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Preface

About the Subject

Chaos theory is a field of study in mathematics with several applications in science
and engineering. Chaotic systems are nonlinear dynamical systems and maps that
are highly sensitive to initial conditions. The sensitivity to initial conditions is
usually called the butterfly effect for dynamical systems and maps.

Chaotic systems can be observed in many natural systems such as weather and
climate. Chaos theory has applications in several areas such as vibration control,
electric circuits, chemical reactions, lasers, combustion engines, computers, cryp-
tosystems, encryption, secure communications, biology, medicine, management,
finance, etc. Chaotic behaviour of systems can be modelled by discrete-time or
continuous-time mathematical models.

About the Book

The new Springer book, Advances and Applications in Chaotic Systems, consists of
25 contributed chapters by subject experts who are specialized in the various topics
addressed in this book. The special chapters have been brought out in this book
after a rigorous review process in the broad areas of modelling and application of
chaotic systems. Special importance was given to chapters offering practical solu-
tions and novel methods for the recent research problems in the modelling and
application of chaotic systems.

This book discusses trends and applications of chaos modeling and chaotic
systems in science and engineering.

Objectives of the Book

The objective of this book takes a modest attempt to cover the framework of
advances and applications of chaotic systems in a single volume. The book is not
only a valuable title on the publishing market, it is also a successful synthesis
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of control techniques applied to chaotic systems. Several multidisciplinary
applications of chaotic systems in control, engineering and information technology
are discussed in this book.

Organization of the Book

This well-structured book consists of 25 full chapters.

Book Features

e The chapters deal with the recent research problems in the areas of chaos theory,
chaos modelling and applications.
The chapters contain a good literature survey with a long list of references.
The chapters are well written with a good exposition of the research problem,
methodology and block diagrams.

e The chapters are lucidly illustrated with numerical examples and simulations.

e The chapters discuss details of engineering applications and future research
areas.

Audience

The book is primarily meant for researchers from academia and industry, who are
working in the research areas—chaos theory, control engineering, computer science
and information technology. The book can also be used at the graduate or advanced
undergraduate level as a textbook or major reference for courses such as nonlinear
dynamical systems, control systems, mathematical modelling, computational sci-
ence, numerical simulation and many others.

Acknowledgements
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Synchronization Phenomena in Coupled
Hyperchaotic Oscillators with Hidden
Attractors Using a Nonlinear Open
Loop Controller

Ch.K. Volos, V.-T. Pham, S. Vaidyanathan, I.M. Kyprianidis
and L.N. Stouboulos

Abstract In recent years the study of dynamical systems with hidden attractors,
namely systems in which their basins of attraction do not intersect with small neigh-
borhoods of equilibria, is a great challenge due to their application in many research
fields such as in mechanics, secure communication and electronics. Especially, the
investigation of hyperchaotic systems with hidden attractors plays a crucial role in
this research approach. Motivated by the very complex dynamical behavior of hyper-
chaotic systems and the unusual features of hidden attractors, a bidirectionally and
unidirectionally coupling scheme of systems of this family, by using a nonlinear open
loop controller, is studied in this chapter. For this reason, a recently new proposed
hyperchaotic system with hidden attractors, the four-dimensional modified Lorenz
system, which is structurally the simplest hyperchaotic system with hidden attractors,
is used. The simulation results show that the proposed scheme drives the coupled
system either to complete synchronization or anti-synchronization depending on the
choice of the signs of the error function’s parameters. In addition, an electronic cir-
cuit emulating the control scheme of the coupled hyperchaotic systems with hidden
attractors is also presented to verify the feasibility of the proposed model.
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Keywords Chaos - Hidden oscillation - Complete synchronization * Anti-
synchronization - Bidirectional coupling + Unidirectional coupling + Nonlinear open
loop controller

1 Introduction

In the last three decades the phenomenon of synchronization between coupled chaotic
systems has attracted the interest of the scientific community because it is a rich and
multi-disciplinary phenomenon with broad range applications, such as in secure com-
munications [19] and cryptography [14, 60], in broadband communications systems
[7] and in a variety of complex physical, chemical, and biological systems [17, 37,
41, 51, 54, 57, 62]. In general, synchronization of chaos is a process, where two or
more chaotic systems adjust a given property of their motion to a common behav-
ior, such as equal trajectories or phase locking, due to coupling or forcing. Because
of the exponential divergence of the nearby trajectories of a chaotic system, hav-
ing two chaotic systems being synchronized, might be a surprise. However, today
the synchronization of coupled chaotic oscillators is a phenomenon well established
experimentally and reasonably well understood theoretically.

The history of chaotic synchronization’s theory began with the study of the inter-
action between coupled chaotic systems in the 1980s and early 1990s by Fujisaka
and Yamada [11], Pikovsky [49], Pecora and Carroll [48]. Since then, a wide range of
research activity based on synchronization of nonlinear systems has risen and a vari-
ety of synchronization’s forms depending on the nature of the interacting systems and
of the coupling schemes has been presented. Complete or full chaotic synchroniza-
tion [9, 24-26, 28, 39, 55, 63], phase synchronization [8, 45], lag synchronization
[52, 56], generalized synchronization [53], anti-synchronization [22, 36], anti-phase
synchronization [1, 5, 6, 27, 58, 64], projective synchronization [38], anticipating
[61] and inverse lag synchronization [34] are the most interesting types of syn-
chronization, that have been investigated numerically and experimentally by many
research groups.

This work is referred to complete synchronization and to anti-synchronization.
In the first case, which is the most studied type of synchronization, two identical
coupled chaotic systems leads to a perfect coincidence of their chaotic trajectories
i.e., x;(t) = xp(t) ast — oo. In the anti-synchronization, on the other hand, which
is also a very interesting type of synchronization, two systems x; and x,, can be
synchronized in amplitude, but with opposite sign, for initial conditions chosen from
large regions in the phase space, that is x; () = —x,(t) ast — oo.

As it is known, nonlinear systems and especially chaotic systems exhibit high
sensitivity on initial conditions or system’s parameters and thus, if they are identical
and, possibly, starting from almost the same initial conditions, following trajectories
which rapidly become uncorrelated. For this reason, many techniques have been
set up to obtain the aim of chaotic synchronization. So, many of these techniques
to couple two or more nonlinear chaotic systems can be mainly divided into two



Synchronization Phenomena in Coupled Hyperchaotic Oscillators ... 3

classes: bidirectional or mutual coupling and unidirectional coupling [13]. In the
mutual coupling both the systems are connected and each system’s dynamic behavior
influences the dynamics of the other, while on the contrary in unidirectional coupling,
only the first system drives the second one.

Recently, a great interest for dynamical systems with hidden attractors has been
raised. The term “hidden attractor” is referred to the fact that in this class of systems
the attractor is not associated with an unstable equilibrium and thus often remains
undiscovered because it may occur in a small region of parameter space and with
a small basin of attraction in the space of initial conditions [23, 31-33, 46, 47]. In
2010, for the first time, a chaotic hidden attractor was discovered in the most well-
known nonlinear circuit, in Chua’s circuit, which is described by a three-dimensional
dynamical system [23, 31].

The problem of analyzing hidden oscillations arose for the first time in the second
part of Hilbert’s 16th problem (1900) for two-dimensional polynomial systems [16].
The first nontrivial results were obtained in Bautin’s works [2, 3], which were devoted
to constructing nested limit cycles in quadratic systems and showed the necessity of
studying hidden oscillations for solving this problem.

Later, in the middle of the 20th century, Kapranov studied [21] the qualitative
behavior of Phase-Locked Loop (PLL) systems, which are used in telecommuni-
cations and computer architectures, and estimated stability domains. In that work,
Kapranov assumed that in PLL systems there were self-excited oscillations only.
However, in 1961, Gubar’ [15] revealed a gap in Kapranov’s work and showed ana-
Iytically the possibility of the existence of hidden oscillations in two-dimensional
system of PLL, thus, from a computational point of view, the system considered was
globally stable, but, in fact, there was only a bounded domain of attraction.

Also, in the same period, the investigations of widely known Markus—Yamabe [40]
and Kalman [20] conjectures on absolute stability have led to the finding of hidden
oscillations in automatic control systems with a unique stable stationary point and
with a nonlinearity, which belongs to the sector of linear stability [4, 10, 30].

Furthermore, systems with hidden attractors have received attention due to their
practical and theoretical importance in other scientific branches, such as in mechanics
(unexpected responses to perturbations in a structure like a bridge or in an airplane
wing) [18, 29]. So, the study of these systems is an interesting topic of a significant
importance.

In this work a hyperchaotic four-dimensional modified Lorenz system with hidden
attractors, is used for studying the bidirectional or unidirectional coupling by using
the nonlinear open loop controller. The simulation results from system’s numerical
integration as well as the circuital implementation of the proposed system in SPICE,
confirm the appearance of complete synchronization and anti-synchronization phe-
nomena depending on the signs of the parameters of the error functions.

The chapter is organized as follows. In Sect.2 the four-dimensional modified
Lorenz system, which is used in this work, is presented. The scheme, by using the
nonlinear open loop controller, in both coupling ways (bidirectional and unidirec-
tional) as well as the simulation results are discussed in Sect. 3. Section4 presents
the circuital implementation of the unidirectional coupling system and the simula-
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tion results which are obtained by using SPICE. Finally, the conclusive remarks are
drawn in the last section.

2 The Four-Dimensional Modified Lorenz System

In this work the simplest four-dimensional hyperchaotic Lorenz-type system, which
has been proposed by Gao and Zhang [12], is used. This system is an extension of
a modified Lorenz system, which was studied by Schrier and Maas as well as by
Munmuangsaen and Srisuchinwong [42, 59]. The proposed system is described by
the following set of differential equations.

X=y—x
y=—xz+u 1
Z=Xxy—c
= —dy

It is structurally a very simple four-dimensional dynamical system having only
two independent parameters (c, d). Also, as it is mentioned in [35], it has many
interesting properties not found in other proposed systems, such as:

(1) It has very few terms, only seven with two quadratic nonlinearities, and two
parameters.

(i1) All its attractors are hidden.

(iii) It exhibits hyperchaos over a large region of parameter space.

(iv) Its Jacobian matrix has rank less than four everywhere in the space of the
parameters.

(v) It exhibits a quasi-periodic route to chaos with an attracting torus for some
choice of parameter values.

(vi) Ithasregionsin which the torus coexists with either a symmetric pair of strange
attractors or a symmetric pair of limit cycles and other regions where three
limit cycles coexist.

(vii) The basins of attraction have an intricate fractal structure.

(viii) There is a series of Arnold tongues [43] within the quasi-periodic region where
the two fundamental oscillations mode-lock and form limit cycles of various
periodicities.

All the afore-mentioned reasons make the dynamical system (1) an ideal candidate
for the coupling scheme which is used in this work. Especially, the existence of hidden
attractors and the hyperchaotic nature of a system like this have played a crucial role
in our decision.

In this section the system’s dynamic behavior is investigated numerically by
employing a fourth order Runge—Kutta algorithm. For this reason, the bifurcation
diagram, which is a very useful tool from nonlinear theory, is used. In Figs. 1, 2, 3,
4,5, 6 and 7 the bifurcation diagrams of the variable y versus the parameter d, for
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Fig. 1 Bifurcation diagram
of y versus d for ¢ = 5, with
initial conditions (xg, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 2 Bifurcation diagram

of y versus d for ¢ = 4, with
initial conditions (xo, Yo, 20,
uo) = (0.55, —0.49, —0.08,

0.50)

Fig. 3 Bifurcation diagram
of y versus d for ¢ = 3.5,
with initial conditions (xg,
Y0, 20, o) = (0.55, —0.49,
—0.08, 0.50)
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Fig. 4 Bifurcation diagram
of y versus d for ¢ = 2.97,
with initial conditions (xg,
Y0, 20, o) = (0.55, —0.49,
—0.08, 0.50)

Fig. 5 Bifurcation diagram
of y versus d for c = 2.9,
with initial conditions (xg,
Yo, 20, o) = (0.55, —0.49,
—0.08, 0.50)

Fig. 6 Bifurcation diagram
of y versus d, for ¢ = 2.7,
with initial conditions (xg,
Y0, 20, o) = (0.55, —0.49,
—0.08, 0.50)

Ch.K. Volos et al.
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Fig. 7 Bifurcation diagram 67
of y versus d, for ¢ = 1, with
initial conditions (xg, Yo, 20, 54

o) = (0.55, —0.49, —0.08,
0.50)

various values of the parameter c, reveal the richness of system’s dynamical behav-
ior. Besides limit cycles, system (1) has quasi-periodicity, chaos, and hyperchaos,
which can make the control of the system a difficult case in practical applications
where a particular dynamic is desired. In more, details, as the value of d is decreased
from d = 0.9 the system goes from a period-1 steady state (Fig. 8), through a quasi-
periodic route (Figs.9, 10, 11, 12 and 13), to a chaotic state, which is confirmed by
the chaotic attractor in x—z plane, that is shown in Fig. 14. However, a very interesting
feature of the specific system is the existence of hyperchaos for a range of parameters
as it is shown in the phase portraits of Figs. 15, 16, 17, 18 and 19. Figure 20 shows

Fig. 8 Phase portrait of z 3.0+
versus x for ¢ = 2.7 and 2.5+
d = 0.9 (period-1 state), 20
with initial conditions (xo, 15]
Yo, 20, o) = (0.55, —0.49, Lol
—0.08, 0.50) ]
0.5-

v 0.0-

0.5

1.0

1.5

20+

25

3.0

T T T T T T
-3.0 25 20 -1.5 -1.0 -0.5 00 05 1.0 1.5 20 25 3.0
X



Fig. 9 Quasi-periodic
attractor for ¢ = 2.7 and

d = 0.75, in x—y plane, with
initial conditions (xo, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 10 Quasi-periodic
attractor for ¢ = 2.7 and

d = 0.75, in x—z plane, with
initial conditions (xg, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 11 Quasi-periodic
attractor for ¢ = 2.7 and

d = 0.75, in x—u plane, with
initial conditions (xg, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)
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Fig. 12 Quasi-periodic
attractor for ¢ = 2.7 and

d = 0.75, in y—z plane, with
initial conditions (xo, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 13 Quasi-periodic
attractor for ¢ = 2.7 and

d = 0.75, in y—u plane, with
initial conditions (xg, Yo, z0,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 14 Phase portrait of z
versus x for ¢ = 2.7 and

d = 0.2 (chaotic state), with
initial conditions (xg, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)
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Fig. 15 Hyperchaotic
attractor for ¢ = 2.7 and

d = 0.44, in x—y plane, with
initial conditions (xo, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 16 Hyperchaotic
attractor for ¢ = 2.7 and

d = 0.44, in x—z plane, with
initial conditions (xg, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Fig. 17 Hyperchaotic
attractor for ¢ = 2.7 and

d = 0.44, in x—u plane, with
initial conditions (xg, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50)

Ch.K. Volos et al.

24

-3

'
[\

[




Synchronization Phenomena in Coupled Hyperchaotic Oscillators ... 11

Fig. 18 Hyperchaotic 6
attractor for ¢ = 2.7 and
d = 0.44, in y—z plane, with 4
initial conditions (xo, Yo, 20,
up) = (0.55, —0.49, —0.08,
0.50) 24
v 0

24

4

-6

-8 8
Fig. 19 Hyperchaotic 3
attractor for ¢ = 2.7 and 1
d = 0.44, in y—u plane, with 5
initial conditions (xg, Yo, z0,
up) = (0.55, —0.49, —0.08,
0.50) 11
R 0

-1 4

2

_3 T T T T T T T T T T T T T

7 6 -5 4 3 -2 -1 0 1 2 3 4 5 6 7
y

the Lyapunov exponents’ spectra for chosen value of the parameter ¢ (c = 2.7). The
system’s hyperchaotic behavior is found for ¢ = 2.7 in the range of d € [0.388, 0.49]
(Figs. 15,16, 17, 18 and 19), where the system has two positive Lyapunov exponents,
as it is shown in the embedded diagram in Fig. 20.
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Fig. 20 The diagrams of Lyapunov exponents (A;) versus the parameter d, for ¢ = 2.7

3 The Coupling Scheme

Two identical coupled chaotic systems can be described by the following system of
differential equations:

¥ = f(y) + Uy @)

[ X = fx)+Uyx
where (f(x), f(y)) € R" are the flows of the systems. The coupling of the systems
is defined by the Nonlinear Open Loop Controllers (NOLCs), Ux and Uy [44]. The
error function is given by e = By — ax, where @ and B are constants. If one applies
the Lyapunov Function Stability (LFS) technique, a stable synchronization state will
be realized when the error function of the coupled system follows the limit

tlim [le(H)|] — O 3)

so that ax = By.
As it is mentioned, the design process of the coupling scheme, is based on the
Lyapunov function

V()_lT “)
o) =5ee

where T denotes transpose of a matrix and V (e) is a positive definite function. For
known system’s parameters and with the appropriate choice of the controllers Uy and
Uy, the coupled system has V (e) < 0. This ensures the asymptotic global stability
of synchronization and thereby realizes any desired synchronization state.
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By using the appropriate NOLCs functions Uy, Uy and error function’s
parameters «, 8, a unidirectional or bidirectional (mutual) coupling scheme can
be implemented. In more details, for (Ux = 0, 8 = 1) or (Uy =0, « = 1), a unidirec-
tional coupling scheme is realized, while for Uy y # 0 and «, 8 # 0, a bidirectional
coupling scheme is realized, respectively. The signs of «, 8 play a crucial role to the
type of synchronization (complete synchronization or anti-synchronization), which
is observed in this work. On the other hand, the ratio of « over 8 decides the ampli-
fication or attenuation of one oscillator relative to another one.

Next, the results of the simulation process in the two coupling (bidirectional and
unidirectional) schemes and for various values of parameters « and § are presented.

3.1 Bidirectional Coupling

Systems of chaotic oscillators bidirectionally (mutually) coupled are frequently
found not only in the simulation environment or the laboratory but also in the nat-
ural world [41, 50]. This way of coupling, which is the simplest, is very interesting
because it displays much of the phenomenology that is observed in more complex
networks. Asymptotically stable synchronization between the coupled oscillators
happens to be one of the basic phenomena that is observed.

As it is mentioned, the synchronization of coupled chaotic systems is a process
where two or more systems adjust a given property of their motion to a common
behavior, such as identical trajectories, due to coupling.

So, in the first case, the bidirectional coupling scheme of two coupled systems of
Eq. (1), which is described by the following systems (5) and (6), is studied.

Coupled System-1:

X1 =xy —x1 +Uxi
X = —x1x3 + x4 + Uxo )
X3 =x1x2 —c+ Uy
X4 = —dxy + Uxa
Coupled System-2:
yi =y —y1 + Uy
Vo = =y1y3 + ya + Uy ©)
3 =y1y2 — ¢+ Uys
Va4 = —dys + Uys

where UX = [UX], sz, Ux3, Ux4]T and Uy = [Uy], Uyz, Uy3, Uy4]T are the
NOLC:s functions. The error function is defined by e = By — ax, with e = [ey, e,
es, eq]’, x = [x1, x2, x3, x4]T and y = [y1, y2, y3, y4]". So, the errors dynamics, by
taking the difference of Egs. (5) and (6), are written as:
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ép =ey —e + BUy1 —aUx

e = axix3 — By1ys +es+ pUys —aUx:

é3 = —axixy + By1y, —c(B —a) + BUys —aUx;
é4 = —d€2 +,8Uy4 — OlUx4

)

For stable synchronization ¢ — 0 as t — oco. By substituting the conditions in
Eq.(7) and taking the time derivative of Lyapunov function

V(e) = e18] + €6y + e3é3 + eséy
=e1 (ea — e + BUy; —aUxy)
+ ez (axix3 — By1ys +es+ BUys — aUxs)
+ ez [—axixy + By1y2 — ¢ (B —a) + BUy1 — aUxi]
+es(—des + BUy1 — aUx1) 3

we consider the following NOLC controllers:

Uxi = 3¢
Ux, = é(axll% + ey +eq) ©)
Uxs = 1 (—ax1x; + e3)
Ui = & (s + )
and |
Uyi = —35e2
Uy, = % (By1y3) (10)
Uys = 5 [=By1y2 +c(B — )]
Uys = ﬁ (dey)
such that )
Vie)=—el —e) —ei—ej <0 (11)

So, Eq.(11) ensures the asymptotic global stability of synchronization.
Next, the simulation results, in this coupling scheme, for three different cases of
system’s parameters (o, ), are presented.

3.1.1 The symmetric case (¢ = )

Firstly, the parameters «, B are chosen to be equal (¢« = f = 1). This is the most
studied type of mutual coupling and also the most interesting due to its applications in
a variety of scientific fields. Also, by choosing, in this case, the systems’ parameters
as ¢ = 2.7 and d = 0.44, each one of the coupled systems is in a hyperchaotic state.
In this case of coupled identical systems with the proposed coupling scheme, only
the complete synchronization is observed. This type of synchronization is confirmed
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Fig. 21 The phase portrait 3
of y; versus xi, for )
a=p=1,c=27and 2
d =044
14
=04
14
2
'3 T T T T T T
-3 -2 1 0 1 2 3
X
Fig. 22 The time-series of 5
x, y2, fora =g =1, 4]

c=27andd =0.44

xz‘ Y,

¥ L T v T T ' T T )
0 20 40 60 80 100 120 140 160 180 200
Time (n.u.)

by the y; versus x; plot of Fig.21. Furthermore, the time-series of the variables
X2, y» as well as the errors e¢; (i = 1, 2, 3, 4) show the exponential conver-
gence to zero which confirms the expected system’s complete synchronization
(Figs.22 and 23).

312 Thecasea =2,=1

In this case, the parameters of the error functions are chosentobe « =2 and 8 = 1.
By choosing again the systems’ parameters as ¢ = 2.7, d = 0.44 and for « = 2 the
hyperchaotic attractor of the second system is enlarged by two times, as it is shown
with red color in Fig. 24, as well as by the time-series of signals y; and y, in regard to
the signals x; and x, respectively (Figs.26 and 27). The y; versus x; plot in Fig. 25
confirms that the coupled system is in complete synchronization state independently
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Fig. 23 The plot of errors 1.5 T

ei(=Byi — ax;), for 1 | S
«=f=1c=27and 104 .
d =044

Fig. 24 The phase portraits
of xp versus x| and y; versus
yi,fora =2,8 =1,
c=27andd =0.44

-4 -3 -2 —.] 0 1 2 3 4
Xp ¥y
Fig. 25 The phase portrait 3
of y| versus x, fora = 2,
B=1,c=2T7andd =0.44 2
14
=0
14
24
-3 T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Fig. 26 The time-series of 4
x1, vy, fora =2, 8=1, x,
c=2.7andd =0.44 34

Xp

Time (n.u.)
Fig. 27 The time-series of 7
x, 2, fora =2,8=1, 6
c=27andd =0.44 5 -
4
3
2
RE |
w04
)
-1
)
.34
4
-5
‘6 T T T T T T T T T

Time (n.u.)

of the values of the error’s parameters «, 5. The error plote; = y; —2x; (i =1, 2,
3,4)in Fig. 28 shows the exponential convergence to zero that confirms the realization
of system’s complete synchronization state.

313 TheCasea=-1,8=2

By choosing the parameters of the error functions asa« = —1 and 8 = 2, the attractor
of the first coupled system has been enlarged by factor two, while the attractor
of the second coupled system has been inverted in regard to the first one, as it is
shown in Fig.29. In this case the systems’ parameters are chosen again as ¢ = 2.7
and d = 0.44 so as both of the coupled systems are in hyperchaotic state. This
process is shown more clearly in the plots of the time-series of xj, y; and x;, y,
(Figs.31 and 32). The phase portrait of y; versus x; in Fig.30 indicates that the
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Fig. 28 The plot of errors
ei(=Byi —ax;), fora =2,
B=1,c=27andd =044

Fig. 29 The phase portraits
of x, versus x; and y, versus
yi, fora = =1, =2,
c=27andd =0.44

Fig. 30 The phase portrait
of yj versus xp, fora = —1,
B=2,c=2T7andd =0.44

xl’ yz

Ch.K. Volos et al.
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Time (n.u.)
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Fig. 31 The time-series of
xi, y1,fora=—-1,8=2,
c=2.7andd =0.44

xl’ yl

Time (n.u.)

Fig. 32 The time-series of 12
x2, y2, fora = —1, 8 =2, l
c=27andd = 0.44 ] —

2

Xp ¥

0 10 20 30 40 S50 60 70 80 90 100
Time (n.u.)

coupled system is in anti-synchronization state, which is also confirmed by the error
plote; =2y, +x; (i =1, 2,3, 4) in Fig. 33.

3.2 Unidirectional Coupling

In this section, the unidirectional coupling scheme, Ux = 0, for 8 = 1, given by
Eq. (1), is presented.
Master System:
X =x2— X
J:Cz = —x1X3 + x4 (12)
X3 = X1Xp — C
)&4 = —d)C2
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Fig. 33 The plot of errors 3.0 |
e
e (=Byi — ax;), for | |
a=-1,=2c=27and |9
|- -2, |
d=0.44 2.0 | )
o
™ 1.0+
0.5 4
004
sl
1.0 —71 r rfrrrr<~frr~f1fr Tt r*Tr7rT "7 °"°7TT
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Time (n.u.)

Slave System:
yi=y2—y1+ Uy
V2= —=y1y3 +ys+ Uy (13)
V3 =y1y2 —c+ Uys
ya=—dy, + Uys

where Uy = [Uyy, Uya, Uys, Uys]T are the Nonlinear Open Loop Controller
(NOLC). The error function is defined by e = By — ax, with e = [ey, e, €3, ed]”,
x =[xy, x2, x3, x4]T and y = [, y2, 3, y4]T. So, the error dynamics, by taking the
difference of Egs. (12) and (13), are written as:

e =e—e + BUy;

ey = axix3 — By1ys +eq + BUy2 (14)
é3 = —ax1xy + By1y2 + cla — B) + BUys

és = —dey + BUyy

For stable synchronization e — 0 with r — co. By substituting the conditions in
Eq. (14) and taking the time derivative of Lyapunov function

V(e) = 6‘16"1 + 62é2 + €3é3 + 6‘46"4
=ej(ex — e+ BUy1) + ez (ax1x3 — By1ys +es + BUy2)
+ e3[—axixy + By1y2 +c (@ — B) + BUys] + es (—dez + BUyas)
(15)
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we consider the following NOLC controllers

Uy, = —%3@2
Uys = —/l, (€2 +axix3 — By1ys +es) (16)
Uys = — [e3s — axixa + Byiya + c(@ — B)]
Uy4 = _% (64 - d€2)
such that .
V(e)z—e%—eg—eg—ei <0 (17)

Equation (17) ensures the asymptotic global stability of synchronization.

321 TheCasea=8=1

In this case, as it occurs in the mutual coupling, the phenomenon of complete syn-
chronization is achieved for every value of o« = . Especially, for « = = 1, the
two coupled systems are in the same hyperchaotic state, due to the chosen values of
system’s parameters (¢ = 2.7 and d = 0.44). The goal of complete synchronization
is achieved as it is shown from the plots of y; versus x, the time-series of x;, y, and
the errors e; in Figs. 34, 35 and 36.

3.22 TheCasefora =—f=-1

By using opposing values for the parameters « = —f = —1 the phenomenon of anti-
synchronization is achieved, as itis shown in Fig. 37. Initially, the coupled systems are
in different hyperchaotic states but the unidirectional coupling leads the slave system
to an opposite hyperchaotic attractor in regard to the master system. This conclusion
is derived from the phase portrait of y; versus x; (Fig.37), as well as from the

Fig. 34 The phase portrait 5
of y| versus x1, for 4 ]
a=pB=1,¢c=27and

d=0.44 31
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Fig. 35 The time-series of
2, %2, fora =g =1,
c=27andd =0.44

Fig. 36 The plot of errors
ei (=Byi — ax;), for
a=p=1,c=27and
d =044

Fig. 37 The phase portrait
of y| versus x1, for
a=—-B=—1,c=2.7and
d=0.44
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Fig. 38 The time-series of 125
y2, %2, fora = —f = —1, 10.0 -
c=27andd =0.44 75 ]
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Fig. 39 The plot of errors
ei(=Pyi —ax;), for €
a=—-B=-1,c=2.7and €
d=0.44 —e,
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Time (n.u.)
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time-series of x;, y, (Fig. 38). Also, the plot of errors ¢; = y; + x; in Fig. 39 confirms
the anti-synchronization of the coupled system.

323 TheCaseax =2,8=1

In this case, the parameters of the error functions are chosen as « =2 and g = 1.
By choosing the systems’ parameters as ¢ = 2.7, d = 0.44 and for « = 2 the chaotic
attractor of the second system is enlarged by two times, as it is shown with red color
in Fig. 40, as well as by the time-series of signals y; and y, in regard to the signals x|
and x, respectively (Figs.42 and 43). The y; versus x; plot in Fig.41 confirms that
the coupled system is in complete synchronization state independently of the values
of the error’s parameters «, . The error plote; = y; — 2x; (i =1, 2, 3,4) in Fig.44
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Fig. 40 The phase portraits
of xp versus x| and y; versus
yi,fora =2,8=1,
c=27andd =0.44

Fig. 41 The phase portrait
of y| versus x1, fora = 2,
B=1,c=2T7andd =0.44

Fig. 42 The time-series of
xp, yfora =2, =1,
c=27andd =0.44
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Fig. 43 The time-series of 25 =
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Fig. 44 The plot of errors 1.6 =
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shows the exponential convergence to zero that confirms the realization of system’s
complete synchronization state.

324 TheCasea=-2,8=1

In the last case the parameters of the error function are chosenaso = —2 and g = 1.
So, the attractor of the first coupled system has been enlarged again by factor two,
while the attractor of the second coupled system has been inverted in regard to the
first one, as it is shown in Fig.45. In this case the systems’ parameters are chosen as
¢ =2.7and d = 0.44 so as both of the coupled systems are in hyperchaotic state.
This process is shown more clearly in the plots of the time series of x;, y; and x5, y,
of Figs.47 and 48. The phase portrait of y; versus x; in Fig.46 indicates that the
coupled system is in anti-synchronization state, which is also confirmed by the error
plote; =2y, +x; (i =1, 2, 3, 4) in Fig.49.



26

Fig. 45 The phase portrait
of xp versus xp, fora = —2,
B=1,c=27andd =0.44

'
H«
Fig. 46 The phase portrait
of yj versus x, fora = —2,
B=1,c=27andd =0.44
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Fig. 47 The time-series of
xi, yi, fora ==2, =1,
c=27andd =0.44
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Fig. 48 The time-series of
x2, y2, fora=-2,8=1,
c=27andd =0.44
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Fig. 49 The plot of errors 1.6 E
ei (=Byi — ax;), for R !
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4 Circuit’s Implementation of the Proposed Scheme

In this section the circuit implementation of the proposed scheme, with the electronic
simulation package Cadence OrCAD, in the case of unidirectional coupling systems
witha = B is presented, in order to prove the feasibility of this method. The coupling
system is realized by common electronic components. The system’s circuit consists
of three sub-circuits, which are the master circuit, the slave circuit and the coupling
circuit.

Figure 50 depicts the schematic of the master circuit. It has four integrators (Uy,
U,, U; and Uy) and two differential amplifiers (U;, Ug), which are implemented
with the TLO84, as well as two signals multipliers (Us, Ug) by using the AD633. By
applying Kirchhoff’s circuit laws, the corresponding circuital equations of designed
master circuit can be written as:
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mx ._:VI\{/\, Il ]
2 LL|

o x,
— Xy
— JHXy4
Fig. 50 The schematic of the master circuit
X1 = gz (o —x)
RC
iy — L (——R_
X2 = e ( Ri1ov V1X3 +x4)
(R (18)

X3 = R®e (R110Vx1x2 - C)
v, = L (—X&
X4 = &e ( Re* )

where x;(i = 1, ..., 4) are the voltages in the outputs of the operational amplifiers
Uy, U,, Uz and Uy. Normalizing the differential equations of system (18) by using
T = t/RC we could see that this system is equivalent to the system (12). The circuit
components have been selected as: R = 10k2, R} = 1k, Ry = 22.727k2, C =
10nF, V¢ = 2.7V, while the power supplies of all active devices are £15 Vpc. For the
chosen set of components the master system’s parameters are: ¢ = 2.7 and d = 0.44.
In Figs.51, 52, 53, 54 and 55 the hyperchaotic attractors, which are obtained from
Cadence OrCAD in various phase planes, are proved to be in a very good agreement
with the respective phase portraits from system’s simulation process (Figs. 15, 16,
17, 18 and 19). So, the proposed circuit emulates well the master system.

In Fig. 56 the schematic of the slave circuit, which is similar to the master circuit,
is shown. The difference of this circuit in comparison to the previous one are the
signals mu,, mus and muy4, which are the opposites of the signals Uy, Uy3 and Uyy,
produced by the controllers of Eq. (16). Also, e, is the difference signal (By, — ax2).
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Fig. 51 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x2) phase plane
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Fig. 52 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x3) phase plane
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Fig. 53 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x4) phase plane
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Fig. 54 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x2, x3) phase plane
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Fig. 55 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x2, x4) phase plane
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Fig. 56 The schematic of the slave circuit
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Next, the design of the coupling circuit as well as the simulation results obtained
from SPICE in the case of @ = g is discussed in details.

In the case of « = B = 1 and by considering the achievement of synchronization
between the coupled systems (12) and (13), the NOLCs take the following forms.

Uyi = —e;
Uyr = — (e2 +eq)

19
Uys = —e;3 (19)

Uys = — (e4 — dey)

The units from which the coupling circuit is consisted, are shown in the schematic
of Fig.57. In this schematic u, and u4 are the control signals Uy, and Uy, of Eq. (19)
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Fig. 57 The schematic of the coupling circuit
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Fig. 58 The phase portrait in the (x, y;) phase plane, for« = =1, ¢ =2.7 and d = 0.44,
obtained from Cadence OrCAD
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Fig. 59 The phase portrait in the (x2, y2) phase plane, for « = =1, ¢ =2.7 and d = 0.44,
obtained from Cadence OrCAD
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Fig. 60 The phase portrait in the (x3, y3) phase plane, for « = =1, ¢ =2.7 and d = 0.44,
obtained from Cadence OrCAD
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obtained from Cadence OrCAD
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respectively, while mu, and mu, are the opposite of these signals. Also, ¢;, (i = 2,
3, 4) are the difference signals (By; — ax;, i =2, 3,4) and me; is the opposite of e;.

Figures 58, 59, 60 and 61 depict the phase portraits in (x;, y;) phase plane, with
i=1,...,4,fora = B=1,c =2.7andd = 0.44, obtained from Cadence OrCAD.
These figures confirm the achievement of complete synchronization in the case of
unidirectionally coupled circuits with the proposed method.

5 Conclusion

In this chapter, the case of bidirectional and unidirectional coupling scheme of hyper-
chaotic dynamical systems with hidden attractors was studied. The proposed system
is a four-dimensional modified Lorenz system, which is the simplest hyperchaotic
system of this family. Furthermore, the coupling method was based on a recently
new proposed scheme based on the nonlinear open loop controller.

According to the simulation results from system’s numerical integration as well
as the circuital implementation of the proposed system in SPICE, in the case
of unidirectional coupling, the appearance of complete synchronization and anti-
synchronization, depending on the signs of the parameters of the error functions,
was investigated in various cases. So, by choosing an appropriate sign for the error
functions one could drive the coupling system either in complete synchronization or
anti-synchronization behavior.

As it is known, the complex behavior of hyperchaotic systems, like the afore-
mentioned, makes the control difficult in practical applications where a particular
dynamic is desired. So, this chapter presents an interesting research result for the
family of hyperchaotic systems with hidden attractors, because this method could
be very useful in many potential applications of these systems. As a next step in this
direction is the application of the proposed method in non-identical coupling sys-
tems in order to satisfy the goal of control of systems, which are in totally different
dynamical behaviors.
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Abstract From the mechanical system point of view, third-order derivatives of
displacement or the time rate of change of acceleration is the jerk, while the fourth
derivative has been known as a snap. As a result, a dynamical system which is pre-
sented by an nth order ordinary differential equation with n > 3 describing the time
evolution of a single scalar variable is considered as a hyperjerk system. Hyperjerk
system has received significant attention because of its elegant form. Motivated by
reported attractive hyperjerk systems, a 4-D novel chaotic hyperjerk system has been
introduced and studied in this work. Interestingly, this hyperjerk system displays an
infinite number of equilibrium points because of the presence of a memristive device.
In addition, an adaptive controller is proposed to achieve synchronization of such
novel hyperjerk systems with two unknown parameters. In order to confirm the fea-
sibility of the mathematical hyperjerk model, its electronic circuit is designed and
implemented by using SPICE.
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1 Introduction

Chaotic systems have applied in several fields of science and engineering [2, 3, 7, 9,
46, 50, 66] after the vital discovery of Lorenz’s model for atmospheric convection
[31]. There are well-known chaotic systems such as Rossler system [42], Arneodo
system [1], Chen system [7], Lii system [32] etc. In addition, various new chaotic
systems have been introduced recently [16, 20, 34, 37, 40, 57, 63].

There is significant interest in investigating novel jerk chaotic systems [47]. From
the view point of mathematics, a jerk system is presented by an explicit third-order
ordinary differential equation which describes the time evolution of a single scale
variable, for example x. Therefore, a jerk system is given as

d’x 7 d*x dx 0
=77 7*
dr3 dr?’ dt

From the view point of mechanics, system (1) is called jerk system because when the
scalar x represents the position of a moving object at the time 7, the third derivative
indicates the jerk [44]. Interestingly, well-known chaotic systems, i.e. Lorenz and
Rossler systems, can be represented in jerk forms [21, 28].

Different examples of jerk systems were reported in the literature. A piecewise
exponential jerk system was investigated by Sun and Sprott [52]. Another simple
chaotic jerk system with exponential nonlinearity was presented in Munmuangsaen
etal. [35] while its elegant electronic circuital implementation, including six resistors,
three capacitors, four operational amplifiers and a silicon diode only, was introduced
in Sprott [48]. A six-term 3-D novel jerk chaotic system with two hyperbolic sinu-
soidal nonlinearities was proposed by Vaidyanathan et al. [59]. Multi-scroll chaotic
attractors could be generated in the jerk mode [30] or jerk circuits [33, 67] while
multi-scroll and hypercube attractors were also achieved from a general jerk circuit
using Josephson junctions [65].

By generalizing the definition of a jerk system [45], a hyperjerk system can be

considered as
d™x ¥ dr Dy dx @)
= T e X )
dr" din—1 dt

withn > 4 [47]. Hyperjerk form can described all periodically forced oscillators and
many of the coupled oscillators [29] while transformation of 4-D dynamical systems
to hyperjerk form was reported in Elhadj and Sprott [12]. Chaotic hyperjerk system
including fourth and fifth derivatives was introduced [8]. In addition, Chlouver-
akis and Sprott found hyperchaotic hyperjerk flows. More recently, Sundarapandian
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proposed a 4-D novel hyperchaotic hyperjerk system by adding a quadratic nonlin-
earity to the Chlouverakis—Sprott hyperjerk system [60].

It is easy to see that reported jerk/hyperjerk systems have a finite number of equi-
librium points. It is very interesting to ask naturally whether there exists a chaotic
jerk/hyperjerk system without equilibria or with an unlimited equilibrium set. Some
authors have recently answered this attractive question. Wang and Chen [64] con-
structed a jerk system with no equilibrium point, but still generated a chaotic attractor.
A chaotic memory system with infinitely many equilibria was designed by using the
concept of memory element [4]. Studying such jerk/hyperjerk systems with special
features is still an open research direction.

In this chapter, our work has concentrated on a hyperjerk system based on a
memristive device which can exhibit chaotic attractors. Moreover, such hyperjerk
system has an infinite number of equilibrium points. This research work is orga-
nized as follows. Section?2 gives a brief introduction to the memristive device. The
memristive hyperjerk system is presented in Sect.3 while its qualitative properties
are analyzed in Sect.4. In Sect. 5, we describe the adaptive synchronization design
for achieving global chaos synchronization of the identical novel hyperjerk systems
with two unknown parameters. Section 6 shows the circuital implementation of our
memristive hyperjerk system. Finally, conclusions are drawn in the last section.

2 Model of Memristive Device

Memristor was proposed by L.O. Chua as the fourth basic circuit element beside the
three conventional ones (the resistor, the inductor and the capacitor) [10]. Memris-
tor presents the relationship between two fundamental circuit variables, the charge
(g) and the flux (p). Hence, there are two kinds of memristor: charge-controlled
memristor and flux-controlled memristor [10, 54]. A charge-controlled memristor is
described by

Vy = M(q) iM, (3)

where vy, is the voltage across the memristor and i,, is the current through the
memristor. Here the memristance (M) is defined by

dy(q)
M@ =L, (4)
q
while the flux-controlled memristor is given by
iv=W(p) oy, (5)
where W () is the memductance, which is defined by
dq (¥)
W) = L (6)
2
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Moreover, by generalizing the original definition of a memristor [11, 54], a memris-
tive system is given as:
x=F(x,u,t)

y=G (x,u,t)u, 0
where u, y, and x denote the input, output and state of the memristive system,
respectively. The function F is a continuously differentiable, n-dimensional vector
field and G is a continuous scalar function.

Based on the definition of memristive system [4, 11, 38, 54], a memristive device
is introduced in this section and used in our whole chapter. The memristive device
is described by the following form:

)'61 = X2
[y = (I —x)x. ®

Here x5, y, and x| are the input, output and state of the memristive device, respectively.
An external bipolar periodic signal is applied across terminals of memristive
device (8) to investigate its fingerprint [51, 54, 55]. The external sinusoidal stimulus

is given by
Xy = Xpsin 27 ft), 9)

where X is the amplitude and f is the frequency. From the first equation of (8), the
state variable of the memristive device is obtained as

t t

x1 (1) = /xz (1) dT = x; (0)+/X2sin(27rf7')d7

—00 0

0+ 2 2 10
_xl()+ﬁ( —cos (27 f1)), (10)

with x| (0) is the initial condition of the internal state in the memristive device. Thus,
the initial condition of the internal state variable is given by

0

x1 (0) = /xg (r)dr. (11

—00

Substituting (9) and (10) into (8), it is easy to derive the output of the memristive
device

y(t) = [1 —x1 (0) — ;—; (1 —cos (27rft))] X, sin 27 ft)

2

= (1 —x1 (0) — ;—;) X, sin Q7 ft) + 4;(} sin(@rfr). (12
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Fig. 1 Hysteresis loops of 1.5

the proposed memristive 7T :: B 8;

device (8) driven by a 1y S - g
sinusoidal stimulus (9) when /

changing the frequency f

y(®)

From Eq. (12), it is easily seen that the output y depends on the frequency of the
applied input stimulus. Hysteresis loop of the memristive device (8) when driven
by a periodic signal (9) with different frequencies are shown in Fig. 1. Exhibited
“pinched hysteresis loop” in the input—output plane indicates the vital fingerprint of
memristive device (8).

3 A 4-D Novel Memristive Hyperjerk System

In this chapter, a novel 4-D memristive system is proposed by using the memristive
device (8) and the reported approach in Bao et al. [4]. The novel memristive system
is given in system form as

).Cl = X3

).Cz = X3 (13)
X3 = x4

X4 = —X3 —axq — bxzxg — y,

where a, b are positive parameters and y = (1 — x;) x; is the output of memristive
device (8).
The novel memristive system (13) can be rewritten by

d*x, Pxy d*x; dx (14)
— = _7 _7 _7 x 9
dr* ded’ dr2’ dr !
where
d? 43 d*x, d? d
L P N o Bl RS B i (15)

dt? de3 dt? di3 dt



44 V.-T. Pham et al.

Therefore, memristive system (13) is called a hyperjerk system because it involves
time derivatives of a jerk function [45, 47]. In this chapter, the memristive system
(13) is chaotic when the parameters a, and b take the values

a=0.5, b=04. (16)

For the selected parameter values in (16), the Lyapunov exponents of the novel
memristive system (13) are obtained as

L, =0.0730, L, =0.0018, L3 =0, L4 = —0.5755. 17)

For numerical simulations, we take the initial conditions of the novel memristive
system (13) as x;(0) = 0.06, x,(0) = 107%, x3(0) = 0, and x4(0) = 0. Here the
initial condition of the input of the memristive device x, (0) should be tiny to guarantee
an appropriate value of the internal state variable of the memristive device. Figures 2,
3 and 4 illustrate the 2-D projections and 3-D projections of the new memristive
system (13).

Fig. 2 2-D projections of
the novel chaotic hyperjerk 2 2
system (13) in «
0
(x1, x2)-plane, < 0 z ol
(1, x3)-plane, ) )
(x2, x3)-plane, and p 5 p p 5 5
(x1, x4)-plane X, X,
2
<> 0
-2

Fig. 3 Strange attractor of
the novel chaotic hyperjerk
system (13) in

(x1, x2, x3)-space
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Fig. 4 Strange attractor of
the novel chaotic hyperjerk
system (13) in

(x1, X2, X4)-space

4 Analysis of the 4-D Novel Memristive Hyperjerk System

4.1 Equilibrium Points

The equilibrium points of the 4-D novel memristive hyperjerk system (13) are
obtained by solving the equations

Si(x1, x2, X3, x4) = X2 =0
Ja(x1, x2, X3, X4) = X3 = a8)
Sa(x1, x2, X3, X4) = x4 -0
fa(xi, %2, x3,X4) = —x3 —axy —bxs3xy —y =0

Thus, the equilibrium points of the system (13) are characterized by the equations
y=0—xDx2=0, x=0, x3=0, x4=0 (19)

Solving the system (19), we get the equilibrium points of the hyperjerk system (13) as

E, = (20)

S o o0

where c is a real constant. Interestingly, the novel hyperjerk system (13) displays
an infinite number of equilibrium points because of the presence of a memristive
device (8). According to a new classification of chaotic dynamics [24-27], there are
two kinds of attractors: self-excited attractors and hidden attractors. A self-excited
attractor has a basin of attraction that is excited from unstable equilibria. In contrast,
a hidden attractor cannot be discovered by using a numerical approach where a
trajectory started from a point on the unstable manifold in the neighbourhood of an
unstable equilibrium [15, 22, 23]. Therefore, hyperjerk system (13) can be considered
as a chaotic memristive system with hidden attractor.
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In order to discover the stability type of the equilibrium points E, the Jacobian
matrix of the novel memristive hyperjerk system (13) is calculated at any point x as

0 1 0 0
o O
xox1—1—1—bx4y —a — bxj
It is noting that
01 0 O
nEuea=lo 0 00 22)
Oc—1-1-05
which has the characteristic equation is
AN 405N +A+1—¢)=0. (23)

When ¢ = 0.06 the characteristic Eq.(23) has a zero eigenvalue and three nonzero
eigenvalues

A =0, X\=-0.7749, X34 =0.1375=£1.0928i (24)

This shows that the equilibrium point E. is an unstable saddle-focus point.

4.2 Lyapunov Exponents and Kaplan—Yorke Dimension

For the parameter values a = 0.5, b = 0.4 and ¢ = 0.06, the Lyapunov exponents
of the novel memristive hyperjerk system (13) are obtained using MATLAB as

Ly =0.0730, L, =0.0018, L3 =0 and L4 = —0.5755 (25)

There is one positive Lyapunov exponents in the LE spectrum (25), thus the novel
memristive hyperjerk system (13) exhibits chaotic behavior.

In addition, since L; + L, + L3 + L4 = —0.5007 < 0, it indicates that the novel
memristive system (13) is dissipative.

The Kaplan—Yorke fractional dimension, that presents the complexity of attractor
[46, 50], is defined by

1 J
Dgy=j+ > L (26)
’L./"H} i=1
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J Jjt1
where j is the largest interger satisfying > L; > 0 and > L; < 0. Therefore, the
i=1 i=1
Kaplan—Yorke dimension of the novel memristive hyperjerk system (13) is calcu-
lated as
Ly+ L+ L;

Dgy =3+ 12772 313, 27)
[L4]

which is fractional.

S Adaptive Synchronization for the Hyperjerk Memristive
System

One of the most important characteristics relating to chaotic systems and their appli-
cations is the possibility of synchronization of two chaotic ones [5, 13, 17, 36].
A wide range of research activities based on synchronization of nonlinear systems
has been studied [6, 14, 18, 39, 49, 58]. For example, various synchronization phe-
nomena in bidirectionally coupled double scroll circuits were reported in Volos et
al. [61] or image encryption process based on chaotic synchronization phenomena
was presented in [62]. Different synchronization schemes have proposed such as
anti-synchronization [56], adaptive sycnchronization [59], or hybrid chaos synchro-
nization [18], etc. Here we consider the adaptive synchronization of identical 4-D
memristiive hyperjerk systems with two unknown parameters.

The master system is considered as the 4-D novel memristive hyperjerk system
given by

)'61 = X2

nEs (28)
)273 = X4

X4 = —x3 —axy — bxzxs — xp + x1x2

where x1, x2, X3, x4 are the states of the system, and a, b are unknown constant
parameters.

The slave system is considered as the 4-D novel memristive hyperjerk system
given by

Vi =
o

Ya=—y3—ays—by;ys—y2+y1y2+tu

where yi, y2, y3, y4 are the states of the system, and u is a backstepping control to
be determined using estimates a(r) and b(r) for a and b, respectively.
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The synchronization errors between the states of the master system (28) and the
slave system (29) are defined as

€ = y1 — X1
€ =Yy — X2

30
€3 =Yy3 — X3 30)
€4 = y4— X4
Thus, the error dynamics is easily obtained as follows
é‘] =€
éz = €3
b = ey (31)
e4 = —e3 —aeq — ey — b(y3ys — x3x4) + y1y2 — X1X2 + 1t
The parameter estimation errors are defined as:
ea(t) =a —a()
N 32
{eb(r) —b— b 32
Differentiating (32) with respect to ¢, we obtain the following equations:
é,(t) = —a(t
‘ Q) ;( ) (33)
ep(t) = —b(1)

Next, the main result of this section will be presented and proved.

Theorem 5.1 The identical 4-D novel memristive hyperjerk systems (28) and (29)
with unknown parameters a and b are globally and exponentially synchronized by
the adaptive control law

u(t) = —5e1 — 9e; — 8es — [4 — a(t)les + b(t) (y3ys — x3%2) 34
— (Y2 — x1x2) — kz4
where k > 0 is a gain constant,
74 = 3e; + S5e; + 3e3 + ey, 35)
and the update law for the parameter estimates a(t), l;(t), ¢(t) is given by
) = —
61( ) €424 (36)
b(t) = — (y3y4 — X3x4) 24

Proof We prove this result via backstepping control method and Lyapunov stability
theory.
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First, we define a quadratic Lyapunov function

Vi(zy) = %Zf
where
i1 =€
Differentiating V; along the error dynamics (31), we get
Vi =221 =ejea = —z7 + 21(e1 + €2)

Here, we define
n=e te

Using (40), we can simplify the Eq. (39) as
Vl = —z% +z122

Secondly, we define a quadratic Lyapunov function

(cf +23)

N =

1
Va(z1,22) = Vi(z) + 525 =
Differentiating V, along the error dynamics (31), we get
Vo = —z1 — 23 + 22(2e) + 2e5 + €3)

Now, we define
73 = 2e1 + 2y + e3

Using (44), we can simplify the Eq. (43) as
Vo= —22 — 23+ 2023

Thirdly, we define a quadratic Lyapunov function

1
d=2(@+4+3)

N =

Va(z1, 22, x3) = Va(z1, 22) +
Differentiating V3 along the error dynamics (31), we get

Vs = —z] — 23 — 23 + 233e1 + 5ex + 3es + es)

49

(37

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(40)

(47)
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Now, we define
24 = 3e1 + 5ex + 3ez + ey

Using (48), we can simplify the Eq. (47) as
Vi=—22— 25— 22+ 2324

Finally, we define a quadratic Lyapunov function

1 1 1
V(z1, 22, 23, 24, €q, €p) = V3(21, 22, 23) + EZ?; + 562 + 5622,
which is a positive definite function on R®.
Differentiating V along the error dynamics (31), we get
V= —21 — 25— 23— 25+ 24(za + 23 + 24) — e,d — epb

Equation (51) can be written compactly as

; 2 2 2 2 X A
V=—Z1—12—23—Z4+Z4S—eaa—ebb

where
S=z4+z23+2a=z4+23+3é +56+ 363+ ¢é4
A simple calculation gives
S =5e; +9e; + 8e3 + (4 —a)es — b (y3ys — x3x4) + (y1y2 — x1x2) +u
Substituting the adaptive control law (34) into (54), we obtain
S=—la=am]es— [b=b®)] Grys = xsx9) — ke

Using the definitions (33), we can simplify (55) as

S = —eqeq —ep (y3y4 — X3X4) — kz4
Substituting the value of S from (56) into (52), we obtain

V= —z% - z% — z% —(1+ k)zﬁ + e (—e4z4 — é)

+ep [— (V3y4 — X3X4) 24 — l;]

(48)

(49)

(50)

(51

(52)

(53)

(54)

(55)

(56)

(57)
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Substituting the update law (36) into (57), we get
V=--2Z-2-0+k2z, (58)

which is a negative semi-definite function on R°. Therefore, according to the Lya-
punov stability theory [19, 43] we obtain e; (1) — 0, e (#) — 0, e3(t) — O,
eq (1) = 0,¢, (1) = 0, e, () = 0 exponentially when t — 0 that is, synchroniza-
tion between master and slave system.

In order to confirm and demonstrate the effectiveness of the proposed synchro-
nization scheme, we consider a numerical example. In the numerical simulations, the
fourth-order Runge—Kutta method is used to solve the systems. The parameters of
the memristive hyperjerk systems are selected as a = 0.5, b = 0.4 and the positive
gain constant as k = 6. The initial conditions of the master system (28) and the
slave system (29) have been chosen as x; (0) = 0.06, x, (0) = 107, x3 (0) = 0,
x4 (0) = 0 and y; (0) = 0.02, y, (0) = 107, y3 (0) = 0, y4 (0) = 0, respectively.
We assumed that the initial values of the parameter estimates are a(0) = 0.46 and
b(0) = 0.01.

When adaptive control law (34) and the update law for the parameter estimates
(36) are applied, the master (28) and slave system (29) are synchronized completely

Fig. 5 Synchronization of 0.6
the states x(z) and y;(7)

20 40 60 80 100
Time

Fig. 6 Synchronization of 0.6
the states x2(#) and y» ()

0 20 40 60 80 100
Time
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Fig.7 Synchronization of
the states x3(7) and y3(t)

Fig. 8 Synchronization of
the states x4(7) and y4(t)

Fig. 9 Time series of the
synchronization errors ej, 2,
e3, and eq

X3’y3
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-0.04
0.04,
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as shown in Figs. 5, 6, 7 and 8. In such figures, time series of master states are denoted
as blue solid lines while corresponding slave states are plotted as red dash-dot lines.
In addition, the time-history of the complete synchronization errors ey, €3, 3, and ey
are reported in Fig. 9. The obtained results illustrate the correctness of used approach.
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6 SPICE Implementation of the Memristive Hyperjerk
System

In this section, an electronic circuit is proposed to implement memristive hyperjerk
system (13). The circuitin Fig. 10 has been designed by applying the general approach
with operational amplifiers [41, 53]. Thus, the variables x, x», x3, x4 of memristive
system (13) are the voltages across the capacitor C1, C2, C3, and C4, respectively.
As shown in Fig. 10 the memristive system is realized by common electronic com-
ponents. Indeed the sub-circuit of memristive device in Fig. 10 only emulates the
memristive device because there are not any commercial off-the-shelf memristive
devices in the market yet. By applying Kirchhoff’s circuit laws, the corresponding
circuital equations of designed circuit can be written as:

dve, _ _1_

r = ®G Ve

Ve, 1

# ~RGa (59)
dve; 1

dr R3C3 vC4

dvey 1L Ly L

i T RG UG T RG VG T R VGVC T R, Y

Fig. 10 Schematic of the circuit which emulating novel hyperjerk system (8) with the presence of
the memristive device
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Fig. 11 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(ve,, ve,) phase plane

Fig. 12 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vc,» vcy) phase plane

V.-T. Pham et al.
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where v¢,, ve,, Uc,, and ve, are the voltages across the capacitors Cy, Cz, C3, and
C4, respectively. Here the memristive device is described by the following circuital

equations:

dve, v
dr T RiC (60)
Y = V¢, — V¢, Vc,-
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Fig. 13 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(ve,, vey) phase plane

Fig. 14 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(v, , ve,) phase plane
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The power supplies of all active devices are £ 15 V¢ and the operational amplifiers
TLO84 are used in this work. The values of components are selected as follows:
Ry =R, = R; = Ry = Ry = R =100k, Rs = 200kQ2, Rs = 250k€2, and

C1=C2=C3=C4=1nF.

The designed circuit is implemented in the electronic simulation package Cadence
OrCAD and the obtained results are reported in Figs. 11, 12, 13 and 14. Theoretical
attractors (see Fig.2) are similar with the circuital ones (see Figs. 11, 12, 13 and 14).



56 V.-T. Pham et al.

7 Conclusion

A 4-D hyperjerk system is introduced in this work. The hyperjerk system is con-
structed by using a memristive device which creates the special feature of such
hyperjerk system, possessing an infinite number of equilibrium points. This special
feature is rarely observed in other chaotic hyperjerk systems. Dynamical behaviors
of the memristive hyperjerk system are investigated through equilibrium points, pro-
jections of chaotic attractors, Lyapunov exponents and Kaplan—Yorke dimension. In
addition, the capacity of synchronization scheme of memristive hyperjerk systems
is shown via backstepping control approach. To verify the feasibility of such hyper-
jerk system, we present its circuital implementation. Because the designed circuit
modeling the hyperjerk system can generate chaos, it can applied into potential appli-
cations in various fields of chaos-based engineering, such as secure communications,
random bit generation, liquid mixing or path planning for mobile robot, etc.
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A Novel Hyperjerk System with Two
Quadratic Nonlinearities and Its Adaptive
Control

Sundarapandian Vaidyanathan

Abstract This work announces a novel 4-D hyperjerk system with two cubic non-
linearities. The proposed chaotic system is an eight-term polynomial system with
two cubic nonlinearities. The phase portraits of the novel hyperjerk system are dis-
played and the qualitative properties of the system are discussed. The novel hyperjerk
system has a unique equilibrium, which is unstable. The Lyapunov exponents of the
novel hyperjerk system are obtained as L; = 0.0622, L, = 0, L3 = —0.4639 and
L4 = —0.5945, which shows that the novel hyperjerk system is chaotic. The Kaplan—
Yorke dimension of the novel hyperjerk system is obtained as Dgy = 2.1341. Next,
an adaptive backstepping controller is designed to globally stabilize the novel hyper-
jerk system with unknown parameters. Moreover, an adaptive backstepping con-
troller is also designed to achieve global chaos synchronization of the identical novel
hyperjerk systems with unknown parameters. The main control results in this work
are established using Lyapunov stability theory. MATLAB simulations have been
shown to illustrate the phase portraits of the novel hyperjerk system and also the
adaptive backstepping control results.

Keywords Chaos + Chaotic systems - Backstepping control + Adaptive control -
Synchronization * Hyperjerk systems

1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [15], Rossler system [25], ACT system [2], Sprott systems [32], Chen system
[6], Lii system [16], Cai system [4], Tigan system [43], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [117], Zhu system [118], Li system [13], Wei-Yang system [115],
Sundarapandian systems [35, 40], Vaidyanathan systems [51, 52, 54-57, 60, 71,
72, 86, 89, 91, 100, 103, 105, 107, 109, 110], Pehlivan system [18], Sampath
system [26], etc.

Chaos theory has many applications in science and engineering such as chemical
systems [61, 65, 67, 69, 73, 77-79], biological systems [59, 62-64, 66, 68, 70,
74-76, 80-84], memristors [1, 19, 113], etc.

The study of control of a chaotic system investigates feedback control methods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Many methods have been designed for control and regulation of chaotic systems such
as active control [33, 34, 45], adaptive control [101, 108, 111], backstepping control
[14, 114], sliding mode control [48, 50], etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or more
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effect which causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [5, 17]. The active control method [11, 27, 28, 39, 44,
49, 92, 93, 96] is typically used when the system parameters are available for mea-
surement. Adaptive control method [29-31, 36-38, 47, 53, 85, 90, 94, 95, 102,
106] is typically used when some or all the system parameters are not available for
measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 116] and time-delay feedback control
method [7, 10] are also used for synchronization of chaotic systems. Backstepping
control method [20-24, 42, 97, 104, 112] is also used for the synchronization of
chaotic systems. Backstepping control is a recursive method for stabilizing the origin
of a control system in strict-feedback form [12]. In this research work, we apply
backstepping control method for the adaptive control and synchronization of the
novel hyperjerk system.

Sliding mode control method [41, 46, 58, 87, 88, 98, 99] is also a popular method
for the synchronization of chaotic systems.

In the recent decades, there is some good interest in finding novel chaotic and
hyperchaotic systems, which can be expressed by an explicit fourth order differential
equation describing the time evolution of the single scalar variable x given by
d*x . dx d*x d’x

( ) m

ar I\V e ar
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The differential equation (1) is called “hyperjerk system” because the fourth order
time derivative in mechanical systems is called hyperjerk [8].
By defining phase variables

dx d*x d*x
— s X3 = 7>, X4 = T3,
R T TS

2

X1 =X, X2 =

the hyperjerk differential equation (1) can be expressed as a 4-D system given by

)'61=)C2
).CQZX3
. 3
B3 = x4 3)

X4 = j(x1, X2, X3, X4)

In this research work, we announce a 4-D novel hyperjerk system and discuss
the qualitative properties of the novel hyperjerk system. We have designed adap-
tive backstepping controllers for stabilization and synchronization of the 4-D novel
hyperjerk system.

This work is organized as follows. Section 2 describes the dynamic equations and
phase portraits of the 4-D novel hyperjerk system. Section3 details the qualitative
properties of the novel hyperjerk system.

The Lyapunov exponents of the hyperjerk system are obtained as L; = 0.0622,
L, =0,L; = —0.4639 and L4y = —0.5945. The Kaplan—Yorke dimension of the
hyperjerk system is obtained as Dgy = 2.1341.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel hyperjerk system with unknown parameters. In Sect. 5, an adaptive backstep-
ping controller is designed to achieve global chaos synchronization of the identical
novel hyperjerk systems with unknown parameters. Section 6 contains a summary of
the main results derived in this work.

2 A 4-D Novel Hyperjerk System

In this section, we describe a 4-D novel hyperjerk system with two quadratic non-
linearities, which is modeled by the 4-D dynamics

)'Cl = X3
n=w @
X3 = X4

)&4:1—ax1—x§—x§—bx3—CX4

where x|, X, x3, x4 are the states and a, b, c are constant positive parameters.
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The system (4) is a nine-term polynomial system having two quadratic nonlin-
earities.
The equilibrium points of (4) are obtained by solving the system

x2=0, x3=0, x4 =0, l—axl—xg—xg—bx3—cx4:0 (®))

By solving the Eq. (5), we see that the system (4) has a unique equilibrium point
given by

1/a
E=| (©)
0
The system (4) exhibits a strange chaotic attractor for the parameter values
a=1, b=4, c=1 7
For numerical simulations, we take the initial conditions as
x1(0) = 0.5, x2(0) =0.4, x3(0) =0.3, x4(0) =0.9 (8)

Figures 1, 2, 3 and 4 show the 3-D projection of the novel hyperjerk system (4)
on the (x1, x2, x3), (x1, X2, X4), (X1, X3, x4) and (x, X3, x4) spaces, respectively.

-5 -30

Fig. 1 3-D projection of the novel hyperjerk system on the (x;, x, x3) space
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-5 g9 X

Fig. 2 3-D projection of the novel hyperjerk system on the (xy, x2, x4) space

-5 _30

Fig. 3 3-D projection of the novel hyperjerk system on the (x;, x3, x4) space

3 Analysis of the Novel Hyperjerk System

In this section, we give a dynamic analysis of the novel hyperjerk system (4).
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X
-5 -5 2

Fig. 4 3-D projection of the novel hyperjerk system on the (x2, x3, x4) space

3.1 Dissipativity
In vector notation, the novel hyperjerk system (4) can be expressed as

Si(x1, x2, x3, x4)

. _ | fa(x1, x2, X3, x4)

Xx=rf®= f3(xn, x2, X3, X4) ©
Sfalxt, x2, X3, X4)

where
J1(x1, x2, X3, X4) = X2
f(x1, x2, X3, X4) = X3
f3(x1, x2, X3, X4) = x4
fa(x1, x2, X3, x4) = 1 —ax; —x22 —x% — bx3z —cxy

(10)

Let £2 be any region in R* with a smooth boundary and also, 2(t) = @,(£2),
where @, is the flow of f. Furthermore, let V (¢) denote the hypervolume of £2(z).
By Liouville’s theorem, we know that

V() = / (V- f)dxi dx, dxs dxs (11)
Q@)
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The divergence of the novel hyperjerk system (9) is found as:

0 0 0 0
V.f=i+£+£+£:_c<0 (12)
3)61 8)62 3)(33 8X4

since c is a positive constant.
Inserting the value of V - f from (12) into (11), we get

V() = / (=1 dx; dxydxzdxs = —cV (1) (13)

2@
Integrating the first order linear differential equation (13), we get
V(t) = exp(—ct)V(0) (14)

From Eq. (14), it follows that V () — 0 exponentially as ¢t — oo. This shows that
the hyperjerk system (4) is dissipative. Hence, the system limit sets are ultimately
confined into a specific limit set of zero hypervolume, and the asymptotic motion of
the hyperjerk system (4) settles onto a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (7), i.e.
a=1, b=4, c=1 (15)

In Sect. 2, we showed that the novel hyperjerk system (4) has a unique equilibrium
point given by
1/a

E, =

1
0 0
0 0 (16)
0 0
To test the stability type of the equilibrium point £, we calculate the Jacobian
matrix of the novel hyperjerk system (4) at any point x:

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
TO=19 9 0 11Tl o o 0 1
—a —2xp —2x3—b —c -1 —2x, —2x3—4 -1
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We find that
0O 1 0 O
A 0 0 1 O
-1 0 -4 -1
The matrix J; has the eigenvalues
A1 = —0.5368 £+ 1.8785i, X34 = 0.0368 £ 0.5105i (19)

This shows that the equilibrium point E| is a saddle-focus, which is unstable.

3.3 Lyapunov Exponents and Kaplan—Yorke Dimension

We take the parameter values of the novel hyperjerk system (4) asa = 1, b = 4 and
¢ = 1. We take the initial state of the novel hyperjerk system (4) as given in (8).

Then the Lyapunov exponents of the novel hyperjerk system (4) are numerically
obtained using MATLAB as

Ly =0.0622, L, =0, L3 =—0.4639, L, = —0.5945 (20)

Thus, the maximal Lyapunov exponent (MLE) of the novel hyperjerk system (4)
is positive, which means that the system has a chaotic behavior.

Since Ly + Ly + L3 + Ly = —0.9962 < 0, it follows that the novel hyperjerk
system (4) is dissipative.

Also, the Kaplan—Yorke dimension of the hyperjerk system (4) is obtained as

L+ L
DKY=2+%=2.1341 1)
3

which is fractional.

4 Adaptive Control of the Novel Hyperjerk System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 4-D novel hyperjerk system with unknown
parameters.
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Thus, we consider the 4-D novel hyperjerk system given by

)'Cl = X2
)'Cz = X3 (22)
)&3 = X4

)'C4=1—ax1—x%—x§—bX3—cx4+u

where x1, x», X3, x4 are the states, a, b, ¢ are unknown constant parameters, and u is
a backstepping control law to be determined using estimates a(z), I;(t) and ¢(¢) for
a, b and c, respectively.

The parameter estimation errors are defined as:

eq(t) =a—a(r)
er(t) = b —b(t) (23)
ec(t) = c—c()

Differentiating (23) with respect to ¢, we obtain the following equations:

éa(t) = —a(n)
ép(t) = —1§(r) (24)
é.(t) = —¢(t)

Next, we shall state and prove the main result of this section.

Theorem 1 The 4-D novel hyperjerk system (22), with unknown parameters a, b
and c, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) = —1—[5 — a()] x; — 10x, — [9 _ é(r)] X3+ O+ a2 +x2—kzy  (25)
where k > 0 is a gain constant,

24 = 3x1 +5xp +3x3 + x4 (26)

and the update law for the parameter estimates a(t), l;(t), ¢(t) is given by

a(t) = —xi1z4
b(t) = —x3z4 @7)
Cc(t) = —x424

Proof We prove this result via Lyapunov stability theory [12].
First, we define a quadratic Lyapunov function

1 2
V](Z1) = Ezl (28)
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where
1 = X1 (29)

Differentiating V; along the dynamics (22), we get
Vl =7121 =x1x2=—z%+zl(x1+xQ) (30)

Now, we define
22 = X1+ X2 (3D

Using (31), we can simplify the Eq. (30) as
Vi=-22+z0n (32)

Secondly, we define a quadratic Lyapunov function

(z1 +23) (33)

N =

1
Vo(zi, 22) = Vi(z1) + 515 =

Differentiating V, along the dynamics (22), we get
Vo = =23 — 23 + 22(2x1 + 222 + x3) (34)

Now, we define
723 = 2x1 + 2x2 + x3 (35)

Using (35), we can simplify the Eq. (34) as
Vo= —22 — 23+ 2023 (36)

Thirdly, we define a quadratic Lyapunov function

V3(z1, 22, x3) = Vz(z1,12)+%z§ = % (z%+z§+z§) (37)
Differentiating V3 along the dynamics (22), we get
Vs =—z] — 23 — 23 + 23(3x1 + 5x3 4 3x3 + x4) (38)
Now, we define
24 = 3x1 +5x0 4+ 3x3 + x4 39)

Using (39), we can simplify the Eq. (38) as

Vo= —22 — 25— 25+ 2324 (40)



A Novel Hyperjerk System with Two Quadratic Nonlinearities ... 69

Finally, we define a quadratic Lyapunov function

L, 1, 1, 1,
V(z1, 22, 23, 24, €as €p, €c) = V3(21, 22, 23) + 5% + 5¢a + 56 + ¢ (41

which is a positive definite function on R”.
Differentiating V along the dynamics (22), we get

V=22 —2 -2 =2tz + ) —ed —epyh— el (42)
Equation (42) can be written compactly as
V=2t 22— =2+ 2uS —ed —eph —e.é (43)

where
S=z4+23+24 =24+ 23+ 3% + 5% + 3%3 + X4 44)

A simple calculation gives
S:1—|—(5—a)x1+10x2+(9—b)x3—cx4—x§—x32+u 45)
Substituting the adaptive control law (25) into (45), we obtain
S=—[a—am]x - [b — 13(;)] X3 — [c = &6)] x4 — kzg (46)
Using the definitions (24), we can simplify (46) as
S = —eux1 —epxz — e.x4 — kza (G
Substituting the value of S from (47) into (43), we obtain

V= —Z% —Z% —Z§ —(1 +k)zﬁ + ey [—xlz4 —é]

+ ep [—X3Z4 — l;] + e [—x4z4 — é] (48)
Substituting the update law (27) into (48), we get
V=-2t-4 -4 - (1+hz, (49)
which is a negative semi-definite function on R”.

From (49), it follows that the vector z(t) = (z1(¢), z2(t), z3(t), z4(¢)) and the
parameter estimation error (e, (1), e, (t), e.(t)) are globally bounded, i.e.

[21(1) 22(t) 23(1) 24(0) ea(r) ep(1) ec(t) ] € Lo (50)
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Also, it follows from (49) that
V<-2-8-2-2=—|z) (51)

That is, )
|z|* < -V (52)

Integrating the inequality (52) from O to ¢, we get

t

/ l2(v)* dt < V(0) — V(1) (33)

0

From (53), it follows that z(¢) € L,.

From Eq. (22), it can be deduced that z(¢) € L.

Thus, using Barbalat’s lemma [12], we conclude that z(#) — 0 exponentially as
t — oo for all initial conditions z(0) € R*.

Hence, it is immediate that x(#) — 0 exponentially as ¢t — oo for all initial
conditions x(0) € R*.

This completes the proof. O

For the numerical simulations, the classical fourth-order Runge—Kutta method
with step size 4 = 107% is used to solve the system of differential equations (22)
and (27), when the adaptive control law (25) and the parameter update law (27) are
applied.

The parameter values of the novel hyperjerk system (22) are taken as in the chaotic
case (7), i.e.

a=1, b=4, c=1 54)

We take the positive gain constant as
k=38 (55)
As initial conditions of the hyperjerk system (22), we take
x1(0) =-23, x(0)=34, x30)=4.7, x40)=-19 (56)
Also, as initial conditions of the parameter estimates a(¢) and B(I), we take
a(0) =52, b0)=14, &0) =385 (57)
In Fig. 5, the exponential convergence of the controlled states x; (¢), x5 (¢), x3(¢),

x4(t) is depicted, when the adaptive control law (25) and the parameter update law
(27) are implemented.
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Fig. 5 Time-history of the 20

controlled states - i1

X1, X2, X3, X4 10l _xi_
— X4

Time (sec)

5 Adaptive Synchronization of the Identical Novel
Hyperjerk Systems

In this section, we use backstepping control to derive an adaptive control law for
globally and exponentially synchronizing the identical novel hyperjerk systems with
unknown parameters.

As the master system, we consider the 4-D novel hyperjerk system given by

).Cl = X3
).Cz = X3 (58)
X3 = x4

)'C4:1—ax1—x§—x32—bx3—cm

where x1, X2, X3, x4 are the states of the system, and a, b, ¢ are unknown constant
parameters.
As the slave system, we consider the 4-D novel hyperjerk system given by

Y=
Y2 =03 (59)
Y3 = Y4

ya=1—ay —y; —y; —bys —cys+u

where yi, y2, ¥3, y4 are the states of the system, and u is a backstepping control to
be determined using estimates a(z), l;(t) and ¢(t) for a, b and c, respectively.

We define the synchronization errors between the states of the master system (58)
and the slave system (59) as

e = yi — Xi, (l - 15 27 374) (60)
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Then the error dynamics is easily obtained as

é1=€2

€r=¢ ©61)
é3:€4

ey = —aey —be3—ce4—y§+x§—y32+x32+u

The parameter estimation errors are defined as:

e, (t) =a—a()
er(t) = b —b(@) (62)
e.(t) =c—¢C(t)

Differentiating (62) with respect to ¢, we obtain the following equations:

éa(1) = —a(1)
ép(1) = —b(t) (63)
é.(t) = —C(t)

Next, we shall state and prove the main result of this section.

Theorem 2 The identical 4-D hyperjerk systems (58) and (59) with unknown para-
meters a, b and c are globally and exponentially synchronized by the adaptive control
law

u=—[5-amn]er — 10e, — [9 - é(t)] es—[4— 2] es
+y3 — x5+ 3 — x5 —kzg (64)

where k > 0 is a gain constant,
74 = 3e1 + Sey + 3e3 + ey, (65)

and the update law for the parameter estimates a(t), l;(t), C(t) is given by

6'?(1) = —e1z4
l;(l‘) = —e324 (66)
c(t) = —eqz4

Proof We prove this result via backstepping control method and Lyapunov stability
theory.
First, we define a quadratic Lyapunov function

1,
Viz1) = 74 (67)
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where
1 =¢€

Differentiating V; along the error dynamics (61), we get
Vi =z141 =eies = =21 + 21(e1 + €2)

Now, we define
n=e te

Using (70), we can simplify the Eq. (69) as
Vl = —z% + 2122

Secondly, we define a quadratic Lyapunov function

(z1 +23)

N =

2
i =

N =

Va(z1,22) = Vi(z) +
Differentiating V, along the error dynamics (61), we get
Vo = =z} — 23 + 22(2e1 + 22 + ¢3)

Now, we define
73 =2e; + 2er + €3

Using (74), we can simplify the Eq. (73) as
Vo= -2 — 25+ 2023
Thirdly, we define a quadratic Lyapunov function

1
V3(z1, 22, x3) = Va(z1, 22) + =3

| =

Differentiating V3 along the error dynamics (61), we get
Vi = —z1 — 25 — 25+ 233e1 + 5z + 3e3 + e4)

Now, we define
24 =3e1 +5e; + 3ez + ey

Using (78), we can simplify the Eq. (77) as

y 2 2 2
Vo=—21—2, — 25 + 2324

z% = (z% +z§ + z%)

73

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)
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Finally, we define a quadratic Lyapunov function

L, 1, 1, 1,
V(z1, 22, 23, 24, €as €p, €c) = V3(21, 22, 23) + 5% + e+ 3 + ¢

Differentiating V along the error dynamics (61), we get
V= —zf —z% —z% —zi+Z4(Z4+Z3+z'4) —eq,a —epb — e.C
Equation (81) can be written compactly as
V= —71 — 25 — 23 — 25 + 248 — e,a — epb — e.C

where
S=z4+23+24 =24+ 23+ 3¢ +56,+ 3¢5 + ¢4

A simple calculation gives
S=(5—a)e; +10e; + (9 —bes + (4 — e — Y3 +x3 — y3 +x3 +u
Substituting the adaptive control law (64) into (84), we obtain
S=-la-aw]e ~[b—bw]es—[e—éw)]es — ks
Using the definitions (63), we can simplify (85) as
S = —ee1 —epes —eceq —kzy

Substituting the value of S from (86) into (82), we obtain

V=-22-2-2 -1+ +e, [—ela —6'1]

+ep [—8324 — b:| + e. [—6424 — é]
Substituting the update law (66) into (87), we get
V=-2-22-2—-(1+bz,

which is a negative semi-definite function on R”.

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

From (88), it follows that the vector z(t) = (z1(t), z2(t), z3(t), z4(¢)) and the

parameter estimation error (e, (t), e, (t), e.(t)) are globally bounded, i.e.

[21(1) 22(1) 23(2) 24(2) €a(t) ep(1) ec() | € Lo

(89)
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Also, it follows from (88) that
y 2 2 2 2 2
V<—-z1—2—-2—2=—|zl (90)

That is, )
lz|* < -V 1)

Integrating the inequality (91) from O to ¢, we get

t

/ l2(v)* dt < V(0) — V(1) 92)

0

From (92), it follows that z(¢) € L,.

From Eq. (61), it can be deduced that z(¢) € L.

Thus, using Barbalat’s lemma [12], we conclude that z(#) — 0 exponentially as
t — oo for all initial conditions z(0) € R*.

Hence, it is immediate that e(r) — 0 exponentially as + — oo for all initial
conditions e(0) € R*. This completes the proof. (I

For the numerical simulations, the classical fourth-order Runge—Kutta method
with step size 4 = 107% is used to solve the system of differential equations (58)
and (59).

The parameter values of the novel hyperjerk system are taken as in the chaotic
case, viz.a = 1, b = 4 and ¢ = 1. The gain constant is taken as k = 8.

Also, as initial conditions of the master system (58), we take

x1(0) = 1.8, x2(0) = —0.5, x3(0) = =2.7, x4(0) =4.9 93)
Fig. 6 Synchronization of 6 ‘
the states x| and yj — X
-y,
4 d

0 1 2 3 4 5 6 7 8 9 10
Time (sec)
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Fig.7 Synchronization of 4 :
the states x and y; KN — X,
N -- Y,
3p 1
A3
2
A}
2 [ ‘I 7

_2 ;
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
Fig. 8 Synchronization of 6 ‘
the states x3 and y3 5 — X
- Y5 ]
4 ]

T - =%==T

0 1 2 3 4 5 6 7 8 9 10
Time (sec)

As initial conditions of the slave system (59), we take
y1(0) = =47, »(0) =2.6, y3(0) =5.1, ys(0) =-3.2 94)

Furthermore, as initial conditions of the parameter estimates a(z), l;(t) and ¢(7),
we take .
a(0) =23, b(0) =68, ¢c(0)=7.6 95)

In Figs. 6, 7, 8 and 9, the complete synchronization of the identical 4-D hyperjerk
systems (58) and (59) is shown, when the adaptive control law and the parameter
update law are implemented.

Also, in Fig. 10, the time-history of the complete synchronization errors is shown.
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Fig. 9 Synchronization of 10
the states x4 and y4 4

<
= 0
< o |
1
1
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Fig. 10 Time-history of the 10
synchronization errors - ;4
L

€1, ez, e3,64
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6 Conclusions

This work announced a novel 4-D hyperjerk system with two cubic nonlinearities.
The proposed chaotic system is an eight-term polynomial system with two cubic
nonlinearities. The phase portraits of the novel hyperjerk system are displayed and
the qualitative properties of the system are discussed. The novel hyperjerk system
has a unique equilibrium, which is unstable. The Lyapunov exponents of the novel
hyperjerk system have been obtained as L; = 0.0622, L, = 0, L3z = —0.4639 and
L4 = —0.5945, while the Kaplan—Yorke dimension of the novel hyperjerk system
has been found as Dgy = 2.1341. Next, an adaptive backstepping controller has been
designed to globally stabilize the novel hyperjerk system with unknown parameters.
Moreover, an adaptive backstepping controller has also been designed to achieve
global chaos synchronization of the identical novel hyperjerk systems with unknown
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parameters. The backstepping control method is a recursive procedure that links the
choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations were shown
to illustrate the phase portraits of the novel hyperjerk system and also the adaptive
backstepping control results.
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A Novel Conservative Jerk Chaotic
System With Two Cubic Nonlinearities
and Its Adaptive Backstepping Control

Sundarapandian Vaidyanathan and Christos K. Volos

Abstract First, this work announces a six-term novel 3-D conservative jerk chaotic
system with two cubic nonlinearities. The conservative chaotic systems are character-
ized by the property that they are volume conserving. The phase portraits of the novel
conservative jerk chaotic system are displayed and the qualitative properties of the
novel system are discussed. The novel jerk chaotic system has three unstable equilib-
rium points. The Lyapunov exponents of the novel jerk chaotic system are obtained
as L1 = 0.01562, L, = 0and L3 = —0.01562. The Kaplan—Yorke dimension of the
novel jerk chaotic system is obtained as Dgy = 3. Next, an adaptive backstepping
controller is designed to globally stabilize the novel conservative chaotic system
with unknown parameters. Moreover, an adaptive backstepping controller is also
designed to achieve global chaos synchronization of the identical conservative jerk
chaotic systems with unknown parameters. The backstepping control method is a
recursive procedure that links the choice of a Lyapunov function with the design of
a controller and guarantees global asymptotic stability of strict feedback systems.
MATLAB simulations have been shown to illustrate the phase portraits of the novel
conservative jerk chaotic system and also the adaptive backstepping control results.
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1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to refer
to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz sys-
tem [19], Rossler system [32], ACT system [2], Sprott systems [40], Chen system [7],
Lii system [20], Cai system [5], Tigan system [53], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [134], Zhu system [135], Li system [16], Wei-Yang system [129],
Sundarapandian systems [45, 50], Vaidyanathan systems [63, 64, 66-69, 72, 83,
84, 98, 101, 103, 112, 115, 117, 119, 121, 122], Pehlivan system [23], Sampath
system [33], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [73, 77, 79, 81, 85, 89-91], biological systems [71, 74-76, 78,
80, 82, 8688, 92-96], memristors [1, 24, 127], lasers [4], oscillations [54], neural
networks [11, 42], robotics [12, 126], electrical circuits [21, 125], cryptosystems
[31, 55], secure communications [131, 132], etc.

The study of control of a chaotic system investigates feedback control methods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Many methods have been designed for control and regulation of chaotic systems such
as active control [43, 44, 57], adaptive control [113, 120, 123], backstepping control
[17, 128], sliding mode control [60, 62], etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or more
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effect which causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization problem is to apply the output of the
master system to control the slave system so that the output of the slave system tracks
the output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 22]. The active control method [14, 34, 35, 49, 56,
61, 104, 105, 108] is typically used when the system parameters are available for
measurement. Adaptive control method [36-38, 46-48, 59, 65, 97, 102, 106, 107,



A Novel Conservative Jerk Chaotic System With Two Cubic Nonlinearities ... 87

114, 118] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 18, 130, 133] and time-delay feed-
back control method [8, 13, 39] are also used for synchronization of chaotic systems.
Backstepping control method [26-30, 52, 109, 116, 124] is also used for the syn-
chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [15]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [51, 58, 70, 99, 100, 110, 111], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.

In the chaos literature, there is an active interest in the discovery of conservative
chaotic systems [41], which have the special property that the volume of the flow is
conserved. If the sum of the Lyapunov exponents of a chaotic system is zero, then
the system is conservative. On the other hand, if the sum of the Lyapunov exponents
of a chaotic system is negative, then the system is dissipative.

Classical examples of conservative chaotic systems are Nosé-Hoover system [25],
Hénon-Heiles system [10], etc. Classical example of dissipative chaotic systems are
Lorenz system [19], Rossler system [32], Chen system [7], etc.

In the chaos literature, numerous dissipative chaotic systems have been discov-
ered, but only a very few conservative chaotic systems have been found.

In this research work, we announce a six-term novel 3-D conservative jerk chaotic
system with two cubic nonlinearities. We have also designed adaptive backstepping
controllers for stabilization and synchronization of the six-term novel 3-D conserv-
ative jerk chaotic system.

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the novel 3-D conservative jerk chaotic system. Section3
details the qualitative properties of the novel conservative jerk chaotic system. The
novel jerk chaotic system has three unstable equilibrium points. Also, the Lyapunov
exponents of the novel jerk chaotic system are obtained as L; = 0.01562, L, =0
and L3 = —0.01562, while the Kaplan—Yorke dimension of the novel jerk chaotic
system is obtained as Dy = 3.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel conservative chaotic system with unknown parameters. In Sect.5, an adap-
tive backstepping controller is designed to achieve global chaos synchronization of
the identical conservative jerk chaotic systems with unknown parameters. Section 6
provides a summary of the main results obtained in this work.
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2 A 3-D Novel Conservative Jerk Chaotic System

In this section, we describe a six-term novel conservative chaotic system with two
cubic nonlinearities.
Our novel 3-D conservative jerk chaotic system is modeled by the 3-D dynamics

)'Cl = X2
)&2 = X3 (1)
X3 = —axp; + x (xl2 +x§ —b)

where x|, x;, x3 are the states and a, b are constant positive parameters.
The system (1) exhibits conservative chaotic behaviour for the parameter values

a=4, b=1 2)
For numerical simulations, we take the initial conditions as
x1(0) = —0.5, x(0)=0.1, x3(0)=04 3)

Figure 1 shows the 3-D phase portrait of the novel conservative jerk chaotic system
(1). Figures 2, 3 and 4 show the 2-D projection of the novel conservative jerk chaotic
system (1) on the (xi, x2), (x2, x3) and (x1, x3) planes, respectively.

Fig. 1 3-D phase portrait of
the novel conservative jerk
chaotic system

215 X
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Fig. 2 2-D projection of the 1.5
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3 Analysis of the 3-D Conservative Jerk Chaotic System

In this section, we give a dynamic analysis of the 3-D novel conservative jerk chaotic
system (1).

3.1 Volume Conservation of the Flow

In vector notation, we may express the system (1) as

fi(x1, x2, x3)
= f(x) = frlx1,x2, x3) “)

Sf3(x1, x2, x3)
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Fig. 4 2-D projection of the 3
conservative jerk chaotic
system on the (x1, x3) plane ol
1k
<> 0
. S
-2}
-3
-15 1

where
Si(x1, x2,x3) = x2
fr(xy, x2,x3) = x3
f3(x1, x2, x3) = —axy + x1 (xf +x3 — b)

We take the parameter values as in the chaotic case, viz.a =4 and b = 1.

(&)

Let £2 be any region in R? with smooth boundary and also 2 (¢) = &, (£2), where

@, is the flow of f.
Furthermore, let V (¢) denote the volume of £2(¢).
By Liouville’s theorem, we have

V= / (V- f)dx; dx, dxs
2
The divergence of the novel chaotic system (1) is easily calculated as

a b a
vop=h 00 _gug10=0
0x dx;  0Xx3

Substituting (7) into (6), we get
V=0
Integrating (8), we obtain the unique solution as

V(@) =V() forall r >0

This shows that the 3-D novel chaotic system (1) is volume-conserving.

Hence, the system (1) is a conservative chaotic system.

(6)

)

®)

9)



A Novel Conservative Jerk Chaotic System With Two Cubic Nonlinearities ... 91

3.2 Symmetry

It is easy to see that the system (1) is invariant under the coordinates transformation
(x1, X2, x3) > (=x1, —x2, —X3) (10)

Thus, the novel conservative jerk chaotic system (1) has point reflection symme-
try about the origin. Hence, it follows that any non-trivial trajectory of the novel
conservative jerk chaotic system (1) must have a twin trajectory.

3.3 Equilibrium Points

The equilibrium points of the conservative jerk chaotic system (1) are obtained by
solving the equations

S1(x1, x2, x3) = X2 =0
fa(xr, x2, x3) = x3 =0 (11)
f3(x1, X2, x3) = —axy + x; (xf +x3 —b) =0

We take the parameter values as in the chaotic case, viz.a =4 and b = 1.
Solving the Eq. (11), we get the equilibrium points of the jerk chaotic system (1)

0 1 —1
E() =10 s E1 =10 and E2 = 0 (12)
0 0 0

To test the stability type of the equilibrium points Ey, E| and E,, we calculate
the Jacobian matrix of the novel conservative jerk chaotic system (1) at any point x:

0 1 0
J(x) = 0 0 1 (13)
3x12 + x% —1 —442x1x, O
We find that
0 1 0
2 JEN=|0 0 1 (14)
-1 —40
The matrix Jy has the eigenvalues
A= —0.2463, A3 =0.1231 +2.0113; (15)

This shows that the equilibrium point E is a saddle-focus.
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Next, we find that

010
LA JEND=]0 0 1 (16)
2 40
The matrix J; has the eigenvalues
A = 04735, A3 = —0.2367 +£2.0416i 17
This shows that the equilibrium point E| is a saddle-focus.
Next, we find that
0 1 0
hE2JEN=]|0 0 1 (18)
2 40
The matrix J, has the eigenvalues
A1 = 04735, A3 = —0.2367 +2.0416i (19)

This shows that the equilibrium point E; is a saddle-focus.
Thus, the conservative jerk chaotic system (1) has three saddle-foci equilibria,
which are all unstable.

3.4 Lyapunov Exponents and Kaplan—Yorke Dimension

We take the parameter values of the conservative jerk system (1) asa =4 and b = 1.
We take the initial state of the jerk system (1) as given in (3).

Then the Lyapunov exponents of the jerk system (1) are numerically obtained
using MATLAB as

L, =0.01562, L, =0, L3z=-0.01562 (20)

It is noted that the sum of the Lyapunov exponents of the jerk system (1) is zero,
which confirms the fact that the jerk system (1) is conservative.
Also, the Kaplan—Yorke dimension of the jerk system (1) is calculated as

L+ L,
|Ls3|

Dxr =2+ =2+1=3 @21)
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4 Adaptive Control of the 3-D Conservative Jerk Chaotic
System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel conservative jerk chaotic system
with unknown parameters.

Thus, we consider the 3-D novel conservative jerk chaotic system given by

)'Cl = X2
)&2 = X3 (22)
X3 = —ax, + x; (x12+x§—b)+u

where a and b are unknown constant parameters, and u is a backstepping control law
to be determined using estimates a(z) and b(¢) for a and b, respectively.
The parameter estimation errors are defined as:

eq(t) = a—af(r)
I es(t) = b — b() @9
Differentiating (23) with respect to ¢, we obtain the following equations:
(1) = —a(t
‘f Q) il( ) 24)
ep(t) = —b(1)

Next, we shall state and prove the main result of this section.

This theorem gives a backstepping-based adaptive control for globally stabilizing
the 3-D novel conservative jerk chaotic system (22) with unknown parameters, and
we establish theorem using Lyapunov stability theory [15].

Theorem 1 The 3-D novel conservative jerk chaotic system (22), with unknown
parameters a and b, is globally and exponentially stabilized by the adaptive feedback
control law,

u(t) = =3 =b()x1 — (5 = a®)x =303 —x1 (x{ +3) —kz3 (29
where k > 0 is a gain constant,

73 = 2x1 + 2x2 + x3, (26)

and the update law for the parameter estimates a(t), b(1) is given by

[é_z(r) = —x2 o7

b(t) = —x123
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Proof We prove this result via Lyapunov stability theory [15].
First, we define a quadratic Lyapunov function

1,
Vi(z1) = 54

where
1 = X1

Differentiating V; along the dynamics (22), we get
Vi=z2121 =x10 = =23 + 21031 + x2)

Now, we define
2 =X1+ X2

Using (31), we can simplify the Eq. (30) as
Vi=-2Z2+un
Secondly, we define a quadratic Lyapunov function

1 1
Va(z1,22) = Vi(z1) + 51% =5 (21 +23)

Differentiating V, along the dynamics (22), we get
Va = —zi — 25 + 2(2x1 + 2x3 + x3)

Now, we define
73 = 2X1 + 2x7 + x3

Using (35), we can simplify the Eq. (34) as
Vy=—22 — 22 + 2223
Finally, we define a quadratic Lyapunov function

1L, 1, 1,
V(z1, 22,23, €q, €p) = Va(z1, 22) + 5% + 5¢a + 56

which is a positive definite function on R>.
Differentiating V along the dynamics (22), we get

V=—2l—2—23+23(z3+ 20+ 23) — e, — eyb

(28)

(29)

(30)

€29

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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Equation (38) can be written compactly as
V=—22—25—25+235 —e.a — eyb (39)

where
S=z34+204+23 =23+ 20 + 2% + 2x2 + X3 (40)

A simple calculation gives
S=0@—=bxi+ G —a)x+3x3+x; (x] +x3) +u 41)
Substituting the adaptive control law (25) into (41), we obtain
§=— (b _ é(r)) X1 — (a—a() x) —kzs (42)
Using the definitions (24), we can simplify (42) as
S = —epx; —eyxy — kz3 43)
Substituting the value of S from (43) into (39), we obtain
V=-o - (1+kz+e, (—x223 - 5) +ep (—x123 - l;) (44)
Substituting the update law (27) into (44), we get
V=-2-2-10+kz3, (45)
which is a negative semi-definite function on R>.
From (45), it follows that the vector z(t) = (z;(¢), z2(¢), z3(¢)) and the parameter
estimation error (e, (t), e, (t)) are globally bounded, i.e.
[21(1) 22(2) 23(2) €a(t) €5() | € Lo (46)
Also, it follows from (45) that
V<-g--3=—zl’ (47)

That is, )
lz|* < -V (48)
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Integrating the inequality (48) from O to ¢, we get

t

/ 202 de < VO) = V(1) 49)

0

From (49), it follows that z(¢) € L.

From Eq. (22), it can be deduced that z(r) € L.

Thus, using Barbalat’s lemma [15], we conclude that z(#) — 0 exponentially as
t — oo for all initial conditions z(0) € R>.

Hence, it is immediate that x(r) — 0 exponentially as t — oo for all initial con-
ditions x(0) € R3.

This completes the proof. |

For the numerical simulations, the classical fourth-order Runge—Kutta method
with step size & = 1073 is used to solve the system of differential equations (22) and
(27), when the adaptive control law (25) is applied.

The parameter values of the novel conservative jerk chaotic system (22) are taken
as

a=4, b=1 (50)

We take the positive gain constant as
k=10 5D
Furthermore, as initial conditions of the novel conservative jerk chaotic system
(22), we take
x1(0) =6.2, x2(0) =—-8.3, x3(0)=4.7 (52)
Also, as initial conditions of the parameter estimates a(¢) and Z;(t), we take

a0) =82, b0)=9.5 (53)

In Fig.5, the exponential convergence of the controlled states x;(¢), x»(t), x3(t)
is depicted, when the adaptive control law (25) and (27) are implemented.

5 Adaptive Synchronization of the Identical 3-D
Conservative Jerk Chaotic Systems

In this section, we use backstepping control method to derive an adaptive control law
for globally and exponentially synchronizing the identical 3-D novel conservative
jerk chaotic systems with unknown parameters.
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Fig. 5 Time-history of the 8 :
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As the master system, we consider the 3-D novel jerk chaotic system given by

)'Cl = X2
X2 = X3 (54)
X3 = —ax, + x; (xlz + x% — b)

where x, x5, x3 are the states of the system, and a and b are unknown constant
parameters.
As the slave system, we consider the 3-D novel jerk chaotic system given by

V=
2= (55)
yi=—ay+y (Vi+yI—b)+u

where y;, y2, y3 are the states of the system, and u is a backstepping control to be
determined using estimates a(¢) and l;(t) for a and b, respectively.
We define the synchronization errors between the states of the master system (54)
and the slave system (55) as
€ = y1 — X1
e =y—X2 (56)
€3 =Y3 — X3

Then the error dynamics is easily obtained as
é =e

by = 4 67
é3 = —bey —aes +y] — x} + yiy} — xix3 +u
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The parameter estimation errors are defined as:

eq(t) = a—af(t)
I ey(t) = b — b(t) %)
Differentiating (58) with respect to ¢, we obtain the following equations:
S () = — X ’
g() g() (59)
ep(r) = —b(1)

Theorem 2 The identical 3-D novel jerk chaotic systems (54) and (55) with unknown
parameters a and b are globally and exponentially synchronized by the adaptive
control law

u(t) = — [3 — 5(t)] el — [5 — fl(t)] er —3e3 — yi 4+ x7 — y1y3 4 xix? — kzs

(60)
where k > 0 is a gain constant,
73 = 2e1 + 2e3 + e3, (61)
and the update law for the parameter estimates a(t), I;(t) is given by
a(t) = —erz
;( ) 223 62)
b(t) = —eiz3
Proof First, we define a quadratic Lyapunov function
1,
V1(Z1) = zzl (63)
where
=€ (64)
Differentiating V; along the error dynamics (57), we get
Vi =212 = ejey = —23 + z1(e1 + 1) (65)
Now, we define
=e t+e (66)

Using (66), we can simplify the Eq. (65) as

Vi=-2+un (67)
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Secondly, we define a quadratic Lyapunov function

(zf +23)

| =

2
i =

| =

Va(zi, z2) = Vi(zi) +
Differentiating V, along the error dynamics (57), we get
Vy = —2} — 23+ 22(2e; + 2e2 + e3)

Now, we define
73 = 2e1 + 2ey + e3

Using (70), we can simplify the Eq. (69) as
Vy=—22 — 22 + 2223

Finally, we define a quadratic Lyapunov function

12 12 12
V&h@ﬂa%&w=vﬂmﬂﬂ+§@+§%+§q

which is a positive definite function on R>.
Differentiating V along the error dynamics (57), we get

V= —z%—z% —z§+23(13 + 22+ 23) — et — epb
Equation (73) can be written compactly as
V= —Zf—Z%—Z%—l—@S—eaE}—ebB

where
S=z3+2+23=23+20+2¢ +2& +é3

A simple calculation gives
S=0@B—bei+ (G —a)er+3es+y —x3+y1y; —x1x3+u
Substituting the adaptive control law (60) into (41), we obtain
§=— [b _ B(t)] e — [a—a)]er — ka3
Using the definitions (59), we can simplify (77) as

S = —epl1 — €, €67 — kZ3

99

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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Substituting the value of S from (78) into (74), we obtain
V- -B-(+08+e (—on—d)+e(-an—b) 19
Substituting the update law (62) into (79), we get
V=-2—2—-(1+kz, (80)

which is a negative semi-definite function on R>.
From (80), it follows that the vector z(t) = (z;(¢), z2(¢), z3(¢)) and the parameter
estimation error (e, (t), e,(t)) are globally bounded, i.e.

[21(0) 22(t) 23(1) €a(?) €p(1) | € L (81)
Also, it follows from (80) that
V<-2-22—22=—|z? (82)

That is, )
|z|* < -V (83)

Integrating the inequality (83) from O to 7, we get
t
/uwﬂwSV©—vm (84)
0

From (84), it follows that z(¢) € L,.

From Eq. (57), it can be deduced that z(¢) € L.

Thus, using Barbalat’s lemma [15], we conclude that z(r) — 0 exponentially as
t — oo for all initial conditions z(0) € R3.

Hence, it is immediate that e(f) — 0 exponentially as ¢+ — oo for all initial con-
ditions e(0) € R3.

This completes the proof. u

For the numerical simulations, the classical fourth-order Runge—Kutta method
with step size h = 1078 is used to solve the system of differential equations (54)
and (55), when the adaptive control law (60) and the parameter update law (62) are
applied.

The parameter values of the novel conservative jerk chaotic systems are taken as
in the chaotic case, i.e.a =4 and b = 1.

The positive gain constant k is taken as k = 10.

Furthermore, as initial conditions of the master chaotic system (54), we take

x1(0) =0.1, x(0)=-1.2, x3(0) =—1.6 (85)
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As initial conditions of the slave chaotic system (55), we take
y1(0) = 3.6, y2(0) =23, y3;(0) =12 (86)
Also, as initial conditions of the parameter estimates a(¢) and Z;(t), we take
a0) =2.6, b)) =34 (87)
In Figs. 6, 7 and 8, the complete synchronization of the identical 3-D conservative
jerk chaotic systems (54) and (55) is shown.
Also, in Fig.9, the time-history of the synchronization errors e (¢), e»(t), e3(t),
is shown.



102 S. Vaidyanathan and C.K. Volos

Fig. 8 Synchronization of
the states x3 and y3
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Fig. 9 Time-history of the
synchronization errors
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6 Conclusions

In the chaos literature, numerous dissipative chaotic systems have been discovered,
but only a very few conservative chaotic systems have been found. In this research
work, we announced a six-term novel 3-D conservative jerk chaotic system with two
cubic nonlinearities. The qualitative properties of the conservative jerk chaotic system
were discussed in detail. We have also designed adaptive backstepping controllers for
stabilization and synchronization of the six-term novel 3-D conservative jerk chaotic
system.
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Abstract This work describes a six-term novel 3-D jerk chaotic system with a
quartic nonlinearity. The phase portraits of the novel jerk chaotic system are dis-
played and the qualitative properties of the novel jerk system are discussed. The
novel jerk chaotic system has exactly one equilibrium point, which is saddle-
focus. The Lyapunov exponents of the novel jerk chaotic system are obtained as
Ly =0.1443, L, = 0and L3 = —2.8439. The Kaplan—Yorke dimension of the novel
jerk chaotic system is obtained as Dgy = 2.0507. Next, an adaptive backstepping
controller is designed to globally stabilize the novel jerk chaotic system with unknown
parameters. Moreover, an adaptive backstepping controller is also designed to achieve
global chaos synchronization of the identical jerk chaotic systems with unknown
parameters. The backstepping control method is a recursive procedure that links the
choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations have been
shown to illustrate the phase portraits of the novel jerk chaotic system and also the
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1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [17], Rossler system [29], ACT system [2], Sprott systems [37], Chen system
[7], Lii system [18], Cai system [5], Tigan system [48], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [129], Zhu system [130], Li system [14], Wei-Yang system [124],
Sundarapandian systems [40, 45], Vaidyanathan systems [58, 59, 61-64, 67, 78,
79, 93, 96, 98, 107, 110, 112, 114, 116, 117], Pehlivan system [21], Sampath
system [30], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [68, 72, 74, 76, 80, 84-86], biological systems [66, 69-71, 73, 75,
77, 81-83, 87-91], memristors [1, 22, 122], lasers [4], oscillations [49], robotics [10,
121], electrical circuits [19, 120], cryptosystems [28, 50], secure communications
[126, 127], etc.

The study of control of a chaotic system investigates feedback control methods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Many methods have been designed for control and regulation of chaotic systems such
as active control [38, 39, 52], adaptive control [108, 115, 118], backstepping control
[15, 123], sliding mode control [55, 57], etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or more
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effect which causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization problem is to apply the output of the
master system to control the slave system so that the output of the slave system tracks
the output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 20]. The active control method [12, 31, 32, 44, 51,
56, 99, 100, 103] is typically used when the system parameters are available for
measurement. Adaptive control method [33-35, 4143, 54, 60, 92, 97, 101, 102,
109, 113] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 16, 125, 128] and time-delay feed-
back control method [8, 11, 36] are also used for synchronization of chaotic systems.
Backstepping control method [23-27, 47, 104, 111, 119] is also used for the syn-
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chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [13]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [46, 53, 65, 94, 95, 105, 106], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.

In the recent decades, there is some good interest in finding novel chaotic systems,
which can be expressed by an explicit third order differential equation describing the
time evolution of the single scalar variable x given by

¥ = j(x £ ¥) ()

The differential equation (1) is called “jerk system” because the third order time
derivative in mechanical systems is called jerk.

By defining phase variables x; = x, x, = X and x3 = X, the jerk differential equa-
tion (1) can be expressed as a 3-D system given by

).C] = X2
X2 = X3 2)
X3 = j(x1, X2, x3)

In this research work, we announce a six-term novel 3-D jerk chaotic system with
a quartic nonlinearity. We have also designed adaptive backstepping controllers for
stabilization and synchronization of the six-term novel 3-D jerk chaotic system.

This work is organized as follows. Section 2 describes the dynamic equations and
phase portraits of the novel 3-D jerk chaotic system. Section 3 details the qualitative
properties of the novel jerk chaotic system. The novel jerk chaotic system has exactly
one equilibrium point, which is a saddle-focus. Thus, the system has an unstable
equilibrium point. The Lyapunov exponents of the novel jerk chaotic system are
obtainedas L = 0.1443, L, = 0and L3 = —2.8439. Since the sum of the Lyapunov
exponents is negative, the novel jerk chaotic system is dissipative. Thus, the system
limit sets are ultimately confined into a specific limit set of zero volume, and the
asymptotic motion of the novel jerk chaotic system settles onto a strange attractor of
the system. The Kaplan—Yorke dimension of the novel jerk chaotic system is obtained
as Dgy = 2.0507.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel jerk chaotic system with unknown parameters. In Sect. 5, an adaptive backstep-
ping controller is designed to achieve global chaos synchronization of the identical
novel jerk chaotic systems with unknown parameters. In Sect. 6, an electronic circuit
realization of the novel jerk chaotic system using Spice is presented to confirm the
feasibility of the theoretical model. Section 7 contains the conclusions of this work.
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2 A 3-D Novel Jerk Chaotic System

In this section, we describe a six-term novel jerk chaotic system with a quartic
nonlinearity.
Our novel 3-D jerk chaotic system is modeled by the 3-D dynamics

).Cl = X2
X2 = X3 3)
X3 = —ax; — bxz + cx13x2 —1

where x1, X, x3 are the states and a, b, ¢ are constant positive parameters.
The system (3) exhibits a strange chaotic attractor for the parameter values

a=4, b=27, ¢=0.6 4)

For numerical simulations, we take the initial conditions as
x1(0) =0.6, x2(0)=0.2, x3(0)=0.4 (5)
Figure 1 shows the 3-D phase portrait of the novel system (3). Figures2, 3 and 4

show the 2-D projection of the novel jerk chaotic system (3) on the (x1, x3), (x2, X3)
and (x1, x3) planes, respectively.

-10 -6

Fig. 1 3-D phase portrait of the novel jerk chaotic system
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Fig. 4 2-D projection of the jerk chaotic system on the (x1, x3) plane

3 Analysis of the 3-D Jerk Chaotic System

In this section, we give a dynamic analysis of the 3-D novel jerk chaotic system (3).

3.1 Dissipativity

In vector notation, the new jerk system (3) can be expressed as

f1(Ger, x2, x3)
X=f(x)=| falx1,x2,x3) |, (6)

Sf3(xr, x2, x3)

where
Si(x1, x2, x3) = x2
f2(x1, X2, X3) = x3 @)
f3(x1, x2, x3) = —ax; — bxz + cx13x2 —1

Let £2 be any region in R? with a smooth boundary and also, 2(¢) = @,(£2),
where @; is the flow of f. Furthermore, let V (¢) denote the volume of £2(z).
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By Liouville’s theorem, we know that

V()= / (V- f)dx; dx; dxs (8)

20)
The divergence of the novel jerk system (6) is found as:

. po i 05 0f

=—-b<0 9
8x1 sz 8)63 = ( )

since b is a positive parameter.
Inserting the value of V - f from (9) into (8), we get

V() = / (=b)dxydxydxs = —bV (1) (10)
20)
Integrating the first order linear differential equation (10), we get
V(t) = exp(—bt)V(0) (11)

Since b > 0, it follows from Eq.(11) that V (#) — 0 exponentially as t — oo.
This shows that the novel 3-D jerk chaotic system (3) is dissipative. Hence, the
system limit sets are ultimately confined into a specific limit set of zero volume,
and the asymptotic motion of the novel jerk chaotic system (3) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

The equilibrium points of the jerk chaotic system (3) are obtained by solving the
equations

Si(x1, x2, x3) = x2 =0
fa(x1, x2, X3) = x3 =0 (12)
f3(x1, x2,x3) = —ax; —bxz +cxjx, — 1 =0

We take the parameter values as in the chaotic case, viz. a =4, b = 2.7 and
c=0.6.
Solving the Eq. (12), we get a unique equilibrium point of the jerk chaotic system
3) as
—1/a —0.25
0 0
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To test the stability type of the equilibrium point E;, we calculate the Jacobian
matrix of the novel jerk chaotic system (3) at any point x:

0 1 0
J(x) = 0 0 1 (14)
—a+3cxixy cxj —b
We find that
0 1 0
LA JEND=]| 0 0 1 (15)

—4 —0.0094 —2.7
The matrix J; has the eigenvalues
A= —3.1104, Ap3 =0.2052 &+ 1.1153; (16)

This shows that the equilibrium point E| is a saddle-focus, which is unstable.

3.3 Lyapunov Exponents and Kaplan—Yorke Dimension

We take the parameter values of the novel jerk system (3) as a =4, b = 2.7 and
¢ = 0.6. We take the initial state of the jerk system (3) as given in (5).

Then the Lyapunov exponents of the jerk system (3) are numerically obtained
using MATLAB as

Ly =0.1443, L, =0, L;=-2.8439 17)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (3) is
positive, which means that the system has a chaotic behavior.

Since L; + L, + L3 = —0.082 < 0, it follows that the novel jerk chaotic system
(3) is dissipative.

Also, the Kaplan—Yorke dimension of the novel jerk chaotic system (3) is obtained

as

Li+L
Dy =2+ % — 2.0507 (18)
3

which is fractional.

4 Adaptive Control of the 3-D Novel Jerk Chaotic System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel novel jerk chaotic system with
unknown parameters.
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Thus, we consider the 3-D novel jerk chaotic system given by

).Cl = X2
).62 = X3 (19)
X3 = —ax; — bx; +cxl3xz —14u

where a, b and ¢ are unknown constant parameters, and u is a backstepping control
law to be determined using estimates a(t), b(¢) and ¢(¢) for a, b and c, respectively.
The parameter estimation errors are defined as:

e.(t) =a—a()
er(t) = b —b(@) (20
ec(t) =c— ()

Differentiating (20) with respect to ¢, we obtain the following equations:

éa(t) = —a(1)
ép(1) = —b(t) (1)
éc(t) = —c(t)

Next, we shall state and prove the main result of this section.

This theorem gives a backstepping-based adaptive control for globally stabilizing
the 3-D novel jerk chaotic system (19) with unknown parameters, and we establish
theorem using Lyapunov stability theory [13].

Theorem 1 The 3-D novel jerk chaotic system (19), with unknown parameters a, b
and c, is globally and exponentially stabilized by the adaptive feedback control law,

ut) = —(3 —a@))x; — 5x — (3 — b(1)x3 — i xy + 1 — kz3 (22)
where k > 0 is a gain constant,
23 = 2x1 + 2x2 + X3, (23)
and the update law for the parameter estimates a(t), l;(t), ¢(t) is given by

a(n) = —xi1z3
B(l‘) = —X373 (24)
6([) = X?X2Z3

Proof We prove this result via Lyapunov stability theory [13].
First, we define a quadratic Lyapunov function

1,
Vi(z1) = 74 (25)
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where
1 = X1

Differentiating V; along the dynamics (19), we get
Vi =ziZ1 =xix = =27 + 21(x1 + x2)

Now, we define
2 =X+ x

Using (28), we can simplify the Eq. (27) as
Vl = —z% + 2122

Secondly, we define a quadratic Lyapunov function

(z1 +23)

N =

1
Vﬂm,@)=‘4@0-¥515=

Differentiating V; along the dynamics (19), we get
Vo = —23 — 23 + 22(2x; + 2x3 + x3)

Now, we define
23 =2x1 + 2x2 + X3

Using (32), we can simplify the Eq. (31) as
Vo= -2 — 25+ 2023

Finally, we define a quadratic Lyapunov function

Ly, 1o 1, 1,
V(z1, 22, 23, €4, €p, €c) = Va(z1, 22) + 5% + ¢ + 5 + e
which is a positive definite function on R®.
Differentiating V along the dynamics (19), we get
V=22 =2 — 24233+ 22+ 23) — €t — epb — e.¢

Equation (35) can be written compactly as

V=—zl—23— 23+ 235 —e.a —eyb—epb —e.C

(26)

27)

(28)

(29)

(30)

€29

(32)

(33)

(34)

(35)

(36)
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where
S=z3+2+23=23+20+2x + 2%+ X3 (37)

A simple calculation gives
S=0@B—a)x;+50+ B —b)x3+cxixg—1+u (38)
Substituting the adaptive control law (22) into (38), we obtain
S=—[a—am]x - [b - 15(;)] X3+ [c — 6] xixs — ka3 (39)
Using the definitions (21), we can simplify (39) as
S = —eux1 —epx3 + ecxfxz —kz3 (40)

Substituting the value of S from (40) into (36), we obtain

V= —z% - z% -1+ k)z% +eq (—xlz3 - 5) +ep (—X3z3 - 13) + ec (xfx2z3 - 6)
(4D
Substituting the update law (24) into (41), we get
V=-2-22-(+k23, (42)

which is a negative semi-definite function on RS.
From (42), it follows that the vector z(f) = (z1(¢), z2(¢), z3(¢)) and the parameter
estimation error (e, (1), ey (2), e.(t)) are globally bounded, i.e.
[21(1) 22(2) 23(2) €a(t) ep(t) ec(t) | € Lo (43)
Also, it follows from (42) that

V<—zt—2—23=—|zl* (44)

That is, )
|z|* < -V (45)

Integrating the inequality (45) from O to ¢, we get

/ lz(v)|*dt < V(0) — V(1) (46)
0

From (46), it follows that z(¢) € L.
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From Eq. (19), it can be deduced that Z(¢) € L.

Thus, using Barbalat’s lemma [13], we conclude that z(r) — 0 exponentially as
t — oo for all initial conditions z(0) € R>.

Hence, it is immediate that x(r) — 0 exponentially as ¢+ — oo for all initial con-
ditions x(0) € R3.

This completes the proof. u

For the numerical simulations, the classical fourth-order Runge—Kutta method
with step size & = 1078 is used to solve the system of differential equations (19) and
(24), when the adaptive control law (22) is applied.

The parameter values of the novel jerk chaotic system (19) are taken as

a=4, b=27, ¢=0.6 (47)

We take the positive gain constant as
k=38 (48)
Furthermore, as initial conditions of the novel jerk chaotic system (19), we take
x1(0) =54, x0)=32, x3(0)=2.7 (49)
Also, as initial conditions of the parameter estimates a(z), b(t) and é(z), we take
a(0) =32, b0)=54, é0)=104 (50)

In Fig. 5, the exponential convergence of the controlled states x;(¢), x»(¢), x3(¢)
is depicted, when the adaptive control law (22) and (24) are implemented.

5 Adaptive Synchronization of the Identical 3-D Jerk
Chaotic Systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.

As the master system, we consider the 3-D novel jerk chaotic system given by

).C] = X2
)'Cz = X3 (51)
X3 = —ax; — bxz + cx?xz -1

where xi, xp, x3 are the states of the system, and a, b and ¢ are unknown constant
parameters.
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Fig. 5 Time-history of the controlled states x1, x2, x3

As the slave system, we consider the 3-D novel jerk chaotic system given by

yi=x»
=¥ (52)
yi=—ayi —by; +cyiy, — 1 +u

where yj, ¥, y3 are the states of the system, and u is a backstepping control to be
determined using estimates a(z), l;(t) and ¢(¢) for a, b and c, respectively.
We define the synchronization error between the states of the master system (51)
and the slave system (52) as
€1 =Jy1—X
€ =Yy)— X2 (53)
€3 =Yy3 — X3

Then the error dynamics is easily obtained as

é‘] =€
éz = ée3 (54)
é3 = —aey — bes + ¢ (y13y2 — x13x2) +u

The parameter estimation errors are defined as:

eq(t) =a—a(r)
er(t) = b —b(t) (55)
e.(t) =c—¢()
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Differentiating (55) with respect to ¢, we obtain the following equations:

éa(t) = —a(n)
ép(1) = —b(1) (56)
ec(t) = —c(1)

Theorem 2 The identical 3-D novel jerk chaotic systems (51) and (52) with unknown

parameters a, b and c are globally and exponentially synchronized by the adaptive
control law

u(t) = —[3—a]er — 5es — [3 - B(z)] es — &) [viys — xixa] —kzs (57)
where k > 0 is a gain constant,
73 = 2e1 + 2es + e3, (58)
and the update law for the parameter estimates a(t), 5(t), C(t) is given by

a(n) = —e1z3
l;(t) = —e373 (59)
e(t) = z3 (yiy2 — xix2)

Proof First, we define a quadratic Lyapunov function

1 2
Vi(z1) = 521 (60)

where
71 =€ (61)

Differentiating V; along the error dynamics (54), we get
Vi =212 = ejer = —z7 + z1(e1 + €2) (62)

Now, we define
=e te (63)

Using (63), we can simplify the Eq. (62) as

Vi=—-224z22 (64)
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Secondly, we define a quadratic Lyapunov function

1

Vaz1, 22) = Vi(zy) + = (z1 +23) (65)

N
NI'—

Differentiating V, along the error dynamics (54), we get
Vo = —z% - z% + 22(2e; 4 2e; + e3) (66)

Now, we define
73 = 2e1 + 2ey + e3 (67)

Using (67), we can simplify the Eq. (66) as
Vy=—22 — 22 + 2223 (63)

Finally, we define a quadratic Lyapunov function

| 1 1
V (21,22, 23, €as €b, €) = Va(21, 22) + =25 + 1oy —ep+-e2  (69)

2 242 2°¢
Differentiating V along the error dynamics (54), we get
V=23 - R aa i) —ed — b (70)
Equation (70) can be written compactly as
V=—z%—z%—z§+Z3S—eafz—ebl; (71)
where
S=mt+ntiz=z+zt2e+2+e (72)
A simple calculation gives
S=(3—a)e +5e+ (3 —b)es +c (yjy» — xjx2) +u (73)

Substituting the adaptive control law (57) into (73), we obtain
S =— [a - &(t)] e — [b - I;(t)] ez + [c — 6(t)] (yl ya — xlxz) kzz  (74)
Using the definitions (56), we can simplify (74) as

S = —eqe1 —epes + e (yiyr — xix2) — kz3 (75)
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Substituting the value of S from (75) into (71), we obtain
V=-z-2-0+kz+e, (—61Z3 - él) +ep (—6323 - 1;)
e[z (v = xixa) = ¢] (76)
Substituting the update law (59) into (76), we get
V=—z-23-(1+hz, (77

which is a negative semi-definite function on R®.
From (77), it follows that the vector z(t) = (z;(¢), z2(¢), z3(¢)) and the parameter
estimation error (e, (1), ey (t), e.(t)) are globally bounded, i.e.

[21(1) 22(t) 23(1) ea(t) ep(1) ec(t) | € Lo (73)
Also, it follows from (77) that
V<-2-2-2=—|z (79)

That is, )
lz)* < -V (80)

Integrating the inequality (80) from O to ¢, we get

/ 202 dr < V(O) - V(1) @81)
0

From (81), it follows that z(¢) € L.

From Eq. (54), it can be deduced that Z(¢) € L.

Thus, using Barbalat’s lemma [13], we conclude that z(#) — 0 exponentially as
t — oo for all initial conditions z(0) € R>.

Hence, it is immediate that e(f) — 0 exponentially as + — oo for all initial con-
ditions e(0) € R3.

This completes the proof. u

For the numerical simulations, the classical fourth-order Runge—Kutta method
with step size 1 = 1073 is used to solve the system of novel jerk chaotic systems,
which are taken as the master and slave systems.
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The parameter values of the novel jerk chaotic systems are taken as in the chaotic
case,i.e.a=4,b=2.7and c = 0.6.

We take the positive gain constant as k = 10.

Furthermore, as initial conditions of the master system (51), we take

x1(0) = 0.5, x2(0)=0.3, x3(0)=0.6 (82)
As initial conditions of the slave system (52), we take
y1(0) = =04, »2,(0) =—-0.2, y3(0) =0.2 (83)
Also, as initial conditions of the parameter estimates a(t), 5(t) and ¢(r), we take
a(0) =0.6, b0) =14, ¢0)=0.5 (84)
In Figs. 6, 7, and 8, the complete synchronization of the identical 3-D jerk chaotic
systems (51) and (52) is depicted.

Also, in Fig.9, the time-history of the synchronization errors e;(t), e»(t), e3(?),
is depicted.

Time (sec)

Fig. 6 Synchronization of the states x| and y;
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Fig. 7 Synchronization of the states x> and y;
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Fig. 8 Synchronization of the states x3 and y3
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Fig. 9 Time-history of the synchronization errors ey, ez, €3

6 Circuit Realization of the Novel Jerk System

In this section, circuit realization of the novel jerk system is reported. The state
variable x3 of jerk system (3) is scaled down. As a result, the novel jerk system (3)
has been changed to

X =X,
X, =4X; (85)
X;=—4X| —bXs+ £X{Xo — 1,
where X| = x1, X = x5, and X3 = %x}
The electronic circuit realizing the system (85) is designed by using off-the-
shelf components and shown in Fig. 10. It is easy to obtained the following circuital
equations

dvcl _ 1 v

ddt ~ R G

ve, 1

AT RG Ve, (86)
ey 1 __1 __1 .3 __1

i = TRG VG T R VO T T0kie Ve Ve T R Ve

where v, , ve,, and v, are the voltages across the capacitors Cy, C», and Cs, respec-
tively. Here the design approach based on the operational amplifiers [98, 110] is
applied. Therefore, each state variable of system (85), i.e. X1, X», X3 is implemented
as the voltage across the corresponding capacitors Cy, C,, and C3, respectively.
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Fig. 10 The designed electronic circuit schematic of the novel jerk chaotic system

The power supplies of all active devices are £15Vpc and the TLO84 oper-
ational amplifiers are used in this work. The values of components in Fig.10
are chosen to match the parameters of system (85) as follows: R} = R3 = Ry =
Rs = Ry = Rjp = 400kS2, Ry, = 100kS2, Ry = 148.148k<2, Rs = 2.666k2, Rs =
1.6MQ, V, =1Vpc,and C; = C, = C3 =1nF.

Fig. 11 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in v¢,—vc, plane

r T ~ "
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The designed circuit is implemented in the electronic simulation package Cadence
OrCAD. The obtained results are displayed in Figs. 11, 12 and 13, which show the
chaotic attractors in ve,—ve,, Ve,—Ve,, and ve,—ve, planes. Thus the feasibility of the
proposed chaotic jerk system is confirmed.

Fig. 12 Phase portrait result rg SCHEMATIC1-SundarlerkSys_Sim - PSpice A/D - [(C) SundarlerkSy... (.= (=) |
of the designed electronic

circuit obtained from
OrCAD in vc,—vc, plane

BEI!! Edit View Simulation Trace Plot
i Tgols Window Help |p@ cadencte 7 x

| Time= 15 100% HERNEEEEEI

Fig. 13 Phase portrait result
of the designed electronic
circuit obtained from

. Tgols Window Help (g2 = 8 x
OrCAD in vc,-vc; plane i : cadente

| Time= 15 100% HERNEEEEEI
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7 Conclusions

In this paper, we proposed a novel six-term jerk chaotic system with a quartic nonlin-
earity. Dynamic characteristics of new system has been discovered. It is worth noting
that the possibilities of control and synchronization of such system with unknown
parameters are verified by constructing an adaptive backstepping controller. The
main results were established using adaptive control theory and Lyapunov stability
theory. Moreover, the correction and feasibility of novel theoretical system are con-
firmed through Spice results which are obtained from the designed electronic circuit.
It is possible to use the new jerk system in potential chaos-based applications such
as secure communications, random generation, or path planning for autonomous
mobile robots. It is believed that the unknown dynamical behaviors of such strange
chaotic jerk systems should be further investigated in the future research on chaos
theory.
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A Seven-Term Novel Jerk Chaotic System
and Its Adaptive Control

Sundarapandian Vaidyanathan

Abstract In this work, we describe a seven-term novel 3-D jerk chaotic system
with two nonlinearities (quadratic and cubic). The phase portraits of the novel jerk
chaotic system are displayed and the dynamic properties of the novel jerk chaotic
system are discussed. The novel jerk chaotic system has three saddle-foci equilibrium
points, which are unstable. The Lyapunov exponents of the novel jerk chaotic sys-
tem are obtained as L; = 0.5565, L, = 0 and L3 = —1.5566. The Kaplan—Yorke
dimension of the novel jerk chaotic system is obtained as Dgy = 2.3575. Next,
an adaptive backstepping controller is designed to globally stabilize the novel jerk
chaotic system with unknown parameters. Moreover, an adaptive backstepping con-
troller is also designed to achieve global chaos synchronization of the identical jerk
chaotic systems with unknown parameters. The backstepping control method is a
recursive procedure that links the choice of a Lyapunov function with the design of
a controller and guarantees global asymptotic stability of strict feedback systems.
MATLAB simulations have been shown to illustrate all the main results derived in
this work.

Keywords Chaos - Chaotic systems - Jerk systems + Backstepping control + Adap-
tive control - Synchronization

1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz sys-
tem [17], Rossler system [29], ACT system [2], Sprott systems [37], Chen system [7],
Lii system [18], Cai system [5], Tigan system [48], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [128], Zhu system [129], Li system [14], Wei-Yang system [123],
Sundarapandian systems [40, 45], Vaidyanathan systems [58, 59, 61-64, 67, 78,
79, 93, 96, 98, 107, 109, 111, 113, 115, 116], Pehlivan system [21], Sampath
system [30], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [68, 72, 74, 76, 80, 84-86], biological systems [66, 6971, 73, 75,
77, 81-83, 87-91], memristors [1, 22, 121], lasers [4], oscillations [49], robotics
[10, 120], electrical circuits [19, 119], cryptosystems [28, 50], secure communica-
tions [125, 126], etc.

Many methods have been designed for control and regulation of chaotic systems
such as active control [38, 39, 52], adaptive control [108, 114, 117], backstepping
control [15, 122], sliding mode control [55, 57], etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or more
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effect which causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 20]. The active control method [12, 31, 32, 44, 51,
56, 99, 100, 103] is typically used when the system parameters are available for
measurement. Adaptive control method [33-35, 4143, 54, 60, 92, 97, 101, 102,
108, 112] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 16, 124, 127] and time-delay feed-
back control method [8, 11, 36] are also used for synchronization of chaotic systems.
Backstepping control method [23-27, 47, 104, 110, 118] is also used for the syn-
chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [13]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [46, 53, 65, 94, 95, 105, 106], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.

In the recent decades, there is some good interest in finding jerk chaotic systems,
which are described by the third-order ODE

X=j(x, %X (1)

The differential equation (1) is called “jerk system” because the third order time
derivative in mechanical systems is called jerk.
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By defining phase variables x; = x,x, = x and x3 = X, the jerk differential
equation (1) can be expressed as a 3-D system given by

)'Cl = X2
Xo = X3 )
X3 = j(x1, x2, x3)

In this research work, we announce a six-term novel 3-D jerk chaotic system with
a quartic nonlinearity. We have also designed adaptive backstepping controllers for
stabilization and synchronization of the six-term novel 3-D jerk chaotic system.

This work is organized as follows. Section 2 describes the dynamic equations and
phase portraits of the novel 3-D jerk chaotic system. Section 3 details the qualitative
properties of the novel jerk chaotic system. The novel jerk chaotic system has three
unstable equilibrium points. The Lyapunov exponents of the novel jerk chaotic system
are obtained as L; = 0.5565, L, = 0 and L3 = —1.5566, while the Kaplan—Yorke
dimension of the novel jerk chaotic system is obtained as Dgy = 2.3575.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel jerk chaotic system with unknown parameters. In Sect. 5, an adaptive backstep-
ping controller is designed to achieve global chaos synchronization of the identical
novel jerk chaotic systems with unknown parameters. Section 6 contains the conclu-
sions of this work.

2 A 3-D Novel Jerk Chaotic System

In this section, we describe a seven-term novel 3-D jerk chaotic system with two
nonlinearities (quadratic and cubic) described by

X1 =X

)'62 = X3 (3)

x3=ax1—xl2—xf—bxz—x3

where x1, x;, x3 are the states and a, b are constant, positive parameters.
The system (3) exhibits a strange chaotic attractor for the parameter values

a=134, b =50 “)

For numerical simulations, we take the initial conditions as
x1(0) =02, x(0)=0, x3(0)=04 (5)
Figure 1 shows the 3-D phase portrait of the novel system (3). Figures2, 3 and 4

show the 2-D projection of the novel jerk chaotic system (3) on the (xy, x7), (x2, x3)
and (x1, x3) planes, respectively.
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3 Analysis of the 3-D Novel Jerk Chaotic System
3.1 Dissipativity

In vector notation, the new jerk system (3) can be expressed as

S1(xr, x2, x3)
X=f(x)=| frlx1,x2,x3) |, (6)

Sf3(x1, x2, x3)

where

Si(x1, x2,x3) = x2
fa(xr, x2, x3) = x3 (7N

f3(x1, x2, X3) = ax; — x7 — xj —bxy —x3

Let £2 be any region in R3 with a smooth boundary and also, 2(t) = @,(£2),
where @, is the flow of f. Furthermore, let V () denote the volume of 2 (¢).
By Liouville’s theorem, we know that

V) = / (V- F)dx; dx, dxs ®)

2@
The divergence of the novel jerk system (6) is found as:

V.f=%+%+%

=—-1<0 ©)]
dx 0xy  dx3

since b is a positive parameter.
Inserting the value of V - f from (9) into (8), we get

V() = / (=b)dx, dxsdx; = —V (1) (10)

20
Integrating the first order linear differential equation (10), we get
V() = exp(=)V(0) Y

Since b > 0, it follows from Eq.(11) that V(r) — 0 exponentially as t — o0.
This shows that the novel 3-D jerk chaotic system (3) is dissipative. Hence, the
system limit sets are ultimately confined into a specific limit set of zero volume,
and the asymptotic motion of the novel jerk chaotic system (3) settles onto a strange
attractor of the system.
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3.2 Equilibrium Points

The equilibrium points of the novel jerk chaotic system (3) are obtained by solving
the equations

Si(xr, x2, x3) = x2 =0
falxr, x2, x3) = x3 =0 (12)

Fx1, x2,x3) = axy —x} —xj —bxy —x3 =0

We take the parameter values as in the chaotic case, viz. a = 134 and b = 50.
Solving the Eq.(12), we get three equilibrium points of the novel jerk chaotic
system (3) as

0 11.0866 —12.0866
Eo=|0|, E = 0 , Ex= 0 (13)
0 0 0

To test the stability type of the equilibrium points, we calculate the Jacobian matrix
of the novel jerk chaotic system (3) at any point x:

0 1 0
J(x) = 0 0 1 (14)
a—2x;—3x} —b -1
We find that
0O 1 0
2 JE)=| 0 0 1 (15)
134 =50 —1
The matrix Jy has the eigenvalues
A =2.3218, A3 = —1.6609 £ 7.4131i (16)

This shows that the equilibrium point Ej is a saddle-focus, which is unstable.
Next, we find that

0 1 0
Ji 2 J(Ey) = 0 0 1 (17)
—-256.9113 —-50 —1
The matrix J; has the eigenvalues

A = —4.0978, Ay3 = 1.5489 £7.7650i (18)

This shows that the equilibrium point E| is a saddle-focus, which is unstable.
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We also find that

0 1 0
Jr 2 J(Ey) = 0 0 1 (19)
—280.0845 —50 —1

The matrix J; has the eigenvalues
A = —4.3418, Xry3 =1.6709 £ 7.8560i (20)

This shows that the equilibrium point E; is a saddle-focus, which is unstable.
Thus, the novel jerk chaotic system (3) has three unstable equilibrium points.

3.3 Lyapunov Exponents and Kaplan—Yorke Dimension

We take the parameter values of the novel jerk system (3) as @ = 134 and b = 50.
We take the initial state of the jerk system (3) as given in (5).

Then the Lyapunov exponents of the novel jerk system (3) are numerically
obtained using MATLAB as

Ly =0.5565, L,=0, L3=—1.5566 21

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (3) is
positive, which means that the system has a chaotic behavior.
Since L + L, + L3 = —1.001 < 0, it follows that the novel jerk chaotic system
(3) is dissipative.
Also, the Kaplan—Yorke dimension of the novel jerk chaotic system (3) is
obtained as
L+ L,

Dgy =2+ =2 — 23575 (22)
|L3|

which is fractional.

4 Adaptive Control of the 3-D Novel Jerk Chaotic System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel jerk chaotic system with unknown
parameters.
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Thus, we consider the 3-D novel jerk chaotic system given by

X 1 = X2
)'Cz = X3 (23)
X3 = ax —xlz—xf —bxy —x3+u
In (23), x1, x,, x3 are the states, a, b are unknown constant parameters, and u is
a backstepping control law to be determined using estimates a(#) and b(1) for the
unknown parameters a and b, respectively.
The parameter estimation errors are defined as:

ea(t) =a—a)
A 24
’ebm —b— b &4
Differentiating (24) with respect to ¢, we obtain the following equations:
(1) = —alt
e‘ () 61( ) 25)
ep(t) = —b(1)

Next, we shall state and prove the main result of this section.

Theorem 1 The 3-D novel jerk chaotic system (23), with unknown parameters a
and b, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) = - [3+a®]x - [5 - 13(;)] Xo—2xs x4 ad—kzy (26)
where k > 0 is a gain constant,

723 = 2x1 + 2x2 + X3, 27

and the update law for the parameter estimates a(t), b(1) is given by

X =
C;l( ) = X123 28)
b(t) = —x,23
Proof W