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Preface to the Second Edition

In 1989, the American Institute of Steel Construction published the ninth edition
of the Manual of Steel Construction which contains the ‘‘Specification for
Structural Steel Buildings—Allowable Stress Design (ASD) and Plastic De-
sign.”” This current specification is completely revised in format and partly in
content compared to the last one, which was published in 1978. In addition to
the new specification, the ninth edition of the Manual contains completely new
and revised design aids.

The second edition of this book is geared to the efficient use of the afore-
mentioned manual. To that effect, all of the formulas, tables, and explanatory
material are specifically referenced to the appropriate parts of the AISCM. Ta-
bles and figures from the Manual, as well as some material from the Standard
Specifications for Highway Bridges, published by the American Association of
State Highway and Transportation Officials (AASHTO), and from the Design
of Welded Structures, published by the James F. Lincoln Arc Welding Foun-
dation, have been reproduced here with the permission of these organizations
for the convenience of the reader.

The revisions which led to the second edition of this book were performed
by the first two authors, who are both experienced educators and practitioners.

Two major new topics can be found in Appendices A and B: design for re-
peated stresses (fatigue) and highway steel bridge design, respectively. Within
the body of the text, the following additions have been included: composite
design with formed metal deck; single-plate and tee framing shear connections;
and beam bearing plates. The remainder of the topics have been modified, ad-
justed, and in some cases expanded to satisfy the requirements given in the
ninth edition of the Manual. A solutions manual for all of the problems to be
solved at the end of each chapter is available to the instructor upon adoption of
the text for classroom use.

A one quarter course could include all of the material in Chapters 1 through
6 with the exception of Sects. 3.2 through 3.4. Chapters 7 through 10, as well

Xi



xii PREFACE TO THE SECOND EDITION

as the sections omitted during the first quarter can be covered during a second
quarter course. Any desired order of presentation can be used for the material
in the second quarter course since these chapters are totally independent of each
other. Similarly, Appendices A or B can be substituted in whole or in part for
one or more of Chapters 7 through 10.

A one semester course could include all of the material in Chapters 1 through
6 as well as Chapter 9 or 10. As was noted above, any parts of Chapters 7
through 10, Appendix A, or Appendix B can be substituted as desired.

The authors would like to thank Mr. Andre Witschi, S.E., P.E. who is Chief
Structural Engineer at Triton Consulting Engineers for his help in reviewing the
material in the Appendices. Thanks are also due to Mr. Tom Parrott and all of
the secretarial staff of the School of Architecture at the University of Illinois at
Chicago for all of their generous assistance. Finally, we would like to thank
our families for their patience and understanding.

DAvVID A. FANELLA
RENE AMON
Chicago, Illinois



Preface to the First Edition

This is an introductory book on the design of steel structures. Its main objective
is to set forth steel design procedures in a simple and straightforward manner.
We chose a format such that very little text is necessary to explain the various
points and criteria used in steel design, and we have limited theory to that
necessary for understanding and applying code provisions. This book has a
twofold aim: it is directed to the practicing steel designer, whether architect or
engineer, and to the college student studying steel design.

The practicing structural engineer or architect who designs steel structures
will find this book valuable for its format of centralized design requirements.
It is also useful for the veteran engineer who desires to easily note all the changes
from the seventh edition of the AISC Steel Design Manual and the logic behind
the revisions. Yet, the usefulness as a textbook is proven by field-testing. This
was done by using the appropriate chapters as texts in the following courses
offered by the College of Architecture of the University of Illinois at Chicago
Circle: Steel Design; Additional Topics in Structures; and Intermediate Struc-
tural Design (first-year graduate). The text was also field-tested with profes-
sionals by using the entire book, less Chapter 8, as text for the steel part of the
Review for the State of Illinois Structural Engineers’ Licence Examination, of-
fered by the University of Illinois at Chicago Circle. The text, containing per-
tinent discussion of the numerous examples, was effectively combined with sup-
plemental theory in classroom lectures to convey steel design requirements.
Unsolved problems follow each chapter to strengthen the skill of the student.

The American Institute of Steel Construction (AISC) is the authority that
codifies steel construction as applied to buildings. Its specifications are used by
most governing bodies, and, therefore, the material presented here has been
written with the AISC specifications in mind. We assumed—indeed, it is nec-
essary—that the user of this book have an eighth edition of the AISC Manual
of Steel Construction. Our book complements, but does not replace, the ideas

xiii



xiv PREFACE TO THE FIRST EDITION

presented in the Manual. Various tables from the Manual have been reprinted
here, with permission, for the convenience of the user.

We assume that the user is familiar with methods of structural analysis. It is
the responsibility of the designer to assure that proper loadings are used and
proper details employed to implement the assumed behavior of the structure.

In this book, the chapters follow a sequence best suited for a person familiar
with steel design. For classroom use, the book has been arranged for a two-
quarter curriculum as follows:

First quarter—Chapters 1 through 6. Section 3.2 and Examples 3.7 through
3.11 should be omitted and left for discussion in the second quarter. Fur-
thermore, examples in Section 3.1 could be merely introduced initially and
discussed fully after Chapters 5 and 6 have been covered. This amount of
material, if properly covered, will enable the student to understand the
fundamentals of steel design and to comprehensively design simple steel
structures.

Second quarter—Chapters 7 through 10 and Section 3.2. This material is
complementary to steel design. An instructor can follow any desired order
because these chapters are totally independent of each other.

This book can also be used for a one-semester course in steel design by cov-
ering Chapters 1 through 6, as discussed above for First quarter, and Chapters
9 and 10. An instructor may also want to include some material from Chapter
7.

In conclusion, we would like to thank all our friends, families, and colleagues
who provided help and understanding during the writing of this manuscript.
Without their help and cooperation, we might never have made this book a
reality.

RENE AMON
BRUCE KNOBLOCH
ATANU MAZUMDER
Chicago, lllinois



Symbols and Abbreviations
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A Cross-sectional area, in.
Gross area of an axially loaded compression member, in.?
A, Nominal body area of a fastener, in.?
A, Actual area of effective concrete flange in composite design, in.?
A, Concrete transformed area in compression, in.?

-

A, Effective net area of an axially loaded tension member, in.?
Af Area of compression flange, in.?

Ap, Effective tension flange area, in.’

A, Gross beam flange area, in.?

Ap, Net beam flange area, in.?

A, Gross area of member, in.?

A, Net area of an axially loaded tension member, in.?

A, Area of steel beam in composite design, in.’

A, Cross-sectional area of a stiffener or pair of stiffeners, in.>

A, Net tension area, in.?

A, Net shear area, in.2

A, Area of girder web, in.?

A, Area of steel bearing concentrically on a concrete support, in.>
A, Maximum area of the portion of the supporting surface that is ge-

ometrically similar to and concentric with the loaded area, in.?

AASHTO American Association of State Highway and Transportation Offi-
cials

AISCM American Institute of Steel Construction Manual of Steel Construc-
tion, Allowable Stress Design

AISCS American Institute of Steel Construction Specifications

B Allowable load per bolt, kips

Width of column base plate
XV
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SYMBOLS AND ABBREVIATIONS

Load per bolt, including prying action, kips

Area of column divided by its appropriate section modulus

Coefficient for determining allowable loads in kips for eccentrically
loaded connections

Coeflicient used in Table 3 of Numerical Values

Constant used in calculating moment for end-plate design: 1.13 for
36-ksi and 1.11 for 50-ksi steel

Bending coefficient dependent upon moment gradient

2
M, M,

=175+105{— ) +03(—
<M2> <M2>

Coefficient used in calculating moment for end-plate design

= Vbs/b,

Column slenderness ratio separating elastic and inelastic buckling

Coefficient applied to bending term in interaction equation for pris-
matic members and dependent upon column curvature caused by
applied moments

Ratio of ‘‘critical’’ web stress, according to the linear buckling the-
ory, to the shear yield stress of web material

Coefficient for web tear-out (block shear)

Increment used in computing minimum spacing of oversized and
slotted holes

Coefficient for web tear-out (block shear)

Increment used in computing minimum edge distance for oversized
and slotted holes

Factor depending upon type of transverse stiffeners

Outside diameter of tubular member, in.

Number of -inches in weld size

Clear distance between flanges of a built-up bridge section, in.

Dead load

Subscript indicating dead load

Modulus of elasticity of steel (29,000 ksi)

Modulus of elasticity of concrete, ksi

Maximum induced stress in the bottom flange of a bridge stringer
due to wind loading when the top flange is continuously sup-
ported, psi

Axial compressive stress permitted in a prismatic member in the
absence of bending moment, ksi

Bending stress permitted in a prismatic member in the absence of
axial force, ksi

Allowable bending stress in compression flange of plate girders as
reduced for hybrid girders or because of large web depth-to-
thickness ratio, ksi
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SYMBOLS AND ABBREVIATIONS xvii

Stress in the bottom flange of a bridge stringer due to wind loading,
psi

Euler stress for a prismatic member divided by factor of safety, ksi

Allowable bearing stress, ksi

Allowable axial tensile stress, ksi

Specified minimum tensile strength of the type of steel or fastener
being used, ksi

Allowable shear stress, ksi

Weld capacity, kips /in.

Specified minimum yield stress of the type of steel being used, ksi.
As used in the Manual, ‘‘yield stress’” denotes either the speci-
fied minimum yield point (for those steels that have a yield point)
or specified minimum yield strength (for those steels that do not
have a yield point)

The theoretical maximum yield stress (ksi) based on the width-
thickness ratio of one-half the unstiffened compression flange,
beyond which a particular shape is not ‘‘compact.”’ See AISC
Specification Sect. B5.1.

- [bf6/521j2

The theoretical maximum yield stress (ksi) based on the depth-
thickness ratio of the web below which a particular shape may
be considered ‘‘compact’’ for any condition of combined bending
and axial stresses. See AISC Specification Sect. B5.1.

_ [257 T

~ ld/,

Specified minimum column yield stress, ksi

Specified minimum yield stress of flange, ksi

Specified minimum stiffener yield stress, ksi

Specified minimum yield stress of beam web, ksi

Shear modulus of elasticity of steel (11,200 ksi)

Force in termination region of cover plate, kips

Length of a stud shear connector after welding, in.

Moment of inertia of a section, in.*

Impact factor

Subscript indicating impact

Effective moment of inertia of composite sections for deflection
computations, in.*

Moment of inertia of steel beam in composite construction, in.*

Moment of inertia of transformed composite section, in.*

Moment of inertia of a section about the X — X axis, in.*

Moment of inertia of a section about the ¥ — Y axis, in.*
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J

K

LL

n

<

range

n

22 ZXXRX

<

=z

Torsional constant of a cross-section, in.*

Polar moment of inertia of a bolt or weld group, in.*

Effective length factor for a prismatic member

Span length, ft

Length of connection angles, in.

Unbraced length of tensile members, in.

Unbraced length of member measured between centers of gravity
of the bracing members, in.

Plate length, in.

Column length, ft.

Live load

Subscript indicating live load

Maximum unbraced length of the compression flange at which the
allowable bending stress may be taken at 0.66F, or as determined
by AISC Specification Eq. (F1-3) or Eq. (F2-3), when applica-
ble, ft

Maximum unbraced length of the compression flange at which the
allowable bending stress may be taken at 0.6F,, ft

Span for maximum allowable web shear of uniformly loaded beam,
ft

Moment, kip-ft

Maximum factored bending moment, kip-ft

Smaller moment at end of unbraced length of beam-column, kip-ft

Larger moment at end of unbraced length of beam-column, kip-ft

Moment produced by dead load, kip-ft

Moment produced by live load, kip-ft

Moment produced by loads imposed after the concrete has achieved
75% of its required strength, kip-ft

Beam resisting moment, kip-ft

Moment induced in the bottom flange of a bridge stringer due to
wind loading, 1b-ft

Extreme fiber bending moment in end-plate design, kip-in.

Plastic moment, kip-ft

Range of the applied moment, kip-ft

Length of base plate, in.

Length of bearing of applied load, in.

Length at end bearing to develop maximum web shear, in.

Number of stud shear connectors on a beam in one transverse rib
of a metal deck, not to exceed 3 in calculations

Number of shear connectors required between point of maximum
moment and point of zero moment



SYMBOLS AND ABBREVIATIONS xix

Number of shear connectors required between concentrated load
and point of zero moment

Applied load, kips

Force transmitted by a fastener, kips

Factored axial load, kips

Normal force, kips

Force in the concrete slab in composite bridge sections, pounds

Force in the concrete slab in composite bridge sections, pounds

= AF,

Force in the concrete slab in composite bridge sections, pounds

= 0.85 f b1,

Beam reaction divided by the number of bolts in high-strength bolted
connection, kips

Plate bearing capacity in single-plate shear connections, kips

Tee stem bearing capacity in tee framing shear connections, kips

Factored beam flange or connection plate force in a restrained con-
nection, Kips

Maximum strength of an axially loaded compression member or
beam, kips

Euler buckling load, kips

Effective horizontal bolt distance used in end-plate connection de-
sign, in.

Distance between top or bottom of top flange to nearest bolt, in.

Force, from a beam flange or moment connection plate, that a col-
umn will resist without stiffeners, as determined using Eq. (K1-
1), kips

Force, from a beam flange or moment connection plate, that a col-
umn will resist without stiffeners, as determined using Eq. (K1-
8), kips

Force, in addition to P, that a column will resist without stiffe-
ners, from a beam flange or moment connection plate of one inch
thickness, as derived from Eq. (K1-9), kips

Force, from a beam flange or moment connection plate of zero
thickness, that a column will resist without stiffeners, as derived
from Eq. (K1-9), kips

Plastic axial load, equal to profile area times specified minimum
yield stress, kips

Applied load range, kips

Prying force per fastener, kips

First statical moment of the area used for horizontal shear compu-
tations, in.>
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Maximum end reaction for 35 in. of bearing, kips

Reaction or concentration load applied to beam or girder, kips

Radius, in.

Constant used in determining the maximum induced stress due to
wind in bottom flange of a bridge stringer

A constant used in web yielding calculations, from Eq. (K1-3), kips

= 0.66 F, 1, (2.5k)

A constant used in web yielding calculations, from Eq. (K1-3),
kips /in.

=0.66 F, t,

A constant used in web crippling calculations, from Eq. (K1-5),
kips

= 34 1} VF, .1 /1,

A constant used in web crippling calculations, from Eq. (K1-5),
kips /in. .

= 3412 [3<1> <i> } VE,.1 /1,

VAN :

Resistance to web tear-out (block shear), kips

Plate girder bending strength reduction factor

Hybrid girder factor

Increase in reaction R in kips for each additional inch of bearing

Net shear fracture capacity of the plate in single-plate shear con-
nections, kips

Net shear fracture capacity of the tee stem in tee framing shear
connections, kips

Plate capacity in yielding in single-plate shear connections, kips

Tee stem capacity in yielding in tee framing shear connection, kips

Shear capacity of the net section of connection angles

Allowable shear or bearing value for one fastener, kips

Elastic section modulus, in.’

Stringer spacing, ft.

Superimposed dead load

Subscript indicating superimposed dead load

Effective section modulus corresponding to partial composite ac-
tion, in.?

Range of horizontal shear at the slab-girder interface in composite
bridge sections, kips/in.

Section modulus of steel beam used in composite design, referred
to the bottom flange, in.?

Section modulus of transformed composite cross-section, referred
to the top of concrete, in.’
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SYMBOLS AND ABBREVIATIONS  xxi

Section modulus of transformed composite cross section, referred
to the bottom flange; based upon maximum permitted effective
width of concrete flange, in.>

Elastic section modulus about the X — X axis, in.’

Ultimate strength of a shear connector in composite bridge sections,
pounds

Horizontal force in flanges of a beam to form a couple equal to
beam end moment, kips

Bolt force, kips

Distance between web toes of fillet at top and at bottom of web,
in.

=d -2k

Specified pretension of a high-strength bolt, kips

Factor for converting bending moment with respect to ¥ — Y axis
to an equivalent bending moment with respect to X — X axis

S

= —bxtx
Fy,S,

Reduction coefficient used in calculating effective net area

Maximum web shear, kips

Statical shear on beam, kips

Shear produced by factored loading, kips

Total horizontal shear to be resisted by connectors under full com-
posite action, kips

Total horizontal shear provided by the connectors providing partial
composite action, kips

Range of shear due to live loads and impact, kips

Total uniform load, including weight of beam, kips

Ratio of yield stress of web steel to yield stress of stiffener steel

Plastic section modulus, in.?

Plastic section modulus with respect to the major (X — X) axis,
in.?

Plastic section modulus with respect to the minor (Y — Y) axis, in.>

Allowable range of horizontal shear on an individual shear connec-
tor in composite bridge sections, pounds

Distance from bolt line to application of prying force Q, in.

Clear distance between transverse stiffeners, in.

Dimension parallel to the direction of stress, in.

Distance beyond theoretical cut-off point required at ends of welded
partial length cover plate to develop stress, in.

Actual width of stiffened and unstiffened compression elements, in.

Dimension normal to the direction of stress, in.



xxii

_QQ" ??" S &

-
3

Qs

f
Jo
Jos

SYMBOLS AND ABBREVIATIONS

Fastener spacing vertically, in.

Distance from the bolt centerline to the face of tee stem or angle
leg in determining prying action, in.

Effective concrete slab width based on AISC Specification Sect. 11,
in.

Effective width of stiffened compression element, in.

Flange width of rolled beam or plate girder, in.

Beam flange width in end-plate design, in.

End-plate width, in.

Transformed concrete slab width, in.

Depth of column, beam or girder, in.

Nominal diameter of a fastener, in.

Stud diameter, in.

Bolt diameter, in.

Web depth clear of fillets, in.

Diameter of hole, in.

Eccentricity or distance from point of load application to bolt line

Distance from outside face of web to the shear center of a channel
section, in.

Axial compression stress on member based on effective area, ksi

Computed axial stress, ksi

Computed bending stress, ksi

Specified compression strength of concrete, ksi

Actual bearing pressure on support, ksi

Computed tensile stress, ksi

Computed shear stress, ksi

Shear between girder web and transverse stiffeners kips per linear
inch of single stiffener or pair of stiffeners

Transverse spacing locating fastener gage lines, in.

Clear distance between flanges of a beam or girder at the section
under investigation, in.

Nominal rib height for steel deck, in.

Distance from outer face of flange to web toe of fillet of rolled
shape or equivalent distance on welded section, in.

Shear buckling coefficient for girder webs

For beams, distance between cross sections braced against twist or
lateral displacement of the compression flange, in.

For columns, actual unbraced length of member, in.

Unsupported length of a lacing bar, in.

Length of weld, in.

Largest laterally unbraced length along either flange at the point of
load, in.
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Actual unbraced length in plane of bending, in.

Distance from centerline of fastener hole to free edge of part in the
direction of the force, in.

Distance from centerline of fastener hole to end of beam web, in.

Weld lengths, in.

Factor for converting bending to an approximate equivalent axial
load in columns subjected to combined loading conditions

Cantilever dimension of base plate, in.

Number of fasteners in one vertical row

Cantilever dimension of base plate, in.

Modular ratio (E/E,)

An equivalent cantilever dimension of a base plate, in.

Allowable horizontal shear to be resisted by a shear connector, Kips

Governing radius of gyration, in.

Radius of gyration of a section comprising the compression flange
plus § of the compression web area, taken about an axis in the
plane of the web, in.

Radius of gyration with respect to the X — X axis, in.

Radius of gyration with respect to the ¥ — Y axis, in.

Radius of gyration with respect to Y — Y axis of double angle mem-
ber, in.

Longitudinal center-to-center spacing (pitch) of any two consecu-
tive holes, in.

Thickness of a connected part, in.

Wall thickness of a tubular member, in.

Angle thickness, in.

Compression element thickness, in.

Thickness of concrete in compression, in.

Thickness of beam flange or moment connection plate at rigid beam-
to-column connection, in.

Thickness of flange used in prying, in.

Flange thickness, in.

Thickness of beam flange in end-plate connection design, in.

Thickness of concrete slab above metal deck, in.

End-plate thickness, in.

Stiffener plate thickness, in.

Thickness of concrete slab in composite bridge sections, in.

Web thickness, in.

Column web thickness, in.

Length of channel shear connectors, in.

Plate width (distance between welds), in.

Weld size, in.
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kip
ksi

SYMBOLS AND ABBREVIATIONS

Average width of rib or haunch of concrete slab on formed steel
deck, in.

Subscript relating symbol to strong axis bending

Subscript relating symbol to weak axis bending

Distance from neutral axis of steel section to bottom of steel, in.

Distance from neutral axis of composite beam to bottom of steel,
in.

Constant used in equation for hybrid girder factor R,, Ch. G

=06F,,/F, <10

Moment ratio used in prying action formula for end-plate design

Ratio S, /S or S,5/S,

Beam deflection, in.

Displacement of the neutral axis of a loaded member from its po-
sition when the member is not loaded, in.

Ratio of net area (at bolt line) to the gross area (at the face of the
stem on angle leg)

Poisson’s ratio, may be taken as 0.3 for steel

Reduction factor = 0.85

Angle of rotation, rad.

Symbol representing the diameter of a circular element

1,000 1b

Expression of stress in kips per sq. in.



Introduction

0.1 STEEL AS A BUILDING MATERIAL

From the dawn of history, man has been searching for the perfect building
material to construct his dwellings. Not until the discovery of iron and its man-
ufacture into steel did he find the needed material to largely fulfill his dreams.
All other building materials discovered and used in construction until then
proved to be either too weak (wood), too bulky (stone), too temporary (mud
and twigs), or too deficient in resisting tension and fracture under bending (stone
and concrete). Other than its somewhat unusual ability to resist compression
and tension without being overly bulky, steel has many other properties that
have made it one of the most common building materials today. Brief descrip-
tions of some of these properties follow. Some of the other concepts not dis-
cussed here have been introduced in treatments of the strength of materials and
similar courses and will not be repeated.

High strength. Today steel comes in various strengths, designated by its yield
stress F,, or by its ultimate tensile stress F,. Even steel of the lowest strengths
can claim higher ratios of strength to unit weight or volume than any of the
other common building materials in current use. This allows steel structures
to be designed for smaller dead loads and larger spans, leaving more room
(and volume) for use.

Ease of erection. Steel construction allows virtually all members of a struc-
ture to be prefabricated in the shops, leaving only erection to be completed
in the field. As most structural components are standard rolled shapes, readily
available from suppliers, the time required to produce all the members for a
structure can often be shortened. Because steel members are generally stan-
dard shapes having known properties and are available through various pro-
ducers, analyzing, remodeling, and adding to an existing structure are very
easily accomplished.

XXV
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Fig. 0.1. Typical stress-strain curves for two common classes of structural steel.
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Fig. 0.2. Initial portions of the typical stress-strain curves shown in Fig. 0.1.
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Uniformity. The properties of steel as a material and as structural shapes are
so rigidly controlled that engineers can expect the members to behave rea-
sonably as expected, thus reducing overdesign due to uncertainties. Figure
0.1 shows typical stress-strain curves for two types of structural steel. The
initial portions of these curves are shown in Fig. 0.2.

Ductility. The property of steel that enables it to withstand extensive defor-
mations under high tensile stresses without failure, called ductility, gives steel
structures the ability to resist sudden collapse. This property is extremely

Fig. 0.3. Fabrication of special trusses at a job site to be used for the wall and roof structural
system for the atrium lobby of an office building. Note that the trusses, made from tubular sections,
are partially prefabricated in the shop to transportable lengths and assembled at the site to form
each member.
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valuable when one considers the safety of the occupants of a building subject
to, for instance, a sudden shock, such as an earthquake.

Some of the other advantages of structual steel are (1) speed of erection, (2)
weldability, (3) possible reuse of structural components, (4) scrap value of un-
reusable components, and (5) permanence of the structure with proper mainte-
nance. Steel also has several disadvantages, among which are (1) the need to
fireproof structural components to meet local fire codes, (2) the maintenance
costs to protect the steel from excessive corrosion, and (3) its susceptibility to
buckling of slender members capable of carrying its axial loads but unable to
prevent lateral displacements. Engineers should note that under high tempera-
tures, such as those reached during building fires, the strength of structural steel
is severely reduced, and only fireproofing or similar protection can prevent the
structural members from sudden collapse. Heavy timber structural members
usually resist collapse much longer than unprotected structural steel. The most
common methods of protecting steel members against fire are a sprayed-on coat-
ing (about 2 in.) of a cementitious mixture, full concrete embedment, or en-
casement by fire-resistant materials, such as gypsum board.

0.2 LOADS AND SAFETY FACTORS

Components of a structure must be designed to resist applied loads without
excessive deformations or stresses. These loads are due to the dead weight of
the structure and its components, such as walls and floors; snow; wind; earth-
quakes; and people and objects supported by the structure. These loads can be
applied to a member along its longitudinal axis (axially), causing it to elongate
or shorten depending on the load; perpendicular to its axis (transversely), caus-
ing it to flex in a bending mode; by a moment about its axis (torsionally),
causing the member to twist about that axis; or by a combination of any two or
all three. It is very important for the engineer to recognize all the loads acting
on each and every element of a structure and on the entire structure as a whole
and to determine which mode they are applied in and the combinations of loads
that critically affect the individual components and the entire structure. The
study of these loads and their effects is primarily the domain of structural anal-
ysis.

Loads are generally categorized into two types, dead and live. Loads that are
permanent, steady, and due to gravity forces on the structural elements (dead
weight) are called dead loads. Estimating the magnitudes of dead loads is usu-
ally quite accurate, and Table 0.1 can be used for that purpose. Live loads,
however, are not necessarily permanent or steady and are due to forces acting
on a structure’s superimposed elements, such as people and furniture, or due to
wind, snow, earthquakes, etc. Unlike dead loads, live loads cannot be accu-



INTRODUCTION  xxix

Fig. 0.4. A typical steel-frame high-rise building under construction. Note how, in steel construc-
tion, the entire structure can be framed and erected before other trades commence work, thus
reducing conflict and interference among various trades.

rately predicted, but can only be estimated. To relieve the engineer of the bur-
den of estimating live loads, building codes often dictate the magnitude of the
loads, based on structure type and occupancy. National research and standard-
ization organizations, such as the American Society of Civil Engineers (ASCE),'
and other national and city building codes dictate the magnitude of wind, snow,
and earthquake loads based on extensive research data. It is important to deter-
mine which codes govern in a particular situation and then to find the applicable
loads which must act on the structure. Some average values for dead and live
loads for buildings that can be used for preliminary design are shown in Table
0.1.

A structure cannot be designed just to resist the estimated dead loads and the
estimated or code-specified live loads. If that were allowed, the slightest vari-
ation of loads toward the high side would cause the structure or member to
deform unacceptably (considered failure). To avoid this, the stresses in the
members are knowingly kept to a safe level below the ultimate limit. This safe
level is usually specified to be between one-half and two-thirds of the yield

'“‘Minimum Design Loads for Buildings and Other Structures,’" American Society of Civil Engi-
neers (ASCE 7-88; formerly ANSI A58.1-1982), New York, 1990.
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Table 0.1 Approximate Values of Some Common
Loads in Building Design

Material Weight Units

Dead Loads (Weights) of Some Common Building Materials®

Plain concrete (normal weight) 145 pcf
Reinforced concrete (normal weight) 150 pcf
Lightweight concrete 85-130 pef
Masonry (brick, concrete block) 120-145 pef
Earth (gravel, sand, clay) 70-120 pef
Steel 490 pef
Stone (limestone, marble) 165 pef
Brick walls

4 in. 40 psf

8 in. 80 psf

12 in. 120 psf

Hollow concrete block walls
Heavy aggregate

4 in. 30 psf
6 in. 43 psf
8 in. 55 psf
12 in. 80 psf
Light aggregate
4 in. 21 psf
6 in. 30 psf
8 in. 38 psf
12 in. 55 psf
Wood (seasoned) 25-50 pef

Live Loads”

Rooms (residences, hotels, etc.) 40 psf

Offices 50 psf

Corridors 80-100 psf

Assembly rooms, lobbies, theaters 100 psf

Wind (depends on location, terrain, and 15-60 psf
height above the ground)

Snow (depends on location and roof type) 10-80 psf

“See pages 6-7 through 6-9 of the AISCM for weights and specific gravities of
other materials.

’See AISCS A4 for specific rules about loading and AISCS AS5.2 for provisions
concerning wind and earthquake loads.

stress level, which means that from one-half to one-third of a member’s capacity
is kept on reserve for uncertainties in loading, material properties, and work-
manship. This reserve capacity is the safety factor.

In the United States, the American Institute of Steel Construction (AISC)
recommends what safety factors should be used for every type of structural steel
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Fig. 0.5. Wide-flange beam and girder floor system with sprayed-on cementitious fireproofing.
Note that openings in the webs are reinforced because they are large and occur at locations of large
shear.

component for buildings. These safety factors are usually determined from ex-
periments conducted or approved by the AISC. Most municipalities in the United
States have local building codes that require that the AISC specifications be
met. Structures other than buildings are designed according to other specifica-
tions, such as the American Association of State Highway and Transportation
Officials (AASHTO) for highway bridges and the American Railway Engineer-
ing Association (AREA) for railway bridges. Throughout this book, the AISC
specifications will be referred to as AISCS. These specifications can be found
in the AISC Manual of Steel Construction, Allowable Stress Design, from here
on called AISCM.

The design philosophy of the AISCS can be stated as follows: All structural
members and connections must be proportioned so that the maximum stresses
due to the applied loads do not exceed the allowable stresses given in Chapters
D through K of the specification (AISCS AS.1). These allowable stresses are
typically a function of the yield stress F, or the ultimate stress F, of the steel
divided by an appropriate factor of safety (as noted above). The allowable
stresses given in the AISCS may be increased by one-third if the stresses are
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produced by wind or seismic loads acting alone or in combination with the dead
and live loads, provided that the required section is satisfactory for only dead
and live loads without the increase (AISCS AS.2). The increase mentioned above
does not apply, however, to the allowable stress ranges for fatigue loading given
in Appendix K4 of the AISCS. It is important to note that when computing the
maximum bending stresses for simply supported beams or girders, the effective
length of the span should be taken as the distance between the centers of gravity
of the supporting members (AISCS BS).

The steels which are approved for use are given in AISCS A3.1.a. Each of
the steels listed has an American Society for Testing and Materials (ASTM)
designation. The various types of steels and their corresponding values of F,
and F, are listed in Table 1, p. 1-7 of the AISCM. One of the steels which is
often used in building design is ASTM A36 (F, = 36 ksi, F, = 58 ksi). For
this reason, unless specifically stated otherwise, the reader should assume A36
steel for all examples and problems to be solved throughout this book. Addi-
tionally, because of their popularity, the same assumption should be made for
E70 electrodes when dealing with welds.
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Tension Members

1.1 TENSION MEMBERS'

A tension member is defined as an element capable of resisting tensile loads
along its longitudinal axis. Classic examples are bottom chords of trusses and
sag rods (Fig. 1.1). For the most part, the shape of the cross section has little
effect on the tensile capacity of a member. The net cross-sectional area will be
uniformly stressed except at points of load applications and their vicinity (St.
Venant’s principle). If fasteners are used, it may become necessary to design
for stress concentrations near the fasteners, referred to as shear lag. Other stress
buildups, in the form of bending stresses, will develop if the centers of gravity
of the connected members do not line up. This effect is usually neglected, how-
ever, in statically loaded members (AISCS J1.9).

Allowable stresses are computed for both gross member area and effective
net area. The gross area stress is designed to remain below the yield stress, at
which point excessive deformations will occur, and the effective net area is
designed to prevent local fracture.

To account for the effective net area, it is necessary to use reduction coeffi-
cients for tension members that are not connected through all elements of the
cross section. This provision is intended to account for the phenomenon of shear
lag. For example, the angle in Fig. 1.2 is connected through one leg. The shear
stress being transferred through its bolts will concentrate at the connection. The
effect of shear lag will diminish, however, as the number of fasteners increases.

1.2 GROSS, NET, AND EFFECTIVE NET SECTIONS

The gross section of a member, A4,, is defined as the sum of the products of the
thickness and the gross width of each element as measured normal to the axis

'This chapter deals with members subjected to pure tensile stresses only. For the case of members
subjected to tension and flexure, refer to Chap. 4, Sect. 4.5.
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Bottom
chord
of truss

L

\
L

Sag rod used /

to laterally P

support roof

purlins /P
L =
E— ) Y em—

Fig. 1.1. Common examples of tension members.

of the member (AISCS B1). This is the cross-sectional area of the member with
no parts removed.

The net width multiplied by the member thickness is the net area. Net width
is determined by deducting from the gross width the sum of all holes in the
section cut. In AISCS B2, the code states: ‘“The width of a bolt or rivet shall
be taken as 7% in. larger than the nominal dimension of the hole.”” AISC Table
J3.1 lists the diameter of holes as a function of fastener size. For standard holes,
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Tensile stress

==

=
s B

Fig. 1.2. Shear lag concept. Because the stress is transferred through the bolts, a concentration of
tensile stress occurs at the bolt holes. As the number of bolts increases, the magnitude of shear lag
decreases (see AISCS Commentary B3).

Fig. 1.3. John Hancock Building, Chicago. (Courtesy of U.S. Steel)
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the hole diameter is 1% in. larger than the nominal fastener size. Thus, a value
of fastener diameter plus § in. (d + 15 + 75) must be used in computing net
sections.

Example 1.1. Determine the net area of a 4 X 4 X 5 angle with one line of
3-3-in. bolts as shown.

Solution. The net area is equal to the gross area less the sum of the nominal
hole dimension plus % in. (AISCS B2).

A, = 3.75 in.?

&

A, =3.75in? = [2in. + (Lin. + Lin)] x Lin. = 3.31in.?

If there is a chain of holes on a diagonal or forming a zigzag pattern, as in
Fig. 1.4, the net width is taken as the gross width minus the diameter of all the
holes in the chain and then adding for each gage space in the chain the quantity

% (1.1)

where s is the longitudinal spacing (pitch), in inches, of two consecutive holes
and g is the transverse spacing (gage), in inches, of the same two holes (AISCS
B2).

The critical net section is taken at the chain that yields the least net width. In
no case, however, shall the net section, when taken through riveted or bolted
splices, gusset plates, or other connection fittings subject to a tensile force ex-
ceed 85% of the gross section (AISCS B3).

For determining the areas of angles, the gross width is the sum of the widths
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@ @ @
R R |

Fig. 1.4. Gage and pitch spacing.

of the legs less the angle thickness (AISCS B1). The gage for holes in opposite
legs, as shown in Fig. 1.5, is the sum of the gages from the back of the angle
less the angle thickness (AISCS B2).

t —=

7

Vo277 |

Gh

w
h

g=g, +g,—t
w=w, tw, —t

Fig. 1.5. Measurement of gage dimension and gross width for angles.

Example 1.2. Determine the net area of the plate below if the holes are for

%-in. bolts.
A7k
A B
Tl
21— C "
—~O\ | RF X120
27 ] 2" ¢Bolts
+—+0p
-— 12 2r 7] -5 —
ot Q!
2z [\
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1
2y (-
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Solution. To find the net section, consult the AISC Code Section B2. The net
width must be calculated by considering all possible lines of failure and de-
ducting the diameters of the holes in the chain. Then for each diagonal path,

the quantity (s*/4g) is added, where s =

longitudinal spacing (pitch) of any

two consecutive holes and g = transverse spacing (gage) of the same two holes.
The critical net section is the chain that gives the least net width. The net critical
width is then multiplied by the thickness to obtain the net area (AISCS B2).

Chain

ACEG

BDFH

ACDEG

ACDFH

ACDEFH

Width — Holes
12 -2 x (3 +
12 -2 X (3 +
12 -3 x G+
12-3xd+

12 —4 x (7 +

2

+ 2 for each diagonal path
4g

1y = 10.0”

1y = 10.0”

Ly + (22/42.5)) + (22/42.5) = 9.8"
L) + (27/4(2.5)) = 9.4"

b +3x(2%/42.5) =9.2"

Critical section = 9.2 in. X §in. = 4.6 in.?

A, =4.6in.?

Example 1.3. For the two lines of bolt holes shown, determine the pitch (s)
that will give a net section along ABCDEF equal to a net section through two
holes. Holes are for 3-in. bolts.

A
B, [
T‘i’\ \;C RS |
S N o
=== 14% zix" :i::_:T—D:::::E:::
LT °
L

Solution. The section through four holes plus the quantity 2 X (s*/4g) must
equal the gross section minus two holes.



TENSION MEMBERS 7

3 1 §° 3 01
145 -4 x (= +~-)+2x =145 — 2.2
(4 8) 4 x4 14.5 2X<4+s>

§2
11.0 + 3" 12.75

s =14 s=3.74in.
Use pitch of 33 in.
Example 1.4. A single angle tension member 6 X 4 X 3 has gage lines in the

legs as shown. Determine the pitch (s) for 3-in. rivets, so that the reduction in
area is equivalent to two holes in line.

1
A {
|
L ——
/ l 2% +2%H
2:—” /l -3 g
LT o < 'y e
Cc [ 3 }
Q \ LBX4 X, N
2? \l %N ¢ Rivets 2';’_
= O pQ 1
1 | 12
f

1’

4

i -
Solution. Because of the angle thickness, the gross width of the angle must be
6+4—3)=925in.

Path ABDE = path ABCDE

Path ABDE = 9.25 — 2 X G +

1

8

1 2 2
Path ABCDE = 9.25 — 3 x G + §> s s

Sz Sz
= 6.625 + — + =
25+ 1% 10
52 Sz
75 = 6.625 + — + —
16 ' 10
2
0.875 = O+ 8
80

s2 =5.385 s =2.32in.

Use pitch of 23 in.
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The calculation of the effective net area A, is given in AISCS B3 for bolted,
riveted, and welded connections.

If the tensile force is transmitted by bolts or rivets through some, but not all,
of the cross-sectional elements of the member, then A, is given by (B3-1):

A, = UA, (1.2)

where A, is the net area of the member as defined previously and U is a reduc-
tion coefficient. Values of U based on the requirements set forth in AISCS B3
can be found in Table 1.1.

When a tensile force is transmitted by welds through some, but not all, of the
cross-sectional elements of the member, then (B3-2) should be used to deter-
mine the value of A4,:

A, = UA (1.3)

8
where A, is the gross cross-sectional area of the member. When transverse welds
are used to transmit the tensile load to some, but not all, of the cross-sectional
elements of W, M, or S shapes and WT sections cut from these shapes, then
the effective area A, is defined in AISCS B3 as the area of the directly connected
elements only. An example of this provision is shown in Fig. 1.6.

For the case when the tensile load is transmitted to a plate by longitudinal
welds along both edges at the end of the plate, the effective net area A, is given
by (B3-2). The values of the reduction coefficients U to be used are given in
Fig. 1.7. Note that the length, /, of the longitudinal welds shall not be less than
the width of the plate for any case.

Although not stated in AISCS B3, the AISCS Commentary B3 gives a con-
servative method to determine U for situations not covered in the specification.

Table 1.1. Values for the Reduction Coefficient U Based
on AISCS B3.

No. of Fasteners
Shape” Per Line U

1) W, M, or S shapes where b, = 3 d.

Tee sections from above shapes

Connection to the flanges. 3 or more 0.90
2) W, M, or S shapes not meeting

above conditions and all other

shapes including built-up sections 3 or more 0.85
3) All members 2 0.75

“b; = flange width: d = member depth.



TENSION MEMBERS 9

Fig. 1.6. Calculation of A, for a member with a transverse weld.

22w (AISCS B3)

Length, £ U

Ag =wt > 2w 1.0
A, =UA, 2w > ¢ > 1.5w 0.87
1.5w>L>w 0.75

Fig. 1.7. Values of U for a plate with longitudinal welds on both edges.

Figure 1.8 illustrates this method for the case of a rolled member with longi-
tudinal welds along each edge of the flange only. Note that this method will
yield more conservative values of U than those which are specifically given in

AISCS B3 for both bolted and welded connections.
For the case of shapes which are connected by both longitudinal welds and
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X = distance from the centroid of the shape to the
plane of the connection, in.

2 = weld length, in.

Fig. 1.8. Determination of U as defined in AISCS Commentary B3.

transverse welds at the ends, it is the understanding of the authors that the
effective net area A, can be taken as 0.854, (i.e., U = 0.85). For plates, how-
ever, U should equal 1 since the tensile load is transmitted directly to the total
cross-sectional area of the member. When a tensile load is transmitted by lon-
gitudinal or a combination of longitudinal and transverse welds through one leg
of a single-angle tensile member, Sect. 2 of the Specification for Allowable
Stress Design of Single-Angle Members requires that A, = 0.854, (see eqn.
(2-1), p. 5-310).

Example 1.5. What is the effective net area of the angle in Example 1.1?

Solution. The effective net area is the product of the net area and the required
reduction coefficient (AISCS B3).

I

A, =UXA,
U = 0.85 (from Table 1.1)
A, = 3.31 in.? (from Example 1.1)

A, = 0.85 x 3.31in.?> = 2.81 in.?

Example 1.6. Determine A, for the WT 7 X 13 shown below.
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WT 7 X 13

//

A

Solution. A, = area of directly connected elements (AISCS B3)

5.025 in. X 0.42 in. = 2.11 in.?

Example 1.7. Determine A, for the 1 X § in. plate shown below if (a) [ = 7
in.,, ()l = 85in.,(¢)! = 11 in.

—
p.Lir ) J%I —r E:Lj

Solution. A, = UA, (B3-2)

Ag=1in.><5in.=5in.2

w=S5in., 1.5w =75in., 2w = 10 in.

a) Since 1.5w > [ > w in this case, then U = 0.75 (see Fig. 1.7)
and A, = 0.75 x 5§ = 3.75in.?

b) Since 2w > [ > 1.5w in this case, then U = 0.87
and A, = 0.87 x 5 = 4.35in.?

¢) Since ! > 2w, then U = 1.0 and 4, = § in.?

Example 1.8. Determine A, for the WT 5 X 15 shown below.

=

WT5 X 15

|
i
|
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Solution. Since this problem is not specifically referred to in AISCS B3, use
the procedure given in the commentary (see Fig. 1.8):

X
U=1--

l
x = 1.1 in. (see AISCM Properties Section)
[ = 6in.

1.1
U=1-—=0.82

6
A, = UA, = 0.82 X 442 = 3.61 in.”

1.3 ALLOWABLE TENSILE STRESSES

A tension member can fail in either of two modes: excessive elongation of the
gross section or localized fracture of the net section.

As an applied tensile force increases, the strain will increase linearly until the
stress reaches its yield stress F, (Fig. 1.9). At this point, inelastic strain will
develop and continue in the ultimate stress (F,) region, where additional stress
capacity is realized. Once the yield stress has been reached and inelastic elon-
gation occurs, the member’s usefulness is diminished. Furthermore, the failure
of other members in the structural system may result. To safeguard against yield
failure, the AISCS D1 states that stress on the gross member section (except

Stress strain region
for effective net area

Stress, ksi

Stress-strain region
for gross member area

Strain, in./in.

Fig. 1.9. Stress-strain diagram of mild steel. The design of tension members is based on strain
(rate of elongation) on the gross member area and stress on the effective net area.
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pin-connected members) shall not exceed
F, = 0.60F, (1.4)

Localized fracture will occur at the net section of least resistance. The value
of the load may be less than that required to yield the gross area. Therefore,
the stress on the effective net section, as defined in AISCS DI, shall not be
greater than

F, = 0.50F, (1.5)

Hence, a factor of safety of 1.67 against yielding of the entire member and 2.0
against fracture of the weakest effective net area has been established.

For pin-connected members, the allowable stress on its net section is given
in AISCS D3.1:

F, = 0.45F, (1.6)

Table 1.2. Allowable Stresses
for Tension Members.

On Net On Gross
Area Area

F, 045 F, 0.60 F,
36 16.2 22.0
42 18.9 25.2
45 20.3 27.0
50 22.5 30.0
55 24.8 33.0
60 27.0 36.0
65 29.3 39.0
90 40.5 54.0
100 45.0 60.0

On Nominal On Eff.

Rod Area Net Area

F, 0.33F, 0.50 F,
58.0 19.1 29.0
60.0 19.8 30.0
65.0 21.5 32.5
70.0 23.1 35.0
75.0 24.8 37.5
80.0 26.4 40.0
100.0 33.0 50.0

110.0 36.3 55.0
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The design of threaded rods incorporates the use of the nominal area of the
rod, that is, the area corresponding to its gross diameter. To allow for the re-
duced area through the threaded part, the allowable stress for threaded bars is
now limited to (see Table J3.2):

.= 0.33F, (1.7)

Computed values of allowable yield stress and allowable ultimate stress are
provided in Table 1.2. These values can also be obtained from Tables 1 and 2
in the AISC Numerical Values Section, pp. 5-117 and 5-118.

Example 1.9. Determine the member capacity for the section shown in Ex-
ample 1.1.

Solution. From Ex. 1.1, A, = 3.75 in.?

A, = 3.31 in.?
From Ex. 1.5, A, = 2.81 in.?
0.6F,A, =22 x 3.75 = 82.5k
P_.. = lesser of '
0.5F,A, = 29 X 2.81 = 81.5 k (governs)

Example 1.10. What tensile load can a 4 X 4 X 3 angle carry with the con-
nections shown?

T—%T ——%T TT
Fillet
Id
L ) L L we
% ¢ Bolts O
O /\\ )
o1 T <~ [ < - 0~
l—w o

(a) (b) (c)



TENSION MEMBERS 15

Solution.
Fora4 x 4 x 3 angle
. = 2.86 in.?
A, =286in> — [}in. x Qin. + Lin. + & in)] = 2.53 in.?

A, =UXA,

a) U = 0.75 (from Table 1.1)
A, = 0.75 X 2.53 in.2 = 1.90 in.?

0.6F, A4, = 22 X 2.86 = 62.9 k

P.x = lesser of
0.5F,A, = 29 X 1.90 = 55.1 k (govems)

b) U=0.85
A, = 0.85 X 2.53in.2 = 2.15 in.2

22 X 2.86 = 629 k

P..x = lesser of
29 X 2.15 = 62.4 k (govemns)

c)
From eqn. (2-1), p. 5-310,

A, = 0.85 X 2.86 in.” = 2.43 in.?
22 X 2.86 = 62.9 k (governs)

P..x = lesser of
29 X 243 =705k

From AISCS Commentary B3 (C-Bl-1),

=1- T = 0.89; A, = 0.89 x 2.86 = 2.55 in.?
22 X 2.86 = 62.9 k (governs)

29 x 2.55 = 73.8k

X 1.14
U=1-3

P,.. = lesser of {
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Example 1.11. Determine the maximum tensile load a 3 X 7-in. plate connec-
tion fitting can carry if it has welded connections and punched holes as shown.
Use A572 Gr 50 steel.

Solution. The lesser of the critical loads which can be transmitted through the
bolts (P,) or through the longitudinal welds (P,) will govern.

e For the bolted connection:

A, =525-2x[0.75 X (1.25 + )] = 3.19in.”

Ay max = 0.854, = 4.46 in.” for short connection fittings

Therefore, A, = 3.19 in.? (governs)
Since U= 1,4, = A, = 3.19 in.?

0.6F,A, = 30 X 5.25 = 157.5 k

P, = lesser of
0.5F,A, = 32.5 x 3.19 = 103.7 k (governs)
¢ For the welded connection:

A, = UA,

I

10in., w= 7in., 1.5w = 10.5in.; therefore, U = 0.75

A, = 0.75 x 5.25 = 3.94 in.?

30 X 5.25 = 1575k

P, = lesser of
32.5 X 3.94 = 128.1 k (governs)

Since P; = 103.7 k is less than P, = 128.1 k, the maximum load the plate
connection can resist is P,, = 103.7 k.
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Example 1.12. Calculate the allowable tensile load in the 3-in. X 14-in. plate.
The holes are for 3-in. bolts; use A36 steel.

|
ls 13" 1" x 187
O—3 2 *1°R
/| T 3 ¢Bolts
/|
L]
-— > I\ | 3" 14 - —
| et
Vi
el/ |
oI
Fl Je '7
!
Solution.

2
Chain Width — Holes + :~ for each diagonal path (AISCS B2)
8

ABDG 14 -2 x (3 +}) =1225in.

ABDEF 14 — 3 x (3 + 1) + 22/4(4) = 11.625 in.

ABCEF 14 — 3 X (3 + ) + 2?/4(4) = 11.625 in.

ABCDG 14 —3 x (3 + 1) + 22/44) + 2°/4(3) = 11.96 in.
ABCDEF 14 — 4 x (3 + 1) + 2 x (2°/4(4)) + 2°/4(3) = 11.33 in.

Critical section = 11.33 in. X Jin. = 5.67 in.2 = A,,.

A, =104, = 5.67 in?
22 X 7.0 = 154 k (governs)
P.x = lesser of
29 X 5.67 = 164.4 k

Example 1.13. A single angle tension member L 6 X 6 X 3 has two gage lines
in each leg as shown. Determine the allowable tension load that can be carried.
Holes are for 3-in. bolts.
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4 A E L
1 T 1
z o b o
B
LBXBX T —2_?__ i\\: \\ 2"
2 H
—+ | OF O———f— T _
2" /] / 242— 1@ N
4 ~ } / l / 1ogln —iwg__
v Lo /| / N
ke o oI 1 O o—— ¢
N N %
| C|>G O———*—1‘_,.
{ 2
D H t
oy gt
Solution.
Path ABCD or EFGH <6 +6 — %) -2 X G + %) =9.75 in.
2
Path ABFCGH <6+6—l Cax (24 @
2 4 8 4x25
2.5)°
+ @) 9.70 in
4 x <2 +2 - —>
1 3 1 (2.5)°
Path ABFCD +6--)-3x {242
y (6 6 2> 3 <4+8>+4x2.5
2.5 N = 9.95 in
4 X <2 +2 - 5)
1 3 1 (2.5
Path ABFGH 6+6—-—<-)-3x[=+=-)+
) < 2 (4 8) 4 x25

= 9.5 in. (governs)
A, =5.75in?
A, =9.5in. X Lin. = 4.75 in.?
A, = 1.0 X 4.75 = 4.75 in.?

22 X 5.75
29 X 4.75

126.5 k (governs)

P_.« = lesser of
137.8 k



TENSION MEMBERS 19

Example 1.14. A threaded rod cut from A36 stock is to be used as a tie bar
carrying a 10-kip tensile force. Determine the diameter required.

Solution. The allowable tensile stress can be found in AISC Table J3.2, and is
repeated in Table 1.2 for convenience.

F, =033 F, = 19.1 ksi

The stress is to be calculated on the nominal body area

= 0.52 in.2

P 10k
A = — = -
F,  19.1 ksi

d2
WT > 0.52 in.?

d* > 0.66 in.?
d > 0.81 in.

Use minimum -in. ¢ rod.

1.4 AISC DESIGN AIDS

The AISCM provides a chart to determine net areas for double angles in tension.
Common double angles used as tension members are given on p. 4-96 for two,
four, and six holes out. To use, simply find the angle designation in the left
column and find the number of holes out in the fastener size in the top row. To
find A4,, as determined in accordance with AISCS B1 and B2, carry the angle
designation across and the fastener diameter down until the two lines intersect.
The appropriate U value is then applied to determine the effective net section.
Values for single angles can also be determined by assuming one hole out in-
stead of two for double angles, two holes out instead of four, and three holes
out instead of six, and noting that the area will be one-half of the value listed.

AISCM (p. 4-98) also provides a table for area reductions due to holes. The
thickness of steel along the left margin is matched with the hole diameter, and
the value determined is the area of the hole.

Values for s° /4g can be determined from the chart on p. 4-99 labeled ‘‘Net
Section of Tension Members.”’ Entering the chart on the side with the gage
value g, carry the line across until it intersects the curve for the appropriate
pitch s. The value found vertically above or below that point is 5°/4g.
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Fig. 1.10. Wind bracing for an office building, each made from four angles. Note the stiffeners
on the beam web to resist the large concentrated reactions from the braces.

Example 1.15. Using the AISC Design Aids, find the net area for two 4 X 4
X 3 angles with two rows of 3-in. bolts in each angle.

Four holes out

Solution. The 4 X 4 X }-in. angle can be found in the **Connections’” section
of AISCM. With two %-in. bolts in each of the angles, there are a total of four
holes out. Finding the correct column for 3-in. fasteners with four holes out,
follow down until it intersects with the row of L 4 X 4 X 3 in. The value for
the net area is 4.41 in.?

A, = 4.41 in.?

Example 1.16. Using the AISC chart, find the net area for an angle 6 X 4 X
3 with two rows of 3-in. bolts.
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Solution. The angle 6 X 4 X 3 can be considered as one-half of a double angle.
Therefore, use the column for four holes out with a double angle. Reading down
the column for 3-in. fasteners and across for the L 6 x 4 X 3 in. yields a value
of 5.91 in.%. Because this gives the net area for two angles, the value must be
divided by 2, which gives a net area for a single angle as 2.95 in.?

A, =2.95in.?

Example 1.17. Two 6 X 4 X } angles are connected with long legs back to
back. Assume two rows of 3-in. bolts are used in the long legs and one row of
3-in. bolts is used in the short legs. Determine the maximum tensile load that
can be carried.

Lexaxy

Solution. Two methods will be shown, one using the tables in the AISCM.

a) Using the AISCM, determine the number of holes out, and read down the
column of the row corresponding to the angle designation.

From the AISCM

A, =2 x 475in? = 9.50 in.?

A, = 6.88 in.” (p. 4-96)
U
A,

22 X 9.5 =209 k
Pax = lesser of
29 x 6.88 = 199.5 k (governs)

1.0
1.0 X A, = 6.88 in.?

b) A, =2 X [4.75in.2 — 3 X }in. X (3in. + §in.)] = 6.88 in.?
The rest of the computation is the same as part a.

Example 1.18. Using the AISC charts for tension member net areas, determine
the net areas and maximum tensile load for
a) 6 X 6 x 3 angle connected by two lines of 3-3-in. bolts in one leg.
b) 6 X 6 x 3 angle connected by one line of 3-3-in. bolts in each leg, and
connected with lug angles.
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— -

o O o I o) VL
e

ool T o 11 o

o o o [ o

< —— - ——

(a) (b)

Solution.
A, = 8.44in’

a) Using the column for 3-in. fasteners with four holes out (two holes out in
a single angle), and the row forL 6 X 6 X 3

A, =14.3in2/2 = 7.15in.2

A, = U X 4,

U =0.85

A, = 0.85 x 7.15 in.? = 6.08 in.?

1l

A, = 8.44 in.?

8

22 x 8.44
29 x 6.08

185.7 k
176.3 k (governs)

P.x = lesser of {

b) The load is transferred through both legs of the angle, and therefore no
reduction need be taken:

A, = 143in.%/2 = 7.15in.2
U=1.0
A, = 7.15in.?
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22 x 8.44
29 x 7.15

185.7 k (govemns)
207.4 k

P .. = lesser of {

1.5 SLENDERNESS AND ELONGATION

To prevent lateral movement or vibrations, the AISC recommends limits to the
slenderness ratio //r for tension members other than rods. Although not essen-
tial to structural integrity, AISCS B7 recommends that the slenderness ratio I/r
be limited to 300, where [ is the length of the member in inches and r is the
least radius of gyration, equal to s/I/—A

Provided tension members are designed within stated allowable stresses,
elongations of tension members should not be critical. Should the elongation of
a member be desired, however, it can be calculated in the elastic range (f, <
F) by

A= Ll (1.8)
AE '
where [ is the member length in inches and E is the modulus of elasticity. For
this calculation, the area should be taken as the gross area, though at net sec-

tions the strain value will locally be greater.

Example 1.19. A WT 8 X 13 structural tee is used as a main tension member
with a length of 20 ft. Determine if the member is within recommended AISC
limits to the slenderness ratio.

Solution. (AISCS B7)

=< 300

~N e~

The member length in inches is 20 ft X 12 in. /ft = 240 in.

Checking properties for designing, r,, = 2.47 in., ry, = 1.12 in.
Use r,, = 1.12 in. (least value):

I 240in

- = = 21

r 1.12in 214
214 < 300 ok

The member satisfies the AISC recommended slenderness limit.
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Example 1.20. A 5 X 3 X -in. angle is used as a bracing member carrying

tension. The member is to be within recommended AISC slenderness ratio lim-
its. Determine the maximum length of the member to be within AISC limits.

Solution. (AISCS B7)

=< 300

[ =300 xr
= 1.61in.; r, =0.853in; r, = 0.658 in.

Use r,, = 0.658 in.
I < 300 X 0.658 in. = 197.4in. = 16.45 ft

To satisfy recommended AISC slenderness limits, the length of the member
cannot exceed 16 ft, 5 in.

Example 1.21. Design the 12 ft WT 4 structural tee shown to carry 60 kips
and satisfy the recommended slenderness ratio. Use g-in. bolts.

3- %” ¢ Bolts
,}ChSideN

Solution.
60 k
G ired = = 2.73 in.?
TOSS area require 2.0 kei 2.73 in
Effective net area required k 2.07 in.?
i rea required = = 2. .
q 29.0 ksi n

Using the tables for structural tees cut from W shapes, find the most economical
section by choosing one with the required area and the least weight.
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Try WT 4 x 10.5
A, =3.08in> > 2.73in> ok

A, =3.08in.% — 2 x [0.400 in. X (Zin. + in.)] = 2.28 in.?

U =090 (b = 5.27 in. > 2(4.14in.) = 2.76 in.)

A, =UXA4, =090 x2.28in.? = 2.05in.2 < 2.07in.?2 N.G.
Try WT 4 x 12

A, =3.54in? > 2.73in.> ok

g
. 2 . 7 . 1 . . 2
A, = 3.54 in.” — 2 X |0.400 in. X gm. + gm. = 2.74 in.

A, =090 X 2.74 in.> = 2.47 in.2 > 2.07 in.? ok

ree = 0999 in.; r,, = 1.61 in.

[ 12 ft X 12 in/ft 144 < 300 ok
- - = 0
r 0.999 in.

Use WT 4 X 12.

1.6 PIN-CONNECTED MEMBERS AND EYEBARS

Eyebar members and pin-connected plates are designed to carry the tensile load
through the bar and transfer the load through the pinhole to the pin. The allow-
able stress in the eyebar is F, = 0.45F, and is taken across the member net
area. Figures 1.11 and 1.12 show the requirements for eyebars and pin-con-
nected plates, as stated in AISCS D3. When exposed to weather, the pins and
the eyebar may have a tendency to rust, which could freeze the joint and cause
some distress. To avoid this, many designers prefer using plates of A588 steel
(Gr 50) and stainless steel pins.
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Ahead =tX (dhead _dh)
t=21/2in.

r(rans>dhead

w<8Xt

15w>d,  —d, > 133w

d,

oin 2% Xw

dy =dga +1/32in.

d, <5 Xt (F, >70ksi)

Note: Eyebar shall be of uniform thickness,
without reinforcement at the pinholes.

Fig. 1.11. Design requirements of eyebars according to AISCS D3.3.

e ally

Wopet =W dh
b1 "'Wnet/2
by <4Xt

by 2 2/3 X W,

d, = 1.256 X (b, or b,, whichever is smaller)
d, <dg, +1/32in.

Anet = Wne( X t

Aot = P/F,

Fig. 1.12. Design requirements of pin-connected plates according to AISCS D3.2.

Example 1.22. Design an eyebar to carry a tensile load of 150 kips.

Solution. (AISCS D3)

F, = 0.45F, (AISCS D3.1)
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F, = 16.2 ksi
150 k .2
A, = 62 ki~ 9.26 in.

Try plate 15 in. X 73 in.; A, = 9.38 in.> > 150 k/0.6 X 36 = 6.9 in.2 ok
(AISCS D3.1)

w=<2§8t¢

7iin. < 8 X 1}in. = 10in. ok
dyin Z 3w

in. = 648in. (6.56 in.)

7
dyin = § X7 8

Nj—

Use 63 in. diameter pin

d, = dy, + % in. = 63 in. (6.66 in.)

1.5w = dyeaq — d, = 1.33w
15w = 1.5 X 7.5 in. = 11.25 in.
1.33w = 1.33 X 7.5 in. = 9.98 in.
6.66 + 11.25 = 17.91 in. = deq = 6.66 + 9.98 = 16.64 in.

Try dheag = 17.25 in.

1 21 1
A, = <17Zin. - 65 in.> x 1 in. = 13.24in.2 > 9.26 in.? ok

Ttrans = dhead

Use 174-in. radius
Use eyebar as shown.
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Example 1.23. Design a pin-connected plate to carry a tensile load of 150 kips.
Assume the pin diameter to be 55 in.

Solution. (AISCS D3)

F, = 0.45F, = 16.2 ksi (AISCS D3.1)

150 k
A, = 62 ke 9.26 in.?
b <41
Try t = lgin.
by <4t=4lin
Try b, = 43 in.
A, = (2 x 4}in) x 1}in. =9.28in.2 > 9.26 in.2 ok

d, = 1.25 X 4} in. = 5.16 in.
d, = 5}in. + & in. = 5% in. > 5.16 in. ok
by Z 3wy =% X (2 x4,in) = 5lin.

Use pin-connected plate as shown.

(-
__f—
(8]
NI—:

»H

o |
Qo | o=

&b
d
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1.7 BUILT-UP MEMBERS

Requirements for built-up tension members are discussed in AISCS D2. For
two plates or a plate and a rolled shape, the longitudinal spacing of rivets, bolts,
or intermittent fillet welds shall not exceed 24 times the thickness of the thinner
plate nor 12 in. for painted members or unpainted members not subject to cor-
rosion; or 14 times the thickness of the thinner plate, nor 7 in. for unpainted
members of weathering steel subject to atmospheric corrosion. The longitudinal
spacing of rivets, bolts, or intermittent welds connecting two or more rolled

I

<3

[}

0 b ™

o

ol =

[N

Xg
Lol = 0 Xg
s<6in.
g, 9 = as specified in AISC Table J3.5, J3.6

Fig. 1.13. Spacing requirements of tie plates for built-up tension members.
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shapes shall not exceed 24 in. For members separated by intermittent fillers,
connections must be made at intervals such that the slenderness ratio of either
component between the fasteners does not exceed 300.

Perforated cover plates or tie plates without lacing may be used on the open
sides of the built-up tension members (Fig. 1.13). Such tie plates must be de-
signed to satisfy the criteria below. The spacing shall be such that the slender-
ness ratio of any component in the length between tie plates will not exceed
300.

Example 1.24. A 30-ft pinned member is to consist of four equal leg angles
arranged as shown. The tensile load is to be 150 kips. One 3 in. bolt will be
used in each angle leg at the location of every tie plate.

[ . , |
E L/Tle plates (Typ,\J 12
| 1
| |
! 12 |
Solution.
150 k
Gross area required = = 6.82 in.”
area require 0 ksi in
2
Gross area for one angle = 6—824i = 1.7 in.?
150 k
Effective net area required = =5.17in.?
9 29.0 ksi n
5.17 in.?
Effective net area for one angle = 317 in.- = 1.29in.2

4
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Try L2} X 25 x 4:

A, =225in? > 1.7in% ok
r, = 0.487 in.

5 1 1
225 -2 X |[[=+=)x=-{=15in?
25 -2 [(8 + 8> 2] 1.5in

1 XA, =15in?>129in? ok

A,

A

€

I=1I,+ Ad*> = 4 X [1.23 + 2.25(6 — 0.806)’] = 247.7 in.*

1 , 247.7 .
r._\/;— 4x225——52510

I 30 x12
r T 525 T 68.6 < 300 ok
300 x 0.487
Maximum spacing of tie plates = [, = 0 - 12.1 ft

Use 10 ft 0 in. spacing (third points).
Plate length = ,, = 2¢

Useg =12in. — (2 X 13 in.) = 9.25 in. (see Fig. 1.13 and p. 1-52 of the
AISCM for the usual gages for angles).

Ly = 3(9.25 in.) = 6.167 in. Use 6 in.
Plate thickness = t = g/50 = 9.25 in./50 = 0.185 in. Use & in.
Minimum width of tie plates = g + 2, .y

ly min = 1} in. (see Table J3.5)

Minimum width = 9.25in. + (2 X 1} in.) = 11.5 in.
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Use tie plates & X 65 X 115 in. at a maximum spacing of 10 ft O in.

Example 1.25. Design the most economical W 6 or W 8 shape to carry a
100-kip tensile load. The length is to be 20 ft, and two rows of 3-3-in. bolts
will be used in each flange.

Solution.
Gross area required = 2;0(()) :si = 4.55 in.?
Effective net area required = 2—;%)0—1% =3.45in?
Try W6 X 16
A=4.74in? 1 =0405in., b, =4.03in., d=6.28in.
A, =4.74in? — 4 x [(3in. + }in.) X 0.405in.] = 3.32 in.?

by = 4.03 in. < 2(6.28in.) = 4.19 in. .. U = 0.85

A, =UXA,=085x%332in? =282in? < 3.45in? N.G.

Try W8 X 18
A = 5.26in.2, ty=1033in., b;=35.25in., d = 8.14in.
. 3. 1. . N
A, =526in." — 4 X Zm. + 3 in.}] X 0.33in.| = 4.11 in.
. 2 . .
by=1525in. < 5(8.14 in.) =542 in. .U = 0.85

A, =UXx A, =085 x%x4.11in2 =3.49in? > 3.45in.? ok

€

=240 in.; r, = 1.23in.

Y
1 240 in.
r 1.23in.

= 195 < 300 ok

Use W 8 x 18.
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Example 1.26. Design the most economical common single angle to carry a
50-kip tensile load. The angle is to be 15 ft long and is to be connected by four
3.in. bolts in one line in one leg.

Solution.
50 k
G ired = =2.27 in.?
ross area require 2.0 ksi 2.27 in
. . 50 k . 2
Effective net area required = - = 1.72 in.* (U = 0.85)
29.0 ksi

In determining the most economical angle, choose the angle with the least area
that can carry the load. Therefore, the easiest method of investigating different
angles is to make a table, as shown below. Note that the only angle which will
not satisfy the strength requirements is L 3} X 3 X 3.

Lightest Angles Wt Gross Area of Effective
Available k/ft Area (in.%) One Hole (in.%)* Net Area (in.?)

3l x3x3 7.9 2.30 0.33 1.67

A x3ix3 8.5 2.48 0.33 1.83

4xX4x3 8.2 2.40 0.27 1.81

5x3 x5 8.2 2.40 0.27 1.81

*3 + #in.) X thickness.

Try L 33 x 35 x 3:

r,, = 0.687 in.

L Mm—/ﬂ = 262 < 300 ok, but not the lightest section.

r 0.687in.
TryL5 X 3 x &:
r, = 0.658 in.

15 ft x 12 in. /ft
0.658 in.

= 273.6 ok

L
=
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TryL4 X 4 X {:

r, = 0.791 in.

I 15 ft x 12 in. /ft
S22 e/ 9076 ok
" 0.791 in. 227.6 o

UseL4 x4 X ZorL5x3xg.

1.8 FATIGUE

Occasionally, it becomes necessary to design for fatigue if frequent variations
or reversals in stress occur. An example of a system that encounters fluctuations
is found in bridge structures. AISCS K4 and Appendix K4 give fatigue provi-
sions. See Appendix A in this text for a discussion on fatigue.

PROBLEMS TO BE SOLVED

1.1. Using AISCS, determine the tensile capacity for the following tension
members connected by welds:

a) One angle 4 X 6 X 3, A36 steel, 6-in. outstanding leg
b) One angle 4 X 6 X %, AS572 Gr 50, 4-in. outstanding leg
c) One W 8 X 24, A36 steel

d) One C 8 X 11.5, AS572 Gr 50 steel

(|
'

(@), (b)
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(c) (d)

1.2. Determine the capacity of the members connected as shown. Use 3-in.
diameter bolts.

S G

W10 X 26

paces at 4 in.,
=234

Angle4 X4 X &

+—>P o o0 o0 JL—'PP
1

nspacesat4in, n=1,23 nspacesat3in.,n=1,23

(b) (c)
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1.3. Determine the tensile capacity of 3-in.-thick plates connected as shown.
Use 3-in. diameter bolts.

It
|51
2
p-— o ®) ©) O}—]L - —=r
|53
!
(a)
| 2L
o o o4+
P -— :6 5 —F
O O Ol—* .
[ +%
f
(b)
o) o) o) } 13
A
L <L O O O I < —r
4
O O O | ‘|L’
| 2

(c)

1.4. Calculate P, for the plates shown if + = 3 in., and bolt diameter =
3 in. Use A572 Gr 50 steel.

=
kX

e :c)
OO0
=
lul_.

!

(a) (b}
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1.5. Determine the tensile capacity of the plate shown if F, = 36 ksi, t = 5
in., and bolt diameter is 3 in.

[~
o

-
d S E s ISTE oo

}
'l/
O
___L 0
-
/1,*
!

-

-
—{n= N

]

1.6. Determine the tensile capacity of a 7 X 4 X 3 angle as shown if bolt
diameter = 1 in. Holes in the 4-in. leg have a 13-in. edge distance. Use AS72

Gr 50 steel.

= fe—

-

O
@)
T

T
!
—r
!

p T B
3 33" 3=~ Lixax3

1.7. Calculate the pitch s, such that the net area is equal to the gross area less
the area of two holes. What is the allowable tensile force if bolt diameters is 3

in. and AS572 Gr 50 steel is used?

!-—S S
O O

p-— <
O

P e s e e e — oy e ey — —]
[ ' [

\Laxsx%
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1.8. Determine the pitch s, such that the loss in area is equal to the loss of two
holes. Use A36 steel and 3-in. diameter bolts for the 7 X 4 X 3 angle.

3
LTXAXF |

2

A ¥
2|
l—s s §—ete—S }.2?.417L

1.9. What is the maximum recommended length for a4 X 4 X } angle tension
member?

1.10. A 30-ft-long angle of equal legs is to carry 150 kips. Design the tension
member so that it is within the recommended slenderness ratio. Assume the
angle will have longitudinal welds on one leg only.

1.11. Design a round tension bar to carry 100 kips. Use threaded ends and
A572 Gr 50 steel.

1.12. Design an eyebar to carry 200 kips. Use A36 steel.

1.13. Design a pin-connected plate to carry 200 kips. Assume 6-in. ¢ pin and
A36 steel.

1.14. Design the 14 X 14-in. tension member shown to carry 200 kips if L =
SQﬂ, F, = 36 ksi, and bolt diameter = % in. Use 3%-in. leg maximum.

)

| 3 ¢ bolts (typ.) | 147

I |
1 4 Equal leg Ls.
I Lacing
_A .

il
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Members under Flexure: 1

2.1 MEMBERS UNDER FLEXURE

Flexural members are generally defined as structural members that support
transverse loads. This chapter will cover the design of simple flexural members
only.

According to Chapter F of the AISC, two types of flexural members are con-
sidered: beams and plate girders. Beams are distinguished from plate girders
when the web slenderness ratio 4 /1, is less than or equal to 760/ JF, , where
h is the clear distance between the flanges, ¢,, is the thickness of the web, and
F, is the allowable bending stress in ksi. The discussion of plate girders is given
in Chapter 3.

Beams can usually be categorized into the following:

® beams per se

¢ joists, which are closely spaced beams supporting floors and roofs of build-

ings

¢ lintels, which span openings in walls, such as doors and windows

¢ spandrel beams, which support the exterior walls of buildings and, in some

cases, part of the floor loads

® girders, which are generally large beams carrying smaller ones

Beams can be designed as simply supported, fixed-ended, partially fixed, or
continuous. It is very important that the designer verify that the support con-
ditions of the beam be detailed to satisfy design assumptions for the member to
behave as predicted in its analysis.

2.2 DETERMINING THE ALLOWABLE BENDING STRESS
Bending stress in a beam is determined by the flexure formula

Mc
sz_

7 2.1

39
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Fig. 2.1. A wide-flange beam and girder floor system.

where M is the bending moment, c is the distance of the extreme fibers of the
beam from the neutral axis, and / is the moment of inertia of the cross section.
Because the section modulus of a beam is defined as the value //c, the flexure
formula becomes

u| X

fy = (2.2)

where S is the section modulus.

Example 2.1. Calculate the maximum bending stress f, due to a 170-ft-k mo-
ment about the strong axis on a:'

a) W 12 X 65 wide-flange beam
b) W 18 X 65 wide-flange beam

'd, 1, and S can be obtained in the Dimensions and Properties Section of the AISCM, pp. 1-10ff.
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Solution.
a) ForaW 12 x 65, S, = 87.9 in.3

170 ft-k x 12 in. /fi

Jon 87.9 in.> = 232 ksi
b) ForaW 18 X 65, S, = 117 in.?
170 ft-k X 12 in. /ft
foo = i/ 4 ks

117 in.?

Example 2.2. Determine the bending stress on a W 12 X 79 subjected to a
moment of 80 ft-k about a) the strong axis b) the weak axis.

Solution. Fora W 12 x 79, S, = 107 in.%, S, = 35.8 in.?

80 ft-k X 12 in./ft
107 in.?

a) Jox = = 8.97 ksi

80 ft-k X 12 in. /ft
35.8 in.}

b) foy = = 26.8 ksi

The allowable bending stresses are given in AISCS F1, F2, and F3 for strong
axis bending of I-shaped members and channels; weak axis bending of I-shaped
members, solid bars, and rectangular plates; and bending of box members, rect-
angular tubes, and circular tubes, respectively. The following discussion will
present these allowable stresses in detail.

Allowable Stress: Strong Axis Bending of I-Shaped Members and
Channels (AISCS F1)

For a compact member whose compression flange is adequately braced, the
allowable bending stress F, is given by (F1-1):
F, = 0.66F, (2.3)

Compact members are defined as those capable of developing their full plastic
moment before localized buckling occurs, provided that the conditions in AISCS
F1.1 are satisfied. The yield stresses beyond which a shape is not compact are



42 STEEL DESIGN FOR ENGINEERS AND ARCHITECTS

labeled F} and F}” and are given in the properties tables in the AISCM.? The
limits for compactness are given in Table B5.1. Almost all of the W and S
shapes are compact for A36 steel, and only some are not compact for 50 ksi
steel.

Members bent about their major axis and having an axis of symmetry may
fail by buckling of their compression flange and twisting about the longitudinal
axis. To avoid this, the member must be ‘‘laterally braced’’ within certain in-
tervals to resist such buckling. When a transverse load is applied to a beam, the
compression flange behaves in the same manner as a column. As the length of
the member increases, the flange tends to buckle. The resulting displacements
in the weaker axis will induce torsion and may ultimately cause failure.

What constitutes lateral support is at times a matter of judgment. A beam
flange encased in a concrete slab is fully laterally supported. Cross beams fram-
ing into the sides of beams provide lateral support if an adequate connection is
made to the compression flange. However, care must be taken to provide rig-
idity to the cross beams. It may be necessary to provide diagonal bracing in one
section to resist movement in both directions. Bracing as shown in Fig. 2.2 will
provide rigidity for several bays.

Metal decking, in some cases, does not constitute lateral bracing. With ade-
quate connections, up to full lateral support may be assumed. Cases of partial
support are usually transformed to full support by a multiple of the actual spac-
ing. For instance, decking that is tack-welded every 4 ft may be considered to
provide a third of the full lateral support, yielding an equivalent full lateral
support every 12 ft.

In most situations, the compression flange is laterally supported, and there-
fore F,, = 0.66F,, as given in eqn. (2.3). At times, however, it is not possible
to brace the compression flange. In such cases, F;, = 0.66F,, provided that the
interval of lateral support L, is less than the smaller of the values of L. as given

’The stresses Fy and F\" are defined in the Symbols Section of the ninth edition of the AISCS
(preceding the Index). For the benefit of the reader, these definitions are as follows:

F} The theoretical maximum yield stress (ksi) based on the width-thickness ratio of one-half the
unstiffened compression flange, beyond which a particular shape is not ‘‘compact.”’

- [b,ﬁ/SZIIT

F" The theoretical maximum yield stress (ksi) based on the depth-thickness ratio of the web below
which a particular shape may be considered *‘compact’’ for any condition of combined bending

and axial stresses.
_ {231
/i,
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Fig. 2.2. Lateral bracing of a floor or roof framing system. Bracing in one bay can offer rigidity
for several bays.

in (F1-2):

zf_:_)f or %, whichever is smaller 2.4)

The AISC, in Section F1.3, specifies the stresses that can be used for certain
unbraced lengths. Considering lateral instability, F, = 0.66F,, provided that
the unsupported length of a beam is less than or equal to L.. The value F, =
0.60F, may be used when the unsupported length falls between L. and another
established length L,,.

The value of L, is the length which provides the equality for the largest F, in
eqns. (F1-6) or (F1-7) and (F1-8) as applicable:

102 x 10°C, | 510 x 10°C,
— = —=< |/
Fy rr Fy

When
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Fig. 2.3. Lateral bracing for a floor system made with channel sections.

F lz Rl /ey W F, < 060F 2.5
=13 T Tean o o~ <
T3 1830 x 10°G, | T T 2.5

l 510 x 10°C,
-z [
rr F,

_ 170 x 10°C,

When

F, = =< 0.60 F, (2.6
b (/rry? ' )
For any value of [ /ry:
F ————12X103”<_060F 2.7
b I ,/ Ij' . v ( . )

where all quantities are defined in the AISCM. In general, for any unsupported
length L, greater than L, the largest F,,, as determined by eqns. (2.5) or (2.6)
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£l \
\
066 F 9~~~ ——— ~XZ —Calculated stress could
\ be larger than 0.60 Fy,
0.60 F, — but may not be used
Largest of values
determined by eqs.
(2.5) or (2.6) and (2.7)
but less than 0.60 Fy
L. L, Unsupported length, L,

| |
Limit determined by  Limit determined
AISCS F1.1 by F, =0.60 F,

Fig. 2.4. Bending stress versus unsupported length. In the range of relatively short, unsupported
lengths, the allowable stress is given as a step function. For longer, unsupported lengths, the stress
is determined by a hyperbolic-type function.

and (2.7), is the one that governs. Figure 2.4 indicates the values of the allow-
able stress for different unsupported lengths.

For noncompact members as, defined in AISCS F1.2, with their compression
flanges braced at a distance less than L., the allowable bending stress is given
in (F1-3):

F,=F {079—0002——\/—} 2.8)

Note that for noncompact members with compression flanges braced at a dis-
tance greater than L., the discussion given above for the allowable bending
stresses of compact members is also valid. The study of more slender beams
(i.e., those sections that exceed the noncompact limits of Table B5.1) is beyond
the scope of this text. The use of design aids that are available in the AISCM
will be discussed in the following examples.

Examples 2.3 and 2.7. Select the most economical® W sections for the beams
shown. Assume full lateral support and compactness. Neglect the weight of the
beam.

3Usually, ‘‘most economical’’ means the lightest section. However, in some cases (e.g., conditions
of clearance), it may be different.
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Example 2.3
40 kip
Ay | o}
}-—17'—0"4—;17'-0"—1
Solution 2.3.
PL 40k X 34 ft
M=—="——""""— =340 fi-k
2 ) 340 ft
F, = 0.66 F, for full lateral support (AISCS F1.1)

F, = 0.66 X 36 ksi = 24.0 ksi (for A36 steel; Numerical Values
Table 1, p. 5-117)
340 ft-k X 12 in. /ft

M
Sed = — = =170 in.}
~ ~ F, 24 ksi n

W shapes that are satisfactory (from properties tables)

W 12 X 136 S = 186 in.>
W 14 X 109 =173
W 16 x 100 =175
W 18 x 97 S =188
W21 x 83 S =171
W 24 x 76 S =176
W 27 x 84 § =213
W 30 x 99 S =269
W33 x 118 S =359
W 36 x 135 S =439

The last number represents the member weight per foot length. Therefore, W
24 X 76 is the lightest satisfactory section.

The AISCM has provided design aids which facilitate the selection of an
economical W or M shape in accordance with AISCS F1 (see AISCM, p. 2-4).
If the beam satisfies the requirements of compactness and lateral support as
given in AISCS F1.1 (i.e., F, = 0.66F,), then the most economical beam can
be obtained for steels having F, = 36 ksi or F,, = 50 ksi (shaded in gray) by
utilizing the Allowable Stress Design Selection Table, which begins on p. 2-7.
Once the maximum moment for the beam has been determined, enter the table
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and choose the first beam that appears in boldface type with a moment capacity
My greater than or equal to the maximum applied moment. This is the most
economical beam for this moment. Note that all of the beams above (and, pos-
sibly, some of the beam below) have sufficient capacity but are not the most
economical. Similarly, the required section modulus S, can be determined (i.e.,
Se = My, /(0.66F,)), and the table can be used to obtain an economical beam
in the same way as for My It is important to note that if the stress F,, is different
from 0.66F), then the method described previously that uses the required sec-
tion modulus S, can only be used to obtain an economical beam size.

For this case, a W 24 X 76 is the lightest section which satisfies the moment
requirements (i.e., Mg = 348 ft-k is larger than the applied moment M = 340
ft-k). If there was a restriction on the depth of this beam equal to 20 in., then
aW 18 X 97, W 16 x 100, or W 14 X 109 could be used. Obviously, the W
18 X 97 would be the most economical section in this case.

Example 2.4
2.35 kip/ft.
- |
Solution 2.4.
L[> 2.35k X (34 ft)?
M, =M _2BKXCIMNT_ a6y
8 8
F, = 0.66 F, = 24.0 ksi
M 339.6 ft-k x 12 in.
Swq = — = frk in/f _ 69,8 in?

F, 24 ksi

W shapes that are satisfactory are the same W shapes that are satisfactory for
Example 2.3.
The lightest section is W 24 X 76, §, = 176 in.3

Alternative approach
Seeq = 169.8 in.?

From S, tables (Part 2), W 24 X 76 (in bold print) has an S, of 176 in.? and
for F,, = 36 ksi can carry a moment of 348 ft-k.
Use W 24 X 76
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Example 2.5

Solution 2.5.

M., = (15k x 10 ft) + (10 k x 15 ft) = 300 ft-k
F, = 24.0 ksi

M 300 fi-k x 12 in. /fi

M _ — 150 in 3
F, 24.0 ksi 150 in.

Sreq =

Through investigation, W 24 X 68 is the lightest section, S = 154 in.?

Alternative approach
M, = 300 ft-k

From the AISCM, W 24 X 68 (in bold print) has a moment capacity of 305
ft-k.

W 24 x 68 is satisfactory and is the lightest section.

Example 2.6

40 kip )
2.35 kip/ft.

NN RRNNNNE

f—17 17—

Solution 2.6. To determine the maximum moment, either (a) draw shear and
moment diagrams, (b) use the method of sections, or (c) use superposition prin-
ciples.

a) Total load = 40 k + (2.35 k/ft x 34 ft) = 119.9k

119.9 k
Ry = Ry = —— = 59.95 k—say 60 k

Shear just to the left of the 40-k load

60 k — (2.35 k/ft X 17 ft) = 20 k
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2.35 kip/ft.

ATTTIT T

1 17.00

20 kip M
~

|
| 680 ft.-kip

60 kip

60 Kip [~

J 60 kip

M,_., at center = area under the shear diagram

_ 600k + 200k

max 2

x 17 ft = 680 ft-k

b) R, = Ry = 60.0k
M., at center = (60.0 k X 17 ft) — ((2.35 k/ft X 17 fr)
x (17 ft/2)) = 680 fi-k

¢) By inspection, the maximum moment is at the center.

Moment due to 40-kip load = PL /4

40 k X 34 ft
— =340 fik

Moment due to distributed load = wL? /8

2.35 k/ft x (34 ft)?
8

= 339.6 ft-k—say 340 ft-k

Total moment = 340 ft-k + 340 ft-k = 680 ft-k.

49

Using the AISCM beam chart, select a W 33 X 118 (in bold print) as the lightest

satisfactory section with the moment capacity of 711 ft-k for A36 steel.
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Example 2.7
40KiP 5 35 kip/it.
) EERERARNRN! }5
”»

|

fp—17" 17"

Solution 2.7. Redesign the beam in Example 2.6 for 50-ksi steel.

M., = 680 ft-k (from Example 2.6)
F, = 0.66 F, = 0.66 X 50 ksi = 33.0 ksi

M 680 fik x 12 in./ft ,
== = = 247 in.
Sea = F 33.0 ksi n

Using the AISCM beam chart for F,, = 50 ksi, select a W 30 X 99 as the lightest
satisfactory section, § = 269 in.?

Example 2.8. Determine the most economical wide-flange section for the load-
ing case shown. Assume full lateral support. Include the weight of the beam.

1.5 kip/ft.

IR NNNNNN

C

Ay

[
T- 5-0" 1 15'-0" 1 10'-0"
I 30"-0"

A, R,

Solution. Reactions, shears, and moments can be determined from the beam
diagrams and formulas (AISCM p. 2-296). Use diagram 1 for beam weight and
diagram 4 for imposed loading.

¢ Imposed Loading

R R
M, =R,<a +——'>atx=a + =
2w w

R =22 ¢ + b)
Y7

Sft, b=15ft, c=10ft, L =30ft

Q
I



MEMBERS UNDER FLEXURE: 1 51

w=15k/ft

R = 1-‘521‘/33—:;”‘ (10 ft) + 15 ft) = 13.13 k
M, = 13.13 k<5 ft + 5(—11351](%> = 123.12 ft-k

x=5ft+ 11'35'1](3/2 = 13.75 ft

® Beam Loading
Assume beam weight is 40 1b /ft

Determine moment at point of maximum applied moment.

13.75 ft

=
I

0.04 k/ft X 13.75 ft
2

M, = lvif @ ~-x= (30.0 ft — 13.75 ft) = 4.47 ft-k
® Total Maximum Moment

/
123.12 ft-k + 4.47 ft-k = 127.6 ft-k

Consulting the allowable stress design selection table (AISCM, Part 2), find the
lightest beam with a resisting moment (Mp) greater than or equal to 127.6 ft-k
(F, = 36 ksi).

Use W 16 X 40 (Mp = 128 ft-k).

Example 2.9. Determine the distributed load that can be carried by a W 14 x
22 beam spanning 11 ft with an unsupported length of S ft, 6 in.

Solution. Fora W 14 X 22,
L.=53f;L,=56ftS=29.0in.> (from Part 2 of AISCM)
Because the unsupported L = 5.5 ft is between L. and L,

F, =06F, =22.0ksi (AISCS F1.3)

1
M=S8xF,=29.0in> X 22 ksi X ——— = 53 ft-k
S » = 29.0 in si 12 in. /R ft
wl? 8M 8 X 53 ft-k
M=— w=—p=—""""-"—=35k/ft
8> "2 (11.0)? /
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Subtracting the weight of the beam,

w = 3.5k/ft — 0.022 k/ft = 3.48 k/ft
Example 2.10. Determine the distributed load that can be carried by a W 10
X 22 beam spanning 16 ft, 6 in. with an unsupported length of 5 ft, 6 in. F,
= 50 ksi.
Solution. Fora W 10 X 22,

L. =521t L,=68ft; §=232in?

Because the unsupported L = 5.5 ft is between L. and L,,

F, =0.6 F, = 0.6 X 50 ksi = 30 ksi

M =S X F, =23.2in.*> X 30 ksi X = 58.0 ft-k

1
12 in. /ft
8M 8 X 58.0 fk

=T aesE - MO k/ft

Subtracting the weight of the beam,
w= 170 k/ft — 0.02 k/ft = 1.68 k/ft

Example 2.11. Determine the distributed load that can be carried by a W 16
X 31 beam spanning 30 ft with an unsupported length of 15 ft, O in.

Solution. Fora W 16 x 31,
L.=58ft L,=7.1f S=472in?

Because the unsupported L = 15 ft is greater than both L. and L,, F, must be
determined by AISCS Section F1.3.

Referring to the inequalities of AISC Section F1.3, we need to determine the
relative magnitude of //ry:

rr = 1.39 in.

115 ft x 12in. /ft

- = 129.5
rr 1.39 in.
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The value of C, is
1.75 + 1.05 (M, /M,) + 0.3 (M, /M,)?

which depends on the magnitude and sign of end moments and can be taken
conservatively equal to 1 (AISCS F1.3 footnote).

102 x 10° C, 102 x 10°
= 53.2
F 36

y

510 x 10° C, 510 x 10°
= 119.0
F 36

y
1

— > 119.0

rr

170 x 10° C,
F, = —————2 = 10.14 ksi AISCS (F1-7)

b a/rr)’
or
12 x 10° C, 12 x 10° x 1 .

F, = = = 10.21 ksi AISCS (F1-8)

(d/4;) 180 X (15.88/2.43)

The greater value is to be used.

F, = 10.21 ksi
47.2 in.® x 10.21 ksi
M=SXF, = = 40.2 ft-
b 12 in. /ft fi-k
8M 8 X 40.2 ft-k
= —-————————= . k
2 30 1 0.36 k/ft

Subtracting the beam weight to determine the beam capacity,
w = 0.36 k/ft — 0.031 k/ft = 0.33 k/ft

Example 2.12. Select the lightest wide-flange section for the beam shown if
lateral support is provided at the ends only. Include the weight of the beam.
Use the ‘‘Allowable Moments in Beams’’ charts.
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35 kip

| o ]
f 11'-0 i 11'-0 |

Solution. The AISCM has provided the Allowable Moments in Beams charts
starting on p. 2-149 for the economical selection of a beam which includes
lateral instability. The charts for F,, = 36 ksi and F,, = 50 ksi (gray border)
assume a conservative value of C, = 1 (see the definition of C, and the corre-
sponding footnote on p. 5-47). To select a member for a given moment and
unbraced length, enter an appropriate chart at the required resisting moment
(ordinate) and proceed to the right to meet the vertical line corresponding to the
unbraced length (abscissa). Any beam located above and to the right of the
intersection is satisfactory, with the beam shown in the solid line immediately
to the right and above being the lightest satisfactory section. Beams indicated
by broken lines satisfy the requirements of unbraced length and moment but are
not the lightest sections available for those conditions. The values correspond-
ing to L. are indicated in the charts by solid circles (dots), and values corre-
sponding to L, are indicated by open circles.
In this case,

Unsupported length L = 22.0 ft
Beam weight (assumed) = 80 1b/ft

PL wl?  35.0k X 22.0 ft L 0.8 k/ft X (22.0 ft)?
4 8 4 8

= 197.3 ft-k

M=

A study of the chart on p. 2-168 reveals that a W 21 X 83 could be a solution;
however, the line for this beam is broken in this area. Further inspection of the
chart on p. 2-166 indicates that the lightest beam is a W 14 X 74, which for
an unsupported length of 22 ft can carry a moment of 205.2 ft-k.

The bending stress is

_197.3 ft-k X 12 in. /ft

b = 112 in? = 21.1 ksi

Example 2.13. Select the lightest wide-flange section for the beam shown if
lateral support is provided only at the point loads and beam ends. Use the **Al-
lowable Moments in Beams’’ charts for F), = 50 ksi.
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12 kip 12 ki
P 1.5 kip/ft.

IR INREREE 0NN Weigt of bear
—12 ! 14 Jl 12‘—7{)

A B c

Solution.

Maximum unsupported length L = 14.0 ft
Beam weight (assumed) = 90 1b/ft

(38 ft)?
8

M, = 1.59 k/ft x + (12 k x 12 fy) = 431 ft-k

From the ‘‘Allowable Moments in Beams’’ chart, W 27 X 84 is satisfactory
(p. 2-198).

Use W 27 X 84.
Bending stress

_ 431 ft-k x 12in. /ft

= 13 in3 = 24.28 ksi

Example 2.14. A W 27 X 84 carries a uniformly distributed load w over its
entire span length of 24 ft. Calculate F, and w,, (including the weight of the
beam) if the maximum unbraced length L, is a) 24 ft, b) 16 ft, ¢) 12 ft, d) 8 ft.

Solution. For W 27 x 84,5 =213in.%, L, = 10.5 ft, L, = 11.0 ft. Inspection
of the Allowable Moments in Beams charts yields the following results:

F My 8 X M,
= Y wo = 22 M
Lh Mau b S all Lz
Case (ft) (ft-k) (ksi) (kip /ft)
225.0 X 12 8 x 225.0
24 225.0 e - 12.68 R e - N k)
2 5 213 24y’ 3
337.0 x 12 8 x 337.0
b 16 337.0 2T - 18.99 2T < 468
213 (24 6
376.0 x 12 8 x 376.0
12 376.0 22 29118 — =5.22
¢ 213 Qa0
426.0 x 12 8 X 426.0
d 8 426.0 T C - 24.00 s
213 4 5.92

Example 2.15. Calculate F,, and w,, for the beam in Example 2.14 if A572 Gr

50 steel is used.
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Solution. F, = 50 ksi, § = 213 in?, L. = 8.0 ft, L, = 9.4 ft. Again, use the
Allowable Moments in Beams charts (gray border in this case).

M., 8 X M,
F,=— Wat = — 12
L, M, S L
Case (ft) (ft-k) (ksi) (ksi)
\ 225.0 X 12 8 X 225.0
a 24 225.0¢ B - 12.68 ————(24)2 =13.13
6 420.0 420.0 x 12 23 66 8 X 420.0 583
b ! ' 213 T Q4
493.0 x 12 8 x 493.0
c 12 493.0 213 =27.77 —(W— = 6.85
8 586.0 586.0 x 12 33,01 8 X 586.0 8.14
d ' 23 4y '

“From extrapolation. This moment and allowable stress can be verified with the aid of the governing eqn.
(F1-7).

Comparing the results from Example 2.14 with those obtained from Example
2.15, it can readily be seen that for long unsupported lengths, the values of F,
are identical regardless of the value of F,. This is due to the fact that F;, depends
mostly on the modulus of elasticity E in these situations (i.e., failure of the
beam is caused by buckling of the compression flange). It can also be seen that
for unsupported lengths of L, or less, the allowable stress F, depends on the
yield stress F, of the beam.

12.68 ksi (A36) = 12.68 ksi (A372, Gr 50)
24.00 ksi (A36) vs. 33.01 ksi (A572, Gr 50)

Case a F,

Case d F,

il

Allowable Stress: Weak Axis Bending of I-Shaped Members, Solid
Bars, and Rectangular Plates (AISCS F2)

For compact doubly symmetric I- and H-shape members, solid round and square
bars, and solid rectangular sections, the allowable bending stress is given in
eqn. (F2-1):

F, = 0.75F, 2.9)

For noncompact members where the width-thickness ratio as defined in AISCS
BS is equal to 95/ \/;7:, and for members which are not covered in AISCS F3,
the allowable stress is given in eqn. (F2-2):

F, = 0.60F, (2.10)
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When_the width-thickness ratio of the member falls between 65/ \/P_‘v and
95/ \/;';, F, is given by the transition formula (F2-3):

b
F, = Fy[l.075 ~ 0.005 <§> «/Fy} @.11)
f
Note that lateral support for the member types noted above is not required. As
before, a discussion of slender members is beyond the scope of this text.

Example 2.16. Determine the lightest channel which can support a uniformly
distributed load of 0.3 kip /ft (includes beam weight) on a span of 12 ft. The
channel is bent about the weak axis. Use A572 Gr 50 steel.

Solution.

0.3 kip/ft X (12 ft)?
8

F, = 0.6 X 50 ksi = 30 ksi (eqn. 2.10)

Maximum moment = =54 ft-k

5.4k x 12in. /ft
Y 30 ksi

= 2.16 in.
The following channels are acceptable:

C 15 x 339, S, = 3.11 in.°

MC 10 x 22, S, = 2.8 in.?

MC 8 x 214, S, = 2.74 in.?

MC 6 x 18, S, = 2.48 in.> (lightest)

Example 2.17. Determine the moment capacity of the following members bent
about their weak axes (A588 Gr 50 steel): a) W 10 x 88, b) W 14 x 90.
Solution.
a)

by 10.265 in.
2 Xt 2x0.99in.

Width-thickness ratio = = 5.18 (AISCS B5.1)

65
— =9.19 > 5.18.
V50
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Therefore, F, = 0.75 X 50 ksi = 37.5 ksi.

, = 34.8in.>
34.8 in.> x 37.5 ksi
Moment capacity = 1r112 ./ > = 109 ft-k
b)
by 14.520 in.

= 10.2

Width-thick tio = =
i ickness ratio 2xt 2x0.71in.

65 95
——==9.19 — =13.44
V50 50

Using transition formula (F2-3):

F, = 50 ksi X (1.075 — 0.005 x 10.2+/50) = 35.7 ksi

= 3
y = 49.9 in.
49.9 in.> X 35.7 ksi
Moment capacity = "112 in /f 2 = 148.5 ft-k

Allowable Stress: Bending of Box Members, Rectangular Tubes, and
Circular (AISCS F3)

For compact members bent about their strong or weak axes, the allowable bend-
ing stress is given in (F3-1):

F, = 0.66F, (2.12)

By definition, a compact box-shaped member is one which satisfies the require-
ments in Table B5.1; also, it must have a depth not greater than six times its
width and a flange thickness not greater than two times its web thickness. The
lateral support requirements are given in (F3-2):

L. =195 + 1,200 — ) = 2.13
c < M2>F @2.13)

y

If the section is noncompact, F,, = 0.6F,, as given in (F3-3).
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2.3 CONTINUOUS BEAMS

The AISC allows beams that span continuously over an interior support or are
rigidly framed to columns to assume a slight moment redistribution. AISCS
F1.1 states that, except for hybrid girders and members with F, > 65 ksi,
continuous or rigidly framed compact beams and girders may be designed for
15 of the negative moments due to gravity loading if the positive moments are
increased by 15 of the average negative moments (see Fig. 2.5). These provi-

NI w

§£11HHLHUH§

AN /]
S~

+
Maximum
Moment Calculated Value Redistributed Value
wlL? 9wL?  wL?
M' —_— =
12 120 13.33
. wL? wl? wL? wL?
M R —_— —
24 24 120 20
O T ™
Ay L AN L oy
W W
Maximum
Moment Calculated Value Redistributed Value
wl? 9wL? wlL?
M- R =z —
8 80 8.89
" 9wL? _ wL? 9wL? R wl?  wlL?
128 14.22 128 160 13.06

Fig. 2.5. Moment redistribution of rigid and continuous beams.
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sions do not apply for cantilevers. If the negative moment is resisted by a rigid
column-beam connection, the 75 reduction may be used in proportioning the
column for the combined axial and bending loads, provided that the stress f,
does not exceed 0.15 F,. Note that moment redistribution usually provides a
savings in material quantities.

Example 2.18. A beam spanning two 30-ft bays supports a load of 1.7 k /ft.
Assuming full lateral support, design the beam

a) for calculated positive and negative moments
b) using the moment redistribution allowed by AISCS.

1.7 k/ft

TR PPT T i it badiidid
Ay

30-0" —}- 30-0"

¥

< =

= - —
e T
moment disgram

Solution.

M* = 2 wL? at 11 ft-3 in. from outside supports

M~ =1 wL? at interior support.
M* = 2% (1.7k/fty x (30.0 f)* = 107.6 ft-k
M~ =L (L.7k/fty x (30.0 ft)> = 191.25 ft-k
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a) M. = 191.25 ft-k

191.25 ft-k X 12 in. /ft

§ = Mua/Fy = 24.0 ksi

= 95.6 in.>

From the allowable stress design selection table

Use W 18 X 55 S, = 98.3 in.>

b) For AISC redistribution, the negative moment becomes 73 that produced

by gravity, and the positive moment increases 75 of the average negative
moments

M~ = 2 X 191.25 ft-k = 172.1 ft-k

10
1 191.25 fik
M* = 1076 fk + [ — x — =) = 117.2 fik
10 2
172.1 ft-k x 12 in. /ft
S=M,/F, = /R _ g6.1 in.3

24.0 ksi

From the allowable stress design selection table
Use W 18 X 50 S, = 88.9 in.?

Example 2.19. Design a continuous beam for the condition shown.

wp, = 1.5 kip/tt.
w,, = 3.0kip/ft.

T T T
oy P

L 0 ——le o o]
p—-2r-0—] 270" ——f—— 270" ——]

Solution. The analysis can be done easily with the aid of AISC beam diagrams
and formulas. Design the beam to carry the dead load uniformly plus the max-
imum moment that can occur according to variable live load conditions (AISCM
Part 2). Referring to AISCM p. 2-308, the following moments can be obtained:
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HIU]UIHIﬁIH{HIHIH
4 1 2 3 [
! ! ! !

T I
1 1 f 2 t 3

Load case #36

Load case #35

A 8 ¢ o
T  Load case #34

i ' 2 t 3 t

A 8 ¢ b

For dead load, use load case #36:

M, = M, = 0.08(1.5 k/ft x (27.0 ft)?) = 87.5 ft-k

Mg = Mo = —0.1(1.5 k/ft X (27.0 fty*) = —109.4 ft-k

It can be seen that the maximum midspan moment occurs in the outer bays and
that the maximum interior support moment occurs with one bay unloaded.
For midspan live load moment, use load case #35 (outer bays):

M, = 0.1013(3.0 k/ft X (27.0 ft)) = 221.5 ft-k
For support moment, use load case #34 (at support B):
Mg = —0.1167(3.0 k/ft X (27.0 ft)*>) = —255.2 ft-k

The beam is symmetrical, and moments would be the same for the opposite
side.

Adding dead load moment and live load moments
M, = 87.5 ft-k + 221.5 ft-k = 309.0 ft-k
Mg = (—109.4 ft-k) + (—255.2 ft-k) = —364.6 ft-k

Note that the moments M, for the dead load and M, for the live load do not
occur at the same location on the beam; however, we are justified in directly
superimposing these two moments, since this result is very close to (actually,
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slightly greater than) the exact value of the total moment at this point. The
following calculation for the exact moment at point 1 (i.e., 0.45 X 27 ft =
12.15 ft to the right of support A) illustrates the above remarks.

Dead load (load case #36): My = —109.4 ft-k (see above)
Live load (load case #35): My = —0.050 wl> = —0.05 x 3 x (27)°
—109.35 ft-k

Total My = —109.4 — 109.35 = —218.75 ft-k

27  218.
Ry=B0+15) x— - 8.75

= 60.75 — 8.10 = 52.65 k
> 7 60.75 — 8.10 = 52.65

Total moment at point 1:

(52.65)

L= m = 308 ft-k, which is less than

the total moment of 309 ft-k
obtained from direct superposition
(less than a 0.5% difference)

Using moment redistribution

Mg =09 x —-364.6 ft-k = —328.1 ft-k

39.46 ft-k
M, = 309.0 ft-k + T 327.2 ft-k (nearly equal moments)

328.1 fi-k x 12 in. /ft
24.0 ksi

= 164.05 in.’?

S=M/Fb=

Use W24 X 76 S, = 176.0 in.?

If moment redistribution was not considered, maximum moment = My =
—364.6 ft-k and

_364.6 ftk X 12 in. /ft
h 24.0 ksi

= 182.3 in.?

S

Use W 24 X 84 (S, = 196.0 in.%).
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2.4 BIAXIAL BENDING

All cross sections have two principal axes passing through the centroid for
which, about one axis, the moment of inertia is maximum and, about the other
axis, the moment of inertia is minimum. If loads passing through the shear
center are perpendicular to one axis, simple bending occurs about that axis.
Members loaded such that bending occurs simultaneously about both principal
axes are subject to biaxial bending. The total bending stress at any point in the
cross section of such a member is
M, M,

f,,=-—m+—n (2.14)
1, I

where the subscripts refer to the principal axes, m is the distance to the point
measured perpendicular to axis I, and n is the distance to the point measured
perpendicular to axis 2. The moment of inertia /| and I, about the principal axes
can be determined by

I, = + I,

2
IX\

5L

where I, and I are the moments of inertia through the centroid about the x and
y axes, respectively, and I, is the product of inertia of the cross section. The
product of inertia of a section is the geometrical characteristic of the section
defined by the integral /,, = {, xy dA. If orthogonal axes x and y, or one of
them, are axes of symmetry, the product of inertia with respect to such axes is
equal to zero. In such cases, the principal axes coincide with the x and y cen-
troidal axes of the member.

In the case of loads applied perpendicular to symmetrical sections, the stresses
and deflections may be calculated separately for bending about each axis and
superimposed. Loads applied that are not perpendicular to either principal axis
can be broken down into components that are perpendicular to the principal
axes. The extreme bending stress due to biaxial bending is then

M M. x
f, = 1*y+ ; 2.15)

x ¥

and the resultant deflection is

Ar = [(A)* + (A)%)'/? 2.16)
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Shapes that do not have an axis of symmetry have the principal axes inclined
to the x and y centroidal axes. For these nonsymmetrical shapes, the total stress
at any point in the cross section can be determined by

Mx - M\'(Ix_v/ly) Mv - Mx(lxy/ly)
fo = 2 y _ 2
I = d4,/1) 1, = (5, /1)

X

where M, and M, are bending moments caused by loads perpendicular to the x
and y axes, and /,, is the product of inertia of the cross section, referred to the
x and y axes. V

In most cases, steel flexural members have different allowable bending stresses
with respect to their major and minor axes. The use of the interaction equation
below is then required to limit the stress levels in each plane (see AISCS H1 or
H2 with f, = 0):

fo | o

< 1.0 .17
Fbx Fby

The allowable stresses given in Sect. 2.2 above are applicable (AISCS F1, F2,
F3).

Example 2.20. The wide-flange beam shown is loaded through the center sub-
jecting the beam to a 150-ft-k moment. Design the lightest W 14 section by
breaking down the moment to components of the principal axes and solving for
biaxial bending. Assume full lateral support.

"

: 530"
- M = 150 ft -kip

M,

14

~

Solution. The moment is broken down by the components as shown

M, = 150 ft-k (cos 30°) = 130.0 ft-k

M

y

150 ft-k (sin 30°) = 75.0 ft-k
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For member under combined stress

fu , o

=< 1.0 (AISCS HI)
Fbx by

Try W 14 X 109 S, = 173 in.* S, = 61.2in.’

F,, = 24.0 ksi
F,y = 27.0 ksi

130.0 ft-k X 12 in. /ft
fox = M, /S, = 0.0 . 12in./ft_ 9.02 ksi
173 in.}

75.0 ft-k x 12 in. /ft .
foy = M,/S, = AR = 14.71ksi

9.02 ksi + 14.71 ksi
24.0ksi  27.0 ksi

= 0.376 + 0.545 = 0.921 < 1.0 ok

If the next lightest section, W 14 X 99, were checked, the interaction equation
would yield 1.018 > 1.0 (N.G.).

Therefore, W 14 X 109 is the lightest W 14 section.

Example 2.21. Design a C15 channel spanning 20 ft with full lateral support
as a purlin subject to biaxial bending. Assume the live load of 100 1b/ft, dead
load of 40 1b/ft, and wind load of 80 Ib /ft to act through the shear center, thus
eliminating torsion in the beam.

Solution. The total wind load is carried in the x axis of the channel, because
the wind acts perpendicular to the roof surface. The live load and dead load
will be broken down into x and y components.
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Gravity loads w = 40 Ib/ft (DL) + 100 Ib/ft (LL)
140 Ib/ft

2
w, = 80 Ib/ft (wind) + —= 140 Ib/ft = 205 Ib/ft

Vs

1
140 Ib/ft = 63 Ib/ft

Wy = :/—5
0.205 k /ft X (20.0 ft)?

M, =wl*/8 = / 2 (  _ 10.25 ft-k
0.063 k/ft x (20.0 ft)?

M, =wlI?/8 = / 2 ( L =315 fik

For members subject to combined stresses, the bending stresses must be pro-
portioned such that

fu o
Fbx Fb

y

F,, = 22.0ksi (AISCS F1.3)

=< 1.0

F,, = 22.0 ksi (AISCS F2.2)
Try C 15 X 33.9 S, =42.0in> S, =3.11in’>

10.25 ft-k x 12 in./ft

for = Me/S, = 42.0in.° = 29 ksi
3.15 fi-k x 12 in. /ft ,
Soy = M,/S, = XTEE = 12.2 ksi

2.9 ksi 12.2 ksi

+ = 0. :
20k T 220k 060 < 1O ok

Use C 15 X 33.9 channel.

(Note: Increase in allowable stress due to wind not considered.)

2.5 SHEAR

For a beam subjected to a positive bending moment, the lower fibers of the
member are elongated and the upper fibers are shortened, while, at the neutral
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€

t

Fig. 2.6. Deformation of a beam in bending. Due to a moment, a section of beam in original
position ABCD will deflect a distance A. In doing so, compressive strains will develop on the loaded
side of the neutral axis, and tensile strains on the opposite side. Under elastic deformation, the
strains are linear, with no strain occurring at the neutral axis. The original section ABCD assumes
a new position A'B'C'D’.

axis, the length of the fibers remain unchanged (see Fig. 2.6). Due to these
varying deformations, individual fibers have a tendency to slip on the adjacent
ones. If a beam is built by merely stacking several boards on top of each other
and then transversely loaded, it will take the configuration shown in Fig. 2.7(a).
If the boards are connected, as in Fig. 2.7(b), the tendency to slip will be
resisted by the shearing strength of the connectors. For single-element beams,
the tendency to slip is resisted by the shearing strength of the material.

From mechanics of materials, the longitudinal shearing stress in a beam is
given by the formula

_Ye

Jfo = I (2.18)

where V is the vertical shear force, Q is the moment of the areas on one side
of the sliding interface taken about the centroid of the cross section, I is the
moment of inertia of the section, and ¢ is the width of the section where the
shearing stress is investigated. For rectangular beams, the maximum shearing
stress is given by f, = 3V/2A, where A is the area of the cross section. For
rolled and fabricated shapes, the AISC allows the longitudinal shearing stress

(a) (b}

Fig. 2.7. Built-up beam in flexure: (a) transversely unconnected, (b) transversely connected.
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to be determined by the formula

fo= 4 (2.19)

A web

where A, is the product of the overall depth of the section d and the thickness
of the web ¢, (AISCS F4). However, this value is 10 to 15% less than the
maximum shearing stress, as determined by the more accurate eqn. (2.18). The
allowable shearing stress, as determined by the AISC on the gross section of a
member, is given by F, = 0.40 F, (AISCS (F4-1)), provided that h/t, <
380/ «/I'Ty Except for short spans with heavy loading, or heavy concentrated
loads close to supports, shear seldom governs in the design of beams.

Example 2.22. Determine the maximum shearing stress for the following sec-
tions when the external shear force V = 75 kips.

- & [ m
~4——— 12 1+ 6" +H
31,,
1 4 C——1
W12 X 87
] e
— 1
(a) (b) (c)
Solution.
K14
a) fvmax = a

A=4in X 12 in. = 48 in.?

b) fvmax = 7
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By inspection, it is seen that the neutral axis is located at the center, 6 in. from
the bottom.

bh?®
=% — + (4d?)
12

1 x (6)°

- .t
B 900 in.

3
=2 x[7—x1—261+(3 X 7)(6 — 1.5)2} +

Because f,, . 1S at the neutral axis,

0=0BxT76-15 %3 x (1.5 =99.0in.3
t =11in.
VQ 75k x 99 in.} ,
Fomae = 7 = 500 10 ® x 1in, - 020 K
. . 14
Verify with f, = y (AISCS F4)
web
75 k .
o= R x . - 0P

As the web and the flanges are very thick, there is approximately one-third
difference in shear values.

4
<) fo =

S

web

Awe, =d X t = 12.53 in. x 0.515 in. = 6.45 in.?
4 75 k

fo = A = m = 11.62 ksi
Verify with f, = re
It
12.53in.  0.810 in.
0 = 0.81in. x 12.125 in. x m_ mn
2 2
10.91 in.\> 1
+0515in, X [ ———) x -
mn < 2 > 2

= 65.21 in.3



MEMBERS UNDER FLEXURE: 1 71

[ = 740 in.*

75k X 65.21 in.?

= = 12.83 ki
740 in.* x 0.515 in. .

fo

A difference of about 10% occurs between an exact approach and an estimated
value. The code is aware of this error which seldom is greater than 15% and
compensates for it in F,, = 0.40 F,.

Example 2.23. Determine if the beam shown is satisfactory. Assume full lat-
eral support. Check both flexural and shearing stresses. Neglect the beam
weight.

106 kip

W16 X 40

{ 1

pas ot
| 46" 1-6"—|

Ao 2es kel T TTITTTTTTIT

79.5 kip = R,,

119.25 ft.kip

il /ﬁh

Solution.

d =16.01in.; r, =0.305in.; § = 64.7 in.’

R o 106k x 4.5 ft
R 6.0 ft

R, =106k — 795k =265k

=795k

M., (from diagram) = 119.25 ft-k

The moment resisted by the section is

Mg =S X F, = 64.7 in.> X 24 ksi X

12 in.
129.4 ft-k > 119.25 ft-k ok
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Vi = 79.5 k

v o 79.5 k
A, 16.01in. X 0.305 in.

fo = = 16.28 ksi

F,=040F, = 0.4 X 36 ksi = 14.4 ksi
16.28 > 14.4 ksi N.G.

W 16 X 40 is not satisfactory for resisting shear.

2.6 HOLES IN BEAMS

Whenever possible, holes in beams should be avoided. If drilling or cutting
holes in a beam is absolutely necessary, it is good practice to avoid holes in the
web at the locations of large shear and in the flange where the moment is large
(see Fig. 2.8).

As a result of numerous tests, and by comparing the yield and the tensile
fracture capacities of the tensile members with holes, no hole deduction needs
to be considered until 4,/4, equals 1.2(F,/F,). This corresponds to a hole
allowance of 25.5% for A36 steel, 7.7% for A572 Gr 50 steel, and 14.3% for
A588 Gr 50 steel. As stated in AISCS B10, no deduction in the total area of
either flange is necessary if (B10-1) is satisfied:

0.5F, A = 0.6F, A, (2.20)
[\
<= O

f‘ Net s?[14ear A, IfA, 20854, A, = A,
— et o~ EoooPoE=IoIITTTO 164, <0854, A, = 4,
et tensiie
area, A, ~_| *** o <>(0'85 Ay —A)

(a) (b)

Fig. 2.8. Holes in beams. (a) Holes in beam webs should be avoided at locations of large shear.
When holes are necessary, as in the end connection shown, the section must be checked for web
tear-out. (b) Flange holes should be avoided at regions of large moments.
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where A, is the gross area of the flange and Ay, is the net area of the flange
calculated according to the provisions in AISCS B2 (see Chap. 1). If (2.20) is
not satisfied (see (B10-2)), then the member flexural propeties shall be based
on an effective tension flange area Ay, as given in (B10-3):

SF,
A = % o An (2.21)

Example 2.24. Calculate the design section modulus for a W 14 X 145:

a) for two 1-in.-diameter holes in each flange (A36 steel).
b) for two 2-in.-diameter holes in each flange (A572 Gr 50 Steel).

Hole diam.—-{ l-—
 R— | _L.%!
77 t
é
14.78" é W14 X 145
139?@ !
AL
l 16.5" ‘I
I ) 'l

Solution.

S, =232in% b;=155in; t = 1.090in; I = 1710in.*
Ag = by X t; =155 in. X 1.090 in. = 16.90 in.?

a) Determine flange area loss due to two 1-in.-diameter holes:
As =16.90in> — 2 x (1.090 in. X 1in.) = 14.72 in.
Check (2.20):
0.5 x 58 ksi X 14.72in.2 = 427 k > 0.6 x 36 ksi X 16.9 in.” = 365 k

Therefore, no hole reduction is required.

$=38 =232in>
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b) Determine flange area loss due to two 2-in.-diameter holes:
As = 16.90in.” — 2 x (1.090 in. X 2 in.) = 12.54 in.?
Check (2-20):
0.5 x 65 ksi x 12.54 in.”> = 408 k < 0.6 x 50 ksi X 16.9 in.? = 507 k
Hence, determine the effective tension flange area (2.21):

65 ksi
50 ksi

A, = (12.54 in.?) = 13.59 in.?

[= W RV

This is equivalent to a tension flange which is 1.090 in. thick and 13.59
in.?/1.090 in. = 12.47 in. wide.

Determine effective section properties:

(1.09)(12.47)(1.09/2) + [(0.68)(12.6)((12.6/2)
+ 1.09)] + (1.09)(15.5)(14.24)

(1.09)(12.47) + (0.68)(12.6) + (1.09)(15.5)

_ 311.23in.’
"~ 39.06 in.?

y:

= 7.97 in. (measured from the bottom of the tension
flange to the centroid of the section)

o~
I

1

13 (1247 x 1.09%) + (1.09 X 12.47)(7.97 — 1.09/2)*
1

+ 35 (0.68 x 12.6%) + (0.68 x 12.6)(7.97 — 7.39)*

1
5 (15.5 x 1.09% + (15.5 x 1.09)(14.78 — 7.97 — 1.09/2)*
= 750.7 + 116.2 + 664.8 = 1531.7 in.*

1531.7 in.*
Sy = =2249in}
© = 1478 in. — 7.97 in. n

1531.7 in.*
7.97 in.

Sbo((om = =192.2 in-3 (govems)

To eliminate the above lengthy calculations, the authors suggest deducting
the same amount of area in the compression flange that is required in the tension



MEMBERS UNDER FLEXURE: 1 75

one. This results in conservative and very close values for the section proper-
ties. For example, in this case,

I, = 1710 — 2 x (16.9 — 13.59) X (14.78/2 — 1.09/2)2
= 1399.8 in.*
1399.8 .3 L
S = W = 189.4 in.”, which is very close to the actual value of 192.2
(14. ) in.? determined above (less than 1.5% difference)

Beam end connections using high-strength bolts in relatively thin webs may
create a condition of web tear-out. Failure can occur by the combination of
shear through the line of bolts and tension across the bolt block. This condition
should be considered when designing the bolt connection and should be inves-
tigated in situations when the flange is coped or when shear resistance it at a
minimum. For further discussion see Chapter 5, Bolts and Rivets (also, see Fig.
2.8a).

2.7 BEAMS WITH CONCENTRATED LOADS

For beams which are subjected to concentrated loads, AISCS K1.3 and K1.4
have established provisions governing the magnitude of the concentrated load
R s0 as to prevent failure of the beam web by local yielding or crippling. The
thickness of the beam web ¢, the length of bearing ¥, and the distance from
the outer face of the beam flange to the web toe of fillet £ all play an important
role in these provisions. In a particular situation, either web yielding or web
cripplings may govern.

¢ For the case of web yielding (AISCS K1.3):

a) If R is applied at a distance equal to or larger than the depth of the beam
d from the end of the member, then (K1-2) governs and can be rewritten
as follows:

R < 0.66F,1,(N + 5k) (2.22a)
or

R < 2R, + NR, (2.22)

b) If R is near the end of the member, then (K1-3) governs:
R =< 0.66F,t (N + 2.5k) (2.23a)
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- —_— - - ’ —_ k 4 p— —_
U
"I N L - / 2.5k ——’ . N—
T\ _ 25k 25k _ _ ¢ _ f
T
(a) (b)

Fig. 2.9. Local web yielding. The applied load or end reaction is transferred to the web from the
flange at the web-flange intersection over a length extending a distance 2.5k on either side: (a)
interior concentrated load, (b) end reaction.

or
R <R, + NR, (2.23b)

where R, = 0.66(2.5)t,,kF,
R, = 0.66¢,F,

These provisions can be seen schematically in Fig. 2.9.

¢ For the case of web crippling (AISCS K1.4):

a) If R is applied at a distance greater than d /2 from the end of the member,
than (K1-4) governs:

1.5
R < 67.5;3[1 + 3<5’> <’~W> ] N (2.24a)

d) \y

or

R < 2(R; + NR,) (2.24b)

b) If R is near the end of the member, (K1-5) governs:

R

A

1.5
34&{1 + 3<E> <’t—w> } N (2.25a)

d/ \y
or

R =< Ry + NR, (2.25b)
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Table 2.1 Constants for Beams with Concentrated Loads (Adapted from the

AISCM)
Definition of symbols F, = 36 ksi F, = 50 ksi
V = Max. web shear, kips 14.4 dt 20 dt
R = Max. end reaction for R, + NR, R, + NR,
3i-in. bearing, kips or or
R, + NR, R, + NR,
R, = Constant for yielding, kips 59.4kt,,. 82.5kt,,
R, = Constant for yielding, kips/in. 23.81, 33.01,,
R; = Constant for crippling, kips 2040503 2041%1°
R, = Constant for crippling, kips/in. 612t /1,d 216} /1,d
where
F,,, = specified minimum yield stress of beam web, ksi
d = overall depth of the member, in.
t; = flange thickness, in.
t,, = web thickness, in.
Ry = 34(F,,1)*°1,°

Ry = 102(F,,)""1;,/ (t;d)

If the governing equations above are not satisfied, bearing stiffeners extending
at least one-half the web depth shall be provided.

On page 2-36 of the AISCM, the constants R, through R, have been tabulated
for steels with F,, = 36 ksi and F,, = 50 ksi. These quantities are given in Table
2.1. The specific values of these constants can be obtained for a particular beam
size in the Allowable Uniform Loads on Beams tables, which begin on p. 2-37.
Note that the values of R given in the tables are for an end bearing length N =
3.5in.

Example 2.25. Select the lighest section for the beam shown and determine
the bearing length required for each support, in order not to use bearing stiffe-
ners. Assume full lateral support and 50 ksi steel.

4.8 kip/ft.

Al 27'-0" —s
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Solution.
W =48k/ft x 27 ft = 130 k
M = WL/8 = 437.4 ftk

Referring to the AISC beam selection table, use W 24 X 76 (Mp = 484 ft-k),
t, =044 in.,1 =0.68in.,d = 23.92in., and k = 1.4375 in.

W 130.0 k
Ri=Rg=—= =650k
A B 2 2
. . . R - Rl
Bearing length for web yielding, N = R (2.23b)
2
, - R -R,
Bearing length for web crippling, N = R (2.25b)
4

Use Table 2.1 to determine the constants:

R, = 82.5 x 1.4375 x 0.44 = 52.2 k
R, = 33.0 X 0.44 = 14.5 k/in.
240 x (0.44)'5 x (0.68)°° = 57.8 k

&
I

R, = 721 X (0.44)*/(0.68 x 23.92) = 3.78 k /in.

Note that these values can be obtained from the bottom of p. 2-107 in the
Allowable Loads on Beams table.

0.88 in.

For web yielding: N = (65 k — 52.2 k)/14.5 k/in

For web crippling: N = (65 k — 57.8 k) /3.78 k/in = 1.90 in. (governs)

From a practical point of view, the actual bearing length would be longer.

Example 2.26. A column is supported by a transfer girder as shown.

a) Determine the lightest girder (neglect girder weight).
b) Determine safety against shear.
c) Determine lengths of bearing under the column and at the supports.
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500 kip
- 1
- 6 ! a—
A 8 c
Solution.
500k x 4 ft
a) R, = TR 200.0 k

Rc =500k — 200 k = 300 k
M, =200k X 6ft = 1200 ft-k

Use W 36 x 182 at the lightest available section (M = 1230 ft-k)

14 300 k

- = 11.39 ksi
Ave 3633 in. x 0.725 in. 9 ksi

b) fo=

F,=040F, = 14.4 ksi > 11.39 ksi ok
W 36 x 182 is safe against shear.

c) Forw 36 x 182: R, =91.5k, R, = 17.2 k/in.
(p. 2-43 AISCM)
Ry = 137k, R, = 5.44 k/in.

(200 k — 91.5k)/17.2 k/in.
= 6.3in. (2.23b)
(200 k — 137 k)/5.44 k /in.
= 11.6 in. (2.25b) (governs)

At point A: N = larger of

(300 k — 91.5k)/17.2 k/in.
= 12.1in. (2.23b)
(300 k — 137 k)/5.44 k/in.
= 30 in. (2.25b) (governs)

At point C: N = larger of

79
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For the interior load at point B, the larger N obtained from eqn. (2.22b) (web
yielding) or eqn. (2.24b) (web crippling) will govern:

- - (2x91.5k
N=RZ2R 0k =@XOLSK _ g0 00

R, 17.2 k /in.
(R/2) — Ry _ (500 k/2) — 137k _
- = =20.8in. (2.24b
N R, 5.44 k /in. mn. ( ) (govems)

2.8 DESIGN OF BEARING PLATESS

When a beam is supported by a concrete or masonry base, the reaction must be
distributed over an area large enough so that the average bearing pressure on
the base does not exceed the allowable limit. Thus, beam bearing plates are
provided, as shown in Fig. 2.10. In AISCS 19, the following allowable bearing

pressures Fp are given:

On sandstone and limestone: F, = 0.40 ksi
On brick in cement mortar: F, = 0.25 ksi
On the full area of a concrete support: F, = 0.35f.

Iﬁ Anchor as required \\

[ ,——/,\ . |

|
7 /i/m////[/.1T TTTTT,
n kK k n t

ot

5—4 o —

Fig. 2.10. Bearing plate for a beam supported on a concrete or masonry base (adapted from the
AISCM).

§See AISCM pp. 2-141ff.
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On less than the full area of a concrete support:

{A
F, = 0.35f, ;2 < 0.7f.
1

where f. = specified compressive strength of concrete, ksi
A, = area of steel concentrically bearing on a concrete support, in.?
A, = maximum area of the portion of the supporting surface that is ge-
ometrically similar to and concentric with the loaded area, in.?

The rules governing the length of bearing N are the same as those given in
Sect. 2.7:

R - R,

R, (2.23b)

For web yielding: N =

R‘“R3
R,

For web crippling: N = (2.25b)

Given the allowable bearing pressure, and selecting a value of N greater than
or equal to the governing one from (2.23b) or (2.25b), the width of the plate B
can be calculated as follows:

B = R (2.26)

F, x N

It is common practice to use integer values for B and N.
The thickness of the plate ¢ can be determined from the following formula,
which is based on cantilever bending of the plate (about its weak axis) under

uniform pressure:
3f,n 2
t = f 2.27
F, ( )

where n = (B/2) — k and f, = actual bearing pressure = R/(B X N). Since
F, = 0.75F, (see eqn. (2.9)), the above equation can be rewritten as

I
t =2n \/;: (2.28)
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Example 2.27. Design a bearing plate for a W 30 X 90 with an end reaction
of 85 kips which is supported by a concrete wall (f; = 3000 psi) as shown.

W 30 X 90 %

ZZ

Z Z
2 in. — N
2i -——<‘—— in. v
in B 2in N,
le—8,

e

le— 2 in.

N

Solution. From the Allowable Uniform Load tables (p. 2-49):

R, = 36.6 k R, =513k
R, = 11.2 k/in. R, = 3.53 k/in.
85 — 36.6
=— """ =43in. 2.23b
N 12 3in (2.23b)
- 51.
N = 8—5—3——5% = 9.5 in. (governs) (2.25b)

Use N = 10 in.

Area of concrete support = A, = B; X N,

=B+ 4) XN+4
(Note that this area is geometrically similar to
and concentric with the loaded area)

Try F, = 0.6, = 0.6 X 3 = 1.8 ksi

R
A =B XN=— (2.26)
FP
85 )
= B X 10=—=47.2in.2—*B=4—7——2—=4.72in.
1.8 10

Minimum B should be 10.375 in., which is the flange width of the W 30 X 90.
Therefore,
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85

5= Tox 10375 - 0810 ksl

Check F), (AISCS J9):

A _ (10375 + HAO+ 4 _
A 10.375 x 10 o

F,=035x3 X 1.4 = 1.47 ksi > f, = 0.819 ksi ok
and 1.47 ksi < 0.7 x 3 = 2.1 ksi ok

10.37
n = < 0.3 5> - 1.3125 = 3.875 in.

2

Determine ¢ from (2.28):

0.819
=2 . X |[—— = 1.17 in.
t X 3.875 26 7 in

Use bearing plate 15 x 10 x O ft, 103 in.

Example 2.28. A S 24 X 100 is supported by a 19 X 19 in. concrete pilaster.
The reaction is 200 kips, and the compressive strength of the concrete is 4000
psi. Design the required bearing plate. The smallest distance from the edge of
the bearing plate to the edge of the pilaster is 2 in.

Solution. Fora S 24 X 100:

R =714k Ry = 122k
R, = 17.7k/in. R, = 12.1k/in.
N=22"T1%_ ¢ 93in. (governs)
=T 177 " oPmi8
or
200 — 122 _
= 21 = 6.45 in.

Use N = 7 in.
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Try F, = 0.5f; = 2 ksi

200 . .
B = = 14.29in. Use B = 15 in.
T x2
200
= = 1.90 ksi
Jo 7% 15 90 ksi

A, =19 x (7 +2+2) =209in?

A =7 x 15 =105 in.2

/209
F, = E X 0.35 X 4 = 1.98 ksi > 1.90 ksi ok

and 1.98 ksi < 0.7 X 4 = 2.8 ksi ok

n = % - 175 =5.75in.

t=2X575 X% f%'—69—=2.64in.

Use bearing plate 23 X 7 X 1 ft, 3 in.

The reader can verify that the thickness of the plate can be reduced to 1.75 in.
if a square bearing plate with side lengths of 12 in. is used. This plate size
would also decrease the pressure on the pilaster.

2.9 DEFLECTIONS

Allowable deflections of beams are usually limited by codes and may need to
be verified as part of the beam selection. The AISC sets the limit for live load
deflection of beams supporting plastered ceilings at 1 /360 of the span (AISCS
L3).

In addition the AISCS Commentary L3.1 suggests the following guideline:
the depth of the beams for fully stressed beams should not be less than (F, /800)
X the span in inches. The deflection of a member is a function of its moment
of inertia. To facilitate design, Part 2 of the AISCM has tabulated values of I,
and /, for all W and M shapes, grouped in order of magnitude, where the shapes
in bold type are the most economical in their respective groups (see pages
2-26fT).
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Example 2.29. Show that beams of the same approximate depth have the same
deflection when stressed to the same stress f;.

Solution. Assume that beams are loaded with uniformly distributed loads.

w2 I
M1='T=f,,Sl =f,,§1, d = depth
w, 12
M2=2T"‘fb52 ﬁ;

5w, I* _iw,IZS_lz

A, = =
' T 384EI, 384 8 EI,
1 12 40
i PX — = =—
Cﬁ’ ! El, Sorae € = 38

Similarly, we find that A, is equal to the same quantity. Hence, we see that the
deflection is dependent on the depth and the span for the same f;, and E, and
not on the load.

Example 2.30. Determine if the beam in Example 2.25 is adequate to limit
deflection to [/360. Choose the next lightest satisfactory section if the maxi-
mum deflection is exceeded.

4.8 kip/ft. includes beam weight

s T

1

27'-0"
64.8 kip 64.8 kip
Solution.
5 wi*
Amax = =
384 EI
E = 29,000 ksi

For W 24 x 76, I, = 2100 in.*

5(4.8/12)k/in. ((27 X 12) in.)*
384 (29,000 ksi) (2100 in.*)

1 21x12

360 360

Aoy = = 0.942 in.

=0.90in. < 0.942 in. N.G.
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Determine next lightest satisfactory section

5 wil? l
S —
384 EI ~ 360
5 wi* 1
I 2 — X ——
384 E "~ 1/360
I, = 2199 in*

Choosing from the moment of inertia selection table, p. 2-27 AISCM.

W24 x 84, I =2370in.*
Ana = 0.835in. ok

Use W 24 X 84.

Example 2.31. Design the beam B and girder G for the framing plan shown.
Assume full lateral support, A572 Gr 50 steel, and the maximum depth of mem-
bers to be 22 in. The floor is 5 in. reinforced concrete and carries a live load
of 150 Ib/ft*. Assume there is no flooring, ceiling, or partition. Furthermore,
assume that there is no restriction on deflection, but the value is requested.

Solution. Because the weight of reinforced concrete is 150 1b /ft*, the weight
of 5 in. of concrete is
5 in.

——— x 150 Ib/f® = 62.5 b /ft?
2in. i < PO Ib/ft = 6251b/ft
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The tributary width of the beams is 8 ft.

DL, = 62.51b/ft> x 8 ft = 500 1b/lin. ft of beam

conc

LL

Il

150 Ib/ft* X 8 ft = 1200 Ib/lin. ft

Assume weight of beam = 50 1b/lin. ft

Total distributed loading on the beams

(500 + 1200 + 50) Ib/lin. ft = 1.75 k/ft

wL? _ 1.75 k/ft X (25 fty’
max — 8 - 8

= 50 ksi (AISCS, Table I)

=<
I

= 136.7 ft-k

|
|

A W 18 X 35 may be selected as the lightest satisfactory section (Mz = 158
ft-k).

Because the beams frame into the girders, they are exerting their end reactions
as concentrated loads on the girders. Each girder carries the end reactions of
three beams on either side for a total of six concentrated loads.

The end reaction of each beam is the total load on the beam divided by 2.

r o L751b/ft X 25 ft

= 21.875k
2

Assume weight of girder to be 150 Ib/lin. ft.

End reactions of the girder

3 X 2(21.875 k) + (0.15 k/ft x 32 ft
(875)+2(0 / ) — 68.0/k

Moment at midspan
(68 k x 16 ft) — (43.75 k X 8 ft)
— (0.15k/ft x 16 ft x 8 ft) = 718.8 ft-k

A W 30 x 99 may be selected as the lightest section. However, the depth of
W30 X 99 = 29.64 in. > 22.00in. N.G.

M 718.8 ft-k X 12 in. /ft

=~ = : = 261.4 in.’
F, 0.66 x 50 ksi

Seeq =
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From p. 2-10, select W 21 X 122 as the shallowest member with § > 261.4
.3
in.

S =273in.>, d=21.68in. ok

Use W 21 X 122 girder.
Check deflection:

Beam B
5 wL? 1.75 k/ft
Apax = = = 0.15 k/in.
mx = 3g4 B YT 12in. /ft 5k/in
I =510int*
E = 29,000 ksi
. . 4
A = 5 % 0.15 k/in. X (2§ ft x 12'm4./ft) - 107in.
384 x 29,000 ksi x 510 in.
Girder G

From cases 1, 7, and 9 of beam diagrams and formulas, AISCM pp. 2-296 ff
A 5 wi* N P N Pa
max " 384 F] 48 EI 24 EI
a=8ft X 12in./ft = 96 in.
I = 2960 in.*

5% 0.122 x (32 x 12" 43.75 x (32 x 12)°
max T 384 x 29000 X 2960 48 X 29000 X 2960

+ 43.75 X 96
24 x 29000 x 2960

= 0.402 + 0.601 + 0.827 = 1.83 in.

3% - 4a?)

[3 x (32 x 12)2 — 4 x (96)*)

2.10 ALLOWABLE LOADS ON BEAMS TABLES

The Allowable Loads on Beams tables starting on page 2-37 of the AISCM
provide the allowable uniformly distributed loads in kips for W, M, S, and
channels, which are simply supported with adequate lateral support. Separate
tables are provided for F, = 36 ksi and F,, = 50 ksi (gray border). In addition,
L.; L,; the maximum deflection for the allowable uniform load; §,; the maxi-
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mum shear force V; the concentrated load coefficients R, through R,; and the
maximum end reaction R for a 3}-in. bearing (see Sect. 2.7) are provided. The
many important features of these tables are clearly explained starting on p. 2-30,
which eliminates the need to repeat that material here. The examples on pages
2-34 and 2-35 illustrate the use of these tables.

PROBLEMS TO BE SOLVED

2.1. Calculate the bending stress due to a bending moment of 105 ft-k (foot-
kips) about the strong axis on the following wide-flange beams:

a) W10 x 49
b) W 12 X 45
c) W14 x 38

2.2 Calculate the allowable bending moment for each of the beams in problem
2.1 given a) A36 steel, b) F, = 50 ksi. Assume full lateral support.

2.3. Select the most economical W section for a simply supported beam car-
rying a 25-k concentrated load at the center of a 30-ft span. Neglect the weight
of the beam, and assume full lateral support.

2.4. Select the most economical W section for a simply supported beam loaded
with a uniformly distributed load of 3.0 k /ft over a span of 35 ft. Neglect the
weight of the beam, and assume full lateral support.

2.5 through 2.7. Select the most economical W section for the beams shown.
Assume full lateral support, and neglect the weight of the beam.

20 kip

5 kip 10 kip 20 ki
2kl PRSP

/é!}}lllllllll/l;l% %;l |4 —
P O 0 W W

2.8 through 2.10. Redesign the beams in Problems 2.5-2.7 for F, = 50 ksi.

2.7

2.11. Assuming that a W 18 X 50 wide-flange beam was mistakenly installed
in the situation described in Problem 2.3, determine the load that the new beam
can carry.

2.12. Determine the distributed load that can be carried by a W 21 X 57 beam
over a simply supported span of 25 ft with lateral supports every 5 ft.
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2.13. Determine the concentrated load that a W 18 X 40 beam can carry if the
span is 42 ft with the load and a lateral support located at midspan. Assume F,
= 50 ksi.

2.14. Compute the maximum shearing stress on the following sections due to
an external shear force of 60 kips.

- I:F‘
1.

W10 X 60

sl —a]

I P — ——

(a) (b)

2.15. Select the most economical W 12 section that can carry a concentrated
load of 85 kips at the third point of a 4-ft 6-in. simple span. Check both flexural
and shear stresses.

85 kip

l
5 %
| 3-0" —1-6"—]

2.16. Calculate the design section modulus fora W 16 X 89 for (A572 Gr 50):

a) two 3-in. diameter holes in each flange
b) two 13-in. diameter holes in each flange.

2.17 and 2.18. Solve Problem 2.16 for A36 and AS88 Gr 50 steels, respec-
tively.

2.19. Assuming that the 85-k load on the W 12 beam in Problem 2.15 is due
to a column bearing on the beam, calculate the bearing lengths required under
the column and for each support, such that stiffeners are not necessary.

2.20. Calculate the allowable bending stress of a W 12 X 53 with a maximum
unsupported length of 18 ft using a) F, = 36 ksi and b) F, = 50 ksi.

2.21. Calculate the allowable bending stress of a W 10 X 39 with a maximum
unsupported length of 22 ft using a) F, = 36 ksi and b) F,, = 50 ksi.

2.22. Calculate the allowable bending stress of a W 14 X 43 with a maximum
unsupported length of 24 ft using a) F\, = 36 ksi and b) F, = 50 ksi.
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2.23. Determine the allowable bending stress for a W 36 X 245 with a maxi-
mum unsupported length of a) 36 ft, b) 27 ft, c¢) 18 ft, d) 9 ft, and €) 6 ft. Do
not use any charts.

2.24. Solve Problem 2.23 using the appropriate charts.

2.25. Design a bearing plate fora S 20 X 86 carrying a 120-k reaction. Assume
that one edge of the plate must be at the edge of a concrete pilaster (f. = 4000
psi).

2.26. For the beam and reaction given in Problem 2.25, design a bearing plate
resting 23 in. behind the face of a very large concrete wall (f. = 4000 psi).

2.27. A beam spanning continuously, as shown, supports a live load of 1.50
k/ft and a dead load of 0.50 k/ft. Assuming full lateral support, design the
beam for

a) calculated positive and negative moments
b) positive and negative moments using redistribution allowed by AISCS

w,, = 1.5 kip/ft
wp, = 0.5 kip/ft

pra e b P
A A A

} 32'-0" - 32-0" |

2.28. Design a continuous beam for the condition shown. Assume full lateral
support.

w,, = 1.5 kip/ft

wp, = 0.5 kip/ft
NN Nn NNy
R e A%

32-0 | 32-0 |

F 32'-0

2.29. Assuming full lateral support for the loading shown, design a beam first
for calculated moments with simple spans, then for continuous beam moments,
and finally for redistributed moments.

30 kip 30 kip

1.2 kip/ft.

TN nnmn

P Ee) ~
150" 150"} 150" 15"-0—]
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2.30. The wide-flange beam shown is loaded through the shear center, sub-
jecting the member to a moment of 90 ft-k. Design the lightest W 12 section
by breaking down the moment into components along the principal axes and
considering biaxial bending. Assume full lateral support.

2.31. Design a C 10 channel purlin with full lateral support spanning 16 ft and
subject to biaxial bending. Assume the live load of 90 Ib/ft, dead load of 40
1b /ft, and wind load of 60 1b/ft to act through the shear center.

DL+ LL
Wind




3
Members under Flexure: 2

3.1 COVER-PLATED BEAMS

The moment of inertia and section modulus of a structural steel member can be
increased by the use of cover plates. In new steel work, height restrictions may
limit the use of deep sections, making a cover-plated shallow beam necessary.
Occasionally, the availability of rolled sections suggests the economical use of
cover plates. Cover plates can also be added to increase the flexural capacity of
existing beams of renovated or modified structures. Plates, in many cases, can
be attached to beam flanges and cut off where they are no longer necessary.

The normal procedure for design of cover plates, where depth restrictions
govern, is to select a wide-flange beam that has a depth less than the allowable
depth, leaving room for the cover plates. The moments of inertia of symmetrical
cover plates are added to that of the wide flange, making

d 2
Leg = Iwp + 24, <5> 3.1)

where d is the distance between the centers of gravity of the two cover plates.
From eqn. (3.1), the plate area required is equal to

Ieg = I
Ay =2 —‘“—“712—"”’ 3.2)

The use of an unsymmetrical flange addition requires the location of the section
neutral axis and the calculation of the moment of inertia.

Example 3.1. Determine the maximum uniform load a cover-plated W 8 x 67
can support simply spanning 30 ft. The plates are 3 X 12 in. Assume full lateral

support.
93
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Solution.

W8S
87

M=F, xS M=

The section modulus is equal to the moment of inertia I of the section divided
by the distance ¢ from the neutral axis to the most extreme fiber of the section.

]section = IWF + 2Ipl

Neglecting I, for the cover plates,

d 2
Lecion = Iwp + 24, <§> =272.0in.* + 2 x 9.0in.2 X (4.875 in.)?

Lecion = 699.8 in.*
.0 in.

_ 20 575 in. = 525 in.
S = 6998 in" 133.3 in.3

~ 5.25in. s
L =300 ft

8F,S 8 x24.0ksi X 133.3in.?

= = =2.37 k/ft

Y= 12 in. /ft x (30.0 ft)? /

Subtracting the weight of the beam and cover plates,
w =237 k/ft — 0.067 k/ft — 2(0.03 k/ft) = 2.24 k/ft

The maximum applied uniform load is 2.24 k /ft
Checking deflection,

_SWP 5 X (2.37 X 30) X (30 x 12)°

A= 384 EI 384 X 29,000 X 699.8

= 2.13 in.

The maximum deflection corresponds to a //169 deflection. Note that in many
cases this deflection is considered excessive and therefore unsatisfactory (AISCS
L3.1). It is recommended that whenever practical, a minimum depth of (F, /800)
1 be provided (AISCS Commentary L3.1).
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Example 3.2. An existing W 16 X 67, whose compression flange is laterally
supported, needs to be reinforced to carry a maximum moment of 325 ft-k.
Determine the required reinforcement if a) both flanges have symmetric cover
plates and b) if the bottom flange has a cover plate only. Assume that 3-in. bolts
connect the plates to the beam flanges (two rows of bolts per flange).

Solution.

325 ft-k X 12 in. /ft

— sa 3
Sreq 24 ksi 162.5 in.

a) Try 3-in. cover plates

16.33 in. + 0.375 in. = 16.705 in.
16.33 in. + 2 X (0.375 in.) = 17.08 in.
= 162.5in.> x (17.08 in./2) = 1387.8 in.*

d

Total depth
I

req
From eqn. (3.2):

1387.8 in.* — 954 in.*

= 3.11 in.?
(16.705 in.)? n

A4, =2 X

pl
Required plate width = 3.11 in.?/0.375 in. = 8.3 in.

Use 3 X 8} in. cover plate at the top and bottom (S = 163.8 in.%)

Note: Investigation of the hole reduction provisions yields no reduction in the
cross-sectional properties required (see AISCS B10 and Sect. 2.6). Also, the
total plate area is less than 70% of the total flange area (AISCS B10).

b) Try 4 X 16 in. cover plate

(19.7 X 8.17) + [4 X 16 X (16.33 + 2)]

5 = = 15.94 in.
Y 19.7 + 4 x 16) n
_f_ W16 X 67
v
4 g
/
/

IRIRR - Cover plate
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1
I =954 + 19.7 x (15.94 — 8.17)> + The 16 x (4)°

+ (16 X 4) X (16.33 + 2 — 15.94)*
= 954 + 1190.9 + 85.3 + 365.6 = 2595.8 in.*

_2595.8 in.*

= = 162.8 in.’ .5 in.? ok
S 15.94 in. 162.8 in.” > 162.5in.” o

Use 4 X 16 in. cover plate

Note: This plate size should not actually be used, since it violates the require-
ment given in AISCS B10, which says that the total cross-sectional area of cover
plates bolted or riveted to the member shall not exceed 70% of the total flange
area. The above example shows the economic benefits that can be achieved by
using symmetrical cover plates.

Example 3.3. A simply supported beam spanning 24.0 ft is to carry a uniform
load of 4.2 k/ft. However, height restrictions limit the total beam depth to 12
in. Determine if a standard wide flange can be used, and design a section using
cover plates if necessary. Assume full lateral support.

Solution.
L? M
M= —, §==—
8 F,
2
M= 4.2 k/ft >;(24.0 f? _ 302.4 fik
302.4 ft-k X 12 in./ft 3
Srea 24.0 ksi >12in

Check wide flange sections that have a depth less than 12.0 in.

Largest sectionis W 10 x 112, S, = 126in.> < 151.2in.> N.G. Cover plated
section is required.

Try W10 X 68,d = 10.4in., S = 75.7in.>, I = 394.0 in.*

Assume cover plate thickness = 3 in.
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Ipl = Ireq - IWF = 2Ap|d2
I =8 X ¢ =151.2 in.% x <

Iyr = 394.0 in.*

11.9 in.

> = 899.6 in.*

Iy = 899.6 in.* — 394.0 in.* = 505.6 in.*

= + = 5.575 in.

d _104in.  0.75in.
2 2 2

505.6 in.* = 24,,(5.575 in.)?
_505.6 in.*

A = 8.13in.?
W ezl o
Ay =w X1t
8.13 in.2
=== T _ 10.84in. say Il in.
w 0.75 in. n say n

Use W 10 X 68 beam with 3 X 11-in. cover plates.

I =906 in.*
d=1040in. + 2 X 0.75in. = 11.90 in. <

Checking deflection (for full-length cover plates),

_SWP 5 X (42 X24) X (24 x 12)°

A=SE 384 X 29000 X 906

A 1.19 in. 1

Deflection-to-span ratio is within tolerable limits.

12 in. ok

= 1.19 in.

Cover plates to flanges and flanges to webs of built-up beams or girders are
connected by bolts, rivets, or welds. The longitudinal spacing must be adequate
to transfer the horizontal shear, calculated by dividing the strength of the fas-
teners acting across the section by the shear flow at the section. Maximum
spacings for compression flange fasteners and tension flange fasteners are given



Development_.L }‘_ _.{ !__gi\;i:?g:nae'nt

length or a’
e L 1
Theoretical

Theoretical .
cutoff point \’—Theoretlcal length of cover plateSol'/ cutoff point

\

Moment resisted Moment resisted by
by beam only cover-plated beam

Fig. 3.1. Cover-plating a uniformly loaded, simply supported beam.

Theoretiqal Tension flange
cutoff point 24 (t.) < 12" (Note 1)
LY, »
bolts ~ R 141, <7" (Note 2)
- 0O 00OOGOOO o °
e e
0O0O0O0OOOT OO o oY
127
— (ty)
VF,
<127

{nonstaggered connectors)
Compression flange

(staggered connectors)
190
VF () t’
y
< 18"

(t, X by) <0.70 [(rp, X bp,) + (¢, X b,)] (AISCS B10)
Note 1: Painted member or unpainted member not
subject to corrosion.

Note 2: Unpainted member of weathering steel
subject to corrosion.

Fig. 3.2. Bolt and rivet requirements for cover plates. Fasteners in partial plate extensions must
develop flexural stress at cutoff point. Maximum bolt or rivet spacing throughout plate must not

exceed the values shown.

98
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in Figs. 3.2 and 3.3, as limited by AISCS E4 and D2, respectively. As with
beam flanges, no plate area reduction is necessary for fastener holes if (B10-1)
is satisfied (see eqn. (2.20), Sect. 2.6).

Partial-length cover plates are attached to rolled shapes to increase the section
modulus where increased strength is required and are then discontinued where
they are unnecessary (see Fig. 3.1). The plates are extended beyond the theo-
retical cutoff point and adequately fastened to develop the cover plate’s portion
of the flexural stresses in the beam or plate girder at the theoretical cutoff point
(AISCS B10). Additionally, welded connections for the plate termination must
be adequate to develop the cover plate’s portion of the flexural stresses in the
section at the distance a’ from the actual end of the cover plate. In some cases
(usually under fatigue loading) the cover plate cutoff point may have to be placed
at a lower bending stress than the stress at the theoretical cutoff point. To assure
adequate weld strength in all cases, the cover plate must be extended the min-
imum length a’ past the theoretical cutoff point, even if the connection can be
completed in a shorter development length. The requirements for bolts or rivets
are shown in Fig. 3.2, and weld requirements are shown in Fig. 3.3. For further
discussion, see AISC Commentary Section B.10.

The design of connectors for attaching cover plates to members is covered in

Tension flange
24 (tp') < 12”I (Note 1)

o J | —_
| [14,)<7""] (Note 2)

Theoretical 127 (to)
cutoff point VF,
<127
Compression flange
Development length a’
1) a' = by, for weld leg > %—tm along b’ side

2) &' = 15 b, for weld leg < #1, along b’ side

3) a' = 2b,, for no weld along end b’

Note 1: Painted member or unpainted member not
subject to corrosion.

Note 2: Unpainted member of weathering steel
subject to corrosion,

Fig. 3.3. Fillet weld requirements for cover plates. The length a' is used as the minimum length
to ensure that all development requirements are met.
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Chapters 5 and 6. Nevertheless, the connector design is included in the follow-
ing examples for the sake of completeness.

Example 3.4. Design partial length cover plates for a W 27 X 94 loaded as
shown. The plates will be connected to the flanges at the termination, with
continuous fillet weld at the sides and across the end. The beam is fully laterally
supported. Uniform load includes weight of beam.

40 kip

w = 2 kip/ft.

|
NENENENENNNNTNE e

25'

25

Solution.

40 k
V=—02—+<2k/ftx¥>=70k

2
M, - 40 X 50 + 2 X (50)
4 8

= 1125 ft-k

If b, is the width and ¢, the thickness of the cover plate,

26.92 .\’
3270 + bt X (—2— + 5—) X 2

(26.92 >
— 4+t
2

1125 fi-k x 12 in. /ft
24.0 ksi

Stot =

St = = 562.5 in.?

2 X 3270 + bt. x (26.92 + 1.)* = 562.5 X (26.92 + 211,
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Try

.
-~
1l

1{in. - b, = 8.49 in.
*t. = 13in. » b, = 9.22 in.

or, = 13in. > b, = 7.88 in.
Select cover plates to be 13 X 8 in.

I =13270 + 8 X 1.625 X

<26.92 1.625\°
2

+ —> X 2 = 8566 in.*
8566

2%9—2 + 1.625

= 567.9 in.® > 562.5in.> ok

Moment at cutoff point is determined from wide flange capacity.

F, xS _ 24.0ksi X 243 in.’

= = = 486 fi-k
12 in. /ft 12 in. /ft 86

Determine the theoretical cutoff points.

2 kip/ft.
1) 486 ft.-kip

—

70 kip

XZ
70X——2X7—486=0

Solving for X

X2-70X +48 =0
X=78ft

Determine connection of cover plates to flanges.

Vewoss = 70k — (7.82 ft x 2 k/ft) = 54.36 k
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.92 .
1.625 x 8 X <2629 + iﬁ-) = 185.5in.}

_VQ 54.36k x 185.5 in.’
I 8566 in.*

-]
I

= 1.18 k/in.

Minimum size weld is 75 in. (AISCS Table J2.4).
Use E 60 welds. Capacity of the weld is

V2 o5 :
0.30 x - X 60 ksi X 6 = 3.98 k/in.

Using intermittent fillet welds at 12 in. on center (AISCS D2, E4)

¢ = 1.18 k/in. X 12 in.
¥ 2 x 3.98k/in.

3
= 1.78 in. Use 1 1 in. weld length

Termination welds (AISCS B10)

Mcu!off = 486 ft-k
Force to be carried in termination length (C-B10-1)

- MO _ 486 fk x 12 in. /ft x 185.5 in.>
h 8566 in.*

1
a’ =15 % 8in. = 12 in. (see Fig. 3.3)

= 1263k

Total length of termination weld = (12 in. X 2) + 8 in. = 32 in.

H,=32in. X 3.98 k/in. = 127.4k > 126.3k ok

50'-0"

|
’—‘6'—9” i 36'-6" i~6'—9“—4
[

127 5/16" E 60 Intermittent fillet weld 127

1%' @ 12" on center

6/16'' E 60 Continuous fillet weld (typ)
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Example 3.5. A W 16 X 100 with X 10 in. cover plates spans a distance of
32 ft with a uniform load of 3.6 k/ft (including weight of beam) and point
loads of 15 kips located 10 ft from each end. Determine the length of the partial
length cover plates and the connections to the flanges. Use 3-in. ¢ A325-N bolts
throughout and type SC, Class A bolts for the plate termination. Assume full

lateral support.

Solution.

15.0 kip 15.0 kip

w = 3.6 kip/ft.

HHHI‘HHHIH‘IHHH

£

}——10’—0" 12-0” 10'-0"

72.6 kip

36.6 kip

72.6 kip

610.8 ft.-kip

16.97 in.  0.875 in.>2

1=1490in.“+2xzin.x10in.x +
8 2 2
= 2883 in.*
I 2883 in.*
S==17 i:83 n = 308.0 in.’
——— + 0.875 in.

M, =F, x S = 7392 in..k = 616 ftk > 610.8 ftk ok
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Moment at termination of cover plates

24 ksi
M= in} X ——— = -
175 in 12in /R 350 ft-k
Distance to termination point from end of beam
3.6 kip/ft.
IHHHHHHHIHH)
; x .1|350 ft.-kip

72.6 kip

From free body diagram,

2

X
72.6X—3.6><—2-—350=0

Solving for X,
X =5.60ft
Shear at cutoff point of cover plates
V=726k —56ft x3.6k/ft=5244k
Shear flow at cutoff point

16.97 in. + 0.875 in.
2 2

Q:

[ -RIEN |

in. X 10 in. X ( ) = 78.07 in.}

_ 5244k x 78.07 in.’
- 2883 in.*

= 1.42 k/in.

Shear capacity of 3-in. A 325-N bolts
R, = 9.3k (AISCM Table I-D)

Spacing of bolts throughout plated region
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Minimum spacing:

e Top Plate (AISCS E4):

s < 0.875in. X = 18.5 in.

127
VF,
s < 12 in.

Spacing of bolts for top plate must be minimum 12 in.

e Bottom Plate (AISCS D2):

A

s <24 X 0.875in. = 21 in.

s < 12in.

Spacing of bolts for bottom plate must be a minimum of 12 in.
Spacing of bolts in termination region

MQ 350 ft-k x 12 in./ft X 78.07 in.?

H=—7-= = 113.
I 2883 in.’ 37k
Capacity of termination bolts (3-in. A 325-SC Class A)
» = 7.51 k (AISCM Table 1-D)
Number of bolts needed
H 1137k
N = — = — = .
R, 751k 15.1 use 16 bolts
To reduce length of plate termination, stagger bolts.
(0] o) (@] o)
o o o ty
—----JdcoooooooooooooooDoDDTIDToTo
0] o oO— |,
< 5
O (@] o or—

fo— § ot § —od 1l
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Determine s such that loss of area is less than or equal to two bolt holes.

2

3 1
in. —4 X {-in. + -in. ) + 2 X ————
10 in <41n 8m> 2 A x2in.

3 1
=10in. — 2 X <Zin. +§in.>

s2 =7.0in.

3
s = 2.65in. — say 2 2 in.

3.2 BUILT-UP MEMBERS

The use of built-up members is necessary when the flexural capacity of rolled
sections becomes inadequate. Built-up members usually consist of a web with
flange plates connected to the two edges of the web. Today, almost all built-up
members have their flanges welded to the webs. Cover plates are sometimes
used on the flanges and are cut off at the locations on the span where they are
no longer required. Web stiffeners are attached to one or both sides of the web
when large shear stresses occur in the web (see Fig. 3.4).

a1

Transverse |~ Bearing
web stiffener stiffener

h
Q (if required) (if required)

Cover plates
.~ (optional)

Welded Riveted or
bolted

= 4

Fig. 3.4. Typical built-up members.
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Typically, the depth of built-up members varies from § to 15 of the span, with
o to 15 being the most common. In AISCS Commentary L3.1, it is suggested
that the depth of fully stressed members in floors should not be less than
(F,/800) times the span; for fully stressed roof purlins, the depth should not
be less than (F, /1000) times the span. Note that these values are offered only
as guides; the requirements for flexure, shear, and deflection are of primary
concemn.

In AISCS Chapters F and G, two types of built-up members are recognized:
built-up beams and plate girders. A built-up beam is distinguished from a plate
girder on the basis of the web slenderness ratio % /7,,, where A is the clear dis-
tance between flanges and 1, is the thickness of the web. When h/t1, >
760/ \/FT,, (where F), is the allowable bending stress, ksi), the built-up member
is referred to as a plate girder. In this case, the provisions of Chapter G apply
for the allowable bending stress; otherwise, Chapter F is applicable. If the ratio
is less than 760 / VF,, the member is commonly referred to as a built-up beam,
and the allowable bending stress is governed by Chapter F (see Chap. 2). For
the allowable shear stress, Chapters F and G are applicable.

3.3 DESIGN OF BUILT-UP BEAMS

There is no unique solution for the design of a built-up beam. Although mini-
mum cost is one of the most desired results, a beam can be designed for any
number of combinations of web and flange dimensions and stiffener arrange-
ments (when required). A number of trials may be necessary for cost optimi-
zation. Typically, assumptions are made on the sizes for the web and flanges,
and these assumptions are modified as deemed necessary.

The usual design procedure is to select a trial cross section by the flange-area
method and then to check by the moment of inertia method. The flange-area
method assumes that the flanges will carry most of the bending moment and the
web will carry all the shear forces. Required web area is then

A, = (3.3)

J| <

where V is the vertical shear force at the section and F, is the allowable shear
stress on the web. The required flange area is then determined from

a =L A 34
Y= Fr T 6 34

where M is the bending moment at the section, F, is the allowable bending
stress, and h is the clear distance between flanges.
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Verification by the moment of inertia method requires calculating the moment
of inertia of the beam cross section. The allowable bending stress in the
compression flange is determined from AISCS F1.

When designing a built-up beam for flexure, it is important to check both the
width-thickness ratios for the compression flange and the web against the ap-
propriate limiting values given in AISCS Table B5.1. The limiting ratios for
the compression elements in a built-up beam, taken from Table B5.1, are given
in Table 3.1.

The magnitudes of the width-thickness ratios of the compression elements
and the maximum unsupported length of the compression flange all play a key
role in determining the applicable allowable bending stress F, (see AISCS F1
and Chap. 2). If it is found necessary to increase the section’s moment of in-
ertia, the flange area should, in general, be increased. By slightly increasing
the flange thickness, the flange width-thickness ratio will remain below the ap-
propriate limiting value given in Table 3.1 while increasing the value of I.

The allowable shear stress F,, is given in AISCS F4. As was shown in Chap.
2, F, is given in (F4-1) when h /1, < 380/F,:

F, = 0.40F, (3.5)

Note that this shear stress acts on the overall depth times the web thickness. In
this case, intermediate stiffeners are not required. Such beams do not depend
on tension field action (see the discussion which follows for the definition of
tension field action).

For the case when h /¢, > 380/ \/E the allowable shear stress acting on the

Table 3.1. Limiting Width-Thickness Ratios for Compression Elements in a

Built-Up Beam
Limiting Width-Thickness
Ratios
Width-Thickness

Description of Element Ratio Compact Noncompact
Flanges of I-shaped welded beams in flexure b/, 65/«/]? 95/VF/k.“

Webs in flexural compression” d/u, 640/ \/F‘ —

h/t, — 760/ F,
4.05

a

.= W if h/t,. > 70; otherwise, k. = 1.0
Fy; = yield strength of the flange

*For hybrid beams, use F,, instead of F..

Source: Adapted from AISCS Table BS. 1.
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clear distance between flanges times the web thickness is given in (F4-2):

F,

F, = 5 gg (C,) < 0.40F, (3.6)
45,000k
where C, = ;:—(”17—)—; when C, < 0.8
y w.
190 |k
= -~ when C,> 0.8
h/t, \}Fy v
.34
kv=4.00+(;5‘/h—)2 whena/h <1.0
4.00
=534 + W whena/h > 1.0

t,, = web thickness, in.

= clear distance between transverse stiffeners, in.

clear distance between flanges at the section under investigation,
in.

> 8
1

Tables 1-36 and 1-50 (pages 2-232 and 2-233, respectively) of AISCM give the
values of the allowable shear stress in ksi according to eqn. (3.6) for steels with
F, = 36 ksi and F,, = 50 ksi, respectively. As noted above, this allowable stress
does not include tension field action.

Intermediate stiffeners are not required when A /7, < 260 and the maximum
web shear stress is less than or equal to F, given in eqn. (3.6). When transverse
stiffeners of adequate strength are provided at required spacings, they act as
compression members. The web then behaves as a membrane that builds up
diagonal tension fields consisting of shear forces greater than those associated
with the theoretical buckling load of the web. The result, commonly referred
to as tension field action, is similar to the force distribution in a Pratt truss (see
Fig. 3.5). Thus, the shear capacity of the web is increased to a level where it
is able to resist applied shear forces unaccounted for by the linear buckling
theory. Applying thin plate theory, it is clear that the additional shear strength
is dependent on the web plate dimensions and the stiffener spacing.

In lieu of eqn. (3.6), the allowable shear stress may be determined by in-
cluding the contribution of tension field action (AISCS G3). If intermediate
stiffeners are sized and spaced according to the provisions given in AISCS G4
and if C, < 1, the allowable shear stress, including tension field action, is given
in (G3-1):

F, 1 -C

=—1C, + L
2.8 [ 1.15 V1 + (a/h)®

F, } < 0.40 F, 3.7)
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Compression in Diagonal tension
stiffener in web

: /
e | 1\\[ N
i

\

\

|\

Tension Transverse stiffener (typ.)
field action

not permitted

in end panel (AISCS G4)

e

—
_—

Fig. 3.5. Tension field action in a built-up member.

where all quantities have been defined previously. Values of the allowable stress
given in eqn. (3.7) are listed in Tables 2-36 and 2-50 (pp. 2-234 and 2-235) for
steels with F, = 36 ksi and F, = 50 ksi, respectively. The italic values in the
tables indicate the gross area, as a percentage of the web area, required for pairs
of intermediate stiffeners. It is important to note that the spacing between stif-
feners at end panels for members designed on the basis of tension field action
must not exceed the value given in eqn. (3.6) (AISCS G4). Also, tension field

action is not considered when 0.60F V3 = F, = 0.40F, or when the panel
ratio a /h exceeds 3.0 (AISCS Commentary G3).

In order to obtain the advantages of tension field action, the provisions for
minimum stiffness and area of the transverse stiffeners given in AISCS G4 must
be satisfied. These requirements are depicted in Fig. 3.6. Additionally, to fa-
cilitate handling during fabrication and erection, the panel aspect ratio a/h is
arbitrarily limited to the following (see (F5-1)):

a [ 260

2
- < (h/tw)] and 3.0 3.9

h

The stiffeners which are provided for tension field action must be connected
for total shear transfer not less than the value given in (G4-3):

F, 3
Jos = h <34' > (3.9)
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S
N

cl ' .
L 1
1-C/fa (a/h)? ]
1. A, = — |- -~ ——===| YDh (G4-2)
B 2 [h V1 + (a/h)? b

(total area when stiffeners are furnished in pairs)
Y = F y,web

Fya

D = 1.0 stiffeners in pairs
= 1.8 single-angle stiffeners
= 2.4 single-plate stiffeners

by, 95
— < — (Table B5.1)
tu ~ VF,

4
2. I, = <—h—> (G4-1)

A

50
3. Stiffener length, £,
& =h—1{y
where w + 6t, = £ = w + 4t,

w = size of weld connecting flange to web
If single stiffener is used, attach to compression flange.

Fig. 3.6. Requirements for Transverse Stiffeners (AISCS G4).

where f,; = the shear between the web and the transverse stiffeners, kips per
linear inch. Shear transfer may be reduced in the same proportion as the largest
computed shear stress to allowable shear stress in adjacent panels.

When a member is designed on the basis of tension field action, a stress
reduction in the web may be required due to the presence of high combined
moment and shear. Consequently, the maximum bending tensile stress in the
web f, is limited to the value given in (G5-1):



112 STEEL DESIGN FOR ENGINEERS AND ARCHITECTS

fp < <0.825 — 0.375 %> F, (3.10)

but should not be taken greater than 0.60F,. Note that f, is the computed av-
erage web shear stress (total shear divided by the web area), and F,, is given in
eqn. (3.7).

When intermediate stiffeners must be provided for the cases when tension
field action is not considered, the stiffeners should have a moment of inertia of
at least (h/50)* to provide adequate lateral support of the web (AISCS Com-
mentary G3). In addition, the limiting width-thickness ratio given in Table BS.1
and the spacing requirements given in eqn. (3.8) are applicable.

Bearing stiffeners must be placed in pairs at unframed ends and at points of
concentrated loads when required (AISCS K1.8). The provisions given in AISCS
K1.3 through K1.5 govern in this case (see Chap. 2). Figure 3.8 summarizes
the bearing stiffener requirements as given in AISCS K1.8.

Hybrid beams are sections in which the web plate is of a different grade of
steel than the flange plate. Hybrid built-up beams may be used with the follow-
ing limitations: 1) the maximum allowable bending stress is 0.60F,, for mem-

Fig. 3.7. Fascia, or edge, girder of a steel frame building with vertical web stiffeners.
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1
tw tw
= b, TTTTTTTULSSSS Y = by w

b . brt
- — 25¢,
12¢,—
Effective area of end-bear- Effective area of load-bearing stiffeners.
ing stiffeners. Provide at Provide under concentrated loads when
unframed ends. required.

Design requirements

. % < -%% (Table BS.1)
. Struts designed as columns. Determine allowable axial stress
End bearing Interior bearing
Age =2 (by X 1) + 121, A =2 (by X 1) + 257,

ty by + 1,)°

I, = 12

;= ’.’i
Aeff

Kh, K = 0.75 (AISCS K1.8)

Allowable axial stress is found in AISC Tables C-36 and C-50 for value of
(Kh/r). If stiffener yield stress is different from web yield stress, use lesser
grade of the two.

R
Check compressive stress: f, = — < F,
Aeff
. Check bearing criteria:
R
= Z,; < F, = 0.90F, (AISCS J8)
where A, = bearing area, in’

Fig. 3.8. Requirements for bearing stiffeners.
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bers with full lateral support where F is the yield stress of the flange (AISCS
F1.2) and 2) tension field action may not be considered (AISCS G3).

To facilitate the design of built-up beams, tables of dimensions and properties
are provided as a guide for selecting members of economical proportions (see
p. 2-230 of the AISCM). The design aids on pp. 2-236 through 2-242 can also
be used.

Example 3.6. Design a built-up beam with no intermediate stiffeners to support
a uniform load of 4.8 k /ft on a 65-ft span. The member will be framed between
columns, and its compression flange will be laterally supported over its entire
length.

Solution.
w = 4.8 kip/ft.
pe LTI T TTTITTTT]]
,L 65'-0 ﬁJ,
156kip\\
|156kipShear

To limit the deflection, assume that A = I% = _65ft—><lz)2_m_/ﬁ = 78 in.

Assuming that F,, = 22 ksi, for a built-up beam,

R 760 760
Z <==-2==162 (AISCS Chap. F
t, ~ JF, <22 ¢ p- F)

78 h 78
= T =lin. {—=— =156 < 260
t, = — 6 = 0.48 in. ryt, =31in < 3 >
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Assuming that% > 3.0 (no stiffeners), F, = 3.4 ksi (from interpolation, Table
1-36).

=_=———=4. i . i SJ.
S A, 0.5in. X 78 in. Oksi > 34ksi N.G

Try % in. web

| =

= 139; F, = 4.3 ksi

-~

w

_ 156.0 k
0.56 in. X 78 in.

Jo = 3.57 ksi < 4.3 ksi ok

Since h /1, = 139 > 640/+/36 = 107, the web is noncompact. (Table BS.1).

o M _ 2535 fik x 12in./f

— = = 1383 in.}
17 F, 22.0 ksi mn

Preliminary flange size

4= M A, 2535fik X 12in./ft  0.56in. X 78 in.
" Fh 6 22.0 ksi X 78 in. 6
= 10.45 in.?
Try t; = } in., by = 14 in.
4.05 4.05
= = =0.42
kc (h/tw)o“‘ﬁ (139)0.46
by 14 in. 95 95

o _ =933 < = =10.3
2, 2 x 0.75in. JF,/k, 36/0.42

Check by moment of inertia method:

9 78 in.)’ 78.75 in.\’
I = Ioyer + 2(4d%q = 16 in. x (——llzn—) + 2 [10.5 in.2 x <Tm> }

= 54,803 in.*
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§=-=="——"=1379in.> < 1383 in.”> say ok’

I 54,803 in*
c 39.75 in.

Check maximum deflection:

2535 x (65 _

I
= —12lin. = — ok
161 x 54803 2l T3 O

Use % X 78 in. web plate with 3 X 14 in. flange plates.
(For the connection of the web plate to the web, see Chap. 6.)

Note: This may not be the most economic solution, as a solution with web
stiffeners, much thinner web, and heavier flanges could give much less pound-
age, even including the extra labor cost, as its equivalent in steel weight.

Weight of web + flanges

web 23 psf X 6.5 fi = 149.5 Ib/ft

flg  35.6 plf x 2 71.2 b /ft
220.7 1b/ft X 65 ft = 14,346 b

Example 3.7. Rework Example 3.6 using intermediate stiffeners and & = 60
in. In this case, the beam is not framed at the supports.

Solution.
h 60
t, = ———=——=0.37in.
760 /VF, 162
h 60 in.
g-' M _—_= =
Select 3-in. web; . = 0375m, 160 < 260
a
Assuming that W > 3.0,
156 k

Ly =6.93ksi > F, = 3.2 ksi (Table 1-36) N.G.

= 0.375 in. x 60 in.

Thus, transverse stiffeners are required when f, > F, = 3.2 ksi.

'In actuality, F, can be determined from (F1-4), which yields F, = 0.62 X 36 ksi = 22.2 ksi; this
results in S, = 1369 in.> < 1379 in.%. Typically, (F1-5) can be used conservatively in these
cases.
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Flange design:

M A, 2535 ft-k X 12 in./ft _0.375 in. X 60 in.

A =
7" F,xh 6 22.0 ksi X 60 in. 6

= 23.05 — 3.75 = 19.3 in.?

Try 14 X 16 in. flange.

4.05
(160)*4¢

k.= = 0.39

b 16in. 95

=—————=64< ————==99
2t; 2 X 1.25in. v36,/0.39

in.)? 25in.\°
l=§in. % @lg‘—) + 2[20.0 in? x (%) } = 44,266 in.*

44,266 in.*

= = 1417 in.? in.? . 3.
S 3105 in. 417 in.” > 1383 in.” ok (see Ex. 3.6)

Connection of flange plates to web (see Chap. 6 for details):

_ko
qv - l
1.25 in.
0 = (125 in. X 16 in.) X (30 in. + m> = 612.5 in.3
156 k X 612.5 in.}?
= = 2.16 k /in.
K 44,266 in.* 2.16 k/in

For minimum weld size of 7 in. (AISCS Table J2.4):

F, = 0.928 k/in. /16th x % X 2 welds = 9.28 k/in.
Assume an intermittent fillet weld spaced 12 in. on center.

2.16 k/in. X 12 in.

928 k/im. >0 im

Required weld length =

Use f5-in. weld, 3 in. long, spaced 12 in. on center.
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Stiffener spacing:

A, = 0.375in. X 60 in. = 22.5 in.?

Since h/t,, = 160 < 260, stiffeners are not required when f, < 3.2 ksi.

¢ End Panel (Eqn. (F4-2) Governs):

V =156 k
156 k a

=55 2= 093ksi —> - =085 -

fo=5553,3 = 698 ksi ;= 0.85 (Table 1-36)

a =0.85x60in. = 51in. = 4 ft, 3 in.
¢ Second Panel (Eqn. (G3-1) Governs):

V =156k —4.8k/ft x 4.25ft = 135.6 k

_ 1356k
v 22.5in.2

a =12.50 X 60in. = 150 in. = 12 ft, 6 in.

= 6.03 ksi —> % = 2.50 (Table 2-36)

e Third Panel (Eqn. (G3-1) Governs):

V=1356k —4.8k/ft x 125t =756k

_ 156k
v 22.5in.2

a =2.50 X 60 in. = 150 in. = 12 ft, 6 in.

= 3.36 ksi —> % =2.50 (Table 2-36)

Note that this spacing is slightly conservative; the maximum value from eqn.
(F5-1) can be used:

a 260
5=

2
@> =2.64 —> a =2.64 X 60in. = 158.4 in.

® Middie Panel (Eqn. (G3-1) Governs):

V=1756k —48k/ft x 12.5ft = 156k

15.6 k
fo=

= > 5inl = 0.69 ksi < 3.2 ksi —> No stiffener required
.5 in.
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As noted above, stiffeners are no longer required when f, < 3.2 ksi. This cor-
responds to ¥ = 3.2 ksi X 22.5 in.? = 72 k. Thus, stiffeners are no longer
required at a distance of 32.5 [1 — (72/156)] = 17.5 ft from the support.
Conservatively space the stiffeners, as shown in the following figure.

End Intermediate «
stiffener stiffener (typ.) 100 Sym. about €

s/ le

Bearing

stiffener I %

DR 10" = 17'-6" J oy
3@5-10"=17'-6 8'-0
| 26" | I

Check combined shear and tension stress at 18.25 ft from the support:

V =156k —4.8k/ft X 18.25 ft = 68.4 k

68.4 k .
fo= 52 = 304 ksi
a 7 X12
F, = 8.5 ksi le 2-36 for — = = 1.
» si <Tab e orh 0 1 4)

F, = [0.825 - (0.375 X %)} 36 ksi = 24.9 ksi > 22 ksi

2048 ft-k x 12 in./ft x (31.25 in. — 1.25 in.)
44,266 in.*

fo(web) = = 16.7 ksi
f, < F,=22ksi ok

Design of intermediate stiffeners: Panel 2 (first panel where tension field action
occurs)

4.
k, = 5.34 + 200 _ 738

(1.4)?
45,000 X 7.38
C, = m =036 <1
1—0.36[ (1.4)% J . 2
A= ——— |14 - ——2—| x1x1x225in.
' 2 V1 + (1.4

0.083 X 22.5 in.? = 1.87 in.” total area (stiffeners furnished in pairs)
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Note: The total stiffener area could have been obtained by multiplying the total
web area by the italic value (divided by 100) given in Table 2-36 for h /¢, =
160 and a/h = 1.4

8.3
A, = 100 * 22.5in.2 = 1.87 in.?

Note also that this area could be reduced to a total value of

<6—8'%§> x 1.87 = 1.3 in.?

as per AISCS G4 However, due to the limiting width-thickness ratlo given in
Table BS.1, try X 4 in. stiffeners on each side:

4 in. 95
—_—— =16 = — = . .
025 in. NCY: 15.8 say ok

Check the moment of inertia:

60\* 1
Leg = <%> =2.07in? < B x 0.25 in. X (8.375 in.)?
=12.2in* ok

Minimum length required (AISCS G4):

15—6m + (6 X 0.375in.) = 2.56 in.

60 in. — 2.56 in. = 57.44 in.

From Fig. 3.6, [,

Ly

Use 4 ft 10 in.-long plates on each side of the web.

Connection of stiffener plates to web:

3 ~3
F. 36 ksi )
= = 1 = 2. 7 k .
fs=h /<—‘V-340> 60 in. X /( 235 > 07 k/in

Required weld size:

_ (2.07 k/in.) /(4 welds)
T 0.707 x 21 ksi

= 0.035 in.
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Use i-in. continuous weld on both sides of each stiffener.

(Note: An intermittent fillet weld could be used, but it is not desirable.)
Use intermediate stiffeners 3 X 4 x 4 ft, 10 in.

Design of bearing stiffeners at unframed ends (AISCS K1.8):

Try two 3 X 7 in. stiffeners:

b, 7 in.

t, 0.S5in

=14 <—==158 ok
\/_

Age =2 X (Tin. X 0.5in.) + 12 X (0.375 in.)> = 8.69 in.

. . . 3
I, = 0.5in. X [(2 X 712m.) + 0.375 in.] — 123.8 in*

,128.8 in.* i
= m = 3.77 mn.

Kn  0.75 x 60 in.
—_ = = 11.
r 3.77 in. %2

F, =21.05ksi  (Table C-36)

156 k
= = 17.95 ksi . i

Ja 8.60 in2 95 ksi < 21.05 ksi ok
End bearing stiffener

/% X 75" (typ.)

73" <
5

6" == ,,,,.I :::::::::::::

12>= 375"

AAASSSSIY
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Check the bearing on the bottom flange:

Assume 13 in. clipped from the stiffener, as shown, to accommodate the fillet
weld connecting the flange to the web.

j[p

—

127

Nl=

e

Wt 1/ |
e

OO AMAASSISSISAN

Bl

A, =0.5in. X (7in. — 1.5in.) = 2.75 in.2

156 k/2
= %—# = 28.4 ksi < 0.90 X 36 ksi = 32.4 ksi ok

Connection of bearing stiffeners to web:

156 k
Required shear transfer = ———— = 0. in.
equired shear transfer = ~—= = 0.65 k/in

Use -in. continuous fillet welds on each side of both stiffeners.
Use bearing stiffeners  in. X 7 in. X § ft, 0 in.

Check maximum deflection:

2535 X (65)* . l
=P 2O 5000 = — ok
161 x 44266 0 =550 ©

Use 3 X 60 in. web with 1 X 16 in. flange plates.
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3.4 DESIGN OF PLATE GIRDERS

As noted above, a plate girder is a built-up member which has a web-slender-
ness ratio h/t,, > 760/ \71? . The main difference between the design of a plate
girder and a built-up beam is in the determination of the allowable bending
stress. For plate girders, the allowable bending stress in the compression flange
F} is given in (G2-1):

Fy, = F,RpR, @3.11)

where F, is the applicable allowable bending stress given in AISCS Chap. F
and

Rpc = plate girder factor
=1 —0.000Si" ﬁ——7—60> = 1.0
A \t, F,
R, = hybrid girder factor

12 + <’;—;’> Ba — o)

12 + 2 <&>
Ar

where A,, = area of the web at the section under investigation, in.?
Ay = area of the compression flange, in.2
a = 0.6F,,/F, < 1.0
F,,, = yield stress of the web, ksi.

=< 1.0 (nonhybrid girders, R, = 1.0)

Since plate girders have thin webs, a portion of the web may deflect enough
laterally so that it does not provide its full share of the bending resistance. Thus,
the factor Rpg ensures that the bending capacity is adequate for the cases when
this occurs. Also, the factor R, is included to compensate for any loss of bend-
ing resistance when portions of the web of a hybrid girder are strained beyond
their yield stress limit.

In AISCS G1, limitations are given for the maximum web-slendemess ratio.
For the cases when no transverse stiffeners are provided or when stiffeners are
provided but spaced more than 134, the maximum ratio is determined from
(G1-1):

h 14,000
—_<

tw ~ JF (Fy + 16.5)

(3.12)
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where F,, = yield stress of the flange, ksi. When transverse stiffeners are pro-
vided and are spaced not more than 134, (G1-2) govemns:

h 2000
- < — (3.13)
t Fyf

The allowable shear stress is limited by (F4-2) when tension field action is
not considered and by (G3-1) when it is considered. All of the provisions for
the design of intermediate and bearing stiffeners required for built-up beams are
also applicable for plate girders.

Example 3.8. A plate girder loaded as shown is not framed at the supports.
Lateral support is provided at the points of the applied concentrated loads only.
Design the girder with intermediate stiffeners.

100 kip 100 kip 3.2 kip/ft.
(includes weight
v W of girder)
ERRER NN RN NNRRNNNNNnN NN
189.6 kip ; 20 JI' 16’ ! 20’ ] 189.6 kip
A B c D
Solution.
189.6 kip
125.6 kip
25.6 kip
25.6 kip:
125.6 kip.
3254 ft.-kip 189.6 kip

3152 ft.-kip 3152 ft.-kip
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Assume h = T = 0 = 67.2 in. say 70 in.
h 2000

Maximum web-slenderness ratio — = —— = 333 G1-2
., V36 ( )

70 in.
333

Minimum web thickness ¢,, = = 0.21in. Try & in. web.

Considering a flange stress reduction, assume that F, = 21.0 ksi.

- D> T 166

. 03125 21

= >

Flange design:

_ 3254 frk X 12in./ft _ 0.3125 in. X 70 in.
S 21.0ksi X 70 in. 6

=22.92 in.?

Try 13 X 16 in. flange.

4.05
k. = = 0.34
c (224)0.46
b in.
o _l6in. — 25 _923 ok

= =533 <
2t 2 X 1.5in. ,/36/0,34

. 3 . 2
[ =2 x J0n L, [24.0 in.2 x <7—1;—“‘-> ] = 70,279 in.*

6™ 12
70,279 in.*
= —2——— =1925.5 in.}
$=365m, n
3254 fik x 12 in. /ft ,
b= 1925.5 in. = 20.28 ki

Check the bending stress in the 16-ft center panel (between B and C):

Moment of inertia of flange plus § of the web:

_ 1.50 in. X (16 in.)’
B 12

= 512.0 in.*

Ir
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Ar=A;+ 1A, = (1.5in. X 16 in.) + } (0.3125 in. X 70 in.)

= 27.65 in.2
512 in.?
= |——— = 4.30in.
T \2765 2 n

For panel BC, C, = 1.0 (AISCS F1.3)

in. x 10° x 1.
1=16ftx12m/ft=44_65<\/102 10° x 10 _

rr 4.30 in. 36

Therefore, F,, = 22.0 ksi in panel BC.
Reduced allowable bending stress in the compression flange (AISCS G2):

A, = 0.3125in. X 70 in. = 21.88 in.?

A;=1.5in. X 16 in. = 24 in.?

21.88 in.? 760
Rpg =1 —0.0005 |[———-) (224 - —=) = 0972
Fe < 24 in.? >< JEE)
R, =10
Fj =22ksi X 0.972 x 1.0 = 21.4 ksi > f, = 20.28 ksi ok

Check the bending stress in the 20-ft end panels (between A and B, C and D):

3152 ft-k X 12in. /ft
b= 1925.5 in.?

For end panels, C, = 1.75 (M, = 0)

= 19.64 ksi

=170.4

re 430 in. 36

20 ft X 12 in. /ft x 10® x 1.75
_l_ 0 m/ — 558 < \/102 10 1.7
F, = 22.0 ksi

F, =214 ksi > 19.64 ksi ok

Therefore, use i X 70 in. plate for the web and 13 X 16 in. plates for the
flanges.
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Connection of flange plates to web (see Chap. 6 for details):

1.5 in.
Q0 = (1.5in. x 16 in.) X (35 in. + 52"‘> = 858 in.?

_ 189.6 k x 858 in.?

v 70279 mF - 2L k/in

Using minimum weld size of % in.,
F, =0.928 x 5 x 2 =9.28 k/in.
For intermittent fillet welds spaced 12 in. on center,

2.31 k/in. x 12 in.
9.28 k/in.

Required weld length = = 2.99 in.

Use {%-in. fillet weld, 3 in. long, spaced 12 in. on center.
Required intermediate stiffeners:

End panel stiffener (no tension field action permitted per AISCS G4):

V = 189.6 k
.6k
f = % = 8.67 ksi —> % = 0.47 (this value was obtained
21.88 in. by solving (F4-2) for a/h)

a =047 X 70in. = 32.9in. Use2 ft, 6 in.

Shear at first intermediate stiffener:

V=189.6k —32k/ft x 2.5t =181.6k

181.6 k

fo= 3188 m2

= 8.3 ksi —> % = 1.0 (Table 2-36)
a=10Xx70in. = 70in. Use 5 ft, 10 in.

Shear at second intermediate stiffener:

V=181.6k — 3.2k/ft x 5.83 ft = 1629k
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162.9 k

. a _ 4\ _ -
f, = TTesm? =~ 7.5 ksi —> , = max <h> 1.35 (F5-1)

a=135%x70in. = 94.5in. Use 7 ft, 6 in.

Shear at third intermediate stiffener:

V=1629k —3.2k/ft x 7.5t

138.9 k a
= 07K 63ksi — 2 =135
fo= 288 in? St po 13

138.9 k

a=135X%X70in. =94.5in. Use 7 ft, 6 in.
Check the 16-ft center panel:

V =256k

25.6 k .
=————=11 i F. = 1.66 ksi R ih?s 3
fo= 882 Tksi <F, 66 ksi <(F4 2) with >

No intermediate stiffeners are required in the center panel.

Conservatively provide stiffeners as shown.

End Intermediate
stiffener stiffeners (typ.) Sym. about ¢
»

| <=

l—4'-3" —+—2 @7'-0" = 14'-0" Jr‘ 14'-3"

Check combined shear and tension stress at point B:

V= 125.6 k
125.6 k
= —20K 574 ksi
fo= 31882 .
@ _ 583 12in/R

- = 1.0, F, = 8.8ksi (Table 2-36)
h 70 in.
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F, = [0.825 - <0.375 x 5—8185>] 36 ksi = 20.9 ksi < 22 ksi
(web) = 19.64 ksi (- ) = 18.8 ksi < 20.9 ksi ok
Jolweb) = 19.64 ksi {3677 - ) = 18- 0

Design of intermediate stiffeners:

A, = % web area (Table 2-36) X (f,/F,)
224 and a/h = 1.0, % web area = 11.2

For h /1,
(from interpolation, Table 2-36)
Ay = 0.112 x 21.88 in.? X (8.3 ksi/8.8 ksi) = 2.31 in.?

Try &% X 4 in. stiffeners (4, = 2 X 0.3125in. X 4 in. = 2.5 in.?).

40 _ g < P _ 158 ok

0.3125 in. J36

Check moment of inertia:

70\* 1
I,={(—) =384in* < —x0. in. x (8. in.)?
req <50> 3.84in." < T 0.3125 in (8.3125 in.)
= 14.96 in.* ok

Minimum stiffener length (AISCS G4):

Iy =3in. + (6 X 0.3125 in.) = 21.19 in.

Iy, =70in. — 2.19 in. = 67.8 in.

Use S ft 8 in. long plates on each side of the web.

Connection of stiffener plates to web:

o\ 3
£ =70 in. X (324'(‘)5'> = 2.41 k/in.

Use i%-in. continuous welds on both sides of each stiffener.

Use intermediate stiffeners 5 X 4 X 5 ft, 8 in.
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Design of bearing stiffeners at unframed ends (AISCS K1.8):

Try two 15 X 75 in. stiffeners.

N

st

7.5 in. 95
=2 _ 33 <=2 =158 ok
1,  0.5625 in. J36 ©

Ag = 2 X (7.5 in. X 0.5625 in.) + 12 X (0.3125 in.)* = 9.61 in.?

;- 05625 in. X (2 X 7.5in) + 03125 in.]’
st T 12

/168.3 in.*
= 22— 418in.
"= A 9.61in? "

Kh 0.75 X 70 in.

r  4.18in.
F, = 21.02ksi  (Table C-36)

= 168.3 in.*

= 12.6

189.6 k
= —— = 19.73 ksi . i
L 961 in2 19.73 ksi < 21.02 ksi ok
End bearing stiffener
3" X7 (typ.)
t, =4" ‘%
16"

e —

Check bearing on bottom flange:

Assume that 1} in. is clipped from the end stiffener at the bottom to accom-
modate the fillet weld connecting the flange to the web.

A, = 0.5625 in. X (7.5 in. — 1.5in.) = 3.375in.?

_ (189.6 k/2)

33752 28.1 ksi < 0.90 X 36 ksi = 32.4 ksi ok
. in.

o
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Connection of end bearing stiffener to web:

189.6 k

i hear transfer = ———
Required shear transfer 2% 70 in.

= 0.68 k/in.

Use -in. continuous fillet welds on each side of both stiffeners.
Use end bearing stiffeners 5 X 7 X 5 ft 10, in.
Design of bearing stiffeners under concentrated loads:

Check local web yielding (AISCS K1.3), assuming point bearing (i.e., N =
0):

k = t; + w(flange to web)

I

1.5 in. + 0.3125 in. = 1.81 in.

R

— < 066F (KI-2
(N + 5k y K1)

100 k
0.3125in. [0 + (5 X 1.81 in.)]

=354 ksi > 0.66 X 36 = 24 ksi N.G.

(Note: If the local web yielding criterion is satisfied, the criteria for web crip-
pling must then be checked.)

Try two 3 X 4 in. stiffeners.

5 _ 4.0in.

= 2= _ 107 < 158 ok
t,  0.375 in. ©

Aer = 2 X (4.0in. X 0.375in.) + 25 x (0.3125in.)> = 5.44 in.?
_0.375in. X [(2 X 4.0in.) + 0.3125 in.]’

— i 4
I, 7 = 17.95 in.
17.95 in.*
= = 1.82 i
r 5442 82 in
Kk 0.75 x 70 in.
TS T ism 88

F, = 20.02 ksi (Table C-36)

100 k
= ———— = 8. i .02 ksi
fa 5442 18.38 ksi < 20.02 ksi ok
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Check bearing:

Again, assume 15 in. clipped from the stiffener to accommodate the fillet weld
connecting the flange to the web.

A, = 0.375in. X 4.0in. — 1.5in.) = 0.94 in.2

(100 k/2) . .
b = —m = 53.3ksi > 32.4 ksi N.G.
. (100 k/2) .
Required 4, = YIS k/si = 1.54 in.2

Conservatively use iz X 73 in. stiffeners under concentrated loads (same as for
end stiffeners).

3.5 OPEN-WEB STEEL JOISTS

In common usage are shop-fabricated, lightweight truss members referred to as
open-web steel joists (see Fig. 3.9). Charts are readily available that provide
standard fabricated sections for desired span and loading conditions. When the
use of open-web joists is desired, the designer should refer to any one of the
numerous design tables available from joist suppliers and the Steel Joist Insti-
tute.

Concentrated loads on panel points (typ)

Y
_i_\_/\/\/\/\/\/\_/l Square ends

~ 7" (optional)

Parallel chords

Top chord pitched one way

! !

Top chord pitched two ways

Fig. 3.9. Types of open-web steel joists. Generally, chords are double-angles, and the web mem-
bers are round bars. Parallel chord joists are most commonly used.



Fig. 3.10. Long-span joist roof system of the American Royal Arena in Kansas City, Missouri
(courtesy of U.S. Steel Corp.).

Fig. 3.11. View of a steel truss made from wide flange sections during fabrication.

133
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PROBLEMS TO BE SOLVED

3.1. AW 16 X 100 beam has a simple span of 45 ft. If the member is fully
laterally supported, determine

a) the maximum distributed load the beam can carry and
b) the maximum distributed load that can be carried by the beam if both
flanges are cover-plated with 13 x 12 in. plates.

3.2. Determine the width of 13-in. cover plates necessary for a W 12 X 65
beam to resist a moment of 320 ft-k. Design plates for top and bottom flanges.
Use F, = 22.0 ksi.

3.3. The loading of an existing W 12 X 65 beam spanning 25 ft is to be in-
creased to 2.75 k/ft. Because of existing conditions, only the bottom flange
can be reinforced. Determine the thickness of a 12-in.-wide cover plate for the
bottom flange necessary to carry the increased load.

3.4.% A simple beam spanning of 30 ft is to carry a uniform distributed load of
1.8 k/ft. However, height restrictions limit the total depth of 10} in. Determine
the width of 3-in. partial length cover plates necessary to increase a W 8 X 67
section to carry the load. Assuming bolted plates with two rows of 3-in. A 325
N or SC bolts as applicable, calculate the required spacing of bolts.

3.5.2 Design partial-length cover plates for Problem 3,4, assuming 3 X 11-in.
plates welded continuously along the sides and across the ends with -in. welds.

3.6.> A W 10 X 49 beam with 3 x 12-in. cover plates spans a distance of 35
ft, with loads as shown. Assuming F, = 22.0 ksi, design partial-length cover
plates bolted to the flanges with two rows of 3-in. A 325-N bolts, using an
allowable load of 9 kips per bolt; and determine how many bolts are required
in the development length.

6 kip 6 kip

! i 1.0 kip/ft.

e D T T

pas A

—10-0" 15°-0" 10-0" |

3.7. Show that the required plate girder flange area equation 4, = M /(F,h) —
A,,/6 is derived from the gross moment of inertia equation. Hint: Assume flange
thickness to be small compared with the web plate height.

2Knowledgc of connection design (Chaps. 5, 6, and 7) is required.
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3.8.3 A built-up beam framed between two columns 70 ft apart supports a uni-
form load 4.5 k/ft. Design trial web and flange plates that will not require
transverse stiffeners. Assume the beam depth to be L/12. Check using the mo-
ment of inertia method. Calculate the welds.

3.9.3 Design bearing and intermediate stiffeners, in pairs, and their connections
for a member with loading as shown. The section consists of a 56 X -in. web
plate and 1} X 20-in. flange plates and is unframed at the ends. Assume that
the member is fully supported laterally.

72 kip 72 kip 72 kip

y y y 2.8 kip/ft. (Includes girder weight)

NN NN

L

s Ay
f—12-0" 12-0" 12-0" 12'-0" —]

3.10.> Completely design the built-up beam shown. The beam is laterally sup-
ported at points A, B, C, and D, the compressive flange is not prevented from
rotating between the points of support; and the ends are not framed. Design
such that intermediate stiffeners are not required.

le ' 2.60 kip/ft.
e L Ty
A 7

3.11.% Redesign Problem 3.10 as a plate girder using minimum thickness web
plate and intermediate web stiffeners.

3Knowledge of connection design (Chaps. 5, 6, and 7) is required.
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Columns

4.1 COLUMNS

Straight members that are subject to compression by axial forces are known as
columns. The strength of a column is governed by the yielding of the material
for short ones, by elastic buckling for long ones, and by inelastic (plastic) buck-
ling for ones of intermediate lengths. A ‘‘perfect column,’’ that is, one made
of isotropic material, free of residual stresses, loaded at its centroid, and per-
fectly straight, will shorten uniformly due to uniform compressive strain on its
cross section. If the load on the column is gradually increased, it will eventually
cause the column to deflect laterally and fail in a bending mode. This load,
called the critical load, is considered the maximum load that can be safely
carried by the column.

Example 4.1. For a column with pin-connected ends and subjected to its crit-
ical load P, show that

P
” 2 = kz _ —
a) y" + k%y = 0 for El

2

b) kI = = and that P,, = ”1—2

136
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— X
— %
o

{
I M
Ibo— y
|
|
— — Y U\ DE—— Pcr
| f
P P,
(a) (b) (c)

Solution.

a) From mechanics of materials, the moment in a beam is given as
M = Ely"

for the axes indicated in figure b. From figure ¢
M= Py

Equating the two

Ely" = —Py
Ely" + Py =0
y" + (P/EDy =0

Using P/EI = k*
y" + k% =0
b) For the differential equation y” + k%y = 0, the end conditions are
atx=0,y=0

¢
atx = Ey’ = 0 (slope of beam)
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The solution of the differential equation y” + k%y = 0 is

y = A cos kx + B sin kx

atx =0,y=Acos0+ Bsin0 =0
cos 0 =1,sin0 =0. Hence, 4 =0

y = B sin kx
y' = kB cos kx

At x = ¢/2, y' = 0. Hence the second condition can be satisfied only if cos
kl/2 = 0orkl/2 = = /2, which gives

k212 = 7r2

or

As developed above for a long column with pinned ends
2
w°El
Poe == @.1)

where P_, is the critical load, called the Euler load. Because the axial stress f,
=P/A

2
w°El
Facr= lZA =Fe (42)

and using vI/A = r (radius of gyration), we find

_ ©E
UGS

F, 4.3)

where F, is Euler’s stress.
When we: graphically represent the ideal failure stresses (Fr) of a column
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Fig. 4.1. Detail of a wide-flange beam to pipe column connection.

versus the ratio [ /r (called slenderness) we obtain a curve made of the branches
AB and BCD (see Fig. 4.2).

The branch AB is where a column can be expected to fail by yielding (Fp =
Fy) and

where (I/r)* is the slenderness for which the Euler stress is equal to the yield
stress. On branch BCD, the column can be expected to fail by elastic buckling
with a failure stress

Fo=F -"E F
F = e ™ (l/r)2 < y
where [/r > (I/r)* = = VE/F,.

However, tests have shown that columns fail in the zone shaded in Fig. 4.2.
This variation in failure stresses of test samples was originally attributed to
imperfections in the columns, but it has been proven that residual stresses cie-
ated this condition. The residual stresses are created by uneven cooling of rolled
sections such as in wide flange sections where the tips of the flanges and the
middle portion of the web cools much faster than the juncture of the web and
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Fig. 4.2. Slenderness versus failure stress curve.

flanges. As a result of these observations, the Structural Stability Research
Council (SSRC) has adopted the slenderness C. to separate the elastic from the
nonelastic buckling. C. is the slenderness corresponding to Fp = F, /2 and is
equal to 7v2E/F,. The branch AGC is a quadratic curve which fits the test
results, has a value of Fp = Fy and a horizontal tangent at / /r = 0, and matches
Euler’s curve at point C by having the same ordinate and the same tangent for
l/r=C,.
The branch CD is Euler’s curve. Hence the failure stresses can be given by

I S WOV
e 4(2)]

for I/r < C. where C, = v27°E/F, and by

©°E

Fe =

“4.5)

forl/r = C..
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Example 4.2. Determine the Euler stress and critical load for a pin-connected
W 8 X 31 column with a length of 16 ft. E = 29,000 ksi.

Solution. Fora W 8 x 31

A=9.13in? I, =110in? I, =37.1in",
re =347in., r, =2.02in.

I, and r, govern.

’E 2 x 29,
Fo=—=2f 990 _ 3168 ksi

LA <16 x 12)2

2.02
P.=AXF, =913 x 31.68 = 289.25 k

Example 4.3. Determine the Euler stress and critical load for the pin-con-
nected column as shown, with a length of 30 ft. E = 29,000 ksi.

a0

ﬁ&—m
L

Solution. For a2} X 25 X 4 in. angle
A=119in? I=0703in? x=y=0.717in.
Due to symmetry, y is 5 in. from the top or bottom.

I =14 x (I, + Ad®) = 4(0.703 + 1.19¢5 — .717)®)
I=90.1int*
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\ﬁ—\j4x119_435"‘

2 % 29,000
E _r = 41.80 ksi

F
‘ (l/r)2 <30x12>
4.35

P,=AXF,=(@4x1.19) X 41.80 = 199.0 k

The critical load equation can also be obtained by transforming the Euler stress
equation

2 2
2°E 2El
P.=AXF,=4Xx =
(/N1ja¢ P
2 % 29,000 x 90.1
P, == = 199.0 k

(30 x 12)?

Note: Euler stress and critical load are theoretical values. For actual allowable
stresses of columns, see examples beginning with 4.6.

Example 4.4. Determine the Euler stress and critical load for the pin-con-
nected column as shown with a length of 30 ft. E = 29,000 ksi.

==

U

; W10 X 26

Solution. Fora W 10 X 26
A=761in% I =144in* I, = 14.1in? d =1033in,
t, = 0.26 in.

0.26
<7.61 10233> + 7.61 X <10.33 + —2—>

y = = 7.81 in.
2 % 7.61
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I, = LIy + Ad* = 1.44 + 7.61(7.81 — 5.17)* + 14.1
+ 7.61(10.46 — 5.17)* = 424.1 in.*

=L, = 144 + 14.1 = 158.1 in.* (govems)

leastr-—\/' }2(761 = 3,22 in.

F, = 7r2=1r X29000—-229ks:
/n 30 x 12
3.22

P.,=AXF, =2 X761)x229ksi =349k

cr

or

2 2
wEl  7* X 29,000 x 158.1
P = = — 4
o ? (30 x 12)? 349 k

4.2 EFFECTIVE LENGTHS

Columns with supporting conditions other than pinned at both ends have critical
loads different from Euler columns.

Example 4.5. For the column conditions shown, prove that

a) P, is four times the P, for the same pin-supported column.
b) P, is one-fourth that for the same pin-supported column.
c) P, is two times the P, of the same pin-supported column.

Note that the following problems can be solved exactly using analytical meth-
ods. What follows, however, is a heuristic approach to the solutions.
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Solution.
a)
P Pcr Pcr
im__ l_L -
9,/4
7T
4 0,/2 2
N
9, /4
//7;;7 1 _r _
P Pcr P”’
(a) (b) (c)

Considering the deflected shape of the column fixed at both ends, we see that
contraflexure points (i.e., points of zero moment which are equivalent to a hinge)
occur at A and B. That portion of the column between A and B is the same as
for a pin-ended column. Hence, from figure b:

vEl _ ©El
G/27 051

Pcr=

Defining K as the effective length factor, the above equation can be rewritten
as

w’El _ ©El _ 47°El

P =Ky = 1 %

1 (D%

with K = 0.5. Due to the term in the numerator, the capacity is four times the
critical load of the pin-supported column.



COLUMNS 145

1 4
B : 2 4
|

Per \

b)

|

-
-
(9]

!

(d) (e (f)

By taking the symmetric portion of the deflected column OC in figure f, the
column CD behaves as an Euler column of length 2/;.
The column of length C to D is the same as for a pin-ended column. Hence
p - TEL _ mEl _ ©El
e KL 40y

with 2 for the effective length factor. Due to the term in the denominator, the
load capacity is one-fourth the critical load of the pin-supported column.

c)

P Pcr

0725 6

o 325

P P,
(a) (h)
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The distance EF is approximately 0.7 I5, where F is the point of contraflexure.
We then have
wEl 2 7’El

P =077 T ey

with the effective length factor K = 0.7. The load capacity is approximately 2
times the critical load of the pin-supported column.

The values of K (effective length factor) above agree with the values found in
Table 4.1.

As seen in the above example, for a column with both ends fixed the critical

load is

©°E
F, = m 4.6)

Table 4.1. Effective Length Factor K Based on AISCS C2 (AISCS
Commentary Table C-C2.1, reprinted with permission).

c (d) (e) (f)

¥l
P P

(a) (b)

r
()

~

Buckled shape of column
is shown by dashed line

-
-~ = ———

Theoretical K value 0.7 1.0 1.0 2.0 2.0

Recommended design
value when ideal conditions
are approximated

0.80 1.2 1.0 2.10 20

Rotation free and translation fixed

End condition code
Rotation fixed and translation free

Rotation free and translation free

1
!
|
\
\
\
\
\
0.5
0.65
w Rotation fixed and transiation fixed
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and with one end fixed and the other pinned

2

E
F.=—— 4.7
T.71/r? “.n

This leads to the development of the expression
2

mE
F.=— 4.8
(Kl -8

where K, called the effective length factor, depends on the end connections of
the column.

Because the allowable axial stress for a column depends upon the slenderness
ratio (//r), the AISC allows the slendemness ratio to be modified by a factor K,

Fig. 4.3. Erection of prefabricated, two-story column-and-beam system for the Sears Tower, Chi-
cago. Note reinforced openings in the beam webs for heating and cooling ducts. (Courtesy of U.S.
Steel Corp.)
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so that the allowable axial stress also depends upon the end conditions of the
column. The effective length factor K can be obtained from Table C-C2.1 of
the AISC Commentary (reproduced as Table 4.1 here), and the value r for rolled
sections can be found in the properties for designing tables.

The AISC code in Specifications C2.1 and C2.2 allows for laterally braced
frames the use of K = 1 as a conservative simplification, while for unbraced
frames the use of analysis is suggested. This can be done by interpolation be-
tween appropriate cases of Table 4.1 or by a more precise approach, (see AISCS
Commentary C2 pages 5-134 through 5-138 and AISCS Fig. C-C2.2). Deter-
mination of K for laterally unbraced frames is beyond the scope of this book
and will not be discussed here. Examples are given on pages 3-4 through 3-7
of the AISCM.

Whether a column connection is pinned or fully fixed can not always be read-
ily determined. Quite often, connections meant to be fully fixed do not have
full fixity due to improper detailing. In general, pinned column base connec-
tions have the base plate anchored to the foundation with bolts located at or
near the centerline of the base plate, and pinned column-beam connections have
the column connected to the beam web only (see Fig. 4.4, left). Column base
plates for fixed columns usually have the anchor bolts near the column flanges,
as far away from the centerline as practical and in fixed column-beam connec-

Fig. 4.4. Column connections. Left, pinned column base and pinned column-to-beam connection.
Right, fixed column base and fixed column-to-beam connection.
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tions the column flange is rigidly connected to the beam flanges (see Fig. 4.4,
right).

4.3 ALLOWABLE AXIAL STRESS

AISCS E2 specifies the allowable axial compressive stress for members whose
cross sections meet those of AISCS Table B5.1 (width-thickness ratios). When
Kl/r, the largest effective slenderness ratio of any unbraced segment is less
than C,, (E2-1) governs:

[ (Kl/ry? }
2¢ |7

Fo = 5, 3&l/n _ &i/r) 4.9)
3 8 C. 8 C?

where C, = V27°E/ F),. Referring to Section 4.1, the value C. is the slenderness
corresponding in Euler’s curve to the stress F, /2, as at a stress close to this
one, Euler’s curve and the SSRC curve match. When Kl /r exceeds C,, (E2-2)
governs:

2
= 2TE 4.10)
23 (KI/p

It should be noted that the denominator in eqn. (4.9) and the ratio Bin eqn.
(4.10) are the safety factors for the allowable compressive stresses, and the
numerators are the failure stresses for the panicular slenderness. For very short
columns (KI/r = 0), the safety factor is 3 (the same as for tension members)
and is increased by 15% to 3 as slendemess increases to when KI/r equals C.
and remains at 33 for KI/r greater than C,. The safety factor is increased as
slenderness i mcreases because slender columns are more sensitive to eccentric-
ities in loading and flaws in the steel itself than short columns.

To determine the allowable axial compressive stress F, without lengthy cal-
culations, the AISCS has established tables that give the allowable stress F, as
functions of KI/r values and yield stress of the steel. AISCM Tables C-36 and
C-50 are provided for steels with F, = 36 ksi and F, = 50 ksi, respectively
(see pages 3-16, 3-17). For other grades of steels, Tables 3 and 4 in the Nu-
merical Values Section (pages 5-119, 5-120) are needed. Figure 4.5 shows a
graphical representation of the failure stresses and the allowable axial stress for
F, = 36 ksi and F, = 50 ksi as a function of slenderness of the member.

In AISCS B7, it is recommended that the slenderness ratio be limited to a
value of 200.
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60 \

\
SSRC curve for \ Euler’s curve
50-ksi steel ‘;/

50

40 - SSRC curve for
36-ksi steel

22 36
NS
N
®Q
E " 30
LTS
Al e e Gttt
21.6
20
18 " T T T aiem o i
50-ksi steel !
10} AISC curve for : !
36-ksi steel | P~ T
| |
| l
0 1 L 1 L1 Ml 1 ! |
0 25 50 75 100 i 125[ 150 175 200
C. for 50|107.0 126.1{C. for 36 Slenderness
[k;i steel } * * [kgi steel ratio, K/r (in.)

Fig. 4.5. Slendemess curves for the most commonly used steels. Euler’s curve for theoretical stress
and SSRC curve for failure stress are also shown for comparison with the AISC specified curves
for allowable stress.

Example 4.6. Calculate F;,,abie and Pyjiouanie for a W 8 X 48 column with
fixed ends and a length of 16 ft, 6 in.

Solution. The effective length concept is used to equate framed compression
member length to that of an equivalent pin-ended member. For this purpose,
theoretical K values and suggested design values are tabulated in the AISC
Commentary (see Table 4.1)

K = 0.65 (AISCS Table C-C2.1)
r, = 2.08 in. (minimum r)

Kl _0.65 X (16.5 X 12)
ro 2.08

= 61.88
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27’E 27%29,000
C. = J 7;, = J T 36 = 126.1 (AISCS E2 or Numerical Values
y Table 4, p. 5-120)

61.88 < 126.1

Because the slenderness ratio is less than C., AISC eqn. (E2-1) is to be used:

[\

2c? |”
F
“ s N 3ki/n _ (Kl/r}
3 8C. 8C?
[1 _ “51_88)2} X 36.0
F 20126.17 ' 17.25 ksi  (or from Table C-36
a = T = 17. st (or from Table C-
3 + 3(61.88) _ (61.88) by interpolation)
3 8(126.1) 8(126.1)°
A = 14.1in.2

Py =F,x A=1725ksi X 14.11in.2 = 243.2k

Example 4.7. Calculate the allowable stress F, and allowable load for a W 8
X 48 column with one end fixed and one end pinned with a length of 35 ft.

Solution.
K =0.80
r, = 2.08 in. (minimum r)

y

C. = 126.1 (from Example 4.6)

Kl 0.80 X (35 X 12)
ro 2.08

= 161.54
161.54 > 126.1

For slenderness ratios greater than C,, AISC eqn. (E2-2) is to be used (AISCS
E2).
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127%E
Fa ] —.<_>-7

2 Kl
r

12 X w2 X 29,000
=5 x7r(1 61.54)’ = 5.72 ksi (or from Table C-36 by interpolation)

A= 14.1in2
P=F,XxA=572ksi x 14.1in.2 = 80.7 k

Example 4.8. Using the AISC table for allowable stress for compression mem-
bers of 36-ksi yield stress, determine the allowable load a W 10 X 77 can
support with a length of 16 ft and pinned ends.

Solution.
K=1.0
r, = 2.60 in. (minimum r)

EI _ 1.0 X 16.0 X 12
ro 2.60

= 73.85

F, = 16.01 ksi <K7[ = 74> (AISC Table C-36)

P, =F, x A=16.01 X 22.6 = 361.8 k

Example 4.9. Determine the allowable load a W 12 X 65 can support with a
length of 20 ft and pinned ends.

Solution.
K=1.0
r, = 3.02 in.
L(_l _ 1.0 X 20 ft >< 12 in. /ft — 7947
r 3.02 in.
F, = 15.42 ksi (AISC Table C-36)

P, =F, x A=1542ksi x 19.1in.2 = 294.5 k
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Example 4.10. Determine the allowable load a W 10 X 49 can support with a
length of 24 ft, 6 in. One end is fixed and the other pinned. Steel yield stress
F, = 50 ksi.

Solution.
K =0.80
r, = 2.54 in.

Kl 0.80 X 24.5 x 12
r 2.54

F, = 16.37 ksi (AISC Table C-50)

=92.6

Py =F,xA=163Tksi X 14.4in.2 = 235.73 k

4.4 DESIGN OF AXIALLY LOADED COLUMNS

The following procedure can be used to design an axially loaded column with-
out design-aid tables:

1. Determine the effective length factor X from Table 4.1.

2. Selecting an arbitrary r, obtain K//r and determine the corresponding al-
lowable axial stress F, from AISCM Tables C-36 or C-50 or from AISCS
eqn. (E2-1) or (E2-2).

3. Determine the required area (A = P/F,), and select an appropriate rolled
section.

4. Recalculate the actual slenderness ratios of the selected section with re-
spect to the x and y axes and the corresponding F, values.

5. Repeat the above process until satisfactory convergence has been ob-
tained.

When determining the slenderness ratio of a column, the radii of gyration for
the x and y directions, as well as the respective unsupported lengths, must be
obtained. The value K//r must be calculated for both x and y directions, and
the larger of the two values shall be used for determining the allowable com-
pressive stress F,. In addition, the AISC has allowable concentric load tables,
starting on p. 3-19, which can be used to determine the capacity of a column
for a given effective length based on the provisions in AISCS E2.
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Example 4.11. Design a W 14 column pinned at both ends to support an axial
load of 610 kips. L, = L, = 21 ft, 6 in.

Solution.
K=1.0
Kl
Assume " =70
F, = 16.43 ksi
A P B0k _ 5 13in2
= — = ———=37.13 in.
™ F, 16.43 ksi

Try W 14 x 120
A=353in? r,=624in, r,=3.74in.
Since L, = L,, r, governs

Kl, 1.0 x21.5 x 12
r, 6.24 in.

= 41.35

Kl 0 X215 x12
o L0 X215 X 12 _ o6 o8 (govems)

r 3.74 in.
F, = 16.53 ksi
P 610k
A, =— = —— —36090in.>
= E T les3 ke o0

36.90 in.> > 35.2 in.> Try next heaviest section

Try W 14 x 132

b
]

38.8in.%, r.=6.28in., r, = 3.76 in.

Kl, 1.0x215x12 "
— = 376 in. = 68.6 (critical)

!
Il

= 16.59 ksi
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610 k

= m = 15.72 ksi < 16.59 ksi

fa

Use W 14 X 132.

Using the allowable load tables fora W 14, for KL, = 21 ft, 6 in., use a W 14
X 132 which has a capacity of 643 k (by interpolation).

Example 4.12. Select the lightest W section for a column supporting a 300-
kip load, fixed at the bottom and pinned at the top. L, = L, = 17 ft, 6 in. Refer
to AISC columns tables.

Solution.

K = 0.80 (AISC Table C-C2.1)
KL =0.80 x 17.5 ft = 14.0

W shapes capable of supporting the load:
W8 Xx67, P=304k
W10 x 68, P =339k
W12 x 65 P =341k
W14 x 68, P =332k
Note: W 10 X 60 and W 14 X 62 may be considered satisfactory, as they are
only 1% overstressed with P = 297 k.
Use W 12 X 65 (lightest section) or W 10 X 60 if a slight overstress is per-

missible.

Example 4.13. Select the lightest pipe or square structural tube for P = 300
kipsand L, = L, = 14 ft, 0 in.

Solution.
10 x 10 x 3/8 x 47.90 Ib/ft square tube (P = 332 k)
8 X 8 X 1/2 x 48.85 Ib/ft square tube (P = 315 k)
10 ¢ X 54.74 1b/ft extra strong steel pipe (P = 301 k)
8 ¢ X 72.42 1b/ft double-extra strong steel pipe (P = 369 k)

Use 10 X 10 x 3/8 square tube, 47.90 Ib /ft.
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Example 4.14. Design the lightest W 12 column for an axial load of 350 kips.
The column is pinned at the bottom and fixed at the top, but subject to sway in
the x and y directions. L, = 22 ft, O in., L, = 11 ft, 0 in.

Solution. Assume K{/r = 70, K = 2.0

F, = 16.43 ksi
P 350k
Ap = = = —25_ —2130in2
*4 = £ = 16.43 ksi 30in

Try W 12 X 72

A=211in? r =531in, r, =3.04in.
Kl 20 x(22.0 x 12

= 99.4 (governs)

ry 5.31
Kl 0 x (11.0 x 12
oo _20xd ) _ 6.8
ry, 3.04
F, = 13.05 ksi
0k
Aeg = i—— =26.82in.2 > 21.1in.2 N.G.
4 13.05 ksi
Try W 12 x 87

A=256in? r,=538in, r,=3.07in.
Kl 2.0 X (22.0 X 12)

= 98.1 (governs)

r. 5.38
Ky, 2.0 x (11.0 x 12
Dy 20 x( ) - 860
r 3.07
F, = 13.22 ksi
350 k
Aq = T3 00 e = 2648 in? > 25.6 in? N.G.
. S1

By inspection, a W 12 X 96 will be adequate because of the small overstress
of the W 12 X 87, as shown above.
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As an alternate approach, use the column load tables as provided in the
AISCM. For a W 12 with P = 350 k and K, L, = 2 X 11 = 22 ft, choose a
W 12 X 87 which can adequately support 376 k for the weak direction. How-
ever, since K, L, = 2 X 22 = 44 ft is greater than K L,, the strong axis may
govern. By dividing K, L, by the ratio r,/r, (given in the column tables), we
obtain the equivalent length in the y direction of K, L,:

KL 44
e B R Y R 25 ft.
r/r) 175 ft. say

For this length, a W 12 X 87 can support a load of only 340 k, which is less
than 350 k, which is no good. Therefore, a W 12 X 96 should be used, since
it can carry 376 k for a length of 25 ft.

Note that the allowable concentric load tables can be used for steels with F,
= 36 ksi and F;, = 50 ksi (shaded). In general, to use these tables, the following
procedure must be used:

1. Determine the effective length factor K from AISCM Table C-C2.1, and
calculate the effective length KL in feet, for the y direction.

2. From the tables, select an appropriate section based on the effective length
and the axial load P.

3. Dividing the effective length K, L, by the value r, /r, of the selected sec-
tion, obtain the effective length with respect to the minor axis equivalent
in load-carrying capacity to the actual effective length about the major
axis. The column then must be designed for the larger of the two effective
lengths K, L, or K. L./(r,/r,).

Example 4.15. Design the column shown using the AISC column tables.

200 kip

|

aval

L, =21-0" we
y

200 kip
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Solution.

1l

K
KL

y

1.0
1.0 X 7.0 ft = 7.0 ft (weak direction)

For (KL) = 7 ft and loading of 200 kips, select W 8 X 40, which can carry
223 kips and has r,/r, = 1.73

L _21ft ) as
r/r, 173 '

From the same table, for (KL) = 12.14 ft and P = 200 kips, a W 8 X 48 is
needed. Use W 8 X 48.

Example 4.16. Design a W 10 column pinned at top and bottom to support an
axial load of 200 kips. L, = 14 ft, 0 in., L, = 7 ft, 0 in.

Solution.

K=K =K =10

Kl

Assume — = 70
r
F, = 16.4 ksi
P 200 k
Apg = — = =12.2in?

*a = F = 16.4 ksi n

Try W 10 X 45

A=133in? r.,=432in, r,=20lin.

K—I"—I'OXI4XI2—389
reo 4.32 o

Kl, 10x7x12
— = —2(7)1—— = 41.8 (govems)

T
Il

19.05 ksi

P 200k
A =—=—— =10.50 in.2
e = £~ 19.05 ksi n

10.50 in.> < 13.3 in.? Try the next lighter section.
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Try W 10 X 39

x
Il

11.5in%, r, =4.27in., r, = 1.98in.

Kl, 1.0x14x 12
= T2 =139.3

Kl, 1.0x7x12
— == "7 "% 42.4 (critical)

r, 1.98
F, = 19.0 ksi

200 k . .
f, = 152 = 17.4 ksi < 19.0 ksi

We note that if W 10 X 33, the next lighter section, is used

A =971in2
200 k . .
Jo = o7 m? 20.60 ksi > 19.0ksi N.G.
Use W 10 x 39.

Example 4.17. Select the lightest column from AISCM columns tables for K,
=20,K,=12,L =18.0ft L, = 12.5 ft, F, = 50 ksi, and P = 470 kips.

Solution.

K,L 1.2 X 125 ft = 15.0 ft

Y=y

Try W 10 X 77; r,/r, = 1.73

KL 2.0 x 18.0 fi

= = 20.8 ft
r./r, 1.73

Redesigning for (KL) = 20.8 ft, select W 10 x 100.
Try W12 X 72, r,/r, = 1.75

KL, 2.0 x 18.0 fi

= = 20.6 ft
r./ry 1.75

Redesigning for (KL) = 20.6 ft, select W 12 X 87.
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Try W 14 x 82, r,/r, = 2.44

KL, 2.0 x 18.0 ft

= =148 ft < 15.0 ft
r/ry 2.44

We see then that W 14 X 82 is satisfactory.
W 14 X 82 is the lightest satisfactory section.

Example 4.18. Find the allowable load a 10-in. standard steel pipe can support
with a length of 20 ft and pinned ends.

Solution.
K=1.0
r = 3.67 in.
A=119in2
Kl 1.0 x20 x 12
—_— = — = 65.
r 3.67 65.4
F, = 16.9 ksi

Py=F,xA=169 x 11.9 = 201 k

Alternatively, use AISCM design tables:

From page 3-36, for 10-in. standard pipe with KL = 20 ft, read P = 201 k.

Example 4.19. Determine what compressive load a bracing member made up
of two angles 4 X 3 X 3 (long legs back to back) separated by a 3-in. plate can
carry when L = 20 ft, O in. Also, determine the location of the intermediate
connectors. Assume pinned ends.

Solution. For double angle and WT compressive members, allowable concen-
tric loads are tabulated in Part 3 of the AISCM (see pp. 3-59F). The allowable
compressive loads about the X-X axis are determined in accordance with AISCS
E2; about the Y-Y axis, the allowable loads are based on flexural-torsional buck-
ling (p. 3-53). The derivation of these critical loads is beyond the scope of this
text.
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For the 214 X 3 X 3:

KL, =1x20=20ft P, = 20k (governs)
KL,=1x20=20ft, P, =22k

X

The corresponding slenderness ratio =

Along the length of the built-up compression member, intermediate connec-
tors should be provided at a spacing a, such that the slenderness ratio Ka /r of
each component does not exceed 3 times the governing slenderness ratio of the
built-up member (AISCS E4). The smallest radius of gyration r should be used
when computing the slendemess ratio of each component.

For a single L4 X 3 X 3, rpn = 7, = 0.644 in.

Ka =< 0.75 KL,

k4 rx

= 0.75 x 190.5 = 142.9

a = spacing between fully tensioned, high-strength bolts or welds
(in this case, high-strength bolts)

= 142.9 X 0.644 in. = 92 in. = 7.67 ft
Therefore, provide two connectors, one at each of the  points along the length

of the brace. Note that this satisfies the requirement for the minimum number
of connectors that must be provided.

Note: The design of single-angle compression members will not be discussed
here, as the construction of such struts is for all practical purposes infeasible.
See p. 3-55 of the AISCM and Sect. 4 of the Specification for Single-Angle
Members (p. 5-310) for further discussion.

Example 4.20. Determine the allowable load a WT 4 X 14 can carry if it is
pinned at both ends and is 8 ft, O in.

Solution. From page 3-105 of the AISCM:

KL, =1x8=28ft, P, = 56k (govemns)
KL,=1x8=28ft, P,=72k
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4.5. COMBINED STRESSES

Example 4.21. The top chord of a bridge truss is shown in the accompanying
figure. Determine the maximum stresses at the extreme fibers of this member
if it is subjected to a moment of 15 ft-k about the x axis and an axial compres-

sion of 100 kips.
R+ X 10”\”

W/CG X 10.5\r
x —+ X

e — —

Solution.

— in 2
Achanner = 3.09 in.

Apge = 5.0 in.?
I =152 in*
d. = 6in.

(0.5 in. X 10 in.) X 6.25 in. + 2(3.09 in.2 X 3.0 in.)

r = 5.0in2 + 2(3.09 in.2)
= 4.45 in. from bottom
10(0.5)
L=25+Af=—i—l+5m%—4%f+awm
+ 2(3.09)(3 — 4.45)2 = 59.7 in.*
Combined stress at top = —P/A — Mc/I (— stress indicates compression)
~100 (15 X 12)(6.5 — 4.45) ,
- = —~15.
5.0 + 2(3.09) 59.7 513 ksi
Combined stress at bottom = —P /A + Mc/I
—100 (5 X 1)@45) _ o

5.0 + 2(3.09) 59.7
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From the preceding example, we can see that the actual calculated stresses f;
= —15.13 ksi and f;, = +4.47 ksi can be obtained from the strength of mate-
rials. However, this approach cannot be used to design the member, since F
can vary from a minimum of 0.6 F| or less to a maximum of 0.75 F,. Similarly,
F, can vary from almost a nominal zero value to a maximum of 0.6 F,. In order
to take care of these different stresses and to determine the capacity of the mem-
ber (i.e., design), the following approach has been devised.

When a straight member is subjected to a significant bending stress as well
as a compressive stress, the member is sometimes referred to as a beam-column.
The bending stress may be caused by 1) eccentric application of an axial load,
2) applied end moments, or 3) lateral loads such as wind forces.

A beam-column carrying some given moments deflects laterally more than a
beam carrying the same moments because of the presence of the axial load. As
the axial load is gradually increased, the deflection increases at a much faster
rate, since the increase in moment depends not only on the increased axial load
but also on the increased eccentricity (moment arm) caused by the increased
load. Thus, a beam-column fails due to instability caused by excessive bending.

The increase in deflection due to the axial load increases the bending stress
f»» which, in effect, requires it to be amplified by the factor

_r
/i
(1-%)

where f, = computed axial stress and F, = Euler stress for a prismatic member.
For safety reasons, the Euler stress F, is divided by the same factor of safety
for the axial load and is commonly represented by F,.

Considering the effects of the moments on the beam-column, as mentioned
previously, the moments can usually be applied in two different ways: 1) at the
ends of the column (frame action) or 2) via transverse loading. The moments
applied at the ends of the column will bend the member in either a single or a
double curvature. Transverse loadings can be applied to the member in many
different ways: distributed loads, concentrated loads, etc. To compensate for
these effects, the constant C,, is introduced, which modifies the amplification
factor given in eqn. (4.11) above. The appropriate values for C,, are given in
AISCS H1,; further discussion can be seen in Commentary section H1.

If the allowable axial stress F, were equal to the allowable bending stress Fy,
the capacity of the column could be represented by

@.11)

foth =F 4.12a)

where F = F, = F,. Dividing through by F, we can write
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-+ =<1 4.12b
F ( )

Since F, and F, are not necessarily equal, these allowable values should be
introduced in the proper places in the above inequality:

f“+f—”sl

4.13
FYF, (4.13)
which shows that the fraction of the capacity used by the axial load (f,/F,)
plus the same for bending ( f, /F,) must be < 1. If biaxial loading is considered,
then

f;z ﬁix ﬁ’y
Ly — < ] .
FYE, TF, 0 4.14)

y
which is (H1-3) in AISCS H1. This equation is valid in the case of small axial
loads, i.e., f,/F, < 0.15.

When the axial load produces a stress such that £, /F, > 0.15, the bending
stresses have to be modified to account for the secondary bending moments, as
discussed previously. This can be seen in (H1-1):

fo,  Cuhu  _ Cwly

F, f £
1 -4 )F 1 - )F,
( F;) b < F;y> i

For the case when significant axial loads with moments applied at the supports
are considered, the code requires that (H1-2) be satisfied:

=< 1.0 (4.15)

fa fbx fby
——— + =+ —=<1.0 4.16
0.60 F, F, F, @.16)

Yy
Thus, it can be seen from this last equation that the effects of slenderness and
the second-order moments are omitted for this case.

For the benefit of the reader, all of the quantities used in eqns. (4.14) through
(4.16) will now be defined:

allowable axial stress if axial force alone existed, ksi.
allowable compressive bending stress if bending moment alone ex-
isted, ksi. The reader is advised to determine the values of F), carefully,

F,
F,
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as they may vary from a value close to zero up to 0.75 F,, depending
on the direction of bending, the locations of lateral support, etc. (see
Chapter 2).
' 127°E = Eul divided by a f: f safety, ksi. Th
F, = 3K, Jr) Euler stress divided by a factor of safety, ksi. The quan-
tities /, and r,, are the actual unbraced length and corresponding radius
of gyration in the plane of bending, respectively. K is the effective

NOT  BRAED

-
\\\__.l

a. C, =0.85 for all the columns (subparagraph (a)).

Wc ®7 —h Mmp

—_— —
—_— e
—_ —_—
—_— —_—
— —_—
7 4
> >~ M, /
c, =085 c, =06 c, 206 c, =10
Subparagraph:  {c) i (b) (b) (c)ii

c,=06-04 M\ where (M, is the ratio of the smaller
M, M,

to the larger of wa and M,

Q O

M M
-1 <0 —1 >0
M, M,
single curvature reverse (double) curvature
b.

Fig. 4.6. Values of C,, for compression members in frames (AISCS H1): (a) not braced against
sidesway, (b) braced against sidesway.
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length factor in the plane of bending. Note that the increases of the
allowable stresses for wind and seismic loads (Sect. 0.2) apply here to
F,, F,,0.6 F, and F,.

f. = computed axial stress, ksi.

f, = computed compressive bending stress at the point under consideration,
ksi.

C,, = coefficient as defined in AISCS H1 under subparagraphs (a), (b), and
(c) and represented in Fig. 4.6.

Example 4.22. For the column shown, determine if this member is satisfac-
tory. The column is from part of a building where sidesway is prevented, and
the member is bending about the major axis.

1000 kip

)
. :ui—-———
150 ft.-kip (

W 14 X 233. 18’

Solution. Fora W 14 X 233

A=685in? S =375in3 r, =6.63in., r, =4.10in.

h
i

.= 1681t L, =785ft, K=10 (AISCS C2.1)

Kl 1.0 x 18.0 ft X 12 in./ft
ro 4.10 = 52.68

F, = 18.11 ksi (AISC Table C-36)
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P 1000 k
fo= T sme - 0k
14.60 ksi
f;,/Fa = m = 0.806 > 0.15

AISC formulas (H1-1) and (H1-2) must be satisfied:

L <L<L, Fy=06XxF,=220ksi
M., 200 ftk x 12 in./ft

fbmax = sx = 375 in.3 = 6.4 ksi
150 ft-k
=0.6 — 0. =0. H1, h
C..=06-0 4< 200 ft-k> 0.30 (AISCS subparagraph (b))
1272E 127%(29,000)

F, = = = 140.5 ksi

B &/, (1008 x 12))’ '

6.63

167

Note that this value could have also been obtained in Table 8 of the Numerical
Values section, p. 5-122. Also, the value of F,, can be obtained from the bottom

of the column load tables. For the W 14 X 233 (p. 3-21):

F-—éx(fgz’“x)z = 456 k
F = ﬁ—:g’% = 140.7 ksi
R TG AR S 0 WsesHLD
1184, '161 a- (14?63/1206.5‘;) X220 09 1O ok
%«Fy + %xx <10 (AISCS H1-2)
%:g+26_;46=0'95< 1.0 ok

The W 4 X 223 column is satisfactory.



168 STEEL DESIGN FOR ENGINEERS AND ARCHITECTS

Example 4.23. Check the adequacy of the column shown below. The column
is braced against sidesway.

.Eu“_‘lmon(
VA

w8 X48

1 I 100 k
°©
12 ft.

6 in.

Solution. Fora W 8§ X 48

A=14.1in2 S, =433in° r,=3.6lin, r,=2.08in.

o~
I

8.6ft, L, =303f K=1.0
Kl 1.0 x 12 ft X 12in./ft

— = = 69.2
ry, 2.08 in. 6
F, = 16.51 ksi
100 k
= —— = 7.09 ksi

Ja= a2 o

7.09
{f; = ﬁ = 0.43 > 0.15 .. (H1-1) and (H1-2) applicable
F,, = 22 ksi
M, = 100k X 6 in. = 600 in.-k

600 .
fox = 33 = 13.86 ksi

Coe = 0.6 — 0.4(%) = 0.6
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K_10X12X12_ 499 B, = 93.75 ksi

r 3.61
. .6 X 13.
(H1-1): 7.09 + 0.6 3.86 =043 +041 =0.84 <1 ok
16.51 l:l 7.09 :|22
93.75
7.09 13.86
(H1-2): 2 + —22— =0.32+063=095<1 ok

The W 8 X 48 is adequate.

Example 4.24. Design a W 14 column for an axial load of 300 kips and the
moments shown below.

M, = 200 ft-kip M, = 80 ft-kip
N\
*’ff Ke=1 K, =1
N \\
‘. \
I
/ i
|
/ ‘ﬂ 18 ft. l |
A il
| /
\ /
N 4 w~_/
M, =120 ft-kip M, = 60 ft-kip

x

Solution.
To begin the design, the values of C,, and C,, are determined:

M,
Cn = 0.60 — 0.40 1!

120
Cre = 0.60 — 0.40 = = 0.36

—60
Cry = 0.60 — 0.40 —= = 0.90
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The design of a column subjected to axial and flexural loads is an iterative
process which begins by choosing an initial column size and then checking it.
To facilitate the design of these members, the modified versions of eqns. (H1-1),
(H1-2), and (H1-3) on p. 3-9 of the AISCM can be used. These modified for-
mulas convert the applied moments into equivalent axial loads P’ by using coef-
ficients B,, B,, a,, and a, found in the column tables starting on p. 3-19. The
equivalent axial load P’, when added to the actual load P, will give the total
load which the column must resist; the column size can then be selected from
the column load tables and checked. This process must repeated until a satis-
factory column size is obtained.

The initial selection of the column size for this problem will be done by using
Table B on p. 3-10 as follows:

e First Trial:

In the first trial, always take U = 3.0. The values of m are given for C,, =
0.85; when C,, is other than 0.85, multiply the tabular values of m by C,,/0.85.
From Table B, the value of m for C,, = 0.85 is 2.1 for the first approximation.

Pyt = Py + Mom + MymU (p. 3-10)

0.36 0.90
Peff—300+{200x2.1 x@] +[80x2.1 x 3 xﬁ] = 1012 k

Note that in the above equation that M, and M, are given in ft-k, and the loads
in kips.

From the column load tables, select W 14 X 193 (P = 1025 k for KL = 18
ft).

e Second Trial (W 14 X 193)

m =17 (p.3-10)
U=229 (p.3-22)
0.36 0.90
P = 300 + {200 x 1.7 X ﬁ} + [80 X 1.7 X 2.29 % m]

=774k < 1025k ok

W 14 X 193 is adequate; however, try to obtain a more economical section.
e Third Trial (W 14 X 159, P = 840 k)
Refine by using modified equation (H1-1), (H1-2), or (H1-3) (AISCM, p. 3-9).
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L, =164ft<L=180ft <L, =572ft

F,, = 0.60 F, = 22.0 ksi

F,, = 0.75 F, = 27.0 ksi

A=1467in?% S, =254in? r, =638in., S, =96.2in’
r, = 4.0 in.

B, =0.184, B, =0.485 a, =283 x 10° a, = 111 x 10°

Ki, 10X UBX1D _ 438 p = 130.80 ksi

Py 6.38
Kl
Sy _LOXU8 XD _ oh B = 17.99 ksi
ry 4.00
F, = 51.21 ksi
300 k

_ = 6.42 ks
o= 2672 2 ki
£ 642ksi
Ja _ 0K _ 436 > 0.15
F, 17.99 ksi

Use modified formula (H1-1) (AISCM p. 3-9):

F, a, FEN__ %
P + [BXMXC”“(;,;) <ax _ P(Kl)2>] + I:ByMyCmy<Fby> <ay — P(Kl)2>]

= 300 + <0.184 x 200 x 12 x 0.36

17.99 o 283 x 10°
22 283 x 10° — 300(18 x 12)°

17.99
27

+ (0.485 x 80 x 12 x 0.90 X

N 111 x 10°
111 x 10° — 300(18 x 12)°

> = 756 k
Equivalent load = 756 k < 840 k ok

Verify the modified formula (H1-2):
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laair) * (2 ()] + 252

17.99 17.99
—300<22>+[0.184x200x12x 22]
+ {0.485 X 80 X 12 X 172'799] =916.7 k

Equivalent load = 916.7 k > 840k N.G.
Try W 14 x 176

A=518in2 S, =281in3 r, =6.43in.,

S, = 107in.%, r, = 4.02 in.

Because the lighter section satisfies all conditions except formula (H1-2), we
need verify only the one equation

NN S

0.60F,  F,, F,

Since L, = 16.5ft <L =18.0ft < L, = 62.6 ft

F,, = 0.60 F, = 22 ksi
F,, = 0.75F, = 27 ksi

300 k .
fo=Sigm2 = 3Pk
200 ft-k X 12 in. /ft .
Jox = TR = 8.54 ksi
80 ft-k X 12 in./ft .
Joy = T = 8.97 ksi
579 , 8.54 897 _ 0.98 < 1.0 ok

220 220 270
Use W 14 X 176.
Example 4.25. Solve Example 4.24 if the axial loads and moments are due to

gravity and wind loads.
In Example 4.24, the first trial P4 was calculated to be 1012 k. Here, instead
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of increasing the allowable stresses by 3, we will divide the load by %, which
yields 0.75 x 1012 k = 759 k. From the column load tables, try W 14 X
145 (P = 767 k):

1.7, U=1234
0.75 x {300 + [200 X 1.7 X (0.36/0.85)]

m

P, eff

+ [80 X 1.7 x 2.34 X (0.9/0.85)]}
= 0.75 x 781 = 586 k
Try W14 x 109 (P = 564 k)
Refine by use of modified equations (H1-1), (H1-2), and (H1-3):
L.=154ft L,=406ft
Fp, = 0.6 X 36 = 22 ksi, F,, = 0.75 X 36 = 27 ksi
A=320in?% B, =0.18, B, =0.523

a, = 184.5 x 10%, a, = 66.3 x 10°

F., = [401/(18)’] x 100 = 123.8 ksi

F,, = [144/(18)°] X 100 = 44.4 ksi
KL,/r, =18 X 12/3.73 = 57.9

F, = 17.63 ksi

f, = 300k/32 in.2 = 9.4 ksi

fa/Fa =0.53 > 0.15
Use modified formula (H1-1):
17.63

22

y 184.5 x 10° }
184.5 x 10° — 0.75 x 300 x (18 x 12)°

17.63

27

N 66.3 x 10° B
66.3 x 10° — 0.75 x 300 X (18 x 12)?

= 0.75 x (300 + 135.8 + 350.6) = 589.8k > 564 k N.G.

0.75{300 + [0.185 X 200 x 12 X 0.36 X

+ [0.523 X 80 x 12 x 0.9 X
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Try W14 X 120 (P = 623 k)
We will check this column by using eqns. (4.15) and (4.16):
A=353in% S, =190in> r, =6.24in., S, =67.5in’,
rp,=374in., L. =155ft, L, =44.1ft
(KL/r), = 18 X 12/6.24 = 34.6
(KL/r)y =18 X 12/3.74 = 57.8

F, = 17.64 ksi
F!, = 124.8 ksi
F., = 44.7 ksi
f, =300 k/35.3 in.> = 8.5 ksi
f./F, = 8.5/17.64 = 0.48 > 0.15
fox =200 X 12/190 = 12.6 ksi
foy = 80 X 12/67.5 = 14.2 ksi

Fye = 22 ksi, F,, = 27 ksi

(@.15): 8.5 + 0.36 x 12.6
133 x 17.64 133 x 22 lil 8.5 j|
(1. ) 1.33 x 124.8
0.9 x 14.2
* 8.5
(1.33 x 27) [1 - m]
=036 +0.16 + 042 =094 <1 ok
8.5 12.6 14.2
4.16):
@.16) 1.33 x 22 * 1.33 x 22 * 1.33 x 27

=0.29 + 043 + 040 = 1.12 N.G.
The reader can verify that a W 14 X 132 is adequate.

Example 4.26. Assuming that sidesway is prevented, select a W 10 column
for the situation shown below, when the bending occurs about the strong axis.
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200 kip

) 40 ft.-kip

T

200 kip
Solution.
—-40
C,=0.6-04M,/M,) =06 —0.4 30 = 0.8
K=1.0

KL =150 ft

0.8

=22 X —— =2,
0.85 2.1

P =200 + (80 X 2.1) = 368 k

Try W 10 X 77 (P = 373 k for KL = 15 ft)

0.8
=245 X —= =2,
" > X8 =23

P =200 + (80 X 2.3) = 384 k

Check the W 10 X 77 with the modified equations:

A=226in2 B, =0263, a =679 x 10°, r, =2.6in.
Kl _ 1.0 x 180 in.

= = 69.23
r 2.6 in. 69
F, = 16.51 ksi
200 .
L= 726" 8.85 ksi

= 0.54 > 0.15

175
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16.51
22.0

Required load = 200 + 0.263 X (80 x 12) x 0.8 X

9 67.9 x 10°
(67.9 x 10% — 200 x (1.0 x 180)*

367.6 < 373 for W 10 X 77 ok

P+ P, =

06 F "F,,x

16.51 16.51
Required load = 200 <6 >+0263X(80><12)<220>

9.6k < 373k for W 10 X 77 ok

Use W 10 x 77.

Example 4.27. Check the adequacy of the 3 X 6 in. plate subjected to the

loads shown below. The 30-kip tensile load acts through the centroid of the
member.

30K

4

25 Ib/ft

7ft.~T :“I‘T’

£
NN

%

30K

Solution. When a member is subjected to both an axial tensile stress and a
flexural stress, the axial tension tends to reduce the bending compressive stress;
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the secondary moment caused by the axial load is in the opposite direction to
the applied moment. Since the primary moment is not amplified, AISCS H2
requires that (H2-1) be satisfied:

.ﬂz ﬁu ﬁ)y
L 42 4= < 1.0 4.17)
Ft Fbx Fby

where  f, = computed axial tensile stress, ksi
J» = computed bending tensile stress, ksi
F, = allowable tensile stress, ksi (see Chapter 1)
F, = allowable bending stress, ksi (see Chapter 2)

It is important to note that the computed bending compressive stress, relative
to the axial tensile stress, should not exceed the appropriate allowable stress
given in Chapter 2.

For the } X 6 in. plate: 4 = 3in.% § =} X 6 X (§)* = 0.25in.’

0
f,,=§3—=10ksi

F, = 0.6 X 36 = 22 ksi

2
M= 9935%571 = 0.153 fik
L= %—E = 7.32 ksi (tensile and compressive)

F, = 0.75 X 36 = 27 ksi

Check (4.17):

10 734
ot 57 =046 +027 =073 <1 ok

Note that in this case, since the computed tensile stress is larger than the com-
puted bending compressive stress, the net stress on the entire cross section is
tensile.
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4.6 COLUMN BASE PLATES

Steel base plates are generally required under columns for distributing the load
over a sufficient area of bearing support. The design procedure discussed here
is different from the one presented in the ninth edition of the AISCM (p. 3-106).
After the appearance of the ninth edition, it was shown that some inconsisten-
cies existed in the method which made it inapplicable.' A new method was
subsequently developed?® similar to the one in the 8th edition but with a small
modification which will be discussed below.’

In general, it is assumed that the pressure between the base plate and the
concrete is uniform. For base plates which overhang a large amount beyond the
column dimensions (i.e., m and n dimensions are large; see Fig. 4.7) this as-
sumption is conservative, since the actual pressure near the plate edges will be
smaller than the pressure directly under the column. For cases when the base
plate overhangs only a small amount (m and n dimensions are small), the bend-
ing stress in the base plate is more critical at the column web, halfway between
the two flanges, than at the locations m or n_distances away from the plate
edges. The new method requires that n’ = %\/dbe be determined along with the
previously required values of m and n. The value n’ determines the required

' B
}‘n —i 0.80b, i -
[ 1
L= L
: |
|
dq { [ 0.95d A
|
} |
|-
—_——
N '[ :

Fig. 4.7. Column base plate. These are generally used under columns to distribute the column
load over a sufficient area of concrete pier or foundation.

'S. Ahmed and R. P. Kreps, ‘‘Inconsistencies in Column Base Plate Design in the New AISC ASD
Manual,”’ Engineering Journal, American Institute of Steel Construction, Third Quarter, 1990,
pp. 106-107.

2W. A. Thorton, *‘Design of Small Base Plates for Wide Flange Columns,’’ Engineering Journal,
American Institute of Steel Construction, Third Quarter, 1990, pp. 108-110.

3The eighth edition is based on the elastic approach of the bending stress in the plate supported on
three sides and free at the fourth side, while the new method is based on the yield line theory.
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thickness at the column web for the portion of the base plate bounded by the
column web, the two flanges, and the free edge, while m and n are used to
determine the base plate thickness that projects beyond the column flanges as
inverted cantilevers.

The following steps can be used for designing base plates:

1.

Establish the bearing values of the concrete according to AISCS J9.

2. Determine the required area of the base plate (4 = P/ F,).

3.

w

Establish B and N, preferably rounded to full inches, such that m and n
are approximately equal and B X N = A. When either value is limited
by other considerations, that dimension shall be established first and the
other from B X N = A.

. Determine m = (N — 0.95 d)/2, n = (B — 0.80 b;)/2, and n' =

4 /db,.

Determine the actual bearing pressure on the support (f, = P /(B X N)).

. Use the largest values of m, n, or n’ to solve for the thickness 7, by the

formula

ff
t, = 2(m, n,orn’) ;:5
y

Fig. 4.8. Pin-connected bases of trusses for wall-roof structural system for the atrium of an office
building.
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Note that the procedure for determining the minimum size base plate given on
p. 3-107 of the AISCM will not be discussed here.

Example 4.28. A W 8 X 58 column supports an axial load of 300 kips. Design
a base plate for the column if the supporting reinforced concrete footing has a
very large pedestal and f. = 3000 psi.
Solution.

F, = 0.35 f. VA, /A, < 0.7 f. (AISCS J9)
Use F, = 0.7 f, since 4, >> A,

P 300 k
A = — = — = . 1 ‘2
req Fp 2.1 ksi 142.86 in

Choose base plate 11 X 13 in. so that A = 11 in. X 13 in. = 143 in.2, and m
and n are almost equal.

221" — ‘——6.58"—4 r—z.zr'
{
2.35"
[r_.ﬁ -
W8 X58 875" } 831" N=13"
|

2.35"
;—— 8.22”—! ’

N-0.95d 13 — 0.95(8.75)
2 h 2

m =

= 2.345 in.

B-08b 11 -0.88.22)
2 2 -

n’ =1+(8.75 x 822) =2.12 in.

n =

2.21in
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f = P 300 k
P BXN 1lin. X 13 in.

J 2.1
1, = 2m /Ff = @ x2.345) |3¢ = L13in.
y

Use t, = 13 in.

= 2.1 ksi

Use 11 x 13 x 1 ft, 1 in. base plate.

Example 4.29. Redesign the base plate of the previous problem for pedestal
size of the same area as the base plate.

Solution.

F, =0.35f; = 0.35 X 3000 psi = 1.05 ksi

P 300k
=~ == = 2857 in?
A = F 7 1.05 kei "

Choose base plate 16 in. X 18 in., so that A = 16 in. X 18 in. = 288 in.?

N-095d 18 — 0.95(8.75) _

= 4.84 i
2 > 84 in
_B—-08b _ 16 — 0.8(8.22) — 471 in
2 2
n’ = 2.12 in. (see Example 4.28)
P
300 k = 1.04 ksi

=B XN T6m x 18,

1, = (2 X 4.84) % = 1.65 in.

Use t, = 13 in.

Use 16 x 13 x 1 ft, 6 in. base plate.
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PROBLEMS TO BE SOLVED

4.1. Determine the Euler stress and the critical load for the pin-connected col-
umn as shown, with a length of 24 ft and £ = 29,000 ksi. (For an isometric
view of the column, see Fig. 1.13.) Note: Assume that the lacing is spaced
such that the stability of each channel by itself can be disregarded.

Wﬁ%ﬂ/c 12 X 20.7

Laclng

E //////////éic 12X 20.7

4.2. For the pin-connected column shown, determine the Euler stress and crit-
ical load if L = 18 ft and E = 29,000 ksi.

W6 X 15

YASSSSSISSS Y

9 /1SS SSIIYYY.

4.3. Rework Problems 4.1 and 4.2, assuming that the columns are fully fixed
at both ends.

4.4. For the cantilever (flagpole type) columns shown, determine the Euler
stress and critical load for each column if the unsupported length is 20 ft and E
= 29,000 ksi. Consider the note in Problem 4.1.

Ll | 4-raxaxi” :g %r,
t';,, y

Lacing

1

LLLLIN
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4.5. Calculate the allowable compressive axial stress F, for (1) a W 14 X 145
column with one end fixed and the other pinned, and (2) a W 8 X 35 column
with both ends pinned. Use L = 30 ft.

4.6. For the columns shown in Problems 4.1 and 4.2, calculate the allowable
stress F, for each column for both 36- and 50-ksi steels.

4.7. Using the AISC table for allowable stress for compression members of 36
ksi, determine the allowable load P a W 8 X 67 can support with a length of
12 ft and pinned ends.

4.8. Rework Problem 4.7, assuming 50-ksi steel and pinned ends.

4.9. Determine the allowable load a structural tube TS 8 X 8 X .375 can
support with a length of 18 ft and pinned ends. F), = 46 ksi.

4.10. Determine the allowable axial load a truss member can support if the
member is made from two 6 X 6 X 3-in. angles separated by a 3-in. gap back
to back. Assume that the member is the truss top chord, subject to compressive
stress, and the unsupported length is 10 ft.

4.11. Design a WT 7 section for a truss top chord if it will be subject to an
axial load of 120 kips. Assume that the member will be laterally supported
every 12 ft.

4.12. Design a W 12 column, pinned at both ends, to support an axial load of
450 kips: L, = L, = 14 ft; F, = 36 and 50 ksi.

4.13. Rework Problem 4.12 if L, = 16 ft and L, = 8 ft.

4.14. Design the lightest wide-flange column for an axial load of 225 kips. The
column is fixed at the top, pinned at the bottom, and subject to sway. Assume
that L, = 20 ft and L, = 10 ft.

4.15. Determine if a W 12 X 58 with axial load P = 200 kips, weak axis
bending M, = 40 ft-kips at the top and M, = 20 ft-kips at the bottom is adequate
for unbraced lengths of L, = L, = 18 ft. The frame is secured against sway.
Ends of columns are restrained. Check column for

a) single curvature
b) double curvature.

4.16. AW 14 x 211 column with P = 500 kips, M, = 200 ft-kips and M, =
70 ft-kips has unbraced lengths of L, = L, = 14 ft. The frame is braced against
sidesway, and ends of columns are restrained. a) Is the column safe? b) If the
moments are due to transverse wind loads, is the column safe? In both cases,
assume that the member is bent in single curvature, and that the moments given
act at both the top and bottom of the member.
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4.17. Redesign the column of Problem 4.14, without sidesway, but with a mo-
ment of 55 ft-kips applied to the top of the column about the major (x-x) axis.
Use L, = L, = 20 ft. Try a W 12 member.

4.18. A W 12 x 170 is subject to an axial load of 700 kips and a moment of
85 ft-kips, applied about the major axis. Determine the maximum stresses at
the extreme fibers of the member due to the loads.

4.19. Design the lightest W 8 wide-flange column for the loading shown. As-
sume that the 20-kip load is applied at the face of the column flange. The col-
umn is braced against sidesway.

T

(%)

Beam reaction = 20 kip

™~

H

—+
HEH
o

12 ft |

i - ;» J

4.20 and 4.21. For the columns shown, design the lightest W 14 sections if
65-kip loads are applied at the locations shown by dots. L = 22 ft, K, = K, =
1.0. The column is braced against sidesway.

ek
iy
H—+H—H+
Hi
o
A
4

-
1y
[e]

e o
| — )] C .] r
7
11 I |
—_— J | INS—— —

4.22. A W 12 x 65 column supports an axial load of 360 kips. Design a base
plate for the column if the supporting concrete foundation is very large. F, =
36 ksi and f. = 3000 psi.
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4.23. Design a base plate for a W 14 X 120 column supporting an axial load
of 650 kips. Assume that the pedestal is the same size as the base plate and f.
= 3500 psi.

4.24. Design a W 14 column for the following:

20 ft-k '/i-\ 150 ft-k ‘/l-\
va Ava

, .

T
I
[l
[
I
1l
!
- 16 ft.

N

60 ft-k \-T-/ 50 ft-k

400 k 400 k
L =L, =16ft Braced against sidesway.
K, =K, =10
F, =50 ksi

<
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Bolts and Rivets

5.1 RIVETED AND BOLTED CONNECTIONS

Connections in structural steel are made with mechanical fasteners (rivets or
bolts) or welds. Riveted and bolted connections will be covered in this chapter,
and welds will be discussed in Chapter 6.

5.2 RIVETS

For many years, riveting was the sole method of connecting structural steel. In
recent years, due to the ease and economy of welding and high-strength bolting,
the use of rivets has declined to the point where they are completely obsolete
today. Nevertheless, the Code still recognizes them mostly for existing struc-
tures. The rivets used in construction work are usually made from a soft grade
of steel that does not become brittle when heated and hammered with a riveting
gun. Rivets are manufactured with one formed head and are installed in holes
that are punched or drilled {5 in. larger in diameter than the nominal diameter
of the rivet. The rivet is usually heated to a cherry-red color (approximately
1800°F) before placing it in the hole, and a second head is formed on the other
end by a riveting hammer or a pressure type riveter. While the second head is
being formed, the heat-softened shank is forced to fill the hole completely. As
the rivet cools, it shrinks and squeezes the connected parts together, causing
friction between them. However, this friction is usually neglected in calcula-
tions.

According to the AISC, rivets shall conform to the provisions of the ‘‘Spec-
ifications for Structural Rivets’> ASTM AS502, Grades 1, 2, or 3. The size of
rivets used in general steel construction ranges from 3 to 11 in. in diameter by
#-in. increments. The allowable stresses are tabulated in the AISCM in accor-
dance with AISCS Table J3.2.

Rivets usually require a crew of three to four people to be put in place. Due

186
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to high labor costs and extreme noise, rivets are no longer commonly used in
modern construction. Even though bolt material is more expensive than rivet
steel, the advantages of bolt placement far outweigh the disadvantage of using
rivets. Hence, rivets have completely been replaced by bolts.

5.3 BOLTS

Bolting of steel structures is a very rapid field-erection process. It requires less
skilled labor than riveting or welding and therefore has a distinct advantage over
the other connection methods. The joints obtained using high-strength bolts are
superior to riveted joints in performance and economy, and bolting has become
the leading method of fastening structural steel in the field.

There are two types of bolts that are most commonly used in steel construc-
tion. The first type, unfinished bolts, also called common or ordinary bolts, is
primarily used in light structures subjected to static loads or for connecting
secondary members; it is the cheapest type of connection available. Unfinished
bolts must conform to the *‘Specifications for Low Carbon Steel Externally and
Internally Threaded Fasteners,”” ASTM A307. AISCS J1.12 lists specific con-
nection types for which A307 bolts may not be used.

The second type, high-strength bolts, is made from medium carbon, heat-
treated, or alloy steel and has tensile strengths much greater than those of or-
dinary bolts. High-strength bolts shall conform to the ‘‘Specifications for Struc-
tural Joints Using ASTM A325 or A490 Bolts,”” AISCS J3 (and to the Speci-
fication starting on p. 5-263).

Allowable tensile and shear loads for all types of bolts are given in AISCM
Tables I-A, I-B, I-C, and I-D, starting on p. 4-3, in accordance with the allow-
able stresses given in Table J3.2 (reproduced here as Table 5.1).

Connections made of high-strength bolts are categorized into three types: (1)
slip-critical (SC), (2) bearing type connection with threads included in shear
plane (N) (see Fig. 5.1a), and (3) bearing type connection with threads excluded
from shear plane (X), (see Fig. 5.1b). The two latter types of connections are
similar to riveted connections and are designed by the same method, the only
difference being in their respective shearing and bearing capacities (see AISCM
Table J3.2). Bolts or rivets are said to be working in single or double shear if
one or two shear planes are acting on the shank of the connector. For example,
the bolts shown in Fig. 5.1 are in single shear. Table I-D gives allowable shear
values for both single (S) and double (D) shear cases.

Shear connections subjected to stress reversals or severe stress fluctuations or
where slippage is undesirable are required by the AISC to be of the SC type.
When high-strength bolts are used in combination with welds, only those in-
stalled as SC type connections prior to welding may be considered as sharing
the stresses with the weld (AISCS J.10). In SC connections, since the load is
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Table 5.1. Allowable Stress on Fasteners, ksi {AISCS Table J3.2, reprinted with
permission)

Allowable Shear® (F,)

Slip-critical Connections®"’

Long-slotted

Allow- Oversized holes Bearing-
able Standard and Short- type
Tension? size slotted  Transverse/ Parallel’ Connec-
Description of Fasteners (F) Holes Holes Load Load tions’
A502, Gr. 1, hot-driven rivets 23.0° 17.5¢
A502, Gr. 2 and 3, hot-driven
rivets 29.0° 22.0
A307 bolts 20.0° 10.0%/

Threaded parts meeting the
requirements of Sects. A3.1
and A3.4 and A449 bolts
meeting the requirements of
Sect. A3.4, when threads are
not excluded from shear planes 0.33 F,** 0.17 F}t

Threaded parts meeting the
requirements of Sects. A3.1
and A3.4, and A449 bolts
meeting the requirements of
Sect. A3.4, when threads are

excluded from shear planes 033 F** 0.22 F/f
A325 bolts, when threads are not

excluded from shear planes 44.07 17.0 15.0 12.0 10.0 21.07
A325 bolts, when threads are

excluded from shear planes 44.0¢ 17.0 15.0 12.0 10.0 30.07
A490 bolts, when threads are not

excluded from shear planes 54.0¢ 21.0 18.0 15.0 13.0 28.07/
A490 bolts, when threads are

excluded from shear planes 54.07 21.0 18.0 15.0 13.0 40.0/

“Static loading only.

>Threads permitted in shear planes.

“The tensile capacity of the threaded portion of an upset rod, based upon the cross-sectional area at its major thread diameter
A, shall be larger than the nominal body area of the rod before upsetting times 0.60 F,.

“For A325 and A490 bolts subject to tensile fatigue loading, see Appendix K4.3.

“Class A (slip coefficient 0.33). Clean mill scale and blast-cleaned surfaces with Class A coatings. When specified by the
designer, the allowable shear stress, F,,, for slip-critical connections having special faying surface conditions may be increased
to the applicable value given in the RCSC Specification.

/When bearing-type connections used to splice tension members have a fastener pattern whose length, measured parallel to
the line of force, extends 50 in., tabulated values shall be reduced by 20%.

5See Sect. A5.2

“See Table 2, Numerical Values Section for values for specific ASTM steel specifications.

‘For limitations on use of oversized and slotted holes, see Sect. J3.2.

/Direction of load application relative to long axis of slot.
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Shear Plane R [ i | ]

Type (N) bolt Type (X) bolt
(a) (b)

Fig. 5.1. Bearing-type connections of high-strength bolts: (a) for bolts with threads included in
shear plane and (b) for bolts with threads excluded from shear plane.

primarily transferred by friction between the connected parts, the design is based
on the assumption that if and when the connection fails, the bolts will fail in
shear alone, and therefore the bearing stress of the fasteners on the members
need not be checked.

5.4 DESIGN OF RIVETED OR BOLTED CONNECTIONS

A connection is said to be concentrically loaded if the resultant of the applied
forces passes through the centroid of the fastener group. For such cases, tests
have shown that just before yielding, all fasteners in the group carry equal
portions of the load. When the resultant force does not pass through the cen-
troid, the force may be replaced by an equal force at the centroid accompanied
by a moment equal in magnitude to the force times its eccentricity. In situations
such as this, each fastener in the connection group is assumed to resist the axial
forces uniformly and to resist the moment in proportion to its respective distance
to the centroid of the connection; nevertheless, this eccentricity may be ne-
glected in many cases (AISCS J1.9).

A bolted (N or X type) or riveted connection can fail four different ways.
First, one of the connected members may fail in tension through one or more
of the fastener holes (Fig. 5.2a). Second, if the holes are drilled too close to
the edge of the tension member, the steel behind the fasteners may shear off
(Fig. 5.2b). Third, the fasteners may fail in shear (Fig. 5.2c). And fourth, one
or more of the tension members may fail in bearing of the fasteners on the
member (s) (Fig. 5.2d). To prevent failure, a connection and the connected parts
must be designed to resist failure in all four of the ways mentioned.

First, to assure nonfailure of the connected parts, the members shall be de-
signed such that the tensile stress is less than 0.60 F, on the gross area and less
than 0.50 F, on the effective net area (AISCS D1). Therefore, the effective net
area of any tensile member with bolt holes must be greater than or equal to
P/(0.50 F,); also see Chapter 1.

Second, to prevent the steel behind the fasteners from tearing off, the mini-
mum edge distance from the center of a fastener hole to the edge, in the direc-
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- - 1
= | 1~

(c) (d)

!

Fig. 5.2. Failure modes of connections made with bolts or rivets. (a) Tension failure of a connected
part. (b) Shear failure of a connected part behind a fastener. (c) Shear failure of the fasteners. (d)
Bearing failure of a connected part.

tion of the force, shall be not less than 2 P/F,t (AISCS (J3-6)) or the values
given in Table J3.5, as applicable. In (J3-6), P is the force carried by one
fastener, ¢ is the thickness of the critical connected part, and F, is the specified
minimum tensile strength of the critical connected part.

Third, to assure that the fasteners will not fail in shear, the number of fas-
teners should be determined to limit the maximum shear stress in the critical
fastener to that listed in AISCS Table J3.2 for the particular type. To determine
the minimum number of fasteners required, divide the load on the entire con-
nection by the allowable shear stress of one fastener, (n = P/F,).

Last, to prevent a connected part from crushing due to the bearing force of
the fasteners on the material, the minimum number of fasteners is determined
to prevent such crushing. It has been experimentally shown that the lower bound
for the allowable bearing stress F), can be given by (J3-1) for the case when the
deformation around the standard hole is a design consideration and by (J3-4) if
the deformation is not. In addition, special criteria are given in AISCS J3.8 for
minimum spacing requirements along the line of transmitted forces. All of the
above requirements have been tabulated in Tables I-E and I-F, pp. 4-6 and 4-7,
respectively. The reader is urged to study the notes at the bottom of these tables.

The analysis of SC type connections is quite complex. The connection is
designed similarly to N or X type connections, with an appropriate allowable
stress for the shear capacity of the bolts. High-strength bolts are tightened until
they acquire very high tensile stresses, and the connected parts are clamped
tightly together, permitting loads to be transferred primarily by friction. Though
bearing should not be encountered in this type of connection, the bearing of the
bolts against the connected parts must be considered in the event that the friction
bolts slip into bearing (‘‘Specifications for Structural Joints Using ASTM A325
or A490 Bolts,’’ Commentary). Allowable stresses for shear are given in AISCS
Table J3.2. For cases of special treatment of the connected parts, Table 3 in
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Fig. 5.3. A beam-to-column shear connection with web angles.

“‘Specifications for Structural Joints Using A325 or A490 Bolts™ recognizes
three classes: A, B, and C. Class A, which has a slip coefficient of 0.33, is part
of Table J3.2. Classes B and C have larger slip coefficients and allowable
stresses, and should be used only if the need arises.

Example 5.1. Determine the maximum tensile load P that can be resisted by
the existing connection shown. The 3 in. X 14 in. plates are connected with }
in. diameter A502 Grade 1 rivets.

P - O O O O

-

«. 2 La @3 = 9".‘ 2"1‘
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Solution. The rivets may fail in shear or bearing, or the plate in tension. Each
condition must be investigated to determine the critical condition.

Shear failure in the rivet
Pall = Fu X Ariv X Nrivets

For A502 Grade 1 rivets

F, = 17.5ksi (AISCS Table I-D, p. 4-5)

Ariv =7 = = 0.601 in.z

Number of rivets N = 12

P, = 17.5ksi X 0.601 in.2 x 12 = 126.2 k

For failure in bearing Table I-E shows that for a 3-in. plate with F, = 58 ksi
(A36 steel) and -in.-diameter connectors, the capacity is 45.7 k per rivet.
Therefore, for 12 rivets,

Py =12 x 457k = 548.4 k

Note that the edge distance and spacing requirements conform to the notes given
at the bottom of this table.

Tensile capacity of member on gross area

F,=0.6F, =220ksi (AISCS D1)

A

. =2in. X 14in. = 10.5 in.?

Py =F, x A, = 22.0ksi x 10.5in.”> = 231.0k

Tensile capacity of member on effective net area

U=1.0 (AISCS B3)
F,=05F,=29.0ksi (AISCS D1)

A, = (14in. — 3(Zin. + Lin)) X 3in. = 8.25in.?
A, =UXA, =10 x 825in.? = 8.25 in.?

Py =F x A, =29.0ksi X 825in.? =239.3k
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Maximum tensile load is least value of cases calculated:

Pmax = Falishear = 126.2 k

Example 5.2. Determine the maximum tensile load P that can be resisted by
the connection in Example 5.1 using 1-in.-diameter A325 high-strength bolts
(HSB), assuming standard holes and

a) a bearing connection with the threads included in the shear plane
(A325-N).

b) a bearing connection with the threads excluded from the shear plane
(A325-X).

¢) an SC connection (A325-SC)

Solution. Determine the capacity for bearing, tension, and shear.

A, = 0.785 in.?

N, = 12

Bolt bearing will be same value for either friction type or bearing type connec-
tions. From Table I-E, allowable load/bolt = 52.2 k.

Py =12 X522k = 6264k

As in Example 5.1, both edge distance and spacing requirements conform to
the notes at the bottom of Table I-E.

Tension on member will be the same for all cases.

Tension on gross area of member
P, = 231.0k (Example 5.1)

Tension on effective net area of member

F, = 29.0 ksi

A, = (14in. — 3(1in. + }in.)) X 3in. = 7.97 in.2

A, =10 x 797 in.2 = 7.97 in.2

Py =F xA,=29.0ksi X 7.97in.> = 231.1k
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Shear capacity of connectors (Table I-D)

a) 16.5k x 12 = 198 k
b) 23.6k X 12 = 283.2 k
c) 13.4k x 12 = 160.8 k

Note: only SC Class A values (the lowest) are given in Tables I-D and J3.2.
Other values for other classes must be determined according to the Specification
for A325 and A490 high-strength bolts, p. 5-263.

The bolt shear capacity is critical in cases (a) and (c), and the tension on the
gross area is critical in case (b). Maximum tensile load P:

a) P, = 198 k
b) P = 231k
¢) P, = 160.8 k

Example 5.3. A truss member in tension consists of a single angle 4 X 4 X
1 in. The member is connected to a 3-in. gusset plate with 3-in.-diameter A325-N
bolts as shown. Determine the maximum load the connection can carry if bolts
are spaced 2} in. on center.

Laxaxd’
Pe— |0 0 O——1 T
/ | h
2@ 2t

Solution. Eccentricity between the gravity axes of such members and the gage
lines for their riveted or bolted end connections may be neglected (AISCS J1.9).

F, = 21.0ksi, F, = 22.0 ksi
A, = 0.442 in.?

A, = 3.75 in.?

t4
A, = 2.81 in.? (Example 1.5)

P =220ksi X 3.75in.2 = 82.5k
P =29.0ksi x 2.81in.2 = 81.5k
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Bolt shear
P=3x93k=279k
Bolt bearing
P=3Xx261k=1783k
Use least value

Py = 27.9 k (bolt shear)

Example 5.4. For the plates shown, determine the allowable value of P using
1-in.-diameter A307 bolts.

IR
T
> ? ,
I
4" ;
P <~ — O : < —p
) |
|
C |
1 7 1
[
B 21 grrlgelon Fz,,l .
i i
V., S U
g e

Solution.

s2

I = ltot - lholes + @
. . 1. .
I, =12 in. — 2<1 in. + §m.> + 0 =9.75in.

. . 1, 2(2 in.)? .
= .- Lt cin ) + ——— =9, .
L, =12 in 3(1 in +8m> A x4in 9.125 in
a) P, of plate

Gross area

P=F, XA, =220ksi X (3in. X 121in.) = 198.0 k



196 STEEL DESIGN FOR ENGINEERS AND ARCHITECTS

Effective net area

P=F,x A, =290ksi x 1.0 in. x 9.125 in.) =

b) P, by shear

Bolts are in double shear.
P=6x157k =942k

¢) P, by bearing

Bearing on 3-in. plates is more critical than two 3-in. plates.

P=6x522k=3132k
Case b) governs.

Pa" = 94.2 k

Connections subjected to shear and torsion should be designed by the method
explained in Example 5.5. The external effects are transferred to the centroid
of the connection as two forces in the horizontal and vertical directions, re-
spectively, and a moment. The fasteners carry the direct forces equally. The
shear stresses produced in the fasteners by the moment are perpendicular to the
lines connecting the fastener to the centroid, and the magnitude of the shear
stress carried by each connector is proportional to the distance of the fastener

from the centroid (see Fig. 5.4).

'—H_‘J\_[ P

I

Ll

1

o i
@] @] | NF,

!

© 40 |
0 %o !
o o |
Tl
|
I

‘I« 11

198.5 k

Fig. 5.4. Bolted or riveted connection subject to shear and torsion.
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Example 5.5. Find the load on a fastener in the general situation shown in the
sketch.

I

Solution. The centroid of the fastener group is first located, and the force P is
broken into a vertical component P,, a horizontal component P,, and an applied
moment M at that point.

It is assumed that the two components are equally divided among all the fas-
teners as resisting forces. The magnitude of the resisting force in each connector
due to the moment is proportional to the distance of that connector to the cen-
troid, and its direction is perpendicular to that line.

If we designate for the ith connector, its resisting force by R,;, its distance to
the centroid d;, its resisting moment is

The applied moment then becomes

Also referring to the farthest connector for dy,,, and R, ..,

and

—_ Edlz x Rmmax
dmax
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From here we obtain

Md,,,
Rmmax = }:d‘;
and for any fastener,
Md
P
R = 32

Also breaking up R,,, into its x and y components, we obtain

_ My Mh

Rmx—'&? Rmy:id—?

Here v and h are the ordinate and the abscissa of the connector under consid-
eration with respect to the centroid.

Also,
Ld? = (! + 1)

With n being the number of fasteners, we can then calculate the components of
the force in the connector as

and

The total resisting force in the connector as
R=<R:+R}

Because the most critically loaded connector may not be determined by inspec-
tion prior to analysis, it may be necessary to verify all ‘‘candidates’’ for the
most critically loaded connector.

(Note: This problem has been solved by the elastic method in AISCM, ‘‘Ec-
centric Loads on Fastener Groups’’ (Alternate Method 1, p. 4-59). The results
from this method are somewhat conservative; however, this method can be eas-
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ily applied to any bolt configuration with an eccentric load inclined at any angle
from the vertical.)

Ultimate Strength Method

A method based on the ultimate strength capacity, somewhat more liberal than
the method described above, but still safe, is discussed in the ninth edition of
the AISCM (1989). The tables starting on p. 4-62 have been developed based
on this method. Note that the values given in these tables are applicable only
to connector groups following a definite pattern and an eccentric vertical load.
To overcome this limitation, Alternate Method 2 on p. 4-59 has been devel-
oped, which is an approximate method for inclined loads on connector patterns
covered by the AISCM tables for vertical loads.

Example 5.6. Determine the resultant load on the most stressed fastener in the
eccentrically loaded connection shown. Use the elastic method.

5

P =50Kkip
)
3| A
ﬂf—o o)
& | 0| O
1 ‘M =480 in.-kip
P, =40 kip w—— i, —&—t,e—
®
N o | O
-t——o (@)
3" _ ol gl o
] 2|—-4 -}2
]
|
P, =30kip

Solution. Components of the 50-kip load are 30 kips down and 40 kips to the
left.

Centroid of fasteners by inspection is 9 in. ‘frem the bottom and 4 in. from
either side of the plate.

M =40k x 9in. + 30k X 4 in. = 480 in.-k

Td? = L(W* + v*) where h is the horizontal distance from center
of gravity to each fastener, and v is the vertical
distance from center of gravity to each fastener

= Ih* + Zv? = 102 in.)*> + 4(6 in.)* + 4(3 in.)?
= 220 in.?
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At comer (critical) fasteners,

Vy = vertical load due to moment =

Ld?
480 in.-k X 2 in.
= =436k
220 in.2
M
H,, = horizontal load due to moment = dez

_ 480 in.*k X 6 in.

20mz - 10k

V¢ = vertical load due to direct component

P
_Z=ﬂ(=3k
N 10

Hg = horizontal load due to direct component

P
Z=—— =4k
N

Fastener A is the critical fastener, as there the loads added to each other

@ «— - 18.61 k
/
Vi = 4.36k| Hy=13.09k Hs=4.0k (4)

Vs =30k |

VV? + H? = J(4.36 + 3)® + (13.09 + 4)°
18.61 k

R

Maximum resultant is on fastener A
R =18.61k

Example 5.7. Determine the load P that can be carried by the bracket when
3.in. diameter A325-SC bolts are used. Use the elastic method.
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14.75"

=

—o "

fo} _'r__L % Plate A36
3" typ.

o1

ol
0

i

-
N

Solution.

I = 14.75 in.

¥ = 6 in. from bottom bolt (by inspection)

Ld? = Lv? = 23 in.)* + 2(6 in.)> = 90 in.2
M=Pl=1475P

Maximum load is on the top and bottom bolts.

P
Vs = vertical load due to shear = — = 5= 02pP
H,, = horizontal load due to moment
. X 6 in.
=Mg_ 14.75 P X 6 in — 0.983 P

R = VV? + H?> = J(2 P)* + (983 P)> = 1.003 P
Shear capacity of 3-in. A325-SC bolts

, = 7.51 k (AISC Table I-D)
1.003 P =751k

P=——=749k,

As an alternative, calculate P using Table XI, p. 4-62:

C=115forl=14.75in.,, b =3in.,, n = 5 (by interpolation)
P=CXR,=1.15x1751 =864k

201
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As expected, this result is more liberal than the one obtained using the elastic
method.

The maximum load that can be carried by the bracket is P = 7.49 k

Check bracket plate (AISCM, page 4-88).

Seee = 14in.> for 1 in. X 15 in. plate

M =1475in. X P
F,

il

22.0 ksi (AISCS F2.2)
M,, = 22.0ksi X 14 in.” = 308 in.-k

308 in.-k

= = 20. .
14.75 in. 09k > 749k ok

Example 5.8. Determine the maximum load on the fastener group shown, and
determine the plate size.

P =40 kip

12—
/ )M =140 in.-kip

T

3

2" 4 Bolts (typ) _,’ 3 h’
]
o)
o
o
o)

3|<—

OOOOO——‘J—

;
o
o
o
o]

Solution.

M, = 40k X 12 in.) + 140 in.-k = 620 in.-k

I=M/P="—""=155in.
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= 6 in. from bottom row of bolts (by inspection)

<l

=I

= 5.75 in. from left vertical row of bolts (by inspection)
Lv? = 8((6 in.)* + (3 in.)’) = 360 in.”

Lh? = 10((5.75 in.)*> + (2.75 in.)®) = 406.25 in.2

Ld = Lv® + Th* = 360 + 406.25 = 766.25 in.’

40 k
V¢=P/N=——=2k
s =P/ 0
Mh 620 in.-k X 5.75 in.
V = 5 = = 4,
M=o 766.25 in.2 4.65 k (for a comer fastener)

Vi, =20k + 465k = 6.65k
Hs=0

_ Mv _ 620in.-k X 6 in.
M™T 2d® " 766.25 in.2

=485k

H,=0+485k =485k

Ro = V¥ + H* = J(6.657 + (4.85)° = 8.23k

The maximum load on the critical fastener is 8.23 k

Plate dimensions

M =140 in.-k + 40k X (12 in. — 5.75in.) = 390 in.-k

390 in.-k

= 1773 in?
22 ksi mn

Referring to bracket plates table (AISCM, p. 4-88), a plate of {¢-in. thickness
and 15-in. depth is needed (by interpolation).

Use 15 in. X {3 in.

Example 5.9. Using the AISC tables, determine the maximum load on the
fastener group shown.
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1’} P =40 kip
4" 4" 4"
r | )1r L F) M = 140 in.-kip
|
+—+0 O l{ O o
L
++o o ': o O
!
++o0 oflo o
3 r
-0 0 %o 0
t
I
410 o {o O |
i

Solution. The table to be used is Table XVIII (AISCM, p. 4-69)

Mg, = 40k x 12 in. + 140 in.-k = 620 in.-k

Equivalent [ = % = Q‘(:Ol_';('_lf = 15.5in
Forl/ = 14 in. and n = 5,
C =6.86
For!/ = 16in. and n = 5,
C = 6.15

For/ = 15.5in. andn =5,

1.5
C = 6.86 — —= (6.86 — 6.15) = 6.33

Maximum load on critical fastener = 6.32 k.
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Example 5.10. Determine P for the existing connection shown. The rivets are
{-in. diameter A502 Grade 1.

~—4"——L_ 4!t 4'

' C10X30

Z1o6 o o o | —]

I y
N t—o o © oif <5

410 o o ol

i

Solution. For C 10 x 30,

A =882in?% #=10436in., t,=0673in., I, = 103 in*
£d? = L(W* + v? = 6(6 in.)*> + 6(2 in.)? + 8(3 in.)> = 312 in.?
M=3P

Maximum load occurs at a corner rivet.

VM—% —%;—6 = 0.0577 P
HM—%% —313)—;2(3' = 0.0288 P
Vs=0
Hg=P/N = P/12 = 0.0833 P
R=VW+H?
= +/(0.0577 P)* + (0.0288 P + 0.0833 P)?
= 0.1261 P

Capacity of -in. A502-1 rivets in shear
R, = 10.5 k (AISC, Table I-D)

Capacity of one 3-in. A502-1 rivet in bearing on 0.673-in. flange
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From Table I-E, for 1-in. thickness (F, = 58 ksi), allowable load = 60.9 k.
Therefore, for 0.673-in. thickness, allowable load = 60.9 X 0.673 = 41 k.

Shear governs

_ 105k

p=—-
0.1261

= 83.27k

Capacity of C 10 x 30

Anet

7 1
8.82in.2 — 3 x 0.673 in. X <§ in. + s in.> = 6.801 in.>

7 1
I, = 103 in.* — 0.673 in. X <§ in. + 3 in.> X (3in.)*> X 2 = 90.9 in.*

90.9 in.*

Swi = 5 = 182 in.3
P=22x882=19k
P =129 x 0.85 x 6.801 = 167.6 k
. F, = 29 ksi

M=3P, F,=220ksi

P 3P

5.78 18.2
050 x 58 T 220 = 10 (AISCSHY)

0.006 P + 0.0075 P = 0.0135P < 1.0
P <741k

Channel capacity governs. Maximum load is 74.1 kips.

Example 5.11. Determine the size of A325-X high-strength bolts for this group
of connectors.
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60 kip

15
‘:—1; 3”_6.'%' 6 11—
T‘;‘ Lo O Os
254'O ©
& ) | P, =30 kip 0.23"
p ] g
© LPV=52kip >
L @) O 30°\
-0 O OaA
17
1

Solution. Locate the center of gravity with respect to the x and y axes.

=

<

Ty

Th?

Ld®
P,
P

y

_3><6in.+5><3in.

_3><6in.+3><3in.—2><3in.—3><6in.

13

= 2.54 in.

13

= 0.23 in.

=(5.77in.)* X 3 + (2.77in.)?> x 3 + (0.23 in.)?> X 2
+ (3.23in.)? x 2 + (6.23 in.)> X 3 = 260.3 in.?

= (2.54in.)> X 5 + (0.46 in.)> X 5 + (3.46 in.)> X 3 = 69.2 in.?

= Lp? 4+ Lh* = 260.3 in.? + 69.2 in.2 = 329.5 in.?
=0.50 X 60 k = 30.0 k

= 0.866 X 60 k = 52.0 k

M =946in. X 52.0k — 0.23 in. X 30.0 k = 485 in.-k

52.0k
13

30.0

P

1

3

4.

2

0

3

k

k

207
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Try Bolt A:
485 in.-k
V,=-———3X346in. = 5.
"= 33952 < A48 in =309k
485 in.-k .
H, = m X 6.23 in. = 9.17 k
‘ V, = 4.0 kip
, _ l V,, = 5.09 kip
H, =230kip H, =9.17kip
> - Oa
R = (230 — 9.17)* + (5.09 + 4.0 = 11.4 k
Try Bolt B:
485 in.-k )
V, = 3_29—§Tn—2 X 3.46in. = 5.09 k
485 in.-k
H, = — % 577in. = 8.49k

"~ 329.5in.2
‘ V, = 4.0kip
v, =5.09 kip
ip ‘

H,=23kip H, =8.49k
> » OB

R = v(8.49 + 2.3)> + (5.09 + 4.0)> = 14.1 k (govemns)

A bolt of  in. diameter is needed (R, = 18.0 k).

Rivets and bearing bolts subjected to both shear and tension shall be designed
such that the computed shear stresses f,, do not exceed the allowable values
given in Table 5.1 (AISCS Table J3.2) and the computed tensile stresses f;
acting on the nominal body area A4, do not exceed the values computed in Table
5.2 (AISCS Table J3.3).

When allowable stresses are increased for wind or seismic loads, the con-
stants in the equations in Table 5.2 shall be increased by 3, but the coefficient
applied to f, shall not be increased.

For the case when A325 and A490 bolts are used in SC connections, the
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Table 5.2. Allowable Tension Stress F, for Fasteners in Bearing-type
Connections (AISCS Table J3.3; reprinted with permission)

Description of Threads Included in Threads Excluded
Fasteners Shear Plane from Shear Plane

A307 bolts 26 -18f, <20
A325 bolts V@4y — 4.39 f1 Vaar - 21572
A490 bolts V(54 - 3.5 V(54 - 1.82 f}
Threaded parts,
A449 bolts 043F, - 18f,<033F, 043F, - 14f, < 0.33F,
over 1}-in. dia.
A502 Gr. 1 rivets 30-13f,<23
A502 Gr. 2 rivets 38—-13f,<29

maximum allowable shear stress shall be multiplied by the reduction factor

fi4,
<‘ - “r?)

where f; is the average tensile stress due to the direct load applied to all of the
bolts, T} is the pretension load of the bolt given in Table 5.3 (AISCS Table
J3.7), and A, is the area of one bolt taken on the nominal shank. When allow-
able stresses are increased for wind or seismic loads, the reduced allowable
shear stress shall be increased by one-third.

Table 5.3. Minimum Pretension for Fully-tightened
Bolts, kips® (AISCS Table J3.7; reprinted with

permission)

Bolts Size, in. A325 Bolts A490 Bolts
i 12 15
3 19 24
3 28 35
3 39 49

1 51 64
56 80

15 7 102
3 85 121
13 103 148

“Equal to 0.70 of minimum tensile strength of bolts, rounded off to nearest
kip, as specified in ASTM specifications for A325 and A490 bolts with UNC
threads.
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Example 5.12. For the connections shown, determine P,,,, when
a) 10-%—in. AS02 Grade 1 rivets are used (existing connection).
b) 10-3-in. A490 bolts are used with threads not excluded from the shear
plane.

Note: Disregard the effect of prying. For prying design, see Sect. 7.5.

—
—

X

00000
FIIIIISI 274
00000

OO OO
=

ij
A
-~

]
Section 4_1
Solution.
P,=2pP=08P
5
3
P =-P=06P
Y5
0.6 P
=P, /A=—"——""""—=0.
fo ”/ 10 x 0.601 0.100 P
08P
=P,/A=——"—"—=0.
fo=Pu/ 10 x 0.601 0.133 P
a) F, =30 - 13f, < 23 ksi (AISCS Table J3.3)
0.133 P =30 — 1.3(0.100 P) < 23
P=114.1k

f, =0.100 P = 11.4 ksi < 17.5 ksi (AISCS Table J3.2) ok
S, =0.133 P =152 ksi < 23 ksi ok

b) F, = J(54)* — 3.75f2
0.133 P < VJ(54)> — 3.75(0.1P)?
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P =230k
f, =0.1P = 23 ksi < 28 ksi ok
f =0.133P = 30.6 ksi = F, ok

Example 5.13. Determine P, for the bolt configuration given in Example
5.12 there are 10-7 in. diameter A490-SC bolts.

Solution.
A, = 0.601 in.?
08P
=—F=0. P
J 10 x 0.601 0.133
T, = 49 k (AISCS Table J3.7)

- 0.133 P x 0.601
49

Reduction factor =1-0.00163 P

F, =21 ksi (AISCS Table J3.2)

(1 — 0.00163 P) X F, X A, X N =P

(1 — 0.00163 P) x 21 X 0.601 X 10 = P
Poo = 1045k

Example 5.14. Determine whether the connection shown is satisfactory using
%-in. A307 bolts, each having an area of 0.6 in.?

\l\ 60 kip
4"1 l<—11"4'
21”. _

=k o|lo OO
]—_E:=} ollo of|o
wn
== oflo ollo
' ] o
o G o||lo ¢ (oo
j’_c==} ollo ollo
> 0P o) o)
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Solution. The centroid could be located by setting up a quadratic equation in
terms of &, but is more conveniently obtained by trial and error. First assume

the center of gravity of compression and tension areas at a distance 4 from the
bottom, usually & = (4§ to §)d.

Assume & = 3 in.

Check to see if center of gravity is sufficiently near assumed location.

Moment of compression area = 3 in. X 11in. X 1.5in. = 49.5in.3

Moment of tension area = (2 X 0.6 X 14) + 2 X 0.6 X 11)
+2%x06x8 +(2x06Xx5)
+ (2 X 0.6 X2)
= 48 in.’
48.0 in.> = 49.5in.’?
Say assumed center of gravity is ok.

Calculate moment of inertia of tension and compression areas.
I =X, + Ad®)
For bolt areas, I, can be neglected.

1@’
12

1

+ (33 x15)x2x06x14%) + (2 x 06 x 11%
+ (2 x06x%x8)+@2x%x06x5)+@2x0.6x2Y)=591int

Shear force on each bolt

F 60k

— = —— = 5.0 k/bolt

N, =1z - >0k/bo
Shear stress on each bolt

P 50k

-= = 8.33 ksi

A 06in’ .
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Tension stress on extreme top bolt

= = 5.69 ksi

Mc (60 k X 4in.) X 14 in.
I 591 in.*

For A307 bolts,

F,=26.0 — 1.8f, < 20 ksi
=26.0 — 1.8 (8.33) = 11.0 ksi < 20.0 ksi

Connection is satisfactory, because f, = 8.33 ksi < F, = 10.0 ksi and f, =
5.69 ksi < F, = 11.0 ksi.

Example 5.15. Check to see if this connection is adequate with 3-in.-diameter
connectors and

a) using A502 Grade 1 rivets (existing connection).
b) using A325-N bolts (threads not excluded from the shear plane).
¢) using A325-SC bolts.

Solution. Assume neutral axis of connection () as 2.42 in. from bottom of
bracket.
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Check assumption

10 in. X 2.42in. X 1.21 in. = 29.28 in.?
2 x 0.442 in.? x (3.08 in. + 6.58 in.

+ 10.08 in. + 13.58 in.)

= 29.45 in.?

Moment of compression area

Moment of tension area

Say assumption of neutral axis is ok.

3
I= ﬂ%ﬁz—) + 2 X 0.442 x (3.08% + 6.58% + 10.08% + 13.58?%)
= 346.74 in.*
60
= ————— = 13.57 ksi
fo =10 x 0442 .
(60 X 5) x 13.58 .
frop = 29674 = 11.75 ksi

a) For A502-1 rivets,

F, = 17.5ksi > 13.57 ksi ok

F, =300 — 1.3 (13.57) = 12.4 ksi > 11.75 ksi ok

A502-1 rivets are adequate for loading shown.

b) For A325-N bolts,

F, =21 ksi > 13.57 ksi ok

F, = V(44)* — 4.39 (13.57)> = 33.6 ksi > 11.75ksi ok

A325-N bolts are adequate for loading shown.
¢) For A325-SC bolts.

Based on the discussion given in Commentary C-J3.6, the applied shear force
is taken by the compressive area of the connection bearing against the flange of
the column; thus, none of the bolts in tension carries any shear. The tensile
stress in a bolt due to the pretension force is 7, X 4, = 28 k X 0.4418 in.” =
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12.37 ksi. On the other hand, the maximum applied tensile stress was deter-
mined to be 11.75 ksi (see above). Consequently, because the maximum ap-
plied tensile stress is smaller than the pretension stress in the bolt, no change
in bolt stress can occur. The tensile stress in the bolt can increase only if the
applied stress becomes greater than the pretension stress; when this happens,
separation will occur between the two plates that were originally in contact in
the tensile zone.
Therefore, for this loading, the A325-SC bolts are adequate.

5.5 FASTENERS FOR HORIZONTAL SHEAR IN BEAMS

In a built-up member or a plate girder subjected to transverse loading, there is
a tendency for the connected elements to slide horizontally if they are not fas-
tened together; see Fig. 2.7. If the elements are connected continuously, hori-
zontal shearing stress will develop in the connection. This shear, measured per
unit length for the entire width, is called shear flow and is expressed as

9= (5.1

where V is the vertical shear force, / is the total moment of inertia of the mem-
ber, and Q is the moment of the areas on one side of the sliding interface with
respect to the centroid of the section. The spacing of fasteners is determined by
dividing the shearing capacity of the fasteners to be used by the shear flow g.
The maximum spacing between fasteners must also satisfy AISCS E4 and D2,
as specified in AISCS B10. Where the component of a built-up compression
member consists of an outside plate, the maximum spacing between bolts and
rivets connecting the plate to the other member shall not exceed the thickness
of the outside plate times 127 / \/I'Ty nor 12 in. When the fasteners are staggered,
the maximum spacing on each gage line shall not exceed the thickness of the
outside plate times 190/ «/I'Ty nor 18 in. (see Fig. 3.2). The spacing of fasteners
connecting two rolled shapes in contact with each other shall not exceed 24 in.
(AISCS E4).

The longitudinal spacing of bolts and rivets connecting a plate to a rolled
shape or to another plate in a built-up tension member shall not exceed 24 times
the thickness of the thinner plate nor 12 in. for painted members or unpainted
members not subject to corrosion; the maximum spacing is 14 times the thinner
of the two plates or 7 in. (whichever is smaller) for unpainted members of
weathering steel subject to atmospheric corrosion (see Fig. 3.2). When two or
more shapes in contact with one another form a built-up tension member, the
longitudinal spacing of fasteners shall not exceed 24 in. (AISCS D2).
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Example 5.16. Calculate the theoretical spacing of 3-in.-diameter A325-N bolts
for the beam shown. I, = 461 in.*

C12X25
70 kip

4.18"
_ _ C
) A A
y=8.15"
W 12 X 40 1
Solution.

Achanner = 7.35 in.?

0 = Ad = 7.35in.2 X (4.18 in. — 0.674 in.) = 25.77 in.?

V.. =35k
VO 35k x 25.77 in.?
= — = = 1. k i .
1 461 in.* 1.96 k/in
Shear capacity of 3-in. A325-N bolts
R, =93k
Spacing of bolts
N, xR, 2xX93k
: = = 9.49 in.

g  1.96k/in.

Use two rows of bolts spaced at 9 in. < s,,, = 24 in. ok
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