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PREFACE

At a meeting in Moscow in June 2005, Gil Strang suggested that there be a
collection of Gene Golub’s work to highlight his many important contributions
to numerical analysis. The three of us were honored to undertake this pleasant
task, with publication timed for February “29”, 2007, the 75th anniversary of
Gene’s birth.

Gene chose 21 papers to include here, and we are grateful to the publishers
for permission to reprint these works. We asked each of the coauthors to write
about how the paper came to be written. These short essays reveal a lot about
Gene’s working style — his quickness and creativity, his ability to draw together
threads from diverse areas, and the beauty of his ideas. They also illustrate
the serendipity of mathematical discovery and demonstrate that mathematics
research can be done anywhere from an office to an amusement park.

Gene’s work is broad as well as deep, and we have divided the papers into five
groups: iterative methods for linear systems, solution of least squares problems,
matrix factorizations and applications, orthogonal polynomials and quadrature,
and eigenvalue problems. To put the work in context, we asked a leading expert
to write a commentary on each group of papers, putting them into historical
perspective. It is a testimony to the high regard in which Gene is held by his
colleagues, that the first five people we contacted agreed to write these commen-
taries. We are very grateful to Anne Greenbaum, Ake Bjorck, Nicholas Higham,
Walter Gautschi, and G. W. (Pete) Stewart; their careful work will be a great
aid to numerical researchers now and in the future.

We are also pleased to be able to include a biography of Gene, drawn from
conversations with him, as well as photos collected from Gene and his friends.

And so we present this volume as a gift to Gene, gathering some of his many
important gifts to the community. We treasure his friendship, look forward to
his 19th birthday in 2008, and wish him many more happy and productive years.

Raymond H. Chan
Chen Greif
Dianne P. O’Leary
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1

GENE H. GOLUB BIOGRAPHY

CHEN GREIF

The Early Years, 1932-1953

Gene Howard Golub was born on February 29th, 1932 to Bernice and Nathan
Golub. His mother was from Latvia and his father from Ukraine. They both came
to the United States independently of one another in 1923, and both settled in
Chicago for family reasons: they each had an older sibling in the city.

Gene was born in the depth of the Great Depression. He has one brother,
Alvin, who is three years older and currently lives in Chicago. Gene’s father
worked as a “bread man”. His mother stayed home the first few years. At the
age of 4% his mother needed to work so she took a job in a shop, sewing baseball
caps, and Gene was admitted to kindergarten and spent 1% years there. Quite
a solid kindergarten education! Gene was a student at the Haugan Elementary
School for nine years. He skipped a grade, but makes a point of saying that
he was not an exceptional student. At the age of 12 he started working at his
cousin Sidney’s pharmacy as a delivery boy, and later as a soda jerk. It was not
unusual in those years for children to have to work, although he started working
a little earlier than his other friends. At that point, says Gene, he was sure he
was headed in the pharmacy direction. Little did he know...

Gene had a fairly well developed Jewish identity as a child. He went to
Hebrew school (“Heder”) from 3:15pm to 5:30pm almost every day. He learned
the Hebrew alphabet and a few things about Jewish culture. His parents were
very Jewish-centric. They were not religious and did not keep kosher, but Jewish
holidays were observed. Gene would not go to school on Rosh Hashana and Yom
Kippur, and special holiday events like the Seder, the Passover dinner, were cele-
brated every year. Gene’s mother, whose maiden name was Gelman, had a large
family in Chicago, and there were many get-togethers which kept the family close.

Gene had his Bar Mitzvah in February 1945. He did not have a sense of
what was going on immediately after the war in Europe, although later on,
as an adult, the holocaust greatly influenced him, his view of the world, and
his personal identity. But at the age of 13, life just went on. He attended the
Theodore Roosevelt High School from 1945 to 1949. The school had quite a
rigid course program, without much in the way of extra-curricular activities.
Three years of mathematics included algebra and geometry but no calculus.
Gene remembers this period as an unremarkable one. He just “went along” as
a student. He played baseball, basketball, and football but was not passionate
about them.
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During Gene’s high school period his mother and father divorced, and after
the divorce Gene saw his father only a couple of times. In December 1948 his fa-
ther died, a year after the divorce. Gene continued to work in the pharmacy, and
also had a job at a large department store. Following high school, he attended
a community college for two years: Wright Junior College. Gene fondly remem-
bers this period in his life. He took a variety of courses and was pretty happy.
He wanted to be a chemist; and he loved political science. Then came analytic
geometry and calculus, and the fun began! The teachers were good, and he made
some good friends. After the two years passed he decided to go to the University
of Chicago. He was admitted as a junior, and worked on a degree in mathemat-
ics. It was a big change, and an hour and a half of commuting each way did not
make it easier. It was then that Gene decided to go to the University of Illinois
in Urbana-Champaign for his final undergraduate year: a life-changing decision.

The University of Illinois, 1953—-1959

Gene enjoyed the school, and living in a small town. He took the usual required
courses such as biology and French, along with a few other courses that changed
his life. Among those, one was a course on matrix theory from Franz Hohn, a very
good teacher and kind man. In his first year as a graduate student, Gene took a
course from the famous statistician C.R. Rao, who was at Illinois for a year. It
was an advanced course in multivariate statistics, but in fact Gene learned in that
course more about matrices than about statistics. Block Gaussian elimination
and other matrix algorithms were introduced, and the course helped Gene gain
a knowledge of matrix manipulations.

Gene had a part-time job working for a physicist at the accelerator center. In
the final semester he took a programming course in the mathematics department,
and learned how to program for the ILLIAC. Professor John Nash offered him
a position as an assistant at the computing lab. It was 1953 and times were a
little different than today: not everything revolved around computing.

Gene’s first task was to program Milne’s method. Given the primitive comput-
ing environment, it was hard! And given the method’s weak stability properties,
the program Gene had written was not used extensively later on. Gene went on
to write a lot of statistical applications. This included a variety of matrix algo-
rithms, and he became very familiar with the library and started feeling very
comfortable around matrices. Many of the computer programs were in “half
precision” arithmetic: 20 bits, and 1,024 words of memory.

Gene remembers very fondly his days at the University of Illinois and the
many friendships formed. Several of the people he met, such as Bill Gear who
was also a student at the same time and ended up having the same PhD advisor
as Gene, became lifelong friends. People were sociable, cultured, and liked music
and books. There were superb people around in terms of academic ability: David
Wheeler from Cambridge (the inventor of the subroutine) came from the UK
and developed the basic libraries. Gene in fact never took a course in numerical
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analysis per se, but studied a great deal from the elegant programs of Wheeler
simply by looking at the code and trying to understand it. Stanley Gill of the
famed Runge—Kutta—Gill method then came. David Muller was a faculty mem-
ber of the computing lab, and his method for solving nonlinear equations was very
well known and a source of interest. In addition, Gene met Charles Wrigley, who
was born in New Zealand and received his PhD in London. Wrigley was a psycho-
metrician who was tremendously interested in computing and taught Gene about
factor analysis. Through Wrigley Gene met Harry Harman, Louis Guttman, and
many other distinguished psychometricians. It was a stimulating environment.

Gene was going to study statistics, but it was initially unclear under whose
supervision. Bill Madow, whom he was considering, was on sabbatical, and
Rao was around for a year but then left. Madow came back from California
(where he had his sabbatical), but he eventually decided to go back to Califor-
nia. Abe Taub took Gene as a student. He was an applied mathematician, and
had a close connection with John von Neumann. He gave Gene a paper written
by von Neumann and others, about the use of Chebyshev polynomials in solving
linear systems. As it turned out later, that paper had a decisive effect on Gene’s
research direction. So, even though he was working on a degree with a specialty
in statistics, he ended up doing numerical analysis.

Gene’s relationship with Taub was complex, but clearly Taub’s influence on the
direction Gene’s career took was instrumental. Gene got financial support,
attended conferences, and worked in the summersin various places. In summer 1955
he worked at the RAND corporation in California. He met George Dantzig and
worked on the simplex method. Many other prominent people were around: Ken
Arrow, Richard Bellman, David Blackwell, Herbert Scarf, and so on. The following
summer he went to work for TRW in Los Angeles. His boss there was David Young,
and George Forsythe as well as other prominent numerical analysts were around.

For his “6th” birthday in 1956 Gene had a special surprise: a few of his friends
bought him a 1940 Chrysler with automatic transmission. We will reveal here
that they paid the whopping amount of $50 for the car. Gene learned to drive
and in summer 1956, while in California, he bought a Plymouth and drove it
back to Illinois. In summer 1957 he worked at Bell Labs in New Jersey.

During his work on his thesis, Gene programmed the Chebyshev method
and noticed that one of the parameters was converging, and then discovered it
converged to the SOR parameter. The work of James Riley, whom he had met
at TRW and who showed how the Richardson second order method was related
to SOR, was helpful for Gene in simplifying the Chebyshev method for matrices
with Property A.

Interestingly, while working on his thesis, Gene noticed that red/black order-
ing applied to a tridiagonal matrix had the property that the reduction leaves
you with a tridiagonal matrix. It never appeared in his thesis. But it was an
important idea which also prepared him for his singular value decomposition
(SVD) work and the Fast Poisson Solver.

In 1959 Gene’s advisor, Taub, invited Richard Varga to visit Illinois. Varga
was a rising star, and when Gene talks about this he laughs and says that he

5
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suspects that Taub invited Varga to check him out! Gene and Varga discovered
that they were working on similar things and Varga invited him to write a paper
together. Collaboration started later on that year when the two met in Paris at
a meeting. This led to what later turned out to be the first influential and major
paper in Gene’s career.

After the PhD, 1959-1962

Towards the end of his PhD studies, Gene applied for fellowships. He was awarded
an NSF fellowship, and decided to go to Cambridge, England. He was at
Cambridge for 15 months, from the spring of 1959 until July 1960. He renewed
his acquaintance with Velvel Kahan who was also there as a postdoc. They were
in a small office together for a while. It was a very nice experience: a period of
“chilling out” after an intense term at Illinois. Velvel had a car and they drove
around. They would often go to the National Physical Laboratory in London,
where Jim Wilkinson was. One of the lectures was given by Cornelius Lanczos.
It was there when Gene took note of the singular value decomposition. He may
have heard about it earlier, but Lanczos was a great lecturer, and it stuck into
Gene’s head that you could use this decomposition. A few years later, the mem-
ory of this lecture would play a pivotal role in Gene’s seminal work on comput-
ing the SVD.

While at Cambridge, Jim Snyder (a physicist who later became the head of
the Computer Science Department at lllinois) mentioned that he was consult-
ing at Berkeley and asked if Gene wanted to apply to the Berkeley National
Laboratory. Gene did. He returned to the USA, bought a new car and drove off
to Berkeley, to start his job in July 1960. It was a data analysis type of job,
and Gene did not like it. But he did meet Paul Concus, and that began a long
friendship and a collaboration. In December 1960, Gene decided to quit his job.
In January 1961 he went down to Los Angeles to work again for TRW, which
had become STL: Space Technology Laboratories. There were approximately a
dozen mathematicians around, and consultants from Berkeley, UCLA, and other
places were coming and going. But despite enjoying his job, Gene felt that he
wanted eventually to be in a university.

The Stanford Years, 1962—

In the spring of 1962, STL sent Gene to a few places for recruiting. He went to
Michigan, Wisconsin, Case, and in each of these places he himself was offered
a job! In the meantime, he wrote to Forsythe and inquired about a position at
Stanford. Forsythe wrote back, offering either a visiting assistant professorship,
or a research associate position. Gene never received the letter. At some point
Forsythe called him, to ask if Gene had the habit of answering his mail. Gene took
on the visiting assistant professor position and started in the math department
at Stanford in August 1962. Later on, Forsythe converted his position into a
permanent one.
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Gene fondly remembers the early years at Stanford: Forsythe was a magnet
to other people, and there was an influx of visitors. Forsythe had wonderful
students: Cleve Moler, James Ortega, Beresford Parlett, Jim Varah, and others.
As Forsythe took on more administrative responsibilities, Gene took a lot of his
responsibilities in the numerical analysis area. Gene acknowledges how much he
learned from Forsythe about how to run things at a place like Stanford and how
to aspire to be a good colleague and member in the community. Unfortunately,
Forsythe died in 1972, after 15 years at Stanford. Gene describes Forsythe as
an early founder of the numerical analysis community and praises his vision,
wisdom and integrity.

The first years at Stanford marked Gene’s rise to prominence. Ideas and
papers were generated, collaborations and friendships formed. Gene graciously
gives much of the credit for his success to his collaborators, their abilities, their
collegiality, and their friendship. He describes the great work of Forsythe in form-
ing the Computer Science Department of Stanford in 1966 (from the Computer
Science Division of the Mathematics Department): Stanford was one of the first
places to form such a department. People like John Herriot, John McCarthy and
Donald Knuth came early on. Visitors like Jim Wilkinson, Peter Henrici, Ger-
mund Dahlquist and many others would come often, made life interesting and
formed collaborations.

Gene went on to have a remarkable career. In three separate interviews and
several hours of face to face and phone conversations, he vividly recalled many
milestones. The success of his work on semi-iterative methods with Varga in the
early 1960s, the computation of the SVD with Kahan in the mid-1960s and the
fast Poisson solver in the early 1970s, followed with several milestone papers that
have made an impact not only on the field of numerical linear algebra but on
the broad areas of science and engineering in a variety of disciplines. His work
on the preconditioned conjugate gradient method in the late 1970s (joint work
with Paul Concus and Dianne O’Leary) helped popularize the method among
large circles of scientists and practitioners. He put the total least squares problem
on the map (joint work with Charlie Van Loan, after introducing the problem
earlier in his work with Christian Reinsch). He worked on moments and quadra-
ture rules with a variety of collaborators, work of great mathematical beauty.
One of his latest contributions is his work on Google’s PageRank algorithm;
a technique for accelerating the convergence of the algorithm (joint work with
Sep Kamvar, Taher Haveliwala and Christopher Manning) has received much
attention.

The Birth of Papers

Gene has many anecdotes to offer on how some of his strongest papers came
to life, and makes interesting connections that illustrate how some of his most
important work started almost accidentally, just by way of paying attention to
a comment, or resurrecting ideas that he had earlier in a different context.
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An intriguing story is how the project on the computation of SVD came to
life. We mentioned earlier that while in England Gene heard Lanczos speak on
the SVD and kept it at a corner of his mind. Much later, in 1963, Ben Rosen
talked at Stanford about computing pseudo-inverses via projections. At the end
of the talk Forsythe got up and said, “Well, will somebody please figure out
how to compute the pseudo-inverse of a matrix?!” Gene remembered Lanczos’s
lecture in this context. And it got him interested in the SVD. The combination
of having heard Lanczos years earlier, and those stirring words, marching orders,
by Forsythe, began an important component of Gene’s career. He worked with
Peter Businger, who was a research assistant, and he asked Peter to compute

the eigenvalues of
0 A
AT 0 |-

The absolute values of the eigenvalues of this matrix are indeed the singular
values of A. Peter put that into an eigenvalue routine and they saw zeros on
the diagonal of the tridiagonal matrix that was generated. From studying David
Young’s work on Property A and from his own work on cyclic reduction Gene
knew that one could reorder the matrix, and get a bidiagonal matrix. So Gene
started thinking hard about ways to bidiagonalize the matrix, and figured out
how to do it using left and right orthogonal transformations, while he visited
Boeing in Seattle in the summer of 1963. Perhaps the fresh Pacific Northwest
air helped with it.

In October 1963 there was a meeting at the University of Wisconsin. Gene
saw Kahan and told him about the work he had been doing. Kahan was working
on similar ideas, and they decided to collaborate. Kahan came to visit Stanford
with Forsythe’s support, and the famous Golub and Kahan paper was written.

Computing the singular values of a bidiagonal matrix efficiently came a little
later. Gene thought that Householder transformations could do the trick. He
and Christian Reinsch worked on this problem independently around the same
time, and eventually an algorithm using QR with double shifts was published
under joint authorship. In their paper the total least squares problem was also
introduced. (The catchy name was given to it much later, by Charlie Van Loan.)

Years after the seminal work on the SVD, Paul Van Dooren was at Stanford and
was scheduled to give a talk. In the audience were Wilkinson, Dahlquist, and Gene.
At some point during the talk Paul asked, a little nervously: “Do you know what
the SVD is?” The immediate answer came: “You are at the SVD Headquarters!”
Nick Trefethen later designed a T-shirt with “SVD HQ” written on it.

The story of how the Fast Poisson Solver was born is also fascinating. Roger
Hockney came as a research fellow to Stanford. He was working for Forsythe
and the plasma physicist and engineer Oscar Buneman. He told Gene about
the problems he was working on, that required solving a sequence of tridiago-
nal matrices. Gene remembered his playing with cyclic reduction as a graduate
student. It was possible to apply cyclic reduction to a tridiagonal matrix, to
get another tridiagonal matrix. Gene and Hockney realized that in fact a block
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version could be derived, as long as the blocks commute. Hockney programmed
it but it seemed unstable if more than one step of cyclic reduction was carried
out. Later on, Buneman gave a talk at Los Alamos and showed how to form the
full procedure of cyclic reduction. He provided a two-page long program for do-
ing it. This caused excitement. When Gene visited a little later, he and Buzbee
were discussing it, when Clair Nielson came in and said he would like to use
the method, but with different boundary conditions. This forced the three to sit
down and deeply understand the method. Nielson came up with a way to solve
the resulting difference equations. Later on, Alan George was very helpful and
showed how to modify the right-hand side so that the method is stable. The pa-
per of Buzbee, Golub and Nielson was at one point the most cited mathematics
paper in the SIAM Journal on Numerical Analysis.

Buzbee, Dorr, George, and Golub went on to write their well-known paper
on applying the solver to irregular domains. A package called FISHPACK, based
on these ideas, was written by Paul Schwarztrauber and Roland Sweet. (Why
“FISHPACK”? Translating the word “Poisson” from French might shed light on
this mystery!)

The above mentioned work, along with an earlier paper of Gene with David
Mayers at a conference in INRIA, have been an important part of the early adva-
nces of domain decomposition, and embedding techniques (fictitious domains).
The rise of parallel computing at the time, and the attractive concept of sub-
dividing a complex domain into simple subdomains, caught on thanks to work of
Gene and many other people who played a pivotal role, such as Olof Widlund.

Another important work that followed was Gene’s joint work with Concus
and O’Leary on the preconditioned conjugate gradient (CG) method. In an ear-
lier paper, Gene and Concus used the Chebyshev method for solving the Poisson
equation as a means to solve the Helmholtz equation on a rectangular domain.
Paul, Gene and Dianne presented the idea of using CG in its preconditioned
version, and derived an elegant short algorithm that worked extremely well. In
their paper the term “generalized CG” is actually used. The term “precondi-
tioned CG” caught on later.

The Fast Poisson Solver and what followed it is a nice example of the seren-
dipity of science: you never know where your research may take you. This work
made a contribution to advances in domain decomposition techniques and in pre-
conditioned iterative solvers, merely due to the need to find ways to overcome
difficulties that arose in applying the solver, either due to a complicated compu-
tational domain, or due to a difficult underlying partial differential equation.

Finally, we mention the “accidental birth” of the work on moments and
quadrature. Gene spent a year in 196566 at the Courant Institute. He ar-
rived there shortly after meeting Dahlquist in Sweden and learning from him
about the topic. Interestingly, a talk of Hans Weinberger given at Maryland that
Gene had missed (and heard about from colleagues) about error bounds using
residuals, stimulated his interest in error estimates, and he thought of ways to
put it in the framework of moments. One day, he was sitting in Peter Lax’s
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office. His mind started wandering. He picked up a book of Herbert Wilf, and
started reading the section about Gaussian Quadrature. It was then and there
that Gene realized that the weights were the squares of the first elements of the
eigenvectors of the Jacobi matrix, obtained from orthogonal polynomials. (The
eigenvalues were the nodes.) These mathematical facts may have been known
to some experts, but Gene figured out how to do the computation: compute
the weights by reorganizing the QR method. When recalling this story, Gene
smiles and says that sometimes being “semibored” is all that it takes to make a
discovery...

Service and the Book

Gene has a tremendous record of service to the scientific computing commu-
nity. He served as President of SIAM, and played a central role in forming the
International Council for Industrial and Applied Mathematics. He is the founding
editor of two important SIAM journals — SIAM Journal on Scientific Comput-
ing and SIAM Journal on Matriz Analysis and Applications, and has been on a
large number of advisory boards and committees. It’s hard to imagine the com-
munity without the journals he founded, but their formation was not trivial and
came after careful thought, taking into account the nature of existing journals
in the field. Gene mentions a few little-known anecdotes. For example, he was
influenced by Bellman when making the choice “matrix analysis.” We should
also mention that Gene founded the NA-NET and the NA-Digest, indispensable
working and networking tools for many in the community for years to come.

Gene’s devotion to his community has been demonstrated many times throu-
ghout the years in terms of time, energy and financial support. For his work on
acceleration of the PageRank algorithm Gene received Google stock; he donated
most of these funds to found the Paul and Cindy Saylor Chair at the University
of Illinois. Gene says his gift is a way for him to acknowledge the important part
that the university played in his life, and at the same time it was an opportunity
to give tribute to Paul and Cindy for being such supportive friends that do so
much for the academic community. Previous to this, Gene funded the Hohn/Nash
student fellowship at the University of Illinois to honor two of his early mentors.

And how did the Golub and Van Loan book come about? Roger Horn was
the founder of the Department of Mathematical Sciences at Johns Hopkins. In
cooperation with Johns Hopkins Press, he held a series of short courses each
documented in a monograph. He had invited Gene to teach one of these courses.
Charlie Van Loan was there. They decided to try to write a monograph. As the
book was being written, they wrote several papers together. The book now has
three editions, has sold over 50,000 copies and has been cited over 10,000 times.
According to Gene, Charlie Van Loan was the principal writer of the book and
the force behind it, and Gene remembers the period of working with Van Loan
on the book as a wonderful one.

10



Gene H. Golub Biography
People

When asked what has defined his career, Gene does not point out this or that
paper, but rather he talks about people. He praises his students and says they
have made him a better person. He admires their personalities, behavior,
scholarship, and integrity, and says he feels fortunate to have met many of them.
He attributes his hospitality and the endless number of parties he hosted at his
home and back yard to the welcoming and open culture he had experienced at
Illinois as a graduate student decades earlier. He also says that part of his success
has to do with geography: people like coming to Stanford, they like the climate
and the food and all the small pleasures that the area offers, and as a result the
traffic of visitors has never stopped for over 40 years. There has been a lot of
collaboration and a lot of scientific matchmaking at Stanford.

Gene has many anecdotes about his interaction with his colleagues and his
students. Some of them are not necessarily related to inverting a matrix or com-
puting eigenvalues but have made a great impact on Gene’s life. Take email,
for example. As the Computer Science Department grew, the numerical analysis
group moved to the ground floor of Serra House, a building that had served as
the home of the University President. The terminals were in the kitchen. “The
person who shamed me into using email was Dan Boley,” recalls Gene with a
laugh. He came by and said “You are the only professor in the department who
doesn’t use email actively.” Gene smiles and says that this statement was slightly
exaggerated, but the seed was planted and there was no way back. Email became
a big part of Gene’s life.

Many of the first students who took Gene’s courses are now very familiar
names and great forces in the numerical community: Richard Bartels, Richard
Brent, Jim Daniel, Alan George, Roger Horn, Victor Pereyra, Michael Saunders,
Jim Varah, Margaret Wright, and others. He gives them credit for forcing him
to “dot the i’s and cross the t’s” when he taught his first advanced numerical
analysis course: this later helped in setting the stage for the Golub and Van Loan
book.

Gene was married for a few years in the 1990s to Barbara Morris, whom he
had met in England approximately 40 years earlier. His brother lives in Chicago
(with a convenient escape route to Phoenix when winter hits). Most of Gene’s
waking hours in the last 50 or so years have been devoted to being with members
of his extended family of the numerical linear algebra community.

Conclusion

This book’s theme is about the impact that Gene’s work has made in our field.
Many more pages would be necessary to describe in full Gene’s contributions.
He has written many excellent papers, has become a member of the National
Academy of Sciences and the National Academy of Engineers, founded SIAM
Journal on Scientific Computing and SIAM Journal on Matriz Analysis and
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Applications, was President of SIAM, founded the Scientific Computation and
Computational Mathematics Program at Stanford, and has received ten honorary
doctorates. But beyond all his honors, what makes Gene special is his dedication
and his commitment to promoting numerical analysis and scientific computing,
and his great support of young people.

In the last few years Gene has traveled a lot, being in many ways an ambas-
sador of our community. We cherish the impact that Gene has had on our careers
in so many ways: by hearing him give a talk that has made an impact in terms
of selecting a research direction (or even a research career!), by accepting Gene’s
cordial invitation to visit at Stanford and experiencing that feeling of being at
the “headquarters”, or by meeting via Gene a colleague who has later become
an important collaborator.

It is appropriate to close by going back to the roots: the “founding fathers”
of numerical linear algebra. Gene has a lot of kind words to say about them.
He singles out two seminal figures: Wilkinson and Householder. In particular, he
takes time to talk about the role Jim Wilkinson had played. Wilkinson laid the
foundations for pure numerical linear algebra, says Gene. He extracted the basic
numerical problems and showed how to construct good numerical algorithms.
Gene always felt that his own area of interest was in applied numerical linear
algebra and that he was trying to take the lessons taught by Wilkinson and
use them in different applications. That would include, for example, working
out the stabilized version of the LU factorization for use in the simplex method
(joint work with Richard Bartels). This work showed that one can get a reliable
solution, and it is based on principles worked out by Wilkinson. “I see myself
as an applied Wilkinsonian,” says Gene. “Wilkinson is the one who really led
the way for many in terms of error analysis, and by pointing out the important
issues in matrix computations.”
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COMMENTARY, BY ANNE GREENBAUM

From the very early days, Gene Golub has been a driving force in the develop-
ment and analysis of iterative methods for solving large sparse linear systems —
problems for which Gaussian elimination is often prohibitive in terms of both
storage and computation time. We review five of his seminal papers in this field.

Chebyshev semi-iterative methods, successive over-relaxation
iterative methods, and second-order Richardson iterative methods,
Parts I and II, by Golub and Varga [10]

This paper is probably less well-known today than it should be. In it the authors
show the remarkable similarity between the Chebyshev semi-iterative method,
the successive overrelaxation (SOR) method applied to an expanded matrix equa-
tion, and the second-order Richardson iterative method. They conclude that the
Chebyshev semi-iterative method is to be preferred over the other two, since its
iteration matrix has the smallest spectral norm, while the work per iteration is
the same as that for the other methods. They present numerical results with the
different methods used to solve elliptic difference equations.
The authors start with the simple iterative method

gttt — B 4 g,

which has been derived from the linear system AZ = k through a matrix split-
ting, giving rise to a convergent iteration matrix B; that is p(B) < 1, where p(-)
denotes the spectral radius. They assume that the iteration matrix B (which
today might be called the preconditioned matrix) is real symmetric and positive
definite. From this they derive the Chebyshev semi-iterative method by taking
a linear combination of the iterates @(*) and choosing the coefficients so that the
error in the linear combination is

@ = 5(B)e®,

where p; is the Chebyshev polynomial for the interval [—p(B), p(B)], normalized
so that p;(1) = 1.
Next they consider the SOR method applied to the expanded linear system

()= (0) () (5)
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whose solution for Z and ¢ is the same as that of the original linear system, and

whose iteration matrix,
_ (0B
J= ( o5 ) 7

has the same spectral radius as B. Since this matrix is real, symmetric, cyclic,
and consistently ordered, the standard SOR theory due to Young [19] is applied
to determine the optimal relaxation parameter: w, = 1/4/1 — p2(B). Defining
the vectors 5(21) = 7 and 5(2”1) = ¢, the authors show that these vectors
satisfy a recurrence of the same form as that for the Chebyshev iterates, except
that in this case the parameter w is fixed while in the Chebyshev method the
parameter

1 2

! =1 ==
Wit1 1= A’ 122 w , W Py

changes at each iteration. Even more interestingly, they demonstrate that the
limit of the Chebyshev parameters is equal to the optimal SOR parameter wy:

im w,, = wp.
m—0o00

Finally the authors consider the Richardson iterative method:
D = i o B - g — ™) B — D), m = 1,

where 7% and 7(1) are given initial guesses and o and 3 are fixed acceleration
parameters. Using the analysis of Frankel and Riley [6,15,19], they demonstrate
that with the best choice for the parameters a and 3, this method is also equiv-
alent to the SOR method applied to the extended linear system, with w = wy.
Thus, they have established the high degree of similarity among the three meth-
ods.

Writing the error at step m of each method in the form qm(B)€(O) for a
certain polynomial g,,, the authors show that the Chebyshev polynomial p,,(B)
has smaller spectral norm than the polynomial r,,(B) associated with the SOR
method (or equivalently the second-order Richardson iteration), when 5(0) is
arbitrary and 5 (1) — Bf () + g, as well as with several other starting strategies.
This establishes the superiority of the Chebyshev method in reducing the error
at each step, assuming the worst-case initial error. Numerical experiments in
part II of the paper illustrate this result in practice for cyclic matrices. Since
the method requires the same amount of work per iteration as the others, the
authors conclude that it is to be preferred.

A generalized conjugate gradient method for the numerical
solution of elliptic partial differential equations, by Concus, Golub,
and O’Leary [5]

In this paper and in a paper with Concus [4], Golub turns his attention from
the Chebyshev method to the conjugate gradient algorithm. In fact, these were

36



Commentary, by Anne Greenbaum

two very influential papers helping to revive interest in the conjugate gradient
algorithm, long after its invention in the early 1950s [12]. Another early pa-
per showing the advantages of the conjugate gradient algorithm was written by
Reid [14]. Never content to simply develop iterative methods and prove theorems
about their convergence, Golub made it a personal mission to see that the engi-
neers, physicists, statisticians, and others who were actually solving large linear
systems learned about this new method and implemented it in their codes. The
result was a revolution in the way large linear systems were being solved. I was
a beginning graduate student, working at Lawrence Livermore National Labora-
tory at the time, and I saw the physics codes at the Lab quickly change from
an ADI (alternating direction implicit) philosophy of iterating with PDEs (par-
tial differential equations) to rigorously solving the large systems of difference
equations using the conjugate gradient algorithm. That change (along with the
implementation of more advanced preconditioners) remains in effect today.

Although [4] is dated slightly earlier, I will begin with [5] since it describes
the basic preconditioned conjugate gradient (CG) algorithm and its properties
(although the authors did not use the word “preconditioned” at the time but
referred to it as the “generalized conjugate gradient algorithm”). In this paper
it is assumed that the coefficient matrix A of the linear system Ax = b is real
symmetric and positive definite. The authors — Paul Concus, Gene Golub, and
Dianne O’Leary — first point out the advantages of the CG algorithm when used
as an iterative method:

¢ It does not require estimation of parameters.
e It takes advantage of the distribution of the eigenvalues of the iteration
matrix.

e It requires fewer restrictions on the matrix A for optimal behavior than do
such methods as SOR.

The paper includes a derivation of the preconditioned CG algorithm and its
optimality property: The A-norm of the error at step £ + 1 satisfies

1|4 = min [|(T = Kpe(K))e ] 4,
Pe

where K is the preconditioned matrix M~ A, and the minimum is over all poly-
nomials py of degree £. The authors note that comparison with the Chebyshev
polynomial gives the upper bound

£+1
||e(£+1)||A <9 \/E —1\"" i Amax (K)
o, = A\vwr1)

but they also note that this bound may be pessimistic.

The paper also mentions the relation between the CG algorithm and the
Lanczos algorithm and how eigenvalue estimates can be obtained from a tri-
diagonal matrix derived from the CG recurrence coefficients. A hybrid algorithm
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is suggested, where one initially uses CG and obtains approximations to the
extreme eigenvalues of the iteration matrix, at which point one could switch to
the Chebyshev semi-iterative method with these eigenvalue estimates as param-
eters.

The paper also discusses various options for the preconditioner M (still
referred to here as a matrix splitting, since A is written in the form A = M — N).
For example, if A has the form

(M F
A= ()

where linear systems with coefficient matrices M7 and M, are easy to solve, then
the authors suggest taking
My 0O
(M0,

They note that for certain elliptic boundary value problems the iteration matrix
K then has only a few distinct eigenvalues, even though Apax(K)/Amin(K) is
not especially small. They also mention the possibility of fast direct solvers for
separable operators as preconditioners for nonseparable operators.

They further discuss the use of CG in combination with SSOR; that is, taking

M= (D +wL)D YD +wL™),

where A = D+ L+ L7 and D is diagonal or block diagonal. Finally, they discuss
the incomplete Cholesky decomposition of Meijerink and van der Vorst [13] as a
preconditioner for CG.

A number of numerical examples are presented where the CG and Chebyshev
algorithms are used to solve elliptic difference equations.

A generalized conjugate gradient method for non-symmetric
systems of linear equations, by Concus and Golub [4]

In this paper, Concus and Golub deal with the case of nonsymmetric coefficient
matrices. They make the ingenius observation that if one takes the symmetric
part of the matrix (A + AT)/2 as the preconditioner M for a nonsymmetric
problem, then one can develop an algorithm very much like the symmetric CG
method. This algorithm was later expressed more directly in terms of the Lanczos
process by Widlund [18], and it is sometimes referred to as the CGW method.
To derive the algorithm, we write the iterates x; as they are written in the
conjugate gradient algorithm (although Concus and Golub derived the algorithm
in a slightly different form). Starting with an initial guess zg, an initial residual
ro = b — Axzp, a preconditioned residual zo = M 'rg, and an initial search
direction pg = 2o, new approximations x;41 can be written in the form

Tjp1 = T + a;pj,
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where «; is chosen to force M-orthogonality among the preconditioned residuals
z;. Since
Zj1 = 2 — o M Apy,
it follows that
a; = <rjv Zj > )
<Apj7 Zj>
The next search direction p;4q is written in the form

Pit1 = Ziv1 + Bipg,
where [3; is chosen to make p;1 M-orthogonal to MflApj:

5 — (zi+1, Apj) — (zir1,mie1)
J

(pj Apj) (z5,75)

Assuming that the symmetric part of A is positive definite, this algorithm is
guaranteed to find the exact solution in at most n steps (assuming exact arith-
metic), since zJTMzk = 0 for k # 7 implies that 2, (or an earlier z;) must be
zero. Moreover, if A has only p < n distinct eigenvalues, then it finds the exact
solution in p steps.

Concus and Golub consider expressions for the M-norm of the error, (e,
M ek>1/ 2. They show that, as for the symmetric case, the error at step k can
be written in the form ey = [I — Kpy_1(K)]eo, where K is the preconditioned
matrix M A, and py_; is a certain (k — 1)st degree polynomial. Unlike the
symmetric case, however, p;_1 is not the polynomial that minimizes the M-norm
of the error, although it can be shown to come fairly close to this. Concus and
Golub derive a bound on the error in terms of that in the optimal second-order
Richardson iterate.

Inner and outer iterations for the Chebyshev algorithm, by Giladi,
Golub, and Keller [7]

In this paper, Giladi, Golub, and Keller return to the Chebyshev algorithm
and ask the question: Suppose the preconditioning system Mz = r is solved
inexactly, perhaps using an iterative method inside the outer Chebyshev iter-
ation. How accurately should it be solved in order to minimize the total work
of the algorithm? They conclude that among all sequences of slowly varying
tolerances for the inner iteration, a constant one is best.

This paper is among a group of papers dealing with inner and outer iterations.
An earlier significant paper is by Golub and Overton [9]. A more recent outgrowth
has been the study of the question of tolerances for inner iterations in the CG
algorithm, where it has been shown, surprisingly, that while the initial tolerance
should be at the level of accuracy desired in the final approximate solution, the
tolerance at later iterations can be relaxed [2, 3, 16, 17].

The Giladi, Golub, and Keller paper stands out in that it precisely defines
the cost function that they wish to minimize and then establishes a strong result
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about how that cost function can be minimized. They start by presenting an
error bound for the inexact Chebyshev iteration. They then consider a decreasing
sequence of tolerance values &, — 7 and show that the asymptotic convergence
rate for the algorithm with these inner tolerances is the same as that for the
scheme with fixed tolerance d; = n. They then use this result to determine the
optimal sequence of tolerance values.

Let ¢ = {0,}52, be a decreasing sequence of tolerance values with 0 < 7 <
0; < 1. The number of inner iterations at outer iteration j is [logd;/logr],
where r is the convergence factor of the method used for the inner iteration. If
N(e, d) denotes the number of outer iterations needed to reduce the error to e
using the strategy defined by §, then the goal is to minimize the total number

of inner iterations,
N(e,d)—1

Z (—log ;).
7=0

Approximating this sum by an integral, and defining the set .S of slowly varying
sequences by
S={d: o, =9(Bk), d(z)>n>0}

where § € C? and 8 > 0 is a small positive parameter, the authors attempt to
find the sequence §* € S that minimizes

N(e,d)
Cle, 8) = —/ log 6(8t) dt.
0

Since the number N (¢, §) cannot be determined precisely, they replace it by an
upper bound Ng(e, d) and instead minimize the associated cost Cg(e,d). They
show that if § is any sequence in S, then there is a constant tolerance $ for which
Cp (e, 3) < Cpgle, 6). The constant 5 can be determined adaptively while solving
the linear system.

The authors generalize their analysis to other iterative schemes, and finally
they present numerical results demonstrating that a constant tolerance results
in a smaller total number of inner iterations.

Hermitian and skew-Hermitian splitting methods for non-Hermitian
positive definite linear systems, by Bai, Golub, and Ng [1]

This is a more recent paper on nonsymmetric problems. Here the authors again
consider a splitting involving the Hermitian and skew-Hermitian part of the
matrix, and, under the assumption that the Hermitian part is positive definite,
they are able to prove a bound on the contraction factor of the method that
depends only on the spectrum of the Hermitian part. Much recent work has
focused on the effect of eigenvectors as well as eigenvalues on the convergence
of nonsymmetric iterative methods such as the GMRES algorithm, so it is quite
exciting to have a method whose convergence rate depends on the eigenvalues
of the Hermitian part and not on the eigenvalues of A*A (as with solving the
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normal equations) or on the possibly ill-conditioned eigenvectors of A (as with
the GMRES algorithm).

The basic HSS (Hermitian/skew-Hermitian splitting) iteration is very simple:
Let H = (A+ A*)/2 and S = (A — A*)/2. Given an initial guess zg, for k =
0,1,..., compute

(ol + H)xppq/o = (o = S)zy, +b
(@l + S)xpr1 = (@l — H)zppq/0 + b,

where « is a given positive constant. Looking at the equation for the error ¢ =
A7'h — zp, it can then be seen that

err1 = (ol + S) Hal — H)(al + H) Hal — S)e.

The method converges provided the spectral radius of the iteration matrix,
M(a) = (al +S) Yol — H)(al+ H) ' (al —9), is less than 1, and the amount
by which the error is reduced at each iteration is bounded by the norm of the
iteration matrix. The authors first note that the spectral radius p(M(«)) is the
same as the spectral radius of (o — H)(al +H) (ol —S)(al +S)~!, and since
the spectral radius is less than or equal to the 2-norm of the matrix:

p(M(e)) < |[(af = H)(al + H) ™ al = S)(al +5)7"|2

<l = H) (ol + H) - (el = S)(el + )
Next the authors note that the 2-norm of the second matrix is 1, since (ol — 5)
(al + 8)~! is a unitary matrix. Since the first matrix is Hermitian, its 2-norm
is the largest absolute value of an eigenvalue:

Oé—)\i

max ot )\l

MENH)

Since this quantity is always less than 1 when H is positive definite and a > 0,
the method is unconditionally convergent.

The contraction factor, or the amount by which the error norm is reduced at
each iteration, depends on the norm being used. While it cannot be guaranteed
that the 2-norm of the error decreases at each iteration, the authors define a new
norm: |||v]|| = ||[(ad + S)v]|2, for all v € C". Then since

(al + S)epy1 = [(al — H)(al + H) Y|(al + S)ey,
it follows that
lewsilll < el = H)(al +H) "l - [[lexl |-

Hence in this norm, the contraction factor is bounded in the same way as the
spectral radius of the iteration matrix.
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Next it is shown that the optimal o can be expressed in terms of the largest
and smallest eigenvalues of H:

Oé* - \/)\min(H))\max(H)7

and for this «a, the spectral radius and the contraction number in the new
norm are

s(IT)—1

w(H)+1

While the theoretical analysis of the HSS iteration is impressive, it does
require solution of linear systems with coefficient matrices o + H and ol + 5.
This can be costly. The remainder of the paper is devoted to a discussion of the
IHSS (inexact Hermitian/skew-Hermitian splitting) iteration. Here the linear sys-
tems are solved inexactly using the conjugate gradient method for the Hermitian
positive definite coefficient matrix af + H and using any of several Krylov
space methods for the system with coefficient matrix o + S. Analysis of this
inexact iteration is followed by some practical numerical examples illustrating
the efficiency of the method.

Summary

This group of five papers, while far from a complete list of contributions, is indica-
tive of the breadth and depth of Golub’s work in the area of iterative methods.
From early work on SOR and Chebyshev iteration to more recent contributions
on the conjugate gradient algorithm, preconditioning, error estimation and its
relation to Gauss quadrature [8, 11], inner and outer iterations, and methods
for solving nonsymmetric linear systems, Golub has played a leading role in
the development and advancement of iterative solution methods for large linear
systems.
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CHEBYSHEV SEMI-ITERATIVE METHODS, SUCCESSIVE
OVER-RELAXATION ITERATIVE METHODS, AND
SECOND-ORDER RICHARDSON ITERATIVE METHODS,
PARTS I AND II (WITH R. S. VARGA)

NUMER. MATH. (3), 147-168 (1961).

I was invited, in 1960 I believe, by Abe Taub at the University of Illinois, to a colloquium
lecture there, and before the lecture, I was asked by Professor Taub what my current
research was. I mentioned two areas, one being the use of Chebyshev polynomials in
the theory of iterative methods in linear algebra. Taub mentioned then that he had a
student (who turned out to be Gene Golub) working on similar ideas. What T learned
later was that Taub told Gene that “if Varga publishes first, you will have to write a
new thesis”. During that visit, I later met Gene, who was visibly shaken about all of
this, and I suggested that we discuss this further over coffee. There was indeed overlap
in our results, but Gene did things that I hadn’t done, and conversely. We then agreed
to write a paper, in two parts, which appeared in Numerical Mathematicsin 1961. This
paper was surely better than either of us could have done alone, and it was quite a
successful research paper, which was highly referenced. Adding to all of this is that
Gene has often said that “Varga saved my life,” meaning that he didn’t have to write
a second thesis! I have often been asked why Gene and I didn’t write more papers
together. Sincerely, it would have been nice, but I wandered, as time went by, more
into approximation theory and complex function theory, where my PhD thesis arose,
and Gene had chosen other interesting areas in which to work. He had been a stellar
figure in the area of numerical analysis, and this field owes him much for his deep and
useful research results.

Dick Varga
Kent, Ohio, USA
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Numerische Mathematik 3, 147—156 (1961)

Chebyshev semi-iterative methods,
successive overrelaxation iterative methods,
and second order Richardson iterative methods
Part I
By
GENE H. GOLUB* and RICHARD S. VARGA

§ 1. Introduction

One of the major areas of interest in numerical analysis is concerned with
the numerically efficient solution of the matrix equation

(1.1) AZ —=F,

where A is a given N x N real symmetric and positive definite matrix, and £ is a
given column vector. The matrix equation (1.1) can be readily reduced to the
analogous matrix equation

{1.2) ¥=B% |7,

where B is an N X N real symmetric matrix which is convergent, i.e., if the eigen-
values of the matrix B are y;, 1<7< N, then the spectral vadius [9)] o(B) of B
satisfies

(1.3) o(B) = max ;] <1.

At this point, one can consider the different convergent systematic iterative
methods in the title of this paper, and basically, the literature on the analysis
of these methods can be conveniently separated on the following classification
of the matrix B. With B symmetric, we say [20] that B is cyclic (of index 2)
if there exists an N x N permutation matrix A such that

0 F ~
. BAT= =B
» anar=(0,F)- 7,

where the non-vacuous diagonal blocks of B are square, with zero entries. In

the more familiar notation of Youna [24, 26], B satisfies property 4, and B
is consistently ordered with the oy ordering. If no such permutation matrix /1
exists, we say that B is primitive **.

* This paper includes work from the doctoral dissertation [7] of the first author,
who wishes to thank Professor A. H. Taus of the University of Illinois for guidance
and encouragement in the preparation of that dissertation.

** Usually, the terms primitive and cyclic are reserved (see [24]) for irreducible
matrices with non-negative entries. In the case that the matrix B of (1.2) is symmetric
and irreducible, with non-negative entries, these definitions agree with the classical
terminology.
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If B is primitive, then the only systematic iterative methods of the title
which have been analysed* and used in large scale digital machine codes arc
the Chebyshev semi-iterative method [4', 77, 16, 18, 25], and the second order
Richardson iterative method [6, 13]. Actually, one can also define the successive
overrelaxation iterative method [6, 26] for an expanded matrix equation of the
form (1.2), and in §2, our first result is that all three methods, when optimized
with respect to acceleration parameters, are from a certain point of view remark-
ably similar **. In §3, we shall compare these three systematic iterative methods,
using the spectral norms of the respective matrix operators as a basis for com-
parison, and we shall show that the matrix operator for the Chebyshev semi-
iterative method possesses the smallest spectral norm. Since the practical
application of the Chebyshev semi-iterative method in the primitive case requires
effectively no additional arithmetic operations or vector storage over the other
iterative methods, it would appear that of these three systematic iterative
methods, there is no practical or theoretical reason for not always using the
Chebyshev semi-iterative method for the primitive case.

If B is cyclic, then several results already exist in the literature [13, 18, 25, 27]
comparing the three basic systematic iterative methods of the title. In §4, we
shall define a new systematic iterative method, called the cyclic Chebyshev
semi-iterative method for cyclic matrices B, which again requires effectively no
more additional arithmetic operations or vector storage over the other iterative
methods. This new systematic iterative method, which has combined the ob-
servations of several others, will be shown in §5, using spectral norms of matrix
operators as a basic for comparison, to have the smallest spectral norm. Again,
of the three systematic iterative methods of the title, it would appear that the
modified Chebyshev semi-iterative method is the best choice in the cyclic case.

In §6, we shall show how these results can be used in conjunction with
various block methods [1, 8 12, 27] to numerically solve elliptic difference
equations, and finally in §7, we shall give some of the results of recent numerical
experiments on the comparison between the systematic iterative methods of
the title.

§ 2. Primitive Matrices

We assume in this section that the matrix B of (1.2) is primitive. If o'® is
a given vector guess of the unique solution ¥ of (1.2), then we iteratively form
the vectors Y, defined by
(2.1) D =BEO 17,  i=o0.

Since ¢ (B)< 1, the sequence vectors &) converges [9] to the sclution vector %.
If BW=%-—3g® 7>0,is the error vector associated with the iterate &, then

(2.2) Y = BEO), i=0,
and thus, by induction .
(2.2) T = B, i=0.

* A notable exception to this is Kanan’s theoretical extension [10] of the suc-
cessive overrelaxation iterative method to the case where B is primitive, and has
non-negative entries.

** It has been generally assumed that the successive overrelaxation iterative
method could not be applied in as general cases as could the Chebyshev semiiterative
method. See [27, p. 291].
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We now censider forming lincar combinations* of the vectors & in order
to accelerate the convergence of (2.1). Let

. i
(23) =2 a,,q®,  izo.
k=0
i —> -
As in [ 18], we impose the natural condition that Za, »=1. Thus, if £0 -7 — BY,
1220, then

(2.4) £O = 3 a;4 B 0.
k=0

If 4, () Za, £, then (2.4) becomes formally

—

(2.4) E0 = p,(B) B
where $;(1)=1. Let {¥;}¥ ; be an orthonormal set of eigenvectors of B, where
N

By, =1;¥;, 1S1<N. If €=} ¢,¥,, then it follows that
k=1

—

N
(25) £ =3 o b (1) i

If all the eigenvalues y; of B were known a priori, then we could determine
a polynomial py(x) such that py(u)==0 for 1 <A< N. Since this is seldom the
case, let S,, be the set of all polynomials p,,(x) of degree m, normalized so that
p.(1)=1. Since B is symmetric and convergent, all its eigenvalues yu; satisty
— 1< —o(B)< ;< po{B)< 1, and we seek ** the polynomial $,, (%) for which
2.6 i —
(2:6) Jmin [ max [, ()]} = max [, (x)],
where p=¢(B). As is well known [4], the unique solution of this problem is
given explicitly by

e Cw (%0 (B)) s >
(2.7) P (%) = Cot/a(BY) m=0,
where
-1 < =
(2.8) C, (x) = cos (mcos1x), x<1, m=0,
cosh (m cosh™x), x=>1, m=0,

is the Chebyshev polynomial of degree m. Since the Chebyshev polynomials
satisfy the well-known recurrence relation

(2.8 Copia(8) =22C,(x) — Cp 1 (x),  m=1,

where Cy(x)=1, C,{x)==x, we can use (2.8") to deduce a recurrence relation for
the polynomials 5, (%) which, when inserted into (2.4'), leads to the following

* This is called “linear acceleration” by ForsyTHE [§]. Professor A. H. Taus
has kindly pointed out to us that these results were known much earlier to voNn NEu-
MANN. See {2].

** If B is known to be non-negative, irreducible, and primitive, then the smallest
interval @ <# <% which contains the eigenvalues of B is such [23] that [a| <b=¢(B).
‘While this change in the problem of (2.6) would result in improved convergence rates,
it is in general difficult to obtain the lower bound in practical problems,
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-
relationship * for the vectors g%:

(2.9) B = (BAY +7— BV 0N, iz,
where
(2.10) W= 2GleB) sy

e(B) Ciy1(1/e(B)

With w, =1, (2.9) reduces to =B L F=Bad® |7, since fO=u®, Using
(2.8"), we can also express the parameters w; 4 as
(2.11) W1 = =22, wy=1, wy=—2
. i1 (gzwi>’ =2, o P W=
1= (=5

which is more convenient for actual computations. From (2.9), we notice that

—>

the determination of vector iterates B does not require the computation or
storage of the auxiliary vector iterates &9 of (2.1).

Having described the Chebyshev semi-iterative method, we now consider
the successive overrelaxation iterative method of Younc and FRANKEL [6, 267,
applied to the matrix equation (1.2) where B is primitive. Without making
further assumptions on the matrix B, such as B having entries only of one sign
[10], successive overrelaxation applied directly to (2.1) has not as yet been
completely rigorously analysed. We now show that by considering matrix
equations with twice as many components, successive overrelaxation can be
rigorously applied to a system of equations derived from (1.2). From (1.2),
we consider the coupled pair of matrix equations

(oo

242 — ph >
(212) ¥ = BY 7,

which in matrix notation becomes

. ()=o) G+ (3

If
(0B
e.13) 7=(355)

then the matrix J is also convergent, and g(/)=p(B). Since p(B)<1, there
is a unique solution of (2.12), and evidently ¥ =¥.
The successive overrelaxation iterative method applied to (2.12') is defined by

(244) {y<m+1)_ " 4 o (B 4§ — F),

=3
5,’(M+1):5,’(m)+w{3‘f(*n+1) _{,_g’_i,’(m)}’ m=0,
where o is the relaxation factor, and %9, ¥©® are initial guess vectors. Since
the matrix [ of (2.13) is evidently real, symmetric, cyclic, and consistently ordered
in the sense of YOUNG [26], then we can apply the general theory of successive

* This is a somewhat simpler computational form of the recurrence relationship
than is found, say, in [§’, 16, 18].
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overrelaxation due to Young [26] to {2.12'), and the optimum value of e is
given by
2 2
(2.15) Wy =—— e oo = - T,
"aryi-eUl T 1+ Vi-eB)
To show the similarity of (2.14) to (2.9), we now define a sequence of vectors £/,
where

-

{ 2;(21) = "(l)l

-
=30, I=o0.

(2.16)
FRCIERY )

In terms of the vectors 8”, we can write (2.14) in the compact form

- -

(2.47) Em D — o (BIW £ § — I} Zn D, mz1,

where E“’), and Eﬁ) are given vectors guesses. Thus, we conclude that the suc-
cessive overrelaxation iterative method applied to (2.12') is in the same form
as the Chebyshev semi-iterative method of (2.9), except that in (2.9) the
relaxation factors vary with iteration, whereas in (2.17) the relaxation factor
o is fixed. Even more interesting is the fact that the numbers w; of (2.11) are
strictly decreasing for i=2 (0<g(B)<<1), and, as can be readily exhibited,

218 Imw,=— — 2 =ua,
( ) Fyspsaat 1+V1—QZ(BJ b
where w, is defined in (2.15).
We now consider the second order Richardson iterative method [6, 13],
which is defined from {1.2) by

(2490 GOV =70 4o {BH +Z =+ B — Y}, mz1,

where 7@, 7j® are given initial vector guesses to the unique solution ¥ of (1.2),
and o and g are fixed acceleration parameters. If '=f — o, this is equivalent to

(9) T = b B LG — T B, mz .

One can extend the analysis of FRANKEL and RILEY [6, 26], and the best
acceleration parameters, those giving the fastest asymptotic convergence, are
given* by
: -2 . p=—1.

(2.20) i em) A
With this choice of parameters « and 8’, we see that the second order Richardson
iterative method of (2.19’) is identical with the successive overrelaxation iterative
method of (2.17), with w=w,. Of course, RILEY [13] pointed out this correspond-
ence in the case of the numerical solution of the Dirichlet problem.

Having compared three systematic iterative methods for solving (1.2) when
B is primitive, we see that each method, when optimized, bears a strong resem-
blance to the other methods. In the next section, we shall compare these three
iterative methods using the spectral norms of the corresponding matrix operators
as a basis for comparison.

* See also [22, p. 485].
Numer. Math. Bd. 3 11
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§ 3. Primitive Matrices: Comparison of Methods
Asin the previous section, we assume that B is real, primitive, and symmetric

with {7}/, as an orthonormal set of eigenvectors of B. If, as in §2, 3@ — ch Vis
then Euclidean norm of 3 is defined by k=1

(1) Eol= (3ol

To review some facts [9] concerning norms of matrices and vectors, let M be
any real N xN matrix. For any real vector ¥ with N components, then from
¥ =M%, we have

(3.2) 7] =M% | < = (3) | %],
where
(33) (M) = [p (M* M)A

The quantity z(M) is called the spectral norm of the matrix M. Characterized
in a different manner, we have that

(3.4) «(M) = max L7
Fheo %]

It is clear that if M is symmetric, then the spectral norm 7 (M) of M coincides
with the spectral radius g (M) of M.

For the Chebyshev semi-iterative method of (2.9), we have that 3“”:79’(0),
and §™ =3 _(B) 3O, Thus,
(3.5) : Iis‘"’ I=7(3.B) 2], m=o.

Since the matrix B is symmetric, so is the matzix $,,(B), and we can express

7 (P (B)) as

From (2.7) and (2.8), it follows that o
(3.7) T (P (B)) = IOl eBh
' ” m“/@(B)) ’ -7
and from (1.3) and (2.8),
‘ 1
6:7) OB =gy =

To simplify the expresswn in (3.7'), we recall from (2.8) that C,,(1/¢(B))=

cosh (mo), where coshg=—"__, and ¢ (B)< 1. Thus, C.(1le(B)) =g’“(i‘i“£2;2ﬁi) ,

e(B)’
d =1 4}, have that emr=| @B} }’”
an SlnCeO' n{ (B) +V we ave at ¢ {1+V1_g (B)

From YoOUNG's basic formula [26] we can relate e~™”° to the quantity w, in
(2.15), and we have that e ™= (w,— 1)™?. Combining, we now write (3.7’) as

(3-8) T (BaB) = (o — )" {2l mzo.

Since <1 for 0= x<<1, it follows that the right side of (3.8) is less than

2%
1+ #2
unity, and is strictly decreasing with increasing m. Thus, we conclude that the
matrix operator $,,(B) for the Chebyshev semi-iterative method is norm reducing

for all m=1.
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For the successive overrelaxation iterative method, or equivalently for the

second order Richardson iterative methods with == and f= —1, we have
the following recurrence relation for the error vectors of the iterates of (2.17):
(3.9) D = BE™ L (1 — ) Y, m=1,

where €W =7% — E‘"’), m=0, so that ¥ and €™ are dependent on the given vectors
09 and £, If uy (B)=1, and «, (B) =w B, we define now the polynomials u,,(B)
frem the recurrence relation

(3'10) “7n-}-1(B):UJBmm(B)+(1 ‘CU) amfl(B)v m=1.

By induction, o, (B) is, for @ ==0, a polynomial of degree s in B, and it is ecasily
verified that

(3.11) T =g, (B)EV | (1), o(B)EY, mz2.

Upon replacing the matrix B by the variable x in (3.10), the linear difference
equation of (3.10) can be solved, and a«,(x) can be explicitly represented by

A — et () :
(3.12) o, (%) :{ o) - @{) (P1(X) :'zwz(x)}’ =0,

{m+1) g7 (%), 7% = pa (%)
where @, (x) and ¢, (%) are the roots of the equation
(3.13) P2(%) — w2 (*) + (@ — 1) = 0.

If o=w, of (2.15), and — ¢ (B) << x=-} ¢(B), then as shown in [6], all the roots
of (3.13) are complex conjugates of the form (w, — 1)* e=*?, where cos #= x/g (B).
Consequently,

sin%ggi)ﬁ' &0, m,
(344 w® =l — )0 R

(—1)"m—+1), ¢=mn,

Tt is clear from (3.11) that €™ depends on the relationship between 2 and 0.

For example, if V= —Z® and w=w,, then

(3-15) €W =g, (BT, m=z2,

where

(3.16} Gm—1(B) = — [0u—1(B) + (0, — V) %p_a(B)], m=2.
From the symmetry of the matrix B, we have that

(3-17) 7[gn-1(B)] = ¢[gn-1 (B)] = max {4, 1 (p)],

but from (3.14), we can directly express 7[g,,.,(B)] as

m—1
(A7) s (B =5 —1) = {m| +|m—1] (0, — 1)), m=o0.
We note that this spectral norm can actually initially increase with m, if w, is
sufficiently large™*.

* An analogous observation was made by SHELDON [15] in the cyclic case. See

also §5.
11%
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We shall now show that the situation of (3.17) can be considerably improved.
Let

(3.18) E(’l):]ggo)+?,

so that

(3-19) 1V == BEW,

For @ selected in this way, then

(3.20) ™ =7, (B) O, m=2,

where 7,,{B) is a polynomial of degree m in B defined recursively, using (3.11)
and (3.19), by

(3.21) ¥,w(B)=DBe, 1(B)+ (1 —w)a,_,(B), m=2,
with 7, (B)=1, and », (B)=B.

Again,
(3.22) T (B)] = olrm(B)] = max |7, (u)|, m=0,

and, for the case w=w,, a short calculation [7, pp. 22—23] based on (3.14)
shows that

3-23)  T[ru(B)i=|rme(B)l=(@,— )" {1+ m]}1—¥(B)}, m=o.
It is readily verified [7, pp. 23—24] that the right side of (3.23) is monotone

decreasing for all s =0, showing that the matrix operator for the successive
overrelaxation iterative method of (2.17) is also norm reducing for =1 with

£ chosen according to (3.18).
While the Chebyshev semi-iterative method of (2.9) requires but one

vector guess ﬁ‘”:z(‘”, (2.9) shows that ﬁl’ also satisfies (3.18), so that we can
directly compare the spectral norm (3.8) of the Chebyshev semi-iterative
method with the spectral norm (3.23) of the primitive successive overrelaxation

iterative with 8» chosen according to (3.18) method. Now, since 7,(x)=1, and
7 (%)= x, it follows easily from (3.21) and (3.10) that #,{1)=1 for all m=0.
But from (2.7), the same is true of the polynomials $,, (x). Moreover, since
7(7,,(B)]1=17,(¢ (B))|, and similarly [, (B)]=|#,(e(B))|, we can use, as in
(2.0), the well known property of the Chebyshev polynomials that among
all polynomials g,, (%) of degree m with g, (1) =1, $,, () is the unigue polynomial
whose maximum absolute value on the interval — g (B)< x=<+ ¢ (B) is minimal.
This gives us

Lemma 1. In the primitive case where E(“) is arbitrary and E?DE Bg")—{—?,
(3.24) 7(Pn(B)) <t (7.(B)), m=>1.

We shall now consider the successive overrelaxation iterative method with
another starting procedure*. Let

o= 5o 3
fo B 17,

* Such a starting procedure is suggested for the primitive case from results in
the cyclic case by SHELDON [12]. See also §5.

(3.25)
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and 8’”) {(m=3) we generated by (2.17). Then

(3.26) TV = BFO, @ = B
and in general
(3.27) M=t (B)3®,  m=>=0,

where the matrix ¢,(B) is a polynomial of degree m in the matrix B, and is
defined recursively by

(3.28) u(B) = Bay_o(B)+(1— o) Ba,_y(B), m=3,
where £(B)=B for 0<j< 2. Again,

(3-29) T [ta(B)] = o[t (B)] = max |4, (u;)

, mz 0,
<SisN

and for w =, a short calculation based on (3.14) shows that

m—1

(3.30) T[tw(B)] =t (0(B))| = (@ — 1) 2 o(B){1+(m—1) 1 —g*(B)}, m=1.

With s, (f) =", corresponding to the basic iterative method of (2.1), it is not
difficult to show that

(3.31) (1, (B)) < (£, (B)) < 7 (5, (B)) = o™ (B) for m>1.

Consequently, we have

Theorem 1. In the primitive case where E()O) is arbitrary and gl)::BC—E“)—{—“g),
then for 0< g (B)<<1, and m>1,

(3.32) T(Pn(B)) < 7 (7,(B)) < 7 (8, (B)) < 7 (s,,(B)) = ¢"(B).

Thus, the spectral norm of the matrix operator for m>>1 iterations of the
Chebyshev semi-iterative method is less than the spectral norms of the matrix
operators for m iterations of the two variants (3.18) and (3.25) of the successive
overrelaxation iterative method, as well as the spectral norms for m iterations of
the iterative method of (2.1).

6]
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Chebyshev semi-iterative methods,
successive overrelaxation iterative methods,
and second order Richardson iterative methods
Part 11
By

GENE H. GoLUB and RICHARD S. VARGA

§ 4. Cyclic Matrices: The Cyclic Chebyshev Semi-Iterative Method
We now suppose that the N x N matrix B is cyclic, and in the form of (1.4).
As we have already pointed out, the matrix B in this form satisfies YouNG’s
property A, and is consistently ordered. Because B is real and symmetric,
Young’s theory [26] can be applied to the solution of the matrix equation of
(1.2). With B in the form (1.4), we partition the vectors ¥ and g of (1.2) in a
manner compatible with the partitioning in (1.4), and (1.2) is equivalent to

a\ (o F\(% &
@ (&)= (o) (3] ()

Without using vectors with twice as many components, as was the case in §2,
the successive overrelaxation iterative method can be rigorously applied directly
to (4.1), giving

R
. R’z(rn{-l) =w {FTZI(MH»I) +g — JC } _’_ x m m 2 0,

where Z[®, Z{” are arbitrary guesses. The best choice of w is given by

(4.3) W =

2 _ 2
14+1-¢3(B) 1+V1i—p(FFT)’
We can also apply to (4.1) the Chebyshev semi-iterative method of (2.9),
which gives, by vector components,

{ A =g, IF R 4 g — 2P0} 4 R,

4.4
(44 A =, JFTRM g, — EOY - EmY, m=1,

where ZM=FZ{ 4 E’ and P =FT%{" 4 ¢,, and these equations determine the
vector sequences {Z{™}%_,, and {ZP_y. It is interesting to observe that the
proper subsequences {x‘z”’“)}Do o, and {ZF"™%_, can be iteratively determined
from

e {2m—1 2 ~]
(4.5) {x{2m+1)"wz mi (F 2 4 gy — R} m=1,
§é2m+2):(Ugmgrz{FTxfm‘H) +g2‘ xzzm)}+ 2(2»1, m=0,
Numer, Math. Bd. 3 12
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where again X¥{V=F %" g,. Thus, this iterative method requires no additional
vector storage over the successive overrelaxation iterative method*, and requires
but the single vector guess %%,

We shall call this iterative method, obtained by selecting appropriate sub-
sequences of Chebyshev semi-iterative method, the cyclic Chebyshev semi-
iterative method for the matrix equation (4.1).

In the primitive case of §3, we considered the (primitive) successive over-
relaxation iterative method, or equivalently the second order Richardson method

a=w and f= —1, with the starting procedures
(4.6) V= BFO L g
and

Z = BZ® E

(4.6 W= BEW 4 7,

Here again, it is only necessary in the cyclic case to compute the proper sub-
sequences {Z#+M%_, and {F™}5_ s, and the starting procedures (4.6) and
(4.6") become in this case

) #3047,

and
(4.7 D =FiP +5
. _>(2, — FT—> + g

If w,=w then we see that (4.5) reduces to (4.2). Thus, for the cyclic
Chebyshev semi-iterative method, a sequence of parameters w, is necessary
whereas for the successive overrelaxation method, only one parameter is necessary.
The variant of the successive overrelaxation method with the starting procedure
(4.7") has been studied by SneELDON [15] and the corresponding matrix operator
for m iterative is denoted by Q' Q,. The relationship between the cyclic
Chebyshev semi-iterative method and the successive overrelaxation method
is quite close. Indeed, as given by (2.18), "}moxo w,,=wm,, and it is in fact shown

in [7], under simple assumptions, that the cyclic Chebyshev semi-iterative
method must degenerate numerically into the successive overrelaxation iterative
method.

As in §3, we will compare the successive overrelaxation iterative method
of (4.2) for the starting procedures of (4.7) and (4.7') with the cyclic Chebyshev
semi-iterative method of (4.5), and as we shall see, using spectral norms as a
basis for comparison the cyclic Chebyshev semi-iterative method is superior **
to the successive overrelaxation iterative method.

* This 1dea has already been used by RiLey [I13] to make the second order
Richardson iterative method competitive in storage with the successive overrelaxation
iterative method.

** In relationship to [18], Theorem 1 of [78] shows with spectral radii as a basis
for comparison, that the iterative method of (4.2) with w=uw, is at least twice as
fast as the iterative method of (4.4). Using the cyclic Chebyshev semi-iterative
method of (4.5) eliminate this factor of 2 since, from (4.5), each complete iteration
of (4.5) increases the iteration indices of the vectors ¥, and #, by fwo.
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§ 5. Cyclic matrices. Comparison of methods

The results in this section depend strongly upon the methods and results
of §3, as well as the recent works of SHELDON [15]. For the Chebyshev
semi-iterative method, the successive overrelaxation iterative method, and the
second order Richardson iterative method of §2, we partition the error vector

£ in a manner compatible with the form of the matrix B in (4.1), and we
define

¥

- * (m)
£

(5.1) gm=["1"1), m>o,
¥om)

2

- —
where §%—3% and &®—"72" are the vector components of the initial error
vector, For these methods, we have that

—

(5.2) Emp (B)BY,  m>0,

where the matrix operator ,,(B) corresponds respectively to the matrix operators
Pm(B), 7,(B), t,(B) and s,(B) of §3. For the cyclic Chebyshev semi-
iterative method, and the (cyclic) successive overrelaxation iterative method
with the starting procedures of (4.7) and (4.7’), the corresponding error vector
for the m-th complete iteration of these methods is defined by

’y

*
(2m—1)
&
> ’

ggzm)

(5.3) o — m>0.

From (2.8'), (3.21), and (3.28), it follows that the polynomials $,,(x) of odd
degree contain only odd powers of x, while the polynomials of even degree contain
only even powers of x. Thus, we define polynomials U, and V,, through

(5.4) {zﬁmﬂ(x) =xU, (%), m=0,
' B () =V (49), m=0.
Since the matrix has the form (4.1), then
T Tym Tym 17
55 B (EEV 0 N g peen (0 JEF)TEY
o |((FTF)» (FTF)"FT 0

and the definitions of (5.4) and the properties of the powers of the matrix B

allow us to express 8™ in the simple form

-nm>_(°iUm—1<_FFT>'F

0 & = — F ~0.

Defining the matrix above as F,(B), this becomes

(5.6") 8™ =P (B)Z®,  m>o.
12*
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We analogously define the 2 X2 matrix Q,,(u) as

(5.7 0t =(g M), mm,
whose spectral norm is easily seen to be

5.8) P[0 ()] = (12 Udoa () + VE(),  m=1.
From (5.4), this becomes

(5.8') T[Qn ()] = Pim—s (1) + P20 ()}, mz=1.

We now employ what is essentially a converse of Theorem 2 of the recent work
of SHELDON [15]*. Denoting the eigenvalues of the matrix B by u,, 1=1<N,
then

(59) T [Pm (B ] - max {p%ﬂ 1 I“t) + pﬂm(‘u )} m=1.

1<ISN

Let us now denote the matrix operator of (5.6") associated with the polynomials
Pum(B), 7,,(B), #,(B), and s,,(B) of §3 as I,(B), R, (B), T,(B), and S, (B),
respectively. Then it follows immediately from the results of §3 that
w(B)] = {22 (Pom1(B) -+ 2 (Pan (B))

(B):] (72m I(B)) + T (721)1(‘8))}']2
(B
(B

(5.10)

H

(2,
t[R {r

[ L,(B)] = {2*(tam- I(B )+ (e (B)}
T[S (B)] = {72 (S22 (B)) + 72 (52 (B)) }1.

H

Since 7 (3, (B ), (7, (B)), 7(£,(B)) and 7(s,,(B)) decrease monotonically with
m, so do v[P,(B)], t[R.(B)], t[T,(B)]**, and 7[S,,(B)[. Furthermore, by
Theorem 1, for m>1 and O<Q<1

{5.11) 7 (P (B)) <7 (7. (B)) < 7 (1,(B)) < 7(s,(B)),
so that
Lemma 2. For all m>1 and 0<g<1,

[B,(B)] < t[R,(B)] < ¥[L,(B)] < 7[S,(B)].

The spectral norm of the successive overrelaxation iterative method of (4.2)
for the case when w is fixed equal to w, has been recently calculated by SHELDOX

* Specifically, in the notation of SHrELDON [15], the result we are using is given
in the following
Theorem. 1i A is a non-zero eigenvalue of L, then 1 is also an eigenvalue of some
T(u;) where y; is an eigenvalue of the matrix B.
This result is tacitly assumed in [15], and we are indebted to Dr. SurLpowN for
supplying us with a proof of this result.
** The quantity z[7,(B)] in (5.10) is algebraically equivalent to the expression
for T[Bﬁb_lﬁl_] in [75]. Thus, the monotonicity noted above strengthens SHELDON’S

Theorem 4 in [15].
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[15], and if & represents the corresponding matrix operator for m iterations,
then*

(5.12) T[] =1 (w,— 1),  m=o0,

where /,, is the larger root of

(5.13) I [8m2+4m2(72+ )+2}l+1—0

and r?=w, —1, so that

(5.12') oTen :(2;”, + ]/4;’” + 1). (@, — )™ m=o0.

We observe that in obtaining the spectral norms for the four iterative methods
just considered, no assumption has been made about a special form of the initial
error £, and thus the four iterative methods can be directly compared.
Then we have
Theoremn 2. In the cyclic case for all m>1 and 0<g<1, with no special
assumption on the form of the initial error vector &,

(5.14) { 7 [B, (B < 7[R, (B)] < t[L,(B)] < 7[S,(B)], and

7[B,(B)]<[er].

Thus, the spectral norm of the matrix operator for the cyclic Chebyshev
semi-iterative method is less than the spectral norm of the matrix operators for
the successive overrelaxation iterative method and its modification by SHELDON.

Proof. From Lemma 2, it suffices to show that r[ﬁm(B)]<r[SlZZb] for all
m>1 and 0<<p<<1. By using the expressions of (3.8), (5.10), and (5.12"), this
inequality reduces to

(5.15) o e+ ()T <20 +l/4f"7 1,

which is easily shown to be true for all m>1, and 0<<p<C1. In fact, the proof
of the above inequality shows that theratio T[¥}, /7 [lN’m (B}] is a strictly increasing
function of m, m>1, for all 0<Cp<<1. We strengthen the inequalities of (5.14)
by including

Theorem 3. In the cyclic case with 0<<g<C1, and no special assumptions
on the form of the initial error vector ¥®, then the ratios

(Lo
5.16 TEAB] . T Tel g
616 B TEm)

are strictly increasing for m>1, and
(5.17) t,=0(m), Bo=0(m), m—>oo.

* Theorem 3 of [1§) contains minor misprints, which we are now correcting.
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Proof. 1t is an easy computation to show that T[ZN’,,, (BY]<27*"{1 4772, and
that 2¢2”(1+4772) is smaller than either z{R,,(B)] or T[22 ]. The statements of
(5.16) and (5.17) then follow immediately *.

§ 6. Applications
A great many physical and engineering problems lead to the numerical solution
of matrix equations of the form

6.1)

where A is an N XN real symmetric and positive definite matrix which can
after a suitable permutation of indices, be partitioned so that

A% =k,

A0 .0 ‘[All,,ﬂ 4,
Y A2,2 0 I
. 1 . -
\ I
. - " ‘
(62) A= 0 0 : Af.f’ %AP,P'H T 4~7¥A1’,s
Af i1 A;p+1;Ap+1,1>+1 0 e 0
10 Apiapre O
| AT, AT, JJO 0 e g5

where the diagonal blocks 4;; are #;X#,; matrices, #;=21 for 1=j=s, and
5

2n;=N. Arws, GATEs, and ZonDEK [1] extended the original analysis of
j=1

Younc [26] and FRANKEL [6] to what is called the successive block overrelaxation
sterative method, and it can be verified that the assumptions on the matrix 4

above:are sufficient for the application of their theory. Let the vectors % and %
of (6.1) be partitioned in a manner compatible with (6.2). Then, we can write
(6.1) as
s=p
A Xit 2 A pin Xpiw =K,
(63) ,
Apiipti Kot Z Ao Xa=Kpyp  ASiSs— 5.

The square submatrices 4;,, 1=j=s, are evidently non-singular, so that if
the block diagonal matrix C is defined by

A0 ... 0

0 Ays ... 0
(6.4) C=| . z'i\ : ,

: -

0 o |

3,8

* Mr. Davip FriNncorLD of Electricité de France (Paris) has recently proved
(private communication) that the ratio {7[83,1/z[R,(B)]} is strictly increasing for
m >1, 0<g<1, which strengthens Theorems 2 and 3.
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then C is also non-singular. Now, C14 has unit diagonal entries, and we define
the matrix B as

(6.5) Cl4=1—B,

so that the matrix B has zero diagonal entries. More precisely, B has the form

0 0 [ By e BT

O ...0  B,,...B,,

(6.6) |2 O Peear Pas
Byivy ... Bf,,“7 0 ..o

| B,y ...B,, 0 oo |

With the definition of the matrix B in (6.5), (6.1) becomes
(6.7) =BT+ C1E,

The successive block overrelaxation iterative method applied to (6.7) is
defined by

XmH)_w[Z' By X+ A7 K — X J+ X, 1=7=p,
68) 3 sy 1) X
Xpt =o [ZBP* p XD ARk Ky — ,,+,}+X,,+],
1£7<s —p,

where the X%, 1<j=<s, are given vector components of the given initial vector
guess #®. The optimum value of » is computed from (4.3), where the N xN
matrix B is defined in (6.5). Equivalently, the iterations of (6.8) can be defined
also from

%k
(6.9) X0 = [XHY — X 4 X, 1j<s,

where

* ?
A X = — 34, X0+ Ky, 1S159,
(69/) . k=1 ,
Apijp4i X450 = -k};le;pr],X;zmH) +Kpip 1=7=5—0.

Equation (6.9") shows that, in order to carry out the successive block over-
relaxation iterative method, we have assumed that matrix equations of the form

(6.10) 4;, X;=6;  1=(=s

can be solved directly for X, given G;.

The matrix C defined in (6.4) is symmetric and positive definite, so that
the matrices C* and C—} are uniquely defined. Forming the product C~44 C—4,
we see that this product matrix also has unit diagonal entries, and in analogy

with (6.5), we define the matrix B by

~

(6.11) C44Ct=T—B.
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The matrix B has the same cyclic form as does B of (6.7), and since C3A4C—*

is a definite and symmetric matrix, it follows from (6.11) that B is symmetric
and convergent. Defining

(6.12) CiF =%, Cdk=1[
and using (6.11), (6.1) reduces to

(6.13) y=By+1.
The matrix B is similar to B, with

(6.14) B=cCtBCt

Summarizing, we have reduced our original problem (6.1) by means of a change
of variables to the form (6.13), where Bis symmetric, cyclic, and convergent.

We now apply the cyclic Chebyshev semi-iterative method to the numerical
solution of (6.13). If the vector components Y%, 1= < p, are given, then

? o~
yem+1 @mn-1| |, y@m-1
P{i’?‘{-)—:w2m+l{§ By Y+ Ly — Y30 )}+ Yy,
Bt

1<7<s—p,
(6.15) Sj=s—7

Y(2m+2 —“wzmo-z{ Z B Pika’ m+1) _+_L 1/j(2m)}_i_y'j(2m)1
1=7<p, m=0,

defines the cyclic Chebyshev sem1—1terat1ve method. The w's are calculated

from (2.10), where g(B)= g(B), since B is similar to B. To show now the
relationship of this method to the successive block overrelaxation iterative method
of (6.9)—(6.9), we write (6.15) equivalently as

r -1 — -
VR = gy (V20— YET) +Y87 70, S Ss—p, mZo0,

6.16) {7 K
17j(2m+2) =g, 2(Y;(2m+2] _ }/j(2m)) + y}(2m)) 1<j=p, m=0,
where
*
yp(2m+1)—ZBP+ WY+ L, 1S/<s—p, m=0,
{6.167) k=1
vem LY B L vERY 4L, 1=i=p, mz0.

By using the definitions of (6.11) and (6.12), it follows that (6.15) is equivalent
to (6.9)—(6.9’), provided the proper w’s are used in each step. In essence then,
we can indirectly carry out the modified Chebyshev semi-iterative method
of (6.15) by performing the iterations

*
(6.9 X = g (XPFY — XP0)) + X0, 1S7Ss—p, mzo0,
. *
X =0y, o (X0 — X+ X, a=isp, mz0

*
where X", 1 <j<s, is defined in (6.9').
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— _E)(zm)
In terms of spectral norms, let §"= (—’tzmu)) denote the error vector for
2

the m-th complete iterate of (6.15), relative to the matrix B. From §5, we can
state that

(647) [ < [B,(B)] -

m=0.
23m)

1f 7™ = (i(z )) is the error for the m-th complete iteration of (6.9"), relative
to the matrix B, then from Ci¥ =7, we have
(6.18) |C? ('"){|<1:[P ] [Cia@, m=0.

Since both C! and C—* are symmetric and positive definite, their spectral radii
coincide with their spectral norms, so that

(6.19) [Chzl<e(C
and
6.19) leisp=— L " L

CTH)
where equality is possible in both (6.19) and (6.19"). Combining these inequalities,
we have*

(6.20) |5 < 2 [B(B)] [o(CH-o(CH][F®),  mzo.

From the results of §35, of the iterative methods studied, the cyclic Cheby-
shev semi-iterative method of (6.16)—(6.16’) gives the smallest spectral norm
relative to the matrix equation of (6.43). Since actually iterating by means
of (6.9)—(6.9") is equivalent to iterating by means of (6.16)—(6.16"), we arrive
at the conclusion that the iterations of {6.9)—(6.9”) are quite efficient.

We now list some well known problems which numerically give rise to matrix
equations of the form (6.1), where the matrix A4 can be written as in (6.2).
Clearly, such a list would include all problems which have been previously
rigorously attacked by the successive overrelaxation iterative method, and its
extensions,

A. Dirichlet problem in a plane bounded region, using a five point approxi-
mation to LAPLACE's equation. Here, one can use successive point overrelaxation
[6, 19, 26], successive line relaxation [1, 3, 8], or successive two line overrelaxation
[12, 217, all these methods corresponding to different partitionings of the matrix 4.

B. Divichlet problem in a plane bounded region, using a ninepoint approxi-
mation to LAPLACE’S equation. Here, one can use successive line overrelaxation
[1, 211, or successive two line overrelaxation [8, 12, 21].

C. Bthaymonic problem in a plane bounded region, using a thirteen point
approximation to the biharmonic equation. Here, one can use successive two
line overrelaxation [8, 12, 217,

* The quantity (¢(MY)) - g (M) is also called the P-condition number [17] for a
non-singular matrix M, and is denoted by P(M).
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In all these problems, the cyclic Chebyshev semi-iterative method can
be used, and from the results of §5, this iterative method gives the smaller
spectral norm than the successive overrelaxation iterative methods.

Finally, matrix equations (6.1) do arise in which the matrix A cannot, after
a permutation of indices, be put into the form of (6.2), even with proper parti-
tioning. For example, in [27], a class of iterative methods called primitive
iterative methods are studied, and for this class the results of § 2—3 are pertinent.
It should also be said that even though the matrix 4 of (6.1) can be partitioned
so that (6.2) holds, it can very well be the case that the diagonal blocks 4, ,,
which must be directly inverted, as in (6.10), in order to apply the cyclic theory,
are either too large in size or too complicated to permit such direct inversion.
Thus, in solving the Dirichlet problem in a plane bounded region, if one chooses
to use a nine point approximation to LAPLACE’S equation, but is unwilling to
directly invert more than one equation in one unknown, a primitive iterative
methed results. Here too the results of § 2—3 are pertinent.

§ 7. Numerical Results
We will now give results from both algebraic and numerical investigations,
comparing the Chebyshev semi-iterative method with variants of the suc-
cessive overrelaxation iterative method in the cyclic case. First, if ' is the
vector error of our initial estimate ¥, of the unique solution of 4 ¥ zlz and 30"
is the error vector for the m-th complete iteration, then from (5.6'),

13"
(7.1 79 <t[P,(B)], m>o0.

Thus, if m(d) is the least positive integer for which

(7.2) t[B,(B)] <4, 0<d< 1,

then m(d) is an upper bound for the number of iterations necessary to reduce
the Euclidean length of the initial error by the factor §. Let m, (8), m,(8), m4(d),

and m,(6) denote m(d) when B, (B) is taken to be respectively F,(B), R, (B),
T, (B) and & . The tables 1—4 give m,(d) for various values of 4 and ¢ (B).

m
Table 1. w,=1.8195; 0=0.99507 Table 2. w,=1.93419; ¢=0.999421
=01 | §=0.05 | §=0.01 6=0.005‘:6=0.001 8=0.% | §=0,05 | §=0.01 | §=0.005| §=0,001
my(6) | 18 21 29 33 41 my{d) | 50 60 84 94 | 117
my(d) | 22 | 27 36 | 40 49 my(8) | 64 77 1 104 | 116 | 142
my(8) | 23 27 37 44 l 50 my(8) | 65 77 | 105 | 116 | 143
wmy, (0) | 37 41 50 54 | 63 my(d) | 126 | 137 | 163 | 174 | 200
Table 3. w,=1.95218; ¢(B)=10.9997 Table 4. w,=1.97211; o(B)=0,9999
d=0.t | 6=0.05| §=0.01 a=0.0051‘d:0.001 d=0.1 ’a:o,ns:azo.oi 5=0.0053‘6=0.001

I
)| 69 93 | 116 | 130 \[ 163 m(6) | 119 / 143 .« 200 | 225 | 282
my(d) | 89 | 106 | 144 | 160 l 197 my(8) | 154 | 183 249 | 277 | 341
) |
) |

89 | 107 | 145 | 161 198 my(d) | 154 | 184 250 | 278 | 341
182 | 198 | 234 | 250 | 285 me(d) | 337 | 364 ' 426 453 | 514
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It is interesting to point out that the following

. m(,")
#3) LY
can be proved* for all 4,7. Thus, the cyclic Chebyshev semi-iterative method
cannot require, for very small §>>0, percentagewise substantially differcnt
numbers of iterations than those required by the successive overrelaxation
method. However, for slowly convergent problems, p(B) close to unity, there
is a considerable advantage in using the cyclic Chebyshev in practical problems
where § is approximately 1072

The above, while constituting an algebraic study of the various methods,
does not give a complete picture of the comparison between these methods,
because of the inequalities in (7.1) and (7.2). Although equality is attainable
in (71) and (7.2), so that the numbers of iterations in Tables 1—4 are also
attainable, we include results of numerical experiments in the cyclic case. In
an effort to make the numerical experiments as up-to-date and practical as
possible, we have compared the successive two line over-relaxation iterative
method [8, 12, 217 with the cyclic Chebyshev semi-iterative method for the
same partitioning of the matrix 4 of (6.2), in the numerical solution of
self-adjoint partial differential equation

(7.4) — div{D (x, y) grad (v, y)} + o (x, y) u(x, y) = S(x,3),

in a plane bounded region £, where D and ¢ are positive in £, with boundary
conditions

(7:5) fulsv) g

on
on the boundary I' of £. These numerical problems involved non-constant
mesh spacings, In part 1 of each problem, S(x, ¥) - 0, so that the unique solution
of the matrix problem of (6.1) is the null vector. With all the components of
the initial vector ¥ taken as 103, the iterations were continued until the maximum
component of Z® was less than or equal to 8. In part 2 of each problem, S (x, y)=1
and with the same initial vector Z/® as in part 1, the iterations were continued until

(7.6) Rt — 3 Ix;m+l) _ x;ml‘

satisfied R("+D < §RO),

Because the norms of both parts of the experiment are convenient in com-
putation, but not the spectral norms of the comparison, the following comparisons
are of interest in connection with the relationships exhibited in §6. The suc-
cessive overrelaxation method is applied to two different orderings of the matrix
A the first, the o, ordering, is the ordering of (6.2); the second is the “normal”
ordering in which the double lines of mesh points are swept serially through
the mesh.

* See [7] for details.
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Table 5. Problem A 121 intervior mesh points, w,=1.8195

Part 1
Method 5=20.1 6=:0.01 | 6==0.008 ‘ 6==0.001
Cyclic Chebyshev . . . 17 28 31 39
SHELDON’S Modified SOR 21 35 39 48
SOR with w,, o, Ordering .| 20 34 37 46
SOR with @y, Normal Ordering . 17 30 34 43
Part 2
Method 3==0.1 f 50,01 §==0,003
\
Cyclic Chebyshev . . . ‘ 30 | 41 44
SueLpon’s Modified SOR . 39 52 55
SOR with wy, o, Ordering - 33 46 50
SOR with w,, Normal Ordermg | 32 45 | 49
Table 6. Problem B 667 intevior mesh points, w,==1.93419

Part 1

Method

‘ 6=01 | 6=0.01 |

6=0.005 | 620,001
] !

Cyclic Chebyshev . . . 71 106 110 133
SyELDON’s Modified SOR 88 123 134 157
SOR with wy, g, Ordering 93 127 137 160
SOR with w,, Normal Ordering . 81 121 133 155
Part 2

Method §=0.1 $=0.01 §=0.005
Cyclic Chebyshev . . . 83 113 119
SuerponN’s Modified SOR 113 147 157
SOR with w,, g, Ordering . 97 133 143
SOR with ), Normal Ordering .| 91 127 137

For references, see Part I 3, 147 (1961).
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0. Introduction
In a related paper [3] we discuss a generalized conjugate gradient (CG)

iterative method for solving a system of real, linear, algebraic equations
AX=b , {1.1)

vhere A 1s symmetric and positive definite. The method 1s based on splitting off
from A an approximating symmetric, positive-definite matrix M that corresponds
to a system of eguations more easily solvable than is (1.1), and then accelerating
the associated iteration using CG. The method appears to be especially effective
for sparse matrices A arising from the discretization of boundary-value problems
for elliptic partial differential equations. For these cases, naturally arising
selections for M often result in iteration matrices possessing eigenvalue distri-
butions for which CG acceleration is effective.
The CG method has & number of attractive properties when used as an iterative
procedure:
(i) It does not require an estimation of parameters.
(ii) It takes advantage of the distribution of the eigenvalues of the iteration
operator.
(iii) It requires fewer restrictions on the matrix A for optimal behavior than

do such methods and successive overrelaxation.

In this peper we remove the restriction that A be symmetric, and
require only that its symmetric part (A+AT)/2 be positive definite. We derive
the generalized CG method for this case, taking for the approximating matrix .M the
symmetric part of A. We find that the method then simplifies, in that the computa-

tion of only one of the two CG parameters is required.

L. Derivation of the Method

We consider the system of linear equations

Ax =b , (1.1)

*Note added in electronic transfer: The generalized conjugate gradient method discussed here has
become known more popularly as the preconditioned conjugate gradient method.
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where A is a given n X n real matrix and b 1is a given real n-vector. We re-
write (1.1) as the system
Mx = Nx + b, (1.2}

where M =M = (A + AT)/2 1is the symmetric part of A, and N = ' = -a-aAD /e

is the negative of its skew-symmetric part. We assume that M is positive definite.
In [3],we discuss the solution of equations of the form (1.2) by a generalized CG
method, for the case in which M is symmetric and positive definite and N is symmetric.
In this paper, we derive the corresponding algorithm for the case in which N is
skew-symmetric.

Our interest is in those situations for which it is a simpler computational

task to solve
Mz = 4 (1.3)

than it is to solve (1.1), and for which, in a sense to be described later, M-IN is
not too large.

Congider an iteration of the form

L) (k1) | “’k+1(°ﬁ;z(k) o )y (1)
where
VORI Y , (1.5)
with
r8 s e <o ad®)
the residual at the kth step. The quantities o and wk+l are scalar parameters.

Many iterative methods can be described by (L.4), e.g., if N were symmetric,
the Chebyshev semi-iterative method and Richardson second order method would be of
this form (cf. [5)). The generalized conjugate gradient method described below,
which is also of this form, has the advantage over those two methods that no apriori

1

information about the spectral radius of M "N is needed for estimating parameters.

Furthermore, it takes advantage of the actual distribution of the eigenvalues of
Vi
From (1.4) and (1.5), we obtain

Mz (k+1) (k-1) (k)

- Mz (a5 ey (1.6)

- Oy (op b
For the generalized CG method, the parameters {ok, mk+l} are computed so that

z Mz =0 for p#q and P, q = O,1,...,n-1 . (.7

Since M is an n X n, symmetric,positive-definite matrix, (1.7) implies that for

some k<n

4

() _ ¢

and hence
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That is,fthe iteration converges in no more than n steps.
We derive the above result by induction. Assume

T
S D CURII for p£aq and p, =0, 1, ... , k. (1.8)

Since N is skew-symmetric, there holds that for any real n-vector w
whw =0 . 1.9

From (1.6), we have

LT o) )T Ge1) (W7, 00, 6T k1) | )y

Az +

Opeq (4
and thus by (1.8) and (1.9),

LT ) T 00 0 00y

k+1

0T, , 1) (e-1)% (k1)

Hence by choosing Oy = 1, we obtain =z 0. Similarly,z ¢]

for the choice

T
z(1;-1) " z(k-l)

= (1.10)
L D)y 1) | Ge))y ()

We can simplify (1.10) by noting from (1.6), with (k+1) replaced with (k), that

T T
L)y () wkz(k) Ny g L) )
so that T 7
LGS DR N Y Mz(k)/wk .
We obtain
CSRN Y 1
L1 (1) k

Then for J < k-2, we obtain from (1.6), (1.8), and (1.9) that

AT AT T T
(17 1) _ ()7, (1) (289 )z 08 @)y (1) ()yy

w,
z K+l

T
_ ) (k)
= wk+1z Nz .
But, since for otj =1,

(1.11)

w01 - G-1)

(e g0y

there holds
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i
T - T -
z(k) M z(JH‘) =, z(k) N z(J) . (1.12)
J+1
Thus, since from (1.8) the l.h.s. of (1.12) is zero, we have for J< k-2
T
L g (1.13)

which implies

T
(3) " , (erl)

Z o} for j < k-2 .

The desired result (1.7) then follows by induction.
The generalized CG method for the splitting M = (A + AT)/E is summarized

as follows:

Algorithm (
Iet x 0) be a given vector and arbitrarily define x('l). For k = 0,1,...
(1) Solve Mz(k) = r(k), where r(k) =D - Ax(k).
(@) Compute
z(k)TM z(k) 1 -
g = 1+ T o ) k>1
L1 (1) Tk
W, = 1.
(3) Compute
L) (e-1) | mk+1(z(k) PO O
. &) _, (k)
In the computation of (Dk+1’ one need not recompute Mg since r can be saved

from step (1).
A simple induction argument shows that for all k, there holds

0 < 1

2

Perr €

unlike the case N = NT, for which wk+l > 1.

T
Note that since z(p) Mz(q) =0 for p# q and since by (1.13),

T
z(p) Nz(q) =0 for |p-q! 7! 1, there holds

T
Z(P) Az(q) =0 for ]p-q| >1.

Remarks concerning alternative forms of the generalized CG algorithm, which can be
more efficient for actual computation, can be found in [3].

(k) n-1
}kzo
practice because of roundoff errors. One might consider forcing the newly calculated

The calculated vectors {z will not generally be M-orthogonal in

vectors to be M orthogonal by a procedure such as Gram-Schmidt. However, this
would require the storage of all previously obtained vectors.
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Our basic approach is to permit the gradual loss of orthogonality and with it
the finite termination property of CG. We consider primarily the iterative aspects
of the algorithm. In fact for solving large sparse systems arising from the dis-
cretization of elliptic partial differential equations,the application of principal
interest for us and for which the generalized CG method seems particularly effec-
tive, convergence to desired accuracy often occurs within a number of iterations

small compared with n.

2., Some Properties of the Method

In [3], there are presented some optimality properties, convergence proper-

ties, and eigenvalue relationships for the case in which A is symmetric. We dis-
cusg in this section,related matters for the case in which M is symmetric and
positive-definite and N is skew-symmetric.

2.1. From (1.6) with a, =1 we obtain

;) (k1) _mk+l(_M—]Nz(k)+z(k—l)) - -0 ) z(k-l)+mk+lM-lNz(k)’ 2.1)

k+1
which may be viewed as a relaxation of an iteration with iteration matrix

L=y,

We note that I is similar to a skew-symmetric matrix and hence that all the eigen-
values of T. are either pure imaginary and occur in conjugate pairs, or are zero.
The eigenvalues of L can be determined directly from the generalized CG

method in the same manner as for the symmetric case. We write (2.1) as

UCO N O W RV D +a)l 5 kL)
k+1 K+l
or
L[Z(O),z(l),_”,z(n—l)]_ ) L )
0 1--==
w
2
1
1 0 1- ‘g
1
(g 0 .
= [ (O),z( ,...,z(n_l)]
1
®5
1
. . 1 - P
n
1
0
L mn-l -
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In matrix notation, the above equation can be written as
7 = 2J .

Assuming the columns of Z are linearily independent, it follows that

g=2ta .

It can be shown that the kth prinecipal minor of J yields very good estimates of
the extreme eigenvalues of L, even in the presence of rounding errors. Note that
although the matrix J is not skew-symmetric it is diagonally similar to such a

matrix.

2,2 As in 82 of [3], define
K=I-Mw=I-1L.

Then we have, as for the symmetric case,

z(k) = [I - KPk_l(K)]z(O),

where

k-1 N
P (x) = 2 (k-l)KJ
k-1 520 )

is a polynomial in K of degree k-l1. Correspondingly, we have

x(k) _ x(O) . Pk-l(K) Z(O)

As for the symmetric case, we define the weighted error function

T
Ba®) = 2o gy &) (2.2)
where
O x(k) .
For the present case, (2.2) becomes
T
B8y - % Q) )

Assuming that (M-N) 4s nonsingular, we obtain, using

(o)

z = Ke(O)

and

(x)

e =[1 - KPR-I(K)] e(.o) ,

the expression
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Y
\0;

B Y (k) 1T - )
-ge K)1" M1 - kP K] e 2.3}

The result for the symmetric case, that the polynomials Pk_l\K) generated

by CG minimize E(X(K)) over the choice of all polynomials of degree k-1, does

not hold here in general. Widlund [7] has shown, however, that there does hold

X(K))

E( < ma.x(l + A?) E(y) (2.4)

J

for any y of the form

y = x(O) + sk-l(K) Z(O) 3

where S . (K) is a polynomial in X of degree k-l. Here i)\j, j=1,2,...,n, are the

k-1
eigenvalues of L.

We remark that, as for the symmetric case, the generalized CG method converges
in only p steps if K has only p < n distinct eigenvalues. This same result
holds algso if X has a larger number of distinct eigenvalues but e(O) lies in a

subspace generated by the eigenvectors associated with only p of these eigenvalues.

2.3. Let us consider the polynomials 8 _ . (K) generated by the Richardson

k-1
second order method, for which ml =1 and wk+1 =W, a fixed parameter, for k > 1.
For this case, (1.h4) with o =1 becomes
L) Gen) e ) Ge) (k) , k> 1,

and we have

e(k) (o) (0)

= (1 - KSk_l<K)] e = Tk,m(m e .

We seek a value of @ for which the spectral radius of Tk w(L) is a minimum.
2

Denote by p{X) the spectral radius of a matrix X. By using an argument
similar to that given in [%, pp. 18-pL]},it can be shown that for

& = 2
1+ 1+ F(1)
there holds
p(Tk,m(L)> > p(Tk w(L)) ,
where ’
2
=&
oz () =0 |1+ 18k (2.5)
k0 1+6
and
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o-— oL . Jo_5 2.6)

1+ V1 0oL

To carry out the Richardson second order method we would need to have an
estimate of p(L). It is interesting to note that here also 0 < ® - 1. As for

CG, underrelaxation is preferred for the case of skew-symmetric N.

2,4, One can use for y in {(2.4) the optimal kth Richardson second-order
iterate to obtain an asymptotic error estimate for the generalized CG method.

Doing so yields, with the use of (2.5) and (2.6),

2
L L-8

92}: .
1+ 8

EG®)) ¢ oo |1

where C 1is a constant independent of k.

3. An Example

To illustrate the method, we give here a simple example for which one can

easily estimate the spectral radius of L. Consider the problem

- Ay + ou = £(x,y) (x,y) e r

u = glx,y) (x,¥) € 3R ,

where 0O 1is a constant and R is the unit square O < x,y < 1. We discretize
on & uniform mesh of width h, using for & the standard five-point approximation

A and for u, at the point 1,J the approximation (U, -U J.)/(Eh), where
s

h i+1,J
Uij corresponds to u(x,y) at x = ih, y = jh.

We consider solving the discrete problem by the algorithm of 81, for which

M= -b,
and
D 0
» O L o O
N = ’ wh D=2 L .
= . ’ ere ~2h . .
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A fast direct method (cf. [1]) can be used in this case for the solution of the

system of equations Mz(k).—. r(k), (0f course, a fast direct method could be used,

without iteration, to solve the entire problem for this simple example.)
To estimate the rate of convergence, we wish to determine the extremal

eigenvalues of L = M-]'N, that is

Ne = SAMQ . (3.1)

For the corresponding differential operators, the equivalent eigenproblem is

op = iMcpXX + (pw) (x,y) € R (5.2)
¢=0 (x,y) € 3R,

for which one readily finds, by separation of variables, the eigenvalues to be

I O ———l i=1,2, .03 £=1,2, «. .
J
o3 + 18

The first eigenvalues )\l 1 provide the uniform estimate for the spectral radius
24

p(L)J

o(L) = Al = ﬁ%lal, (3.3)

-1
9:—\/—5%14‘,1‘*% .

Direct computation of the eigenvalues of (3.1), which is somewhat more cumbersome

for which

than for {3.2), shows (3.3) to be good asymptotically to within 0(t°) as n —o.
We remark that for the symmetric problem with ou replaced by ou, and the

splitting M = -4, and N - -0I, the estimate corresponding to (3.3) is [2]

lx'max z ]ci/(ETrE) . Numerical experiments illustrating the behavior of the

modified CG method on related examples can be found in [T].
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10

The possibility of using CG on nonsymmetric matrices in the manner presented

here first occurred to us while listening to a presentation by T. Manteuffel of his

dissertation research [6]. We wish to thank 0. Widlund for making available to us

his results to appear in [7] and to thank both 0. Widlund and I. Karasalo for their

helpful comments. This work was supported in part by the Energy Research and

Development Administration and by the National Science Foundation.
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Although Gene Golub and [ first met in 1960, when he came to California, and have
been friends since, it was only in the early 1970s that we discovered that our scientific
interests had overlapped. The catalyst was the appearance of fast Poisson solvers. |
was interested in using them (or related fast Helmholtz solvers) to develop efficient
methods for obtaining numerical solutions of certain nonseparable elliptic partial dif-
ferential equations, and Gene Golub, from a numerical linear algebra point of view, was
interested in iterative methods that might exploit such solvers. Shortly after our first
joint results, which utilized Chebyshev acceleration, the conjugate gradient method
was beginning to receive fresh interest as an iterative method. Our attention turned
toward using that method as the convergence accelerator. Such a use was much in the
air then and was being looked at by others for particular underlying iteration split-
tings. At about the same time Dianne O’Leary appeared at Stanford as a graduate
student, and she was becoming interested in these subjects also. The following paper
ensued. We were very enthusiastic over the results, but as sometimes happens when
naming offspring, we called the method by a name that didn’t stick. What is labeled
here as the generalized conjugate gradient method is designated more popularly, and
more descriptively, as the preconditioned conjugate gradient method.

Paul Concus
Berkeley, California, USA

Whenever I feel impatient with a graduate student, I think back to this project. Some-
times students need to hear the question explained multiple times. Sometimes they are
unable to separate the wheat from the chaff in their work. And sometimes the published
version bears little relation to their thesis writeup.
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All of this applies to this work, done when I was a graduate student in my early
twenties. Thankfully, Gene and Paul were exceptionally patient mentors.

Iterative methods for solving linear systems has been a recurring theme in my work,
and [ always return to it with new appreciation for the revolutionary paper of Hestenes
and Stiefel upon which the subject of Krylov subspace methods was built, and for the
privilege of having Gene as my PhD advisor.

Dianne O’Leary
College Park, Maryland, USA
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A GENERALIZED CONJUGATE
GRADIENT METHOD FOR THE
NUMERICAL SOLUTION OF ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS*

Paul Concus, Gene H. Golub, and
Dianne P. O’Leary

Abstract

We consider a generalized conjugate gradient method for solving
sparse, symmetric, positive-definite systems of linear equations.
principally those arising from the discretization of boundary value
problems for elliptic partial differential equations. The method is
based on splitting off from the original coefficient matrix a sym-
metric, positive-definite one that corresponds to a more easily
solvable system of equations, and then accelerating the associated
iteration using conjugate gradients. Optimality and convergence

*Note added in reprinting: The generalized conjugate gradient method discussed
here has been become known more popularly as the preconditioned conjugare
gradient method.
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properties are presented, and the relation to other methods is
discussed. Several splittings for which the method seems particu-
larly effective are also discussed and, for some, numerical examples
are given.

0. INTRODUCTION

In 1952, Hestenes and Sticfel {0] proposed the conjugate gradient
method (CG) for solving the system of linear algebraic equations

Ax=Dh,

where A is an n X n, symmetric, positive-definite matrix. This
elegant method has as one of its important properties that in the
absence of round-off error the solution is obtained in at most »
iteration steps. Furthermore, the entire matrix 4 need not be stored
as an array in memory; at each stage of the iteration it is necessary
to compute only the product Az for a given vector z.

Unfortunately the initial interest and excitement in CG was
dissipated, because in practice the numerical properties of the
algorithm differed from the theoretical ones; viz., even for small
systems of equations (» <100) the algorithm did not necessarily
terminate in » iterations. In addition, for large systems of equations
arising from the discretization of two-dimensional elliptic partial
differential equations, competing methods such as successive over-
relaxation (SOR) required only O(vr) iterations to achieve a pre-
scribed accuracy [1). It is interesting to note that in the proceedings
of the Conference on Sparse Matrices and Their Applications held
in 1971 [2] there is hardly any mention of the CG method.

In 1970, Reid [3] renewed interest in CG by giving evidence that
the method could be used in a highly effective manner as an
iterative procedure for solving large sparse systems of linear equa-
tions. Since then a number of authors have described the use of CG
for solving a variety of problems (cf. [4], [5], [6]. [7]. [8]). Curiously
enough, although CG was generally discarded during the sixties as
a useful method for solving linear equations, except in conjunction
with other methods [9], there was considerable interest in it for
solving nonlinear equations (cf. [10}).
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The conjugate gradient method has a number of attractive prop-
erties when used as an iterative method:

(i) It does not require an estimation of parameters.
(i) It takes advantage of the distribution of the eigenvalues of
the iteration operator.
(iii) It requires fewer restrictions on the matrix 4 for optimal
behavior than do such methods as SOR.

Our basic view is that CG is most effective when used as an
iteration acceleration technique.

In this paper, we derive and show how to apply a generalization
of the CG method and illustrate it with numerical examples. Based
on our investigations, we feel that the generalized CG method has
the potential for widespread application in the numerical solution
of boundary value problems for elliptic partial differential equa-
tions. Additional experience should further indicate how best to
take full advantage of the method’s inherent possibilities.

1. DERIVATION OF THE METHOD
Consider the system of equations
Ax =b, (1.1)

where A is an n X n, symmetric, positive-definite matrix and b is a
given vector. It is frequently desirable to rewrite (1.1) as

Mx = Nx+c, (1.2)

where M is positive-definite and symmetric and N is symmetric. In
section 4 we describe several decompositions of the form (1.2). We
are interested in those situations for which it is a much simpier
computational task to solve the system

Mz=d (1.3)

than it is to solve (1.1).
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We consider an iteration of the form

XD gD (0,200 4x (0 g h-1) (1.4)
where
Mz® =c—(M—-N)x®, (1.5)

Many iterative methods can be described by (1.4); eg. the
Chebyshev semi-iterative method and the Richardson second-order
method (cf. [11]). The generalized CG method is also of this form.

For the Richardson or Chebyshev methods, the optimal parame-
ters (w;,;, o) are given as simple, easy-to-compute functions of
the smallest and largest eigenvalues of the iteration matrix M~!N
{11]; thus good estimates of these eigenvalues are required for the
methods to be efficient. The methods do not take into account the
values of any of the interior eigenvalues of the iteration matrix.

The CG method, on the other hand, needs no a priori informa-
tion on the extremal eigenvalues and does take into account the
interior ones, but at a cost of increased computational requirements
for evaluating w, ., and a,. In section 3, we describe a technique to
provide directly from the CG method good estimates for the
extreme eigenvalues of the iteration matrix.

From equations (1.4) and (1.5), we obtain the relation

Mz“‘*”=Mz“"l’—wk“(ak(M— N)zt®) + M(zh—1 —zth)),
(1.6)

For the generalized CG method the parameters {«;.w;,,} are
computed so that

P Mz =0 forp#gand p.g=0.1,....n-1. (L.7)
Since M is n X n positive-definite, (1.7) implies that for some k <n

=9
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and, hence,
xB=x,

That is, the iteration converges in no more than n steps.
We derive the above result by induction. Assume

2PMz9=0 forp#q and p,q=0,1,....k.

Then if
7, Xy
o, = z® Mz (M~ N)zt*),
there holds
2 WMz kD = Q,
and if
k=D 7L
z! YNzt )]
Wear= (1= 2= D pgg(k=1)
then

7.
z(k—l) Mzk+D = .

(1.8)

(1.9)

(1.10)

(1.11)

We can simplify the above expression for w,,; as follows. From

(1.6) we obtain

Mz® = Mz*=D — g, (a_, (M = N )2k~ + M(zk~2 —ztk-D)),

and then from (1.9)
2V Ng k=1 = Z(“rMZ‘“/(wk“k-l)-
Since

-7 r. -
2 k=D N7 0 = gV Nz th=1)
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it follows

T -1
a M

Qy_y k- DTpga(k=1) @,

O =1

From (1.6), for j<k-—1
2O Mz = g0, 129 N2,

But

MzU+D = Mz‘f‘”—wjﬂ(aj(M— Nz + M(z(j-l)_z(j))),
so that

ZW Nz =0,
Thus, since N= N7,
2 Mz V=0  for j<k-1.

Hence by induction we obtain (1.7) and (1.8).
The generalized CG méthod is summarized as follows.

ALGORITHM,.
Let x® be a given vector and arbitrarily define x*~ . For
k=01,...

(1) Solve MzX)=¢—(M — N)x'%,
(2) Compute

T.
. 2 g
ko 7, 4
z*(M = N)®
T -1
a, W ME 1
A 1____——#._ (k;]).
Qpoy gle=Dipggzk-D @y
W =
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(3) Compute
(kD) o xth=D 4 "’k+1(akz‘k) +xtk —x“"“),

Note that the algorithm can be viewed as an acceleration of the
underlying first-order iteration (w,,;=1), x**V=x* 4 g, (K,
As with other higher order methods, the storage requirements of the
algorithm are greater than those of the underlying first-order itera-
tion being accelerated.

The algorithm presented above is given primarily for expository
purposes. For actual computation, the following equivalent form
can be more efficient in terms of storage [3}.

ALGORITHM (alternative form).
Let x'® ,be a given vector and arbitrarily define p~1. For
k=0,1,...

(1) Solve Mz'¥)=¢—(M — N)x%,
(2) Compute

(YR g(K)
"Mz
kS D g (k=D k>1,
z Mzt-D
by =0,
pkI =70 4 p, pk—D),

(3) Compute

. PGV 1)

KpR M= Npk

X+ D = g0 4 g plho,

In the computation of the numerators of a, and b, one need not
recompute Mz'®, since it can be saved from step (1). Also, instead
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of computing the right-hand side of step (1) explicitly at each
iteration, it is often advantageous to compute it recursively from

[e— (M~ N)x**D] = e~ (M= N)x®]—a, (M- N)p",
(1.12)

which equation is obtained from step (3). The vector (M — N)p‘¥’
appearing in (1.12) may be saved from the computation of a,.
Similar remarks hold for the algorithm in its first form as well.
There is evidence that the use of (1.12) is no less accurate than use
of the explicit computation (see [18], [3] for particular examples).

The calculated vectors {z¥’}72] will not generally be M-orthog-
onal in practice because of rounding errors. One might consider
forcing the newly calculated vectors to be M-orthogonal by a
procedure such as Gram-Schmidt. However, this would require the
storage of all the previously obtained vectors.

Our basic approach is to permit the gradual loss of orthogonality
and with it the finite termination property of CG. We cansider
primarily the iterative aspects of the algorithm. In fact, for solving
large sparse systems arising from the discretization of elliptic partial
differential equations, the application of principal interest for us
and for which the generalized CG method seems particularly effec-
tive, convergence to desired accuracy often occurs within a number
of iterations small compared with 7.

2. OPTIMALITY PROPERTIES
From (1.6), we obtain
g* D= gk (0 (I— M7IN )25 25D e g},
(2.1)
Define
K=1-~M"'N. 2.2)
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We have zV) = (I — 0y K )z, and there follows by induction that

244D =1 — KP, (K )]z® (2.3)
where
P(K)= _Zloﬁ,‘”Kf- (24)
j=
We denote
p,(k)=j2_120@-‘“hf (2.5)

and from (2.1) we have for k=2,3,...,/
(M) =0, (1- o A) ppo1(A)=(@hy =1} py_ (A} + ey g,
and

Po(A) = ag, Pi(A) =@ (g + a — ageg ).

The coefficients { 8”};.o can be generated directly. From (2.3)

and the relation z(*V = 2@ 4 K(x!/*1 —x @), there follows
XV =xO®+ p(K)zO.
Then if
Z=[z? Kz9,...,K'z2], (2.6)
xtD = xO 4 Zﬁ(l). (27)
Consider the weighted error function:
E(xD) =3 (x=x"D) (M- N)(x-x"D).  (2.8)
- Assuming that (M — N) is nonsingular, we obtain, using

20 = K(x—-x?),

89



A generalized conjugate gradient method

A GENERALIZED CONJUGATE GRADIENT METHOD 187

the relations
E(x"*1)=312071 - KP,(K))"M(M - N)"'M(I - KP,(K))z®
=4e@’(1- KP/(K)) (M- N)(I- KP,(K))e®,

(2.9)

where

e@=x—x®,
Equivalently, we can use (2.7) and re-write (2.8) as
E(xU*D)=3(K 120 - ZBD) (M~ N)(K~12® - ZB™),
(2.10)
The quantity E(x!"*") is minimized when we choose B! so that

GB"=h,
where
G=Z"(M-N)Z, h=Z"Mz?
Let
5= Amax (K )/ Amin(K).

Then using arguments similar to those given in [12], the following
can be shown:

E(x“*“) (‘/;_1 )Z(IH)
A 4 . 2.11
(4) EG®) - \Vk+1 @)
(B) The generalized CG method is optimal in the class of all
algorithms for which

x(I+1) — x(0)+ P,(K)Z(O)_

That is, the approximation x/* generated by the generalized
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CG method satisfies

E(x(l+1)) = m;n -l_,-e(mr(l - KP[(K))T
i

X (M- N)(I-KP,(K))e®,

where the minimum is taken with respect to all polynomials 7,
of degree 1.

Recall that we have assumed that M and (M — N) are positive
definite and symmetric. Thus the eigenvalues of K =(I— M~!N)
are all real and K is similar to a diagonal matrix. Hence, if X' has
only p <n distinct eigenvalues, there exists a matrix polynomial
@,(K) so that

QP(K)=O.
In this case, E(x‘?’)=0 and hence
x(P):x,

so that the iteration converges in only p steps. The same result also
holds if X has a larger number of distinct eigenvalues but e® lies
in a subspace generated by the eigenvectors associated with only p
of these eigenvalues.

We remark also that statement (B) implies CG is optimal for the
particular eigenvector mix of the initial error e/®, taking into
account interior as well as extremal eigenvalues. As will be dis-
cussed in the next section, the extremal eigenvalues are approxi-
mated especially well as CG proceeds, the iteration then behaving
as if the corresponding vectors are not present. Thus the error
estimate (2.11), which is based on the extremal eigenvalues, tends to
be pessimistic asymptotically. One often observes, in practice (see
section 5), a superlinear rate of convergence for the CG method.

3. EIGENVALUE COMPUTATIONS

The CG method can be used in a very effective manner for
computing the extreme eigenvalues of the matrix K =1~ M~'N.
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We write (see (2.1))
2 V= g*-D_ g (K2R kD k) (3.1)
as
Kz =c, 2% V4g,20+p, 25D,
or

K[z9,z0,. ..,z D]

a; ¢ O

by a4 ¢
=[z®,z®,...,z"" D]
c. T ) Cn-2
O byo1 Anr
thus defining a,, b,, and c,. In matrix notation, the above equa-

tion can be written as
KZ=2J. (3.2)

Assuming that the columns of Z are linearly independent, there
follows from (3.2) that

K=27jZ"1,

hence the eigenvalues of K are equal to those of J. As pointed out
in section 2, if X has repeated eigenvalues or if the vector 2@ is
deficient in the direction of some eigenvectors of K, iteration (3.1)
will terminate in k& <n steps.

The process described by (3.1) is essentially the Lanczos algo-
rithm [13}. It has been shown by Kaniel {14] and by Paige [15] that
good estimates of the extreme eigenvalues of K often can be
obtained from the truncated matrix

ay [+ O
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where & is considerably less than n. This result holds even in the
presence of round-off error [16].

It was pointed out in section 1 that the equation describing the
CG method is of the same form as that describing the Chebyshev
semi-iterative method and Richardson second order method, but
that a knowledge of the extreme eigenvalues of X is required for
obtaining parameters for the latter two methods. Thus one could
construct a polyalgorithm in which the CG method is used initially
to obtain good approximations to the solution and to the extreme
eigenvalues of K, after which the Chebyshev semi-iterative method,
say, is used, thereby avoiding the additional work of repeatedly
calculating CG parameters. This technique has been used in an
effective manner by O’Leary [17].

4. CHOICE OF M

For the splitting M =1, N=1I— A4 one obtains the basic, un-
modified CG algorithm, for which

20 = p(F) = = gx (O

is simply the residual at the k th step. Since the rate of convergence
of the generalized CG method, as given by the estimate (2.11),
decreases with increasing

K= A (K )/ A gin( K ),

it is desirable to choose a splitting for which « is as small as
possible. If A= L + D+ U, where D consists of the diagonal ele-
ments of A and L(U) is a strictly lower (upper) triangular matrix,
then it is reasonable to consider the choice

M=D, N=-—(L+U).

This M, which is equivalent to a rescaling of the probiem, is one for
which (1.3) can be solved very simply for z. It has been shown by
Forsythe and Straus [19] that if A is two-cyclic then among all
diagonal matrices this choice of M will minimize «.
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In many cases, the matrix A can be written in the form

MlF 43
A= , .
AN (4.3)

where the systems
Mz, =d, and M,z,=d,

are easy to solve, and for such matrices, it is convenient to choose

M=(]‘;l AO{Z) and N=(_—(;-;-1—_TF).
Using (4.3), we can write the system (1.1) in the form
Mx,+ Fx,=b, (4.4a)
FTx,+ Mx,=b,. (4.4b)

Let the initial approximation for x, be x{”, and obtain x{* as the
solution 1o (4.4b) so that

Mx$ =b, — F7x{*.
This implies that
20 =0,
and, hence, by (1.10)
a,=1,

and thus

© 440
xm__-(xl +Z )

xP
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A short calculation shows that z{'=0 and hence a,=1. Using
(1.6), a simple inductive argument then yields that for j=0,1,2,...

a=1, zH*P=0, 287=0. (4.5)

This result was first observed by Reid [8] for the case in which M,
and M, are diagonal, i.e., in which the matrix 4 has “Property 4”
and is suitably ordered. Other cases for elliptic boundary value
problems in which matrices of the form (4.3) arise will be discussed
in section 5. For these cases convergence can be rapid because X
has only a few distinct eigenvalues, even though « is not especially
small.

Various other splittings of the matrix A4 can occur quite naturaily
in the solution of elliptic partial differential equations. For exam-
ple, if one wishes to solve

—~Au+olx, ylu=f (x,y)ER
u=g (x,y)€0R,

where R is a rectangular region and Au = 3%u/dx? + 3%u/dy?, it
is convenient to choose M as the finite difference approximation to
a separable operator, such as the Helmholtz operator — A + C, for
which fast direct methods can be used [23]). A numerical example
for this case is discussed in section 5. If one wishes to solve a
separable equation, but on a nonrectangular region S, then by
extending the problem to one on a rectangle R in which S is
embedded, M can be chosen as the discrete approximation to the
separable operator on R, for which fast direct methods can be used.
Such a technique provides an alternative to the related capacitance
matrix method [25] for handling such problems. Forms of this
method utilizing CG, but in a different manner than here, are
described in [26] and [27).

Several authors [4}, [20], [21] have used CG in combination with
symmetric successive overrelaxation (SSOR). For this method the
solution of the equation Mz®'=c—(M — N)x* reduces to the
solution of

(D+wL)D™YD +wl)zH = (2= w)r®
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where D, L, and U are as described previously in this section
(although D may be block diagonal), r‘®> =b— Ax“’, and w is a
parameter in the open interval (0,2). SSOR is particularly effective
in combination with CG because of the distribution of the eigenval-
ues of X (cf. [22]).

Meijerink and van der Vorst [7] have proposed that the following
factorization of A be used:

A=FFT+E,
so that
M=FFT, N=-E.

The matrix F is chosen with a sparsity pattern resembling that of
A. This splitting appears to yield a matrix K with eigenvalues that
also are favorably distributed for CG. A block form of this tech-
nique recently developed by Underwood [24] achieves a more
accurate approximate factorization of 4 with less computer storage
and about the same number of arithmetic operations per iteration.

Generally, in addition to the requirement that (1.5) be “easy” to
solve, M should have the following features if the generalized CG
algorithm is to be computationally efficient. For rapid convergence
one seeks a splitting so that

(i) M~IN has small or nearly equal eigenvalues

or (ii) M~IN has small rank.
Often a choice for M satisfying these restrictions comes about
naturally from the inherent features of a given problem.

5. NUMERICAL EXAMPLES

For the first example, we consider the test problem discussed in
{23]

~div(a(x, y)vu)=f (x,y)ER
u=g (x,y)€dR,

where a(x, y)=[1+3(x*+ y*))* and R is the unit square 0 < x,
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y <1. After a transformation the problem becomes
—aw+o(x, p)w=a"Vif (x,y)eR

1/2

w=g% (x,y)E€ R, (5.1)

where o(x, y)=6(x?+ y?)/a'/2. As in [23] we discretize (5.1) on a

uniform mesh of width A, using for A the standard five-point

approximation A, (see Henrici’s paper in this study for approxima-
tions to A), and we choose the splitting

M=A+N=-A,+CI

with C=0=0,;;, of C=3=3(0,, + 0y )-

In [23] Chebyshev acceleration was used, which requires an
estimate of the ratio of the extremal eigenvalues of the iteration
matrix. Here we use the modified CG algorithm of section 1. For an
initial guess W® =0 and choice of f and g corresponding to the
solution w=2{(x —1/2)> +(y—1/2)?], the results are given in
Table'1 for h=1/64. The results obtained for h=1/32 were
essentially identical, as the iteration is basically independent of A
for this problem (see {23}).

Note that the Chebyshev method is sensitive both to the value of
C and to the accuracy of the eigenvalues from which the parame-
ters are calculated. The parameters used for the middie column
were based on Gerschgorin estimates from the Rayleigh quotient,

TaBLE 1
Maximum error vs. iteration number for first example.

Chebyshev (from [23]) CG
C=0 Cw=3 C=3
exact approximate exact
iteration | eigenvalues | eigenvalues | eigenvalues| C=0 C=3
1.6(~2) 4.5(~2) 1 1.6(-2)
74(—-4) | 26(=3) |6.7(—4)
L1~5 [30(-5) |10(-5)
2U-T) 5~ | LI(~-7
24(~6) 1.1(~6) 43(-9) |51(-9 |82(-10)
1.2(-10) [44(-11)|5.7(~12)

[- VI SN S
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which gave a ratio of largest to smallest eigenvalue about three

times too large. The CG method appears to be less sensitive to the
value of C. After several iterations CG begins to converge more
rapidly than does the optimal Chebyshev method, which behavior is
typical of the CG superlinear convergence property discussed in
section 2. This example is one for which rapid convergence results
because the eigenvalues of M~ N are small.

We give as the second example

—Au=f (x,y)eT
u=g (x,y)eoaT

where T is the domain shown in Figure 1. For a uniform square
mesh of width k, and 0 </ < (2h)"! a whole number, so that all
boundary segments are mesh lines, the coefficient matrix A4 for the
standard five-point discretization and natural ordering has the form
(4.3). M, and M, correspond to the mesh points in each of the two
squares, T; and T,, and F to the coupling between them. F has
non-zero entries in only p = 2/ —1 of its rows.

(L+m.1+20m)

(L)

(3-m.1)

)

{0.0)
Fi1G. 1. T-shaped domain.
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According to the discussion following (4.3) we choose

M| 0
M=

and for initial approximation

U= i__ .
¥ (b, - FTUP)

Then for the generalized CG algorithm, there holds &, =1 and that
z, and z, are alternately zero, thereby reducing computational and
storage requirements. We use a fast direct Poisson solver for the
systems involving M, and M,.

The results for U® uniformly distributed random numbers in
(0.2) and f(x, y) and g(x, y) such that u= x2+ y? is the solution
are given in Table 2. Here the average error per point, the two norm
of the error divided by the square root of the number of interior
mesh points, is given for each of the test problems.

For this example, the eigenvalues of M~'N are not especially
small in magnitude; however, since M~'N has rank of only 2p,

TABLE 2
Average error per point vs. iteration number.
Case I Casell Case ITI
h 1/32 1/64 1/64
i 4 4 8
J 7 7 15
iteration ave. error/pt ave. error/pt ave. error/pt
1 8.58(-2) 370(-2) 1.08(-1)
2 7.05(-2) 313(-2) 9.82(-2)
3 1.30(-2) 6.66(— 3) 4.94(-2)
4 335(-3 253(-3 1.80(-2)
5 271(—-4) 6.03(—4) 4.28(-3)
10 265(-T 5.13(-8) 7.35(—5)
15 1.14(-13) 5.60(—13) 4.71(-8)
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convergence is obtained in only a moderate number of iterations.
For Case I and Case 11 the last row represents full convergence to
machine accuracy subject to rounding errors, as would be expected
since 2 p =14 for these cases.

We wish to thank Myron Stein of the Los Alamos Scientific
Laboratory for his careful computer programming of the second
test problem. This work was supported in part by the Energy
Research and Development Administration, by the Hertz Founda-
tion, and by the National Science Foundation.
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It was in 1997 when I first met Gene at Hong Kong on the Workshop on Scientific
Computing dedicated to his 65th birthday. Then Gene introduced me to my first two
foreign teachers, lain S. Duff and Andrew J. Wathen, whom I visited for one year
from August 1997 to August 1998. The communication and discussion with Gene, lain,
and Andy on solving nonsymmetric linear systems arising from discretization of the
convection—diffusion equations by making use of efficient preconditioning techniques
changed my research interest and also my academic life, as I then began to study more
application-oriented problems and computation-based methods.

Gene said to me that the numerical linear algebra community is a very friendly one;
and the longer one is in this community, the more one will get this feeling. Later, I find
that what he told me is exactly right. Gene is always very kind, helpful, encouraging,
and concerned about young researchers.

About the Hermitian and skew-Hermitian splitting (HSS) iteration method coau-
thored with Gene and Michael, its embryonic form is a two-step iteration scheme
including two iteration parameters, like the classical alternating direction implicit
(ADI) iteration scheme for solving partial differential equations. Once this idea came
out, we immediately realized that this two-parameter iteration scheme lacks mathemat-
ical beauty and its convergence demands complicated conditions. We observed that its
equal-parameter case can completely avoid these shortcomings. This finally resulted in
the present version of the HSS iteration method.

In fact, there are many good words to say about Gene at this moment, but let
me just end this short essay with the following words using a Chinese idiom: Happy
Birthday to Gene, my good teacher and helpful friend!
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Beijing, P.R. China
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comments from which I benefit a lot in my career.

Michael K. Ng
Hong Kong



Hermitian and Skew-Hermitian Splitting Methods

SIAM J. MATRIX ANAL. APPL. (© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 3, pp. 603-626

HERMITIAN AND SKEW-HERMITIAN SPLITTING METHODS
FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS*
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Abstract. We study efficient iterative methods for the large sparse non-Hermitian positive
definite system of linear equations based on the Hermitian and skew-Hermitian splitting of the
coefficient matrix. These methods include a Hermitian/skew-Hermitian splitting (HSS) iteration and
its inexact variant, the inexact Hermitian/skew-Hermitian splitting (IHSS) iteration, which employs
some Krylov subspace methods as its inner iteration processes at each step of the outer HSS iteration.
Theoretical analyses show that the HSS method converges unconditionally to the unique solution of
the system of linear equations. Moreover, we derive an upper bound of the contraction factor of the
HSS iteration which is dependent solely on the spectrum of the Hermitian part and is independent
of the eigenvectors of the matrices involved. Numerical examples are presented to illustrate the
effectiveness of both HSS and IHSS iterations. In addition, a model problem of a three-dimensional
convection-diffusion equation is used to illustrate the advantages of our methods.

Key words. non-Hermitian matrix, splitting, Hermitian matrix, skew-Hermitian matrix, itera-
tive methods

AMS subject classifications. 65F10, 65F15, 63T10

PIL. S0895479801395458

1. Introduction. Many problems in scientific computing give rise to a system
of linear equations

(1.1) Az =b, AeC™" nonsingular, and z,b€ C",

with A a large sparse non-Hermitian and positive definite matrix.

Iterative methods for the system of linear equations (1.1) require efficient split-
tings of the coefficient matrix A. For example, the Jacobi and the Gauss—Seidel
iterations [16] split the matrix A into its diagonal and off-diagonal (respectively,
strictly lower and upper triangular) parts, and the generalized conjugate gradient
(CG) method [7] and the generalized Lanczos method [27] split the matrix A into its
Hermitian and skew-Hermitian parts; see also [11, 17, 26, 1] and [2], respectively. Be-
cause the matrix A naturally possesses a Hermitian/skew-Hermitian splitting (TISS)
[7]

(1.2) A=H+5,
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where

1 " 1 X
(1.3) H:§(A+A) and SZE(A—A)7

we will study in this paper efficient iterative methods based on this particular matrix
splitting for solving the system of linear equations (1.1).

Now A = H(I + H™1S), and thus A7! = (I + H~15)"'H~!. Thus, if we re-
place (I + H~15)~! by its first order approximation I — H~1S, then (I - H~1S)H !
could be employed as a preconditioner to the matrix A. Of course, the precondi-
tioning effect is completely determined by the spectral distribution of the matrix
H~18, and it is satisfactory if the Hermitian part H is dominant [1]. On the other
hand, if the skew-Hermitian part S is dominant, we can use an alternative precon-
ditioning strategy recently presented by Golub and Vanderstraeten in [15]. Their
basic idea is to invert the shifted skew-Hermitian matrix ol 4+ S and then employ
(I—(S+al) Y (H —al))(S+al)™! as a preconditioner to the matrix 4. In fact, the
preconditioning effect for this preconditioner depends not only on the spectrum but
also on the eigenvectors of the matrix (S + al)~Y(H — al), which is, however, closely
related to the shift «. For a nearly optimal ¢, numerical experiments in [15] on a vari-
ety of problems from real-world applications have shown that the reductions in terms
of iteration count largely compensate for the additional work per iteration when com-
pared to standard preconditioners. We remark that, for both preconditioners, exact
inverses of the matrices H and ol + S are quite expensive, and, therefore, some fur-
ther approximations, e.g., the incomplete Cholesky (IC) factorization [21, 20] and the
incomplete orthogonal-triangular (IQR) factorization [3], to these two matrices may
be respectively adopted in actual applications. However, theorctical analysis about
existence, stability, and accuracy of the resulting iterative method are considerably
difficult.

Moreover, based on the HSS (1.2)—(1.3), in this paper we present a different
approach to solve the system of linear equations (1.1}, called the HSS iteration, and
it is as follows.

The HSS iteration method. Given an initial guess z(0, for k =0,1,2,...,
until {x®)} converges, compute

(1.4) { (ol + )2+ = (al - )2t +b,

(al + 8)z+1) = (al — H)a®+3) 4 p,

where « is a given positive constant.

Evidently, each iterate of the HSS iteration alternates between the Hermitian
part H and the skew-Hermitian part S of the matrix A, analogously to the classical
alternating direction implicit (ADI) iteration for solving partial differential equations;
see Peaceman and Rachford [23] and Douglas and Rachford [8]. Results associated to
the stationary iterative method with alternation can be also found in Benzi and Szyld
[4]. Theoretical analysis shows that the HSS iteration (1.4) converges unconditionally
to the unique solution of the system of linear equations (1.1). The upper bound of the
contraction factor of the HSS iteration is dependent on the spectrum of the Hermitian
part H but is independent of the spectrum of the skew-Hermitian part S as well as
the cigenvectors of the matrices H, S, and A. In addition, the optimal valuc of the
parameter « for the upper bound of the contraction factor of the HSS iteration can
be determined by the lower and the upper eigenvalue bounds of the matrix H.

Note that we can reverse the roles of the matrices H and S in the above HSS
iteration method so that we may first solve the system of linear equations with coef-
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ficient matrix ol + S and then solve the system of linear equations with coeflicient
matrix ol + H.

The two half-steps at each HSS iterate require exact solutions with the n-by-
n matrices el + H and ol + S. However, this is very costly and impractical in
actual implementations. To further improve the computing efficiency of the HSS
iteration, we can employ, for example, the CG method to solve the system of linear
cquations with cocfficient matrix el + H and some Krylov subspace method to solve
the system of linear equations with coefficient matrix afl + S to some prescribed
accuracy at each step of the HSS iteration. Other possible choices of inner iteration
solvers are classical relaxation methods, multigrid methods or multilevel methods,
ete. This results in an inexact Hermitian/skew-Hermitian splitting (IHSS) iteration.
The tolerances (or numbers of inner iteration steps) for inner iterative methods may
be different and may be changed according to the outer iteration scheme. Therefore,
the THSS iteration is actually a nonstationary iterative method for solving the system
of linear equations (1.1).

Model problem analysis for a three-dimensional convection-diffusion equation and
numerical implementations show that both HSS and THSS iterations are feasible
and efficient for solving the non-Hermitian positive definite system of linear equa-
tions (1.1).

The organization of this paper is as follows. In section 2, we study the convergence
properties and analyze the convergence rate of the HSS iteration. In section 3, we es-
tablish the THSS iteration and study its convergence property. The three-dimensional
convection-diffusion equation is employed as a model problem to give intuitive il-
lustration for the convergence theory for the HSS iteration in section 4. Numerical
experiments are presented in section 5 to show the effectiveness of our methods. And,
finally, in section 6, we draw a brief conclusion and include some remarks. Moreover,
the basic lemma used in the model problem analysis in section 4 and some illustrative
remarks can be found in the appendix.

2. Convergence analysis of the HSS iteration. In this section, we study the
convergence rate of the HSS iteration. We first note that the HSS iteration method
can be generalized to the two-step splitting iteration framework, and the following
lemma describes a general convergence criterion for a two-step splitting iteration.

LeMMA 2.1. Let A € C™*", A = M; — N; (i = 1,2) be two splittings' of the
matriz A, and let 20 € C" be a given initial vector. If {x(k)} is a two-step iteration
sequence defined by

Mz+s) = Nz 15,
Moz®+l) = Npzp(etd) 4 p,

k=0,1,2,..., then
e* D = MIN,MTIN 4 My YT+ No MY, k=0,1,2,... .

Moreover, if the spectral radius p(My * NoMTNY) of the iteration matriz My ' No My Ny
is less than 1, then the iterative sequence {x(k>} converges to the unique solution
x* € C" of the system of linear equations (1.1) for all initial vectors x(® € C".

For the convergence property of the HSS iteration, we apply the above results to
obtain the following main theorem.

1Here and in what follows, A = M — N is called a splitting of the matrix A if M is a nonsingular
matrix.
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THEOREM 2.2. Let A € C"*" be a positive definite matriz, let H = 1(A + A*)
and S = %(AfA*) be its Hermitian and skew-Hermitian parts, and let o be a positive
constant. Then the iteration matriz M (o) of the HSS iteration is given by

(2.1) M(a) = (ol +8) (ol — H)(al + H) ol - 8),
and its spectral radius p(M(a)) is bounded by

Oz—>\i
o+ A;

o(a) = max
X EN(H)

1

where M(H) is the spectral set of the matriz H. Therefore, it holds that
p(M(a)) <o(a)<1 Va>0

i.e., the HSS iteration converges to the unique solution * € C™ of the system of linear
equations (1.1).
Proof. By putting

My=al+H, Ny=al-§5 My=al+5, and No=aol - H

in Lemma 2.1 and noting that ol + H and of + S are nonsingular for any positive
constant a, we obtain (2.1).
By the similarity invariance of the matrix spectrum, we have

p(M(@)) = p((al — H)(al + H)" (ol = S)(al +5)7)
< |l(al = H)(al + H) (ol — S)(al + 8) 72

<l(ef — H)(al + H) ™ |2ll(ed - S)(ad +8)7"|2.

Letting Q(a) = (al — S)(al + 8)~! and noting that S* = —5, we see that

Qo) Q(a) = (af — S) (ol + 8)(al — S} al + 8)~*
=(al -8 al = S)(al+S)al+8)™ = I

That is, Q(a) is a unitary matrix. (Q(a) is also called the Cayley transform of S.)
Therefore, |Q(a)||2 = 1. It then follows that

a—A;
M(a)) < |(af — HY(al + H) Y2 = “l.
p(M(c)) < ||(o Jod + H) ™ |2 v Py
Since A; > 0(¢ = 1,2,...,n) and « is a positive constant, it is easy to see that

p(M(a)) <oa) <1. O

Theorem 2.2 shows that the convergence speed of the HSS iteration is bounded
by o(«), which depends only on the spectrum of the Hermitian part H but does
not depend on the spectrum of the skew-Hermitian part S, on the spectrum of the
coefficient matrix A, or on the eigenvectors of the matrices H, S, and A.

Now, if we introduce a vector norm |||z||| = ||(af + S)z||2 (for all x € C") and
represent the induced matrix norm by ||| X||| = ||(ad + S)X (@l + S) |z (for all X €
C™*™), then, from the proof of Theorem 2.2, we see that

I3 (@)ll = (el — H)(al + H)™ (o = S)(al +5) 7|2 < o(a),
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and it follows that
[z —z* ||| < o(@)[le® —a*[]l,  k=0,1,2,....

Therefore, o(a) is also an upper bound of the contraction factor of the HSS iteration
in the sense of the ||| [||-norm.

We remark that if the minimum and the maximum eigenvalues of the Hermitian
part H are known, then the optimal parameter « for o(a) (or the upper bound of
o(M(a)) or |[|M{c)||]) can be obtained. This fact is precisely stated as the following
corollary.

COROLLARY 2.3. Let A € C**™ be a positive definite matriz, let II = (A+ A*)
and S = %(A—A*) be its Hermitian and skew-Hermitian parts, and let ymin and Ymax
be the minimum and the mazimum eigenvalues of the matriz H, respectively, and let
a be a positive constant. Then

a—A
a+ A

a* = arg min max
& | Ymin CAS Ymax

‘} = v/ YminYmax>
and

(o) = Vimax — Vwin _ V/A(H) — 1
Vimax + /Fmin /k(H) +1’

where k(H) is the spectral condition number of H.
Proof. Now,

& — Ymin
& + Ymin

& — Ymax
& + Ymax

)

(2.2) o(a) = Inax{

b

To compute an approximate optimal o > 0 such that the convergence factor p(M(a))
of the HSS iteration is minimized, we can minimize the upper bound o{(a) of p(M(x))
instead. If &* is such a minimum point, then it must satisfy a* —ymin > 0, @ —Ymax <
0, and

* *
Q" — Ymin _ Ymax — &
or + VYin Vnax +ar

Therefore,

*
@ = /VminYmax,

and the result follows. 0

We emphasize that, in Corollary 2.3, the optimal parameter o minimizes only
the upper bound o(a) of the spectral radius of the iteration matrix but does not
minimize the spectral radius itself; for an illustration of this phenomenon, see, e.g.,
Table 2.

Corollary 2.3 shows that, when the so-called optimal parameter «* is employed,
the upper bound of th