
support.sas.com/bookstore

Derek P. Morgan

The Essential Guide to
SAS® Dates and Times

Second Edition

The correct bibliographic citation for this manual is as follows: Morgan, Derek P. 2014. The Essential Guide to SAS®
Dates and Times, Second Edition. Cary, NC: SAS Institute Inc.

The Essential Guide to SAS® Dates and Times, Second Edition

Copyright © 2014, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-62959-066-0 (Hardcopy)
ISBN 978-1-62959-489-7 (EPUB)
ISBN 978-1-62959-490-3 (MOBI)
ISBN 978-1-62959-491-0 (PDF)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor
at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in
or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government.
Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this
Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4
and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC
2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is
required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall
be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

December 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest
potential. For more information about our offerings, visit sas.com/store/books or call 1-800-727-0025.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/bookstore

Contents

About This Book .. vii

Acknowledgments .. xi

Chapter 1: Introduction to Dates and Times in SAS 1
1.1 How Does It Work? (January 1, 1960, and Midnight as Zero) ... 1

1.2 Internal Representation ... 2

1.3 External Representation (Basic FORMAT Concepts) ... 2

1.4 Date and Time as Numeric Constants in SAS ... 3

1.5 Length and Numeric Requirements for Date, Time, and Datetime 5

1.6 General SAS Options for Dates .. 7

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and
Times as We Know Them ... 9
2.1 How Do I Use a Format? ... 10

2.2 How Many Built-In Formats Are There for Dates and Times? .. 13

2.3 Date Formats, Justification, and ODS ... 13

2.4 Detailed Discussion of Each Format .. 14

2.4.1 Date Formats .. 14

2.4.2 Time Formats .. 37

2.4.3 Datetime Formats ... 41

2.5 Creating Custom Date Formats Using the VALUE Statement of PROC FORMAT 47

2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC FORMAT 48

2.7 Creating Custom Formats Using PROC FCMP for Processing .. 52

2.8 The PUT() Function and Formats.. 55

iv Contents

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime
Values ... 57
3.1 Avoiding the Two-Digit Year Trap .. 57

3.2 Using Informats .. 59

3.3 The INFORMAT Statement .. 59

3.3.1 Using Informats with the INPUT Statement... 60

3.3.2 Informats with the INPUT() Function .. 61

3.3.3 When the Informat Does Not Match the Data Being Read 62

3.4 Listing and Discussion of Informats .. 64

3.4.1 Date Informats .. 64

3.4.2 Time Informats .. 73

3.4.3 Datetime Informats... 78

3.4.4 The "ANYDATE" Series of Informats .. 81

3.4.5 So Why Not Just Use the "ANYDATE" Series of Informats? 86

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 91
4.1 What Is ISO 8601? .. 91

4.2 ISO 8601 Formats ... 92

4.2.1 ISO Date Formats ... 93

4.2.2 ISO Time Formats ... 93

4.2.3 ISO Datetime Formats .. 99

4.3 ISO 8601 Informats .. 103

4.3.1 ISO Date Informats ... 104

4.3.2 ISO Time Informats .. 105

4.3.3 ISO Datetime Informats ... 108

4.4 Time Zone Functions ... 111

4.4.1 Introduction ... 111

4.4.2 The TIMEZONE= Option... 111

4.4.3 List of Time Zone Functions .. 112

 Contents v

4.5 ISO 8601 Durations and Intervals ... 116

4.5.1 ISO Duration and Interval Representations ... 116

4.5.2 ISO 8601 Duration and Interval Formats .. 117

4.5.3 ISO 8601 Duration and Interval Informats .. 121

4.5.4 CALL IS8601_CONVERT .. 123

4.6 Conclusion .. 136

Chapter 5: Date and Time Functions .. 137
5.1 Current Date and Time Functions .. 137

5.2 Extracting Pieces from SAS Date, Time, and Datetime Values....................................... 138

5.3 Creating Dates, Times, and Datetimes from Numbers or Other Information 140

5.3.1 Introduction ... 140

5.3.2 List of Functions and Their Descriptions ... 140

5.4 Calculating Elapsed Time, and the HOLIDAY() Function ... 145

5.4.1 Calculating Elapsed Time with DATDIF() and YRDIF() .. 145

5.5 The Basics of SAS Intervals .. 149

5.5.1 The Interval Calculation Functions: INTCK() and INTNX() 151

5.6 Modifying SAS Intervals .. 159

5.7 Creating Your Own SAS Intervals .. 169

5.8 Interval Functions about Intervals .. 176

5.8.1 INTFIT(argument-1,argument-2,type) ... 177

5.8.2 INTFMT('interval','size') ... 178

5.8.3 INTGET(argument1,argument2,argument3) .. 179

5.8.4 INTSHIFT('interval') .. 180

5.8.5 INTTEST('interval') .. 181

5.9 Retail Calendar Intervals and Seasonality ... 181

5.9.1 Retail Calendar Intervals ... 181

5.9.2 Seasonality Functions .. 183

Chapter 6 Deeper into Dates and Times with SAS 185
6.1 Macro Variables and Dates ... 185

6.1.1 Automatic Macro Variables ... 185

6.1.2 Putting Dates into Titles .. 186

6.1.3 Using %SYSFUNC() to Create Dates, Times, and Datetimes in Macro
Variables ... 187

6.1.4 Using Dates in Macros ... 189

vi Contents

6.2 Graphing Dates .. 194

Johnny's Savings Account ... 194

6.3 The Basics of PROC EXPAND .. 200

6.3.1 Capabilities of PROC EXPAND.. 200

6.3.2 Using PROC EXPAND to Convert to a Higher Frequency 202

6.3.3 Using PROC EXPAND to Convert to a Lower Frequency....................................... 203

6.3.4 Using PROC EXPAND to Interpolate Missing Values ... 205

6.3.5 The OBSERVED= Option for the CONVERT Statement in PROC EXPAND 206

6.4 International Date, Time, and Datetime Formats and Informats 212

6.4.1 "EUR" Formats and Informats .. 213

6.4.2 NLS Formats ... 214

6.5 NLS Date, Time, and Datetime Conversion Functions ... 221

6.6 Date Formats and Informats for Other Calendars .. 225

6.6.1 Hebrew Date Formats .. 226

6.6.2 Japanese and Taiwanese Date Formats .. 226

6.6.3 Japanese and Taiwanese Date Informats ... 226

6.7 Other Software and Their Dates (Excel, Oracle, DB2) .. 227

6.7.1 The SASDATEFMT= System Option ... 228

6.8 Conclusion .. 229

Appendix A: A Quick Reference Guide to SAS Date, Time, and Datetime
Formats ... 231

Appendix B: A Quick Reference Guide to NLS Date, Time, and Datetime
Formats ... 235

Appendix C: Troubleshooting Dates 101 .. 239

Index ... 253

About This Book

Purpose
This book is designed to provide a detailed look at how the SAS date facility works, including an in-
depth look at intervals and the interval functions, ISO 8601 date and datetime handling, and the NLS
formats and informats. It is intended to serve as both a reference and a teaching tool. Ultimately, this
book will allow the reader to become more confident in their daily work with dates, times, and
datetimes in SAS.

Is This Book for You?
This book is aimed at beginning to intermediate SAS programmers, or those who work with ISO 8601
data, intervals, and/or reporting in multiple languages.

What’s New in This Edition
This new edition includes updated information to reflect the changes in version 9 of SAS; an expanded
discussion of intervals, including the ability to define your own intervals; a section on how SAS works
with the ISO 8601 date standards; and a troubleshooting appendix for beginners.

Scope of This Book
This book does not cover the SAS/ETS product, except for an overview of the EXPAND procedure.

About the Examples

Software Used to Develop the Book's Content
SAS version 9.4 (TS level 1M0) was used to produce all the examples in this book.

Example Code and Data
Many of the examples used in this book have accompanying code and data.

viii About This Book

You can access the example code and data for this book by linking to its author page at
http://support.sas.com/publishing/authors. Select the name of the author. Then, look for the cover
thumbnail of this book, and select Example Code and Data to display the SAS programs that are
included in this book.

For an alphabetical listing of all books for which example code and data is available, see
http://support.sas.com/bookcode. Select a title to display the book’s example code.

If you are unable to access the code through the website, send e-mail to saspress@sas.com.

Output and Graphics Used in This Book
Tables in this book were generated using ODS RTF, while graphics were generated as PNG files
directly in SAS using the GPLOT and SGPLOT procedures. Screen captures were used to show the
VIEWTABLE displays.

Additional Help
Although this book illustrates many analyses regularly performed in businesses across industries,
questions specific to your aims and issues may arise. To fully support you, SAS Institute and SAS
Press offer you the following help resources:

• For questions about topics covered in this book, contact the author through SAS Press:

◦ Send questions by email to saspress@sas.com; include the book title in your
correspondence.

◦ Submit feedback on the author’s page at http://support.sas.com/author_feedback.

• For questions about topics in or beyond the scope of this book, post queries to the relevant
SAS Support Communities at https://communities.sas.com/welcome.

• SAS Institute maintains a comprehensive website with up-to-date information. One page that
is particularly useful to both the novice and the seasoned SAS user is its Knowledge Base.
Search for relevant notes in the “Samples and SAS Notes” section of the Knowledge Base at
http://support.sas.com/resources.

• Registered SAS users or their organizations can access SAS Customer Support at
http://support.sas.com. Here you can pose specific questions to SAS Customer Support; under
Support, click Submit a Problem. You will need to provide an email address to which replies
can be sent, identify your organization, and provide a customer site number or license
information. This information can be found in your SAS logs.

http://support.sas.com/publishing/authors
http://support.sas.com/bookcode
mailto:saspress@sas.com
mailto:saspress@sas.com
http://support.sas.com/publishing/bbu/companion_site/info.html
https://communities.sas.com/welcome
http://support.sas.com/resources/
http://support.sas.com/

ix

Meet the Author

Derek Morgan is a senior SAS programmer in the pharmaceutical industry who
has been programming professionally in SAS for over 27 years. He spent 23 of
those years at Washington University in St. Louis, where he received an A.B.
in biology in 1985 and his first introduction to SAS as a student. During his
career he has used SAS to create interactive data entry and management
systems and to build and maintain research databases for analysis. In the late
1980s, he created a macro library to allow the use of nonproportional fonts in
tables and listings on PostScript printers. He has taught introductory SAS

programming and has presented many papers at local, regional, and national SAS Users Group
conferences. Derek is married and has one son, and in his spare time he plays electric bass around the
St. Louis area.

Learn more about this author by visiting his author page at
http://support.sas.com/publishing/authors/morgan.html. There you can download free book excerpts,
access example code and data, read the latest reviews, get updates, and more.

Keep in Touch
We look forward to hearing from you. We invite questions, comments, and concerns. If you want to
contact us about a specific book, please include the book title in your correspondence.

Contact the Author through SAS Press
• By e-mail: saspress@sas.com

• Via the Web: http://support.sas.com/author_feedback

Purchase SAS Books
For a complete list of books available through SAS, visit sas.com/store/books.

• Phone: 1-800-727-0025

• E-mail: sasbook@sas.com

Subscribe to the SAS Training and Book Report
Receive up-to-date information about SAS training, certification, and publications via email by
subscribing to the SAS Training & Book Report monthly eNewsletter. Read the archives and subscribe
today at http://support.sas.com/community/newsletters/training!

http://support.sas.com/publishing/authors/morgan.html
mailto:saspress@sas.com
http://support.sas.com/publishing/bbu/companion_site/info.html
http://support.sas.com/bookstore
http://support.sas.com/community/newsletters/training

x About This Book

Publish with SAS
SAS is recruiting authors! Are you interested in writing a book? Visit http://support.sas.com/saspress
for more information.

http://support.sas.com/saspress

Acknowledgments
A book is always a team effort, and I can honestly say that I have had a great one. Starting with the
people at SAS Press whose efforts and patience on my behalf have resulted in this second edition, I
would like to thank Julie Platt, Shelley Sessoms, and Stacey Hamilton but most especially my
developmental editor, Stephenie Joyner, who kept me on task and moving forward. SAS guru Art
Carpenter has been more than just an editor; he has been a mentor, and every time I run into him, I
find myself knowing how to do something better than I did before. This second edition would not
exist without his support. Another big thank you goes to Denise T. Jones, Stacy Suggs, and Robert
Harris, all from SAS Press, who are responsible for producing this book from my manuscript.

Thanks to Andrew Karp for introducing me to the world of PROC EXPAND, and to Mike Forno of
SAS Institute for answering my questions on it. I greatly appreciate the American Public
Transportation Association (http://www.apta.com), which allowed me to use data compiled from its
member transit agencies for the PROC EXPAND examples. The technical support group at SAS
Institute deserves special mention; after 27 years of working as a computer programmer, I have
come to the conclusion that you are, without a doubt, the best in the business. Thank you for all of
your help throughout my SAS career.

I’d also like to thank the technical reviewers from SAS Institute—Richard Bell, Chris DeHart,
Johnny Johnson, Rick Langston, and Kim Wilson—for their thoughtful comments and corrections.
In addition, Paul Rowland deserves a big thank you for his willingness to provide a SAS user’s
perspective.

Ultimately, this project would not have been possible without the support of my family, past and
present. To my son, Terec, thank you for understanding my distraction during Formula I season,
and thank you for the photo. To my wife, Billie, thank you for letting me work on our weekends
and a good number of our evenings, and for contributing your knowledge of Microsoft Word to
help me write the manuscript.

 Acknowledgments xii

Chapter 1: Introduction to Dates and Times in
SAS

1.1 How Does It Work? (January 1, 1960, and Midnight as Zero) 1

1.2 Internal Representation ... 2

1.3 External Representation (Basic FORMAT Concepts) 2

1.4 Date and Time as Numeric Constants in SAS ... 3

1.5 Length and Numeric Requirements for Date, Time, and Datetime 5

1.6 General SAS Options for Dates... 7

In the years that I've been working with SAS and teaching students how to use it, I find that two
things consistently confuse those who are new to SAS. First is the default way that the DATA step
works. Its implied DO-until-end-of-data generates many "How do I tell it how much data to read
and when to stop?" questions. The second most confusing concept in SAS is that of how dates (and
times) work within the software. I've seen many misuses of character strings masquerading as dates
and/or times over the years, as well as unexpected results due to a failure to understand this
fundamental part of SAS.

However, the way that SAS reads, stores, and displays dates and times is only the tip of the iceberg
when it comes to the power and flexibility of SAS in handling this information. There is so much
more than just having numbers represent date and time values. We'll start with the basics in the first
three chapters, and then progress to some more advanced uses of those date and time values, taking
advantage of many of the features available in SAS for that purpose.

1.1 How Does It Work? (January 1, 1960, and Midnight as Zero)
SAS counts dates, times, and datetime values separately. The date counter started at zero on
January 1, 1960. Any day before January 1, 1960, is a negative number, and any day after that is a
positive number. Every day at midnight, the date counter is increased by one. The time counter is
measured in seconds and runs from zero (at midnight) to 86,400 (the number of seconds in a day),
when it resets to zero. SAS calculates datetimes as the number of seconds since midnight, January
1, 1960. Why January 1, 1960? The founders of SAS wanted to use the approximate birth date of
the IBM 370 system to represent the beginning of the modern computing era, and they chose
January 1, 1960, as an easy-to-remember approximation.

2 The Essential Guide to SAS Dates and Times, Second Edition

In deciding whether to use a date, a time, or a datetime, you should consider how you are going to
use it. Datetimes are always date and time combined; therefore, if you will not always have a time
available for each date, you should strongly consider using separate date and time variables and
then calculate a datetime variable from the two components when needed. Normally, attempting to
create a datetime without both a date and a time will cause an error, and the result will be a missing
value for the datetime. However, in specific circumstances, it is possible to create a datetime value
from a date and a missing time (see Section 4.3.3, "ISO Datetime Informats," for an example). In
these cases, the time will be set automatically to midnight (0 seconds of the given date). You may
want your datetime value to be missing when there is a date but no time available. In these specific
circumstances, it is important to keep track of date and time separately. Many programs that handle
dates (such as databases and spreadsheets) maintain their dates and times as a numeric value
relative to some fixed point in time, although the date that represents zero is different across each
package, and packages may vary in how they keep track of time of day. Ultimately, this makes
calculating durations easy, and working with dates and times stored in this fashion becomes a
matter of addition, subtraction, multiplication, and division.

1.2 Internal Representation
SAS stores dates as integers, while the datetime and time counters are stored as real numbers to
account for fractional seconds. The origin of the algorithm used for SAS date processing comes
from a January 14, 1980, Computerworld article by Dr. Bhairav Joshi of SUNY-Geneseo. The
earliest date that SAS can handle with this algorithm is January 1, 1582 (essentially the
implementation date of the current Gregorian calendar system). The latest date is far enough into
the future that at least five digits will be required to display the year.

Dates as stored by SAS don't do us much good in the real world. The statement "I was born
on -242" won't mean much to anyone else. However, "I was born on May 4, 1959," can easily be
translated into something that most people can understand, or it can be used as is. Fortunately, SAS
has a number of built-in facilities to perform automatic translation between the internal numbers
stored in SAS and dates and times and their representation as understood by the rest of the world.
These built-in tools include formats and informats (introduced in Section 1.3 and covered
extensively in Chapters 2, 3, and 4), date and time constants (Section 1.4), and functions
(Chapter 5).

1.3 External Representation (Basic FORMAT Concepts)
Formats perform an automatic translation between the actual value and the value to be displayed.
Formats display the date, time, and datetime values in a fashion that is much more easily
understood. Formats do not change the values themselves; they are just a way to display the values
in any output.

When you have dates or times and want to translate them into SAS date and time values, you will
use informats. Although you will need a statement, procedure, or a function to actually create the

Chapter 1: Introduction to Dates and Times in SAS 3

SAS values, informats describe what the data look like so that SAS can translate it correctly for
storage. We will discuss formats and informats in detail in Chapters 2, 3, and 4 because there are
dozens of them. Three of the most commonly used formats that work with SAS date, time, and
datetime values are used in the following section.

1.4 Date and Time as Numeric Constants in SAS
We've talked about internal and external representation of dates and times. How do you put a
specific date into a program as a constant? Formats only change the way the values are displayed in
output, so you can't use them. Informats need a function or a SAS statement to translate the
characters they are given, so you could use them, but then you would always need to use the
INPUT() function to create a SAS date in a DATA step or PROC SQL. The INPUT function takes
a series of characters that you give it and translates it using the informat that describes what the
series of characters look like. That's very inefficient if you just want one specific date.

date = INPUT("04AUG2013",DATE9.);

Look at the program in Example 1.1 to see how date, time, and datetime constants are written into a
SAS program. Take note of the quotation marks around the values for date, time, and datetime and
the letters that follow each closing quote.

Example 1.1: Date Constants

DATA date_constants;

date = '04aug2013'd; /* This is a date constant */
time = '07:15:00't; /* This is a time constant */
datetime = '07aug1904:21:31:00'dt; /* This is a datetime constant
*/
RUN;

TITLE "Unformatted Constants";
PROC PRINT DATA=date_constants;
VAR date time datetime;
RUN;

TITLE "Formatted Constants";
PROC PRINT DATA=date_constants;
VAR date time datetime;
FORMAT date worddate32. time timeampm9. datetime datetime19.; /*
Format the constants */
RUN;

The quotes are used to create a literal value. You may use a pair of single or double quotes to
specify the literal value. Dates have to be written as ddmonyyyy; times as hh:mm:ss (add a decimal
point and more digits to represent fractional seconds if necessary); and datetimes as the date

4 The Essential Guide to SAS Dates and Times, Second Edition

ddmonyyyy, followed by a separator (frequently seen as a colon [:]) and then the time (hh:mm:ss).
Aside from the correct formatting of these literal values, the most important part of a
date/time/datetime constant is the letter that immediately follows the last quote. The letter "D"
stands for date, "T" for time, and "DT" for datetime. Upper or lower case is valid. If you put one of
these strings in quotes without the letter at the end, you will create a character variable, not a
numeric variable with a date, time, or datetime value. The difference might not become apparent
until you try to do something with the variable you created that involves a calculation. Don't forget
your "D," "T," or "DT"! This example demonstrates how these constants are defined and then
automatically converted to their equivalent SAS values.

The first PROC PRINT statement displays the date, time, and datetime values we created with our
constants without formats, so we can see the values as they are stored in the data set.

Unformatted Constants
date time datetime

19574 26100 -1748226540

The second PROC PRINT shows the effect of associating the variable DATE with the
WORDDATE. format, the variable TIME with the TIMEAMPM. format, and the variable
DATETIME with the DATETIME. format.

Formatted Constants
date time datetime

August 4, 2013 7:15 AM 07AUG1904:21:31:00

Without the formats, you can see that the date constants we used to create the values stored in the
data set are displayed as their actual SAS date, time, and datetime values. They don't make much
sense to us until a format is associated with the variable.

What happens if you forget to put the "D," "T," or "DT" after your date constant? In Example 1.2,
the "D," "T," and "DT" have been removed from the same date, time, and datetime in Example 1.1.

Example 1.2: Incorrect Date Constants

DATA bad_date_constants;

date = '04aug2013'; /* This is NOT a date constant */
time = '07:15:00'; /* This is NOT a time constant */
datetime = '07aug1904:21:31:00'; /* This is NOT a datetime constant
*/
RUN;

TITLE "Unformatted Constants";
PROC PRINT DATA=bad_date_constants;

Chapter 1: Introduction to Dates and Times in SAS 5

VAR date time datetime;
RUN;

Now we print out the values without formats. While the problem may not be apparent at first
glance, this result does not look like the unformatted SAS date, time, and datetime values in the
previous example.

Unformatted constants
date time datetime

04aug2013 07:15:00 07aug1904:21:31:00

Now let's try to add one day to the date, and a minute (60 seconds) to both the time and datetime.
Here is a partial log of what happens when we try this with the code in Example 1.2.

12 DATA bad_date_constants;
13 date = '04aug2013' + 1;
14 time = '07:15:00' + 60;
15 datetime = '07aug1904:21:31:00' + 60;
16 RUN;

NOTE: Character values have been converted to numeric
 values at the places given by: (Line):(Column).
 13:8 14:8 15:12
NOTE: Invalid numeric data, '04aug2013' , at line 13 column 8.
NOTE: Invalid numeric data, '07:15:00' , at line 14 column 8.
NOTE: Invalid numeric data, '07aug1904:21:31:00' , at line 15 column
 12.
 date=. time=. datetime=. _ERROR_=1 _N_=1

The "invalid numeric data" note in the log tells you that you tried to use a character value to do
something that requires a numeric value. The boldface last line tells you that you have missing
values for all three variables, because you were trying to do math with a character value.
Remember that SAS dates, times, and datetimes are always stored as numbers. When you see
"invalid numeric data" where you intended to use a date constant, it is highly probable that your
date constant is missing its identifying "D," "T," or "DT."

1.5 Length and Numeric Requirements for Date, Time, and
Datetime

You can take advantage of the fact that dates are stored as integers to save space when you create
variables to store them. Instead of using the default length of 8 for numeric variables, set the length
of the numeric variables where you are storing dates to 4. This will safely store dates from January
1, 1582 (the earliest date SAS can handle), to October 23, 7701. A length of 5 is overkill, although
that would extend the ending date another 534,773,760 days! A length of 3 will not accurately store

6 The Essential Guide to SAS Dates and Times, Second Edition

dates outside the range of January 1, 1960, and September 13, 1960. If you declare your date
variables to be a length of 4, you will be able to store two dates in the space it would take to store
one if you were using the SAS default length for numeric variables. This can save you a great deal
of storage space in a large data warehouse.

Times may present a bit of a problem, because you may need to store fractional seconds. The rule
is simple enough: If you want to store time values with fractional seconds, you must use a length of
8 to store them accurately. Otherwise, the length of 4 is long enough to store every possible time
value from midnight to midnight down to the second. In these cases, not using the default length
will allow you to store two times in the same amount of space as one.

Datetime values require more space, because a length of 4 will not store a datetime value with
accuracy, regardless of whether you want fractional seconds. The number is just too big. As long as
you are not storing fractional seconds, a length of 6 will store datetimes that accurately represent
values from midnight on January 1, 1582, to 3:04:31 p.m. on April 9, 6315. Changing the range
from the default of 8 to 6 for datetime values results in a 25 percent savings in space, which still
may be significant depending on how much data you have. Of course, if you are going to maintain
decimal places in your datetime values, you must use the default length of 8.

I have just provided the absolute minimum lengths required for accuracy. DO NOT attempt to save
additional space by shrinking the variable lengths beyond 4, 6, or 8 as listed. You will lose
precision, which could lead to unexpected results. Example 1.3 shows what can happen if you do
not use enough bytes to store your date values. This example uses the value 19941, which
represents the date of August 6, 2014, and it is in variables of lengths 3, 4, and 5.

Example 1.3: The Effect of LENGTH Statements on Dates

DATA date_length;
LENGTH len3 3 len4 4 len5 5;
len3 = 19941;
len4 = 19941;
len5 = 19941;
FORMAT len3 len4 len5 mmddyy10.;
RUN;

As the table below shows, when you try to store a date in fewer than 4 bytes, you do not get the
correct value. Using a length of 4 to store your dates and times (without fractional seconds) is still a
significant (50 percent) savings in the amount of storage required. You will create inaccuracies in
your data if you try to save more than that. Saving additional space is not worth the risk of
inaccurate data.

len3 len4 len5
08/05/2014 08/06/2014 08/06/2014

Chapter 1: Introduction to Dates and Times in SAS 7

1.6 General SAS Options for Dates
Two options influence the default date and time stamp that SAS places on pages of output and the
SAS log. The DATE/NODATE option causes the start date and time of the SAS job (or session) to
appear on each page of the SAS log and SAS output. These values are obtained from the operating
system clock and are displayed as 24-hour clock time, followed by the day of the week, month,
day, and four-digit year. If you are running SAS interactively, then the date and time are printed
only on the output, not the log. By default, the DATE system option is in effect when you start
SAS. However, if you do not want this default display, then use the NODATE option. You
probably don't want SAS to display its default date stamp if you are going to put your own date
and/or time stamp in the title or in a footnote (see Chapter 6).

As mentioned in the previous paragraph, if the DATE option is enabled, SAS prints the date and
time that the current SAS session started on each page. If you want a more exact date and time on
those pages, you can use the DTRESET system option, which will cause SAS to retrieve the date
and time from the operating system clock each time a page is written. That date and time will then
be placed on the page instead of the time that the SAS job started. Since the time is displayed in
hours and minutes, you will only see it change every minute. The DTRESET option can be useful
in interactive applications or SAS programs that may have been running for days or weeks, where
knowing when the output was generated is more important than knowing when the SAS session
began. Since the DTRESET option affects the default SAS date and time stamp, it works only if the
DATE option is enabled. When you use the NODATE option, using DTRESET will have no effect
because you aren't using the SAS date and time stamp on your output.

8 The Essential Guide to SAS Dates and Times, Second Edition

Chapter 2: Displaying SAS Date, Time, and
Datetime Values as Dates and Times as We
Know Them

2.1 How Do I Use a Format? ... 10

2.2 How Many Built-In Formats Are There for Dates and Times? 13

2.3 Date Formats, Justification, and ODS .. 13

2.4 Detailed Discussion of Each Format .. 14

2.5 Creating Custom Date Formats Using the VALUE Statement of PROC

FORMAT ... 47

2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC

FORMAT ... 48

2.7 Creating Custom Formats Using PROC FCMP for Processing 52

2.8 The PUT() Function and Formats .. 55

In SAS, date, time, and datetime values are stored as integers (unless you are storing fractional
parts of seconds). They are all counted from a fixed reference point. SAS date values increment by
1 at midnight of each day, while SAS datetime values increment by 1 every second. SAS time
values start at zero at midnight of each day, and also increment by 1 each second.

10 The Essential Guide to SAS Dates and Times, Second Edition

This scheme makes it easy to calculate durations in days and seconds, but it does not do much for
figuring out what a given SAS date, time, or datetime value means in terms of how we talk about
them. Therefore, SAS provides a facility that makes it easy to perform the translation from SAS
into the common terminology of months, days, years, hours, and seconds. The translation is done
through formats.

Formats are what SAS uses to control the way data values are displayed. They can also be used to
group data values together for analysis. They are essential to dates and times in SAS because SAS
does not store dates and times in an easily recognizable form, as we discussed in Chapter 1. SAS
has many built-in formats to display dates, times, and datetime values. This chapter provides a
detailed guide to all of the date, time, and datetime formats readily available in SAS. In addition, if
any of these built-in formats don't fit your needs, you have the ability to create (and store for future
use) your own formats. Creating your own formats is covered in Sections 2.5 and 2.6.

If you are looking for a quick reference, you can go to Appendix A, which lists all of the date, time,
and datetime formats and provides a sample display using their default lengths. If the default does
not give you what you want, Section 2.4 discusses each date, time, and datetime format in detail,
including how to specify the length of the format and how that length affects the display.

2.1 How Do I Use a Format?
Formats are easy to use. You can permanently associate a format with a variable by using a
FORMAT statement in a DATA step, as shown in Example 2.1.

Example 2.1: Permanently Associating a Format with a Variable

DATA test;
LENGTH date1 time1 4;
date1 = 19781;
time1 = 73000;
FORMAT date1 MMDDYY10. time1 TIMEAMPM11.;
RUN;

Example 2.1 creates a data set called TEST, which has two variables: date1 and time1. By using the
FORMAT statement here, you have specified that whenever the values from this data set are
displayed, the values stored in the variable date1 will always be displayed with the format
MMDDYY10., and those stored in time1 will always be displayed using the TIMEAMPM11.
format.

date1 time1

02/27/2014 8:16:40 PM

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 11

If you don't want to have your data values permanently associated with a format, then you can just
apply the format when you are actually writing the values to your output. The same FORMAT
statement is used, but the location has changed, from the DATA step to the PROC step. Example
2.2 illustrates this.

Example 2.2: Associating a Format with a Variable for the Duration of a Procedure

DATA test2;
LENGTH date2 time2 4;
date2 = 19781;
time2 = 73000;
RUN;

PROC PRINT DATA=test2;
FORMAT date2 DATE9. time2 TIMEAMPM11.;
RUN;

date2 time2

02/27/2014 8:16:40 PM

Although there is no format assigned to either date2 or time2 in the DATA step, you have told the
PRINT procedure to write these values using the two formats listed, so there is no difference
between the output from Example 2.1 and that from Example 2.2. Another handy thing about using
the FORMAT statement with a SAS procedure is that if you use the FORMAT statement in a SAS
procedure, it will override any format that has been permanently associated with the variables for
the duration of that procedure. To illustrate, we'll take the data set TEST from Example 2.1. The
variables date1 and time1 have been associated with the formats MMDDYY10. and
TIMEAMPM11., respectively. What if your report needs the date printed out with the day of the
week, along with the name of the month, day, and year, while the time needs to be seconds after
midnight? The PROC PRINT step will look like this:

PROC PRINT DATA=test;
FORMAT date1 WEEKDATE37. time1;
RUN;

date1 time1
Thursday, February 27, 2014 73000

All SAS procedures will use the formats specified in the FORMAT statement that is part of the
PROC step instead of the formats associated with the variable in the data set. Therefore, in the
above example, date1 is printed using the WEEKDATE. format. What about time1? There's no
format name given after the variable name in the FORMAT statement. This is how to tell SAS not
to use any formats that might be associated with the variable. To remove a FORMAT from a

12 The Essential Guide to SAS Dates and Times, Second Edition

variable, make sure that no format names of any kind follow it anywhere in the FORMAT
statement.

Example 2.3: Removing Associated Formats in a Procedure

DATA test3;
date3 = 19067;
time3 = 18479;
date4 = 18833;
time4 = 45187;
FORMAT date3 date4 DATE9. time3 time4 TIME5.;
RUN;

PROC PRINT DATA =test3 NOOBS;
FORMAT date3 date4 time3 time4;
RUN;

Data set test3 with all formats removed

date3 time3 date4 time4

19067 18479 18833 45187

What happens if there are format names after the one that you want to remove? Look at the code
segment that follows this paragraph. The goal is to display the variable date3 with the
MMDDYY10. format, remove the format from the variable date4, and apply the TIMEAMPM11.
format to the time variables time3 and time4. So the FORMAT statement has MMDDYY10. for
date3, nothing for date4, and TIMEAMPM11. for time3 and time4, right?

PROC PRINT DATA =test3 NOOBS;
FORMAT date3 MMDDYY10. date4 time3 time4 TIMEAMPM11.;
RUN;

date3 time3 date4 time4

3/15/2012 5:07:59 AM 5:13:53 AM 12:33:07 PM

What happened? The variable date4 is displayed as a time, when you didn't put a format name after
the variable name in the FORMAT statement. The answer is that you gave a list of three variables
to SAS and told it to apply the TIMEAMPM11. format to them (see boldface code below):

FORMAT date3 MMDDYY10. date4 time3 time4 TIMEAMPM11.;

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 13

How do you fix this? You have to make sure that date4 is the last variable listed in the FORMAT
statement.

PROC PRINT DATA =test3 NOOBS;
FORMAT date3 MMDDYY10. time3 time4 TIMEAMPM11. date4;
RUN;

date3 time3 date4 time4

3/15/2012 5:07:59 AM 18833 12:33:07 PM

2.2 How Many Built-In Formats Are There for Dates and Times?
SAS has more than 70 ready-to-use formats to display dates, times, and datetimes. We will discuss
each one in detail in Section 2.4, but if you're looking for a quick reference guide, see Appendix A.
SAS continues to develop formats and informats, so it is always a good idea to check the
documentation that came with your release of SAS, or the online documentation at
support.sas.com. All SAS formats have a common syntax structure, beginning with the format
name, followed by an optional width specification, and ending with a period. The period is critical.
It is what allows SAS to recognize the word as a format and not some other SAS keyword or text.
The width specification varies with each format, and all formats have a default width that is used if
there is no width specification given. The width specification is very important to dates because
SAS will abbreviate the displayed value if you do not specify enough characters for the width, and
the abbreviation that SAS uses might not give you the output that you want. The default width is
noted in the description for each format in Section 2.4, and it is usually the width that will
accommodate the longest value to be displayed. For example, the default width for the
DOWNAME. (day-of-week) format is 9. That will accommodate the string “Wednesday”, which is
the longest English day-of-week name.

2.3 Date Formats, Justification, and ODS
Each date format has a default justification with respect to the width specification that you give it.
Since numeric values are right-justified in SAS, most of the formats that are applied to date, time,
or datetime formats are also right-justified, with a few exceptions (which will be clearly noted in
the detailed explanations that follow). In ODS destinations other than LISTING, values are
justified within a table column by SAS procedure default or by a user-defined ODS template. By
default, SAS makes its columns wide enough to fit the widest item in a given column. Therefore,
any leading spaces caused by specifying a width that is too wide to fit the formatted value won't
show up in ODS output.

However, prior to ODS or version 9.3 in the LISTING destination, using a width specification that
is wider than the output requires causes SAS to fill the empty spaces with blanks. For values that
are right-justified, this might cause some of the output to shift to the right by a number of spaces. In

14 The Essential Guide to SAS Dates and Times, Second Edition

Example 2.4, we use the MONNAME. format, which displays the text corresponding to the month
of the date, to illustrate.

Example 2.4: How Justification Works in the LISTING Destination

Format Name Result Comment
MONNAME9. September

MONNAME10. September Leading space.

MONNAME11. September Two leading spaces.

MONNAME15. September Six leading spaces.

As you can see, making the width specification larger only adds leading spaces, and you could
extend this all the way to the maximum width for the format.

Why should I worry about justification? I'm not using ODS LISTING, and I'm using
SAS 9.3 or higher.

While it is true that justification is more of a concern in the traditional LISTING destination
and only applicable to traditional column-based output, leading spaces can show up if you use
the PUT() (or PUTN()) function to create character strings from SAS date, time, or datetime
values. In cases such as these, the leading spaces are part of the output and as such might be
displayed. You can use STRIP() or COMPRESS() to remove the leading spaces explicitly. If
you are going to concatenate multiple items, use the CATX(), CATS(), or CATT() functions,
all of which remove leading and trailing spaces of each item being concatenated.

If you do not specify column alignment in an ODS template or by using STYLE= directives,
certain ODS destinations (such as RTF and PDF) will justify values within a column according to
the justification of the format used in the column, without leading spaces.

2.4 Detailed Discussion of Each Format
This section gives a detailed explanation of all the current standard formats available for SAS date,
time, and datetime values. In addition to the display that results from using a given format, the
explanation includes information about the default width specification and its possible values,
annotated examples of the display with varying width specifications, and usage notes. Date formats
will be covered first, then time and datetime formats. Each subsection is arranged alphabetically.

2.4.1 Date Formats
A date format provides a set of instructions for how a SAS date is displayed so that it looks like a
date in the way we normally express them. You can specify the width (number of characters) that

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 15

the translated text will occupy, but each format has its own default width specification, shown as w
in this text. The default width specification is given in the description of each format. Some, but not
all, of the date formats allow you to specify the character that separates each element of the date.
You must not use a date format to translate datetime values. If you try to translate a datetime value
with a date format, you will get incorrect output. (For an example, see Example 2.5.)

DATEw.
DATEw. writes dates as the numerical day of the month followed by the three-letter month
abbreviation and the year, without any separating characters. It is right-justified within the field. w
can be from 5 to 11, and the default width is 7. If you want to display four-digit years, use DATE9.
or DATE11. DATE11. will display four-digit years with a hyphen between the day, month
abbreviation, and year. The following table shows the result when the date value is 19715, which
corresponds to December 23, 2013.

Format Name Result Comment

DATE. 23DEC13 Default width of 7.

DATE5. 23DEC No room for year to be displayed.

DATE7. 23DEC13 Same as date.

DATE9. 23DEC2013 Four-digit year

DATE11. 23-DEC-2013 Hyphens as delimiters.

This format is analogous to the DTDATE. format, which displays datetime values in the same
manner.

DAYw.
DAYw. writes the numerical day of the month, and it is right-justified within the field. w can be
from 2 to 32, and the default width is 2. Specifying anything longer than 2 will only place more
spaces in the field to the left of the number, so it is not necessary to specify more than 2. The
following table shows the result when the date value is 16739, which corresponds to October 30,
2005.

Format Name Result Comment

DAY2. 30

DDMMYYw.

DDMMYYw. writes dates as day/numerical month/year, where the slash (/) is the separator, and it
is right-justified within the field. w can be from 2 to 10, and the default width is 8. If you specify a
width from 2 to 5, the date will be truncated on the right, as SAS tries to fit as much of the day and

16 The Essential Guide to SAS Dates and Times, Second Edition

month as possible in the space allowed. If you use 6, no slashes will be printed. A width of 8 will
use a two-digit year after the slashes. Use 10 to get a four-digit year with slashes. The following
table shows the result when the date value is 19869, which corresponds to May 26, 2014.

Format Name Result Comment

DDMMYY5. 26/05

DDMMYY6. 260514

DDMMYY8. 26/05/14

DDMMYY10. 26/05/2014

DDMMYYxw.

DDMMYYxw. is similar to the DDMMYY. format. It is also right-justified. However, with this
format, you can specify what character separates the day, numerical month, and year. The x in the
format name represents the separator between the day, month, and year. The following table lists
what x can be.

x
Character Displayed in
Output Comment

B blank

C colon (:)

D dash (-)

N no separator w is a maximum of 8, not 10.

P period (.)

S slash (/) Effectively the same as using the DDMMYY. format.

w can be from 2 to 10, with the default being 8. This works the same way as the DDMMYY.
format with respect to what SAS fits in the space specified. Again, if you specify a width from 2 to
5, the date will be truncated on the right, as SAS tries to fit as much of the day and month as
possible in the space allowed. If you use 6, no separator will be used. At 8, SAS will print a two-

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 17

digit year. Use 10 to get a four-digit year with your separator. The following table shows the result
when the date value is 19398, which corresponds to February 9, 2013.

Format Name Result Comment

DDMMYYP5. 09.02 Only space for day and month.

DDMMYYB6. 090213 Not enough space for the blank separator.

DDMMYYD8. 09-02-13 Enough space for two-digit year with separators.

DDMMYYS8. 09/02/13 Enough space for two-digit year; same as using DDMMYY9. format.

DDMMYYC10. 09:02:2013 Colon as separator.

DOWNAMEw.

DOWNAMEw. writes the date as the name of the day of the week. It is right-justified, so if you
give it too much space, there will be leading blanks. w can be from 1 to 32, and the default is 9. If
you don't specify w, SAS will always print the entire name of the day. However, if you specify w
less than 9, then SAS will truncate the name of the day to fit as necessary. The following table
shows the result when the date value is 20280, which corresponds to Saturday, July 11, 2015.

Format Name Result Comment

DOWNAME3. Sat

DOWNAME6. Saturd

DOWNAME8. Saturday

JULDAYw.
JULDAYw. writes the date as the Julian day of the year, which is a value from 1 to 366. It is right-
justified. w can be from 3 to 32, and the default is 3. Note that the minimum width of the format
will cause leading spaces if the Julian date is less than 100. This would become obvious if you are
creating a character string using the PUT() or PUTN() functions and do not remove leading blanks.

Format Name Result Comment

JULDAY3. 9 There are 2 leading spaces here because there are fewer than 3 digits in
the value displayed. The date value used here is 374, which corresponds
to January 9, 1961.

18 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment
JULDAY3. 76 There is a leading space here because there are fewer than 3 digits in the

value displayed. The date value used here is 19068, which corresponds
to March 16, 2012.

JULDAY3. 107 There is no leading space here because there are 3 digits in the value
displayed. The date value used here is 19465, which corresponds to
April 17, 2013.

JULIANw.

JULIANw. writes your date value as a Julian date, with the year preceding the Julian day. It is
right-justified. w can be from 5 to 7, and the default is 5. If you specify a width of 5, the year
portion of the Julian date is two digits long. If you specify a width of 7, the year portion is four
digits long. The following table shows the result when the date value is 18514, which corresponds
to September 9, 2010.

Format Name Result Comment
JULIAN5. 100252
JULIAN7. 2010252

MMDDYYw.

MMDDYYw. writes the date as numerical month/day/year, where a slash (/) is the separator. It is
right-justified within the field. w can be from 2 to 10, and the default is 8. It is similar to the
DDMMYY. format in that if you specify 2–5 for the width, the date will be truncated on the right,
as SAS tries to fit as much of the day and month as possible in the space allowed. If you use 6, no
slashes will be printed, but it will print a two-digit year. A width of 8 will put a two-digit year
after the slashes. Use a width of 10 to get a four-digit year with slashes. The following table shows
the result when the date value is 19655, which corresponds to October 24, 2013.

Format Name Result Comment
MMDDYY2. 10 Month only.

MMDDYY4. 1024 Month and day, no separator.

MMDDYY5. 10/24 Month and day with separating slash.

MMDDYY6. 102413 Month, day, and year, no separator.

MMDDYY8. 10/24/13 Year reduced to two-digit year to accommodate separators.

MMDDYY10. 10/24/2013

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 19

MMDDYYxw.

MMDDYYxw. displays the date in the same way that the MMDDYY. format does, except that
you can specify the separator. The x in the format name specifies the separator that you want to
use according to the following table.

x Character Displayed in Output Comment

B blank

C colon (:)

D dash (-)

N no separator w is a maximum of 8, not 10.

P period (.)

S slash (/) Effectively the same as using the MMDDYY. format.

The date will be right-justified within the width that you specify. w can be from 2 to 10, and the
default is 8. If you specify 2–5, the date will be truncated on the right, as SAS tries to fit as much
of the day and month as possible in the space allowed. If you use a width of 6, no separator will be
used. At 7, SAS will print a two-digit year without a separator, and widths of 8 or 9 will put a two-
digit year after the separator. Use 10 to get a four-digit year with separators. The following table
shows the result when the date value is 19188, which corresponds to July, 14, 2012.

Format Name Result Comment

MMDDYYD5. 07-14 No room for year.

MMDDYYS6. 071412 No room for separators.

MMDDYYC8. 07:14:12 Colon as separator; still two-digit year.

MMDDYYP10. 07.14.2012 Period as separator.

MMDDYYB10. 07142012

MMYYw.

MMYYw. displays the zero-filled month number and year for the given date value, separated by
the letter M. It is right-justified, and w can be from 5 to 32, with a default width of 7. When w is
less than 7, a two-digit year is used. Otherwise, a full four-digit year is displayed. Since this
format only needs a maximum of 7 characters, any width greater than 7 will just add leading
spaces. The following table shows the result when the date value is 19756, which corresponds to
February 2, 2014.

20 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment

MMYY5. 02M14

MMYY7. 02M2014 Four-digit year.

MMYYxw.
MMYYxw. displays the month number and year for a given date value in the same fashion that the
MMYY. format does, except that you can specify the separator with x, according to the table
below. Note that the blank is not valid with this format, while it is valid with the DDMMYYx. and
MMDDYYx. formats.

x Character Displayed in Output Comment

C colon (:)

D dash (-)

N no separator w can be from 4 to 32, with a default of 6.

P period (.)

S slash (/)

The displayed date value will be is right-justified, and w can be from 5 to 32, with a default width
of 7. When w is specified as 5 or 6, a two-digit year is used, unless you have specified "N," for no
separator. Without a separator, there is enough space to display the two digits of the month, and
four digits for the year. If w is 7 or more, a full four-digit year is always displayed. Since this
format will only display a maximum of 7 characters, any value greater than 7 will just add leading
spaces. The following table shows the result when the date value is 19628, which corresponds to
September 27, 2013.

Format Name Result Comment

MMYYD5. 09-13 Two-digit year.

MMYYN6. 092013 No separator, four-digit year.

MMYYS6. 09/13 Two-digit year because of separator and leading space.

MMYYC7. 09:2013 Four-digit year.

MMYYP7. 09.2013 Four-digit year.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 21

MONNAMEw.

MONNAMEw. displays the name of the month. It is right-justified, and w can be from 1 to 32,
with a default of 9. Using a value greater than 9 will only add leading spaces. SAS will truncate
the month name as necessary to fit in the width. The following table shows the result when the
date value is 18336, which corresponds to September 15, 2010.

Format Name Result Comment
MONNAME3. Sep Specifying a w of 3 will display the three-letter month

abbreviation.

MONNAME4. Sept

MONNAME9. September

MONTHw.

MONTHw. displays the number of the month of the year. It is right-justified, and w can be from 1
to 21, with a default of 2. Using a w of 1 will display the month number as a hexadecimal value (1
through C). The following table shows the result when the date value is 19341, which corresponds
to December 14, 2012.

Format Name Result Comment

MONTH1. C w of 1 always prints a single character, which is a
hexadecimal digit.

MONTH2. 12

MONYYw.

MONYYw. displays the three-letter month abbreviation, followed by the year without any
separating characters. It is right-justified, and w can be from 5 to 7, with a default of 5. Specifying
a width of 5 will give you a two-digit year. A width of 6 gives you a two-digit year and one
leading space in the displayed date, while 7 gives you a four-digit year. It is analogous to the
DTMONYY. format, which is used with datetime values. The following table shows the result
when the date value is 19718, which corresponds to December 26, 2013.

Format Name Result Comment

MONYY5. DEC13

MONYY7. DEC2013

22 The Essential Guide to SAS Dates and Times, Second Edition

PDJULGw.

PDJULGw. writes a packed Julian date in hexadecimal format for IBM computers. Justification is
not an issue, and w can range from 3 to 16. The default width is 4. The Julian date is written as
follows: The four-digit Gregorian year is written in the first two bytes, and the three-digit integer
that represents the day of the year is in the next one-and-a-half bytes. The last half-byte contains
all binary 1s, which indicates the value is positive.

If the SAS date value being translated by this format is a date constant with a two-digit year, it will
be affected by the YEARCUTOFF option. See the following SAS log.

246 OPTIONS YEARCUTOFF=1880;
247 DATA _NULL_;
248 date1 = "15JUN2004"d;
249 date2 = "15JUN04"d; /* Affected by YEARCUTOFF option */
250 juldate1 = put(date1,PDJULG4.);
251 juldate2 = put(date2,PDJULG4.);
252 PUT juldate1= $HEX8.;
253 PUT juldate2= $HEX8.;
254 RUN;

juldate1=2004167F
juldate2=1904167F

PDJULIw.
PDJULIw. writes a packed Julian date in hexadecimal format for IBM computers. It only differs
from the PDJULG. format in that it writes the century in the first byte as a two-digit integer,
followed by two digits of the year in the second byte. The next one-and-a-half-bytes store the three-
digit integer that corresponds to the day of the year, while the last half-byte is filled with
hexadecimal 1s that indicate a positive number. As with the PDJULG. format, justification is not an
issue, and the default width is 4, with a width range of 3 to 16.

The century and year are calculated by subtracting 1900 from the four-digit Gregorian year. A year
value of 1980 gives a century/year value of 0080 (1980-1900=80), while 2015 gives 0115 (2015-
1900=115). Be aware that this format will not produce correct results for years preceding 1900.
The example below demonstrates.

OPTIONS YEARCUTOFF=2000;
DATA _NULL_;
 date1 = "15JUN1804"d;
 date2 = "15JUN1996"d;
 date3 = "15JUN96"d;
 juldate1 = PUT(date1,pdjuli4.);
 juldate2 = PUT(date2,pdjuli4.);
 juldate3 = PUT(date3,pdjuli4.);
 PUT juldate1= $hex8.;
 PUT juldate2= $hex8.;

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 23

 PUT juldate3= $hex8.;
 should_be_date1 = INPUT(juldate1,pdjuli4.);
 PUT should_be_date1= mmddyy10.;
 PUT should_be_date1= ;
RUN;

Here is the resulting output:

juldate1=009609DF
juldate2=0096167F
juldate3=0196167F
should_be_date1=04/12/1996
should_be_date1=13251

The value of date1 corresponds to a date in 1804, causing the PDJULI. representation of date1
(juldate1) to be incorrect. While it should be the same day of the year (167) as date2 and date3, you
can see that the day is incorrectly written as 09D, while the century value is also incorrect, marked
as 00 when, by the algorithm, it should be expressed as a negative number. This is verified by using
the PDJULI. informat to read juldate1, which gives a result of April 12, 1996, when it should be
June 15, 1804. (This is because there is no sign bit for julday1 to indicate that the value should be
negative.) The difference between date2 and date3 is caused by the YEARCUTOFF option. The
two-digit year 96 is translated as 2096, not 1996, because of the option's value.

QTRw.
QTRw. writes a date value as the quarter of the year. It is right-justified, and w can range from 1 to
32, with a default of 1. Since this format will only write 1 character, specifying a width greater than
1 will just add leading spaces. The following table shows the result when the date value is 18264,
which corresponds to January 2, 2010.

Format Name Result Comment

QTR1. 1

QTRRw.

QTRRw. also writes a date value as the quarter of the year, except that it displays the quarter as a
Roman numeral. It is right-justified, and w can range from 3 to 32, with a default of 3. This format
will write a maximum of 3 characters. A width specification greater than 3 will add leading
spaces.

Format
Name Result Comment

QTRR3. III The date value used is 17791 (September 16, 2008).

24 The Essential Guide to SAS Dates and Times, Second Edition

Format
Name Result Comment
QTRR3. IV With a date value of 17882 (December 16, 2008), there is 1 leading space.

QTRR5. III With a date value of 17791 (September 16, 2008), there are 2 leading spaces.

WEEKDATEw.

WEEKDATEw. writes date values as day-of-week name, month name, day, and year. It is right-
justified, and w can range from 3 to 37. The default is 29, which is the maximum width of a date
in this format. Specifying anything longer than 29 will cause leading spaces to be added. If the
width specified is too small to display the complete day of the year and month, SAS will
abbreviate. The following table shows the result when the date value is 18164, which corresponds
to September 24, 2009.

Format Name Result Comment

WEEKDATE3. Wed Three-letter day-of-week abbreviation.

WEEKDATE9. Wednesday Will fit all day of week names. Leading spaces will be
added for days other than "Wednesday."

WEEKDATE17. Wed, Sep 24, 2009 Full date information, abbreviated.

WEEKDATE23. Wednesday, Sep 24, 2009 Full day-of-week name and month name abbreviated.

WEEKDATE29. Wednesday, September 24, 2009

WEEKDATXw.
WEEKDATXw. writes date values as day-of-week name, day, month name, and year. It differs
from the WEEKDATE. format in that the day of the month precedes the month name. It is right-
justified, and w can range from 3 to 37. The default is 29, which is the maximum width of a date in
this format. Specifying anything longer than 29 will cause leading spaces to be added. If the width
specified is too small to display the complete day of the year and month, SAS will abbreviate. The
following table shows the result when the date value is 19260, which corresponds to September 24,
2012.

Format Name Result Comment

WEEKDATX3. Wed Three-letter day-of-week abbreviation.

WEEKDATX9. Wednesday Will fit all day-of-week names. Leading spaces will
be added for days other than "Wednesday."

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 25

Format Name Result Comment
WEEKDATX17. Wed, 24 Sep, 2012 Full date information, abbreviated.

WEEKDATX23. Wednesday, 24 Sep, 2012 Full day-of-week name and month name
abbreviated.

WEEKDATX29. Wednesday, 24 September, 2012

WEEKDAYw.

WEEKDAYw. writes the date value as the number of the day of the week, where 1=Sunday,
2=Monday, and so on. It is right-justified, and w can be from 1 to 32. The default is 1. Since the
maximum width of the display is always one character, specifying anything longer will just cause
leading spaces to be added. The following table shows the result when the date value is 20569,
which corresponds to Monday, April 25, 2016.

Format Name Result Comment

WEEKDAY1. 2

WEEKUw.
WEEKUw. writes the date value as a week number in decimal format using the U algorithm.
Unlike many other date, time, and datetime formats, it is left-justified. w can be from 1 to 200, and
the default is 11. Specifying any value greater than 11 will display the same results as if w were 11.
The U algorithm calculates weeks based on Sunday being the first day of the week, and the week
number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. The
display that this format presents varies, based on the width specification. The following table shows
the result when the date value is 20885, which corresponds to March 7, 2017, which is a Tuesday
in the tenth week of the year.

Format Name Result Comment

WEEKU3. W10 "W" indicates week; week number follows, with a leading
zero if necessary.

WEEKU4. W10 Same as WEEKU3. No leading spaces.

WEEKU5. 17W10 Two-digit year precedes week.

WEEKU6. 17W10 Same as WEEKU5.

WEEKU7. 17W1003 Two-digit year precedes week, week followed by the
number of the day of the week.

WEEKU8. 17W1003 Same as WEEKU7.

26 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment
WEEKU9. 2017W1003 Four-digit year precedes week; week number is followed by

number of the day of the week.

WEEKU10. 2017W1003 Same as WEEKU9.

WEEKU11. 2017-W10-03 Separator added between year, week number, and number of
the day of the week.

WEEKU12. 2017-W10-03 Same as WEEKU11.

WEEKVw.

WEEKVw. writes the date value as a week number in decimal format using the V algorithm,
which is International Standards Organization (ISO) compliant. It is left-justified in the same
fashion as the WEEKU. format. w can be from 1 to 200, and the default is 11. Specifying any
value greater than 11 will display the same results as if w were 11. The V algorithm calculates
weeks based on Monday being the first day of the week, and the week number is displayed as a
two-digit number from 0 to 53, with a leading zero if necessary.

This algorithm defines the first week of the year as containing both January 4 and the first
Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the
preceding days of the calendar year are considered to be a part of week 53 of the previous calendar
year. The following table shows the result when the date value is 19723, which corresponds to
December 31, 2013. Note that although the date is in 2013, the algorithm used by this format places
the date in the year 2014. Monday, December 30, 2013, is considered to be the first day of the first
week for the year 2014.

Format Name Result Comment
WEEKV3. W01 "W" indicates week; week number follows, with leading zero if

necessary.

WEEKV4. W01 Same as WEEKV3. No leading spaces.

WEEKV5. 14W01 Two-digit year precedes week.

WEEKV6. 14W01 Same as WEEKV5.

WEEKV7. 14W0102 Two-digit year precedes week; week followed by the number of
the day of the week.

WEEKV8. 14W0102 Same as WEEKV7.

WEEKV9. 2014W0102 Four-digit year precedes week; week number is followed by
number of the day of the week.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 27

Format Name Result Comment
WEEKV10. 2014W0102 Same as WEEKV9.

WEEKV11. 2014-W01-02 Separator added between year, week number, and number of the
day of the week.

WEEKV12. 2014-W01-02 Same as WEEKV11.

WEEKWw.

WEEKWw. writes the date value as a week number in decimal format using the W algorithm. As
with the WEEKU. and WEEKV. formats, it is left-justified. w can be from 1 to 200, and the
default is 11. Specifying any value greater than 11 will display the same results as if w were 11.
The W algorithm calculates weeks based on Monday being the first day of the week without any
other restriction. The week number is displayed as a two-digit number from 0 to 53, with a leading
zero if necessary. The display that this format presents varies based on the width specification.
The following table shows the result when the date value is 19723, which corresponds to
December 31, 2013 (the same date used in the V algorithm example). Note that the W algorithm
assigns the date as the second day of the last week of the calendar year 2013.

Format
Name Result Comment

WEEKW3. W52 "W" indicates week; week number follows with leading zero if
necessary.

WEEKW4. W52 Same as WEEKW3. No leading spaces.

WEEKW5. 13W52 Two-digit year precedes week.

WEEKW6. 13W52 Same as WEEKW5.

WEEKW7. 13W5202 Two-digit year precedes week; week followed by number of day of
week.

WEEKW8. 13W5202 Same as WEEKW7.

WEEKW9. 2013W5202 Four-digit year precedes week; week number is followed by number of
the day of the week.

WEEKW10. 2013W5202 Same as WEEKW9.

WEEKW11. 2013-W52-02 Separator added between year, week number, and number of the day of
the week.

WEEKW12. 2013-W52-02 Same as WEEKW11.

28 The Essential Guide to SAS Dates and Times, Second Edition

WORDDATEw.

WORDDATEw. displays the date value as name of month, day, and year. It is right-justified, and
w can range from 3 to 32. The default is 18. If the width specified is less than 18, SAS will
abbreviate the month name and add leading spaces as necessary, regardless of whether the specific
date to be displayed will fit in the allocated space because of its value. This might have an impact
if you are going to use the PUT() or PUTN() functions to create a character string using this
format. The following table shows the result when the date value is 20328, which corresponds to
August 28, 2015.

Format Name Result Comment

WORDDATE3. Aug

WORDDATE12. Aug 28, 2015

WORDDATE15. Aug 28, 2015 Three leading spaces.

WORDDATE18. August 28, 2015 Full month name, but only 15 characters—therefore, 3
leading spaces.

WORDDATE20. August 28, 2015 Five leading spaces.

WORDDATXw.

WORDDATXw. displays the date value as day, name of month, and year. It differs from the
WORDDATE. format in that the day precedes the name of month. It is right-justified, and w can
range from 3 to 32. The default is 18. If the width specified is less than 18, SAS will abbreviate
the month name and add leading spaces as necessary, even if the date to be displayed will fit in the
width specified. This might have an impact if you are going to use the PUT() or PUTN() functions
to create a character string using this format. In the following table, you see that March is
abbreviated for width specifications less than 18, even though there is room to print the entire date
string. The table shows the result when the date value is 21259, which corresponds to March 16,
2018.

Format Name Result Comment
WORDDATX3. Mar

WORDDATX12. 16 Mar 2018 Leading space.

WORDDATX14. 16 Mar 2018 w is less than 18, so the format uses the abbreviated month
name and adds leading spaces even though the text
displayed would fit in 13 characters.

WORDDATX16. 16 Mar 2018 w is still less than 18, so "March" is still abbreviated, and
more leading spaces are added.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 29

Format Name Result Comment
WORDDATX18. 16 March 2018 Printed with leading spaces because date string is only 13

characters long.

YEARw.

YEARw. displays the year for the given date value. It is right-justified, and w can be from 2 to 4,
with a default width of 4. When w is specified as 2 or 3, a two-digit year is used. The following
table shows the result when the date value is 18599, which corresponds to December 3, 2010.

Format Name Result Comment

YEAR2. 10 Two-digit year.

YEAR3. 10 Two-digit year with a leading space.

YEAR4. 2010 Four-digit year.

YYMMw.

YYMMw. displays the year and month number for the given date value, separated by the letter M.
It is right-justified, and w can be from 5 to 32, with a default width of 7. When w is specified as 5
or 6, a two-digit year is used. If w is 7 or more, a full four-digit year is displayed. Since this format
can only display a maximum of 7 characters, anything more than 7 will just add leading spaces.
The following table shows the result when the date value is 19517, which corresponds to June 8,
2013.

Format Name Result Comment

YYMM5. 13M06 Two-digit year.

YYMM6. 13M06 Leading space.

YYMM7. 2013M06 Four-digit year.

YYMM8. 2013M06 Leading space.

30 The Essential Guide to SAS Dates and Times, Second Edition

YYMMxw.
YYMMxw. displays the year and month number for a given date value in the same manner as the
YYMM. format above, except that you can specify the separator with x according to the table
below. Unlike the DDMMYYx., MMDDYYx., and the YYMMDDx. formats, a blank is not a valid
separator with this format.

x Character Displayed in Output Comment

C colon (:)

D dash (-)

N no separator w can be from 4 to 32, with a default of
6.

P period (.)

S slash (/)

YYMMxw. is right-justified, and w can be from 5 to 32, with a default width of 7. When w is
specified as 5 or 6, a two-digit year is used. If w is 7 or more, a full four-digit year is displayed.
Specifying no separator with "N" will change the range of w from 4 to 32, and the default width
becomes 6. Since this format can only display a maximum of 7 characters, anything more than 7
will just add leading spaces. The following table shows the result when the date value is 19237,
which corresponds to September 1, 2012.

Format Name Result Comment

YYMMN4. 1209 No separator; minimum width is 4; two-digit year.

YYMMC5. 12:09

YYMMD6. 12-09 One leading space; two-digit year.

YYMMP7. 2012.09 Four-digit year.

YYMMS8. 2012/09 Four-digit year; 1 leading space.

YYMMDDw.
YYMMDDw. is a variation on the DDMMYY. and MMDDYY. formats. It writes the date as a
year, followed by the numerical month, and then the day, with a dash (-) as the separator. It is right-
justified within the field. w can be from 2 to 10, and the default is 8. It is similar to the MMDDYY.
format in that if you specify the width from 2 to 5, the date will be truncated on the right, as SAS
tries to fit as much of the year and month as possible in the space allowed. If you use 6, no dashes
will be printed. At 7, SAS will print a two-digit year without a dash, and 8 or 9 will produce a two-
digit year before the first dash. Use a width of 10 to get a four-digit year with dashes. The

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 31

following table shows the result when the date value is 20031, which corresponds to November 4,
2014.

Format Name Result Comment

YYMMDD4. 1411 Two-digit year and month; not enough space for day.

YYMMDD5. 14-11 Two-digit year and month with dash separator; not enough space for
day.

YYMMDD6. 141104 Two-digit year, month, and day; no separators.

YYMMDD7. 141104 One leading space; no separators.

YYMMDD8. 14-11-04 Two-digit year.

YYMMDD9. 14-11-04 Two-digit year with leading space.

YYMMDD10. 2014-11-04 Four-digit year.

YYMMDDxw.

YYMMDDxw. displays the date in the same way that the YYMMDD. format does, except that
you can specify the separator. The x in the format name specifies the separator that you want to
use according to the table below.

x
Character Displayed
in Output Comment

B blank

C colon (:)

D dash (-) Effectively the same as using the YYMMDD. format.

N no separator w is a maximum of 8, not 10.

P period (.)

S slash (/)

The date will be right-justified within the width that you specify. w can be from 2 to 10, and the
default is 8. If you specify 2–5, the date will be truncated on the right, as SAS tries to fit as much
of the day and month as possible in the space allowed. If you use 6, no separator will be used. At
7, SAS will print a two-digit year without a separator, and 8 or 9 will put a two-digit year before
the first separator. The following table shows the result when the date value is 19500, which
corresponds to May 22, 2013.

32 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment

YYMMDDN4. 1305 Two-digit year and month; not enough space for day.

YYMMDDC5. 13:05 Two-digit year and month with colon separator; not enough space
for day.

YYMMDDD6. 130522 Two-digit year, month, and day; no separators.

YYMMDDP7. 130522 One leading space; not enough room for both separators.

YYMMDDB8. 130522 Two-digit year with a blank separator.

YYMMDDN8. 20130522 Because there is no separator requested, a four-digit year is
displayed.

YYMMDDS9. 13/05/22 Enough room for separators, but only a two-digit year with a
leading space.

YYMMDDD10. 2013-05-22 Four-digit year and dash separators; same as YYMMDD.

YYMONw.

YYMONw. writes dates as a two- or four-digit year followed by the three-letter month
abbreviation. It is right-justified. w can be from 5 to 32, and the default is 7. Use a width of 7 to
get a four-digit year. If w is less than 7, a two-digit year will be displayed. If w is larger than 7,
leading spaces will be added. The following table shows the result when the date value is 20796,
which corresponds to December 8, 2016.

Format Name Result Comment

YYMON5. 16DEC Two-digit year.

YYMON6. 16DEC Two-digit year with 1 leading space.

YYMON7. 2016DEC Four-digit year.

YYMON10. 2016DEC Four-digit year with 3 leading spaces.

YYQw.

YYQw. writes date values as a two- or four-digit year, followed by the letter Q, and a single-digit
representing the quarter of the year. It is right-justified, and w can be from 4 to 32. The default
width is 6. Use 6 to get a four-digit year, while a width of 4 or 5 will give you a two-digit year.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 33

Specifying a width larger than 6 will only add leading spaces. The following table shows the result
when the date value is 21384, which corresponds to July 19, 2018.

Format Name Result Comment

YYQ4. 18Q3 Two-digit year.

YYQ5. 18Q3 Two-digit year with 1 leading space.

YYQ6. 2018Q3 Four-digit year.

YYQ8. 2018Q3 Four-digit year with 2 leading spaces.

YYQxw.
YYQxw. writes date values as a two- or four-digit year, followed by a separator that you specify,
and a single-digit representing the quarter of the year. x is the letter that you use to indicate the
separator according to the table below. Unlike the DDMMYYx., MMDDYYx., and the
YYMMDDx. formats, a blank is not a valid separator with this format.

x
Character Displayed in
Output Comment

C colon (:)

D dash (-)

N no separator w can be from 3 to 32, with a default of 4. When w is 3 or 4, the
year will be displayed with two digits.

P period (.)

S slash (/)

This format is right-justified, and w can be from 4 to 32. The default width is 6. Use a width of 6
to get a four-digit year, while 4 or 5 will give you a two-digit year. Specifying a width larger than
6 will add leading spaces. The following table shows the result when the date value is 19659,
which corresponds to October 28, 2013.

Format Name Result Comment

YYQN3. 134 Two-digit year with no separator.

YYQC4. 13:4 Two-digit year.

YYQS5. 13/4 Two-digit year with 1 leading space.

34 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment
YYQP6. 2013.4 Four-digit year.

YYQD7. 2013-4 Four-digit year with 1 leading space.

YYQRw.

YYQRw. writes date values as a two- or four-digit year, followed by the letter Q, and the quarter
of the year is represented in Roman numerals. It is right-justified, and w can be from 6 to 32. The
default width is 8. Use 8 to get a four-digit year, while 6 or 7 will give you a two-digit year.
Specifying a width larger than 8 will add leading spaces.

The following table shows the result when the date value is 20312, which corresponds to August
12, 2015.

Format Name Result Comment

YYQR6. 15QIII Two-digit year.

YYQR7. 15QIII Two-digit year with 1 leading space for the third quarter only;
four-digit year displayed for the 1st, 2nd, and 4th quarters
without any leading space.

YYQR8. 2015QIII Four-digit year.

YYQR12. 2015QIII Four-digit year with 4 leading spaces.

YYQRxw.

YYQRxw. writes date values as a two- or four-digit year, followed by a separator that you specify,
and the quarter of the year is displayed as a Roman numeral. x is the letter that you use to indicate
the separator according to the following table. This is another format that cannot use a blank as the
separator.

x
Character Displayed
in Output Comment

C colon (:)

D dash (-)

N no separator w can be from 5 to 32, with a default of 7. When w is 5 or 6, the year
will be displayed with two digits.

P period (.)

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 35

x
Character Displayed
in Output Comment

S slash (/)

This format is right-justified, and w can be from 6 to 32. The default width is 8. Use 8 to get a
four-digit year, while 6 or 7 will display a two-digit year. Specifying a width larger than 8 will add
leading spaces. The following table shows the result when the date value is 19545, which
corresponds to July 6, 2013.

Format
Name Result Comment

YYQRP6. 13.III Two-digit year.

YYQRS7. 13/III Two-digit year with 1 leading space for the third quarter only; four-digit
year displayed for the 1st, 2nd, and 4th quarters without any leading
space.

YYQRN8. 2013III Four-digit year with 1 leading space and no separator.

YYQRC9. 2013:III Four-digit year with 1 leading space.

YYQRD10. 2013-III Four-digit year with 2 leading spaces.

YYWEEKUw.
YYWEEKUw. writes the date value as a week number in decimal format using the U algorithm.
Unlike many other date, time, and datetime formats, it is left-justified. w can be from 3 to 8, and the
default is 7. The U algorithm calculates weeks based on Sunday being the first day of the week, and
the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary.
The display that this format presents varies based on the width specification. This format is similar
to the WEEKU. format, except that it does not provide the numerical day of the week. The date
value used in this example is 20041, which corresponds to November 14, 2014.

Format Name Result Comment

YYWEEKU3. W45 "W" indicates week; week number follows; leading
zero if necessary.

YYWEEKU4. W45 Same as WEEKU3. No leading spaces because this
format is left-justified.

YYWEEKU5. 14W45 Two-digit year precedes week.

YYWEEKU6. 14W45 Same as WEEKU5.

36 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment
YYWEEKU7. 2014W45 Two-digit year precedes week; week followed by the

number of the day of the week.

YYWEEKU8. 2014-W45 WEEKU7 with a dash as the delimiter.

YYWEEKVw.

YYWEEKVw. writes the date value as a week number in decimal format using the V algorithm,
which is International Standards Organization (ISO) compliant. It is left-justified in the same
fashion as the YYWEEKU. format. w can be from 3 to 8, and the default is 7. This format is
similar to the WEEKV. format, except that it does not provide the numerical day of the week. The
V algorithm calculates weeks based on Monday being the first day of the week, and the week
number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary.

This algorithm defines the first week of the year as containing both January 4 and the first
Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the
preceding days of the calendar year are considered to be a part of week 53 of the previous calendar
year. The date value used in this example is 20455, which corresponds to Saturday, January 2,
2016. Note that although the date is in 2016, the algorithm used by this format places the date in
week 53 of the year 2015. The first week of the year 2016 starts on Sunday, January 3, 2016, as
that contains the first Thursday of the year and January 4, 2016.

Format Name Result Comment
YYWEEKV3. W53 "W" indicates week; week number follows; leading zero if

necessary.

YYWEEKV4. W53 Same as WEEKU3. No leading spaces because this format is
left-justified.

YYWEEKV5. 15W53 Two-digit year precedes week.

YYWEEKV6. 15W53 Same as WEEKU5.

YYWEEKV7. 2015W53 Two-digit year precedes week; week followed by the number of
the day of the week.

YYWEEKV8. 2015-W53 WEEKU7 with a dash as the delimiter.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 37

YYWEEKWw.

YYWEEKWw. writes the date value as a week number in decimal format using the W algorithm.
As with the YYWEEKU. and YYWEEKV. formats, it is left-justified. w can be from 3 to 8, and
the default is 7. This format is similar to the WEEKW. format, except that it does not provide the
numerical day of the week. The W algorithm calculates weeks based on Monday being the first
day of the week without any other restriction. The week number is displayed as a two-digit
number from 0 to 53, with a leading zero if necessary. The display that this format presents varies,
based on the width specification. The following table shows the result when the date value 20455,
which corresponds to Saturday, January 2, 2016 (the same date used in the YYWEEKV. algorithm
example). Note that the W algorithm assigns the date as being in week zero of the calendar year
2016. Unlike the V algorithm, it does not consider the date as being a part of week 53 in 2015, but
assigns it to week 0 in 2016. Week 1 is defined as the first full week in 2016.

Format Name Result Comment

YYWEEKW3. W00 "W" indicates week; week number follows; leading zero if
necessary.

YYWEEKW4. W00 Same as WEEKU3. No leading spaces because this format is left-
justified.

YYWEEKW5. 16W00 Two-digit year precedes week.

YYWEEKW6. 16W00 Same as WEEKU5.

YYWEEKW7. 2016W00 Two-digit year precedes week; week followed by the number of
the day of the week.

YYWEEKW8. 2016-W00 WEEKU7 with a dash as the delimiter.

2.4.2 Time Formats
Time formats translate seconds into one of several different ways of displaying time. Only the
TIMEAMPM. and TOD. formats are specific to clock values, displaying clock values from
12:00:00 a.m. to 11:59:59 p.m. All other formats will display hours greater than 23 when
translating a value greater than or equal to 86400, which would be midnight of the following day.
The display of minutes always ranges from 0 to 59, except when you are using the MMSSw.d
format. The built-in SAS formats always display seconds from 0 to 59.

The width specification for time (and datetime) values is different from the one for date formats
because it has to allow for decimal parts of seconds. Instead of w, time and datetime formats are
specified as w.d, where w is the overall width of the entire format, and the d accounts for the
number of digits to the right of the decimal point. w must be greater than (d+1) to account for the
decimal point. As with date formats, each of these formats has its own default width specification,
which is detailed in the description of the format.

38 The Essential Guide to SAS Dates and Times, Second Edition

HHMMw.d
HHMMw.d displays SAS time values as hours:minutes. It is right-justified and does not display a
leading zero in front of the hours. w can be from 2 to 20, with a default of 5, while d indicates the
number of decimal places to the right of the minutes. As previously noted, w must be greater than
d+1, to account for the decimal point. It is different from the TIMEw.d format in that it does not
display seconds. If d is 0 or not present, SAS will round to the nearest minute. Otherwise, SAS will
display the seconds in decimal minutes (seconds/60). Leading spaces will be added to the display
based on the number of digits in the result. If the width specified is not long enough to
accommodate the 3 spaces for the colon and the minutes, SAS will only display the hours and does
not round the displayed value. The following table shows the result when the time value is 49794,
which corresponds to 13 hours, 49 minutes, and 54 seconds.

Format
Name Result Comment

HHMM2. 13 Hours only; no leading spaces because hour value is two digits.

HHMM3. 13 Hours only; 2 leading spaces for single-digit hours; 1 leading space for
double-digit hours. No leading spaces for three-digit hours. Not enough
room for more than 999 hours.

HHMM5. 13:50 One leading space for single-digit hours, truncated to hours only if hours
value is greater than 99 .

HHMM8. 13:50 Three leading spaces

HHMM8.2 13:50.90 54 seconds = .9 minutes.

HOURw.d

HOURw.d displays SAS time values as hours and decimal fractions of hours. It is right-justified.
w can be from 2 to 20, with a default of 2. d is the number of decimal places to the right of the
hours, and w must be greater than d+1 to account for the decimal point. If you do not specify any
decimal places, SAS rounds to the nearest hour. The following table shows the result when the
time value is 53706, which corresponds to 14 hours, 55 minutes, and 6 seconds.

Format
Name Result Comment

HOUR2.0 15 Rounded to the nearest hour.

HOUR4.2 14.9 55 minutes, 6 seconds, is .92 hours; does not leave enough space for a
second decimal place.

HOUR6.2 14.92 One leading space.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 39

Format
Name Result Comment
HOUR8.2 14.92 Three leading spaces.

MMSSw.d

MMSSw.d displays SAS time values as minutes and seconds (mm:ss). It is right-justified. w can
be from 2 to 20, with a default of 5. If you do not specify w large enough to fit minutes and
seconds, SAS will round and display the minutes only. d will print decimal fractions (e.g., tenths
or hundredths) of seconds. w must be greater than d+1 to account for the decimal point. The
following table shows the result when the time value is 37269, which corresponds to the time
10:21:09 a.m. (10:21:09).

Format
Name Result Comment

MMSS4. 621 Leading space.

MMSS5. 621 Two leading spaces.

MMSS8.2 621:09.0 Only one decimal place for tenths of seconds, because there is not enough
space to fit two. A w of 8 only leaves enough space for a d of 1 because of the
decimal point.

MMSS9.2 621:09.00 Two decimal places for hundredths of seconds.

TIMEw.d

TIMEw.d displays SAS time values as hours:minutes:seconds. It is right-justified and does not
print a leading zero in front of the hours. w can be from 2 to 20, with a default of 8, while d
indicates the number of decimal places to the right of the seconds. w must be greater than d+1 to
account for the decimal point. d will print decimal fractions (e.g., tenths or hundredths) of
seconds.

This format is not restricted to a 24-hour day; if hours is greater than 24, then it will display the
actual value of hours, which means that the default length of 8 may not be enough to hold the entire
formatted time value. It is different from the HHMM. format in that it displays seconds as opposed
to decimal fractions of minutes. If d is 0 or not present, SAS will round to the nearest second. The

40 The Essential Guide to SAS Dates and Times, Second Edition

time value used for the following table is 49794 seconds, the same value used for the HHMMw.d
format. The time value corresponds to the time 1:49:54 p.m. (13:49:54).

Format Name Result Comment

TIME5. 13:49

TIME6. 13:49 Leading space.

TIME7. 13:49 Two leading spaces with seconds truncated. If this were a single-digit hour
(i.e., 0 through 9), the entire time would be displayed without leading spaces
because it would fit in 7 spaces.

TIME8. 13:49:54 Default will accommodate up to 99 hours.

TIME9. 13:49:54 Leading space; may be necessary for hour values greater than 99.

TIMEAMPMw.d

TIMEAMPMw.d displays time in hours:minutes:seconds followed by a space and then AM or
PM. It is right-justified. w can be from 2 to 20, and the default is 11. w must be greater than d+1,
to account for the decimal point. Any time value greater than or equal to 86400 (midnight) will be
displayed as the 12-hour clock time of the next day. This format does not print a leading zero. If
you want the seconds to be printed, use at least 11 for the width. The following table shows the
result when the time value is 11923, which corresponds to the time 3:18:43 a.m.

Format Name Result Comment

TIMEAMPM7. 3:18 AM Single-digit hour; 1 leading space; no seconds.

TIMEAMPM9. 3:18 AM Two leading spaces; not enough room for seconds to be displayed.

TIMEAMPM11
.

3:18:43 AM Single-digit hour leaves 1 leading space.

TODw.d

TODw.d displays time in hours:minutes:seconds using the 24-hour clock. It is right-justified. w
can be from 2 to 20, and the default is 11. d is the decimal fraction of seconds. w must be greater
than d+1, to account for the decimal point. Any time value greater than or equal to 86400
(midnight of the next day) will be marked as the 24-hour clock time of the next day. This format
does not print a leading zero. If you want the seconds to be displayed, use 8 for the width. Use at
least 10 if you want decimal fractions of seconds shown. The following table shows the result
when the time value is 75122, which corresponds to the time 8:52:02 p.m. (20:52:02):

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 41

Format Name Result Comment
TOD5. 20:52

TOD8. 20:52:02

TOD11. 20:52:02 Three leading spaces; useful when using fractions of seconds.

2.4.3 Datetime Formats
Datetime formats translate SAS datetime values into one of several different formats. SAS datetime
values are the number of seconds since midnight, January 1, 1960. You can use a format to display
both the date and time. Again, you need to pay attention to the width specification in datetime
formats because it allows for decimal fractions of seconds. Instead of w, time and datetime formats
are specified as w.d, where w is the overall width of the entire format, and the d accounts for the
number of digits to the right of the decimal point. w must be greater than d+1 to account for the
decimal point. As with date formats, each of these formats has its own default width specification,
which is detailed in the description of the format.

Starting with SAS version 9, there are also a number of "DT" formats that will allow you to display
just the date or just the time from a datetime value, eliminating the need to use the DATEPART()
or TIMEPART() functions for display purposes. Although these "DT" formats appear to give the
same result as their corresponding date or time formats, the results you get will be very different
should you use a datetime format on a date value and vice versa. Datetime formats translate
seconds since midnight, January 1, 1960, while date formats translate days since January 1, 1960.

Example 2.5 shows what happens when you use date formats to interpret datetime values and vice
versa. If you translate the SAS date value 19855 using a date format, you will get the correct value
of May 12, 2014 (and). However, if you use a datetime format to translate the same value,
you will get 5:30:55 a.m. on January 1, 1960, which corresponds to 19,855 seconds after midnight,
January 1, 1960 (and). In similar fashion, if you translate the value 1705587720 using a
datetime format, you will get 2:22 p.m. on January 17, 2014 (and). This time, if you try to use
a date format to translate this value, you will get a series of asterisks because the value is too far in
the future for the SAS format algorithm to handle (and). Even if you try to get the month,
day, and year of this value using the appropriate functions, it will not work.

Example 2.5: The Difference between Date and Datetime Values in Formats That Display
Dates

DATA _NULL_;
date = 19855;
datetime = 1705587720;
PUT "MMDDYY10. representation of date=" date mmddyy10.;
PUT "MONYY7. representation of date=" date monyy7.;
PUT "DTMONYY7. representation of date=" date dtmonyy.;
PUT "When value of date is used as a SAS *datetime* value, the date
represented is:" date datetime20.;

42 The Essential Guide to SAS Dates and Times, Second Edition

PUT "DATETIME20. representation of datetime=" datetime datetime20.;

PUT "DTMONYY7. representation of datetime=" datetime dtmonyy7.;
PUT "MONYY7. representation of datetime=" datetime monyy7.;
PUT "When value of datetime is used as a SAS *date* value, the date
represented is:" datetime mmddyy10.;
RUN;

And here is the result.

MMDDYY10. representation of date=05/12/2014
MONYY7. representation of date=MAY2014
DTMONYY7. representation of date=JAN60
When value of date is used as a SAS *datetime* value, the date
represented is: 01JAN1960:05:30:55
DATETIME20. representation of datetime= 17JAN2014:14:22:00
DTMONYY7. representation of datetime=JAN2014
MONYY7. representation of datetime=*******
When value of datetime is used as a SAS *date* value, the date
represented is:**********

With that in mind, here are the formats that are applicable to datetime values.

DATEAMPMw.d
DATEAMPMw.d displays datetime values as ddmonyy(yy):hh:mm:ss.ss xx, where dd is the day of
the month, mon is the three-letter abbreviation for the month, and yy(yy) is the two- or four-digit
year. A colon follows the date, and the time is represented by hh:mm:ss.ss, followed by a space and
then AM or PM. It is right-justified. w can be from 7 to 40, and the default is 19. d is the decimal
fraction of seconds and must be less than w–1, to account for the decimal point. w must be at least
13 to print AM or PM. If w is 10, 11, or 12, the time is displayed as a 24-hour clock. Also, if w–d is
less than 17, the decimal values will be truncated to fit the specified field width. This format
produces two-digit years for widths of 19 or less. The following table shows the result when the
datetime value is 1746745319.6, which corresponds to the time 11:01:59.6 p.m. on May 8, 2015.

Note the rounding to the nearest second, which causes the displayed result to be rounded to the
nearest minute when there isn't enough room for the decimal.

Format Name Result Comment

DATEAMPM7. 08MAY15 No room for time.

DATEAMPM12. 08MAY15:11 Two leading spaces; hours are given in 24-hour
clock.

DATEAMPM18. 08MAY15:11:02 AM Two leading spaces; not enough room for seconds.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 43

Format Name Result Comment
DATEAMPM18.1 08MAY15:11:02 PM Two leading spaces; not enough room for seconds.

DATEAMPM19. 08MAY15:11:02:00 PM

DATEAMPM19.1 08MAY15:11:02:00 PM Not enough room for decimal portion of seconds.

DATEAMPM21. 08MAY15:11:02:00 PM No decimal specified. Result is rounded with
leading spaces.

DATEAMPM21.1 08MAY15:11:01:59.6 PM No leading spaces; entire result is displayed with
no rounding.

DATETIMEw.d
DATETIMEw.d displays datetime values as ddmonyy(yy):hh:mm:ss.ss, where dd is the day of the
month, mon is the three-letter month abbreviation, and yy(yy) is the two- or four-digit year. A colon
follows the date, and the time is represented by hh:mm:ss.ss. It is similar to the DATEAMPMw.d
format, except that it uses the 24-hour clock and therefore does not display AM or PM. It is right-
justified. w can be from 7 to 40, and the default is 19, which will provide enough room for seconds.
Use a length of 15 if you only want hours and minutes to be displayed along with the date. d is the
decimal fraction of seconds and must be less than w–1 to account for the decimal point. If w–d is
less than 17, the decimal values will be truncated to fit the specified field width. If w–d is less than
19, this format produces two-digit years. The following table shows the result when the datetime
value is 1698258126.84, which corresponds to the time 6:22:07 p.m. on October 24, 2013.

Format Name Result Comment

DATETIME16. 24OCT13:18:22:07

DATETIME18. 24OCT13:18:22:07 Two leading spaces.

DATETIME18.1 24OCT13:18:22:06.8 One decimal place.

DATETIME19. 24OCT2013:18:22:07 Four-digit year; not enough space requested for
decimal point and decimal place.

DATETIME19.1 24OCT13:18:22:06.8 w–d =18, so the year is shown as a two-digit year
with 1 leading space.

DATETIME20. 24OCT2013:18:22:07 Two leading spaces.

DATETIME20.1 24OCT2013:18:22:06.8 w–d = 19, so the year is shown as a four-digit year.

DATETIME21. 24OCT2013:18:22:07 Three leading spaces.

44 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment
DATETIME21.2 24OCT2013:18:22:06.84 Four-digit year; decimal seconds to 2 places.

DTDATEw.

DTDATEw. displays datetime values as the numerical day of the month, followed by the three-
letter month abbreviation and the year without any separating characters. It is right-justified within
the field. w can be from 5 to 9, and the default width is 7. If you want to display four-digit years,
use DTDATE9. The output is identical to the output using the DATE. format. The difference is
that this format will only work correctly with datetime values, while the DATE. format only works
correctly with date values. The following table shows the result when the datetime value is
1729519835.7, which corresponds to the time 2:10:36 p.m. on October 21, 2014.

Format Name Result Comment

DTDATE5. 21OCT

DTDATE6. 21OCT Leading space; no year.

DTDATE7. 21OCT14

DTDATE8. 21OCT14 Leading space.

DTDATE9. 21OCT2014 Four-digit year.

DTMONYYw.

DTMONYYw. displays the date from a datetime value as the three-letter month abbreviation
followed immediately by the year. There are no separating characters. It is right-justified, and w
can be from 5 to 7, with a default of 5. Specifying 5 or 6 will give you a two-digit year, while 7
will give you a four-digit year. Although this format appears to produce the same MMMyy(yy)
result as the MONYY. format, the DTMONYY. format only works with datetime values, while
the MONYY. format only works with date values. The following table shows the result when the
datetime value is 1727036339.1, which corresponds to the time 8:18:59 p.m. on September 22,
2014.

Format Name Result Comment

DTMONYY5. SEP14

DTMONYY6. SEP14 Leading space.

DTMONYY7. SEP2014 Four-digit year.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 45

DTWKDATXw.

DTWKDATXw. writes datetime values as day of week name, day, month name, and year. It
differs from the WEEKDATX. format in that it works on datetime values, not date values. It is
right-justified, and w can range from 3 to 37. The default is 29, which is the maximum width of a
date in this format. Specifying anything longer than 29 will cause leading spaces to be added. If
the width specified is too small to display the complete day of the year and month, SAS will
abbreviate. It will first abbreviate the month and then the day of the week as necessary. The
following table shows the result when the datetime value is 1645971726, which corresponds to the
time 2:22:06 p.m. on February 27, 2012.

Format Name Result Comment

DTWKDATX3. Mon

DTWKDATX9. Monday Full name of day with leading spaces. Not
enough room to display the rest of the value.

DTWKDATX15. Mon, 27 Feb 12 Leading space.

DTWKDATX23. Monday, 27 Feb 2012 Full name of day; month abbreviation; four-
digit year.

DTWKDATX29. Monday, 27 February 2012 Leading spaces in example, but will fit any
date.

DTYEARw.

DTYEARw. displays the year for the given datetime value. The DTYEAR. format is identical in
result to the YEAR. format, but it is used with datetime values instead of date values. It is right-
justified, and w can be from 2 to 4, with a default width of 4. When w is specified as 2 or 3, a two-
digit year is used. The following table shows the result when the datetime value is 1716310050.2,
which corresponds to the time 4:47:30 p.m. on May 21, 2014.

Format Name Result Comment

DTYEAR2. 14 Two-digit year.

DTYEAR3. 14 Two-digit year with a leading space.

DTYEAR4. 2014 Four-digit year.

46 The Essential Guide to SAS Dates and Times, Second Edition

DTYYQCw.

DTYYQCw. writes datetime values as a two- or four-digit year, followed by a colon, and a single-
digit representing the quarter of the year. It is right-justified, and w can be from 4 to 6. The default
width is 4. Use a width of 6 to get a four-digit year. Use 4 or 5 to get a two-digit year. This gives
you the same result with datetime values that using the YYQC. format would yield with a date
value. The following table shows the result when the datetime value is 1662064659.5, which
corresponds to the time 8:37:40 p.m. on August 31, 2012.

Format Name Result Comment

DTYYQC4. 12:3 Two-digit year.

DTYYQC5. 12:3 Leading space; two-digit year.

DTYYQC6. 2012:3 Four-digit year.

MDYAMPMw.
MDYAMPMw. writes datetime values in the following format: mm/dd/yy(yy) hh:mmAM/PM.
There are no leading zeroes in either the date or the time portions of this format. It is right-justified,
and w can be from 8 to 40, with a default width of 19. The following table shows the result when
the datetime value is 1716089122, which corresponds to the time 3:25:22 a.m. on May 19, 2014.
Note that in the following example there are two spaces between the date and the time because the
hour is only a single digit.

Format Name Result Comment

MDYAMPM8. 5/19/14 In SAS versions earlier than 9.4, the date is represented as
0/0/0 for lengths less than 17.

MDYAMPM15. 5/19/14

MDYAMPM16. 5/19/14

MDYAMPM17. 5/19/14 3:25 AM

MDYAMPM18. 5/19/14 3:25 AM

MDYAMPM19. 5/19/2014 3:25 AM

MDYAMPM21. 5/19/2014 3:25 AM

MDYAMPM24. 5/19/2014 3:25 AM

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 47

2.5 Creating Custom Date Formats Using the VALUE Statement of
PROC FORMAT

In addition to the date and time formats supplied with SAS, you can create your own custom
formats with the FORMAT procedure. With dates and times, you can modify the default display of
an existing SAS format or create your own using the VALUE or the PICTURE statement. Below I
show how to modify the default display of an existing SAS format using the VALUE statement.

Example 2.6: Creating Your Own Date Format with the VALUE
Statement in PROC FORMAT
An access control company wants a report of the people whose security cards have expired as of
January 1, 2014, and they have the expiration date for each card. Instead of having to read the
report and determine which dates are prior to the cutoff, they want to display any date prior to
January 1, 2014, as "EXPIRED," and dates after that using the MMDDYY10. format. Set the value
to "EXPIRED" for dates prior to December 31, 2013, using that as the upper limit, and the special
value "LOW" as the bottom of the range. For the remaining values, use the lower limit of January
1, 2014, and the special value "HIGH" as the upper limit, and indicate the SAS format to be applied
to this range in brackets . If you do not enclose the SAS format in brackets, you will get an error
in the FORMAT procedure.

PROC FORMAT;
VALUE exp
LOW-'31DEC2013'd= "Expired"
'01JAN2014'd - HIGH=[MMDDYY10.] ;
RUN;

PROC PRINT DATA=access;
ID card_num;
VAR exp_date exp_date_raw;
FORMAT exp_date exp. exp_date_raw DATE9.;
RUN;

card_num exp_date exp_date_raw
84485598 11/14/2015 14NOV2015
16205371 11/27/2014 27NOV2014
63656754 01/14/2014 14JAN2014
10270040 Expired 01APR2013
94822015 Expired 04JUN2013
27800904 Expired 23OCT2013
97189418 08/14/2014 14AUG2014
70815194 03/14/2016 14MAR2016
50465401 Expired 26MAY2013

48 The Essential Guide to SAS Dates and Times, Second Edition

card_num exp_date exp_date_raw
43034970 09/28/2014 28SEP2014

Example 2.7: Creating Your Own Time Format with the VALUE
Statement in PROC FORMAT
In order to be able to drive the next stage in a road race, drivers must finish a previous stage in ten
minutes or less, and the results are posted. This example shows that you can customize time and
datetime formats as well as date formats. To customize datetime formats, you would specify a
datetime format instead of a date or time format.

PROC FORMAT;
VALUE qualify
LOW-'00:10:00't=[MMSS5.];
'00:10:00't <- HIGH = 'Did Not Qualify';
RUN;

PROC PRINT DATA=racers;
ID name;
VAR time;
FORMAT time qualify.;
RUN;

name time
Bork Did Not Qualify
Bova Did Not Qualify

Brantley 08:31
Brickowski 08:59

Burkhart 07:10
Burroughs 08:05

Butler Did Not Qualify

2.6 Creating Custom Date Formats Using the PICTURE Statement
of PROC FORMAT

To create your own date and time formats with the PICTURE statement in the FORMAT
procedure, you need to use the DATATYPE= option. DATATYPE can take the values of "DATE,"
"TIME," or "DATETIME" to indicate the type of value you are formatting. You then need to define
your display by using one or more of the picture format date directives shown in the list below.
These directives are case-sensitive.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 49

Table 2.1: Picture Format Date Directives

Date
Directive Description

%a Locale's abbreviated weekday name. Locale is defined by the LOCALE= system
option.

%A Locale's full weekday name. Locale is defined by the LOCALE= system option.
%b Locale's abbreviated month name. Locale is defined by the LOCALE= system option.
%B Locale's full month name. Locale is defined by the LOCALE= system option.
%d Day of the month as a decimal number (1–31), with no leading zero. Put a zero between

the percent sign and the "d" to have a leading zero in the display.
%H Hour (24-hour clock) as a decimal number (0–23), with no leading zero. Put a zero

between the percent sign and the "H" to have a leading zero in the display.
%I Hour (12-hour clock) as a decimal number (1–12), with no leading zero. Put a zero

between the percent sign and the "I" to have a leading zero in the display.
%j Day of the year as a decimal number (1–366), with no leading zero. Put a zero between

the percent sign and the "j" to have a leading zero in the display.
%m Month as a decimal number (1–12), with no leading zero. Put a zero between the

percent sign and the "m" to have a leading zero in the display.
%M Minute as a decimal number (0–59), with no leading zero. Put a zero between the

percent sign and the "M" to have a leading zero in the display.
%p Locale's equivalent of either a.m. or p.m. Locale is defined by the LOCALE= system

option.
%S Second as a decimal number (0–59), with no leading zero. Put a zero between the

percent sign and the "S" to have a leading zero in the display.
%U Week number of the year (Sunday as the first day of the week) as a decimal number (0–

53), with no leading zero. Put a zero between the percent sign and the "U" to have a
leading zero in the display.

%w Weekday as a decimal number, where 1 is Sunday and Saturday is 7.
%y Year without century as a decimal number (0–99), with no leading zero. Put a zero

between the percent sign and the "y" to have a leading zero in the display.
%Y Year with century as a decimal number (four-digit year).
%% The percent character (%).

Note that if you are going to use these directives in a picture format, you will probably want to add
the following line of code or some variant in the PICTURE statement to handle the display of
missing values.

. - .z = "No Date Given"

50 The Essential Guide to SAS Dates and Times, Second Edition

Example 2.8 creates a format similar to the WORDDATE. format, except that leading zeroes are a
part of the date display. Pay special attention to how the picture is created in line 4. When you are
using any of the date directives from the table above, you must enclose your picture string in single
quotes. If you use double quotes, SAS will try to interpret the directives as macro calls because of
the percent sign (%). The PROC FORMAT step will execute without error, and you will not see
any warnings in the SAS log until the format is used. The format will not work if you have a macro
that has the same name as the format you created.

Example 2.8: Creating a Picture Format for Dates Using Date Directives

1 PROC FORMAT (DEFAULT=21);
2 PICTURE ZWDATE
3 . - .z = "No Date Given"
4 LOW - HIGH = '%B %0d, %Y' (DATATYPE=DATE);
5 RUN;

6 PROC PRINT DATA=pictest LABEL;
7 VAR date date2;
8 FORMAT date worddate. date2 zwdate21.;
9 LABEL date = "Date Using WORDDATE."
10 date2 = "Date using ZWDATE.";
11 RUN;

Line 3 defines the display for missing values. Without it, you will see the SAS missing value
symbol: either a period (.) or a special missing value. Line 4 gives the picture of how the date is to
be displayed. The zero preceding the day directive (%0d) causes the leading zero to be printed as a
part of the date. The length of the string with the date directives determines the default width of the
format. In this example, the default width is 10, but in order to make sure that all the dates print
correctly, the FORMAT statement in line 8 sets the format width to 21. What follows is the
resulting output.

Date using
WORDDATE.

Date using custom
PICTURE format

ZWDATE.

July 8, 2012 July 08, 2012

April 17, 2014 April 17, 2014

October 30, 2013 October 30, 2013

. No Date Given

May 14, 2012 May 14, 2012

February 2, 2013 February 02, 2013

. No Date Given

November 26, 2014 November 26, 2014

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 51

Example 2.9: Using Date Directives with Text
This example defines a format that will display text along with the date and time. It provides a
standardized date and time stamp that can be added as a title or footnote to reports (for examples of
how to do this, see Sections 6.1.2 and section 6.1.3. In line 2 of the code below, the DEFAULT=
option is used to specify a default length for the format. Without that option, this format would
have a default length of 35, which is the number of characters between the quotes. However, there
is no way that the default width can successfully print the entire date and time stamp for all cases,
because full month names are always longer than two characters, which is all that the format
directive "%B" makes room for. Similarly, the four-digit year will take up more than the two
characters accounted for by the %Y directive. The code below uses the format width of 35 to
illustrate what would happen without the DEFAULT= option.

In line 3, if the datetime stamp is missing, the datetime stamp displays the word "Missing." The
picture for all other values is defined in line 4; "LOW-HIGH" specifies the range. The picture
description begins with text, and the date is represented by the full month name (%B), followed by
the numeric day (%d without a leading zero), a comma, and the four-digit year (%Y). The time
follows the word "at" and is represented as a 12-hour clock time without seconds (%I:%0M),
followed by AM or PM (%p). The DATATYPE= option tells the format that it will be receiving
datetime values to translate.

SAS Code
1 PROC FORMAT;
2 PICTURE rptdate (DEFAULT=43)
3 . - .Z = 'Missing'
4 LOW-HIGH = 'Generated on %B %d, %Y at %I:%0M %p'
(DATATYPE=DATETIME);
5 RUN;
6
7 DATA _NULL_;
8 rpt_date = "15dec2012:22:25:00"dt;
9 PUT 'SAS datetime value = ' rpt_date;
10 PUT 'Formatted with DATETIME. = ' rpt_date datetime.;
11 PUT 'Using custom format at width of 35 =' rpt_date rptdate35.;
12 PUT 'Using custom format at default width of 43 = ' rpt_date
rptdate.;
12 RUN;

The Result
SAS datetime value = 1671229500
Formatted with DATETIME. = 15DEC12:22:25:00
Using custom format at width of 35 =Generated on December 15, 2012
at 1
Using custom format at default width of 43 = Generated on December
15, 2012 at 10:25 PM

52 The Essential Guide to SAS Dates and Times, Second Edition

As you can see, without the corrected default width, the resulting output is truncated at 35
characters.

2.7 Creating Custom Formats Using PROC FCMP for Processing
There is another possibility for custom formats beyond the functionality of the VALUE and
PICTURE statements. You can actually process data using PROC FCMP to write your own
functions and then display the result of that function as a formatted value. This can be helpful for
handling dirty date data (missing values for month, day, or year) or imputing values for missing
date components. While the specifics of PROC FCMP are beyond the scope of this book, the
following section will demonstrate some of the capability.

Example 2.10: Using PROC FCMP to Impute Dates with Annotation
for Imputed Dates
This example defines a format that will take a date, and if any component is missing, it will impute
a value for display on the report along with an indicator of which component is missing. The
advantage of doing this with a format is that the original value in the data set is untouched,
allowing for investigation and later correction. The OUTLIB= option () on the PROC FCMP
statement defines the location where the compiled function is to be stored. The FUNCTION
statement () names the function and describes the input parameter (cdate; the $ indicates that it is
a character value), and the second dollar sign indicates that the returned value will also be
character.

PROC FCMP Code to Create the MAKEDATE() Function for Imputation
ODS ESCAPECHAR ='~';

PROC FCMP OUTLIB=control.functions.dates;

 FUNCTION makedate(cdate $)$;
 LENGTH dtstr $42 supr $16;
 supr=' '; /* Initialize superscript variable */
 /* assume that data is in MMDDYYYY form, but check */
 /* Parse date string, get elements */
 cmo = SCAN(cdate,1,'/-.: ','M');
 cdy = SCAN(cdate,2,'/-.: ','M');
 cyr = SCAN(cdate,3,'/-.: ','M');
 IF cyr EQ ' ' OR INDEX(cyr,'_') GT 0 OR cyr EQ '.' THEN
 y = .;
 ELSE
 y=INPUT(cyr,4.);

 /* Test year value - earliest date is 1990, cannot be in future */
 IF y ne . and (1990 LT y LT YEAR(TODAY())) THEN DO;
 /* assume year is good */
 IF cmo EQ ' ' OR INDEX(cmo,'_') GT 0 OR cmo EQ '.' THEN

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 53

 m = .;
 ELSE
 m=INPUT(cmo,2.);
 IF 1 LE m LE 12 THEN DO; /* month has to be between 1 and
12 */
 /* Month is good chk day */
 IF cdy EQ ' ' OR INDEX(cdy,'_') GT 0 OR cdy EQ '.' THEN
 d = .;
 ELSE
 d=INPUT(cdy,2.);
 IF d LE 1 OR d GT (DAY(INTNX('MONTH',MDY(m,1,y),0,'e')))
THEN DO;
 /* Day is bad for this month - impute middle of month
*/
 d = CEIL(DAY(INTNX('MONTH',MDY(m,1,y),0,'e'))/2);
 supr = '~{super Day}';
 END;
 END;
 ELSE DO;
 /* Month is bad - reset month and day */
 m=6;
 d=30;
 supr = '~{super Month}';
 END;
 /* Create the date value */
 date=MDY(m,d,y);
 dtstr = CATT(PUT(date,mmddyy10.),supr);
 END;
 ELSE DO;
 /* yr is bad -flag */
 dtstr = 'Unknown~{super Y}';
 END;
 RETURN(dtstr);
 ENDSUB;
RUN;
QUIT;

This section of the example will use the MAKEDATE() function created above inside of a custom
format. It is important to note that the dates displayed are characters; therefore, the format is a
character format (as indicated by the leading dollar sign [$]).The OTHER= keyword with no other
format ranges defines a range of all possible values, and placing the function name inside the
brackets () applies the function.

Using the MAKEDATE() Function as a Custom Format
PROC FORMAT;
 VALUE $mkdt
 OTHER=[makedate()] ;
RUN;

54 The Essential Guide to SAS Dates and Times, Second Edition

DATA errorcnt;
INPUT recno @4 rptdt $10. errs;
DATALINES;
1 13/15/2013 374
2 09/08/2013 3
3 02/30/2013 32
4 __/15/2013 15
5 04/27/2013 195
6 05/__/2013 17
7 07/08/____ 20
8 06/04/013 5
9 08/32/2013 4
10 11//2013 6
11 01/23/2031 11
;;;;
RUN;

TITLE1 'Error Counts by Date';
PROC REPORT DATA=errorcnt NOWD SPLIT='\';
 COLUMN recno rptdt rptdt=dt errs;
 DEFINE recno / order 'Record #';
 DEFINE rptdt / 'Original\Date from\Error Log';
 DEFINE dt / 'Imputed\Date' f=$mkdt36.;
 DEFINE errs / "Errors\Reported";
RUN;

The PROC REPORT step above uses the value that is stored in the data set and creates an alias
(DT) for it. We apply the format we created to that aliased variable () to show both the original
and the on-the-fly imputation alias for it.

The Output

Record

Original
Date from
Error Log

Imputed
Date

Errors
Reported

1 13/15/2013 06/30/2013Month 374

2 09/08/2013 09/08/2013 3

3 02/30/2013 02/14/2013Day 32

4 __/15/2013 06/30/2013Month 15

5 04/27/2013 04/27/2013 195

6 05/__/2013 05/16/2013Day 17

7 07/08/____ UnknownY 20

8 06/04/013 UnknownY 5

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times 55

Record

Original
Date from
Error Log

Imputed
Date

Errors
Reported

9 08/32/2013 08/16/2013Day 4

10 11//2013 11/15/2013Day 6

11 01/23/2031 UnknownY 11

It is important to realize that using this function as a format does not create imputed values in the
data set. It is only a way to display the values from the data set.

2.8 The PUT() Function and Formats
What happens if you need to use the formatted value of a date in a character string you're
assembling? If you use the variable that contains the date value, you'll get the actual SAS date
value, regardless of any permanent formats assigned to the variable. The PUT() function is used to
store the formatted value of a numeric value in a character variable. The syntax is:

PUT(value,format);

value is a constant or a variable (either numeric or character), and format is the name of a SAS
format. If you are formatting a character variable or constant, then the format you use must be a
character format. Similarly, if you are formatting a numeric value, the format must be a numeric
format. Example 2.11 will demonstrate how to use the PUT() function. The PUT() function
creates the character variable char_value. The length of the variable in this case is defined by the
width of the format, 10. If you've already defined the length of the character variable where you
store the result, it has to be at least as long as the format width, or your output will be truncated.

Example 2.11: Using the PUT() Function to Create a Character Date String

DATA sample281;
numeric_value = 18947;
fmt_num_value = 18947;
char_value = PUT(numeric_value,MMDDYY10.);
FORMAT fmt_num_value mmddyy10.;
LABEL numeric_value="SAS Date\Value"
 fmt_num_value="Formatted\SAS Date\Value"
 char_value="Character Date\in String";
RUN;

ODS RTF FILE="c:\book\2ndEd\examples\putfunction.rtf";

PROC PRINT DATA=sample281 NOOBS SPLIT='\';
RUN;
ODS RTF CLOSE;

56 The Essential Guide to SAS Dates and Times, Second Edition

SAS Date
Value

Formatted
SAS Date

Value
Character Date
in String

18947 11/16/2011 11/16/2011

So what's the difference? The formatted value looks the same as the character date, right?
However, in this simple PROC PRINT, one difference is apparent. The numeric variable is right-
justified (the default for the MMDDYY. format is right-justified), while the character variable is
left-justified (default for character variables). If you look at the labels, you will see that the labels
also reflect the default justification. The labels for the numeric variables are right-justified, and the
one for the character variable is left-justified.

Why would you need to use a character representation of a SAS date? If you are printing a date
inside of a text string (e.g., in a title or footnote, or in the text of a form letter), you will need to
create a character variable with the date. Example 2.12 puts the RPTDATE. format created in
Section 2.6.1 on each page of a report as a footnote.

Example 2.12: Using a Character Date String in a Footnote

PROC FORMAT;
PICTURE rptdate (DEFAULT=43)
 . - .Z = 'Missing'
LOW-HIGH = 'Generated on %B %d, %Y at %I:%0m %p'
(DATATYPE=DATETIME);
RUN;

In order to do this, we will have to create a macro variable to store the value so that it can be used
in a FOOTNOTE statement. The method chosen here is via a DATA step and the CALL
SYMPUTX statement. CALL SYMPUTX trims any trailing spaces as opposed to CALL
SYMPUT. There are other ways to create the macro variable &RPTDTM as well (see Section
6.1.3).

DATA _NULL_;
CALL SYMPUTX('RPTDTM',PUT(DATETIME(),RPTDATE.));
RUN;
FOOTNOTE "&RPTDTM";

Chapter 3: Converting Dates and Times into SAS
Date, Time, and Datetime Values

3.1 Avoiding the Two-Digit Year Trap ... 57

3.2 Using Informats .. 59

3.3 The INFORMAT Statement .. 59

3.4 Listing and Discussion of Informats ... 64

In Chapter 2, I discussed translating SAS dates to the way we express them. How can we do the
reverse? After all, if you have a date, time, or date and time that you need to store or manipulate, it
won't be represented as a SAS date, time, or datetime value (unless it comes from another SAS data
set). The translation from common date and/or time terminology to SAS is almost as easy as going
the other way, and it is done in one of two ways: The first, discussed in Section 1.4, uses date, time,
and datetime literals. While this works for a small number of these values that are known at the
time you write the program, how do you deal with multiple dates, or those that are known only at
run time? By using informats to process them.

3.1 Avoiding the Two-Digit Year Trap
First, it is always good practice to use four-digit years in your date values. If this is not possible,
SAS will handle dates with two-digit years without any problems, but this situation is where you,
the user, should be concerned with the YEARCUTOFF= system option. Anytime that you translate
a date or datetime from an everyday representation using two-digit years (for example, 05/16/89) to
its SAS value, the YEARCUTOFF= system option will affect the resulting SAS value. The

58 The Essential Guide to SAS Dates and Times, Second Edition

YEARCUTOFF= system option will define the beginning of the 100-year period for those two-
digit years. In SAS 9.4, the SAS default value for this option is 1926, defining a range of 1926
through 2025. Therefore, two-digit years in the range from 26 through 99 will be assigned to the
years 1926–1999, while year values from 00 through 25 will be set to the years 2000–2025. This
rule applies to everything that has to be translated into a SAS date or datetime value and where
there are only two digits representing the year. This means that the YEARCUTOFF= option applies
to external data being processed with the INPUT statement, any date or datetime literals, as well as
any functions (such as INPUT()) where the input string only has two digits representing the year.
The example below shows how date and datetime literals are affected by the YEARCUTOFF=
system option. It displays the actual SAS date or datetime value represented by the literal along
with its formatted value.

Example 3.1: Effects of the YEARCUTOFF= System Option on Date
and Datetime Literals

OPTIONS YEARCUTOFF=1920

 SAS Date
Literal

Value as
Stored in SAS

Formatted
Value

a1 '23MAR2005'd 16518 03/23/2005

a2 '23MAR1905'd -20007 03/23/1905
a3 '23MAR05'd 16518 03/23/2005
a4 '19AUG1959:14:45:00'dt -11610900 19AUG1959:14:45:00
a5 '19AUG2059:14:45:00'dt 3144149100 19AUG2059:14:45:00
a6 '19AUG59:14:45:00'dt -11610900 19AUG1959:14:45:00

The variables a3 and a6 are date and datetime constants, respectively, with two-digit years as a
part of the constant. While the literals with four-digit years are stored as their proper SAS dates, a3
is in the 21st century, but a6 is set in the 20th century. The 100-year range is 1920–2019.
Therefore, '05' falls in the range 00–19 and is assigned to the year 2005, and '59' falls in the range
20–99 and is assigned to the year 1959. For the following example, let's use the same date and
datetime literals, but change the value of the YEARCUTOFF= option.

OPTIONS YEARCUTOFF=1905

 SAS Date
Literal

Value as
Stored in SAS

Formatted
Value

a1 '23MAR2005'd 16518 03/23/2005

a2 '23MAR1905'd -20007 03/23/1905
a3 '23MAR05'd -20007 03/23/1905
a4 '19AUG1959:14:45:00'dt -11610900 19AUG1959:14:45:00

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 59

 SAS Date
Literal

Value as
Stored in SAS

Formatted
Value

a5 '19AUG2059:14:45:00'dt 3144149100 19AUG2059:14:45:00
a6 '19AUG59:14:45:00'dt -11610900 19AUG1959:14:45:00

Now, a3 has moved to the 20th century. The literals with four-digit years remain stored as their
proper SAS dates and a6 remains in the 20th century, but we have moved the 100-year range to
start in 1905. Therefore, the range is now 1905–2004, and '05' falls in the 05–99 range, so it is
assigned to 1905.

The same thing will happen when you use an informat to translate a date or datetime string where
there are only two digits representing the year.

3.2 Using Informats
Formats take values and display them in a specific fashion, while informats take a series of
alphanumeric characters and translate them into a single value. Dates and times are the best
example of applying informats, since SAS date values are not normally how the majority of the
planet expresses dates. A date such as 11/24/05, or 24-05-2002 contains non-numeric characters, so
they would have to be read as character values, which is quite a distance from numeric SAS date
values. As with formats, you can create (and store for future use) your own informats if one is not
available within SAS to fit your needs. There are fewer SAS-supplied informats than formats , so
you should be careful to only use the informats listed in this chapter to translate your date and
datetime strings, and not the formats from Chapter 2.

Just as you can use the FORMAT statement to apply a format to a variable, you can use the
INFORMAT statement to apply an informat to a variable in a procedure or a DATA step. However,
the most common use of informats is with the INPUT statement in a DATA step, as data are being
read in, or with the INPUT() function to translate character data that are already in data sets.

You specify an informat by giving the informat name, followed by an optional width specification
and a period (.). Informats are like formats in that each informat has a default width that SAS will
use if none is specified.

3.3 The INFORMAT Statement
The INFORMAT statement is analogous to the FORMAT statement. You use the INFORMAT
statement to associate an informat with a variable in a SAS data set. You can also remove an
informat that has been permanently associated with the variable by leaving the informat name

60 The Essential Guide to SAS Dates and Times, Second Edition

blank. You might also use the INFORMAT statement to associate an informat with a variable for
the duration of the procedure (which might be useful in certain procedures such as the FSEDIT
procedure).

INFORMAT date1 mmddyy10.;

The statement above says that any time a character string is read into the variable date1, it will be
translated into a SAS date value using the informat MMDDYY10 (detailed below). If the character
string being processed is not in an MMsDDsYY(YY) (s stands for a separator), you will get a
missing value stored in date1 and an error message in the SAS log.

Just as with formats, you can remove informats that have been permanently associated with a
variable by using the variable name in the INFORMAT statement without an informat, as is shown
below.

INFORMAT time3;

This statement will remove any informat that has been permanently associated with the variable
time3.

3.3.1 Using Informats with the INPUT Statement
The basic syntax of an INPUT statement with an informat is as follows:

INPUT @1 date1 mmddyy10.;

First, you will usually specify a starting column. The default starting column is 1, but you can
specify the starting column with the @ sign, followed by the column number. If you do not, the
starting column will be set to the current location of the input pointer. You should also specify a
width for the informat to indicate how many characters are to be read. The above INPUT statement
will read the first ten characters in a line, starting at the first character in a data line, and SAS will
expect it to look like mmsdds(yy)yy, where mm is the month from 01 to 12, s represents a separator
character, dd is a day from 01 to 31, and (yy)yy is a two- or four-digit year. The following example
demonstrates that the separator character does not have to be the same on every line, and the field
does not have to be exactly ten characters long.

Example 3.2: INPUT Statement
1. DATA informats_are_smart;
2. INPUT @1 date1 :MMDDYY10.;
3. unformatted_date = date1;
4. DATALINES;
5. 10/17/2014
6. 05-04-59
7. 3-1-1940
8. RUN;

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 61

9. PROC PRINT;
10. FORMAT date worddatx.;
11. RUN;

The Result

Obs date1 unformatted_date

1 17 October 2014 20013

2 4 May 1959 -242

3 1 March 1940 -7245

As you can see, the characters in each line of the DATALINES statement were converted to a SAS
date value. The length of the informat must be long enough to read all of the characters in the date
string. In the example, there are a maximum of 10 characters in the date string. Therefore, the
width of the informat is specified as 10. The other important thing to note is the use of the colon
(:, line 2, in bold) modifier preceding the informat name. It is best practice to use the colon
modifier with any informat, not just those relating to dates and times, when you are dealing with
varying length fields. The colon modifier ensures that it doesn't matter if the lengths of the
character strings representing date in the data are less than the width specified for the informat.

If the characters read do not match that layout (for example, June 26, 2014, when the informat
specified is MMDDYY.) or if the informat would yield an impossible value (for example, February
31), SAS will set the value of the variable date1 to missing and set the system variable _ERROR_
to 1. In general, you should know the layout of the characters before selecting an informat.
Beginning with version 9 of SAS, if you do not know the layout of the dates ahead of time, the
ANYDT family of informats (see Section 3.4.4) are designed to solve this problem.

3.3.2 Informats with the INPUT() Function
The INPUT() function is the parallel to the PUT() function, and it stores a numeric or character
value as a numeric or character variable. The type of the result depends on the type of the informat
that is used. A character informat (one that begins with a $) will return a character value. All
informats used with dates, times, and datetimes are numeric. Therefore, the variable returned is
numeric. The syntax is given below.

INPUT(character-value,informat-name);

If you want to define the informat that is to be applied during a SAS job (at run time), you will
need to use the INPUTN(character-value,informat-name) function (or INPUTC(), if you want to
produce a character variable) instead. informat-name represents a character variable or character
constant that contains an informat name, while the INPUT() function needs an actual informat
name. Make sure that you have defined the width of the informat so that it is long enough to

62 The Essential Guide to SAS Dates and Times, Second Edition

capture all the characters in the entire character variable. The following examples illustrate the use
of the INPUT() and INPUTN() functions:

Example 3.3: INPUT() Function

DATA _NULL_ _;
datestr = "15-NOV-2013";
sasdate = INPUT(a,date11.);
PUT sasdate=;
RUN;

The INPUT() function translated the date in the character variable datestr into its equivalent SAS
date value, 19677, and stored it in the numeric variable sasdate. The date11. informat accounts for
the length of the character variable.

Example 3.4: INPUTN() Function

DATA _NULL_;
datestr = "15-NOV-2013";
inf = "DATE11.";
sasdate = INPUTN(a,inf);
PUT sasdate=;
RUN;

The INPUTN() function used the value of the character value inf (DATE11.) as the informat to
use in translating the date in the character variable datestr into its equivalent SAS date value,
19677.

3.3.3 When the Informat Does Not Match the Data Being Read
Informats, like formats, are separated into classes according to the type of data that are being read.
In most cases, if you use the wrong informat for the data type, informats will return an error (set the
SAS automatic variable _ERROR_ to 1), and the value of the variable being read will be set to
missing.

This behavior differs from date, time, and datetime formats in that if you use the wrong type of
format to display a value (for example, if you use a date format to display a time value), no error
will occur, and at worst, you will get a warning in the SAS log. However, incorrectly specifying a
format will most likely cause the display to be incorrect. Example 3.5 shows what happens when
you try to use an informat that does not match the character string that you are trying to process.

Example 3.5: Using the Wrong Informat

DATA bad_informat;
INPUT @1 date :datetime18.;
DATALINES;
11-06-1988
8-25-2004
4-24-2005

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 63

;;;;
RUN;

The Log

 1 DATA bad_informat;
 2 INPUT @1 date :datetime18.;
 3 DATALINES;

 NOTE: Invalid data for date in line 4 1-18.
 RULE: ----+----1----+----2----+----3----+----4----+----5----+---
-6----+
 4 11-06-1988
 date=. _ERROR_=1 _N_=1
 NOTE: Invalid data for date in line 5 1-18.
 5 8-25-2004
 date=. _ERROR_=1 _N_=2
 NOTE: Invalid data for date in line 6 1-18.
 6 4-24-2005
 date=. _ERROR_=1 _N_=3
 NOTE: The data set WORK.BAD_INFORMAT has 3 observations and 1
variables.
 NOTE: DATA statement used (Total process time):
 real time 0.53 seconds
 cpu time 0.03 seconds
 7 ;;;;
 8 RUN;

The Resulting SAS Data set

Obs date

1 .

2 .

3 .

As you can see in the above example, using the DATETIME. informat to process a series of
character strings that do not represent datetimes produces a note in the log. It also sets the
automatic variable _ERROR_ to 1 for each record where it encountered a mismatch between the
informat specified and the data that it attempted to read. The end result is that the value of the date
variable in your output data set is missing because SAS was not able to process the characters
using the specified informat. Remember to always check your log and your data set after reading a
text file.

64 The Essential Guide to SAS Dates and Times, Second Edition

3.4 Listing and Discussion of Informats
Each discussion of an informat in this section will provide an explanation of the informat, its width
specification, and the text it is designed to process. Each subsection is accompanied by a table that
gives examples of the text that is to be processed, along with the informat (and its width
specification) and the resulting SAS date, time, or datetime value. SAS continues to develop
formats and informats, so it is always a good idea to check the online documentation at
support.sas.com.

3.4.1 Date Informats

DATEw.
DATEw. reads dates in the form ddmonyy(yy), where dd represents the day of the month, mon is
the three-letter month abbreviation, and yy(yy) is the two- or four-digit year. The default value of w
is 7, but you should specify 9 if you are reading four-digit years. dd, mon, and yy(yy) can be
separated by blanks or special characters. If you separate them, you must account for the blanks (or
special characters) in the width specification. If you have blanks after the month and the day, then
you need to have a width of 9 for two-digit years or 11 for four-digit years. If the leading zero for
dd is missing, it has no effect on the value. The following table gives examples of how to apply this
informat to yield the SAS date value that corresponds to the text shown in each line.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

20sep15 DATE7. 20351 Sunday, September 20, 2015
4 feb 2014 DATE11. 19758 Tuesday, February 4, 2014
07-may-1960 DATE11. 127 Saturday, May 7, 1960

DDMMYYw.

DDMMYYw. reads dates of the form ddmmyy(yy), where dd represents the day of the month, mm
represents the number of the month, and yy(yy) is the two- or four-digit year. The default value of
w is 6, but you should specify 8 if you are reading four-digit years. dd, mm, and yy(yy) can be
separated by blanks or special characters. If you separate them, you must account for the
separating characters in the width specification. If you have blanks after the month and the day,
then you need to have a width of 8 for two-digit years or 10 for four-digit years. SAS will do its
best to decipher the string if no separators are used, but some dates cannot be processed—for
example, 2112008. Without place-holding zeros or separators, there is no way to know whether
the date is 21 January 2008 or 2 November 2008. The following table gives examples of how to
apply this informat to yield the SAS date value that corresponds to the text shown in each line.

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 65

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

140390 DDMMYY6. 11030 Wednesday, March 14, 1990
06/09/05 DDMMYY8. 16685 Tuesday, September 6, 2005
22-04-2003 DDMMYY10. 15817 Tuesday, April 22, 2003

JULIANw.

JULIANw. translates a Julian date in the form yy(yy)ddd, with the two- or four-digit year
preceding the zero-filled day of the year. It is right-justified. w can be from 5 to 32, and the default
is 5. If you specify 5, the year portion of the Julian date is two digits long. If you specify 7 or
more, the year portion is four digits long. Zeros must fill the space between the year and day
values: For example, the fifth day of the year must be given as "005." Any date preceding the year
1582 on the Gregorian calendar cannot be read as a Julian value. The following table gives
examples of how to apply this informat to yield the SAS date value that corresponds to the text
shown in each line.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

09284 JULIAN5. 18181 Sunday, October 11, 2009
2014005 JULIAN7. 19728 Sunday, January 5, 2014
2012168 JULIAN7. 19160 Saturday, June 16, 2012

MMDDYYw.
MMDDYYw. reads dates of the form mmddyy(yy), where mm represents the number of the month,
dd represents the day of the month, and yy(yy) is the two- or four-digit year. The default value of w
is 6, but you should specify 8 if you are reading four-digit years. dd, mm, and yy(yy) can be
separated by blanks or special characters. If you separate them, you must account for the blanks in
the width specification. If you have blanks after the month and the day, then you need to have a
width of 8 for two-digit years or 10 for four-digit years. SAS will do its best to decipher the string
if no separators are used, but some dates cannot be processed—for example, 1272003. Without
place-holding zeros or separators, there is no way to know whether the date is January 27, 2003, or
December 7, 2003. The following table gives examples of how to apply this informat to yield the
SAS date value that corresponds to the text shown in each line.

Characters
Read Informat

Resulting
SAS
Date Value

Formatted Date
Using WEEKDATE.

041798 MMDDYY6. 13986 Friday, April 17, 1998
1/15/2013 MMDDYY10. 19373 Tuesday, January 15, 2013

66 The Essential Guide to SAS Dates and Times, Second Edition

Characters
Read Informat

Resulting
SAS
Date Value

Formatted Date
Using WEEKDATE.

08282015 MMDDYY10. 20328 Friday, August 28, 2015

MONYYw.

MONYYw. reads dates of the form monyy(yy), where mon is the three-letter month abbreviation,
and yy(yy) is the two- or four-digit year. Using this informat will set the SAS date value that
corresponds to the first day of the month. The default value of w is 5, but you should specify 7 if
you are reading four-digit years. The following table gives examples of how to apply this informat
to yield the SAS date value that corresponds to the text shown in each line.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

JAN15 MONYY5. 20089 Thursday, January 1, 2015
dec1920 MONYY7. -14275 Wednesday, December 1, 1920
aug2020 MONYY7. 22128 Saturday, August 1, 2020

PDJULG4.

PDJULG4. reads a packed Julian date in hexadecimal format for IBM computers. The width
specification is always 4, because the Julian date is parsed as follows: the four-digit Gregorian
year is written in the first two bytes, and the three-digit integer that represents the day of the year
is in the next one-and-a-half bytes. The last half-byte contains all binary 1s, which indicates the
value is positive. There is no example given for this informat because packed-decimal Julian dates
yield nonprintable characters.

PDJULIw.
PDJULIw. also reads a packed Julian date in hexadecimal format for IBM computers. It differs
from the PDJULG. informat in that it expects the two digits of the century in the first byte,
followed by two digits of the year in the second byte. The next one-and-a-half-bytes store the three-
digit integer that corresponds to the day of the year, while the last half-byte is filled with
hexadecimal 1s, representing a positive number. The century and year are calculated by subtracting
1900 from the four-digit Gregorian year. Once again, there is no example, since packed-decimal
Julian dates yield nonprintable characters.

YYMMDDw.
YYMMDDw. is used to read dates of the form yy(yy)mmdd, where yy(yy) is the two- or four-digit
year, mm represents the number of the month, and dd represents the day of the month. The default
value of w is 6, but you should specify 8 if you are reading four-digit years. yy(yy), mm, and dd can
be separated by blanks or special characters. If you separate them, you must account for the

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 67

separating characters in the width specification. If you have blanks after the month and the day,
then you need to have a width of 8 for two-digit years or 10 for four-digit years. The following
table gives examples of how to apply this informat to yield the SAS date value that corresponds to
the text shown in each line.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

441205 YYMMDD6. -5505 Tuesday, December 5, 1944
20150517 YYMMDD8. 20225 Sunday, May 17, 2015
2014-07-06 YYMMDD10. 19910 Sunday, July 6, 2014

YYMMNw.

YYMMNw. reads dates of the form yy(yy)mm, where yy(yy) is the two- or four-digit year, and mm
represents the number of the month. The day is automatically set to 1. The default value of w is 4,
but you should specify 6 if you are reading four-digit years. The N in the informat name is
necessary. Your data must not have any separating characters between the month and the year.
This informat will produce a date value that is equal to the first day of the month given. The
following table gives examples of how to apply this informat to yield the SAS date value that
corresponds to the text shown in each line. Note that line 2 of this table demonstrates what
happens if you try to read a date with a two-digit year using the width of 6. In this case, SAS is
translating the four digits as the year, so the month value is considered to be missing.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

1 9905 YYMMN4. 14365 Saturday, May 1, 1999
2 9905 YYMMN6. .
3 201403 YYMMN6. 19783 Saturday, March 1, 2014
4 201610 YYMMN6. 20728 Saturday, October 1, 2016

YYQw.
YYQw. reads dates of the form yy(yy)Qq, where yy(yy) is the two- or four-digit year followed by
the letter Q and q is a number from 1 to 4, indicating the quarter of the year. The date value
produced by this informat will correspond to the first day of the given quarter. Use 6 for w if you
are reading four-digit years, or 4 if you are reading two-digit years. The default w is 6. The
following table gives examples of how to apply this informat to yield the SAS date value that
corresponds to the text shown in each line.

68 The Essential Guide to SAS Dates and Times, Second Edition

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

14Q1 YYQ4. 19724 Wednesday, January 1, 2014
2010Q3 YYQ6. 18444 Thursday, July 1, 2010
2015Q2 YYQ6. 20179 Wednesday, April 1, 2015
2013Q4 YYQ6. 19632 Tuesday, October 1, 2013

YYMMDDw.
YYMMDDw. is used to read dates of the form yy(yy)mmdd, where yy(yy) is the two- or four-digit
year, mm represents the number of the month, and dd represents the day of the month. The default
value of w is 6, but you should specify 8 if you are reading four-digit years. yy(yy), mm, and dd can
be separated by blanks or special characters. If you separate them, you must account for the
separating characters in the width specification. If you have blanks after the month and the day,
then you need to have a width of 8 for two-digit years or 10 for four-digit years. The following
table gives examples of how to apply this informat to yield the SAS date value that corresponds to
the text shown in each line.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

441205 YYMMDD6. -5505 Tuesday, December 5, 1944
20150517 YYMMDD8. 20225 Sunday, May 17, 2015
2014-07-06 YYMMDD10. 19910 Sunday, July 6, 2014

YYMMNw.
YYMMNw. reads dates of the form yy(yy)mm, where yy(yy) is the two- or four-digit year, and mm
represents the number of the month. The day is automatically set to 1. The default value of w is 4,
but you should specify 6 if you are reading four-digit years. The N in the informat name is
necessary. Your data must not have any separating characters between the month and the year.
This informat will produce a date value that is equal to the first day of the month given. The
following table gives examples of how to apply this informat to yield the SAS date value that
corresponds to the text shown in each line. Note that line 2 of this table demonstrates what happens
if you try to read a date with a two-digit year using the width of 6. In this case, SAS is translating
the four digits as the year, so the month value is considered to be missing.

 Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

1 9905 YYMMN4. 14365 Saturday, May 1, 1999
2 9905 YYMMN6. .
3 201403 YYMMN6. 19783 Saturday, March 1, 2014

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 69

 Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

4 201610 YYMMN6. 20728 Saturday, October 1, 2016

YYQw.

YYQw. reads dates of the form yy(yy)Qq, where yy(yy) is the two- or four-digit year followed by
the letter Q and q is a number from 1 to 4, indicating the quarter of the year. The date value
produced by this informat will correspond to the first day of the given quarter. Use 6 for w if you
are reading four-digit years, or 4 if you are reading two-digit years. The default w is 6. The
following table gives examples of how to apply this informat to yield the SAS date value that
corresponds to the text shown in each line.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

14Q1 YYQ4. 19724 Wednesday, January 1, 2014
2010Q3 YYQ6. 18444 Thursday, July 1, 2010
2015Q2 YYQ6. 20179 Wednesday, April 1, 2015
2013Q4 YYQ6. 19632 Tuesday, October 1, 2013

The WEEK Informats
The WEEK informats read dates in the ISO-standard WEEK format. There are three algorithms
used to calculate the WEEK value from a given date. The U algorithm calculates weeks based on
Sunday being the first day of the week without any other restriction. The V algorithm defines the
first week of the year as containing both January 4 and the first Thursday of the year. Therefore, if
the first Monday of the year falls on January 2, 3, or 4, the preceding days of the calendar year are
considered to be a part of week 53 of the previous calendar year. It is also possible for calendar
days at the end of a year to be considered as being in the first week of the next calendar year.
Finally, the W algorithm calculates weeks based on Monday being the first day of the week without
any other restriction.

The WEEK algorithms calculate dates differently, so it is critical that you use the correct algorithm
for the week value that you are converting. This means that you need to know which algorithm was
used to create the week value before you try to convert it. If you use a different week algorithm
from the one that was used to create the week value, you will get the wrong actual date. Example
3.6 demonstrates this.

70 The Essential Guide to SAS Dates and Times, Second Edition

Example 3.6: The Difference between the Various WEEK Algorithms (U, V, W)

Week value

Date Formatted
with WEEKDATE
U Algorithm

Date Formatted
with WEEKDATE
V Algorithm

Date Formatted
with WEEKDATE
W Algorithm

1 W12 Sunday, March 23, 2014 Monday, March 17, 2014 Monday, March 24, 2014

2 13W45 Sunday, November 10, 2013 Monday, November 4, 2013 Monday, November 11, 2013

3 15W5303 Tuesday, January 5, 2016 Wednesday, December 30, 2015 Wednesday, January 6, 2016

4 2014W2104 Wednesday, May 28, 2014 Thursday, May 22, 2014 Thursday, May 29, 2014

5 2015-W01-02 Monday, January 5, 2015 Tuesday, December 30, 2014 Tuesday, January 6, 2015

Example 3.6 demonstrates the differences that exist not only in the resulting date between the
algorithms, but also in the day of the week, which depends on whether the algorithm uses Sunday
or Monday as the first day of the week. Rows 3 and 5 highlight the differences in the way the first
and last week of the calendar year are handled by the different algorithms. As you can see, if you
use the wrong algorithm, not only can you end up with an unintended date, but the resulting date
might not even be in the same year.

WEEKUw.
WEEKUw. is new as of SAS version 9.3. It is used to translate week values into SAS dates using
the U algorithm. The U algorithm calculates weeks based on Sunday being the first day of the
week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if
necessary. Week values are dates in the form yyyy-Wnn-dd, where yyyy is the optional year (can be
two or four digits). W is the letter "W" for "Week"; nn is the week number ranging from 0 to 53;
and dd is the optional day of the week. The dashes are optional separators, but they are the only
separators that can be used in ISO 8601 week values and are used between the year, the week
number, and the day (if present). The width specification, w, can range from 3 to 200 and tells SAS
what to expect from the character string being processed according to the following table.

Width
(w)

Pattern
Expected Example Comment

3–4 Wnn W08 W is the letter "W," and nn is the week number.
If a year is not specified, the year is considered
to be the current year. If a day is not given, the
day is considered to be the first day of the week.

5–6 yyWnn 14W08 yy is a two-digit year, W is the letter "W," and
nn is the week number. Without a day, the day is
considered to be the first day of the week.

7–8 yyWnndd 14W0803 yy is a two-digit year, W is the letter "W," nn is
the week number, and dd is the day of the week.

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 71

Width
(w)

Pattern
Expected Example Comment

9–10 yyyyWnndd 2014W0803 yyyy is a four-digit year, W is the letter "W," nn
is the week number, and dd is the day of the
week.

11–200 yyyy-Wnn-dd 2014-W08-03 yyyy is a four-digit year, W is the letter "W," nn
is the week number, and dd is the day of the
week, each separated by dashes.

Specifying any value greater than 11 will have no effect on the date returned, although the implied
cursor placement can cause an INPUT statement (not function) to yield unexpected results.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

W12 WEEKU3. 19805 Sunday, March 23, 2014
14W40 WEEKU5. 20001 Sunday, October 5, 2014
15W2801 WEEKU7. 20281 Sunday, July 12, 2015
2014W3304 WEEKU9. 19955 Wednesday, August 20, 2014
2015-W06-02 WEEKU11. 20128 Monday, February 9, 2015

WEEKVw.
WEEKVw. is available as of SAS version 9.3. It is used to translate week values into SAS dates
using the V algorithm. The V algorithm calculates weeks based on Monday being the first day of
the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading
zero if necessary. This algorithm defines the first week of the year as containing both January 4 and
the first Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4,
the preceding days of the calendar year are considered to be a part of week 53 of the previous
calendar year. Week values are dates in the form yyyy-Wnn-dd, where yyyy is the optional year (can
be two or four digits). W is the letter "W" for "Week"; nn is the week number ranging from 0 to 53;
and dd is the optional day of the week. The dashes are optional separators, but they are the only
separators that can be used in ISO 8601 week values and are used between the year, the week
number, and the day (if present). The width specification, w, can range from 3 to 200 and tells SAS
what to expect from the character string being processed according to the following table:

Width
(w)

Pattern
Expected Example Comment

3–4 Wnn W08 W is the letter "W," and nn is the week number.
If a year is not specified, the year is considered
to be the current year. If a day is not given, the
day is considered to be the first day of the week.

72 The Essential Guide to SAS Dates and Times, Second Edition

Width
(w)

Pattern
Expected Example Comment

5–6 yyWnn 14W08 yy is a two-digit year, W is the letter "W," and
nn is the week number. Without a day, the day is
considered to be the first day of the week.

7–8 yyWnndd 14W0803 yy is a two-digit year, W is the letter "W," nn is
the week number, and dd is the day of the week.

9–10 yyyyWnndd 2014W0803 yyyy is a four-digit year, W is the letter "W," nn
is the week number, and dd is the day of the
week.

11–200 yyyy-Wnn-dd 2014-W08-03 yyyy is a four-digit year, W is the letter "W," nn
is the week number, and dd is the day of the
week, each separated by dashes

Specifying any value greater than 11 will have no effect on the date returned, although the implied
cursor placement can cause an INPUT statement (not function) to yield unexpected results.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

W12 WEEKV3. 19799 Monday, March 17, 2014
14W40 WEEKV5. 19995 Monday, September 29, 2014
15W2801 WEEKV7. 20275 Monday, July 6, 2015
2014W3304 WEEKV9. 19949 Thursday, August 14, 2014
2015-W06-02 WEEKV11. 20122 Tuesday, February 3, 2015

WEEKWw.
WEEKWw. is available as of SAS version 9.3. It is used to translate week values into SAS dates
using the W algorithm. The W algorithm calculates weeks based on Monday being the first day of
the week without any other restriction. The week number is displayed as a two-digit number from 0
to 53, with a leading zero if necessary. Week values are dates in the form yyyy-Wnn-dd, where yyyy
is the optional year (can be two or four digits). W is the letter "W" for "Week"; nn is the week
number ranging from 0 to 53; and dd is the optional day of the week. The dashes are optional
separators, but they are the only separators that can be used in ISO 8601 week values and are used
between the year, the week number, and the day (if present). The width specification, w, can range
from 3 to 200 and tells SAS what to expect from the character string being processed according to
the following table:

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 73

Width
(w)

Pattern
Expected Example Comment

3–4 Wnn W08 W is the letter "W," and nn is the week number.
If a year is not specified, the year is considered
to be the current year. If a day is not given, the
day is considered to be the first day of the week.

5–6 yyWnn 14W08 yy is a two-digit year, W is the letter "W," and
nn is the week number. Without a day, the day is
considered to be the first day of the week.

7–8 yyWnndd 14W0803 yy is a two-digit year, W is the letter "W," nn is
the week number, and dd is the day of the week.

9–10 yyyyWnndd 2014W0803 yyyy is a four-digit year, W is the letter "W," nn
is the week number, and dd is the day of the
week.

11–200 yyyy-Wnn-dd 2014-W08-03 yyyy is a four-digit year, W is the letter "W," nn
is the week number, and dd is the day of the
week, each separated by dashes.

Specifying any value greater than 11 will have no effect on the date returned, although the implied
cursor placement can cause an INPUT statement (not function) to yield unexpected results.

Characters
Read Informat

Resulting SAS
Date Value

Formatted Date
Using WEEKDATE.

W12 WEEKW3. 19806 Monday, March 24, 2014
14W40 WEEKW5. 20002 Monday, October 6, 2014
15W2801 WEEKW7. 20282 Monday, July 13, 2015
2014W3304 WEEKW9. 19956 Thursday, August 21, 2014
2015-W06-02 WEEKW11. 20129 Tuesday, February 10, 2015

3.4.2 Time Informats

HHMMSSw.
HHMMSSw. is available as of SAS version 9.3. It will read time values in the form hh:mm:ss or
hhmmss, where hh is hours, mm is minutes, and ss is seconds, with an optional separator. This
informat will ignore fractional seconds. The default width for this format is 8, but w can range from
1 to 20. When there are six digits in the string being read, the first two digits will be translated into
hours, the second two into minutes, and the last two into seconds.

74 The Essential Guide to SAS Dates and Times, Second Edition

Characters
Read Informat

Resulting SAS
Time Value

Formatted Time
Using TIME8.

143500 HHMMSS6. 52500 14:35:00
971406 HHMMSS6. 350046 97:14:06
000339 HHMMSS6. 219 0:03:39
081525 HHMMSS6. 29725 8:15:25

The parsing and interpretation performed by this informat changes if there are fewer than six digits
in the string being read and is based on the following rules: If there is an odd number of digits in
the string being read, SAS will add a zero to the beginning of the string, and the first two digits
will then be translated as hours. SAS will then add zeros to the end of the string until it has six
digits and can be translated as hours, minutes, seconds.

Characters
Read Informat

Resulting
SAS
Time
Value

Formatted
Time
Using
TIME8. What Happened?

1 HHMMSS6. 3600 1:00:00 Because there is an odd number of digits
in the string, SAS added a zero to the
front of the string, making it "01," and
then padded it with zeros out to six digits,
making the string that is being read
"010000."

11 HHMMSS6. 39600 11:00:00 Here, there are an even number of digits,
so SAS does not add a leading zero and
reads the first two digits as hours. It pads
the remainder of the string with zeros out
to six digits, making the string "110000."

112 HHMMSS6. 4320 1:12:00 With the odd number of digits, SAS adds
a zero to the beginning of the string,
making it "0112," and then pads the
string with zeros, so the string being read
is "011200."

1127 HHMMSS6. 41220 11:27:00 At four digits, SAS will only pad the
string with zeros, making the string being
read "112700."

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 75

Characters
Read Informat

Resulting
SAS
Time
Value

Formatted
Time
Using
TIME8. What Happened?

11274 HHMMSS6. 4394 1:13:14 SAS adds a leading zero because of the
odd number of digits in the string. The
string that is being read is now "011274."
This is translated into one hour, twelve
minutes, and seventy-four seconds, which
is 1:13:14.

112745 HHMMSS6. 41265 11:27:45 String being read is six digits long.
Therefore, no zeros are added at the front
or the back of the string.

When there are more than six digits in the string that is being read, SAS will parse the string from
right to left. The assumption is that since seconds and minutes normally cycle at 60, they will only
ever require two digits. It will translate the last four digits of the string as minutes and seconds. All
digits to the left of the final four digits will be translated into hours.

Characters
Read Informat

Resulting
SAS
Time Value

Formatted
Time Using
TIME16. What Happened?

172154 HHMMSS10. 62514 17:21:54 Parsed as hours, minutes, seconds.
Result is as expected.

1721543 HHMMSS10. 620143 172:15:43 Last four digits are "1543," which is
translated as 15 minutes, 43 seconds.
Preceding digits ("172") translated
as hours.

17215430 HHMMSS10. 6198870 1721:54:30 Last four digits are "5430," which is
translated as 54 minutes, 30 seconds.
Preceding digits ("1721") translated
as hours.

172154305 HHMMSS10. 61976585 17215:43:05
1721543058 HHMMSS10. 619756258 172154:30:58

76 The Essential Guide to SAS Dates and Times, Second Edition

MSEC8.

MSEC8. reads IBM mainframe time values accurate to the nearest millisecond. The width is 8
because the OS TIME macro and STCK system instructions store their time values in 8 bytes.

PDTIME4.
PDTIME4. converts packed-decimal time values contained in SMF and RMF records produced by
IBM mainframe systems to SAS time values. The width is shown as 4 because SMF and RMF
records are 4 bytes long. While the informat RMFSTAMP8. also reads packed decimal RMF
records, RMFSTAMP8. reads both the 4 bytes of time and 4 bytes of date information contained in
the RMF record and creates a SAS datetime value from it. PDTIME4. only reads the 4 bytes of
time information from an RMF record and creates a SAS time value.

RMFDUR4.
RMFDUR4. converts IBM mainframe RMF duration records into SAS time values. The width is
shown as 4 because RMF records are 4-byte-long packed hexadecimal records.

STIMERw.
STIMERw. reads times produced by the STIMER System option in the SAS log. This informat has
no default width. It reads times and interprets them based on colons and decimal points. If there is
one colon, the first two digits are minutes and the last two are seconds. If there are two colons, the
digits preceding the first colon are hours, the next set of two digits is minutes, and the last two are
seconds. If there is a decimal point, the value following the decimal point is translated as a decimal
fraction of seconds. It can read time values in the following formats, where hh corresponds to
hours, mm corresponds to minutes, ss corresponds to seconds, and ff corresponds to decimal
fractions of seconds.

ss
ss.ff
mm:ss
mm:ss.ff
hh:mm:ss
hh:mm:ss.ff

Characters
Read Informat

Resulting
SAS Time
Value
(seconds)

Formatted
Time Using
TIME11.1. Comments

33 STIMER2. 33.00 0:00:33.00 When there is no colon in the input
string, it is translated as ss.

51.60 STIMER5. 51.60 0:00:51.60 The decimal point causes the
translation to be ss.ff.

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 77

Characters
Read Informat

Resulting
SAS Time
Value
(seconds)

Formatted
Time Using
TIME11.1. Comments

14:05 STIMER5. 845.00 0:14:05.00 One colon is interpreted as mm:ss.
3:11.03 STIMER7. 191.03 0:03:11.03 One colon, and a decimal point is

translated as mm:ss.ff.
1:19:21 STIMER7. 4761.00 1:19:21.00 Two colons are translated as

hh:mm:ss.
1:46:17.74 STIMER11. 6377.74 1:46:17.74 Two colons and a decimal point,

and the translation is hh:mm:ss.ff.

TIMEw.

TIMEw. will read times in the form hh:mm:ss.ff, where hh indicates the hours, mm is minutes, and
ss is the number of seconds. They must be separated by a special character, such as a colon (:),
period (.), or hyphen (-). ff indicates decimal fractions of seconds and must be separated from the
seconds by a decimal point (.). Both seconds and their decimal fractions are assumed to be zero if
they are not present. This informat can read a.m. and p.m. time values. If hh is greater than 24,
and/or mm and ss are greater than 60, the time value read will give the correct number of seconds,
even if it is greater than 86399.99 (the number of seconds in a day). This informat will parse the
time string being read as hours, minutes, seconds from left to right. Therefore, if you are
attempting to read only minutes and seconds, you must have leading zeros for the hours, and
values for both minutes and seconds. Otherwise, your value will be translated as hours:minutes,
not minutes:seconds. w ranges from 5 to 32 with a default of 8.

Characters
Read Informat

Resulting
SAS Time
Value

Formatted
Time Using
TIME11.1. Comments

1 124:46 TIME6. 449160.0 124:46:00.0 124 hours, 46 minutes
2 14:11:03.3 TIME10. 51063.3 14:11:03.3
3 08-15 TIME5. 29700.0 8:15:00.0
4 00:10 TIME5. 600.0 0:10:00.0 parsed as hours:minutes
5 00:10:42 TIME8. 642.0 0:10:42.0 parsed as hours, minutes, seconds
6 10.42 TIME10. 38520.0 10:42:00.0 parsed as hours:minutes despite

the period separator
7 00:10:42.5 TIME10. 642.5 0:10:42.5 hours:minutes:seconds.fractional

seconds

78 The Essential Guide to SAS Dates and Times, Second Edition

TODSTAMP8.

TODSTAMP8. converts an eight-byte time-of-day stamp produced by the OS TIME macro or the
STCK instruction on IBM mainframes into a SAS time value. The width is 8 because these calls
return eight-byte time-of-day values. Use this informat when you are reading IBM mainframe
time-of-day values on other operating systems.

TU4.
TU4. converts IBM mainframe timer units (38,400 timer units per second) to SAS time values. It is
used when reading IBM mainframe timer unit values under other operating systems. The width is 4
because the OS TIME macro returns a four-byte word.

3.4.3 Datetime Informats

B8601CIw.d
B8601CIw.d is available as of SAS version 9.3. It reads IBM time values with a century marker of
the form cyymmddhhmmss<fff>, where c represents the century digit. The century digit is
calculated by subtracting 1900 from the current year, dividing by 100, and dropping the remainder.
yy is the two-digit year from 00 to 99, the mm represents the number of the month, and dd
represents the day of the month. The time is represented by hhmmss<fff>, where hh indicates the
hours, mm is minutes, ss is the number of seconds, and fff indicates thousandths of seconds. w
ranges from 10 to 26, with a default value of 16, while d ranges from 0 to 6 for the fractional part
of seconds.

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME19.3.

21504231905 B8601CI16. 4901108700.000 23APR15:19:05:00.00
1560928053505 B8601CI16. 3052964105.000 28SEP56:05:35:05.00
2140630102416454 B8601CI19.3 4875416656.454 30JUN14:10:24:16.45
2131216094500 B8601CI16. 4858479900.000 16DEC13:09:45:00.00

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 79

B8601DJw.d
B8601DJw.d is available as of SAS version 9.3. It reads datetimes in standard Java date and time
notation. yyyymmddhhmmss<ffffff>, where yyyy is the four-digit year, mm represents the number of
the month, dd represents the day of the month, and time is represented by hhmmss<ffffff>, where
hh indicates the hours, mm is minutes, ss is the number of seconds, and ffffff indicates millionths of
seconds. w ranges from 10 to 26, with a default value of 16, while d ranges from 0 to 6 for the
fractional part of seconds. The following table gives examples of how to apply this informat to
yield the SAS date value that corresponds to the text shown in each line.

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME19.5.

201607181108 B8601DJ16. 1784459280.0 18JUL16:11:08:00.00000
20141123054509 B8601DJ16. 1732340709.0 23NOV14:05:45:09.00000
201303070814433064 B8601DJ21.4 1678263283.3064 07MAR13:08:14:43.30640
201406241630254 B8601DJ16.1 1719246625.4 24JUN14:16:30:25.40000

DATETIMEw.d

DATETIMEw.d reads SAS datetime values. The datetime value must be in the form ddmonyy(yy),
followed by a blank or a special character, and then the time in the format hh:mm:ss.ff. dd
represents the day of the month, mon is the three-letter month abbreviation, and yy(yy) is the two-
or four-digit year. hh indicates the number of hours, mm is the number of minutes, and ss is the
number of seconds. ff indicates fractional parts of seconds. Both seconds and fractional seconds
are assumed to be zero if they are not present. w can be from 13 to 40, with a default of 18, while d
can range from 0 to 6.

If you use a two-digit year, SAS will apply the YEARCUTOFF= system option in translating the
year. This informat can also read a.m. and p.m. time values.

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME22.1.

22APR2014 5:23 PM DATETIME18. 1713806580.0 22APR2014:17:23:00.0
22APR2014-17:23 DATETIME16. 1713806580.0 22APR2014:17:23:00.0
22APR2014:05:23:15 PM DATETIME22. 1713806595.0 22APR2014:17:23:15.0
22APR2014/17:23:15.6 DATETIME21.1 1713806595.6 22APR2014:17:23:15.6

MDYAMPMw.d
MDYAMPMw.d reads datetime values in the form of mm-dd-yy(yy) hh:mm:ss.ff AM|PM, where
mm represents the number of the month, dd represents the day of the month, and yy(yy) is the two-
or four-digit year, followed by the time where hh represents hours, mm represents minutes, ss
represents optional seconds, ff represents optional fractional seconds, and AM|PM indicates a.m. or

80 The Essential Guide to SAS Dates and Times, Second Edition

p.m. The separators are not optional and can be a hyphen (-), or period (.), or slash (/), or colon (:).
The default value of w is 19 and ranges from 8 to 40, while d ranges from 0 to 39 for the fractional
part of seconds. The following table gives examples of how to apply this informat to yield the SAS
date value that corresponds to the text shown in each line. Line 4 shows that this format can
translate twenty-four-hour clock values without the AM|PM indicator.

 Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME19.2.

1 05-08-2015 9:33 AM MDYAMPM18. 1746696780.00 08MAY15:09:33:00.00
2 10-26-2014 5:00 PM MDYAMPM18. 1729962000.00 26OCT14:17:00:00.00
3 04-25-2013 1:00:57.4 PM MDYAMPM22.3 1682514057.40 25APR13:13:00:57.40
4 08-09-2017 14:15 MDYAMPM17. 1817907300.00 09AUG17:14:15:00.00

RMFSTAMP8.

RMFSTAMP8. converts IBM mainframe RMF date and time records into SAS datetime values.
The width is shown as 8 because RMF records are packed-decimal records with 4 bytes of time
information followed by 4 bytes of date information. While PDTIME4. also reads RMF records, it
only reads the time portion of the RMF record and produces a SAS time value. RMFSTAMP8.
reads both the date and time portions of the RMF record and produces a SAS datetime value.

SHRSTAMP8.
SHRSTAMP8. converts IBM mainframe SHR date and time records into SAS datetime values. The
width is shown as 8 because SHR records are packed-decimal records with 4 bytes of date
information followed by 4 bytes of time information.

SMFSTAMP8.
SMFSTAMP8. converts IBM mainframe SMF records into SAS datetime values. The width is
shown as 8 because SMF records are packed-decimal records with 4 bytes of time information
followed by 4 bytes of date information. This enables you to read SMF records without regard to
operating system.

YMDDTTMw.d
YMDDTTMw.d reads datetime values in the form <yy>yy-mm-dd hh:mm:ss.ff, where special
characters such as a hyphen (-), period (.), slash (/), or colon (:) are used to separate the year,
month, day, hour, minute, and seconds. Separators are required for each component. The year can
be either two or four digits. yy(yy) is the two- or four-digit year, mm represents the number of the
month, and dd represents the day of the month. The time follows, where hh represents hours, mm
represents minutes, ss represents optional seconds, and ff represents optional fractional seconds,
which must be separated from the seconds by a decimal point (.). This informat will translate a.m.
and p.m. time values. The default value of w is 19 and can range from 13 to 40, while d ranges
from 0 to 39 for the fractional part of seconds.

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 81

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME22.1.

2014-07-18-11-08-05 YMDDTTM19. 1721300885.0 18JUL2014:11:08:05.0
2014/01/11:05:19:45 YMDDTTM19. 1705036785.0 11JAN2014:05:19:45.0
1983.02.18.05:59 PM YMDDTTM20. 730058340.0 18FEB1983:17:59:00.0
2015-08-23-14:24:16.5 YMDDTTM22.1 1755959056.5 23AUG2015:14:24:16.5

3.4.4 The "ANYDATE" Series of Informats
SAS 9 addressed an issue with the processing of dates and times that has always affected SAS
users. Although informats handle the translation of a string of characters into SAS date and time
values easily, in order to use them you had to know what the string of characters looked like before
you processed them. Given the many ways that dates and times can be represented, it was not
uncommon for several records to have incorrect values after processing because of an error in the
underlying text strings being translated. For example, if you expect the dates to be in the form
"ddMOMyyyy," but halfway through the file the strings were entered as "mmddyyyy," at least half
of your resulting data set will have missing date values. The DATE. informat cannot read strings
formatted to be read with the MMDDYY. informat, and vice versa. There are now three informats
that will intelligently and, for the most part, successfully enable you to avoid this problem.

The ANYDTDTE., ANYDTDTM., and ANYDTTME. informats will translate dates, datetime
values, and time values, respectively, into their corresponding SAS values. This translation will be
performed without having to know the representation of these date, datetime, and time values in
advance. Some limits exist as to the types of representations these informats will be able to
translate, and in this era of big data you should also be aware that using these informats will require
more CPU time than if you are able to use one of the regular informats to process your data.

The potential for confusion exists with DDMMYY, MMDDYY, and YYMMDD values, especially
in the presence of two-digit year values. The SAS option DATESTYLE indicates how such
confusions will be resolved. The possible values for the DATESTYLE= system option are shown
in the following table.

Value Explanations

MDY Sets the default order as month, day, year. "10-03-12" would be translated as October 3,
2012.

YMD Sets the default order as year, month, day. "10-03-12" would be translated as March 12,
2010.

DMY Sets the default order as day, month, year. "10-03-12" would be translated as March 10,
2012.

LOCALE
(default)

Sets the default value according to the LOCALE= system option. When the default value
for the LOCALE= system option is "English_US," this sets DATESTYLE to MDY.
Therefore, by default, "10-03-12" would be translated as October 3, 2012.

82 The Essential Guide to SAS Dates and Times, Second Edition

Note: YDM, MYD, and DYM have been removed from SAS 9.3 and later versions. If you
continue to use them in legacy code, no error will appear in the log, but any input strings that
cannot be translated without knowing the DATESTYLE (for example, "10-03-12") will be
translated as missing.

What happens when the input string cannot be translated using the DATESTYLE option in effect?
The ANYDT series of informats will test the input string to see whether one of the other
DATESTYLE options will work. If only one DATESTYLE produces a valid SAS date or datetime
value, then SAS will process the input string using that DATESTYLE. However, it is entirely
possible that the input string can be translated using more than one of the remaining DATESTYLE
options. For example, the input string "270328" cannot be translated using MDY, but both YMD
and DMY will produce a valid SAS date. SAS has an internal priority of which DATESTYLE
takes precedence when the option in effect will not work, and two or more DATESTYLES will. It
is based on the DATESTYLE option in effect. The following table details how the DATESTYLE
is chosen if the DATESTYLE option in effect does not yield a valid SAS date value.

DATESYTLE
Option in
Effect

Input
String

DATESTYLEs
Possible

DATESTYLE
Used Result

MDY 170514 YMD, DMY YMD May 14, 2017
YMD 110845 DMY, MDY DMY August 11, 1945
DMY No ambiguity is possible. DMY will always take precedence.

In short, when the DATESTYLE is MDY, then any ambiguity will be resolved using YMD, and
when the DATESTYLE is YMD, any ambiguity is resolved using DMY.

ANYDTDTEw.
ANYDTDTEw. will translate data that can be read with the following informats: DATE,
DATETIME, DDMMYY, JULIAN, MDYAMPM, MMDDYY, MMxYY, MONYY, TIME,
YMDDTTM, YYMMDD, YYMMn, or YYQ into SAS date values. This informat can also work
with the following standard date formats: "February 25, 2012," "08/2014," or "2015-05." w can
range from 5 to 32, and the default width is 9. This informat extracts date values from a datetime
string. However, if only a time value is given, the date is assumed to be January 1, 1960. The
following table uses OPTIONS DATESTYLE=MDY as the default interpretation for two-digit
year values.

Characters
Read Informat

Resulting
SAS Date
Value

Formatted Date
Using
WORDDATE. Comments

05172014 ANYDTDTE8. 19860 May 17, 2014
20140517 ANYDTDTE8. 19860 May 17, 2014

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 83

Characters
Read Informat

Resulting
SAS Date
Value

Formatted Date
Using
WORDDATE. Comments

2014Q2 ANYDTDTE6. 19814 April 1, 2014 First day of the 2nd
quarter.

051714 ANYDTDTE6. 19860 May 17, 2014
17052014 ANYDTDTE8. 19860 May 17, 2014
170514 ANYDTDTE6. 20953 May 14, 2017 The date string can

be interpreted as
YMD or DMY.
YMD is used
because the
DATESTYLE in
effect for this
example is MDY.

17MAY2014:15:12:06 ANYDTDTE18. 19860 May 17, 2014
15:12:06 ANYDTDTE8. 0 January 1, 1960 Time value, date is

considered to be
January 1, 1960.

2014137 ANYDTDTE7. 19860 May 17, 2014
MAY2014 ANYDTDTE7. 19844 May 1, 2014 No day is given;

day is set to first
day of month.

17MAY2014 ANYDTDTE9. 19860 May 17, 2014
May 17, 2014 ANYDTDTE12. 19860 May 17, 2014
14-05 ANYDTDE9. 19844 May 1, 2014 Two-digit year

uses
YEARCUTOFF=
option. No day is
given; day is set to
first day of month.

2014-05 ANYDTDTE7. 19844 May 1, 2014 No day is given;
day is set to first
day of month.

05-2014 ANYDTDTE7. 19844 May 1, 2014 No day is given;
day is set to first
day of month.

05-17-2014 3:12:06 PM ANYDTDTE21. 19860 May 17, 2014
2014-05-17-15:12:06 ANYDTDTE19. 19860 May 17, 2014

84 The Essential Guide to SAS Dates and Times, Second Edition

ANYDTDTMw.

ANYDTDTMw. will translate data that can be read with the following informats: DATE,
DATETIME, DDMMYY, JULIAN, MDYAMPM, MMDDYY, MMxYY, MONYY, TIME,
YMDDTTM, YYMMDD, YYMMn, or YYQ into SAS datetime values. This informat can also
work with the following standard date formats: "February 25, 2012," "08/2014," or "2015-05." w
can range from 1 to 32, and the default width is 19.

This informat will parse time values from input strings based on colons and periods. If there is one
colon (for example, 15:12), the first two digits are translated as hours and the last two as minutes. If
there are two colons (for example, 15:12:06), the digits preceding the first colon are translated as
hours, the next set of two digits as minutes, and the last two as seconds. If there is a single decimal
point and one or more colons (for example, 12:06.5), the value following the decimal point is
translated as a decimal fraction of seconds, and the value preceding the decimal point is considered
to be seconds. A single colon is therefore interpreted as minutes:seconds.fractional seconds. In
order to account for hours, the correct format would be hours:minutes:seconds.fractional seconds.

If there are multiple decimal points (for example, 15.12.06), then they are considered to be
delimiters for date values and thus are not translated as time values.

This informat extracts datetime values from a string. If only a time value is given, the date is
assumed to be January 1, 1960. If only a date value is given, the time is assumed to be midnight
(0:00). The following table uses the same input data as is used in the ANYDTDTE. informat
example above.

Characters
Read Informat

Resulting SAS
Datetime
Value

Formatted Datetime
Using DATETIME22.

05172014 ANYDTDTM. 1715904000 17MAY2014:00:00:00
20140517 ANYDTDTM. 1715904000 17MAY2014:00:00:00
2014Q2 ANYDTDTM. 1711929600 01APR2014:00:00:00
051714 ANYDTDTM. 1715904000 17MAY2014:00:00:00
17052014 ANYDTDTM. 1715904000 17MAY2014:00:00:00
170514 ANYDTDTM. 1810339200 14MAY2017:00:00:00
17MAY2014:15:12:06 ANYDTDTM. 1715958726 17MAY2014:15:12:06
15:12:06 ANYDTDTM. 54726 01JAN1960:15:12:06
2014137 ANYDTDTM. 1715904000 17MAY2014:00:00:00
MAY2014 ANYDTDTM. 1714521600 01MAY2014:00:00:00
17MAY2014 ANYDTDTM. 1715904000 17MAY2014:00:00:00
May 17, 2014 ANYDTDTM. 1715904000 17MAY2014:00:00:00

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 85

Characters
Read Informat

Resulting SAS
Datetime
Value

Formatted Datetime
Using DATETIME22.

2014-05 ANYDTDTM. 1714521600 01MAY2014:00:00:00
05-2014 ANYDTDTM. 1714521600 01MAY2014:00:00:00
14-05 ANYDTDTM. 1714521600 01MAY2014:00:00:00
05-17-2014 3:12:06 PM ANYDTDTM. 1715958726 17MAY2014:15:12:06
2014-05-17-15:12:06 ANYDTDTM21. 1715958726 17MAY2014:15:12:06

ANYDTTMEw.

ANYDTTMEw. will translate data that can be read with the following informats: DATE,
DATETIME, DDMMYY, JULIAN, MDYAMPM, MMDDYY, MMxYY, MONYY, TIME,
YMDDTTM, YYMMDD, YYMMn, or YYQ into SAS time values. This informat can also work
with the following standard date formats: "February 25, 2012," "08/2014," or "2015-05." w can
range from 1 to 32, and the default width is 8. ANYDTTMEw. can extract time values from a
datetime value. However, if only a date value is given, the time is assumed to be 12:00 a.m.

Characters
Read Informat

Resulting
SAS
Time
Value

Formatted
Time Using
TIME8. Comments

17MAY2014:15:12:06 ANYDTTME18. 54726 15:12:06 Extracted time from
datetime string.

15:12:06 ANYDTTME. 54726 15:12:06
05-17-2014 3:12:06 PM ANYDTTME21. 54726 15:12:06 Extracted time from

datetime string,
processed AM/PM
correctly.

2014-05-17-15:12:06 ANYDTTME18. 54726 15:12:06 Extracted time from
datetime string.

08.05 ANYDTTME. . . Times are delimited
with colons (:).

08:05 ANYDTTME. 29100 8:05:00
08:05:05 ANYDTTME. 29105 8:05:05
17:15 ANYDTTME. 62100 17:15:00
2:45 PM ANYDTTME. 53100 14:45:00

86 The Essential Guide to SAS Dates and Times, Second Edition

Characters
Read Informat

Resulting
SAS
Time
Value

Formatted
Time Using
TIME8. Comments

6 AM ANYDTTME. . . Need a delimiter to
provide context for
translation.

6:00 AM ANYDTTME. 21600 6:00:00
27:36:58 ANYDTTME. 99418 27:36:58

3.4.5 So Why Not Just Use the "ANYDATE" Series of Informats?
It is tempting to automatically use ANYDTDTE., ANYDTTM., or ANYDTTME. to process
strings representing dates, datetimes, and times. You do not have to worry about the formatting of
the input string, and SAS will make sense out of it. The "ANYDATE" informats do have
limitations, and the rules that SAS follows might not be the rules that you need to apply.

First, there is the matter of the additional processing needed. These informats go through a decision
tree to determine how to translate every single value encountered; therefore, the amount of
additional processing will increase with the number of times each "ANYDATE" informat has to be
used. This would have a negligible impact on a small amount of data, but if you need to use them
on big data, you might want to consider standardizing the representation of your date, time, and
datetime text values beforehand and using the corresponding informat. Second, it is entirely
possible that you would want to consider a nonstandard value erroneous and don't want SAS to
decide what to do with it without you being able to inspect it first. Third, exceptions can occur,
even when the use of an ANYDATE informat is warranted. While it is always a good idea to check
all data that you are converting to SAS from another source and especially when you are converting
dates, times, and datetime values, it is critical if you are using the ANYDT. informats.

Finally, it is important to note that the ANYDATE series of formats are designed to handle the
issue of varying ways of representing dates, but they, like all other date, time, and datetime
informats, are not designed to handle dirty data. Missing separators, misspelled words, and missing
date components are a few of the major data problems that are encountered when processing dates,
times, and datetimes from sources other than SAS. Unless you specifically provide code to fix
those problems on the fly or can ensure that your dates are clean before processing them, you will
wind up with missing date, time, or datetime values in your data set. SAS programmers have
written a great deal of code to handle this specific issue; King and Fleming show one such
approach in the 2011 SAS Global Forum proceedings (see
http://support.sas.com/resources/papers/proceedings11/117-2011.pdf). Example 3.7 is a skeleton of
an approach using a user-written function and the ANYDATE. informat.

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 87

Example 3.7: A Simple Function to Handle Dates with Missing Separators

LIBNAME control "c:\book\2ndEd\examples";
ODS ESCAPECHAR='~';
OPTIONS CMPLIB=(control.functions);

PROC FCMP OUTLIB=control.functions.dates;

FUNCTION makedate(cdate $)$;
 LENGTH dtstr $42
 supr $16;
 supr=' ';
 * assume that date is in MMDDYY form, but check;
 * missing dates often have a form of __/__/____;
 IF SUBSTR(cdate,7,4) NOT IN (' ','____') THEN DO;
 * assume year is good;
 yy=INPUT(SUBSTR(cdate,7,4),4.);
 m=SUBSTR(cdate,1,2);
 IF '01' <= m <= '12' THEN DO;
 mm=INPUT(m,2.);
 * Month is good chk day;
 * Use INTNX to find the maximum number of days in current
month;
 d=SUBSTR(cdate,4,2);
 IF '01' <= d <= PUT(DAY(INTNX('MONTH',MDY(mm,1,yy),0,'e')
),z2.)
 THEN dd=INPUT(d,2.);
 ELSE DO;
 * Day is bad for this month;
 * Fix by dividing number of days in month by 2;
 dd = CEIL(DAY(INTNX('MONTH',mdy(mm,1,yy),0,'e'))/2);
 supr = '~{super Day}';
 END;
 END;
 ELSE DO;
 * Month is bad - reset month and day;
 mm=6;
 dd=31;
 supr = '~{super Month}';
 END;
 * Create the date value;
 date=MDY(mm,dd,yy);
 dtstr = CATT(PUT(date,MMDDDYY10.),supr);
 END;
 ELSE DO;
 * yr is bad;
 dtstr = 'Unknown~{super Y}';
 END;
 RETURN(dtstr);
ENDSUB;
RUN;
QUIT;

88 The Essential Guide to SAS Dates and Times, Second Edition

PROC FORMAT;
 VALUE $mkdt
 OTHER=[makedate()];
RUN;

The code in Example 3.7 created a function to be used as a format for our dates, which will impute
a replacement date string when provided with a date string that may or may not have missing date
components. Note that this is a character format because it has to treat the incoming date data as
character strings. If you try to read date strings with missing date components as a SAS date, you
will get a missing value.

Now let's read in some sample data. The data set RPTDATES contains production error tracking
data from a legacy system. Unfortunately, some of the date data was corrupted, so there are missing
and incorrect days, months, and years.

DATA rptdates;
INPUT recno @4 rptdt $10. errs;
DATALINES;
1 13/15/2013 374
2 09/08/2013 3
3 02/30/2013 32
4 __/15/2013 15
5 04/27/2013 195
6 05/__/2013 17
7 07/08/____ 20
8 06/04/013 5
9 08/32/2013 4
10 11//2013 6
11 01/23/2031 11
;;;;
RUN;

But now that we've created a function that is to be used as a format, let's use it. Below is a data set
with some dates and a count of machine faults occurring on that date. As you can see, the dates
have not been entered very well, with missing components (rows 3, 5, and 6) and typographical
errors (rows 7 and 9). We're going to use the format $MKDT to impute the dates we can, and
annotate each date that was imputed in the output string.

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values 89

Figure 3.1: RPTDATES Data Set with Invalid Dates

Now we will use a PROC REPORT to display the table and format our bad data. In line 2, we alias
the original date string as a second column in order to show it with and without the format that we
created. We leave the original date string in the variable rptdt and in line 4 we apply the format
that we created to the values in the aliased column dt.

1. PROC REPORT DATA=rptdates NOWD SPLIT='\';
2. COLUMN rptdt rptdt=dt errs;
3. DEFINE rptdt / DISPLAY "Original\Date from\Error Log";
4. DEFINE dt / 'Imputed\Date' f=$mkdt36.;
5. DEFINE errs / "Errors\Reported";
6. RUN;

The result of the PROC REPORT is below. The "Imputed Date" column is nothing more than the
result of displaying the original date string using the $MKDT. format.

Output

Original
Date
from
Error
Log

Imputed
Date

Errors
Reported

13/15/2013 06/30/2013Month 374

90 The Essential Guide to SAS Dates and Times, Second Edition

Original
Date
from
Error
Log

Imputed
Date

Errors
Reported

09/08/2013 09/08/2013 3

02/30/2013 02/14/2013Day 32

__/15/2013 06/30/2013Month 15

04/27/2013 04/27/2013 195

05/__/2013 05/16/2013Day 17

07/08/____ UnknownY 20

06/04/013 UnknownY 5

08/32/2013 08/16/2013Day 4

11//2013 11/15/2013Day 6

01/23/2031 UnknownY 11

This capacity to use PROC FCMP to create functions that process character strings and then use
the function you create in a custom informat (or format, for that matter) gives you the ability to
create custom date informats. With a little creativity on your part, you can use this method to solve
some of the more difficult date processing challenges that you may encounter.

Chapter 4: ISO 8601 Dates, Times, Datetimes,
Durations, and Functions

4.1 What Is ISO 8601? .. 91

4.2 ISO 8601 Formats .. 92

4.3 ISO 8601 Informats .. 103

4.4 Time Zone Functions .. 111

4.5 ISO 8601 Durations and Intervals .. 116

4.6 Conclusion ... 136

4.1 What Is ISO 8601?
ISO 8601 is the name of an internationally accepted way of describing dates and times using
numbers and is one of numerous international standards maintained by the International Standards
organization (ISO). While using numbers eliminates the need for translating month names, the
standard defines the order of date and time components in a date string, removing the confusion of
whether 01-11-05 means January 11, 2005, November 1 2005, or November 5, 2001. This

92 The Essential Guide to SAS Dates and Times, Second Edition

facilitates the exchange of data, especially between international parties. The complete standard
(available from http://www.iso.org/iso/home.html) covers the following:

• Date
• Time of day
• Coordinated universal time (UTC)
• Local time with offset to UTC
• Date and time
• Time intervals
• Recurring time intervals

This standard has been adopted by the Clinical Data Interchange Standards Consortium (CDISC)
for the representation of its date and time data, so those in the pharmaceutical industry are
particularly familiar with it.

SAS has built-in formats specifically designed to display its date, time, and datetime values in the
way described by the standard. There is also a complete set of informats designed to interpret
strings that conform to the standard so that they can easily be converted to SAS date, time, and
datetime values and therefore used in calculations and stored in SAS data sets. One major
difference between the ISO formats and informats and their standard counterparts is that the ISO
standard allows for missing components. For example, if you have a date value where you only
know the month and year, it can be explicitly represented in an ISO-standard date string. The
standard SAS date formats can only represent a complete SAS date value. Even the standard
formats that only display month and year use complete SAS date values, but the days are not part
of the display. The ISO informats are a little more intricate because of this feature of the standard;
some of the informats perform a default substitution for any missing components in order to create
a valid SAS date, time, or datetime value. By comparison, the standard SAS date, time, and
datetime informats will return a missing value if you present them with a string that has a missing
component. Therefore, while it might seem that some of the formats and informats that we
described in Chapters 2 and 3 will produce results according to the standard, it is much more
reliable to use the formats and informats described in this chapter when you are working with ISO
standard dates and times.

As with standard SAS formats, it is critical that you only use date formats and informats for date
values, time formats and informats with time values, and datetime formats and informats with
datetime values.

4.2 ISO 8601 Formats
All the ISO 8601 formats are left-justified, as opposed to the majority of standard SAS date, time,
and datetime formats, which are right-justified because they represent numeric values. The formats
in the following descriptions are grouped by date, time, and datetime. Each format has a basic
(format name starts with "B") and an extended (format name starts with "E") version. The extended

http://go.sas.com/66300.001

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 93

version of the ISO formats uses delimiters between components, while the basic versions do not.
All the following examples will present the basic version of the format, followed by the extended
version of the same format with the same SAS value, so you can see the difference. It is important
to note that SAS continues to develop formats and informats, so it is always a good idea to check
the documentation that came with your release of SAS, or the online documentation at
support.sas.com for any additional formats and/or informats.

4.2.1 ISO Date Formats

B8601DAw.
B8601DAw. writes date values in the ISO 8601 basic date notation yyyyMMdd, where yyyy is the
four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the
month. It is left-justified within the field. w can be from 8 to 10, and the default width is 10. The
following table shows the result when the date value is 19920, which corresponds to July 16, 2014.

Format Name Result Comment
B8601DA8. 20140716
B8601DA9. 20140716
B8601DA10. 20140716

E8601DAw.

E8601DAw. writes date values in the ISO 8601 extended date notation yyyy-MM-dd, where yyyy is
the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the
month. It is left-justified. w is always 10. The following table shows the result when the date value
is 19920, which corresponds to July 16, 2014.

Format Name Result Comment
E8601DA10. 2014-07-16

4.2.2 ISO Time Formats

You can determine which of the ISO 8601 time formats you want to use by answering two
questions. First, does the SAS time value that you are going to display represent UTC or local
time? If it represents UTC, then you will use either the *8601TX. or the *8601TZ. format, and you
have to determine whether you want to display UTC as its local time equivalent (based on the
TIMEZONE= option setting). In that case, you would use the *8601TX. format. If you want to
display the UTC time value as it is stored, use the *8601TZ. format. If the SAS time value
represents local time, then use the *8601LZ. format. The TIMEZONE= option has no effect
because the format understands that the time is the local time.

94 The Essential Guide to SAS Dates and Times, Second Edition

B8601TMw.d
B8601TMw.d writes time values in the ISO 8601 basic time notation hhmmssffffff, where hh
represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff
is decimal fractions of seconds. Note that there are no delimiters in the ISO basic time string, which
might make the result difficult to read. w can be from 6 to 15, with a default width of 8. d can be
from 0 to 6, with a default of 0. The value is left-justified. The following table shows the result
when the time value is 61479.468, which corresponds to the time 5:04:39 p.m. (17:04:39.468):

Format Name Result Comment
B8601TM6. 170439
B8601TM8. 170439
B8601TM10.2. 17043947
B8601TM12. 170439
B8601TM15.3. 170439468

E8601TMw.d

E8601TMw.d writes time values in the ISO 8601 extended time notation hh:mm:ss.ffffff, where hh
represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff
is decimal fractions of seconds. Colons (:) delimit hours, minutes, and seconds, while a decimal
point delimits the decimal portion of seconds. w can be from 8 to 15, with a default width of 8. d
can be from 0 to 6, with a default of 0. The value is left-justified. The following table shows the
result when the time value is 61479.468, which corresponds to the time 5:04:39 p.m.
(17:04:39.468):

Format Name Result Comment
E8601TM6.
E8601TM8. 17:04:39
E8601TM10.2. 17:04:39.5 Note the rounding of the fractional seconds.
E8601TM12. 17:04:39
E8601TM15.3. 17:04:39.468

B8601TXw.d

This format is available as of SAS version 9.4. B8601TXw.d adjusts a Coordinated Universal
Time (UTC) value to the user's local time. Since it is intended for clock times only, values greater
than 86400 or less than 0 will show asterisks. The format writes the adjusted local time in the ISO
8601 basic time notation hhmmssffffff+|−hhmm, where hh represents zero-padded hours, mm
represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of
seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 95

the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time
represented as hhmm, all without delimiters, as this is a basic ISO format. The offset is calculated
from the time at the zero meridian in Greenwich, England, using the TIMEZONE= system option.
If TIMEZONE is not set, then the user local time is based on the system clock. w can be from 9 to
20, with a default width of 14. d can be from 0 to 6, with a default of 0. You will need to ensure
that you have a large enough width specification, or else the time zone offset could be truncated or
dropped completely. The value is left-justified. The following table shows the result when the time
value is 37050, which corresponds to the time 10:17:30 a.m. Greenwich Mean Time. As you can
see, the value displayed changes with the time zone.

Format Name Result OPTIONS TIMEZONE=
B8601TX9. 144730+04 Asia/Kabul
B8601TX12. 171730+0700 Asia/Omsk
B8601TX14. 052500-0500 America/Winnipeg
B8601TX16. 221730+1200 Pacific/Fiji

E8601TXw.d

This format is available as of SAS version 9.4. E8601TXw.d adjusts a Coordinated Universal
Time (UTC) value to the user's local time. Since it is intended for clock times only, values greater
than 86400 or less than 0 will show asterisks. The format writes the local time in the ISO 8601
extended time notation hh:mm:ss.ffffff+/-hh:mm, where hh represents zero-padded hours, mm
represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of
seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of
the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time
represented as hh:mm. The offset is calculated from the time at the zero meridian in Greenwich,
England, using the TIMEZONE= system option. If TIMEZONE is not set, then the user local time
is based on the system clock. w can be from 9 to 20, with a default width of 14. d can be from 0 to
6, with a default of 0. The value is left-justified. The following table shows the result when the
time value is 37050, which corresponds to the time 10:17:30 a.m. Greenwich Mean Time. As you
can see, the value displayed changes with the time zone.

96 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result OPTIONS TIMEZONE= Comment
E8601TX9. 12:17:30 Africa/Harare Not enough space to display the

offset, but the correct local time is
displayed.

E8601TX. 12:17:30+02:00 Africa/Harare Using the default length corrects
the above problem.

E8601TX12. 15:47:30+05 Asia/Calcutta
E8601TX14. 18:17:30+08:00 Asia/Manila
E8601TX16. 12:17:30+02:00 Europe/Copenhagen

B8601LZw.d

This format is available as of SAS version 9.4. B8601LZw.d displays SAS time values without
any adjustments using the ISO 8601 basic time notation hhmmssffffff+|−hhmm, where hh
represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff
represents decimal fraction of seconds, which is then followed by the time offset from
Coordinated Universal Time (UTC). The time offset is a plus (for time zones east of the zero
meridian) or a minus (for time zones west of the meridian), followed by the offset time
represented as hhmm, all without delimiters, as this is a basic ISO format. The offset is calculated
based on the time zone at the local SAS session It is not affected by the TIMEZONE= system
option. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0.
The value is left-justified. The main difference between this format and the B8601TX. format is
that the SAS time value is considered to be local time, not Greenwich Mean Time. For easier
comparison, we will use the same SAS time value as with the *8601TX examples. The following
table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m.
Central Daylight time.

Format Name Result Comment
B8601LZ9. 101730Z Z is displayed in place of the offset because there is not enough

space for the offset.
B8601LZ12. 101730-0500
B8601LZ14. 101730-0500
B8601LZ16. 101730-0500

E8601LZw.d

This format is available as of SAS version 9.4. E8601LZw.d displays SAS time values without
any adjustments using the ISO 8601 extended time notation hh:mm:ss.ffffff+/-hh:mm, where hh
represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff
represents decimal fraction of seconds, which is then followed by the time offset from
Coordinated Universal Time (UTC). The time offset is a plus (for time zones east of the zero

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 97

meridian) or a minus (for time zones west of the meridian), followed by the offset time
represented as hh:mm. The offset is calculated based on the time zone at the local SAS session. It
is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a default width of
14. d can be from 0 to 6, with a default of 0. The value is left-justified. The main difference
between this format and the E8601TX. format is that the SAS time value is considered to be local
time, not Greenwich Mean Time. For easier comparison, we will use the same SAS time value as
with the *8601TX examples. The following table shows the result when the time value is 37050,
which corresponds to the time 10:17:30 a.m. Central Daylight time.

Format
Name Result Comment
E8601LZ9. 10:17:30Z Z is displayed in place of the offset because there is not enough

space for the offset.
E8601LZ12. 10:17:30Z Z is displayed in place of the offset because there is not enough

space for the offset.
E8601LZ14. 10:17:30-05:00
E8601LZ16. 10:17:30-05:00

B8601TZw.d

This format is available as of SAS version 9.4. B8601TZw.d displays a SAS time value as a
Coordinated Universal Time (UTC) value. Since it is intended for clock times only, values greater
than 86400 or less than 0 will show asterisks. The format writes the UTC time in the ISO 8601
basic time notation hhmmssffffff+|−hhmm where hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds,
which is then followed by the time offset. The time offset is always going to be displayed as
+0000, because the resulting time display is the time at the zero meridian in Greenwich, England.
This format is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a
default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The
following table shows the result when the time value is 37050, which corresponds to the time
10:17:30 a.m. Greenwich Mean Time.

98 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Result Comment
B8601TX9. 101730Z Z is displayed in place of the offset because there is not

enough space for the offset.
B8601TX12. 101730+0000

B8601TX14. 101730+0000

B8601TX16. 101730+0000

E8601TZw.d

This format is available as of SAS version 9.4. E8601TZw.d displays a SAS time value as a
Coordinated Universal Time (UTC) value. Since it is intended for clock times only, values greater
than 86400 or less than 0 will show asterisks. The format writes the UTC time in the ISO 8601
extended time notation hh:mm:ss.ffffff+/-hh:mm, where hh represents zero-padded hours, mm
represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of
seconds, which is then followed by the time offset. The time offset is always going to be displayed
as +00:00, because the resulting time display is the time at the zero meridian in Greenwich,
England. This format is not affected by the TIMEZONE= system option. w can be from 9 to 20,
with a default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The
following table shows the result when the time value is 37050, which corresponds to the time
10:17:30 a.m. Greenwich Mean Time.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 99

Format Name Result Comment
E8601TX9. 10:17:30Z Z is displayed in place of the offset because there is not enough

space for the offset.
E8601TX. 10:17:30+00:00 Using the default length corrects the above problem.

E8601TX12. 10:17:30Z

E8601TX14. 10:17:30+00:00

E8601TX16. 10:17:30+00:00

4.2.3 ISO Datetime Formats

B8601DNw.
B8601DNw. writes dates from datetime values in the ISO 8601 basic date notation yyyyMMdd,
where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded
numerical day of the month. It is left-justified within the field. w can be from 8 to 10, and the
default width is 10. Note that the basic date notation has no delimiters. The datetime value used in
this example is 1664263800, which corresponds to 7:30:00 a.m. on Wednesday, September 26,
2012.

Format Name Result Comment
B8601DN8. 20120926
B8601DN9. 20120926
B8601DN10. 20120926

E8601DNw.

E8601DNw. writes dates from datetime values in the ISO 8601 extended date notation yyyy-MM-
dd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded
numerical day of the month. It is left-justified. w is always equal to 10, and the default width is 10.
The datetime value used in this example is 1664263800, which corresponds to 7:30:00 a.m. on
Wednesday, September 26, 2012.

Format Name Result Comment
E8601DN10. 2012-09-26

B8601DTw.d

B8601DTw.d writes datetime values in the ISO 8601 basic datetime notation
yyyyMMddThhmmssffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is
the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO

100 The Essential Guide to SAS Dates and Times, Second Edition

8601 delimiter for time. Note that there are no other delimiters in the ISO basic datetime string,
including the decimal fractions, which might make the result difficult to read. w can be from 15 to
26, with a default width of 19. d can be from 0 to 6, with a default of 0. The value is left-justified.
The datetime value used in this example is 1686408430.44, which corresponds to 2:47:10.44 p.m.
on Sunday, June 9, 2013.

Format Name Result Comment
B8601DT15.2. 20130609T144710 Not enough width to display fractional seconds.
B8601DT19. 20130609T144710
B8601DT19.2. 20130609T14471044
B8601DT24.1. 20130609T1447104
B8601DT26. 20130609T144710

E8601DTw.d

E8601DTw.d writes datetime values in the ISO 8601 extended datetime notation yyyy-MM-
ddThh:mm:ss.ffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-
padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded
minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO 8601
delimiter for time. Colons (:) delimit hours, minutes, and seconds, while a decimal point delimits
the decimal portion of seconds. w can be from 19 to 26, with a default width of 19. d can be from
0 to 6, with a default of 0.The value is left-justified. The datetime value used in this example is
1686408430.44, which corresponds to 2:47:10.44 p.m. on Sunday, June 9, 2013.

Format Name Result Comment
E8601DT19. 2013-06-09T14:47:10
E8601DT19.2. 2013-06-09T14:47:10 Width not large enough to display fractional

seconds.
E8601DT22.1. 2013-06-09T14:47:10.4
E8601DT24. 2013-06-09T14:47:10
E8601DT24.2. 2013-06-09T14:47:10.44

B8601DXw.d

This format is available as of SAS version 9.4. B8601DXw.d adjusts a Coordinated Universal
Time (UTC) datetime value to the user's local date and time. The format writes the adjusted local
time in the ISO 8601 basic datetime and time zone notation yyyyMMddThhmmssffffff+|−hhmm,
where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical
day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss
represents seconds, and ffffff is decimal fractions of seconds, which is then followed by the time
offset. Note that there are no delimiters in the ISO basic datetime string including the +/- of the

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 101

time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time
zones west of the meridian), followed by the offset time represented as hhmm, all without
delimiters. The offset is calculated from the time at the zero meridian in Greenwich, England,
using the TIMEZONE= system option. If TIMEZONE is not set, then the user local time is based
on the system clock. w can be from 20 to 35, with a default width of 26. d can be from 0 to 6, with
a default of 0. The value is left-justified. The following table uses the value 1763371185, which
corresponds to 9:19 a.m. on November 17, 2015, Greenwich Mean Time. As you can see, the
display does not change depending on the width specification, because the minimum length of 20
can accommodate the entire width of the output.

Format Name Result OPTIONS TIMEZONE=

B8601DX20. 20151117T111945+0200 Africa/Cairo
B8601DX22. 20151117T031945-0600 America/Cancun
B8601DX24. 20151117T041945-0500 America/Indianapolis
B8601DX26. 20151117T171945+0800 Asia/Hong_Kong
B8601DX28. 20151117T194945+1030 Australia/Adelaide

E8601DXw.d

This format is available as of SAS version 9.4. E8601DXw.d adjusts a Coordinated Universal
Time (UTC) datetime value to the user's local date and time. The format writes the adjusted local
datetime in the ISO 8601 extended datetime and time zone notation yyyy-MM-ddThhmmss.ffffff+/-
hh:mm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded
numerical day of the month, hh represents zero-padded hours, mm represents zero-padded
minutes, ss represents seconds, and ffffff is decimal fractions of seconds, which is then followed by
the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for
time zones west of the meridian), followed by the offset time represented as hh:mm. The offset is
calculated from the time at the zero meridian in Greenwich, England, using the TIMEZONE=
system option. If TIMEZONE is not set, then the user local time is based on the system clock. w
can be from 20 to 35, with a default width of 26. d can be from 0 to 6, with a default of 0. The
value is left-justified. The following table uses the value 1763371185, which corresponds to 9:19
a.m. on November 17, 2015, Greenwich Mean Time.

102 The Essential Guide to SAS Dates and Times, Second Edition

Format
Name Result

OPTIONS
TIMEZONE= Comment

E8601DX20. 2015-11-17T02:19:45 America/Edmonton Not enough space for the time
offset.

E8601DX22. 2015-11-17T05:19:45-04 America/Halifax Not enough space for minutes
of the time offset. As some
offsets aren't full hours, this
can give you an incorrect
result.

E8601DX26. 2015-11-17T03:19:45-06:00 America/Mexico_City

E8601DX28. 2015-11-17T19:49:45+10:30 Australia/Adelaide

B8601DZw.d

B8601DZw.d displays a SAS datetime value based on the zero meridian Coordinated Universal
Time (UTC) in the ISO 8601 basic datetime and time zone notation
yyyyMMddThhmmssffffff+|−hhmm, where yyyy is the four-digit year, MM is the zero-padded
month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm
represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds,
which is then followed by the time offset. The time offset is always going to be displayed as
+0000, because the resulting time display is the time at the zero meridian in Greenwich, England.
Therefore, this format is not affected by the TIMEZONE= system option. While the SAS
documentation says that w can be from 16 to 35, with a default width of 26, you will get a warning
and a missing value if you use a format width of less than 20. d can be from 0 to 6, with a default
of 0. The value is left-justified. The datetime value used in this example is 1730398875, which
corresponds to 6:21:15 p.m. on October 31, 2014, Greenwich Mean Time.

Format Name Result Comment

B8601DZ20. 20141031T182115+0000 Minimum format width to obtain a result.

B8601DZ26. 20141031T182115+0000

E8601DZw.d

E8601DZw.d displays a SAS datetime value based on the zero meridian Coordinated Universal
Time (UTC) in the ISO 8601 extended datetime and time zone notation yyyy-MM-
ddThhmmss.ffffff+/-hh:mm, where yyyy is the four-digit year, MM is the zero-padded month, dd is
the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds, which is
then followed by the time offset. The time offset is always going to be displayed as +00:00,
because the resulting time display is the time at the zero meridian in Greenwich, England.
Therefore, this format is not affected by the TIMEZONE= system option. w can be from 20 to 35,

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 103

with a default width of 26, and the value is left-justified. d can be from 0 to 6, with a default of 0.
The datetime value used in this example is 1730398875, which corresponds to 6:21:15 p.m. on
October 31, 2014, Greenwich Mean Time.

Format
Name Result Comment

E8601DZ20. 2014-10-31T18:21:15Z Z is used to indicate that the format width isn't wide
enough to accommodate the time zone notation.

E8601DZ22. 2014-10-31T18:21:15Z Z is used to indicate that the format width isn't wide
enough to accommodate the time zone notation

E8601DZ26. 2014-10-31T18:21:15+00:00

E8601DZ28. 2014-10-31T18:21:15+00:00

4.3 ISO 8601 Informats
ISO 8601 informats are designed to process strings of characters that represent ISO 8601 dates,
times, and datetimes and, when used with the INPUT statement or INPUT() or INPUTN()
functions, will produce a SAS date, time, or datetime value when the string is read with the selected
informat.

104 The Essential Guide to SAS Dates and Times, Second Edition

4.3.1 ISO Date Informats

B8601DAw.
B8601DAw. will read date values in both the ISO 8601 basic date notation yyyyMMdd and the ISO
8601 extended date notation yyyy-MM-dd, where yyyy is the four-digit year, MM is the zero-padded
month, and dd is the zero-padded numerical day of the month. w is always 10, and the default is 10.
It is important to note that if either month or day is missing, SAS will use a value of 1 for the
month and/or day to provide a SAS date value. However, this might not be what you want, as your
situation might call for an algorithm to impute dates with missing months and/or days instead.

Characters
Read Informat

SAS
Date
Value

Formatted
Value Using
B8601DA.
Format Comment

20140504 B8601DA. 19847 20140504

201405 B8601DA. 19844 20140501 Missing day, so date is set to first of the
month.

2014 B8601DA. 19724 20140101 Missing month and day, so date is set to
first of the year.

E8601DAw.

E8601DAw. reads date values in the ISO 8601 extended date notation yyyy-MM-dd, where yyyy is
the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the
month. This informat can only have a length of 10, as that is the only length for a date in ISO 8601
extended date notation. Unlike the parallel basic date notation informat, SAS will not substitute a
value of 1 for either missing month or day, and you will get a missing value for your SAS date.

Characters
Read Informat

SAS
Date
Value

Formatted
Value Using
B8601DA.
Format Comment

2014-05- E8601DA10. 19847 2014-05-04

2014-05 E8601DA10. Incomplete date yields missing value.

2014 E8601DA10. Incomplete date yields missing value.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 105

4.3.2 ISO Time Informats

B8601TMw.d
B8601TMw.d reads time values in the ISO 8601 basic time notation hhmmssffffff, where hh
represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff
is decimal fractions of seconds. w can be from 6 to 15, with 8 as the default. Using a w of 6 will
read time values with no decimal portion. d can be from 0 to 6, with a default of 0.

Characters
Read Informat

SAS Time
Value

Formatted
Value Using
B8601TM.
Format

144535 B8601TM8. 53135.0 144535

0630 B8601TM8. 23400.0 063000

1208455 B8601TM10.1 43725.5 120846

E8601TMw.d

E8601TMw.d reads time values in the ISO 8601 extended time notation hh:mm:ss.ffffff, where hh
represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff
is decimal fractions of seconds. w can be from 8 to 15, with 8 as the default. Using a w of 8 will
read time values with no decimal portion. d can be from 0 to 6, with a default of 0.

Characters
Read Informat

SAS
Time
Value

Formatted
Value Using
E8601TM.
Format Comment

10:17:45 E8601TM8. 37065.00 10:17:45.00

18:05 E8601TM8. 65100.00 18:05:00.00 Only missing seconds are set to zero; any
other missing components will result in a
missing time value.

07:15:12.25 E8601TM12.2 26112.25 07:15:12.25

B8601TZw.d

B8601TZw.d reads Coordinated Universal Time (UTC) time values using the ISO 8601 basic time
notation hhmmssffffff,+|−hhmm, where hh represents zero-padded hours, mm represents zero-
padded minutes, ss represents zero-padded seconds, and ffffff is decimal fractions of seconds,
which is then followed by the time offset. The time offset is a plus (for time zones east of the zero
meridian) or a minus (for time zones west of the meridian), followed by the offset time

106 The Essential Guide to SAS Dates and Times, Second Edition

represented as hhmm. The time zone offset might also be indicated by the letter Z, representing the
zero meridian. The offset is calculated from the time at the zero meridian in Greenwich, England,
and the resulting SAS time value will be the time at the zero meridian. w can be from 9 to 20, with
a default width of 14, while d can be from 0 to 6, with a default of 0. Since this informat is
intended to only read clock times, values resulting in times greater than 24:00:00 or less than
00:00:00 will be adjusted appropriately so that the result will be within the 24-hour clock.

Characters
Read Informat

SAS
Time
Value

Formatted Value
Using B8601TZ.
Format Comment

175200+0000 B8601TZ14. 64320 175200+0000
175200Z B8601TZ9. 64320 175200+0000 If the time at the zero meridian is

represented by a Z, you should use the
format width of 9.

091520+0600 B8601TZ14. 11720 031520+0000
210800-0500 B8601TZ14. 7680 020800+0000 Instead of 260800, the value is adjusted

to 020800.

E8601TZw.d

E8601TZw.d reads Coordinated Universal Time (UTC) time values using the ISO 8601 extended
time notation hh:mm:ss.ffffff+|−hh:mm, where hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents zero-padded seconds, and ffffff is decimal fractions of seconds,
which is then followed by the time offset. The time offset is a plus (for time zones east of the zero
meridian) or a minus (for time zones west of the meridian), followed by the offset time
represented as hh:mm. The time zone offset might also be indicated by the letter Z, representing
the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich,
England, and the resulting SAS time value will be the time at the zero meridian. w can be from 9
to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. Since this informat is
intended to only read clock times, values resulting in times greater than 24:00:00 or less than
00:00:00 will be adjusted appropriately so that the result will be within the 24-hour clock.

Characters Read Informat

SAS
Time
Value

Formatted Value
Using
E8601TZ20.2
Format Comment

17:52:00+00:00 E8601TZ14. 64320.00 17:52:00.00+00:00
17:52:00Z E8601TZ9. 64320.00 17:52:00.00+00:00 If the time at the zero

meridian is represented by a
Z, you should use the format
width of 9.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 107

Characters Read Informat

SAS
Time
Value

Formatted Value
Using
E8601TZ20.2
Format Comment

06:00:30.57+08:00 E8601TZ18.2 79230.57 22:00:30.57+00:00 Adjusted to give the time
value of 22:00:30.57 instead
of -02:00:30.57.

04:17:00-05:00 E8601TZ14. 33420.00 09:17:00.00+00:00

You might wonder why a UTC value of 06:00:30.57+08:00 yields a time value of 22:00:30.57 at
the zero median, and not 14:00:30.57. The +08:00 hour offset means that GMT plus 8 hours will
give you the local time. Therefore, the conversion from local time to time at the zero median is
local time minus the offset. 6-8=-2, which is then adjusted to 22 by adding 24 hours.

E8601LZw.d

E8601LZw.d reads Coordinated Universal Time (UTC) time values using the ISO 8601 extended
time notation hh:mm:ss.ffffff+|−hh:mm, where hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents zero-padded seconds, and ffffff is decimal fractions of seconds,
which is then followed by the time offset. The time offset is a plus (for time zones east of the zero
meridian) or a minus (for time zones west of the meridian), followed by the offset time
represented as hh:mm. The time zone offset might also be indicated by the letter Z, representing
the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich,
England, and the resulting SAS time value will be the time of the local SAS session, based on the
system clock. It is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a
default width of 14. d can be from 0 to 6, with a default of 0. Since this informat is intended to
only read clock times, values resulting in times greater than 24:00:00 or less than 00:00:00 will be
adjusted appropriately so that the result will be within the 24-hour clock.

Characters Read Informat

SAS
Time
Value

Formatted Value
Using E8601LZ.
Format Comment

17:52:00+00:00 E8601LZ14. 64320.00 17:52:00.00-05:00 The time of the local SAS
session is GMT-5.

17:52:00Z E8601LZ9. 64320.00 17:52:00.00-05:00 If the time at the zero meridian is
represented by a Z, you should
use the format width of 9.

06:00:30.57+08:00 E8601LZ18.2 79230.57 22:00:30.57-05:00

04:17:00-05:00 E8601LZ14. 33420.00 09:17:00.00-05:00

108 The Essential Guide to SAS Dates and Times, Second Edition

4.3.3 ISO Datetime Informats

B8601CIw.d
B8601CIw.d reads IBM time values with a century marker of the form cyyMMddhhmmss<fff>,
where c represents the century digit. The century digit is calculated by subtracting 1900 from the
current year, dividing by 100, and dropping the remainder. yy is the two-digit year from 00 to 99,
MM represents the number of the month, and dd represents the day of the month. The time is
represented by hhmmss<fff>, where hh indicates the hours, mm is minutes, ss is the number of
seconds, and fff indicates thousandths of seconds. w ranges from 10 to 26, with a default value of
16, while d ranges from 0 to 6 for the fractional part of seconds. However, it is important to note
that there are only 3 places of decimal precision.

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME25.3.

11504231905 B8601CI16. 1745435100.0 23APR2015:19:05:00.000
0560928053505 B8601CI16. -102795895.0 28SEP1956:05:35:05.000
1140630102416454 B8601CI19.3 1719743056.5 30JUN2014:10:24:16.454
2131216094500 B8601CI16. 4858479900.0 16DEC2113:09:45:00.000

B8601DJw.d
B8601DJw.d reads datetimes in standard Java date and time notation yyyyMMddhhmmssffffff,
where yyyy is the four-digit year, MM represents the number of the month, dd represents the day of
the month, and time is represented by hhmmss<ffffff>, where hh indicates the hours, mm is
minutes, ss is the number of seconds, and ffffff indicates millionths of seconds. w ranges from 10 to
26, with a default value of 16, while d ranges from 0 to 6 for the fractional part of seconds. The
following table gives examples of how to apply this informat to yield the SAS date value that
corresponds to the text shown in each line.

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME25.4

201607181108 B8601DJ16. 1784459280.0 18JUL2016:11:08:00.0000

20141123054509 B8601DJ16. 1732340709.0 23NOV2014:05:45:09.0000

201303070814433064 B8601DJ21.4 1678263283.3 07MAR2013:08:14:43.3064

201406241630254 B8601DJ16.1 1719246625.4 24JUN2014:16:30:25.4000

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 109

B8601DTw.d

B8601DTw.d reads datetime values in the ISO 8601 basic datetime notation
yyyyMMddThhmmssffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is
the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO
8601 delimiter for time. Note that there are no other delimiters in the ISO basic datetime string,
including the decimal fractions. w can be from 19 to 26, with a default width of 19. d can be from
0 to 6, with a default of 0. It is important to note that if either month or day is missing, SAS will
use a value of 1 for the month and/or day to provide the date for the SAS datetime value, while
setting the hours, minutes, and seconds to zero. However, this might not be what you want, as
your situation might call for an algorithm to impute datetimes with missing months and/or days,
and/or times instead.

Characters
Read Informat

Resulting SAS
Datetime Value

Formatted Datetime
Using DATETIME25.4

20141007T133008745 B8601DT19.3 1728307808.7 07OCT2014:13:30:08.7450
20150716T0859003315 B8601DT19.4 1752656340.3 16JUL2015:08:59:00.3315
20140331T1404 B8601DT19. 1711893840.0 31MAR2014:14:04:00.0000
20150903T06 B8601DT19. 1756879200.0 03SEP2015:06:00:00.0000
20140804 B8601DT19. 1722729600.0 04AUG2014:00:00:00.0000
201312 B8601DT19. 1701475200.0 01DEC2013:00:00:00.0000

2016 B8601DT19. 1767225600.0 01JAN2016:00:00:00.0000

E8601DTw.d

E8601DTw.d reads datetime values in the ISO 8601 extended datetime notation yyyy-MM-
ddThh:mm:ss.ffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-
padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded
minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO 8601
delimiter for time. w can be from 19 to 26, with a default width of 19. d can be from 0 to 6, with a
default of 0. Unlike the parallel basic datetime informat, there is no default substitution for
missing date and/or time components, so the result is a missing datetime value.

Characters Read Informat

SAS
Datetime
Value

Formatted Value
Using
MDYAMPM21.
Format Comment

2014-10-07T13:30:08 E8601DT19. 1728307808 10/7/2014 1:30 PM
2015-07-16T08:59:00 E8601DT19. 1752656340 7/16/2015 8:59 AM

110 The Essential Guide to SAS Dates and Times, Second Edition

Characters Read Informat

SAS
Datetime
Value

Formatted Value
Using
MDYAMPM21.
Format Comment

2014-03-31T14:04 E8601DT19. 1711893840 3/31/2014 2:04 PM
2015-09-03T06 E8601DT19. Incomplete time yields

a missing value.
2014-08-04 E8601DT19. No time provided.

Therefore, datetime is
missing.

2013-12 E8601DT19. Partial date; datetime is
missing.

2016 E8601DT19. Partial date; datetime is
missing.

B8601DZw.d

B8601DZw.d reads a SAS datetime value based on the zero meridian Coordinated Universal Time
(UTC) in the ISO 8601 basic datetime and time zone notation yyyyMMddThhmmssffffff+|−hhmm,
where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical
day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss
represents seconds, and ffffff is the decimal fraction of seconds. This is followed by the time offset,
which is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the
meridian), followed by the offset time represented as hhmm. The time zone offset might also be
indicated by the letter Z, representing the zero meridian. The offset is calculated from the time at
the zero meridian in Greenwich, England, and the resulting SAS datetime value will be the
datetime at the zero meridian. w can be from 20 to 35, with a default width of 26. d can be from 0
to 6, with a default of 0.

Characters Read Informat
SAS Datetime
Value

Formatted Value Using
E8601DZ. Format

20150208T112705+0500 B8601DZ. 1738996025 2015-02-08T06:27:05.00+00:00
20150920T05045914-0400 B8601DZ26.2 1758359099.14 2015-09-20T09:04:59.14+00:00
20140511T211700Z B8601DZ. 1715462220 2014-05-11T21:17:00.00+00:00
20140511T211700+0000 B8601DZ. 1715462220 2014-05-11T21:17:00.00+00:00

E8601DZw.d

E8601DZw.d reads a SAS datetime value based on the zero meridian Coordinated Universal Time
(UTC) in the ISO 8601 extended datetime and time zone notation yyyy-MM-
ddThh:mm:ss.ffffff+|−hh:mm, where yyyy is the four-digit year, MM is the zero-padded month, dd

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 111

is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents
zero-padded minutes, ss represents seconds, and ffffff is the decimal fraction of seconds. This is
followed by the time offset, which is a plus (for time zones east of the zero meridian) or a minus
(for time zones west of the meridian), followed by the offset time represented as hh:mm. The time
zone offset might also be indicated by the letter Z, representing the zero meridian. The offset is
calculated from the time at the zero meridian in Greenwich, England, and the resulting SAS
datetime value will be the datetime at the zero meridian. w can be from 20 to 35, with a default
width of 26. d can be from 0 to 6, with a default of 0.

Characters Read Informat
SAS Datetime
Value

Formatted Value Using
E8601DZ. Format

2015-02-08T11:27:05+05:00 E8601DZ26. 1738996025 2015-02-08T06:27:05.00+00:00
2015-09-20T05:04:59.14-04:00 E8601DZ29.2 1758359099.14 2015-09-20T09:04:59.14+00:00
2014-05-11T21:17:00Z E8601DZ26. 1715462220 2014-05-11T21:17:00.00+00:00
2014-05-11T21:17:00+00:00 E8601DZ26. 1715462220 2014-05-11T21:17:00.00+00:00

4.4 Time Zone Functions

4.4.1 Introduction
There are several time zone functions available in SAS. They are provided as part of National
Language Support (NLS), but these functions are covered in this section because this is where the
formats and informats that provide for time zone offsets and support for UTC are detailed.

For all of the following functions, time-zone-id represents a SAS time-zone ID value. It is also an
optional argument in these functions. If it is not provided, the function will use the current setting
of the TIMEZONE= system option as the default. Before using these functions, you need to check
the setting of your TIMEZONE= system option to make sure that it does have a value, or many of
these functions will produce a missing result. This option can be locked by your SAS administrator.

4.4.2 The TIMEZONE= Option
Many of the ISO time and datetime formats use the TIMEZONE= system option, which is
available as of SAS version 9.4. The TIMEZONE= system option allows you to set a time zone
based on a geographical location. It is not set by default. This option affects the following:

• Times that are recorded in logs and events.
• Creation and modification time stamps on SAS data sets
• The DATE(), DATETIME(), TIME(), and TODAY() functions

112 The Essential Guide to SAS Dates and Times, Second Edition

• The time zone formats B8601DXw.d, E8601DXw.d, B8601LXw.d, E8601LXw.d,
B8601TXw.d, E8601TXw.d, NLDATMZw., NLDATMTZw., and NLDATMWZw.

• The time zone functions described in Section 4.4.3.

The value of the option may be represented in one of two ways: It may be a three- or four-letter
acronym that describes the time zone (for example, EST, for Eastern Standard Time), or a time-
zone ID that specifies a region and an area, separated by a forward slash (/), such as
"America/New_York." The time zone ID values are unique and compatible with Java time zone
names, while the three- or four-letter abbreviations are not. Consider the abbreviation “CST”,
which stands for "China Standard Time," or "Cuba Standard Time," or "Central Standard Time."
How does SAS choose what "CST" represents in your program? It uses the value of the LOCALE=
system option to decide what the correct region and area should be. Of course, if you are running a
SAS program in the United States, but are using the LOCALE= system option to produce output
for another geographical region, this may cause incorrect timing. I would recommend using the
time zone ID instead of the acronyms as a best practice. There are over 500 time zone ID values;
consult the SAS documentation to find the time zone ID values you need.

4.4.3 List of Time Zone Functions
Note that all of these functions are only available beginning with SAS version 9.4.

TZONEID(time-zone-id)
TZONEID will return either the current time zone ID if time-zone-id is a valid value, or a blank
when time-zone-id is missing or invalid. Note: Prior to SAS 9.4 TS1M2, supplying a time-zone-id
for this function will cause an error.

Sample
Function
Call

OPTIONS
TIMEZONE= Result

TZONEID()
TZONEID() Africa/Addis_Ababa AFRICA/ADDIS_ABABA
TZONEID() Africa/Brazzaville AFRICA/BRAZZAVILLE
TZONEID() America/Montreal AMERICA/MONTREAL

TZONENAME(time-zone-id,datetime-value)

TZONENAME returns the current time zone name based on the time zone ID and any daylight
saving time rules. This function will return a blank if time-zone-id is missing, or the TIMEZONE=
system option has no value. In the following example, the TIMEZONE option is set to
'America/Chicago.'

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 113

Sample Function Call Result Comment
TZONENAME() CDT Based on the current time zone and time of year,

Central Daylight Time is returned.
TZONENAME('06JUN2014:08:00'dt) CDT Given the datetime value provided, Central

Daylight Time is returned. Daylight saving time
is in effect in June for the Central time zone.

TZONENAME('06JAN2015:08:00'dt) CST Given the datetime value provided, Central
Standard Time is returned. Daylight saving time
is NOT in effect in January for the Central time
zone.

TZONEOFF(time-zone-id,datetime-value)

TZONEOFF returns the time zone offset from Coordinated Universal Time (UTC) based on time
zone name, and standard or daylight saving time rules. If time-zone-id is blank or missing, the
offset will be determined from the system clock. In the following example, the TIMEZONE
option is set to 'Europe/Stockholm.'

Sample Function Call Result Comment
TZONEOFF() 2:00 Based on the current time zone and time of year,

Central European Summer Time is in effect.
TZONEOFF('06JUN2014:08:00'dt) 2:00 Based on the datetime value provided, Central

European Summer Time is in effect.
TZONEOFF('06JAN2015:08:00'dt) 1:00 According to the datetime provided, Central

European Standard Time is in effect.

TZONES2U(datetime-value, time-zone-id)

TZONES2U converts a SAS datetime value to a Coordinated Universal Time (UTC) datetime
value based on the time zone and daylight saving rules. If time-zone-id is blank or missing, the
offset will be determined from the system clock. In the following example, the TIMEZONE
option is set to 'America/Chicago.'

Sample Function Call Result

TZONES2U('11NOV2014:12:00'dt) 11NOV2014:18:00:00
TZONES2U('11NOV2014:12:00'dt,'Pacific/Guam') 11NOV2014:02:00:00
TZONES2U('11NOV2014:12:00'dt,'Europe/Istanbul') 11NOV2014:10:00:00

114 The Essential Guide to SAS Dates and Times, Second Edition

TZONEDSTNAME(time-zone-id)

TZONEDSTNAME returns the daylight saving time abbreviation for the time zone ID. If time-
zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid
argument to function TZONEDSTNAME()" message in the log. If the time zone provided does
not follow daylight saving time, then the result will be missing. In the following example, the
TIMEZONE option is set to 'America/Chicago.'

Sample Function Call Result Comments
TZONEDSTNAME() CDT
TZONEDSTNAME('Asia/Calcutta') The Indian Time Zone does not observe daylight

saving time, so the result is missing.
TZONEDSTNAME('America/Sao_Paulo') BRST

TZONEDSTOFF(time-zone-id)

TZONEDSTOFF returns the time zone offset value for the specified daylight saving time. If time-
zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid
argument to function TZONEDSTOFF()" message in the log. In the following example, the
TIMEZONE option is set to 'America/Chicago.'

Sample Function Call Result Comments
TZONEDSTOFF() -5:00
TZONEDSTOFF('Asia/Calcutta') . The Indian Time Zone does not observe

daylight saving time, so the result is missing.
TZONEDSTOFF('America/Sao_Paulo') -2:00

TZONESTTNAME(time-zone-id)

TZONESTTNAME returns the standard time name for the time zone ID. This function differs
from the TZONEDSTNAME() function in that it provides the standard time abbreviation as
opposed to the daylight saving time abbreviation. If time-zone-id is missing, and the TIMEZONE=
option is not set, you will receive a "NOTE: Invalid argument to function

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 115

TZONESTTNAME()" message in the log. In the following example, the TIMEZONE option is set
to 'Pacific/Honolulu.'

Sample Function Call Result

TZONESTTNAME() HST

TZONESTTNAME('Australia/Sydney') EST

TZONESTTNAME('Asia/Dubai') GST

TZONESTTOFF(time-zone-id)

TZONESTTOFF returns the time zone offset value for the specified daylight saving time. If time-
zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid
argument to function TZONESTTOFF()" message in the log. In the following example, the
TIMEZONE option is set to 'Pacific/Honolulu.'

Sample Function Call Result

TZONESTTOFF() -10:00

TZONESTTOFF('Australia/Sydney') 10:00

TZONESTTOFF('Asia/Dubai') 4:00

TZONEU2S(UTC-datetime-value, time-zone-id)

TZONEU2S converts a Coordinated Universal Time (UTC) datetime value to a SAS datetime
value. If time-zone-id is blank or missing, the offset will be determined from the system clock and
according to daylight saving time rules in effect. In the following example, the TIMEZONE
option is set to 'America/Chicago.'

Sample Function Call Result

TZONEU2S('11NOV2014:12:00'dt) 11NOV2014:06:00:00

TZONEU2S('11NOV2014:12:00'dt,'Pacific/Guam') 11NOV2014:22:00:00

TZONEU2S('11NOV2014:12:00'dt,'Europe/Istanbul') 11NOV2014:14:00:00

116 The Essential Guide to SAS Dates and Times, Second Edition

4.5 ISO 8601 Durations and Intervals
The ISO 8601 standard also provides a way to describe the interval between two datetimes, or a
period of time over which an event has occurred. An interval can be expressed by using the starting
and ending datetimes, or a duration and a starting time. Durations can be expressed by providing
the length of time in a common form. However, ISO 8601 durations and time intervals do not
directly equate to a single point in time, while everything else in the SAS date and time facility
represents one specific point in time. Nonetheless, SAS gives you the ability to handle durations
and intervals so that you have access to all the functionality of the SAS date and time facility.

Unlike every other part of the SAS date and time facility, ISO 8601 durations and intervals are
stored in character variables, but they are not stored as simple text. You cannot convert a datetime
to a character string using the PUT() function and then concatenate it with a duration string or
another datetime that has been converted to a character string. In order to use the SAS date and
time capacity with ISO durations and intervals, you must first convert ISO duration and interval
values to an internal representation. This is very much the same process that you have to undertake
when you are working with dates and times as we understand them; you must turn them into values
that SAS understands or take the values that SAS understands and translate them into the
representation that we understand.

Therefore, SAS has formats and informats dedicated to translating this internal representation of
ISO durations and intervals. The internal representation cannot be used without this translation.
There is also one extremely important CALL routine that is used to effect the transformation
between ISO durations and intervals to or from SAS date, time, and datetime values. First, we
should talk about the forms of ISO durations and intervals.

4.5.1 ISO Duration and Interval Representations

ISO Duration Representations
ISO durations are represented in three ways. There is no preference or priority attached to any of
the forms: Use the one that best fits your data. One form is PnYnMnDTnHnMnS, where P is the
indicator for period, and is preceded by a minus sign if the period represented is negative (the
"starting" date or datetime comes after the "ending" date or datetime), Y is the indicator for years,
M for months, and D for days. The T is the indicator for time and must be present if there is a time
component to the duration string. H is the indicator for hours, the M to the right of the T indicator
is for minutes, and the S is the indicator for seconds. n represents a number. This form of duration
description is the same for both the basic and extended notation, as there are no delimiters
necessary.

Another duration form is PnW, which is only used to describe a duration measured in weeks. n
represents a number, and the W is the indicator for weeks. As with the previous form, when the
starting date or datetime is after the "ending" date or datetime, the P is preceded by a minus sign.
Again, since there are no delimiters in this form, the output using basic and extended notation is
identical.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 117

The last of the duration forms is PyyyyMMddThhmmssfff in basic notation, or
Pyyyy-MM-ddThh:mm:ss.fff, in the extended notation, where yyyy is the number of years, MM is
the number of months, dd is number of days, hh represents number of hours, mm represents
minutes, and ss represents seconds in the period, with fff as decimal fractions of seconds up to the
millisecond. T is the ISO 8601 delimiter for time. This duration form can also be represented as
PyyyyMMdd or Pyyyy-MM-dd if there is no time component. As with the other duration forms, if
the "start" is later than the "end," the P will be preceded by a minus sign.

ISO Interval Representations
ISO intervals are represented by two datetimes that represent the start and end of the interval, or a
duration and a datetime that represents either the start or end of the interval. The datetime/datetime
form is yyyyMMddThhmmss/yyyyMMddThhmmss in the basic notation, or
yyyy-MM-ddThh:mm:ss/yyyy-MM-ddThh:mm:ss in the extended notation. The slash or solidus
(/) between the two datetimes is a required delimiter when using either notation.

In the basic notation, the duration/datetime form is: PnYnMnDTnHnMnS/yyyyMMddThhmmssfff
when the datetime represents the end of the interval, or
yyyyMMddThhmmssfff/PnYnMnDTnHnMnS when the datetime value represents the beginning
of the interval. In extended notation, the forms are
yyyy-MM-ddThh:mm:ss.fff/PnYnMnDTnHnMnS or
PnYnMnDTnHnMnS/yyyy-MM-ddThh:mm:ss.fff. The duration segment is specified by P, the
indicator for period, Y is the indicator for years, M for months, D for days. The T is the indicator
for time, and must be present if there is a time component to the duration string. H is the indicator
for hours, the M to the right of the T indicator is for minutes, and the S is the indicator for seconds.
n represents a number.

4.5.2 ISO 8601 Duration and Interval Formats
The first thing you might notice about the ISO duration and interval formats is that, unlike any of
the other date- and time-related formats in SAS, they are character formats, as indicated by the
leading dollar sign ($). This is reasonable, since durations and intervals are stored as character
values. Why do you need formats for character variables? SAS stores ISO durations and intervals
in an internal form, so just as you need formats to convert between SAS date values and how we
understand dates, you need these formats to perform the conversion from the stored form to the
corresponding ISO 8601 representation. Here's an example that shows what the stored form of
duration and interval values looks like, along with its formatted display. The example uses the
CALL IS8601_CONVERT routine to create the internal representations, and we will discuss this
routine, its syntax, and use in detail in section 4.5.4.

Example 4.1: Why Formats are Necessary with ISO Durations, Intervals, and Datetimes

1. DATA isostore;
2. SET isotest;
3. LENGTH result1-result2 $ 32;
4. CALL IS8601_CONVERT('dt/dt','du',dt1,dt2,result1);
5. CALL IS8601_CONVERT("dt/dt",'intvl',dt1,dt2,result2);

118 The Essential Guide to SAS Dates and Times, Second Edition

6. fmt_result1 = PUT(result1,$N8601E.);
7. fmt_result2 = PUT(result2,$N8601E.);
8. RUN;

The above code will take the datetime values dt1 and dt2 from a data set. The CALL
IS8601_CONVERT in line 4 creates an ISO duration value in the variable result1, while the one in
line 5 creates an ISO interval value in the variable result2. The two results are then formatted in
new variables using the PUT function. The values in this data set are displayed below.

Start of period (dt1) End of Period (dt2)

Duration Value
Stored in Dataset

(result1)
Formatted Duration
Value (fmt_result1)

04MAR2014:10:23:23 28DEC2014:23:04:03 FFFF924124040FFC P9M24DT12H40M40S

Interval Value Stored in Dataset
(result2) Formatted Interval Value (fmt_result2)

20143041023230012014C28230403001 2014-03-04T10:23:23.000/2014-12-28T23:04:03.000

Clearly, the stored duration and interval values (italicized in the above table) are not in the ISO
8601 format, so SAS provides the following formats to translate them into the desired
representation.

$N8601Bw.d
$N8601Bw. writes duration, datetime, and interval values in the ISO 8601 basic notation. This
format differs from the $N8601BA. format in that it displays durations in the form
PnYnMnDTnHnMnS instead of PyyyymmddThhmmss. It is left-justified, and w can be from 1 to
200, with a default width of 50. In order to display datetime and duration values correctly, the
width must be at least 16, while to display interval values correctly, the minimum width is 32. In
version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of
these values (indicated below by fff), regardless of significance (that is, if there is no decimal
fraction of seconds, then zeros will be displayed). The number of decimal places shown is
dependent upon the format width. The format will display the duration value as an ISO duration
and an interval value as an ISO interval without any additional programming. SAS chooses one of
the following forms based on the information stored in the ISO duration, datetime, or interval
variable:

• PnYnMnDTnHnMnS
• PnYnMnDTnHnMnS/yyyymmddThhmmssfff
• yyyymmddThhmmssfff
• yyyymmddThhmmssfff/PnYnMnDTnHnMnS
• yyyymmddThhmmssfff/yyyymmddThhmmssfff

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 119

$N8601BAw.d

$N8601BAw. writes duration, datetime, and interval values in the ISO 8601 basic notation. This
format differs from the $N8601B. format in that it displays durations in the form
PyyyymmddThhmmss instead of PnYnMnDTnHnMnS.) It is left-justified, and w can be from 1 to
200, with a default width of 50. In order to display datetime and duration values correctly, the
width must be at least 16, while to display interval values correctly, the minimum width is 32. If
you attempt to display an interval with a width specification of less than 32, you will get a series
of asterisks (*) as your output. In version 9.4, SAS will automatically provide up to 3 decimal
places for the seconds component of these values (indicated below by fff), regardless of
significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed).
Whether one, two, or three decimal places are shown is dependent upon the format width. The
format will display the duration value as an ISO duration and an interval value as an ISO interval
without any additional programming. SAS chooses one of the following forms based on the
information stored in the ISO duration, datetime, or interval variable:

• PyyyymmddThhmmss
• yyyymmddThhmmss
• PyyyymmddThhmmss/yyyymmddThhmmss
• yyyymmddThhmmss/PyyyymmddThhmmss
• yyyymmddThhmmss/yyyymmddThhmmss

$N8601Ew.

$N8601Ew. writes duration, datetime, and interval values in the ISO 8601 extended notation. It is
left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime
and duration values correctly, the width must be at least 16, while to display interval values
correctly, the minimum width is 32. If you attempt to display an interval with a width specification
of less than 32, you will get a series of asterisks (*) as your output. In version 9.4, SAS will
automatically provide up to 3 decimal places for the seconds component of these values (indicated
below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then
zeros will be displayed). Whether one, two, or three decimal places are shown is dependent upon
the format width. The format will display the duration value as an ISO duration and interval values
as an ISO interval without any additional programming. SAS chooses one of the following forms
based on the information stored in the ISO duration, datetime, or interval variable:

• PnYnMnDTnHnMnS
• yyyy-mm-ddThh:mm:ss.fff
• PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss.fff
• yyyy-mm-ddThh:mm:ss.fff/PnYnMnDTnHnMnS
• yyyy-mm-ddThh:mm:ss.fff/yyyy-mm-ddThh:mm:ss.fff

120 The Essential Guide to SAS Dates and Times, Second Edition

$N8601EAw.

$N8601EAw. writes duration, datetime, and interval values in the ISO 8601 extended notation. It
is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display
datetime and duration values correctly, the width must be at least 16, while to display interval
values correctly, the minimum width is 32. If you attempt to display an interval with a width
specification of less than 32, you will get a series of asterisks (*) as your output. In version 9.4,
SAS will automatically provide up to 3 decimal places for the seconds component of these values
(indicated below by fff), regardless of significance (that is, if there is no decimal fraction of
seconds, then zeros will be displayed). Whether one, two, or three decimal places are shown is
dependent upon the format width. The format will display duration values as an ISO duration and
interval values as an ISO interval without any additional programming. SAS chooses one of the
following forms based on the information stored in the ISO duration, datetime, or interval
variable:

• Pyyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff
• Pyyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff/Pyyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

$N8601EHw.

$N8601EHw. writes duration, datetime, and interval values in the ISO 8601 extended notation,
substituting hyphens for any missing components. With this format, omitted datetime components
are always displayed. It is left-justified, and w can be from 1 to 200, with a default width of 50. In
order to display datetime and duration values correctly, the width must be at least 16, while to
display interval values correctly, the minimum width is 32. If you attempt to display an interval
with a width specification of less than 32, you will get a series of asterisks (*) as your output. In
version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of
these values (indicated below by fff), regardless of significance (that is, if there is no decimal
fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal places are
shown is dependent upon the format width. The format will display duration values as an ISO
duration and interval values as an ISO interval without any additional programming, and it will
display them in one of the following forms. SAS chooses one of the following forms based on the
information stored in the ISO duration, datetime, or interval variable:

• Pyyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff
• Pyyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff/Pyyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 121

$N8601EXw.

$N8601EXw. writes duration, datetime, and interval values in the ISO 8601 extended notation,
substituting the letter "x" for any missing components. With this format, omitted datetime
components are always displayed. It is left-justified, and w can be from 1 to 200, with a default
width of 50. In order to display datetime and duration values correctly, the width must be at least
16, while to display interval values correctly, the minimum width is 32. If you attempt to display
an interval with a width specification of less than 32, you will get a series of asterisks (*) as your
output. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds
component of these values (indicated below by fff), regardless of significance (that is, if there is no
decimal fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal
places are shown is dependent upon the format width. The format will display duration values as
an ISO duration and interval values as an ISO interval without any additional programming. SAS
chooses one of the following forms based on the information stored in the ISO duration, datetime,
or interval variable:

• Pyyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff
• Pyyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff/Pyyyy-mm-ddThh:mm.ss.fff
• yyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

4.5.3 ISO 8601 Duration and Interval Informats
In order to store duration, interval, and datetime values that are already represented in their ISO
8601 form as character strings, you will need to use the following informats with the INPUT
statement or INPUT() function. The CALL IS8601_CONVERT routine is designed to work with
SAS date, time, and datetime values, not character strings.

$N8601Bw.
$N8601Bw. will translate duration, datetime, and interval strings written in the ISO 8601 basic or
extended notation into the SAS internal representation for these values. Missing components are
correctly processed as long as a single hyphen (-) is used in place of each missing component. w
can be from 1 to 200, with a default width of 50. In order to process datetime and duration values
correctly, w must be at least 16, while to process interval values correctly, w must be at least 32.
The informat will process data in any one of the following forms:

122 The Essential Guide to SAS Dates and Times, Second Edition

ISO Form Read Comment
Pyyyy-mm-ddThh:mm:ss.fff This is a duration value, not a datetime.

Therefore, it does not indicate a specific
datetime but an event that extends over the
time indicated.

PyyyymmddThhmmss This is a duration value, not a datetime.
Therefore, it does not indicate a specific
datetime but an event that extends over the
time indicated.

PnYnMnDTnHnMn.fffS
PnW
yyyy-mm-ddThh:mm:ss.fff/yyyy-mm-ddThh:mm:ss.fff
yyyymmddThhmmssfff/yyyymmddThhmmssfff
PnYnMnDTnHnMn.fffS/yyyy-mm-ddThh:mm:ss.fff
yyyy-mm-ddThh:mm:ss.fff/PnYnMnDTnHnMn.fffS
yyyy-mm-ddThh:mm:ss.fff
yyyymmddThhmmss.fff

$N8601Ew.

$N8601Ew. will translate duration, datetime, and interval strings written in the ISO 8601 extended
notation into the SAS internal representation for these values. This informat differs from the
$N8601B. informat in that it will only process values that are in the ISO 8601 extended format. If
you attempt to read a value in the basic notation with this informat, you will get an error, and the
stored result will be a missing value. This informat is useful when you need to enforce adherence
to the extended notation. Missing components are correctly processed as long as a single hyphen (-
) is used in place of each missing component. w can be from 1 to 200, with a default width of 50.
In order to process datetime and duration values correctly, w must be at least 16, while to process
interval values correctly, w must be at least 32.

To demonstrate the difference between the $N8601B. and $N8601E. informats, the example below
will use the same duration string in both the basic and extended notations and try to process it with
each informat.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 123

Example 4.2: The $N8601B. Informat versus the $N8601E. Informat

stored = INPUTC(duration_string,inf);

Example 4.2 uses the above code to store the duration string. inf represents the informat being used.

Reading the ISO 8601 Basic Notation

Informat Used Duration String Stored Representation Formatted Representation

$N8601B. P00020806T0100 00028060100FFFFC P2Y8M6DT1H0M
$N8601E. P00020806T0100 ******************

As you can see, the $N8601E. informat failed to process the basic notation string, resulting in a
missing value. When you try to process a string in the ISO basic notation using the extended
notation-specific informat, you will get the following note in your log.

NOTE: Invalid argument to function INPUT at line xxx column yy.

Now let's see what happens when we try to process the extended notation string.

Reading the ISO 8601 Extended Notation

Informat Used Duration String Stored Representation Formatted Representation

$N8601B. P0002-08-06T01:00 00028060100FFFFC P2Y8M6DT1H0M

$N8601E. P0002-08-06T01:00 00028060100FFFFC P2Y8M6DT1H0M

In this case, both informats caused SAS to store identical values. The $N8601B. informat can
process both basic and extended notations, but the $N8601E. informat will only work with the
extended notation. Use the $N8601E. informat if you want to make sure that the input data
conform to the extended notation.

4.5.4 CALL IS8601_CONVERT
It is important to understand that although ISO durations and intervals are stored in character
variables, they are not simple text. You cannot convert a datetime to a character string using the
PUT() function and then concatenate it with a duration string or another datetime that has been
converted to a character string. In order to use the SAS date and time capacity with ISO durations
and intervals, you must first convert ISO duration and interval values to an internal representation
that will allow this.

The formats and informats we just discussed will work on character values, but what if you have
SAS date or datetime values, which of course are stored in numeric variables, and you want to use
those to build your ISO durations and intervals? The CALL IS8601_CONVERT routine performs
this conversion in both directions, so it will create your ISO durations and intervals from those SAS

124 The Essential Guide to SAS Dates and Times, Second Edition

date and datetime values. It will also do the reverse, and transform your ISO durations and intervals
into their individual date and datetime components. In order to create an interval or a duration, you
will need two values: a start and an end (defined as dates or datetimes), or you can provide a
duration, and either start or an end. Similarly, in order to convert an interval, you will be splitting
the components into two variables, a duration and a datetime, or two datetimes. In addition, the
routine can derive the starting or ending point of an ISO duration or interval.

The syntax for the CALL IS8601_CONVERT routine is:

CALL IS8601_CONVERT(convert-from,convert-to,from--variables,to-variables, replacements);

The convert-from argument describes the type of date/datetime/interval/duration data that you are
converting. convert-from can be one of the following keyword values, enclosed in quotation marks,
or might also be represented by a character variable that resolves to one of these values.

Keyword
Value

Description

'dn' Use this when the value that you want to convert consists of individual components of a
date value. n is from 1 to 6, and indicates how many components are in the list of from-
variables. You can create either a date or a datetime value with this argument type. The
individual components from left to right are: month, day, year, hour, minute, and second.

'dtn' Use this when the value that you want to convert are individual components of a datetime
value. n is from 1 to 6, and indicates how many components are in the list of from-
variables. You can create either a date or a datetime value with this argument type. The
individual components from left to right are: month, day, year, hour, minute, and second.

'dun' Use this when you want to convert a value consisting of individual components of a
duration value. n is from 1 to 6, and indicates how many components are in the duration
value. The individual components from left to right are the number of months, days, years,
hours, minutes, and seconds in the duration.

'dt/dt' Use this when you are converting two datetime values.
'dt/du' Use this when you are converting a datetime/duration interval. This signifies that the

datetime is the start of the interval that you are converting.
'du/dt' Use this to convert a duration/datetime interval. This signifies that the datetime is the end

of the interval that you are converting.
'intvl' Use this to convert interval values.

The convert-to argument describes the form of the result from the CALL IS8601_CONVERT
routine.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 125

Keyword
Value

Description

'intvl' Use this to create an interval value.
'dt/dt' Use this to create a datetime/datetime interval.
'dt/du' Use this to create a datetime/duration interval. This signifies that the datetime is the

beginning of the interval.
'du/dt' Use this to create a duration/datetime interval. This signifies that the datetime is the end of

the interval.
'du' Use this to create a duration.
'start' Use this to derive a starting date or duration from an interval value.
'end' Use this to derive the ending date or duration from an interval value.
'dn' Use this when you want to create individual components of a date value. n is from 1 to 6,

and indicates how many components are in the list of from-variables. The individual
components will be stored from left to right in the following order: month, day, year, hour,
minute, and second.

'dtn' Use this when you want to create individual components of a datetime value. n is from 1 to
6, and indicates how many components are in the list of from-variables. The individual
components will be stored from left to right in the following order: month, day, year, hour,
minute, and second.

'dun' Use this to create individual components of a duration value. n is from 1 to 6, and indicates
how many components are in the list of from-variables. The individual components will be
stored from left to right in this order: the number of months, days, years, hours, minutes,
and seconds.

from-variables are the variables containing the value(s) to be converted. Specify one variable if
you are converting an interval and two for datetime and/or duration values. If you are converting
individual components of a date or a datetime (using 'dn,' 'dtn,' or 'dun' in your convert-from
argument), then you will need one variable for each component specified. If you are converting an
interval, the variable must be at least 32 characters in length.

to-variables are the variables containing the result that the routine calculates. Specify one variable
if you are creating an interval and two for datetime and/or duration values. If you want individual
components of a date or a datetime from the function (using 'dn,' 'dtn,' or 'dun' in your convert-to
argument), then you will need one variable for each component specified.

replacements enables you to provide your own value for the month, day, hour, minute, and second
components to be used if any of those components are missing in the convert-from argument. The
default is 1 for month and day, and 0 for hour, minute, and second. When you use this parameter,
even though the year component is required for a valid ISO duration or interval value, you will
need a leading comma as a placeholder for the year value, followed by all 5 replacement values,
separated by commas. While it is possible to leave some of the replacement values blank (and

126 The Essential Guide to SAS Dates and Times, Second Edition

thereby use the default), it is easier to read when a value is provided for each of the replacements,
even if it is the same as the default.

The following examples demonstrate many of the capabilities of the CALL IS8601_CONVERT
routine, including the ability to perform date and time calculations.

Example 4.3: How Long Is… in SAS time?
Most of the calculations involving SAS dates and times have a specific reference point in mind; in
general, there is a date and/or a time involved, such as June 8, 2014, at 3:50 p.m. However, what
can you do if you want to measure an ISO duration in SAS time? One possibility is to use a sample
starting point and SAS intervals to obtain the endpoint. From there, it is just a matter of subtracting
your dummy start point from your endpoint. Or you could use CALL IS8601_CONVERT. The first
period is simple: How long is four weeks expressed in time? The second period asks the same
question for 3 days, 4 hours, 27 minutes, and 16.8 seconds, which is not so easy to do with SAS
intervals.

1. DATA howlong;
2. LENGTH period $ 16;
3. period = "P4W";
4. CALL IS8601_CONVERT('du','du',period,howlong);
5. howlong_disp = STRIP(PUT(howlong,time10.1));
6. OUTPUT;
7. period = "P3DT4H27M16.8S";
8. CALL IS8601_CONVERT('du','du',period,howlong);
9. howlong_disp = STRIP(PUT(howlong,time10.1));
10. OUTPUT;
11. RUN;

In lines 4 and 8, we use 'du' as the convert-to argument because there is no argument value that will
explicitly give a time value. However, when you use the 'du' argument and do not specify the result
as a character variable, CALL IS8601_CONVERT will create your duration in seconds (that is, a
SAS time value). Here is the PROC PRINT of our HOWLONG data set:

ISO 8601 Duration Time in Seconds
Time in Seconds

Formatted as TIME10.1

P4W 2419200.0 672:00:00.0
P3DT4H27M16.8S 275236.8 76:27:16.8

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 127

Example 4.4: Converting Two Datetimes to an ISO Duration
This situation is one frequently encountered in clinical trials. The starting and ending datetimes for
an event would be presented as text, and you need to calculate the duration and display it in ISO
8601 format according to the CDISC specification. In this example, we will take simulated event
data (some of which has missing components and entire missing values), calculate the durations,
and present the result according to the ISO standard. Here are the data shown in their original text
representation.

Obs Starting Date Ending Date
1
2 2013-01-18T09:30 2013-01-18T21:00
3 2012-12-30T11 2013-01-01T14:00
4 2012-11 2013-01-04
5 2012-11-19 2013-01-04
6 2012-11-20T08:30 2013-01-03
7 2012 2013-02
8 2012-12-27
9 2012-11 2012-11-20

10 2012-11-19T14:15 2012-11-20
11 2012-12-17T08:20 2013-01-02T09

The first step is to create these as SAS datetime values. Let's run a quick SAS program to create
our example data set, AEDTM:

DATA book.aedtm;
INFILE "eventdata.txt" PAD MISSOVER DLM='09'x FIRSTOBS=2 DSD;
INPUT aestdtm :E8601DT. aeendtm :E8601DT.;
FORMAT aestdtm aeendtm datetime20.;
RUN;

128 The Essential Guide to SAS Dates and Times, Second Edition

Executing this code results in this data set:

What happened here? Most of the datetime values are missing! This is a direct consequence of
incomplete data for dates and times in the source data. Remember that SAS datetime values are a
complete date and a complete time, so yes, the values are missing because there is no complete date
and time in most of these cases. The ISO standard can accommodate partial dates and times, but the
normal SAS date and time facility cannot. Let's try this a different way using the ISO8601
informats.

DATA book.aedtm2;
INFILE "eventdata.txt" PAD MISSOVER DLM='09'x FIRSTOBS=2 DSD;
INPUT aestdtm :$N8601B. aeendtm :$N8601B.;
FORMAT aestdtm aeendtm datetime20.;
RUN;

This code didn't even run, giving an error in the log.

1 DATA book.aedtm2;
2 INFILE "eventdata.txt" PAD MISSOVER DLM='09'x FIRSTOBS=2 DSD;
3 INPUT aestdtm :$N8601B. aeendtm :$N8601B.;
4 FORMAT aestdtm aeendtm datetime20.;

 48
ERROR 48-59: The format $DATETIME was not found or could not be
loaded.

5 RUN;

NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set BOOK.AEDTM2 may be incomplete. When this step
 was stopped there were 0 observations and 2 variables.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 129

The ISO informats only create character variables. Therefore, the error arises when you try to use a
numeric format with a character variable. At this point, we are no closer to getting our durations
than before. What happens when we take the FORMAT statement out?

Now we've got the internal representation of ISO datetimes in a SAS data set, which we have
named AEDTM2. Let's format the two variables using the $N8601EH. format so that we can see
the result with a proper ISO representation. The $N8601EH. format provides hyphens for missing
components.

From here, we can calculate durations with CALL IS8601_CONVERT using the following code
and the data set AEDTM2 that we created in the previous step. In line 3, we define the result
variables as character so that we do not get a SAS time value. We are creating two for the purposes
of this exercise, DURATION with the routine in line 4, and AEDUR in line 6, which is the ISO-
formatted version of DURATION so that it can be shown alongside the internal representation of
the duration.

1. DATA book.iso_durations;
2. SET book.aedtm2;
3. LENGTH duration aedur $ 16;
4. CALL IS8601_CONVERT('dt/dt','du',aestdtm,aeendtm,duration);

130 The Essential Guide to SAS Dates and Times, Second Edition

5. aedur = duration;
6. FORMAT aedur $N8601E.;
7. RUN;

One of the things that you might notice is that durations have been calculated for all the values that
have an ending date, regardless of missing components in the starting and ending datetimes. The
CALL IS8601_CONVERT routine imputes complete datetime values by using default values for
missing components, so it has supplied 1 for missing months and days, and zeros for hours,
minutes, and seconds. This causes any datetime with a missing time to be set at 12:00 a.m. of the
following day. This simple imputation might not be what you want to use, and more elaborate
coding might be necessary. You might have to start with parsing the input datetime string to
determine which components are missing and apply your imputation algorithm from there.
Nonetheless, once you have your imputed datetime values, CALL IS8601_CONVERT will create
and store an ISO duration from those datetimes.

Example 4.5: Converting Two Datetimes to an ISO Interval
Let’s use the data from example 4.4 to quickly demonstrate the creation of an ISO interval using
the CALL IS8601_CONVERT routine. We will start with the ISO datetime values stored in the
data set AEDTM2.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 131

The following code will create our ISO interval. Note that in line 3, the length of the result variable
interval is set to 32, which is the minimum length for a variable that holds an ISO interval. The
result is shown in the screen capture following the code. Once again, we are creating a copy of the
result to show both the interval value as a stored value and the ISO-formatted interval value.

1. DATA book.iso_intervals;
2. SET book.aedtm2;
3. LENGTH interval formatted_interval $ 32;
4. CALL IS8601_CONVERT('dt/dt','intvl',aestdtm,aeendtm,interval);
5. formatted_interval = interval;
6. FORMAT formatted_interval $N8601E.;
7. RUN;

132 The Essential Guide to SAS Dates and Times, Second Edition

Example 4.6: Converting a Datetime and a Duration into an ISO Interval
In this example, we will create an ISO interval from a datetime and a duration using the following
data set, SAMPLE, which contains a start datetime and an ISO duration.

Why don't we apply the $N8601E. format to AESTDTM and DURATION so that they are
readable?

If this were true clinical data, there would be an error in the data at record 3, because the duration is
negative, indicating that the start datetime is later than the ending datetime. While the ISO standard
accounts for negative durations, this does not mean that negative durations are appropriate in your
data.

This code looks similar to the code in the previous two examples. The difference is in the
arguments used for the CALL IS8601_CONVERT routine in line 4. The 'dt/du' signifies that the
datetime represents the start of the interval. We will show the unformatted and formatted result as a
reminder that the character results are stored in their SAS internal representation:

1. DATA interval;
2. SET sample;
3. LENGTH interval formatted_interval $ 32;
4. CALL IS8601_CONVERT('dt/du','intvl',aestdtm,duration,interval);
5. formatted_interval = interval;
6. FORMAT formatted_interval $N8601E.;
7. RUN;

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 133

Interval Formatted_Interval
2012B221030FFFFDFFFFF072330FFFFC 2012-11-22T10:30/P7DT23H30M
2012C02FFFFFFFFDFFFF105FFFFFFFFC 2012-12-02/P1M5D
2012C121200FFFFDFEFFFFF12FFFFFFC 2012-12-12T12:00/-PT12H
2012C191000FFFFDFFFFF072130FFFFC 2012-12-19T10:00/P7DT21H30M
2013101FFFFFFFFDFFFFF29FFFFFFFFC 2013-01-01/P29D

Example 4.7: Calculating the End of an Interval from a Datetime and a Duration
An additional capability of the CALL ISO_8601 routine is to calculate starting and ending
datetimes from intervals, or a combination of duration and datetime. In this example, we will
calculate the end datetimes for the ISO intervals that we created in example 4.6.

1. DATA interval_end;
2. SET interval;
3. CALL IS8601_CONVERT('intvl','end',interval,end);
4. FORMAT interval $N8601E. end DATETIME20.;
5. RUN;

You can see that this code is again slightly different from example 4.6. One large difference is that
there is no LENGTH statement used to create the result as a character variable. This causes the
routine to create the result as a SAS datetime value, not an ISO 8601 datetime character string. This
is an important distinction. In line 3, we tell the routine that we are going to convert an interval, and
we want the ending date based on that interval. Since the variable INTERVAL is still stored in its
internal SAS representation, we have applied the $N8601E. format to that variable, as well as
formatting the END variable with DATETIME20. so we can read them easily in the output. Here is
the result.

Interval End

2012-11-22T10:30/P7DT23H30M 30NOV2012:10:00:00
2012-12-02/P1M5D 07JAN2013:00:00:00
2012-12-12T12:00/-PT12H 11DEC2012:12:00:00
2012-12-19T10:00/P7DT21H30M 27DEC2012:07:30:00
2013-01-01/P29D 30JAN2013:00:00:00

Any of the preceding examples can be reversed; you can convert an ISO duration or interval into
two datetimes or you can turn an interval into a duration and a datetime. To show you how it all
connects to together, in this last example, we will take starting and ending ISO datetime values
and create an ISO duration and an ISO interval, and then we will recalculate the starting and
ending datetimes from that ISO interval, both as their ISO datetime values and their SAS datetime
values.

134 The Essential Guide to SAS Dates and Times, Second Edition

Example 4.8: CALL IS8601_CONVERT: ISO Datetimes, Durations, and Intervals
from Start to End and Back Again with One Routine
This code uses the data set EX4_8, which contains two ISO datetime values in the variables
AESTDTM and AEENDTM. They are displayed using the $N8601E. format so you can read the
values easily.

Because we want the results in this example as their ISO representations, we define the result
variables that we are creating as character variables, including the ending datetimes. Note that the
variable INTERVAL is 32 bytes in length because that is the minimum length for an ISO interval
value. Line 4 creates the ISO duration and line 5 the ISO interval value, and we use that interval in
lines 6 and 7 to produce the starting and ending ISO datetime values. Lines 8 and 9 lines
recalculate the starting and ending datetimes as SAS datetime values. We will present the results
separately.

1. DATA circle;
2. SET ex4_8;
3. LENGTH duration $ 16 interval $ 32 start_dt $ 16 end_dt $ 16;
4. CALL IS8601_CONVERT('dt/dt','du',aestdtm,aeendtm,duration);
5. CALL IS8601_CONVERT('dt/dt','intvl',aestdtm,aeendtm,interval);
6. CALL IS8601_CONVERT('intvl','start',interval,start_dt);
7. CALL IS8601_CONVERT('intvl','end',interval,end_dt);
8. CALL IS8601_CONVERT('intvl','start',interval,datetime_start);
9. CALL IS8601_CONVERT('intvl','end',interval,datetime_end);
10. FORMAT duration interval start_dt end_dt $N8601E.;
11. RUN;

Original Starting
ISO Datetime

Original Ending
ISO Datetime

ISO Duration
Value ISO Interval Value

2012-11-21T09:12 2012-11-30 P8DT14H48M 2012-11-21T09:12/2012-11-30
2012-11-21T09:25 2012-11 -P21DT9H25M 2012-11-21T09:25/2012-11

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions 135

Original Starting
ISO Datetime

Original Ending
ISO Datetime

ISO Duration
Value ISO Interval Value

2012-12-03T09:00 2012-12-
03T10:00

PT1H 2012-12-03T09:00/2012-12-03T10:00

2012-12-14T09:12 2013-01-17 P1M2DT14H48M 2012-12-14T09:12/2013-01-17
2012-12-14 2012-12-29 P15D 2012-12-14/2012-12-29

The one thing that you should take note of here is the negative duration value in the second row.
Since the day component is missing from the ending datetime, CALL IS8601_CONVERT has used
its default value for the day component, which is 1. Obviously, November 21 (the starting date) is
after November 1, so you might want to use a different imputation for your ending dates. Next are
the recalculated starting and ending dates, presented in separate tables to make it easy to see the
result of the conversions.

Original Starting ISO
Datetime

Recalculated ISO Starting
Datetime

Recalculated SAS Starting
Datetime

2012-11-21T09:12 2012-11-21T09:12 21NOV2012:09:12:00

2012-11-21T09:25 2012-11-21T09:25 21NOV2012:09:25:00

2012-12-03T09:00 2012-12-03T09:00 03DEC2012:09:00:00

2012-12-14T09:12 2012-12-14T09:12 14DEC2012:09:12:00

2012-12-14 2012-12-14 14DEC2012:00:00:00

Original Ending ISO
Datetime

Recalculated ISO Ending
Datetime

Recalculated SAS Ending
Datetime

2012-11-30 2012-11-30 30NOV2012:00:00:00

2012-11 2012-11 01NOV2012:00:00:00

2012-12-03T10:00 2012-12-03T10:00 03DEC2012:10:00:00

2013-01-17 2013-01-17 17JAN2013:00:00:00

2012-12-29 2012-12-29 29DEC2012:00:00:00

Take note of the second row in the ending datetime table above. Not only does this point out the
problem with relying on the automatic substitution of the routine, but the difference between the
ISO datetime values and SAS datetime values. The ISO standard accommodates missing
components, so it is legal to have the value "2012-11," which clearly indicates, "During the month
of November, but the exact day is unknown," and, "At some time on the day of…" The SAS

136 The Essential Guide to SAS Dates and Times, Second Edition

datetime value has to provide both exact date and exact time, so "2012-11" is set to 12:00 AM,
November 1, 2012, using the default replacements for missing components.

4.6 Conclusion
The ISO 8601 standard has been developed for the clear communication of date and time
information across countries, applications, and platforms. SAS has the capability to handle this
standard to its full extent, even though on the surface there seem to be many incompatibilities
between the SAS date and time facility and the ISO standard. The largest differences are with
respect to incomplete data, and that alphabetic characters are used as more than simple delimiters
makes the ISO 8601 handling facility in SAS unique when it comes to dates and times. It is the
only piece of the SAS date and time capabilities that requires character variables.

Chapter 5: Date and Time Functions

5.1 Current Date and Time Functions .. 137

5.2 Extracting Pieces from SAS Date, Time, and Datetime Values 138

5.3 Creating Dates, Times, and Datetimes from Numbers or Other

Information .. 140

5.4 Calculating Elapsed Time, and the HOLIDAY() Function 145

5.5 The Basics of SAS Intervals ... 149

5.6 Modifying SAS Intervals ... 159

5.7 Creating Your Own SAS Intervals ... 169

5.8 Interval Functions about Intervals .. 176

5.9 Retail Calendar Intervals and Seasonality .. 181

SAS has many functions to manipulate dates, times, and datetime values. The functions can be
categorized according to what they do. You can obtain the current date, time, or datetime (as
specified by the computer's clock). You can also easily extract pieces of dates, times, or datetimes
as numerical values from their corresponding SAS values, or you can assemble SAS date, time, and
datetime values from SAS variables or constants. Another set of functions operates with intervals
such as weeks or months.

5.1 Current Date and Time Functions
Current date and time functions have no arguments and return SAS values as noted in the following
table. The values are obtained from the operating system's clock.

Table 5.1: Current Date and Time Functions

Date and Time
Function Description

DATE() , TODAY() These functions are identical, and both return the current date as a SAS
date value.

138 The Essential Guide to SAS Dates and Times, Second Edition

Date and Time
Function Description
TIME() This returns the current time as a SAS time value.
DATETIME() This returns the current date and time as a SAS datetime value.

5.2 Extracting Pieces from SAS Date, Time, and Datetime Values
The extraction functions all use a single argument (represented by arg in the following table),
which represents a SAS date, time, or datetime value. This can be either a SAS variable name or
the appropriate constant. If two-digit year values are used, the result will be subject to the
YEARCUTOFF= option value in effect. They all return a numeric value as the result. The
following tables are separated into functions that use dates as an argument, those that use datetimes
as the argument, and those that use times as an argument. Each table gives examples of how to
apply each function, along with relevant comments for each example.

Table 5.2: Functions Returning a Date Component and Requiring a SAS Date Value as an
Argument

Function Name Explanation Example

DAY(arg) Extracts the number of the day of
the month from a SAS date value.

DAY("14OCT2015"d) = 14

JULDATE(arg) Extracts the Julian date from a
SAS date value. It will return a
four- or five-digit value with a
one- or two-digit year, if the year
portion of the date falls within the
100-year span defined by the
YEARCUTOFF= option. If you
want to ensure four-digit year
values, you should use the
JULDATE7() function.

JULDATE("09MAY2004"
d) = 4130 (result is returned
as a numeric value, so there
are no leading zeros)
JULDATE("09MAY2014"
d)=14129 (note difference
caused by 2014 versus
2004, above)
JULDATE("09MAY1890"
d) = 1890129

JULDATE7(arg) Extracts the Julian date with a
four-digit year from a SAS date
value. This always returns a
seven-digit number, regardless of
the year.

JULDATE7("09MAY2004
"d) = 2004130
JULDATE7("09MAY2014
"d) = 2014129
JULDATE7("09MAY1890
"d) = 1890129

MONTH(arg) Extracts the numerical month
from a SAS date value.

MONTH("22AUG2015"d)
= 8

QTR(arg) Extracts the quarter of the year
from a SAS date value.

QTR("8JAN2013"d) = 1

Chapter 5: Date and Time Functions 139

Function Name Explanation Example
WEEK(arg) Extracts the week number from a

SAS date value, where Sunday is
the first day of the week, which is
the "U" algorithm. This function
has been augmented in SAS
versions 9.1.3 and above by the
WEEK(arg,descriptor) function
described immediately below.

WEEK("02JAN2005"d) = 1

(Version 9.1.3 and up)
WEEK(arg,descriptor)

Extracts the week number from a SAS date value. descriptor can
be "U," "V," or "W" (case-insensitive), and it refers to the
algorithm used to calculate the first week of the year.
The U algorithm calculates weeks
based on Sunday being the first
day of the week.

WEEK("02JAN2005"d,"U"
) = 1. January 2, 2005 was a
Sunday, so the first week of
the year has started.

The V algorithm calculates weeks
to the ISO standard. Monday is
the first day of the week, and the
first week of the year is defined as
the one that contains both January
4 and the first Thursday of the
year.

WEEK("02JAN2005"d,"V"
) = 53. This week is defined
as being the 53rd week in
2004, because it doesn't
contain the first Monday or
Thursday of the year.

The W algorithm calculates
weeks based on Monday being
the first day of the week without
restriction.

WEEK("02JAN2005"d,"W
") = 0. The year 2005 has
started, but weeks are
calculated with Monday as
the first day of the week.
Therefore, the first week of
2005 doesn't start until
January 3, 2005, so this is
week 0 of 2005.

WEEKDAY(arg) Extracts the number of the day of
the week, where Sunday=1,
Monday=2, and so on from a SAS
date value.

WEEKDAY("14APR2011"
d) = 4 (Wednesday, April
14, 2011)

YEAR(arg) Extracts the year from a SAS date
value. If you use a date constant
(as in the example) and not a SAS
date value, it is important to
remember that the

If OPTIONS
YEARCUTOFF=1920;
YEAR("19JUL10"d) =
2010;
YEAR("19JUL1910"d) =
1910

140 The Essential Guide to SAS Dates and Times, Second Edition

Function Name Explanation Example
YEARCUTOFF= option affects
two-digit years.

Table 5.3: Functions Returning a Datetime Component and Requiring a SAS Datetime Value
as an Argument

Function Name Explanation Example

DATEPART(arg) Extracts the date from a SAS
datetime value as a SAS date value.

DATEPART('21MAR2012:17:07:
00'dt) = 19073 (March 21, 2012)

TIMEPART(arg) Extracts the time portion from a SAS
datetime value as a SAS time value.

TIMEPART("06SEP2012:13:36:3
3"dt) = 48993 (1:36:33 PM)

Table 5.4: Functions Returning a Time Component and Requiring a SAS Time Value as an
Argument

Function Name Explanation Example

HOUR(arg) Extracts the hour from a SAS time value. HOUR("7:35:00"t) =7
MINUTE(arg) Extracts the minutes from a SAS time value. MINUTE("12:17:43 PM"t) = 17
SECOND(arg) Extracts the seconds from a SAS time value. SECOND("2:17:43"t) = 43

5.3 Creating Dates, Times, and Datetimes from Numbers or Other
Information

5.3.1 Introduction
This series of functions will create SAS date, time, and datetime values from numerical variables or
constants. While informats take complete date, time, and datetime references and translate them to
their corresponding SAS value, these functions will create a SAS value from discrete pieces such as
month, day, and year.

5.3.2 List of Functions and Their Descriptions

DATEJUL(Julian-date);
DATEJUL(Julian-date); creates a SAS date value from a numeric value representing a Julian date.
Julian-date must be of the type yy(yy)ddd, where yy(yy) is two or four digits representing the year,
and ddd must be a number from 1 to 365 (366 if a leap year). If you use two digits for the year, the
YEARCUTOFF= option will be used to determine the century. The following table gives examples
of how to apply this function:

Chapter 5: Date and Time Functions 141

Sample Function Call
SAS Date
Value

Formatted with
MMDDYY10.
Format Comments

OPTIONS YEARCUTOFF=1920;
DATEJUL(21286)

–13959 10/13/1921 With the YEARCUTOFF
value of 1920, the 21 is
interpreted as 1921.

OPTIONS YEARCUTOFF=2000;
DATEJUL(21286)

22566 10/13/2021 If YEARCUTOFF is 2000,
the 21 is interpreted as 2021.

DATEJUL(2014174) 19897 06/23/2014
DATEJUL(1989005) 10597 01/05/1989
DATEJUL(00368) . . 368 is not a valid value for a

Julian day, so the function
returns a missing value.

DHMS(date,hour,minute,second);
DHMS(date,hour,minute,second); creates a SAS datetime value. All four arguments are required.
date is a SAS date value, which can be either a numeric value or a date constant. If you use a two-
digit year in a date constant, the date will be translated according to the YEARCUTOFF= option.
hour, minute, and second are all numeric variables and/or constants. Hour, minute, and second are
not restricted to their clock times. Therefore, hour can be greater than 24, while minute and second
can be greater than 60. The following table gives examples of how to apply this function:

Sample Function Call
Datetime
Value

Formatted with
DATETIME19.
Format Comments

DHMS("08JUN2015"d,15,24,0) 1749396240 08JUN2015:15:24:00
DHMS("02FEB2014"d,11,54,15) 1706961255 02FEB2014:11:54:15
DHMS("30JUN2012"d,8,7,93) 1656662913 30JUN1992:08:08:33 The value 93 is just

an argument. The
function ultimately
returns the datetime
value in seconds and
the formatted value
converts the result.
Therefore, 93
seconds becomes 1
minute, 33 seconds,
which adds 1 to the
minute value of 7,
and reduces the
seconds to 33.

142 The Essential Guide to SAS Dates and Times, Second Edition

Example 5.1: Using DHMS() When You Already Have a SAS Date and Time
If you need to create a datetime from a SAS date and a SAS time value, you do not have to use the
HOUR(), MINUTE(), and SECOND() functions to extract those components from the time value.
Remember that SAS keeps track of time in seconds since midnight and that the seconds argument
in the DHMS function can be greater than 59. Therefore, if you supply the SAS time value as the
seconds argument and set hour and minute to zeros, that will work just fine. The following example
demonstrates:

1 DATA ex5_1;
2 INPUT row $ sasdate :date9. sastime :time8.;
3 result = DHMS(sasdate,0,0,sastime);
4 fmt_result = result;
5 format sasdate date9. sastime timeampm.;
6 DATALINES;
7 A 16oct2015 17:30
8 B 08jun2016 11:00
9 C 14apr2015 00:00
10 ;;;
11 RUN;

12 PROC PRINT DATA=ex5_1 NOOBS LABEL SPLIT='\';
13 ID row;
14 VAR sasdate sastime result fmt_result;
15 FORMAT fmt_result datetime19. sasdate sastime;
16 LABEL row='Row'
17 result = '~{text_align=c}SAS Datetime Value\Calculated

Using\DHMS(sasdate,0,0,sastime)'
18 fmt_result = "Result Formatted with\DATETIME19. Format";
19 RUN;

The Result

Row sasdate sastime

SAS Datetime Value
Calculated Using
DHMS(sasdate,0,0,sastime)

Result Formatted with
DATETIME19. Format

A 20377 63000 1760635800 16OCT2015:17:30:00
B 20613 39600 1781002800 08JUN2016:11:00:00
C 20192 0 1744588800 14APR2015:00:00:00

The calculation of the datetime value is done in line 3 of the above program. The formats have
been removed from the sasdate and sastime variables in the table for the purpose of illustrating the
actual values that are being sent to the function. Row C above has been included to demonstrate
that any valid SAS time value will work, even 0 seconds. What good is that? If you need to create
a SAS datetime value and you only have a date without a time value, then you can use
DHMS(sasdate,0,0,0) to convert your SAS date into a SAS datetime.

Chapter 5: Date and Time Functions 143

HMS(hour,minute,second);
HMS(hour,minute,second); creates a SAS time value. hour, minute, and second are all numeric
variables and/or constants. None of the parameters are restricted to their clock times. Therefore,
hour can be greater than 24, while minute and second can be greater than 60. All three arguments
must be present or you will get a missing value as the result. The following table provides
examples:

Sample Function
Call

Time
Value

Formatted
with TIME.
Format

Formatted with
TIMEAMPM.
Format Comments

HMS(18,0,9) 64809 18:00:09 6:00:09 PM
HMS(7,45,80) 27980 7:46:20 7:46:20 AM The time is not displayed as

"7:45:80" because the value
is returned as the total
number of seconds, and the
format is applied to that.
Neither the TIME. nor the
TIMEAMPM. formats
display minute or second
values greater than 59.

HMS(15,03,35.56) 54215.56 15:03:36 3:03:36 PM
HMS(8,17,33) 29853 8:17:33 8:17:33 AM
HMS(21,14,28) 76468 21:14:28 9:14:28 PM

MDY(month,day,year);

MDY(month,day,year); creates a SAS date value from the arguments. All three arguments are
required. month, day, and year are all numeric variables or constants. If year is two digits, the
century will be determined by the YEARCUTOFF= option. If a value given for any of the
arguments is not valid or missing, such as MDY(2,31,2014) (February 31, 2014), the function will
return a missing value and give you an "invalid argument to function" message in the log. The
following table shows examples:

Sample Function Call SAS Date Value Formatted with WEEKDATE. Format

MDY(9,3,1876) –30434 Sunday, September 3, 1876
MDY(12,14,15) 20436 Monday, December 14, 2015
MDY(3,26,1915) –16352 Friday, March 26, 1915
MDY(5,22,2014) 19865 Thursday, May 22, 2014

144 The Essential Guide to SAS Dates and Times, Second Edition

NWKDOM(n, weekday, month, year);

NWKDOM(n, weekday, month, year); creates a SAS date value for a given weekday in a given
week number from a given month and year. All of the arguments are numeric and can be
represented by constants or numeric variables. If any of the arguments are missing, or not valid,
then the function will return a missing value. n ranges from 1 (first) to 5 (last). Sometimes using
the value of 5 will give the same result as 4, if the fourth week of the month is also the last week
of the month. weekday ranges from 1 to 7, where 1 represents Sunday, and 7 represents Saturday.
month can range from 1 (January) to 12 (December). year represents the year and is subject to the
YEARCUTOFF= option if you use two digits for the year.

You can use this function to find dates that are expressed as "The first Saturday in May," or the
"last Tuesday in August," easily. The following table provides examples of how this function
works.

Date Description Sample Function Call

SAS
Date
Value

Date Formatted using
WEEKDATE.

First Tuesday in November. NWKDOM(1,3,11,2014) 20031 Tuesday, November 4, 2014
Second Tuesday in December. NWKDOM(2,3,12,2014) 20066 Tuesday, December 9, 2014
Third Wednesday in April. NWKDOM(3,4,4,2014) 19829 Wednesday, April 16, 2014
Fourth Sunday in May. NWKDOM(4,1,5,2014) 19868 Sunday, May 25, 2014
Last Sunday in May. NWKDOM(5,1,5,2014) 19868 Sunday, May 25, 2014
First Sunday in June. NWKDOM(1,1,6,2018) 21338 Sunday, June 3, 2018
Second Saturday in December. NWKDOM(2,7,12,2018) 21526 Saturday, December 8, 2018
Third Saturday in May. NWKDOM(3,7,5,2018) 21323 Saturday, May 19, 2018
Fourth Monday in October. NWKDOM(4,2,10,2018) 21479 Monday, October 22, 2018
Last Monday in October. NWKDOM(5,2,10,2018) 21486 Monday, October 29, 2018

The bolded and italicized text above shows that the last week of the month and the fourth week of
the month may or may not produce the same date.

YYQ(year,qtr);
YYQ(year,qtr); creates a SAS date value from the arguments. Both arguments are required. year is
a numeric variable or constant representing the year, and qtr is a numeric variable or constant
between 1 and 4, representing the quarter of the year. If year is two digits, the century will be
determined by the YEARCUTOFF= system option. This function returns the date of the first day of
the quarter in the given year. The following table provides examples of how this function works.

http://127.0.0.1:50738/help/lefunctionsref.hlp/p1kdveu0ry8ltxn1m3um2ntxs7d5.htm%23n1xa7ff2actcfvn1762hp9r6k7pa
http://127.0.0.1:50738/help/lefunctionsref.hlp/p1kdveu0ry8ltxn1m3um2ntxs7d5.htm%23p09smv3j1o9azzn1hhlwi1uzp02v
http://127.0.0.1:50738/help/lefunctionsref.hlp/p1kdveu0ry8ltxn1m3um2ntxs7d5.htm%23p1c5fmhlk7yecin1vajfvrprl6sg
http://127.0.0.1:50738/help/lefunctionsref.hlp/p1kdveu0ry8ltxn1m3um2ntxs7d5.htm%23p15divg2ml15zqn14nkmgeueafcq

Chapter 5: Date and Time Functions 145

Sample
Function Call

SAS
Date
Value

Formatted with
MMDDYY10.
Format Comment

YYQ(2015,1) 20089 01/01/2015
YYQ(99,3) 14426 07/01/1999
YYQ(25,2) –12693 04/01/1925 When YEARCUTOFF=1920, 25 translates to 1925

because the range runs from 1920 through 2019.
YYQ(25,2) 23832 04/01/2025 In SAS 9.4, the YEARCUTOFF= option default is

1926, so the range is now 1926 through 2025, and
25 is now translated as 2025.

YYQ(2015,2) 20179 07/01/2015

5.4 Calculating Elapsed Time, and the HOLIDAY() Function
Because SAS uses simple math as the basis for dates and times, you might think that calculating
elapsed time or projecting into the future would be easy. It should be a matter of simple addition or
subtraction. However, SAS provides several functions that deal with calculating elapsed time, and
for the most part the function is going to be more accurate than simple math. For example, one of
the mathematical equations for calculating age is (current date–date of birth)/365.25. This
approximation uses the .25 to account for leap years, but it fails to take into account the exception
for years that are divisible by 100 but not by 400. While you might rarely need such accuracy when
calculating elapsed years, the efficiency of a SAS function might speed things perceptibly when
working with big data.

5.4.1 Calculating Elapsed Time with DATDIF() and YRDIF()
These two functions were originally developed for use with securities calculations for specific
financial instruments.

DATDIF(start,end,basis);
DATDIF(start,end,basis); calculates the number of days between two dates. start is the starting
date, which can be a date constant, a numeric variable, or a SAS expression. end is the ending date,
also a date constant, a numeric variable, or a SAS expression. basis is a character constant or
variable that tells SAS how to calculate the difference. The start and end arguments are required,
while basis is optional. basis has two possible values. Note that if you use a character constant for
basis, remember that it will need to be enclosed in quotation marks, or you will get an error.

1. '30/360', which sets each month to 30 days, and the year to 360 days, regardless of how many
days are in each month or year in the span between the two dates. If a day is at the end of a
month (for example, February 28/29 or March 31), it will be considered as the 30th of the
month.

146 The Essential Guide to SAS Dates and Times, Second Edition

2. 'ACT/ACT', which uses the actual number of days in each month and year in the span
between the two dates. This is the default, and it is identical to subtracting start from end.

Sample Function Call Result Comment

DATDIF('19JUL2015'd,'19JUL2016'd,'30/360') 360 basis is "30/360," indicating a year
of 360 days by definition.

DATDIF('19JUL2015'd,'19JUL2016'd,'ACT/ACT') 366 2016 is a leap year, so 366 days have
elapsed between July 19, 2015, and
July 19, 2016.

YRDIF(start,end,basis);

YRDIF(start,end,basis); calculates the number of years between two dates. It is almost always
more accurate than using mathematical approximation, depending on the basis used and the
desired result. start is the starting date, which can be a date constant, a numeric variable, or a SAS
expression. end is the ending date, also a date constant, a numeric variable, or a SAS expression.
basis is a character constant or variable that tells SAS how to calculate the difference. basis has
five possible values, as compared with the two possibilities in the DATDIF() function:

1. '30/360', which sets each month to 30 days, and the year to 360 days, regardless of how many
days are in each month or year in the span between the two dates. If a day is at the end of a
month (for example, February 28/29 or March 31), it will be considered as the 30th of the
month.

2. 'ACT/ACT', which uses the actual number of days in each month and year in the span
between the two dates. This was the default basis through SAS version 9.2. You can use the
alias "Actual," not 'ACT.'

3. 'ACT/360', which uses the actual number of days between the two dates to calculate the
number of years, but it uses a 360-day year, regardless of how many days are in each year, so
the result is number of days divided by 360.

4. 'ACT/365', which uses the actual number of days between the two dates to calculate the
number of years, but uses a 365-day year, regardless of how many days are in each year, so
the result is number of days divided by 365.

5. 'AGE', which is used to calculate a person's age. This is available starting with SAS version
9.3, and as of that release, 'AGE' is now the default.

Sample Function Call
Resulting
value Comment

YRDIF('07AUG1967'd,'24MAY2014'd,'30/360') 46.797222 A month is defined as having
30 days, and the year is 360
days long.

Chapter 5: Date and Time Functions 147

Sample Function Call
Resulting
value Comment

YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/A
CT')

46.794521 Actual days in a month and
actual days in a year are used.

YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/36
0')

47.477778 Actual number of days in a
month are used; year is defined
as having 360 days,

YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/36
5')

46.827397 Actual number of days in a
month are used; year is defined
as having 365 days

As you can see, all four results are different, and this is due to the way they were calculated. Prior
to version 9.3, this function was often used to calculate ages, but even the 'ACT/ACT' basis
doesn't calculate ages precisely. The 'ACT/ACT' basis averages leap year days across the four
years. Now let's examine the YRDIF function when the 'ACT/ACT' basis and the 'AGE' basis are
used.

Sample Function Call Resulting value
YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/ACT') 46.794521
YRDIF('07AUG1967'd,'24MAY2014'd,'AGE') 46.794521

This looks as if the YRDIF() function will yield the same result for both the 'AGE' basis and the
'ACT/ACT' basis. Where is the difference? Let's look at another series of dates.

 Sample Function Call Resulting value
A YRDIF('07AUG1968'd,'24MAY2014'd,'ACT/ACT') 45.79342

YRDIF('07AUG1968'd,'24MAY2014'd,'AGE') 45.794521
 B YRDIF('07AUG1969'd,'24MAY2014'd,'ACT/ACT') 44.794521

YRDIF('07AUG1969'd,'24MAY2014'd,'AGE') 44.794521
 C YRDIF('07AUG1971'd,'24MAY2014'd,'ACT/ACT') 42.794521

YRDIF('07AUG1971'd,'24MAY2014'd,'AGE') 42.794521
 D YRDIF('07AUG1972'd,'24MAY2014'd,'ACT/ACT') 41.79342

YRDIF('07AUG1972'd,'24MAY2014'd,'AGE') 41.794521

In groupings A and D, you see that the basis makes a difference, while in groupings B and C, the
'ACT/ACT' and 'AGE' return identical results. What makes groupings A and D so different? These
are leap years, and the leap day is accounted for as a whole day for that given year, as opposed to
the averaging of a quarter day per year performed by the 'ACT/ACT' algorithm.

148 The Essential Guide to SAS Dates and Times, Second Edition

(U.S. and Canada Only) HOLIDAY(holiday,year);
HOLIDAY(holiday,year); provides the date of selected holidays in any given year as a SAS date
value. This function is valid for U.S. and Canada holidays only. holiday can be a character string
enclosed in quotation marks or a character variable containing one of the arguments listed below.
The valid values of holiday are listed in the table below. Note: If you use a character variable
instead of a string, your variable should be at least 18 characters long to accommodate the longest
argument.

Argument Used in Function Holiday Observed Date
BOXING Boxing Day December 26
CANADA Canada Day July 1
CANADAOBSERVED Canada Day observed July 1, or July 2 if July 1 is a Sunday
CHRISTMAS Christmas December 25
COLUMBUS Columbus Day 2nd Monday in October
EASTER Easter Sunday date varies
FATHERS Father's Day 3rd Sunday in June
HALLOWEEN Halloween October 31
LABOR Labor Day 1st Monday in September
MLK Martin Luther King, Jr. 's

birthday
3rd Monday in January beginning in
1986

MEMORIAL Memorial Day last Monday in May (since 1971)
MOTHERS Mother's Day 2nd Sunday in May
NEWYEAR New Year's Day January 1
THANKSGIVING U.S. Thanksgiving Day 4th Thursday in November
THANKSGIVINGCANADA Canadian Thanksgiving

Day
2nd Monday in October

USINDEPENDENCE U.S. Independence Day July 4
USPRESIDENTS Abraham Lincoln's and

George Washington's
birthdays observed

3rd Monday in February (since 1971)

VALENTINES Valentine's Day February 14
VETERANS Veterans Day November 11
VETERANSUSG Veterans Day (U.S.

government-observed)
U.S. government-observed date for
Monday–Friday schedule

VETERANSUSPS Veterans Day (U.S. post
office observed)

U.S. government-observed date for
Monday–Saturday schedule (U.S. Post
Office)

http://127.0.0.1:50738/help/lefunctionsref.hlp/p12v9lpx7rlthin1cnpd320l3mj3.htm%23p0jz7s4ismirobn0ziymfnv585ha
http://127.0.0.1:50738/help/lefunctionsref.hlp/p12v9lpx7rlthin1cnpd320l3mj3.htm%23p1mof13r07rafdn13sc1ygfpy7vi

Chapter 5: Date and Time Functions 149

Argument Used in Function Holiday Observed Date
VICTORIA Victoria Day Monday on or preceding May 24

Sample Function Call

SAS
Date
Value

Date Formatted using
WEEKDATE.

HOLIDAY("EASTER",2014) 19833 Sunday, April 20, 2014
HOLIDAY("EASTER",2019) 21660 Sunday, April 21, 2019
HOLIDAY("EASTER",2026) 24201 Sunday, April 5, 2026
HOLIDAY("EASTER",2039) 28954 Sunday, April 10, 2039
HOLIDAY("THANKSGIVINGCANADA",2014) 20009 Monday, October 13, 2014
HOLIDAY("THANKSGIVINGCANADA",2019) 21836 Monday, October 14, 2019
HOLIDAY("THANKSGIVINGCANADA",2026) 24391 Monday, October 12, 2026
HOLIDAY("THANKSGIVINGCANADA",2039) 29137 Monday, October 10, 2039
HOLIDAY("USINDEPENDENCE",2014) 19908 Friday, July 4, 2014
HOLIDAY("USINDEPENDENCE",2019) 21734 Thursday, July 4, 2019
HOLIDAY("USINDEPENDENCE",2026) 24291 Saturday, July 4, 2026
HOLIDAY("USINDEPENDENCE",2039) 29039 Monday, July 4, 2039

5.5 The Basics of SAS Intervals
Some of the SAS functions described in section 5.4, such as DATDIF, are very good at calculating
the exact amount of elapsed time between two SAS dates, and as demonstrated in some of the
above examples, you can see the difference between the function and simple math. There aren't
functions to project future dates, because it would seem simple enough: you just add a number of
days, hours, or minutes, and you come up with an answer.

However, we frequently need to refer to units of time that are not uniform, such as months, which
can be 28, 29, 30, or 31 days long. SAS provides functions to calculate intervals because, in many
cases, simple math is still only an approximation. SAS has several standard interval definitions that
are used with dates, times, and datetimes that represent many of the normal periods of time that we
refer to, such as weeks or quarters. You are not restricted to the intervals given in the standard
definitions, because you also have the ability to easily modify them. You can use multipliers and/or
a shift index in conjunction with the standard intervals. Multipliers enable you to define intervals
that are multiples of a standard interval and are not already defined, such as a decade or a century.
A shift index enables you to define intervals that do not correspond with the starting values used by
an interval (standard OR with a multiplier), such as a fiscal year that begins in July instead of
January, or, to give you an example with a multiplier, a decade that starts in years ending in the

150 The Essential Guide to SAS Dates and Times, Second Edition

number '5,' instead of years ending in 0. Section 5.6 will discuss the concepts of multipliers and the
shift index in detail. If you need intervals that cannot be described by using multipliers and/or a
shift index with the standard SAS intervals, SAS has the capacity for you to define your own
intervals, and this is covered in depth in Section 5.7.

For the remainder of this book, when the term "interval" is used in a function definition, it means a
SAS interval name, along with any multiplier and/or shift index unless explicitly specified
otherwise. We will begin our discussion of intervals by providing a list of all the standard interval
definitions and the periods that they describe in Table 5.5.

Table 5.5 SAS Interval Definitions Used with Dates, Times, and Datetimes

Category Interval Name Definition
Default Starting
Point

Date DAY Daily intervals Each day
WEEK Weekly intervals of seven days Each Sunday
WEEKDAYdaysW Daily intervals with Friday-Saturday-

Sunday counted as the same day
(five-day work week with a Saturday-
Sunday weekend). days identifies the
individual numbers of the weekend
day(s) by number (1=Sunday ...
7=Saturday). By default, days="17,"
so the default interval is
WEEKDAY17W.

Each day

TENDAY Ten-day intervals (a U.S. automobile
industry convention)

1st, 11th, and 21st
of each month

SEMIMONTH Half-month intervals First and sixteenth
of each month

MONTH Monthly intervals First of each month
QTR Quarterly (three-month) intervals 1-Jan

1-Apr
1-Jul
1-Oct

SEMIYEAR Semi-annual (six-month) intervals 1-Jan
1 Jul

YEAR Yearly intervals 1-Jan
Datetime DTDAY Daily intervals Each day

DTWEEK Weekly intervals of seven days Each Sunday

Chapter 5: Date and Time Functions 151

Category Interval Name Definition
Default Starting
Point

DTWEEKDAYdaysW Daily intervals with Friday-Saturday-
Sunday counted as the same day
(five-day work week with a Saturday-
Sunday weekend). days identifies the
individual weekend days by number
(1=Sunday ... 7=Saturday). By
default, days="17," so the default
interval is DTWEEKDAY17W.

Each day

DTTENDAY Ten-day intervals (a U.S. automobile
industry convention)

1st, 11th, and 21st
of each month

DTSEMIMONTH Half-month intervals First and sixteenth
of each month

DTMONTH Monthly intervals First of each month
 DTQTR Quarterly (three-month) intervals 1-Jan

1-Apr
1-Jul
1-Oct

DTSEMIYEAR Semiannual (six-month) intervals 1- Jan
1 Jul

DTYEAR Yearly intervals 1-Jan
DTSECOND Second intervals Seconds
DTMINUTE Minute intervals Minutes
DTHOUR Hour intervals Hours

Time SECOND Second intervals Seconds
MINUTE Minute intervals Minutes
HOUR Hourly intervals Hours

5.5.1 The Interval Calculation Functions: INTCK() and INTNX()
The interval calculation functions INTCK() and INTNX() use SAS interval definitions. INTCK()
counts the number of intervals between two given dates, times, or datetimes. INTNX() calculates
the date, time, or datetime that results after a given number of intervals have been added to an
initial date, time, or datetime value.

152 The Essential Guide to SAS Dates and Times, Second Edition

The syntax for the INTCK function is as follows.

INTCK(interval, start-of-period,end-of-period,method);
interval is the SAS designation for a period of time, and can be a character literal or character
variable that corresponds to one of the defined time intervals (see Table 5.5). start-of-period is the
beginning date, time, or datetime value, while end-of-period is the ending one. Both start-of-period
and end-of-period can be anything that evaluates to a valid SAS date, time, or datetime value.

As of SAS version 9, method determines how SAS is going to count the intervals. There are two
possible values: CONTINUOUS (or C or CONT) and DISCRETE or (D or DISC). The default is
DISCRETE, and this has been how intervals have traditionally been calculated in SAS. When
method is DISCRETE, the INTCK() function is counting the number of times that the period
interval begins between start-of-period and end-of-period, inclusive. It does not count the number
of complete intervals between start-of-period and end-of-period. This also means that the count
does not begin with start-of-period, but at the beginning of the first interval after that. The
following example demonstrates how INTCK() counts using the DISCRETE method. For example,
take the dates Saturday, December 31, 2011, and Sunday, January 1, 2012.

Example 5.2: How the INTCK() Function Counts by Default (method Is DISCRETE)

Function Call Result
INTCK('DAY','31dec2011'd,'01jan2012'd); 1
INTCK('WEEK','31dec2011'd,'01jan2012'd) 1
INTCK('MONTH','31dec2011'd,'01jan2012'd) 1
INTCK('YEAR','31dec2011'd,'01jan2012'd) 1

All of the intervals are equal to 1 even though only one day has passed! January 1, 2012, is the
start of day, week, month, and year intervals. The starting day occurred on December 31, and the
ending day began on January 1, so it is obvious that the result for the DAY interval should be 1,
because the DAY interval boundary was crossed on January 1. However, when it comes to the
WEEK interval, Sunday is the beginning of the week. Therefore, the week containing December
31st started on Sunday, December 25. Sunday, January 1, is the beginning of the next week, so
you cross the WEEK interval boundary at January 1. This means that one WEEK interval has
elapsed between the start of the week in December and the start of the week in January, so that
causes the result for WEEK to be 1. Similarly, the month containing December 31 started on
December 1, 2011, and the month for January 1, 2012, started on January 1. You are crossing the
MONTH interval boundary on January 1, so one MONTH interval has elapsed between the start
of the intervals for the two dates, and therefore, that result is 1 as well. Finally, the year for
December 31, 2011, started on January 1 of 2011, while the year for January 1, 2012, starts on the
same date. You cross the YEAR interval boundary at January 1, which causes the YEAR interval
result to be 1. All of the values are equal to 1 because the INTCK() function is counting the DAY,
WEEK, MONTH, and YEAR interval boundary, which occurs at Sunday, January 1, 2012, and
not because of the number of days, weeks, months, or years that have passed.

Chapter 5: Date and Time Functions 153

Now let's look at the corresponding results when you use CONTINUOUS for the method.

Example 5.3: How the INTCK() Function Counts When method Is CONTINUOUS

Function Call Result

INTCK('DAY','31dec2011'd,'01jan2012'd,'C'); 1
INTCK('WEEK','31dec2011'd,'01jan2012'd,'C') 0
INTCK('MONTH','31dec2011'd,'01jan2012'd,'C' 0
INTCK('YEAR','31dec2011'd,'01jan2012'd,'C') 0

One day has passed, as in the DISCRETE example. However, this looks more like what you might
expect when you ask how many weeks, months, and years have passed between December 31,
2011, and January 1, 2012. Only one day has passed, not an entire week, month, or year. The
CONTINUOUS method calculates continuous time, and it uses the calendar definition of a week,
month, or year, starting on the date supplied as the first argument. Let's change the ending dates
appropriately to reproduce the results in Example 5.2.

Example 5.4: How the INTCK() Function Counts When method Is CONTINUOUS

Function Call Result
Days

Elapsed

INTCK('DAY','31dec2011'd,'01jan2012'd,'C'); 1 1
INTCK('WEEK','31dec2011'd,'07jan2012'd,'C') 1 7
INTCK('MONTH','31dec2011'd,'31jan2012'd,'C' 1 31
INTCK('YEAR','31dec2011'd,'31dec2012'd,'C') 1 366

Now the picture should be a little more clear that using CONTINUOUS causes the INTCK()
function to look at continuous elapsed time, not interval boundaries. To firm up this demonstration
of the CONTINUOUS method for the INTCK() function, let's look at how the definition of the
MONTH interval can change.

Example 5.5: How the INTCK() Function Counts When method Is CONTINUOUS

 Function Call Result
Days

Elapsed

A INTCK('MONTH','01jan2012'd,'01feb2012'd,'C'); 1 31
B INTCK('MONTH','01jan2012'd,'31jan2012'd,'C'); 0 30
C INTCK('MONTH','01apr2012'd,'01may2012'd,'C'); 1 30
D INTCK('MONTH','28feb2012'd,'28mar2012'd,'C'); 1 29
E INTCK('MONTH','29feb2012'd,'28mar2012'd,'C'); 0 28
F INTCK('MONTH','28feb2013'd,'28mar2013'd,'C'); 1 28

154 The Essential Guide to SAS Dates and Times, Second Edition

Rows A and B look normal: 31 days is a month, while 30 days is not a month. However, row C
states that 30 days is a month. This is only true for the months of April, June, September, and
November. Finally, rows D through F demonstrate that, when you are using the CONTINUOUS
method, the MONTH interval changes based on the month and the year. In leap years, a period of
29 days across February is considered a month (row D). However, a period of 28 days is not
considered a month in leap years (row E). On the other hand, if it is not a leap year, 28 days in
February is a month.

The CONTINUOUS method is useful for calculating anniversaries and milestones tied to dates,
times, and datetimes. Although this method seems much more intuitive than the traditional (and
still default) way that SAS handles intervals, you will have to be very cautious in choosing which
method you use and when. It is not recommended that you replace all of your existing code to use
this method instead of the default, because the two methods differ in their definition of interval
boundaries. The CONTINUOUS method shifts the interval by the starting date provided. With the
DISCRETE method, all values within an interval boundary are considered to be equivalent. That
makes it possible to group observations occurring within an interval for analysis.

Since the CONTINUOUS method is more intuitive to the way we tend to look at periods of time,
the remainder of this section on the INTCK() function will be devoted to the traditional
DISCRETE method. Please remember that the DISCRETE method is the default, and in order to
use the CONTINUOUS method, you will have to supply the proper method argument in the
INTCK() function. All of the following examples rely on the default method, so there is no method
argument used in the function calls.

To complete the picture of how the traditional use of the INTCK() function works, let's look at the
effect that the ending date has on INTCK().

Example 5.6: How the INTCK() Function Counts

Function Call Result

INTCK('DAY','31dec2014'd,'06jan2015'd); 6
INTCK('WEEK','31dec2014'd,'06jan2015'd) 1
INTCK('MONTH','31dec2014'd,'06jan2015'd 1
INTCK('YEAR','31dec2014'd,'06jan2015'd) 1

Here you can see that although 6 days have elapsed, still only 1 week, month, and year have
elapsed according to INTCK()! That is because the start of the week, month, and year interval for
January 6, 2015, is still January 1, 2015, and that is what INTCK() is counting. Here are some
more examples of the use of the INTCK() function with its default of the DISCRETE method.

Chapter 5: Date and Time Functions 155

Example 5.7: The INTCK Function: The Basics

Function Call Result

INTCK('DAY','15jun2013'd,'22jun2013'd); 7
INTCK('WEEK','01jan2016'd,'01jan2017'd); 53
INTCK('DTDAY','01oct1872:08:00:00'dt,'20dec1872:18:00:00'dt); 80
INTCK('MONTH','05mar2000'd,'01may2000'd); 2

Example 5.8: The INTCK Function: Counting Backward

Function Call Result

INTCK('YEAR','22dec2015'd,'16jul2010'd); -5

In this example, the from date is after the to date, and therefore, the answer is negative. Since
INTCK() counts interval boundaries, the answer is –5 because it starts counting at the start of a
year. The start of the year interval for December 22, 2015, is January 1, 2015, so it is not counted.
January 1, 2014; January 1, 2013; January 1, 2012; January 1, 2011; and January 1, 2010, are the
boundaries of the YEAR intervals that it is counting, which corresponds to the beginning dates of
each year.

Example 5.9: The INTCK Function: Counting Weekdays

 Function Call Result

A INTCK('WEEKDAY17W','12JAN2014'd,'14JAN2014'd); 2
B INTCK('WEEKDAY17W','13JAN2014'd,'14JAN2014'd); 1
C INTCK('WEEKDAY17W','17JAN2014'd,'18JAN2014'd); 0

If you are counting the number of work weekdays that have elapsed, you must be careful to
remember that INTCK() counts interval boundaries and that the starting date is not counted in the
answer. Row A above seems perfectly reasonable. You would expect that there would be two
weekdays between Sunday, January 12, 2014, and Tuesday, January 14, 2014. Even though the
starting boundary for WEEKDAY17W is Monday, the starting date is Sunday, January 12, 2014,
so it counts Monday and Tuesday. However, you might think that there are two weekdays in the
span Monday, January 13, 2014, to Tuesday, January 14, 2014. In row B, the INTCK() function is
counting only 1 weekday, because it doesn't include Monday, January 13, 2014 (the start argument
used in the function), when it counts the interval boundaries. Why is row C equal to zero then?
First, Friday is the starting day, and the starting day is never included in the count. January 18,
2014, is a Saturday, and since we've defined the weekend days as Saturday and Sunday, those days
are outside of any interval boundaries, so by definition, no interval boundaries have been passed.

Example 5.10 illustrates the difference between the three methods that have been discussed for
calculating elapsed years using SAS. We will use the YRDIF() function using both the 'AGE' basis

156 The Essential Guide to SAS Dates and Times, Second Edition

and 'ACT/ACT' basis. Since the INTCK() function also counts elapsed intervals, we will use it and
show both the DISCRETE and CONTINUOUS methods, and compare those with mathematical
estimation.

Example 5.10: The YRDIF() Function as Opposed to Mathematical Estimation and
INTCK()
This uses the same dates, August 7, 1963, and May 8, 2014, for all five methods, but row A uses
the YRDIF() function with 'ACT/ACT,' row B uses the same function, but with the 'AGE' basis.
The two values are equivalent with the YRDIF() function, but as we have seen earlier, 'AGE' and
'ACT/ACT' only yield different results when the year being tested is a leap year. The mathematical
approximation divides the number of days between the two dates by 365.25, and although the
discrepancy is minute in this example, the difference is caused by the fact that the number of leap
years in the period (11) is not evenly divisible by 4, rendering the value 365.25 an approximation.
The INTCK function using the DISCRETE method counts interval boundaries from their
beginning, so it is counting the number of January firsts between January 1, 1963, and January 1,
2015. In effect, unless you were born on January 1, using the DISCRETE method with INTCK() to
calculate your age will make you old before your time! It is more appropriate in this type of
scenario to use the CONTINUOUS method with the INTCK() function, which yields the answer 50
years old.

 Calculation method Result

A Using YRDIF() with actual days in month, actual year 50.750685
B Using YRDIF() with AGE basis 50.750685
C Using ('08may2014'd - '07aug1963'd)/365.25 50.75154
D Using INTCK('YEAR','07aug1963'd,'08may2014'd,'DISCRETE') 51
E Using INTCK('YEAR','07aug1963'd,'08may2014'd,'CONTINUOUS') 50

Those are some examples of the use of the INTCK() function. Remember, as of SAS version 9,
the INTCK() function has an additional argument that you can use to change the way that INTCK
counts interval boundaries. However, any existing code using INTCK() does not need to be
changed, because the default method is the 'DISCRETE' method, which is how INTCK() has
always worked. Once again, it is not a good idea to change existing code without considering how
INTCK is being used, because the methods differ significantly in their calculations.

The next of the interval functions that we will consider is the INTNX() function. This function
takes a given SAS date, time, or datetime value and calculates a new value by incrementing by the
given number of intervals. Where INTCK() calculates the number of intervals between any two
date, time, or datetime values, INTNX() takes the start of the period and increments it by a number
of intervals to give the end of the period. The syntax of the INTNX() function is as follows:

Chapter 5: Date and Time Functions 157

INTNX(interval,start-from,number-of-increments,alignment);
INTNX(interval,start-from,number-of-increments,alignment); is one of the SAS intervals defined
in Table 5.5 and can be a character literal or character variable that evaluates to one of the defined
intervals. start-from is the starting date, time, or datetime value, which can be a constant, numeric
variable, or a SAS expression. number-of-increments is an integer constant or a numeric variable
that indicates how many intervals to advance. If it is not an integer, only the integer portion of the
value will be used. alignment sets the returned date, time, or datetime value according to one of
four predefined settings. The function calculates the dates at the beginning of the interval period,
and then the alignment argument adjusts the result. The values are: Beginning or B, Middle or M,
End or E, and Same or S (Sameday is also acceptable as an alias). The default value for alignment
is Beginning. The Sameday argument cannot be used with the DTQTR, DTSEMIYEAR, or
DTYEAR intervals, and it has no effect on time values.

The next series of examples demonstrates various uses and effects of the INTNX() function. The
first example is the default use of the function with each of the date, time, and datetime intervals,
while the second shows what happens when you use a non-integer as the increment to the function.
Example 5.14 illustrates the use of the alignment arguments to yield specific dates.

Example 5.11: The INTNX() Function with Default Alignment
Each of the examples below increments the date, time, or datetime value by 3 of the interval shown
in bold italics. For dates and datetimes, the start date is the same: Thursday, November 6, 2014.
The only difference is that datetime intervals (interval names starting with DT) return datetime
values, not dates. The interval values for datetime values are calculated in seconds, not days. By
default, the INTNX() function returns the beginning of the interval given. If you want to change
this, use the alignment argument discussed above.

Function Call Result Comment

INTNX('DAY','06NOV2014'd,3) November 9, 2014
INTNX('DTDAY','06NOV2014:15:00:00'dt,3) 11/9/2014 12:00 AM The time returned is

midnight of 11/09/2014,
not 3 p.m.

INTNX('WEEKDAY17W','06NOV2014'd,3) November 11, 2014 The returned date is the
following Tuesday.
Saturday (7) and Sunday
(1) don't count since they
are defined as the
weekend days.

INTNX('DTWEEKDAY17W','06NOV2014:15:00:00'dt,3) 11/11/2014 12:00 AM
INTNX('WEEK','06NOV2014'd,3) November 23, 2014 The value returned is the

Sunday of the week, not
21 calendar days.

INTNX('DTWEEK','06NOV2014:15:00:00'dt,3) 11/23/2014 12:00 AM

158 The Essential Guide to SAS Dates and Times, Second Edition

Function Call Result Comment
INTNX('TENDAY','06NOV2014'd,3) December 1, 2014 The value returned is the

first of the month, 25
calendar days, not 30.
This interval will always
return either the 1st, 11th,
or 21st of the month.

INTNX('DTTENDAY','06NOV2014:15:00:00'dt,3) 12/1/2014 12:00 AM
INTNX('SEMIMONTH','06NOV2014'd,3) December 16, 2014 Although November has

30 days, the returned date
is the 16th, not 45
calendar days, which
would be the 21st.

INTNX('DTSEMIMONTH','06NOV2014:15:00:00'dt,3) 12/16/2014 12:00 AM
INTNX('MONTH','06NOV2014'd,3) February 1, 2015 The date returned is the

beginning of the following
month, not the same date.
To get the same date, use
the "S" (Sameday)
alignment argument.

INTNX('DTMONTH','06NOV2014:15:00:00'dt,3) 2/1/2015 12:00 AM
INTNX('QTR','06NOV2014'd,3) July 1, 2015 The first day of the

quarter is returned.
INTNX('DTQTR','06NOV2014:15:00:00'dt,3) 7/1/2015 12:00 AM
INTNX('SEMIYEAR','06NOV2014'd,3) January 1, 2016 The beginning of the 3rd

semi-year after
11/02/2014 is January 1,
2016.

INTNX('DTSEMIYEAR','06NOV2014:15:00:00'dt,3) 1/1/2016 12:00 AM
INTNX('YEAR','06NOV2014'd,3) January 1, 2017 The beginning of the 3rd

year after 11/02/2014 is
January 1, 2017.

INTNX('DTYEAR','06NOV2014:15:00:00'dt,3) 1/1/2017 12:00 AM
INTNX('SECOND','8:00:00 AM't,3) 8:00:03 AM
INTNX('MINUTE','8:00:00 AM't,3) 8:03:00 AM
INTNX('HOUR','8:00:00 AM't,3) 11:00:00 AM

Example 5.12: The INTNX() Function: Using Non-Integer Increments
INTNX('HOUR','16:45't,2.5) 06:00 PM (18:00)

When the number of increments argument is not an integer, SAS will take the integer part as the
value. In this case, 2.5 becomes 2. The beginning of the first hour increment is 17:00, and the

Chapter 5: Date and Time Functions 159

second is 18:00. Since alignment is the default value of B or beginning, that sets the answer to the
beginning of the hour, which gives the result of 18:00.

Example 5.13: Counting Backward with the INTNX() Function
INTNX('DAY','29NOV2014'd,-4) 25NOV2014

INTNX() always adds the number of intervals to the starting date, time, or datetime. If you want to
find a prior date, then use a negative increment.

Example 5.14: The INTNX() Function with Alignment Arguments

INTNX Call Date Comment

INTNX('WEEK','02NOV2014'd,3,'B') 11/23/2014 Beginning of the week interval. Sunday,
November 23, 2014

INTNX('WEEK','02NOV2014'd,3,'M') 11/26/2014 Middle of the week interval. Wednesday,
November 26, 2014

INTNX('WEEK','02NOV2014'd,3,'E') 11/29/2014 End of the week interval. Saturday,
November 29, 2014

INTNX('WEEK','02NOV2014'd,3,'S') 11/23/2014 Same day, so the week interval ends on the
same day of the week (Sunday), leaving the
duration at 21 days. Sunday, November 23,
2014

Although the alignment arguments do change the value returned by the INTNX() function, it must
be reiterated that the function performs the calculation based on the beginning of the interval, and
the adjustment to the final result only occurs after that first calculation has been done.

5.6 Modifying SAS Intervals
The default SAS intervals don't match every situation. However, there are two ways to customize
SAS intervals: You can modify the existing SAS intervals with multipliers and a shift index, or you
can create your own intervals from a SAS data set. This section will discuss multipliers and the
shift index. Section 5.7 will discuss creating your own intervals.

The interval function INTCK(interval,start-of-period,end-of-period,method) counts the number of
intervals between two given SAS dates, times, or datetimes, while the INTNX(interval,start-
from,number-of-increments,alignment) function advances a given date, time, or datetime by a
specified number of intervals. Both functions use the standard SAS interval definitions. (See Table
5.6, below.) With the DISCRETE method, the INTCK() function counts at the starting point of a
given interval, while the CONTINUOUS method adjusts the starting point of the interval based on
the starting date and counts from there. Each method has its merits, and which one you use will
depend on your analysis or reporting needs.

160 The Essential Guide to SAS Dates and Times, Second Edition

The INTNX() function always advances to the beginning of the given interval. The alignment
argument available with INTNX() will adjust the result to the middle, end, or the same day of the
interval. Nonetheless, the intervals are still measured from their starting point, and the adjustment
is only applied after INTNX() has moved the specified number of intervals.

This behavior can lead to problems when your definition of an interval doesn't exactly match the
standard SAS definition of that same interval. For example, the standard SAS definition of year has
the first day of the year defined as starting January 1. What happens if your fiscal year starts on
July 1, and that is how you want to measure your year? What if your semi-month period is truly 14
days long?

A shift index and interval multipliers enable you to do this. You have the ability to define the start
of an interval definition by adding a shift index to it. The shift index defines the number of shift
points to move the start of the interval. There is one restriction on the value of the shift index: It
must be less than the number of shift points within the interval. For example, you can shift the start
of a YEAR interval by up to 12 months, but not 13, as there are only 12 months in a year. This
makes sense as if you were to shift a year by 13 months, you have shifted into the next YEAR
interval, and this is much less intuitive than adding 1 year to the starting date(s) that you send to the
interval function.

Table 5.6 shows the SAS interval name, definition, and the shift increment period for each one.

Table 5.6: SAS Intervals and Their Shift Points

Category Interval Definition Shift Point

Date DAY Daily intervals Days
WEEK Weekly intervals of seven days Days
WEEKDAY<daysW> Daily intervals with Friday-Saturday-

Sunday counted as the same day. days
identifies the individual weekend days by
number (1=Sunday ... 7=Saturday). By
default, days="17," so the default interval
is WEEKDAY17W.

Days

TENDAY Ten-day intervals Ten-day
periods

SEMIMONTH Half-month intervals Semimonthly
periods

MONTH Monthly intervals Months
QTR Quarterly (three-month) intervals Months
SEMIYEAR Semi-annual (six-month) intervals Months
YEAR Yearly intervals Months

Datetime DTDAY Daily intervals Days

Chapter 5: Date and Time Functions 161

Category Interval Definition Shift Point
DTWEEK Weekly intervals of seven days Days
DTWEEKDAY<daysW> Daily intervals with Friday-Saturday-

Sunday counted as the same day. days
identifies the individual weekend days by
number (1=Sunday ... 7=Saturday). By
default, days="17," so the default interval
is DTWEEKDAY17W.

Days

DTTENDAY Ten-day intervals Ten-day
periods

DTSEMIMONTH Half-month intervals Semimonthly
periods

DTMONTH Monthly intervals Months
DTQTR Quarterly (three-month) intervals Months
DTSEMIYEAR Semiannual (six-month) intervals Months
DTYEAR Yearly intervals Months
DTSECOND Second intervals Seconds
DTMINUTE Minute intervals Minutes
DTHOUR Hour intervals Hours

Time SECOND Second intervals Seconds
MINUTE Minute intervals Minutes
HOUR Hourly intervals Hours

For our first example, let's use the standard case of a fiscal year that starts on July 1. Technically, a
shift index says that you are moving the start of the interval to the beginning of one of the
subperiods within that interval. Years are subdivided into months, so that is the shift unit. The start
point is always included in the count of subperiods to be shifted. The easiest way for me to
remember this is that shifting an interval by one subperiod is the same as the unshifted base
interval. Think of this another way: while the start of the year is January 1, the beginning of the
first month in the year is also January 1. If we use a shift index of 1 with our YEAR interval, we
are shifting to the beginning of the first month in the year.

Therefore, in order to move your YEAR interval by seven months, you need to move it to the
beginning of the seventh subperiod. (January 1, February 1, March 1, April 1, May 1, June 1, July
1—that's seven). The shift value is added to the interval name by appending it with a decimal point.

162 The Essential Guide to SAS Dates and Times, Second Edition

Therefore, in order to advance the start of the YEAR interval by seven months to July 1, you would
use the interval "YEAR.7," as illustrated by the following:

Example 5.15: Moving the Start of a Year Interval from January 1 to
July 1

 Sample Function Call Result

A INTCK('YEAR','01jan2013'd,'06jul2014'd,'DISCRETE'); 1
B INTCK('YEAR','01jan2013'd,'06jul2014'd,'CONTINUOUS'); 1
C INTCK('YEAR.7','01jan2013'd,'06jul2014'd,'DISCRETE'); 2
D INTCK('YEAR.7','01jan2013'd,'06jul2014'd,'CONTINUOUS'); 1

INTCK() counts the start of interval boundaries with the DISCRETE method (rows A and C).
When the interval is "YEAR," it is measuring from January 1, 2013, until January 1, 2014 (the
start of the year containing July 6, 2014). When the interval is "YEAR.7," you have shifted the
beginning of the YEAR interval by 7 months, which declares that the year starts on July 1. In the
example above, that shift causes the measurement to begin on July 1, 2012 (the start of the shifted
"year" containing January 1, 2013) and end on July 1, 2014, which is the start of the year
containing July 6, 2004. That is why the value returned in row C is 2, not 1. With the
CONTINUOUS method, the shifted year starts on July 1, 2013, so the start date is before the start
of the measurement. Therefore, the only interval boundary crossed is on July 1, 2014, so the
answer in row D is 1.

While a shift index enables you to move the starting point of any given SAS interval, an interval
multiplier enables you to define the length of your own intervals. You define your new interval by
applying a multiplier value to an interval. For example, if you want to measure biweekly (14-day)
periods, you would take the WEEK interval and multiply it by 2. You add the numeric multiplier to
the end of the SAS interval name, so in this case your interval name would be "WEEK2." It
measures 14-day periods starting on Sunday because the regular SAS interval WEEK starts on
Sunday. Example 5.16 demonstrates the creation and use of a custom interval, by using the
example of a multiplier of 2 for the WEEK interval. It also illustrates some of the features of
custom intervals.

Example 5.16: Using an Interval Multiplier to Create a Custom Interval

Sample Function Call Result

INTNX('WEEK','09feb2014'd,2,'S'); Sunday, February 23, 2014
INTNX('WEEK2','09feb2014'd,2,'S'); Sunday, March 9, 2014

In the above example, the start of the WEEK interval two weeks from February 9 is February 23,
so it makes sense that the start of the second biweekly period from February 9 is March 9, because
February 2014 has 28 days, which is the same as two of your WEEK2 intervals. This is not as

Chapter 5: Date and Time Functions 163

simple as it seems. When using SAS intervals with the INTNX() function, you must keep in mind
that intervals are always measured from the beginning of the starting interval to the beginning of
the ending interval. This is independent of the starting and ending dates that you supply. Let's
move the starting date in Example 5.16 backward by one week to February 2, 2014.

 Sample Function Call Result

1 INTNX('WEEK','02feb2014'd,2,'S'); Sunday, February 16, 2014
2 INTNX('WEEK2','02feb2014'd,2,'S'); Sunday, February 23, 2014

Advancing by two WEEKS (row 1) is still a difference of 14 days, as expected. What happened in
row 2? Shouldn't you get 28 days instead of 21? No, because the start of the WEEK2 interval
containing February 2, 2014, is January 24, 2014, and that is where the INTNX() function begins
its count. Here is a sample program to produce the starting dates of the intervals:

Example 5.17: WEEK2 Intervals from January 1, 2014
DATA tricky;
DO intervals= 0 TO 5;
 interval_start = INTNX('WEEK2','01jan2014'd,intervals);
 OUTPUT;
END;
RUN;

PROC REPORT DATA=tricky NOWD SPLIT='\';
COLUMNS intervals interval_start;
DEFINE intervals / DISPLAY "Number of WEEK2\intervals from\January
1, 2014"
 STYLE={CELLWIDTH=1.25in TEXT_ALIGN=C};
DEFINE interval_start / FORMAT=weekdate32. "Starting Date of
Interval";
RUN;

The above program creates a table that shows the starting dates for the first five WEEK2 intervals
of 2014. If the date(s) supplied fall between the starting dates of any two boundaries, the interval
count (or incrementing) will begin from the starting date of the previous interval. This is why
moving the starting date of the INTNX function by one week doesn't necessarily move the result by
one week. You can move up to 14 days within a WEEK2 interval before you change the interval
boundary.

Number of
WEEK2
intervals from
January 1, 2014 Starting Date of Interval

0 Sunday, December 29, 2013

164 The Essential Guide to SAS Dates and Times, Second Edition

Number of
WEEK2
intervals from
January 1, 2014 Starting Date of Interval

1 Sunday, January 12, 2014

2 Sunday, January 26, 2014

3 Sunday, February 9, 2014

4 Sunday, February 23, 2014

5 Sunday, March 9, 2014

How does SAS determine what the starting date of a given interval is if you use a multiplier? It
takes the multiplied interval that you've created and starts counting beginning with January 1,
1960. This is true for all multiplied intervals except multiplied WEEK intervals. Multiplied
WEEK intervals are counted starting from Sunday, December 27, 1959, because weeks are
defined as starting on Sundays, and January 1, 1960, was a Friday.

You can also use a multiplier and a shift indicator together if needed. Interval multipliers are
directly appended to the interval name (for example, WEEK2), and shift indicators are appended to
the interval name with a leading decimal point (for example, WEEK.5). To use both the multiplier
and a shift index, you first append the multiplier to the interval name to create a new interval name
(for example, WEEK2), and then you append the shift indicator to the interval name. Given a
multiplier of 2, and a shift of 5, the interval name becomes "WEEK2.5." Again, you cannot use a
shift index that is greater than the number of shift points in the interval. In the case of a WEEK2
interval, you would not be able to use a shift index greater than 14, as that would place the starting
point of your interval into the next WEEK2 interval. In that case, it would be more intuitive to
change the starting date(s) that you will supply to the interval function.

To demonstrate, let's expand on the scenario used in example 5.17. What if you wanted your
biweekly periods to start on January 1, 2014? January 1, 2014, was a Wednesday, so you want to
move the starting date to the fourth day of the week (Sunday=1, therefore, Wednesday=4). Now
we'll generate the same table as above, using a shift indicator of 4 days in addition to the biweekly
interval of WEEK2.

Chapter 5: Date and Time Functions 165

Example 5.18: Using Both an Interval Multiplier and Shift Index to
Create a Custom Interval

DATA tricky;
DO intervals= 0 TO 5;
 plain_interval_start = INTNX('WEEK2','01jan2014'd,intervals);
 shifted_interval_start = INTNX('WEEK2.4','01jan2014'd,intervals);
 OUTPUT;
END;
RUN;

PROC REPORT DATA=tricky NOWD SPLIT='\';
COLUMNS intervals plain_interval_start shifted_interval_start;
DEFINE intervals / "Number of WEEK2\intervals from\January 1, 2014"
 STYLE={CELLWIDTH=1.25in TEXT_ALIGN=C} DISPLAY;
DEFINE plain_interval_start /. "Starting Date of WEEK2 Interval"
 FORMAT=weekdate32.;
DEFINE shifted_interval_start / "Starting Date of WEEK2.4 Interval"
 FORMAT=weekdate32.;
RUN;

Number of
WEEK2
Intervals from
January 1, 2014

Starting Date of WEEK2
Interval

Starting Date of WEEK2.4
Interval

0 Sunday, December 29, 2013 Wednesday, January 1, 2014

1 Sunday, January 12, 2014 Wednesday, January 15, 2014

2 Sunday, January 26, 2014 Wednesday, January 29, 2014

3 Sunday, February 9, 2014 Wednesday, February 12, 2014

4 Sunday, February 23, 2014 Wednesday, February 26, 2014

5 Sunday, March 9, 2014 Wednesday, March 12, 2014

When you use a multiplier, you also have the ability to define your shifts within the entire interval
created by the multiplier. For example, let's create a decade interval by using YEAR10 as the
interval. Remember that intervals start at the beginning of the boundary, so the decades would
start at the beginning of the first year of the decade. What can you do if you want to define the
decade as starting in May of the middle year in the decade (for example, May of 1955 as opposed
to January of 1950)?

To shift intervals across years, you need to use the first nested interval within the YEAR interval,
which is MONTH. So you would use (number of years to shift*12) to calculate the number of
months that you need to shift. If you wanted to shift 5 years, you would use 5*12=60. Add 5 to
that, which shifts the starting month from January to May, and your interval definition is now

166 The Essential Guide to SAS Dates and Times, Second Edition

YEAR10.65. That would be decades starting in May of years that end in 5. The code below shows
the effect of moving the interval by 65 months.

Example 5.19: Shifting a Multiplied Interval
DATA tricky3;
DO intervals= 0 TO 7;
 plain_interval_start = INTNX('YEAR10','01sep1950'd,intervals);
 shifted_interval_start =
INTNX('YEAR10.65','01sep1950'd,intervals);
 OUTPUT;
END;
RUN;

ods rtf file="c:\book\2ndEd\examples\ex5.6.5.rtf";

PROC REPORT DATA=tricky3 NOWD SPLIT='\';
COLUMNS intervals plain_interval_start shifted_interval_start;
DEFINE intervals / DISPLAY "Number of\intervals from\September 1,
1950"
 STYLE={CELLWIDTH=1in TEXT_ALIGN=C};
DEFINE plain_interval_start / FORMAT=weekdate32.
 "Starting Date of YEAR10 Interval";
DEFINE shifted_interval_start / FORMAT=weekdate32.
 "Starting Date of Shifted YEAR10 Interval";
RUN;

Number of
Intervals
from
September 1,
1950

Starting Date of YEAR10
Interval

Starting Date of Shifted
YEAR10 Interval

0 Sunday, January 1, 1950 Tuesday, May 1, 1945

1 Friday, January 1, 1960 Sunday, May 1, 1955

2 Thursday, January 1, 1970 Saturday, May 1, 1965

3 Tuesday, January 1, 1980 Thursday, May 1, 1975

4 Monday, January 1, 1990 Wednesday, May 1, 1985

5 Saturday, January 1, 2000 Monday, May 1, 1995

6 Friday, January 1, 2010 Sunday, May 1, 2005

7 Wednesday, January 1, 2020 Friday, May 1, 2015

The first thing to note is that even though the date that we specified is September 1, the starting
date of the interval is January 1, because that is the start of the YEAR interval. In the second

Chapter 5: Date and Time Functions 167

column, you can see that the interval has been shifted. Even though the starting date of the
YEAR10. interval is January 1, 1950, the shifted interval itself starts on Tuesday, May 1, 1945
(bold italics added), not May 1, 1955. Why? Because it is the start of the interval that contains
January 1, 1950.

The next example will demonstrate the importance of making sure that you use the correct shift
index and that you have to be aware of the starting date and/or datetime for your shifted, multiplied
interval.

Example 5.20: The Interaction between the Starting Date and the
Interval Starting Point: The "Working Shift" Interval
A company has a 24-hour production cycle that consists of three 8-hour working shifts per day. It is
easy to create an interval that represents each shift by using HOUR8 as your base interval, but
shifts do not start at midnight, 8 a.m., and 4 p.m., which would be the default for the HOUR8
interval. The table below shows when the HOUR8 interval starts based on the default.

Function Call Starting Time

INTNX('HOUR8','00:00't,0) 12:00:00 AM

INTNX('HOUR8','00:00't,1) 8:00:00 AM

INTNX('HOUR8','00:00't,2) 4:00:00 PM

However, in this case, the actual shifts start at 6 a.m., 2 p.m., and 10 p.m., so we will need to use a
shift index to align our HOUR8 interval with the actual shift hours. It is important to remember
that when you are shifting intervals, a shift index of 1 moves the start of the interval to the start of
the first subperiod within the interval—which is always the same as the start of the unshifted
interval. Look at the following table, which will tell us what interval shift will give us the starting
point at 6 a.m.

Function Call
Interval
Name

Starting
Time Comment

INTNX('HOUR8','6:00't,0); HOUR8 12:00 AM

INTNX(HOUR8.1,'6:00't,0) HOUR8.1 12:00 AM Same as HOUR8 interval.

INTNX(HOUR8.2,'6:00't,0) HOUR8.2 1:00 AM

INTNX(HOUR8.3,'6:00't,0) HOUR8.3 2:00 AM

INTNX(HOUR8.4,'6:00't,0) HOUR8.4 3:00 AM

INTNX(HOUR8.5,'6:00't,0) HOUR8.5 4:00 AM

168 The Essential Guide to SAS Dates and Times, Second Edition

Function Call
Interval
Name

Starting
Time Comment

INTNX(HOUR8.6,'6:00't,0) HOUR8.6 5:00 AM

INTNX(HOUR8.7,'6:00't,0) HOUR8.7 6:00 AM This is what we want.

Notice that in the above table, we've used 6 a.m. as our reference time in the INTNX() function
call, and we get the starting point of the interval by adding 0 intervals to our reference point. This
method works for finding the starting point of any interval in relation to the reference point. Now
we'll repeat our first table, showing the starting points for a 24-hour period starting at 6 a.m., with
our HOUR8.7 interval to demonstrate that everything is correct.

Function Call Starting Time

INTNX('HOUR8.7','06:00't,0) 6:00:00 AM

INTNX('HOUR8.7','06:00't,1) 2:00:00 PM

INTNX('HOUR8.7','06:00't,2) 10:00:00 PM

Although it might seem odd that a shift index of 7 is needed to get a change of 6 hours, you must
remember that the shift index is the number of subperiods within the interval to move. The shift is
always to the beginning of each subperiod within the interval. Therefore, the first subperiod within
an interval always starts at the beginning of the interval. In this case, the HOUR8 interval starts at
midnight, and the first hour within the HOUR8 interval also starts at midnight. That is why the
shift index necessary is 7, not 6.

In summary, the most important thing to remember about using intervals, multipliers, and the shift
index is that all intervals, no matter how they are defined, are measured from their beginning. If
you are using the INTCK() function, the definition of "beginning" is dependent upon the method
that you use, DISCRETE or CONTINUOUS. With DISCRETE, it is considered to be the
beginning of the interval boundary, but with CONTINUOUS, beginning is defined based on the
start date provided. The INTNX() function measures the beginning from the interval boundary; if it
is easier to think of INTNX as always using the DISCRETE method, then you can do that.
However, remember that the alignment arguments "B", "M", "E", and "S" for the INTNX()
function do not adjust the date until after the function has executed and calculated its start-of-
interval result (also remember that the alignment arguments only work with the INTNX() function).
No matter what, you can use the interval multipliers and a shift index to move the starting point of
an interval, and you can use them anywhere that you can use a date, time, or datetime interval.

Chapter 5: Date and Time Functions 169

5.7 Creating Your Own SAS Intervals
Another way to create intervals for use with interval functions is by creating a SAS data set that
defines the boundaries of your interval. This data set defines the duration of periods within the
interval and the period across which the interval applies as well, which is an important concept that
will be discussed when it comes to errors with using user-defined intervals. User-defined intervals
enable you to create intervals that do not correspond with shifted and/or multiplied SAS intervals,
such as intervals with irregular boundaries, those that do not encompass an entire predefined SAS
interval, or intervals that are specific to your job, company, or industry. However, if you needed to
count working shifts in a situation where there are two 10-hour work shifts per day with a four-
hour break in-between while the machinery resets, you could not do it by using multipliers and a
shift index.

You can also redefine an interval. For example, the shift point for a day is the day; what happens if
you want your "day" to start at 6 a.m. instead of midnight? DTHOUR24.7 would create an interval
that runs 24 hours starting at 6 a.m. (See example 5.20, which does the same for an HOUR8
interval. The only difference is that there are 24-hour-long subperiods in a DTHOUR24 interval.)
Unfortunately, the original question was to shift a DAY interval by 6 hours, but you can't do that
with a date value. DTHOUR intervals only apply to datetime values. You would have to convert all
of your date data to datetime data in order to use that interval. Defining your own interval where
days start at the desired time would solve this problem.

The SAS data set you have to create consists of at least one variable named begin. It can also have
two other optional variables, end and season. If you do not include the end variable, it is assumed
to be one less than the start of the next period within that interval; for example, if your user-defined
interval is based on days, the end will be the day before the begin value for the next record. While
seasonality is a time series concept outside of the scope of this book, it can be accounted for with
the variable season. One additional requirement is that begin (and end, if present in the data set)
must have an appropriate date, time, or datetime format assigned at the time that the data set is
created. In order to associate this data set with a user-defined interval, you need to use the
INTERVALDS system option.

OPTIONS INTERVALDS=(interval-name1, dataset-with-interval-records1, interval-name2,
dataset-with-interval-records2…)

This is where you name your user-defined interval and tell SAS which data set to use for that
interval. You can specify as many user-defined intervals as you need in a single OPTIONS
INTERVALDS statement. interval-name must conform to standard SAS naming conventions, and
it cannot be a SAS reserved word. If you try to use a reserved word, you will get an error at the
OPTIONS statement. This applies to names of existing intervals defined by SAS as well. You
cannot change the definition of an existing SAS interval by creating one of your own with the same
name. dataset-with-interval-records is a standard SAS data set reference of the type libref.dataset-
name. Since this statement merely identifies a data set for association with your interval name, data
set options are not allowed.

170 The Essential Guide to SAS Dates and Times, Second Edition

For our first example, let's define a SEMESTER interval, based on an academic calendar with two
semesters and a summer session. The sessions are defined as follows: The fall semester begins the
day following the first Monday in September and ends on the third Friday in December. The spring
semester begins on the second Monday in January, unless that day falls on the Martin Luther King,
Jr., holiday. In that case, it begins on the day following the holiday. The summer session starts on
the last Tuesday in May and proceeds through the third Friday in August. The following example
uses both the NWKDOM() and HOLIDAY() functions described in sections 5.3 and 5.4,
respectively.

Example 5.21: Academic Calendar: Creating a SEMESTER Interval
OPTIONS INTERVALDS=(semester=semester);

DATA semester;
DO year=2014 TO 2017;

 /* Fall Semester */
 begin = NWKDOM(5,2,8,year); /* Last Monday in August */
 end = NWKDOM(3,6,12,year); /* Third Friday in December */
 OUTPUT;

 /* Spring Semester */
 begin = NWKDOM(2,2,1,year+1); /* Second Monday in January of
 following calendar year */
 if begin eq HOLIDAY('MLK',year+1) then /* If MLK day, then
Tuesday */
 begin = begin + 1;
 end = NWKDOM(2,6,5,year+1); /* Second Friday in May */
 OUTPUT;

 /* Summer Session */
 begin = NWKDOM(1,2,6,year+1); /* First Monday in June */
 end = NWKDOM(3,6,8,year+1); /* Third Friday in August */
 OUTPUT;
END;
FORMAT begin end WEEKDATE.; /* Required */
RUN;

 tells SAS that we are defining an interval named "semester," and it is to be based on the data
set WORK.SEMESTER.

 sets a definite limit on the interval, from the start of the 2014 academic year through the 2017
academic year, which ends in August 2018. Below is the resulting data set:

begin end

Monday, August 25, 2014 Friday, December 19, 2014

Monday, January 12, 2015 Friday, May 8, 2015

Chapter 5: Date and Time Functions 171

begin end
Monday, June 1, 2015 Friday, August 14, 2015

Monday, August 31, 2015 Friday, December 18, 2015

Monday, January 11, 2016 Friday, May 13, 2016

Monday, June 6, 2016 Friday, August 12, 2016

Monday, August 29, 2016 Friday, December 16, 2016

Monday, January 9, 2017 Friday, May 12, 2017

Monday, June 5, 2017 Friday, August 11, 2017

Monday, August 28, 2017 Friday, December 15, 2017

Monday, January 8, 2018 Friday, May 11, 2018

Monday, June 4, 2018 Friday, August 10, 2018

You can then use the SEMESTER interval that you have created in the INTCK or INTNX interval
functions. The following table shows how many semesters have elapsed from September 15, 2014,
to the respective end dates shown.

Example 5.22: Using a User-Defined Interval with INTCK

Function Call Result
INTCK('SEMESTER',"15SEP2014"d,"22JUN2015"d); 2
INTCK('SEMESTER',"15SEP2014"d,"24NOV2016"d); 6
INTCK('SEMESTER',"15SEP2014"d,"01MAY2018"d); 10

For a second example, let's consider a case where we need to count the actual number of working
days for each year. The WEEKDAY interval is a useful approximation, but it doesn't account for
holidays, so if you need to know the exact number of working days between two dates, this will
solve that problem.

Example 5.23: Customized Company Working Days
OPTIONS INTERVALDS=(WorkingDays=Workdays);
DATA workdays (KEEP=begin); /* End variable not needed */
 start = '01JAN2014'D;
 stop = '31DEC2015'D;
 nweekdays = INTCK('WEEKDAY',start,stop); /* Based on Mon-Fri
weekdays */
 DO i = 0 TO nweekdays;
 begin = INTNX('WEEKDAY',start,i);
 year = YEAR(begin);

172 The Essential Guide to SAS Dates and Times, Second Edition

 /* Company-specific holidays */

/* Company closes day after thanksgiving */
 xthanks = HOLIDAY("THANKSGIVING",year) + 1;
/* Christmas Eve */
 xmaseve = HOLIDAY('CHRISTMAS',year) - 1;
/* Friday before Easter */
 sprng = HOLIDAY("EASTER",year) - 2;
/* Founders Day Company Holiday. If on weekend, move forward or back
*/
 founders = MDY(8,6,year);
 SELECT(WEEKDAY(founders));
 WHEN(6) founders = founders - 1;
 WHEN(1) founders = founders + 1;
 OTHERWISE founders = founders;
 END;

 /* Exclude dates of standard and company holidays from
interval data set */
 IF BEGIN ne HOLIDAY("NEWYEAR",year) AND
 BEGIN ne HOLIDAY("MLK",year) AND
 BEGIN ne HOLIDAY("USPRESIDENTS",year) AND
 BEGIN ne HOLIDAY("MEMORIAL",year) AND
 BEGIN ne HOLIDAY("USINDEPENDENCE",year) AND
 BEGIN ne HOLIDAY("LABOR",year) AND
 BEGIN ne HOLIDAY("VETERANS",year) AND
 BEGIN ne HOLIDAY("THANKSGIVING",year) AND
 BEGIN ne HOLIDAY("CHRISTMAS",year) AND
 BEGIN ne xmaseve AND
 BEGIN ne xthanks AND
 BEGIN ne sprng AND
 BEGIN ne founders THEN OUTPUT;
 END;
 FORMAT begin DATE9.;
RUN;

The following code generates a table showing the difference between the number of calendar days,
the number of weekdays, and the number of working days for this company for the calendar year
2014.

DATA CountDays;
 start = '01JAN2014'D;
 stop = '01JAN2015'D;
 ActualDays = INTCK('DAYS',start,stop);
 Weekdays = INTCK('WEEKDAYS',start,stop);
 ProductionDays = INTCK('WORKINGDAYS',start,stop);
 LABEL ActualDays="Actual Days"
 Weekdays="Weekdays"
 ProductionDays = "Production Days"
 start = "Starting Date"

Chapter 5: Date and Time Functions 173

 end = "Ending Date"
 ;
 FORMAT start stop DATE9.;
RUN;

PROC PRINT DATA=CountDays NOOBS;
RUN;

start stop ActualDays Weekdays ProductionDays

01JAN2014 01JAN2015 365 261 248

How much of a difference can this make? Consider that this company has six product lines and the
time to manufacture each product varies. A customer comes in with a large order and wants to
know what the delivery date would be for each product. It is critical that the delivery be
guaranteed to the day, so the contract calls for a substantial discount if the delivery date is not met.
In the following table, the order date is June 27, 2014. We use the INTNX() function to add the
corresponding number of production days for each product to the order date. The approximate
delivery date is calculated using the SAS WEEKDAY interval, while the true delivery date uses
our user-defined WORKINGDAYS interval.

DATA production_lines;
LENGTH product $ 40;
 orderDate = "27JUN2014"d;
 Product = "Std Product 1";
 days_from_order = 23;
 OUTPUT;
 Product = "Std Product 2";
 days_from_order = 32;
 OUTPUT;
 Product = "Std Product 3";
 days_from_order = 35;
 OUTPUT;
 Product = "Custom Product 1";
 days_from_order = 33;
 OUTPUT;
 Product = "Custom Product 2";
 days_from_order = 42;
 OUTPUT;
 Product = "Custom Product 3";
 days_from_order = 56;
 OUTPUT;
 FORMAT orderdate weekdate.;
RUN;

DATA ordertime;
SET production_lines;
deliveryDate = INTNX('WORKINGDAYS',orderdate,days_from_order,'S');

174 The Essential Guide to SAS Dates and Times, Second Edition

approx_deliveryDate =
INTNX('WEEKDAY',orderdate,days_from_order,'S');
FORMAT deliverydate approx_deliveryDate weekdate.;
RUN;

PROC REPORT DATA=ordertime NOWD SPLIT='\';
COLUMNS product days_from_order approx_deliveryDate deliveryDate;
DEFINE product / "Product";
DEFINE days_from_order / "Production Days\Required"
 STYLE={TEXT_ALIGN=C};
DEFINE approx_deliveryDate / STYLE={TEXT_ALIGN=L}
 "~S={text_align=c}Approximate Delivery Date\using WEEKDAYS
Interval";
DEFINE deliveryDate / "~S={TEXT_ALIGN=C}Actual Delivery Date\using
Custom\WORKINGDAYS Interval" STYLE={TEXT_ALIGN=L};
RUN;

Product

Production
Days
Required

Approximate Delivery
Date Using WEEKDAYS
Interval

Actual Delivery Date
Using Custom
WORKINGDAYS Interval

Std Product 1 23 Wednesday, July 30, 2014 Thursday, July 31, 2014
Std Product 2 32 Tuesday, August 12, 2014 Thursday, August 14, 2014
Std Product 3 35 Friday, August 15, 2014 Tuesday, August 19, 2014
Custom Product 1 33 Wednesday, August 13,

2014
Friday, August 15, 2014

Custom Product 2 42 Tuesday, August 26, 2014 Thursday, August 28, 2014
Custom Product 3 56 Monday, September 15,

2014
Thursday, September 18,

2014

There is one specific problem to be aware of when you are working with user-defined intervals. If
a specific date, time, or datetime is not covered in the interval data set, and you try to use one of
these values in a function, or one of these values is to be returned by a function, you will not get
the answer that you expect. Such unexpected results can be avoided by ensuring that the dates that
you define in the data set encompass all the dates that you may encounter. The next two examples
will demonstrate what happens when you use a date that is out of the range of your user-defined
interval. We will use the WORKINGDAYS interval as defined in the previous example. That
interval is only defined for a period of 2 years, from January 1, 2014, through December 31, 2015.
What happens if you try to calculate the number of working days using the INTCK() function with
ending dates outside of that range, or you try to project a date using the INTNX() function that
would be beyond that range?

Chapter 5: Date and Time Functions 175

Example 5.24: Out-of-Interval Calculation Using INTCK() and
"WORKINGDAYS" Custom Interval

Obs startDate endDate result

1 Wednesday, December 23, 2015 Thursday, December 24, 2015 0

2 Wednesday, December 23, 2015 Friday, December 25, 2015 0

3 Wednesday, December 23, 2015 Saturday, December 26, 2015 0

4 Wednesday, December 23, 2015 Sunday, December 27, 2015 0

5 Wednesday, December 23, 2015 Monday, December 28, 2015 1

6 Wednesday, December 23, 2015 Tuesday, December 29, 2015 2

7 Wednesday, December 23, 2015 Wednesday, December 30, 2015 3

8 Wednesday, December 23, 2015 Thursday, December 31, 2015 4

9 Wednesday, December 23, 2015 Friday, January 1, 2016 4

10 Wednesday, December 23, 2015 Saturday, January 2, 2016 4

11 Wednesday, December 23, 2015 Sunday, January 3, 2016 4

12 Wednesday, December 23, 2015 Monday, January 4, 2016 4

13 Wednesday, December 23, 2015 Tuesday, January 5, 2016 4

14 Wednesday, December 23, 2015 Wednesday, January 6, 2016 4

15 Wednesday, December 23, 2015 Thursday, January 7, 2016 4

Rows 1 through 4 make sense. There are no working days from Thursday through Sunday, as
December 24 is a company holiday. Rows 5 through 8 count a working day for Monday through
Thursday as you would expect. Friday, January 1, 2016, is also a company holiday. Therefore, you
would not expect it to count as a working day, nor would you expect the following Saturday and
Sunday to count as workdays. But what about that first full week in January, rows 12 through 15?
Those days aren't company holidays, so why aren't they being counted as working days?

The answer is that they aren't part of the WORKINGDAYS interval. The definition of the interval
ended on December 31, 2015. Because they are not in the data set, any dates before or after the
dates specified in the data set will not be considered working days. This makes sense when you
consider how we initially created the company holidays. We did not include those dates in the data
set that created the interval. Therefore, this problem actually starts with January 1, 2016. It is
merely coincidental that January 1st is a holiday, and the 2nd and 3rd are weekend days; that is not
what is preventing them from being counted as working days. Their absence from the data set we

176 The Essential Guide to SAS Dates and Times, Second Edition

used to create the interval is the only reason that they are not being counted. This next example
shows the type of problem that can arise when using the INTNX() function in a similar fashion.

Example 5.25: Out-of-Interval Calculation with INTNX() and
"WORKINGDAYS" Custom Interval

Obs Function Call Result

1 INTNX('workingdays','26dec2015'd,1,'S'); Monday, December 28, 2015

2 INTNX('workingdays','26dec2015'd,2,'S'); Tuesday, December 29, 2015

3 INTNX('workingdays','26dec2015'd,3,'S'); Wednesday, December 30, 2015

4 INTNX('workingdays','26dec2015'd,4,'S'); Thursday, December 31, 2015

5 INTNX('workingdays','26dec2015'd,5,'S'); .

6 INTNX('workingdays','26dec2015'd,6,'S'); .

7 INTNX('workingdays','26dec2015'd,7,'S'); .

8 INTNX('workingdays','26dec2015'd,8,'S'); .

What happened here? Rows 1 through 4 count the working days as expected, Monday through
Thursday. However, if you try to increment the starting date by more than 4 working days, the
function call returns a missing value. SAS cannot do the calculation because the result is
undefined; it ran out of possible results to return at December 31, 2015, because you did not
provide any in the data set.

The ability to define your own intervals will cover situations when the combination of standard
SAS intervals, a multiplier, and a shift index does not suffice. It is not difficult to create the data set
upon which SAS will base your user-defined interval, but be aware that dates that are not included
in the interval can cause problems when you try to use the intervals that you create. If you see
unexpected results from using your user-defined interval, the first thing to investigate is to make
sure that the range that you have defined for your interval encompasses the range of possible
results.

5.8 Interval Functions about Intervals
SAS has a series of functions that provide information about intervals that are being used. They can
tell you which interval is the best fit between two or three dates, or suggest a format for a given
interval. There is a function to tell you the shift point in effect for a given interval. (For basic
intervals, this returns the values in Table 5.5, but interval multipliers can change the returned
value.) There is also a function that will tell you if the interval name that you are using is valid.
This can allow for increased automation and building robust applications.

Chapter 5: Date and Time Functions 177

5.8.1 INTFIT(argument-1,argument-2,type)
INTFIT(argument-1,argument-2,type) takes two date, datetime, or observation numbers as the first
two arguments and returns the interval between them deemed to be "the best fit." This function
assumes that the alignment is "SAME," so that the exact values are matched between the two
arguments. type can be one of three case-insensitive values:

Interval
Name Definition

D Use when the two arguments are SAS date values. These can be date literals or
variables containing SAS date values

DT Use when the two arguments are SAS datetime values. These can be datetime literals or
variables containing SAS datetime values

OBS Use this when you want to find the interval between two observations by providing
observation numbers. This will return an interval with the base name of "OBS."

You can use this function to give you the interval between two points in time. The interval
returned might contain a multiplier and/or a shift index. As you can see in the table below, some
of the intervals are not as you might anticipate.

 start end result

A Tuesday, April 1, 2014 Wednesday, April 2, 2014 DAY
B Tuesday, April 1, 2014 Thursday, April 3, 2014 DAY2
C Tuesday, April 1, 2014 Friday, April 4, 2014 DAY3.3
D Tuesday, April 1, 2014 Saturday, April 5, 2014 DAY4.3
E Tuesday, April 1, 2014 Sunday, April 6, 2014 DAY5.5
F Tuesday, April 1, 2014 Tuesday, April 8, 2014 WEEK.3
G Tuesday, April 1, 2014 Wednesday, April 9, 2014 DAY8.7
H Tuesday, April 1, 2014 Friday, April 11, 2014 TENDAY
I Tuesday, April 1, 2014 Sunday, April 13, 2014 DAY12.3
J Tuesday, April 1, 2014 Tuesday, April 15, 2014 WEEK2.10
K Tuesday, April 1, 2014 Wednesday, April 16, 2014 SEMIMONTH
L Tuesday, April 1, 2014 Thursday, April 17, 2014 DAY16.7
M Tuesday, April 1, 2014 Saturday, April 19, 2014 DAY18.15
N Tuesday, April 1, 2014 Monday, April 21, 2014 TENDAY2.2
O 5/1/2014 9:00 AM 5/1/2014 2:00 PM DTHOUR5
P 5/1/2014 9:00 AM 5/1/2014 8:45 PM DTMINUTE705.136

178 The Essential Guide to SAS Dates and Times, Second Edition

 start end result
Q 5/1/2014 9:00 AM 5/2/2014 3:30 AM DTMINUTE1110.61

The italicized rows show examples of intervals that can be puzzling. Remember that the function
provides the exact intervals between the pair of dates or datetimes, and the lowest common
denominator will be used for base interval. In addition, the dates are measured using the sameday
alignment, which means that the interval is measured from the beginning of the interval, and then
adjusted. At first glance, the DAY5.5 result in row E doesn't seem to be right; Tuesday is only the
third day of the week, so shouldn't the shift be 3 as it is for the DAY3 and DAY4 intervals? The
start of DAY 5 intervals are Sunday, then Friday. If you want to measure a DAY5 interval to a
Sunday from a Tuesday, then you will have to measure from the Friday, which gives you a shift of
5. Rows P and Q demonstrate that it might become even more confusing with times and/or
datetimes, as the base interval shift points become minutes and/or seconds, so the resulting
multipliers and shift indices might be large enough so that you lose the context of the reference
point.

The following table shows a sample result of using the INTFIT() function with the 'OBS' type. The
records are from a sequential data set with Wednesday, April 2, 2014, as the first date. Since the
dates are keyed by observation, the result of the INTFIT() function shows the interval as the
relationship between observations, not the actual date values themselves.

Sample Function Call Date Result
INTFIT(1,1,'OBS') Wednesday, April 2, 2014
INTFIT(1,4,'OBS') Saturday, April 5, 2014 OBS3.2
INTFIT(1,5,'OBS') Sunday, April 6, 2014 OBS4.2
INTFIT(1,10,'OBS') Friday, April 11, 2014 OBS9.2
INTFIT(1,12,'OBS') Sunday, April 13, 2014 OBS11.2
INTFIT(1,13,'OBS') Monday, April 14, 2014 OBS12.2
INTFIT(1,14,'OBS') Tuesday, April 15, 2014 OBS13.2
INTFIT(1,16,'OBS') Thursday, April 17, 2014 OBS15.2
INTFIT(1,19,'OBS') Sunday, April 20, 2014 OBS18.2

5.8.2 INTFMT('interval','size')

INTFMT('interval','size') takes the interval that you give and returns a suggested format for date,
time, or datetime values using this interval. interval can be any standard SAS interval (with
multipliers and/or a shift index if desired), or a user-defined interval that you have created, as
shown in Section 5.6. If interval is represented by a character string, then it must be enclosed in
quotation marks, but you can use a character variable containing the name of an interval instead.
size refers to whether the format returned will have a two-digit year ('short'/'s') or a four-digit year
('long'/'l'). This argument must be enclosed in quotation marks also, but as with the interval

Chapter 5: Date and Time Functions 179

argument, you can use a character variable for the argument. There is one important usage note
about the size argument: If you do not use lowercase, the function might return an unpredictable
result (see Row A) in the example table below:

 Sample Function Call Result Comment
A INTFMT('WEEK','LONG') size argument is in uppercase
B INTFMT('WEEK','long') WEEKDATX17.
C INTFMT('MONTH','long') MONYY7.
D INTFMT('QTR','short') YYQC4. YYQC. format width is only 4

because it displays two-digit year
when the size argument='short'

E INTFMT('QTR','long') YYQC6.
F INTFMT('YEAR','long') YEAR4.
G INTFMT('YEAR10','l') YEAR4. Using alias 'l' for 'long'
H INTFMT('YEAR100','l') YEAR4. Using alias 'l' for 'long'
I INTFMT('DTMONTH','l') DTMONYY7. Using alias 'l' for 'long'
J INTFMT('DTYEAR','l') DTYEAR4. Using alias 'l' for 'long'
K INTFMT('HOUR','l') DATETIME10. Using alias 'l' for 'long'
L INTFMT('WORKINGDAYS','l') DATE11. Using alias 'l' for 'long'

This function is most useful when you use the INTFIT or INTGET functions to determine the
interval dynamically, so that you will always display a result in the proper context. See example
5.23 to see how this can be used to dynamically format results.

5.8.3 INTGET(argument1,argument2,argument3)
INTGET(argument1,argument2,argument3) determines an interval from three date or datetime
values that you provide. The arguments can be variables or date/datetime literals, but they must be
of the same type; you cannot mix dates and datetimes as arguments. The function calculates all
intervals between the first two arguments, and then between the second and third arguments. If the
intervals are the same, it will return that interval. If the intervals are not the same, then the function
will test the interval between the second and third arguments to see whether it is a multiple of the
interval between the first two arguments. If this is true, then the function will return the smaller of
the two intervals. If neither of these cases are true, then the INTGET() function will return a
missing value.

180 The Essential Guide to SAS Dates and Times, Second Edition

 Sample Function Call Result

A INTGET('05SEP2013'd,20SEP2013'd,05OCT2013'd) SEMIMONTH

B INTGET('15JAN2014'd,15APR2014'd,15OCT2015'd) QTR

C INTGET('15JAN2014'd,15APR2015'd,15OCT2015'd)

D INTGET('09JUL2015'd,09SEP2015'd,09MAR2016'd) MONTH2

E INTGET('09JUL2015'd,29AUG2015'd,15SEP2015'd) DAY17.15

In row A, the period between the dates is 15 days, which corresponds to the SEMIMONTH
interval. Row B demonstrates that the dates do not have to have the same interval. The gap
between January and April is one quarter, but the gap between April and October of the following
year is five quarters. Since the interval for the second pair of arguments would be 'QTR5,' since it
is a multiple of the QTR interval, the function returns the unmultiplied interval. What happened in
row C? Simply, the interval between January 2014 and April 2015 is now QTR5, but the interval
between April and October 2015 is QTR2. Since QTR2 is not a multiple of QTR5, the result is
missing. Row D shows that if the interval between two arguments is itself a multiplied interval
(MONTH2 versus MONTH6), the function will return the interval with the smallest multiplier,
while row E shows the ingenuity of the function: The DAY17 interval works if it is shifted by 15
days.

5.8.4 INTSHIFT('interval')
INTSHIFT('interval') takes the interval that you give and returns the shift point for that interval.
interval can be any standard SAS interval (with multipliers and/or a shift index if desired). If
interval is represented by a character string, then it must be enclosed in quotation marks, but you
can use a character variable containing the name of an interval instead. If you try to use this
function with a user-defined interval that you have created, the function will return a missing value.

Sample Function Call Result Comment

INTSHIFT('WEEK') DAY
INTSHIFT('MONTH') MONTH
INTSHIFT('QTR3.4') MONTH
INTSHIFT('YEAR') MONTH
INTSHIFT('YEAR10.5') MONTH
INTSHIFT('YEAR100') MONTH
INTSHIFT('DTMONTH') DTMONTH
INTSHIFT('DTYEAR.7') DTMONTH
INTSHIFT('HOUR') DTHOUR Note that shift points for time intervals are

expressed as datetime shift points.

Chapter 5: Date and Time Functions 181

Sample Function Call Result Comment
INTSHIFT('WORKINGDAYS') User-defined interval, so no shift points can be

calculated.

5.8.5 INTTEST('interval')
INTTEST('interval') takes the interval that you give and returns a 1 if it is a valid interval name, or
0 if it is not. You can use this to determine whether you have created a valid interval with
multipliers and/or a shift index. interval can be any standard SAS interval (with multipliers and/or a
shift index if desired). If interval is represented by a character string, then it must be enclosed in
quotation marks, but you can use a character variable containing the name of an interval instead. If
you try to use this function with a user-defined interval that you have created, the function will
return a missing value.

Sample Function Call Result Comment

INTTEST('WEEK') 1
INTTEST('QTR.1') 1 You can shift a quarter by up to 3 months (counting the

initial starting point as .1).
INTTEST('QTR3.13') 0 The shift point for quarters is months, so the maximum

number of months that you can shift in a 3-quarter
period would be 9.

INTTEST('YEAR.7') 1
INTTEST('YEAR10.14') 1
INTTEST('DTMONTH') 1
INTTEST('HOUR2.3') 0 Cannot shift 3 hours in a 2-hour interval.
INTTEST('WORKINGDAYS') 0 This function does not recognize user-defined intervals.

5.9 Retail Calendar Intervals and Seasonality
This section covers intervals and functions that are most frequently used with time series analyses.
Although the topic of time series analysis is beyond the scope of this book, these intervals and
functions are described here because the intervals can be used with INTNX() and INTCK(), while
the functions are a part of Base SAS. However, they are presented without context.

5.9.1 Retail Calendar Intervals
SAS has added intervals that are specifically designed for the retail industry. These intervals are
ISO 8601 compliant, and can be used with any of the interval functions. They facilitate
comparisons across years, because the weeks remain consistent between years. In order to facilitate
this, some years will have leap weeks. Year definitions are based on the ISO 8601 definition of a
week, which is the first Monday preceding January 4, which in some cases might place the

182 The Essential Guide to SAS Dates and Times, Second Edition

beginning of the week in December. These intervals enable you to define the structure of your 52-
week year, expecting that for the first 13-week period of your interval, there will be 1 month that
has 5 weeks in it. This means that you can set the month pattern to 5-4-4, 4-5-4, or 4-4-5. You can
work with years, months, or quarters in this fashion. The full list of retail intervals is given in Table
5.7.

Table 5.7: Retail Calendar Intervals

Interval Description

YEARV Specifies ISO 8601 yearly intervals. The ISO 8601 year begins on the Monday on or
immediately preceding January 4. Note that it is possible for the ISO 8601 year to
begin in December of the preceding year. Also, some ISO 8601 years contain a leap
week. The beginning subperiod s is written in ISO 8601 weeks (WEEKV).

R445YR Is the same as YEARV except that in the retail industry the beginning subperiod s is
4-4-5 months (R445MON).

R454YR Is the same as YEARV except that in the retail industry the beginning subperiod s is
4-5-4 months (R454MON).

R544YR Is the same as YEARV except that in the retail industry the beginning subperiod s is
5-4-4 months (R544MON).

R445QTR Specifies retail 4-4-5 quarterly intervals (every 13 ISO 8601 weeks). Some fourth
quarters contain a leap week. The beginning subperiod s is 4-4-5 months (R445MON).

R454QTR Specifies retail 4-5-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth
quarters contain a leap week. The beginning subperiod s is 4-5-4 months (R454MON).

R544QTR Specifies retail 5-4-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth
quarters contain a leap week. The beginning subperiod s is 5-4-4 months (R544MON).

R445MON Specifies retail 4-4-5 monthly intervals. The 3rd, 6th, 9th, and 12th months are five
ISO 8601 weeks long with the exception that some 12th months contain leap weeks.
All other months are four ISO 8601 weeks long. R445MON intervals begin with the
1st, 5th, 9th, 14th, 18th, 22nd, 27th, 31st, 35th, 40th, 44th, and 48th weeks of the ISO
year. The beginning subperiod s is 4-4-5 months (R445MON).

R454MON Specifies retail 4-5-4 monthly intervals. The 2nd, 5th, 8th, and 11th months are five
ISO 8601 weeks long with the exception that some 12th months contain leap weeks.
R454MON intervals begin with the 1st, 5th, 10th, 14th, 18th, 23rd, 27th, 31st, 36th,
40th, 44th, and 49th weeks of the ISO year. The beginning subperiod s is 4-5-4
months (R454MON).

R544MON Specifies retail 5-4-4 monthly intervals. The 1st, 4th, 7th, and 10th months are five
ISO 8601 weeks long. All other months are four ISO 8601 weeks long with the
exception that some 12th months contain leap weeks. R544MON intervals begin with
the 1st, 6th, 10th, 14th, 19th, 23rd, 27th, 32nd, 36th, 40th, 45th, and 49th weeks of the
ISO year. The beginning subperiod s is 5-4-4 months (R544MON).

Chapter 5: Date and Time Functions 183

Interval Description
WEEKV Specifies ISO 8601 weekly intervals of seven days. Each week begins on Monday.

The beginning subperiod s is calculated in days (DAY). Note that WEEKV differs
from WEEK in that WEEKV.1 begins on Monday, WEEKV.2 begins on Tuesday, and
so on.

5.9.2 Seasonality Functions
Seasonality is used in time series analysis and can be used in SAS/ETS. It helps to account for
normal seasonal variations in patterns inside an analysis. While it is not strictly a date and time
matter, it does use intervals. Therefore, the seasonality functions are documented here, but without
context. For more information about seasonality and its application, you can refer to the SAS/ETS
documentation, and support.sas.com is a great place to find more help on this topic.

INTCINDEX('interval',argument)
INTCINDEX('interval',argument) returns the index of the seasonal cycle based on interval for
argument, where argument is a SAS date, time, or datetime value. interval can be any standard
SAS interval (with multipliers and/or a shift index if desired).

INTCYCLE('interval',seasonality)
INTCYCLE('interval',seasonality) returns the interval of the seasonal cycle. interval can be any
standard SAS interval (with multipliers and/or a shift index if desired). seasonality is an optional
argument that enables you to define seasonal cycles, and it can be a number or a cycle (such as
'YEAR'). For example, you can use the seasonality argument to specify your year as having 53
weeks instead of 52.

INTINDEX('interval',argument,seasonality)
INTINDEX('interval',argument,seasonality) returns the seasonal index when given an interval, a
SAS date, time, or datetime of the seasonal cycle. interval can be any standard SAS interval (with
multipliers and/or a shift index if desired. argument is a SAS date, time, or datetime value. Note
that the interval specified must be appropriate for the argument. seasonality is an optional
argument that enables you to define seasonal cycles, and it can be a number or a cycle (such as
'YEAR'). The INTINDEX function returns the seasonal index, while the INTCINDEX function
returns the cycle index.

INTSEAS('interval',seasonality)
INTSEAS('interval',seasonality) returns the number of intervals in a seasonal cycle. interval can be
any standard SAS interval (with multipliers and/or a shift index if desired). seasonality is an
optional argument that enables you to define seasonal cycles. This is a good function to be aware of
if you are not familiar with concepts of seasonality, because the number of intervals in a seasonal
cycle might not be intuitive. For example, while you might expect the number of intervals for the
QTR interval to be 4 (because there are 4 quarters in a year), the number of intervals for a DAY
interval is 7, for the number of days in the week. This can help you check your expectations.

184 The Essential Guide to SAS Dates and Times, Second Edition

Chapter 6 Deeper into Dates and Times with
SAS

6.1 Macro Variables and Dates... 185

6.2 Graphing Dates .. 194

6.3 The Basics of PROC EXPAND ... 200

6.4 International Date, Time, and Datetime Formats and Informats 212

6.5 NLS Date, Time, and Datetime Conversion Functions 221

6.6 Date Formats and Informats for Other Calendars 225

6.7 Other Software and Their Dates (Excel, Oracle, DB2) 227

6.8 Conclusion ... 229

6.1 Macro Variables and Dates
There is a high potential for confusion when it comes to the subject of macro variables and dates.
Although you have access to dates and times in the SAS macro language with the automatic macro
variables &SYSDATE, &SYSDATE9, &SYSDAY, and &SYSTIME, the display of these values is
fixed, and therefore they do not give you the power of SAS formats, or of SAS date and time
functions.

6.1.1 Automatic Macro Variables
None of these automatic macro variables can be assigned values with %LET or CALL SYMPUT(),
or by any other means. They are read-only and work by reading the operating system clock when a
SAS session is started. This means that they do not change within a given SAS session.

&SYSDATE
&SYSDATE cannot be modified and displays the system date as a SAS date value formatted with
the DATE7. format. If the date according to the operating system when the SAS session starts is
July 17, 2014, then &SYSDATE would be equal to "17JUL14."

186 The Essential Guide to SAS Dates and Times, Second Edition

&SYSDATE9
&SYSDATE9 is identical to &SYSDATE, except that it formats the system date with the DATE9.
format and is therefore Y2K-compliant. If the operating system date is November 22, 2015, then
&SYSDATE9 would be equal to "22NOV2015."

&SYSDAY
&SYSDAY displays the name of the day that the SAS session began (according to the operating
system). If you started a SAS job or session on Monday, April 14, 2014, &SYSDAY would be
equal to "Monday."

&SYSTIME
&SYSTIME displays the system time (according to the operating system) in TIME5. format. If the
system time is 3:36 p.m. when you start SAS, then &SYSTIME would be equal to "15:36."

6.1.2 Putting Dates into Titles
One of the prime uses of dates in macro variables is for custom titles and footnotes. To use a macro
variable in a title, you just need to enclose the TITLE or FOOTNOTE statement that contains the
macro variable with double quotation marks like this:

TITLE "Today's Date is &SYSDATE9";

To see this in context, look at the following program:

Example 6.1: Using Automatic Macro Variables in a Title
TITLE "This is how to put a macro variable in a title: Today's Date is
&SYSDATE9";
ODS RTF FILE="examples\title.rtf";
PROC PRINT DATA=sashelp.company (OBS=5);
ID job1;
VAR depthead;
RUN;
ODS RTF CLOSE;

Chapter 6: Deeper into Dates and Times with SAS 187

Here is the resulting output:

While the automatic macro variables &SYSDATE, &SYSDATE9, &SYSDAY, and &SYSTIME
might give you the information that you need, their formats are fixed and cannot be changed. Given
the multiple ways that dates, times, and datetimes can be displayed, it would be good if you could
use the formats and functions to get the display of dates and times that you want in your titles.

6.1.3 Using %SYSFUNC() to Create Dates, Times, and Datetimes in
Macro Variables
Many of the date and time functions, as well as formats, are available in the SAS macro language
through the %QSYSFUNC() and %SYSFUNC() macro functions. When you are using one of these
macro functions with dates and times, you can use two arguments: The first is the date, time, or
datetime function that you wish to use. The second argument is optional, but you can specify the
format that should be applied to the result.

Example 6.2: Date Functions with %SYSFUNC()
This example puts the formatted value of today's date into the macro variable &DATE and
demonstrates the difference between unformatted and formatted dates in macro variables. The date
value in &RAWDATE is stored in macro space as a text string and will need to be converted if you
want to use it for any calculations. &DATE is also a text string in macro space, but it shows that
the WORDDATE. format has been applied to the value.

%LET rawdate=%SYSFUNC(DATE());
%LET date=%SYSFUNC(DATE(),WORDDATE32.);

TITLE "Today's SAS Date Value is &rawdate";
TITLE2 "Formatted date: &date";

ODS RTF FILE="c:\book\2ndEd\examples\title2.rtf";
PROC PRINT DATA=sashelp.class (OBS=5);
ID name;
VAR age;
RUN;
ODS RTF CLOSE;

188 The Essential Guide to SAS Dates and Times, Second Edition

Now you can use the result in a title or footnote.

You can also use this as a part of an output file name or Excel worksheet name.

Example 6.3: Putting a Date Value into an Output File Name
%LET filedate=%SYSFUNC(DATE(),yymmddd10.);

ODS RTF FILE="Car_Report_&filedate..rtf";
PROC PRINT DATA=sashelp.cars NOOBS LABEL;
RUN;
ODS RTF CLOSE;

When you try this at home, you will see that you have generated an RTF file named
"Car_report_yyyy-mm-dd.rtf."

Example 6.4: Naming Worksheets with the Date
In this example, we create a custom format to display dates as the full month name and 4-digit year
and apply it to a copy of the date variable in the data set. Then we use that variable as the BY
variable in the PRINT procedure. Not only does this put the name on each worksheet, but it also
filters the dates into their correct worksheet without much extra coding required. There are many
other ways that you can accomplish this task, but this is straightforward and simple. If you have a
great deal of data, you might want to investigate a more efficient method than creating an
additional variable in a data set. Lines 1–5 create the format using the PICTURE statement in
PROC FORMAT and date directives discussed in section 2.6, and lines 6–13 create our duplicate
variable with our custom format and also subset the data set. Note the date literals used as values in
the BETWEEN operator in line 10. We remove the default BY line from the output in line 14. The

Chapter 6: Deeper into Dates and Times with SAS 189

SHEET_NAME option allows us to use the BY value token (#BYVAL1) as the name of the
worksheet.

1 PROC FORMAT;
2 PICTURE namefmt
3 LOW-HIGH='%B %Y' (DATATYPE=date)
4 ;
5 RUN;

6 PROC SQL;
7 CREATE TABLE subset AS
8 SELECT date as sheet_date FORMAT=namefmt15., *
9 FROM sashelp.citiday
10 WHERE date BETWEEN '01JAN1988'd AND '31AUG1988'd
11 ORDER BY DATE
12 ;;;;
13 QUIT;

14 OPTIONS NOBYLINE;
15 ODS TAGSETS.EXCELXP FILE="ex6.1.4.xml" OPTIONS

(SHEET_NAME="#BYVAL1");
16 PROC PRINT DATA=subset LABEL NOOBS;
17 BY sheet_date;
18 RUN;
19 ODS TAGSETS.EXCELXP CLOSE;

This is the resulting workbook:

6.1.4 Using Dates in Macros
While SAS can handle dates, times, and datetime values as numbers, getting the macro processor to
accept them as numbers might involve an extra step or two. Let's look at the following code:

1 %MACRO date_loop;
2 %DO I='05JUN2014'd %TO '12JUN2014'd;
3 TITLE "Happy Kids Ice Cream Co. Sales for &i";

190 The Essential Guide to SAS Dates and Times, Second Edition

4 PROC PRINT DATA =sample.dailysales;
5 ID district;
6 VAR sales;
7 WHERE date EQ &i;
8 RUN;
9 %END;
10 %MEND;

We have used two date literals to provide the period over which we want the report run and used it
in the title as well. What happens when this is submitted?

ERROR: A character operand was found in the %EVAL function or %IF
condition where a numeric operand is required. The condition was:
'05JUN2014'd

ERROR: The %FROM value of the %DO I loop is invalid.

ERROR: A character operand was found in the %EVAL function or %IF
condition where a numeric operand is required. The condition was:
'12JUN2014'd

ERROR: The %TO value of the %DO I loop is invalid.

ERROR: The macro DATE_LOOP will stop executing.

To the macro processor, the date literals are only text. They do not function as they do in the rest of
SAS. How can we get around this? By using the %SYSEVALF() macro function to force the
interpretation of the date literals. Let's replace line 2 with the following line:

%DO i=%SYSEVALF('05JUN2014'd) %TO %SYSEVALF('12JUN2014'd);

Now the loop will execute properly. However, the date in the title does not look good at all.

Chapter 6: Deeper into Dates and Times with SAS 191

The date in the title doesn't look like a date. We need to make one more modification to the
program to get our title to look right. The %LET statement added in line 3 creates a formatted value
of the date in the macro loop for use. The PUTN() function is used here instead of the PUT()
function because you can't use the PUT() function with %SYSFUNC() or QSYSFUNC().

1 %MACRO date_loop;
2 %DO I=%SYSEVALF('05JUN2014'd) %TO %SYSEVALF('12JUN2014'd);
3 %LET TITLEDATE=%SYSFUNC(PUTN(&i,WORDDATE.));
4 TITLE "Happy Kids Ice Cream Co. Sales for &titledate";
5 PROC PRINT DATA=sample.dailysales;
6 ID district;
7 VAR sales;
8 WHERE date EQ &i;
9 RUN;
10 %END;
11 %MEND;

And now we get the desired result.

192 The Essential Guide to SAS Dates and Times, Second Edition

Our final example of using dates in macros demonstrates how to get a date from a data set into a
macro. For this example, we want to put the latest date from a given column into a macro variable
so that it can be used in a title. Let's look at some timing variables from this sample data set. We
want to put the latest date and time (which is in record 4) from the variable MODDATE (nicely
formatted, of course) on the title of each page.

Method 1: Using CALL SYMPUT
The CALL SYMPUT() and SYMGET() functions are also used to communicate between the
DATA step and the macro world. CALL SYMPUT()takes a value and stores it in macro space from
within a DATA step, while SYMGET() takes a macro variable and enables you to use it in a
DATA step. In this situation, I recommend that you use CALL SYMPUTX() instead of CALL
SYMPUT(), because CALL SYMPUTX() suppresses any trailing blanks in the macro variable
created, and the presence of trailing blanks might affect the justification of your title or footnote.
The difference between run-time and compile time is very important. You cannot use a %LET
statement to store macro values that are defined during execution of a DATA step. You also cannot
use a macro variable reference (with an ampersand [&]) in the same DATA step where the macro
variable is created with CALL SYMPUT(). The next example uses what was discussed in section
6.1.2 to show how you can obtain a date value from a SAS data set and then put it in a macro
variable to use in a title. Since the DATETIME. format isn't formal enough for this report, we're
going to create a RPTDATE. custom format.

PROC FORMAT;
PICTURE rptdate (DEFAULT=32)
. - .Z = 'Missing'
LOW-HIGH = '%B %d, %Y at %I:%0M %p' (DATATYPE=DATETIME);
RUN;

/* Get the maximum date in the variable */
PROC MEANS DATA=sample.pmdata MAX NOPRINT;
VAR moddate;
OUTPUT OUT=tmp MAX=max;

Chapter 6: Deeper into Dates and Times with SAS 193

RUN;

/*Transfer it to a macro variable using CALL SYMPUTX() */
DATA _NULL_;
SET tmp;
CALL SYMPUTX('lastmod',STRIP(PUT(max,rptdate.)));
RUN;

%PUT lastmod=&lastmod;

Partial Log

42 %PUT lastmod=&lastmod;
lastmod=February 7, 2014 at 4:18 PM

Method 2: Using PROC SQL
For something as simple as the highest (or lowest) value in a date or datetime variable, you don't
have to use a SAS procedure and a DATA step. PROC SQL can take the place of both.

PROC SQL NOPRINT;
SELECT DISTINCT STRIP(PUT(MAX(moddate),rptdate.)) LENGTH=32 INTO
:lastmod
FROM sample.pmdata;
QUIT;

%PUT lastmod=&lastmod;

The Log

1 PROC SQL NOPRINT;
2 SELECT DISTINCT STRIP(PUT(MAX(moddate),rptdate.)) LENGTH=32 INTO
3 ! :lastmod
4 FROM sample.pmdata;
5 QUIT;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.08 seconds
 cpu time 0.00 seconds

6
7 %PUT lastmod=&lastmod;
lastmod=February 7, 2014 at 4:18 PM

Whichever method you choose, the macro variable &LASTMOD, containing the value "February
7, 2014 at 4:18 PM", is ready to use in your report title.

194 The Essential Guide to SAS Dates and Times, Second Edition

6.2 Graphing Dates
When you use dates, times, or datetime values in your SAS graphics, you have to remember that
they are numbers. This has a large impact on the axes and labeling of your graphics. Attempting to
graph a result over a period of time without using formats or intervals will usually result in a graph
that is not clear or well-defined. The good news is that you can use all the features associated with
SAS dates to improve your graphics, such as formats and intervals. The following series of
examples will illustrate. Example 6.5 will demonstrate the graphing of dates with SAS/GRAPH,
while Example 6.6 will use ODS graphics to produce a series plot.

Johnny's Savings Account
When Johnny turned 10 years old on September 1, 1975, he took all the money that he had in his
piggy bank and deposited it into a bank account that paid 3.5% interest annually, compounded
daily. He promised himself that he would add two dollars at the end of each week and that he
would take the money out when he reached the ripe old age of 50. When he was 10, Johnny
thought he might have $4,000 by the time he reached age 50. He kept that promise, so let's look at
Johnny's earnings from the time he was 10 until he was 50 using the following program:

Example 6.5: SAS/GRAPH
TITLE "Johnny's 50th Birthday Fund";
PROC GPLOT DATA=book.graph1;
PLOT fund*date / VREF=5000 LV=1 CV=blue;
RUN;

Here is the resulting graph:

Chapter 6: Deeper into Dates and Times with SAS 195

Unfortunately, the result of this simple example isn't helpful. We can see that Johnny started
around 6000, and he turned 50 somewhere around 20000. What does that mean? This should be
easy enough to fix. Don't we just need to add a FORMAT statement?

TITLE "Johnny's 50th Birthday Fund";
PROC GPLOT DATA=book.graph1;
PLOT fund*date / VREF=5000 LV=1 CV=blue;
FORMAT date mmddyy10.; /* Add FORMAT statement */
RUN;

Here is the new GPLOT graph with the FORMAT statement:

What has happened here is that SAS chose the boundaries and figured out major and minor tick
marks. In this example, it has selected major intervals at decade boundaries, and minor ones at year
boundaries. That's not a bad choice for this example, but SAS/GRAPH doesn't always make such a
good choice when selecting the boundaries of an axis. Can't you define the horizontal axis
yourself? Of course, you can! Johnny was born in September, so it would make sense to chart his
progress at his birthdays and restrict the span of the horizontal axis to the period during which he's
contributing.

TITLE "Johnny's 50th Birthday Fund";
PROC GPLOT DATA=book.graph1;
PLOT fund*date / VREF=5000 LV=1 CV=blue
 HAXIS='01SEP1975'd TO '01SEP2015'd by YEAR;
FORMAT date mmddyy10.;
RUN;

196 The Essential Guide to SAS Dates and Times, Second Edition

Here is the new graph that we get from using the HAXIS option in the PLOT statement to specify
the axis range:

What happened? We defined the horizontal axis as having tick marks every year, so SAS
accommodated our request. Since there was not enough room to display the values horizontally,
SAS automatically rotated the values 90 degrees. Unfortunately, that left less space for the graph
itself. We need better spacing on our horizontal axis.

Since decades seemed to work well, let's use those as our intervals, but we want to start on Johnny's
10th birthday, and define the major horizontal axis points at September 1, 1975, September 1,
1985, September 1, 1995, September 1, 2005, and September 1, 2015. An interval multiplier of 10
will create the decade interval, and a shift operator of 69 (60 [months in 5 years] plus 9 [months
from January to September]) will move the starting date of the 10-year interval to September 1975
so that it matches the starting point of the horizontal axis. Note that the only change from the
previous version is in the interval definition.

TITLE "Johnny's 50th Birthday Fund";
PROC GPLOT DATA=book.graph1;
PLOT fund*date / VREF=5000 LV=1 CV=blue
 HAXIS='01SEP1975'd TO '01SEP2015'd by YEAR10.69;
FORMAT date mmddyy10.;
RUN;

Chapter 6: Deeper into Dates and Times with SAS 197

Here is the final product:

Now that's what we wanted. This demonstrates that you have all of the interval types, as well as
their multipliers and shift operators, available when you are defining axes that involve date, time,
and datetime values in SAS/GRAPH. It makes defining the exact scope of the graph much easier,
not to mention comprehending what you've graphed.

Example 6.6: ODS Graphics
We will continue to use Johnny's 50th birthday fund for the SGPLOT series of examples. The
SGPLOT procedure has a way of assigning a time scale to an axis by setting the axis TYPE option
in the XAXIS statement equal to TIME, and the SERIES style of plot is perfect for graphs of
longitudinal data.

198 The Essential Guide to SAS Dates and Times, Second Edition

Here's the basic SGPLOT from the above code.

As with the GPLOT example, an unformatted date variable isn't very useful. However, even though
we got our graph, SGPLOT did not run smoothly. In order to produce this graph, the procedure
made some adjustments in order to produce the graph. Let's look at the log from the program that
produced the above graph.

3 TITLE "Johnny's 50th Birthday Fund";
4 PROC SGPLOT DATA=book.graph1;
5 XAXIS TYPE=time;
6 SERIES X=date Y=fund;
7 RUN;

NOTE: PROCEDURE SGPLOT used (Total process time):
 real time 1.20 seconds
 cpu time 0.09 seconds

NOTE: Time axis can only support date time values. The axis type
will be changed to LINEAR.
NOTE: There were 2435 observations read from the data set
 BOOK.GRAPH1.

Note is telling us that you can't use the TYPE value of TIME. But aren't we graphing dates? The
SGPLOT procedure relies on formats to determine that the data being graphed are dates or times.
Without it, SGPLOT errs on the side of caution and just assumes that you are graphing linear data.
This will create a plot for data graphed along a sequence (such as dates), so it looks right, but it is
not clear that you are graphing dates.

Chapter 6: Deeper into Dates and Times with SAS 199

Let's add the missing format to our SGPLOT:

TITLE "Johnny's 50th Birthday Fund";
PROC SGPLOT DATA=book.graph1;
XAXIS TYPE=time;
SERIES X=date Y=fund;
FORMAT date monyy7.;
RUN;

That looks better, even though SAS did not use the MONYY7. format that you requested and
substituted one of its own as seen in note below.

51 TITLE "Johnny's 50th Birthday Fund";
52 PROC SGPLOT DATA=book.graph1;
53 XAXIS TYPE=time;
54 SERIES X=date Y=fund;
55 FORMAT date monyy7.;
56 RUN;

NOTE: PROCEDURE SGPLOT used (Total process time):
 real time 0.90 seconds
 cpu time 0.20 seconds

 NOTE: The column format MONYY7 is replaced by an auto-generated
format
 on the axis.

200 The Essential Guide to SAS Dates and Times, Second Edition

This is really the same problem as with SAS/GRAPH when you haven't defined the tick marks on
the X axis properly. The VALUES= option in the XAXIS statement allows us to define our scale in
the same way that the HAXIS= option in the PLOT statement does in SAS/GRAPH. For a 50-year
period, let's try 5-year intervals, starting when Johnny made his promise on September 1, 1975.

TITLE "Johnny's 50th Birthday Fund";
PROC SGPLOT DATA=book.graph1;
XAXIS TYPE=time VALUES=('01sep1975'd TO '01sep2015'd BY YEAR5);
SERIES X=date Y=fund;
FORMAT date monyy7.;
RUN;

Now the display looks much nicer, and we have our MONYY7. format displayed.

6.3 The Basics of PROC EXPAND
The EXPAND procedure is a part of SAS/ETS, which is used to prepare time series data for further
analysis. It creates a SAS data set and does not produce printed output.

6.3.1 Capabilities of PROC EXPAND
PROC EXPAND will change the sampling frequency of the data that you have and convert it to a
different one. It can interpolate values in time series data, for example, when you have quarterly
data that you need to report or analyze on a monthly basis. It can perform the reverse operation,
that is, to aggregate (collapse) data from a higher sampling frequency to a lower one, such as taking
monthly data and turning it into quarterly data. PROC EXPAND can interpolate missing values

Chapter 6: Deeper into Dates and Times with SAS 201

even if you aren't changing the sampling frequency. It also provides for extensive data
transformations and performs all of these functions without a lot of DATA step programming. The
SAS/ETS documentation provides detail on the procedure, its statements, and the options for those
statements. There are other procedures available in SAS/ETS, such as TIMESERIES and
TIMEDATA, that can be used to manipulate time series data, and if you need to work with time
series data on a regular basis, you should investigate the SAS/ETS product and its documentation
more carefully.

PROC EXPAND uses SAS interval definitions. This includes interval multipliers and the shift
index. For a detailed explanation of intervals, interval multipliers, and the interval shift index, see
Sections 5.5 and 5.6 of this book. When you use these interval definitions (plus any shift index
and/or multipliers), PROC EXPAND will automatically adjust for any calendar effects (leap years,
varying number of days in a month). As with anything that uses these interval definitions, all
measurements and calculations are considered to be at the beginning of the interval(s) specified. It
is possible to change that definition with options in one of the PROC EXPAND statements, and
those are discussed in Section 6.3.5.

PROC EXPAND Sample Data
The following data set will be used for the examples in this section. This is monthly total light rail
ridership data obtained from the American Public Transportation Association for the years 2003
and 2004 and is used with their permission. The values for October and November 2003 were
removed from the data to demonstrate some of the capabilities of PROC EXPAND.

Date
Riders

(thousands)
JAN2003 2679.9
FEB2003 2421.9
MAR2003 2704.6
APR2003 2778.3
MAY2003 2718.6
JUN2003 2618.2
JUL2003 2999.0
AUG2003 3504.7
SEP2003 3329.4
OCT2003 .
NOV2003 .
DEC2003 2888.6
JAN2004 3132.9
FEB2004 2814.3
MAR2004 3067.3
APR2004 2928.8

202 The Essential Guide to SAS Dates and Times, Second Edition

Date
Riders

(thousands)
MAY2004 2958.3
JUN2004 2966.3
JUL2004 3000.8
AUG2004 3071.2
SEP2004 2958.9
OCT2004 2992.8
NOV2004 3017.5
DEC2004 3038.4

6.3.2 Using PROC EXPAND to Convert to a Higher Frequency

You can use PROC EXPAND to convert data from a lower sampling frequency to a higher
sampling frequency (for example, converting monthly data to daily or weekly data). It does so by
interpolation, and the syntax to convert to a higher sampling frequency is as follows:

Example 6.7: Converting to a Higher Sampling Frequency
1 PROC EXPAND DATA=book.month OUT=seven_days FROM=MONTH TO=WEEK;
2 ID date;
3 CONVERT riders;
4 RUN;

The PROC EXPAND statement in line 1 specifies the output data set (SEVEN_DAYS) and
explains how the data in BOOK.MONTH should be converted, from MONTH intervals to WEEK
intervals. The ID statement in line 2 indicates the variable that identifies the time of each record.
Since the WEEK interval begins on Sunday, the dates will be aligned on Sundays. If you want the
dates to align to a different day of the week, use a shift indicator. The WEEK.2 interval will align
the dates to Mondays; the WEEK.3 interval aligns to Tuesdays, and so on.

You will usually use an ID statement with PROC EXPAND. Otherwise, SAS will create an ID
variable for the input records and use the starting point of January 1, 1960, which might not be
what you want. The CONVERT statement identifies the variable(s) to convert. You can also
rename the variable(s) being converted in the output data set like this: CONVERT input-

Chapter 6: Deeper into Dates and Times with SAS 203

var=output-var; Here are the first eight observations from the data set SEVEN_DAYS produced
by the above code:

date
Riders

(thousands)

29DEC2002 2770.23
05JAN2003 2573.57
12JAN2003 2449.76
19JAN2003 2393.52
26JAN2003 2391.24
02FEB2003 2429.29
09FEB2003 2494.03
16FEB2003 2571.86

When you interpolate time series data to a higher frequency, consider that the interpolated values
do not add any new information to the data because they have been derived mathematically, not
observed. Therefore, any statistical analyses performed with these interpolated data should be
viewed with caution.

6.3.3 Using PROC EXPAND to Convert to a Lower Frequency
You can convert data to a lower frequency with PROC EXPAND in two ways: First, you can use
the same syntax as with converting to a higher sampling frequency, except that the TO= interval
would be of a lower sampling frequency. When you convert your data this way, PROC EXPAND
performs interpolation for missing values using a curve-fitting method, which allows for
conversion between intervals that aren't nested. A nested interval is one that fits wholly inside
another interval (for example, days nest within weeks, because there are exactly seven days in a
week, but weeks do not nest within months, because most months have partial weeks). The
following program will interpolate any missing values in our data by fitting a cubic spline function
through the existing data before converting the data from a month frequency to a quarter frequency.

Example 6.8: Converting to a Lower Frequency
PROC EXPAND DATA=book.month OUT=quarterly FROM=MONTH TO=QTR;
ID date;
CONVERT riders;
RUN;

Obs date
Riders (thousands) After

Interpolation
 Original Values From

BOOK.MONTH
1 01JAN2003 2679.90 2679.9
2 01APR2003 2778.30 2778.3

204 The Essential Guide to SAS Dates and Times, Second Edition

Obs date
Riders (thousands) After

Interpolation
 Original Values From

BOOK.MONTH
3 01JUL2003 2999.00 2999.0
4 01OCT2003 2993.28 .
5 01JAN2004 3132.90 3132.9
6 01APR2004 2928.80 2928.8
7 01JUL2004 3000.80 3000.8
8 01OCT2004 2992.80 2992.8

The resulting data set QUARTERLY (above) has eight observations, four for each year,
synchronized on the QTR interval boundaries. As you can see, the data that were missing from our
original data set (for October 2003) are interpolated.

The second method enables you to perform simple aggregation (addition) without interpolation of
missing values. The AGGREGATE method always produces an exact result without interpolation,
and it requires that the intervals be nested. This program shows the result of a simple aggregation
on our sample data:

Example 6.9: Performing Aggregation without Interpolation
PROC EXPAND DATA=book.month OUT=annual FROM=MONTH TO=YEAR;
ID date;
CONVERT riders / METHOD=AGGREGATE;
RUN;

date
Riders
(thousands)

2003 . There are 2 missing observations for this year,
which yields a missing result.

2004 35947.5 Total across all 12 months.

Example 6.10: The Importance of the ID Statement in PROC EXPAND
The following PROC EXPAND step has no ID statement. Let's run it so that we can see the
assumptions that SAS makes in its absence. This illustrates why the ID statement is almost always
used with this procedure:

PROC EXPAND DATA=book.month OUT=ANNUAL FROM=MONTH TO=YEAR;
CONVERT riders;
RUN;

Chapter 6: Deeper into Dates and Times with SAS 205

date
Riders
(thousands)

01JAN1960 2679.9
01JAN1961 3132.9

How did we wind up with data for 1960 and 1961 when we used data from 2003 and 2004? If
there is no ID variable to indicate the dates, SAS will create ID values to label the input records,
and it will start from its zero point, January 1, 1960.

6.3.4 Using PROC EXPAND to Interpolate Missing Values
PROC EXPAND can also be used to interpolate missing values without converting frequencies.
There are two ways to do this; use the one that fits your situation. If you are interpolating missing
values at specific points in time, leave off the FROM= and TO= options, but make sure that you
use an ID statement to indicate the variable that contains the time points of the observed values.
The time points do not have to be evenly spaced, nor do you need a record for each time point
within the interval. PROC EXPAND will read the values supplied in the ID variable and will fit a
spline function through the available data points. It then fills in the missing values based on that
fitted spline. Remember that the data for the months of October and November are missing in our
sample table. The following program demonstrates:

Example 6.11: Interpolating Missing Values
PROC EXPAND DATA=book.month OUT=nomiss;
ID date;
CONVERT riders;
RUN;

The bolded and italicized values in the following table are the result of the interpolation performed
by PROC EXPAND.

date
Riders
(thousands)

01JAN2003 2679.90
01FEB2003 2421.90
01MAR2003 2704.60
01APR2003 2778.30
01MAY2003 2718.60
01JUN2003 2618.20
01JUL2003 2999.00
01AUG2003 3504.70

206 The Essential Guide to SAS Dates and Times, Second Edition

date
Riders
(thousands)

01SEP2003 3329.40
01OCT2003 2993.28
01NOV2003 2788.68
01DEC2003 2888.60

The second method interpolates missing values in a time series without converting the observation
frequency. Use this when you want to fill in the missing values and maintain the same observation
frequency. It requires the FROM= option, but leave off the TO= option, as shown here:

PROC EXPAND DATA=book.month OUT=nomiss2 FROM=MONTH;
ID date;
CONVERT riders;
RUN;

By default, the interpolation is performed by fitting the points to a cubic spline curve. You can
request other methods of interpolation with the METHOD= option in the CONVERT statement,
and these are detailed in the SAS/ETS documentation. PROC EXPAND will ignore observations
that have missing values for the ID variable, even if there are data points for the CONVERT
variable(s). Table 6.1 is a summary of what PROC EXPAND does when there are missing values
for the ID variable and/or CONVERT data points.

Table 6.1: How PROC EXPAND Handles Interpolation of Missing Values in Input Data

ID Variable Data PROC EXPAND Will

Missing Missing Interpolate
Not Missing Missing Interpolate
Missing Not Missing Ignore

6.3.5 The OBSERVED= Option for the CONVERT Statement in PROC
EXPAND
As with the other uses of SAS date, time, and datetime intervals, the default for PROC EXPAND is
to consider the values as being from the beginning of the intervals provided in the FROM= and
TO= options. This is not always the case with real-world data, and it can cause very different
results, especially if the values are not measured at the beginning of the given interval(s), or they do
not represent a single observed value for a specific point in time. You can control how the SAS

Chapter 6: Deeper into Dates and Times with SAS 207

intervals are used with the OBSERVED option in the CONVERT statement. There are six possible
values for the OBSERVED= option, as shown in Table 6.2:

Table 6.2: Values for the OBSERVED= Option

Values Description

BEGINNING Beginning of the period
MIDDLE Middle of the period
END End of the period
TOTAL Totals for the period
AVERAGE Averages across the period
DERIVATIVE Only valid as the 'to' value when the cubic spline function is the conversion

method

The syntax of the OBSERVED= option is:

1. OBSERVED=value OR
2. OBSERVED=(from-value, to-value)

value is one of the keywords in table 6.2, from indicates the characteristics of the data from which
you are converting, and to represents the characteristics of the data resulting from the conversion.
Using form 1 is the same as specifying the same value for both from and to; that is,
OBSERVED=AVERAGE is the same as OBSERVED=(AVERAGE,AVERAGE). Again, if you
do not supply an OBSERVED option for the conversion, it is the same as using
OBSERVED=(BEGINNING,BEGINNING).

Examples 6.12 and 6.13 demonstrate how different combinations of the OBSERVED= option
affect our sample data when we increase and decrease the sampling frequency. The program below
shows the code to increase the sampling frequency. It also shows how to rename the output
variables in the CONVERT statement by placing an equal sign (=) after the data set variable and
providing the new variable name afterward.

Example 6.12: Effect of Different Values for OBSERVED= Option on Increased
Frequency

/* The effect of the different values for the OBSERVED option of
 the CONVERT statement in PROC EXPAND on increased sample
frequency */

PROC EXPAND DATA=book.month OUT=seven1 FROM=MONTH TO=WEEK;
ID date;
CONVERT riders=beginning / OBSERVED=BEGINNING /*Default */;
RUN;
PROC EXPAND DATA=book.month OUT=seven2 FROM=MONTH TO=WEEK;

208 The Essential Guide to SAS Dates and Times, Second Edition

ID date;
CONVERT riders=middle / OBSERVED=MIDDLE;
RUN;
PROC EXPAND DATA=book.month OUT=seven3 FROM=MONTH TO=WEEK;
ID date;
CONVERT riders=end / OBSERVED=END;
RUN;
PROC EXPAND DATA=book.month OUT=seven4 FROM=MONTH TO=WEEK;
ID date;
CONVERT riders=total / OBSERVED=TOTAL;
RUN;
PROC EXPAND DATA=book.month OUT=seven5 FROM=MONTH TO=WEEK;
ID date;
CONVERT riders=average / OBSERVED=AVERAGE;
RUN;
PROC EXPAND DATA=book.month OUT=seven6 FROM=MONTH TO=WEEK;
ID date;
CONVERT riders=begend / OBSERVED=(BEGINNING,END);
RUN;
PROC EXPAND DATA=book.month OUT=seven7 FROM=MONTH TO=WEEK;
ID date;
CONVERT riders=avetot / OBSERVED=(AVERAGE,TOTAL);
RUN;

DATA compare_lo;
MERGE seven1 seven2 seven3 seven4 seven5 seven6 seven7;
BY date;
LABEL
 beginning="BEGINNING" middle = "MIDDLE" end = "END" average =
"AVERAGE"
 total = "TOTAL" begend = "BEGINNING,END" avetot = "AVERAGE,TOTAL"
;;;
FORMAT beginning--avetot 7.2;
RUN;

PROC REPORT DATA=compare_lo NOWD SPLIT='\';
COLUMNS date ('OBSERVED=\Option Value' beginning middle end average
total);
FORMAT date DATE9.;
DEFINE date / display;
WHERE DATE LT '01MAR2003'd;
RUN;

PROC REPORT DATA=compare_lo NOWD SPLIT='\';
COLUMNS date ('OBSERVED=\Option Value' begend avetot);
FORMAT date DATE9.;
DEFINE date / display;
WHERE DATE LT '01MAR2003'd;
RUN;

Chapter 6: Deeper into Dates and Times with SAS 209

OBSERVED= Option Is the Same for FROM= and TO=:

OBSERVED=
Option Value

date BEGINNING MIDDLE END AVERAGE TOTAL
29DEC2002 2770.19 . . 3260.80 580.48

05JAN2003 2573.61 . . 2897.25 597.97

12JAN2003 2449.83 2708.88 . 2638.87 608.44

19JAN2003 2393.59 2536.09 . 2472.89 613.17

26JAN2003 2391.28 2436.82 2652.65 2384.91 613.55

02FEB2003 2429.28 2398.83 2506.22 2360.52 610.98

09FEB2003 2493.99 2409.06 2428.26 2385.33 606.85

16FEB2003 2571.80 2454.40 2406.10 2444.93 602.56

23FEB2003 2649.08 2521.78 2427.05 2524.93 599.50

As you can see, the OBSERVED= option has a very large effect on the results that PROC
EXPAND yields. The BEGINNING column is the default, and that is the interpolation calculated
if the numbers are measured at the beginning of the month and converted to the BEGINNING of
the week. MIDDLE and END do the calculation as if the numbers were measured and converted at
the middle and the end of the month, respectively. That is why the interpolated values are missing
in those columns in the above chart. The numbers are not available until the beginning of the
interval (the beginning of the week containing the middle and end, respectively, of the month).

If you are measuring totals (which we are, since this is mass transit ridership data), the values are
radically different. TOTAL means that the number being interpolated is not representative of a
single point in the FROM= interval, but that it is obtained across the duration of the FROM=
interval. Therefore, the numbers in that column of the above table represent the number of riders
per week, since that is the interval to which we are converting our data. AVERAGE considers the
numbers to be averages for both the FROM and TO= intervals.

It gets a little more interesting when we use different values for the OBSERVED option, but it is
extremely important to remember that these are mathematically derived and not data-based, so you
need to exercise some caution and judgment as to the usefulness of these numbers. The
BEGINNING,END combination takes the original value as the value at the beginning of the
MONTH interval, and then (using, in this case, the default SPLINE method) returns the value from
that curve at the end of the WEEK interval. Similarly, the AVERAGE,TOTAL combination
considers the original value to be the monthly average and calculates a weekly total based on the
default SPLINE method. There are other methods available to use in the conversion of intervals,
and I encourage you to read the SAS/ETS documentation for more in-depth information about
converting to a higher sampling frequency.

210 The Essential Guide to SAS Dates and Times, Second Edition

Different FROM and TO Values in the OBSERVED= Option

OBSERVED=
Option Value

date BEGINNING,END AVERAGE,TOTAL
29DEC2002 2573.61 22825.6

05JAN2003 2449.83 20280.8

12JAN2003 2393.59 18472.1

19JAN2003 2391.28 17310.2

26JAN2003 2429.28 16694.3

02FEB2003 2493.99 16523.6

09FEB2003 2571.80 16697.3

16FEB2003 2649.08 17114.5

23FEB2003 2712.25 17674.5

In contrast to Example 6.12, Example 6.13 will show the effect of the OBSERVED= option on a
lower sampling frequency. Remember, since our original data had missing values, some
interpolation will take place.

Example 6.13: Effect of Different Values for OBSERVED= Option on Lowered
Frequency

/* The effect of the different values for the OBSERVED option of
 the CONVERT statement in PROC EXPAND with a decreased sample
frequency */
PROC EXPAND DATA=book.month OUT=annual1 FROM=MONTH TO=YEAR;
ID date;
CONVERT riders=beginning / OBSERVED=BEGINNING /*Default */;
RUN;
PROC EXPAND DATA=book.month OUT=annual2 FROM=MONTH TO=YEAR;
ID date;
CONVERT riders=middle / OBSERVED=MIDDLE;
RUN;
PROC EXPAND DATA=book.month OUT=annual3 FROM=MONTH TO=YEAR;
ID date;
CONVERT riders=end / OBSERVED=END;
RUN;
PROC EXPAND DATA=book.month OUT=annual4 FROM=MONTH TO=YEAR;
ID date;
CONVERT riders=total / OBSERVED=TOTAL;
RUN;
PROC EXPAND DATA=book.month OUT=annual5 FROM=MONTH TO=YEAR;

Chapter 6: Deeper into Dates and Times with SAS 211

ID date;
CONVERT riders=average / OBSERVED=AVERAGE;
RUN;
PROC EXPAND DATA=book.month OUT=annual6 FROM=MONTH TO=YEAR;
ID date;
CONVERT riders=begend / OBSERVED=(BEGINNING,END);
RUN;
PROC EXPAND DATA=book.month OUT=annual7 FROM=MONTH TO=YEAR;
ID date;
CONVERT riders=avetot / OBSERVED=(AVERAGE,TOTAL);
RUN;

DATA compare_hi;
MERGE annual1 annual2 annual3 annual4 annual5 annual6 annual7;
BY date;
LABEL
 beginning="BEGINNING" middle = "MIDDLE" end = "END" average =
"AVERAGE"
 total = "TOTAL" begend = "BEGINNING,END" avetot = "AVERAGE,TOTAL"
;;;
FORMAT beginning--avetot 11.2;
RUN;

PROC REPORT DATA=compare_hi NOWD SPLIT='\';
COLUMNS date ('OBSERVED=\Option Value' beginning middle end average
total);
FORMAT date YEAR4.;
DEFINE date / display;
RUN;

PROC REPORT DATA=compare_hi NOWD SPLIT='\';
COLUMNS date ('OBSERVED=\Option Value' begend avetot);
FORMAT date YEAR4.;
DEFINE date / display;
RUN;

OBSERVED= Option Is the Same for FROM= and TO=:

OBSERVED=
Option Value

date BEGINNING MIDDLE END AVERAGE TOTAL
2003 2679.90 2764.22 2888.60 2861.76 34476.22

2004 3132.90 2972.48 3038.40 2996.92 35947.50

BEGINNING, MIDDLE, and END don't give us a very good idea of yearly ridership, because
they are considering the entire ridership as occurring on the beginning, middle, or end of each
observation in the FROM= interval. TOTAL is the value for the entire year, and AVERAGE is

212 The Essential Guide to SAS Dates and Times, Second Edition

calculated on the monthly values. However, all of these values are calculated with interpolation of
the missing values in October and November 2003. Below, the interpolation for those missing
values is still performed even though we are using different values for the from and to observation
characteristics. Of special interest is the AVERAGE,TOTAL column. It considers the monthly
data to be the average monthly ridership, so PROC EXPAND interpolates for the missing data and
then provides a ridership total for each year based on that average monthly ridership.

Different FROM and TO Values in the OBSERVED= Option

OBSERVED=
Option Value

date BEGINNING,END AVERAGE,TOTAL
2003 3132.90 1044544.20

2004 3153.51 1096872.40

PROC EXPAND has many more capabilities, and the preceding examples give only the most
basic information about how to use this powerful procedure with time series data. You can refer to
the documentation for SAS/ETS to get a much more complete explanation of PROC EXPAND
and its options.

6.4 International Date, Time, and Datetime Formats and Informats
Version 9 of SAS has formats for dates and times in languages other than U.S. English. It is
included in Base SAS as a part of National Language Support (NLS). The key to NLS is in the
LOCALE= or DFLANG= system options. The default value for the LOCALE option is defined in
the SAS configuration file and is set during installation, but it can be changed with an OPTIONS
statement or inside the OPTIONS window. The LOCALE= option implicitly sets two other options
that can affect dates, times, and datetime values in SAS. It will set the DATESTYLE= option,
which determines how the ANYDT informats will interpret character strings where the order of
month, day, and year is ambiguous. The DFLANG= option defines the default language that SAS
will use.

There are a few specific date formats for Taiwanese, Japanese, and Hebrew, but you can consider
the majority of international formats and informats as falling into one of two informal categories:
the "EUR" category or the NLS category. In general, it is recommended that you use the NLS
formats and informats because you do not have to write code specific to a language. Changing
languages using the NLS facility in SAS is a matter of changing the value of the LOCALE= option,
which brings the formats in line with the rest of the SAS session. However, the "EUR" category
can be useful. You can select the language based on either the DFLANG= system option or by
replacing the "EUR" in the format name with a specific language abbreviation. Using the language
abbreviations is handy if you are working with many languages on the same output, because they
enable you to specify the language without regard to a system option, and you can use them exactly
where you need them, for as long as you need them.

Chapter 6: Deeper into Dates and Times with SAS 213

6.4.1 "EUR" Formats and Informats
Each of these formats and informats correspond to an English language format or informat.
However, the minimum, maximum, and default widths for the format or informat are dependent
upon the language being used at the time. Tables 6.3 and 6.4 list the English language formats and
their EUR format names, and the EUR informats.

Table 6.3: International Format Names and Their English Language Equivalents

English Language Format Name International Format Name

DATE. EURDFDE.
DATETIME. EURDFDT.
DDMMYY. EURDFDD.
DOWNAME. EURDFDWN.
MONNAME. EURDFMN.
MONYY. EURDFMY.
WEEKDATX. EURDFWKX.
WEEKDAY. EURDFDN.
WORDDATX. EURDFWDX.

Table 6.4: International Informat Names and Their English Language Equivalents

Informat Description

EURDFDEw. Reads international date values in the form ddmonyy(yy), where dd represents
the day of the month, mon is the three-letter month abbreviation in the
language specified by the DFLANG= system option or by the appropriate
three-letter prefix, and yy(yy) is the two- or four-digit year.

EURDFDTw. Reads international datetime values in the form ddmonyy hh:mm:ss.ss or
ddmonyyyy hh:mm:ss.ss.

EURDFMYw. Reads month and year date values in the form monyy or monyyyy.

You replace "EUR" with a specific three-letter language prefix in any of the above formats or
informats to define the language that you want to use. This overrides the DFLANG= system
option and is a good way to display dates in multiple languages simultaneously. Table 6.5 is a list
of all the valid languages with their three-letter prefix. In addition, we'll show the effect of using
each three-letter prefix on the EURDFWKX. format by using the reference date of Tuesday,
February 18, 2014. As a comparison, the table also includes the reference date formatted as the
English equivalent using the WEEKDATX. format.

214 The Essential Guide to SAS Dates and Times, Second Edition

Table 6.5: International Date Formats with Language Abbreviations

Language
Prefix Language

Format
Name Formatted Date

 WEEKDATX. Tuesday, 18 February 2014
AFR Afrikaans AFRDFWKX. Dinsdag, 18 Februarie 2014
CAT Catalan CATDFWKX. Dimarts, 18 Febrer 2014
CRO Croatian CRODFWKX. utorak, 18 veljača 2014
CSY Czech CSYDFWKX. úterý, 18 únor 2014
DAN Danish DANDFWKX. tirsdag, den 18. februar 2014
NLD Dutch NLDDFWKX. dinsdag, 18 februari 2014
FIN Finnish FINDFWKX. Tiistaina, 18. helmikuuta 2014
FRA French FRADFWKX. Mardi 18 février 2014
DEU German DEUDFWKX. Dienstag, 18. Februar 2014
HUN Hungarian HUNDFWKX. 2014.február 18., kedd
ITA Italian ITADFWKX. Martedì, 18 Febbraio 2014
MAC Macedonian MACDFWKX. vtornik, 18 fevruari 2014
NOR Norwegian NORDFWKX. tirsdag, 18. februar 2014
POL Polish POLDFWKX. wtorek, 18 luty 2014
PTG Portuguese PTGDFWKX. Terça-feira, 18 de fevereiro de 2014
RUS Russian RUSDFWKX. Вторник, 18 Февраль 2014
ESP Spanish ESPDFWKX. martes, 18 de febrero de 2014
SLO Slovenian SLODFWKX. torek, 18 februar 2014
SVE Swedish SVEDFWKX. Tisdag, 18 februari 2014
FRS Swiss_French FRSDFWKX. Mardi 18 février 2014
DES Swiss_German DESDFWKX. Dienstag, 18. Februar 2014

6.4.2 NLS Formats
The output from the NLS series of formats is defined by the LOCALE= system option. Unlike the
"EUR" series, you cannot specify a language; the language is defined by the current value of the
LOCALE= option. Use these formats when your output might be generated in several locations
around the world, but you don't have to display multiple languages within the same output. These
formats work by converting a SAS date, time, or datetime value to that of the specified locale and
then formatting the result. These formats are also noteworthy in that the result is left-justified, as
opposed to the right-justification of most of the other date, time, and datetime formats. This is true
for all ODS destinations as well as for traditional column-based output. Of course, with ODS
destinations, the justification of the column will be performed according to any STYLE in effect.

Chapter 6: Deeper into Dates and Times with SAS 215

Tables 6.6, 6.7, and 6.8 list the NLS formats available for dates, datetimes, and times, respectively.
Each table will give the NLS format name, a description of the output created by the format, the
default format width, and width range. The description of the output can also contain a
recommended width, which might differ from the default. The recommended width is the minimum
format width necessary to display all possible date, datetime, or time values, because the length of
the output might exceed the default width in the given format for some locale and encoding
combinations. If you use the recommended widths given in the table(s) below, you will always get
accurate output. Otherwise, your output could have a series of asterisks (*****) in place of the date
string that you expected. In general, it is always better to specify a format width that is too long
rather than one that is too short. ODS will handle most justification issues arising from
overestimating how many characters will be returned from a format. Note that the width
specifications for datetime and time formats can accommodate fractional seconds (w.d), and they
will be displayed with the locale-specific decimal separator. Because there are so many NLS
formats available, Appendix B will show the difference in output resulting from different LOCALE
settings using a specific date, datetime, and time as appropriate for each of the NLS formats in the
following three tables.

Table 6.6: NLS Date Formats

Format Name Description
Default
Width

Width
Range

NLDATEw. Displays the date as month name, day, and year in local
format. SAS will use DATE. in local format or abbreviate
the month name to fit the format width specified. It is
recommended that you use a minimum format width of 25
to ensure accurate output across all supported languages.

20 10–200

NLDATELw. Displays the date as month name, day, and year in local
format. SAS will abbreviate month name or use only
numbers and delimiters to fit the format width specified.

18 2–220

NLDATEMw. Displays the date as the local abbreviation for month along
with the day and year, but will use only numbers and
delimiters to fit the format width specified.

10 2–200

NLDATEMDw. Displays month name and day (no year) from a date value.
SAS will use the local abbreviation for the month name if
the format width cannot accommodate the full month
name.

16 6–200

NLDATEMDLw. Displays the full month name and day (no year) from a
date value in local format. SAS will abbreviate the month
name or use only numbers and delimiters for the month
and day if the format width cannot accommodate the full
month name.

12 5–200

216 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Description
Default
Width

Width
Range

NLDATEMDMw. Displays the local abbreviation for the month name and
the day (no year) from a date value. SAS will use only
numbers and delimiters for the month and day to fit the
format width specified.

9 5–200

NLDATEMDSw. Displays the month and day (no year) from a date value
using only numbers and delimiters.

5 5–200

NLDATEMNw. Displays the month name from a date value in local
format. SAS will abbreviate the month name to fit the
format width specified.

9 4–200

NLDATESw. Displays the date in local format using numbers and
delimiters only.

10 2–200

NLDATEWw. Displays a date value as day of the week and date in local
format. SAS will abbreviate day-of-week, and/or month
name as necessary to fit the format width given.

29 10–200

NLDATEWNw. Displays a date value as the day of the week in local
format. SAS will abbreviate as necessary to fit the format
width given.

9 4–200

NLDATEYMw. Displays month name and year from a date value in local
format. SAS will abbreviate month name and/or use 2-
digit year as necessary to fit the format width. Note that
some format widths might be too small to
accommodate the abbreviations. In that case, a series
of asterisks (*****) will be displayed.

16 6–200

NLDATEYMLw. Displays a date value as the full month name and the year
in local format. If necessary, SAS will abbreviate the
month name or use only numbers and delimiters for the
month and year and/or a 2-digit year to fit the format
width specified.

14 5–200

NLDATEYMMw. Displays a date value as the local abbreviation for month
name and the year. If necessary, SAS will use only
numbers and delimiters for the month and year and/or a 2-
digit year to fit the format width specified.

11 5–200

NLDATEYMSw. Displays the month and year from a date value using only
numbers and delimiters in local format. Will use 2-digit
year if format width is 5 or 6.

7 5–200

NLDATEYQw. Displays a date value as calendar quarter and year. It is
recommended that you use a minimum format width of 20
to ensure accurate output across all supported languages.

16 4–200

Chapter 6: Deeper into Dates and Times with SAS 217

Format Name Description
Default
Width

Width
Range

NLDATEYQLw. Displays a date value as the full length for the calendar
quarter and the year (for example, "3e trimestre 2014"). A
width of 4 will display a 2-digit year. SAS will abbreviate
as necessary to fit the format width specified.

18 4–200

NLDATEYQMw. Displays a date value as a quarter abbreviation and the
year (for example, "T3 2015"). SAS will use only numbers
and delimiters to fit the format width if necessary. A width
of 4 will display a 2-digit year.

7 4–200

NLDATEYQSw. Will display the year and calendar quarter from a date
value in local format using only numbers and delimiters. A
width of 4 will display a 2-digit year.

6 4–200

NLDATEYRw. Will display the 2- or 4-digit year from a date value. 16 2–200
NLDATEYWw. Displays a date value as the week number and the year (for

example, "Week 15 2014"). Which week algorithm is
used (U, V, or W) varies based on the value of the
LOCALE= option. See the WEEKU., WEEKV., and
WEEKW. format discussions in Section 2.4.1, Date
Formats, for more information about the week algorithms.

16 5–200

Table 6.7: NLS Datetime Formats

Format Name Description
Default
Width

Width
Range

NLDATMw.d Displays a datetime value as a datetime in local format. 30 10–200
NLDATMAPw.d Displays a datetime value as month name, day, year, and

time in local format. SAS will abbreviate as necessary to
fit the format width specified and may substitute numbers
and delimiters for the month name, day, and year.

32 16–200

NLDATMDTw.d Displays the date from a datetime value with the month
name, day, and year in local format. SAS will abbreviate
the month name or substitute numbers and delimiters in
local format for the month name, day, and year as
necessary to fit the supplied format width.

18 10–100

NLDATMLw.d Displays the date from a datetime value with the month
name, day, and year in local format. SAS will abbreviate
the month name or substitute numbers and delimiters in
local format for the month name, day, and year as
necessary to fit the supplied format width.

30 9–200

218 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Description
Default
Width

Width
Range

NLDATMMw.d Displays the date and time from a datetime value using
the abbreviation for month name. SAS will use numbers
and delimiters for the date if the format width is not wide
enough and will further abbreviate the time to
hours:minutes, then just hours if necessary.

24 9–200

NLDATMMDw.d Displays the month and day from a datetime value. SAS
will abbreviate the month name or use numbers and
delimiters in local format (no year) if the format width
cannot accommodate the full month name.

16 6–200

NLDATMMDLw.d Displays the month and day from a datetime value. SAS
will abbreviate the month name or use numbers and
delimiters in local format (no year) if the format width
cannot accommodate the full month name.

9 5–200

NLDATMMDMw.d Displays the abbreviated month name and day from a
datetime value. SAS will use numbers and delimiters in
local format (no year) if the format width cannot
accommodate the full month name.

9 5–200

NLDATMMDSw.d Displays the month and day from a datetime value as
numbers and delimiters only (for example, mm/dd or
dd/mm).

5 5–200

NLDATMMNw.d Displays the month name in local format from a datetime
value. SAS will abbreviate if the full month name will
not fit in the format width supplied.

9 4–200

NLDATMSw.d Displays a datetime value as numbers and delimiters
only, in local format (for example, 17/05/2014 13:47:06).

19 9–200

NLDATMTMw.d Displays time of day from a datetime value in local time
format.

16 16–200

NLDATMTZw.d Displays time of day from a datetime value in hours and
minutes and the time zone offset for the locale.

32 16–200

NLDATMWw.d Displays a datetime value as day of the week, date, and
time in the local format. It is recommended that you use a
minimum format width of 49 to ensure accurate output
across all supported languages.

41 16–200

NLDATMWNw.d Displays the day of the week from a datetime value in
local format. SAS will abbreviate if the format width is
too small to accommodate the full day of week name.

9 4–200

Chapter 6: Deeper into Dates and Times with SAS 219

Format Name Description
Default
Width

Width
Range

NLDATMWZw.d Displays day of the week and datetime in local format.
SAS will abbreviate as necessary. It is recommended that
you use a minimum format width of 55 to ensure accurate
output across all supported languages.

40 16–200

NLDATMYMw.d Displays the month name and year from a datetime value.
SAS will abbreviate the month name and/or use a 2-digit
year to fit the format width specified.

16 6–200

NLDATMYMLw.d Displays the month name and year from a datetime value.
SAS will abbreviate the month name or use the month
number, and use a 2-digit year if necessary to fit the
format width specified.

14 5–200

NLDATMYMMw.d Displays the abbreviated month name and year from a
datetime value. SAS will use the month number and a 2-
digit year if necessary to fit the format width specified.

11 5–200

NLDATMYMSw.d Displays the month and year from a datetime value using
numbers and delimiters only. SAS will use a 2-digit year
if necessary to fit the format width specified.

7 5–200

NLDATMYQw.d Displays the year and quarter of the year from a datetime
value in local format. SAS will abbreviate quarter and
use a 2-digit year if necessary to fit the format width
specified. It is recommended that you use a minimum
format width of 20 to ensure accurate output across all
supported languages.

16 4–200

NLDATMYQLw.d Displays the year and quarter of the year from a datetime
value in local format. SAS will abbreviate quarter, use
numbers and delimiters only, and use a 2-digit year if
necessary to fit the format width specified.

18 4–200

NLDATMYQMw.d Displays the year and quarter of the year from a datetime
value as an abbreviation in local format. SAS will use
numbers and delimiters only and use a 2-digit year if
necessary to fit the format width specified.

7 4–200

NLDATMYQSw.d Displays the year and quarter of the year from a datetime
value in local format as numbers and delimiters only.
SAS will use a 2-digit year if necessary to fit the format
width specified.

6 4–200

NLDATMYRw.d Displays the year from a datetime value. SAS will use a
2-digit year if necessary to fit the format width specified.

16 2–200

220 The Essential Guide to SAS Dates and Times, Second Edition

Format Name Description
Default
Width

Width
Range

NLDATMYWw.d Displays a datetime value as the year and name of the
week. SAS will abbreviate week and/or use a 2-digit year
if necessary to fit the format width specified.

16 5–200

NLDATMZw.d Displays a datetime value as a datetime string in local
format with the time zone offset.

40 16–200

Table 6.8: NLS Time Formats

Format Name Description
Default
Width

Width
Range

NLTIMAPw.d Displays a time value as the time, followed by AM or PM in
local format. It is recommended that you use a minimum
format width of 22 to ensure accurate output across all
supported languages.

10 4–200

NLTIMEw.d Displays a time value as the time in local format. 20 10–200

Similar to the "EUR" informats, you can use NLS informats to process data according to the
LOCALE= system option. Table 6.9 shows the NLS informats available, their default width
specification, the width range, and the English language informat to which it is similar.

Table 6.9: NLS Time Informats

Category
Format
Name Description

Default
Width

Width
Range

Date NLDATEw. Reads local date strings of month name, day, and
year in local format, or DDMMMYY(YY).

20 10–200

Datetime NLDATMw. Reads local datetime value strings. 30 10–200
Time NLTIMAPw. Reads local time strings containing AM and PM. 10 4–200

NLTIMEw. Reads local time strings without AM and PM 20 10–200

The whole point of NLS formats and informats is that you do not have to worry about the specific
language that will be using the format or informat. The LOCALE= system option will take care of
it. In this way, the same SAS program can be used anywhere, and the output will be appropriate to
the local language as long as the LOCALE= system option has been set correctly. It is important
to understand that NLS formats and informats work just as well with the English language as with
any other language, so there's no need to use SAS program code beyond the LOCALE= option to
switch between English language formats/informats and other languages, unless you need a
specific format that does not have an NLS equivalent. Also, bear in mind that any PICTURE
formats you create for dates and times are NLS-compatible by default, and the display of date or
time components such as month name are locale-sensitive.

Chapter 6: Deeper into Dates and Times with SAS 221

6.5 NLS Date, Time, and Datetime Conversion Functions
There are three functions to help you work with date, time, and datetime values and provide output
in the local language based on the LOCALE= system option in effect. The NLDATE(), NLTIME(),
and NLDATM() functions take a date, time, or datetime value, respectively, and create a string
variable according to a series of date and time directives. This is the same process that occurs if you
create a custom format using the PICTURE statement (see Section 2.6), and then create a character
variable by using the PUT function with your custom picture format and a date, time, or datetime
value.

Example 6.14: Creating a Character Value Using a Custom Picture
Format and the PUT() Function

PROC FORMAT;
PICTURE wordmonth (DEFAULT=15)
LOW-HIGH = '%B %Y' (DATATYPE=DATE);
RUN;

DATA picdate;
INPUT date :mmddyy10.;
month_and_year = PUT(date,wordmonth.);
FORMAT date date11.;
DATALINES;
05/15/2016
08/01/2012
10/31/2013
03/27/2014
;
RUN;

ODS RTF FILE="ex6.5.1.rtf";
PROC PRINT DATA=picdate NOOBS LABEL SPLIT='\';
label date="Original Date"
 month_and_year='Month and Year\Character Value'
;
RUN;

222 The Essential Guide to SAS Dates and Times, Second Edition

This is the resulting data set. Note that the numeric date variable, which has been formatted using
the DATE. format, is right-justified, while the character string we created is left-justified.

Original Date
Month and Year
Character Value

15-MAY-2016 May 2016
01-AUG-2012 August 2012
31-OCT-2013 October 2013

27-MAR-2014 March 2014

Essentially, the three NLS functions do the same thing, but without having to create the picture
format using the FORMAT procedure. You put the description of the output string directly into
the function as an argument, which is called the descriptor. The descriptor can also contain fixed
text with the date directives, but this is somewhat counter to the purpose of these functions, as the
fixed text you insert will not change with the LOCALE= option setting.

There are more date directives available with these functions than with the PICTURE statement of
the FORMAT procedure. Following is the list of date directives you can use with the NLDATE(),
NLTIME(), and NLDATM() functions. Although several of the directives may seem identical to
those used with picture formats, these directives all insert a leading zero by default, so keep that in
mind when using these functions. You will receive an error if you try to use a time directive with
NLDATE(), or a date directive with NLTIME().

Table 6.10: NLDATE(), NLTIME(), and NLDATM() Date Directives

Date
Directive Description

removes the leading zero from the result.
%% Specifies the percent (%) character.
%a Locale's abbreviated (3-character) weekday name.
%A Locale's full weekday name.
%b Locale's abbreviated (3-character) month name.
%B Locale's full month name without padding. When you specify '%B %d,' there will

always be one space between the month and day.
%C Locale's full month name with blank padding. When you specify '%C %d,' there will be

one or more spaces between the month and day, depending upon the length of the
month's name.

%d Zero-padded numerical day of the month. Use '#d' to suppress the leading zero.
%e Blank-padded numerical day of the month. Use '#e' to suppress the leading blank.

Chapter 6: Deeper into Dates and Times with SAS 223

Date
Directive Description
%F Locale's full weekday name, padded with blanks. If you only want a single space

between the weekday name and the next item, use '%A'.
%j Zero-padded day of the year as a decimal number (001–366). Use '#j' to suppress any

leading zeroes.
%H Zero-padded hour (24-hour clock) as a decimal number (00–23). Use '#H' to suppress

the leading zero.
%I Zero-padded hour (12-hour clock) as a decimal number (01–12). Use '#I' to suppress the

leading zero.
%m Zero-padded month as a decimal number (01–12). Use '#m' to suppress the leading

zero.
%M Zero-padded minute as a decimal number (00–59). Use '#M' to suppress the leading

zero.
%o Blank-padded month as a decimal number (1–12). Use '#o' to suppress the leading

blank.
%p Locale's equivalent of a.m. or p.m.
%S Zero-padded second as a decimal number (00–59). Use '#S' to suppress the leading

zero.
%u Weekday as a number in the range 1–7, where 1 is Monday and Sunday is 7.
%U Zero-padded week-number-of-year (00–53) using the U algorithm, where Sunday is

considered the first day of the week.
%V Zero-padded week-number-of-year (00–53) using the ISO 8601-standard V algorithm,

which defines the first week of the year as containing both January 4 and the first
Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or
4, the preceding days of the calendar year are considered to be a part of week 53 of the
previous calendar year.

%w Weekday as a number in the range 0–6 where 0 is Sunday and 6 is Saturday.
%W Zero-padded week-number-of-year (00–53) using the W algorithm, which uses Monday

as the first day of the week.
%y Zero-padded year without century as a decimal number (00–99).
%Y Year with century as a decimal number (4-digit year). The year ranges from 1970 to

2069.

224 The Essential Guide to SAS Dates and Times, Second Edition

Here are the NLS date functions. When you are using text for the descriptor, the date directives
must be enclosed in single quotes, or SAS will try to interpret them as macro calls.

Function Call Explanation
NLDATE(SAS-date-value,descriptor) Converts a SAS date value into a character string in the

form described by descriptor, which is a combination of
the directives in table 6.10 enclosed by single quotes.
descriptor may also be a character variable containing a
valid descriptor string.

NLDATM(SAS-datetime-
value,descriptor)

Converts a SAS datetime value into a character string in
the form described by descriptor, which is a combination
of the directives in table 6.10 enclosed by single quotes.
descriptor may also be a character variable containing a
valid descriptor string.

NLTIME(SAS-time-value,descriptor) Converts a SAS time value into a character string in the
form described by descriptor, which is a combination of
the directives in table 6.10 enclosed by single quotes.
descriptor may also be a character variable containing a
valid descriptor string.

Table 6.11 shows the results for different OPTIONS LOCALE= settings when you use the
NLDATE function to create a character string containing the day-of-week name (%A), the three-
letter abbreviated month name (%b), numerical day (%d), and four-digit year (%Y).

Table 6.11: The NLDATE Function

Sample
Function Call

OPTIONS
LOCALE= Result

NLDATE('26OCT2014'd,'%A %b %d %Y'); de_DE Sonntag Okt 26 2014
NLDATE('26OCT2014'd,'%A %b %d %Y'); en_US Sunday Oct 26 2014
NLDATE('26OCT2014'd,'%A %b %d %Y'); es_MX domingo oct 26 2014
NLDATE('26OCT2014'd,'%A %b %d %Y'); ru_RU воскресенье окт. 26 2014

NLDATE('26OCT2014'd,'%A %b %d %Y'); zh_SG 星期日 10月 26 2014

Chapter 6: Deeper into Dates and Times with SAS 225

Table 6.12 shows the results for different OPTIONS LOCALE= settings when you use the
NLDATM function to create a character string containing the abbreviated day-of-week name (%a),
numerical day without the leading zero (%#d), the four-digit year (%Y), and the colon-delimited
24-hour time with zero-padded hours and minutes (%H:%M).

Table 6.12: The NLDATM Function

Sample
Function Call

OPTIONS
LOCALE= Result

NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M'); en_US Tue 6 May 2014 14:30
NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M'); fr_FR mar. 6 mai 2014 14:30
NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M'); ja_JP 火 6 5月 2014 14:30
NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M'); pl_PL wt. 6 maja 2014 14:30
NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M'); sv_SE tis 6 maj 2014 14:30

Table 6.13 shows the results for different OPTIONS LOCALE= settings when you use the
NLTIME function to create a character string containing the colon-delimited 12-hour time with
zero-padded hours and minutes (%I:%M) and the locale's AM/PM indicator (%p).

Table 6.13: The NLTIME Function

Sample
Function Call

OPTIONS
LOCALE
= Result

NLTIME('10:17:00'd,'%I:%M %p'); da_DK 10:17 f.m.
NLTIME('10:17:00'd,'%I:%M %p'); de_DE 10:17 vorm.
NLTIME('10:17:00'd,'%I:%M %p'); en_US 10:17 AM
NLTIME('10:17:00'd,'%I:%M %p'); es_SP 10:17 f.m.
NLTIME('10:17:00'd,'%I:%M %p'); zh_CN 10:17 上午

6.6 Date Formats and Informats for Other Calendars
SAS has the ability to handle dates from non-Julian calendars, such as Hebrew, Japanese, and
Taiwanese. The date values continue to be stored as SAS dates, where January 1, 1960, is equal to
zero, but these formats handle the conversion to the other calendars for the correct display of dates.

226 The Essential Guide to SAS Dates and Times, Second Edition

6.6.1 Hebrew Date Formats

HDATEw.
HDATEw. displays a SAS date value in Hebrew. You will need the correct character encoding
installed on your system to display this correctly. The SAS date will be displayed as yyyy mmmmm
dd, where yyyy is the year, mmmmm represents the month's name in Hebrew, and dd is the day-of-
the-month. w can be from 9 to 17, with a default width of 17, and it is right-justified. Use odd
numbers for w to get the best display.

HEBDATEw.
HEBDATEw. displays a SAS date value according to the Jewish calendar. It is a combined solar
and lunar calendar. The Hebrew year is calculated by adding 3761 beginning in autumn of a
specified year in the Gregorian calendar. w can be from 7 to 24, with a default width of 16, and it is
right-justified. There are three forms of the display, long, default, and short, dependent upon the
format width specified. Again, you will need the correct character encoding installed on your
system, or you will get substitutions for nonprinting characters.

6.6.2 Japanese and Taiwanese Date Formats

MINGUOw.
MINGUOw. displays a SAS date value as a Taiwanese date value in the form yy(yy)mmdd, where
yy(yy) is the year, mm is the number of the month, and dd is the day of the month. w can range from
1 to 10, with a default width of 8, and it is left-justified and zero-filled. The Taiwanese calendar
uses 1912 as the base year (that is, 01/01/01 is January 1, 1912). Dates prior to this will display as a
series of asterisks (*****). Also, the year values continue to increase past 100; they do not remain
two-digit years and cycle, much like Julian dates. For example, January 1, 2012 is "100/01/01," not
"00/01/01."

NENGOw.
NENGOw. writes a SAS date value in the form e.yymmdd, where e is the first letter of the name of
the emperor (Meiji, Taisho, Showa, or Heisei), yy is the year, mm is the month, and dd is the day of
the month. w can be from 2 to 10, with a default width of 10, and it is left-justified. SAS will omit
the period if w isn't big enough.

6.6.3 Japanese and Taiwanese Date Informats

JDATEMYDw.
JDATEMYDw. allows you to convert Japanese Kanji in the form yy(yy)mondd to SAS date values,
where yy(yy) is the year, mon is the Kanji representation of the name of the month, and dd
represents the day of the month. w can be from 12 to 32, with a default width of 12. You can
separate (yy)yy, mon, and dd with special characters or blanks, but you must make sure that the

Chapter 6: Deeper into Dates and Times with SAS 227

width specification allows for any blanks and/or special characters in the input field. Two-digit
years will be translated according to the YEARCUTOFF= option.

JNENGOw.
JNENGOw. reads Japanese Kanji date values in the form yymmdd, where yy is the year, mm is the
Kanji representation of the name of the month, and dd represents the day of the month. Since yy is
two digits long, this informat is always affected by the YEARCUTOFF= option. w can be from 16
to 32, with a default width of 16. You can separate yy, mon, and dd with special characters or
blanks, but you must make sure that the width specification allows for any blanks and/or special
characters in the input field.

MINGUOw.
MINGUOw. converts a Taiwanese date value into a SAS date value in the form yy(yy)mmdd, where
yy(yy) is the year, mm is the number of the month, and dd is the day of the month. w can be from 6
to 10, with a default width of 6. You may use separators such as blanks, dashes, or slashes between
the year, month, and day values, but they must be present between all of the values. The Taiwanese
calendar uses 1912 as the base year (that is, 01/01/01 is January 1, 1912). In addition, the year
values continue to increase past 100; they do not cycle. January 1, 2012, is "100/01/01," not
"00/01/01." You will get a missing value if you use this format to read date strings where the year
component is less than 1.

6.7 Other Software and Their Dates (Excel, Oracle, DB2)
Most software packages keep their dates in some sort of numerical form in much the same way that
SAS does, while others have a special variable type for dates. Microsoft Excel stores dates as
integers, but it uses January 1, 1900, instead of January 1, 1960, as day zero. Times are stored in
Excel as fractions of days, so noon of a given day is .5 (exactly one-half of a day). Datetime values
are stored in Excel as the day relative to 01/01/1900 plus the fraction of the day. In Excel, 6 p.m. on
January 1, 1900, is represented as .75. Excel also has a major limitation on its date algorithm: It
cannot store its dates as negative numbers. This means that any date prior to January 1, 1900, is
going to be represented by a character string, not an Excel date value. Therefore, if you have
historical dates in an Excel spreadsheet, you need to be aware that you will have to process any
column(s) with historical dates as character columns, and use the INPUT() function to create your
SAS date values. The ANYDT informats may also prove useful in situations like this. If you rely
on an automated method of conversion from Excel to SAS, there is the possibility that a column
with historical dates might be translated as a numeric column. If this occurs, then any dates (or
datetimes) prior to January 1, 1900, will be missing in your SAS data set. You will run into the
same problem exporting historical dates into Excel from SAS. You will have to export the column
as a character column, and you won't be able to use any of the Excel date or math functions on cells
containing them inside the spreadsheet.

These are conversion issues specific to Excel that may arise when you are trying to import or
export data to or from Excel. When you import data from other software packages into SAS using

228 The Essential Guide to SAS Dates and Times, Second Edition

the IMPORT procedure, one of the database engines, or with pass-through SQL processing, SAS
should understand and convert the dates, even though the reference date for the other software may
differ. There are exceptions to this rule, one of which is using a pass-thru WHERE clause inside
PROC SQL for foreign databases. You will have to know the date, time, or datetime format for the
foreign database to select records based on dates, times, or datetimes. There are specific cases
where SAS does not have an informat for certain datetime strings from other databases and cannot
translate those values into their SAS equivalent. The general strategy to pursue in these cases is to
parse the datetime string and work from there with a combination of informats and/or functions to
create your SAS datetime values. If you will need to do this on a regular basis, you could create a
macro or use PROC FCMP to process your troublesome datetime strings.

Sending dates to other databases and software packages should be fine if you use the EXPORT
procedure or one of the database engines. If you are determined to send dates to another database or
software package the hard way, then you will have to produce SAS date, time, or datetime values
as character strings in the format of the other software and then import them using the methods
available to other software packages. You can use a picture format and the PUT statement to
accomplish this, as long as you know the correct representation of the package for which you are
creating the data. For details on creating picture formats, see Section 2.6. Example 6.15 shows how
this is done for a DB2 database.

Example 6.15: Writing Datetime Values for DB2 Using a Picture
Format

PROC FORMAT;
PICTURE dbdate
LOW-HIGH = '%Y-%0m-%0d:%0H:%0M:%0S' (DATATYPE=DATETIME)
. - .Z = '0000-00-00:00:00:00';
RUN;

DATA _NULL_;
now = '01JUL2014:20:18:32'dt;
PUT "now displayed as datetime value: " @33 now;
PUT "now displayed as datetime19.: " @33 now DATETIME19.;
PUT "now displayed as dbdate.: " @33 now DBDATE.;
RUN;

The Result

now displayed as datetime value: 1719865112
now displayed as datetime19.: 01JUL2014:20:18:32
now displayed as dbdate.: 2014-07-01:20:18:32

6.7.1 The SASDATEFMT= System Option
This system option can be useful when you are working with one of the following databases: Aster,
DB2 under UNIX and PC Hosts, Greenplum, Impala, Informix, Microsoft SQL Server, MySQL,
Netezza, ODBC, OLE DB, Oracle, PostgreSQL, SAP HANA, Sybase, Sybase IQ, Teradata, or

Chapter 6: Deeper into Dates and Times with SAS 229

Vertica. It enables you to change the date format of a column in the DBMS. It is used to avoid data
type mismatches between SAS date, time, or datetime values and the DBMS date columns when
importing to SAS from a DBMS, or exporting to a DBMS from SAS. The syntax is as follows:

OPTIONS SASDATEFMT=(DBMS-date-column1 = SAS date-format1, DBMS-date-column2 = SAS
date-format2,… DBMS-date-columnn = SAS date-formatn);
DBMS-date-column is the name of a date column in the DBMS, and SAS date-format is the name
of a SAS date, time, or datetime format. This format must also have an informat of the same name
to work in this option. For example, DATE9. is both a format and an informat, so it would be valid.

In order for this option to have an effect, the DBMS column must have a type of DATE, TIME, or
DATETIME; any other data type will be ignored by this option. You use this when the default SAS
date format (which is DBMS- and data type-specific, see the SAS/ACCESS documentation for
details) does not match the SAS date format you want or vice-versa.

6.8 Conclusion
In summary, when working with dates and times and datetimes from other software, you first have
to make sure that you are not working with character strings masquerading as dates. If you have a
character string, you will have to convert it to a SAS date, time, or datetime yourself with the
INPUT() function (Section 3.3.3). The reverse also holds true when you are exporting to other
databases. While most of the methods to traverse between different software and SAS will handle
the import and export of dates, times, and datetimes accurately, it is always important to check the
results at your destination.

230 The Essential Guide to SAS Dates and Times, Second Edition

Appendix A: A Quick Reference Guide to SAS
Date, Time, and Datetime Formats

This table shows the result when the same date, time, or datetime value is displayed with the
corresponding format, using the default length for the given format.

The reference date for this table is Thursday, September 18, 2014.

If You Want Your Date
to Look Like This Use This Format

18SEP14 DATE.
18 DAY.
18/09/14 DDMMYY.
18 09 14 DDMMYYB.
18:09:14 DDMMYYC.
18-09-14 DDMMYYD.
18092014 DDMMYYN.
18.09.14 DDMMYYP.
18/09/14 DDMMYYS.
Thursday DOWNAME.
261 JULDAY.
14261 JULIAN.
09/18/14 MMDDYY.
09 18 14 MMDDYYB.
09:18:14 MMDDYYC.
09-18-14 MMDDYYD.
09182014 MMDDYYN.
09.18.14 MMDDYYP.
09/18/14 MMDDYYS.
09M2014 MMYY.
09:2014 MMYYC.
09-2014 MMYYD.

232 The Essential Guide to SAS Dates and Times, Second Edition

If You Want Your Date
to Look Like This Use This Format

092014 MMYYN.
09.2014 MMYYP.
09/2014 MMYYS.
September MONNAME.
9 MONTH.
SEP14 MONYY.
3 QTR.
III QTRR.
Thursday, September 18, 2014 WEEKDATE.
Thursday, 18 September 2014 WEEKDATX.
5 WEEKDAY.
2014-W37-05 WEEKU.
2014-W38-04 WEEKV.
2014-W37-04 WEEKW.
September 18, 2014 WORDDATE.
18 September 2014 WORDDATX.
2014 YEAR.
2014M09 YYMM.
2014:09 YYMMC.
2014-09 YYMMD.
14-09-18 YYMMDD.
14 09 18 YYMMDDB.
14:09:18 YYMMDDC.
14-09-18 YYMMDDD.
20140918 YYMMDDN.
14.09.18 YYMMDDP.
14/09/18 YYMMDDS.
201409 YYMMN.
2014.09 YYMMP.
2014/09 YYMMS.
2014SEP YYMON.

Appendix A: A Quick Reference Guide to SAS Date, Time, and Datetime Formats 233

If You Want Your Date
to Look Like This Use This Format

2014Q3 YYQ.
2014:3 YYQC.
2014-3 YYQD.
20143 YYQN.
2014.3 YYQP.
2014QIII YYQR.
2014:III YYQRC.
2014-III YYQRD.
2014III YYQRN.
2014.III YYQRP.
2014/III YYQRS.
2014/3 YYQS.
2014W37 YYWEEKU.
2014W38 YYWEEKV.
2014W37 YYWEEKW.

The reference time for this table is 2:45 p.m.

If You Want Your Time
to Look Like This Use This Format

14:35 HHMM.
15 HOUR.
875 MMSS.
14:35:00 TIME.
2:35:00 PM TIMEAMPM.
14:35:00 TOD.

234 The Essential Guide to SAS Dates and Times, Second Edition

The reference datetime for this table is 7:20 p.m. on Friday, December 12, 2014.

If You Want Your Datetime
to Look Like This Use This Format

12DEC14:07:20:00 PM DATEAMPM.
12DEC14:19:20:00 DATETIME.
12DEC14 DTDATE.
DEC14 DTMONYY.
Friday, 12 December 2014 DTWKDATX.
2014 DTYEAR.
14:4 DTYYQC.
12/12/2014 7:20 PM MDYAMPM.

Appendix B: A Quick Reference Guide to NLS
Date, Time, and Datetime Formats

This table shows the result when the same date, time, or datetime value is displayed with the
corresponding format, using the default length for the given format.

The reference date for this table is Monday, July 7, 2014.

 Language

Format Name OPTIONS
LOCALE=

'English_UnitedStates'

OPTIONS
LOCALE=

'Dutch_Belgium'

OPTIONS
LOCALE=

'Russian_Russia'

NLDATE. July 07, 2014 07 juli 2014 07 июля 2014 г.

NLDATEL. July 7, 2014 7 juli 2014 07.07.2014

NLDATEM. Jul 7, 2014 7-jul.-2014 07.07.2014

NLDATEMD. July 07 07 juli 07 июля

NLDATEMDL. July 07 07 juli 07.07

NLDATEMDM. Jul 07 07 jul. 07.07

NLDATEMDS. 07/07 07/07 07.07

NLDATEMN. July juli Июль

NLDATES. 07/07/2014 07/07/2014 07.07.2014

NLDATEW. Monday, July 7, 2014 maandag 7 juli
2014

пн, 7 июля 2014 г.

NLDATEWN. Monday maandag Пн

NLDATEYM. July 2014 juli 2014 ****************

NLDATEYML. July 2014 juli 2014 07.2014

NLDATEYMM. Jul 2014 jul. 2014 07.2014

NLDATEYMS. 07/2014 07/2014 07.2014

NLDATEYQ. 3rd quarter 2014 Q3 2014 3-й кв. 2014

236 The Essential Guide to SAS Dates and Times, Second Edition

 Language

Format Name OPTIONS
LOCALE=

'English_UnitedStates'

OPTIONS
LOCALE=

'Dutch_Belgium'

OPTIONS
LOCALE=

'Russian_Russia'

NLDATEYQL. 3rd quarter 2014 Q3 2014 3-й кв. 2014

NLDATEYQM. Q3 2014 K3 2014 2014.3

NLDATEYQS. 2014/3 2014/3 2014.3

NLDATEYR. 2014 2014 2014

NLDATEYW. Week 27 2014 Week 27 2014 Week 27 2014
-The Russian text is too long for the default format width.

The reference time for this table is 11:20.

 Language

Format Name OPTIONS
LOCALE=

'English_UnitedStates'

OPTIONS
LOCALE=

'Dutch_Belgium'

OPTIONS
LOCALE=

'Russian_Russia'

NLTIMAP. 11:20 AM 11:20 AM 11:20 AM

NLTIME. 11:20:00 11:20:00 uur 11:20:00

Appendix B: A Quick Reference Guide to NLS Date, Time, and Datetime Formats 237

The reference datetime for this table is Saturday, September 27, 2014, 05:45:00 p.m.

 Language

Format Name OPTIONS
LOCALE=
'English_UnitedStates'

OPTIONS
LOCALE=
'Dutch_Belgium'

OPTIONS
LOCALE=
'Russian_Russia'

NLDATM. 27Sep2014:17:45:00 27 september 2014 17:45:00 uur 27.09.2014, 17:45:00
NLDATMAP. September 27, 2014 05:45:00 PM 27 september 2014 05:45:00 PM 27.09.2014, 17:45:00
NLDATMDT. September 27, 2014 27 september 2014 27.09.2014
NLDATML. September 27, 2014 05:45:00 PM 27 september 2014 17:45:00 27.09.2014, 17:45:00
NLDATMM. Sep 27, 2014 05:45:00 PM 27-sep.-2014 17:45:00 27.09.2014, 17:45:00
NLDATMMD. September 27 27 september 27 сент.
NLDATMMDL. September 27 27 september 27.09
NLDATMMDM. Sep 27 27 sep. 27.09
NLDATMMDS. 09/27 27/09 27.09
NLDATMMN. September september Сент.
NLDATMS. 09/27/2014 17:45:00 27/09/2014 17:45:00 27.09.2014 17:45:00
NLDATMTM. 17:45:00 17:45:00 uur 17:45:00
NLDATMTZ. 17:45:00 -0500 17:45:00 uur -0500 17:45:00 -0500
NLDATMW. Saturday, September 27, 2014 05:45:00 PM zaterdag 27 september 2014 17:45:00 сб, 27 сент. 2014 г., 17:45:00
NLDATMWN. Saturday zaterdag Сб
NLDATMWZ. Sat, Sep 27, 2014 05:45:00 PM -0500 za 27 sep. 2014 17:45:00 -0500 сб, 27 сент. 2014 г. -0500
NLDATMYM. September 2014 september 2014 ****************
NLDATMYML. September 2014 september 2014 09.2014
NLDATMYMM. Sep 2014 sep. 2014 09.2014
NLDATMYMS. 09/2014 09/2014 09.2014
NLDATMYQ. 3rd quarter 2014 Q3 2014 3-й кв. 2014
NLDATMYQL. 3rd quarter 2014 Q3 2014 3-й кв. 2014
NLDATMYQM. Q3 2014 K3 2014 2014.3
NLDATMYQS. 2014/3 2014/3 2014.3
NLDATMYR. 2014 2014 2014
NLDATMYW. Week 38 2014 Week 38 2014 Week 38 2014
NLDATMZ. 27Sep2014:17:45:00 -0500 27 september 2014 17:45:00 uur -

0500
27.09.2014, 17:45:00 -0500

-The Russian text is too long for the default format width.

238 The Essential Guide to SAS Dates and Times, Second Edition

Appendix C: Troubleshooting Dates 101
This appendix is intended to be a quick solutions guide for some of the most common issues people
have with dates and SAS. I hope to keep the discussion going online, because people often remark
to me how difficult dates are in SAS, and they shouldn't be. You can find out more about this
troubleshooting project on the author page for this book. Again, these are intended to be simple
solutions to common beginner's questions.

Every person experiencing a problem with dates, times, or datetimes should immediately check to
see if they are working with character values or numeric values. You can do this by using PROC
CONTENTS, by looking at the properties in the Explorer window in interactive SAS, or by using
the Data Set Attributes Task (under TasksData) in SAS Enterprise Guide. Unless you are
working with ISO 8601 durations and intervals, you should be working with numeric values. If not,
then the first step you should take is to convert that character value into a proper SAS date, time, or
datetime value.

Question 1: How do I convert my character value into a SAS date, time, or datetime value?

Case 1: If you are reading a flat file (CSV, tab-delimited, and so on), you will need to use the
INPUT statement with the appropriate date, time, or datetime informat.

Sample Code

OPTIONS DATESTYLE=MDY;
DATA convert_char;
INFILE 'char_dates.txt' PAD MISSOVER;
INPUT id $ date1 :mmddyy10. date2 :date9. date3 :anydtdte.;
RUN;

Data File 'char_dates.txt'

101 04/17/2012 06dec2015 06272014
102 09/29/2014 15JUN2013 09feb2014
103 11/12/2013 3mar2015 08/19/2015

When you run the program with the data above, you will get the following data set. The date
variables have intentionally been left unformatted so you can see that the data in the flat file has
been turned into SAS date values. The ANYDTDTE. informat was used to read in the DATE3
variable to demonstrate how it can be used if you don't know what your character dates look like,
or if they are in different date forms. Chapter 3 contains detailed descriptions of the informats that
you can use in conjunction with the INPUT statement.

240 The Essential Guide to SAS Dates and Times, Second Edition

The Resulting Data Set

Case 2: If you already have your data in a SAS data set, then you will have to use the INPUT
function to translate your character dates into SAS dates.

Here is the data set we have with character dates:

Code to Convert Character Date Values into SAS Date Values

1. OPTIONS DATESTYLE=MDY;
2. DATA fix_char;
3. set already_char;
4. num_date1 = INPUT(date1,mmddyy10.);
5. num_date2 = INPUT(date2,date9.);
6. num_date3 = INPUT(date3,anydtdte11.);
7. RUN;

The INPUT function is used in lines 4, 5, and 6 to create the new variables num_date1, num_date2,
and num_date3. The reason we are creating new variables is that you cannot change an existing
variable from character to numeric, so you cannot use the variable names date1, date2, or date3
because they exist in the data set ALREADY_CHAR. The INPUT function uses the informats
detailed in Chapter 3, just like the INPUT statement.

The Resulting Data Set

In general, when you are dealing with SAS dates, times, and datetimes, you should be working with
numeric variables. The exception to this rule is ISO durations and intervals, which is covered in
Chapter 4.

Appendix C: Troubleshooting Dates 101 241

Question 2: Why do I get the log message "Variable xxxxxx has been defined as both
character and numeric"?

You are trying to convert a character variable into a SAS date, but you're using the same variable
name in the INPUT function and for the result.

date = INPUT(date,mmddyy10.);

Instead, you must use a different variable name to store the result of the INPUT function.

new_date = INPUT(date,mmddyy10.);

Question 3: Why do I get the log message "NOTE: Invalid argument to function INPUT"
when I try to use the INPUT function to convert a character date into a SAS date?

You are using the wrong informat for the characters you are converting. As an example, if your
character values look like "04MAY2015," you'll get this error if you don’t use the DATE. (or
ANYDTDTE.) informat.

Quickest fix: Use one of the "ANYDATE" informats. Read Section 3.4.4 for details and the
possible pitfalls of this strategy.

Best fix: Find the correct informat that fits the character string you're converting.

Question 4: Why do I get errors when I am reading a flat file with dates, and I know I'm
using the correct informat?

This is most often an issue of not reading enough characters in the field, or of reading too many.

Best fix: Make sure you specify the correct length on your informat, and use the colon (:) modifier
for your informat (see Example 3.2).

Question 5: Why doesn't my date comparison work?

This is generally a problem when you are importing data from another database. First, ensure that
the variables you are working with are numeric. Second, many databases store their dates as
datetime values, so even if using dates works in the database, it will not work when you try to
compare that with a SAS date value.

Best fix: Once you've verified that your data aren't character, try using the DATEPART() function
(Table 5.3) on the variable you've imported and compare that with your SAS date.

242 The Essential Guide to SAS Dates and Times, Second Edition

Question 6: My date values look right, so why can't get I my date comparison to work?

This frequently means that one of your values is character. Removing formats from a SAS date
value is a good way to make sure that you've got a SAS date value. As an example, if the date is in
2014, it should be a number between 19724 and 20088.

Question 7: How can I subset my data before or after a specific date/time/datetime?

You have to use a date literal such as '01JAN2014'd, a time literal such as '14:00't, or a datetime
literal such as '17OCT2014:07:00'dt.

DATA junestock;
SET sashelp.citiday;
WHERE date BETWEEN '01JUN1988'd AND '30JUN1988'd;
RUN;

This is one way to create a subset of data for June 1998 from the data set SASHELP.CITIDAY.
However, don't let the format of the date fool you. Here's the same method applied to the data set
SASHELP.CITIMON.

DATA stock8081;
SET sashelp.citimon;
WHERE date BETWEEN '01JAN1980'd AND '31DEC1981'd;
RUN;

Even though the dates are monthly, they are still SAS dates, so you have to specify the boundaries
as complete SAS dates, not just a month and year.

Question 8: How do I get a date from a date and time?

Use the DATEPART() function after you've converted it to a SAS datetime value. If you just need
the time, use the TIMEPART() function. This example takes a datetime value and separates it into
date and time, formatted and unformatted versions.

DATA date_from_datetime;
datetime = '8APR2014:16:00'dt;
fmt_datetime = datetime;
date = DATEPART(datetime);
fmt_date = date;
time = TIMEPART(datetime);
fmt_time = time;
FORMAT fmt_datetime mdyampm21. fmt_date mmddyy10. fmt_time
timeampm.;
RUN;

PROC PRINT DATA=date_from_datetime NOOBS;
RUN;

Appendix C: Troubleshooting Dates 101 243

datetime fmt_datetime date fmt_date time fmt_time
1712592000 4/8/2014 4:00 PM 19821 04/08/2014 57600 4:00:00 PM

Question 9: Why do my dates look like a bunch of numbers that don't make any sense, and
how can I fix it?

If your date value looks like a number such as 16789, then it is displaying as its SAS date, and all
you need to do is to format it using one of the date formats in Appendix A, or if you need one of
the NLS formats to translate the date into a language other than English, see Section 6.4 and
Appendix B.

Question 9a: I formatted my date and now all I get is a bunch of asterisks (************).
What's wrong?

If your unformatted SAS value is more than 7 digits long, or you've used a date format and you get
asterisks, you probably have a datetime value, and you need to use a datetime format. See
Appendix A for the quick list.

Question 10: My date looks like "06/25/2014," but I need to make it look like "2014/06/25." I
know it's a SAS date value in the data set, so how do I change it?

Use the FORMAT statement. It does not matter what format the variable has associated with it in
the data set. As long as it is a SAS date, time, or datetime value, you can change the display by
changing the format in the procedure where you are displaying the variable. However, if you get an
error message along the lines of "Format $... not found," the dollar sign ($) is telling you that the
variable you are trying to format is a character variable. In that case you will have to convert it to
the corresponding SAS value.

Let's print out some records from a data set using this code:

ODS RTF FILE="apxc_10.rtf";
PROC PRINT DATA=book.dailysales (OBS=5);
VAR date;
RUN;

Obs date

1 22MAY2014

2 23MAY2014

3 24MAY2014

244 The Essential Guide to SAS Dates and Times, Second Edition

Obs date

4 25MAY2014

5 26MAY2014

What you see in the date column is just a SAS date that has been associated with the DATE9.
format when the data set was created, so without any FORMAT statement in the PRINT procedure,
that is what it looks like. Now we'll add a FORMAT statement.

1 PROC PRINT DATA=book.dailysales (OBS=5);
2 VAR date;
3 FORMAT date yymmdds10.;
4 RUN;

Obs date

1 2014/05/22

2 2014/05/23

3 2014/05/24

4 2014/05/25

5 2014/05/26

And that's how you change the way a date, time, or datetime looks in output from its default
format.

Question 11: My date is numeric, like 20140815. How do I get it to display as 08/15/2014?

This is usually the result of an import that went wrong. First, make sure that it really is the number
20,140,815. If this is true, then you can turn that number into a character string with the PUT
function and convert it to a date value like you do with any other character date string. Here's one
way:

DATA c11;
bad_date = 20140815;
char_date = PUT(bad_date,10.);
SAS_date = INPUT(STRIP(char_date),yymmdd8.);
fmt_SAS_date = SAS_date;
FORMAT fmt_SAS_date weekdate.;
RUN;

Appendix C: Troubleshooting Dates 101 245

PROC PRINT DATA=c11 NOOBS;
RUN;

bad_date char_date SAS_date fmt_SAS_date
20140815 20140815 19950 Friday, August 15, 2014

Question 12: How can I display just the month and year, when I have month, day, and year?

By definition, SAS dates are a specific day in a specific month during a specific year, so you can't
just delete the day and store the month and year. If you want to display the value as only a month
and a year, then just use a format that only displays the month and year.

Question 13: How do I convert from datetime format to date format?

In order to answer this question, you need to know what you want. If you need a SAS date value,
then you need to convert it from seconds since midnight, January 1, 1960, to days since January 1,
1960, by using the DATEPART function. If you just want it to display like a date, and don't need or
want the extra variable in your data set, then you can use a format. See Appendix A for the
available SAS datetime formats and the output they produce.

DATA q12;
datetime = '31AUG2014:10:15'dt;
fmt_datetime = datetime;
date_from_datetime = DATEPART(datetime);
fmt_date = date_from_datetime;
FORMAT fmt_datetime dtwkdatx. fmt_date weekdatx.;
RUN;

PROC PRINT DATA=q12 NOOBS;
RUN;

Note the difference in the actual SAS values. Even though the formatted values are identical, the
variable datetime is a SAS datetime value, while the variable date_from_datetime is a SAS date
value created with the DATEPART function.

datetime fmt_datetime date_value_from_datetime fmt_date
1725099300 Sunday, 31 August 2014 19966 Sunday, 31 August 2014

246 The Essential Guide to SAS Dates and Times, Second Edition

Question 14: I can't find a SAS format to make my date/time/datetime look the way I want.
OR: I need to output my date so it looks like . . .

First, check Appendix A and the SAS documentation to see if you can find a format that matches
your needs. If not, then use the FORMAT procedure with the PICTURE statement. Section 2.7 of
the book provides all the details you need to create a custom format, including the SAS date
directives that tell SAS what you want your date, time, or datetime to look like. Don't worry that
you may be duplicating an existing SAS format; that will not cause a problem as long as you do not
use the same name as a SAS-supplied format. You will see a note in the log, and your custom
format will not be created.

Question 15: How can I read a date/time/datetime formatted like . . .?

The simple answer is to use one of the "ANYDATE" informats. Don't forget about the
DATESTYLE= system option, and check your results carefully before using them. The
"ANYDATE" informats are easy, but they can be fooled, even when four-digit years are used. See
Section 3.4.4 for details.

Question 16: How can I convert a UTC time value to a specific time zone?

If your "time value" is a datetime, use the TZONEU2S() function. This changes the SAS value, so
don't overwrite your original value unless this is what you want to do. If you have just a time value,
you will need to get the offset via the TZONEOFF() function, which will return the offset from
GMT for the time zone you supply.

DATA q16;
datetime = "26MAR2014:11:47:00"dt;
gmt_datetime = TZONES2U(datetime);
RUN;

PROC PRINT DATA=q16 NOOBS;
FORMAT datetime gmt_datetime mdyampm21.;
RUN;

datetime gmt_datetime
3/26/2014 11:47 AM 3/26/2014 4:47 PM

Appendix C: Troubleshooting Dates 101 247

Question 17: How can I make a single date variable from separate month, day, and year?

The MDY function will let you supply a numeric month, day, and year, and it will calculate the
SAS date value. You see this often when reading Excel files, where the month, day, and year are in
separate columns. We'll use in-stream comma-separated data instead of an Excel file for the
example.

1 DATA Q17;
2 INFILE DATALINES DLM=',';
3 INPUT month day year;
4 SAS_date = MDY(month,day,year);
5 fmt_date = SAS_date;
6 FORMAT fmt_date mmddyyd10.;
7 DATALINES;
8 2,15,2013
9 9,6,2014
10 12,17,2013
11 5,22,2014
12 ;;;;
13 RUN;

14 PROC PRINT DATA=q17 NOOBS;
15 RUN;

The SAS_date column shows the SAS date value resulting from the use of the MDY function in
line 4.

month day year SAS_date fmt_date
2 15 2013 19404 02-15-2013

9 6 2014 19972 09-06-2014

12 17 2013 19709 12-17-2013

5 22 2014 19865 05-22-2014

Question 18: I have a date and a time. How can I make a SAS datetime from them?

This occurs when you import data into SAS and the date is in one column and the time is in
another. The DHMS() function is what is used to create datetimes from dates and times. Although
you might think that you have to break the time value into hours, minutes, and seconds to use the
function, remember that SAS times are maintained in seconds since midnight, so you can leave
hours and minutes set to zero and put the time variable into the seconds parameter. We will use in-
stream data for the example. Pay attention to line 3. This is how you create a datetime from a SAS
date and a SAS time.

248 The Essential Guide to SAS Dates and Times, Second Edition

1 DATA q18;
2 INPUT date : yymmdd10. time : time.;
3 datetime = DHMS(date,0,0,time);
4 fmt_date = date;
5 fmt_time = time;
6 fmt_datetime = datetime;
7 FORMAT fmt_date mmddyy10. fmt_time timeampm. fmt_datetime

mdyampm21.;
8 DATALINES;
9 2014-8-17 5:45
10 2014-03-11 9:06
11 2015-02-27 15:43
12 2014-12-13 10:00
13 ;
14 RUN;

15 ODS RTF FILE='apxc_18.rtf';
16 PROC PRINT DATA=q18 NOOBS;
17 RUN;

date and time are the SAS values as read from the data, and datetime is the SAS value created in
line 3 of the above code. We have created duplicate variables for formatting.

date time datetime fmt_date fmt_time fmt_datetime
19952 20700 1723873500 08/17/2014 5:45:00 AM 8/17/2014 5:45 AM

19793 32760 1710147960 03/11/2014 9:06:00 AM 3/11/2014 9:06 AM

20146 56580 1740670980 02/27/2015 3:43:00 PM 2/27/2015 3:43 PM

20070 36000 1734084000 12/13/2014 10:00:00 AM 12/13/2014 10:00 AM

Question 19: How can I calculate the number of days between two dates?

There are multiple ways to calculate the difference between two dates, times, or datetimes in SAS.
This is one of the best things about having them represented as numbers. The simplest way to find
the difference is to subtract one date from another. It is important that you make sure that you are
subtracting dates from dates, times from times, and datetimes from datetimes.

Question 20: How do I convert a numeric SAS date value into character format?

The first question you should ask yourself is why. Formatting the SAS date value will give you the
display you want. Even when you are exporting to other software, as long as you put the date into a
form that the other software understands, it should work fine. You don't need to do the character
conversion, and you will not be able to do any calculations with that character variable. The only
time that I would convert a date value into a character value is when I need to put the date inside of

Appendix C: Troubleshooting Dates 101 249

a long string of text such as, "The subject started the trial on January 15, 2012, and mastered task A
within 15 minutes." It doesn't matter if a format is permanently associated with the date variable or
what it looks like when you look at the data set; remember that you can change the way a date is
displayed in any procedure where you can use a FORMAT statement.

Here's a data set with a variable that has been formatted with the WORDDATX. format. This
means that anytime the variable DATE is displayed in a SAS procedure, it will be displayed with
the WORDDATX. format as shown below.

Now, let's run a PROC PRINT, but I want to show the date as DD-MMM-YYYY, so I use the
FORMAT statement to change the display for this run:

PROC PRINT DATA=q20 NOOBS;
FORMAT date date10.;
RUN;

Formatted with DATE10.

date

30JUN2014
18SEP2014
14MAR2014
18JUL2014
26APR2014

What if you want to see it as YYYY-MM-DD?

PROC PRINT DATA=q20 NOOBS;
FORMAT date yymmddd10.;
RUN;

250 The Essential Guide to SAS Dates and Times, Second Edition

Formatted with YYMMDDD10. (forces the separator to be the dash)

date

2014-06-30
2014-09-18
2014-03-14
2014-07-18
2014-04-26

But when we remove all the formats by using a FORMAT statement without a format name, we see
the actual SAS date value:

PROC PRINT DATA=q20 NOOBS;
FORMAT date;
RUN;

Format Removed

date
19904

19984

19796

19922

19839

Appendix C: Troubleshooting Dates 101 251

If you still want to convert your SAS date into a character value, then you can use the PUT
function. Line 2 is a precaution to make sure that the character variable is long enough to hold the
longest value. Note that you have to use a different name for the character variable you create in
line 4.

1. DATA q20_plus;
2. LENGTH chardate $ 31;
3. SET q20;
4. chardate = PUT(date,weekdate.);
5. RUN;

chardate date
Monday, June 30, 2014 19904

Thursday, September 18, 2014 19984

Friday, March 14, 2014 19796

Friday, July 18, 2014 19922

Saturday, April 26, 2014 19839

252 The Essential Guide to SAS Dates and Times, Second Edition

Index

Symbols and Numerics
& (ampersand) 192
= (equals sign) 207
$ (dollar sign) 61
%% date directive 49

A
%a date directive 49
%A date directive 49
AFR language prefix 214
ampersand (&) 192
ANYDTDTEw. informat 82–83

ANYDTDTMw. informat and 84–85
ANYDTTMEw. informat and 85–86
DATESTYLE= system option and 81, 82–83,

85–86
troubleshooting 239

ANYDTDTMw. informat 81, 84–85
automatic macro variables 186–189

B
%b date directive 49
%B date directive 49
B8601CIw.d informat 78, 108
B8601DAw. format 93
B8601DAw. informat 104
B8601DJw.d informat 79, 108
B8601DNw. format 99
B8601DTw.d format 99–100
B8601DTw.d informat 109
B8601DXw.d format 100–101
B8601DZw.d format 102
B8601DZw.d informat 110
B8601LZw.d format 96
B8601TMw.d format 94
B8601TMw.d informat 105
B8601TXw.d format 94–95
B8601TZw.d format 97–98
B8601TZw.d informat 105–106

C
calculations

INTCK() function and 151–156
INTNX() function and 156–159
number of days between dates 145–149
number of years between dates 146–147

CALL IS8601_CONVERT 123–136
CALL SYMGET() function 192–193
CALL SYMPUT() function 192–193
case sensitivity 48–49
CAT language prefix 214
CATS() function 14
CATT() function 14

CATX() function 14
character constants 61
character strings

DATETIME informat and 63
PUT() function and 55–56

character variables
INPUT() function and 61–62
INPUTC() function 61–62
PUT() function and 55–56
PUTN() function and 55–56

COMPRESS() function 14
constants, date and time as 3–5
CONVERT statement, EXPAND procedure

converting to higher frequency 202–203
METHOD= option 206
OBSERVED= option 206–212

CRO language prefix 214
CSY language prefix 214

D
%d date directive 49, 51
DAN language prefix 214
DATA step

FORMAT statement 10–137
%LET statement and 191, 192

DATADIF() function 145–146
DATALINES statement 61
DATATYPE= option 48, 51

254 Index

date directives, picture format 50
DATE() function 187–188
&DATE macro variable 187–188
DATE system option 7
DATEAMPMw.d format 42–43, 233
DATEPART() function 140

datetime formats and 41–42
troubleshooting 241, 242–243, 245

dates
automatic macro variables 186–189
CALL SYMPUT() function and 192–193
as constants 3–5
counters for 1
creating character strings 55–56
custom formats 47–55
datetime values and 13–14, 41–42
default justification 13
Excel and 227–228
external representation of 2–3
formats for 14–37, 92–103
graphing 194–200
Hebrew formats 226
informats for 59, 61, 64–73, 81–86, 103–111
internal representation of 2
international formats and informats 212–220
interval definitions 149–151
interval functions 151–159
Japanese formats 226
Japanese informats 226–227
quick reference 231–233, 235–237
shifting intervals 159–168
%SYSFUNC() macro function and 187–189
Taiwanese formats 226
Taiwanese informats 226–227
in titles 186–187
troubleshooting 239–251
width specification 5–6, 13
YEARCUTOFF= system option and 57–59

DATESTYLE= system option
ANYDTDTEw. informat and 82–83, 85–86
ANYDTDTMw. informat and 84
LOCALE= system option and 212
missing values example 81
troubleshooting 246

DATESTYLE=DMY system option 81–82

DATESTYLE=LOCALE system option 81
DATESTYLE=MDY system option 81–82
DATESTYLE=YMD system option 81–82
DATETIME() function 138
datetime values

automatic macro variables and 186–189
CALL SYMPUT() function and 192–193
as constants 3–5
custom formats 47–55
date formats and 13–14, 41–42
default justification 13
Excel and 227–228
external representation of 2–3
formats for 41–46, 99–103
informats for 61, 78–81, 81–82, 108–111
internal representation of 2
international formats and informats 212–220
interval definitions 150–151
interval functions 151–159
quick reference 234, 235–237
shifting intervals 159–1682
%SYSFUNC() macro function and 187–189
width specification 5–6, 37, 41–42
YEARCUTOFF= system option and 57–59

DATETIMEw. informat
ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86
character strings and 63

DATETIMEw.d format 43–44, 79, 213, 233
DATEw. format 15

DTDATEw. format and 44
international format for 213
quick reference 231

DATEw. informat 64
ANYDTDTEw. informat 82
ANYDTDTMw. informat 84
ANYDTTMEw. informat 85–86

DATJUL() function 140–141
DAY() function 138
DAY interval 150

INTCK() function 152
INTNX() function 158
shift point 160

DAYw. format 15, 231

Index 255

DB2 databases 227–228
DDMMYYB. format 17, 231
DDMMYYC. format 17, 231
DDMMYYD. format 17, 231
DDMMYYN. format 231
DDMMYYP. format 17, 231
DDMMYYS. format 231
DDMMYYw. format 15–16, 30–31

international format for 213
quick reference 231
YYMMDDw. format and 30–31

DDMMYYw. informat 64–65
ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86
DATASTYLE= system option 81–82

DDMMYYxw. format 16–17
MMYYxw. format and 20
YYMMxw. format and 30
YYQxw. format and 33–34

DES language prefix 214
DEU language prefix 214
DFLANG= system option 212
DHMS() function 141–142, 247–248
dollar sign ($) 61
dot (.)

See period
DOWNAMEw. format 17

international format for 213
quick reference 231

DTDATE9. format 44
DTDATEw. format 44

DATEw format and 15
quick reference 233

DTDAY interval 150
INTCK() function 155
INTNX() function 158
shift point 160

DTHOUR interval 151, 161
DTMINUTE interval 151, 161
DTMONTH interval 151

INTNX() function 158
shift point 161

DTMONYYw. format 44
MONYYw. format and 21

quick reference 233
DTQTR interval 151

INTNX() function 157, 158
shift point 161

DTRESET system option 7
DTSECOND interval 151, 161
DTSEMIMONTH interval 151

INTNX() function 158
shift point 161

DTSEMIYEAR interval 151
INTNX() function 157, 158
shift point 161

DTTENDAY interval 151
INTNX() function 158
shift point 161

DTWEEK interval 150
INTNX() function 157
shift point 161

DTWEEKDAY interval 151
INTNX() function 157
shift point 161

DTWKDATXw.format 45
quick reference 233

DTYEAR interval 151
INTNX() function 157, 158
shift point 161

DTYEARw. format 45, 233
DTYYQCw. format 46, 233
durations, ISO 8601 116–136

E
E8601DAw. format 93
E8601DAw. informat 104
E8601DNw. format 99
E8601DTw.d format 100
E8601DTw.d informat 109–110
E8601DXw.d format 101–102
E8601DZw.d format 102–103
E8601DZw.d informat 110–111
E8601LZw.d format 96–97
E8601LZw.d informat 107
E8601TMw.d format 94
E8601TMw.d informat 105
E8601TXw.d format 95–96
E8601TZw.d format 98–99

256 Index

E8601TZw.d informat 106–107
equals sign (=) 207
ERROR automatic variable 6–63
ESP language prefix 214
"EUR" formats 213–214
"EUR" informats 213–214
EURDFDD. format 213
EURDFDEw. format 213
EURDFDN. format 213
EURDFDTw. format 213
EURDFDWN. format 213
EURDFMN. format 213
EURDFMYw. format 213
EURDFWDX. format 213
EURDFWKX. format 213
Excel (Microsoft) 227–228
EXPAND procedure

capabilities 200–202
CONVERT statement 206–212
converting to higher frequency 202–203
FROM= option 206, 209–212
ID statement 204–205
interpolating missing values 205–206
TO= option 206, 209–212

external representation, date and time 2–3

F
%F date directive 223
FCMP procedure 52–55
FIN language prefix 214
FOOTNOTE statement 186
FORMAT procedure

PICTURE statement 47–52
troubleshooting 246
VALUE statement 47–48

FORMAT statement
date directives and 50
functionality 10–13
INFORMAT statement and 59–60
troubleshooting 243–244

formats 10–13, 59
custom 47–55
date constants and 4–5
for dates 14–37
for datetime 41–46

datetime values 99–103
"EUR" 213–214
external representation of date, time and 2–3
graphing dates and 194–200
Hebrew 226
ISO 8601 92–103, 117–121
Japanese 226
"NLS" 214–220
PUT() function and 55–56
quick reference 231–233
Taiwanese 226
for time 37–41
using wrong 62–63

FRA language prefix 214
FROM= option, EXPAND statement 206, 209–212
FRS language prefix 214
FUNCTION statement 52–55
functions

calculating intervals 145–149
creating date, time 140–145
current date, time 137–138
extraction 138–140

G
graphing dates 194–200
Gregorian year

JULIANw. informat 65
PDJULG4. informat 66
PDJULGw. informat 22
PDJULIw. format 22
PDJULIw. informat 66

H
%H date directive 49, 223
HDATEw. format 226
HEBDATEw. format 226
Hebrew date formats 226
HHMMSSw. informat 73–75
HHMMw.d format 38, 233
HMS() function 143
HOLIDAY() function 148–149, 170
HOUR() function 140
HOUR interval 151

INTNX() function 158
shift point 161

Index 257

HOURw.d format 38–39, 233
HUN language prefix 214

I
%I date directive 49, 223
ID statement, EXPAND procedure 204–205
imputed dates 52–55
INFORMAT statement 59–61, 59–63
informats

about 59
ANYDT variants 81–86
"EUR" 213–214
for dates 64–73
for datetime 78–81
for datetime values 108–111
for time 73–78
Hebrew 226
INFORMAT statement 59–63
ISO 8601 103–111
ISO 8601 duration and interval 121–123
Japanese and Taiwanese 226–227
"NLS" 220
using wrong 62–63

INPUT() function
functionality 3
informats and 59, 61–62
troubleshooting 240, 241

INPUT statement 60–61
INPUTC() function 61–62
INPUTN() function 61–62
INTCINDEX() function 183
INTCK() function 159, 161–162

calculating intervals 167–168
WORKINGDAYS interval 175–176

INTCYCLE() function 183
internal representation, date and time 2
interval multipliers

graphs and 194–200
shifting intervals and 162–163

intervals
basics of 149–151
creating 169–176
custom 162–163
INTCK() function 151–156
interval functions 176–181

INTNX() function 156–159
ISO 8601 116–136
measuring 167–168
number of days between dates 145–149
number of years between dates 146–147
retail calendar 181–183
shifting 159–168

INTFIT() function 177–178
INTFMT() function 178–179
INTGET() function 179–180
INTINDEX() function 183
INTNX() function 151, 156–160, 167–168
INTSEAS() function 183
INTSHIFT() function 180–181
INTTEST() function 181
ISO 8601 91–92

durations and intervals 116–136
formats 92–103
informats 103–111

ITA language prefix 214

J
%j date directive 49, 223
Japanese date formats 226
Japanese date informats 226–227
JDATEMYDw. informat 226–227
Jewish calendar 226
JNENGOW. informat 227
Joshi, Bhairav 2
JULDATE() function 138
JULDATE7() function 138
JULDAYw. format 17–18, 233
Julian date

JULDATE() function 138
JULDATE7() function 138
JULDAYw. format 17–18
JULIANw. format 18
JULIANw. informat 65
PDGJULI1. format 23
PDJULG. informat 66
PDJULG4. informat 66
PDJULGw. format 22
PDJULIw. format 22–23
PDJULIw. informat 66

JULIANw. format 231

258 Index

JULIANw. informat 65
ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86

justification
date formats 13–14
PDJULIw. format and 22

K
Kanji representation 227

L
%LEFT() macro function 192
LENGTH statement 5–6
%LET statement 191, 192
LISTING destination 13–14
literal values

quotation marks and 3
YEARCUTOFF= system option and 57–59

LOCALE= system option 111, 214–215

M
%m date directive 49, 223
%M date directive 49
MAC language prefix 214
macro functions, date and time in 186–189
macro variables

CALL SYMPUT() function and 192–193
dates and 185–193
quotation marks and 186

MAKEDATE() function 52–55
MDY() function 143, 247
MDYAMPMw. format 46, 233
MDYAMPMw.d informat 79–80
METHOD= option, CONVERT statement

(EXPAND) 206
Microsoft Excel 227–228
MINGUOw. format 226
MINGUOw. informat 227
MINUTE() function 140
MINUTE interval 151

INTNX() function 158
shift point 161

missing values

DATESTYLE= system option 81
EXPAND procedure and 205–206
symbol for 50
wrong informats and 62–63

MMDDYw. format 18
MMDDYYxw. format and 19
quick reference 231
YYMMDDw. format and 30–31

MMDDYY10. format 11–13, 18
MMDDYYB. format 19, 231
MMDDYYC. format 19, 231
MMDDYYD. format 231
MMDDYYN. format 231
MMDDYYP. format 19, 231
MMDDYYS. format 231
MMDDYYw. informat 65–66

ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
DATESTYLE= system option and 81–82

MMDDYYxw. format 19
MMYYxw. format and 20
YYMMxw. format and 30
YYQxw. format and 33–34

MMSSw.d format 39, 233
MMYYC. format 20, 231
MMYYD. format 20, 231
MMYYN. format 20, 232
MMYYP. format 20, 232
MMYYS. format 232
MMYYw. format 19–20, 231
MMYYxw. format 20
MONNAMEw. format 14, 21

international format for 213
quick reference 232

MONTH() function 138
MONTH interval 150

example 202–203
INTCK() function 152
INTNX() function 158
shift point 160, 165–166

MONTHw. format 21, 232
MONYYw. format 21

DTMONYYw. format and 44
international format for 213
quick reference 232

Index 259

MONYYw. informat 66
ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86
explanation of 66

MSEC8. informat 76

N
$N8601BAw.d format 119
$N8601Bw. informat 121–122
$N8601Bw.d format 118
$N8601EAw. format 120
$N8601EHw. format 120
$N8601Ew. format 119
$N8601EXw. format 121
$N8601Rw. informat 122–123
National Language Support (NLS) 111, 212
NENGOw. format 227
NLD language prefix 214
NLDATE. format 235
NLDATE() function 221–225
NLDATEL. format 215, 235
NLDATEM. format 235
NLDATEMD. format 215, 235
NLDATEMDL. format 215, 235
NLDATEMDM. format 216, 235
NLDATEMDS. format 216, 235
NLDATEMDT. format 217
NLDATEML. format 217
NLDATEMN. format 216, 235
NLDATES. format 216, 235
NLDATEw. format 215
NLDATEW. format 235
NLDATEWN. format 216, 235
NLDATEWw. format 216
NLDATEYM. format 216, 235
NLDATEYML. format 216, 235
NLDATEYMM. format 216, 235
NLDATEYMS. format 216, 235
NLDATEYQ. format 216, 235
NLDATEYQL. format 217, 236
NLDATEYQM. format 217, 236
NLDATEYQS. format 217, 236
NLDATEYR. format 217, 236
NLDATEYW. format 217, 236

NLDATM() function 221–225
NLDATMAPw. format 217
NLDATMw. format 215, 217
NLS (National Language Support) 111, 212
"NLS" formats 214–220
"NLS" informats 220
NLTIME. format 236
NLTIME() function 221–225
NLTIMEAP. format 236
NODATE system option 7
NOR language prefix 214
numeric variables

date, time as 3–5
functions from 140–145
INPUT() function and 61–62
LENGTH statement and 5–6

NWKDOM() function 144, 170

O
%o date directive 223
OBSERVED= option, CONVERT statement

(EXPAND) 206–212
OBSERVED=AVERAGE option, CONVERT

statement (EXPAND) 207–212
OBSERVED=BEGINNING option, CONVERT

statement (EXPAND) 207–212
OBSERVED=DERIVATIVE option, CONVERT

statement (EXPAND) 207–212
OBSERVED=END option, CONVERT statement

(EXPAND) 207–212
OBSERVED=MIDDLE option, CONVERT

statement (EXPAND) 207–212
OBSERVED=TOTAL option, CONVERT

statement (EXPAND) 207–212
ODS destinations 13–14, 214–215
OPTIONS INTERVALDS= statement 169–176
OPTIONS statement

DATE/NODATE system option 7
LOCALE= system option 212

OS TIME macro 76, 78
OUTLIB= option 52–55

260 Index

P
%p date directive 49, 223
PDF destination 14
PDJULG. informat 66
PDJULG4. informat 66
PDJULGw. format 22
PDJULI1. format 23
PDJULIw. format 22–23
PDJULIw. informat 23, 66
PDTIME4. informat 76
period (.)

format syntax and 16
in informats 59
missing values and 50

PICTURE statement, FORMAT procedure 47–
52, 246

POL language prefix 214
PRINT procedure 11–12
PROC step 11
PTG language prefix 214
PUT() function 14, 17, 28, 55–56, 61–62, 221,

244–245
PUTN() function 14, 17, 28, 55–56

Q
%QSYSFUNC() macro function 187
QTR() function 138
QTR interval 150

INTNX() function 158
shift point 160

QTRRw. format 23–24, 232
QTRw. format 23, 232

R
&RAWDATE macro variable 187
retail calendar intervals 181–183
RMFDUR4. informat 76
RMFSTAMP8. informat 80
RTF destination 14
RUS language prefix 214

S
%S date directive 49, 223

sampling frequency
converting to higher 202–203
converting to lower 203–205
OBSERVED= option and 207–212

SASDATEFMT= system option 228–229
SAS/ETS 183, 200
SAS/GRAPH 194–200
seasonality functions 183
SECOND() function 140
SECOND interval 151

INTNX() function 158
shift point 161

SEMIMONTH interval 150
INTNX() function 158
shift point 160

SEMIYEAR interval 150
INTNX() function 158
shift point 160

shift operators, intervals and 159–162
SLO language prefix 214
SMFSTAMP8. informat 80
SMRSTAMP8. informat 80
SQL procedure 193
STIMER system option 76
STIMERw. informat 76–77
STRIP() function 14
SVE language prefix 214
&SYSDATE automatic macro variable 185, 187
&SYSDATE9 automatic macro variable 186, 187
&SYSDAY automatic macro variable 186, 187
%SYSFUNC() macro function 187–189
&SYSTIME automatic macro variable 186, 187

T
Taiwanese date formats 226
Taiwanese date informats 226–227
TENDAY interval 150

INTNX() function 158
shift point 160

time
automatic macro variables 186–189
CALL SYMPUT() function and 192–193
as constants 3–5
counters for 2
custom formats 47–55

Index 261

default justification 13
Excel and 227–228
external representation of 2–3
formats for 37–41, 92–103
informats for 73–78, 81–82, 103–111
internal representation of 2
international formats and informats 212–220
interval definitions 150–151
interval functions 151–159
quick reference 233, 235–237
shifting intervals 159–168
%SYSFUNC() macro function and 187–189
width specification 5–6, 37

TIME() function 138
time zone functions 111–115
TIMEAMPM11. format 11–13
TIMEAMPMw.d format 40

clock values and 37
quick reference 233

TIMEPART() function 41–42, 140
troubleshooting 242–243

TIMEw. informat 77–78
ANDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86

TIMEw.d format 39–40
HHMMw.d format and 38
quick reference 233

TIMEZONE= option 93, 111–112
TITLE statement 186
titles, date in 186–187
TO= option, EXPAND procedure 206, 209–212
TODAY() function 137
TODSTAMP8. informat 78
TODw.d format 40–41

clock values in 37
quick reference 233

troubleshooting dates 239–251
TU4. informat 78
two-digit year

extraction functions and 138–140
YEARCUTOFF= system options and 57–59,

79
TZONEDSTNAME() function 114
TZONEDSTOFF() function 114

TZONEID() function 112
TZONENAME() function 112–113
TZONEOFF() function 113, 246
TZONES2U() function 113
TZONESTTNAME() function 114–115
TZONESTTOFF() function 115
TZONEU2S() function 115, 246

U
U algorithm 25, 35, 69, 70, 139
%u date directive 223
%U date directive 49, 223

V
V algorithm 26–27, 36–37, 69–71, 139, 223
%V date directive 223
VALUE statement, FORMAT procedure 47–48
variables

See character variables; macro variables;
numeric variables

W
W algorithm 27, 37, 69–72, 139, 223
%w date directive 49, 223
%W date directive 223
WEEK() function 139
WEEK informats 69–70
WEEK interval 150

INTCK() function 152
INTNX() function 157, 159
shift point 160, 161–162, 163–164

WEEKDATEw. format 11–12, 24
quick reference 232
WEEKDATXw. format and 24–25

WEEKDATXw. format 24–25
DTWKDATXw. format and 445
international format for 213–214
quick reference 232

WEEKDAY() function 139
WEEKDAY interval 150

INTNX() function 157
shift point 160

WEEKDAYw. format 25
international format for 213

262 Index

quick reference 232
WEEKUw. format 25–26

quick reference 232
WEEKUw. informat 70–71
WEEKV interval 182–183
WEEKVw. format 26–27

quick reference 232
WEEKWw. format and 27

WEEKVw. informat 71–72
WEEKWw. format 27, 232
WEEKWw. informat 72–73
WHERE clause, SQL procedure 228
width specification

for date formats 5–6, 13–14
for datetime formats 5–6, 37, 41–42
for time formats 5–6, 37
formats and 13–14
informats and 59

WORDDATEw. format 28
FORMAT statement and 50
quick reference 232

WORDDATXw. format 28–29, 249
international format for 213
quick reference 232

WORKINGDAYS interval 175–176

Y
%y date directive 49, 223
%Y date directive 49, 51, 223
Y2K problem 185
YEAR() function 139
YEAR interval 150

INTCK() function 152
INTNX() function 158
shift point 160, 161–162, 165–166

YEAR10. interval 166–167
YEARCUTOFF= system option

DATJUL() function and 140–141
extraction functions and 138–140
Japanese/Taiwanese date informats 226–227
MDY() function 143
PDJULGw. format and 22
PDJULI. format 23
two-digit year and 57–59, 79
YYQ() function 144–145

YEARV interval 182
YEARw. format 29

DTYEARw. format and 45
quick reference 232

YMDDTTMw.d informat 80–81
YRDIF() function 146–147, 155–159
YYMM. format 232
YYMMC. format 30, 232
YYMMD. format 30, 232
YYMMDDB. format 32, 232
YYMMDDC. format 32, 232
YYMMDDD. format 32, 232
YYMMDDN. format 32, 232
YYMMDDP. format 32, 232
YYMMDDS. format 232
YYMMDDw. format 30–31

DATESTYLE= system option 81–82
quick reference 232

YYMMDDw. informat 66–67
ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86
DATESTYLE= system option and 81–82

YYMMDDxw. format 31–32
YYMMxw. format and 30
YYQxw. format and 33–34

YYMMN. format 30, 232
YYMMNw. informat 67
YYMMP. format 30, 232
YYMMS. format 232
YYMMw. format 29
YYMMxw. format 30
YYMONw. format 32, 232
YYQ() function 144–145
YYQC. format 33

DDTYQCw. format and 46
quick reference 233

YYQD. format 34, 233
YYQN. format 33, 233
YYQP. format 34, 233
YYQRC. format 35, 233
YYQRD. format 35, 233
YYQRN. format 35, 233
YYQRP. format 35, 233
YYQRS. format 233

Index 263

YYQRw. format 34, 233
YYQRxw. format 34–35
YYQS. format 233
YYQw. format 32–33, 233
YYQw. informat 67–68

ANYDTDTEw. informat and 82
ANYDTDTMw. informat and 84
ANYDTTMEw. informat and 85–86

YYQxw. format 33–34
YYWEEKU. format 233
YYWEEKUw. format 35–36
YYWEEKV. format 233
YYWEEKVw. format 36
YYWEEKWw. format 37, 233

264 Index

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand
and product names are trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0413

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	About This Book
	Purpose
	Is This Book for You?
	What’s New in This Edition
	Scope of This Book
	About the Examples
	Software Used to Develop the Book's Content
	Example Code and Data
	Output and Graphics Used in This Book

	Additional Help
	Meet the Author
	Keep in Touch
	Contact the Author through SAS Press
	Purchase SAS Books
	Subscribe to the SAS Training and Book Report
	Publish with SAS

	Acknowlegements
	Chapter 1
	1.1 How Does It Work? (January 1, 1960, and Midnight as Zero)
	1.2 Internal Representation
	1.3 External Representation (Basic FORMAT Concepts)
	1.4 Date and Time as Numeric Constants in SAS
	1.5 Length and Numeric Requirements for Date, Time, and Datetime
	1.6 General SAS Options for Dates

	Chapter 2
	2.1 How Do I Use a Format?
	2.2 How Many Built-In Formats Are There for Dates and Times?
	2.3 Date Formats, Justification, and ODS
	2.4 Detailed Discussion of Each Format
	2.4.1 Date Formats
	DATEw.
	DAYw.
	DDMMYYw.
	DDMMYYxw.
	DOWNAMEw.
	JULDAYw.
	JULIANw.
	MMDDYYw.
	MMDDYYxw.
	MMYYw.
	MMYYxw.
	MONNAMEw.
	MONTHw.
	MONYYw.
	PDJULGw.
	PDJULIw.
	QTRw.
	QTRRw.
	WEEKDATEw.
	WEEKDATXw.
	WEEKDAYw.
	WEEKUw.
	WEEKVw.
	WEEKWw.
	WORDDATEw.
	WORDDATXw.
	YEARw.
	YYMMw.
	YYMMxw.
	YYMMDDw.
	YYMMDDxw.
	YYMONw.
	YYQw.
	YYQxw.
	YYQRw.
	YYQRxw.
	YYWEEKUw.
	YYWEEKVw.
	YYWEEKWw.

	2.4.2 Time Formats
	HHMMw.d
	HOURw.d
	MMSSw.d
	TIMEw.d
	TIMEAMPMw.d
	TODw.d

	2.4.3 Datetime Formats
	DATEAMPMw.d
	DATETIMEw.d
	DTDATEw.
	DTMONYYw.
	DTWKDATXw.
	DTYEARw.
	DTYYQCw.
	MDYAMPMw.

	2.5 Creating Custom Date Formats Using the VALUE Statement of PROC FORMAT
	Example 2.6: Creating Your Own Date Format with the VALUE Statement in PROC FORMAT
	Example 2.7: Creating Your Own Time Format with the VALUE Statement in PROC FORMAT

	2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC FORMAT
	Example 2.9: Using Date Directives with Text
	SAS Code
	The Result

	2.7 Creating Custom Formats Using PROC FCMP for Processing
	Example 2.10: Using PROC FCMP to Impute Dates with Annotation for Imputed Dates
	PROC FCMP Code to Create the MAKEDATE() Function for Imputation
	Using the MAKEDATE() Function as a Custom Format
	The Output

	2.8 The PUT() Function and Formats

	Chapter 3
	3.1 Avoiding the Two-Digit Year Trap
	Example 3.1: Effects of the YEARCUTOFF= System Option on Date and Datetime Literals

	3.2 Using Informats
	3.3 The INFORMAT Statement
	3.3.1 Using Informats with the INPUT Statement
	Example 3.2: INPUT Statement

	3.3.2 Informats with the INPUT() Function
	3.3.3 When the Informat Does Not Match the Data Being Read

	3.4 Listing and Discussion of Informats
	3.4.1 Date Informats
	DATEw.
	DDMMYYw.
	JULIANw.
	MMDDYYw.
	MONYYw.
	PDJULG4.
	PDJULIw.
	YYMMDDw.
	YYMMNw.
	YYQw.
	YYMMDDw.
	YYMMNw.
	YYQw.
	The WEEK Informats
	WEEKUw.
	WEEKVw.
	WEEKWw.

	3.4.2 Time Informats
	HHMMSSw.
	MSEC8.
	PDTIME4.
	RMFDUR4.
	STIMERw.
	TIMEw.
	TODSTAMP8.
	TU4.

	3.4.3 Datetime Informats
	B8601CIw.d
	B8601DJw.d
	DATETIMEw.d
	MDYAMPMw.d
	RMFSTAMP8.
	SHRSTAMP8.
	SMFSTAMP8.
	YMDDTTMw.d

	3.4.4 The "ANYDATE" Series of Informats
	ANYDTDTEw.
	ANYDTDTMw.
	ANYDTTMEw.

	3.4.5 So Why Not Just Use the "ANYDATE" Series of Informats?

	Chapter 4
	4.1 What Is ISO 8601?
	4.2 ISO 8601 Formats
	4.2.1 ISO Date Formats
	B8601DAw.
	E8601DAw.

	4.2.2 ISO Time Formats
	B8601TMw.d
	E8601TMw.d
	B8601TXw.d
	E8601TXw.d
	B8601LZw.d
	E8601LZw.d
	B8601TZw.d
	E8601TZw.d

	4.2.3 ISO Datetime Formats
	B8601DNw.
	E8601DNw.
	B8601DTw.d
	E8601DTw.d
	B8601DXw.d
	E8601DXw.d
	B8601DZw.d
	E8601DZw.d

	4.3 ISO 8601 Informats
	4.3.1 ISO Date Informats
	B8601DAw.
	E8601DAw.

	4.3.2 ISO Time Informats
	B8601TMw.d
	E8601TMw.d
	B8601TZw.d
	E8601TZw.d
	E8601LZw.d

	4.3.3 ISO Datetime Informats
	B8601CIw.d
	B8601DJw.d
	B8601DTw.d
	E8601DTw.d
	B8601DZw.d
	E8601DZw.d

	4.4 Time Zone Functions
	4.4.1 Introduction
	4.4.2 The TIMEZONE= Option
	4.4.3 List of Time Zone Functions
	TZONEID(time-zone-id)
	TZONENAME(time-zone-id,datetime-value)
	TZONEOFF(time-zone-id,datetime-value)
	TZONES2U(datetime-value, time-zone-id)
	TZONEDSTNAME(time-zone-id)
	TZONEDSTOFF(time-zone-id)
	TZONESTTNAME(time-zone-id)
	TZONESTTOFF(time-zone-id)
	TZONEU2S(UTC-datetime-value, time-zone-id)

	4.5 ISO 8601 Durations and Intervals
	4.5.1 ISO Duration and Interval Representations
	ISO Duration Representations
	ISO Interval Representations

	4.5.2 ISO 8601 Duration and Interval Formats
	$N8601Bw.d
	$N8601BAw.d
	$N8601Ew.
	$N8601EAw.
	$N8601EHw.
	$N8601EXw.

	4.5.3 ISO 8601 Duration and Interval Informats
	$N8601Bw.
	$N8601Ew.
	Reading the ISO 8601 Basic Notation
	Reading the ISO 8601 Extended Notation

	4.5.4 CALL IS8601_CONVERT
	Example 4.3: How Long Is… in SAS time?
	Example 4.4: Converting Two Datetimes to an ISO Duration
	Example 4.5: Converting Two Datetimes to an ISO Interval
	Example 4.6: Converting a Datetime and a Duration into an ISO Interval
	Example 4.7: Calculating the End of an Interval from a Datetime and a Duration
	Example 4.8: CALL IS8601_CONVERT: ISO Datetimes, Durations, and Intervals from Start to End and Back Again with One Routine

	4.6 Conclusion

	Chapter 5
	5.1 Current Date and Time Functions
	5.2 Extracting Pieces from SAS Date, Time, and Datetime Values
	5.3 Creating Dates, Times, and Datetimes from Numbers or Other Information
	5.3.1 Introduction
	5.3.2 List of Functions and Their Descriptions
	DATEJUL(Julian-date);
	DHMS(date,hour,minute,second);
	Example 5.1: Using DHMS() When You Already Have a SAS Date and Time
	The Result

	HMS(hour,minute,second);
	MDY(month,day,year);
	NWKDOM(n, weekday, month, year);
	YYQ(year,qtr);

	5.4 Calculating Elapsed Time, and the HOLIDAY() Function
	5.4.1 Calculating Elapsed Time with DATDIF() and YRDIF()
	DATDIF(start,end,basis);
	YRDIF(start,end,basis);
	(U.S. and Canada Only) HOLIDAY(holiday,year);

	5.5 The Basics of SAS Intervals
	5.5.1 The Interval Calculation Functions: INTCK() and INTNX()
	INTCK(interval, start-of-period,end-of-period,method);
	Example 5.2: How the INTCK() Function Counts by Default (method Is DISCRETE)
	Example 5.3: How the INTCK() Function Counts When method Is CONTINUOUS
	Example 5.4: How the INTCK() Function Counts When method Is CONTINUOUS
	Example 5.5: How the INTCK() Function Counts When method Is CONTINUOUS
	Example 5.6: How the INTCK() Function Counts
	Example 5.7: The INTCK Function: The Basics
	Example 5.8: The INTCK Function: Counting Backward
	Example 5.9: The INTCK Function: Counting Weekdays
	Example 5.10: The YRDIF() Function as Opposed to Mathematical Estimation and INTCK()

	INTNX(interval,start-from,number-of-increments,alignment);
	Example 5.11: The INTNX() Function with Default Alignment
	Example 5.12: The INTNX() Function: Using Non-Integer Increments
	Example 5.13: Counting Backward with the INTNX() Function
	Example 5.14: The INTNX() Function with Alignment Arguments

	5.6 Modifying SAS Intervals
	Example 5.15: Moving the Start of a Year Interval from January 1 to July 1
	Example 5.16: Using an Interval Multiplier to Create a Custom Interval
	Example 5.17: WEEK2 Intervals from January 1, 2014
	Example 5.18: Using Both an Interval Multiplier and Shift Index to Create a Custom Interval
	Example 5.19: Shifting a Multiplied Interval
	Example 5.20: The Interaction between the Starting Date and the Interval Starting Point: The "Working Shift" Interval

	5.7 Creating Your Own SAS Intervals
	Example 5.21: Academic Calendar: Creating a SEMESTER Interval
	Example 5.22: Using a User-Defined Interval with INTCK
	Example 5.23: Customized Company Working Days
	Example 5.24: Out-of-Interval Calculation Using INTCK() and "WORKINGDAYS" Custom Interval
	Example 5.25: Out-of-Interval Calculation with INTNX() and "WORKINGDAYS" Custom Interval

	5.8 Interval Functions about Intervals
	5.8.1 INTFIT(argument-1,argument-2,type)
	5.8.2 INTFMT('interval','size')
	5.8.3 INTGET(argument1,argument2,argument3)
	5.8.4 INTSHIFT('interval')
	5.8.5 INTTEST('interval')

	5.9 Retail Calendar Intervals and Seasonality
	5.9.1 Retail Calendar Intervals
	5.9.2 Seasonality Functions
	INTCINDEX('interval',argument)
	INTCYCLE('interval',seasonality)
	INTINDEX('interval',argument,seasonality)
	INTSEAS('interval',seasonality)

	Chapter 6
	6.1 Macro Variables and Dates
	6.1.1 Automatic Macro Variables
	&SYSDATE
	&SYSDATE9
	&SYSDAY
	&SYSTIME

	6.1.2 Putting Dates into Titles
	Example 6.1: Using Automatic Macro Variables in a Title

	6.1.3 Using %SYSFUNC() to Create Dates, Times, and Datetimes in Macro Variables
	Example 6.2: Date Functions with %SYSFUNC()
	Example 6.3: Putting a Date Value into an Output File Name
	Example 6.4: Naming Worksheets with the Date

	6.1.4 Using Dates in Macros
	Method 1: Using CALL SYMPUT
	Method 2: Using PROC SQL

	6.2 Graphing Dates
	Johnny's Savings Account
	Example 6.5: SAS/GRAPH
	Example 6.6: ODS Graphics

	6.3 The Basics of PROC EXPAND
	6.3.1 Capabilities of PROC EXPAND
	PROC EXPAND Sample Data

	6.3.2 Using PROC EXPAND to Convert to a Higher Frequency
	Example 6.7: Converting to a Higher Sampling Frequency

	6.3.3 Using PROC EXPAND to Convert to a Lower Frequency
	Example 6.8: Converting to a Lower Frequency
	Example 6.9: Performing Aggregation without Interpolation
	Example 6.10: The Importance of the ID Statement in PROC EXPAND

	6.3.4 Using PROC EXPAND to Interpolate Missing Values
	Example 6.11: Interpolating Missing Values

	6.3.5 The OBSERVED= Option for the CONVERT Statement in PROC EXPAND
	Example 6.12: Effect of Different Values for OBSERVED= Option on Increased Frequency
	Example 6.13: Effect of Different Values for OBSERVED= Option on Lowered Frequency

	6.4 International Date, Time, and Datetime Formats and Informats
	6.4.1 "EUR" Formats and Informats
	6.4.2 NLS Formats

	6.5 NLS Date, Time, and Datetime Conversion Functions
	Example 6.14: Creating a Character Value Using a Custom Picture Format and the PUT() Function

	6.6 Date Formats and Informats for Other Calendars
	6.6.1 Hebrew Date Formats
	HDATEw.
	HEBDATEw.

	6.6.2 Japanese and Taiwanese Date Formats
	MINGUOw.
	NENGOw.

	6.6.3 Japanese and Taiwanese Date Informats
	JDATEMYDw.
	JNENGOw.
	MINGUOw.

	6.7 Other Software and Their Dates (Excel, Oracle, DB2)
	Example 6.15: Writing Datetime Values for DB2 Using a Picture Format
	6.7.1 The SASDATEFMT= System Option
	OPTIONS SASDATEFMT=(DBMS-date-column1 = SAS date-format1, DBMS-date-column2 = SAS date-format2,… DBMS-date-columnn = SAS date-formatn);

	6.8 Conclusion

	Appendix A
	Appendix B
	Appendix C
	Index
	Symbols and Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

