T and K. Thus to use K
is preferable since the total number of operations in calculating its eigen-
values is certainly less than in computing the eigenvalues of T.

4. Orthogonal vectors properly paired. We consider now the calculation
of the unitary matrices X and Y which were introduced in (3.1):

As pointed out in §3, / can be transformed into a real matrix by means of
unitary diagonal transformations, and we shall assume henceforth that this
has been done (cf. (3.3)).

To each singular value <n corresponds a column x,- of X and y» of F satis-
fying

Since J*Jji = cr/y, one could, in principle, calculate y* as the normalized
eigenvector of J*J corresponding to the eigenvalue cr/, and x,- could be ob-
tained fom the vector Jji either by dividing it by <r< or by normalizing it.
However, if <n is small but not quite negligible, then Jyt will be so much
contaminated by the roundoff errors left over after cancellation that the
calculated x, may well be neither normalized nor orthogonal to the previ-
ously calculated x's.

Another way to calculate X and Y might be to obtain the eigenvectors
x< and ji of JJ' and J*J independently, and then to order the vectors ac-
cording to the ordering of the corresponding singular values tn . But if some
of the singular values are too close together then the equations (4.1) are
unlikely to be satisfied.
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A third way, which seems at first to be free from the objections in the two
preceding paragraphs, is to obtain the eigenvectors z* of the 2n X 2n
tridiagonal matrix S of (3.3). Then the odd-numbered components of z,
would constitute a vector y,- and the even-numbered components a vector
x< which would satisfy (4.1). But in practice trouble shows up here in two
ways. First, the facts that (4.1) is very nearly satisfied and that z; has been
normalized so that z/z,- = 2 do not, in practice, though they should in
theory, ensure that x/X; = y/y» = 1. Fortunately, unless <n is nearly
negligible, one can normalize x, and y^ separately without causing serious
extra error. And if <n is negligible one can find x< and y,- separately and ensure
that they are normalized. The claims in the last two sentences can be proved,
but there is no point in doing so because the second source of trouble is more
drastic; if the z/s are not orthogonal then neither will the x/s be orthogonal,
nor will the y,-'s. The problem of ensuring that the ZJ'B are orthogonal is, in
the present state of the art of computation, a serious one.

One way to ensure the orthogonality of calculated eigenvectors of a sym-
metric matrix is to use Jacobi's method [13], but this is slow. Another way
is to reorthogonalize the calculated eigenvectors obtained, say, by inverse
iteration with a tridiagonal matrix (cf. [30]); but the extra work done here
is no guarantee that the vectors after orthogonalization will still be ac-
ceptable as eigenvectors. A third method, and one which seems very promis-
ing, involves the use of deflation to "remove" each eigenvector as it is ob-
tained and thereby ensure orthogonality. We shall digress to discuss de-
flation methods suitable for use with symmetric tridiagonal matrices, and
then adapt them to our bidiagonal matrix.

In this digression let K be some real symmetric tridiagonal matrix,

of which we already know an eigenvalue X and its eigenvector v. Rutishauser
[27] shows how, in principle, to construct an orthogonal Hessenberg matrix
H from the vector v so that K\ = H*KH will have zero in place of & re_i.
After deleting the last row and column of the tridiagonal matrix KI ,
another eigenvalue, eigenvector and deflation would be calculated, and so
on. The eigenvectors of K would be the columns of an orthogonal matrix ob-
tained by multiplying together all the ff's. The orthogonality of the eigen-
vectors would be guaranteed (to within the limits of acceptable rounding
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error) irrespective of the closeness of some eigenvalues of K. Rutishauser's
method needs some modification because, as Wilkinson [34, p. 189] has
shown, the effect of rounding errors in the transformation KI = H1KH could
destroy K's tridiagonal form if v's first few components were too small.

In Rutishauser's deflation the matrix H can be interpreted as a product of
2 X 2 Jacobi-like rotations applied in succession to the first and second,
second and third, third and fourth, • • • , (n — l)th and nth rows and
columns of K. After the first rotation, each rotation is chosen to annihilate
a spurious term which was introduced by the previous rotation. For ex-
ample, an asterisk in the following figure marks the spurious term which the
third rotation must annihilate:

The first rotation, which fixes all the subsequent ones, can be determined
from the first two elements of K's eigenvector v as suggested by Rutishauser
[28, p. 226] or else from the first two elements of K — \I. In effect, the de-
flation of the tridiagonal matrix K is equivalent to a ^-transformation
applied to K — \I in the manner suggested by Ortega and Kaiser [22].
Unfortunately, this method also can be shown to be numerically unsatis-
factory whenever v's last few components are abnormally small, because
then the element in KI which replaces bn-i in K remains too large, in general,
to be ignored;, Wilkinson [34, p. 187] hints at another method analogous to
the one he described in [31, pp. 351-353]; we shall outline this method
briefly because we believe it to be an effective compromise between
Rutishauser's two schemes.

Having found an eigenvalue X of K we calculate the corresponding eige
vector v and normalize it so that its largest component lies between \ and 
say. The calculation of v can be accomplished using the inverse iteration
described by Wilkinson [30]; but since there is no way to prove that, in
general, one of his inverse iterations will suffice to provide an adequately
accurate v, we describe the following method whose properties can be estab-
lished rigorously. We require that X be chosen to be the algebraically greatest
or else the least eigenvalue of K; this is no inconvenience since in the course
of K's successive deflations each of its eigenvalues will be at some time the
greatest or the smallest of the current matrix on hand. Next we apply
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Gaussian elimination to K — \I without pivotal interchanges; there will be
no trouble here (cf. [33, pp. 285-286]) provided floating point calculation is
used and provided X, if not exactly right, is larger than K's largest or smaller
than K's smallest eigenvalue by perhaps a unit or so in X's last place. The
point here is that each nonzero pivot Ui in the elimination process must be
of the same sign as (K — X/)'s diagonal elements. The result of the elimi-
nation process is to express K — XI = LU, where

and

n

Here MI = ai — X and lt = bi/Ui, M;+I = ctj+i — X — Ibi for i = 1, 2, • • • ,
n — 1. Next we attempt the solution of (K — X/)v = r using for r a vector
whose elements all have the same magnitude but signs chosen to maximize
the elements of v. The choice of sign is accomplished by first solving
Ls = r as follows:

The solution of C/v = s for v and the subsequent normalization of v com-
plete the calculation. Provided no two pivots w< have opposite signs one can
show that the elements of v each have the same signs as the corresponding
elements of the desired eigenvector despite the rounding errors committed
during v's calculation. Furthermore, the elements of r exhibit the same signs
as those of +v or — v, depending upon the sign of the w<'s. Consequently the
cosine of the angle between r and the correct eigenvector is at least JV~1/2 in
magnitude, and finally we conclude that Kv must differ from Xv by no more
than a few units in the last place (cf. the argument in [30]). Now even if v
is contaminated by components of the eigenvectors corresponding to other
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eigenvalues pathologically close to X, it will look enough like a true eigen-
vector to permit the deflation process to proceed. This process for calculat-
ing v is simpler and a little faster than Wilkinson's.

Now that we have v we proceed to the deflation along the lines outlined
by Wilkinson. Each 2 X 2 rotation is embedded in an n X n matrix

with Cj for itsj'th and (j + l)th diagonal elements, where c/ + s/ = 1.
Suppose the products

have the forms

and

At the start we can take
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To continue the deflation we must so determine Py+i that its application will
simultaneously annihilate the spurious element Wj in the jth row and column
of the matrix as well as the vector's (j + l)th element <f>j+i. But in practice
the accumulation of rounding errors will prevent the exact annihilation of
both elements; instead we shall have to be satisfied with a Pj+i which leaves
negligible residuals in place of Wj and <fo+1. Wilkinson, having scaled K — \I
so that its largest element lies between f and 2, would use whichever of the
equations

contained the largest coefficient \ w, |, | &/ , | tpj+i j or | Vj+2 to determine,
in conjunction with cy+i + sy+i = 1, the values c,+i and sy+i. This method
seems to be effective and we believe that it should always work, but since
we cannot prove the method's infallibility, our work is incomplete.

Now we can show how to construct a deflation process for the bidiagonal
matrix J. The first step is to obtain J's largest singular value a; <? is the
largest eigenvalue of the tridiagonal matrix j'j (see §3). The next step
requires the corresponding vectors x and y which can be obtained either by
solving j'jy = o-2y for y and setting x = <r~ljy, or by calculating <7!s eigen-
vector z of S in (3.3) and hence obtaining x and y from z's even and odd
components respectively. Both methods for getting x and y are numerically
stable when performed in floating point. The deflation of J is accomplished
by a sequence of 2 X 2 rotations applied in succession to its first and second
columns, its first and second rows, its second and third columns, its second
and third rows, its third and fourth columns, • • • , its (n — l)th and nth
rows. The ith rotation applied to rows i and i + 1 of J must simultaneously
annihilate a spurious subdiagonal element, introduced into row i + 1 by the
previous column rotation, and the ith element in the current x-vector. The
tth column rotation, except for the first, must annihilate a spurious term
introduced by the previous row rotation into the (i + l)th column just
above the first superdiagonal, and simultaneously the transpose of the ith
column rotation must liquidate the tth element of the current y-vector. The
first column rotation would when applied to J'J — a-2/ annihilate the element
in its first row and second column. At the end of the deflation process J's
element &n_i should have been replaced by zero. Of course, rounding errors
will prevent the rotations from performing their roles exactly upon both the
matrix J and the vectors x and y, but just as in the deflation of a tridiagonal
matrix we are able so to determine the rotations that negligible residuals are
left behind in place of the elements we wished to liquidate.

After deflating J we delete its last row and column and repeat the process
until J is deflated to a 1 X 1 matrix or the deflated J becomes negligibly
small. At the end we multiply the rotations in reverse order to construct the
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matrices X and Y which put/ into the form (3.1):

(If/ was complex, a unitary diagonal transformation should be incorporated
here.) Finally the matrices P and Q of Theorem 1 are multiplied thus:

to exhibit the decomposition (1.1):

The two matrix multiplications PX and QY take most of the work.

5. Applications. The basic decomposition given by (1.1) has many ap-
plications in data analysis and applied mathematics. Suppose the matrix A
arises from statistical observation, and we wish to replace A by another
matrix A (say) which has lower rank p and is the best approximation to A
in some sense. If we use the Frobenius norm (i.e., || A ||2 = trace A*A) then
the problem has been solved [8] as follows.

THEOBEM 2. Let A be an m X n matrix of rank r which has complex
elements. Let Sp be the set of all m X n matrices of rank p < r. Then for all
B£SP,

where

and % is obtained from the ~2 of (1.1) by setting to zero all but its p largest
singular values <n.

Proof. Since A = V2V* and the Frobenius norm is unitarily invariant,

Let U*BV = C. Then

Now it is convenient to order the singular values in such a way that
ov ^ <n+i • Thus, || A — B ||2 is minimized if c« = at for i = 1, 2, • • • , p,
and dj = 0 otherwise, i.e., for C = t. Obviously,

Finding the vector x of shortest length which minimizes || b — Ax || is
equivalent to finding the vector y of shortest length which minimizes

252



Calculating the singular values and pseudo-inverse of a matrix (with W. Kahan)

CALCULATING SINGULAR VALUES OF A MATRIX

II c ~ Jy II) where c = P*b and y = Q*x. Here a natural question arises: is
there any method which bypasses the complicated scheme in §3 and §4 for
exhibiting J's singular values explicitly, and instead takes advantage of J's
simple bidiagonal form to solve the least squares problem or to calculate J ?
Such a method, if it exists, must retain provision for intentional perturba-
tions designed to delete, in effect, negligible singular values without in-
ducing too large a discrepancy in J or A. Unfortunately, J's simple form is
deceptive; even J's rank is hard to estimate without further calculation. For
example, if J's rank r is less than n, then at least n — r of the en's, and pos-
sibly more, should vanish; but in practice none of the a,-'s may be negligible
even though several may be very small compared with adjacent /8,-'s and, in
consequence, a few of J's singular values may be negligible.

Perhaps the recurrence described by Greville [15] can be modified by the
introduction of pivoting and then applied to J to calculate J . Until this
scheme is worked out, the best method we can suggest for solving the least
squares problem together with controllable perturbations is the following.
Compute explicitly the representation

decide which of the singular values are small enough to ignore, replace the
remaining singular values by their reciprocals to obtain Z1, and finally use

to obtain the least squares solution x = A'b. Once again, to ignore some
singular values <rr+i, <rr+2, • • • , <rn is equivalent to perturbing A by a matrix
whose norm is (^",=r+i a,-2)1'2.

In some scientific calculations it is preferable that a given square matrix A
be perturbed as little as possible (just rounding errors), but instead a
perturbation db in the right-hand side b of the equation .Ax = b is per-
missible provided || Sb || does not exceed a given tolerance e. The substi-
tution

transforms the perturbed equation Ax = b + 5b into an equivalent diagonal
system

in which the permissible perturbation 5c still satisfies

Subject to this constraint, 5c may be chosen to optimize some other criterion.
For example, suppose we wish to minimize | |x | | = ||y||. Then ideally 5c
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should satisfy S2Sc + X(c + Sc) = 0 with some suitable positive value of the
Lagrange multiplier X sufficiently small so that (5.1) is satisfied too. But
for most practical purposes it is sufficient to use trial and error to determine
X to within a factor of two so that Sc = — (/ + X^S2)"^ will satisfy
5c*Sc < e. The use of such a technique in least squares problems tends to
suppress violent oscillation and cancellation which might otherwise detract
from the usefulness of the solution x.

A similar technique is valuable for the solution of the sets of linear equa-
tions which approximate integral equations of the form

Here the numerical treatment of the integral equation, in using singular
values, is similar to the theoretical treatment found in [29]. Once again, the
use of the decomposition A = LT2V* aids the suppression of spurious oscil-
lations in the function x.

We close with a warning; diagonal transformations can change A's
singular values and A1 in a nontrivial way. Therefore some sort of equilibra-
tion may be necessary to allow each row and column of A to communicate
its proper significance to the calculation. Two useful forms of equilibration
are:

(i) scale each row and column of A in such a way that all the rows have
roughly the same norm and so have all the columns;

(ii) scale each row and column of A in such a way that the absolute un-
certainty in each element of A does not vary much from element to element.
On least squares problems such equilibration is accomplished by weighting
each residual in the sum of squares (see [2], [10], [11], [23] on equilibration
algorithms, and [14]).
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THE SIMPLEX METHOD OF LINEAR PROGRAMMING
USING LU DECOMPOSITION (WITH R. H. BARTELS)

COMM. ACM (12:5), 266-268 (1969).

This paper is a model for the way that Gene likes to work: find someone interesting in
another field to talk with, find out what the problems, approaches, and computational
practices are in that field, and then come up with some possible way in which good
numerical linear algebra might help. Then tell someone else how a thing should really
be done and get them to do the deed. The interesting person in question that led to
this work was George Dantzig and the field was linear programming. My first contact
with this interaction between Gene and George Dantzig must have been after Gene
had the tableau method of the simplex method presented to him. I recall an incredu-
lous statement from Gene roughly like, "It's crazy; they use Gauss-Jordan elimination
without pivot selection!" Gene proposed that some method of updating the LU decom-
position of the basis matrix be found rather than the Gauss-Jordan update of the basis
matrix inverse, as was used in the tableau. I needed a PhD thesis topic, so I became the
"someone else" who was to do the deed. The updating process was Gene's, and I was
asked to see what I could say about its numerical stability using Wilkinson round-off
analysis.

The paper cited here worked on the explicit LU decomposition and its update. As
far as the linear programming community was concerned, this was of no value, since
sparsity must be honored due to the extreme size of linear programming problems,
and sparsity was quickly lost in updating explicit LU decompositions. It wasn't until
product-form updates and sparsity orderings were studied by Michael Saunders that
the work gained street credibility.

The basic insight that many matrix decompositions could, with stability, be updated
(and, later, downdated), either in explicit or in product form, spawned about a decade
of activity in its own right, involving a number of researchers and generating several
important papers. The results had fundamental impact on the way in which linear
and nonlinear optimization algorithms and certain sequential statistical procedures are
designed.

Oh, and I did get a PhD from the work. Thanks, Gene.

Richard Bartels
Waterloo, Ontario, Canada
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The Simplex Method of Linear
Programming Using LU
Decomposition

RICHARD H. BAETELS AND GENE H. GQLUB
Stanford University,* Stanford, California

Standard computer implementations of Danfzig's simplex
method for linear programming are based upon forming the
inverse of the basic matrix and updating the inverse after every
step of the method. These implementations have bad round-off
error properties. This paper gives the theoretical background
for an implementation which is based upon the LU decomposi-
tion, computed with row interchanges, of the basic matrix. The
implementation is slow, but has good round-off error behavior.
The implementation appears as CACM Algorithm 350.
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1. LU Decomposition

The linear programming problem:

are given, with & > 0, is commonly solved by a two-phase
process built upon the simplex method of G. B. Dantzig
[2]. Each step of this method requires the solution of three
systems of linear equations involving a common matrix of
coefficients, the basis matrix P. It is the usual practice to
solve these systems by forming P"1, either directly or in

This paper gives the theoretical background of Algorithm 350,
"Simplex-Method Procedure Employing LU Decomposition," by
the same authors, which appears on pages 275-278.

* Computer Science Department. This project was supported
in part by NSF under projeut GP948 and ONR under project Nil
044211.

factored form as a product of transformations, and then
applying it to the right-hand sides of the systems.

The basis matrix of any simplex step differs from that
of the preceding step in only one column, so it is easier to
update P"1 than to invert the new P. While this generally
produces satisfactory results, it is vulnerable to computa-
tional problems in two respects. First, if P~l is continually
updated, computational inaccuracies imposed by limited-
precision arithmetic (round-off errors) are allowed to
propagate from step to step. Second, the updating, in.
whatever way it is carried out, is equivalent to premulti-
plying P"1 by a matrix of the form:

266 Communications of the ACM

In the presence of round-off errors this computation can be
quite inaccurate if yt-. is small relative to the other y,.

Both of these problems can be eliminated if, instead of
P"1, the TAJ decomposition of P is computed using row
interchanges to select pivots. The problem of solving a
linear system based upon P is then reduced to that of
backsolving two triangular linear systems. The numerical
stability of this scheme is generally quite good (see [4]).
Advantage can be taken of the similarity between any two
successive matrices so as to economize on the computation
of the LU decompositions. For details see [1, Sees. 5-6].

Additional accuracy is obtained in the program (see
Algorithm 350) by iteratively refining the solution to
problem (1), after it has been found, according to the
scheme given in [4, p. 121].

The algorithm requires nf/Q + 0(n2) multiplications per
exchange on the average. Thus the algorithm is most ef-
fectively used for very ill-conditioned problems or in con-
junction with other implementations of the simplex algo-
rithm which produces an initial basis more cheaply. A fast
and accurate version of the simplex algorithm is described
in [5] but this requires additional storage.
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258

J.F. TRAUB, Editor

Numerical Analysis



The simplex method of linear programming using L U decomposition

2. The Two-Phase Solution Process

The possibility of degeneracy is ignored, as is customary.
PHASE 1 (Find a basic feasible solution.)

where aT = [a0, • • • , am_i] is a vector of "artificial vari-
ables" and eT = [1, • • • , 1] (m components). The solution
is obtained by starting with a = b as a basic feasible solu-
tion and applying the simplex method. As each a. becomes
iionbasic, it may be dropped from the problem altogether.
Since — eTa < 0 for all a, problem (2) has a solution- If
max(— eTa) ^ 0, then problem (1) has no basic feasible
solution. Otherwise, the second phase is entered.

PHASE 2 (Find an optimal basic feasible solution.)
If the solution to problem (2) contains only components

of x as basic variables, these become the initial basic
variables for solving problem (1) by the simplex method.
If artificial variables, &&y %„ , • • • , a,-, , remain basic but
at zero level in the solution of (2), an equivalent problem
to (1) is solved:

maximize drx

subject to (3)

where ek represents the fcth column of the identity matrix
(column numbering begun at zero). The additional vari-
able s, together with the additional constraint

holds the artificial variables at zero level throughout
further computation. The simplex method is applied to
problem (3) with s and the basic variables from problem
(2) as the initial set of basic variables. (For an example of
this two-phase process in operation see [3, Sec. 7.7].)

3. Some Computational Details

Phase 1 is skipped if a basic feasible set of variables for
problem (1) is known a priori. If a partial set of basic
variables is known for problem (1), the computation of
phase 1 can be restructured to take this into account. To be
precise, \et K (I < K < m — 1) columns of G (without loss
of generality these can be made gn-*, • • • , gn-i, the last

Volume 12 / Number 5 / May, 1969

columns of G) be used to construct the following matrix:

Suppose that P *fe > 0. (This situation arises if the vari-
ables are numbered so that £„_*, • • • , #»-i are the slack
variables and the constraints are ordered so that
#„_ = em-t, • • • , tfn-i = em_i, whereby P becomes the
identity matrix,) Then problem (2) can be replaced by the
problem:

maximize -eT&

where z(1) = [ar0, • • • , #n-«-i], £(2) = [x^*, • • • , a^J,
G(1) and G(Z) are appropriate submatriees of G, a =
[ao, • • • , OM-K-I], e = [ ! , • •• ,l](m-~K components), and I
is the (m — «)-order identity matrix. The simplex method
is begun with OQ , • • • , O^-K-I , xn-x, • • • , xn~i as basic
variables. Since there are fewer artificial variables to be
driven to zero in problem (4) than in problem (2), we ex-
pect problem (4) to require on the average less work to
solve.

A reduction of computation beyond that described in [1]
can be arranged for the LU decompositions calculated in
phase 1. Each time an artificial variable becomes nonbasic,
a row and column interchange can be applied to the basis
matrix so that it always has the partitioned form

where 7 is the identity matrix of appropriate order, and R
and S are composed of components of G- The LU decompo-
sition of P is known when the decomposition S = £̂ 11 has
been computed; viz.

The triangular systems of equations induced by this for-
mat are solved in a particularly efficient manner by Al-
gorithm 350.

4. Example Application

Let V be a random variable restricted to a finite set of
values DO , • • • , vn_i. Lebe the probability that V has
value V i . If certain moments

are known together with the values v,-, estimates of the
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pi and of unknown moments pi can be made via linear
programming; viz.

on < pi < /3i and n < pi < 61 ,
where

ai = — max(— x,-), j8i = niax(xi)
n-I n-1

7i = —max( —^ "/£;), Si = max(£ «/%),j=o ;=o

all subject to the constraints
n-l

so > 0, • • • , £„__! > 0, X) 2j = 1,
;=0

£ v/s/ = /*, * € {fco, • - • , fc»-i). * ̂  °-
»=n

The basis matrices encountered in solving these prob-
lems are submatrices of a Vandermonde matrix, making
them somewhat poorly conditioned; so it is important that
the simplex method be carried out accurately. Only the
objective function differs from one estimation problem to
the next; so the solution of any one of the problems would
provide an initial basis for the other problems. Phase 1
would need to be carried out only once.

Thus, for example, to compute upper bounds for
po, • • • , p«-i from given values v0, • • • , Vn-i and given
moments no, • • • , Mm-i, one would set up arrays G[i, j] =
Vj and &[?"] = /it and execute

kappa := 0; for i '.— 0 step 1 until n — 1 do d[i] := 0;
for i : = 0 step 1 until n — 1 do
begin d[i] := 1;

if * > 1 thend[i - 1] := 0;
linprog(m, n, kappa, G, b, d, x, z, ind, infects, unbdd, sing);
upper bound[i] := z;

As an illustration, the preceding was run on Stanford
University's B5500 computer with the data no = 1» MI = 3>

ttz = 10-0, MB = 40-5 and vt = i for i = 0, •
suits are listed below,

c""V^»" $f-
.083333333325 .015625

.234375

.3125

.234375

.09375

.015625

.50000000001

.83333333335

.20000000001

.083333333334

Lower bounds for the pt computed from the above data
in a similar fashion were all zero. Computed bounds for
ft* through /iio were as follows.

Comtuted
llrwer
bmtMd

165. 5
700.5

3035.5
13390.5
59965.5

272200.5
1251135.5

moment

168.0

738.0
3396.75

16251.75
80335.5

408280.5
2124764.25

Computed
upper
b,i*l

175.5

850.5
4495.5

25150.5
145435.5
856210.5

5088055.5
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Two expressions are derived for use in estimating the error
in the numerical integration of analytic functions in terms of
the maximum absolute value of the function in an appropriate
region of regularity. These expressions are then specialized
to the case of Gaussian integration rules, and the resulting
error estimates are compared with those obtained by the use of
tables of error coefficients.

Davis and Rabinowitz [1] presented a method for esti-
mating the error committed in integrating an analytic
function by an arbitrary integration rule

If the error is denoted by E(i) = Jla/fa:) dx - I ( J ) , we
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ON DIRECT METHODS FOR SOLVING POISSON'S
EQUATION (WITH B. L. BUZBEE AND C. W. NIELSON)

SIAM J. NUMER. ANAL. (7), 627-656 (1970).

Deciphering, Analyzing and Extending Buneman's Stabilization of Cyclic Odd-Even
Reductions - An Exercise in Good Fortune, Even Serendipity!

Clair Nielson was a scientist in the fusion energy division at Los Alamos. About
1968 or 1969, Clair acquired a software subroutine that involved a very fast, direct
technique for solving Poisson's equation on a rectangle. The routine had been written
by Oscar Buneman at the Stanford Linear Accelerator and Buneman didn't document
the mathematical details in it. Clair and others at Los Alamos tested this routine
and found that it was accurate and much faster than widely used iterative techniques
at that time, e.g., successive overrelaxation. Since there was no documentation, Clair
stopped by my office and quizzed me about it, i.e. what algorithm did it use?

The subroutine (written in Fortran) was ingeniously and elegantly compact. For-
tunately, about a month later Gene Golub made his first visit to Los Alamos as a
consultant. I arranged for Clair to stop by and the three of us discussed this mysterious
piece of software/algorithm. It was clearly solving a hierarchy of tridiagonal systems,
i.e., it started with a bunch of tridiagonals and reduced them down to a single tri-
diagonal system then solved it and expanded back out. Gene surmised that this was
some sort of cyclic odd-even reduction, with which he had some familiarity.

So over the next couple of months, we worked out what we thought were the details
of the algorithm and wrote it up, i.e., our algorithm was similar to, but different from
what was in Buneman's subroutine. Again - fortunately - we decided that, just to be
sure, we should program the odd-even reduction algorithm we had developed and ver-
ify that it would do what we intended. It turned out to be catastrophically Unstable, so
that left us scratching our heads! By that point in time, given what we had done with
odd-even reduction, we were able then to decipher the Buneman code, formulate the
equations, and prove that the "Buneman stabilization of odd-even reduction" was - in
fact - very stable and reliable. Again, to be sure, we programmed and computationally
verified these results! Then we incorporated these results into the manuscript. In hind-
sight, we felt very fortunate that we didn't rush to publication with cyclic odd-even
reduction and, instead, took our time to test it and eventually unraveled, extended and
documented Buneman's scheme.

Gene, thanks again for helping unravel the mystery of the Buneman stablization!
And Happy Birthday!

Bill Buzbee
Denver, Colorado, USA
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Vol. 7, No. 4, December 1970

ON DIRECT METHODS FOR SOLVING POISSON'S EQUATIONS*

B. L. BUZBEE.t G. H. GOLUBJ AND C. W. NIELSONf

Abstract. Some efficient and accurate direct methods are developed for solving certain elliptic
partial difference equations over a rectangle with Dirichlet, Neumann or periodic boundary con-
ditions. Generalizations to higher dimensions and to L-shaped regions are included.

1. Introduction. In many physical applications, one must solve an N x N
system of linear algebraic equations,

where M arises from a finite difference approximation to an elliptic partial differen-
tial equation. For this reason, the matrix M is sparse and the nonzero elements
occur very regularly. As an example, let

and partition x and y to conform with M. If one can interchange both the rows
and the columns of a matrix so that it has the form (M — I), the matrix is said
to be two-cyclic [12]. Expanding (1.1), we have

Multiplying the first equation by — FT and adding, we have

By this simple device, we have reduced the number of equations. If (/ — FTF)
is also two-cyclic, we can again eliminate a number of the variables and con-
tinue until the resulting matrix is no longer two-cyclic. In fact, F has block struc-
ture in many applications, and one has the freedom to specify the number of
blocks in it. In these cases, a proper choice of the number of blocks may enable
the reduction process to continue until the final (/ — FTF) has block dimension
one; the reduction methods to be developed impose such a condition.

Direct methods for solving (1.1) are attractive since in theory they yield the
exact solution to the difference equation, whereas commonly used methods
seek to approximate the solution by iterative procedures [12]. Based on a sugges-
tion of one of the authors, Hockney [8] has devised an efficient direct method
which uses the reduction process. Also Buneman [2] recently developed an
efficient direct method for solving the reduced system of equations. Since these
methods offer considerable economy over older techniques [5], the purpose of

* Received by the editors June 2,1969, and in revised form May 20, 1970. This work was supported
by the U.S. Atomic Energy Commission.

t University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544.
t Department of Computer Science, Stanford University, Stanford, California 94305.
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this paper is to present a unified mathematical development and generalization ol
them. Additional generalizations are given by George [6].

In § 2 we develop the method of matrix decomposition or discrete separation
of variables. In § 3 we develop the block-cyclic reduction process and techniques
for solving the reduced systems. In §§ 4, 5 and 6 we apply the results of §§ 2 and 3
to Poisson's equation on a rectangle with Dirichlet, Neumann and periodic
boundary conditions, respectively. Section 7 extends the results of §§ 4, 5 and 6 t
higher dimensions; § 8 extends §§ 2 and 3 to other applications; § 9 extends §§ 
and 3 to "L-shaped" regions. In § 10, we show that straightforward applications
of the results of § 3 can result in severe roundoff error in many applications of
interest. In § 11 we develop the Buneman algorithms, which are mathematically
equivalent to the reduction process of § 3, but are not subject to severe roundoff.
In § 11 we apply the Buneman algorithm to Poisson's equation with Dirichlet,
Neumann and periodic boundaries. Finally, in § 12 we show the stability of the
Buneman algorithms.

2. Matrix decomposition. Consider the system of equations

where M is an N x N real symmetric matrix of block tr.idiagon.al form,

The matrices A and T are p x /> symmetric matrices, and we assume that

Such a situation arises for those problems that can be handled by the classical
separation-of-variables technique. Indeed, the methods we discuss amount to
an efficient computer implementation of the idea of separation of variables
carried out on a discretized model of the elliptic differential equation. Since A
and Tcommute and are symmetric, it is well known [1] that there exists an ortho-
gonal matrix Q such that

and A and Q arc real diagonal matrices. The matrix Q is the set of eigenvectors
of A and T, and A and Q. are the diagonal matrices of eigenvalues of A and T,
respectively.

To conform with the matrix M, we write the vectors x and y in partitioned
form,
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Furthermore, it is quite natural to write

System (2.2) may be written

Using (2.3), this becomes

where

The components of Xj and y7 are labeled as in (2.4). Then (2.6) may be rewritten
for i = 1,2, • • • ,p.

Now let us write
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so that (2.7) is equivalent to the system of equations

Thus, the vector x; satisfies a symmetric tridiagonal system of equations that has
a constant diagonal element and a constant super- and subdiagonal element.
After (2.8) has been solved, it is possible to solve for \j = Qx;-. Thus the algorithm
proceeds as follows:

(i) Compute or determine the eigenvectors of A and the eigenvalues of
A and T.

(ii) Compute y,. = Qry;, ; = 1, 2, • • • , q.
(iii) Solve riX; = y;, i=l,2,---,p.
(iv) Compute \j = 0Cy, j = 1, 2, • • • , q.
Hockney [8] has carefully analyzed this algorithm for solving Poisson's

equation in a square. He has taken advantage of the fact that, in this case, the
matrix Q is known and that one can use the fast Fourier transform [4] to perform
steps (ii) and (iv). Shintani [11] has given methods for solving for the eigenvalues
and eigenvectors in a number of special cases.

A and Tneed not commute. Assume that Tis positive definite and symmetric.
It is well known [1] that there is a matrix P such that

where A is the diagonal matrix of eigenvalues of T 1A and P T is the matrix of
eigenvectors of T~1A. Thus, using (2.9), we modify the algorithm as follows:

(i) Compute or determine the eigenvalues and eigenvectors of T~ 1A.
(ii) Compute yj = P"1yJ-

(iii) Solve rfx; = y;, where

(iv) Compute Xj = P~TKj.
Of course, one should avoid computing T~1A, because this would destroy the
sparseness of the matrices. Golub et al [7] has proposed an algorithm for solving
Au = STu when A and T are sparse.

3. Block-cyclic reduction. In § 2 we gave a method for which one had to know
the eigenvalues and eigenvectors of some matrix. We now give a more direct
method for solving the system of (2.1).

We assume again that A and T are symmetric and that A and T commute.
Furthermore, we assume that q = m — 1 and m = 2*+1, where k is some positive
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integer. Let us rewrite (2.5b) as follows:

Multiplying the first and third equation by T, the second equation by — A and
adding, we have

Thus, if j is even, the new system of equations involves x/s with even indices.
Similar equations hold for x2 and x m _ 2 . The process of reducing the equations
in this fashion is known as cyclic reduction. Then (2.1) may be written as th
following equivalent system:

and

Since m = 2k+1 and the new system of (3.1) involves x/s with even indices, the
block dimension of the new system of equations is 2k — 1. Note that once (3.1)
is solved, it is easy to solve for the x/s with odd indices, as evidenced by (3.2).
We shall refer to the system of (3.2) as the eliminated equations.

Also, note that the algorithm of §2 may be applied to system (3.1). Since
A and T commute, the matrix (2T2 — A2) has the same set of eigenvectors as
A and T. Also, if

Hockney [8] has advocated this procedure.
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Since system (3.1) is block tridiagonal and of the form of (2.2), we can apply
the reduction repeatedly until we have one block. However, as noted above,
we can stop the process after any step and use the methods of § 2 to solve the
resulting equations.

To define the procedure recursively, let

Then for r = 0, 1, • • • , k,

At each stage, we have a new system of equations

to solve, where

The eliminated equations are the solution of the block diagonal system

where
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We can use the methods of § 2 to solve the system M(r)z(r) = fr\ or we can proceed
to compute M ( r+1) and eliminate half of the unknowns. After k steps, we must
solve the system of equations

In either case, we must solve (3.5) to find the eliminated unknowns, just as in (3.2).
This can be done by

(i) direct solution,
(ii) eigenvalue-eigenvector factorization, or

(iii) polynomial factorization.
The direct solution is attractive when k is small. One can form the powers

of A and T quite easily and solve the resulting equations by Gaussian elimination.
Thus, if k = 1, and A and Tare tridiagonal matrices, A(1) is a five diagonal matrix,
and for such band matrices it is easy to solve the resulting system of equations.

It is possible to compute the eigenvalue-eigenvector decomposition of A(r}

and T(r\ Since A(0} = Q\QT and T(0) = Q£IQT, we may write

From (3.3), it follows that

Thus the eigenvalues of A(r} and T(r) can be generated by the simple rule

Hence, the methods of § 2 can easily be applied to solving the system M<r>z<r) = f*r)

and A^W1 = g(r). Hockney [9] has described this algorithm as the FACR(f)
algorithm where / refers to the number of cyclic reductions performed.

268



On direct methods for solving Poisson's equation

634 B. L. BUZBEE, G. H. GOLUB AND C. W. NIELSON

From (3.1), we note that Aw is a polynomial of degree 2 in A and T. By
induction, it is easy to show that A^ is a polynomial of degree 2r in the matrices
A and 7; so that

We shall proceed to determine the linear factors of P2J(A, T).
Let

For t ^ 0, we make the substitution

From (3.3), we note that

It is then easy to verify, using (3.7) and (3.8), that

and, consequently,

Thus, we may write

and hence

Let us write

Then, to solve (3.6), we set zt = — y^ and repeatedly solve

Thus,
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If A and T are of band structure, it is simple to solve (3.9). To determine the
solution to the eliminated (3.5), a similar algorithm may be used with

The factorization for A(r) may also be used to compute yjr + 1) in (3.3). It is
possible, however, to take advantage of the recursive nature of the polynomials
p2r(a,t)-Let

where, again, for t + 0, a/t = — 2 cos 9. Then a short manipulation shows that

Therefore, to compute A(r}y<f} as in (3.3), we compute the following sequence:

Thus,

We call this method the cyc/ic odd-even reduction and factorization (CORF)
algorithm. In § 10 we will show that the numerical calculation of yjr) in (3.3) is
subject to severe rounding errors in many cases of interest. Consequently, numerical
application of the results of this section must be accompanied by close attention
to the results of § 10. In fact, from a computational viewpoint, the CORF algo-
rithm, as developed here, is virtually useless; however, the theoretical results
of this section are necessary for the development of the stable, Buneman variants
of CORF.

4. Poisson's equation with Dirichlet boundary conditions. It is instructive
to apply the results of § 3 to the solution of the finite difference approximation
to Poisson's equation on a rectangle, R, with specified boundary values. Consider
the equation

(Here dR indicates the boundary of R.) We assume that the reader is familiar
with the general technique of imposing a mesh of discrete points onto R and
approximating (4.1). The equation uxx + uyy = f ( x , y ) is approximated at (xt,y^
by
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Then uy is an approximation to u(x;,yj), and /;J = f ( x { , y), gtj = g(xi,yj).
Hereafter, we assume that m = 2k+l.

When u(x, y) is specified on the boundary, we have the Dirichlet boundary
condition. For simplicity, we shall assume hereafter that Ax = Ay. This leads
to the system of equations

where MD is of the form of (2.1) with

and

The matrix / n _ : indicates the identity matrix of order (n — 1). A and Tare sym-
metric, and commute, and thus, the results of §§ 2 and 3 are applicable. In addition,
since A is tridiagonal, the use of the factorization (3.10) is greatly simplified.

5. Neumann boundary conditions. When the normal derivative, du/dn, is
specified on the boundary, we have the Neumann boundary condition. Assume
that

We make the approximation

This approximation leads to the matrix equation

where Mw is of the form

(5.1)
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Here,

Again A and T commute, but MN no longer has the structure given by (2.2).
Therefore it is necessary to modify the algorithm of § 3.

From (5.1), we see that

Performing the cyclic reduction as in § 3, we have

The similarity of (5.2) to (3.1) should now be evident. Since (5.2) is of block di-
mension 2* + 1, after k steps we have the system

and a final reduction yields

Equation (5.4) is equivalent to writing

where P^'+^/l, T) is again a polynomial of degree 2k+1 in /I and T. Note that
from (3.8),

and from (5.4),

Therefore, since p2k(a, t) = —2t2k cos 2k6,
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and, thus,

Consequently, we may rewrite (5.5) as

where 9 f + 1 ] = jn/2k. Again, v2t is determined by solving 2k+1 tridiagonal systems.
The other components of v are solved in the manner indicated in § 3.

Note that the application of matrix decomposition to this problem only
requires the modification of the tridiagonal matrices F, in (2.8); i.e., the first
superdiagonal and the last subdiagonal elements must be 2co;.

It is well known that the solution to Poisson's equation is not unique in this
case. Therefore, we would expect the finite difference approximation to be singular.
This is easy to verify by noting that

where eT = (1, 1, • • • , 1). In addition, one of the systems of the tridiagonal
matrices in (5.6) is also singular. On a uniform mesh, the eigenvalues of
(A + 2 cos OjT) satisfy the equation

Then/0 = Owheny = 2*. Similarly, one can show thatro of matrix decomposition
is singular. Normally, the physics of the problem determines the coefficient of
the homogeneous solution for the singular case.

6. Periodic boundary conditions. In this section, we shall consider the
problem of solving the finite difference approximation to Poisson's equation
over a rectangle when

The periodic boundary conditions (6.1) lead to the matrix equation
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where

and

Note that MP is "almost" an m block tridiagonal system and, similarly,
A is "almost" an n x n tridiagonal matrix. The cyclic reduction can again be
performed on (6.2), and this leads to the reduced system

The similarity with the previous cases is again evident. Equation (6.3) has block
dimension 2*. After (fe — 1) reductions, we have

and finally, after k reductions,
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From (6.4), the final equation becomes

which is equivalent to

The analysis of the factorization of P*$-n.(A, T) is identical to that of the Neu-
mann case, including the fact that one of the factors of the polynomial must be
singular.

Again, the application of matrix decomposition to (6.2) is straightforward;
however, the resulting F; matrices are no longer tridiagonal, since to, appears in
the (1, n) and («, 1) elements. Standard algorithms for solving tridiagonal systems
can be modified to solve these systems such that storage of the full n x n matrix
is avoided. As above, one of the F; will be singular.

7. Higher-dimensional problems. It is not difficult to extend the applications
given in §§ 4, 5 and 6 to higher-dimensional problems. We show this by a simple
example. Consider Poisson's equation in three dimensions over the rectangle R:

Again, we assume that the mesh is uniform in each direction, so that

At the point (x;, yjt z,), we approximate w(Xj, y;, z,) by y i j ( . Let

Assume that the usual finite difference approximation is made to uz!, for fixed
(x,y,z), namely,

It is then easy to verify that for / = 1, 2, • • • , p — 1,

where w0 and wp are prescribed by the initial conditions and f, is a function of
the given data. Thus, again, we have a block tridiagonal matrix, and can use the
previously developed methods. Note, also, that H is a block tridiagonal matrix
so that one can solve any of the eliminated systems of equations by applying
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the CORF algorithm repeatedly. Other boundary conditions can be handled
in the manner prescribed in §§ 5 and 6.

8. Further applications. Consider the elliptic equation in self-adjoint form

Many equations can be transformed to this form. The usual five-point difference
equation, when Ax = Ay, leads to the following equation:

where

If the equations are ordered with

the linear system of equations Mv = d will have the block form

Here

Now suppose we have the decomposition
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where QTQ = I and diag(<J>) = (q>1,<p2, ••• , <pn-i}- Thus,

As in § 2, we define

and after a suitable permutation we are led to the equations

where

Thus, the vector v; satisfies a symmetric tridiagonal system of equations. Again,
once v; is computed for all i, it is possible to compute v.

Lynch et al. [10] have considered similar methods, but their algorithm re-
quires more operations. Unfortunately, it does not seem possible to use the
methods of § 3 on (8.2) in this situation.

Now we may write the equivalent to Poisson's equation in two dimensions
in cylindrical coordinates as follows:

and

The matrix A will still be tridiagonal, and Twill be a diagonal matrix with positive
diagonal elements. We may make the transformation v,. = Tl/2\j, and are thus
led to the equations

Thus, by ordering the equations correctly and by making a simple transformation,
one can apply the cyclic reduction and the CORF algorithm to solve the finite
difference approximation to Poisson's equation in cylindrical coordinates.
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Another situation in which the methods of §§ 2 and 3 are applicable is in
using the nine-point formula to solve the finite difference approximation to
Poisson's equation in the rectangle. In this case, when Ax = Ay,

It is easy to verify that AT = TA and that the eigenvalues of A and Tare

Because of the structure of A and T, the fast Fourier transform may be employed
when using the methods of § 2.

9. Nonrectangular regions. In many situations, one wishes to solve an elliptic
equation over the region in Fig. 1.

FIG. 1

We shall assume that Dirichlet boundary conditions are given. When Ax is
the same throughout the region, one has a matrix equation of the form

278



On direct methods for solving Poisson's equation

644 B. L. BUZBEE, G. H. GOLUB AND C. W. NIELSON

where

Also, we write

We assume again that AT = TA and BS = SB.
From (9.1), we see that

and

Now let us write
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Then as we partition the vectors z(1), z<2) and the matrices W(1) and Wm as
in (9.3), (9.4) and (9.5) become

For (9.8), we have

This system of equations is two-cyclic, so we may reduce the system to

(9.9) (/ - wyWfW* = zV - W^i^.

This system of equations can most easily be solved using Gaussian elimination.
Once the two-cyclic system of (9.9) has been solved, all other components may
be computed using (9.8) or by solving the system

If system (9.1) is to be solved for a number of different right-hand sides, it is best
to save the LU decomposition of

(9.10) (/ - W^W™).

Thus, the algorithm proceeds as follows:
(i) Solve for za) and z',2' using the methods of § 2 or 3.

(ii) Solve for W'1' and W{2} using the methods of § 2 or 3.
(iii) Solve (9.9) using Gaussian elimination. Save the LU decomposition of

(9.10).
(iv) Solve for the unknown components of x(1) and x(2).
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10. Accuracy of the CORF algorithm. As will be shown in § 11, the CORF
algorithm and the Buneman algorithms are mathematically identical. The
difference between the methods lies in the way the right-hand side is calculated
at each stage of the reduction. To the authors' knowledge, this is the only direct
method for solving linear equations in which the right-hand side of the equations
plays an important role in the numerical solution of the equations. In this section,
we show the difficulties encountered in using the CORF algorithm. In § 13, we
will prove the stability of the Buneman algorithms.

Recall from § 3 that it is possible to compute A(r}y(p by the following algo-
rithm :

for s = 2, 3, • • • , 2r, so that

Because of roundoff error, one actually computes the sequence

where 8S is the perturbation induced by the roundoff error. Again, as in § 2, we
write

where Q is the set of orthonormalized eigenvectors of A and T, and A and fi are
the diagonal matrices of eigenvalues of A and T, respectively. Thus, substituting
(10.3) into (10.2), we have

where
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Because A and Q are diagonal, we may write an equation for each component
of j;s; namely,

The solution of (10.5) can be given explicitly. Consider the characteristic equation

which has roots ft and y}; then

Let

Then using the initial conditions of (10.4a), we may write (10.6a) as

Note that

given in § 3. Thus
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Give tdigits of base ft arithmetic, it will generally be impossible to represent r\2r in
t digits whenever

2 ' (z . -z 1 )^ t ln / J .

As noted in §3, Hockney [2], [9] has combined one or more steps of odd-
even reduction with the fast Fourier transform to produce a Poisson solver.
The above analysis allows one to determine the number of reductions that can
be safely performed, and careful attention must be given to it.

11. The Buneman algorithm and variants. In this section, we shall describe
in detail the Buneman algorithm [2] and a variation of it. The difference between
the Buneman algorithm and the CORF algorithm lies in the way the right-hand
side is calculated at each stage of the reduction. Henceforth, we shall assume
that, in the system of (2.5), T = Ip, the identity matrix of order p.
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where

Therefore, if |AJ/(2coJ.)| > 1, each £ j s has good relative accuracy. However, if
z t > zp, then £1?s may become very large relative to {ps; and since tjs = g^s, £p s

will be lost in rounding.
We now apply the above results to Poisson's equation with Dirichlet boun-

dary conditions. For the five-point difference operator with mesh width Ax
in the x-direction and Ay in the ^-direction, we have

and

depending on how one orders the equations. By inspection

IV(2a>j)l > 1

for all,/, and hence, as s increases, (10.1) leads to a numerically unstable algorithm.
A similar result holds for the nine-point difference approximation to Poisson's
equation.

Although the above results were obtained under the assumption of (10.1),
similar results will be obtained regardless of how A<r)yjp) is computed. The problem
is that A(r} becomes very ill-conditioned as r increases. For the five-point approxi-
mation, the ratio of the largest eigenvalue of A(r) to its smallest eigenvalue is
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Again consider the system of equations as given by (2.5) with q = 2 t+1 — 1.
After one stage of cyclic reduction, we have

for j = 2,4, • • • , q — \, with x0 = x, + 1 = 8, the null vector. Note that the right-
hand side of (11.1) may be written as

Let us define

Then

After r reductions, we have, by (3.3),

Let us write in a fashion similar to (11.3),

Substituting (11.5) into (11.4) and making use of the identity (AM)2 = 2Ip - A ( r + > }

from (3.3), we have the following relationships:

To compute C4(r))~1(P;''-2'- + p(fl2-- ~ «#')in (U-6a), we solve the system of equa-
tions

where A(r] is given by the factorization (3.10), namely,

After k reductions, one has the equation

and hence
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Again one uses the factorization of Am for computing (/l'*')"^^. To back-solve,
we use the relationship

for j = i2", i= 1, 2, • • • , 2k+1~r - 1, with X0 = X2k + 1 = 9.
For j = 2r, 3-2', • • • , 2k+1 — 2r, we solve the system of equations

I

using the factorization of A(r); hence

Thus the Buneman algorithm (variant 1) proceeds as follows:
(i) Compute the sequence {pjp), qj"} by (11.6) for r = 1, • • • , k, with pj°> = 9

for j = 0, • • • , 2*+1, and qf > = y} for j = 1, 2, • • • , 2 fe+1 - 1.
(ii) Back-solve for x,- using (11.7) and (11.8).
It is possible to eliminate the sequence {p^0}. From (11.6b) we note that

where

Using (11.9) in (11.6a) and modifying the subscripts and superscripts appropriately,
we have

To solve for x;, we use the relationships (11.7) and (11.9), so that

v — ifW1'"1) -I- n^"1' n<r)1
(11.11) Xj - 2Wj-J, + flj + J, ~ 1j )

-(J4">)-1(xj-M + x,+ 2 ( i -qM) .

Thus the Buneman algorithm (variant 2) proceeds as follows:
(i) Compute the sequence {q^} by (11.10) for r = 1,2, • • • , k.

(ii) Back-solve for x; using (11.11).
Note that the Buneman algorithm (variant 2) requires half the storage that the
Buneman algorithm (variant 1) requires. However, the variant 2 algorithm requires
approximately twice as many additions.
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The p/s and q/s can be written in terms of the x/s. In § 13, we shall show
how this affects the stability of the methods. Note that

and

By an inductive argument, it is possible to show that

and

where

12. Applications of the Buneman algorithm to Poisson's equation. As
was pointed out in § 4, matrices of the form of (2.5) arise in solving the five-point
finite difference approximation to Poisson's equation over a rectangular region
with Dirichlet boundary conditions; hence, it is possible to use the methods of
§ 11. For the five-point approximation to Poisson's equation over a rectangular
region with Neumann or periodic conditions it is necessary to modify the Bune-
man algorithms.

For the Neumann boundary conditions, we have the system of equations

We define

where

In general then, as in § 11, we have for r = 1, 2, • • • , k — 1,
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where

Finally

where

From (5.4), we see that

so that

(B(*+i))-q(2*+D indicates a solution to the singular system B</I+1)(x2t - p(
2\

+1))
= q(

2*k+ ''. The factorization of B{* + ' ' is given by (5.6). The back-substitution process
proceeds as in § 11. It is also possible to eliminate the pj1' sequence as was done
in the previous section.

For periodic boundary conditions, we have the system of equations

We define

where

In general, for r = 1, 2, • • • , k — 1,
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where

Finally, as (12.1),

where

and S<t+1) is denned by (12.2). Then

so that

The back-substitution process proceeds as in § 11.
It is possible to express p^r) and qM in terms of x^ as in (11.12) and (11.13).

13. Accuracy of the Buneman algorithms. As was shown in §11, the Bune-
man algorithms consist of generating the sequence of vectors {p(]"\ q^r)}. Let us
write, using (11.12) and (11.13),

where
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where

and

Then

where

||v||2 indicates the Euclidean norm of a vector v,
IIC || 2 indicates the spectral norm of a matrix C, and

H I — V' l l v i l- LJ=I H x j l i 2 -
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where p = Ax/Ay or Ay/Ax depending on the ordering of the equations. Thus

which implies dt > 1 for all i. Then

when |Aj ^2 .

For the five-point difference approximation to Poisson's equation over
rectangular region with Dirichlet boundary conditions,

where {/I,} are the eigenvalues of A. Therefore, for |/y > 2,

where

Finally,

Thus for A = AT,

Then in a similar fashion to (10.8),

and define
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When T = lp, we may redefine the polynomials given in § 3 in the following
way. Let
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Thus, after some simplification,

A similar calculation shows that

Therefore, from (13.6), we see that for large r, p'r) will be a good approximation
to \j. And from (13.5) and (13.7), we see that

so that the Hq^'l^ remains bounded throughout the calculation. This explains why
the Buneman algorithms lead to numerically stable results for solving the finite
difference approximation to Poisson's equation.

14. Conclusion. Numerous applications require the repeated solution of a
Poisson equation. The operation counts given by Dorr [5] indicate that the
methods we have discussed should offer significant economies over older tech-
niques ; this has been verified in practice by many users. Computational experi-
ments comparing the Buneman algorithm (variant one), the MD algorithm,
the Peaceman-Rachford alternating direction algorithm and the point successive
over-relaxation algorithm are given by Buzbee, et al. [3]. We conclude that the
method of matrix decomposition, the Buneman algorithms, and Hockney's
algorithm (when used with care) are valuable methods.
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NUMERICAL METHODS FOR COMPUTING ANGLES
BETWEEN LINEAR SUBSPACES (WITH A. BJORCK)

MATH. COMP. (27), 579-594 (1973).

I spent the academic year 1968/69 as a postdoc at Stanford University and UC Berkeley.
This gave me the possibility to see Gene regularly and George Forsythe occasionally.
Another highlight I recall was to meet with the group of PhD students at the Computer
Science Department, all of whom would later become famous.

Although I don't have a precise recollection of how the collaboration on this paper
originated, I am pretty sure it was like this: Gene would sit down with me, take out a
sheet of paper and in ten minutes he had sketched an elegant outline of the paper. The
main starting point was the close connection between the minimax characterization of
the singular values and that of the cosines of the principal angles. This works also in
Cn and all the theory in the paper was done for the complex case. I recall that I was
very excited about Gene's new algorithm for stably computing the SVD and this was
a good application.

A main problem was to find a way to accurately compute small principal angles. A
nice side-result of the solution was the explicit form (15) for the unitary matrix which
performs a direct rotation of one of the two subspaces into the other - a precursor to
the CS decomposition. In the numerical tests I took some pleasure in showing that the
orthogonal bases computed by the modified Gram-Schmidt algorithm gave as accurate
results as using Gene's Householder QR. This is now perhaps of minor interest. The
paper first appeared as a technical report: STAN-CS-225-71, July 1971, two years before
its publication.

Ake Bjorck
Linkoping, Sweden
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Numerical Methods for Computing Angles
Between Linear Subspaces

By Ake Bjorck and Gene H. Golub*

Abstract. Assume that two subspaces F and C of a unitary space are defined as the ranges
(or null spaces) of given rectangular matrices A and B. Accurate numerical methods are
developed for computing the principal angles Bt(F, G) and orthogonal sets of principal
vectors ut G F and vt G G, k = 1, 2, • • • , q = dim(G) ̂  dim(F). An important application
in statistics is computing the canonical correlations <rt = cos Ot between two sets of variates.
A perturbation analysis shows that the condition number for 6t essentially is max(/c(/l), n(B)),
where K denotes the condition number of a matrix. The algorithms are based on a pre-
liminary QR-factorization of A and B (or A" and BH), for which either the method of
Householder transformations (HT) or the modified Gram-Schmidt method (MGS) is used.
Then cos 0j and sin 81. are computed as the singular values of certain related matrices.
Experimental results are given, which indicates that MGS gives Ot with equal precision and
fewer arithmetic operations than HT. However, HT gives principal vectors, which are
orthogonal to working accuracy, which is not generally true for MGS. Finally, the case when
A and/or B are rank deficient is discussed.

1. Introduction. Let F and G be given subspaces of a unitary space £"", and
assume that

The smallest angle 9,(F, G) = 6l G [0, ir/2] between F and G is denned by

Assume that the maximum is attained for u = u, and v = v,. Then, 02(F, G) is denned
as the smallest angle between the orthogonal complement of F with respect to «,
and that of G with respect to v,. Continuing in this way until one of the subspaces
is empty, we are led to the following definition.

Definition. The principal angles 8t G [0, ir/2] between F and G are recursively
defined for k = 1,2, • • • , q by

subject to the constraints
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v,) are called principal vectors of the pairThe vectors (M,, • • • , u,) and (vit

of spaces.
We note that the principal vectors need not be uniquely defined, but the principal

angles always are. The vectors V = (Vi, • • • , v,) form a unitary basis for G and the
vectors U = (u1; • • • , u,) can be complemented with (p — q) unitary vectors so that
(«i, • • • , up) form a unitary basis for F. It can also be shown that

For an introduction to these concepts, we refer to [1]. An up to date list of references
can be found in [9].

Principal angles and vectors have many important applications in statistics and
numerical analysis. In [7], the statistical models of canonical correlations, factor
analysis and stochastic equations are described in these terms. The eigenvalue prob-
lem Ax = \Bx can have continuous eigenvalues if the nullspaces associated with
A and B intersect [13]. By taking the vectors ut corresponding to cos 9k = 1, we get
a unitary basis for the intersection, which can be used to simultaneously deflate
A and B. Other applications are found in the theory of approximate least squares
[8] and in the computation of invariant subspaces of a matrix [21].

The purpose of this paper is to develop new and more accurate methods for
computing principal angles and vectors, when the subspaces are defined as the ranges
(or nullspaces) of two given matrices A and B. In Section 2, we describe the standard
method of computing canonical correlations and show why this method may give
rise to a serious loss of accuracy. Assuming that unitary bases for F and G are known,
we derive, in Section 3, formulas for computing principal angles and vectors from
the singular values and vectors for certain matrices. To find out how accurately
the angles are defined in the presence of uncertainties in A and B, first order per-
turbation results are given in Section 4. In Section 5, different numerical methods
for computing the unitary bases, and the use of the formulas from Section 3, are
discussed with respect to efficiency and accuracy. The special problems which arise
when A and/or B are exactly or nearly rank deficient are discussed in Section 6.
Finally, some numerical results are given in Section 7.

2. Canonical Correlations. For a matrix A, we denote the range of A by R(A)
and the nullspace of A by N(A):

In the problem of canonical correlations, we have F = R(A), G = R(B) where A
and B are given rectangular matrices. Then, the canonical correlations are equal
to cos 8h, and it can be shown that

where ak ^ 0 are eigenvalues and yt, zk properly normalized eigenvectors to the
generalized eigenvalue problem
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Assume for convenience that A and B have full column rank. The standard method
[6] of computing canonical correlations is to compute A"A, BHB, AHB and perform
the Choleski decompositions

where RA and RB are upper triangular.
The eigenvalue problem (5) is then equivalent to the eigenvalue problems for

a pair of Hermitian matrices

where

These can be solved by standard numerical methods.
When q = 1 and B = b, the principal angles and vectors are closely related to

the least squares problem of minimizing \\b — AX\\I. In fact, with the notations
above (but dropping subscripts), we have

and (5) is reduced to

But the first equation here is the normal equations for x = ay/z. Thus, the classical
algorithm reduces for q = 1 to solution of the normal equations by Choleski's
method.

Lately it has been stressed by several authors that forming the normal equations
in single precision involves a loss of information which cannot be retrieved. For
linear least squares problems, other methods without this disadvantage have been
developed ([2], [16] and [17]). Our aim in this paper is to generalize these methods
to the case when q > 1.

3. Solution Using Singular Values. In most applications, each subspace is
defined as the range, or the complement of the range, of a given matrix. In this case,
a unitary basis for the subspace may be computed in a numerically stable way by
well-known methods for the g/J-decomposition of a matrix. These methods will
produce for an m X n matrix A, with m ^ n, a decomposition

where rank(S) = p and Q = (Q' \ Q") is unitary. Then Q' gives a unitary basis for
the range of A, R(A), and Q" a unitary basis for the complement [R(A)]~. Notice
that the case when a subspace is defined as the nullspace N(A") of a matrix A" is
included, since N(AH) = [R(A)]~. The computation of unitary bases will be dis-
cussed in more detail in Sections 5 and 6, and we assume here that such bases have
been obtained.

Recently, an efficient and numerically stable algorithm for computing the singular
value decomposition [11] (SVD) of a matrix has been developed [17]. This algorithm
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will be our basic tool for computing principal angles and vectors. The relation between
singular values and our problem is clear from the following theorem.

THEOREM 1. Assume that the columns of QA and QB form unitary bases for two
subspaces of a unitary space Em. Put

and Jet the SVD of this p X q matrix be

where YaY = ZHZ = ZZ" = /„. If we assume that a, ^ <r2 ^ • • • fe a,, then the
principal angles and principal vectors associated with this pair of subspaces are given by

Proof. It is known [18] that the singular values and singular vectors of a matrix
M can be characterized by

subject to

If we put

then it follows that ||«||2 = \\y\\2, ||o||2 = ||z||2 and

Since y"Mz = ^Hg"gsz = u"v, (9) is equivalent to

subject to

Now (8) follows directly from the definition of principal angles and vectors (2),
which concludes the proof.

For small angles, 6k is not well determined from cos 6k and we now develop
formulas for computing sin 6t. Let QA and Qa be defined as in Theorem 1. For
convenience, we change the notations slightly and write (7) and (8) as

We split QB according to

where PA = QAQ" is the orthogonal projection onto R(QA). Here

and hence the SVD of the matrix PAQB is given by
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Since PA(I — PA) = 0, we get, from squaring (11),

It follows that the SVD of (/ - PA)QB can be written

Comparing (13) with (12), it is evident that WA gives the principal vectors in the
complement [R(QA)]~ associated with the pair of subspaces ([R(QA)]~, R(QiiJ).

We will, for the rest of this section, assume that, in addition to (1), we have
p + q g in. (This is no real restriction, since, otherwise, we have (m — p) + (m — q) g
m, and we can work with the complements of R(QA) and R(QB) instead.) Then,
dim([R(QA)Y) = m — p ^ q, and we can choose the m X q matrix WA in (13) so
that W'AUA = 0.

By analogy, we have formulas similar to (12) and (13) related to the splitting
QA - PBQA +(I~ PB)QA,

where again, since m — q 3: p g q, we can choose the m X q matrix WB so that
WBUl = 0. From (14), we get

If we put

then, since R(QB)=R(US),e have for any x £ R(Qa)thatPB.Ax UAU'B(UBy)=
UAy, and thus

PB.AX £ R(QA), \\x\\i = \ \ P B . A X \ \ * .

We can now always find an m X (m — 1q) matrix ZB such that (UBWBZe) is a unitary
basis in E~. Then

is the matrix of a unitary transformation, mapping R(QB) into R(QA). Its restriction
to R(QB) is PB,A, and it leaves all vectors in R(ZB) unchanged. This transformation
is called a direct rotation [9] from R(QB) into R(QA). It is distinguished from other
unitary transformations P taking R(QR) into R(QA) by the property that it minimizes
each unitarily invariant norm of (/ - P)"(I - P). If R(QB) l~\ [R(QA)T is empty,
then all Bk < w/2 and the direct rotation is uniquely determined.

Similarly, we can construct a direct rotation taking ^(f/^) into R(QB)- It is obvious
that the relations between the two subspaces are very completely characterized by
the quantities C, 5, UA, WA, UB and WB.
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4. Perturbation of Principal Angles. We consider here how the principal angles
between R(A) and R(B) change when the elements in A and B are subject to per-
turbations. We assume in this analysis that the matrices A and B are m X p and
m X q, respectively, and have linearly independent columns. Consider first a per-
turbation of A only,

where we have split the perturbation into components in and orthogonal to R(A),

Let the polar decomposition of A + e£i be

HApositive definite.

Then, since R(A) = R(A + eE^, QA gives a unitary basis for R(A).
To get a unitary basis for R(A,), we first note that for small absolute values of e,

the matrix

is nearly orthogonal. Indeed, since Q"F2 = Q"PAF^ = 0, we have

and

Then, using a series expansion from [4] for the unitary factor QA, in the polar de-
composition of Afl~A, it follows that

where the matrix series converges if p(S) = <?i(S) < 1.
Also, asymptotically, when t —* 0, QA, is the unitary matrix with range R(A,)

which is closest to QA.
From the well-known inequalities for singular values [15, p. 30],

we get

Since certainly <ti(E) ^ <TI(£I), a sufficient condition for convergence of (17) is that

Premultiplying (17) by PB, we get

from which we derive the inequality
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where

Now, we have o-1(P£(/ — P^)) = sin 0mllx and, estimating <ri(S) and <ri(.F) by (16)
and (18), it follows that

If instead we premultiply (17) by (/ — PB) and proceed in the same way, we arrive at

Now, assume that both A and B are perturbed by SA and 65, respectively, where

Then

and, from (19), we get

where

A corresponding estimate holds for | A sin 0t|. Obviously, we have 0(y4, 5.) = 6(A, B)
+ O(5), and, thus, these estimates can be simplified to

Combining these two estimates yields

where

The maximum of g(0) for 0 g 0 fS ?r/2 is attained for

Since 2-sin f A0 = A0 + O(A03), it follows that

where

We conclude that when both K(A) and K(B) are small, then the angles 6h are well
determined.
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We note that, if the columns in A are scaled, then K.(A) will change but not R(A).
Also, the numerical algorithms for the (^-decomposition have the property that,
unless column pivoting is used, they give the same numerical results independent
of such a scaling. Therefore, it is often more relevant to take in (21) as condition
number for A the number

It has been shown in [20] and [21] that -n(AD) is not more than a factor of p172 away
from its minimum, if in AD all columns have equal L2-norm. This suggests that
A and B should be assumed to be preconditioned so that

We remark that K.'(A) is essentially the spanning precision of the basis in R(A) provided
by A as defined in [21].

5. Numerical Methods. We assume in this section that the columns in A and
B are linearly independent. The singular and near singular case will be briefly dis-
cussed in Section 6. For convenience, we also assume that A and B are real matrices,
although all algorithms given here can easily be generalized to the complex case.
Computed quantities will be marked by a bar.

In order to get the orthogonal bases for F and G, we need the (^-decompositions
of the matrices A and B. We now describe two efficient methods for computing
these. In the method of Householder triangularizations (HT) [16], orthogonal trans-
formations of the type Qt = I — 2wkw

T
k are used, where

The m X p matrix A is reduced to triangular form using premultiplications

where wk is chosen so that Qk annihilates the appropriate elements in the fcth column.
Since Qll = Qt, orthogonal bases QA for R(A) can then be computed by premul-
tiplying the first p columns in the unit matrix /„ by the same transformations in re-
versed order,

For this method, a very satisfactory error analysis is given in [23].
Assume that floating point arithmetic with a mantissa of / binary digits is used,

and that inner-products are accumulated in double precision wherever possible.
Then, there exists an exactly orthogonal matrix Q such that the computed matrices
satisfy
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where QA is an exactly orthogonal basis for R(A + EA). From this and a similar
estimate for QB, we get

where M = QzQ$ and the constant 13.0 accounts for the rounding errors in com-
puting the product QAQB- We have <rt(M) = cos §k, where St are the exact angles
between (A + EA) and (5 + EB). Thus, the difference between St and 0t can be
estimated from (22),

Finally, the errors at(M) — at(M) in computing the singular values of M, using the
procedure in [17], will be of the same order of magnitude as those in (24).

The error estimate given above is satisfactory, except when 9k <3C 1. In this case,
the errors in cos 6k from (24) will give rise to errors in Ok which may be much larger
than those in (25). We return later to the problem of accurately computing small
angles.

An orthogonal basis QA for [R(A)]~ = N(AT) can be obtained by applying the
transformations Qt, k = p, • • • , 1, to the last (m — p) columns in Im,

Also, in this case, the estimate (23) for QA, (24) and (25) still hold if the factor p3/2

is everywhere replaced by p(m — p)1/2.
The (^-decomposition of a matrix A can also be computed using the modified

Gram-Schmidt method (MGS) [2]. The matrix A is then transformed in p steps,
A = Aj, A2, • • • , Ar+1 = QA where

The matrix At+1, k = 1, 2, • • • , p, is computed by

and the elements in the fcth row of RA are

It has been shown in [2, pp. 10, 15] that the computed matrices RA and QA satisfy

where QA is an exactly orthogonal basis for R(A + EA) and quantities of order
K\A)2~'' have been neglected. With MGS, QA will in general not be orthogonal
to working accuracy, and, therefore, we cannot hope to get principal vectors which
are nearly orthogonal. Also, the condition numbers K(A) and n(B) will enter in the
estimate corresponding to (24). However, since «.(A) and n(B) already appear in
(25), we can hope to get the principal angles as accurately as with HT. Experimental
results reported in Section 7 indicate that this actually is the case.
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An advantage with MGS is that the total number of multiplications required
to compute RA and QA is less than for HT, i.e.,

If only the principal angles are wanted, then the number of multiplications in the
SVD-algorithm is approximately 2q\p — g/3). Thus, when m >£> p, the dominating
work is in computing QA and QB and, in this case, MGS requires only half as much
work as HT. If also the principal vectors are wanted, we must compute the full
SVD of M = YACy"B. Assuming two iterations per singular value, this requires
approximately 7q\p + 10g/21) multiplications. To compute UA = QAYA and UB =
QB YB a further mq(p + q) multiplications are needed.

To get a basis for [R(A)]~ using MGS, we have to apply the method to the bordered
matrix (A \ /„), and, after m steps, pick out (m — p) appropriate columns. Especially
when (m — p) « m, the number of multiplications compares unfavourably with HT,

In some applications, e.g. canonical correlations, we want to express the principal
vectors as linear combinations of the columns in A and B, respectively. We have
UA = QAYA = A(RA

1YA), and hence

where

We remark that if we let XA and Xa denote the computed matrices, then AXA and
BXB will not in general be orthogonal to working accuracy even when HT is used.

We now turn to the problem of accurately determining small angles. One method
is to compute sin Bk from the SVD (13) of the matrix

If we put G = QB - QAM, then, using QA = QA + FA, we get

Neglecting second order quantities,

where the last term accounts for the final rounding of the elements in M and G.
Thus, if QA and QB are computed by HT, we have, from (23),

It follows that the singular values of the computed matrix G will differ little from
sin Sk, and, thus, small angles will be as accurately determined as is allowed by (25).
From (26), the corresponding error estimate for MGS is obtained. In the spirit of
the modified Gram-Schmidt method, the matrix G should be computed as
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Computational experience indicates that this gives much improved accuracy in
sin 6 when K.(A) » *(B).

Since the matrix G is m X q, computing the singular values of G when m » q
will require about 2mq2 multiplications. If YA has been computed, then the SVD of
G may be computed with only mq2 multiplications from

Moreover, if UA and UB are available, we can obtain sin 8 from

or, alternatively,

From the last equation, we can compute 2 sin ^6t = (2(1 — cos 9t))
1/2, which, since

0 g |0t ^ ir/4, accurately determines both sin 8k and cos Bk.
We finally remark about an apparent imperfection of MGS. When A = B (exactly),

we will obviously get QA = QB. The exact angle equals zero, and HT will always
give computed angles near zero. This is not true for MGS, however, since we only
have the estimate

Therefore, the singular values of M = QAQA may not be near one when K(A) is
large. If, however, only A ~ B, then the rounding errors in computing QA and QB

will not be correlated, and in an ill-conditioned case, we will probably not get all
angles near zero either with HT or MGS.

When A = B, then M = QAQA will be symmetric and, thus, SVD will give YA ~
Yu and, therefore, UA ~ UB also with MGS. It follows that, if (32) is used, MGS
will always yield angles near zero in this case.

We have not tried to determine error estimates for the methods based on (30)-(32).
On the test matrices described in Section 7, the method based on (28) gave signifi-
cantly more accurate results, especially for the more well-conditioned angles.

6. The Singular Case. We now consider the case when A and/or B does not
have full column rank. In this case, the problem of computing principal angles and
vectors is not well posed, since arbitrarily small perturbations in A and B will change
the rank of A and/or B. The main computational difficulty then lies in assigning
the correct rank to A and B. The most satisfactory way of doing this generally is
the following [10]. Let the m X p matrix A have the SVD

Let e be a suitable tolerance and determine p' ^ p from

We then approximate A with an m X p matrix A' such that rank(/f) = p',
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where QA = (QAQ'A), VA = (VAV'A) have been partitioned consistently with the
diagonal matrix. The matrix B is approximated in the same way.

If, instead of (1), we assume that

then we can compute the principal angles and vectors associated with R(A') and
R(B') by the previously derived algorithms, where now Q'A and QB should replace
QA and QB.

In order to express the principal vectors of R(A') as linear combinations of
columns in A', we must solve the compatible system

Since V" is an orthogonal basis for N(A), the general solution can be written

where CA is an arbitrary matrix. It follows that, by taking CA = 0, we get the unique
solution which minimizes H^llr ; cf. [17]. Thus, we should take

where XA is p X p' and XB is q X q'.
The approach taken above also has the advantage that only one decomposition,

the SVD, is used throughout. It can, of course, also be used in the nonsingular case.
However, computing the SVD of A and B requires much more work than computing
the corresponding (^-decompositions. In order to make the gJ?-methods work
also in the singular case, column pivoting must be used. This is usually done in such
a way ([2], [12] and [16]) that the triangular matrix R = ( r t j satisfies

Such a triangular matrix is called normalized, and, in particular, the sequence \rn ,
I'M!, • • • > I'M I is nonincreasing. In practice, it is often satisfactory to take the nu-
merical rank of A to be p' if for a suitable tolerance t we have

We then approximate A = QARA by a matrix A' = QARA of rank p' by putting

It has been shown in [14] how to obtain the solution (32) of minimum length from
this decomposition.

If we use the criterion (33), there is a risk of choosing p' too large. Indeed, it
seems difficult to improve on the inequalities [12]

from which it is seen that ak(A) may be smaller than \rkk\ by a factor of magnitude 2~*.
However, this rarely occurs in practice. Often the inequality
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represents a pretty good approximation to the condition number for the nonsingular
case.

7. Test Results. The algorithms in Section 5 have been tested on the UNIVAC
1108 of Lund University. Single precision floating-point numbers are represented
by a normalized 27 bit mantissa, whence the machine precision is equal to 2~26 a;
1.5- 1(T8.

For the tests, we have taken F = R(A), where A is the m X p matrix

and m/p is an integer. Thus, A is already orthogonal, and we can take QA = A.
Further, G = R(B) where B is the m X p Vandermonde matrix

The condition number n(B) is known to grow exponentially withp, when the ratio m/p
is kept constant. These matrices A and B are the ones appearing in [6]. There is
exactly one vector, u = (1, 1, ••• , 1)T, which belongs to both Fand G, so there will
be one minimum angle 6 = 0.

For the tests, the matrix B was generated in double precision and then rounded
to single precision. The procedures used for the (^-decompositions are apart from
minor details identical with procedures published in [3] and [5]. The columns were
implicitly scaled to have equal L2-norm and column pivoting was performed. Inner
products were not accumulated in double precision. For checking purposes, a three
term recurrence relation [8] was used in double precision to compute an exact single
precision orthogonal basis for R(B).

For m/p = 2 and p = 5(2)17, QA was computed both by the method of House-
holder and the modified Gram-Schmidt method. Then cos 6t, YA and YB were com-

TABLE 1

Householder
m

10
14
18
22
26
30
34

P

5
7
9

11
13
15
17

F(UA)

15
22
40
42
58
62
68

F(UR)

21
35
27
29
48
51
60

w(cos ek)
5
8

10
38

1416
2535
7582

Gram-Schmidt
F(UA)

20
27
37
40
47
60
76

F(UK)

18
33

437
1130
9013

55322
788466

w(cos 8t)

4
10
41
49

621
1758

32650
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TABLE 2

m = 26
k

1
2
3
4
5
6
7
8
9

10
11
12
13

p = 13
cos et

0.99999991
0.99823275
0.99814397
0.99032703
0.98988846
0.97646081
0.96284604
0.94148906
0.91758607
0.87013717
0.76365752
0.06078817
0.01558526

Householder
A cos 0V 10s

2
0

- 32
6
5
0

38
5

- 31
25

1416
106

- 52

Gram-Schmidt
A cos 0V 10s

2
51

-135
-137

351
- 58

21
- 10
- 40
-290

620
- 18
- 55

TABLE 3

m

Householder1

p m(sin 0t) m(sin 0V)

Gram-Schmidt1

from (29) from (28)
w(sin 0t) m(sin 0V) m(sin 0V)

10
14
18
22
26
30
34

5
7
9
11
13
15
17

3
7
32
141
1661
2919
7604

2
8

31
142
1662
2912
7608

3
3
55
46
366
1290
37284

3
4
9
39
517
1355
798

6
8
87
612
5902
32537
126731

1 sin fa computed as adJJ - PA)QB), sin & as «((/ - PB)QA).

puted by the procedure in [17], and finally UA and UB from (11). The results are
shown in Table 1, where

m(ak) = max 0* — ft I 
•10s F(U) = \\I - VTU\\f-10*

Notice, that because of rounding errors in the computation of the SVD, the values
<rk are not exact to single precision.

For the Gram-Schmidt method, the predicted lack of orthogonality in UB, when
n(B) is large, is evident. However, there is no significant difference in the accuracy
of cos 0t between the two methods. In Table 2, we show for m = 26 and p = 13
the errors in cos 9k for each k.

For the same values of m and p, sin 6h were computed from the singular values
of both the matrix (7 — PA)QB and the matrix (/ — PB)QA. The results in Table 3
again show no significant difference in accuracy between the two methods. For the
Gram-Schmidt method, the values of sin 6t differ somewhat between the two matrices,
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TABLE 4

m = 26
k

1
2
3
4
5
6
7
8
9

10
11
12
13

p= 13
sin 0t

0.00000000
0.05942260
0.06089681
0. 13875174
0. 14184706
0.21569431
0.27005038
0.33704301
0.39753669
0.49280931
0.64562106
0.99815036
0.99987821

Householder1

A sin 0t-10s A sin

2
0

485
56

- 30
32

- 127
26
91

- 44
-1661

5
14

L

ek-\o
s

5
0

484
55
29
31

127
25
90
42

1662
11
20

Gram-Schmidt
A sin 0t-108 A sin

2
0

69
2

- 23
JJ

- 20 -
2

- 25
260

-365
-158

90

1

0V io8

4
2

76
22
71
20
26
3
5

318
517

15
13

1 sin 6h computed as «((/ - PA)QB), sin 0* as i^(I - PB)QA}.

whereas the corresponding values for the Householder method are almost identical-
This is confirmed by Table 4, where, again for m = 26, p = 13, results for each k
are shown. For the Gram-Schmidt method the matrix (/ — PB)QA was computed
both from (28) as QA - QB(QlQA) and from (29) as II (/ - qkql)QB. The results
in Table 3 clearly show that (29) should be used.

The authors are very pleased to acknowledge the help of Mr. Jan Svensson,
who carried out most of the tests described in this section.
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METHODS FOR MODIFYING MATRIX FACTORIZATIONS
(WITH P. E. GILL, W. MURRAY AND M. A. SAUNDERS)

MATH. COMP. (28), 505-535 (1974).

The paper describes methods for updating the Cholesky factorization of a symmetric
positive-definite matrix, and the complete orthogonal factorization of a rectangular
matrix. These methods were proposed as an alternative to updating the inverse and
pseudo-inverse. The bulk of the paper was written at Stanford over the spring and
summer of 1972. The joint paper was proposed by Gene during a visit (with Michael
Saunders) to the National Physical Laboratory the previous year. My visit to Stanford
was funded by Gene, and I will always be grateful for his support and encouragement
during that summer. This was my first visit to the United States and it opened up many
opportunities, including the chance to work with my subsequent colleagues Michael
Saunders and Margaret Wright.

Philip Gill
San Diego, California, USA

The genesis of the paper dated to 1970 when Gene and Michael visited the Mathematics
Division of the National Physical Laboratory on their way to the VII International
Symposium on Mathematical Programming in The Hague. Gene was a busy traveller
even in those days and frequently visited the NPL (mainly to see Jim Wilkinson).
This was the first time I had met Michael. He gave a talk in the office of Charlie
Clenshaw and I recall thinking he talked rather slowly and incorrectly put it down to
jet lag. Philip and I had been working on updating matrix factorizations that arose
in algorithms for optimization. Typically at that time matrix inverses were recurred.
Gene and Michael had been considering LP and QP problems. How best to update
the factorizations impacted the efficiency, robustness and accuracy of the optimization
methods. Since updating matrix factorizations arose in many settings we decided that a
paper devoted just to this issue was worthwhile. The main work writing the paper was
done at Stanford in the summer of 1972. Gene, Michael and I attended the Householder
meeting in Los Alamos and afterwards I made a short visit to Stanford. Philip visited
Stanford for the summer during which time the bulk of the paper was written. Michael
was busy completing his thesis but still found time to help finish the paper.

Walter Murray
Stanford, California, USA
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Gene was advocating stable modifications to matrix factors for many years before this
review appeared. The review's existence illustrates two of Gene's outstanding qualities:
his sense for when sufficient material exists for a review, and his outreach to young
researchers by bringing them together (usually by inviting them to visit Stanford).

Gene opened a new world to me in Summer 1970 when he arranged a visit to
the National Physical Laboratory in London, where Jim Wilkinson had long been
analyzing numerical factorizations, and where Walter and Philip were applying them
to optimization algorithms, my own area of interest. Quasi-Newton methods cried out
for Cholesky updating and downdating (Pete Stewart's later terminology), and active-
set methods seemed equally in need of QR factors to handle constraints. Gene had
already pursued Cholesky and QR methods for modified least-squares problems.

Our paper began when Gene invited Walter and Philip and also Chris Paige to visit
Serra House in 1972 just before I graduated. Philip and Chris helped me through those
last desperate weeks of thesis-writing while pressing ahead with their own research. I
can't help noting that this was a glimpse of their tremendous capacity for hard work,
and their Gene-like breadth of vision in covering many approaches in a coordinated
way. Their untiring efforts continue to this day.

The paper's title is more general than its contents. Cholesky, QR, and QRZ mod-
ifications are covered in depth, but there is no mention of LU factors or sparse ma-
trices. Little did we know that John Reid would soon show how a sparse form of the
Bartels-Golub LU update could be implemented efficiently, or that (much later) Davis
and Eager would implement sparse versions of our Method Cl for LDLT updates and
downdates.

We have learned one more thing about updating triangular factors: a symmetric
permutation works better than a one-sided one when a row or column is permuted
to the end. In other words, we should keep existing diagonal elements on the main
diagonal, thus avoiding Hessenberg matrices. This is a key feature of Reid's Bartels-
Golub update (see Nick Higham's review in this volume), and it applies equally to
LU and QR updates. Fewer elementary transformations will be needed because the
elements to be eliminated are likely to be sparse.

On behalf of my coauthors, I send warmest thanks to Gene for fostering our interest
in stable numerical methods and for bringing us all together.

Michael Saunders
Stanford, California, USA

310



Methods for modifying matrix factorizations

MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 126, APRIL 1974, PAGES 505-535

Methods for Modifying Matrix Factorizations

P. E. Gill, G. H. Golub, W. Murray and M. A. Saunders*

Abstract. In recent years, several algorithms have appeared for modifying the factors of a
matrix following a rank-one change. These methods have always been given in the context
of specific applications and this has probably inhibited their use over a wider field. In this
report, several methods are described for modifying Cholesky factors. Some of these have
been published previously while others appear for the first time. In addition, a new algorithm
is presented for modifying the complete orthogonal factorization of a general matrix, from
which the conventional QR factors are obtained as a special case. A uniform notation has
been used and emphasis has been placed on illustrating the similarity between different
methods.

1. Introduction. Consider the system of equations

Ax = b

where A is an n X n matrix and b is an n-vector. It is well known that x should be
computed by means of some factorization of A, rather than by direct computation
of A~l. The same is true when A is an m X n matrix and the minimal least squares
solution is required; in this case, it is usually neither advisable nor necessary to com-
pute the pseudo-inverse of A explicitly (see Peters and Wilkinson [13]).

Once x has been computed, it is often necessary to solve a modified system

Ax = b.

Clearly, we should be able to modify the factorization of A to obtain factors for A,
from which x may be computed as before. In this paper, we consider one particular
type of modification, in which A has the form

where a is a scalar and y and z are vectors of the appropriate dimensions. The matrix
ayzT is a matrix of rank one, and the problem is usually described as that of updating
the factors of A following a rank-one modification.

There are at least three matters for consideration in computing modified factors:
(a) The modification should be performed in as few operations as possible. This

is especially true for large systems when there is a need for continual updating.
(b) The numerical procedure should be stable. Many of the procedures for

modifying matrix inverses or pseudo-inverses that have been recommended in the
literature are numerically unstable.

(c) If the original matrix is sparse, it is desirable to preserve its sparsity as much
as possible. The factors of a matrix are far more likely to be sparse than its inverse.

Received February 26, 1973.
AMS (MOS) subject classifications (1970). Primary 65F30; Secondary 15A06, 15A39, 90C05,

90C20, 90C30.
* The work of G. H. Golub and M. A. Saunders was in part supported by the AEC and the NSF.

Copyright © 1974, American Mathematical Society
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Modification methods have been used extensively in numerical optimization,
statistics and control theory. In this paper, we describe some methods that have
appeared recently, and we also propose some new methods. We are concerned mainly
with algebraic details and shall not consider sparsity hereafter. The reader is referred
to the references marked with an asterisk for details about particular applications.

1.1. Notation. The elements of a matrix A and a vector x will be denoted by
OH and x, respectively. We will use AT to denote the transpose of A, and \\x\\t to
represent the 2-norm of x, i.e., \\x\\2 = (xTx)1/2. The symbols Q, R, L and D are
reserved for matrices which are respectively orthogonal, upper triangular, unit lower
triangular and diagonal. In particular, we will write D = diag(rf,, d2, • • • , dn). The
yth column of the identity matrix / will be written as e,- and e will denote the vector
[1,1, ' • • , 1]'.

2. Preliminary Results. Most of the methods given in this paper are based in
some way upon the properties of orthogonal matrices. In the following, we discuss
some important properties of these matrices with the intention of using the material
in later sections.

2.1. Gicens and Householder Matrices. The most common application of or-
thogonal matrices in numerical analysis is the reduction of a given n-vector z to a
multiple of a column of the identity matrix, e.g., find an n X n orthogonal matrix P
such that

or

This can be done by using either a sequence of plane rotation (Givens) matrices or
a single elementary hermitian (Householder) matrix. In order to simplify the notation
we will define the former as

and call this a Gicens matrix rather than a plane rotation since it corresponds to a
rotation followed by a reflection about an axis.

This matrix has the same favorable numerical properties as the usual plane
rotation matrix (see Wilkinson [16, pp. 131-152]), but it is symmetric. The choice
of c and s to perform the reduction

is given by
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Note that 0 ^ c g 1. In order to perform the reduction (1) or (2), we must embed
the matrix (3) in the n-dimensional identity matrix. We shall use P/ to denote the
matrix which, when applied to the vector [z1; z2, • • • , zn]

T, reduces z,- to zero by
forming a linear combination of this element with z,. If i < j, then

Alternatively, if « > j, the (/, i)th and (J, y)th elements of P* are — c and +c, re-
spectively. There are several sequences of Givens matrices which will perform the
reduction (1) or (2); for example, if we want to reduce z to e\, we can use

To perform the same reduction in one step, using a single Householder matrix,
we have

where

(6)

This time, P is such that Pz = —pei.
In the 2-dimensional case, we can show that the Householder matrix is of the

form

where c, s are the quantities defined earlier for the Givens matrix. Hence, when
embedded in n dimensions, the 2 X 2 Householder and 2 X 2 Givens transformations
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are analytically the same, apart from a change of sign. (Although these matrices
are n X n, we shall often refer to them as "2 X 2" orthogonal matrices.)

There are several applications where 2-dimensional transformations are used.
The amount of computation needed to multiply a 2 X « matrix A by a 2 X 2 House-
holder matrix computed using Eqs. (6) is 4n + 0(1) multiplications and 3« + 0(1)
additions. If this computation is arranged as suggested by Martin, Peters and Wilkin-
son [11] and the relevant matrix is written as

then the multiplication can be performed in 3n + 0(1) multiplications and 3n + 0(1)
additions. Straightforward multiplication of A by a Givens matrix requires 4n + 0(1)
multiplications and 2n + 0(1) additions. Again, the work can be reduced to 3n + 0(1)
multiplications and 3n + 0(1) additions, as follows.

Let the Givens matrix be defined as in (4). Define the quantity

Since s = z2/p, we can write s as s = /i(c + 1). Similarly, we have c = 1 — its. A
typical product can be written in the form

which will be denoted by

Consequently, in order to perform the multiplication (7), we form

Note that this scheme is preferable only if the time taken to compute a multiplication
is more than the time taken to compute an addition. Also, it may be advisable with
both algorithms to modify the computation of p to avoid underflow difficulties.

In the following work, we will consider only 2 X 2 Givens matrices, although
the results apply equally well to 2 X 2 Householder matrices since, as noted earlier,
the two are essentially the same.

2.2. Products of Givens Matrices. The following results will help define some
new notation and present properties of certain products of orthogonal matrices.

LEMMA I. Let P^i' be a Givens matrix defined as in (4). Then the product
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where the quantities pt, ft ana* 7, are defined by either of the following recurrence
relations:

Forward Recurrence.
1. Set PI = CI/IT, ft = IT, 17, = SJ/IT, 71 = SL wAere ir is an arbitrary nonzero scalar.
2. For j = 2, 3, • • • , n — 1, setp, = c/ij,.!, 7, = s,, ft = — <:,_,/%_!, 17, =

S; )),•_!.

3. Serj?n = ,._!, ft, = -<;„_,/>»•
Backward Recurrence.
1. Sef/>B = TT, ft, = —cn-i/r, i?._! = s.-i/T, 7«_i = s.-i, where ir is an arbitrary

nonzero scalar.
1. For j = n - 1, n - 2, • • • , 3, 2, se*/>, = c,-/i?,, 7,-_, = s,--i, ft = -c,-_it;,.,

"Jl-l = *,•-!'?!••

3. Se/p, = d/ft, ft = 171.
Proo/. We will prove the lemma in the forward recurrence case; the remaining

case can be proved in a similar way. Assume that the product Pt-n
kPtk'1 • • • P^Pi'Pi1

(k < n — 1) is given by

This is true for k = 1 by definition. The next product •P4+2*
+1A-n*/>** '

is given by
P,*P,
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If we define pk+1 = ck+lr]k,yk+1 = sk+1, ft,+1 = —ct/ijt, r;t+1 = st+1iik, then the product
Ph^ktl • • • Pi1 is of a similar form to (8). Continuing in this way, and finally setting
/>„ = i?»-i and (8, = —c^l/pn gives the required result.

For later convenience, we shall use the notation

The matrices Hj^ft, p, 7) and HL(p, ft, 7) are defined as special upper- and lower -
Hessenberg matrices respectively. In the same way, we define a special upper-tri-
angular matrix R*(ft, p, 7) as having the form

The particular recurrence relation used to form HL(p, ft, 7) will depend upon the
order in which the Givens matrices are generated. For example, if Pn""l is formed
first, then the backward recurrence relation can be used.

We have only considered a particular sequence of Givens matrices. Similar
formulae can be derived to compute the lower-Hessenberg matrix associated with
the sequence

We state the following lemma without proof.
LEMMA II. Let D = diag(rf,, d2, • • • , dn), ^ = diag(71( y,, • • • , y,-i, 1), T2 =

diag(l, 7,, 72, • • • , 7n-i) ande = (1, 1, • • • , 1, I f . Then
1. DHL(P, ft 7) =HL(p, ft, y)D where ft = ft/^,pt= diPi,i = 1, 2, • • • , n,

7i = <*<7<M+i, / = 1, 2, • • • , w — 1.
2. R(0, p, y)D = DR($, p, y) where ft = ft/d,, p, = d.p,, i = I , 2, • •• , n.
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3. R(P, p,7) =DR(0, p, e)wheret = ft/7,.,i = I , 2, • • • ,n -1, d, =7,,
i = 1, 2, • • • , n.

4. HL(p, ft 7) = T.H^, ft e) = HL(p, ft e)r2 wterep, = p;/7; (i < n), p. = p,,
am/ft = ft/7, ( i> 1), ft- = ft.

5. IfHL(p, ft 7) = /TiG7, ft 7) f/Jen 7,- = 7,. OTU/J?, = ap,., ft = ft/a/or i =
1,2, • • • , n, wte-e a is some constant.

The next three lemmas show how the product of special matrices with various
general matrices may be computed efficiently.

LEMMA III. Let B be an m X n matrix and HL(p, ft 7) an n X n special lower-
Hessenberg matrix. The product B = BH can be formed using either of the following
recurrence relations:

Forward Recurrence.

Backward Recurrence.

Proof. We will give a proof for the forward recurrence case. The backward
recurrence case can be shown in a similar way. The first column of B is given by

If we define

or

then

Forming the second column, we have

From Eq. (9), we have
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and, if this vector is defined as w ( 2 > , then (10) becomes

The other columns of B are formed in exactly the same way.
The backward recurrence is more efficient, unless the product Bp is known a priori.

It is also more convenient if B occupies the same storage as B.
The forward and backward recurrence relations require approximately 75% of

the work necessary to form the same product by successively multiplying B by each
of the individual Givens matrices. Since HL(p, /3, 7) is an orthogonal matrix, there
exists a vector v such that HL(p, /3, y)v = aelt and we can regard HL(p, p, 7) as the
matrix which reduces v to ae^. An equivalent reduction can be obtained by multi-
plying v by a single Householder matrix. If we have a product of the form

the computational effort involved in applying Lemma III is less than that using a
similar product of the equivalent Householder matrices. This is because for D, a
certain diagonal matrix, the product can be written as

using Lemma II, parts 1 and 4.
LEMMA IV. Let R be an upper-triangular matrix and Hv($, p, 7) a special upper-

Hessenberg matrix. The product H = HV($, p, y)R is an upper-Hessenberg matrix
which can be determined using either of the following recurrence relations'.

Forward Recurrence.

Backward Recurrence.

Proof. This lemma is proved in a similar way to Lemma III.
LEMMA V. Let R be upper-triangular and R(0, p, 7) a special upper-triangular

matrix. The product R = R(fi, p, y)R can be found using either of the following recur-
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rence relations:
Forward Recurrence.

Backward Recurrence.

The forward recurrence relation can be formulated in the following alternative
manner:

This formulation requires an additional «2/2 multiplications. It has been shown by
Gentleman [4] that the use of the more efficient relationship can lead to numerical
instabilities in certain applications.

If the products of n 2 X 2 Givens matrices are accumulated into a single special
matrix, it has been demonstrated in Lemmas I-V how certain savings can be made
in subsequent computations. The nature of the forward and backward recurrence
relations are such that, when a value of st is very small, underflow could occur in the
subsequent computation of 17,. This will result in a division by zero during the com-
putation of the next 0,-. It will be shown in the following section how this difficulty
can be avoided by judicious choice of the scalar ir.

In certain applications, the vector v which is such that

is known. Since HD(0, p, 7) is orthogonal, we have, from its definition, that

which gives v = j8i||p||2p, and the vector v is parallel to the vector/?. If the value of TT
is chosen as TT = C!/PI, then the vector p is equal to v. If p, denotes the quantity
defined at (4), this gives the modified algorithm:

Backward Recurrence.
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In the cases where o, is not known a priori, ir can be set at 2~', where the com-
putation is carried out on a machine with a f-digit binary mantissa. Since the value
of 7j; is such that

during forward recurrence, and

during backward recurrence, this choice of IT is such that »;, is unlikely to underflow.
If even this strategy is insufficient, the product of the Givens matrices can be

split into subproducts. For example, if at the fcth product, i\k is intolerably small,
we can form the subproduct:

where HL(p', /?', 7') and HL(p", 0", 7") are smaller special matrices of dimension
(n — k) X (n — k) and k X k, respectively. Clearly, a product of separate Givens
matrices can be viewed as being a product of special matrices in which a "split"
has occurred at every step. Each element in the subproduct is an individual Givens
matrix.

3. Modification of the Cholesky Factor. In this section, we consider the case
where a symmetric positive definite matrix A is modified by a symmetric matrix of
rank one, i.e., we have

Assuming that the Cholesky factors of A are known, viz. A = LDLT, we wish to
determine the factors

It is necessary to make the assumption that A and A are positive definite since other-
wise the algorithms for determining the modified factors are numerically unstable,
even if the factorization of A exists. Several alternative algorithms will be presented
and comments made upon their relative merits. Any of these general methods can
be applied when A is of the form A = BTB and rows or columns of the matrix B
are being added or deleted. In this case, it may be better to use specialized methods
which modify the orthogonal factorization of B:

The reader is referred to Section 5 for further details. The methods in this section
are all based upon the fundamental equality

where Lp = z, and p is obtained from z by a forward substitution. If we form the
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factorization

the required modified Cholesky factors are of the form

giving

since the product of two lower-triangular matrices is a lower-triangular matrix. The
manner in which the factorization (11) is performed will characterize a particular
method.

Method Cl. Using Classical Cholesky Factorization. The Cholesky factoriza-
tion of D + appT can be formed directly. We will use this method to prove inductively
that L is special.

Assume at the y'th stage of the computation that

and that all these elements have been determined. Explicitly forming the jth column
of LDLT gives the following equations for 3, and lri, r = j + 1, • • - , » :

and

Using Eq. (12) with (13) and (14) gives

and

From the last equation, we have

and defining

gives / r , = prfij. Hence, the subdiagonal elements of the yth column of L are multi-
ples of the corresponding elements of the vector p.

Now forming the first column of LDLT, we obtain the equations
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which shows that the subdiagonal elements of the first column of L are multiples
of the corresponding elements of p. Consequently, we have proved by induction
that L is special.

This result implies that we need only compute the values of 3,, /3,-, j = 1, • • • , n,
in order to obtain the factorization of D + appT. In practice, we define the auxiliary
quantity

The recurrence relations for «,, 3, and /?,- then become

The product L = LL can be computed in terms of the /3,- by forward recurrence
using Lemma V. Note that L and L are both unit lower-triangular matrices and that
this results in some simplification of the algorithm. The vector w l l ) needed to initialize
the recurrence relations is known since w ( 1 ) = Lp = z. Also, each of the vectors
v f ( I ) 0 = 1> 2, • • • , n) can be obtained during the y'th stage of the initial back sub-
stitution Lp = z, since

The final recurrence relations for modifying L and D are as follows:
Algorithm Cl.
1. Define aj = a, w ( 1 > = z.
2. For j = 1,2, • • • , n, compute

Using the expression for w/'*1 ', we can rearrange the equation for lrl in the
form
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which is the form of the algorithm given by Gill and Murray [5]. However, this
increases the number of multiplications by 50%.

One of the earliest papers devoted to modifying matrix factorizations is that by
Bennett [2], in which LDU factors are updated following a rank m modification:

where X, Y are n X m and C is m X m. It should be noted that
(i) the algorithm given by Bennett is numerically stable only when L = UT,

X = Y and both D and D are positive definite, and
(ii) Algorithm Cl is almost identical to the special case of Bennett's algorithm

when m = I , C = a and X = Y = z.
The number of operations necessary to compute the modified factorization using

Algorithm Cl is n2 + O(n) multiplications and n2 + O(n) additions.
If the matrix A is sufficiently positive definite, that is, its smallest eigenvalue is

sufficiently large relative to some norm of A, then Algorithm Cl is numerically stable.
However, if a < 0 and A is near to singularity, it is possible that rounding error could
cause the diagonal elements dt to become zero or arbitrarily small. In such cases,
it is also possible that the d, could change sign, even when the modification may be
known from theoretical analysis to give a positive definite factorization. It may then
be advantageous to use one of the following methods, because with these the resulting
matrix will be positive definite regardless of any numerical errors made.

Method C2. Using Householder Matrices. In this method, the factorization
(11) is performed using Householder matrices. To do this, we must write

where v is the solution of the equations LDl/2v = z. The matrix / + avvT can be
factorized into the form

by choosing a = a/(l + (1 + aero)1/2).
The expression under the root sign is a positive multiple of the determinant of A.

If A is positive definite o- will be real.
We now perform the Householder reduction of / + aovT to lower-triangular

form

We will only consider application of the first Householder matrix /V The effect
of the remainder can easily be deduced.

Let P[ = / + UUT/T and partition v in the form VT = [î  • WT]. The (1, 1) element
of / + avvT is then 6=1 + o-Pi2 and PI must reduce the vector [8 • avi\vT] to a
multiple of e?. Using the relations of Section 2, we define

(Note that we have taken p = +G>2)1/2, because we know that 6 > 0.) Now u has
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the form

i.e., the vector of elements «2, • • • , «„ is a multiple of the vector w.
The result of applying the first Householder transformation can therefore be

written as

for suitable values of the scalars S and <j which will be determined as follows. The
first column is given by

which implies that

so

A small amount of algebraic manipulation gives

Similarly, for the scalar a, we have

giving

which can be shown to be equal to
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The (n — 1) X (« — 1) submatrix / + awwT has the same structure as / + avvT

and a Householder matrix can be applied in exactly the same fashion. It can be
shown that

and so the sign choice in the definition of each of the Householder matrices remains
the same.

For notational convenience, we will write p,, 0,, Slt and <r,+1 for the quantities
p, 8, S, and a at the jth step of the reduction, and use p, 5 for the vectors (p,), (5,-).

The full reduction is now

which gives

From Lemma II, we have

where

(Note that p is the solution of Lp = z, as before.)
Following our convention for unit-triangular matrices, we define

The net result is that

which must be analytically equivalent to the factors obtained by Algorithm Cl.
What we have done is find alternative expressions for /3, and d,, the most important
being d,- = p,-2d,-. Since p,-2 is computed as a sum of squares, this expression guarantees
that the computed d, can never become negative. In Algorithm Cl, the corresponding
relation is d, = </, + <x,/>,2 where sign(a,) = sign(a). If a < 0 and LDLT is nearly
singular, it is possible that rounding errors could give dt <£. 0. In such cases, Algo-
rithm C2 is to be preferred.

The analytical equivalence of the two algorithms can be seen through the relation
between a, and a,. For example, Eq. (15) implies that

and if this is substituted into di = di + ai/h2 we get
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which agrees with D = TDT. In general, if we define

the expression for 3, simplifies, giving

which is the expression obtained for 0, in Algorithm Cl. In practice, we retain this
form for Algorithm C2. The method for computing L from L arid L(p, /3, e) is also
the same as before. The iteration can be summarized as follows.

Algorithm C2.
1. Solve Lp = 2.
1. Define

3. For y = 1, 2, • • • , n, compute

Note that the initial back substitution takes place separately from the computation
of Up, 0, e), because of the need to compute the vector p before computing s,. This
adds «2/2 + O(ri) multiplications to the method but ensures that the algorithm will
always yield a positive definite factorization even under extreme circumstances and
allows L to be computed by either the forward or backward recurrence relations
given in Lemma V. The method requires 3n2/2 + O(ri) multiplications and n + 1
square roots.

Method C3. Using Givens Matrices I. One of the most obvious methods of
modifying the Cholesky factors of A in the particular case when a > 0 is as follows.

326



521

Methods for modifying matrix factorizations

METHODS FOR MODIFYING MATRIX FACTORIZATIONS

Consider the reduction of the matrix [«1/2z • RT] to lower-triangular form, i.e.,

where P is a sequence of Givens matrices of the form P = P^P** • • • Pn+i". We have

Consequently, RT is the required factor.
This algorithm can be generalized when a < 0. The rank-one modification will

be written as

for convenience. The vector p is computed such that

and we set

We now form the matrix

and premultiply by an orthogonal matrix P of the form P = /V+1

such that the vector p is reduced to zero. This gives

»+ 1 D n+ *
^l"+l/V

in which case the following relations must hold

Equation (16) implies that 50
2 = I/a, Eq. (17) implies that r = z/S0 = a1/2z, and,

finally, (18) gives RTR = RTR + azzr, as required. This method requires 5n2/2 + O(n)
multiplications and n + 1 square roots.

Method C4. Using Givens Matrices II. For this method, we shall be modifying
the factorization

From this equation we have

where RTp = z. We can write A in the form
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where P is an orthogonal matrix. The matrix P is chosen as a product of Givens
matrices such that

where \p\ = ||/>||». Eq. (19) can be written as

As each Givens matrix P,-+i' is formed, it is multiplied into the upper-triangular
matrix R. This has the effect of filling in the subdiagonal elements of R to give an
upper-Hessenberg matrix H. We have

where J is an identity matrix except for the (1, 1) element which has the value
(1 + apTp)l/2. If A is positive definite, the square root will be real. The formation
of the product JH modifies the first row of H to give H which is still upper Hessen-
berg.

A second sequence of Givens matrices is now chosen to reduce R to upper-
triangular form, i.e.,

Then

as required. This algorithm requires 9n2/2 + O(n) multiplications and 2n — 1 square
roots.

Method C5. Using Givens Matrices III. If we write Eq. (19) as in Method C2,
viz.

where o- = a/(l + (1 + apTp)1/2), If P is the matrix defined in (21), we can write

where H = P(I + <rppT)=P + <jpe\pr.According to Lemma I, P is a special upper
Hessenberg matrix of the form P = H^p, p, 7) for some vectors p, /3 and 7. Now
the first row of P is a multiple of pT by definition, and, furthermore, Pp = pet implies
that/) = pPTet, so the first row of P is also a multiple of p. From Lemma II, it follows
that by choosing pn = /?„ when forming P as a special matrix, we can ensure that
P = HU(&, p, y) for some 0 and 7.

Assuming this choice of p, is made, we have

where /3 differs from /3 only in the first element, i.e. 0 = |3 + upe^. Now H can be
reduced to upper-triangular form R by a second sequence of Givens matrices P:

It can be readily shown that R is of the form
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where the vectors /3 and 7 are given by the following recurrence relations:
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The quantities c, and sf are the elements of the Givens matrices in P. They reduce
the subdiagonal elements 7, of H to zero at each stage, and are defined in the usual
way. The final product R = RR can be computed using Lemma V.

This algorithm requires 2n2 + O(n) multiplications and 2n — 1 square roots.
The work has been reduced, relative to Method C4, by accumulating both sequences
of Givens matrices into the special matrix R and modifying R just once, rather than
twice.

4. Modification of the Complete Orthogonal Factorization. If A is an m X n
matrix of rank t, m ^ n, t ^ n, the complete orthogonal factorization of A is

where Q is an m X m orthogonal matrix, Z an n X n orthogonal matrix and R a
t X t upper-triangular matrix (see Faddeev et al. [3], Hanson and Lawson [10]).

The pseudo-inverse of A is given by

In order to obtain the pseudo-inverse of A = A + yzT, where y and z are m and n
vectors respectively, we consider modifying the complete orthogonal factorization
of A. (With no loss of generality we have omitted the scalar a.)

From Eq. (23), we have

where p = Qy and q = ZTz. If the vectors p and q are partitioned as follows:

we can choose gj and ZI to be either single Householder matrices or products of
Givens matrices such that

where a and /3 are scalars such that |a| = ||u||2 and |/3| = ||vp||2. Note that application
of these matrices leaves the matrix R unchanged. For convenience, we will now work
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with the (t + 1) X (t + 1) matrix Sl which is defined as

We next perform two major steps which will be called sweeps.
First Sweep. Choose an orthogonal matrix Qll such that

where yi* = ||«||2
2 + a2. If Sf is multiplied on the left by g l r and the resulting

product defined as Stl, we have

where /? 11 is an upper-triangular matrix. The t diagonal elements of R i I are filled
in one at a time by the application of each 2 X 2 orthogonal matrix. We have defined

Second Sweep. We now construct an orthogonal matrix gin which, when
applied to Si z from the left, reduces Si: to upper-triangular form. If this triangular
matrix is defined as Si 11, we have

where Q111 is of the form

The matrix Sm may or may not be the upper-triangular matrix required, depending
upon p(A), the rank of A. The different cases that can arise are summarized in the
following table:

Case I. a ?* 0, /3 ?^ 0. In this case, Si, i has full rank and
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The final orthogonal matrix Q is given by

and

Case II. a ^ 0, 0 =
it can be seen that Si 1 1 is

0. If the first and second sweeps are followed carefully,
of the form

i.e., s I I I..»., „ i!! = 0 and 6111 = 0. As in Case I, Sx r r is in the required form and we define
the modified factors accordingly.

Case III. a = 0, |3 F^ 0. The first orthogonal transformation of the first sweep
is an identity, and the matrix Sl: has the form

Application of the second sweep (gin) gives the matrix S l r l in the form
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i.e., 5 I I t = 0.
An orthogonal matrix Zr r is now applied on the right to reduce st r r to zero, thus

The modified factors are Q as defined in (22), and

Case IV. a = 0, j8 = 0, p(^) = f. The matrix 5m has the following form:

If the diagonal elements of R T I I are all nonzero, then rank(^4) = rank(J?:II) = t
and the factors are completely determined. Otherwise, exactly one of the diagonal
elements of Rm may be zero, since the rank of A can drop to t — 1. In this case,
two more partial sweeps must be made to reduce R i r i to strictly upper-triangular
form, as follows.

Case V. a = 0, 0 = 0, p(A) = t - I . Suppose that the kth diagonal of Rm
is zero. The matrix can be partitioned in the form
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where RIV, Rv are upper-triangular with dimensions (k — 1) X (k — 1) and (/ — fc) X
(t — k), respectively. An orthogonal transformation QiV is now applied on the left
to reduce the submatrix

to upper-triangular form in exactly the same way as the first sweep. Similarly, a
transformation Z J t is applied (independently) from the right to reduce slv to zero
in the submatrix [RIV SiV]. Thus

where QIV = P,'*>,_,* • • • Pt+2
kPt+1

k and Z r l = P^P^* • • • P.'ft1.
Finally, a permutation matrix Z I I : is applied to move the column of zeros to

the right:

The modified factors are
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The number of operations necessary to compute the modified factors are sum-
marized in the following table:

Description Order of multiplications

Compute p, q
Determine a, ft
First sweep
Second sweep
Additional computation for case III

*Additional computation for case V

m2 + n2

4m(m — t) + 4n(n — i)
If + 4mt
2t2 + 4mt
If + 4nt

\f + 2t(n
* It has been assumed that if W(k) is the amount of work when the £th diagonal element of R n t

is zero, then the expected work is (l/0531-i W(k).

The maximum amount of computation necessary, which is of the order of 6f f +
5(m2 + n2) + 2t(3m — n) multiplications, will occur when Case V applies. In the
special case, when A and A are both of full column rank, then Z is the identity matrix
and the amount of computation is of the order of 5m2 + 4n2 + 4mn multiplications.
This reduces to 13«2 when m = n.

4.1. Use of Special Matrices. The number of operations can be decreased if some
of the properties of special matrices outlined in Section 2 are utilized. Each Givens
matrix must be multiplied into a Q matrix, Z matrix or upper-triangular matrix,
depending upon the current stage of the algorithm. These multiplications can be
performed by accumulating the product of each set of Givens matrices into the
associated special matrix. Each QIt Zt,in, Zn, • • • , etc. will be either a special
matrix or a permutation matrix. The orthogonal matrices Qi, Zi, • • • , etc. will be
formed, using Lemma I and Lemma II, as products of the form AiQ\, Vr2r,, An^n.
ViiZii, ••• , etc. where AI, Vj, An, Vn, ••• , etc. are diagonal matrices and
Qi, Zi, ••• , etc. are special upper- (lower-) Hessenberg matrices with unit sub-
(super-) diagonals. In addition, we assume that we modify the factorization

At the initial stage, DLT is unaffected by the pre- and post-multiplication with AjQ\
and ZiVj. The products
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can be formed using Lemma III, the diagonal matrices being kept separate from the
orthogonal products.

During the first sweep, we require the product

If this matrix is written in the form

it can be evaluated by bringing the diagonal matrix D to the left of Q r i by suitably
altering the special matrix g i : to QTl' as in Lemma II. The remaining product
involving QII' and LT can be formed using Lemma III with backward recurrence.
The multiplication of Qn' by the current orthogonal matrix is performed similarly
to that involving Qi except that again the diagonal A j must be brought through by
altering Q11 to Q t /' (say).

If the remainder of the computation is carried out using the same techniques as
those just described, the number of multiplications can be summarized as follows:

Description

Compute p, q
Determine a, 0
First sweep
Second sweep
Additional computation for case III

Additional computation for case V

Order of multiplications

m2 + n*
1m(m — t) + 2n(n -

f + Imt
If + Imt
2t2 + Int

4 ,
3 ' + t(n +

- t)

m)

The maximum amount of computation necessary is now of the order of 4^2 +
3(m2 + n2) + t(3m — n) multiplications, and this reduces to 3(w2 + n2) + 2mn
multiplications in the full rank case. When n = m = t the algorithm requires
8n2 + O(ri) operations.

5. Special Rank-One Modifications. We now consider some special cases of
the complete orthogonal factorization which occur frequently, namely adding and
deleting rows and columns from A. These cases deserve special attention because
the modifications can be done in approximately half as many operations as in the
general case. Since, in most applications, A is of full column rank, we will deal
specifically with this case and modify the factorization

where A is m X n, m ^ n.
5.1. Adding and Deleting Rows of A. We first consider adding a row aT to A.

Assuming, without loss of generality, that this row is added in the (m + l)th position,
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Elementary orthogonal transformations are now applied from the left to reduce aT

to zero while maintaining the triangularity of R. This is done by defining the sequence

where Pm+i! reduces the (m + 1, /)th element of r ( l > to zero. Note in particular the
effect on the column em+i which has been added to Q. The first n elements are filled
in one by one, thereby forming the last column of Q:

Elements « + 1, n + 2, • • • , m of qm+1 remain zero.
To remove a row from A, we now simply reverse the above process. This time,

we have

giving Q^A + qm+ia
T = QA. Transformations Pm

m+1, Pm-!m+1, ••• , Pim+1 are
chosen such that

The last n transformations each introduce a nonzero into the bottom row of

(from right to left), giving

Looking at the effect on the various partitions of Q, we have

and, since PQ is orthogonal, it follows immediately that u = 0. Thus
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so that r = a, and also

as required.
Often, it is necessary to modify R without the help of Q. In this case, we really

want R such that

so, clearly, the methods of Section 3 would be applicable. Alternatively, we can
continue to use elementary orthogonal transformations as just described. Adding
a row to A is simple because Q was not required in any case. To delete a row, we
first solve RTp = a and compute 62 = 1 — \\p\\*. The vector

(25)

now plays exactly the same role as qm+i above. Dropping the unnecessary zeros in the
center of this vector, we have

where as usual, the sequence {/>,"+1} has the effect of reducing p in (23) to zero and
introducing the vector rT beneath R. Since the P,n+1 are orthogonal, it follows that

or

so that r = RTp = a, and RTR = RTR — aaT as required.
5.2. Adding and Deleting Columns of A. Suppose a column is added to the

matrix A, giving
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where [UT • VT] = aTQT and « and v are n and m — n vectors, respectively. If an
orthogonal matrix p is constructed such that

where 7 = ± ||o||2, then, premultiplying (24) by P leaves the upper-triangular matrix
R unchanged and the new factors of A are

This method represents just a columnwise recursive definition of the QR factorization
of A.

When Q is not stored or is unavailable, the vector u can be found by solving the
system

The scalar 7 is then given by the relation

Rounding errors could cause this method to fail, however, if the new column a is
nearly dependent on the columns of A. In fact, if R is built up by a sequence of these
modifications, in which the columns of A are added one by one, the process is exactly
that of computing the product B = ATA and finding the Cholesky factorization
B = RTR. It is well known that this is numerically less satisfactory than computing
R using orthogonal matrices. In some applications, the 5th column of Q is available
even when Q is not and, consequently, 7 can be cpmputed more accurately from the
relationship 7 = aTq,, where q, is the sth column of Q.

Some improvement in accuracy can also be obtained on machines which have
the facility for performing the double-length accumulation of inner-products. In
this case, the fth element of u is set to

where the two inner-products are formed as a single sum. Despite these improvements,
this is still numerically less satisfactory than the previous method where Q was
available.
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A further possibility of improving the method arises when one column is being
deleted and another is being added. A new column replacing the deleted column is
equivalent to a rank-two change in ATA and can be performed by any one of the
methods given in Section 3. Even this is still not ideal, since the computation of the
rank-one vectors require the matrix vector product AT(a — a), where a is the column
being added and a is the column being deleted.

Finally, we describe how to modify the factors when a column is deleted from A.
It will be assumed that A is obtained from A by deleting the 5th column, which as
usual will be denoted by a. Deleting the 5th column of R gives

where Rt is an (s — 1) X (5 — 1) upper-triangular matrix, TI is an (s — 1) X (n — s)
rectangular matrix and T2 is an (n — s + 1) X (n — s) upper-Hessenberg matrix.
For example, with n = 5, s = 3 and m = 1, we have

Let partition T2 be of the form

We now choose an orthogonal matrix P which reduces T2 to upper-triangular form,
using one of the methods described earlier. Thus

where P is of the form P = Pn-,+i" ' ••• P^P^. The modified triangular factor for
Jis
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If Q is to be updated also, the appropriate rows must be modified; thus

It is sometimes profitable to regard this computation from a different point of
view. The partitions of T2 satisfy the relation Rt

TRt = R2
TRz + rrT, and this is

analogous to the equation RTR = RTR + aaT which holds when we add a row aT

to A. We conclude that deleting a column may be accomplished by essentially the
same techniques as used for adding a row.

6. Conclusions. In this report, we have presented a comprehensive set of
methods which can be used to modify nearly all the factorizations most frequently
used in numerical linear algebra. It has not been our purpose to recommend a par-
ticular method where more than one exist. Although the amount of computation
required for each is given, this will not be the only consideration since the relative
efficiencies of the algorithms may alter when applied to particular problems. An
example of this is when the Cholesky factors of a positive definite matrix are stored
in product form. In this case, the choice of algorithm is restricted to those that form
the special matrices explicitly. The relative efficiencies of Methods Cl and C2 are
consequently altered.
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COMMENTARY, BY WALTER GAUTSCHI

This group of five papers, especially the first and third, has a distinctly "inter-
disciplinary" character in the sense that classical analysis problems are recast in
terms of, and successfully solved by, techniques of linear algebra and, vice versa,
problems that have a linear algebra flavor are approached and solved using tools
of classical analysis. A similar intriguing mix of analysis and algebra permeates
the remaining three papers.

Calculation of Gauss quadrature rules, by Golub and Welsch [53]

The concern here is with the calculation of the n-point Gaussian quadrature rule

for the nonnegative weight function w(t) on [a, b], i.e., the calculation of the nodes
TV and weights wv. The connection of this problem with orthogonal polynomials
is classical, thanks to work of Gauss [35], Jacobi [61], Christoffel [22], Stieltjes
[86], and others: The Gaussian nodes rv are the zeros of ?rn, the nth-degree
polynomial orthogonal with respect to the weight function w, and the Gauss
weights wv are also expressible, in different ways, in terms of these orthogonal
polynomials.

An alternative characterization of the Gauss nodes rv can be derived from
the classical fact that the orthoraorma/ polynomials {ffk} satisfy a three-term
recurrence relation

with certain real, resp. positive coefficients a^, /?& which depend on the weight
function w, and /XQ = /0 w(t)dt. If 7r(t) = [ 7 f o ( t ) , 7 f i ( t ) , . . . ,7fn_i(t)]T , then
indeed,

t7r(t) = J-Tr(t) + ^n^n(t}en, en = [ 0 , 0 , . . . , 1]T,

where J = «/„ is the Jacobi matrix of order n for the weight function w, i.e., the
symmetric, tridiagonal matrix having the ak, k = 0 , 1 , . . . , n — 1, on the diagonal,
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and the ^/J3k, k = 1,... ,n— 1, on the two side diagonals. There follows, for t = TV,
since ^n(rv} = 0,

so that TV are the eigenvalues of J and ^(TV) corresponding eigenvectors. This
is the first important mathematical ingredient of the present paper. The other
is an expression for the Gaussian weights,

for which the authors refer to Wilf (apparently to [93, Section 2.9, eqn (69) or
Ch. 2, Exercise 9]). The formula, however, is older; see Szego [89, eqn (3.4.8)],
where it is attributed to Shohat [85]. The authors re-express this formula in
terms of the eigenvectors qv normalized by q^qv = 1, i.e., in terms of

1/9
by noting that the first component of TT(TV) is /i0 ' , hence

where qv t is the first component of qv.
There is a detailed discussion in the paper of how Francis's QR algorithm with

appropriate shifts can be adapted to compute the eigenvalues of a symmetric,
tridiagonal matrix (the matrix J) and the first components of the normalized
eigenvectors. Related software in Algol is provided in the microfiche supplement
of the paper.

Interestingly, the same eigenvalue/vector characterization of Gauss rules, and
even the same numerical method (QR algorithm), have been suggested a year
earlier in the physics literature by Gordon [54, eqn (26) and p. 660]. This work
has had considerable impact in the physical sciences and engineering, whereas the
work of Golub and Welsch has had a wider impact in the areas of computational
mathematics and information science. Both works have actually been submitted
for publication less than a month apart, the former on October 20, the latter
on November 13 of 1967. Rarely have two important and overlapping works, like
these, popped up simultaneously in two entirely different venues!

Similar ideas have since been developed for other quadrature rules of Gaus-
sian type. Indeed, Golub himself [45] was the first to derive eigenvalue/vector
algorithms for Gauss-Radau and Gauss-Lobatto formulae. Laurie [65] did i
for his anti-Gaussian formulae, and Calvetti and Reichel [19] for a symmetri
modification thereof. Quadrature rules involving derivative terms of arbitrary
orders on the boundary or outside the interval of integration require first the
generation of the appropriate Jacobi matrix before the (simple) internal nodes
can be calculated from its eigenvalues and the corresponding weights from the
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associated eigenvectors; see Golub and Kautsky [47, Section 6] and also Ezzirani
and Guessab [32]. This has led to important work on the stable calculation of
general interpolatory quadratures (Kautsky and Elhay [63], Elhay and Kautsky
[31]). A rather substantial extension is the one to Gauss-Kronrod quadratures
due to Laurie [66] (see also the commentary to the last paper). For other types of
extended quadrature formulae, see Gout and Guessab [55]. Golub-Welsch type
algorithms have been developed also for quadrature rules in the complex plane,
for example Gauss-Szego type formulae on the unit circle (Gragg [57, abstract],
[56], Watkins [91, pp. 465-466], Jagels and Reichel [62]), Gauss quadrature on
the semicircle (Gautschi and Milovanovic [43]), Gauss formulae for the Jacobi
weight function with complex parameters (Nuttal and Wherry [78]), or those
used to approximate the Bromwich integral in the theory of Laplace transform
inversion (Luvison [68], Piessens [79]), and complex Gauss formulae for weighted
line integrals in the complex plane (Saylor and Smolarski [84, Section 6]).

There are instances in the area of orthogonal polynomials and quadrature
where eigenvalues of more general matrices are of interest, for example banded
lower Hessenberg matrices in the case of multiple orthogonal polynomials and
related quadrature rules (Coussement and Van Assche [24], Borges [11]), or full-
blown upper Hessenberg matrices for zeros of Sobolev orthogonal polynomials
(Gautschi and Zhang [44, p. 161]) and also for the Gauss-Szego quadrature rules
mentioned above.

Any advances in improving the QR algorithm for computing eigenvalues and
eigenvectors of a symmetric tridiagonal matrix give rise immediately to improved
Golub-Welsch algorithms. Some possibilities in this regard are discussed by Lau-
rie [67, Section 2]; for positive definite Jacobi matrices, see also Laurie [67, Sec-
tion 5] and the references therein.

There still remains, of course, the problem of computing the recurrence coeffi-
cients a/,, /3k, if not known explicitly, given the weight function uj. This problem
is addressed in Section 4 of the paper, where an algorithm of V.I. Mysovskih
is described, which computes these coefficients by a Cholesky decomposition of
the Hankel matrix in the moments JJ,T = ja tru;(t)dt of the weight function. Any
method based on moments, however, is notoriously unstable, owing to severe ill-
conditioning (for large n) of the underlying moment map. This was first shown
in 1968 by the writer [36]; see also [42, Sections 2.1.4, 2.1.6]. Shortly thereafter,
Sack and Donovan, in a technical report [82], introduced the idea of "general-
ized moments" mr = J a p r ( t ) u j ( t ) d t ,whereis a polynomial of exact degree
r, which, at the suggestion of this writer, they renamed "modified moments" in
their formal publication [83]. Under the assumption that the polynomials pr also
satisfy a three-term recurrence relation, but with known coefficients, Sack and
Donovan developed an algorithm, later given a more definitive form by Wheeler
[92], which computes the desired recurrence coefficients a^, fik directly from the
modified moments. Wheeler suspected that Chebyshev might already have done
something of this nature, which was confirmed by the writer and pinpointed to
Chebyshev's 1859 memoir [21], where Wheeler's algorithm indeed appears at the
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end of Section 3 in the special case of ordinary moments (pr (t) =tr) and discrete
orthogonal polynomials. The algorithm for ordinary, resp. modified moments was
therefore named in [37] the Chebyshev, resp. modified Chebyshev algorithm. The
latter is not only more efficient than Mysovskih's algorithm, having complexity
O(n2) instead of O(n3), but is often also more stable. The condition of the un-
derlying modified moment map has been studied in [37, Section 3.3] and [38];
see also [42, Sections 2.1.5, 2.1.6]. For alternative techniques of computing o^,
[3k, based on discretization, see [42, Section 2.2].

Updating and downdating of orthogonal polynomials with data
fitting applications, by Elhay, Golub, and Kautsky [30]

The use, in data fitting applications, of (what today are called) discrete or-
thogonal polynomials can be traced back to a 1859 memoir of Chebyshev [21].
Forsythe [34], a hundred years later and independently, discussed the same pro-
cedure and developed it into a viable computer algorithm. The present paper
introduces new ideas of updating and downdating in this context, although sim-
ilar ideas have previously been applied in connection with the related problem
of QR factorization of matrices. Mertens [69] reviews downdating algorithms in
statistical applications and in the least squares context attributes the concept of
downdating to Legendre and Gauss, the originators of least squares theory.

The problem of data fitting is here understood to be the following weighted
least squares problem: Given a set SN = { x j , y j ,^}^
and positive weights {w|}, find the polynomial qn € Pn of degree < n (< N)
such that

The inner product and norm naturally associated with this problem are

in terms of which the least squares problem is simply \\y — q\\2
N < \\y — <?| |AT, all

q € Pn. The solution is most conveniently expressed in terms of the polynomials
{''-fcifc^o1 orthonormal with respect to the inner product [ • , -]N (the "discrete
orthogonal polynomials"), namely as the nth-degree "Fourier polynomial" of y,

With regard to the least squares problem, updating means the following:
Determine the solution qn corresponding to the enlarged set SJY+I = SN U
{xjv_|_i,yjv_|_i, w^+1} in terms of the solution qn corresponding to the original
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set SN- Downdating, conversely, means the determination of qn for SN in terms
of qn for SN+1.

There is a similar problem of up- and downdating for the orthogonal poly-
nomials, more precisely for their Jacobi matrices Jn (cf. the commentary to the
first paper): Knowing Jn for SN, find Jn for SN+I, and vice versa. An algorithm
of Gragg and Harrod [58, Section 3] using a sequence of Givens similarity trans-
formations, attributed essentially to Rutishauser [81], can be thought of as an
updating procedure in this sense, since it introduces one data point and weight
at a time.

As one would expect from the authors, both problems of up- and downdating
are solved (in several different ways) by reformulating them in terms of matrices
and then applying appropriate techniques of numerical linear algebra.

An application of the updating procedure for Jacobi matrices is made in [29]
to generate Jacobi matrices for sums of weight functions.

Up- and downdating algorithms have subsequently been developed for least
squares problems in the complex plane, for general complex nodes, for example,
in [12, Section 4], and for nodes on the unit circle in [80, Section 3], [2]. For
an updating procedure in connection with orthogonal rational functions, and
function vectors, having prescribed poles, see [90, Section 3] and [27, Section 5].

Matrices, moments and quadrature, by Golub and Meurant [48]

One of the central themes here is the estimation of matrix functionals <p(A) =
UTf(A)v, where A is a symmetric (usually positive definite) matrix, / a smooth
function for which f(A) is meaningful, and u, v are column vectors. A prototype
example, and one given the most attention in this work, is estimating the ( i , j ) -
entry of the inverse matrix A^1, in which case f ( t ) = t~l and u = e,-^ v = BJ
are coordinate vectors. The problem has been treated previously by physicists in
connection with the estimation of resolvents, where A = zl — H, z is an energy,
and H a Hamiltonian, thus A^1 is the resolvent of H. Much related work can
also be found in the quantum chemistry literature; see, e.g., [51, Introduction]
and the examples and references given therein.

There are three basic steps in solving the problem: (i) The functional is

written as an integral, <p(A) = f /(A)da(A), where da is a discrete measure
supported on the spectrum a(A) of A and [a, 6] an interval containing &(A). This
is done by a spectral resolution of A, and in the important case u = v yields a
positive measure da. (ii) The integral is estimated by quadrature rules, typically
Gauss, Gauss-Radau, or Gauss-Lobatto rules. These, with an increasing number
of nodes, are capable of providing increasingly sharper upper and lower bounds
for the integral, provided the derivatives of / have constant sign on [a, 6] (as is
the case, for example, when f ( t ) = t"1, a > 0) and the measure da is positive.
Otherwise, they may still yield estimates of increasing quality, (iii) Generating
the quadrature rules requires the discrete orthogonal polynomials for da, in
particular the Jacobi matrix J = ,7(da) of the measure da (cf. the commentary
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to the first paper), which can be obtained by the Lanczos or the conjugate
gradient algorithm. An interesting technical detail is the way the quadrature
sums are expressed in terms of the (1, l)-element of /(«/°), where «7° is closely
related (equal, in the case of Gauss formulae) to the Jacobi matrix J or a leading
principal minor matrix thereof.

It is possible to generalize these ideas to the "block" case, where u and v
are replaced by an n x m matrix W (typically with m = 2), in which case
da becomes a matrix-valued measure and one has to deal with matrix-valued
orthogonal polynomials and quadrature rules, as is done in Sections 3.3 and 4.3
of the present work.

When f ( t ) = ts is any power, not necessarily s = — 1, and u = v, the pro-
cedure has previously been described by Golub in [46], and in the case s = —2,
of interest in I? error bounds for systems of linear equations, even before by
Dahlquist et al. in [25] and also in [26, Section 3]. In the latter work, improved
approximations are obtained by the conjugate gradient method and the respec-
tive errors estimated as described. In a sequel [49] to the present work, and
already in [51, Section 4], the case s = — I is further applied to obtain er-
ror bounds and stopping criteria in iterative methods for solving linear sys-
tems, notably the conjugate gradient method; see also [70], [33], and for the
preconditioned conjugate gradient method, [71], [9]. Applications to construct-
ing preconditioners can be found in [10]. Similar ideas have been pursued by
M. Arioli and coworkers in a variety of application areas involving partial dif-
ferential equations and their discretizations ([4], [8] , [6], [7], [3], [5]). A valuable
exposition of error estimates in the conjugate gradient method is [88], where
some of the recent results are traced back to the original work of Hestenes and
Stiefel [59], and the influence of rounding errors is given serious attention. For
the latter, see also [51, Section 5], [87, Section 4], and [94]. For a recent com-
prehensive review of these and related matters, see [72], especially Sections 3.3
and 5.3.

Altogether different applications of the work of Golub and Meurant are to
highly ill-conditioned linear algebraic systems, specifically to the determination
of the Tikhonov regularization parameter [14], [15], [20], or to the determination
of upper and lower bounds for the Lagrange multipliers in constrained least
squares and quadratic problems [52]. The blur identification problem in image
processing [76, Section 6] contains yet another application.

The work of Golub and Meurant has inspired other researchers to develop
variants of their techniques for estimating matrix functionals. We mention, for
example, Calvetti et al. [17], [18], where next to Gauss and Gauss-Radau quadra-
tures also anti-Gauss formulae are used (see the commentary to the first paper)
and Calvettial.[16], wherefunctionalsT[f(A)]Tg(A)uare estimated for
matrices A that are no longer necessarily symmetric, and the quadrature and
antiquadrature rules are therefore based on the Arnold! rather than the Lanczos
process.
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A stable numerical method for inverting shape from moments, by
Golub, Milanfar, and Varah [50]

The basic problem here is the determination of an n-sided polygon P in the
complex plane, having vertices Z j , j = l,2,..., n, given its first In—2 "harmonic"
moments Ck = /jp zkdxdy,k = 0 , 1 , . . . , 2n — 3. If the associated "complex"
moments are defined by TO = T± = 0, TJ. = k(k — l )cfc_2, k = 2, 3 , . . . , In — 1, the
vertex reconstruction amounts to solving the system of In nonlinear equations

These are formally identical with the equations for a Gaussian quadrature for-
mula (with nodes Zj, weights a,j, and moments TJ. of the underlying weight func-
tion), except that all these quantities are now complex and, moreover, the first
two moments vanish. While the classical Prony's method is still applicable (it
determines the coefficients of the monic polynomial of degree n having the Zj
as its zeros), it is notoriously unstable. The object of this work is to develop a
solution procedure which, though not necessarily perfectly stable, is more stable
than Prony's method.

This is done essentially by reformulating the problem, implicit already in [89,
eqn (2.2.9)], as a generalized eigenvalue problem involving two Hankel matrices
in the moments, or better, in transformed moments obtained by appropriate
scaling and shifting.

In practice, the number n of vertices is usually not known a priori and must
be estimated from the given sequence of moments, which, to complicate matters,
may be corrupted by noise.

There are a number of potential application areas for procedures as here
described, one, discussed previously, to tomographic reconstruction, and another,
described in the present work, to the problem of geophysical inversion from
gravimetric measurements.

The theoretical results of sensitivity analysis are nicely corroborated by
numerical examples. There remain, however, a number of issues for further study,
for example, a sound statistical analysis of procedures for estimating the number
of vertices, especially in the presence of noise, and the incorporation of a priori
geometrical constraints. Some of these issues have been taken up in the more
recent work [28].

Computation of Gauss Kronrod quadrature rules, by Calvetti,
Golub, Gragg, and Reichel [13]

In order to economically estimate the error Rn ( f ) of the n-point Gauss quadra-
ture rule (cf. the commentary to the first paper), Kronrod [64] in 1964 c
structed (for the weight function w = 1 on [—1,1]) an extended Gauss formula
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now called the Gauss-Kronrod quadrature formula, by adjoining to the n Gauss
nodes rv additional n + 1 nodes r^ - the Kronrod nodes - and selecting them,
and all weights A^, A^K, such as to achieve maximum degree of exactness 3n+ 1
(at least). The same idea, in a germinal form, can be traced back to the late
19th century (cf. [40]). It turns out that the Kronrod nodes must be the zeros of
the polynomial T^^+I °f degree n+1 orthogonal to all lower-degree polynomials
with respect to the (sign-changing) weight function w(t)7rn(t; w) on (a, 6), where
?rn is the orthogonal polynomial of degree n relative to the weight function w.
While the polynomial TT^+I (considered for w = 1 already by Stieltjes in 1894
without reference to quadrature) always exists uniquely, its zeros may or may not
all be real and contained in [a, 6]. An extensive literature thus evolved dealing
precisely with this question of reality, and also with the question of positivity of
all weights A^, A^K. (For surveys on this and other aspects of Gauss-Kronrod
formulae, see Monegato [74], [75], Gautschi [39], and Notaris [77].) In comparison,
the question of actually computing the Gauss-Kronrod formula, when it exists,
i.e., computing its nodes and weights, has received less attention; see, however,
the recent survey by Monegato [73].

Among the most remarkable computational advances in this area is the
algorithm of Laurie [66] for computing positive Gauss-Kronrod formulae. Laurie
recognizes the equivalence of this problem with an inverse eigenvalue problem
for a symmetric tridiagonal matrix with prescribed entries on the side diagonal;
see also [23, pp. 15-16]. His algorithm much resembles the Golub-Welsch algo-
rithm (cf. the commentary to the first paper) for ordinary Gauss formulae. In
the present work by Calvetti et al., this algorithm is modified and simplified in
the sense that the Gauss nodes TV need not be recomputed (as they are in Lau-
rie's algorithm) in cases where they are already known. Indeed, not even the full
tridiagonal Jacobi-Kronrod matrix of order 2n + 1 needs to be generated. The
resulting new algorithm is then used by the authors to compute also Kronrod
extensions of Gauss-Radau and Gauss-Lobatto formulae.

Modifications required to deal with nonpositive Gauss-Kronrod rules are
developed in [1].

The work is too recent to have had a major impact, but it can be expected
to find many applications, most likely in the area of adaptive quadrature. One
such application (to the motion of droplets) is already briefly mentioned in [60,
p. 63].

Summary

Golub's work described here is characterized, on the one hand, by the imaginative
use of linear algebra techniques in problems originating elsewhere, and on the
other hand, by bringing tools outside of linear algebra to bear on problems
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involving matrices. Both these features of Golub's work are elaborated in greater
detail in the recent essay [41].

Acknowledgment. The writer is grateful for comments by D.P. Laurie, L.
Reichel, and Z. Strakos on an earlier draft of these commentaries.
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Calculation of Gauss quadrature rules (with J. H. Welsch)

Calculation of Gauss Quadrature Rules*

By Gene H. Golub** and John H. Welsch

Abstract. Several algorithms are given and compared for computing Gauss
quadrature rules. It is shown that given the three term recurrence relation for the
orthogonal polynomials generated by the weight function, the quadrature rule may
be generated by computing the eigenvalues and first component of the orthornor-
malized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also pre-
sented for computing the three term recurrence relation from the moments of the
weight function.

Introduction. Most numerical integration techniques consist of approximating
the integrand by a polynomial hi a region or regions and then integrating the
polynomial exactly. Often a complicated integrand can be factored into a non-
negative "weight" function and another function better approximated by a polyno-
mial, thus

Hopefully, the quadrature rule {wj, tj}jLi corresponding to the weight function
w(t) is available in tabulated form, but more likely it is not. We present here two
algorithms for generating the Gaussian quadrature rule defined by the weight func-
tion when:

(a) the three term recurrence relation is known for the orthogonal polynomials
generated by a(t), and

(b) the moments of the weight function are known or can be calculated.
In [6], Gautschi presents an algorithm for calculating Gauss quadrature rules

when neither the recurrence relationship nor the moments are known.

1. Definitions and Preliminaries. Let u(x) ^ 0 be a fixed weight function defined
on [a, b]. For u(x), it is possible to define a sequence of polynomials po(x), pi(x), • • •
which are orthonormal with respect to u(x) and in which pn(x) is of exact degree n so
that

The polynomial pn(x) - Tsn IJ"=i (x — tt), kn > 0, has n real roots a < ti < t2 <

Received November 13, 1967, revised July 12, 1968.
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• • • < tn < b. The roots of the orthogonal polynomials play an important role in
Gaussian quadrature.

THEOEEM. Letf(x) G Cm[a, b], then

where

Thus the Gauss quadrature rule is exact for all polynomials of degree ^ 2N — 1.
Proofs of the above statements and Theorem can be found in Davis and Rabino-

witz [4, Chapter 2].
Several algorithms have been proposed for calculating {w,-, ^l^-i ;cf. [10], [11] .

In this note, we shall give effective numerical algorithms which are based on de-
termining the eigenvalues and the first component of the eigenvectors of a sym-
metric tridiagonal matrix.

2. Generating the Gauss Rule. Any set of orthogonal polynomials, {PJ(X)}NJ^,
satisfies a three term recurrence relationship:

with a,- > 0, Cj > 0. The coefficients {a,-, 6,-, C)\ have been tabulated for a number of
weight functions «(»), cf. [8]. In Section 4 we shall give a simple method for generat-
ing {a,-, bj, Cj} for any weight function.

Following Wilf [12], we may identify (2.1) with the matrix equation
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or, equivalently in matrix notation

where T is the tridiagonal matrix and e^r = (0, 0, • • •, 0,1)3". Thus pN(tj) = 0 if and
only if ij-p(iy) = Tf>(tj) where tj is an eigenvalue of the tridiagonal matrix T. In [12],
it is shown that T is symmetric if the polynomials are orthonormal. If T is not sym-
metric, then we may perform a diagonal similarity transformation which will yield
a symmetric tridiagonal matrix J. Thus

where

It is shown by Wilf [12] that as a consequence of the Christoffel-Darboux
identity

where p(iy) corresponds to the eigenvector associated with the eigenvalue tj. Sup-
pose that the eigenvectors of T are calculated so that

with q,Tq,- = 1. If

then ql,j = wy(p0(^))2 by (2.3). Thus from (1.1), we see

Consequently, if one can compute the eigenvalues of T and the first component of
the orthonormal eigenvectors, one is able to determine the Gauss quadrature rule.

3. The Q-R Algorithm. One of the most effective methods of computing the
eigenvalues and eigenvectors of a symmetric matrix is the Q-R algorithm of Francis
[5]. The Q-R algorithm proceeds as follows:

Begin with the given matrix J = J(0), compute the factorization J(0) = Q(0)fi(0)

where Q<0>rQ<°> = / and R(0) is an upper triangular matrix, and then multiply the
matrices in reverse order so that
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Now one treats the matrix J(1) in the same fashion as the matrix J(0), and a sequence
of matrices is obtained by continuing ad infinitum. Thus

so that

Since the eigenvalues of / are distinct and real for orthogonal polynomials, a real
translation parameter X may be chosen so that the eigenvalues of J(i) — X7 are
distinct in modulus. Under these conditions, it is well known [5] that J(i) — X7 con-
verges to the diagonal matrix of eigenvalues of J — \I as i —> °o and that P(t) =
Q«" X Q(1) X • • • X Q (>) converges to the orthogonal matrix of eigenvectors of J.
The method has the advantage that the matrix «7(<) — \I remains tridiagonal
throughout the computation.

Francis has shown that it is not necessary to compute the decomposition (3.1)
explicitly but it is possible to do the calculation (3.2) directly. Let

{<s(flki = {«(0Ui (*= 1,2, • • - , # ) ,
(i.e., the elements of the first column of Sli) are equal to the elements of the first
column of Q<«). Then if

(i) tfu+n- = 5(«V«S«>,
(ii) K(i+1~> is a tridiagonal matrix,
(iii) J**' is nonsingular,
(iv) the subdiagonal elements of .K(m' are positive, it follows that K(i+1) =

j«+i).
For the tridiagonal matrices, the calculation is quite simple. Dropping the

iteration counter i, let

Then cos 0\ is chosen so that
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The matrix

where the primes indicate altered elements of /; then

K = Zfr—iZN—2 • • • Z\JZ\ • • • ZN—I

and Z2, • • •, ZN-I are constructed so that K is tridiagonal. The product of all the
orthogonal rotations yields the matrix of orthogonal eigenvectors. To determine
(wj\ jLi, however, we need only the first component of the orthonormal eigenvector.
Thus, using (2.3)

qr = [91.1,91.2, • • -,91,*] = [i, o, o, • • -, o] x ft (z™ x z^ x • • • x ZA?II)
.•-o

and it is not necessary to compute the entire matrix of eigenvectors. More explicitly,
totj = 1,2, • • • , # - 1

with
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Initially

so that z(')r —* qr as i —» w. In the actual computation, no additional storage is
required for {5y(<), 5yc<), By'0, i/0} since they may overwrite {a/°, by'", 2y (O}- We
choose XK) as an approximation to an eigenvalue; usually, it is related to the
eigenvalues of the matrix

When 6^j is sufficiently small, a^*' is taken as eigenvalue and N is replaced by
N - 1.

4. Determining the Three Term Relationship from the Moments. For many
weight functions, the three term relationship of the orthogonal polynomials have
been determined. In some situations, however, the weight function is not known
explicitly, but one has a set of 2N + 1 moments, viz.

Based on an elegant paper of Mysovskih [9], Gautschi*** has given a simple deriva-
tion of the three term relationship which we give below. This result also follows from
certain determinantal relations (cf. [7]).

Let fl C En be a domain in w-dimensional Euclidean space and co(x) ^ 0 be a
weight function on fi for which all "moments"

exist, and / i 0 ,o , - - - ,o > 0. Enumerate the monomials

as (<pi(x)}£.1, whereby i < j if degree <pt < degree <PJ, the enumeration within the
same degree being arbitrary. In particular, yi(x) = 1. Let

denote the "Gram matrix" for the system {<p,-(x) }L
i=l, where

Note M is positive definite. Let M = RTR be the Cholesky decomposition of1 M with

and

* Personal communication.
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for i and j between 1 and L. Let

227

THEOREM (MYSOVSKIH). The polynomials

Fj(x) = Siypi(x) + Sij<pt(x) + • • • + Syy?y(x) (j = 1, 2, • • •, L)

form an orthonormal system.
Now in the special case n = 1, one has <(>j(x) = x'~l with L = N + 1, and M is

just the "Hankel" matrix in the moments. Moreover, we know in this case
Fj(x) = py_i(z), a polynomial of degree j — 1, and {py(x)}yL,o satisfy

(4.2) xpj-i(x) = /3y_ipy_2(a;) + aypy_i(o;) + /3/py(o;) , j = 1, • • -, N ,

where p-i(a;) = 0. Comparing the coefficients of x> and x'-1 on either side of this
identity, one gets

and so

Further, if

a straightforward computation shows that

Thus

with r0,o = 1, ro.i = 0.
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5. Description of Computational Procedures. In the microfiche section of this
issue there are three ALGOL 60 procedures for performing the algorithms presented
above. We have tried to keep the identifiers as close to the notation of the equations
as possible without sacrificing storage or efficiency. The weights and abscissas
of the quadrature rule are the result of the procedure GAUSSQUADRULE which
must be supplied with the recurrence relation by either procedure GENORTHOP-
OLY or CLASSICORTHOPOLY. The former requires the moments of the weight
function and the latter the name of the particular orthogonal polynomial. A short
description of each procedure follows.

CLASSICORTHOPOLY produces /*o and the normalized three term recurrence
relationship (a,-, 6,-) for six well-known kinds of orthogonal polynomials :

KIND = 1, Legendre polynomials Pn(z) on [-1.0, +1.0], <a(x) = 1.0.
KIND = 2, Chebyshev polynomials of the first kind Tn(x) on [-1.0, +1.0],

U(X) = (1 - z2)-l/2.

KIND = 3, Chebyshev polynomials of the second kind Un(x) on [—1.0, +1.0],
a(x) = (1 - Z2)+"2.

KIND = 4, Jacob! polynomials PB<a•«(:«) on [-1.0, +1.0], u(x) =
(1 - x)"(l + x)f for a > -1 and 0 > -1.

KIND = 5, Laguerre polynomials Ln
M(x) on [0, + »), a(x) = e~xx" for

a > -1.
KIND = 6, Hermite polynomials Ha(x) on (— », + °o), a(x) = e~x2.
Notice that this procedure requires a real procedure to evaluate the gamma

function T(x).
GENORTHOPOLY uses the 2N + 1 moments of the weight function which

are supplied in MU[0] through MU[2 ® N] to compute the a/s and /3/s of formula
(4.2). First, the Cholesky decomposition (formula 4.1) of the moment matrix is
placed in the upper right triangular part of the array R, then the formulas (4.3) are
used to compute the a/s and /3/s which are placed in the arrays A and B respec-
tively.

GAUSSQUADRULE has two modes of operation controlled by the Boolean
parameter SYMM which indicates whether the tridiagonal matrix is symmetric
or not. When the recurrence relation is produced by GENORTHOPOLY or by
CLASSICORTHOPOLY, SYMM is true. If SYMM is false, the matrix is sym-
metricized using the formulas (2.2). The diagonal elements on are stored in A[I] and
the off diagonal elements /3» are stored in B[I].

Beginning at label SETUP, several calculations and initializations are done: the
li norm of the tridiagonal matrix and the relative zero tolerance are computed; the
first component of each eigenvector W[I] and the Q-R iteration are initialized.
LAMBDA is a variable subtracted off the diagonal elements to accelerate con-
vergence of the Q-R iteration and control to some extent in what order the eigen-
values (abscissas) are found. It begins with a value (= NORM) outside and to
the right of the interval containing the abscissas and moves to the left as the
abscissas are found; thus the abscissas will be in ascending order in the array T
(just to be sure an exchange sort is used at label SORT).

The maximum (EIGMAX) of the eigenvalues (LAMBD1 and LAMBD2) of
the lower 2 X 2 submatrix is compared to the maximum (RHO) from the last
iteration. If they are close, LAMBDA is replaced by EIGMAX. This scheme seems
to stabilize LAMBDA and speed convergence immediately after deflation.
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An eigenvalue has been found when the last off diagonal element falls below
EPS (see Section 6). Its value is placed in T[I] and the corresponding weight W[I] is
computed from formula (2.5). This convergence test and the test for matrix splitting
are done following label INSPECT. Only the lower block (from K to M) needs to be
transformed by the Q-R equation given in formulas (3.3). These equations have
been rearranged to reduce the number of computer operations as suggested by
W. Kahan in a report by Corneil [2].

TABLE
A Comparison of the Abscissas and Weights of the

Gauss-Laguerre Quadrature Rule with a = —0.75 and N = 10

Analytic Recurrence
Relationship + QR

Moment Matrix
+ QB

Concus et al [l].

ABSCISSAS

1
2

3
4
5
6
1
8
9

10

2. 766655867080153, .-2
4. 547844226059642:r"-l
1.582425761158619
2.85398001209275?
It. 85097llti(.8761)-968"
7.5000109426428"9~S'
I.o8884o8o258544~6" +1
1. 5199^78o4423765r"+l
2 . 07892l4621070l8:r"+ 1
2 .857506016492223^+1

2.766655862878470 -2
4 . 5478442195687l4i"-l
1.382425759256514
2.853980008561162
4 . 850971443442501
7 . 500010935565904
1 . 08884 0801516104 +1
l . 5199478054" 19274 r"+l
2 .0789214609 SqqfTTn+l
2.857306015294401^+1

2.76665586707972-2
4. 54784422605949^-1
1.382425761158599
2.855980012092697
4.850971448764914
7 . 500010942642825 •
I.o8884o8o23 854404 _+l
1 . 5199478o442576o3:-"+l
2 . 07892l4621070l07r"+l
2 . 8573060164922106^+1

WEIGHTS

1
2

3
4
5
6
7
8
9

10

2.566765557790855
7 .733^79703443168-1
2.331328349732l82r"-l
4.6436747o895665£-"-2
5.549123502056256:-" 3
3. 656466626776441:-" -4
1 . 186879857102525;-" -5
1 . 5844l094205684"4~r" -7
6 . l93266726796Bo7rn -10
5.057759926517621^-15

2.566765556
7.733^79705
2.351328355
4.645674725
5. 549125 53.1
3.65646662
1.1868798&Z
1.58441095J
6.193266722
3.037759965

932285
154000-1
675223 -̂1
992909^-2
,829512^° -5
186007*° -4
642139J"-5
550144^-7
518358̂ -10
698451 -̂15

2.566765557790772
7 .733V7970344541 -1
2.33132834973219:-" -1
4.6436747o89567o|"-2
5.5^912350205625^-3
3.65646662677638J-"-4
1.18687985710245:-" -5
1.58441094205678^" -7
6.19326672679684|"-10
3.03775992651750^-13

(Underlined figures are those1 which disagree with Concus e_t al [l].)

6. Test Program and Results. The procedures in the microfiche section have
been extensively tested in Burroughs B5500 Algol and IBM OS/360 Algol. There
are two machine dependent items which must be mentioned. First, the constant
used to define the "relative zero tolerance" EPS in procedure GAUSSQUADEULE
is dependent on the length of the fraction part of the floating-point number repre-
sentation (= 8~13 for the 13 octal digit fraction on the B5500, and = 16~14 for a 14
hexadecimal digit long-precision fraction on the IBM 360). Second, the moment
matrix M defined in Section 4 usually becomes increasingly ill conditioned with
increasing N. Thus the round-off errors generated during Cholesky decomposition
in GENORTHOPOLY cause an ill conditioned M to appear no longer positive
definite and the procedure fails on taking the square root of a negative number.
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The procedure GAUSSQUADRULE proves to be quite stable and when the
recursion coefficients are known or supplied by the procedure CLASSICORTHOP-
OLY it loses only several digits off from full-word accuracy even for N = 50. Pro-
cedure GENORTHOPOLY usually failed to produce the recursion coefficients
from the moments when N was about 20 for the IBM 360.

The driver program given in the microfiche section of this issue is designed to
compare the two methods of generating the quadrature rules—from the moments or
the recursion coefficients. N can be increased until GENORTHOPOLY fails.
Numerical results may be checked against tables for Gauss-Legendre quadrature
in [11] and Gauss-Laguerre quadrature in [1]. In the Table, we compare the abscissas
and weights of the Gauss-Laguerre quadrature rule with a = —0.50 and N = 10
computed by: (A) the analytic recurrence relationship and the Q-R algorithm;
(B) the moment matrix and the Q-R algorithm; (C) Concus et al. [1]. The calcula-
tions for (A) and (B) were performed on the IBM 360.
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ALGOL PROCEDURES FOR THE

CALCULATION OF GAUSS QUADRATURE HOLES

The ALGOL procedure! given here are described in thi* issue In

detail in the paper 'Generation of Cause quadrature rule** by Gene H.

Oolub and John H. Welsch. The procedure CLASSICORTHOfOLY generates

the coefficient* of the normalized three tern recurrence relation for

variou* classical orthogonal polynomials and It also yields the seroth

order,BOnent, From the first 2R+1 moments of a weight function, the

procedure SEBORTHOPOLY generates the coefficients «f the three ten

recurrence relation for the normalized orthogonal polynomial*. Given

the coefficients of the three term recurrence relation, the procedure

QAU3SQUADRULE computes the abscissas and the weight* of the Gaussian

*yp* quadrature rule associated with the orthogonal polynomials by the

OR method. Finally, a driver program la presented for testing out the

procedures described above.
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procedure CWSSICORTHOPOLY(IOHD, ALFA, BETA, If, A, B, HUZERO);

value KDD, H, ALFA, BETA;

integer EOT), It; real ALFA, BETA, HUZERO;

real array A, B;

begin cement This procedure supplies the coefficients (A, B) of the

normalized recurrence relation for various classical orthogonal

polynomials and the moment HUZERO of its weight function. ;

integer I; real PI, ABI, A2B2;

switch SOT :• IHXKDRE, CHEBY1, CHEBY2, JACOBI,

LAOURRKB, HBRMIFE;

PI := 3.HH59265358979321* ;

ffi to SWTtlOlID];

IEGENDRE: MUZE80 :« 2.0;

coiaent P(x) on [-1, +l], <D(I) - l.o ;

for I :» 1 atep 1 until H-l do

begin A[I] :> 0; B[I] :- I/sqrt(hXIt2-l) end;

A[H) :- 0; go to RETURU;

C1SBY1: MUZERO :- PI;

cogent T(x) on [-1, l], <D(X) - (l-xt£)t(..5) ;

for I :. 1 step 1 until M-l do

hegin A[I] :- 0; B[I] :- 0.5 end;

B[l] :-sq.rt(0.5){ A[H] :-0;

go to MtniHi;

CHEBY2: WJZKRO :- PI/2.0;

eo^ant U{x) on [-1, l], <»(») - (l-xta)t.5 ;

for. I s- 1 «t«p 1 until H-l do

b«dn A[I) >- 0; B[l] :- 0.; ami;

A[H] :• 0; go to HDDIV;
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JACOBI: MIZERO :•= 2t (AIfA+BETA+l)xGA)*IA(ALFA+l)xGAI«A(BETA+l)

/GAIMA(ALFA+BETA+2) ;

coament P(ALFA,BETA)(x) on [-1, +1],

o>(x) . (l-xtALFAx(l+x)'BETA, ALFA AMD BETA > -1 ;

ABI := 2+ALFA+BETA; A[l] :- (BETA-ALFA)/ABI;

B[l] :• sqrt(ltx(l+ALFA)x(l+BETA)/((ABI+l)xABI'£));

A2B2 :. BETAt2-ALFAt2;

for I :• 2 step 1 until H-l do

begin ABI :- 2XI+ALFA+BETA;

A[IJ :. A2B2/((ABI-£)XABI);

B[I] :- sqrt(UXIX<I+ALPA)x(l+BEIA)x(H-ALFA+BETA)/

((ABIt2-l)|aBIt2))i

end;

ABI :- axIH-ALFA+BETA;

A[H] :• A2BS/((ABI-2)XABI);

go to HEiumt;

LAOUERHE: MUZERO i- QAWH(ALF»4-1.0)i

coment L(ALFA)(x) on [0, IHFIKITT),

o(x) • EXP(-x)xxtALFA, ALFA > -1 ;

for I :- 1 step 1 until R-l do

begin A[l] :- 2XC-1+ALFA;

B[I] :- -sqrt(Ix(n-ALFA));

end!

A[N] :. 2XN-1+ALFA; ffi to KETOHT;
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HEEHTTE: MUZERO :«= sqrt(PI) ;

coment H(x) on (-JUUMJU.TY,+LUrjlUTY), <B(X) - KXP(-x'2) ;

for I :. 1 step 1 until H-l do

begin A[I] :- 0; B[I] :- sqrt(l/2) end;

A[H] :- 0;

PETORH: end CLASSICORTBORX,y ;
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procedure GEHOKTHOPOLYfH, MU, A, B) (

value H; integer H;

real array MU, A, B;

begin cement Given the 2W-1 Dements (MU) of the weight function,

generate the recursion coefficients (A, B) of the normalized

orthogonal polynomials. ;

real array R[0:Btl,0:BH.]; real SIM ;

integer I, J, K;

comment Place the Cholesky decomposition of the moment matrix in R[ ];

for I :• 1 step 1 until HH do

for J :- I step 1 until 1H-1 do

begin SUM :- MU[I+J-2);

for K !- 1-1 step -1 until 1 do

SUM :«= SUM - R[K,I]*t[K,J] ;

R[I,J] :* (if I - J then sqrt(SUM) else SUM/R[I,l]);

end;

eorment Compute the recursion coefficients from the decomposition Hi J;

R[0,0] :• 1.0; R[O,1] :- 0;

A[B] !. R[N,*l]/RlH,H)-^tH-l,H)/RtH-l,lI-l] ;

for J ;» H-l step -1 until 1 do

begin B[J) :. H[J+l,J+l]/Rf J,J] J

A[J] :. R(J,JH.]/R[J,J]-RlJ-l,J]/B[J-l,J-l);

end;

end GEIfORCHOFCHiy ;
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procedure OAUSSqUADHUIB(H, A, B, C, MIEERO, SOM, T, W);

value », HUEERO, SYMM;

Integer H; real MIEERO; boolean SYMI;

real array A, B, C, T, W ;

begin coaaent Given the coefficients (A, B, C) of the three tern

recurrence relation: P(K) - (A(K)X+B(K))P(K-l)-C(K)P(K-2),

this procedure conputes the abscissas T and the mights H

of the Gaussian type quadrature rule associated with the ortho-

gonal polynomial by OR type iteration with origin shifting.;

integer I, J, K, M, Ml;

real HORM, EPS, CT, ST, F, Q, AA, AI, AJ, A2, EICMffl,

LAMBDA, LAMBD1, LAMBD2, RHO, R, DBT, BI, BJ, B2, WJ, CJ;

boolean EZj

real procedure MH(X,r)} value X, Y; real X, Y;

HAZ :- if X > Y then X else Y;

if SIM then go to SETUP;

cosagnt Syisaetrize the matrix, if required. ;

for I :- 1 step 1 until H-l do

begin AI :-A[I]j AtD j. B[I]/AI;

Bill :- sqrt(C[I+l]/(AIXAtI+l])) ;

end;

A[H] :. -B[W]/A[«]j

cosggnt Find the •mrlwim row aum norm and Initialise W[ ] ;

SETUP: B[0] :- 0; BOW :- 0;

for I :- 1 step 1 until H-l do

begin SOM :. Htt(»ORM, «b«(B[I-l]) +aba(A[I]) +abB(B[I])) ;

tr[I) :« 0;

sai;
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NORM :. KAX(HORK, abs(A[H])+abs(B[N-l));

EPS := NORWCl6.0t(-llt); comnt Relative zero tolerance ;

W(I] :« l.o; W[H] :- 0; M :> H;

LAMBDA :* LAMBD1 :•= LAMBD2 :- RHO :« HCRC;

content Look for convergence of lower diagonal element ;.

mSFECT: if M = 0 then go to SORT else I :• 1C :- Ml :- M-l;

if ab»(B(MU) < EPB then

begin T[M] :- A[M]; W[N] :- MlEEROxW[M)'2;

RHO ;. (if LAKBD1 < LAMBD2 then LAMBD1 elje LAHBD2);

M :- HI; ^ to DTSPBCT ;

end;

consent Bull off diagonal elenent mean* matrix can be split ;

for I :« 1-1 while abs(B[I]) > EPS do K :« I;

comment Find eigenvalues of lower W and select accelerating shift ;

BS :•= B[M.)t2; DET :- »qrt((A[JQ]-A[H))tSfll.OXB2) ;

AA :- A[«1]+A[H] ;

LAMBD2 :- 0-5x(if AA > 0 then AA+DBT else AA-DEI);

MMBD1 :. (A[m]xA[M]-B2)AAMBD2;

EIOWX :« mx(LAWDl, LAMHD2);

if ab<(BIOMUC.RRO) < 0.125xabe(EIOIH) then

LAMBDA :> RHO :» SICMAX else RHO :- EICMAX;

ccament Transform block frcn K to M J

CJ :- B[K); B[K-1] :-A[K]-LAMBDA;

for J :- K step 1 until Ml do

begin R :- sqrt(CJt2tB[J-l]t2) ;

ST :•= CJ/R; CT :* B[J-1]/R; AJ :• A[J];

B[J-1] :- Hj CJ :- B[J*l]x8Ti
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B[J+1) :- -B[J+1]XCT;

F :. AJXCT + B[J]XST;

Q :. B[J]>CT + A[J+1]XST;

A[J] :- FXCT + dXST; B[J] :« FxST . QxCT;

WJ :-W[J);

A[J+1] !. AJ+AtJ+l]-A[J);

W[J] :. WJXCT+¥[J+l]xST; W[J+1) :« WJXET-W[J+l]xCT;

ends

B[K-1] :- 0; g> to OBFECT;

Arrange ab>ei**a< In ascending order ;

SORT: for M :- H step -1 until 2 do

begin EX :• falae;

for I :- 2 atop 1 until M do

if T[I-1] > T[I] then

begin

WJ :. T[I-lJ; T[I-1] :- T[I]; T[l] :« WJ;

WJ :- W[I-1): W[I-1] :. Will; W[I] :- WJ;

EX :• true

eg;

If -i Bt then go to KBDUKS;

end;

BBIUm: end OMJSSqUMDRinC ;
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l>e gin

content Driver program for OAUSSQUUIRUIE;

real array A. C, T, W[l:10), MJ[0:20], B[0:10]}

real MUZERO; integer I, H;

It •.- 10;

coBoent Legendre polynomials. ;

outstring (l, 'Legendre Quadrature.');

CUgSICOKl'HOK>LY( 1, 0, 0, H, A, B, MUZERO);

GAU8SJUADKUIE(1I, A, B, C, MJZERO, true. T, W);

outstring (1, 'abscissas:'); outarray (1, T);

outstrlng (1» 'weights!'); outarr«y{l, W);

for I :- 0 steg 1 until 2WI do MU[U :- 0;

for I :- 0 atcp 2 until 2X11 do MU[I] :• 2.0/(I+1);

(KNOKIHOPOLY («, HI, A, B) ;

MUZERO :> MU[0];

OMJBS<}UADRUIE (N, A, B, C, MUZERO, true T, V);

outatrlug (1, 'abacisaaa:'); outarray (1, I);

outstring (1, 'weights:'); outarray (l, W);

coaiBent Laguerre polynooials. ;

outstring (l, 'Laguerre Quadrature, alpha - -0-5');

CLASSICOHIHOFOLY (9, -0.5, 0, N, A, B, HJZBBO) (

QAUSBOJOADRUIB (H, A, B, C, MUZBRO, true 1, W) 5

outstring (1, 'abscissas:'); out array (1, T);

outstring (1, 'weights:'); outarrajr (1, W);

MU[0] >-MUZERO :- 1.77*53850905516; ei'mmil gam (0.5);

tor I :- 1 step 1 until 2Wdo
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MU[I] := (!-0.5)xJfJ[I-l);

(ZHOKTHOPOtY (H, Mr, A, E) ;

GAUSSQUADHIM: (jl, A, B, C, MUZERO, true. I, W ) ;

outstring (1, 'abaciasaj:'); outarray (1, T) ;

outstrlng (1, 'weights:'); outarray (1, W ) ;

and;
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PROCEEDINGS OF THE 15TH DUNDEE CONFERENCE, JUNE-JULY 1993,
D. F. Griffiths and G. A. Watson (eds.), Longman Scientific & Technical (1994).

Vingt fois sur le metier remettez votre ouvrage: polissez-le sans cesse et le repolissez.
Ajoutez quelquefois, et souvent effacez.

Nicolas Boileau, Art poetique, 1674

Gene has been interested for a long time in moments, quadrature and their relations
to orthogonal polynomials, and as the French quote above says, he pursued his goal
for many years always improving his results. He realized in the 1970s that bounds
can be obtained for matrix moments using quadrature formulas. More generally, if
one considers a quadratic form UTf(A)u where u is a given vector and / is a smooth
function of the symmetric matrix A, it can be written as a Riemann-Stieltjes integral.
Then using Gauss-type quadrature formulas provides bounds for the value UTf(A)u.
In his paper with Welsch, Gene has shown how to compute the nodes and weights
of such a quadrature rule by using the eigenvalues and eigenvectors of the tridiagonal
matrix given by the three-term recurrence of the orthogonal polynomials corresponding
to the measure of the Riemann-Stieltjes integral. These polynomials are obtained by
running the Lanczos algorithm for A with w/H 'u l l as an initial vector. This gives a
very elegant framework associating several interesting areas of mathematics: linear
algebra, integration and quadrature rules, orthogonal polynomials. Gene has a deep
understanding of the interconnections of these mathematical areas and he likes to share
his ideas with his collaborators.

In our paper we were interested in the more general problem of a bilinear form
UT f(A)vwhere vs another given vector. Even though one can obtain results using the
quadratic form case by writing UT f(A)v = l/4:[(u+v)(A)(u+v) — (u—v~)Tf(A)(u—v)]
we suggested using other techniques. It turns out that estimates can also be obtained by
using the nonsymmetric Lanczos algorithm (even with a symmetric matrix!) as well as
the block Lanczos algorithm. Another aim in considering the block Lanczos algorithm
was to try to give a precise mathematical content to what was done at that time
by physicists working in solid state physics (Nex, Computer Physics Communications,
53, pp 141-146 (1989)). Fortunately, we succeeded and we were able to prove some
theorems about quadrature for integrals with matrix measures.

At that time I was amazed to see how well these techniques were working numerically
when I did some computations with several functions /, like the inverse, the exponential
or the square root. One can obtain very good bounds with only a few iterations of one
of these Lanczos algorithms. Moreover, doing one or two Lanczos iterations "by hand"
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gives analytical bounds which in some cases are already interesting. This is what we
did in our paper for the matrix inverse.

Unfortunately, we realized afterwards that what is obtained with the Gauss quadra-
ture formula is equivalent to a result that was given in the Hestenes and Stiefel CG
paper. It is a pity that this result was almost unnoticed for many years because it
would have led to good lower bounds of the norm of the error in CG without almost
any additional cost. Nevertheless, using Gene's quadrature approach is interesting
because it also allows us to compute upper bounds of the error if we have an esti-
mate of the smallest eigenvalue of A.

Gene and some of his collaborators have applied the MMQ techniques to other prac-
tical problems like computing estimates of the determinant of large sparse symmetric
matrices or computing parameters in regularization methods for ill-posed problems. It
is very satisfactory when a paper has such a nice and fruitful outcome.

As usual, it was very nice to be, again, a Golub number 1 in the writing of this
paper. Gene is always full of ideas and good suggestions. Working on this paper I learnt
a lot of things on moments and quadrature and this was at the root of my interest in
estimation of errors, particularly in the Lanczos and CG algorithms, a topic on which
I am still working.

In fact, these techniques have so many applications that the game is not over yet. In
the middle of 2005, I was with Gene at CERFACS in Toulouse (France) as members of
the committee for a PhD thesis defense. We were quietly chatting about these topics.
Then Gene went to the men's room and he came back very excited and enthusiastic
saying "I just had a bright idea: we should write a book about MMQ". This is now
ongoing and when it is finished it is going to be the next episode of our collaboration
and friendship.

Gerard Meurant
Bruyeres-le-Chatel, France
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Abstract In this paper we study methods to obtain bounds or approximations of
elements of a matrix f ( A ) where A is a symmetric positive definite matrix and / is
a smooth function. These methods are based on the use of quadrature rules and the
Lanczos algorithm for diagonal elements and the block Lanczos or the non-symmetric
Lanczos algorithms for the non diagonal elements. We give some theoretical results on
the behavior of these methods based oil results for orthogonal polynomials as well as
analytical bounds and numerical experiments on a set of matrices for several functions /.

1 Definition of the problem

Let A be a real symmetric positive definite matrix of order n. We want to find upper and
lower bounds (or approximations, ii bounds are not available) lor the entries oi a iunction
of a matrix. We shall examine analytical expressions as well as numerical iterative methods
which produce good approximations in a few steps. This problem leads us to consider

where u and v are given vectors and / is some smooth (possibly C7°°) function on a given
interval of the real line.

As an example, if f(x) = - and UT = ef = ( 0 . . . . , 0.1, 0 , . . . , 0). the non zero element
being in the i-th position and v — e,-, we will obtain bounds on the elements of the inverse
A-1.

We shall also consider

where W is an n X m matrix. For specificity, we shall most often consider m = 2.
Some of the techniques presented in this paper have been used (without any math-

ematical justification) to solve problems in solid state physics, particularly to compute
elements of the resolvant of a Hamiltonian modeling the interaction of atoms in a solid,
see [12], [14], [15]. In these studies the function / is the inverse of its argument.

Analytic bounds for elements of inverses of matrices using different techniques have
been recently obtained in [17].

The outline of the paper is as follows. Section 2 considers the problem of characterizing
the elements of a function of a matrix. The theory is developed in Section 3 and Section
4 deals with the construction of the orthogonal polynomials that are needed to obtain
a numerical method for computing bounds. The Lanczos, non-symmetric Lanczos and
block Lanczos methods used for the computation oi the polynomials are presented there.
Applications to the computation of elements of the inverse of a matrix are described in
Section 5 where very simple iterative algorithms are given to compute bounds. Some
numerical examples are given in Section 6, for different matrices and functions /.

2 Elements of a function of a matrix

Since A = AT. we write A as
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where Q is the orthonormal matrix whose columns are the normalized eigenvectors of A
and A is a diagonal matrix whose diagonal elements are the eigenvalues A; which we order
as

By definition, we have

Therefore,

This last sum can be considered as a Riemann-Stieltjes integral

where the measure a is piecewise constant and defined by

When u = v1 we note that a is an increasing positive function.
The block generalization is obtained in the following way. Let W be an n X 2 matrix,

W = (w\ w-i), then

where, of course, a is a 2 X n matrix such that

and a,- is a vector with two components. With these notations, we have

This can be written as a matrix Riemann-Stieltjes integral

IB[/] is a 2 x 2 matrix where the entries of the (matrix) measure a are piecewise constant
and denned by
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In tills paper, we are looking for methods to obtain upper and lower bounds L and U
for /[/] and

In the next section, we review and describe some basic results from Gauss quadrature
theorjr as this plajrs a fundamental role in estimating the integrals and computing bounds.

3 Bounds on matrix functions as integrals

A way to obtain bounds for the Stieltjes integrals is to use Gauss, Gauss-Radau and
Gauss-Lobatto quadrature formulas, see [3],[8],[9]. For 1.1. the general formula we will
use is

where the weights [wj]^, ["d^li and the nodes [fj]jLi are unknowns and the nodes [^Jili
are prescribed, see [4],[5],[6],[7].

3.1 The case u = v

When u = v, the measure is a positive increasing function and it is known (see for instance
[18]) that

If M = 0. this leads to the Gauss rule with no prescribed nodes. If M = f and z\ = a
or Zi = b we have the Gauss-Radau formula. If M = 2 and z\ = a, z2 = b, this is the
Gauss-Lobatto formula.

Let us recall briefly how the nodes and weights are obtained in the Gauss, Gauss-
Radau and Gauss-Lobatto rules. For the measure a, it is possible to define a sequence of
polynomials p0(A),pi( A ) , . . . that are orthonormal with respect to a:

and pk is of exact degree k. Moreover, the roots of p/, are distinct, real and lie in the
interval [a, b]. We will see how to compute these polynomials in the next Section.

This set of orthonormal polynomials satisfies a three term recurrence relationship (see
[20]):
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The eigenvalues of Jjv (which are the zeroes of pjy) are the nodes of the Gauss quadra-
ture rule (i. e. M ~ 0). The weights are the squares of the first elements of the normalized
eigenvectors of Jjv, cf. [7]. We note that all the eigenvalues of Jjy are real and simple.

For the Gauss quadrature rule (renaming the weights and nodesw'j andj)we have

with

and the next theorem follows.

Theorem 3.1 Suppose u = v in 2.1 and f is such that /(2™'(0 > 0, v«, vf, a, < £ < b,
and let

Proof: See [18]. The main idea of the proof is to use a Hermite interpolatory polynomial
of degree 2N — 1 on the N nodes which allows us to express the remainder as an integral
of the difference between the function and its interpolatory polynomial and to apply the
mean value theorem (as the measure is positive and increasing). As we know the sign of
the remainder, we easily obtain bounds.

To obtain the Gauss-Radau rule (M = 1 in 3.1-3.2), we should extend the matrix Jjy
in 3.4 in such a way that it has one prescribed eigenvalue, see [8].
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In matrix form, this can be written as

where

Then, VN, 3rj e [a, b] such that

5



Matrices, moments, and quadrature (with Gerard Meurant)

Assume z\ = a, we wish to construct PN+I such that pj\r+i(«) = 0. From the recurrence
relation 3.3, we have

This gives

We have also

Let us denote <S(a) = [6'i(a). • • • , <*>Ar(a)]T with

This gives wjy+i = a, + 6^(a)

From these relations we have the solution of the problem as: 1) we generate 7^ by the
Lanczos process (see Section 4 for the definition), 2) we solve the tridiagonal system 3.5
for S(a) and 3) we compute tJjy+i. Then the tridiagonal matrix JN+I defined as

will have a as an eigenvalue and gives the weights and the nodes of the corresponding
quadrature rule. Therefore, the recipe is to compute as for the Gauss quadrature rule and
then to modify the last step to obtain the prescribed node.

For Gauss-Radau the remainder Ran is

Again, this is proved by constructing an interpolatory polynomial for the function and its
derivative on the t,-s and for the function on z\.

Therefore, if we know the sign of the derivatives of /. we can bound the remainder.
This is stated in the following theorem.

Theorem 3.2 Suppose u = v and f is such that /(2"+1)(^) < 0, Vra,V^,a < £ < b. Let
UGR be defined as

W j , v " , t j being the weights and nodes computed with z\ = a and let LQR be defined as

387

6



Proof: With our hypothesis the sign of the remainder is easily obtained. It is negative if
we choose z\ = a, positive if we choose z\ = b.

Remarks :
i) if the sign of the / derivatives is positive, the bounds are reversed.
ii) it is enough to suppose that there exists an na such that J(2n<1+1)(^) < 0 but, then

N = no is fixed.

Now, consider the Gauss-Lobatto rule (M = 2 in 3.1-3.2), with z\ = a and z2 = b as
prescribed nodes. Again, we should modify the matrix of the Gauss quadrature rule, see
[8]. Here, we would like to have

Using the recurrence relation 3.3 for the polynomials, this leads to a linear system of order
2 for the unknowns wjy+i and 7^:

Let 6 and ft be defined as vectors with components

388

then

and the linear system 3.6 can be written

giving the unknowns that we need. The tridiagonal matrix Jjv+i 'is then defined as in the
Gauss-Radau rule.

Having computed the nodes and weights, we have

Matrices, moments, and quadrature (with Gerard Meurant)

u)'.j;J,tj being the weights and nodes computed with z\ — b. Then, VN we hav

and

7



Matrices, moments, and quadrature (with Gerard Meurant)

where

Then, we have the following obvious result.

Theorem 3.3 Suppose u = v and f is such that /'2"'(»?) > 0, Vra. V»/,o < r; < b and let

Then, VJV

389

The same statement is true for the Gauss-Radau and Gauss-Lobatto rules. Therefore,
in some cases where /(Jjv) (or the equivalent) is easily computable (for instance, if /(A) =
I/A. see Section 5). we do not need to compute the eigenvalues and eigenvectors of Jjy.

8

Proof:

We remark that we need not always compute the eigenvalues and eigenvectors of the
tridiagonal matrix. Letbe the matrix of the eigenvectors of Jjv (orJff)whose columns
we denote by y; and Ijv be the diagonal matrix of the eigenvalues i; which give the nodes
of the Gauss quadrature rule, ft is well known that the weights W{ are given by (cf. [21])

ft can be easily shown that

where y] is the first component of
But. since po(A) = 1, we have,

Theorem 3.4
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3.2 The case u ̂  v

We have seen that the measure in 2.1 is piecewise constant and defined by

For variable signed weight functions, see [19]. We will see later that for our application,
u and v can always be chosen such that ctkSf, > 0. Therefore, in this case a will be a
positive increasing function.

In the next Section, we will show that there exists two sequences of polynomials p and
q such that

IjPiW = (A-^)f t-- i (A)-/Vif t-2(A), p_i(A) = 0, po(A) = l,
/%9j(A) = (A -Uj)qj-i(X) -7 J_i£,_2(A), §_i(A) = 0, q0(X) = I .

Let

and

Then, we can write

Theorem 3.5

Proof: The theorem is proved by induction. We have

therefore

Now. suppose that

390

9



10

391

For the quadrature rule, we have

and because of the orthonormality properties

where \j is an eigenvalue of Jpf. Sj is the first component of the eigenvector Uj of Jjv
corresponding to Aj and tj is the first component of the eigenvector Vj of Jjy corresponding
to the same eigenvalue, normalized such that vjuj = 1.

We have the following results:

Proposition 3.1 Suppose that 7j/9j ^ 0, then the (non-symmetric) Gauss quadrature
rule 3.7 is exact for polynomials of degree less than or equal to N — 1.

Proof:
Tile fnnrtinn f ran be written as.

Matrices, moments, and quadrature (with Gerard Meurant)

We have

Multiplying by p.^"..^ we obtain the result.
Hence qx is a multiple of pjv and the polynomials have the same roots which are als>

the common eigenvalues of Jjv and J%.
We will see that it is possible to choose •jj and 8j such that

with, for instance, -jj > 0. Then, we have

We define the quadrature rule as
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But pi,(Xj).5j and q i ( \ j ) t j are respectively the components of the eigenvectors of Jjy and
,7j(? corresponding to Aj. Therefore they are orthonormal with the normalization that we
chose. Hence,

and consequently

which proves the result.

Now, as in [14], we extend the result to polynomials of higher degree.

Theorem 3.6 Suppose that 7j/3j =^ 0, then the (non-symmetric) Gauss quadrature rule
3.7 is exact for polynomials of degree less than or equal to 27V — 1.

Proof:
Suppose / is a polynomial of degree IN — I. Then, / can be written as

where s and r are polynomials of degree less or equal to N — I. Then,

since pi\- is orthogonal to any polynomial of degree less or equal to N — 1 because of the
orthogonality propertjr of the p and </'s.

For the quadrature rule, we have

But, as Ay is an eigenvalue of Jjy, it is a root of pjv and

As the quadrature rule has been proven to be exact for polynomials of degree less than
N-l,

which proves the Theorem.
We will see in the next Section how to obtain bounds on the integral 2.1.
Now, we extend the Gauss-Radau and Gauss-Lobatto rules to the non-symmetric

case. This is almost identical (up to technical details) to the symmetric case.

11

392



Matrices, moments, and quadrature (with Gerard Meurant)

For Gauss-Radau, assume that the prescribed node is a, then, we would like to have
PN+I(O.) = qN+i(a) = 0. This gives

If we denote 6(a) = [ S i ( a ) , . . . , Spf(a)]T,with

we have

where

Therefore, the algorithm is essentially the same as previously discussed.
For Gauss-Lobatto, the algorithm is also almost the same as for the symmetric case.

We would like to compute PJV+I and qn+i such that

This leads to solving the linear system

The linear system for the q's whose solution is (^jv+i,7Ar)T can be shown to have the
same solution for ^AT+I and -yjy = ±/Jjv depending on the signs relations between the p's
and the q's.

Let <5(a) and /j,(b) be the solutions of

Then, we have

When we have the solution of this system, we choose 7jv = iftv and 7jy •> 0.
The question of establishing bounds on the integral will be studied in the next Section.
As for the case u = v, we do not alwajrs need compute the eigenvalues and eigenvectors

of Jjv but only the (1,1) element of /(Jjv).

3.3 The block case

Now. we consider the block case. The problem is to find a quadrature rule. The integral
fa f(^)^a(^)is a 2 X 2 symmetric matrix. The most general quadrature formula is of the
form

12
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where Wj and Tj are symmetric 2 x 2 matrices. In this sum, we have 6N unknowns. This
quadrature rule can be simplified, since

where Qj is the ortho-normal matrix of the eigenvectors, and Aj, the diagonal matrix of
the eigenvalues of Tj. This gives

But WjQjf(\j)QjWjan be written as

where the vector z; is 2 x 1. Therefore, the quadrature rule can be written as

where tj is a scalar and Wj is a vector with 2 components. In this quadrature rule, there
are also f>N unknowns.

In the next Section, we will show that there exists orthogonal matrix polynomials such
that

This can be written as

A[p0(A) ; . . . ,?*_! (A)] = [p 0 (A) , . . . ,pW-!(A)]JjY + [0, . . . , 0 , P N ( X ) T N ] ,

where

is a block tridiagonal matrix of order 2N and a banded matrix whose half bandwidth is
2 (we have at most 5 non zero elements in a row).

If we denote P(X) = [ p o ( A ) , . . . ,pjv-i(A)]T, we have as Jpi is symmetric

We note that if A is an eigenvalue, say A r . of Jjv and if we choose u = ur to be a two element
vector whose components are the first two components of an eigenvector corresponding
to A r , then P(A r)« is this eigenvector (because of the relations that are satisfied) and if

13
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FJV is non singular, pjf(\r)u = 0. The difference with the scalar case is that although the
eigenvalues are real, it might be that they are of multiplicity greater than 1 (although
this is unlikely except in the case of the Gauss-Radau and Gauss-Lobatto rule where this
condition is enforced).

We define the quadrature rule as:

where IN is the order of Jjv, the eigenvalues A, are those of Jjv 

consisting of the two first components of the corresponding eigenvector, normalized as
before. In fact, if there are multiple eigenvalues, the quadrature rule should be written
as follows. Let /i;, i = 1 , . . . , I be the set of distinct eigenvalues and q, their multiplicities.
The quadrature rule is then

We will show in the next Section that the Gauss quadrature rule is exact for polyno-
mials of degree IN — f and how to obtain estimates of the error.

We extend the process described for scalar polynomials to the matrix analog of the
Gauss-Radau quadrature rule. Let a be an extreme eigenvalue of A. We would like a to
be a double eigenvalue of Jjv+i- We have

Then, we need to require pjv+i(a) = 0. From the recurrence relation this translates into

Therefore, if pjv(a) is non singular, we have

We must compute the right hand side. This can be done by noting that

Multiplying on the right by PN(O)~T. we get the matrix equation

Thus, we solve

395
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and hence

The generalization of Gauss-Lobatto to the block case is a little more tricky. We would
like to have a and 6 as double eigenvalues of the matrix Jjv+i- This leads to satisfying the
following two matrix equations

This can be written as

We now consider the problem of computing (or avoid computing) p^1(A)pjv-i(-^)- Let
<*>( A) be the solution of

Then, as before

We can easily show that <Sjv_i(A) is symmetric. We consider solving a 2 X 2 block linear
system

Consider the block factorization

thus WZ = Y-X.
The solution of the system

15
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gives

The next step is

and we get

or

Therefore
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Hence, we have

This means that

or

Then, TN is given as a Cholesky decomposition of the right hand side matrix. The
right hand side is positive definite because 6pf-i(a) is a diagonal block of the inverse of
(Jff — a/)"1 which is positive definite because the eigenvalues of Jjv are larger that a
and —Spf-i(b) is the negative of a diagonal block of (Jjy — 6/)"1 which is positive definite
because the eigenvalues of Jff are smaller that b.

From FJV, we can compute Jljy+i:

fijv+i = 0/2 + FN^v_i(a)r^.

As for the scalar case, it is not always needed to compute the weights and the nodes
for the quadrature rules.

Theorem 3.7 We have

where Yjv is the matrix of the eigenvectors and TJV the diagonal matrix of the eigenvalues
of Jjv.

Note that bounds for noil diagonal elements can also be obtained by considering
ef/(^K eJf(A)ej and \(ct+ e,ff(A}(et+ 

16
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fijv+i = 0/2 + Tpf8tf-i(a)Tjf.

where eT = (I2 0 . . . 0 ) .

Proof:
The quadrature rule is

If yi are the eigenvectors of J;v then «,- = eTyt and
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4 Construction of the orthogonal polynomials

In this section we consider the problem of computing the orthonormal polynomials or
equivalently the tridiagonal matrices that we need. A very natural and elegant way to do
this is to use Lanczos algorithms.

4.1 The case u — v

When u = v, we use the classical Lanczos algorithm.
Let X-i = 0 and x0 be given such that \\XQ\\ = 1. The Lanczos algorithm is defined by

the following relations,

The sequence {x,}j-_0 is an orthonormal basis of the Krylov space

Proposition 4.1 The vector Xj is given by

where pj is a polynomial of degree j defined by the three term recurrence (identical to 3.3)

Proof:

is a first order polynomial in A. Therefore, the Proposition is easily obtained by induction.

Theorem 4.1 If x0 = u, we have

Proof: As the Xj's are orthonormal. we have

where x — QTx0.

Therefore, the pj's are the orthonormal polynomials related to a that we were referring
to in 3.3.

17
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4.2 The case u ̂  v

We apply the non-symmetric Lanczos algorithm to a symmetric matrix A.
Let X-\ = X-\ = 0. and X0,x0 be given with xa ^ x0 and x^x0 = 1. Then we define

the iterates for j = f . . . . by

This algorithm generates two sequences of mutually orthogonal vectors as we have

We have basically the same properties as for the Lanczos algorithm.

Proposition 4.2

where pj and qj are polynomials of degree j defined by the three term recurrences

Proof: The Proposition is easily obtained by induction.

Theorem 4.2 / /XQ = u and XQ = u, i/sen

Proof: As the Xj :s and Xj's are orthonormal the proof is identical to the proof of Theorem

We have seen in the previous Section the relationship between the p and q's. The
polynomials q are multiples of the polynomials p.

In this particular application of the non-symmetric Lanczos algorithm it is possible
to choose "jj and 8j such that

with, for instance, -jj > 0 and /?,- = sgn(rJY7-)7,-. Then, we have

18
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The main difference with the case of symmetric Lanczos is that this algorithm may break
down, e.g. we can have ~/jf3j = 0 at some step.

We would like to use the non-symmetric Lanczos algorithm with x0 = e,- and £0 = e,j
to get estimates of /(j4),-j. Unfortunately, this is not possible as this implies XgX0 = 0.
A way to get around this problem is to set x0 = ei/& and x0 = <Se; + ej. This will give
an estimate of f(A)ij/6 + /(/!);_; arid we can use the bounds we get for the diagonal
elements (using for instance symmetric Lanczos) to obtain bounds for the non diagonal
entry. An added adantage is that we are able to choose 8 so that 7^/9, > 0 and therefore
pj(A) = ?,(A). This can be done by starting with 8 = 1 and restarting the algorithm with
a larger value of S as soon as we find a value of j for which 7,-/9; < 0.

Regarding expressions for the remainder, we can do exactly the same as for symmetric
Lanczos. We can write

However, we know that pjv(A) = ±*v(A) and

This shows that the sign of the integral in the remainder can be computed using the
algorithm and we have the following result.

Theorem 4.3 Suppose f is such that f^"\rj) > 0, Vn. V»y, a < TJ < b. Then, the
quadrature rule 3.7 gives a lower bound if

and an upper bound otherwise. In both cases, we have

For Gauss-Radau and Gauss-Lobatto we cannot do the same thing. Bounds can be
obtained if we choose the initial vectors (e.g. S) such that the measure is positive and
increasing. In this case we are in exactly the same framework as for the symmetric case
and the same results are obtained. Note however that it is not easy to make this choice
a priori. Some examples are given in Section 6. A way to proceed is to start with 6=1
and to restart the algorithm 4.2 with a larger value of 6 whenever we have fjfij < 0.

4.3 The block case

Now, we consider the block Lanczos algorithm, see [10],[16]. Let Xa be an n x 2 given
matrix, such that XgXa = 72 ( chosen as U defined before). Let X-\ = 0 be an n X 2
matrix. Then

19
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The last step is the QR decomposition of Rj such that Xj is n X 2 with XjXj = /2 and
Tj is 2 x 2. The matrix flj is 2 x 2 and Tj is upper triangular.

It may happen that Rj is rank deficient and in that case Tj is singular. The solution
of this problem is given in [10]. One of the columns of Xj can be chosen arbitrarily. To
complete the algorithm, we choose this column to be orthogonal with the previous block
vectors A*. We can for instance choose another vector (randomly) and orthogonalize it
against the previous ones.

This algorithm generates a sequence such that

where 72 is the 2 x 2 identity matrix.

Proposition 4.3

where C^ are 2 x 2 matrices.

Proof: The proof is given by induction.

We define a matrix polynomial p,-(A), a 2 X 2 matrix, as

Thus, we have the following result.

Theorem 4.4

Proof:
Using the orthogonality of the A~;s, we can write

20
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The PJS can be considered as matrix orthogonal polynomials for the (matrix) measure
a. To compute the polynomials, we need to show that the following recurrence relation
holds.

Theorem 4.5 The matrix valued polynomials pj satisfy

where A is a scalar.

Proof: From the previous definition, it is easily shown by induction that pj can be
generated by the given (matrix) recursion.

As we have seen before this can be written as

and as P(A) = [p 0 (A) , . . . ,pN.-L(\)]T,

with ,7jv defined by 3.8.
Most of the following results on the properties of the matrix polynomials are derived

from [1].

Proposition 4.4 The eigenvalues of JN are the zeroes o/dei[pjy(A)].

Proof:Let /< be a zero ofdet\ptf(\)].s the rows oftf(ft)rinearly dependent, there
exists a vector v with two components such that

This implies that

Therefore /* is an eigenvalue of Jjy. dei[pjv(A)] is a polynomial of degree 2A' in A. Hence,
there exists 2N zeroes of the determinant and therefore all eigenvalues are zeroes of
d e t \ p N ( X ) ] .

Proposition 4.5 For X and ji real, we have the analog of the Christoffel-Darboux identity
(see [21]) :

21
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Proof: From the previous results, we have

Multiplying the first relation by pj(ff) on the left and the second one by pJ(A) on the
right gives

Summing these equalities, some terms cancel and we get the desired result.

In particular, if we choose A = ^ in 4.3, we have that ^(A^A-p^^A) is symmetric.

Proposition 4.6

Proof: If we set A = \, and /* = \r and multiply the Christoffel-Darboux identity 4.3
on the left by uj and on the right by ur. we havepj^(Xr)ur= and p^(\,)u, =0. and
we get the result if As ^ A r . Let

As po(A) = 1-2, Kff-i(X, A) is a sjonmetric positive definite matrix and therefore defines a
scalar product. If Ar is a multiple eigenvalue, there exist linearly independent eigenvec-
tors that we could orthonormalize. If Xr is an eigenvalue of multiplicity qr, there exist
qr linearly independent vectors v^,...,v^r with two components such that the vectors
P ( X r ) v i , j = 1 , . . . . qr are the eigenvectors associated with \r. We can certainly find a set
of vectors ( u i j , . . . , w^.T) spanning the same subspace as ( u * . . . . , v^T) and such that

This property is nothing else than the orthogonality relation of the eigenvectors.

Proposition 4.7

Proof: Note that the eigenvectors of ,7jv are linearly independent. We take a set of N
vectors with two elements : {y0,.. ., y f i - i } , and write

22
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Multiplying on the left by wJpi(As) and summing :

Therefore,

This gives the desired result.

To prove that the block quadrature rule is exact for polynomials of degree up to
2N — 1, we cannot use the same method as for the scalar case where the given polynomial
is factored because of commutativity problems. Therefore, we take another approach that
has been used in a different setting in [2]. The following results are taken from [2].

We will consider all the monomials \k ,k = {..... IN — 1. Let Mj, the moment matrix,
be defined as

We write the (matrix) orthonormal polynomials PJ as

pj! being a matrix of order 2. Then, we have

and more generally

Wre write these equations for j' = N — 1. Note that because of the orthogonality of the
polynomials, we have

Let Hft be the block Hankel matrix of order 2JV, defined as

23
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Then

We introduce some additional notation. Let LN be a block upper triangular matrix of
order IN.

where Bj is a q,j X IN matrix,

and the ft are the eigenvalues of A.
Let K'l be a 2g,- X 2g3- matrix

and

Proposition 4.8

where Cj is a 2qj X 2N matrix.

405

Let VN be a 4JV x IN matrix defined in block form as
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Proof: This is straightforward by the definition of the polynomials pj(A).

Proposition 4.9

Proof: the generic term of H^'L^ is

Therefore the generic term of L^-HxLN is

Splitting the power of A we can easily see that this is

Therefore because of the orthonormality properties, we have

Proposition 4.10

Proof: this is just using the definition of K*.

Now, we define a 2N x 4JV matrix W£ whose only non zero components in row i are
in position (i. 2i — f ) and (i, 2i) and are successively the two components of

. Then because of the way the w\ are constructed we have

Proposition 4.11

Proposition 4.12 W^Vn is a non singular IN X 2JV matrix.

Proof:

This shows that W^Vff is non singular.

Then, we have the main result

25
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Theorem 4.6 The quadrature rule 3.9 or 3.10 is exact for polynomials of order less than
or equal to 2N — 1.

Proof: From Proposition 4.12, we have

Therefore,

By identification of the entries of the two matrices we have.

It remains to prove that the quadrature rule is exact for k = 2N — 1. As we have.

Writing the (N — l)th block row of this equality, we get

We have proved before that

By substitution, we get

We use the fact that

and

This shows that

407
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Unfortunately s does not have a constant sign over the interval [a.b]. Therefore this
representation formula for the remainder is of little practical use for obtaining bounds
with the knowledge of the sign of the entries of the remainder.

It is easy to understand why we cannot directly obtain bounds with this block ap-
proach. We must use W = (e; tj) arid the block Lariczos algorithm with X0 = W. For
the block Lanczos algorithm we multiply successively A with the Lanczos vectors. If A
is sparse, most of the components of these products are 0 for the first few iterates of the
algorithm. Therefore, it is likely that at the beginning, the estimates that we will get for
the non diagonal entries will be 0. This explains why we cannot directly obtain upper
or lower bounds with Gauss, Gauss-Radau or Gauss-Lobatto. A way to avoiding this
difficulty is to use W = (e; + ej ej) but this cannot be done since X^X0 ^ I2.

However, we will see in the numerical experiments that the estimates we get are often
quite good.

Matrices, moments, and quadrature (with Gerard Meurant)

As pNis non singular, we get the result.

To obtain expressions for the remainder, we would like to use a similar approach as
for the scalar case. However there are some differences, as the quadrature rule is exact
for polynomials of order 2N — I and we have 2N nodes, we cannot interpolate with an
Hermite polynomial and we have to use a Lagrange polynomial. By Theorems 2.1.1.1 and
2.1.4.1 of [18]. there exists a polynomial q of degree IN — 1 such that

and

where

If we can apply the mean value theorem, the remainder R(f) which is a 2 X 2 matrix can
bp writtpn as

5 Application to the inverse of a matrix

In this Section we consider obtaining analytical bounds lor the entries of the inverse of a
given matrix and simplifying the algorithms to compute numerical bounds and approxi-
mations.

We consider

and hence

and
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Therefore, the even derivatives are positive on [a, b] and the odd derivatives are negative
which implies that we can apply Theorems 3.1, 3.2 and 3.3.

Consider a dense non singular matrix A = (a;j);,j=i,...,m. We choose u = x0 = e;
and we apply the Lanczos algorithm. From results of the first iteration we can obtain
analytical results. The first step of the Lanczos algorithm gives us

Let s; be defined by

and let

Then

From this, we have

From this data, we compute the Gauss rule and get a lower bound on the diagonal element:

The lower bound is given by

Note that this bound does not depend on the eigenvalues a and 6.
Now, we consider the Gauss-Radau rule. Then,

the eigenvalues A are the roots of (u>i — A)(x — A) — 7^ = 0, which gives the relation

To obtain an upper bound we set A — a. The solution is
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For the Gauss-Lobatto rule, we have the same problem except that we want J-i to have
a and b as eigenvalues. This leads to solving the following linear system,

f

Solving this system and computing the (1.1) element of the inverse gives

Hence we have the following result.

Theorem 5.1 We have the following bounds

It is not too easy to derive analytical bounds from the block Lanczos algorithm as we
have to compute repeated inverses of 2 X 2 matrices.

It is much easier to use the non-symmetric Lanczos method with the Gauss-Radau
rule. We are looking at the sum of the ( i , i ) and ( i , j ) elements of the inverse. Let

Then, the computations are essentially the same as for the diagonal case.

Theorem 5.2 For (A~l)ij + (A~l)i:i we have the two following estimates

If t{ > 0, the first expression with a, gives an upper bound and the second one with b a
lower bound. Then, we have to subtract the bounds for the diagonal term to get bounds
on(A~1)ij.

The previous results can be compared with those obtained by other methods in [17].
Results can also be obtained for sparse matrices taking into account the sparsity structure.

In the computations using the Lanczos algorithm for the Gauss, Gauss-Radau and
Gauss-Lobatto rules, we need to compute the (1,1) element of the inverse of a tridiagonal
matrix. This may be done in many different ways, see for instance [13]. Here, we will
show that we can compute this element of the inverse incrementally as we go through the
Lanczos algorithm and we obtain the estimates for very few additional operations. This
is stated in the following theorem where bj stands for the bounds for Lanczos iteration j
and the LL>JS and the 7jS are generated by Lanczos.
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Theorem 5.3 The following algorithm yields a lower bound bj of A^1 by the Gauss
quadrature rule, a lower bound bj and an upper bound bj through the Gauss-Radau quadra-
ture rule and an upper bound bj through the Gauss-Lobatto rule.

Let X-\ = 0 and XQ = e^, u>i = an, 71 = ||(A — ii>i/)e,-||; b\ = u^1, d\ = w^, c\ = 1.
Ji = o>i - a, di = wi - b, xl = (A- w^eij^.

Then for j = 2 , . . . we compute
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Proof: We have from 3.4

LetXT
N = (0 . . . 0 7jv), so that

Letting

Therefore, it is clear that we only need the first and last elements of the last column of
the inverse of ,/jy. This can be obtained using the Cholesky decomposition of Jpf. It is
easy to check that if we define

When we put all these results together we get the proof of the Theorem.

The algorithm is essentially the same for the non-symmetric case. The modified
algorithm is the following, using fi = 1:

412
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413

We have the analog for the block case. For simplicity we only consider the Gauss rule.
TVl
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and

with

and

Here, we use the Sherman-Morrison-Woodbury formula (see [11]) which is a generalization
of the formula we used before. Then.

In order to compute all the elements, we need a block Cholesky decomposition of ,7^. We
obtain the following algorithm which gives a 2 X 2 matrix Bj, the block element of the
inverse that we need.

These recurrences for 2 x 2 matrices can be easily computed. Hence, the approxima-
tions can be computed as we apply the block Lanczos algorithm.

Given these algorithms to compute the estimates, we see that almost all of the oper-
ations are a result of the Lanczos algorithm. Computing the estimate has a complexity
independent of the problem size.

To compute a diagonal entry, the Lanczos algorithm needs per iteration the following
operations: 1 matrix-vector product, 47V multiplies and 47V adds. To compute two di-
agonal entries and a non diagonal one, the block Lanczos algorithm needs per iteration:
2 matrix-vector products, 97V multiplies. IN adds plus the QR decomposition which
is 87V flops (see [11]). The non-symmetric Lanczos algorithm requires per iteration: 1
matrix-vector product, 67V multiplies and 67V adds.

Therefore, if we only want to estimate diagonal elements it is best to use the Lanczos
algorithm. If we want to estimate a non diagonal element, it is best to use the block
Lanczos algorithm since we get three estimates in one run while for the non-symmetric
Lanczos method we need also to have an estimate of a diagonal element. The number
of flops is the same but for the block Lanczos we have three estimates instead of two
with the non-symmetric Lanczos. On the other hand, the non-symmetric Lanczos gives
bounds but the block Lanczos yields only estimates.

As we notice before, we can compute bounds for the non diagonal elements by consid-
ering |(e; + eJ-)

TA~1(e; + ej). For this, we need to run three Lanczos algorithms that is
per iteration: 3 matrix-vector products, 127V multiplies and 127V adds to get 3 estimates.
This no more operations than in the block Lanczos case but here, we can get bounds.
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With the non-symmetric Lanczos, we have 2 bounds with 2 matrix-vector products, 10JV
multiplies and 10JV adds.

One can ask why in the case of the inverse are we not solving the linear system

to obtain the r column of the inverse at once. To our knowledge, it is not possible then
to tell if the estimates are upper or lower bounds. Moreover this can be easily added to
the algorithm of Theorem 5.3.

Let QN = [ x 0 , . . . , ZA--I] be the matrix of the Lanczos vectors. Then we have the
approximate solution

where ypf is the solution of

This tridiagonal linear system can be easily solved incrementally from the LDLT decom-
position, see [11]. This yields a variant of the conjugate gradient algorithm. We give
numerical examples in Section 6 and show that our methods give better bounds.

6 Numerical examples

In this Section, we first describe the examples we use and then we give numerical results
for some specific functions /.

6.1 Description of the examples

First we look at examples of small dimension for which the inverses are known. Then,
we will turn to larger examples arising from the discretization of partial differential equa-
tions. Most of the numerical computations have been done with Matlab 3.5 on an Apple
Macintosh Powerbook 170 and a few ones on a Sun workstation.
Example 1.

First, we consider

This matrix has two distinct eigenvalues 1 and n + 1. Therefore, the minimal polynomial
is of degree 2 and the inverse can be written as

Example 2.
The entries of the Hilbert matrix are given by ., 1_1- We consider a matrix of dimension

5 which is

34

415



Matrices, moments, and quadrature (with Gerard Meurant)

The inverse of A(0) is

and the eigenvalues of A(0) are

Example 3.
We take an example of dimension 10,

It is easily seen (cf. [13]) that the inverse is a tridiagonal matrix

\

The eigenvalues of A are therefore distinct and given by

(0.2552, 0.2716, 0.3021, 0.3533, 0.4377, 0.5830, 0.8553, 1.4487, 3.1497, 12.3435).

Example 4-
We have
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whose inverse is

whose eigenvalues are

(0.0979, 0.8244, 2.0000, 3.1756, 3.9021).

Example 5.
We use a matrix of dimension 10 constructed with the TOEPLITZ function of Matlab,

This matrix has distinct eigenvalues but most of them are very close together:

(0.5683, 14.7435, 18.5741, 19.5048, 20.0000, 20.2292, 20.3702, 20.4462, 20.4875, 65.0763).

Example 6.
This example is the matrix arising from the 5-point finite difference of the Poisson

equation in a unit square. This gives a linear system

of order m2, where

each block being of order m and

For m = 6. the minimum and maximum eigenvalues are 0.3961 and 7.6039.

Example 7.
This example arises from the 5-point finite difference approximation of the following

equation in a unit square,
-div(aVu)) = /,

with Dirichlet boundary conditions. a(x, y) is a diagonal matrix with equal diagonal
elements. This element is equal to 1000 in a square ]l/4. 3/4[x]l/4, 3/4[. 1 otherwise.

For m = 6, the minimum and maximum eigenvalues are 0.4354 and 6828.7.
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6.2 Results for a polynomial function

To numerically check some of the previous theorems, / was chosen as a polynomial of
degree q,

We chose Example 6 with m = 6, that is a matrix of order 36.
1) We compute the (2. 2) element of f(A) and we vary the order of the polynomial.

In the next table, we give, as a function of the degree q of the polynomial, the value of N
to have an "exact" result (4 digits in Matlab) for the Gauss rule.

From these results, we can conclude that the maximum degree for which the results
are exact is q = 27V — 1, as predicted by the theory.

For the Gauss-Radau rule, we get

From this we deduce q = 2N as predicted.
For the Gauss-Lobatto rule, we have

This shows that q = 2JV + 1 which is what we expect.

2) If we consider the block case to compute the (3,1) element of the polynomial, we
get the same results, therefore the block Gauss rule is exact for the degree 2JV — 1. the
block Gauss-Radau rule is exact for degree 2N and the block Gauss-Lobatto is exact for

•-2N+1.

3) The same is also true for the non-symmetric Lanczos algorithm if we want to
compute the sum of the (3,1) and (3, 3) elements.

6.3 Bounds for the inverse

6.3.1 Diagonal elements

Now, we turn to some numerical experiments using Matlab on the examples described
above. Usually the results will be given using the "short" format of Matlab. In the
following results, Nit denotes the number of iterations of the Lanczos algorithm. This
corresponds to JV for the Gauss and Gauss-Radau rules and N — 1 for the Gauss-Lobatto
rule.

Example L

418
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Because of the properties of the matrix we should get the answer in two steps. We
have U)Q = 2 and 70 = n — 1, therefore, the lower bound from Gauss-Radau is ^^- and
the upper bound is ^-j-, the exact result. If we look at the lower bound from the Gauss
rule, we find the same value. This is also true for the numerical experiments as well as
for Gauss-Lobatto.

Example 2.
Let us consider (j4(0)"1)33 whose exact value is 79380. The Gauss rule, as a function

of the degree of the quadrature, gives
Results from Gauss rule

The Gauss-Radau rule gives upper and lower bounds. For a and 6. we use the com-
puted values from the EIG function of Matlab.

Results from the Gauss-Radau rule

Iw bnd

up bnd

Nit=l

23.74

257674

2

1801.77

216812

3

3666.58

202814

4

3559.92

79380

5

79380

79380

Results from Gauss-Lobatto rule

Nit=l

265330

2

216870

3

202860

4

79268

5

79380

The results are not as good as expected. The exact results should have been obtained
for Nit = 3. The discrepancy comes from round off errors, particular^ for the lower
bound, because of the eigenvalue distribution of A and a poor convergence rate of the
Lanczos algorithm in this case. To see how this is related to the conditioning of A. let
us vary a. For simplicity we consider only the Gauss rule. The following tables give
results for different values of a and the (3, 3) element of the inverse. The exact values are
(a = 0.01, 70.3949). (a = 0.1, 7.7793), (a = 1, 0.9054).

Lower bound from Gauss rule for a = 0.01

Nit=2

20.5123

3

69.7571

4

70.3914

5

70.3949

Lower bound from Gauss rule for a = 0.1

Nit=2

6.7270

3

7.7787

4

7.7793

5

7.7793

Lower bound from Gauss rule for a = 1

Nit=2

0.9040

3

0.9054

4

0.9054

5

0.9054

38
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We see that when A is well conditioned, the numerical results follow the theory. The
discrepancies probably arise from the poor convergence of the smallest eigenvalues of JN
towards those of A.

Example 3.
We are looking for bounds for (A~1)55 whose exact value is, of course, 2.

Lower bounds for (A~1)35 from the Gauss rule

Nit=l

0.3667

2

1.3896

3

1.7875

4

1.9404

5

1.9929

6

1.9993

7

2

Results for (A 1)ss from the Gauss-Radau rule

hi
b,

Nit=l

1.3430
3.0330

2

1.7627
2.2931

3

1.9376
2.1264

4

1.9926
2.0171

5

1.9993
2.0020

6

2.0117
2.0010

7

2
2

Upper bounds for (A 1)55 from the Gauss-Lobatto rule

Nit=l

3.1341

2

2.3211

3

2.1356

4

2.0178

5

2.0021

6

2.0001

7

2

In this example 5 or 6 iterations should be sufficient, so we are a little off the theory.

Example 4-
We look at bounds for (A^1)55 whose exact value is 4.5

Lower bounds for (A~l)55 from the Gauss rule

Nit=l
1

2

2

3

3

4

4

5

4.5

Lower and upper bounds for (A 1).3.5 from the Gauss-Radau rule

Iw bnd
up bnd

Nit=l

1.3910
5.8450

2

2.4425
4.7936

3

3.4743
4.5257

4

4.5
4.5

5

4.5
4.5

Upper bounds for (A 1)55 from the Gauss-Lobatto rule

Nit=l

7.8541

2

5.2361

3

4.6180

4

4.5

5

4.5

Example 5.
We get for (A~1)35. whose value is 0.0595,

Lower bounds for (A~1)j5 from the Gauss rule

Nit=l

0.0455

2

0.0511

3

0.0523

4

0.0585

5

0.0595

Lower and upper bounds for (A 1)55 from the Gauss-Radau rule

420
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lw bnd

up bnd

Nit = l

0.0508

0.4465

2

0.0522

0.0721

3

0.0582

0.0595

4

0.0595

0.0595

5

0.0595

0.0595

Upper bounds for (A 1)55 from the Gauss-Lobatto rule

Nit=l

1.1802

2

0.0762

3

0.0596

4

0.0595

5

0.0595

Because some eigenvalues are very close together, we get the exact answers a little
sooner than it is predicted by theory.

Example 6.
Consider m = 6. Then we have a system of order 36 and we look for bounds on

(/I"1)i8,18 whose value is 0.3515. There are 19 distinct eigenvalues, therefore we should
get the exact answer in about 10 iterations for Gauss and Gauss-Radau and 9 iterations
for Gauss—Lobatto.

Lower bounds for (A~1)i81is from the Gauss rule

Nit=l

0.25

2

0.3077

3

0.3304

4

0.3411

8

0.3512

9

0.3515

Lower and upper bounds for (A 1)is,i8 from the Gauss-Radau rule

lw bnd
up bnd

Nit=l

0.2811
0.6418

2

0.3203
0.4178

3

0.3366
0.3703

4

0.3443
0.3572

8

0.3514
0.3515

9

0.3515
0.3515

Upper bounds for (A 1)is,i8 from the Gauss-Lobatto rule

Nit=l

1.3280

2

0.4990

3

0.3874

4

0.3619

8

0.3515

Now. we consider m — 16 which gives a matrix of order 256. We want to compute
bounds for the (125,125) element whose value is 0.5604. In this case there are 129 distinct
eigenvalues, so we should find the exact answer in about 65 iterations at worst. These
computations for a larger problem have been done on a Sun Sparcstation 1 + . We find
the following results.

Lower bounds for (A~1)125,i25 from the Gauss rule

Nit=2

0.3333

3

0.3929

4

0.4337

5

0.4675

6

0.4920

7

0.5084

8

0.5201

9

0.5301

10

0.5378

20

0.5600

Lower and upper bounds for (A 1)i25,i25 from the G auss—Radau rule

lw bnd
up bnd

Nit=2

0.3639
1.5208

3

0.4140
1.0221

4

0.4514
0.8154

5

0.4804
0.7130

6

0.5006
0.6518

7
0.5146
0.6139

8

0.5255
0.5925

10

0.5414
0.5730

20

0.5601
0.5604
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Upper bounds for (A 1)i25,i25 from ike Gauss-Loballo rule

Nit=2

2.1011

3

1 .231 1

'1

0.8983

5

0.7585

6

0.6803

i

0.6310

8

0.6012

9

0.5856

10

0.5760

18

0.5604

We have very good estimates much, sooner than predicted. This is because there are
distinct eigenvalues which arc very close together.

We also ran two other examples with m = 10 and m = 20 that show that the number
ol iterations to reach a "correct," value with lour exacl digits grows like m. This can be
expected from the Lanczos method.

Example 7.
We took m = 6 as in the previous example. So we have a matrix of dimension 36.

The (2. 2) element of the inverse has an "exact" value of 0.3088 and there are 23 distinct
eigenvalues so that the exact answer should be obtained after 12 iterations but the matrix
is ill conditioned. We get the following results:

Lower bounds for (A~1)2,2 from the Gauss rule

Nit=1

0.25

2

0.2503

3

0.2510

4

0.2525

5

0.2553

6

0.2609

8

0.2837

10

0.2889

12

0.3036

15

0.3088

Lower and upper bounds for (A i)2 ?2 from the Gauss-Hadau rule

lw bnd

up bnd

Nit=2

0.2504

0.5375

3

0.2516

0.5202

4

0.2538

0.5121

5

0.2583

0.5080

6

0.2699

0.5060

7

0.2821

0.5039

g

0.2879

0.5013

10

0.2968

0.3237

12

0.3044

0.3098

15

0.3088

0.3088

tipper bounds for (A l}-2,2 from the Gauss-Lobatto rule

Nit=l

2.2955

2

0.5765

3

0.5289

4

0.5156

5

0.5093

6

0.5065

8

0.5020

10

0.3237

12

0.3098

15

0.3088

6.3.2 Non diagonal elements with no 11—symmetric Lanczos

Here, we use the non-symmetric Lanczos algorithm to get estimates on non diagonal
elements.

Example 1.
The matrix is of dimension n = 5. All the non diagonal elements are —1/6 = —0.1667

and the diagonal elements are equal to 0.8333.
We compute the SUTTI of the (2.2) and (2,1) elements (e.g. 6 = 1), thai is 0.6667.

With the Gauss rule, after 1 iteration we get 0.3333 and after 2 iterations 0.6667. With
Gauss Radau. we obtain the result in one iteration as well as with Gauss Lobatto.

We note that for 8 = 1, the measure is not positive but for 8 = 2 the measure is
positive and increasing.

Example 2.
Let us consider first the Hilbert matrix and (A(0)~1)2,i whose exact value is 79380.

We compute the sum of the (2.2) and (2.1) elements, (i.e. 6 = 1) that is 4500. The
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Gauss rule, as a function of the number of iterations, gives
Bounds from the non-symmetric Gauss rule

Nit=l

1.2

2

-21.9394

3

73.3549

4

667.1347

5

4500

Consider now the non-symmetric Gauss-Radau rule.

Bounds from the non-symmetric Gauss-Radau rule

bl
b2

Nit=l

-17.5899

144710

2

73.1917

155040

3

667.1277

51854

4

667.0093

4500

5

4500

1500

Bounds from the non-symmetric Gauss-Lobatto rule

Nit=l

142410

2

155570

3

51863

4

3789.2

5

4500

Note that the measure is positive and increasing therefore, we obtain a lower bound
with the Gauss rule, hi is a lower bound and 62 an upper bound with Gauss-R.adau and
Gauss-Lobatto gives an upper bound.

Again the results are not so good. Consider now the results of the non-symmetric
Gauss rule with a better conditioned problem by looking at A(0.l). The sum of the
elements we compute is 5.1389. In the last line we indicate if the product of the non
diagonal coefficients is positive (p) or negative (n). If it is positive we should have a lower
bound, an upper bound otherwise. Note that in this case, the measure is positive but not
increasing.

Estimates from the non-symmetric Gauss rule for a = 0.1

Nit=l

1.0714

P

2

6.1735
n

3

5.1341

P

4

5.1389

P

5

5.1389

P

We see that the algorithm is able to determine if it is computing a lower or an upper
bound.

Estimates from the non-symmetric Gauss-Radau rule

bl
b2

Nit=l

6.5225
5.0679

2

5.1338
5.2917

3

5.1389
5.1390

4

5.1389
5.1389

We remark that hi and 62 are alternatively upper and lower bounds.

Estimates from the non-symmetric Gauss-Lobatto rule

Nit=l

5.0010

2

5.3002

3

5.1390

4

5.1389
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Again, we do not have an upper bound with Gauss-Lobatto but the results oscillate
around the exact value. In this case, this can be fixed by using a value 8 = 3 that gives a
positive increasing measure.

Example 3.
We are looking for estimates for the sum of the (2, 2) and (2, f ) elements whose exact

value is 1. First, we use 8=1 for which the measure is positive but not increasing.

Estimates from the non-symmetric Gauss rule

Nit=l

0.4074

P

2

0.6494

P

3

0.8341

P

4

0.9512

P

5

0.9998

P

6

1.0004
n

7

1

P

Estimates from the non-symmetric Gauss-Radau rule

bf
b2

Nit=l

0.6181
2.6483

2

0.8268
1.4324

3

0.9488
1.0488

4

0.9998
1.0035

5

1.0004
1.0012

6

1.0001
0.9994

7

1
1

Estimates from the non-symmetric Gauss-Lobatto rule

Nit=l

3.2207

2

1.4932

3

1.0529

4

1.0036

5

1.0012

6

0.9993

7

0.9994

8

1

Here we have a small problem at the end near convergence, but the estimates are quite
good. Note that for 6 = 4 the measure is positive and increasing.

Example 4-
This example illustrates some of the problems that can happen with the non-symmetric

Lanczos algorithm. We would like to compute the sum of the (2,2) and (2,1) elements
that is 2. After 2 iterations we have a breakdown of the Lanczos algorithm as ~i'/3 = 0.
The same happens at the first iteration for the Gauss-Radau rule and at the second one
for the Gauss-Lobatto rule. Choosing a value of 6 different from 1 cures the breakdown
problem. We can obtain bounds with a value 8 = 10 (with a positive and increasing
measure). Then the value we are looking for is 1.55 and the results follow.

Bounds from the non-symmetric Gauss rule

Nit=l

0.5263

2

0.8585

3

1.0333

4

1.4533

5

1.55

Bounds from the non-symmetric Gauss-Radau rule

bl
b2

Nit=2

1.0011
1.9949

3

1.2771
1.5539

4

1.55
1.55

Bounds from the non-symmetric Gauss-Lobatto rule
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Nit=2

2.2432

3

1.5696

1

1.55

Example 5.
The sum of the (2. 2) and (2,1) elements is 0.6158.

Bounds from the 'non-symmetric Gauss rule

Nit=l

0.0417

P

2

0.0974

P

3

0.4764

P

1

0.6155

P

5

0.6158

P

Bounds from the non-symmetric Gauss-Radau rule

bl
b2

Nit=l

0.0847
0.9370

2

0.4462
0.6230

3

0.6154
0.6158

4

0.6158
0.6158

Bounds from the non-symmetric Gauss-Lobatto rule

Nit=l

1.1261

2

0.6254

3

0.6159

4

0.6158

Example 6.
We consider m = 6. then, we have a system of order 36 and we look for estimates of

the sum of the (2. 2) and (2,1) elements which is 0.4471. Remember there are 19 distinct
eigenvalues.

Bounds from the non-symmetric Gauss rule

Nit=l

0.3333

P

2

0.4000

P

3

0.4262

P

4

0.4369

P

5

0.4419

P

6

0.4446

P

7

0.4461

P

8

0.4468

P

9

0.4471

P

Bounds from the non-symmetric Gauss-Radau rule

bl
b2

Nit=l

0.3675
0.7800

2

0.4156
0.5319

3

0.1320
0.4690

4

0.1390
0.4537

5

0.4436
0.4490

6

0.4456
0.4476

7

0.1166
0.4472

8

0.4470
0.4472

9

0.4471
0.4471

Bounds from the non-symmetric Gauss-Lobatto rule

Nit=l

1.6660

2

0.6238

3

0.4923

1

0.4596

5

0.4505

6

0.4480

7

0.4473

8

0.4472

9

0.4472

10

0.4471

Example 7.
We took m = 6 as in the previous example. So we have a matrix of dimension 36.

The sum of the (2. 2) and (2,1) elements of the inverse is 0.3962 and there are 23 distinct
eigenvalues. We get the following results:

Bounds from the non-symmetric Gauss rule
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Nit=l

0.3333

P

2

0.3336

P

3

0.3310

P

4

0.3348

P

5

0.3363

P

6

0.3396

P

8

0.3607

P

10

0.3689

P

12

0.3899

P

15

0.3962

P

Bounds from the non-symmetric Gauss-Radau rule

bl
b2

Nit=2

0.3337
0.6230

3

0.3343
0.5930

4

0.3355
0.5793

5

0.3380
0.5725

6

0.3460
0.5698

8

0.3672
0.5660

10

0.3803
0.4078

12

0.3912
0.3970

15

0.3962
0.3962

Bounds from the non-symmetric Gauss-Lobatto rule

Nit=l

2.2959

2

0.6898

3

0.6081

4

0.5850

5

0.5746

6

0.5703

8

0.5664

10

0.4078

12

0.3970

15

0.3962

Finally, one can ask why we do not store the Lanczos vectors Xj and compute an
approximation to the solution of Au = e;. This can be done doing the following. Let

QN = [xo,- . . , :EJV-I].

If we solve
JNVN = ei,

then the approximate solution is given by QJVJ/W.
Unfortunately this does not give bounds and even the approximations are not as good

as with our algorithms. Consider Example 5 and computing the fifth column of the
inverse. For the element (1,5) whose "exact" value is 0.460, we find

Estimates from solving the linear system

Nit= 2

-0.0043

3

-0.0046

4

0.0382

5

0.0461

6

0.0460

By computing bounds for the sum of the (5,5) and (1-5) elements and subtracting the
bounds for the (5,5) element, we obtain

Bounds from the Gauss-Radau quadrature rules

lw bnd

up bnd

Nit= 2

0.0048

0.0551

3

0.0451

0.0473

4

0.0460

0.0460

We see that we get good bounds quite fast.

6.3.3 Non diagonal elements with block Lanczos

Here, we use the block Lanczos algorithm to get estimates on non diagonal elements.
Unfortunately, most of the examples are too small to be of interest as for matrices of
dimension 5 we cannot go further than 2 block iterations. Nevertheless, let us look at the
results.
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Example 1.
Consider a matrix of dimension n = 5. Then all the non diagonal elements are

-1/6 = -0.1667.
We compute the (2,1) element. With the block Gauss rule, after 2 iterations we get

—0.1667. With block Gauss-Radau, we get the exact answer in 1 iteration as well as with
Gauss-Lobatto.

Example 2.
The (2,1) element of the inverse of the Hilbert matrix A(0) of dimension 5 is —300.
With the block Gauss rule, after 2 iterations we find —90.968. Note that this is an

upper bound. With block Gauss-Radau, 2 iterations give —300.2 as a lower bound and
—300 as an upper bound. Block Gauss-Lobatto gives —5797 as a lower bound.

Now we consider A(O.l) for which the (2,1) element of the inverse is —1.9358. After 2
iterations, block Gauss gives —2.2059 a lower bound and block Gauss-Radau and Gauss-
Lobatto give the exact answer.

Example 3.
The (2,1) element is —1, the (3,1) element is 0. After 2 iterations we get the exact

answers with Gauss as well as with Gauss-Radau. Gauss-Lobatto gives —0.0609, a lower
bound. Three iterations give the exact answer.

Example 4-
The (2.1) element is 1/2. After 2 iterations, we have 0.3182 which is a lower bound.

Gauss-Radau gives 0.2525 and 0.6807. Gauss-Lobatto gives 0.7236 which is an upper
bound.

Example 5.
The (2,1) element is 0.2980. Two iterations give 0.2329. a lower bound and 3 iterations

give the exact answer. Gauss-Radau and Gauss-Lobatto also give the exact answer in 3
iterations.

Example 6.
This example uses n = 36. The (2,1) element is 0.1040. Remember that we should

do about fO iterations. We get the following figures.

Estimates from the block Gauss rule

Nit=2

0.0894

3

0.0974

4

O.fOOS

5

0.1024

6

0.1033

7

0.1037

8

0.1040

Estimates from the block Gauss-Radau rule

Nit=2

0.0931

0.1257

3

0.0931

0.1103

4

0.1017

0.1059

5

0.1029

0.1046

6

0.1035

0.1042

7

0.1038

0.1041

8

0.1040

0.1040

Estimates from the block Gauss-Lobatto rule

Nit=2

0.1600

3

0.1180

4

0.1079

5

0.1051

6

0.1041

7

0.1043

8

0.1041
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Note that here everything works. Gauss gives a lower bound, Gauss-Radau a lower
and an upper bound and Gauss-Lobatto an upper bound.

Example 7.
We would like to obtain estimates of the (2,1) whose value is 0.0874. We get the

following results.

Estimates from the block Gauss rule

Nit=2

0.0715

4

0.0716

6

0.0722

8

0.0761

10

0.0789

12

0.0857

14

0.0873

15

0.0874

Estimates from the block Gauss-Radau rule

Nit=2

0.0715

0.1375

4

0.0717

0.1216

6

0.0731

0.1184

8

0.0782

0.1170

10

0.0831

0.0894

12

0.0861

0.0876

14

0.0873

0.0874

15

0.0874

0.0874

Estimates from the block Gauss-Lobatto rule

Nit=2

0.1549

4

0.1237

6

0.1185

8

0.1176

10

0.0891

12

0.0876

14

0.0871

Note that in this example we obtain bounds. Now, to illustrate what we said before
about the estimates being 0 for some iterations, we would like to estimate the (36,1)
element of the inverse which is 0.005.

Estimates from the block Gauss rule

Nit=2

0.

4

0.

6

0.0023

8

0.0037

10

0.0049

11

0.0050

Estimates from the block Gauss-Radau rule

Nit=2

0.
0.

4

0.
0.

6

0.0023
0.0024

8

0.0037
0.0050

10

0.0049
0.0050

11

0.0050
0.0050

Estimates from the block Gauss-Lobatto rule

Nit=2

0.

4

0.

6

0.0022

8

0.0043

10

0.0050

6.3.4 Dependence on the eigenvalue estimates

In this sub-Section, we numerically investigate how the bounds and estimates of the
Gauss-Radau rules depend on the accuracy of the estimates of the eigenvalues of A. We
take Example 6 with m = 6 and look at the results given by the Gauss-Radau rule as a
function of a and b. R,emember that in the previous experiments we took for a and b the
values returned by the EIG function of Matlab.
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It turns out that the estimates are only weakly dependent of the values of a and b (for
this example). We look at the number of iterations needed to obtain an upper for the
element (18,18) with four exact digits and with an "exact" value of b. The results are
given in the following table.

a=10-4

15

iir2

13

0.1

11

0.3

11

0.4

8

1

8

6

9

We have the same properties when b is varied.
Therefore, we see that the estimation of the extreme eigenvalues does not seem to

matter very much and can be obtained with a few iterations of Lanczos or with the
Gerschgorin circles.

6.4 Bounds for the exponential

In this Section we are looking for bounds of diagonal elements of the exponential of the
matrices of some of the examples.

6.4.1 diagonal elements

Example 1
We consider the (2. 2) element whose value is 82.8604. With Gauss, Gauss-Radau and

Gauss-Lobatto we obtain the exact value in 2 iterations.
Example S

We would like to compute the (3.3) element whose value is 1.4344. Gauss gives the
answer in 3 iterations. Gauss-Radau and Gauss-Lobatto in 2 iterations.
Example 3

The (5,5) entry is 4.0879 104. Gauss obtains the exact value in 4 iterations, Gauss-
Radau and Gauss-Lobatto in 3 iterations.
Example 6

We consider the (18,18) element whose value is 197.8311. We obtain the following
results.

Lower bounds from the Gauss rule

Nit=2

159.1305

3

193.4021

4

197.5633

5

197.8208

6

197.8308

7

197.8311

Lower and upper bounds from the Gauss-Radau rule

Iw bnd

up bnd

Nit=2

182.2094
217.4084

3

196.6343
199.0836

4

197.7779
197.8821

5

197.8296
197.8325

6

197.8311
197.8311

Upper bounds from the Gauss-Lobatto rule

Nit=2

273.8301

3

203.4148

4

198.0978

5

197.8392

6

197.8313

7

197.8311
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We remark that to compute diagonal elements of the exponential the convergence rate
is quite fast.

6.4.2 non diagonal elements

Here we consider only Example 6 and we would like to compute the element (2,1) whose
value is —119.6646. First, we use the block Lanczos algorithm which give the following
results.

Results from the block Gauss rule

Nit=2

-111.2179

3

-119.0085

4

-119.6333

5

-119.6336

6

-119.6646

Results from the block Gauss-Radau rule

bl
b2

Nit=2

-115.9316
-122.2213

3

-119.4565
-119.7928

4

-119.6571
-119.6687

5

-119.6644
-119.6647

6

-119.6646
-119.6646

Results from the block Gauss-Lobatto rule

Nit=2

-137.7050

3

-120.6801

4

-119.7008

5

-119.6655

6

-119.6646

Now, we use the non-symmetric Lanczos algorithm. The sum of the (2. 2) and (2,1)
elements of the exponential is 73.9023.

Results from the non-symmetric Gauss rule

Nit=2

54.3971

3

71.6576

4

73.7637

5

73.8962

6

73.9021

7

73.9023

Results from the non-symmetric Gauss-Radau rule

bl
b2

Nit=2

65.1847

84.0323

3

73.2896

74.6772

4

73.8718

73.9323

5

73.9014

73.9014

6

73.9023

73.9023

Results from the non-symmetric Gauss-Lobatto rule

Nit=2

113,5085

3

77.2717

4

74.0711

5

73.9070

6

73.9024

7

73.9023

6.5 Bounds for other functions

When one uses domain decomposition methods for matrices arising from the finite differ-
ence approximation of partial differential equations in a rectangle, it is known that the
matrix
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where T is the matrix of the one dimensional Laplacian. is a good preconditioner for the
Schur complement matrix, ft is interesting to see if we can estimate some elements of the
matrix A to generate a Toeplitz tridiagonal approximation to A.

We have

and we choose an example of dimension f 00. We estimate the (50, 50) element whose
exact value is 1.6367 with the Gauss-Radau rule. We obtain the following results.

Estimates from the Gauss-Radau rule

Iw

up

Nit=2

1.60M
f.6569

3

1.6196
1.6471

4

1.6269
1.6430

5

1.6305
1.6409

10

1.6355
1.6378

15

1.6363
1.6371

20

1.6365
1.6369

We estimate the non diagonal elements by using the block Gauss rule. We choose the
(49,50) element.

Estimates from the block Gauss rule

Nit=2

-0.6165

3

-0.6261

4

-0.6302

5

-0.6323

10

-0.6354

15

-0.6361

20

-0.6363

Now, we construct a Toeplitz tridiagonal matrix C whose elements are chosen From
the estimates given at the fifth iteration. We took the average of the Gauss-Radau values
for the diagonal (1.6357) and —0.6323 for the non diagonal elements. We look at the
spectrum of C~l A. The condition number is 13.35 the minimum eigenvalue being 0.0837
and the maximum one being 1.1174, but there are 86 eigenvalues between 0.9 and the
maximum eigenvalue. Therefore, the matrix C (requiring only 5 iterations of some Lanczos
algorithms) seems to be a good preconditioner for A which is itself a good preconditioner
for the Schur complement.

7 Conclusions

We have shown how to obtain bounds (or in certain cases estimates) of the entries of
a function of a symmetric positive definite matrix. The proposed algorithms use the
Lanczos algorithm to estimate diagonal entries and either the non—symmetric Lanczos or
block Lanczos algorithms for the non diagonal entries.

The algorithms are particularly simple for the inverse of a matrix. Analytical bounds
are derived by considering one or two iterations of these algorithms. We have seen in the
numerical experiments that very good approximations are obtained in a few iterations.
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COMPUTATION OF GAUSS-KRONROD QUADRATURE
RULES (WITH D. CALVETTI, W.B. GRAGG AND

L. REICHEL)

MATH. COMP. (69): 231, 1035-1052 (2000).

If I think about the genesis of this paper, my semester at Stanford in 1995 comes to
mind right away. For the mathematical orphan that I was, since my advisor, Peter
Henrici died before I completed my PhD, the opportunity to spend a semester at
Stanford was a truly unique opportunity. As Gene and I team-taught a seminar course
on quadrature rules, linear algebra, and large-scale computations, I discovered more
charming aspects of quadrature rules than I thought there could be. I must admit that
when Gene first talked about the importance of Gauss-Kronrod rules in estimating
errors in numerical integration, I thought that, for sure, I would neverbe caught working
on such a dull topic. Well, soon enough I started seeing quadrature rules everywhere,
and their elegance and secret connections with nearly everything began to get hold of
me. Even Gauss-Kronrod quadrature rules, until then quickly dismissed even from my
teaching, started to show their discrete charm. Well, never say never!

During my semester at Stanford, Lothar Reichel visited quite regularly and often
Bill Gragg come up from Monterey. Appropriately interlaced with colorful stories from
that life that normal people would never suspect mathematicians would have and the
interruptions of my two trailing-along young children, we managed to talk about Gauss-
Kronrod rules, linear algebra, and efficient and stable calculations of nodes and weights
- all the ingredient which ended up being the paper. A few months ago, while looking
for some information for a student, I saw that this paper is now used by Mathematica
in the error control for numerical integration and all of a sudden I smelled the scent of
rosemary hedges on the Stanford campus.

Daniela Calvetti
Cleveland, Ohio, USA

This paper illustrates Gene Golub's well-known ability to identify important problems
that have an elegant solution. Gene has throughout his career provided beautiful solu-
tions to a large number of significant computational problems and thereby made many
important contributions to scientific computing. Several of Gene's papers use proper-
ties of orthogonal polynomials and Gauss quadrature in a linear algebra context. By
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exploiting the connections between linear algebra and orthogonal polynomials, Gene
has been able to develop many elegant, significant, and powerful numerical methods.

The computation of Gauss-type quadrature rules has been one of Gene Golub's
enduring interests. Let du) be a nonnegative measure on the real axis, and let Tn be
the symmetric tridiagonal matrix determined by the recursion coefficients for the first
n orthonormal polynomials with respect to this measure. The eigenvalues of Tn are the
nodes of the n-point Gauss quadrature rule Gn associated with duj, and the weights of
Gn are the squares of the first components of normalized eigenvectors. In 1969 Gene
published a variant of the QR algorithm for computing the nodes and weights of Gn

from the recursion coefficients of the associated orthogonal polynomials in only O(n )
arithmetic floating point operations. This algorithm, known as the Golub-Welsch algo-
rithm, is discussed by Gautschi in this volume. In 1973 Gene described how to determine
the symmetric tridiagonal matrices associated with Gauss-Radau and Gauss-Lobatto
quadrature rules from the recursion coefficients of the associated orthogonal polyno-
mials. This elegant work makes it possible to apply the Golub-Welsch algorithm to
determine the nodes and weights of n-point Gauss-Radau and Gauss-Lobatto quadra-
ture rules in only O(n2) arithmetic floating point operations.

Gene Golub's experience with Gauss-type quadrature rules helped him to see the
possibility of developing a new method for the computation of Gauss-Kronrod quadra-
ture rules. In the fall of 1996 Gene sent me a postscript file for a new elegant paper by
Laurie on the computation of Gauss-Kronrod quadrature rules. Let Gn be the n-point
Gauss quadrature rule introduced above and let Kin+i denote the associated (2n + 1)-
point Gauss-Kronrod rule. Typically, one is interested in Gauss-Kronrod rules with
real nodes, n of which agree with the nodes of Gn. The remaining n +1 nodes of Kin+i
are interlaced by the nodes of Gn. There is a (2n + 1) x (2n + 1) symmetric tridiagonal
matrix S2n+i associated with -R^n+i, such that its eigenvalues are the nodes and the
squares of the first components of normalized eigenvectors are the weights of .fGn+i-
The matrix Sin+i is not explicitly known. It is fairly easy to see that the leading princi-
pal nxn submatrix of Sin+i is Tn, and Laurie showed that the trailing nxn principal
submatrix of Sin+i is similar to Tn. This observation is the basis of Laurie's algorithm
for computing S^n+i- The nodes and weights of the Gauss-Kronrod rule can then be
determined from S2n+i by the Golub-Welsch algorithm.

It is particularly nice to make progress on a paper in a nonstandard environment
away from the office. Daniela and I did some of the work on this project with Gene
during a sunny summer day at Geauga Lake, an amusement park between Cleveland
and Kent, while water rides kept our kids, Alex and Rebecca, busy. Our new method for
computing Gauss-Kronrod quadrature rules is based on formulas known from divide-
and-conquer methods for the symmetric tridiagonal eigenvalue problem, and allows the
computation of the nodes and weights of A^n+i without forming S^n+i- Bill Gragg got
involved in this project because he had already written Matlab code for the particular
divide-and-conquer method required in our method.

Laurie's algorithm, as well as our method, requires the Gauss-Kronrod rule to have
2n+l real distinct nodes. Ammar, Daniela Calvetti, and I later described a modification
of Laurie's algorithm that allows complex conjugate nodes. There are some interesting
open questions regarding Gauss-Kronrod rules with complex nodes. Maybe some day
these questions will be investigated, e.g., in an amusement park.

Lothar Reichel
Kent, Ohio, USA
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COMPUTATION OF GAUSS-KRONROD QUADRATURE RULES

D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. REICHEL

ABSTRACT. Recently Laurie presented a new algorithm for the computation
of (2n + l)-point Gauss-Kronrod quadrature rules with real nodes and positive
weights. This algorithm first determines a symmetric tridiagonal matrix of or-
der 2n +1 from certain mixed moments, and then computes a partial spectral
factorization. We describe a new algorithm that does not require the entries of
the tridiagonal matrix to be determined, and thereby avoids computations that
can be sensitive to perturbations. Our algorithm uses the consolidation phase
of a divide-and-conquer algorithm for the symmetric tridiagonal eigenprob-
lem. We also discuss how the algorithm can be applied to compute Kronrod
extensions of Gauss-Radau and Gauss-Lobatto quadrature rules. Throughout
the paper we emphasize how the structure of the algorithm makes efficient
implementation on parallel computers possible. Numerical examples illustrate
the performance of the algorithm.

1. INTRODUCTION

Let dw be a nonnegative measure on the real interval [a, b] with an infinite
number of points of increase, and such that the moments Hk := fa xkdw(x), k =
0,1,2,... , exist and are bounded. For notational convenience, we assume that
rt) = 1- An n-point Gauss quadrature rule for the integral

is a formula of the form

with the nodes a < x\ < x^ < • • • < xn < b and positive weights Wk chosen so that
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Here and throughout this paper Pj denotes the set of polynomials of degree at most
j. The associated Gauss-Kronrod quadrature rule

has the properties that

and

We present a new algorithm for the computation of Gauss-Kronrod quadrature
rules with real nodes and positive weights when such rules exist. Our algorithm
is based on recent results by Laurie [12] on properties of symmetric tridiagonal
matrices associated with Gauss-Kronrod rules.

In typical applications of Gauss-Kronrod quadrature rules, both Qnf and Kzn+if
are evaluated, and this pair of approximations of If is used to estimate the error in
Qnf. Applications in adaptive quadrature routines can be computationally demand-
ing, and therefore it is important to develop accurate and fast algorithms that are
well suited for implementation on a parallel computer for the computation of nodes
and weights of Gauss-Kronrod rules; see [4, 8, 15] for recent discussions. Surveys of
properties of Gauss-Kronrod quadrature rules are presented by Gautschi [7], Laurie
[12] and Monegato [14]; see also Golub and Kautsky [9] for related discussions.

Let {pj}JL0 be a sequence of monic orthogonal polynomials with respect to the
inner product

i.e.,

The PJ satisfy the recursion relations

with coefficients

Note that (po,po) = Mo = 1- It follows from (I'll) that

Define the positive quantities && := (6|)1//2, k > I. We refer to the a/t and bk as
recursion coefficients for the family of orthogonal polynomials (1.9). The 2n — 1
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coefficients {afc}fc=o and {6fe}^Zj determine the symmetric tridiagonal matrix

with spectral factorization

Due to the positivity of the off-diagonal entries bk, the eigenvalues \j are distinct
and all entries of the first row of Wn are nonvanishing. Moreover, it is well known
that the nodes and weights of the Gauss rule (1.2) are given by

where e.j denotes the jth axis vector; see, e.g., [10]. We refer to the sets of
eigenvalues and first or last components of normalized eigenvectors of a matrix
as partial spectral resolution of the matrix. The sets {Ay}™=1 U {ej'Wnej}'j'=1and
{Xj}"=1U {e^Wnej}™=i partial spectral resolutions of Tn. We will assume that
the recursion coefficients ctj and bj are available. The nodes and weights (1.15)
of the Gauss rule can then be computed in 0(n2) arithmetic operations by the
Golub-Welsch algorithm [10].

Our algorithm for the computation of the nodes and weights of the Gauss-
Kronrod rule (1.4) requires that the last entries of the normalized eigenvectors
of Tn also be available. These can be computed.simultaneously with the Gauss
weights by modifying the Golub-Welsch algorithm in a straightforward manner.
The operation count for the modified algorithm is also 0(n2). The eigenvalues
and first and last components of normalized eigenvectors can also conveniently be
determined by one of the divide-and-conquer algorithms for the symmetric tridi-
agonal eigenproblem presented by Borges and Gragg [3] or Gu and Eisenstat [11].
These algorithms also require £>(n2) arithmetic operations, and with n processors
the computations can be carried out in O(n) time steps.

Laurie [12] pointed out that if the Gauss-Kronrod rule (1.4) has distinct real
nodes {S/c}2.""^1 and positive weights {tUfc}2,™"!1, then there is an associated sym-
metric tridiagonal matrix

438
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such that

analogously to (1.15). We refer to the matrix (1.16) as the Gauss-Kronrod matrix.
Let the nodes be ordered according to x\ < x% < • • • < X2n+i- Monegato [13]
showed that the positivity of the weights Wk associated with nodes Xk £ { '̂}"=i is
equivalent with the interlacing property

Proposition 1.1 (Laurie [12]). Let Tn and Tn denote the leading and trailing n x
n principal submatrices of f^n+i, respectively. Then Tn and Tn have the same
eigenvalues. Moreover, for n odd,

and, for n even,

Proof. Formulas (1.18) and (1.19) express that the first 3n + 1 coefficients of the
matrices Tbn+i and Tsn+i agree. This result follows immediately from (1.6). In
particular, fn= Tn.This observation and the fact that {A.,-}y=1C{Ajjfil1

implies that fnand fnavehesamespectrum,as can be seen by expanding
det(T2n+i — A7) along the (n + l)st row; see [12] for details. D

It follows from Proposition 1.1 that the existence of a Gauss-Kronrod quadrature
rule with real distinct nodes and positive weights is equivalent to the existence of
a real solution to the following inverse eigenvalue problem.

Corollary 1.2. Let the first n — \ entries of the n x n symmetric tridiagonal matrix

be determined by (1.18) when n is odd, and fry'(1.19) when n is even. Let the
eigenvalues ofTnbetheeigenvalueshematrix1.13).Tre is a real symmetric
tridiagonal matrix Tn with these properties if and only if there is a (2n + l)-point
Gauss-Kronrod quadrature rule (1.4) with real nodes and positive weights.

Example 1.1. Let n = 1. The entries {<i,}j=0 and {bj}?=1 of the Gauss-Kronrod
matrix TS are recursion coefficients for the orthogonal polynomials associated with
the measure dw. The entry marked by * is not explicitly known,

However, by Proposition 1.1, 02 = QO- In particular, any 3-point Gauss-Kronrod
rule associated with a 1-point Gauss rule has real nodes and positive weights. D



Equations (1.22) and (1.23) yield 04 = 0 and 64. = 1/2. The eigenvalues and
eigenvectors of this matrix are explicitly known, and we obtain the 5-point Gauss-
Kronrod rule

D

This paper describes a new algorithm for computing Gauss-Kronrod quadrature
rules with real nodes and positive weights. The algorithm first determines the
eigenvalues as well as the first and last components of normalized eigenvectors of
the matrix Tn. This yields, in particular, the Gauss quadrature rule (1.15). The
algorithm then proceeds by computing the first components of normalized eigen-
vectors of the matrix Tn defined in Proposition 1.1. This is described in Section 2.
When n is even, we use a method proposed by Boley and Golub [2]. For n odd,
we apply a closely related method. We remark that our algorithm does not ex-
plicitly determine the tridiagonal matrix (1.20). After these initial calculations,
a consolidation step of the divide-and-conquer algorithm presented by Borges and
Gragg [3] is used to determine the eigenvalues and first components of normal-
ized eigenvectors of the matrix (1.16), and by (1.17) we obtain the Gauss-Kronrod
rule. Relevant details of the divide-and-conquer method are discussed in Section 3.
Our algorithm determines the (2n + l)-point Gauss-Kronrod rule (1.17) from the
recursion coefficients a,j and bj in only 0(n2) arithmetic operations, and with n

440
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Example 1.2. Let n = 2. The entries {aj}?_0 and {bj}?=1 of the Gauss-Kronrod
matrix T$ are recursion coefficients for orthogonal polynomials associated with the
measure dw, but the entries marked by * are not explicitly known,

By Proposition 1.1 the leading and trailing principal 2 x 2 submatrices of T$ have
the same trace. This yields the equation

for 04. The determinants of the leading and trailing principal 2 x 2 submatrices are
also the same, and this gives the equation

for 64. When (1.23) is satisfied by a real positive value of 64, a Gauss-Kronrod rule
with real nodes and positive weights exists. D

Example 1.3. Let [a, 6] = [-1,1] and dw(x) := f (1 - z2)1/2^. Then the Gauss-
Kronrod matrix (1.21) has the known entries
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processors only O(ri) time steps are required. Section 4 describes how the algo-
rithm of Section 3 can be applied to the computation of Gauss-Kronrod-Radau and
Gauss-Kronrod-Lobatto rules. These rules are Kronrod extensions of Gauss-Radau
and Gauss-Lobatto rules, respectively, and find application in adaptive composite
quadrature rules. Section 5 contains numerical examples.

When only the measure dw but not the recursion coefficients dj and bj are
available, the latter can be computed by (1.10) and (1.11). It may be attractive
to evaluate necessary inner products by a Clenshaw-Curtis quadrature rule; see
Gautschi [6] for a discussion.

Laurie [12] presented another algorithm for the computation of (2n + l)-point
Gauss-Kronrod rules in 0(i2) arithmetic operations. This algorithm first deter-
mines certain mixed moments from which the symmetric tridiagonal matrix (1.16)
is determined. The Gauss-Kronrod nodes and weights are then determined by
applying the Golub-Welsch algorithm to the matrix (1.16).

Our algorithm avoids the explicit determination of the matrix (1.16). Experience
from related problems indicates that the computation of the entries of Tzn+i can
be sensitive to round-off errors; see, e.g., [5].

2. COMPUTATION OF EIGENVECTOR COMPONENTS OF

We consider the determination of the first components of normalized eigenvectors
of the real symmetric tridiagonal matrix (1.20), which is the trailing principal n x n
submatrix of the Gauss-Kronrod matrix (1.16). The n — 1 first entries of Tn are
given by (1.18) or (1.19). The remaining diagonal and subdiagonal matrix entries
are not known. The matrix (1.20) is required to- have the same eigenvalues AI <
\2 < ... < An as Tn. We assume for the moment that such a real symmetric
tridiagonal matrix Tn with positive subdiagonal elements exists.

We first outline a method due to Boley and Golub [2] that can be applied when
n is even. A modification of this method, described below, can be used for n odd.

Recall that the matrix Tn is associated with a positive measure dw with support
in a real interval [0,6] and with the quadrature rule (1.15). Similarly, we may
associate with the matrix Tn a nonnegative measure dw with support in a real
interval [a, b] and such that Jg dw(x) — 1. The eigenvalues A.,- and squares of the
first components of normalized eigenvectors uij define a quadrature rule {\j,Wj}™=1

associated with the matrix Tn, such that

We remark that we may choose dw to be the discrete measure defined by the
quadrature rule {Aj,w.j}™=1.

Let n be even. Then the entries of the leading principal submatrix Tn/2 €
jjn/2xn/2 are expijcjtiv known. Let {x*j, U)*}j4i be the Gauss quadrature rule asso-
ciated with the matrix Tn/2, i.e., the x*j are eigenvalues and the w*j are the square
of the first components of normalized eigenvectors of Tn/2; cf. (1.15). Both quad-
rature rules {x'jiWj}™^! .and {\j,ii]j}™=l can be regarded as discretizations of the

441
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measure dw. Thus,

and we obtain
i/2 n

(2.4) ^4(**K = £>fc(A,-H- = Wk, l<k<n.
3=1 3=1

We remark that the equations (2.2) can be formulated as a linear system of equa-
tions with a Vandermonde matrix for the weights Wj. Numerical experiments re-
ported in [5] indicate that the weights Wj are computed more accurately by formula
(2.4).

We assumed above that a real symmetric tridiagonal matrix Tn with positive sub-
diagonal elements, with given spectrum {Aj}^=1 and with a given leading n/2 x n/2
principal submatrix exists. However, this is not always the case. For instance, when
dw(x) = e~xdx and [a, b] = [0, oo], the matrixnis for many values of n complex
symmetric, with real diagonal entries and at least one purely imaginary subdiago-
nal element. The measure dw associated with such a matrix Tn is indefinite, and
at least one weight Wj is negative. A numerical method for computing complex
symmetric tridiagonal matrices of even order n with real diagonal entries and real
or purely imaginary subdiagonal entries, given its real distinct eigenvalues and its
real symmetric tridiagonal leading principal submatrix of order n/2, is described in
[5].

The present paper is concerned with the computation of Gauss-Kronrod rules
with distinct real nodes and positive weights, and by Corollary 1.2 we may restrict
our attention to real symmetric tridiagonal matrices Tn with positive subdiagonal
entries. In particular, we are only concerned with the case when the weights Wj are
positive.

When n is odd, the algorithm described above has to be modified. The entries
{<ij}j=n+and {bj}j=n+2°f ^n areknown.The largest leading k x k principal
submatrix of Tn with all entries explicitly known is of order k = (n — l)/2, and the
Gauss rule associated with this submatrix is not of high enough order to allow the
matching of n moments, analogously to (2.2). Therefore a formula similar to (2.4)
cannot be applied before some preliminary calculations have been carried out.

The computations are divided into two steps. First we compute the diagonal
entry a^n+i)/!- Then the leading principal submatrix of order (n + l)/2 of Tn is
known, and we can compute the weights Wj by a formula analogous to (2.4).

Let {piYj^Qbe the first (n + l)/2 monic orthogonal polynomials associated
with the inner product

442

The equations (2.2) can be expressed in terms of the Lagrange polynomials

1041
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These polynomials can be computed from the available recursion coefficients. The
desired diagonal entry of Tn is given by

where

Note that

(2.5)

and that xpJn_^,2(x) — pn(x) G Pn_i. The latter polynomial can be written as

for certain coefficients Ck- Integrating (2.6) and using the orthogonality of the
polynomials pj yields

and therefore 

It remains to determine the coefficients Cn—\ and CQ. Note that cn_i is the leading
coefficient of the polynomial xpjn_i^,,i(x) — pn(

x) m power form. Straightforward
expansion in terms of powers of x yields

and

Therefore

Comparison with (2.6) shows that

(2.8)

We turn to the computation of the coefficient CQ. Determine the Gauss quadra-
ture rule {Xj, Wj }^™7 associated with the leading principal ^^ x I^i submatrix
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of Tn, all of whose entries are known. We then apply this quadrature rule to the
right-hand side and left-hand side of (2.6) to obtain

where pn is given by (2.5). In the derivation of (2.9), we have used that the nodes
x"j are the zeros of p(n-i)/2, and that by orthogonality

Thus, we can evaluate the coefficient fi(sn+i)/2 by using formulas (2.7)-(2.9).
The leading principal ^^- x ^^- submatrix of Tn is now explicitly known, and

we can determine the weights Wj analogously as when n is even. Thus, compute
the Gauss rule {xf^w'jYjL-^ associated with the leading principal submatrix of
Tn of order (n + l)/2. Analogously to (2.2), we obtain

which, similarly to (2.4), yields the formula for the weights

where the Lagrange polynomials (.^ are given by (2.3).
The computations described in this section require O(n2) arithmetic operations

and can be carried out in O(n) time steps by n processors when a divide-and-
conquer method is used for computing the required quadrature rules.

3. COMPUTATION OF GAUSS-KRONROD RULES

We assume in this section that the eigenvalues and the last components of nor-
malized eigenvectors of the matrix Tn, as well as the first components {w^ }"=1 of
normalized eigenvectors of the matrix Tn, are available. The computation of these
quantities is discussed in the previous sections. Recall that the matrices Tn and
Tn have the same eigenvalues. We are now in a position to apply the consolidation
phase of the divide-and-conquer algorithm described in [3] to determine the eigen-
values and first components of normalized eigenvectors of T2n+i. The associated
Gauss-Kronrod rule is then obtained from (1.17).

The Gauss-Kronrod matrix (1.16) can be written as

444

The matrix Tn has the spectral factorization
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where A^ is defined by (1.14). Introduce

Then

Note that the entries of the vectors e^Wn and e\Wn are known. The matrix on
the right-hand side is the sum of a diagonal matrix and a Swiss cross

which we permute to an arrow matrix by a similarity transformation with the per-
mutation matrix P(n+1) = [ei,e2,... ,en,en+2,... ,e^n,en+l] e R(2"+i)x(2n+i)_
Thus,

(3.3)

where the matrix G e R(2n+1)x(2rl+1) ig made up of the product of the n rotations
applied to the matrix (3.3) from the right, and the vector c = [71,72,... , jn] € K"
consists of the entries in positions n + 1 through 2n of the vector

((F[bnt£Wn,bn+1eZWn,an])T.

The right-hand side of (3.4) shows that the matrix Ty-n+i has the diagonal entries
of An as eigenvalues, and these are the nodes of the Gauss rule (1.2). Thus, the
computed nodes of the Gauss and Gauss-Kronrod quadrature rules satisfy (1.5).

The remaining n+1 eigenvalues of T^n+i are eigenvalues of the trailing principal
(n + 1) x (n + 1) submatrix of the matrix (3.4), which for A £• {xj}"=1 can be
factored according to

445

We apply rotation similarity transformations to rows j and j+n, for j = 1,2,... , n,
in order to annihilate the first n entries of row and column 2re + 1. This process is
sometimes referred to as combo-deflation and yields
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where / is the spectral function

The n+ 1 distinct zeros of / are the Gauss-Kronrod nodes {xy-i}"^, and they
interlace the Gauss nodes {xj}™=l. A zero finder that yields sequences of cubically
and monotonically convergent approximations of the zeros of / is described in [3].
The computation of the eigenvalues requires £>(n2) arithmetic operations. Given
the eigenvalues of T^n+i, the first components of normalized eigenvectors also can
be determined in O(n2) arithmetic operations; see [3] for details. These components
are computed by an approach suggested by Gu and Eisenstat; see [11] and references
therein. Only O(n) time steps are required when n processors are available.

The computations required to compute an n-point Gauss quadrature rule and
the associated (2n + l)-point Gauss-Kronrod rule are summarized in the following
algorithm.

Algorithm 1. Computation of Gauss and Gauss-Kronrod rules.
• Input: n, first 3n + 1 recursion coefficients 00,61,01,62,... for orthogonal

polynomials associated with a positive measure dw scaled so that /^o = 1.
• Output: n-point Gauss rule {xj, Wj}™=1 and associated (2n+l)-point Gauss-

Kronrod rule {xjjWj}?^.
• Compute eigenvalues as well as first and last components of normalized eigen-

vectors of the tridiagonal matrix Tn. The eigenvalues and first components of
the eigenvectors yield the Gauss quadrature rule {xj, Wj }"=1 associated with
the measure dw.

• Compute weights {wj}"=1 of trailing n xn principal submatrix Tn as described
in Section 2.

• The entries of row and column n + 1 of the matrix T^n, the eigenvalues and
last component of normalized eigenvectors of Tn and the square-root of the
weights {wj}™=l are used to compute the Gauss-Kronrod rule {xj, i2J}|"1 by
application of a consolidation step of a divide-and-conquer algorithm. D

4. GENERALIZED GAUSS-KRONROD QUADRATURE RULES

This section discusses the computation of Gauss-Kronrod rules with one or two
preassigned nodes. We refer to these quadrature rules as Gauss-Kronrod-Radau and
Gauss-Kronrod-Lobatto rules, respectively. Properties of these rules are discussed
by Gautschi [7].

4.1. Gauss-Kronrod-Radau rules. Let dw be the nonnegative measure intro-
duced in Section 1. An (n + l)-point Gauss-Radau quadrature rule for the integral
(1.1) with a fixed node at x = a is a formula of the form

with nodes a = zo,a < #i,a < • • • < xn^a < b and positive weights Wk,a chosen so
that
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The associated Gauss-Kronrod-Radau quadrature rule

has the properties that

and

In addition, we would like the weights uik,a to be positive and the nodes Xk,a to
satisfy a = xo,a < £i,a < • ' • • < cc2n+i,a- The "free" nodes {xk,a}%=i of the Gauss-
Radau rule (4.1) are zeros of the nth degree orthogonal polynomial associated with
the measure

see, e.g., [9]. Analogously, Gautschi [7] showed that the nodes {ifc.u}!**^1 of the
Gauss-Kronrod-Radau rule (4.2) are nodes of a (2n+l)-point Gauss-Kronrod quad-
rature rule

associated with the measure (4.4). We apply Algorithm 1 to compute the nodes x'k
and weights w'k of (4.5) and thereby the nodes Xk,a, of the Gauss-Kronrod-Radau
rule (4.2). The following proposition shows how to compute the weights W],^ of
(4.2) from the weights w'k.

Proposition 4.1. Let {uJj.}^^1 be the weights of the Gauss-Kronrod quadrature
rule (4.5) associated with the measure (4.4). The weights Wk,a of the (2n + 2)-pozrai
Gauss-Kronrod-Radau rule (4.2) associated with tKe measure dw are given by

Proof. Introduce the Lagrange polynomials

and

447

for 1 < k < In + I . It follows from (4.3)-(4.5) that

for 1 < k < In + 1. The formula for Wota follows from X)fcio Wk,a = Ja dw(x). D
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Algorithm 1 requires the first 3ra + 1 recursion coefficients a'0, &i, o^,.. . for the
orthogonal polynomials with respect to the measure (4.4). When dw is a measure
of Jacobi-type

then so is dw', and explicit formulas for the recursion coefficients a'j and b'j are
available; see, e.g., [16]. The scaling factor CD, where

and B denotes the beta function, secures that no = I.
When dw is not of Jacobi-type and recursion coefficients a, and bj for orthogonal

polynomials associated with the measure dw are available, a scheme by Golub and
Kautsky [9] can be used to compute recursion coefficients a'j and b'j for orthogonal
polynomials associated with the measure dw'. Let the symmetric tridiagonal matrix
Tm e RmXm be defined by the first 2m — 1 recursion coefficients a/ and bj given by
(l.lO)-(l.ll); cf. (1.13). Compute the Choleski factorization

(4.9)

Then the matrix
(4.10)

where 7™ := 6^/(e^imem)2, contains the first 2m - 1 recursion coefficients for
orthogonal polynomials associated with the measure dw'; see [9, Theorem 3]. The
coefficients a'- and 6'- are used as input for Algorithm 1.

4.2. Gauss-Kronrod-Lobatto rules. Let dw be the nonnegative measure intro-
duced in Section 1. An (ra-t-2)-point Gauss-Lobatto quadrature rule for the integral
(1.1) with fixed nodes at x = a and x = 6 is a formula of the form

with nodes a = so,o,6 < £i,a,6 < • • • < xn,a,b < xn+i,a,b = b and positive weights
Wfc,a,6 chosen so that

The associated Gauss-Kronrod-Lobatto quadrature rule

has the properties that

and

(4.13)
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We would like the weights Wk,a,b to be positive and the nodes Xk,a,b to satisfy

fl = 2?0,a,& < ^l,a,6 < • • • < X2n+l,a,b < X2n+2,a,b = b.

The "free" nodes {xk,a,b}k=i °f the Gauss-Lobatto rule (4.11) are zeros of the
nth degree orthogonal polynomial associated with the measure

see [9]. Analogously, Gautschi [7] showed that the nodes {xk,a,b}'k^il of the Gauss-
Kronrod-Lobatto rule (4.12) are nodes of a (2n-t- l)-point Gauss-Kronrod quadra-
ture rule

associated with the measure (4.14). We apply Algorithm 1 to compute the nodes
Xk,a,b and weights w'£ of (4.15) and thereby the nodes of the Gauss-Kronrod-Lobatto
rule (4.12). The following proposition shows how to compute the weights Wk,a,b of
(4.12) from the weights w'£.

Proposition 4.2. Let {w'^}^!^1 be the weights of the Gauss-Kronrod quadrature
rule (4.15) associated with the measure (4.14). The weights Wk,a,b of the (2n + 3)-
point Gauss-Kronrod-Lobatto rule (4.12) associated with the measure dw are given
by

Proof. Formula (4.16) can be shown similarly to (4.6). Integration of x — b by the
rule (4.12) yields

from which (4.17) follows. Similarly, (4.18) is obtained by integrating x - a. D

Algorithm 1 requires the 3n+l first recursion coefficients OQ, b", a",... for the
orthogonal polynomials with respect to the measure (4.14). When dw is a measure
of Jacobi-type (4.7), explicit formulas for these recursion coefficients are available.
Otherwise, we can can determine the coefficients a'- and b" from the matrix (4.10)
as follows. Compute the Choleski factorization
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Then the matrix

TABLE 5.1. Errors in computed Gauss-Kronrod weights

n

10
10
15
15
20
20

a

-0.20
-0.70
-0.97
-0.99
-0.60
-0.99

ft

-0.99
1.00

-0.97
-0.50
-0.90
-0.90

d + c ba
max

abs. error

8.68 E-16
4.18 E-15
3.24 E-14
1.20 E-14
2.38 E-14
4.59 E-15

ised alg.
max

rel. error
4.42 E-15
2.52 E-14
4.62 E-13
2.16 E-13
1.91 E-13
4.19 E-13

mixed mon
max

abs. error
1.29 E-14
3.67 E-14
1.35 E-13
1.56 E-13
2.33 E-13
1.21 E-13

lent based alg.
max

rel. error

2.36 E-13
2.61 E-13
2.25 E-12
2.81 E-12
1.87 E-12
2.36 E-12
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where -y'm := (b'm) /(e^Lmem)2, contains the first 2m — 1 recursion coefficients for
orthogonal polynomials associated with the measure dw"; see Golub and Kautsky
[9] for details.

5. NUMERICAL EXAMPLES

The computations were carried out on an HP 9000 workstation in double pre-
cision arithmetic, i.e., with almost 16 significant digits, and in quadruple precision
arithmetic. A Matlab implementation of our divide-and-conquer based algorithm
is referred to as "d+c based alg." in the tables. This implementation uses double
precision arithmetic and is compared to a Fortran implementation using double
precision arithmetic of the algorithm presented by Laurie [12]. Laurie's algorithm
is referred to as "mixed moment alg." in the tables. We used a QR algorithm from
LAPACK [1] to compute the Gauss-Kronrod rule from the matrix (1.16) determine
by Laurie's algorithm. A Fortran implementation in quadruple precision arithmetic
of Laurie's algorithm and the QR algorithm were used to compute highly accurate
Gauss-Kronrod quadrature rules. The nodes and weights computed in quadruple
precision were considered exact, and were used to determine the error in the quadra-
ture rules computed by our and Laurie's algorithms in double precision arithmetic.

In our experiments we computed Gauss-Kronrod and Gauss-Kronrod-Radau
quadrature rules associated with Jacobi measures

where the scaling factor CQ, given by (4.8) with a = — 1 and 6 = 1, is chosen to
make fj,Q = 1. Recursion coefficients for the associated orthogonal polynomials are
explicitly known; see, e.g., [16].

1049

0 9



Computation of Gauss-Kronrod Quadrature Rules

1050 D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. RBICHBL

TABLE 5.2. Errors in computed Gauss-Kronrod nodes

n

10
10
15
15
20
20

a

-0.20
-0.70
-0.97
-0.99
-0.60
-0.99

ft

-0.99
1.00

-0.97
-0.50
-0.90
-0.90

d + c be
max

abs. error

5.86 E-16
5.46 E-16
1.07 E-15
7.12 E-16
1.24 E-15
1.83 E-15

ised alg.
max

rel. error

4.65 E-15
7.71 E-15
4.08 E-15
4.74 E-15
2.85 E-15
1.66 E-14

mixed mon
max

abs. error

2.50 E-15
5.45 E-15
1.26 E-15
4.59 E-15
3.68 E-15
3.64 E-15

lent based alg.
max

rel. error

2.50 E-15
5.65 E-15
4.63 E-15
1.75 E-14
5.00 E-14
2.36 E-14

TABLE 5.3. Errors in computed Gauss-Kronrod-Radau weights,
a = -0.99, 0 = -0.9, fixed node at x = -1

n

9
15
21

d + c be
max

abs. error

3.46 E-15
1.62 E-14
1.42 E-14

ised alg.
max

rel. error

6.35 E-14
2.67 E-13
6.22 E-13

mixed mon
max

abs. error

8.12 E-14
8.52 E-14
2.86 E-13

lent based alg.
max

rel. error

1.46 E-12
1.58 E-12
5.40 E-12

TABLE 5.4. Errors in computed Gauss-Kronrod-Radau nodes, a ;
-0.99, /3 = -0.9, fixed node at x = -1

n

9
15
21

d + cb£
max

abs. error

4.62 E-16
9.89 E-16
2.27 E-15

ised alg.
max

rel. error

3.31 E-15
1.30 E-14
1.08 E-14

mixed mon
max

abs. error

2.74 E-15
2.95 E-15
4.76 E-15

lent based alg.
max

rel. error

5.64 E-15
8.63 E-15
4.76 E-15

TABLE 5.5. Errors in computed Gauss-Kronrod rules, a
-0.9999, (3 = -0.5

n

16
32
64

128
256

d + c based alg.
max

abs. error
in weights

7.87 E-16
3.52 E-15
1.64 E-15
3.80 E-14
8.28 E-14

max
abs. error
in nodes

9.84 E-16
1.07 E-15
1.77 E-15
2.18 E-15
1.52 E-15

mixed moment based alg.
max

abs. error
in weights

2.11 E-15
1.28 E-14
5.50 E-14
2.12 E-13
2.36- E-12

max
abs. error
in nodes

2.64 E-15
1.15 E-15
4.10 E-15
2:43 E-15
5.53 E-15
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Our computational results can be summarized as follows. For many choices of a
and (3 in (5.1) both Laurie's and our methods yield high accuracy. However, when
at least one of the exponents in (5.1) is fairly close to —1, our method generally
gives smaller errors. The higher accuracy in the computed weights achieved by the
method of the present paper is particularly noteworthy.

Tables 5.1 and 5.2 display the magnitudes of the largest absolute and relative
errors in the computed Gauss-Kronrod nodes and weights. These errors are referred
to as "max abs. error" and "max rel. error", respectively. We use the notation
5.11E-14 for 5.11 • 10~14. The examples in the tables illustrate the performance of
the methods for a variety of choices of a and ft for a few fairly small values of n.
When a = (3, the Gauss-Kronrod rule has a node at the origin by symmetry. In
the example with n = 15 and a = ft = —0.97, we set the computed node closest to
the origin to zero before computing absolute and relative errors of the nodes.

Tables 5.3 and 5.4 show the errors in a few computed Gauss-Kronrod-Radau rules
associated with the measure (5.1) and a fixed node at x = —1. These rules were
computed by applying Algorithm 1 to the measure (4.4). Due to the scaling (fig = 1)
assumed by the algorithm, it follows from (4.8) that the weights determined by
Algorithm 1 have to be scaled by the factor s(a, 0) := 2B(l+a, 2+/3)/B(l+a, 1+/3)
to yield the weights {iDj}?™!1 of the Gauss-Kronrod rule (4.5). These weights are
required in (4.6) to determine the Gauss-Kronrod-Radau weights Wk,a- Table 5.3
shows the errors in the computed weights {u>k,a}'%^ for the Jacobi measure (5.1)
with a = —0.99 and (3 = —0.9. For these values of a and (3, we have s(a, (3) = 20/11.
Table 5.4 shows the error in the computed nodes {fifc.a}/^)1- Finally, Table 5.5
illustrates the performance of the methods for some large values of n.

6. CONCLUSION

The paper describes a new algorithm for the-computation of Gauss-Kronrod
quadrature rules and compares it to an algorithm recently proposed by Laurie. Both
algorithms yield high accuracy for many problems. However, when an exponent in
the Jacobi weight function (5.1) is close to —1, the algorithm of the present paper
typically yields smaller errors. We also show how our algorithm can be applied to
compute Kronrod extensions of Gauss-Radau and Gauss-Lobatto quadrature rules.
The structure of the new algorithm makes efficient implementation in a parallel
computing environment possible. This may be important in certain applications;
see, e.g., [4, 8, 15].
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COMMENTARY, BY G. W. STEWART

The four papers treated here reflect Gene Golub's interest in eigenvalue problems.
However, they do not exhibit a general theme. Rather the papers are organized around
specific problems or topics and have little connection with one another. For this reason
we will treat the papers separately and make no attempt to describe interconnections.

Some modified matrix eigenvalue problems, by Golub [10]

This paper is a potpouri of problems that can be resolved by considering the eigensys-
tems of certain matrices. A listing of the sections heads gives the flavor:

f . Stationary values of a quadratic form subject to linear constraints.

2. Stationary values of a bilinear form subject to linear constraints.

3. Some inverse eigenvalue problems.

4. Intersection of spaces.

5. Eigenvalues of a matrix modified by a rank one matrix.

6. Least squares problems.

7. Gauss-type quadrature rules with preassigned nodes.

All of these are interesting problems that are treated with admirable dispatch. But
three of them — the one in Section 5 and two from Section 6 — are particularly worth
discussion because of their impact on research after the paper was published.

The problem posed in Section 5 can be motivated as follows. Let A be a real
symmetric matrix with an eigendecomposition A = VDVT where D is real diagonal and
V is orthogonal. Suppose that A is modified by a rank one matrix to give B = A+axxT,
where a = ±1. Can we determine the eigendecomposition of B from that of A7

This problem may be solved as follows. We have VT BV = D + UUT = C, where
u = VTx. Hence, if we can determine the eigendecomposition C = WMWT of C,
then A + axxT=(VW)M(VW)Tis the eigendecomposition of B. Thus the problem is
reduced to finding the eigenvalues and eigenvectors of C, which is the problem treated
by Golub. He proposes to do it in O(n2) operations, where n is the order of A. This
means that the bulk of the work in updating the decomposition of A will be in the
formation of MV, which requires O(n3) operations.

Finding the eigenvalues is comparatively easy. One can evaluate the characteristic
polynomial det(C — A/) by evaluating the successive characteristic polynomials of the
leading principal submatrices of C — \I. The eigenvalues can then be computed by
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standard root-finding techniques. Golub also shows that the eigenvalues can be obtained
by solving the secular equation1

which has turned out to be the preferred approach.
To find the eigenvectors, Golub forms a generalized problem and proposes to use a

method of Peters and Wilkinson [24]. Unfortunately, as Golub notes, the method can
fail to produce orthonormal eigenvectors.

Although Golub did not fully solve the problem he posed, it is extremely difficult
and was only laid to rest some 20 years later. The solution is also at the heart of
Cuppen's divide-and-conquer algorithm for the symmetric tridiagonal eigenvalue prob-
lem. For details and references see [28, p. 201].

The two problems considered in Section 6 are actually least squares problems,
whose connection with eigenproblems is only through the use of the singular value
decomposition to solve them. Nonetheless, they are both harbingers of research
to come.

The first problem can be motivated by considering ordinary least squares approxi-
mation. We are given an rnxn matrix A and a vector b which we wish to approximate
as a linear combination Ax of the columns of A. The least squares approximation is
found by finding a vector d of minimal Euclidean norm such that Ax = b + d. Under
certain statistical assumptions, the vector d tells us a lot about the error in b that
caused it to deviate from the column space of A.

Now suppose that A also has errors. A generalization of the least squares procedure
is to determine a vector d and a matrix E such that (A + E~)x = b + d and \\(E d)\\ is
minimal. Golub shows that the x consists of the first n components of the right singular
vector corresponding to the smallest singular value of (A 6) normalized so that its last
component is one. (Actually, Golub also allows row and column scaling in the errors.)

This is the origin of the method of total least squares, which was announced to the
numerical community in a 1980 paper by Golub and Van Loan [12]. It was later realized
that the technique, in a different form, had been used by statisticians to investigate
measurement error models [9]. The area has continued to develop to the advantage of
both numerical analysis and statistics. For more on this topic see [30; 29].

The second least squares problem is to solve the constrained least squares problem

(Golub actually writes \\x\\ = a, but he then restricts the problem so that the case
\\x\\ < a cannot occur.) Using Lagrange multipliers, Golub shows that the solution of
the problem is the solution of the system

1A quick web search will show that this term is used in a variety of ways, not all consistent. It
comes from celestial mechanics, where it appears in the computation of secular (i.e., long-term)
perturbations of orbiting bodies.
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where A is chosen so the ||x|| = a. He goes on to show how the problem of determining
A can be solved using the singular value decomposition of A.

This problem is of importance in optimization. In 1944, Levenberg [20] proposed
using (26.2) to damp Gauss-Newton steps, and the method was rediscovered by Mar-
quardt in 1963 [22], although neither actually solved the problem (26.1). In the 1970s
the problem resurfaced in trust-region methods for optimization [5], where it is impor-
tant to determine a value of A that makes ||x|| approximately equal to a. Unfortunately,
the singular value decomposition is too expensive to use in this context, and the prob-
lem is usually solved by regarding ||x|| as a function of A and applying root-finding
techniques to compute the solution. This approach requires repeated factorizations of
A1'A + A/ for different values of A, but the total work is less than the cost of a single
SVD.

Ill-conditioned eigensystems and the computation of the Jordan
canonical form, by Golub and Wilkinson [13]

This is an important paper that concerns the use of similarity transformations to sim-
plify a matrix. Specifically, let A be a matrix of order n and let X be nonsingular. Then
the matrix

has the same eigenvalues as A, and in fact the two matrices have the same Jordan
canonical form. If X has been chosen so that B has a simpler structure than A, then
problems - both mathematical and computational-that are easy to solve for B can be
solved for A by using X to transform A to B and again using X to transform a solution
for B back to a solution for A.

Of the possible candidates for B, the Jordan canonical form, mentioned above, is
the most widely known. Here B is a block diagonal matrix, whose blocks Jm(A) have
the form illustrated here for m = 4:

The larger part of the present paper is devoted to algorithms for computing the Jordan
form-or rather some near relatives.

The algorithms are based on the notion of a vector of grade p. Specifically, x is of
grade p if it satisfies the equations

For example, the iih column of the mxm identity matrix is a vector of grade i of Jm(A).
If a complete set of graded vectors of A can be computed, then they can be assembled
into a matrix X such that B has the same block structure as the Jordan form, but with
full upper triangular blocks. Further reduction of B can produce the Jordan form, if it
is required.

The authors propose three algorithms. The first is based on the powers of A — X I .
It has the fatal defect that powering causes small eigenvalues to coalesce numerically,
making them indistinguishable. The second algorithm, closely related to algorithms
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of Kublanovskaya [18] and Ruhe [25], uses orthogonal deflation to compute its graded
vectors. It is very costly. The third algorithm, of the authors' devising, is comparatively
inexpensive but may possibly produce nearly dependent vectors.

Before deriving the algorithms, the authors consider two ancillary problems: the
condition of eigenvalues and eigenvectors and the recognition of null spaces. The first
relates to the fact that in practice computed eigenvalues must appear in the relations
(26.5) that lie at the base of the algorithms. The treatment of eigenvalues is standard,
even classical. The treatment of eigenvectors, due to Wilkinson, is old fashioned and
vitiated by the fact that perturbations are expanded in terms of the original eigensys-
tem, which may itself be nearly degenerate.

The second problem is one of rank detection, and the authors conclude that only
the singular value decomposition is fully reliable. They consider several alternatives,
and show by example how they can fail. It is worth noting that they fail to consider
the pivoted QR decomposition, which, though technically fallible, is generally reliable
and far less costly than the singular value decomposition.

In an interesting coda to the derivation of the algorithms, the authors consider the
ill-conditioning of the Jordan form itself. They use Frank matrices [6; 8] to show that
a matrix can be near several matrices with different Jordan forms. Such considerations
throw doubt on the desirability of attempting to compute the Jordan form.

The authors then turn to the related problem of computing invariant subspaces-or
equivalently producing a block diagonal matrix B in (26.3) by a well conditioned X. If
the blocks are small enough, this may suffice for some applications. The general idea
is to reduce A to an upper triangular matrix T by an orthogonal transformation (T is
called a Schur form of A). Then a basis for the invariant subspace corresponding to an
initial set of eigenvalues T can be calculated by solving linear equations. By moving
other eigenvalues into the initial position, other invariant subspaces may be computed.
The chief problem here is how to select a group of eigenvalues to define an invariant
subspace.

The paper concludes with two sections, one on the inverse power method and
defective matrices and the other on the refinement of bases for invariant subspaces.
Both are interesting but are peripheral to the main concerns of the paper.

This paper is important both as an early paper on the subject of block diagonal-
ization and for the depth of its treatment of the subject. For more references see [28,
p. 25].

The block Lanczos method for computing eigenvalues, by Golub and
Underwood [11]

This paper concerns a block variant of the Lanczos algorithm for the symmetric eigen-
problem [19]. To understand how block algorithms came about, we must first sketch
the original Lanczos algorithm as it was understood at the time of this paper.

We begin by presenting a general algorithm due to Arnoldi [1], who generalized the
formal aspects of Lanczos's algorithm to nonsymmetric matrices. Let A be of order n.
Given a normalized vector u\, the Arnoldi algorithm produces a sequence of vectors
HI ,... , Ui as follows.

Given ui,... , Wi-i, the vector m is the normalized linear combination 
of MI, . . . ,Ui-i, and Aui-i that is orthogonal to ui,... , Wi-i.

This ongoing process is traditionally summarized by the Arnoldi relation
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AUi = Ui+1Hi, (26.7)

where Ui = (ui • • • Ui) and Hi is an (i+1) xi upper Hessenberg matrix, that is a matrix
whose elements below its first subdiagonal are zero.

The subspace spanned by the matrix Ui is called the ith Krylov subspace of A and
ui. With increasing i, these subspaces often contain increasingly accurate approxima-
tions to eigenvectors of A corresponding to well-separated eigenvalues on the periphery
of the spectrum of A [26; 27]. They can be approximated by the following Rayleigh-Ritz
procedure to compute an approximation to an eigenpair (A, a;).

1. Form the Rayleigh quotient Hi = U?AUi. [Note that Hi consists of the
first i rows of Hi in (26.7)]. 

2. Compute an eigenpair(fJ,,w)ofHi,wherepproximates A.
3. Take (fj,, z) = (p>, UiW) to be the approximation to (A, x ) .

Convergence tests are inexpensive to perform, since the norm of the residual Az — p,z
is |/ii+i,iWi|, where Wi is the last component of w.

The Arnoldi process is expensive in both time and storage. It requires that Aui
be orthogonalized against all the vectors ui,. .. , Wi-i, a process that requires O(ns)
operations. Thus s steps of the process require O(ns2') work, not to mention O(ns)
storage for the vectors.

When A is symmetric, however, the resulting Lanczos algorithm simplifies remark-
ably. The key is that the matrix Hi = U?AUi, which consists of the first i rows of Hi
in (26.7), is symmetric. Since Hi is Hessenberg, it is also tridiagonal; i.e.,

It follows that the vectors m satisfy a three-term recurrence of the general form

(26.9)

Thus the work for s steps of the process is O(ns). The storage is O(n), since only the
vectors m and Wi_i have to be present to advance the process. In addition, the Rayleigh-
Ritz process (26.8) simplifies, since the Rayleigh quotient is symmetric tridiagonal.2

Finally, the convergence theory becomes both simpler and stronger.
Unfortunately, there is a fly in the ointment. Because m is not explicitly orthogonal-

ized against ui,... , Wi-i in (26.9), rounding error will cause the global orthogonality of
the Ui to be lost as the iteration progresses. At the time of the present paper, there was
no agreement about what to do about this problem, but it was eventually resolved with-
out sacrificing too much of the efficiency of the Lanczos process. We cannot pause to
tell the story here, but we will return to the reorthogonalization problem in connection
with the present paper.3

2 Here we do need all the Ui to compute approximate eigenvectors. However, they can be
squirreled away on a backing store until they are needed at the very end of the computation.

3 For more see [23; 28].
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A second problem with the Lanczos procedure is that it cannot see more than one
eigenvector of a multiple eigenvalue. Consider, for example, a nondefective eigenvalue
A of multiplicity two. The set of eigenvectors corresponding to A, along with the zero
vector, is a two-dimensional subspace, which is spanned by any two orthonormal eigen-
vectors corresponding to A, say x and y. If we expand m in an eigenvector expansion,
we get

Then Aui will have the form

Thus the passage from m to U2 introduces no new information about the subspace cor-
responding to A. As far as the Lanczos process is concerned, A has a simple eigenvalue
A with eigenvector ax + /3y.

One way of solving this problem is to somehow start the Lanczos process with
a block Ui having two or more columns. Each column of the block will, in general,
have a different linear combination of x and y in its expansion. For this reason, among
others, people began looking at block variants of the Lanczos process in the mid-1970s.
It is not easy to sort out priorities, since the literature, such as it is, consists of oral
communications, PhD theses, technical reports, and conference proceedings that are
not readily available. A list of players would at least include J. Cullum, W. E. Donath,
G. H. Golub, W. Kahan, J. Lewis, B. N. Parlett and R. Underwood [3; 16; 21].

The present paper by Golub and Underwood is a summary of the thesis of the latter,
which was directed by the former. It is a lucid exposition of the ideas that underlie any
block Lanczos algorithm and is well worth reading today. But it may help the reader
to mention a few highlights here. We follow the authors' notation.

First, the basic step in the Lanczos process starts with an nxp matrix X\ with
orthonormal columns and continues in analogy with (26.6) as follows.

1. Given Xi,... , Xi_i, let Zi be the linear combination of Xi,... , Xi-i, and AXi-i
that is orthogonal to Xi,. .. , Xi-i.

2. Orthonormalize the columns of Zi to get Zi = XiRi, where Ri is upper triangular.

It is possible for Zi to be deficient in rank, in which case Xi must be supplemented by
orthonormal columns that are not only orthogonal to the initial columns of Xi but to
the columns of all the previous Xi.

Second, the Xi satisfy a three-term recurrence of the general form

-Xi+i.Ri+1 = AXi — XiMi — Xi—iRi .

As in the Lanczos process, however, global orthogonality can quickly disappear. At the
time this paper was written, the only effective cure was to orthogonalize against all
the previous Xi, which is what the authors do. Today we would call the algorithm a
symmetric block Arnoldi method; but that is a matter of hindsight.

Third, the Rayleigh-Ritz technique remains essentially the same, but the Rayleigh
quotient is now block-tridiagonal. This complicates the computation of the Ritz
approximations.

Fourth, the authors give a convergence analysis for the Ritz values that generalizes
a result of Kaniel [17]. The analysis shows faster convergence for the block method, but
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the authors do not address the issue of whether that compensates for the extra work
involved in the block algorithm.

Finally, storage considerations eventually limit the number of steps. In this case
the authors propose restarting with an Xi consisting of unconverged eigenvectors.
Everything must be orthogonalized against the converged eigenvectors to prevent their
reappearance in subsequent iterations.

In summary, this is a well organized, well written paper that represents the state
of the art at its time. For a view of things yet to come see the paper by Grimes, Lewis,
and Simon [14].

The numerically stable reconstruction of a Jacobi matrix from spectral
data, by De Boor and Golub [4]

This elegant paper is the first of a long run of papers reflecting Golub's interest in
inverse matrix eigenvalue problems (which has culminated with a survey of the subject
by Chu and Golub [2]). Loosely speaking, an inverse eigenvalue problem is one of
determining facts about a matrix from the distribution of its spectrum. Of the three
problems considered in the present paper, the central one is the following. Given real
numbers \i,... ,\n and p > i , . . . , fj,n-i with

determine a symmetric tridiagonal matrix

with bi > 0 such that

1. the eigenvalues of J are the Xi,
2. the eigenvalues of the leading principal submatrix of order n — 1 of J are

the /Li;.

The degrees of freedom for this problem match up with the requirements: the In — 1
quantities a; and bi are to be determined from the In — 1 quantities A; and /LI;. Note
that the inequalities (26.10) are necessary for the problem to have a solution, since they
follow from standard interleaving theorems for eigenvalues of symmetric matrices.

At the time of this paper, the problem had been solved in the sense that it had
been shown that there is a unique solution that depends continuously on the A; and /LI;.
Moreover, Hald [15] had produced an algorithm for computing the a; and bi based on the
connection of the problem with orthogonal polynomials and an algorithm of Wendroff
[31]. However, the algorithm is numerically unstable, and the main contribution of this
paper is to replace it with a more stable one.

To see the connection with orthogonal polynomials, let J; (i = l , . . . , n ) be the
leading principal submatrix of J of order i and let
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with po(i) = 1 and p_i(i) = 0. Then it is easily seen that the the pi satisfy a three-term
recurrence

Hald's algorithm amounts to constructing the polynomials pn and pn_i from the A^
and fj,i and then running the recursion (26.11) backward to determine the a» and hi.
However, the resulting algorithm is "badly unstable."

De Boor and Golub address this problem by observing that the polynomials gen-
erated by (26.11) are orthogonal with respect to an inner product. They show that
the weights for this inner product can be computed from pn and pn-i- Knowing the
inner product, the a» and bi can be generated by procedure due to Forsythe [7]. It is
worth noting that the procedure is an exact analog of the Lanczos tridiagonalization
of a symmetric matrix.

The authors go on to consider the problem in which A is persymmetric (invariant
under reflection in the secondary diagonal). Since a» = an-i+i and bi = bn-i, this
problem has only n degrees of freedom, and the natural conjecture that the elements are
determined by the \i alone is true. In addition, when the original problem is considered
in the light of the persymmetric problem there results a new algorithm with a superior
formula for the weights.

In some numerical experiments, the authors demonstrate the effectiveness of their
algorithm on well-conditioned cases. They also include an ill-conditioned problem in
which /Hi is very near AI , even though the \i are well separated. Such a problem will
occur whenever the last two components of the eigenvector corresponding to AI are
very small, a situation that often occurs in practice (for more see [32, pp. 308-321]).
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Dedicated to the memory of Professor H. Rutishauser

Abstract. We consider the numerical calculation of several matrix eigenvalue problems which
require some manipulation before the standard algorithms may be used. This includes finding the
stationary values of a quadratic form subject to linear constraints and determining the eigenvalues of a
matrix which is modified by a matrix of rank one. We also consider several inverse eigenvalue problems.
This includes the problem of determining the coefficients for the Gauss-Radau and Gauss-Lobatto
quadrature rules. In addition, we study several eigenvalue problems which arise in least squares.

Introduction and notation. In the last several years, there has been a great
development in devising and analyzing algorithms for computing eigensystems
of matrix equations. In particular, the works of H. Rutishauser and J. H. Wilkinson
have had great influence on the development of this subject. It often happens in
applied situations that one wishes to compute the eigensystem of a slightly
modified system or one wishes to specify some of the eigenvalues and then compute
an associated matrix. In this paper we shall consider some of these problems and
also some statistical problems which lead to interesting eigenvalue problems.
In general, we show how to reduce the modified problems to standard eigenvalue
problems so that the standard algorithms may be used. We assume that the reader
has some familiarity with some of the standard techniques for computing eigen-
systems.

We ordinarily indicate matrices by capital letters such as A, B, X; vectors by
boldface lower-case letters such as x, y, a, and scalars by lower-case letters. We
indicate the eigenvalues of a matrix as k(X) where X may be an expression, e.g.,
M,A2 + I) indicates the eigenvalues of A2 + I, and in a similar fashion we indicate
the singular values of a matrix by a(X). We assume that the reader has some
familiarity with singular values (cf. [9]). Usually we order the singular values
a(A) = [A(ATA)~]112 of a matrix A so that a^A) g a2(A) ^ • • • g an(A) and if A
is symmetric, the eigenvalues so that k^A) g A2(^) g • • • g hn(A).

I . Stationary values of a quadratic form subject to linear constraints. Let A
be a real symmetric matrix of order n, and c a given vector with CTC = 1.

In many applications (cf. [10]) it is desirable to find the stationary values of

subject to the constraints

* Received by the editors September 8, 1971.
t Computer Science Department, Stanford University, Stanford, California 94305. This work was

supported in part by grants from the National Science Foundation and the Atomic Energy Commission.
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Let

where A, fi are Lagrange multipliers. Differentiating (1.4), we are led to the equation

Multiplying (1.5) on the left by cr and using the condition that ||c||2 = 1, we have

Then substituting (1.6) into (1.5), we obtain

where P = I — CCT. Although P and A are symmetric, PA is not necessarily so.
Note that P2 = P, so that P is a projection matrix.

It is well known (cf. [14, p. 54]) that for two arbitrary square matrices G and H,
the eigenvalues of GH equal the eigenvalues of HG. Thus,

The matrix PAP is symmetric and hence one can use one of the standard algorithms
for finding its eigenvalues. Then if

and if

it follows that

where xf is the eigenvector which satisfies (1.7). At least one eigenvalue of K will
be equal to zero, and c will be an eigenvector associated with a zero eigenvalue.

Now suppose we replace the constraint (1.3) by the set of constraints

where C is an n x p matrix of rank r. It can be verified that if

where C~ is a generalized inverse which satisfies

then the stationary values of xTAx subject to (1.2) and (1.8) are eigenvalues of
K = PAP. At least r of the eigenvalues of K will be equal to zero, and hence it
would be desirable to deflate the matrix K so that these eigenvalues are eliminated.

By permuting the columns of C, we may compute the orthogonal decomposi-
tion
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where R is an upper triangular matrix of order r, S is r x (p — r), QTQ = /„, and
n is a permutation matrix. The matrix Q may be constructed as the product of r
Householder transformations (cf. [8]). A simple calculation shows

and thus

Then if

where Gn is an r x r matrix and G22 is an (n — r) x (n — r) matrix,

Hence the stationary values of \TAx subject to (1.2) and (1.8) are simply the eigen-
values of the (n — r) x (n — r) matrix G22. Finally, if

then

The details of the algorithm are given in [10].
From (1.13) we see that JL(G) = A(/4). Then by the Courant-Fischer theorem

(cf. [14, p. 101]),

when

Furthermore, if the columns of the matrix C span the same space as the r eigen-
vectors associated with the r smallest eigenvalues of A,

Thus, we see that there is a strong relationship between the eigenvalues of A and
the stationary values of the function

where \i is a vector of Lagrange multipliers.

2. Stationary values of a bilinear form subject to linear constraints. Now let us
consider the problem of determining the nonnegative stationary values of
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where A is an m x n matrix, subject to the constraints

The nonnegative stationary values of (2.1) are the singular values of A (i.e., a(A)
= [A.(ATA)]il2).t is easy to verify that the nonnegative stationary values of (2.1)
subject to (2.2) are the singular values of

where

The singular values of PCAPD can be computed using the algorithm given in [9].
Again it is not necessary to compute the matrices Pc and PD explicitly. If,

as in (1.11),

then

where r is the rank of C and 5 is the rank of D. Then

Hence if

where Gu is r x 5 and G22 is (m — r) x (n — s), then

Thus the desired stationary values are the singular values of G22.

3. Some inverse eigenvalue problems. Suppose we are given a symmetric
matrix A with eigenvalues {Aj}"=1 (/l; < /li+1) and we are given a set of values
{!,.};•=-/(l; < I,.+1) with
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We wish to determine the linear constraint CTX = 0 so that the stationary values
of xr/lx subject to XTX = 1 and CTX = 0 (CTC = 1) are the set of {!,•}?=/. From (1.5)
we have

and hence,

Assuming n =£ 0, and given A = QAQT where A is the diagonal matrix of eigen-
values of A and Q is the matrix of orthonormalized eigenvectors, substitution into
(3.2) gives

with

where Qd = c. Setting /I = Zj, j = 1, 2, • • • , n — 1, then leads to a system of
linear equations denning the df. We shall, however, give an explicit solution to
this system.

Let the characteristic polynomial be

We convert the rational form (3.3a) to a polynomial,

We wish to compute d (dTd = 1) so that i//(A) = <p(X). Then let us equate the
two polynomials at n points. Now

Hence <p(/lt) = i/^/y for fe = 1, 2, • • • , n, if

The condition (3.1) guarantees that the right-hand side of (3.6) will be positive.
Note that we may assign dk a positive or negative value so that there are 2" different
solutions. Once the vector d has been computed, it is an easy matter to compute c.
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We have seen in § 1 that the stationary values of (1.16) interlace the eigenvalues
of A. In certain statistical applications [4] the following problem arises. Given a
matrix A and an n x p matrix C, we wish to find an orthogonal matrix H so that
the stationary values of

are equal to the n — r largest eigenvalues of A.
As was pointed out in the last paragraph of § 1, the stationary values of (3.7)

will be equal to the n — r largest eigenvalues of A providing the columns of HC
span the space associated with the r smallest eigenvalues of A. For simplicity,
we assume that rank (C) = p. From (1.11), we see that we may write

Let us assume that the columns of some n x p matrix V span the same space as
eigenvectors associated with the p smallest eigenvalues. We can construct the
decomposition

where WTW = !„ and S is upper triangular. Then the constraints

are equivalent to

and thus if H is chosen to be

the stationary values of (3.7) will be equal to the n — p largest eigenvalues of A.

4. Intersection of spaces. Suppose we are given two symmetric n x n matrices
A and B with B positive definite and we wish to compute the eigensystem for

One ordinarily avoids computing C = B~1A since the matrix C is usually not
symmetric. Since B is positive definite, it is possible to compute a matrix F such
that

and we can verify from the determinantal equation that

The matrix FTAF is symmetric and hence one of the standard algorithms may be
used for computing its eigenvalues.
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Now let us consider the following example. Suppose

where e is a small positive value. Note B is no longer positive definite. When
x r = [1,0,0], then Ax = Bx and hence I = 1. When XT = [0,1,0], then
A\ = e~lBx. Here /I = e"1 and hence as e gets arbitrarily small, ^(e) becomes
arbitrarily large. This eigenvalue is unstable; such problems have been carefully
studied by Fix and Heiberger [5]. Finally for XT = [0,0,1], Ax = IBx for all
values of L Thus we have the situation of continuous eigenvalues. We shall now
examine ways of eliminating the problem of continuous eigenvalues.

The eigenvalue problem Ax = A5x can have continuous eigenvalues if the
null space associated with A and the null space associated with B intersect. There-
fore we wish to determine a basis for the intersection of these two null spaces.
Let us assume we have determined X and Y so that

with

Let

Suppose H is an n x v basis for the null space of Z with

where E is p x v and F is q x v. Then

Hence the nullity of Z determines the rank of the basis for the intersection of the
two spaces.

Consider the matrix

Note nullity(L) = nullity(Z). From (4.3), we see that

Since A(L) = A(/ + W) = 1 + %W),

(4.5)

Therefore, ifaj(T) = 1 for j = 1, 2, • • • , t, from (4.5) we see that the nullity (L) = t.
Consider the singular value decomposition of the matrix
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where

The matrices X = XU and Y = YV yield orthonormal bases for the null space
of the matrices A and B, respectively. Since a(T) = 1 for; = 1, • •• , t,

and thus the vectors {Xj-}}= l yield a basis for the intersection of the two spaces.
The singular values of XTY can be thought of as the cosines between the

spaces generated by X and Y. An analysis of the numerical methods for computing
angles between linear subspaces is given in [2]. There are other techniques for
computing a basis for the intersection of the subspaces, but the advantage of this
method is that it also gives a way of finding vectors which are almost in the inter-
section of the subspaces.

5. Eigenvalues of a matrix modified by a rank one matrix. It is sometimes
desirable to determine some eigenvalues of a diagonal matrix which is modified
by a matrix of rank one. In this section, we give an algorithm for determining in
O(n2) numerical operations some or all of the eigenvalues and eigenvectors of
D + amiT, where D = diag (d,) is a diagonal matrix of order n.

Let C = D + CTUUT; we denote the eigenvalues of C by ^.1, A2 , • • • , An and
we assume /I,. ;£ /l j+1 and di g di+1. It can be shown (cf. [14]) that

Thus, we have precise bounds on each of the eigenvalues of C.
The eigenvalues of the matrix C satisfy the equation

which after some manipulation can be shown to be equivalent to the characteristic
equation

j *>
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then it is easy to verify that

with

Thus it is a simple matter to evaluate the characteristic equation for any value of A.
Several well-known methods may be used for computing the eigenvalues of C.
For instance, it is a simple matter to differentiate the expressions (5.2) with respect
to A and hence determine <p'n(K) for any value of A. Thus Newton's method can be
used in an effective manner for computing the eigenvalues.

An alternative method has been given in [1] and we shall describe that tech-
nique. Let K be a bidiagonal matrix of the form

and let M = diag (^;). Then KMKT is a symmetric tridiagonal matrix with elements
{/V*-i,(ftt + /i* + i'i),/i* + i » * } * = i > ro = rn = nn + i = 0.

Consider the matrix equation

Multiplying (5.3) on the left by K and letting x = KTy, we have

or

Let us assume that we have reordered the elements of u (and hence of D, also) so
that

Now it is possible to determine the elements of K so that
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Specifically,

and we note \r, 5| 1. Therefore, if Ku satisfies (5.4), we see that KDKT + aKuuTKT

is a symmetric tridiagonal matrix and so is KKT. Thus we have a problem of the
form Ay = IBy, where A and B are symmetric, tridiagonal matrices and B is
positive definite.

Peters and Wilkinson [13] have shown how linear interpolation may be used
effectively for computing the eigenvalues of such matrices when the eigenvalues
are isolated. The algorithm makes use of del (A — IB) which is quite simple
to compute when A and B are tridiagonal. Once the eigenvalues have been com-
puted it is easy to compute the eigenvectors by inverse iteration. Even if several
of the eigenvalues are equal, it is often possible to compute accurate eigenvectors.
This can be accomplished by choosing the initial vector in the inverse iteration
process to be orthogonal to all the previously computed eigenvectors and by
forcing the computed vector after the inverse iteration to be orthogonal to the
previously computed eigenvectors. In some unusual situations, however, this
procedure may fail.

Another technique which is useful for finding the eigenvalues of (5.3) is to
note that if «,. + 0 for i = 1, 2, • • • , n, then

Thus, the eigenvalues of (5.3) can be computed by finding the zeros of the secular
equation

6. Least squares problems. In this section we shall show how eigenvalue
problems arise in linear least squares problems. The first problem we shall con-
sider is that of performing a fit when there is error in the observations and in the
data. The approach we take here is a generalization of the one in [9]. Let A be a
given m x n matrix and let b be a given vector with m components. We wish to
construct a vector & which satisfies the constraints

and for which

where P is a given diagonal matrix with pt > 0, Q is a given diagonal matrix with
qj > 0, and || • || indicates the Euclidean norm of the matrix. We rewrite (6.1)
as
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or equivalently as

where

Our problem now is to determine y so that (6.3) is satisfied, and

Again we use Lagrange multipliers as a device for minimizing ||PF|| subject
to (6.3).

Consider the function

Then

so that we have a stationary point of (6.5) when

Note that the matrix F must be of rank one. Substituting (6.6) into (6.3) we have

and hence,

Thus,

and hence ||PF|| = minimum when y is the eigenvector associated with the smallest
eigenvalue of BTP2B. Of course a more accurate procedure is to compute the
smallest singular value of PB.

Then, in order to compute x, we perform the following calculations:
(a) Form the singular value decomposition of PB, viz.,

(It is generally not necessary to compute [/.)
(b) Let v be the column vector of V associated with <rmin(PB) so that v = y.

Compute

(c) From (6.4),
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Note that min||PF|| = amm(PB), and that

The solution will not be unique if the smallest singular value is multiple.
Furthermore, it will not be possible to compute the solution if zn + l — 0. This will
occur, for example, if P = Im, Q = /„+ t, A

Tb = 0 and ffm-m(A) < ||b||2.
Another problem which arises frequently is that of finding a least squares

solution with a quadratic constraint; we have considered this problem previously
in [1]. We seek a vector x such that

with the constraint that

The condition (6.8) is frequently imposed when the matrix A is ill-conditioned.
Now let

where A is a Lagrange multiplier. Differentiating (6.9), we are led to the equation

or

Note that (6.10) represents the usual normal equations that arise in the linear least
squares problem, with the diagonal elements of ATA shifted by L The parameter /I
will be positive when

and we assume that this condition is satisfied.
Since x = (ATA + U)~lATb, we have from (6.8) that

By repeated use of the identity

we can show that (6.12) is equivalent to the equation

Finally if A = US. VT, the singular value decomposition of A, then

where D = ZrS and (6.13) becomes
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where u = ct~l'LTUT'b. Equation (6.15) has In roots; it can be shown (cf. [6]) that
we need the largest real root of (6.15) which we denote by 1*. By a simple argument,
it can be shown that A* is the unique root in the interval [0, UTU] . Thus we have the
problem of determining an eigenvalue of a diagonal matrix which is modified by a
matrix of rank one.

As in § 5, we can determine a matrix K so that Ku satisfies (5.4), and hence
(6.15) is equivalent to

The matrix G(X) = K(D + M)2KT - KauTKT is tridiagonal so that it is easy to
evaluate G(X) and det G(/l). Since we have an upper and lower bound on A*, it is
possible to use linear interpolation to find A*, even though G(X) is quadratic in L
Numerical experiments have indicated it is best to compute G(A) = K(D + 2.I)2KT

— KuuTKT for each approximate value of /I* rather than computing

Another approach for determining A* is the following: we substitute the
decomposition (6.14) into (6.12) and are led to the equation

with u = a.~l'LTUT\». It is easy to verify that if

with

Then using (6.18) we can easily evaluate i//n(A) and ^(A), and hence use one of the
standard root finding techniques for determining J.*. It is easy to verify that
x = V(D + /l*/)~1ZC/Tb.

A similar problem arises when it is required to make

when

where

X

Again the Lagrange multiplier A satisfies a quadratic equation which is similar to
the equation given by (6.14).

7. Gauss-type quadrature rules with preassigned nodes. In many applications
it is desirable to generate Gauss-type quadrature rules with preassigned nodes. This
is particularly true for numerical methods which depend on the theory of moments
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for determining bounds (cf. [3]), and for solving boundary value problems [12].
We shall show that it is possible to generate these quadrature rules as a modified
eigenvalue problem.

Let (a(x) S; 0 be a fixed weight function defined on the interval [a, b]. For
w(x) it is possible to define a sequence of polynomials p0(x), pt(z), • • • which are
orthonormal with respect to o»(x) and in which pn(x) is of exact degree n so that

The polynomial pn(x) = kn Y["= t (x - t("\ kn > 0, has n distinct real roots
a < r'"1 < 4"' < • • • < fj,"' < b. The roots of the orthogonal polynomials play an
important role in Gauss-type quadrature.

THEOREM. Let f ( x ) e C2N[a, b]; then it is possible to determine positive Wj
so that

where

Thus, the Gauss-type quadrature rule is exact for all polynomials of degree less than
or equal to IN — 1.

Any set of orthonormal polynomials satisfies a three-term recurrence relation-
ship:

We may identify (7.1) with the matrix equation

where

and
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Suppose that the eigenvalues of JN are computed so that

with

and

Then it is shown in [11] that

(From here on in, we drop the superscripts on the tj-N)'s.)
A very effective way to compute the eigenvalues of JN and the first component

of the orthonormalized eigenvectors is to use the QR method of Francis (cf. [14]).
Now let us consider the problem of determining the quadrature rule so that

where the nodes {zjjl t are prescribed. It is possible to determine {wjt tyJJL l,
{u*:}f=i so that we have for the remainder

For M = 1 and zi = a or zl = b, we have the Gauss-Radau-type formula, and
for M = 2 with zl = a and z2 = b, we have the Gauss-Lobatto-type formula.

First we shall show how the Gauss-Radau-type rule may be computed. For
convenience, we assume that z t = a. Now we wish to determine the polynomial
PJV+I(X) so that

From (7.1) we see that this implies that

or

From equation (7.2) we have

or equivalently,

where
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Thus,

Hence, in order to compute the Gauss-Radau-type rule, we do the following:
(a) Generate the matrix JN and the element f$N.
(b) Solve the system of equations (7.5) for SN(a).
(c) Compute <xN+1 by (7.6) and use it to replace the (N + 1, N + 1) element

of J N + I .
(d) Use the QR algorithm to compute the eigenvalues and first element of the

eigenvector of the tridiagonal matrix

Of course, one of the eigenvalues of the matrix JN+ j must be equal to a.
Since a < kmin(JN), the matrix JN — al will be positive definite and hence

Gaussian elimination without pivoting may be used to solve (7.5). It is not even
necessary to solve the complete system since it is only necessary to compute the
element 8N(a). However, one may wish to use iterative refinement to compute
f)N(a) very precisely since for N large, Amin(J) may be close to a, and hence the
system of equations (7.5) may be quite ill-conditioned. When zl = b, the calcula-
tion of JN + i is identical except with b replacing a in equations (7.5) and (7.6).
The matrix JN — hi will be negative definite since b > AmM(J).

To compute the Gauss-Lobatto quadrature rule, we need to compute a
matrix JN +1 such that

Thus, we wish to determine pN + 1(x) so that

Now from (7.1) we have

so that (7.7) implies that

Using the relationship (7.2), if

then

Thus, (7.8) is equivalent to the system of equations
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Hence, in order to compute the Gauss-Lobatto-type rule, we perform the following
calculations:

(a) Generate the matrix JN.
(b) Solve the systems of equations (7.9) for yN and [iN.
(c) Solve (7.11) for aN+1 and ffi.
(d) Use the QR algorithm to compute the eigenvalues and first element of the

eigenvectors of the tridiagonal matrix

Galant [7] has given an algorithm for computing the Gaussian-type quadrature
rules with preassigned nodes which is based on a theorem of Christoffel. His
method constructs the orthogonal polynomials with respect to a modified weight
function.
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Abstract. The solution of the complete eigenvalue problem for a nonnormal matrix A presents
severe practical difficulties when A is defective or close to a defective matrix. Moreover, in the presence
of rounding errors, one cannot even determine whether or not a matrix is defective. Several of the more
stable methods for computing the Jordan canonical form are discussed, together with the alternative
approach of computing well-defined bases (usually orthogonal) of the relevant invariant subspaces.

1. Introduction. From the standpoint of classical algebra, the algebraic
eigenvalue problem has been completely solved. The problem is the subject of
classical similarity theory, and the fundamental result is embodied in the Jordan
canonical form (J.c.f.). Most mathematicians encounter similarity theory in an
abstract setting, but since we are concerned here with practical algorithms, we
first review the basic result purely in matrix terms.

The J.c.f. is described with reference to matrices known as elementary Jordan
blocks. A Jordan block of order r associated with an eigenvalue /l; will be denoted
by J,(%{), and its general form is adequately illustrated by the definition

The basic theorem is that given any n x n matrix with complex elements, there
exists a nonsingular matrix X such that

where J, the J.c.f. of A, is block diagonal, each diagonal matrix being an elementary
Jordan block. Apart from the ordering of the blocks along the diagonal of J (which
can be arbitrary), the J.c.f. is unique, although X is far from unique. It will be
convenient to order the blocks in some standard way. Unless reference is made to
the contrary, we assume that the |/y are in order of nonincreasing magnitude and
that the blocks associated with a specific 1, are ordered to be of nondecreasing size.
Thus if the matrix A of order 12 has only 2 distinct eigenvalues A t and A2 with
IAi = 1^2! > and A j is associated with 2 blocks of order 2 and one of order 3 while
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A2 is associated with one block of order 2 and one of order 3, its J.c.f. will be
presented in the form

Here ^ is an eigenvalue of multiplicity 2 + 2 + 3 = 7 and A2 of multiplicity
2 + 3 = 5. The example illustrates that there may be more than one block of a
given dimension associated with a specific Xi.

Let us consider the significance of the existence of a block Jr(^)inhere
JP(^i) starts in rows and columns s and ends in rows and columns t, and

Equating columns s to t on both sides of equation (1.2), we have

where, here and later, we shall denote the ith column of a matrix X (say) by x f .
The first of these relations implies that xs is an eigenvector corresponding to ^.
The remaining equations imply that

Notice that in general the xs+j satisfy the relations

We shall refer to any vector x such that (A - -U)""1* ^ 0, (A - lf)px = 0, as a
vector of grade p, and for uniformity, an eigenvector becomes a vector of grade 1.
It is evident, for example, that

so that a2xs+2 + axx s + 1 + «0xs is a vector of grade 3 for all a; provided a2 + 0.
The vectors xs+; arising in the Jordan canonical reduction are special in that
they satisfy the chain relations (1.5). We shall refer to the vectors of grades 1, 2,
3, • • • associated with a Jordan block as principal vectors of grades 1,2, 3, • • • .

Clearly del (U — Jr(^) = (A — /y, and we may associate such a polynomial
with each of the blocks in the J.c.f. These polynomials are called the elementary
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divisors of A. An enumeration of the elementary divisors gives a unique specification
of the J.c.f. Corresponding to a Jordan block of dimension unity the elementary
divisor is (X — /t;), i.e., it is linear. If all the Jordan blocks in the J.c.f. are of dimension
unity, then the J.c.f. is strictly diagonal, the matrix has n independent eigenvectors
given by the columns of X and all the elementary divisors are linear. These four
properties are fully equivalent to each other. Notice that if there are n distinct /l;,
then all the blocks are necessarily of dimension unity. Departure from strict
diagonal form can occur only if there is at least one multiple eigenvalue, though
even in this case the J.c.f. can be diagonal.

A matrix is said to be defective if the J.c.f. is not strictly diagonal. In this case,
at least one elementary divisor is nonlinear and the number of independent
eigenvectors is less than n; the remaining columns of X are principal vectors of
the appropriate grades.

A matrix is said to be derogatory if there is at least one A, which is associated
with more than one diagonal block in the J.c.f. If such a A,- is associated with
k different blocks, then there are precisely k independent eigenvectors associated
with Aj.

It should be emphasized that a matrix may be defective without being
derogatory and vice versa, or it can be both defective and derogatory. If the Af

are distinct, it cannot be either. If A is normal (including Hermitian, skew Hermitian
or unitary), then its J.c.f. is always strictly diagonal, and the X producing the
J.c.f. may be chosen to be unitary. A normal matrix with a multiple eigenvalue is
therefore derogatory but not defective.

We do not report on numerical experiments in this paper, although many of
the algorithms described have been implemented with success. It is the aim of
this paper to emphasize the problems associated with computing invariant sub-
spaces and to stimulate research in this area. We have not attempted to be
encyclopedic (despite the length of the paper) but state those principles which
we feel are of importance in this area.

2. Linear differential equations and the J.c.f. The practical significance of the
J.c.f. of a matrix A is that it provides the general solution of the associated system
of linear differential equations with constant coefficients defined by

where u is a vector of order n. Under the linear transformation u = Xv, the
equation becomes

Hence the J.c.f. gives a simplified version of the original system. If J is strictly
diagonal (i.e., A is not defective), the transformed system is

and in terms of variables i>,, the equations are completely decoupled. The general
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solution is

and is therefore directly expressible in terms of the n independent eigenvectors xt

and n independent constants c|-0), the initial values of the v t. Notice that the analysis
is not affected by any multiplicities in the /I,- provided J is strictly diagonal. An
eigenvalue ht of multiplicity r is then associated with r independent eigenvectors
and r arbitrary v(°\ When A is defective, the linear transformation does not give
a complete decoupling of the equations, but there is a decoupling of those equations
involving the v, associated with each specific block from those associated with all
other Vj. The general solution is most readily exposed in terms of the concept of
the "exponential" of a matrix. We define exp (B) by the relation

the matrix series being convergent for all B. The solution of (2.1) such that u = u(°}

when t = 0 is given by

From the series expansion it will readily be verified that

and hence the solution of (2.1) is

or

If J,(^i) is a typical block in J, then exp (Jt) has the same block structure, with
exp (Jr(J.j)t) in place of each Jr(^, and the form of exp (Jr(^)t) is fully illustrated
by the relation

Hence on transforming back from the u-coordinates to the u-coordinates, the
solution corresponding to the initial problem is again given in terms of the vectors
KI but corresponding to a Jordan block Jr(J.{), terms involving exp (Aft)t

s/s!
(s = 0, • • • , r — 1) arise.

This discussion gives the impression that the theoretical significance of the
J.c.f. is fully matched by its practical importance since it is precisely because of
its relationship to the solution of systems of linear differential equations that the
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algebraic eigenvalue problem occupies such a prominent position in practical
applied mathematics. The principal objective of the remainder of this paper is
to show the basic limitations of the J.c.f. from the point of view of practical compu-
tation and, indeed, to cast doubt on the advisability of trying to determine it.

Before proceeding, it is useful to consider the degree of arbitrariness in the
matrix X involved in the reduction to J.c.f. If the -1, are distinct, J is diagonal
and the xt are the unique eigenvectors. The only degree of arbitrariness is in the
scaling of the xf. We have

where D is a nonsingular diagonal matrix.
Turning now to the case where J has a single block of dimension r, we see that

there is already a wide freedom of choice in X. Suppose, for illustration, that there
is a block of order 4 associated with /lf; then from (1.5) we see, writing B = A — /I,/,
that

where the a, b, c, d are arbitrary, but a + 0. Hence the chain of vectors x s+3 ,
xs+ 2, xs+ j , xs may be replaced by the chain of vectors given in (2.11) and on this
account X may be replaced by XP, where

The derogatory case, i.e., the case when there is more than one block associated
with a given Xt, may be illustrated by the case when there are blocks of orders
2 and 3 starting in positions s and t, respectively. From the two chains
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the two generalized chains defined by

and

may be derived, where the a , b , - - - , i are arbitrary, except that a + 0, h + 0,
and X may be varied correspondingly.

3. Sensitivity of the eigenvalues of a defective matrix. Blocks of dimension
greater than unity in the J.c.f. can emerge, if at all, only as the result of the presence
of multiple eigenvalues. In the classical theory there is a clear-cut distinction
between equal and unequal eigenvalues. In practice, the situation is very different
since a matrix may not be representable exactly in the computer and, in any case,
rounding errors are, in general, involved in computing transformations. Let us
consider the effect of small perturbations on the eigenvalues of an elementary
Jordan block Jr(^). If the zero element in position (r, 1) is replaced by e, the
characteristic equation

and the multiple eigenvalue A, is replaced by r distinct eigenvalues /I, +
£1/p(cos(2s7i/r) + i sin (2sn/r)) (s = 0, • • • , r - 1). Suppose /Lf is of order unity,
r = lOande = 10~10. Then the separation of the perturbed roots is of order 10"1

and they cannot in any reasonable sense be regarded as "close".
In practice, we have to diagnose multiplicities and the degree of defectiveness

from computed eigenvalues. When these are determined by a very stable algorithm,
we cannot rely on any of them being recognizably "close", even when the given A
really does have some multiple eigenvalues. When A has an elementary divisor of
high degree, this danger appears to be particularly severe.

However, even this remark somewhat oversimplifies the situation. One tends
to be seduced by the simplicity of the J.c.f. and as a result to attach too much
significance to every detail of it. When attempting to construct "difficult" matrices
for practical experiments, it is common to take a nondiagonal J.c.f, subject it to
some exact similarity transformation and then to regard the resulting matrix as
wholly typical of a defective matrix.

But this is to attach too much significance to the unity elements in the Jordan
blocks. If D = diag (d,) is any nonsingular diagonal matrix, then from (1.2) we have

Hence if J has a unity element in position (p, p + 1), the matrix D~1JD has
d^1, dp+1 in this position; by a suitable choice of the d, the unity elements may be
given arbitrary values. The choice of the unity elements in the J.c.f. is purely for
notational convenience. However, in classical mathematics we can make a sharp
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distinction between zero and nonzero elements, a luxury we are denied in practical
computation. We refer to a matrix as being in quasi-J.c.f. if the only difference
from strict J.c.f. is that some of the super-diagonals have values other than unity.

It is possible for a matrix A to be highly defective without its eigenvalues being
unduly sensitive. Suppose, for example, that A is such that there is an orthogonal
matrix X for which

where J is of quasi-J.c.f. in which nonzero super-diagonal elements are all 10 10.
Perturbations of order 10~10 in J (which correspond to perturbations of order
10~10 in A since X is orthogonal) produce perturbations of order 10"10 at most
in the eigenvalues. If ||/42|| is of the order of unity, then from the point of view of
10-digit decimal computation, the eigenvalues of A are not at all sensitive. One
cannot even rely on defectiveness being characterized by sensitivity of the corre-
sponding eigenvalues. Nevertheless it is true that d^/ds = 0(ei/r~1) for some
perturbations when J has a block of order r, and hence, 8^/de -» oo as E -> 0.
This means that if we are prepared to extend the precision of computation
indefinitely, we shall ultimately gain only one figure of accuracy for r extra figures
of precision.

At this stage, one might ask what is the "natural" quasi-J.c.f. for computa-
tional purposes. A reasonable definition is that it is the J for which the correspond-
ing H A n i j H A T " 1 ! ^ = x(X) is a minimum. If this J has super-diagonal elements
which are all small relative to ||J|| 2, the matrix A will not have sensitive eigenvalues.

As a final result relating small eigenvalues and small singular values, we note
the following theorem (for the definition of singular values, see § 7).

THEOREM. Let A be an n x n matrix with Xn = s and |/IJ ^ |/y and such that
there are p Jordan blocks of dimensions kt,
associated with An. Then if A = XJX'1,

k,, with kl ^ k2 ^ • • • ̂  kp

Proof.

Since the singular values of J are given by WJJ7)]1'2, it is obvious that they
are singular values of the elementary Jordan blocks. Consider the k x k block

From the form of KKT, k — 1 of the singular values are close to unity and since
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their product is sk, the remaining singular value is O(sk). In fact,

and taking XT = (1, -e,e2, • •• , (-l)*-^*"1), we have

The result is thus established. Note that although we have shown that the singular
values are small, we have not shown and cannot show that the elements of the
corresponding singular vectors are correspondingly small.

4. Ill-conditioned eigenvalues. Since in practice it will usually be impossible
to determine whether a matrix has exactly equal eigenvalues, it is necessary to
consider the problem of the sensitivity of a simple eigenvalue with respect to
perturbations in A. If J is the J.c.f., we have

When /lj is a simple eigenvalue, xt is the corresponding right-hand eigenvector
and

If z[ is the first row of Z, then

It is customary to define the left-hand eigenvector y, of A corresponding to )^
as the vector satisfying

(4.4) y"A = yt^,

and hence if we write Y = ZH, the first column of Y gives this eigenvector and

Consider now the corresponding eigenvalue At(e) and right-hand eigenvector
x^s) of A + sB, where ||B||2 = 1. For sufficiently small s, it is easy to show that
At(e) and Xjfs) may be expanded as convergent power series

where the »,- lie in the space spanned by x2, • • • , xn. (Note that in general these x,
will include principal vectors which are not eigenvectors.) Equating coefficients
of s in the relation

gives

Now both f j and Av^ lie in the space spanned by x2, • • • , xn, and from (4.5),
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yfx. = o (j = 2, • • • , B). Hence premultiplying (4.8) by yf, we obtain

As derived above, y"xi = ,1, but clearly in (4.9), xt and y1 may be arbitrarily scaled
and it is convenient computationally to have \\Xi\\2 = \\Vi\\2 = 1- In this case,
y"x1 = «! (in the notation of [25]), where st is the cosine of the angle between
xi and yl. From (4.9),

The derivative is finite for any "direction" of B. This is in contrast to the case
where ^ is associated with a defective matrix when |3A,/3e|E=0 = co. This latter
result is in agreement with (4.10) since the left-hand and right-hand eigenvectors
are orthogonal corresponding to a "defective" A,. The bound in (4.10) is attained
when B = y^, since then

Further, taking B = e^y^x", we can make (9A1/3e)e=0 have any required phase.
There is one very unsatisfactory feature of the above analysis. The quantity s( is
not invariant with respect to diagonal similarity transformation. Consider the
matrix

with

The eigenvalue /t, is therefore very well-conditioned, as indeed are all eigenvalues
of all normal matrices. However, we have

and now

Hence we may make st arbitrarily small by taking a sufficiently large or
sufficiently small. It is clear that a small s; induced in this way is a very artificial
phenomenon. In this example, when $! is small, \\D~1AD\\2 » \\A\\2. In practice,
the relevant values of s; are those for D~1AD, where D has been chosen so that
|| D"1 AD || 2 is a minimum. Reducing this norm to a true minimum is not vital,
and in practice, the process of balancing described by Parlett and Reinsch in [12]
is usually adequate.
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High sensitivity of an eigenvalue A; has now been encountered in two different
contexts, first when Af is associated with defectiveness and secondly when a value
of Sj is small. We now show that when an s; is small, A is necessarily relatively close
to a matrix with a multiple eigenvalue. Let

and suppose P is a unitary matrix such that Pxt = et, where el = (1,0, • • • , 0).
Then

and B = PAP" must be of the form

Further,

and writing Pyt = pl, we have

while

Hence if we write p" = (pnlO) where v is of order n — 1,

i.e., the matrix B, + pj ^ubf/t>Hu) has ^ as an eigenvalue and v as a left-hand
eigenvector. Now

and when st is small, a small relative perturbation in B converts A t into an eigen-
value of multiplicity at least two. Since the /2-norm is invariant with respect to
unitary transformations, the same remark is true of A. By a similar argument,
Kahan in an unpublished paper has shown that the denominator (1 —s2)1'2

may be replaced by 1 in the final bound. However, the above argument shows
that the relevant bound is |s,| H&i l^Al ~ si)'/2 andreplacingHbj jby ||B||2
and hence by || A \\ 2, the result is weakened. When A is normal, B is also normal and
f>! = 0. Hence if |sj < 1 for a normal matrix, A j must already be a multiple
eigenvalue. This is otherwise obvious, since if A j is a simple eigenvalue of a normal
matrix, yt = xt and s1 = 1. The bound we have given is, in general, a considerable
improvement on the bound given by Ruhe [16].

5. Almost linearly dependent eigenvectors. The perturbation analysis described
above can be used to give the first order perturbation of x l resolved in the directions
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x2, • • • , xn. In the case when A is nondefective, this leads to

and the coefficient of xt is bounded by l/|Sj(Aj — A^l. Hence we obtain a large
perturbation in the direction of Xj if sf or /I, — A t is small. However, this analysis
is rather unsatisfactory. When A has an ill-conditioned eigenvalue problem, the
set of Xj will be almost linearly dependent, as we show below. The fact that some of
the Xj have large coefficients need not necessarily mean that the perturbation as a
whole is large.

The left-hand eigenvector y1 is orthogonal to x2, • • • , xn, and hence xt may
be expanded in terms of y ^ , x2, • • • , xn. In fact,

since y"xt = st and yfxf = 0 (i = 2, • • • , n). Equation (5.2) may be expressed in
the form

where

Hence we have a unit vector [1 so that

and when Sj is small, the vectors x( are "almost linearly dependent". (Note that
in general, the xf (i = 2, • • • , n) will include principal vectors which are not
eigenvectors.) Anticipating §7, we note that (5.5) implies that an(X}< \st\.
Conversely, if a set of the x, are almost linearly dependent, then at least one of the
associated s,- is small and A has an ill-conditioned eigenvalue. Suppose, for example,

Then if the vectors y, are the normalized columns of (X"1)", we have

Since at least one a; is such that |aj > p~1/2, this means that at least one s, is small.
In fact, it is obvious that at least two of the st must be small, since otherwise just
one of the eigenvalues would be sensitive and the remainder insensitive; as the
trace is obviously not sensitive, this is impossible.

This result emphasizes one very unsatisfactory feature of ill-conditioned
eigensystems. Suppose we have managed (in spite of the practical difficulties) to
obtaincorrect/yrounderfversionsofasetofill-conditionedeigenvectorsx!, • • • , xp.
We may now wish to determine an accurate orthogonal basis for this subspace of
dimension p. However, since the vectors x t , • • • , xp are almost linearly dependent,
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when we perform the Schmidt orthogonalization process on these x,, the orthogonal
basis is bound to be poorly-determined. In fact, information about the last of the
orthogonal vectors will be completely vitiated by the rounding errors which will
usually be inherent in the representation of the xf in the computer.

This casts doubt on the advisability of attempting to determine the x,- them-
selves and suggests that it might be better to determine directly an orthogonal
basis for the subspace corresponding to such vectors.

6. Orthogonal bases for invariant subspaces. The eigenvectors of A correspond-
ing to 1 are the solutions of the equation (A — M)x = 0. If A — II is of nullity «t

(rank = n — n,), then there will be nt independent eigenvectors. These vectors
span a subspace P1; the nullspace of A - II. Letx',1', x(

2
1}, • • • , x(

n\
} be an orthogonal

basis of this subspace Pt.
Turning now to the solutions of the equation (A - II)2x, we can clearly see that

they include any vector in P,, since if (A - A/)x = 0, then certainly (A - A/)2x = 0.
The nullity of (A — /I/)2 may therefore be denoted by ni + n2, where n2 ^ 0.
If the nullspace is denoted by P2, then P2 => PI and the basis x^1', x(

2\ • •• , x(
n\> may

be extended to an orthogonal basis of P2 by the addition of further orthogonal
vectors x(,2), x(

2
2), • • • , x<,2). These additional vectors satisfy the relations

and hence they are vectors of grade 2.
We now show that n2 ^ n l t for the vectors ut are nonnull and satisfy the

relation (A — ll)u, = 0. Hence they lie in P1, and if n2 > nlt

which means that £X-xj2) c P,. But £XXS2) is orthogonal to the xj11 by the
construction, and hence we have a contradiction.

Continuing in this way by considering the nullities of (A — II)3,(A — II)4,
we obtain numbers n 3 ,n 4 , ••• such that ni+1 ^ nt and orthogonal bases of
subspaces P, such that Pi+l => Pf. The subspace P; is of dimension mt = nt +
••• + nt. In general, the orthogonal vectors x<s) are such that (A - MY~ix(*} + 0
but (A - /l/)sxjs) = 0.

The sequence comes to an end with (A — M)k, where (A — ll)k+' is of the
same nullity as (A — Xl)k.

Comparing these spaces with those spanned by the chains of vectors associated
with 1 in the J.c.f., we see that P! is the space spanned by the principal vectors of
grade 1, P2 that spanned by principal vectors of grades 1 and 2, etc. Notice, though,
that the space spanned by xf\ ••• , xj,2) is not in general the same as that spanned
by the principal vectors of grade 2 in the Jordan chains.

n j is equal to the number of blocks associated with X in the J.c.f., and, in
general, ns is the number of those blocks which are of dimension not less than s.

The derivation of these orthogonal bases is in some ways more satisfactory
than that of the Jordan chains themselves, and though the chains may be derived
from the orthogonal bases, there will in general be a loss of digital information
in this process.
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7. The singular values. In the previous section it was shown that in the
solution of the complete eigenvalue problem, we are concerned with the deter-
mination of the nullities or ranks of sequences of matrices. Rank determination is
a notoriously dangerous numerical problem, and in practice the only reliable way
of doing it is via the singular value decomposition (S.V.D). Accordingly we now
give a brief review of the S.V.D. and the properties of singular values.

For our purposes, the singular values of a complex m x n matrix A may be
defined to be the nonnegative square roots of the eigenvalues of the matrix AHA.
Clearly AHA is an n x n nonnegative definite Hermitian matrix, and its eigenvalues
may be denoted by of (i = I , • • • , n); the <TJ are the singular values of A. Although
apparently a more sophisticated concept than the eigenvalues, the determination of
the singular values is more satisfactory from the computational point of view.
The a, are defined in terms of the eigenvalues of a Hermitian matrix, and these are
always insensitive to small perturbations in elements of that matrix. We shall
assume that the at are ordered so that a^ ^ <r2 = ' ' ' = <V The of may be defined
via the min-max properties of (xHAHAx)/x"x, i.e., of

and

From the last of these relations, the well-conditioned nature of the ar is well
exposed.

Although we have defined the at via AHA, they should not be determined in
this way. In practice, they are computed via the S.V.D., which is defined as follows.

Any m x n complex matrix A may be factorized in the form

where U and V are m x m and n x « unitary matrices, respectively, and 2 is an
m x n matrix with %u = oi and Sy = 0 otherwise. Golub and Reinsch [4] have
described an extremely efficient and stable method for determining the S.V.D.
and hence the at. The computed U and VH are almost orthogonal to the working
accuracy, and the computed ai correspond to those of some (A + E), where
I I E || 2/||/41| 2 is a modest multiple of the machine precision. Since the a, are insensitive
to E, this is very satisfactory.

Clearly, from (7.3),

so that the columns of V are orthogonal eigenvectors of AHA. Similarly

and the columns of U are orthogonal eigenvectors of A A".
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Turning now to the case when A is n x n, we have, from the definitions of the
eigenvalues and of the singular values,

and hence

We have the fundamental result that AB = 0 iff an = 0 and both imply that A is
singular. The three properties are fully equivalent.

From this it is intuitively obvious that if A is "nearly" singular, ln and <rn
are "small" with appropriate determination of the terms "nearly" singular and
"small". As a measure of the proximity of A to singularity we shall take
Il£ | l2 /Mll2 = 8> where E is the matrix of minimum norm such that A + E is
singular. Since A + E is singular, there exists a y such that

Hence

On the other hand, since min (||Xx||/||x||) is attained for some unit vector, y (say),

Hence (A — anzyH)y = 0, and A — ffnzy" must be singular. But ||crnz>'H|| = on and
s = min(||E||2/M||2) ^ ffll/M||2; hence <7,,/||X||2 = z.

Turning now to !„, we have

and

On the other hand, from (7.7),

giving

This last relation is disappointing, but unfortunately it is a best possible result,
as is illustrated by the matrices Kn typified by
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In general, |Af| = e1/n (i = 1, • • • , n), but a^ = • • • = ca_i = 1 and an = s. All
extreme examples are of this kind, since we have equality in (7.12) only if \At = |xj
(all n) and cr, = <r2 = • • • = o-n_1. In practice, then, we may well have a matrix
which is singular to working accuracy and therefore has a negligible singular value
but which has no eigenvalues which can be regarded as in any sense small.

The practical consequences of this theorem are very serious. The most stable
algorithms for computing eigenvalues can guarantee only that each computed
eigenvalue Xt is exact for some A + Et, where ||E,||2/||A||2 is a modest multiple of
the machine precision, and it is difficult to conceive how such algorithms can be
improved upon, except, of course, by working to higher accuracy at least in some
significant part of the computation. This means that (A + E, — X'tl) is exactly
singular and hence that A — 1'J is within ||£,-||2 of a singular matrix. Hence
A — 1'jl has a singular value bounded by ||£j||2, but the bound for the smallest
eigenvalue of A — Xtl involves H-Edi'". All that we can guarantee a priori is
that each computed l't will have an error which involves the factor ||£,||2

/B, and
this may be far from small.

For a normal matrix, |A,| = <7r, and hence this weakness disappears. If A, is
an eigenvalue of A, then A + Et has an eigenvalue X't such that

Unfortunately, the realization that this result is true has tended to lead to an
overconfidence when dealing with real symmetric and Hermitian matrices, which
are the commonest examples of normal matrices.

8. Factorizations of almost-singular matrices. If B is an exactly singular matrix
and B = XY is a factorization of B, then either X or Y (or both) is exactly singular.
Most of the common factorizations used in practice ensure that one of the factors
is certainly not singular, and hence with exactly singular B and exact factorization,
the other factor must be singular.

A factorization which is frequently used is B = QR, where Q is unitary and
R is upper triangular. Clearly Q is nonsingular, and hence if B is singular, R must
also be singular and therefore have a zero eigenvalue and a zero singular value.
But the eigenvalues of R are its diagonal elements and hence at least one ru must
be zero, indeed rm unless B is "special".

Now consider the case when B is almost singular and let us assume for
simplicity that B is factorized exactly. We have a^R) = at(B) since the <TJ are
invariant with respect to unitary transformations. Hence R must still have a
negligible singular value. However, we can no longer guarantee that any ru is
pathologically small since the rH are merely the eigenvalues, the bound for which
involves (o-n(B))1/n.

This result is important in practice because many algorithms for solving the
complete eigenproblem of a matrix first compute the eigenvalues and then attempt
to determine the eigenvectors from them. If /I is an eigenvalue given by a stable
algorithm, (A + E — XI) will be exactly singular with ||E||/||/4|| small, and hence
B = A — XI will be almost singular. The situation appears particularly favorable
when A is normal since the computed A will then have an error which is small
relative to \\A\\2, i.e., to |A||. Unfortunately, although B is normal, the same is
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not true of R, and hence we still cannot guarantee that R will have any patho-
logically small r,j. Now the weak bound for !„ is attained only when B is extremely
pathological, and hence one might expect that failure of R to have a small diagonal
element would be rare. Unfortunately, this is far from true. Attempts were made to
construct an algorithm based on this factorization in the case where A is a sym-
metric tridiagonal matrix. For such matrices, a particularly satisfactory algorithm is
known for the determination of the A's. Nevertheless, it was found in practice that
when the QR factorization of A — XI was performed for each of the n computed A
in turn, almost invariably some of the R were such that they had no small rit, and
all algorithms based on a search for a negligible rit failed disastrously.

The LLT factorization of a positive definite matrix A is known to be extremely
stable, and it might be thought that when such an A was near to singularity, this
would be bound to reveal itself in the corresponding L. That this is not true is
illustrated by the matrices A = LnLj, where Ln is of the form illustrated by

It is easy to show that aa(An) = An(An) = 0(4 "), and hence for quite modest
values of n, the matrix An is almost singular. Yet there is no obvious indication of
this in the factor Ln since all of its diagonal elements are unity.

Finally, we consider the factorization given by Gaussian elimination with
complete pivoting. This, too, would appear to be quite favorable, and yet it can
fail quite catastrophically. Indeed, if An is of the form illustrated by

then it can be shown that an(An) = 0(2 "), and hence An is almost singular for
quite modest n. Yet the factorization given by Gaussian elimination with complete
pivoting is

i.e., A, is itself the upper triangular factor, and its diagonal elements are all unity.
These examples illustrate the fact that the determination of singularity, much

less than rank, by means of simple factorizations is not a practical proposition.
On the other hand, the S.V.D. is extremely reliable, and since the computed <r;

correspond to A + E where ||E||2/M||2 is of the order of the machine precision,
it provides an excellent means of determining the numerical rank.
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9. Vectors by matrix powering. In the next three sections, we discuss some of
the algorithms which have been designed to find bases for the successive nullspaces
of powers of (A — XI) corresponding to an eigenvalue L

For simplicity of notation, we shall work throughout with B = A — II.
We shall not for the moment discuss numerical stability, but knowing that most
simple factorizations are numerically unreliable for finding the rank of a matrix,
we shall use only the S.V.D. for this purpose. Let the S.V.D. of B be denoted by

where [/, and Vt are n x n unitary matrices. Since 1 is an eigenvalue, B is a singular
matrix. If it is of nullity nlt then Bx will have nl zero singular values, and we may
write

For consistency with later stages, we write W± = V^, and the last nl columns of
H7, clearly give an orthogonal basis for the principal vectors of grade 1, while the
matrix A2 has orthogonal columns.

Proceeding to the nullspace of B2, we have

the zero columns obviously persisting. We now compute the S.V.D. of B2:

where U2 is an n x n unitary matrix and V2 an (n — n^) x (n — nj unitary matrix.
Writing

we have

Since the nullity of B2 is n^ + n2, B2 will have n2 zero singular values, and we
have

Writing £?_ t nt = ms, the matrix A?, has n — m2 orthogonal columns. The last
m2 columns of W2 give an orthogonal basis for vectors of grade 2 and grade 1.
The last nl of these columns are those of Wl having been unaltered by this second
step.
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The general step is then as follows:

where Us+1 is an n x n unitary matrix and Vs+, an (n - ms) x (n - ms) unitary
matrix. Bs+1 has n s+1 zero singular values and writing

The process terminates when As+1 is of full rank.
The main weakness of this algorithm is the difficulty of recognizing which of

the elements of at may be treated as zero. This is well illustrated when A and
therefore B is normal. If such a matrix were inserted into this algorithm, then at
the first step, the singular values would be |Aj|, \12\ • • • W. of which n j would be
treated as zero. For a normal matrix, the process should terminate here since all
vectors are of grade 1. However, if one continues, the singular values in the second
step would be [AJ2, \12\

2, ••• , \ln\
2, and some of these might well be regarded as

negligible. The algorithm can be modified to limit this shortening, but even then
it compares unfavorably in most respects with the algorithm of the next section.

10. Vectors by orthogonal deflation. Again it is convenient to work with B,
and we assume that it has an eigenvalue of multiplicity k. We write B(1) = B and
denote the S.V.D. of B(1) by

where there will be n{ zero singular values. Hence

and we may write

From the orthogonality of W(1\ the first n — nt columns of B(2) are orthogonal and
therefore independent. Relation (10.1) shows that the last n^ columns of F(1)

give nl orthogonal eigenvectors (i.e., vectors of grade 1) of B(1) corresponding to
A = 0.

If H! = k, then we have dealt with all the eigenvalues. Otherwise B(2} will
have k — n^ zero eigenvalues and we can proceed to the consideration of vectors
of grade 2. Let z be an arbitrary nonnull vector partitioned conformally with B(2)
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and when x = 0 and y + 0, z is a vector of grade 1. If x ^ 0, then it follows from
the independence of the first n — n: columns of B(2) that Bmz + 0. However,
we have

and from the same linear independence, z is a vector of grade 2 iff Bftbc = 0.
Hence we may proceed as follows. Let the S.V.D. of Bft* be given by

where S(2) has n2 zero diagonal elements if Bft* is of nullity n2. Hence

(10.7) (Vm)H&?lV™ = (F(2>)H[/(2>S(2> = WmZ,<2\

and we may write

Again the first n — m2 columns of (F(2))"B<
1
2
1
)J/(2) are orthogonal and hence

independent. Introducing the unitary matrix

It is obvious that n2 < "i; otherwise B(3) and hence B(1) would have been of nullity
greater than «j .

Again if m2 = k, the process is complete. Otherwise Bft' has some zero
eigenvalues, and we proceed via its S.V.D., this next stage being typical. If

and again introducing
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so that ZT = [XT | y7"]. Then

then
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we are led to

where n3 is the nullity of Bft*. By an argument similar to that used above, the
nonnull columns of B(4) and of leading principal submatrices of orders n — m^,
n — m2 are linearly independent. The process clearly terminates when ms = k,
at which stage B^'* is no longer singular. Since

where V = J/(1)F(2)P(S) • • • P(s), the principal vectors of B(1) may be found via
those of B(s+ J). For simplicity of notation, we expose the case when 5 = 3 which is
wholly typical. We may write

and it is eviden

(10.17)

Hence

and since B(*l is nonsingular, (B(*l)'x is not null unless x = 0. All vectors in the
relevant invariant subspace have their first n — m3 components equal to zero,
and since

it is evident that we may concentrate on the matrix C given explicitly by
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of order m3 and partition conformally into XT = [x[ | x2 I *s]- If *i + 0, we have

But since we know the columns of B(
3
4
2' are independent, z ^ 0, and since also the

columns of B$ are independent, C2x ^ 0. On the other hand, C3x = 0 for any x.
The last nl columns of the identity matrix therefore give nl orthogonal vectors of
grade 1, the next n2 columns of it give vectors of grade 2 and the next n3 columns
give vectors of grade 3.

Interpreting this result in terms of B for the general case, we see that the
last n j columns of Fgive orthogonal vectors of grade 1, the next «2 live orthogonal
vectors of grade 2, etc.

When the process terminates, B(fi1} is nonsingular and its eigenvalues are
the remaining eigenvalues of B, i.e. B^f " + A/ gives the remaining eigenvalues of
A. We can now turn to the next eigenvalue of A and repeat this process starting
from B(s+1} + U. In this way, a canonical form is ultimately attained, which may
be illustrated in the case when A has only three distinct eigenvalues A , , A 2 , /13 by

In the example given here, there were two stages with 2.3, three stages with A2

and two stages with A t and the integers nf are the nullities exposed in the successive
stages of the process. The matrix V being the product of unitary matrices is itself
unitary. Note that we have denoted the submatrices in the diagonal blocks by YtJ

and outside these blocks by X{j. From the definition of the algorithm, we have
n<° ^ nf+ j , and the columns of Yi+ lti are linearly independent. We already know
that n(i\ n(

2
3) give the number of vectors of grades 1 and 2, respectively, associated

with A3, and the corresponding columns of V provide the vectors themselves.
The remaining columns of V cannot, of course, give vectors corresponding to
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A2 and A! since, in general, the latter will not be orthogonal to those of/13. We have
not yet established that n(,2), n(

2\ n(
3
2) gives the number of vectors of grades 1, 2, 3

associated with A2, and that n'j1' and n2
1J the vectors of grades 1, 2 associated

with A,, and this we now do.
We cannot proceed further with the reduction without departing from unitary

similarities. However, if we now admit general similarities, the submatrices
denoted by the Xtj may be annihilated. To annihilate X42, for example, we
premultiply by Z42 and postmultiply by Z42, where Z42 is equal to the identity
matrix with a block X42/(A.l — -12) in the same position as is occupied by X42.
The XtJ are eliminated in this way in the order X32, X31, X42, X41, Xi2, X51,
A"65, X64, • • • . It is obvious that the Ytj are unaffected by this. The final result
is that we have

where M is no longer unitary (though its last n^3' + n(
2

3) columns are still
orthogonal). From the properties of the Yi+1>f described above, it is now evident
that the nf have the significance described above and indeed that all the columns
of M give independent (but not orthogonal) vectors of the relevant grades corre-
sponding to A,, A2, A3. Notice that we have now proved that the canonical form
(10.23) which is achieved purely by unitary transformations gives a full specification
of the J.c.f. There is no need actually to proceed to the form (10.24) in order to
find the J.c.f. However, from the form C and the rank properties of the Yi+ lti, we
may proceed to a demonstration of the J.c.f. itself. It is easy to show that by further
similarities (10.24) may be reduced to
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where Ki+ ^>; is a matrix of the form

having the same dimension as Yi+l:i. Apart from the ordering of the rows and
columns, this is the J.c.f.

It should be emphasized that we are not recommending proceeding beyond
the form (10.23), and, indeed, if one requires an orthogonal basis associated with
each of the A,., one should return to the original matrix with each eigenvalue in turn.

The outstanding weakness of the algorithms of this section and the previous
one is that the volume of work may be excessive. To find the vectors for a matrix
of order n corresponding to an eigenvalue A t of multiplicity k having just one
block JX^i) in the J.c.f., one must perform an S.V.D. on matrices of orders n,
n — 1, • • • , n — r in succession (the last one merely to reveal that there are no
more eigenvalues equal to lt!).

Both algorithms were suggested by Kublanovskaya [10], but not in terms
of the S.V.D., and have also been described by Ruhe [14], though in different terms
from those used here.

11. Economical algorithm for determination of vectors. An alternative
algorithm suggested by Golub and Wilkinson is considerably more economical in
general (though not necessarily superior in other respects). Again corresponding
to an eigenvalue A, one works with B = A — U. We first give the basic motivation.
Suppose we have already determined independent vectors «,, u2, u3 of grade 1,
vectors vt,v2 of grade 2 and vectors wi, w2 of grade 3 (not necessarily orthogonal).

If x is any vector of grade 4, then Bx is of grade 3 and hence lies in the subspace
spanned by the ut, vt, wt. In fact, x must satisfy a relation

where a is a vector of order 7. However, the totality of independent solutions of
(11.1) includes V1,v2,wl,w2, which will have been obtained by previously solving

We need a procedure which will reject these previous solutions. Indeed, the
solutions needed at the current stage are solutions of (11.1) which are independent
of Vi, v2, w l t w2. To this end, we observe that instead of solving (11.1), we may
equally well solve

where Z is any nonsingular 7 x 7 matrix, preferably unitary if one does not wish
to sacrifice numerical information. Now B is a singular matrix, and a convenient
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Then t^ and v2 are obtained by solving Sy = p, where p takes in turn each of the
vectors p(2) and p(3), giving independent solutions. Now when we have to solve
the set
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method for solving (11.1) is via the S.V.D. of B:

where S has nl zero elements, assumed to be in the last nl diagonal positions.
Hence we wish to solve

Components y5, y6, y-, are therefore arbitrary and in our algorithm are taken to
be zero, since they merely result in including multiples oSul,u2,u3in the vector a
derived from y.

We have still to discuss how we avoid duplicating the vectors we have
previously produced. Suppose at the stage when we are determining the vectors
Uj and v2 we have computed a Z (which might be called Zt) such that
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Columns two and three have already been dealt with and gave us u t and v2.
The new solutions are obtained by solving

Notice that in this stage we are left with only three columns (i.e., «j) just as
in the previous stage. Again we determine a Z2 which will make the trailing columns
of the matrix in parentheses on the right of (11.10) of the requisite form, i.e., with
zero in positions 5, 6, 7 (the last n t positions). The number of vectors of this form
will decide how many vectors of grade 3 we obtain. The algorithm is now complete,
and we observe that at each stage we are dealing with a system of the form

where R is always an n x nt matrix, and we wish to determine Z so that RZ
is of the requisite form, i.e., its trailing columns have zeros in the last n^ positions.
This is conveniently done via an S.V.D. composition. We write

where R2 is an ni x n t matrix. If R2 = [72Z2Ff, where £2 has at the sth stage
ns zero diagonals, then taking Z = V2,

and the last ns columns are of the required form with regard to the ns zero elements
inZ2 .

The general algorithm may now be described by its typical stage at which
we determine vectors of grade s + 1. We assume that by this time we have

We then assemble an n x nt matrix R(s+ *>, the first nl — ns columns of which will
be denoted by P(s), the origin of which will become obvious during the description
of this next stage. The remaining ns columns are UHu(l\ • • • , UHu(*\ This matrix
R(s+1) is partitioned in the form

510

602 G. H. GOLUB AND J. H. WILKINSOI*

if we take Z = 2], then (11.9) becomes
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If the S.V.D. of R(
2

S+ " is U(s+ 1W+ l\V(s+ n)H, where the number of zero elements
in Z(s+1( is denoted by ns+ j , then

and the vectors y(?+1\ • • • , y£t!' are obtained by solving Zy = p, where p takes
each of the last n s+1 columns of the matrix on the right in turn. The «js+ *' are
then obtained by multiplying these vectors by V. The n x (nl - ns+i) matrix in
the first n — ns+1 columns of the matrix on the right of (11.17) is the matrix P(s+1(

required in the next stage. The process terminates when ns+l =0.
In the first stage we solve

and obtain the solutions y = en_n i + 1, e n _ n i + 2, ••• , en, the last nl columns of
the identity matrix and hence u(*\ ••• , uj,'* are the last nl columns of V. The
vectors of grade 1 are therefore orthogonal, but this is not true of any of the
subsequent sets of vectors, though by taking yn_ni +1, • • • , yn to be zero in each
of the subsequent solutions of Zy = p, one ensures that all vectors of grades
higher than one are orthogonal to those of grade 1.

Observe that the successive S.V.D.'s are all performed on a matrix of order
nl x n,. In the case when nl = 1 and there is only one block in the J.c.f. associated
with the current eigenvalue, this will be a 1 x 1 matrix at each stage and the
process comes to an end when the last element of t/Hi4s) is nonzero!

12. Comments on algorithms for principal vectors. So far we have concentrated
mainly on the formal aspects of the algorithms, though in using the S.V.D. we are
tacitly recognizing numerical difficulties. The first problem is how to select our A
when.forming B = A — II. In practice, the eigenvalues of A should have been
found using some stable algorithm such as the QR algorithm. Although the
computed A( may be arbitrarily bad, each should be exact for some matrix A + E:,
where £, is such that ||£j||2/Mll2 is merely a modest multiple of the computer
precision. Hence B = A — i,/ should have at least one negligible singular value
relative to \\A\\2, however "poor" it may be in an absolute sense. However,
if A really is defective, the computed A,- are probably not the best values to use.
If, for example, A has a well-defined J.c.f. (i.e., in the optimum quasi-J.c.f., the
superdiagonal elements are of the order of magnitude of \\A\\2) and there is just
one block J^) associated with A l t one will expect the computed -I, to include a
set of r values I l5 • • • , Ir which, though not particularly close to A1( will be such
that their sum is very close to /v^. If one could recognize such a block, one should
use the mean of those values 1 and then work with B = A — U. However, in
practice, the situation will be much more obscure than this, and it is a difficult
problem to decide which values of /I to use.

Whichever of the algorithms we use, we shall need at each stage when an
S.V.D. is performed a satisfactory criterion for deciding which singular values
may be regarded as "zero". The situation is most satisfactory in connection with
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the deflation technique. At each stage, the matrix on which the S. V.D. is performed
has been determined by a unitary similarity on (A — U), and it is reasonable to
use some tolerance e\\A\\2 throughout, when £ is "small" but appreciably larger
than the machine precision.

In the powering algorithm, the rth matrix is of degree r in the elements of A,
and the decision is much less satisfactory. A modification of the procedure has
been developed which ameliorates this difficulty, but matrix powering would seem
to have nothing to recommend it in comparison with the deflation algorithm.

The Golub-Wilkinson algorithm is far superior from the point of view of
economy of computation; while the first S.V.D. is done on A — U, the others are
all performed on a submatrix of a set of n1 vectors. If the vectors uf are normalized
at each stage, a negligible singular value would be one which is small compared
with unity. If in the matrix L obtained from B = A — U itself the smallest singular
value to be regarded as nonzero is quite close to the tolerance, then in determining
all subsequent solutions of equations of the form Y,y = p, the element >>„_„. is
obtained by dividing by this almost negligible &„-„,. The vectors obtained with this
process are not orthogonal, as they are with the other two and there does appear
to be a danger that they may be almost linearly dependent with a consequent
loss of digital information.

None of the three processes gives principal vectors satisfying the chain
reaction typical of the columns of the X producing the J.c.f. Modified vectors
satisfying the chain reaction can be determined from the computed vectors, but
the volume of work is substantial and care is needed to avoid losing digital
information. Some such loss is inevitably involved in going from the orthogonal
sets given by the powering and deflation algorithms, since the vectors in the chains
may be arbitrarily near to linear dependence. Indeed, one might well ask whether
one should move from the orthogonal sets to sets satisfying the chain relations.
The answer must depend on what the vectors are needed for, and here numerical
analysts would welcome discussion with applied mathematicians, since this is
clearly a subjective matter. Further experimentation is necessary before the
algorithm can be fully assessed.

13. Poorly-defined J.c.f. As mentioned previously, there is a natural tendency
to construct "difficult" examples for testing purposes by taking a J.c.f. and sub-
jecting it to some simple similarity transformation. Such examples severely
underestimate the difficulties associated with ill-conditioned matrices. The point
is well illustrated by considering the Frank matrices Fn defined typically by
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This result is quite general and enables us to determine the eigenvalues of F5,
for example, from those of the quasi-symmetric tridiagonal matrix

The determination of these latter eigenvalues is a well-conditioned problem for
all values of n. We are able to remove the ill-condition in this way because the
transformation can be performed exactly, i.e., without rounding error. The
eigenvalues of Fn are very sensitive to perturbation in elements in the top right-hand
corner, and by transforming to Tn and then working explicitly with a tridiagonal
matrix one ensures that no rounding errors are effectively made in these elements!
From this transformation it is easy to show that eigenvalues of Fn are such that
X, = l /An_ r + 1 . It is the smaller eigenvalues which are ill-conditioned.

To illustrate the nature of the ill-conditioning, we concentrate for the moment
on F12 and discuss the problem from the point of view of computation on KDF9
which has a 39-digit binary mantissa, i.e., rather less than 12 decimal digits of
accuracy.

By row transformations, we see that del (Fn) = 1, and if Fn is the matrix
resulting from a perturbation s in position (1, n), we have det (Fn) = 1 + (n — 1) !e.
Since the determinant is the product of the eigenvalues, it is evident that changes of
± l/(n — 1)! in this element alter the product of the eigenvalues from the true value,
1, to 0 and 2, respectively. When n = 100, for example, this represents a change of
approximately 10"158. To obtain the eigenvalues correct to 10 decimals even
with an extremely stable general purpose algorithm would require computation
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with a mantissa of about 170 decimal digits. Yet the eigenvalues may be determined
via T100 working to ten decimals only.

For n = 12, the situation is not yet too serious with 12-digit decimal com-
putation, since 11! = 4 x 107. One can expect to obtain some correct digits even
in the most ill-conditioned eigenvalues. The quantities s; for the four smallest
eigenvalues are

the corresponding eigenvalues being

where we have given only the order of magnitude of the s;. In fact the errors in the
eigenvalues as computed on KDF9 using the very stable QR algorithm were
4 x 10~6, 7 x 10~6, 5 x 10~6 and 10~7, respectively, and from the sensitivity
considerations discussed in § 4, these results are seen to be extremely creditable.

From the discussion in that section, we also know that there is certainly
a matrix having a double eigenvalue A! j at a distance within ||F12||sn, but in fact,
J7! 2 is much nearer to a defective matrix than this. Indeed, it is near to quite a
number of different defective matrices. Let us consider first the possibilty of
inducing defectiveness by a perturbation e in the (1,12)-element only. The modified
characteristic equation is

If we draw the graph y = Y[ (Af — A), then the modified eigenvalues are at the
values of 1 for which f] (A; — X) = 11 !e. The situation is illustrated in Fig. 1.

Taking s to be negative, we obtain a double root when the line y = 11 !e is
tangential to the curve, which first occurs at a point between A,, and A12. If we
take e positive, a double root is obtained when the line is tangential to the curve
at a point between A10 and A H - It is surprisingly easy to compute these points
quite accurately, provided Y[(^i ~ ^) 's computed from G12, not from F12!
The value of s is quite a lot smaller than ||f12||su, and on reflection, this is not
surprising. In establishing that result, we attempted to induce a double eigenvalue
at the value A; itself for which the s,- is small. It is to be expected that a smaller
perturbation is needed to produce a double eigenvalue at some point "between"
that A j and some other Aj. As we have seen, there are always perturbations sB
for which SAj/Se = + l/s(. At least one of the other A, must be changing fast "to
keep the trace correct", and we would expect to be able to make A;(e) and some
AJ(E) move towards each other. As they get nearer, we would expect s( to get even
smaller, and one feels intuitively that a perturbation nearer the order of magnitude
I^Aj — Aj)sJ is likely to give a double eigenvalue at a value of roughly j(Aj + Aj).
The quantity |£(Aj — Aj)s,| is likely to be much smaller than \\A\\st since the relevant
Aj is likely to be at least "fairly close" to A,. This certainly proves to be true for F12.
In fact, a value B = —10~10(3.95 • • • ) gives a double root between An and A12

at A = 0.038
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FIG. 1

If perturbations sl and s2 are made in F12(l, 12) and F12(2,12), respectively,
then the characteristic equation becomes

and the eigenvalues are at the intersection of the straight line y = H!EI — 10!e2 x
(12 - A) with the curve y = [~[(A; - A). By appropriate choices of BI and £2,
this line can be made tangential to the curve at two points, one between A1 2 and
An and one between A10 and A9. The values are in fact sl = —10~7(6.24 • • •) and
£2 = —10~7(3.9 • • •) and it gives coincident eigenvalues at 0.036 • • • and 0.116.
Notice that if one attempts to solve these perturbed matrices by the QR algorithm
on KDF9, the separation of the "paired" eigenvalues may, at first sight, seem
disappointing. Two points should be emphasized. First, since the KDF9 has a
mantissa with less than 12 decimal digits, the perturbations st cannot be inserted
with any great precision since they occur via entries 1 + et. Hence even if the
6; are determined accurately, they cannot be included in 1 + e( without incurring
an error of between 10~u and 10"12. Further, in solving the perturbed matrix
A + E on KDF9, the effect of rounding errors will imply that a computed A,, is
an eigenvalue of A + E + E, when ||Ej||2/MI|2 is likely to be a modest multiple
of 2~3 9 (i.e., 10"11-7). Since we are now extremely close to a defective matrix,
$i will be quite a lot smaller than the corresponding value for A itself. In fact,
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with «j = -10~10(3.9 • • •), the two close computed values of K were 0.03758 • - -
and 0.03968 • • • , the mean of these being 0.03863 • • • ; this is very close to the
minimum point of f}(A — Af) between A12 and ^.u. Again working with the
perturbed version of G12, it is possible not only to insert the perturbations
accurately (since they now arise as et — £2 and e2 and not as 1 + «, and 1 + e2),
but also to compute the eigenvalues of the perturbed matrix accurately. Altogether,
the Frank matrices provide good material for investigating ill-conditioned eigen-
values and eigenvectors. It is clear that by the time n = 20, Fn is very near to a
large number of defective matrices having different sets of multiple eigenvalues
and even elementary divisors of different degrees. It is natural to ask what informa-
tion one should really extract and why.

Continuing with Fj 2 and KDF9 (and we make no excuse for being so specific—
the "difficulty" involved in dealing with a matrix is intimately associated with
the precision of computation one is prepared to use; on a 40-decimal digit computer
F12 could reasonably be regarded as well-conditioned!) the dilemma is particularly
acute. The computed /19, ^.10, /I l l 5 /112 all have some accuracy, and it is debatable
whether there is anything to be gained by pretending that they are equal or equal
in pairs, etc. On the other hand, if one treats them as distinct and computes the
corresponding eigenvectors, not only will these eigenvectors inevitably be
inaccurately determined, but they will also be almost linearly dependent. Indeed,
if we use the QR algorithm, they will be exact for some A + E with ||£||2/||/1||2 of
the order of 2~39. The st for this matrix will be quite close to those of A itself,
and the smallest of these is roughly 3 x 10"8. How much information do we have
at best about the space of dimension four spanned by the corresponding eigen-
vectors? From § 5 we see that these vectors are linearly dependent to within less
than 3 x 10~8. Certainly the fourth orthogonal direction is extremely poorly-
determined. Indeed, all four vectors are "fairly" parallel, and in performing the
Schmidt orthogonalization process, there will be a loss of figures at each stage.

Would it not be better to group these four eigenvalues together and to attempt
to determine directly a set of four orthogonal vectors spanning the corresponding
invariant subspace? One can certainly determine the subspace in this way much
more accurately. Whether it is better or not depends on what one really wants.
If accuracy is an overriding consideration, the "best" thing to do is to group all
12 eigenvalues together, and then any 12 orthogonal vectors specify the subspace
exactly, e1,e2, ••• ,el2 being an obvious choice! Here we have the ultimate
absurdity of perfect accuracy in a set of vectors but no information.

A sensible compromise would seem to be the following. On a f-digit computer,
we might aim to determine the smallest groupings of the eigenvalues for which
one can claim that all the computed orthogonal bases "have £' correct digits".
Obviously one must have (' < t, and if one insists on t' being too close to t, one
runs the risk of being forced into large groups with a consequent loss of information.
There is no need to get into abstruse discussions about the meaning to be attached
to the angle between a computed set of s orthogonal vectors and an exact set of
s vectors defining the subspace. Since we are unlikely to require less than 3 decimal
digits (say), we would merely be arguing about the relative merits of 9, sin 9, tan 9,
2 sin (6/2), etc., when 9 < 10~3, and clearly such matters are of no importance.
The following is a perfectly adequate measure of the angle between the orthonormal

516



Ill-conditioned eigensystems and the computation of the Jordan canonical form

ILL-CONDITIONED EIGENSYSTEMS 609

set U j , u2, • • • , MS and the orthonormal set i^, v2, • • • , vs. We may write

(13.8) u, = a,,ti, + • • • + a.isv, + rt, i = 1, • • • , s,

and the rt might reasonably be called the residual vectors. If the two bases spanned
the same subspace, then rt = 0. Therefore max \\rt\\ may be regarded as a measure
of the errors in the u, relative to the u,. In fact, \\r,\\ is the sine of the angle between
u, and the space spanned by the vt.

14. Calculation of orthogonal bases of invariant subspaces. In classical
similarity theory, unitary similarities play quite an important role, since when
X" = X~\

(14.1) B = X~1AX = X"AX,

and hence matrices which are unitarily similar are also conjunctive. The fundamental
result with respect to unitary similarities is that for any complex matrix A, there
exists a unitary matrix X such that

where Tis upper triangular with the eigenvalues of A on its diagonal. This is known
as the Schur canonical form. The ordering of the Af on the diagonal may be chosen
arbitrarily.

Unitary transformations are of great significance for numerical analysts
because a wide range of algorithms based on them are numerically stable. When A
is real, it may in general have some complex eigenvalues, though these of course
occur in conjugated pairs. It is convenient to remain in the real field whenever
possible, and there is a single modification of Schur's result which states that when
A is real, there is an orthogonal X (i.e., a real unitary X) such that

where T is now almost triangular, except that corresponding to each complex
conjugate pair of eigenvalues T has a 2 x 2 block on the diagonal having as its
two eigenvalues this complex pair. This is usually known as the Wintner-
Murnaghan canonical form [29].

It is precisely this form which is produced by the double Francis QR algorithm,
perhaps the most widely used general-purpose algorithm for finding the eigen-
system of a nonnormal real matrix. This algorithm works directly with a real-upper
Hessenberg matrix but a general real matrix may be reduced to this form by a
(real) orthogonal similarity. (For detailed discussions, see [28].) The combined
reduction from general form to real almost triangular T is extremely stable, and
it has been proved [25] that the computed matrix is such that

where X is exactly orthogonal and ||E||/||/1|| is a modest multiple of the machine
precision. Further, the computed X is very close to the exactly orthogonal X for
which (14.4) is true and hence, in particular, has columns which are orthogonal
almost to working accuracy. Since the computed T is exactly orthogonally similar
to A + E and the st are invariant with respect to orthogonal transformations,
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the s, of the matrix T give information that really is relevant. The left-hand and
right-hand eigenvectors of Tmay be readily computed; the right-hand eigenvectors
are required in any case, and the additional work needed to compute the left-hand
eigenvectors of T is a negligible percentage of that for the complete reduction.
Ignoring the 2 x 2 blocks for the moment, we determine the left-hand and right-
hand vectors for the eigenvalue in position r on the diagonal by a triangular back
substitution with matrices of order n — r and r, respectively. The vectors are of
the forms

and if these are normalized vectors, the corresponding s = xryr. The complication
caused by the 2 x 2 blocks is not substantial and is discussed in detail in [28,
pp. 372, 374]. The computed s; are invaluable in any case, since they give the
sensitivities of the eigenvalues of T, i.e., of (A + E).

Now let us consider the eigenvalues in the first s positions along the diagonal
of T. We may write

and hence

where Xs consists of the first s columns of the orthogonal matrix X. Notice that
this is true even if there are 2 x 2 blocks included in Ttl, provided the first of
a pair of conjugate eigenvalues is not in position s. These s orthogonal vectors
therefore provide an orthogonal basis for the invariant subspace of A + E
corresponding to this group of s eigenvalues, and, as we have remarked, even the
computed columns of X are accurately orthogonal. They do, of course, provide
information only about the subspaces of A + E rather than of A itself, but any
loss of accuracy due to this perturbation is inherent in the problem and cannot be
avoided without working to a higher precision (or exactly!) at least in some
significant part of the computation. Although the individual eigenvectors corre-
sponding to those s eigenvalues may be almost linearly dependent, the columns of
Xs, being orthogonal, cannot have this shortcoming.

There is no correspondingly simple method for computing a set of orthogonal
vectors giving the invariant subspace corresponding to a set of A; which are not
in the leading position. However, given any collection of A,, it is possible to trans-
form Tinto an upper triangular 7* having these Af in the leading positions by means
of an orthogonal similarity. Hence we have an orthogonal Y such that

where F is the result of rounding errors, and since the process is stable, ||F||/||T||
and hence ||F||/||/4|| is of the order of the machine precision. Hence, finally,
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where G = XFXT and ||G||2 = ||F||2, and the first s columns of YX give an
orthogonal basis of the subspace corresponding to the selected s eigenvalues.

The transformation from Tto Twas first described by Ruhe [14]. It is achieved
by a sequence of orthogonal similarities, each of which is a plane rotation and
is based on the following observation. If

then there is a plane rotation R such that

If this is true, then clearly

i that

or

For this to be true, (r — p) cos 0 — q sin 0 = 0, giving

and a simple verification shows that with this choice of R, the relation is true.
Ruhe gave the analogous result in the complex case; in this, q becomes q in the
transformed matrix. Using this algorithm, any eigenvalue may be brought into
any required position along the diagonal by a sequence of plane rotations. When
Tis real but has 2 x 2 blocks corresponding to complex eigenvalues, an analogous
result is true in which a complex pair is always kept together in the form of a
real 2 x 2 block. One needs only two additional algorithms which serve to inter-
change the position of a single real diagonal element and a real 2 x 2 block and
to interchange the positions of two 2 x 2 blocks. (N.B., the 2 x 2 blocks need not
remain invariant; only their eigenvalues.) The relevant algorithms have been
coded on KDF9 and are numerically stable.

There remains the problem of the grouping, and there does not yet appear
to be a perfectly satisfactory method of deciding on this. It cannot be decided
purely on the basis of the separation, since even multiple eigenvalues corresponding
to elementary divisors of moderate degree will not in general lead to "close"
eigenvalues in the computed set. Further, even when the exact A,- and A, are by
no means pathologically close, they may be so sensitive that small perturbations
in A may make them so. A good working test is that a perturbation E may make
them coincident if
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though since ||£||/s, is merely a first order perturbation, a smaller ||£|| than this
may well be adequate.

However, we are not merely concerned with whether the computed /lf and A,-
could belong to a multiple root. If this is our criterion, then the groups will be
much smaller than is advisable. A reasonably satisfactory rule is that if our aim is
to have t' decimal digits Correct in the subspace on a f-digit decimal computer,
then Xs should be coupled with A, when

where \\A\\F rather than \\A\\2 is used since a practical criterion is required. This
criterion has been applied on KDF9 and found to be quite sound. We may illustrate
this in action by means of a simple example. Consider the matrix

The eigenvalues are 1 + e1'3, 1 + we1'3, 1 + coV3, where co is a complex cube
root of unity. The separation is e1/3^/3, and hence when «is of the order of machine
precision, the eigenvalues will not appear unduly close. But the left-hand eigenvector
corresponding to £1/3 is [g2/3, £1/3,1], and the right-hand eigenvector is [1, e113, £2'3],
and hence the corresponding «! = 3e2/3/(l + e2/3 + s4'3) with similar results for
the other eigenvalues. Hence (A t — I2)

si =J= 3^/3e, and this product fully exposes
the danger. These two eigenvalues would be grouped together even if one were
making the tolerance very lax.

One difficulty encountered in experimentation with algorithms for finding
invariant subspaces is that of obtaining a correct orthogonal basis against which
to test computed subspaces except in the case of rather artificially constructed
matrices. In practice, we have found it useful to work with A itself and with A
such that a,j = a B + 1 _ i j B + 1 _ J - , i.e., A is the reflection of A in its center point.
Eigenvectors, etc., of A are merely those of A with components in the reverse order.
If A and A are solved by the same algorithm, then one can compare orthogonal
bases obtained with the two matrices. At least one computed subspace has an
error which is of the order of magnitude of the angle between the two computed
subspaces. Where it has been possible to determine a correct basis by independent
means, the error in each of the computed subspaces has proved to be of the same
order of magnitude as the angle between them. One might expect this to be true
generally unless there is some special reason for errors to be correlated in some way.

For matrices with well-defined J.c.f.'s, the orthogonal bases determined by
an algorithm based on the above have been correct almost to working accuracy.
Even if one takes t' almost equal to t, only the eigenvalues associated with multiple
roots have been grouped together.

The results obtained with the Frank matrices are interesting. For n = 16,
the 9 smallest computed eigenvalues and their true values are given in Table 1.
Six of the computed values are complex and with imaginary parts which are quite
comparable with the real parts. Only with iio do we begin to have any significant
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accuracy, and 19 has four correct figures. The largest eigenvalues were given very
accurately.

TABLE 1

Computed eigenvalues

A! = -0.02710 + / (0.04506)
A

*.'
*i
*i

= -0.02710- i (0.04506)
= 0.06121 + /(0.09907)
= 0.06121 - 1(0.09907)
= 0.1882 + 1(0.06248)

A,, = 0.1882 - 1(0.06248)
A10 = 0.3342

A9 = 0.6809
18 = 1.469

True eigenvalues

A16 = 0.02176
A 1 S = 0.03133
114 = 0.04517
A1 3 = 0.06712
i.,2 = 0.1051
ln = 0.1775
A10 = 0.3307
19 = 0.6809
18 = 1.469

Orthogonal bases were computed for subspaces of dimensions 2, 4, 6, 7, 8, 9
obtained by grouping the corresponding number of smallest eigenvalues together.
(Notice we did not compute spaces of dimension 3, 5 since conjugate pairs were
always kept together in order to be able to work in the real field.) The angles
between the computed bases and the true subspace are given in Table 2. The
subspaces of order 2 and 4 are scarcely of any significant accuracy, but that of
order 6 is correct to about 3 decimals and that of order 7 to almost six decimals.
Notice that this accuracy in the subspace is attained, although some of the A(

are very poor. (It should be emphasized, though, that every computed Af is an
eigenvalue of some A + E, with ||£||/M|| of the order of 2~39.)

TABLE 2

Angle between computed and true subspace

2
4
6
7
8
9

3.05 x
1.73 x
6.23 x
1.74 x
1.73 x
2.67 x

KT2

io-2

lo-4

1<T6

io-8

IQ-IO

We may look at these results from an alternative point of view. If the matrix
F16 is regarded as having relative errors of order 10~12 in its elements, then the
invariant subspace corresponding to its two smallest elements is scarcely deter-
mined at all, while that corresponding to its smallest 7 eigenvalues for example
is determined to about six decimals.

15. Inverse iteration and ill-conditioned eigensystems. Inverse iteration is one
of the main tools used in practice for the calculation of eigenvectors from computed
eigenvalues. The motivation for inverse iteration, due to Wielandt [23], springs
from the observation that if A is a matrix with a complete set of eigenvectors x;,
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then an arbitrary vector may be expressed in the form

and hence

i

If |Aj- — k\ « | A,. — fe| (i jt j), the components of Xj will be very much larger than
the coefficients of the remaining x;, unless the vector y happens to be very deficient
in Xj. If, in particular, k is a very accurate approximation to A;-, the right-hand side
of (15.2) may be written in the form

and the normalized form of this vector will be Xj to very high accuracy. However,
for nonnormal matrices, a computed A may not be particularly near to any eigen-
value, and it appears that one can no longer expect such a spectacular performance
in one iteration.

Varah was the first to point out that this is not so. The simplest way to see
this is to forget about the expansion of y and concentrate directly on the solution
of (A — A/)z = y, where ||y||2 = 1. We may write

giving

I

The first of equations (15.5) may be expressed in the form

I

and hence I and w are an exact eigenvalue of eigenvector of the matrix A — rw".
Since || nv" || 2 = ||r||2 = s, it is evident that if ||z||2 is "large", A and ware satisfactory
since they are exact for a neighboring matrix.

Now if we start with a value of I which is an exact eigenvalue of A + E, then
however poor A may otherwise be,

Hence (A — U)q = —Eq and if one takes y = — Eq/\\Eq\\2, the solution of
(A - A/)z = y is z = q/\\Eq\\2 and ||z|| ^ 1/||£||2. With this choice of y, then,
we obtain a very large z in one iteration, and the corresponding w = z/||z||2 is
a satisfactory eigenvector corresponding to A. Obviously, if we take as initial y
an arbitrary unit vector, the probability of it being very deficient in the vector
— Eq/\\Eq\\2 is very small and hence inverse iteration will "work" in one iteration
with almost any starting vector.

However, Varah also produced an argument which suggested that when A
is related to an ill-conditioned eigenvalue, there are severe disadvantages in
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performing more than one step of inverse iteration, and a satisfactory analysis of
the phenomenon was subsequently given by Wilkinson [27]. It is instructive to
analyze this phenomenon in terms of the S.V.D. decomposition. We showed in
§ 5 that if A; is an ill-conditioned eigenvalue, the associated s; is small and the
matrix X of eigenvectors has a small singular value an < s;|. If the S.V.D. of X
is

then

and hence the unit vector un expanded in terms of the x; has very large coefficients.
If we take an arbitrary vector y, it can be expressed in the form

where the /?, are distributed in a natural way. When it is transformed to its expansion
in terms of the x,, we have

and in general all the coefficients of the xt will be very large but will be in ratios
which are independent of the /?,, provided /)„ is not small. From (15.11),

and z will in general be a large vector for two reasons: first, because an is small and
second, because usually one of the (A; — A) will be moderately small (though not
usually pathologically so). Now when z is normalized prior to doing the second
iteration, the coefficients of the xt in this normalized z will no longer be special
in the way that they were in the first "arbitrary" y.

In fact, the normalized vector will be essentially

i

and the coefficients of the xt will be of order unity. In the first vector these coefficients
were all large but canceled out to give a vector of normal size. Consequently, in
the second step of inverse iteration, the growth in size will come only from the
comparative smallness of a Af — A and will not be reinforced by the smallness of an.
This will be true of all subsequent steps unless at the rth step all the quantities
((Aj — A)/(A7 — A))r are almost equal, when the normalized value will have large
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components of each of the x; in the same ratios as in the first vector. In this case,
every rth iteration will give a large growth and consequently a satisfactory vector.
This situation will usually occur when A has an elementary divisor of degree r.
Varah has effectively used this behavior of the iterates to give information on
the structure of the J.c.f. of A [21].

The analysis may be carried out in an alternative way which is also instructive.
We observe first that if A, is an exact eigenvalue of A, then A — A(/ is singular,
and if

then on = 0. Consequently,

and vn and «„ are normalized right-hand and left-hand eigenvectors of A, with
u"vn = «j.

Now suppose Aj is an exact eigenvalue of A + E; then an(A — A,7) 5S ||£||2-
If we now write

then crn ^ ||£||. An arbitrary unit vector y may now be expanded in the form

and

The coefficient of vn is a.Jan, and

Unless y is accidentally deficient in un, the full growth takes place in the first
iteration. The normalized z is essentially of the form

where the y, are small. To see the effect of the second iteration, one requires an
expansion in terms of the uf rather than the t>;, and we now show that in this
expansion the coefficient of un is small. Indeed, since u"vn is roughly s, from the
previous argument, and all the y{ are small, this is immediately obvious. The
normalized z is therefore an unfortunate vehicle for inverse iteration since it is
deficient in «„.

16. Improvement of an invariant subspace. Suppose A has been reduced to
upper triangular form T by a unitary similarity X with a group of associated A,,
in the s leading diagonal positions of T. We then have, for the computed X and T,

The error analysis guarantees that E will be almost negligible to working accuracy.
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Each element of the matrix E may be determined in practice by accumulating the
whole of the inner product involved in double-precision before rounding. If
F = X~1E,then

and since the computed X is almost exactly orthogonal, one can compute F via
XTE. From an invariant subspace of T + F one can improve the corresponding
subspace of A itself. We partition T + F in the form

where Ti t contains the grouped eigenvalues. The relevant invariant subspace of T
is spanned by the first s columns of /, and hence if we write

[/ YT] gives the improved subspace. From (16.4), neglecting second order
quantities,

and y is the solution of

The matrix y may be determined column by column via the relations

In general, the rth column of Y is the solution of a triangular system of
equations with matrix (T22 — trrl).

From y one can determine Gu via (16.5).
If one includes the second order terms, then (16.6) becomes

and after solving (16.6), an improved right-hand side is that in (16.9) in which
the computed y is used. In this way, y may be repeatedly improved by iteration.

However, there is little point in this. The matrix F is not known exactly.
There are errors made in computing E in the first place and further errors in
computing X~1E, and here no purpose is served in computing y accurately.
In (16.3) we have purposely refrained from writing

although this would have simplified the expressions. This is because it is necessary
to keep the F matrix separate from the T matrix on the computer. The information
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in F would promptly be lost if the addition were carried out. However, there are
obviously slight advantages in replacing (16.6) by

The improved subspace Xi is now Xi = X1 + X2 Y. It is no longer quite
orthogonal, but this is of no importance. If one wishes to continue with the
refinement of the subspace, one should return to the computation of the residual
via the relation

where

The new E will not be smaller than E in general, but the next correction to the
subspace will be. If X = [X1 X2], then

and one can still use the approximation (A*)"1 = XT. When computing the new
correction Y, the equations corresponding to (16.6) will be

and TH = TH + Sn is no longer upper triangular. However, we may use Tn in
place of Tj t since YSj 1 will be of second order.

The process of iterative refinement is wholly analogous to that used with
linear equations (see, e.g., [25, Chap. 4]). In general, we can continue until we have
a basis which is correct to working accuracy. Indeed, at the time when the process
terminates, the new Xt will be obtained in terms of the old Xl and the original
X2 by the relation

where X2 yis small. The true sum on the right-hand side will be accurate to more
than the working precision.

The final Xt will not have orthogonal columns, but they will be almost
orthogonal. If true orthogonality is required, no appreciable loss of accuracy
will occur when the Schmidt orthogonalization process is performed.
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The Block Laitczos Method
for Computing Eigenvalues

G. H. Gotub
R, Underwood

ABSTRACT

In this paper, we describe a Block Lancso* method for
computing a few of the least or greatest eigenvalues of a.
sparse symmetric matrix. A basic result of Kaniel and Paige
describing the rate of convergence of Lanczos' method will be
extended to the Block lanezos method. The results of experi-
ments conducted with this nethod will be presented and dis-

cussed.

1. tHTBODUCTIQH.

Often it is necessary to compute the algebraically
greatest or least eigenvalues of a large, sparse symmetric
matrix A where r Is much less than n , the order of A.
In this paper, we describe an algorithm for solving this
problem and present the results of experiments in which a
program implementing this algorithm was applied to a variety
of problems. A theorem describing the rates of convergence
of the computed eigenvalues to the true eigenvalues will also
be presented along with its proof.

The algorithm we will describe is an extension of the
method of minimised iterations due to Lanczos [1]. In thifl
procedure, the elements of a symmetric tridiagonal matrix
similar to A are generated by an iterative procedure.
Lanczos proposed using these elements to compute the coeffi-
cients of a polynomial whose roots are eigenvalues of A
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and described how vectors generated in the course of the

iteration could be combined to form the eigenvectors corres-

ponding to these eigenvalues. However, due to certain pracT

tical difficulties, Lanczos1 method was supplanted by Given'a

and Householder's methods for solving the general symmetric

eigenproblenu

Paige [9] experimented with Lanczos' method and found

that a few of the least and greatest eigenvalues of the tri-

diagonal matrix would often converge rapidly to those of A

long before the process was completed. A similar approach

was also suggested by Karush 110].

The method we will describe, the Block Lanczos Method,

is an extension of Lanczos' method in which we iterate with

a block of vectors rather than a single vector. In place of

the tridiagonal matrix generated in Lanczos' method, we gen-

erate a block tridiagonal matrix. The Block Lanczos method

can furthermore be used in the manner proposed by Paige.

That is, one can compute a sequence of estimates to the

eigenvalues of A from the block tridiagonal matrix. Our

extension is similar in spirit to the work of Hestenes and

Karush [2] on the method of steepest descent and generalizes

Lanczos' method in the aawe way that simultaneous iteration

generalizes the power method. It not only enables us to com-

pute several eigenvalues and eigenvectors simultaneously, but

affords us improved rates of convergence.

Several researchers have been instrumental in developing

the Block Lanczos method. In particular, Kahan and Parlett

|3], Cullum and Donath [4J, Lewis [5], and Underwood [6]

following a suggestion of Golub. The rtsults and work

reported here are taken in large part from 16).

In the next section we will describe and develop the

Block Lanczos method. In Section 3, we will discuss its

numerical properties and problems associated with its appli-

cation and in Section 4, we will describe the results of

certain experiments carried out with a program implementing

this method. Finally, in Section 5, we will mention recent

developments and work done with the Block Lanczos method.

2. A BLOCK LAHCZOS ALGORITHM.

Our development of this algorithm follows the path taken
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oy Lancaos in the development of his method and is described

in greater detail in 161.

Starting from an initial n-by-p ortnonormal matrix X,

our goal is to compute a sequence of mutually orthonormal

n-by-p matrices X., X-, ... , X such that the space of

vectors spanned by the columns of these matrices contains the

columns of the matrices X, AX, A2X, ,.. , AS"1X . TO sim-

plify our explanation, we assume that n » 1 , the value of

P is greater than zero and less than or equal to n/2 , and

a is greater than 1 and lass than or equal to n/p . Note

that it will usually be the case that p-s « n , To start

with, we let X, - X , compute AX, and 2, where

and Ĥ  is a p-by-p matrix chosen so that the Euclidean

norm of a, is minimized with respect to all possible

choices of MI . It can be shown that || Z,|| is minimized

when Hj - X̂ AXĵ  , With this choice foe Mĵ  , we have that

That is, Z, is the projection of AXj^ onto the space

orthogonal to that spanned by the columns of x, . The

matrix X. is tnan obtained by orthonormalizing Ẑ  :

where R_ i« a p-by-p matrix which is usually but not

necessarily taken to be upper triangular. (X- and R^ are

by no means unique.) Note that R^ will be singular if Zj

is rank -deficient. In the case that R- IB upper triangular

rank deficiency means that some of the columns of X,, can be

chosen arbitrarily. To make the algorithm go through, it is

necessary only to choose these columns so that they are

orthonormal to X., . In any event, we have that X; ie

orthogonal to X, . From (2.2) and 42.3), it is easily seen

that the space spanned by X^ and X,, Contains the columns

of X and AX .

The remaining matrices in the sequence X^, X^, >•• < Kg
are computed aa follows: Given X,, X.,, ... / X, for
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i >_ 2 , we compute AX^ and Z.^, where

and a. ., B. ,, — , B. . ,, and H. are chosen so that
*f^ A f A lfJ.

HJi -L

the Euclidean norm of z-+i is minimized with respect to all
possible choices of these matrices. It can be shown that
|| Zi+1}| is minimized when

mid

B

and hence,

Thus, a.+, is the projection of JUt^ onto thft space ortho-
gonal to that spanned by the columns of X^f X^f ... , X^ .
He now compute x +̂1 by orthonormalazing s^+i >

where R-+i IB a p-by-p matrix and Xj . is orthonorroal.
Since zi+i -̂s orthogonal to x_, X_f — , X, , we have
that xj+i is orthogonal to all previous X. . As before,
if a'ii ig rank deficient, we choose the additional columns
of X,+, so that they are orthonormal to the coluiana of
A. , A^, ... T A ' *

By equations ( 2 . 4 ) and { 2 . 6 ) , we have that

From this Last equation, we conclude from the orthogonality
of the X . that

for j = 1, 2, , i-2 , since AX. is a combination of

X.., X2, ... , X. + . . Thus, we have
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It can be easily shown that

Equations (2.1), (2.3), and (2.7) can therefore be written
as follows:

fop i = 2, 3, ... , 8-1 , and

or

where

and

Since ^B^i is orthogonal to X , , X _ , ... , X we have that

and
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From (2.5) and (2.6), it can be shown [6] that the space
spanned by X., X,, —, X. contains the columns of the
matrices X, AX, A2X, ... , Ai~1Xor all i = 1, 2

Using equations (2.8), (2.9), and (2.10), we define the
following Block LaiiczoE Algorithmi Given p and a where
1 <_ p <_ n/2 and 1 £ s ̂  n/p , and x, an n-by-p ortho-

normal matrix, compute
X, M

equations (2.8), {2.9),
Step 1. Let X, •
Step 2. For 1-1,

steps i
Step 2a,

step 2b.

sequences of matrices x^, Xj, ».. r
and R,, R-, .1. , R satisfy ing

and (2.10) as follows;
< X . Compute AXj and HI = X^AX^ -
2, ... , s-1, do the following three

Compute
IAX, - X,M,zi+l" 1 x * L
lA3ti - xi"i

If i-1 , or

- Xĵ R̂  if i>l .

Compute Xt+1 and Ri+1 such that
Xi+1 is orthonormal, Ri+1 is upper

triangular and
Zi+l " Xi+lRi+l *
if zi+1 is rank deficient, choose
the columns of X1+1 so that they
are orthogonal to all previous X. ,

Step 2c. Compute ^̂ ^̂  an*̂
Mi+l " Xi+lAXi+l *

Because oC the numerical properties of this algorithm
(cf. Section 3), it will be necessary to modify step 2b to
ensure that xi+, is orthogonal to all previous X^ even
when Z.,, ia not rank deficient. This point will be dio-

1T.L •——

cussed further in Section 3.
Note that H is a «ymmetric block tridiagonal matrix

and since the R. are chosen to be upper triangular, it is

also a band matrix with half-band width p+1 . If it were
the case that p*s = n , then MB would be similar to A and
the eigenvalues of MS would also be eigenvalues of A . In

general, because of the numerical properties of the Block
Lanczos Algorithm mentioned above, it is not practical to
carry the method through to completion. The value of the
algorithm lies in the fact that sone of the least (and
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greatest) eigenvalues of Mg will closely approximate the

corresponding eigenvalues of A for values of & such that

p-s « n , as the following theorem indicates.

Theorem 1 [61. Let X, < i, < ... < X be the eigen-•— x — £ — — n
values of A with orthonormalizea eigenvectors q,, q_, ....

qn . Assume that Xp <_Xp+1 . Let ̂  < P2 < n3 - - - < Vpg
be the eigenvalues of M . Let

where

and HJ^ is a p-by-p matrix composed of the first p rows of

W. Suppose that W, is nonaingular so that <s . , the

smallest singular value of W, , is greater than zero.

Then for i = 1, 2, ... , p ,

where

T , is the (s-l}st Chebyshev polynomial of the first kind.
Proof. We will only outline the proof here. For com-

plete details, see [6].
By the Courant-Fischer theorem [71, it can be ahown that

where

where Efc is any k-dimenaiooal aubspace spanned by k inde-

pendent vectors in L(s,XrA), the space spanned by 5̂ , X2>

... , Xfi . We will show Uiat there are p vectors g^, q^,

... , g in L(s,XrA) such that if Ev is the space
P "•

spanned by the first It of these vectors, then
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By combining (2.11) and (2,13), we have Theorem 1.
The vectors g, are choaen as follows: Let P be the

polynomial such that

where

By the properties of Chebyahev polynomials,

and

for i = p+1, p+2, ... , n . Let A be the diagonal matrix
of eigenvalues whose ith diagonal element is X. . Similar-
ly, let A. and A, be diagonal matrices of orders p and
p-p respectively, whose ith diagonal elements are X. and
X .. respectively. It follows that
P*J-

and

where F(A) and P(A) are matrices confuted by evaluating

p at A and A. How, let

It can be easily seen that each column of 6 is a combina-
2 s-l

tion of the columns of X, AX, A X , .... A X , Sinca
...L(s,X,A) contains the columns of the matrices X, AX/

A3"1X , each g^ is in L£a,x,A) . The renainder of the
proof involves showing that with Ê  chosen to be the spac
spanned by g^ g.j, ... , gfc , the value of X£ defined by
equation {2.12) satisfies equation (2.13).

This theorem is an extension of a result due to Kaniel
|B,9], and, indeed, reduces to Kaniel's theorem when p=l 
A similar theorem can be given for the largest eigenvalues.

Example. Suppose A is of order 1000 and X, = 0.0,
A2 = 0.1, X3 - 0.5, and ^OQQ -1.0. Suppose further that
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X is such that trM̂ n
= 0.04, If we then apply the Block tanczas

method to A and X with p=2 and s=10, we will find that the

two leaat eigenvalues p^ and p^ of MI(J will satisfy

and

Thus for the relatively small cost of computing M^Q (of order

20) and its two least eigenvalues, we are able to obtain very

accurate approximation!) to the two least eigenvalues of A.

As is the case with the simultaneous iteration method,

there i* no need in the Block Lanczos method to explicitly

modify the matrix A. Rather, all that is needed is a pro-

cedure for multiplying a vector x by A. This is what makes

it especially valuable for sparse matrices, in contrast to

the simultaneous iteration procedure, however, one can get

either the largest or smallest eigenvalues of A automatically

with the Block Lanczos method regardless of whether they are

of largest modulus or not.

Hote that, as we have defined it, the Block Lanczoe

method is not a method for computing eigenvalues and eigen-

vectors per se. Rather, it is a procedure for computing a

block tridiagonal matrix which is similar to A. To produce

a complete algorithm for computing eigenvalues and eigen-

vectors, we need to combine it with a technique for computing

the eigenvalues PI and eigenvectors y^ of MS- in (6), the

QR method is used.

Given an eigenvector y^ of H corresponding to v^, the

vector q^ will be a good approximation to q^ where

It can be shown that g^ and pi satisfy

where w^ denotes the vector of order p composed of the last p

components of y^. We see from equation (2.14) that the eigen-

values of Mfl will be exact eigenvalues of A if we have Ss+i"
e-

While wa might normally expect that the eigenvalues of ftfi
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might not bear any relationship to those of A unless all the
elements of KB+-^ were vary small or zero, it will turn out
to be the case that the elements of the vector z_+|*i for the
least and greatest eigenvalues of eigenvectors of H will be
very small.

In practice, it usually is the case that the number of
steps * of the Block Lanczos method that can be carried out
must satisfy p-s <_ q where q is a value dictated by the avail-
able memory on the computing system and in most instances, q
will be much leas than n. after carrying out these maximum
number of steps, we may find that the eigenvalues UA have
not converged to the desired accuracy. The result of Theorem
1 suggests that more accurate approximations nay be computed
by re-applying the Block Lane20a method to A and the matrix
•X composed of the eigenvector approximation* q^. In fact, one
may apply the procedure repeatedly starting each iteration
after the first with a matrix X composed of the eigenvector
approximations computed during the previous step. This idea
leads us to the following Iterative Block Lancsoa Algorithmt
Lat X be an arbitrary orthonormal n-by-p mattiK where
1 1 P 1 n/2- Let a be an integer value such that 1 1 « 1 n/P-
Compute: approximations to the p least eigenvalues and *igen-
vectors of A as follows*

Step 1. Apply the Block Lanczoe Algorithm to X computing
Hs and Xs.

step 2. Compute the p least eigenvalues ̂  and eigen-
vectors y^ of &s*

Step 3. Compute q^ • Jfayi for i = 1, 2, —a,p.
Step 4. If y,, V-, ... , u ace sufficiently accurate,

JL i p

then stop. Otherwiset return to step 1 with
X replaced by the matrix (q̂ , q~2,—, <L,) •

It may be the case, however, that the number r of eigenvalues
and eigenvectors that wa need is not equal to p, the block
size. Furthermore, once a few eigenvalues and eigenvectors
have converged, one need not iterate with them any longer.
However, it is necessary to maintain the orthogonality of the
matrices X^, K2» ... , XB computed during each iteration with
respect to eigenvectors already computed. This may be con-
veniently carried out in the context of step 2b of the Block
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Lanczos Algorithm* For a complete description of an Iterative

Block Lanczos Algorithm incorporating this concept and

allowing the confutation of an arbitrary number r of eigen-

values and eigenvectors subject only to memory limitations,
»ee «].

3. IMPLEMEHTATIQM.

In this section, w» will consider certain properties of

the Block Lanczos Algorithm and problems associated with its

implementation and application.

By the way in which the X1 were defined in Equations

(2.1), (2.2), (2,5), and (2.6), it would a&am that they

should be mutually orthogonal. In practice, however, because

of the loss of figures when Z,+, is computed, they rapidly

lose orthogonality so that after a few steps of the Block

Lanczos process, the current X. will no longer be ortho-

gonal to the initial blocks in the sequence X.,, x_, ... ,

X^ . It is this phenomenon that makes the Lanezos algorithm

unsuitable for tha general symmetric eigenproblero. To main-

tain the stability Of the process requires costly reortho-

gonalization of each x^ with respect to all previous X. ,

making the nathod relatively more costly to apply in relation

to, eayf the Givena or Householder methods for tridiagonal-

leing « matrix.

When used as described in the previous section, however,

lose of orthogonality is a mixed blessing. AS Paige [9]

pointed out in his thesis, loss of orthogonality goes hand-

in-hand with convergence of some of the eigenvalues of M

to eigenvalues of A . That is, at the very point that the

process is about to go awry, we have achieved our desired

goal of computing accurate approximations to a few of the

eigenvalues Of A . The difficulty in using the Lanczos

method in this way lies in reliably and efficiently deter-

mining at what point orthogonality is being lost. If the

process is continued beyond this point, then it in essence

restarts, and we may recompute eigenvalues that have already

been computed. That is, a simple eigenvalue of A may

appear more than once among the eigenvalues of M even

though Its multiplicity is one. One is then faced with the

task of determining whether an eigenvalue of M which
8
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appears more than once is truly a multiple root of A or

whether it is a simple root which has been computed wore than

once. To this date, there is no completely reliable solution

to this problem. Kahan and Parlett [3] examined this problem

and concluded that not enough is known at the present time

tP design a universal Lanczos program although the process

can often be tailored to a particular problem with consider-

able success.

In our work we have chosen to include a reorthogonaliza-

tion step. In particular, we replace step 2b in the descrip-

tion of the Block Lanczos Algorithm with the following modi-

fied step:

Step 2b'. Heorthogonalisse 8ii,1 with respact to all

previous X. and compute Xĵ  and R£+I
such that al+1 - X.+1Ri+1 •

It should be pointed out that this modification preserves

the stability of the algorithm at a considerable cost. Ths

refcrthogonalization process not only requires a large number

of arithmetic operations but requires that each of the X.

be in memory during each step of the method as opposed to

only the previous two blocks in the basic process. However,

our experiments indicated that even with a reorthogona11na-

tion step it was competitive with the simultaneous iteration

algorithm, one of the best techniques for solving large,

sparse symmetric eigenproblems.

The Iterative Block Lanczos method described in the last

section provides a convenient method for estimating the

accuracy of the computed eigenvalues and eigenvectors. It

can ba shown [6] that the ith column of the matrix &2 (cf.

section 2) computed in each iteration after the first will

be the residual vector for the ith eigenvalue |î  and eigen-

vector g, computed in the previous iteration. One may then

determine at the start of an iteration the accuracy of the

eigenvalues and eigenvectors computed at the end of the

previous iteration and discontinue iterating with those that

have converged.

He end this section with * few suggestions on how to

choose the block size p . If possible, it is usually best
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to choose p equal to the number r of eigenvalues and
eigenvectors we are attempting to compute. It seldom pays
to iterate with more than r vectors since this will mean
that we will be able to carry through fewer steps due to
memory limitations. If one is afforded some a priori infor-
mation on the spectrum of A , Theorem 1 suggests that a good
choice for p is on* for which the gap between \ and
X +1 is fairly large. Also, it is best to choose the block
size at least as larga as the largest multiplicity possessed
by any eigenvalue of A , Note that if A has an eigen-
value of multiplicity m and m > p , then we can compute at
most p of these eigenvalues at a tine.
4. EXAMPLES.

In this section we report on experiments conducted with
a Fortran program implementing the iterative Block Lanczoe
Algorithm described in 16]. The results reported here were
computed on an IBM 370/16S computer and are also taken from
let.

Example 1 [6, ch, 4, ex. 1], The matrix A ie a diag-
onal matrix of order n-454 with eigenvalues X, - -10.00,
*jj « -9.99, *3 - -9.98, *4 = -9.00, ... , X4J4 - 0.0. We
used the program to compute the three least eigenvalues and
Eigenvectors {r • 3) with an initial block size of three
(p - 3). A total o£ fifteen vectors were allowed for storing
the Xi (q - 15 and p-s <_ 15) and an accuracy of eps =
1*°10~e was re9ue8t*3<ln 1Jiterations, the program com-
puted UL - -9,9999 99999 99996, P2 = -9.9899 99999 99994 ,
and i»3 = -9>.979J 99999 99991 with relative errors leas than
l.Djjj-8 in all three cases. Note that the error is the
error in the eigenvectors and that the eigenvalues, since
they are Rayleigh quotients, are approximately twice as
accurate as the eigenvectors.

Example 2 {6, ch. 4, ex. 2], The matrix in this example
ie the same as in example 1 except that the spread in the
eigenvalues has been reduced by a factor of 10. That is,
*x - -10.00, \2 - -9.999, X3 = -9.998, \4 - -9.900, ... ,
4̂54 = -9.000, As in example 1, the three least eigenvalues

were computed to an approximate accuracy of 1.0,. ̂-8 using
fifteen working vectors. In thie case, the program took 10
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iterations to compute the desired eigenvalues to about the

same accuracy as in example 1. This example together with

example 1 serves to illustrate the point that the rates of

convergence of the Block Lanczos Algorithm depend on the

relative spread of the eigenvalues as Theorem 1 suggests.

Example 3 [6, ch. 4, ex. 4J. In this example, A is of

order 180 with eigenvalues A, = A2 - 0.0, X, = \. * 0.1,

*5 - .25, ... , and A™ = 2.00. We computed the four least

eigenvalues and eigenvectors to a relative precision of

l.O^g-4 using ten working vectors (q = 10). In this case we

tried block aiaes of p » 1, 2, 3, and 4. The program took

the fewest iterations with p « 2 and the greatest number

with p = 4 , Even though the rates of convergence were

better with the larger block size, the program could carry

through more steps of the Block Lanczos Algorithm with

p - 2 . This example demonstrates that the program often has

no difficulty computing multiple eigenvalues and that the

leapt eigenvalues need not be the eigenvalues of greatest

modulus as is the case with the simultaneous iteration

method.

Example 4 [6, ch. 4, ex. 53. The matrix A is of order

300 with \1 - 0.0, \2 - X3 - \^ * 0,1, X5 - 0,25, ... ,

A.-. = 1.0. Block sizes of p = 1, 2, and 3 were tried with

p « 3 requiring the fewest iterations. In particular, with

p = 3, the program took four iterations to compute the three

least eigenvalues to an approximate precision of 1,0]*-3

using 12 working vector*. Note that with p - 3 there is

no gap between A, and X. and in spite of this, the algo-

rithm worked very well. Theorem 1 therefore clearly does not

tell the whole story regarding the convergence of this method.

He suspect that in this example \. plays a role but we have

discovered no way Of proving this.

Example S [6, ch. 4, ex. 7]. In this example, we com-

pute the twelve smallest eigenvalues of the discrete bihar-

monlc operator H [11] of order 1024. Rather than compute

the eigenvalues of H directly, we compute those of A =

-H where tha matrix vector product Ax * y required by

the Block LancsfO* procedure is obtained by solving

H* = X
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for i using the method of Buabee, Dorr and Golub [16], and

then setting
y = -z .

This serves to illustrate an important point mentioned pre-
viously regarding the Block Lanczos method. Namely, it is
not necessary to explicitly modify the matrix A. Rather,
all that is required is a procedure for computing the matrix-
vector product Ax given x .

Using 16 working vectors (q - 16) and an initial block
lize of p " 3, the program took 1& iterations to compute the
required number of eigenvalues and eigenvectors to precisions
which varied from 1.010~3 to 1.01()-6.

Using the eigenvalues Of A , we can compute those of
H which are in turn related to the frequencies of vibration
of a square, clamped elastic plate. The frequencies computed
using our program compare favorably with those reported by
Bauer and Reisa fill and the rough plots of the eigenvectors
indicate that they accurately describe the fundamental modes
of vibration of clamped plates.

We note, finally, that this program has been success-
Cully applied to the eigenpjroblem of the Laplace operator
over arbitrary bounded plane regions by Proakurowski [12],

A listing of the program used in the above examples is
contained in [63 and copies of the program are available
from the authors upon request.
5. EXTBWSIOHS.

Although the emphasis of the paper has been on computing
the least eigenvalues, we note that the technique applies
equally well to the problem of computing the greatest eigen-
values of A . One could easily construct a program for com-
puting the greatest eigenvalues and eigenvectors directly or
apply the ideas in this paper to the matrix -A .

Golub, Luk and Overton [13] have developed a program
for computing a few of the largest singular values of a
matrix using a variant of the Block Lanczos method. The
basic idea is to use several vectors to generate a block
bidiagonal matrix which has band structure.

Th« Block Lanenog method can also be used Cor generating
a band matrix with * given eigenvalue structure. In parti-
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culsr, suppose one is given the eigenvalues of the first

p+1 leading principal minors of a symmetric matrix. This

information is sufficient to compute the first p elements

of the eigenvectors of the matrix. From these vectors, it

is possible to generate a symmetric matrix which has a half

band width p+1 . Details of this algorithm are given in

[111.

Finally, it is well known that there is a close theore-

tical connection between the Conjugate Gradient method and

Lanczos' method. Underwood [IS] has developed a Block Con-

jugate Gradient method which extends the Conjugate Gradient

method in the same way that the Block Lanczos method extends

Lanczos1 method. That is, using a program based on this

method, he has been able to solve several system* of equa-

tions with the same matrix simultaneously with improved rates

of convergence over those afforded by the standard Conjugate

Gradient method.
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THE NUMERICALLY STABLE RECONSTRUCTION OF A
JACOBI MATRIX FROM SPECTRAL DATA

(WITH C. DE BOOR)

LINEAR ALGEBRA AND ITS APPL. (21), 245-260 (1978).

This was a fun paper to work on. Gene had come to the Mathematics Research Cen-
ter (MRC) in Madison, WI, in May of 1976 (giving Gene the pleasure to write in the
paper's acknowledgements of having been a "guest worker" there) to work with Paul
Concus, had recently talked with Victor Barcilon about the inverse eigenvalue prob-
lem for 5-diagonal matrices, and must have given a talk about the general problem,
with stress on tridiagonal matrices. I became intrigued since Gene mentioned some
unsolved problems and I had recently gone through, jointly with Allan Pinkus, Gant-
makher and Krein's "Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen
mechanischer Systeme", hence felt at home with Jacobi matrices and the power of
Sylvester's determinant identity (which, so Allan had taught me, is the only determi-
nant identity one really needs, other than Cauchy-Binet).

My folder concerning this paper is quite thick with reprints and preprints of the
relevant literature, most of it provided by Gene, and I recall the pleasure of gaining an
understanding of all that material.

Our actual work on the paper was quite short. As soon as Gene raised a question,
we usually settled on an answer within the day. My folder contains a message, delivered
to Gene at the Howard Johnson Motor Lodge in Madison, which says: "Golub Gene /
The persymetric case is trivial/ Carl Deboor" with the word 'very' added in red in
Gene's handwriting before 'trivial' - testifying to the lively back-and-forth of those
discussions.

The writing of the paper took place a little later. For example, a letter from Gene
to me, dated August 9, 1976, announces the imminent arrival of a copy of the "1974
Summer Seminar on Inverse Problems" and the fact that he won't be home until
September 24, and ends with the sentence: "Hopefully, I'll find a draft of the manuscript
when I return!" I do not now recall whether Gene's hopes were fulfilled. We did receive
a referee's report in April of 1977 whose major suggestion we failed to act on since we
didn't understand it but the paper was published anyway.

Thank you, Gene!

Carl de Boor
Madison, Wisconsin, USA
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ABSTRACT

We show how to construct, from certain spectral data, a discrete inner product
for which the associated sequence of monic orthogonal polynomials coincides with
the sequence of appropriately normalized characteristic polynomials of the left
principal submatrices of the Jacobi matrix. The generation of these orthogonal
polynomials via their three-term recurrence relation, as popularized by Forsythe,
then provides a stable means of computing the entries of the Jacobi matrix. Our
construction provides, incidentally, very simple proofs of known results concerning
the existence and uniqueness of a Jacobi matrix satisfying given spectral data and its
continuous dependence on those data.

1. INTRODUCTION

Gantmacher and Krein [3] take the term "Jacobi matrix" to mean
nothing more than "tridiagonal matrix." But it seems to have become
accepted in papers on the problem of concern here to mean by "Jacobi
matrix" a real, symmetric, tridiagonal matrix whose next-to-diagonal ele-
ments are positive. We follow this usage here, and write such a Jacobi matrix
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/ of order n as

Further, we denote its left principal submatrix of order r by Jr.
We consider the following inverse problem.

PROBLEM A. Given the sequences A: = (\)" and /x: = (jUj)"~ l with

(S)

construct an n th-order Jacobi matrix J which has \lt..., ̂  as its eigenvalues
and iil,...,nn_l as the eigenvalues of its left principal submatrix /„_! of
order n — 1.

It is well known that the eigenvalues of / B _j strictly separate those of
/„ = /, so that the condition (S) is necessary for the existence of a solution.
Hochstadt [7] proved that the problem has at most one solution and proved
in [8] that this solution (if it exists) depends continuously on A and ju. L. J.
Gray and D. G. Wilson [5] showed it to have at least one solution, as did O.
H. Hald [6]. The latter also demonstrated in more explicit detail the
continuous dependence of / on A and /x and described an algorithm for the
construction of / which, however, fails to be stable. He also announced an
iterative, linearly convergent procedure for the determination of /. A diffe-
rent iterative procedure was developed by Barcilon [1].

By contrast, the algorithm described below in Sec. 4 is direct, i.e., not
iterative, and is stable. Its derivation provides simple proofs of the results
concerning Problem A just mentioned.

We also consider the following related problems.

PROBLEM B. Given two strictly increasing sequences A: = (Aj)" and
A*: = (Aj*)i with \ < Af < \+i, all i, determine an n th-order Jacobi matrix J
which has A1(..., \ as its eigenvalues and for which the matrix J*, obtained
from J by changing an to a*, has A j f , . . . , A^ as its eigenvalues.

PROBLEM C. Given the strictly increasing sequence A: = (Aj)", construct
an nth-order persyrnmetric Jacobi matrix J having Aj,...^ as its eigenval-
ues.
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Here, a matrix A = (aj;.) is called persymmetric if it is symmetric with
respect to its second diagonal, i.e., if aii = an+1_in+l_i, all i and /. The
Jacobi matrix (1) is persymmetric iff a< = an+1_ i and bi = bn_i, all i.

Hochstadt [7] showed Problem C to have at most one solution, Hald [6]
showed it to have at least one solution and showed the solution to depend
continuously on X.

In the analysis of these problems, the intimate connection between
Jacobi matrices and orthogonal polynomials plays an essential role. We recall
the salient facts of this connection in the next section.

2. JACOBI MATRICES AND ORTHOGONAL POLYNOMIALS

We continue to use the notation Jt for the left principal submatrix of
order i of the Jacobi matrix (1). Let

Then p{ is a monic polynomial of degree i, all i, and one verifies easily that
the sequence (p,) satisfies the three-term recurrence

(2)

Conversely, if we start with a sequence (pj of monic polynomials with
degpj = i, all i, which also satisfies the recurrence (2), then the Jacobi matrix
(1) belongs to it in the sense that then pi(t) = det(t — Ji) for t = l,...,n. Since
the zeros of pt are the eigenvalues of Jit all «, we can therefore phrase
Problem A equivalently as follows.

PROBLEM A'. Given the sequences X: = (Xj)J and ju: = (/j,)J~1 with
\,</j,<\j+1, all i, construct sequences a:=(aj" and b:=(bi)"~l so that
the sequence (pt) of polynomials given by (2) satisfies

It is clear that this problem has at most one solution, since we can always
run the recurrence (2) backwards: If we already know the monic polynomials
PJ and PJ_J (of degree i and i—1, respectively), then at is uniquely de-
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termined by the requirement that

be a polynomial of degree i — 2. Further, the number — bf_ l is then found as
the leading coefficient of q, and pf_2 is then constructed by dividing q by its
leading coefficient.

This construction of (p;) satisfying (2) from pn_l and pn goes back to
Wendroff [9] and has been used by Hald to solve Problem A or A'
numerically. We, too, tried it in some examples and found it to be badly
unstable. But, in trying to understand Hochstadt's procedure for the recon-
struction of / from A and p [8], it occurred to us that it should be possible to
construct a discrete inner product whose corresponding orthogonal poly-
nomials satisfy (2), thus allowing us to generate a and b in the manner
advocated by Forsythe [2].

We recall the details. Denote by Pfc the linear space of polynomials of
order k, i.e., of degree <fc, with real coefficients, and let < , > be a
symmetric bilinear form which is an inner product on Pn. Then there exists
exactly one sequence (^)[J of monic polynomials, with qt of degree i, all i,
which is orthogonal with respect to the inner product <( , }, i.e., for which

One may determine q, as the error in the best approximation from P( to the
function f(f): = t', with respect to the norm

in Pn. Alternatively, one may construct (qf,)J by its three-term recurrence, an
idea popularized specifically for the case of a discrete inner product by
Forsythe [2]: One computes

with the numbers «j and /?f computed concurrently by
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Here, it is assumed that (tf(t),g(t)) = (f(t),tg(t)').
The computational process (3)-(4) for the vectors a and /J is very stable.

We will, therefore, have solved Problem A in a satisfactory manner provided
we can construct a suitable inner product for which qi = pi for i = n — 1 and
i = n. This we now do.

From a computational point of view, the simplest bilinear form < , >
which is an inner product in Pn is of the form

with |j < • • • <£,, and wt >0, i = 1,...,n.

LEMMA 1. Let (q^ be the sequence of manic orthogonal polynomials
for the inner product (5). Then

and

Consequently, we can recover (5) from qn^1 and qn.

Proof. The polynomial q(t): = E"^l(t — §) is a monic polynomial of
degree n which is orthogonal with respect to the inner product (5) to all
functions, and hence must agree with qn. This proves (6). As to (7), we know
that qn_l is orthogonal to ?„_!• This means that the linear functional L
given by the rule

vanishes on Pn_!. Since any n — 1 distinct point evaluations are linearly
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independent on ?„_!, this implies that

For the same reason, there is, up to multiplication by a scalar, exactly one
linear functional M of the form M/=SJ/(|j)mi, all /, which vanishes on
PM_I. Since both L and the (n-l)st divided difference [$!>•••,CJ on t^e

points £j, ...,£, are such linear functionals, it follows that, for an appropriate
scalar y,

But this states, with (6), that

and, in particular,

thus proving (7)•

One may view Lemma 1 as giving a way to construct the computationally
simplest inner product with respect to which a given sequence (pJJJ of monic
polynomials satisfying a three-term recurrence (2) is orthogonal.

3. A SOLUTION OF PROBLEMS A, B, C

Lemma 1 shows how to reconstruct the discrete inner product (5) from
its last two orthogonal polynomials. It also shows the well-known facts that
qn has n real zeros, au simple, and that the n-1 zeros of qn_± strictly
separate those of qn. Indeed, the positivity of the u>/s demands by (7) that
<7n-i(£)<7n(£)signumy>0, all i, while, clearly, (-T^ft) >0, all i, and
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therefore

showing qn_l to have a simple zero between any two zeros of qn.
Conversely, suppose we compute w by

where

with \ < fa <\+1, all i. Then wt >0, all i; hence (5) is then an inner product
on Pn, and necessarily pn = qn, by (6), and pn-l = qn-l since pn_1(A() =
9n-1(\). i = 1,..., n, by (7), and both polynomials are of degree < n.

This proves that Problem A has exactly one solution for given X and ju.
satisfying (S). Further, since a = a and fc = /3 as determined by (3)-(4)
depend continuously on £ and w, while the latter, as determined by (8),
depend continuously on X and ft, it follows that / depends continuously on \
and /JL

Problem B is closely related to Problem A. In terms of the monic
polynomials

we are given the information that
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and that

We conclude that

and therefore, comparing coefficients (or else comparing the trace of / with
that of /*),

This allows calculation of a* once we know an. Further, since we only need
to know the weights w for the inner product (5) up to a scalar multiple in
order to reconstruct a and b via (3)-(4), it follows that we get / (and
uniquely so) by choosing

Note how the assumption A,- <\* <\+1, all i, insures that wt >0, all i.
The solution of Problem C leads to an intriguing fact which is also of

help in the final algorithm for the solution of these problems. We came upon
this fact accidentally. We had somehow gained the impression in reading
Hochstadt's paper [8] that the correct weights in Lemma 1 would probably
be

and a quick numerical experiment confirmed this guess. Yet, when it came to
proving it, we could only prove that wi = l/[qn_l(^i)q^(^i)]>ll i. This
seeming contradiction is resolved by consideration of the characteristic
polynomials of the right principal submatrices of /.
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Let S be the permutation matrix carrying (1,2,...,ri) into (n,n — 1,..., 1),
i.e.,

and denote by / the reflection of / across its second diagonal,

with ai = an+l-i, bi = bn_i, all i. Correspondingly, let

Proof. For each i, pn-i(\)pn-i(\) is the product of the (n — l)st-order
left principal minor with the (n — l)st-order right principal minor of the
singular matrix

and detA = 0. Apply Sylvester's identity (see, e.g., [3, p. 15]), using
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Here, we have used the abbreviation

If now / is persymmetric, then /= / and so pt = p{, all i. The lemma then
implies that [pn-i(\)]

2 = (bi kn-i)
2, all i. Since we only need to know

the weight vector w up to a scalar multiple, it follows that we only need to
know pn in order to reconstruct a persymmetric /, thus solving Problem C,

We conclude further that the computations (3)-(4) always generate the
diagonals a and /? of a persymmetric Jacobi matrix if we use the discrete
inner product

We were interested in Lemma 2 because of its importance for the
algorithm in the next section and have therefore not followed the more
customary treatment of Problem C. This treatment goes back to Gantmacher
and Krein and consists in using the persymmetry of / to construct an
equivalent problem of the form B and of half the size, thus reducing it to a
problem with a known solution.
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4. AN ALGORITHM

Lemma 2 shows that we could also determine the correct weights w for
the generation of a and b via (4) by

To say it differently, if the inner product (5) is given by

then the quantities generated by (3)-(4) are q{ = p{, «j = at, fl{ = bit aU i. This
says that use of the weights (11) rather than the weights (8a) in the
computations (3)-{4) also generates the nonzero entries of /, but in reverse
order. This explains the success in our numerical experiments using the

- weights (10) referred to earlier: all examples happened to have been persym-
metric.

Use of the weights (11) in preference to (8a) has some computational
advantages. Because of the interlacing conditions (S), we get the bounds

where the first (last) factor in the lower bound is to be omitted in case i = 1
(J = n). This shows that overflow or underflow is highly unlikely to occur in
the calculation of the weights (11). By contrast, the computation of the
numbers l/[pn-i(Aj)p^(\)] has to be carefully monitored, in general, for the
occurrence of overflow or underflow, else one has to compute the logarithms
of these numbers, a somewhat more expensive procedure.

We offer the following algorithm for the solution of Problem A, and
recall that Problems B and C can also be solved by it, if the definition of
Pn-i(\): =n"~1('\ — f<y) used here is modified appropriately.

ALGORITHM. Given the n eigenvalues \ < • • • < \, of the Jacobi matrix
(1) and the n — 1 eigenvalues inl<- • • </uh-i of its left principal minor of
order n — 1. Note that, necessarily, \<f* 4 <\+i> all i.
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1. Compute the weights w from \ and ju:
1.1 temp(i-l):=\, i = 2,...,n
1.2 for i = l,...,n, do:

1.21 ti*: = II?-^. - /t,.)/[\-temp( /)]
1.22 temp(f):=\

2. Generate the values at A of the first two orthogonal polynomials:
2.1 ii-Zf-iiqKp^Pb)
2.2 o1:=(27_1to,A,)/« = <pi,,p1>/«
2.3 /or i = l,...,n, do:

2.31 pkml(i): = l = po(\)
2.32 pkfO^-a^pA)

3. Compute \\p k\\
2andak, b^_ltthen use them to generate the values at A

°f Pk+i from those of p\ and p\-i by the three-term recurrence:
3.1 for k = 2,...,n, do:

3.11 S': = s=\\pk_1\\
2

3.12 *: = *:=0
3.13 fori = l,...,n,do:

3.131 p: = u)iXpk(j)2

3.132 s: = s + p
3.133_ t: = t + \p

3.14 b|_i:=s/s'
3.15 ak: = t/s
3.16 /ori = l,...,n,do:

3.161 p:=pk(i)
3.162 pk(«): = (\ - ak) p - b% _ lPkml(i)
3.163 pkml(i): = p

4. Compute b\. from b%. Also, if a and b, rather than the vectors a and
b, are wanted, this is the place to reorder them.
4.c

Output consists of the vectors a and b, with ai = an+1_i,bi = bn_i,atti, and
a and b the diagonals of (1).

We have carried out various numerical experiments with this algorithm
and describe here only three.

For the nth-order Jacobi matrix /„ with general row

1, -2, 1, (i)
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the eigenvalues are given explicitly (and in order) by the formula

Starting with these values and the corresponding sequence (/^•)i~1 f°r /n-i>
the algorithm produced approximations to the diagonal and the off-diagonal
entries of /„ whose maximum and average error are recorded for n = 25, 50,
100, and 200 in the first columns of the Table 1. All calculations were
carried out on a UNIVAC 1110 in single precision (27-bit floating-point
mantissa).

For variety, we also consider the n-th order Jacobi matrix /„ with general
row

We know of no simple formula for its eigenvalues, and therefore used the
algorithm tql 1 on pp. 232-233 of Wilkinson and Reinsch's handbook [10] to
compute them and those of Jn_l. The tolerance (relative error requirement)
for tql 1 we chose as 1. — 7. With this spectral information, we entered the
above algorithm and so reconstructed /„ approximately. Errors of this
reconstruction are also given in Table 1, in the last four columns. There is a
significant deterioration as n increases.

As can be expected from the formula (11) for the weights (wj, the
condition of the problem of determining /„ from (\) and (p,^) deteriorates as
one or more ju, approach the corresponding \, since then one or more of the
weights approach zero. This is shown even more strikingly when the matrix
of the last example is reflected across its second diagonal, i.e., when the

TABLE 1
MAXIMUM AND AVERAGE ERROR IN THE DIAGONAL AND OFF-DIAGONAL ENTRIES OF TWO

SPECIFIC JACOBI MATRICES*

(0 (u)

n

25
50
100
200

Diag
Max.

4-7
9.-7
2. -6
3. -6

onal
Ave.

2.-7
1.-7
7.-7
9.-7

Off-Di
Max.

2.-7
4-7
S.-7
1.-6

agonal
Ave.

6.-8
2.-7
2.-7
3.-7

Diag
Max.

2. -6
6. -4
7.-1
8.-1

onal
Ave.

5.-7
1.-5
3.-2
2.-2

Off-Di
Max.

1.-6
5. -5
3.-1
5.-1

igonal
Ave.

4-7
2. -6
1.-2
1.-2

aAs reconstructed with the algorithm of this section from (approximate) spectral data.
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Jacobi matrix with the general row

is considered. Now the reconstruction breaks down in single precision
already for n =30, since /Zj — Xj becomes too small. Even for n=20, we have
/ij— A1~2. — 7. In fact, in computations using tql 1 to obtain the spectral
information, some weights become negative for n = 30, while for n = 10 and
20 we obtain approximations with errors of the order of 1.—4 and 2.—2,
respectively.

5. THE CONNECTION WITH GAUSS QUADRATURE

For the given Jacobi matrix / in (1), let (FJJJ be the polynomial sequence
generated by the recursion

b

with fo0 arbitrary, bn^0. The sequence (PJ is related to the sequence (pt)
with pi(t): = det(t — Ji), all i, of monic polynomials by

as one verifies easily, e.g., by comparing (13) and (2).
Let now w be a monotone function on some interval [A,B] so that (Pj)J is

orthonarmal with respect to the inner product

(Lemma 1 provides a simple proof of the existence of such to.) Then the zeros
A!< • • • <An of Pn must lie in [A,B], and there exist positive weights
wl,...,wn such that for every/£C2"[A,B],
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If we take this fact for granted, then it follows that

showing that

is an inner product on Pn with respect to which (P^o*1 is orthonormal, and
hence for which (p()[j is an orthogonal sequence.

This shows that the construction of the weights (wt) for (5), which was
crucial for our numerical solution of the various inverse eigenvalue problems,
can be started from any convenient formula for the weights in a Gaussian
quadrature formula.

For instance, one could start with the following consequence of the
Christoffel-Darboux formula:

Here, P(A) denotes the n-vector (P0(A),...,PB_1 (X)). By (13), P(A/) is an
eigenvector for / belonging to the eigenvalue A. Therefore, with 11,: =
(ult,...,u^) a unit eigenvector of / for A^, (16) implies that

Since P0(A) = 1, we obtain in this way the formula

used by Golub and Welsch [4] to compute the weights. Problems A, B, and
C can now be solved by deriving from the given data information about the
eigenvectors of /.

A more direct approach might be to start with the well-known formula

with kj the leading coefficient of Pj, i.e., kl = l/(bl bf). This formula
involves the "next" orthogonal polynomial Pn + l. But, since Pn(Aj) =0 for all;',

561



The numerically stable reconstruction of a Jacobi matrix from spectral data

260 C. DE BOOR AND G. H. GOLUB

we have

by the three-term recurrence; therefore we also have

which shows how (7) could have been derived from standard results in Gauss
quadrature.
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