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Preface

About the Subject

Chaos theory is a field of study in mathematics with several applications in science
and engineering. Chaotic systems are nonlinear dynamical systems and maps that
are highly sensitive to initial conditions. The sensitivity to initial conditions is
usually called the butterfly effect for dynamical systems and maps.

Chaotic systems can be observed in many natural systems such as weather and
climate. Chaos theory has applications in several areas such as vibration control,
electric circuits, chemical reactions, lasers, combustion engines, computers, cryp-
tosystems, encryption, secure communications, biology, medicine, management,
finance, etc. Chaotic behaviour of systems can be modelled by discrete-time or
continuous-time mathematical models.

About the Book

The new Springer book, Advances and Applications in Chaotic Systems, consists of
25 contributed chapters by subject experts who are specialized in the various topics
addressed in this book. The special chapters have been brought out in this book
after a rigorous review process in the broad areas of modelling and application of
chaotic systems. Special importance was given to chapters offering practical solu-
tions and novel methods for the recent research problems in the modelling and
application of chaotic systems.

This book discusses trends and applications of chaos modeling and chaotic
systems in science and engineering.

Objectives of the Book

The objective of this book takes a modest attempt to cover the framework of
advances and applications of chaotic systems in a single volume. The book is not
only a valuable title on the publishing market, it is also a successful synthesis
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of control techniques applied to chaotic systems. Several multidisciplinary
applications of chaotic systems in control, engineering and information technology
are discussed in this book.

Organization of the Book

This well-structured book consists of 25 full chapters.

Book Features

• The chapters deal with the recent research problems in the areas of chaos theory,
chaos modelling and applications.

• The chapters contain a good literature survey with a long list of references.
• The chapters are well written with a good exposition of the research problem,

methodology and block diagrams.
• The chapters are lucidly illustrated with numerical examples and simulations.
• The chapters discuss details of engineering applications and future research

areas.

Audience

The book is primarily meant for researchers from academia and industry, who are
working in the research areas—chaos theory, control engineering, computer science
and information technology. The book can also be used at the graduate or advanced
undergraduate level as a textbook or major reference for courses such as nonlinear
dynamical systems, control systems, mathematical modelling, computational sci-
ence, numerical simulation and many others.

Acknowledgements
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Synchronization Phenomena in Coupled
Hyperchaotic Oscillators with Hidden
Attractors Using a Nonlinear Open
Loop Controller

Ch.K. Volos, V.-T. Pham, S. Vaidyanathan, I.M. Kyprianidis
and I.N. Stouboulos

Abstract In recent years the study of dynamical systems with hidden attractors,
namely systems in which their basins of attraction do not intersect with small neigh-
borhoods of equilibria, is a great challenge due to their application in many research
fields such as in mechanics, secure communication and electronics. Especially, the
investigation of hyperchaotic systems with hidden attractors plays a crucial role in
this research approach. Motivated by the very complex dynamical behavior of hyper-
chaotic systems and the unusual features of hidden attractors, a bidirectionally and
unidirectionally coupling scheme of systems of this family, by using a nonlinear open
loop controller, is studied in this chapter. For this reason, a recently new proposed
hyperchaotic system with hidden attractors, the four-dimensional modified Lorenz
system,which is structurally the simplest hyperchaotic systemwith hidden attractors,
is used. The simulation results show that the proposed scheme drives the coupled
system either to complete synchronization or anti-synchronization depending on the
choice of the signs of the error function’s parameters. In addition, an electronic cir-
cuit emulating the control scheme of the coupled hyperchaotic systems with hidden
attractors is also presented to verify the feasibility of the proposed model.
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Keywords Chaos · Hidden oscillation · Complete synchronization · Anti-
synchronization ·Bidirectional coupling ·Unidirectional coupling ·Nonlinear open
loop controller

1 Introduction

In the last three decades the phenomenon of synchronization between coupled chaotic
systems has attracted the interest of the scientific community because it is a rich and
multi-disciplinary phenomenonwith broad range applications, such as in secure com-
munications [19] and cryptography [14, 60], in broadband communications systems
[7] and in a variety of complex physical, chemical, and biological systems [17, 37,
41, 51, 54, 57, 62]. In general, synchronization of chaos is a process, where two or
more chaotic systems adjust a given property of their motion to a common behav-
ior, such as equal trajectories or phase locking, due to coupling or forcing. Because
of the exponential divergence of the nearby trajectories of a chaotic system, hav-
ing two chaotic systems being synchronized, might be a surprise. However, today
the synchronization of coupled chaotic oscillators is a phenomenon well established
experimentally and reasonably well understood theoretically.

The history of chaotic synchronization’s theory began with the study of the inter-
action between coupled chaotic systems in the 1980s and early 1990s by Fujisaka
and Yamada [11], Pikovsky [49], Pecora and Carroll [48]. Since then, a wide range of
research activity based on synchronization of nonlinear systems has risen and a vari-
ety of synchronization’s forms depending on the nature of the interacting systems and
of the coupling schemes has been presented. Complete or full chaotic synchroniza-
tion [9, 24–26, 28, 39, 55, 63], phase synchronization [8, 45], lag synchronization
[52, 56], generalized synchronization [53], anti-synchronization [22, 36], anti-phase
synchronization [1, 5, 6, 27, 58, 64], projective synchronization [38], anticipating
[61] and inverse lag synchronization [34] are the most interesting types of syn-
chronization, that have been investigated numerically and experimentally by many
research groups.

This work is referred to complete synchronization and to anti-synchronization.
In the first case, which is the most studied type of synchronization, two identical
coupled chaotic systems leads to a perfect coincidence of their chaotic trajectories
i.e., x1(t) = x2(t) as t → ∞. In the anti-synchronization, on the other hand, which
is also a very interesting type of synchronization, two systems x1 and x2, can be
synchronized in amplitude, but with opposite sign, for initial conditions chosen from
large regions in the phase space, that is x1(t) = −x2(t) as t → ∞.

As it is known, nonlinear systems and especially chaotic systems exhibit high
sensitivity on initial conditions or system’s parameters and thus, if they are identical
and, possibly, starting from almost the same initial conditions, following trajectories
which rapidly become uncorrelated. For this reason, many techniques have been
set up to obtain the aim of chaotic synchronization. So, many of these techniques
to couple two or more nonlinear chaotic systems can be mainly divided into two
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classes: bidirectional or mutual coupling and unidirectional coupling [13]. In the
mutual coupling both the systems are connected and each system’s dynamic behavior
influences the dynamics of the other, while on the contrary in unidirectional coupling,
only the first system drives the second one.

Recently, a great interest for dynamical systems with hidden attractors has been
raised. The term “hidden attractor” is referred to the fact that in this class of systems
the attractor is not associated with an unstable equilibrium and thus often remains
undiscovered because it may occur in a small region of parameter space and with
a small basin of attraction in the space of initial conditions [23, 31–33, 46, 47]. In
2010, for the first time, a chaotic hidden attractor was discovered in the most well-
known nonlinear circuit, in Chua’s circuit, which is described by a three-dimensional
dynamical system [23, 31].

The problem of analyzing hidden oscillations arose for the first time in the second
part of Hilbert’s 16th problem (1900) for two-dimensional polynomial systems [16].
The first nontrivial resultswere obtained inBautin’sworks [2, 3], whichwere devoted
to constructing nested limit cycles in quadratic systems and showed the necessity of
studying hidden oscillations for solving this problem.

Later, in the middle of the 20th century, Kapranov studied [21] the qualitative
behavior of Phase-Locked Loop (PLL) systems, which are used in telecommuni-
cations and computer architectures, and estimated stability domains. In that work,
Kapranov assumed that in PLL systems there were self-excited oscillations only.
However, in 1961, Gubar’ [15] revealed a gap in Kapranov’s work and showed ana-
lytically the possibility of the existence of hidden oscillations in two-dimensional
system of PLL, thus, from a computational point of view, the system considered was
globally stable, but, in fact, there was only a bounded domain of attraction.

Also, in the sameperiod, the investigations ofwidely knownMarkus–Yamabe [40]
and Kalman [20] conjectures on absolute stability have led to the finding of hidden
oscillations in automatic control systems with a unique stable stationary point and
with a nonlinearity, which belongs to the sector of linear stability [4, 10, 30].

Furthermore, systems with hidden attractors have received attention due to their
practical and theoretical importance in other scientific branches, such as inmechanics
(unexpected responses to perturbations in a structure like a bridge or in an airplane
wing) [18, 29]. So, the study of these systems is an interesting topic of a significant
importance.

In thiswork a hyperchaotic four-dimensionalmodifiedLorenz systemwith hidden
attractors, is used for studying the bidirectional or unidirectional coupling by using
the nonlinear open loop controller. The simulation results from system’s numerical
integration as well as the circuital implementation of the proposed system in SPICE,
confirm the appearance of complete synchronization and anti-synchronization phe-
nomena depending on the signs of the parameters of the error functions.

The chapter is organized as follows. In Sect. 2 the four-dimensional modified
Lorenz system, which is used in this work, is presented. The scheme, by using the
nonlinear open loop controller, in both coupling ways (bidirectional and unidirec-
tional) as well as the simulation results are discussed in Sect. 3. Section4 presents
the circuital implementation of the unidirectional coupling system and the simula-
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tion results which are obtained by using SPICE. Finally, the conclusive remarks are
drawn in the last section.

2 The Four-Dimensional Modified Lorenz System

In this work the simplest four-dimensional hyperchaotic Lorenz-type system, which
has been proposed by Gao and Zhang [12], is used. This system is an extension of
a modified Lorenz system, which was studied by Schrier and Maas as well as by
Munmuangsaen and Srisuchinwong [42, 59]. The proposed system is described by
the following set of differential equations.

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = y − x
ẏ = −xz + u
ż = xy − c
u̇ = −dy

(1)

It is structurally a very simple four-dimensional dynamical system having only
two independent parameters (c, d). Also, as it is mentioned in [35], it has many
interesting properties not found in other proposed systems, such as:

(i) It has very few terms, only seven with two quadratic nonlinearities, and two
parameters.

(ii) All its attractors are hidden.
(iii) It exhibits hyperchaos over a large region of parameter space.
(iv) Its Jacobian matrix has rank less than four everywhere in the space of the

parameters.
(v) It exhibits a quasi-periodic route to chaos with an attracting torus for some

choice of parameter values.
(vi) It has regions inwhich the torus coexistswith either a symmetric pair of strange

attractors or a symmetric pair of limit cycles and other regions where three
limit cycles coexist.

(vii) The basins of attraction have an intricate fractal structure.
(viii) There is a series of Arnold tongues [43] within the quasi-periodic region where

the two fundamental oscillations mode-lock and form limit cycles of various
periodicities.

All the afore-mentioned reasonsmake the dynamical system (1) an ideal candidate
for the coupling schemewhich is used in thiswork. Especially, the existence of hidden
attractors and the hyperchaotic nature of a system like this have played a crucial role
in our decision.

In this section the system’s dynamic behavior is investigated numerically by
employing a fourth order Runge–Kutta algorithm. For this reason, the bifurcation
diagram, which is a very useful tool from nonlinear theory, is used. In Figs. 1, 2, 3,
4, 5, 6 and 7 the bifurcation diagrams of the variable y versus the parameter d, for
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Fig. 1 Bifurcation diagram
of y versus d for c = 5, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 2 Bifurcation diagram
of y versus d for c = 4, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 3 Bifurcation diagram
of y versus d for c = 3.5,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)
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Fig. 4 Bifurcation diagram
of y versus d for c = 2.97,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)

Fig. 5 Bifurcation diagram
of y versus d for c = 2.9,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)

Fig. 6 Bifurcation diagram
of y versus d, for c = 2.7,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)
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Fig. 7 Bifurcation diagram
of y versus d, for c = 1, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

various values of the parameter c, reveal the richness of system’s dynamical behav-
ior. Besides limit cycles, system (1) has quasi-periodicity, chaos, and hyperchaos,
which can make the control of the system a difficult case in practical applications
where a particular dynamic is desired. In more, details, as the value of d is decreased
from d = 0.9 the system goes from a period-1 steady state (Fig. 8), through a quasi-
periodic route (Figs. 9, 10, 11, 12 and 13), to a chaotic state, which is confirmed by
the chaotic attractor in x–z plane, that is shown in Fig. 14. However, a very interesting
feature of the specific system is the existence of hyperchaos for a range of parameters
as it is shown in the phase portraits of Figs. 15, 16, 17, 18 and 19. Figure20 shows

Fig. 8 Phase portrait of z
versus x for c = 2.7 and
d = 0.9 (period-1 state),
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)
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Fig. 9 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in x–y plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 10 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in x–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 11 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in x–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)
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Fig. 12 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in y–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 13 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in y–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 14 Phase portrait of z
versus x for c = 2.7 and
d = 0.2 (chaotic state), with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)
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Fig. 15 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in x–y plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 16 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in x–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 17 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in x–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)
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Fig. 18 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in y–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 19 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in y–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

the Lyapunov exponents’ spectra for chosen value of the parameter c (c = 2.7). The
system’s hyperchaotic behavior is found for c = 2.7 in the range of d ∈ [0.388, 0.49]
(Figs. 15, 16, 17, 18 and 19), where the system has two positive Lyapunov exponents,
as it is shown in the embedded diagram in Fig. 20.
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Fig. 20 The diagrams of Lyapunov exponents (λi ) versus the parameter d, for c = 2.7

3 The Coupling Scheme

Two identical coupled chaotic systems can be described by the following system of
differential equations: {

ẋ = f (x) + UX

ẏ = f (y) + UY
(2)

where ( f (x), f (y)) ∈ Rn are the flows of the systems. The coupling of the systems
is defined by the Nonlinear Open Loop Controllers (NOLCs), UX and UY [44]. The
error function is given by e = βy − αx , where α and β are constants. If one applies
the Lyapunov Function Stability (LFS) technique, a stable synchronization state will
be realized when the error function of the coupled system follows the limit

lim
t→∞ ||e(t)|| → 0 (3)

so that αx = βy.
As it is mentioned, the design process of the coupling scheme, is based on the

Lyapunov function

V (e) = 1

2
eT e (4)

where T denotes transpose of a matrix and V (e) is a positive definite function. For
known system’s parameters andwith the appropriate choice of the controllersUX and
UY , the coupled system has V̇ (e) < 0. This ensures the asymptotic global stability
of synchronization and thereby realizes any desired synchronization state.
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By using the appropriate NOLCs functions UX , UY and error function’s
parameters α, β, a unidirectional or bidirectional (mutual) coupling scheme can
be implemented. In more details, for (UX = 0, β = 1) or (UY = 0, α = 1), a unidirec-
tional coupling scheme is realized, while for UX,Y �= 0 and α, β �= 0, a bidirectional
coupling scheme is realized, respectively. The signs of α, β play a crucial role to the
type of synchronization (complete synchronization or anti-synchronization), which
is observed in this work. On the other hand, the ratio of α over β decides the ampli-
fication or attenuation of one oscillator relative to another one.

Next, the results of the simulation process in the two coupling (bidirectional and
unidirectional) schemes and for various values of parameters α and β are presented.

3.1 Bidirectional Coupling

Systems of chaotic oscillators bidirectionally (mutually) coupled are frequently
found not only in the simulation environment or the laboratory but also in the nat-
ural world [41, 50]. This way of coupling, which is the simplest, is very interesting
because it displays much of the phenomenology that is observed in more complex
networks. Asymptotically stable synchronization between the coupled oscillators
happens to be one of the basic phenomena that is observed.

As it is mentioned, the synchronization of coupled chaotic systems is a process
where two or more systems adjust a given property of their motion to a common
behavior, such as identical trajectories, due to coupling.

So, in the first case, the bidirectional coupling scheme of two coupled systems of
Eq. (1), which is described by the following systems (5) and (6), is studied.

Coupled System-1: ⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 − x1 + UX1

ẋ2 = −x1x3 + x4 + UX2

ẋ3 = x1x2 − c + UX3

ẋ4 = −dx2 + UX4

(5)

Coupled System-2: ⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = y2 − y1 + UY1

ẏ2 = −y1y3 + y4 + UY2

ẏ3 = y1y2 − c + UY3

ẏ4 = −dy2 + UY4

(6)

where UX = [UX1, UX2, UX3, UX4]T and UY = [UY1, UY2, UY3, UY4]T are the
NOLCs functions. The error function is defined by e = β y − αx, with e = [e1, e2,
e3, e4]T, x = [x1, x2, x3, x4]T and y = [y1, y2, y3, y4]T. So, the errors dynamics, by
taking the difference of Eqs. (5) and (6), are written as:
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⎧
⎪⎪⎨

⎪⎪⎩

ė1 = e2 − e1 + βUY1 − αUX1

ė2 = αx1x3 − βy1y3 + e4 + βUY2 − αUX2

ė3 = −αx1x2 + βy1y2 − c(β − α) + βUY3 − αUX3

ė4 = −de2 + βUY4 − αUX4

(7)

For stable synchronization e → 0 as t → ∞. By substituting the conditions in
Eq. (7) and taking the time derivative of Lyapunov function

V̇ (e) = e1ė1 + e2ė2 + e3ė3 + e4ė4
= e1 (e2 − e1 + βUY1 − αUX1)

+ e2 (αx1x3 − βy1y3 + e4 + βUY2 − αUX2)

+ e3 [−αx1x2 + βy1y2 − c (β − α) + βUY1 − αUX1]

+ e4 (−de2 + βUY1 − αUX1) (8)

we consider the following NOLC controllers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

UX1 = 1
2α e2

UX2 = 1
α

(αx1x3 + e2 + e4)

UX3 = 1
α

(−αx1x2 + e3)

UX4 = 1
α

(− d
2 e2 + e4

)

(9)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UY1 = − 1
2β e2

UY2 = 1
β

(βy1y3)
UY3 = 1

β
[−βy1y2 + c(β − α)]

UY4 = 1
2β (de2)

(10)

such that
V̇ (e) = −e21 − e22 − e23 − e24 < 0 (11)

So, Eq. (11) ensures the asymptotic global stability of synchronization.
Next, the simulation results, in this coupling scheme, for three different cases of

system’s parameters (α, β), are presented.

3.1.1 The symmetric case (α = β)

Firstly, the parameters α, β are chosen to be equal (α = β = 1). This is the most
studied type ofmutual coupling and also themost interesting due to its applications in
a variety of scientific fields. Also, by choosing, in this case, the systems’ parameters
as c = 2.7 and d = 0.44, each one of the coupled systems is in a hyperchaotic state.
In this case of coupled identical systems with the proposed coupling scheme, only
the complete synchronization is observed. This type of synchronization is confirmed
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Fig. 21 The phase portrait
of y1 versus x1, for
α = β = 1, c = 2.7 and
d = 0.44

Fig. 22 The time-series of
x2, y2, for α = β = 1,
c = 2.7 and d = 0.44

by the y1 versus x1 plot of Fig. 21. Furthermore, the time-series of the variables
x2, y2 as well as the errors ei (i = 1, 2, 3, 4) show the exponential conver-
gence to zero which confirms the expected system’s complete synchronization
(Figs. 22 and 23).

3.1.2 The case α = 2, β = 1

In this case, the parameters of the error functions are chosen to be α = 2 and β = 1.
By choosing again the systems’ parameters as c = 2.7, d = 0.44 and for α = 2 the
hyperchaotic attractor of the second system is enlarged by two times, as it is shown
with red color in Fig. 24, as well as by the time-series of signals y1 and y2 in regard to
the signals x1 and x2 respectively (Figs. 26 and 27). The y1 versus x1 plot in Fig. 25
confirms that the coupled system is in complete synchronization state independently
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Fig. 23 The plot of errors
ei (=βyi − αxi ), for
α = β = 1, c = 2.7 and
d = 0.44

Fig. 24 The phase portraits
of x2 versus x1 and y2 versus
y1, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 25 The phase portrait
of y1 versus x1, for α = 2,
β = 1, c = 2.7 and d = 0.44
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Fig. 26 The time-series of
x1, y1, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 27 The time-series of
x2, y2, for α = 2, β = 1,
c = 2.7 and d = 0.44

of the values of the error’s parameters α, β. The error plot ei = yi − 2xi (i = 1, 2,
3, 4) in Fig. 28 shows the exponential convergence to zero that confirms the realization
of system’s complete synchronization state.

3.1.3 The Case α = −1, β = 2

By choosing the parameters of the error functions as α = −1 and β = 2, the attractor
of the first coupled system has been enlarged by factor two, while the attractor
of the second coupled system has been inverted in regard to the first one, as it is
shown in Fig. 29. In this case the systems’ parameters are chosen again as c = 2.7
and d = 0.44 so as both of the coupled systems are in hyperchaotic state. This
process is shown more clearly in the plots of the time-series of x1, y1 and x2, y2
(Figs. 31 and 32). The phase portrait of y1 versus x1 in Fig. 30 indicates that the
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Fig. 28 The plot of errors
ei (=βyi − αxi ), for α = 2,
β = 1, c = 2.7 and d = 0.44

Fig. 29 The phase portraits
of x2 versus x1 and y2 versus
y1, for α = −1, β = 2,
c = 2.7 and d = 0.44

Fig. 30 The phase portrait
of y1 versus x1, for α = −1,
β = 2, c = 2.7 and d = 0.44
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Fig. 31 The time-series of
x1, y1, for α = −1, β = 2,
c = 2.7 and d = 0.44

Fig. 32 The time-series of
x2, y2, for α = −1, β = 2,
c = 2.7 and d = 0.44

coupled system is in anti-synchronization state, which is also confirmed by the error
plot ei = 2y1 + x1 (i = 1, 2, 3, 4) in Fig. 33.

3.2 Unidirectional Coupling

In this section, the unidirectional coupling scheme, UX = 0, for β = 1, given by
Eq. (1), is presented.

Master System: ⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 − x1
ẋ2 = −x1x3 + x4
ẋ3 = x1x2 − c
ẋ4 = −dx2

(12)
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Fig. 33 The plot of errors
ei (=βyi − αxi ), for
α = −1, β = 2, c = 2.7 and
d = 0.44

Slave System: ⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = y2 − y1 + UY1

ẏ2 = −y1y3 + y4 + UY2

ẏ3 = y1y2 − c + UY3

ẏ4 = −dy2 + UY4

(13)

where UY = [UY1, UY2, UY3, UY4]T are the Nonlinear Open Loop Controller
(NOLC). The error function is defined by e = β y − αx, with e = [e1, e2, e3, e4]T,
x = [x1, x2, x3, x4]T and y = [y1, y2, y3, y4]T. So, the error dynamics, by taking the
difference of Eqs. (12) and (13), are written as:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = e2 − e1 + βUY1

ė2 = αx1x3 − βy1y3 + e4 + βUY2

ė3 = −αx1x2 + βy1y2 + c(α − β) + βUY3

ė4 = −de2 + βUY4

(14)

For stable synchronization e → 0 with t → ∞. By substituting the conditions in
Eq. (14) and taking the time derivative of Lyapunov function

V̇ (e) = e1ė1 + e2ė2 + e3ė3 + e4ė4
= e1 (e2 − e1 + βUY1) + e2 (αx1x3 − βy1y3 + e4 + βUY2)

+ e3 [−αx1x2 + βy1y2 + c (α − β) + βUY3] + e4 (−de2 + βUY4)

(15)
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we consider the following NOLC controllers
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UY1 = − 1
β

e2
UY2 = − 1

β
(e2 + αx1x3 − βy1y3 + e4)

UY3 = − 1
β
[e3 − αx1x2 + βy1y2 + c(α − β)]

UY4 = − 1
β

(e4 − de2)

(16)

such that
V̇ (e) = −e21 − e22 − e23 − e24 < 0 (17)

Equation (17) ensures the asymptotic global stability of synchronization.

3.2.1 The Case α = β = 1

In this case, as it occurs in the mutual coupling, the phenomenon of complete syn-
chronization is achieved for every value of α = β. Especially, for α = β = 1, the
two coupled systems are in the same hyperchaotic state, due to the chosen values of
system’s parameters (c = 2.7 and d = 0.44). The goal of complete synchronization
is achieved as it is shown from the plots of y1 versus x1, the time-series of x2, y2 and
the errors ei in Figs. 34, 35 and 36.

3.2.2 The Case for α = −β = −1

By using opposing values for the parameters α = −β = −1 the phenomenon of anti-
synchronization is achieved, as it is shown inFig. 37. Initially, the coupled systems are
in different hyperchaotic states but the unidirectional coupling leads the slave system
to an opposite hyperchaotic attractor in regard to the master system. This conclusion
is derived from the phase portrait of y1 versus x1 (Fig. 37), as well as from the

Fig. 34 The phase portrait
of y1 versus x1, for
α = β = 1, c = 2.7 and
d = 0.44



22 Ch.K. Volos et al.

Fig. 35 The time-series of
y2, x2, for α = β = 1,
c = 2.7 and d = 0.44

Fig. 36 The plot of errors
ei (=βyi − αxi ), for
α = β = 1, c = 2.7 and
d = 0.44

Fig. 37 The phase portrait
of y1 versus x1, for
α = −β = −1, c = 2.7 and
d = 0.44
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Fig. 38 The time-series of
y2, x2, for α = −β = −1,
c = 2.7 and d = 0.44

Fig. 39 The plot of errors
ei (=βyi – αxi ), for
α = −β = −1, c = 2.7 and
d = 0.44

time-series of x2, y2 (Fig. 38). Also, the plot of errors ei = yi + xi in Fig. 39 confirms
the anti-synchronization of the coupled system.

3.2.3 The Case α = 2, β = 1

In this case, the parameters of the error functions are chosen as α = 2 and β = 1.
By choosing the systems’ parameters as c = 2.7, d = 0.44 and for α = 2 the chaotic
attractor of the second system is enlarged by two times, as it is shown with red color
in Fig. 40, as well as by the time-series of signals y1 and y2 in regard to the signals x1
and x2 respectively (Figs. 42 and 43). The y1 versus x1 plot in Fig. 41 confirms that
the coupled system is in complete synchronization state independently of the values
of the error’s parameters α, β. The error plot ei = y1 − 2x1 (i = 1, 2, 3, 4) in Fig. 44
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Fig. 40 The phase portraits
of x2 versus x1 and y2 versus
y1, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 41 The phase portrait
of y1 versus x1, for α = 2,
β = 1, c = 2.7 and d = 0.44

Fig. 42 The time-series of
x1, y1, for α = 2, β = 1,
c = 2.7 and d = 0.44
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Fig. 43 The time-series of
x2, y2, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 44 The plot of errors
ei (=βyi − αxi ), for α = 2,
β = 1, c = 2.7 and d = 0.44

shows the exponential convergence to zero that confirms the realization of system’s
complete synchronization state.

3.2.4 The Case α = −2, β = 1

In the last case the parameters of the error function are chosen as α = −2 and β = 1.
So, the attractor of the first coupled system has been enlarged again by factor two,
while the attractor of the second coupled system has been inverted in regard to the
first one, as it is shown in Fig. 45. In this case the systems’ parameters are chosen as
c = 2.7 and d = 0.44 so as both of the coupled systems are in hyperchaotic state.
This process is shown more clearly in the plots of the time series of x1, y1 and x2, y2
of Figs. 47 and 48. The phase portrait of y1 versus x1 in Fig. 46 indicates that the
coupled system is in anti-synchronization state, which is also confirmed by the error
plot ei = 2yi + xi (i = 1, 2, 3, 4) in Fig. 49.
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Fig. 45 The phase portrait
of x2 versus x1, for α = −2,
β = 1, c = 2.7 and d = 0.44

Fig. 46 The phase portrait
of y1 versus x1, for α = −2,
β = 1, c = 2.7 and d = 0.44

Fig. 47 The time-series of
x1, y1, for α = −2, β = 1,
c = 2.7 and d = 0.44
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Fig. 48 The time-series of
x2, y2, for α = −2, β = 1,
c = 2.7 and d = 0.44

Fig. 49 The plot of errors
ei (=βyi − αxi ), for
α = −2, β = 1, c = 2.7 and
d = 0.44

4 Circuit’s Implementation of the Proposed Scheme

In this section the circuit implementation of the proposed scheme, with the electronic
simulation package Cadence OrCAD, in the case of unidirectional coupling systems
with a = β is presented, in order to prove the feasibility of this method. The coupling
system is realized by common electronic components. The system’s circuit consists
of three sub-circuits, which are the master circuit, the slave circuit and the coupling
circuit.

Figure50 depicts the schematic of the master circuit. It has four integrators (U1,
U2, U3 and U4) and two differential amplifiers (U7, U8), which are implemented
with the TL084, as well as two signals multipliers (U5, U6) by using the AD633. By
applying Kirchhoff’s circuit laws, the corresponding circuital equations of designed
master circuit can be written as:
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Fig. 50 The schematic of the master circuit

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 1
RC (x2 − x1)

ẋ2 = 1
RC

(
− R

R110V x1x3 + x4
)

ẋ3 = 1
RC

(
R

R110V x1x2 − c
)

ẋ4 = 1
RC

(
− R

Rd
x2

)

(18)

where xi (i = 1, . . . , 4) are the voltages in the outputs of the operational amplifiers
U1, U2, U3 and U4. Normalizing the differential equations of system (18) by using
τ = t/RC we could see that this system is equivalent to the system (12). The circuit
components have been selected as: R = 10k�, R1 = 1k�, Rd = 22.727k�, C =
10nF,VC = 2.7V,while the power supplies of all active devices are±15VDC. For the
chosen set of components the master system’s parameters are: c = 2.7 and d = 0.44.
In Figs. 51, 52, 53, 54 and 55 the hyperchaotic attractors, which are obtained from
Cadence OrCAD in various phase planes, are proved to be in a very good agreement
with the respective phase portraits from system’s simulation process (Figs. 15, 16,
17, 18 and 19). So, the proposed circuit emulates well the master system.

In Fig. 56 the schematic of the slave circuit, which is similar to the master circuit,
is shown. The difference of this circuit in comparison to the previous one are the
signals mu2, mu3 and mu4, which are the opposites of the signals UY2, UY3 and UY4,
produced by the controllers of Eq. (16). Also, e2 is the difference signal (βy2 − αx2).
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Fig. 51 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x2) phase plane

Fig. 52 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x3) phase plane
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Fig. 53 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x4) phase plane

Fig. 54 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x2, x3) phase plane
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Fig. 55 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x2, x4) phase plane

Fig. 56 The schematic of the slave circuit
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Next, the design of the coupling circuit as well as the simulation results obtained
from SPICE in the case of α = β is discussed in details.

In the case of α = β = 1 and by considering the achievement of synchronization
between the coupled systems (12) and (13), the NOLCs take the following forms.

⎧
⎪⎪⎨

⎪⎪⎩

UY1 = −e2
UY2 = − (e2 + e4)
UY3 = −e3
UY4 = − (e4 − de2)

(19)

The units fromwhich the coupling circuit is consisted, are shown in the schematic
of Fig. 57. In this schematic u2 and u4 are the control signalsUY2 andUY4 of Eq. (19)

Fig. 57 The schematic of the coupling circuit
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Fig. 58 The phase portrait in the (x1, y1) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD

Fig. 59 The phase portrait in the (x2, y2) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD
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Fig. 60 The phase portrait in the (x3, y3) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD

Fig. 61 The phase portrait in the (x4, y4) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD
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respectively, while mu2 and mu4 are the opposite of these signals. Also, ei , (i = 2,
3, 4) are the difference signals (βyi − αxi , i = 2, 3, 4) and me2 is the opposite of e2.

Figures58, 59, 60 and 61 depict the phase portraits in (xi , yi ) phase plane, with
i = 1, . . . , 4, for α = β = 1, c = 2.7 and d = 0.44, obtained from Cadence OrCAD.
These figures confirm the achievement of complete synchronization in the case of
unidirectionally coupled circuits with the proposed method.

5 Conclusion

In this chapter, the case of bidirectional and unidirectional coupling scheme of hyper-
chaotic dynamical systems with hidden attractors was studied. The proposed system
is a four-dimensional modified Lorenz system, which is the simplest hyperchaotic
system of this family. Furthermore, the coupling method was based on a recently
new proposed scheme based on the nonlinear open loop controller.

According to the simulation results from system’s numerical integration as well
as the circuital implementation of the proposed system in SPICE, in the case
of unidirectional coupling, the appearance of complete synchronization and anti-
synchronization, depending on the signs of the parameters of the error functions,
was investigated in various cases. So, by choosing an appropriate sign for the error
functions one could drive the coupling system either in complete synchronization or
anti-synchronization behavior.

As it is known, the complex behavior of hyperchaotic systems, like the afore-
mentioned, makes the control difficult in practical applications where a particular
dynamic is desired. So, this chapter presents an interesting research result for the
family of hyperchaotic systems with hidden attractors, because this method could
be very useful in many potential applications of these systems. As a next step in this
direction is the application of the proposed method in non-identical coupling sys-
tems in order to satisfy the goal of control of systems, which are in totally different
dynamical behaviors.
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Abstract From the mechanical system point of view, third-order derivatives of
displacement or the time rate of change of acceleration is the jerk, while the fourth
derivative has been known as a snap. As a result, a dynamical system which is pre-
sented by an nth order ordinary differential equation with n > 3 describing the time
evolution of a single scalar variable is considered as a hyperjerk system. Hyperjerk
system has received significant attention because of its elegant form. Motivated by
reported attractive hyperjerk systems, a 4-D novel chaotic hyperjerk system has been
introduced and studied in this work. Interestingly, this hyperjerk system displays an
infinite number of equilibrium points because of the presence of amemristive device.
In addition, an adaptive controller is proposed to achieve synchronization of such
novel hyperjerk systems with two unknown parameters. In order to confirm the fea-
sibility of the mathematical hyperjerk model, its electronic circuit is designed and
implemented by using SPICE.

V.-T. Pham (B)
School of Electronics and Telecommunications, Hanoi University
of Science and Technology, Hanoi, Vietnam
e-mail: pvt3010@gmail.com

S. Vaidyanathan
Research and Development Centre, Vel Tech University, Tamil Nadu, India
e-mail: sundar@veltechuniv.edu.in

C.K. Volos
Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mail: volos@physics.auth.gr

S. Jafari
Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
e-mail: sajadjafari@aut.ac.ir

X. Wang
Institute for Advanced Study, Shenzhen University, Guangdong, Shenzhen 518060,
People’s Republic of China
e-mail: wangxiong8686@szu.edu.cn

© Springer International Publishing Switzerland 2016
S. Vaidyanathan and C. Volos (eds.), Advances and Applications
in Chaotic Systems, Studies in Computational Intelligence 636,
DOI 10.1007/978-3-319-30279-9_2

39



40 V.-T. Pham et al.

Keywords Chaos · Hidden attractor · Hyperjerk · Equilibrium · Memristive ·
Circuit · OrCAD

1 Introduction

Chaotic systems have applied in several fields of science and engineering [2, 3, 7, 9,
46, 50, 66] after the vital discovery of Lorenz’s model for atmospheric convection
[31]. There are well-known chaotic systems such as Rössler system [42], Arneodo
system [1], Chen system [7], Lü system [32] etc. In addition, various new chaotic
systems have been introduced recently [16, 20, 34, 37, 40, 57, 63].

There is significant interest in investigating novel jerk chaotic systems [47]. From
the view point of mathematics, a jerk system is presented by an explicit third-order
ordinary differential equation which describes the time evolution of a single scale
variable, for example x . Therefore, a jerk system is given as

d3x

dt3
= f

(
d2x

dt2
,

dx

dt
, x

)

(1)

From the view point of mechanics, system (1) is called jerk system because when the
scalar x represents the position of a moving object at the time t , the third derivative
indicates the jerk [44]. Interestingly, well-known chaotic systems, i.e. Lorenz and
Rössler systems, can be represented in jerk forms [21, 28].

Different examples of jerk systems were reported in the literature. A piecewise
exponential jerk system was investigated by Sun and Sprott [52]. Another simple
chaotic jerk system with exponential nonlinearity was presented in Munmuangsaen
et al. [35]while its elegant electronic circuital implementation, including six resistors,
three capacitors, four operational amplifiers and a silicon diode only, was introduced
in Sprott [48]. A six-term 3-D novel jerk chaotic system with two hyperbolic sinu-
soidal nonlinearities was proposed by Vaidyanathan et al. [59]. Multi-scroll chaotic
attractors could be generated in the jerk mode [30] or jerk circuits [33, 67] while
multi-scroll and hypercube attractors were also achieved from a general jerk circuit
using Josephson junctions [65].

By generalizing the definition of a jerk system [45], a hyperjerk system can be
considered as

d(n)x

dtn
= f

(
d(n−1)x

dtn−1
, . . . ,

dx

dt
, x

)

, (2)

with n ≥ 4 [47]. Hyperjerk form can described all periodically forced oscillators and
many of the coupled oscillators [29] while transformation of 4-D dynamical systems
to hyperjerk form was reported in Elhadj and Sprott [12]. Chaotic hyperjerk system
including fourth and fifth derivatives was introduced [8]. In addition, Chlouver-
akis and Sprott found hyperchaotic hyperjerk flows. More recently, Sundarapandian
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proposed a 4-D novel hyperchaotic hyperjerk system by adding a quadratic nonlin-
earity to the Chlouverakis–Sprott hyperjerk system [60].

It is easy to see that reported jerk/hyperjerk systems have a finite number of equi-
librium points. It is very interesting to ask naturally whether there exists a chaotic
jerk/hyperjerk system without equilibria or with an unlimited equilibrium set. Some
authors have recently answered this attractive question. Wang and Chen [64] con-
structed a jerk systemwith no equilibriumpoint, but still generated a chaotic attractor.
A chaotic memory system with infinitely many equilibria was designed by using the
concept of memory element [4]. Studying such jerk/hyperjerk systems with special
features is still an open research direction.

In this chapter, our work has concentrated on a hyperjerk system based on a
memristive device which can exhibit chaotic attractors. Moreover, such hyperjerk
system has an infinite number of equilibrium points. This research work is orga-
nized as follows. Section2 gives a brief introduction to the memristive device. The
memristive hyperjerk system is presented in Sect. 3 while its qualitative properties
are analyzed in Sect. 4. In Sect. 5, we describe the adaptive synchronization design
for achieving global chaos synchronization of the identical novel hyperjerk systems
with two unknown parameters. Section6 shows the circuital implementation of our
memristive hyperjerk system. Finally, conclusions are drawn in the last section.

2 Model of Memristive Device

Memristor was proposed by L.O. Chua as the fourth basic circuit element beside the
three conventional ones (the resistor, the inductor and the capacitor) [10]. Memris-
tor presents the relationship between two fundamental circuit variables, the charge
(q) and the flux (ϕ). Hence, there are two kinds of memristor: charge-controlled
memristor and flux-controlled memristor [10, 54]. A charge-controlled memristor is
described by

vM = M (q) iM , (3)

where vM is the voltage across the memristor and iM is the current through the
memristor. Here the memristance (M) is defined by

M (q) = dϕ (q)

dq
, (4)

while the flux-controlled memristor is given by

iM = W (ϕ) vM , (5)

where W (ϕ) is the memductance, which is defined by

W (ϕ) = dq (ϕ)

dϕ
. (6)
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Moreover, by generalizing the original definition of a memristor [11, 54], a memris-
tive system is given as: {

ẋ = F (x, u, t)
y = G (x, u, t) u,

(7)

where u, y, and x denote the input, output and state of the memristive system,
respectively. The function F is a continuously differentiable, n-dimensional vector
field and G is a continuous scalar function.

Based on the definition of memristive system [4, 11, 38, 54], a memristive device
is introduced in this section and used in our whole chapter. The memristive device
is described by the following form:

{
ẋ1 = x2
y = (1 − x1) x2.

(8)

Here x2, y, and x1 are the input, output and state of thememristive device, respectively.
An external bipolar periodic signal is applied across terminals of memristive

device (8) to investigate its fingerprint [51, 54, 55]. The external sinusoidal stimulus
is given by

x2 = X2 sin (2π f t) , (9)

where X2 is the amplitude and f is the frequency. From the first equation of (8), the
state variable of the memristive device is obtained as

x1 (t) =
t∫

−∞
x2 (τ ) dτ = x1 (0) +

t∫

0

X2 sin (2π f τ ) dτ

= x1 (0) + X2

2π f
(1 − cos (2π f t)) , (10)

with x1 (0) is the initial condition of the internal state in the memristive device. Thus,
the initial condition of the internal state variable is given by

x1 (0) =
0∫

−∞
x2 (τ ) dτ . (11)

Substituting (9) and (10) into (8), it is easy to derive the output of the memristive
device

y (t) =
[

1 − x1 (0) − X2

2π f
(1 − cos (2π f t))

]

X2 sin (2π f t)

=
(

1 − x1 (0) − X2

2π f

)

X2 sin (2π f t) + X2
2

4π f t
sin (4π f t) . (12)
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Fig. 1 Hysteresis loops of
the proposed memristive
device (8) driven by a
sinusoidal stimulus (9) when
changing the frequency f
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From Eq. (12), it is easily seen that the output y depends on the frequency of the
applied input stimulus. Hysteresis loop of the memristive device (8) when driven
by a periodic signal (9) with different frequencies are shown in Fig. 1. Exhibited
“pinched hysteresis loop” in the input–output plane indicates the vital fingerprint of
memristive device (8).

3 A 4-D Novel Memristive Hyperjerk System

In this chapter, a novel 4-D memristive system is proposed by using the memristive
device (8) and the reported approach in Bao et al. [4]. The novel memristive system
is given in system form as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − y,

(13)

where a, b are positive parameters and y = (1 − x1) x2 is the output of memristive
device (8).

The novel memristive system (13) can be rewritten by

d4x1
dt4

= f

(
d3x1
dt3

,
d2x1
dt2

,
dx1
dt

, x1

)

, (14)

where

f = −d2x1
dt2

− a
d3x1
dt3

− b
d2x1
dt2

d3x1
dt3

− (1 − x1)
dx1
dt

. (15)
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Therefore, memristive system (13) is called a hyperjerk system because it involves
time derivatives of a jerk function [45, 47]. In this chapter, the memristive system
(13) is chaotic when the parameters a, and b take the values

a = 0.5, b = 0.4. (16)

For the selected parameter values in (16), the Lyapunov exponents of the novel
memristive system (13) are obtained as

L1 = 0.0730, L2 = 0.0018, L3 = 0, L4 = −0.5755. (17)

For numerical simulations, we take the initial conditions of the novel memristive
system (13) as x1(0) = 0.06, x2(0) = 10−6, x3(0) = 0, and x4(0) = 0. Here the
initial conditionof the input of thememristive device x2(0) should be tiny to guarantee
an appropriate value of the internal state variable of the memristive device. Figures2,
3 and 4 illustrate the 2-D projections and 3-D projections of the new memristive
system (13).

Fig. 2 2-D projections of
the novel chaotic hyperjerk
system (13) in
(x1, x2)-plane,
(x1, x3)-plane,
(x2, x3)-plane, and
(x1, x4)-plane −2 0 2
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Fig. 3 Strange attractor of
the novel chaotic hyperjerk
system (13) in
(x1, x2, x3)-space
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Fig. 4 Strange attractor of
the novel chaotic hyperjerk
system (13) in
(x1, x2, x4)-space
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4 Analysis of the 4-D Novel Memristive Hyperjerk System

4.1 Equilibrium Points

The equilibrium points of the 4-D novel memristive hyperjerk system (13) are
obtained by solving the equations

⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3, x4) = x2 = 0
f2(x1, x2, x3, x4) = x3 = 0
f3(x1, x2, x3, x4) = x4 = 0
f4(x1, x2, x3, x4) = −x3 − ax4 − bx3x4 − y = 0

. (18)

Thus, the equilibrium points of the system (13) are characterized by the equations

y = (1 − x1)x2 = 0, x2 = 0, x3 = 0, x4 = 0 (19)

Solving the system (19), we get the equilibrium points of the hyperjerk system (13) as

Ec =

⎡

⎢
⎢
⎣

c
0
0
0

⎤

⎥
⎥
⎦ , (20)

where c is a real constant. Interestingly, the novel hyperjerk system (13) displays
an infinite number of equilibrium points because of the presence of a memristive
device (8). According to a new classification of chaotic dynamics [24–27], there are
two kinds of attractors: self-excited attractors and hidden attractors. A self-excited
attractor has a basin of attraction that is excited from unstable equilibria. In contrast,
a hidden attractor cannot be discovered by using a numerical approach where a
trajectory started from a point on the unstable manifold in the neighbourhood of an
unstable equilibrium [15, 22, 23]. Therefore, hyperjerk system (13) canbe considered
as a chaotic memristive system with hidden attractor.
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In order to discover the stability type of the equilibrium points Ec the Jacobian
matrix of the novel memristive hyperjerk system (13) is calculated at any point x as

J (x) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
x2 x1 − 1 −1 − bx4 −a − bx3

⎤

⎥
⎥
⎦ , (21)

It is noting that

J0
Δ= J (Ec) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 c − 1 −1 −0.5

⎤

⎥
⎥
⎦ , (22)

which has the characteristic equation is

λ
(
λ3 + 0.5λ2 + λ + 1 − c

) = 0. (23)

When c = 0.06 the characteristic Eq. (23) has a zero eigenvalue and three nonzero
eigenvalues

λ1 = 0, λ2 = −0.7749, λ3,4 = 0.1375 ± 1.0928i (24)

This shows that the equilibrium point Ec is an unstable saddle-focus point.

4.2 Lyapunov Exponents and Kaplan–Yorke Dimension

For the parameter values a = 0.5, b = 0.4 and c = 0.06, the Lyapunov exponents
of the novel memristive hyperjerk system (13) are obtained using MATLAB as

L1 = 0.0730, L2 = 0.0018, L3 = 0 and L4 = −0.5755 (25)

There is one positive Lyapunov exponents in the LE spectrum (25), thus the novel
memristive hyperjerk system (13) exhibits chaotic behavior.

In addition, since L1 + L2 + L3 + L4 = −0.5007 < 0, it indicates that the novel
memristive system (13) is dissipative.

The Kaplan–Yorke fractional dimension, that presents the complexity of attractor
[46, 50], is defined by

DK Y = j + 1
∣
∣L j+1

∣
∣

j∑

i=1

Li (26)
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where j is the largest interger satisfying
j∑

i=1
Li ≥ 0 and

j+1∑

i=1
Li < 0. Therefore, the

Kaplan–Yorke dimension of the novel memristive hyperjerk system (13) is calcu-
lated as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.130, (27)

which is fractional.

5 Adaptive Synchronization for the Hyperjerk Memristive
System

One of the most important characteristics relating to chaotic systems and their appli-
cations is the possibility of synchronization of two chaotic ones [5, 13, 17, 36].
A wide range of research activities based on synchronization of nonlinear systems
has been studied [6, 14, 18, 39, 49, 58]. For example, various synchronization phe-
nomena in bidirectionally coupled double scroll circuits were reported in Volos et
al. [61] or image encryption process based on chaotic synchronization phenomena
was presented in [62]. Different synchronization schemes have proposed such as
anti-synchronization [56], adaptive sycnchronization [59], or hybrid chaos synchro-
nization [18], etc. Here we consider the adaptive synchronization of identical 4-D
memristiive hyperjerk systems with two unknown parameters.

The master system is considered as the 4-D novel memristive hyperjerk system
given by ⎧

⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − x2 + x1x2

(28)

where x1, x2, x3, x4 are the states of the system, and a, b are unknown constant
parameters.

The slave system is considered as the 4-D novel memristive hyperjerk system
given by ⎧

⎪⎪⎨

⎪⎪⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = −y3 − ay4 − by3y4 − y2 + y1y2 + u

(29)

where y1, y2, y3, y4 are the states of the system, and u is a backstepping control to
be determined using estimates â(t) and b̂(t) for a and b, respectively.
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The synchronization errors between the states of the master system (28) and the
slave system (29) are defined as

⎧
⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(30)

Thus, the error dynamics is easily obtained as follows

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = e2
ė2 = e3
ė3 = e4
ė4 = −e3 − ae4 − e2 − b(y3y4 − x3x4) + y1y2 − x1x2 + u

(31)

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(32)

Differentiating (32) with respect to t , we obtain the following equations:

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(33)

Next, the main result of this section will be presented and proved.

Theorem 5.1 The identical 4-D novel memristive hyperjerk systems (28) and (29)
with unknown parameters a and b are globally and exponentially synchronized by
the adaptive control law

{
u(t) = −5e1 − 9e2 − 8e3 − [4 − â(t)]e4 + b̂(t) (y3y4 − x3x4)

− (y1y2 − x1x2) − kz4
(34)

where k > 0 is a gain constant,

z4 = 3e1 + 5e2 + 3e3 + e4, (35)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

{ ˙̂a(t) = −e4z4˙̂b(t) = − (y3y4 − x3x4) z4
(36)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.
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First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (37)

where

z1 = e1 (38)

Differentiating V1 along the error dynamics (31), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (39)

Here, we define
z2 = e1 + e2 (40)

Using (40), we can simplify the Eq. (39) as

V̇1 = −z21 + z1z2 (41)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(42)

Differentiating V2 along the error dynamics (31), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (43)

Now, we define
z3 = 2e1 + 2e2 + e3 (44)

Using (44), we can simplify the Eq. (43) as

V̇2 = −z21 − z22 + z2z3 (45)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) + 1

2
z23 = 1

2

(
z21 + z22 + z23

)
(46)

Differentiating V3 along the error dynamics (31), we get

V̇3 = −z21 − z22 − z23 + z3(3e1 + 5e2 + 3e3 + e4) (47)
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Now, we define
z4 = 3e1 + 5e2 + 3e3 + e4 (48)

Using (48), we can simplify the Eq. (47) as

V̇3 = −z21 − z22 − z23 + z3z4 (49)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, z4, ea, eb) = V3(z1, z2, z3) + 1

2
z24 + 1

2
e2a + 1

2
e2b (50)

which is a positive definite function on R6.
Differentiating V along the error dynamics (31), we get

V̇ = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
˙̂a − eb

˙̂b (51)

Equation (51) can be written compactly as

V̇ = −z21 − z22 − z23 − z24 + z4S − ea
˙̂a − eb

˙̂b (52)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ė1 + 5ė2 + 3ė3 + ė4 (53)

A simple calculation gives

S = 5e1 + 9e2 + 8e3 + (4 − a)e4 − b (y3y4 − x3x4) + (y1y2 − x1x2) + u (54)

Substituting the adaptive control law (34) into (54), we obtain

S = − [
a − â(t)

]
e4 −

[
b − b̂(t)

]
(y3y4 − x3x4) − kz4 (55)

Using the definitions (33), we can simplify (55) as

S = −eae4 − eb (y3y4 − x3x4) − kz4 (56)

Substituting the value of S from (56) into (52), we obtain

⎧
⎨

⎩

V̇ = −z21 − z22 − z23 − (1 + k)z24 + ea(−e4z4 − ˙̂a)

+ eb

[
− (y3y4 − x3x4) z4 − ˙̂b

] (57)
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Substituting the update law (36) into (57), we get

V̇ = −z21 − z22 − z23 − (1 + k)z24, (58)

which is a negative semi-definite function on R6. Therefore, according to the Lya-
punov stability theory [19, 43] we obtain e1 (t) → 0, e2 (t) → 0, e3 (t) → 0,
e4 (t) → 0, ea (t) → 0, eb (t) → 0 exponentially when t → 0 that is, synchroniza-
tion between master and slave system.

In order to confirm and demonstrate the effectiveness of the proposed synchro-
nization scheme, we consider a numerical example. In the numerical simulations, the
fourth-order Runge–Kutta method is used to solve the systems. The parameters of
the memristive hyperjerk systems are selected as a = 0.5, b = 0.4 and the positive
gain constant as k = 6. The initial conditions of the master system (28) and the
slave system (29) have been chosen as x1 (0) = 0.06, x2 (0) = 10−6, x3 (0) = 0,
x4 (0) = 0 and y1 (0) = 0.02, y2 (0) = 10−4, y3 (0) = 0, y4 (0) = 0, respectively.
We assumed that the initial values of the parameter estimates are â(0) = 0.46 and
b̂(0) = 0.01.

When adaptive control law (34) and the update law for the parameter estimates
(36) are applied, the master (28) and slave system (29) are synchronized completely

Fig. 5 Synchronization of
the states x1(t) and y1(t)
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Fig. 6 Synchronization of
the states x2(t) and y2(t)
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Fig. 7 Synchronization of
the states x3(t) and y3(t)
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Fig. 8 Synchronization of
the states x4(t) and y4(t)
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Fig. 9 Time series of the
synchronization errors e1, e2,
e3, and e4
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as shown in Figs. 5, 6, 7 and 8. In such figures, time series of master states are denoted
as blue solid lines while corresponding slave states are plotted as red dash-dot lines.
In addition, the time-history of the complete synchronization errors e1, e2, e3, and e4
are reported in Fig. 9. The obtained results illustrate the correctness of used approach.
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6 SPICE Implementation of the Memristive Hyperjerk
System

In this section, an electronic circuit is proposed to implement memristive hyperjerk
system (13). The circuit in Fig. 10 has beendesignedby applying the general approach
with operational amplifiers [41, 53]. Thus, the variables x1, x2, x3, x4 of memristive
system (13) are the voltages across the capacitor C1, C2, C3, and C4, respectively.
As shown in Fig. 10 the memristive system is realized by common electronic com-
ponents. Indeed the sub-circuit of memristive device in Fig. 10 only emulates the
memristive device because there are not any commercial off-the-shelf memristive
devices in the market yet. By applying Kirchhoff’s circuit laws, the corresponding
circuital equations of designed circuit can be written as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dvC1
dt = 1

R1C1
vC2

dvC2
dt = 1

R2C2
vC3

dvC3
dt = 1

R3C3
vC4

dvC4
dt = − 1

R4C4
vC3 − 1

R5C4
vC4 − 1

R6C4
vC3vC4 − 1

R7C4
y,

(59)

Fig. 10 Schematic of the circuit which emulating novel hyperjerk system (8) with the presence of
the memristive device
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Fig. 11 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC1 , vC2 ) phase plane

Fig. 12 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC1 , vC3 ) phase plane

where vC1 , vC2 , vC3 , and vC4 are the voltages across the capacitors C1, C2, C3, and
C4, respectively. Here the memristive device is described by the following circuital
equations: {

dvC1
dt = 1

R1C1
vC2

y = vC2 − vC1vC2 .
(60)
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Fig. 13 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC2 , vC3 ) phase plane

Fig. 14 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC1 , vC4 ) phase plane

Thepower supplies of all active devices are±15VDC and theoperational amplifiers
TL084 are used in this work. The values of components are selected as follows:
R1 = R2 = R3 = R4 = R7 = R = 100 k�, R5 = 200 k�, R6 = 250 k�, and
C1 = C2 = C3 = C4 = 1nF.

The designed circuit is implemented in the electronic simulation packageCadence
OrCAD and the obtained results are reported in Figs. 11, 12, 13 and 14. Theoretical
attractors (see Fig. 2) are similar with the circuital ones (see Figs. 11, 12, 13 and 14).
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7 Conclusion

A 4-D hyperjerk system is introduced in this work. The hyperjerk system is con-
structed by using a memristive device which creates the special feature of such
hyperjerk system, possessing an infinite number of equilibrium points. This special
feature is rarely observed in other chaotic hyperjerk systems. Dynamical behaviors
of the memristive hyperjerk system are investigated through equilibrium points, pro-
jections of chaotic attractors, Lyapunov exponents and Kaplan–Yorke dimension. In
addition, the capacity of synchronization scheme of memristive hyperjerk systems
is shown via backstepping control approach. To verify the feasibility of such hyper-
jerk system, we present its circuital implementation. Because the designed circuit
modeling the hyperjerk system can generate chaos, it can applied into potential appli-
cations in various fields of chaos-based engineering, such as secure communications,
random bit generation, liquid mixing or path planning for mobile robot, etc.
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A Novel Hyperjerk System with Two
Quadratic Nonlinearities and Its Adaptive
Control

Sundarapandian Vaidyanathan

Abstract This work announces a novel 4-D hyperjerk system with two cubic non-
linearities. The proposed chaotic system is an eight-term polynomial system with
two cubic nonlinearities. The phase portraits of the novel hyperjerk system are dis-
played and the qualitative properties of the system are discussed. The novel hyperjerk
system has a unique equilibrium, which is unstable. The Lyapunov exponents of the
novel hyperjerk system are obtained as L1 = 0.0622, L2 = 0, L3 = −0.4639 and
L4 = −0.5945, which shows that the novel hyperjerk system is chaotic. TheKaplan–
Yorke dimension of the novel hyperjerk system is obtained as DK Y = 2.1341. Next,
an adaptive backstepping controller is designed to globally stabilize the novel hyper-
jerk system with unknown parameters. Moreover, an adaptive backstepping con-
troller is also designed to achieve global chaos synchronization of the identical novel
hyperjerk systems with unknown parameters. The main control results in this work
are established using Lyapunov stability theory. MATLAB simulations have been
shown to illustrate the phase portraits of the novel hyperjerk system and also the
adaptive backstepping control results.

Keywords Chaos · Chaotic systems · Backstepping control · Adaptive control ·
Synchronization · Hyperjerk systems

1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [15], Rössler system [25], ACT system [2], Sprott systems [32], Chen system
[6], Lü system [16], Cai system [4], Tigan system [43], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [117], Zhu system [118], Li system [13], Wei-Yang system [115],
Sundarapandian systems [35, 40], Vaidyanathan systems [51, 52, 54–57, 60, 71,
72, 86, 89, 91, 100, 103, 105, 107, 109, 110], Pehlivan system [18], Sampath
system [26], etc.

Chaos theory has many applications in science and engineering such as chemical
systems [61, 65, 67, 69, 73, 77–79], biological systems [59, 62–64, 66, 68, 70,
74–76, 80–84], memristors [1, 19, 113], etc.

The studyof control of a chaotic system investigates feedback controlmethods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Manymethods have been designed for control and regulation of chaotic systems such
as active control [33, 34, 45], adaptive control [101, 108, 111], backstepping control
[14, 114], sliding mode control [48, 50], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [5, 17]. The active control method [11, 27, 28, 39, 44,
49, 92, 93, 96] is typically used when the system parameters are available for mea-
surement. Adaptive control method [29–31, 36–38, 47, 53, 85, 90, 94, 95, 102,
106] is typically used when some or all the system parameters are not available for
measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 116] and time-delay feedback control
method [7, 10] are also used for synchronization of chaotic systems. Backstepping
control method [20–24, 42, 97, 104, 112] is also used for the synchronization of
chaotic systems. Backstepping control is a recursive method for stabilizing the origin
of a control system in strict-feedback form [12]. In this research work, we apply
backstepping control method for the adaptive control and synchronization of the
novel hyperjerk system.

Slidingmode control method [41, 46, 58, 87, 88, 98, 99] is also a popular method
for the synchronization of chaotic systems.

In the recent decades, there is some good interest in finding novel chaotic and
hyperchaotic systems, which can be expressed by an explicit fourth order differential
equation describing the time evolution of the single scalar variable x given by

d4x

dt
= j

(

x,
dx

dt
,

d2x

dt2
,

d3x

dt3

)

(1)
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The differential equation (1) is called “hyperjerk system” because the fourth order
time derivative in mechanical systems is called hyperjerk [8].

By defining phase variables

x1 = x, x2 = dx

dt
, x3 = d2x

dt2
, x4 = d3x

dt3
, (2)

the hyperjerk differential equation (1) can be expressed as a 4-D system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = j (x1, x2, x3, x4)

(3)

In this research work, we announce a 4-D novel hyperjerk system and discuss
the qualitative properties of the novel hyperjerk system. We have designed adap-
tive backstepping controllers for stabilization and synchronization of the 4-D novel
hyperjerk system.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the 4-D novel hyperjerk system. Section3 details the qualitative
properties of the novel hyperjerk system.

The Lyapunov exponents of the hyperjerk system are obtained as L1 = 0.0622,
L2 = 0, L3 = −0.4639 and L4 = −0.5945. The Kaplan–Yorke dimension of the
hyperjerk system is obtained as DK Y = 2.1341.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel hyperjerk system with unknown parameters. In Sect. 5, an adaptive backstep-
ping controller is designed to achieve global chaos synchronization of the identical
novel hyperjerk systems with unknown parameters. Section6 contains a summary of
the main results derived in this work.

2 A 4-D Novel Hyperjerk System

In this section, we describe a 4-D novel hyperjerk system with two quadratic non-
linearities, which is modeled by the 4-D dynamics

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = 1 − ax1 − x2

2 − x2
3 − bx3 − cx4

(4)

where x1, x2, x3, x4 are the states and a, b, c are constant positive parameters.
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The system (4) is a nine-term polynomial system having two quadratic nonlin-
earities.

The equilibrium points of (4) are obtained by solving the system

x2 = 0, x3 = 0, x4 = 0, 1 − ax1 − x2
2 − x2

3 − bx3 − cx4 = 0 (5)

By solving the Eq. (5), we see that the system (4) has a unique equilibrium point
given by

E1 =

⎡

⎢
⎢
⎣

1/a
0
0
0

⎤

⎥
⎥
⎦ (6)

The system (4) exhibits a strange chaotic attractor for the parameter values

a = 1, b = 4, c = 1 (7)

For numerical simulations, we take the initial conditions as

x1(0) = 0.5, x2(0) = 0.4, x3(0) = 0.3, x4(0) = 0.9 (8)

Figures1, 2, 3 and 4 show the 3-D projection of the novel hyperjerk system (4)
on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.
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Fig. 1 3-D projection of the novel hyperjerk system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the novel hyperjerk system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the novel hyperjerk system on the (x1, x3, x4) space

3 Analysis of the Novel Hyperjerk System

In this section, we give a dynamic analysis of the novel hyperjerk system (4).
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Fig. 4 3-D projection of the novel hyperjerk system on the (x2, x3, x4) space

3.1 Dissipativity

In vector notation, the novel hyperjerk system (4) can be expressed as

ẋ = f (x) =

⎡

⎢
⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤

⎥
⎥
⎦ , (9)

where ⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3, x4) = x2
f2(x1, x2, x3, x4) = x3
f3(x1, x2, x3, x4) = x4
f4(x1, x2, x3, x4) = 1 − ax1 − x2

2 − x2
3 − bx3 − cx4

(10)

Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (11)
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The divergence of the novel hyperjerk system (9) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

+ ∂ f4
∂x4

= −c < 0 (12)

since c is a positive constant.
Inserting the value of ∇ · f from (12) into (11), we get

V̇ (t) =
∫

Ω(t)

(−1) dx1 dx2 dx3 dx4 = −cV (t) (13)

Integrating the first order linear differential equation (13), we get

V (t) = exp(−ct)V (0) (14)

From Eq. (14), it follows that V (t) → 0 exponentially as t → ∞. This shows that
the hyperjerk system (4) is dissipative. Hence, the system limit sets are ultimately
confined into a specific limit set of zero hypervolume, and the asymptotic motion of
the hyperjerk system (4) settles onto a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (7), i.e.

a = 1, b = 4, c = 1 (15)

In Sect. 2, we showed that the novel hyperjerk system (4) has a unique equilibrium
point given by

E1 =

⎡

⎢
⎢
⎣

1/a
0
0
0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ (16)

To test the stability type of the equilibrium point E1, we calculate the Jacobian
matrix of the novel hyperjerk system (4) at any point x :

J (x) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−a −2x2 −2x3 − b −c

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 −2x2 −2x3 − 4 −1

⎤

⎥
⎥
⎦

(17)
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We find that

J1
Δ= J (E1) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 −4 −1

⎤

⎥
⎥
⎦ (18)

The matrix J1 has the eigenvalues

λ1,2 = −0.5368 ± 1.8785i, λ3,4 = 0.0368 ± 0.5105i (19)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel hyperjerk system (4) as a = 1, b = 4 and
c = 1. We take the initial state of the novel hyperjerk system (4) as given in (8).

Then the Lyapunov exponents of the novel hyperjerk system (4) are numerically
obtained using MATLAB as

L1 = 0.0622, L2 = 0, L3 = −0.4639, L4 = −0.5945 (20)

Thus, the maximal Lyapunov exponent (MLE) of the novel hyperjerk system (4)
is positive, which means that the system has a chaotic behavior.

Since L1 + L2 + L3 + L4 = −0.9962 < 0, it follows that the novel hyperjerk
system (4) is dissipative.

Also, the Kaplan–Yorke dimension of the hyperjerk system (4) is obtained as

DK Y = 2 + L1 + L2

|L3| = 2.1341 (21)

which is fractional.

4 Adaptive Control of the Novel Hyperjerk System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 4-D novel hyperjerk system with unknown
parameters.
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Thus, we consider the 4-D novel hyperjerk system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = 1 − ax1 − x2

2 − x2
3 − bx3 − cx4 + u

(22)

where x1, x2, x3, x4 are the states, a, b, c are unknown constant parameters, and u is
a backstepping control law to be determined using estimates â(t), b̂(t) and ĉ(t) for
a, b and c, respectively.

The parameter estimation errors are defined as:

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(23)

Differentiating (23) with respect to t , we obtain the following equations:

⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(24)

Next, we shall state and prove the main result of this section.

Theorem 1 The 4-D novel hyperjerk system (22), with unknown parameters a, b
and c, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) = −1− [
5 − â(t)

]
x1 −10x2 −

[
9 − b̂(t)

]
x3 + ĉ(t)x4 + x2

2 + x2
3 − kz4 (25)

where k > 0 is a gain constant,

z4 = 3x1 + 5x2 + 3x3 + x4 (26)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

⎧
⎪⎨

⎪⎩

˙̂a(t) = −x1z4˙̂b(t) = −x3z4˙̂c(t) = −x4z4

(27)

Proof We prove this result via Lyapunov stability theory [12].
First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (28)
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where
z1 = x1 (29)

Differentiating V1 along the dynamics (22), we get

V̇1 = z1 ż1 = x1x2 = −z21 + z1(x1 + x2) (30)

Now, we define
z2 = x1 + x2 (31)

Using (31), we can simplify the Eq. (30) as

V̇1 = −z21 + z1z2 (32)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(33)

Differentiating V2 along the dynamics (22), we get

V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (34)

Now, we define
z3 = 2x1 + 2x2 + x3 (35)

Using (35), we can simplify the Eq. (34) as

V̇2 = −z21 − z22 + z2z3 (36)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) + 1

2
z23 = 1

2

(
z21 + z22 + z23

)
(37)

Differentiating V3 along the dynamics (22), we get

V̇3 = −z21 − z22 − z23 + z3(3x1 + 5x2 + 3x3 + x4) (38)

Now, we define
z4 = 3x1 + 5x2 + 3x3 + x4 (39)

Using (39), we can simplify the Eq. (38) as

V̇2 = −z21 − z22 − z23 + z3z4 (40)



A Novel Hyperjerk System with Two Quadratic Nonlinearities … 69

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, z4, ea, eb, ec) = V3(z1, z2, z3) + 1

2
z24 + 1

2
e2a + 1

2
e2b + 1

2
e2c (41)

which is a positive definite function on R7.
Differentiating V along the dynamics (22), we get

V̇ = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
˙̂a − eb

˙̂b − ec
˙̂c (42)

Equation (42) can be written compactly as

V̇ = −z21 − z22 − z23 − z24 + z4S − ea
˙̂a − eb

˙̂b − ec
˙̂c (43)

where
S = z4 + z3 + ż4 = z4 + z3 + 3ẋ1 + 5ẋ2 + 3ẋ3 + ẋ4 (44)

A simple calculation gives

S = 1 + (5 − a)x1 + 10x2 + (9 − b)x3 − cx4 − x2
2 − x2

3 + u (45)

Substituting the adaptive control law (25) into (45), we obtain

S = − [
a − â(t)

]
x1 −

[
b − b̂(t)

]
x3 − [

c − ĉ(t)
]

x4 − kz4 (46)

Using the definitions (24), we can simplify (46) as

S = −ea x1 − ebx3 − ecx4 − kz4 (47)

Substituting the value of S from (47) into (43), we obtain

V̇ = −z21 − z22 − z23 − (1 + k)z24 + ea

[
−x1z4 − ˙̂a

]

+ eb

[
−x3z4 − ˙̂b

]
+ ec

[
−x4z4 − ˙̂c

]
(48)

Substituting the update law (27) into (48), we get

V̇ = −z21 − z22 − z23 − (1 + k)z24, (49)

which is a negative semi-definite function on R7.
From (49), it follows that the vector z(t) = (z1(t), z2(t), z3(t), z4(t)) and the

parameter estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

] ∈ L∞ (50)
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Also, it follows from (49) that

V̇ ≤ −z21 − z22 − z23 − z24 = −‖z‖2 (51)

That is,
‖z‖2 ≤ −V̇ (52)

Integrating the inequality (52) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (53)

From (53), it follows that z(t) ∈ L2.
From Eq. (22), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [12], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R4.
Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial

conditions x(0) ∈ R4.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (22)
and (27), when the adaptive control law (25) and the parameter update law (27) are
applied.

The parameter values of the novel hyperjerk system (22) are taken as in the chaotic
case (7), i.e.

a = 1, b = 4, c = 1 (54)

We take the positive gain constant as

k = 8 (55)

As initial conditions of the hyperjerk system (22), we take

x1(0) = −2.3, x2(0) = 3.4, x3(0) = 4.7, x4(0) = −1.9 (56)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 5.2, b̂(0) = 1.4, ĉ(0) = 8.5 (57)

In Fig. 5, the exponential convergence of the controlled states x1(t), x2(t), x3(t),
x4(t) is depicted, when the adaptive control law (25) and the parameter update law
(27) are implemented.
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Fig. 5 Time-history of the
controlled states
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5 Adaptive Synchronization of the Identical Novel
Hyperjerk Systems

In this section, we use backstepping control to derive an adaptive control law for
globally and exponentially synchronizing the identical novel hyperjerk systems with
unknown parameters.

As the master system, we consider the 4-D novel hyperjerk system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = 1 − ax1 − x2

2 − x2
3 − bx3 − cx4

(58)

where x1, x2, x3, x4 are the states of the system, and a, b, c are unknown constant
parameters.

As the slave system, we consider the 4-D novel hyperjerk system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = 1 − ay1 − y22 − y23 − by3 − cy4 + u

(59)

where y1, y2, y3, y4 are the states of the system, and u is a backstepping control to
be determined using estimates â(t), b̂(t) and ĉ(t) for a, b and c, respectively.

We define the synchronization errors between the states of the master system (58)
and the slave system (59) as

ei = yi − xi , (i = 1, 2, 3, 4) (60)
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Then the error dynamics is easily obtained as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = e2
ė2 = e3
ė3 = e4
ė4 = −ae1 − be3 − ce4 − y22 + x2

2 − y23 + x2
3 + u

(61)

The parameter estimation errors are defined as:

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(62)

Differentiating (62) with respect to t , we obtain the following equations:

⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(63)

Next, we shall state and prove the main result of this section.

Theorem 2 The identical 4-D hyperjerk systems (58) and (59) with unknown para-
meters a, b and c are globally and exponentially synchronized by the adaptive control
law

u = − [
5 − â(t)

]
e1 − 10e2 −

[
9 − b̂(t)

]
e3 − [

4 − ĉ(t)
]

e4

+ y22 − x2
2 + y23 − x2

3 − kz4 (64)

where k > 0 is a gain constant,

z4 = 3e1 + 5e2 + 3e3 + e4, (65)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

⎧
⎪⎨

⎪⎩

˙̂a(t) = −e1z4˙̂b(t) = −e3z4˙̂c(t) = −e4z4

(66)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (67)
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where
z1 = e1 (68)

Differentiating V1 along the error dynamics (61), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (69)

Now, we define
z2 = e1 + e2 (70)

Using (70), we can simplify the Eq. (69) as

V̇1 = −z21 + z1z2 (71)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(72)

Differentiating V2 along the error dynamics (61), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (73)

Now, we define
z3 = 2e1 + 2e2 + e3 (74)

Using (74), we can simplify the Eq. (73) as

V̇2 = −z21 − z22 + z2z3 (75)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) + 1

2
z23 = 1

2

(
z21 + z22 + z23

)
(76)

Differentiating V3 along the error dynamics (61), we get

V̇3 = −z21 − z22 − z23 + z3(3e1 + 5e2 + 3e3 + e4) (77)

Now, we define
z4 = 3e1 + 5e2 + 3e3 + e4 (78)

Using (78), we can simplify the Eq. (77) as

V̇2 = −z21 − z22 − z23 + z3z4 (79)
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Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, z4, ea, eb, ec) = V3(z1, z2, z3) + 1

2
z24 + 1

2
e2a + 1

2
e2b + 1

2
e2c (80)

Differentiating V along the error dynamics (61), we get

V̇ = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
˙̂a − eb

˙̂b − ec
˙̂c (81)

Equation (81) can be written compactly as

V̇ = −z21 − z22 − z23 − z24 + z4S − ea
˙̂a − eb

˙̂b − ec
˙̂c (82)

where
S = z4 + z3 + ż4 = z4 + z3 + 3ė1 + 5ė2 + 3ė3 + ė4 (83)

A simple calculation gives

S = (5 − a)e1 + 10e2 + (9 − b)e3 + (4 − c)e4 − y22 + x2
2 − y23 + x2

3 + u (84)

Substituting the adaptive control law (64) into (84), we obtain

S = − [
a − â(t)

]
e1 −

[
b − b̂(t)

]
e3 − [

c − ĉ(t)
]

e4 − kz4 (85)

Using the definitions (63), we can simplify (85) as

S = −eae1 − ebe3 − ece4 − kz4 (86)

Substituting the value of S from (86) into (82), we obtain

⎧
⎨

⎩

V̇ = −z21 − z22 − z23 − (1 + k)z24 + ea

[
−e1z4 − ˙̂a

]

+eb

[
−e3z4 − ˙̂b

]
+ ec

[
−e4z4 − ˙̂c

] (87)

Substituting the update law (66) into (87), we get

V̇ = −z21 − z22 − z23 − (1 + k)z24, (88)

which is a negative semi-definite function on R7.
From (88), it follows that the vector z(t) = (z1(t), z2(t), z3(t), z4(t)) and the

parameter estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

] ∈ L∞ (89)
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Also, it follows from (88) that

V̇ ≤ −z21 − z22 − z23 − z24 = −‖z‖2 (90)

That is,
‖z‖2 ≤ −V̇ (91)

Integrating the inequality (91) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (92)

From (92), it follows that z(t) ∈ L2.
From Eq. (61), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [12], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R4.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial

conditions e(0) ∈ R4. This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (58)
and (59).

The parameter values of the novel hyperjerk system are taken as in the chaotic
case, viz. a = 1, b = 4 and c = 1. The gain constant is taken as k = 8.

Also, as initial conditions of the master system (58), we take

x1(0) = 1.8, x2(0) = −0.5, x3(0) = −2.7, x4(0) = 4.9 (93)

Fig. 6 Synchronization of
the states x1 and y1
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Fig. 7 Synchronization of
the states x2 and y2
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Fig. 8 Synchronization of
the states x3 and y3
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As initial conditions of the slave system (59), we take

y1(0) = −4.7, y2(0) = 2.6, y3(0) = 5.1, y4(0) = −3.2 (94)

Furthermore, as initial conditions of the parameter estimates â(t), b̂(t) and ĉ(t),
we take

â(0) = 2.3, b̂(0) = 6.8, ĉ(0) = 7.6 (95)

In Figs. 6, 7, 8 and 9, the complete synchronization of the identical 4-D hyperjerk
systems (58) and (59) is shown, when the adaptive control law and the parameter
update law are implemented.

Also, in Fig. 10, the time-history of the complete synchronization errors is shown.
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Fig. 9 Synchronization of
the states x4 and y4
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Fig. 10 Time-history of the
synchronization errors
e1, e2, e3, e4
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6 Conclusions

This work announced a novel 4-D hyperjerk system with two cubic nonlinearities.
The proposed chaotic system is an eight-term polynomial system with two cubic
nonlinearities. The phase portraits of the novel hyperjerk system are displayed and
the qualitative properties of the system are discussed. The novel hyperjerk system
has a unique equilibrium, which is unstable. The Lyapunov exponents of the novel
hyperjerk system have been obtained as L1 = 0.0622, L2 = 0, L3 = −0.4639 and
L4 = −0.5945, while the Kaplan–Yorke dimension of the novel hyperjerk system
has been found as DK Y = 2.1341.Next, an adaptive backstepping controller has been
designed to globally stabilize the novel hyperjerk system with unknown parameters.
Moreover, an adaptive backstepping controller has also been designed to achieve
global chaos synchronization of the identical novel hyperjerk systems with unknown
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parameters. The backstepping control method is a recursive procedure that links the
choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations were shown
to illustrate the phase portraits of the novel hyperjerk system and also the adaptive
backstepping control results.
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A Novel Conservative Jerk Chaotic
System With Two Cubic Nonlinearities
and Its Adaptive Backstepping Control

Sundarapandian Vaidyanathan and Christos K. Volos

Abstract First, this work announces a six-term novel 3-D conservative jerk chaotic
systemwith two cubic nonlinearities. The conservative chaotic systems are character-
ized by the property that they are volume conserving. The phase portraits of the novel
conservative jerk chaotic system are displayed and the qualitative properties of the
novel system are discussed. The novel jerk chaotic system has three unstable equilib-
rium points. The Lyapunov exponents of the novel jerk chaotic system are obtained
as L1 = 0.01562, L2 = 0 and L3 = −0.01562. The Kaplan–Yorke dimension of the
novel jerk chaotic system is obtained as DK Y = 3. Next, an adaptive backstepping
controller is designed to globally stabilize the novel conservative chaotic system
with unknown parameters. Moreover, an adaptive backstepping controller is also
designed to achieve global chaos synchronization of the identical conservative jerk
chaotic systems with unknown parameters. The backstepping control method is a
recursive procedure that links the choice of a Lyapunov function with the design of
a controller and guarantees global asymptotic stability of strict feedback systems.
MATLAB simulations have been shown to illustrate the phase portraits of the novel
conservative jerk chaotic system and also the adaptive backstepping control results.
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1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to refer
to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz sys-
tem [19], Rössler system [32], ACT system [2], Sprott systems [40], Chen system [7],
Lü system [20], Cai system [5], Tigan system [53], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [134], Zhu system [135], Li system [16], Wei-Yang system [129],
Sundarapandian systems [45, 50], Vaidyanathan systems [63, 64, 66–69, 72, 83,
84, 98, 101, 103, 112, 115, 117, 119, 121, 122], Pehlivan system [23], Sampath
system [33], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [73, 77, 79, 81, 85, 89–91], biological systems [71, 74–76, 78,
80, 82, 86–88, 92–96], memristors [1, 24, 127], lasers [4], oscillations [54], neural
networks [11, 42], robotics [12, 126], electrical circuits [21, 125], cryptosystems
[31, 55], secure communications [131, 132], etc.

The studyof control of a chaotic system investigates feedback controlmethods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Manymethods have been designed for control and regulation of chaotic systems such
as active control [43, 44, 57], adaptive control [113, 120, 123], backstepping control
[17, 128], sliding mode control [60, 62], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization problem is to apply the output of the
master system to control the slave system so that the output of the slave system tracks
the output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 22]. The active control method [14, 34, 35, 49, 56,
61, 104, 105, 108] is typically used when the system parameters are available for
measurement. Adaptive control method [36–38, 46–48, 59, 65, 97, 102, 106, 107,
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114, 118] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 18, 130, 133] and time-delay feed-
back control method [8, 13, 39] are also used for synchronization of chaotic systems.
Backstepping control method [26–30, 52, 109, 116, 124] is also used for the syn-
chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [15]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [51, 58, 70, 99, 100, 110, 111], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.

In the chaos literature, there is an active interest in the discovery of conservative
chaotic systems [41], which have the special property that the volume of the flow is
conserved. If the sum of the Lyapunov exponents of a chaotic system is zero, then
the system is conservative. On the other hand, if the sum of the Lyapunov exponents
of a chaotic system is negative, then the system is dissipative.

Classical examples of conservative chaotic systems are Nosé-Hoover system [25],
Hénon-Heiles system [10], etc. Classical example of dissipative chaotic systems are
Lorenz system [19], Rössler system [32], Chen system [7], etc.

In the chaos literature, numerous dissipative chaotic systems have been discov-
ered, but only a very few conservative chaotic systems have been found.

In this research work, we announce a six-term novel 3-D conservative jerk chaotic
system with two cubic nonlinearities. We have also designed adaptive backstepping
controllers for stabilization and synchronization of the six-term novel 3-D conserv-
ative jerk chaotic system.

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the novel 3-D conservative jerk chaotic system. Section3
details the qualitative properties of the novel conservative jerk chaotic system. The
novel jerk chaotic system has three unstable equilibrium points. Also, the Lyapunov
exponents of the novel jerk chaotic system are obtained as L1 = 0.01562, L2 = 0
and L3 = −0.01562, while the Kaplan–Yorke dimension of the novel jerk chaotic
system is obtained as DK Y = 3.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel conservative chaotic system with unknown parameters. In Sect. 5, an adap-
tive backstepping controller is designed to achieve global chaos synchronization of
the identical conservative jerk chaotic systems with unknown parameters. Section6
provides a summary of the main results obtained in this work.
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2 A 3-D Novel Conservative Jerk Chaotic System

In this section, we describe a six-term novel conservative chaotic system with two
cubic nonlinearities.

Our novel 3-D conservative jerk chaotic system is modeled by the 3-D dynamics

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax2 + x1

(
x2
1 + x2

2 − b
) (1)

where x1, x2, x3 are the states and a, b are constant positive parameters.
The system (1) exhibits conservative chaotic behaviour for the parameter values

a = 4, b = 1 (2)

For numerical simulations, we take the initial conditions as

x1(0) = −0.5, x2(0) = 0.1, x3(0) = 0.4 (3)

Figure1 shows the 3-D phase portrait of the novel conservative jerk chaotic system
(1). Figures2, 3 and 4 show the 2-D projection of the novel conservative jerk chaotic
system (1) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.

Fig. 1 3-D phase portrait of
the novel conservative jerk
chaotic system
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Fig. 2 2-D projection of the
conservative jerk chaotic
system on the (x1, x2) plane
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Fig. 3 2-D projection of the
conservative jerk chaotic
system on the (x2, x3) plane
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3 Analysis of the 3-D Conservative Jerk Chaotic System

In this section, we give a dynamic analysis of the 3-D novel conservative jerk chaotic
system (1).

3.1 Volume Conservation of the Flow

In vector notation, we may express the system (1) as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ (4)
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Fig. 4 2-D projection of the
conservative jerk chaotic
system on the (x1, x3) plane
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where ⎧
⎨

⎩

f1(x1, x2, x3) = x2
f2(x1, x2, x3) = x3
f3(x1, x2, x3) = −ax2 + x1

(
x2
1 + x2

2 − b
) (5)

We take the parameter values as in the chaotic case, viz. a = 4 and b = 1.
LetΩ be any region in R3 with smooth boundary and alsoΩ(t) = Φt (Ω), where

Φt is the flow of f .
Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we have

V̇ =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (6)

The divergence of the novel chaotic system (1) is easily calculated as

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= 0 + 0 + 0 = 0 (7)

Substituting (7) into (6), we get

V̇ = 0 (8)

Integrating (8), we obtain the unique solution as

V (t) = V (0) for all t ≥ 0 (9)

This shows that the 3-D novel chaotic system (1) is volume-conserving.
Hence, the system (1) is a conservative chaotic system.
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3.2 Symmetry

It is easy to see that the system (1) is invariant under the coordinates transformation

(x1, x2, x3) �→ (−x1,−x2,−x3) (10)

Thus, the novel conservative jerk chaotic system (1) has point reflection symme-
try about the origin. Hence, it follows that any non-trivial trajectory of the novel
conservative jerk chaotic system (1) must have a twin trajectory.

3.3 Equilibrium Points

The equilibrium points of the conservative jerk chaotic system (1) are obtained by
solving the equations

⎧
⎨

⎩

f1(x1, x2, x3) = x2 = 0
f2(x1, x2, x3) = x3 = 0
f3(x1, x2, x3) = −ax2 + x1

(
x2
1 + x2

2 − b
) = 0

(11)

We take the parameter values as in the chaotic case, viz. a = 4 and b = 1.
Solving the Eq. (11), we get the equilibrium points of the jerk chaotic system (1)

as

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E1 =
⎡

⎣
1
0
0

⎤

⎦ and E2 =
⎡

⎣
−1
0
0

⎤

⎦ (12)

To test the stability type of the equilibrium points E0, E1 and E2, we calculate
the Jacobian matrix of the novel conservative jerk chaotic system (1) at any point x :

J (x) =
⎡

⎣
0 1 0
0 0 1

3x2
1 + x2

2 − 1 −4 + 2x1x2 0

⎤

⎦ (13)

We find that

J0
Δ= J (E0) =

⎡

⎣
0 1 0
0 0 1

−1 −4 0

⎤

⎦ (14)

The matrix J0 has the eigenvalues

λ1 = −0.2463, λ2,3 = 0.1231 ± 2.0113i (15)

This shows that the equilibrium point E0 is a saddle-focus.
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Next, we find that

J1
Δ= J (E1) =

⎡

⎣
0 1 0
0 0 1
2 −4 0

⎤

⎦ (16)

The matrix J1 has the eigenvalues

λ1 = 0.4735, λ2,3 = −0.2367 ± 2.0416i (17)

This shows that the equilibrium point E1 is a saddle-focus.
Next, we find that

J2
Δ= J (E2) =

⎡

⎣
0 1 0
0 0 1
2 −4 0

⎤

⎦ (18)

The matrix J2 has the eigenvalues

λ1 = 0.4735, λ2,3 = −0.2367 ± 2.0416i (19)

This shows that the equilibrium point E2 is a saddle-focus.
Thus, the conservative jerk chaotic system (1) has three saddle-foci equilibria,

which are all unstable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the conservative jerk system (1) as a = 4 and b = 1.
We take the initial state of the jerk system (1) as given in (3).

Then the Lyapunov exponents of the jerk system (1) are numerically obtained
using MATLAB as

L1 = 0.01562, L2 = 0, L3 = −0.01562 (20)

It is noted that the sum of the Lyapunov exponents of the jerk system (1) is zero,
which confirms the fact that the jerk system (1) is conservative.

Also, the Kaplan–Yorke dimension of the jerk system (1) is calculated as

DK L = 2 + L1 + L2

|L3| = 2 + 1 = 3 (21)
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4 Adaptive Control of the 3-D Conservative Jerk Chaotic
System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel conservative jerk chaotic system
with unknown parameters.

Thus, we consider the 3-D novel conservative jerk chaotic system given by
⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax2 + x1

(
x2
1 + x2

2 − b
) + u

(22)

where a and b are unknown constant parameters, and u is a backstepping control law
to be determined using estimates â(t) and b̂(t) for a and b, respectively.

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(23)

Differentiating (23) with respect to t , we obtain the following equations:

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(24)

Next, we shall state and prove the main result of this section.
This theorem gives a backstepping-based adaptive control for globally stabilizing

the 3-D novel conservative jerk chaotic system (22) with unknown parameters, and
we establish theorem using Lyapunov stability theory [15].

Theorem 1 The 3-D novel conservative jerk chaotic system (22), with unknown
parameters a and b, is globally and exponentially stabilized by the adaptive feedback
control law,

u(t) = −(3 − b̂(t))x1 − (5 − â(t))x2 − 3x3 − x1
(
x2
1 + x2

2

) − kz3 (25)

where k > 0 is a gain constant,

z3 = 2x1 + 2x2 + x3, (26)

and the update law for the parameter estimates â(t), b̂(t) is given by

{ ˙̂a(t) = −x2z3˙̂b(t) = −x1z3
(27)
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Proof We prove this result via Lyapunov stability theory [15].
First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (28)

where
z1 = x1 (29)

Differentiating V1 along the dynamics (22), we get

V̇1 = z1 ż1 = x1x2 = −z21 + z1(x1 + x2) (30)

Now, we define
z2 = x1 + x2 (31)

Using (31), we can simplify the Eq. (30) as

V̇1 = −z21 + z1z2 (32)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(33)

Differentiating V2 along the dynamics (22), we get

V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (34)

Now, we define
z3 = 2x1 + 2x2 + x3 (35)

Using (35), we can simplify the Eq. (34) as

V̇2 = −z21 − z22 + z2z3 (36)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b (37)

which is a positive definite function on R5.
Differentiating V along the dynamics (22), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (38)



A Novel Conservative Jerk Chaotic System With Two Cubic Nonlinearities … 95

Equation (38) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (39)

where
S = z3 + z2 + ż3 = z3 + z2 + 2ẋ1 + 2ẋ2 + ẋ3 (40)

A simple calculation gives

S = (3 − b)x1 + (5 − a)x2 + 3x3 + x1
(
x2
1 + x2

2

) + u (41)

Substituting the adaptive control law (25) into (41), we obtain

S = −
(

b − b̂(t)
)

x1 − (
a − â(t)

)
x2 − kz3 (42)

Using the definitions (24), we can simplify (42) as

S = −ebx1 − ea x2 − kz3 (43)

Substituting the value of S from (43) into (39), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

(
−x2z3 − ˙̂a

)
+ eb

(
−x1z3 − ˙̂b

)
(44)

Substituting the update law (27) into (44), we get

V̇ = −z21 − z22 − (1 + k)z23, (45)

which is a negative semi-definite function on R5.
From (45), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t)

] ∈ L∞ (46)

Also, it follows from (45) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (47)

That is,
‖z‖2 ≤ −V̇ (48)
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Integrating the inequality (48) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (49)

From (49), it follows that z(t) ∈ L2.
From Eq. (22), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [15], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial con-

ditions x(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (22) and
(27), when the adaptive control law (25) is applied.

The parameter values of the novel conservative jerk chaotic system (22) are taken
as

a = 4, b = 1 (50)

We take the positive gain constant as

k = 10 (51)

Furthermore, as initial conditions of the novel conservative jerk chaotic system
(22), we take

x1(0) = 6.2, x2(0) = −8.3, x3(0) = 4.7 (52)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 8.2, b̂(0) = 9.5 (53)

In Fig. 5, the exponential convergence of the controlled states x1(t), x2(t), x3(t)
is depicted, when the adaptive control law (25) and (27) are implemented.

5 Adaptive Synchronization of the Identical 3-D
Conservative Jerk Chaotic Systems

In this section, we use backstepping control method to derive an adaptive control law
for globally and exponentially synchronizing the identical 3-D novel conservative
jerk chaotic systems with unknown parameters.
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Fig. 5 Time-history of the
controlled states x1, x2, x3
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As the master system, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax2 + x1

(
x2
1 + x2

2 − b
) (54)

where x1, x2, x3 are the states of the system, and a and b are unknown constant
parameters.

As the slave system, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = −ay2 + y1

(
y21 + y22 − b

) + u
(55)

where y1, y2, y3 are the states of the system, and u is a backstepping control to be
determined using estimates â(t) and b̂(t) for a and b, respectively.

We define the synchronization errors between the states of the master system (54)
and the slave system (55) as ⎧

⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(56)

Then the error dynamics is easily obtained as

⎧
⎨

⎩

ė1 = e2
ė2 = e3
ė3 = −be1 − ae2 + y31 − x3

1 + y1y22 − x1x2
2 + u

(57)



98 S. Vaidyanathan and C.K. Volos

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(58)

Differentiating (58) with respect to t , we obtain the following equations:

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(59)

Theorem 2 The identical 3-D novel jerk chaotic systems (54) and (55) with unknown
parameters a and b are globally and exponentially synchronized by the adaptive
control law

u(t) = −
[
3 − b̂(t)

]
e1 − [

5 − â(t)
]

e2 − 3e3 − y31 + x3
1 − y1y22 + x1x2

2 − kz3
(60)

where k > 0 is a gain constant,

z3 = 2e1 + 2e2 + e3, (61)

and the update law for the parameter estimates â(t), b̂(t) is given by

{ ˙̂a(t) = −e2z3˙̂b(t) = −e1z3
(62)

Proof First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (63)

where
z1 = e1 (64)

Differentiating V1 along the error dynamics (57), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (65)

Now, we define
z2 = e1 + e2 (66)

Using (66), we can simplify the Eq. (65) as

V̇1 = −z21 + z1z2 (67)
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Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(68)

Differentiating V2 along the error dynamics (57), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (69)

Now, we define
z3 = 2e1 + 2e2 + e3 (70)

Using (70), we can simplify the Eq. (69) as

V̇2 = −z21 − z22 + z2z3 (71)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b (72)

which is a positive definite function on R5.
Differentiating V along the error dynamics (57), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (73)

Equation (73) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (74)

where
S = z3 + z2 + ż3 = z3 + z2 + 2ė1 + 2ė2 + ė3 (75)

A simple calculation gives

S = (3 − b)e1 + (5 − a)e2 + 3e3 + y31 − x3
1 + y1y22 − x1x2

2 + u (76)

Substituting the adaptive control law (60) into (41), we obtain

S = −
[
b − b̂(t)

]
e1 − [

a − â(t)
]

e2 − kz3 (77)

Using the definitions (59), we can simplify (77) as

S = −ebe1 − eae2 − kz3 (78)
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Substituting the value of S from (78) into (74), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

(
−e2z3 − ˙̂a

)
+ eb

(
−e1z3 − ˙̂b

)
(79)

Substituting the update law (62) into (79), we get

V̇ = −z21 − z22 − (1 + k)z23, (80)

which is a negative semi-definite function on R5.
From (80), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t)

] ∈ L∞ (81)

Also, it follows from (80) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (82)

That is,
‖z‖2 ≤ −V̇ (83)

Integrating the inequality (83) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (84)

From (84), it follows that z(t) ∈ L2.
From Eq. (57), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [15], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial con-

ditions e(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (54)
and (55), when the adaptive control law (60) and the parameter update law (62) are
applied.

The parameter values of the novel conservative jerk chaotic systems are taken as
in the chaotic case, i.e. a = 4 and b = 1.

The positive gain constant k is taken as k = 10.
Furthermore, as initial conditions of the master chaotic system (54), we take

x1(0) = 0.1, x2(0) = −1.2, x3(0) = −1.6 (85)
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Fig. 6 Synchronization of
the states x1 and y1
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Fig. 7 Synchronization of
the states x2 and y2
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As initial conditions of the slave chaotic system (55), we take

y1(0) = 3.6, y2(0) = 2.3, y3(0) = 1.2 (86)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 2.6, b̂(0) = 3.4 (87)

In Figs. 6, 7 and 8, the complete synchronization of the identical 3-D conservative
jerk chaotic systems (54) and (55) is shown.

Also, in Fig. 9, the time-history of the synchronization errors e1(t), e2(t), e3(t),
is shown.
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Fig. 8 Synchronization of
the states x3 and y3
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Fig. 9 Time-history of the
synchronization errors
e1, e2, e3
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6 Conclusions

In the chaos literature, numerous dissipative chaotic systems have been discovered,
but only a very few conservative chaotic systems have been found. In this research
work, we announced a six-term novel 3-D conservative jerk chaotic system with two
cubic nonlinearities. Thequalitative properties of the conservative jerk chaotic system
were discussed in detail.We have also designed adaptive backstepping controllers for
stabilization and synchronization of the six-term novel 3-D conservative jerk chaotic
system.
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Synchronization and Circuit Simulation
of a Novel Jerk Chaotic System
with a Quartic Nonlinearity
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Abstract This work describes a six-term novel 3-D jerk chaotic system with a
quartic nonlinearity. The phase portraits of the novel jerk chaotic system are dis-
played and the qualitative properties of the novel jerk system are discussed. The
novel jerk chaotic system has exactly one equilibrium point, which is saddle-
focus. The Lyapunov exponents of the novel jerk chaotic system are obtained as
L1 = 0.1443, L2 = 0 and L3 = −2.8439. TheKaplan–Yorke dimension of the novel
jerk chaotic system is obtained as DK Y = 2.0507. Next, an adaptive backstepping
controller is designed toglobally stabilize thenovel jerk chaotic systemwithunknown
parameters.Moreover, an adaptive backstepping controller is also designed to achieve
global chaos synchronization of the identical jerk chaotic systems with unknown
parameters. The backstepping control method is a recursive procedure that links the
choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations have been
shown to illustrate the phase portraits of the novel jerk chaotic system and also the
adaptive backstepping control results. Finally, an electronic circuit realization of the
novel jerk chaotic system using Spice is presented in detail to confirm the feasibility
of the theoretical model.
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1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [17], Rössler system [29], ACT system [2], Sprott systems [37], Chen system
[7], Lü system [18], Cai system [5], Tigan system [48], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [129], Zhu system [130], Li system [14], Wei-Yang system [124],
Sundarapandian systems [40, 45], Vaidyanathan systems [58, 59, 61–64, 67, 78,
79, 93, 96, 98, 107, 110, 112, 114, 116, 117], Pehlivan system [21], Sampath
system [30], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [68, 72, 74, 76, 80, 84–86], biological systems [66, 69–71, 73, 75,
77, 81–83, 87–91], memristors [1, 22, 122], lasers [4], oscillations [49], robotics [10,
121], electrical circuits [19, 120], cryptosystems [28, 50], secure communications
[126, 127], etc.

The studyof control of a chaotic system investigates feedback controlmethods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Manymethods have been designed for control and regulation of chaotic systems such
as active control [38, 39, 52], adaptive control [108, 115, 118], backstepping control
[15, 123], sliding mode control [55, 57], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization problem is to apply the output of the
master system to control the slave system so that the output of the slave system tracks
the output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 20]. The active control method [12, 31, 32, 44, 51,
56, 99, 100, 103] is typically used when the system parameters are available for
measurement. Adaptive control method [33–35, 41–43, 54, 60, 92, 97, 101, 102,
109, 113] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 16, 125, 128] and time-delay feed-
back control method [8, 11, 36] are also used for synchronization of chaotic systems.
Backstepping control method [23–27, 47, 104, 111, 119] is also used for the syn-
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chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [13]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [46, 53, 65, 94, 95, 105, 106], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.

In the recent decades, there is some good interest in finding novel chaotic systems,
which can be expressed by an explicit third order differential equation describing the
time evolution of the single scalar variable x given by

...
x = j (x, ẋ, ẍ) (1)

The differential equation (1) is called “jerk system” because the third order time
derivative in mechanical systems is called jerk.

By defining phase variables x1 = x, x2 = ẋ and x3 = ẍ , the jerk differential equa-
tion (1) can be expressed as a 3-D system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = j (x1, x2, x3)

(2)

In this research work, we announce a six-term novel 3-D jerk chaotic system with
a quartic nonlinearity. We have also designed adaptive backstepping controllers for
stabilization and synchronization of the six-term novel 3-D jerk chaotic system.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the novel 3-D jerk chaotic system. Section3 details the qualitative
properties of the novel jerk chaotic system. The novel jerk chaotic system has exactly
one equilibrium point, which is a saddle-focus. Thus, the system has an unstable
equilibrium point. The Lyapunov exponents of the novel jerk chaotic system are
obtained as L1 = 0.1443, L2 = 0 and L3 = −2.8439. Since the sumof theLyapunov
exponents is negative, the novel jerk chaotic system is dissipative. Thus, the system
limit sets are ultimately confined into a specific limit set of zero volume, and the
asymptotic motion of the novel jerk chaotic system settles onto a strange attractor of
the system. TheKaplan–Yorke dimension of the novel jerk chaotic system is obtained
as DK Y = 2.0507.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel jerk chaotic systemwith unknown parameters. In Sect. 5, an adaptive backstep-
ping controller is designed to achieve global chaos synchronization of the identical
novel jerk chaotic systems with unknown parameters. In Sect. 6, an electronic circuit
realization of the novel jerk chaotic system using Spice is presented to confirm the
feasibility of the theoretical model. Section7 contains the conclusions of this work.
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2 A 3-D Novel Jerk Chaotic System

In this section, we describe a six-term novel jerk chaotic system with a quartic
nonlinearity.

Our novel 3-D jerk chaotic system is modeled by the 3-D dynamics

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax1 − bx3 + cx3

1 x2 − 1
(3)

where x1, x2, x3 are the states and a, b, c are constant positive parameters.
The system (3) exhibits a strange chaotic attractor for the parameter values

a = 4, b = 2.7, c = 0.6 (4)

For numerical simulations, we take the initial conditions as

x1(0) = 0.6, x2(0) = 0.2, x3(0) = 0.4 (5)

Figure1 shows the 3-D phase portrait of the novel system (3). Figures2, 3 and 4
show the 2-D projection of the novel jerk chaotic system (3) on the (x1, x2), (x2, x3)
and (x1, x3) planes, respectively.
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Fig. 1 3-D phase portrait of the novel jerk chaotic system
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Fig. 3 2-D projection of the jerk chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the jerk chaotic system on the (x1, x3) plane

3 Analysis of the 3-D Jerk Chaotic System

In this section, we give a dynamic analysis of the 3-D novel jerk chaotic system (3).

3.1 Dissipativity

In vector notation, the new jerk system (3) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (6)

where ⎧
⎨

⎩

f1(x1, x2, x3) = x2
f2(x1, x2, x3) = x3
f3(x1, x2, x3) = −ax1 − bx3 + cx3

1 x2 − 1
(7)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
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By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (8)

The divergence of the novel jerk system (6) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −b < 0 (9)

since b is a positive parameter.
Inserting the value of ∇ · f from (9) into (8), we get

V̇ (t) =
∫

Ω(t)

(−b) dx1 dx2 dx3 = −bV (t) (10)

Integrating the first order linear differential equation (10), we get

V (t) = exp(−bt)V (0) (11)

Since b > 0, it follows from Eq. (11) that V (t) → 0 exponentially as t → ∞.
This shows that the novel 3-D jerk chaotic system (3) is dissipative. Hence, the
system limit sets are ultimately confined into a specific limit set of zero volume,
and the asymptotic motion of the novel jerk chaotic system (3) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

The equilibrium points of the jerk chaotic system (3) are obtained by solving the
equations ⎧

⎨

⎩

f1(x1, x2, x3) = x2 = 0
f2(x1, x2, x3) = x3 = 0
f3(x1, x2, x3) = −ax1 − bx3 + cx3

1 x2 − 1 = 0
(12)

We take the parameter values as in the chaotic case, viz. a = 4, b = 2.7 and
c = 0.6.

Solving the Eq. (12), we get a unique equilibrium point of the jerk chaotic system
(3) as

E1 =
⎡

⎣
−1/a
0
0

⎤

⎦ =
⎡

⎣
−0.25

0
0

⎤

⎦ (13)
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To test the stability type of the equilibrium point E1, we calculate the Jacobian
matrix of the novel jerk chaotic system (3) at any point x :

J (x) =
⎡

⎣
0 1 0
0 0 1

−a + 3cx2
1 x2 cx3

1 −b

⎤

⎦ (14)

We find that

J1
Δ= J (E1) =

⎡

⎣
0 1 0
0 0 1

−4 −0.0094 −2.7

⎤

⎦ (15)

The matrix J1 has the eigenvalues

λ1 = −3.1104, λ2,3 = 0.2052 ± 1.1153i (16)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel jerk system (3) as a = 4, b = 2.7 and
c = 0.6. We take the initial state of the jerk system (3) as given in (5).

Then the Lyapunov exponents of the jerk system (3) are numerically obtained
using MATLAB as

L1 = 0.1443, L2 = 0, L3 = −2.8439 (17)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (3) is
positive, which means that the system has a chaotic behavior.

Since L1 + L2 + L3 = −0.082 < 0, it follows that the novel jerk chaotic system
(3) is dissipative.

Also, theKaplan–Yorke dimension of the novel jerk chaotic system (3) is obtained
as

DK Y = 2 + L1 + L2

|L3| = 2.0507 (18)

which is fractional.

4 Adaptive Control of the 3-D Novel Jerk Chaotic System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel novel jerk chaotic system with
unknown parameters.
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Thus, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax1 − bx3 + cx3

1 x2 − 1 + u
(19)

where a, b and c are unknown constant parameters, and u is a backstepping control
law to be determined using estimates â(t), b̂(t) and ĉ(t) for a, b and c, respectively.

The parameter estimation errors are defined as:

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(20)

Differentiating (20) with respect to t , we obtain the following equations:

⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(21)

Next, we shall state and prove the main result of this section.
This theorem gives a backstepping-based adaptive control for globally stabilizing

the 3-D novel jerk chaotic system (19) with unknown parameters, and we establish
theorem using Lyapunov stability theory [13].

Theorem 1 The 3-D novel jerk chaotic system (19), with unknown parameters a, b
and c, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) = −(3 − â(t))x1 − 5x2 − (3 − b̂(t))x3 − ĉ(t)x3
1 x2 + 1 − kz3 (22)

where k > 0 is a gain constant,

z3 = 2x1 + 2x2 + x3, (23)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

⎧
⎪⎨

⎪⎩

˙̂a(t) = −x1z3˙̂b(t) = −x3z3˙̂c(t) = x3
1 x2z3

(24)

Proof We prove this result via Lyapunov stability theory [13].
First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (25)
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where
z1 = x1 (26)

Differentiating V1 along the dynamics (19), we get

V̇1 = z1 ż1 = x1x2 = −z21 + z1(x1 + x2) (27)

Now, we define
z2 = x1 + x2 (28)

Using (28), we can simplify the Eq. (27) as

V̇1 = −z21 + z1z2 (29)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(30)

Differentiating V2 along the dynamics (19), we get

V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (31)

Now, we define
z3 = 2x1 + 2x2 + x3 (32)

Using (32), we can simplify the Eq. (31) as

V̇2 = −z21 − z22 + z2z3 (33)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb, ec) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b + 1

2
e2c (34)

which is a positive definite function on R6.
Differentiating V along the dynamics (19), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b − ec
˙̂c (35)

Equation (35) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b − eb
˙̂b − ec

˙̂c (36)
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where
S = z3 + z2 + ż3 = z3 + z2 + 2ẋ1 + 2ẋ2 + ẋ3 (37)

A simple calculation gives

S = (3 − a)x1 + 5x2 + (3 − b)x3 + cx3
1 x2 − 1 + u (38)

Substituting the adaptive control law (22) into (38), we obtain

S = − [
a − â(t)

]
x1 −

[
b − b̂(t)

]
x3 + [

c − ĉ(t)
]

x3
1 x2 − kz3 (39)

Using the definitions (21), we can simplify (39) as

S = −ea x1 − ebx3 + ecx3
1 x2 − kz3 (40)

Substituting the value of S from (40) into (36), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

(
−x1z3 − ˙̂a

)
+ eb

(
−x3z3 − ˙̂b

)
+ ec

(
x31 x2z3 − ˙̂c

)

(41)

Substituting the update law (24) into (41), we get

V̇ = −z21 − z22 − (1 + k)z23, (42)

which is a negative semi-definite function on R6.
From (42), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t) ec(t)

] ∈ L∞ (43)

Also, it follows from (42) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (44)

That is,
‖z‖2 ≤ −V̇ (45)

Integrating the inequality (45) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (46)

From (46), it follows that z(t) ∈ L2.
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From Eq. (19), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [13], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial con-

ditions x(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (19) and
(24), when the adaptive control law (22) is applied.

The parameter values of the novel jerk chaotic system (19) are taken as

a = 4, b = 2.7, c = 0.6 (47)

We take the positive gain constant as

k = 8 (48)

Furthermore, as initial conditions of the novel jerk chaotic system (19), we take

x1(0) = 5.4, x2(0) = 3.2, x3(0) = 2.7 (49)

Also, as initial conditions of the parameter estimates â(t), b̂(t) and ĉ(t), we take

â(0) = 3.2, b̂(0) = 5.4, ĉ(0) = 10.4 (50)

In Fig. 5, the exponential convergence of the controlled states x1(t), x2(t), x3(t)
is depicted, when the adaptive control law (22) and (24) are implemented.

5 Adaptive Synchronization of the Identical 3-D Jerk
Chaotic Systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.

As the master system, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = −ax1 − bx3 + cx3

1 x2 − 1
(51)

where x1, x2, x3 are the states of the system, and a, b and c are unknown constant
parameters.
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Fig. 5 Time-history of the controlled states x1, x2, x3

As the slave system, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = −ay1 − by3 + cy31 y2 − 1 + u

(52)

where y1, y2, y3 are the states of the system, and u is a backstepping control to be
determined using estimates â(t), b̂(t) and ĉ(t) for a, b and c, respectively.

We define the synchronization error between the states of the master system (51)
and the slave system (52) as ⎧

⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(53)

Then the error dynamics is easily obtained as

⎧
⎨

⎩

ė1 = e2
ė2 = e3
ė3 = −ae1 − be3 + c

(
y31 y2 − x3

1 x2
) + u

(54)

The parameter estimation errors are defined as:

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(55)
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Differentiating (55) with respect to t , we obtain the following equations:

⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(56)

Theorem 2 The identical 3-D novel jerk chaotic systems (51) and (52) with unknown
parameters a, b and c are globally and exponentially synchronized by the adaptive
control law

u(t) = − [
3 − â(t)

]
e1 − 5e2 −

[
3 − b̂(t)

]
e3 − ĉ(t)

[
y31 y2 − x3

1 x2
] − kz3 (57)

where k > 0 is a gain constant,

z3 = 2e1 + 2e2 + e3, (58)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

⎧
⎪⎨

⎪⎩

˙̂a(t) = −e1z3˙̂b(t) = −e3z3˙̂c(t) = z3
(
y31 y2 − x3

1 x2
)

(59)

Proof First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (60)

where
z1 = e1 (61)

Differentiating V1 along the error dynamics (54), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (62)

Now, we define
z2 = e1 + e2 (63)

Using (63), we can simplify the Eq. (62) as

V̇1 = −z21 + z1z2 (64)
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Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(65)

Differentiating V2 along the error dynamics (54), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (66)

Now, we define
z3 = 2e1 + 2e2 + e3 (67)

Using (67), we can simplify the Eq. (66) as

V̇2 = −z21 − z22 + z2z3 (68)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb, ec) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b + 1

2
e2c (69)

Differentiating V along the error dynamics (54), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (70)

Equation (70) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (71)

where
S = z3 + z2 + ż3 = z3 + z2 + 2ė1 + 2ė2 + ė3 (72)

A simple calculation gives

S = (3 − a)e1 + 5e2 + (3 − b)e3 + c
(
y31 y2 − x3

1 x2
) + u (73)

Substituting the adaptive control law (57) into (73), we obtain

S = − [
a − â(t)

]
e1 −

[
b − b̂(t)

]
e3 + [

c − ĉ(t)
] (

y31 y2 − x3
1 x2

) − kz3 (74)

Using the definitions (56), we can simplify (74) as

S = −eae1 − ebe3 + ec
(
y31 y2 − x3

1 x2
) − kz3 (75)
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Substituting the value of S from (75) into (71), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

(
−e1z3 − ˙̂a

)
+ eb

(
−e3z3 − ˙̂b

)

+ ec

[
z3

(
y31 y2 − x3

1 x2
) − ˙̂c

]
(76)

Substituting the update law (59) into (76), we get

V̇ = −z21 − z22 − (1 + k)z23, (77)

which is a negative semi-definite function on R6.
From (77), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t) ec(t)

] ∈ L∞ (78)

Also, it follows from (77) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (79)

That is,
‖z‖2 ≤ −V̇ (80)

Integrating the inequality (80) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (81)

From (81), it follows that z(t) ∈ L2.
From Eq. (54), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [13], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial con-

ditions e(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of novel jerk chaotic systems,
which are taken as the master and slave systems.
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The parameter values of the novel jerk chaotic systems are taken as in the chaotic
case, i.e. a = 4, b = 2.7 and c = 0.6.

We take the positive gain constant as k = 10.
Furthermore, as initial conditions of the master system (51), we take

x1(0) = 0.5, x2(0) = 0.3, x3(0) = 0.6 (82)

As initial conditions of the slave system (52), we take

y1(0) = −0.4, y2(0) = −0.2, y3(0) = 0.2 (83)

Also, as initial conditions of the parameter estimates â(t), b̂(t) and ĉ(t), we take

â(0) = 0.6, b̂(0) = 1.4, ĉ(0) = 0.5 (84)

In Figs. 6, 7, and 8, the complete synchronization of the identical 3-D jerk chaotic
systems (51) and (52) is depicted.

Also, in Fig. 9, the time-history of the synchronization errors e1(t), e2(t), e3(t),
is depicted.

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4

Time (sec)

x 1, y
1

x
1

y
1

Fig. 6 Synchronization of the states x1 and y1



126 S. Vaidyanathan et al.

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

Time (sec)

x 2, y
2

x 2
y

2

Fig. 7 Synchronization of the states x2 and y2

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

20

25

Time (sec)

x 3, y
3

x3
y

3

Fig. 8 Synchronization of the states x3 and y3



Adaptive Backstepping Control, Synchronization and Circuit Simulation … 127

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (sec)

e 1, e
2, e

3

e
1

e
2

e
3

Fig. 9 Time-history of the synchronization errors e1, e2, e3

6 Circuit Realization of the Novel Jerk System

In this section, circuit realization of the novel jerk system is reported. The state
variable x3 of jerk system (3) is scaled down. As a result, the novel jerk system (3)
has been changed to

⎧
⎨

⎩

Ẋ1 = X2

Ẋ2 = 4X3

Ẋ3 = − a
4 X1 − bX3 + c

4 X3
1 X2 − 1

4 ,

(85)

where X1 = x1, X2 = x2, and X3 = 1
4 x3.

The electronic circuit realizing the system (85) is designed by using off-the-
shelf components and shown in Fig. 10. It is easy to obtained the following circuital
equations

⎧
⎪⎨

⎪⎩

dvC1
dt = 1

R1C1
vC2

dvC2
dt = 1

R2C2
vC3

dvC3
dt = − 1

R3C3
vC1 − 1

R4C3
vC3 + 1

1000R5C3
v3C1

vC2 − 1
R6C3

Ve

(86)

where vC1 , vC2 , and vC3 are the voltages across the capacitors C1, C2, and C3, respec-
tively. Here the design approach based on the operational amplifiers [98, 110] is
applied. Therefore, each state variable of system (85), i.e. X1, X2, X3 is implemented
as the voltage across the corresponding capacitors C1, C2, and C3, respectively.
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Fig. 10 The designed electronic circuit schematic of the novel jerk chaotic system

The power supplies of all active devices are ±15VDC and the TL084 oper-
ational amplifiers are used in this work. The values of components in Fig. 10
are chosen to match the parameters of system (85) as follows: R1 = R3 = R7 =
R8 = R9 = R10 = 400k�, R2 = 100k�, R4 = 148.148k�, R5 = 2.666k�, R6 =
1.6M�, Ve = 1VDC , and C1 = C2 = C3 =1nF.

Fig. 11 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC1–vC2 plane
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The designed circuit is implemented in the electronic simulation packageCadence
OrCAD. The obtained results are displayed in Figs. 11, 12 and 13, which show the
chaotic attractors in vC1–vC2 , vC2–vC3 , and vC1–vC3 planes. Thus the feasibility of the
proposed chaotic jerk system is confirmed.

Fig. 12 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC2 –vC3 plane

Fig. 13 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC1–vC3 plane
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7 Conclusions

In this paper, we proposed a novel six-term jerk chaotic systemwith a quartic nonlin-
earity. Dynamic characteristics of new system has been discovered. It is worth noting
that the possibilities of control and synchronization of such system with unknown
parameters are verified by constructing an adaptive backstepping controller. The
main results were established using adaptive control theory and Lyapunov stability
theory. Moreover, the correction and feasibility of novel theoretical system are con-
firmed through Spice results which are obtained from the designed electronic circuit.
It is possible to use the new jerk system in potential chaos-based applications such
as secure communications, random generation, or path planning for autonomous
mobile robots. It is believed that the unknown dynamical behaviors of such strange
chaotic jerk systems should be further investigated in the future research on chaos
theory.
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A Seven-Term Novel Jerk Chaotic System
and Its Adaptive Control

Sundarapandian Vaidyanathan

Abstract In this work, we describe a seven-term novel 3-D jerk chaotic system
with two nonlinearities (quadratic and cubic). The phase portraits of the novel jerk
chaotic system are displayed and the dynamic properties of the novel jerk chaotic
system are discussed. The novel jerk chaotic system has three saddle-foci equilibrium
points, which are unstable. The Lyapunov exponents of the novel jerk chaotic sys-
tem are obtained as L1 = 0.5565, L2 = 0 and L3 = −1.5566. The Kaplan–Yorke
dimension of the novel jerk chaotic system is obtained as DK Y = 2.3575. Next,
an adaptive backstepping controller is designed to globally stabilize the novel jerk
chaotic system with unknown parameters. Moreover, an adaptive backstepping con-
troller is also designed to achieve global chaos synchronization of the identical jerk
chaotic systems with unknown parameters. The backstepping control method is a
recursive procedure that links the choice of a Lyapunov function with the design of
a controller and guarantees global asymptotic stability of strict feedback systems.
MATLAB simulations have been shown to illustrate all the main results derived in
this work.

Keywords Chaos · Chaotic systems · Jerk systems · Backstepping control · Adap-
tive control · Synchronization

1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz sys-
tem [17], Rössler system [29], ACT system [2], Sprott systems [37], Chen system [7],
Lü system [18], Cai system [5], Tigan system [48], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [128], Zhu system [129], Li system [14], Wei-Yang system [123],
Sundarapandian systems [40, 45], Vaidyanathan systems [58, 59, 61–64, 67, 78,
79, 93, 96, 98, 107, 109, 111, 113, 115, 116], Pehlivan system [21], Sampath
system [30], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [68, 72, 74, 76, 80, 84–86], biological systems [66, 69–71, 73, 75,
77, 81–83, 87–91], memristors [1, 22, 121], lasers [4], oscillations [49], robotics
[10, 120], electrical circuits [19, 119], cryptosystems [28, 50], secure communica-
tions [125, 126], etc.

Many methods have been designed for control and regulation of chaotic systems
such as active control [38, 39, 52], adaptive control [108, 114, 117], backstepping
control [15, 122], sliding mode control [55, 57], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 20]. The active control method [12, 31, 32, 44, 51,
56, 99, 100, 103] is typically used when the system parameters are available for
measurement. Adaptive control method [33–35, 41–43, 54, 60, 92, 97, 101, 102,
108, 112] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 16, 124, 127] and time-delay feed-
back control method [8, 11, 36] are also used for synchronization of chaotic systems.
Backstepping control method [23–27, 47, 104, 110, 118] is also used for the syn-
chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [13]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [46, 53, 65, 94, 95, 105, 106], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.

In the recent decades, there is some good interest in finding jerk chaotic systems,
which are described by the third-order ODE

...
x = j (x, ẋ, ẍ) (1)

The differential equation (1) is called “jerk system” because the third order time
derivative in mechanical systems is called jerk.
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By defining phase variables x1 = x, x2 = ẋ and x3 = ẍ , the jerk differential
equation (1) can be expressed as a 3-D system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = j (x1, x2, x3)

(2)

In this research work, we announce a six-term novel 3-D jerk chaotic system with
a quartic nonlinearity. We have also designed adaptive backstepping controllers for
stabilization and synchronization of the six-term novel 3-D jerk chaotic system.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the novel 3-D jerk chaotic system. Section3 details the qualitative
properties of the novel jerk chaotic system. The novel jerk chaotic system has three
unstable equilibriumpoints. TheLyapunovexponents of the novel jerk chaotic system
are obtained as L1 = 0.5565, L2 = 0 and L3 = −1.5566, while the Kaplan–Yorke
dimension of the novel jerk chaotic system is obtained as DK Y = 2.3575.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize the
novel jerk chaotic systemwith unknown parameters. In Sect. 5, an adaptive backstep-
ping controller is designed to achieve global chaos synchronization of the identical
novel jerk chaotic systems with unknown parameters. Section6 contains the conclu-
sions of this work.

2 A 3-D Novel Jerk Chaotic System

In this section, we describe a seven-term novel 3-D jerk chaotic system with two
nonlinearities (quadratic and cubic) described by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − x2

1 − x3
1 − bx2 − x3

(3)

where x1, x2, x3 are the states and a, b are constant, positive parameters.
The system (3) exhibits a strange chaotic attractor for the parameter values

a = 134, b = 50 (4)

For numerical simulations, we take the initial conditions as

x1(0) = 0.2, x2(0) = 0, x3(0) = 0.4 (5)

Figure1 shows the 3-D phase portrait of the novel system (3). Figures2, 3 and 4
show the 2-D projection of the novel jerk chaotic system (3) on the (x1, x2), (x2, x3)
and (x1, x3) planes, respectively.
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Fig. 1 3-D phase portrait of the novel jerk chaotic system
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Fig. 2 2-D projection of the jerk chaotic system on the (x1, x2) plane
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Fig. 3 2-D projection of the jerk chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the jerk chaotic system on the (x1, x3) plane
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3 Analysis of the 3-D Novel Jerk Chaotic System

3.1 Dissipativity

In vector notation, the new jerk system (3) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (6)

where
⎧
⎨

⎩

f1(x1, x2, x3) = x2
f2(x1, x2, x3) = x3
f3(x1, x2, x3) = ax1 − x2

1 − x3
1 − bx2 − x3

(7)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (8)

The divergence of the novel jerk system (6) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −1 < 0 (9)

since b is a positive parameter.
Inserting the value of ∇ · f from (9) into (8), we get

V̇ (t) =
∫

Ω(t)

(−b) dx1 dx2 dx3 = −V (t) (10)

Integrating the first order linear differential equation (10), we get

V (t) = exp(−t)V (0) (11)

Since b > 0, it follows from Eq. (11) that V (t) → 0 exponentially as t → ∞.
This shows that the novel 3-D jerk chaotic system (3) is dissipative. Hence, the
system limit sets are ultimately confined into a specific limit set of zero volume,
and the asymptotic motion of the novel jerk chaotic system (3) settles onto a strange
attractor of the system.
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3.2 Equilibrium Points

The equilibrium points of the novel jerk chaotic system (3) are obtained by solving
the equations

⎧
⎨

⎩

f1(x1, x2, x3) = x2 = 0
f2(x1, x2, x3) = x3 = 0
f3(x1, x2, x3) = ax1 − x2

1 − x3
1 − bx2 − x3 = 0

(12)

We take the parameter values as in the chaotic case, viz. a = 134 and b = 50.
Solving the Eq. (12), we get three equilibrium points of the novel jerk chaotic

system (3) as

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E1 =
⎡

⎣
11.0866

0
0

⎤

⎦ , E2 =
⎡

⎣
−12.0866

0
0

⎤

⎦ (13)

To test the stability type of the equilibriumpoints, we calculate the Jacobianmatrix
of the novel jerk chaotic system (3) at any point x :

J (x) =
⎡

⎣
0 1 0
0 0 1

a − 2x1 − 3x2
1 −b −1

⎤

⎦ (14)

We find that

J0
Δ= J (E0) =

⎡

⎣
0 1 0
0 0 1
134 −50 −1

⎤

⎦ (15)

The matrix J0 has the eigenvalues

λ1 = 2.3218, λ2,3 = −1.6609 ± 7.4131 i (16)

This shows that the equilibrium point E0 is a saddle-focus, which is unstable.
Next, we find that

J1
Δ= J (E0) =

⎡

⎣
0 1 0
0 0 1

−256.9113 −50 −1

⎤

⎦ (17)

The matrix J1 has the eigenvalues

λ1 = −4.0978, λ2,3 = 1.5489 ± 7.7650 i (18)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
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We also find that

J2
Δ= J (E0) =

⎡

⎣
0 1 0
0 0 1

−280.0845 −50 −1

⎤

⎦ (19)

The matrix J1 has the eigenvalues

λ1 = −4.3418, λ2,3 = 1.6709 ± 7.8560 i (20)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
Thus, the novel jerk chaotic system (3) has three unstable equilibrium points.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel jerk system (3) as a = 134 and b = 50.
We take the initial state of the jerk system (3) as given in (5).

Then the Lyapunov exponents of the novel jerk system (3) are numerically
obtained using MATLAB as

L1 = 0.5565, L2 = 0, L3 = −1.5566 (21)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (3) is
positive, which means that the system has a chaotic behavior.

Since L1 + L2 + L3 = −1.001 < 0, it follows that the novel jerk chaotic system
(3) is dissipative.

Also, the Kaplan–Yorke dimension of the novel jerk chaotic system (3) is
obtained as

DK Y = 2 + L1 + L2

|L3| = 2.3575 (22)

which is fractional.

4 Adaptive Control of the 3-D Novel Jerk Chaotic System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel jerk chaotic system with unknown
parameters.
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Thus, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − x2

1 − x3
1 − bx2 − x3 + u

(23)

In (23), x1, x2, x3 are the states, a, b are unknown constant parameters, and u is
a backstepping control law to be determined using estimates â(t) and b̂(t) for the
unknown parameters a and b, respectively.

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(24)

Differentiating (24) with respect to t , we obtain the following equations:

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(25)

Next, we shall state and prove the main result of this section.

Theorem 1 The 3-D novel jerk chaotic system (23), with unknown parameters a
and b, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) = − [
3 + â(t)

]
x1 −

[
5 − b̂(t)

]
x2 − 2x3 + x2

1 + x3
1 − kz3 (26)

where k > 0 is a gain constant,

z3 = 2x1 + 2x2 + x3, (27)

and the update law for the parameter estimates â(t), b̂(t) is given by

{ ˙̂a(t) = x1z3˙̂b(t) = −x2z3
(28)

Proof We prove this result via Lyapunov stability theory [13].
First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (29)

where

z1 = x1 (30)
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Differentiating V1 along the dynamics (23), we get

V̇1 = z1 ż1 = x1x2 = −z21 + z1(x1 + x2) (31)

Now, we define

z2 = x1 + x2 (32)

Using (32), we can simplify the Eq. (31) as

V̇1 = −z21 + z1z2 (33)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(34)

Differentiating V2 along the dynamics (23), we get

V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (35)

Now, we define

z3 = 2x1 + 2x2 + x3 (36)

Using (36), we can simplify the Eq. (35) as

V̇2 = −z21 − z22 + z2z3 (37)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b (38)

Differentiating V along the dynamics (23), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (39)

Equation (39) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (40)

where

S = z3 + z2 + ż3 = z3 + z2 + 2ẋ1 + 2ẋ2 + ẋ3 (41)
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A simple calculation gives

S = (3 + a)x1 + (5 − b)x2 + 2x3 − x2
1 − x3

1 + u (42)

Substituting the adaptive control law (26) into (42), we obtain

S = [
a − â(t)

]
x1 −

[
b − b̂(t)

]
x2 − kz3 (43)

Using the definitions (25), we can simplify (43) as

S = ea x1 − ebx2 − kz3 (44)

Substituting the value of S from (44) into (40), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

(
x1z3 − ˙̂a

)
+ eb

(
−x2z3 − ˙̂b

)
(45)

Substituting the update law (28) into (45), we get

V̇ = −z21 − z22 − (1 + k)z23, (46)

which is a negative semi-definite function on R5.
From (46), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t)

] ∈ L∞ (47)

Also, it follows from (46) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (48)

That is,

‖z‖2 ≤ −V̇ (49)

Integrating the inequality (49) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (50)

From (50), it follows that z(t) ∈ L2.
From Eq. (23), it can be deduced that ż(t) ∈ L∞.
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Thus, using Barbalat’s lemma [13], we conclude that z(t) → 0 exponentially as
t → ∞ for all initial conditions z(0) ∈ R3.

Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial
conditions x(0) ∈ R3.

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (23) and
(28), when the adaptive control law (26) is applied.

The parameter values of the novel jerk chaotic system (23) are taken as

a = 134, b = 50 (51)

We take the positive gain constant as

k = 8 (52)

Furthermore, as initial conditions of the novel jerk chaotic system (23), we take

x1(0) = −5.4, x2(0) = 6.2, x3(0) = 4.7 (53)
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Fig. 5 Time-history of the controlled states x1, x2, x3
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Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 10.2, b̂(0) = 12.4 (54)

In Fig. 5, the exponential convergence of the controlled states x1(t), x2(t), x3(t)
is depicted, when the adaptive control law (26) and (28) are implemented.

5 Adaptive Synchronization of the Identical 3-D Jerk
Chaotic Systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.

As the master system, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − x2

1 − x3
1 − bx2 − x3

(55)

where x1, x2, x3 are the states of the system, and a, b are unknown, constant para-
meters.

As the slave system, we consider the 3-D novel jerk chaotic system given by

⎧
⎨

⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = ay1 − y21 − y31 − by2 − y3 + u

(56)

where y1, y2, y3 are the states of the system, and u is a backstepping control to
be determined using estimates â(t) and b̂(t) for the unknown parameters a and b,
respectively.

We define the synchronization error between the states of the master system (55)
and the slave system (56) as ⎧

⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(57)

Then the error dynamics is easily obtained as

⎧
⎨

⎩

ė1 = e2
ė2 = e3
ė3 = ae1 − be2 − e3 − y21 + x2

1 − y31 + x3
1 + u

(58)
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The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(59)

Differentiating (59) with respect to t , we obtain

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(60)

Theorem 2 The identical 3-D novel jerk chaotic systems (55) and (56) with unknown
parameters a and b are globally and exponentially synchronized by the adaptive
control law

u = − [
3 + â(t)

]
e1 −

[
5 − b̂(t)

]
e2 − 2e3 + y21 − x2

1 + y31 − x3
1 − kz3 (61)

where k > 0 is a gain constant,

z3 = 2e1 + 2e2 + e3, (62)

and the update law for the parameter estimates â(t), b̂(t) is given by

{ ˙̂a(t) = e1z3˙̂b(t) = −e2z3
(63)

Proof First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (64)

where

z1 = e1 (65)

Differentiating V1 along the error dynamics (58), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (66)

Now, we define
z2 = e1 + e2 (67)

Using (67), we can simplify the Eq. (66) as

V̇1 = −z21 + z1z2 (68)



A Seven-Term Novel Jerk Chaotic System and Its Adaptive Control 151

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(69)

Differentiating V2 along the error dynamics (58), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (70)

Now, we define

z3 = 2e1 + 2e2 + e3 (71)

Using (71), we can simplify the Eq. (70) as

V̇2 = −z21 − z22 + z2z3 (72)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b (73)

Differentiating V along the error dynamics (58), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (74)

Equation (74) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (75)

where

S = z3 + z2 + ż3 = z3 + z2 + 2ė1 + 2ė2 + ė3 (76)

A simple calculation gives

S = (3 + a)e1 + (5 − b)e2 + 2e3 − y21 + x2
1 − y31 + x3

1 + u (77)

Substituting the adaptive control law (61) into (77), we obtain

S = [
a − â(t)

]
e1 −

[
b − b̂(t)

]
e2 − kz3 (78)

Using the definitions (60), we can simplify (78) as

S = eae1 − ebe2 − kz3 (79)
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Substituting the value of S from (79) into (75), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

[
e1z3 − ˙̂a

]
+ eb

[
−e2z3 − ˙̂b

]
(80)

Substituting the update law (63) into (80), we get

V̇ = −z21 − z22 − (1 + k)z23, (81)

which is a negative semi-definite function on R5.
From (81), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t)

] ∈ L∞ (82)

Also, it follows from (81) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (83)

That is,

‖z‖2 ≤ −V̇ (84)

Integrating the inequality (84) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (85)

From (85), it follows that z(t) ∈ L2.
From Eq. (58), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [13], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial

conditions e(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of novel jerk chaotic systems,
which are taken as the master and slave systems.

The parameter values of the novel jerk chaotic systems are taken as in the chaotic
case, i.e. a = 134 and b = 50.

We take the positive gain constant as k = 8.
Furthermore, as initial conditions of the master system (55), we take

x1(0) = 2.5, x2(0) = 1.8, x3(0) = −1.7 (86)
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As initial conditions of the slave system (56), we take

y1(0) = −4.8, y2(0) = −6.2, y3(0) = 5.4 (87)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 16.3, b̂(0) = 8.5 (88)

In Figs. 6, 7 and 8, the complete synchronization of the identical 3-D jerk chaotic
systems (55) and (56) is depicted.

Also, in Fig. 9, the time-history of the synchronization errors e1(t), e2(t), e3(t),
is depicted.

6 Conclusions

This work announced a seven-term novel 3-D jerk chaotic system with two nonlin-
earities (quadratic and cubic). The novel jerk chaotic system has three saddle-foci
equilibrium points, which are unstable. The Lyapunov exponents of the novel jerk
chaotic system have been obtained as L1 = 0.5565, L2 = 0 and L3 = −1.5566,
while the Kaplan–Yorke dimension of the novel jerk chaotic system is obtained as
DK Y = 2.3575. In this work, adaptive backstepping controllers have been designed
for the global stabilization and global chaos synchronization for the identical novel
jerk chaotic systems. The main results were proved using Lyapunov stability theory.
Numerical simulations using MATLAB have been depicted to illustrate all the main
results derived in this work.
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Abstract This work describes a ten-term novel 4-D hyperchaotic system with two
quadratic nonlinearities. The phase portraits of the novel hyperchaotic system are
depicted and the qualitative properties of the novel hyperchaotic systemare discussed.
The novel hyperchaotic system has a unique equilibrium at the origin, which is a
saddle point. The Lyapunov exponents of the novel hyperchaotic system are obtained
as L1 = 1.0784, L2 = 0.1114, L3 = 0 and L4 = −18.1714, while the Kaplan–
Yorke dimension of the novel hyperchaotic system is obtained as DK Y = 3.0655.
Since the sum of the Lyapunov exponents is negative, the novel hyperchaotic system
is dissipative. Next, an adaptive controller is designed to globally stabilize the novel
hyperchaotic system with unknown parameters. Moreover, an adaptive controller is
also designed to achieve global chaos synchronization of the identical hyperchaotic
systems with unknown parameters. MATLAB simulations are depicted to illustrate
all the main results derived in this work. Finally, an electronic circuit realization
of the novel hyperchaotic system using Spice is presented in detail to confirm the
feasibility of the theoretical model.
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1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [14], Rössler system [22], ACT system [2], Sprott systems [27], Chen system
[7], Lü system [15], Cai system [5], Tigan system [31], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [93], Zhu system [94], Li system [12],Wei-Yang system [88], Sundarapandian
systems [29, 30], Vaidyanathan systems [35, 37–41, 44, 55, 56, 70, 71, 73, 74, 76,
77, 79, 80, 82], Pehlivan system [17], Sampath system [24], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [45, 49, 51, 53, 57, 61–63], biological systems [43, 46–48, 50,
52, 54, 58–60, 64–68], memristors [1, 19, 85], lasers [4], oscillations [32], robotics
[9, 84], electrical circuits [16, 83], cryptosystems [21, 33], secure communications
[89, 90], etc.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [3]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [89, 90], cryptosystems [8, 20], fuzzy
logic [26, 92], electrical circuits [87, 91], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [23]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [10], hyperchaotic Lü system [6], hyperchaotic Chen system [13],
hyperchaotic Wang system [86], hyperchaotic Vaidyanathan systems [36, 42, 69,
75, 78, 81], hyperchaotic Pham system [18], etc.

In this research work, we announce a ten-term novel 4-D hyperchaotic system
with two quadratic nonlinearities. We have also designed adaptive controllers for
stabilization and synchronizationof the novel hyperchaotic systems.Adaptive control
method [25, 28, 34, 72] is a popular method used in the control literature for the
synchronization of nonlinear systems when the system parameters are unknown.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the novel 4-D hyperchaotic system. Section3 details the qualitative
properties of the novel hyperchaotic chaotic system. The novel hyperchaotic system
has a unique equilibrium point at the origin, which is a saddle point. Thus, the system
has an unstable equilibriumpoint. TheLyapunov exponents of the novel hyperchaotic
system are obtained as L1 = 1.0784, L2 = 0.1114, L3 = 0 and L4 = −18.1714,
while the Kaplan–Yorke dimension of the novel hyperchaotic system is obtained as
DK Y = 3.0655. Since the sum of the Lyapunov exponents is negative, the novel
hyperchaotic system is dissipative.
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In Sect. 4, we design an adaptive controller to globally stabilize the novel hyper-
chaotic system with unknown parameters. In Sect. 5, an adaptive controller is
designed to achieve global chaos synchronization of the identical novel hyperchaotic
systems with unknown parameters. In Sect. 6, an electronic circuit realization of the
novel hyperchaotic system using Spice is presented to confirm the feasibility of the
theoretical model. Section7 contains the conclusions of this work.

2 A Novel 4-D Hyperchaotic System

In this section, we describe a ten-term novel hyperchaotic system, which is given by
the 4-D dynamics ⎧

⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x4
ẋ2 = bx1 − px1x3 + x4
ẋ3 = x1x2 − cx3
ẋ4 = −x1 − x2

(1)

where x1, x2, x3, x4 are the states and a, b, c, p are constant positive parameters.
The novel 4-D system (1) is a ten-term polynomial system with two quadratic

nonlinearities.
The system (1) exhibits a strange chaotic attractor for the parameter values

a = 12, b = 36, c = 5, p = 12 (2)
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For numerical simulations, we take the initial conditions as

x1(0) = 1.8, x2(0) = 1.6, x3(0) = 1.2, x4(0) = 1.4 (3)

Figures1, 2, 3 and 4 the 3-D projection of the novel hyperchaotic system (1) on
the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.

3 Analysis of the Novel Hyperchaotic System

In this section, we give a dynamic analysis of the 4-D novel hyperchaotic system (1).
We take the parameter values as in the hyperchaotic case (2).

3.1 Dissipativity

In vector notation, the novel hyperchaotic system (1) can be expressed as

ẋ = f (x) =

⎡

⎢
⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤

⎥
⎥
⎦ , (4)
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where ⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3, x4) = a(x2 − x1) + x4
f2(x1, x2, x3, x4) = bx1 − px1x3 + x4
f3(x1, x2, x3, x4) = x1x2 − cx3
f4(x1, x2, x3, x4) = −x1 − x2

(5)

Let � be any region in R4 with a smooth boundary and also, �(t) = Φt (�),

where Φt is the flow of f . Furthermore, let V (t) denote the hypervolume of �(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

�(t)

(∇ · f ) dx1 dx2 dx3 dx4 (6)

The divergence of the novel hyperchaotic system (4) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

+ ∂ f4
∂x4

= −(a + c) = −μ < 0 (7)

Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

�(t)

(−μ) dx1 dx2 dx3 dx4 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel hyperchaotic system (1) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of
zero hypervolume, and the asymptotic motion of the novel jerk chaotic system (1)
settles onto a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the hyperchaotic case (2).
It is easy to see that the system (1) has a unique equilibrium at the origin.
To test the stability type of the equilibriumpoint E0 = 0, we calculate the Jacobian

matrix of the novel hyperchaotic system (1) at x = 0:
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J
Δ= J (E0) =

⎡

⎢
⎢
⎣

−12 12 0 1
36 0 0 1
0 0 −5 0

−1 −1 0 0

⎤

⎥
⎥
⎦ (10)

The matrix J has the eigenvalues

λ1 = −5, λ2 = −27.6373, λ3 = 0.1401, λ4 = 15.4972 (11)

This shows that the equilibrium point E0 = 0 is a saddle-point, which is unstable.

3.3 Rotation Symmetry About the x3-axis

We find that the novel 4-D hyperchaotic system (1) is invariant under the change of
coordinates

(x1, x2, x3, x4) �→ (−x1,−x2, x3,−x4) (12)

Since the transformation (12) persists for all values of the system parameters, it
follows that the novel 4-D hyperchaotic system (1) has rotation symmetry about the
x3-axis and that any non-trivial trajectory must have a twin trajectory.

3.4 Invariance

We find that the x3-axis is invariant under the flow of the novel 4-D hyperchaotic
system (1). The invariant motion along the x3-axis is characterized by the scalar
dynamics

ẋ3 = −cx3, (c > 0) (13)

which is globally exponentially stable.

3.5 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the hyperchaotic case (2),
i.e. a = 12, b = 36, c = 5 and p = 12.

We take the initial state of the novel system (1) as given in (3).
Then the Lyapunov exponents of the system (1) are numerically obtained using

MATLAB as

L1 = 1.0784, L2 = 0.1114, L3 = 0, L4 = −18.1714 (14)
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Since there are two positive Lyapunov exponents in (14), the novel system (1)
exhibits hyperchaotic behavior.

Since L1 + L2 + L3 + L4 = −16.9816 < 0, it follows that the novel hyper-
chaotic system (1) is dissipative.

Also, the Kaplan–Yorke dimension of the novel hyperchaotic system (1) is cal-
culated as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.0655, (15)

which is fractional.

4 Adaptive Control of the Novel Hyperchaotic System

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally stabilizing the novel 4-D hyperchaotic system with unknown
parameters.

Thus, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x4 + u1

ẋ2 = bx1 − px1x3 + x4 + u2

ẋ3 = x1x2 − cx3 + u3

ẋ4 = −x1 − x2 + u4

(16)

In (16), x1, x2, x3, x4 are the states and u1, u2, u3, u4 are the adaptive controls to
be determined using estimates of the unknown parameters.

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −â(t)(x2 − x1) − x4 − k1x1
u2 = −b̂(t)x1 + p̂(t)x1x3 − x4 − k2x2
u3 = −x1x2 + ĉ(t)x3 − k3x3
u4 = x1 + x2 − k4x4

(17)

where k1, k2, k3, k4 are positive gain constants.
Substituting (17) into (16), we get the closed-loop plant dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = [a − â(t)](x2 − x1) − k1x1
ẋ2 = [b − b̂(t)]x1 − [p − p̂(t)]x1x3 − k2x2
ẋ3 = −[c − ĉ(t)]x3 − k3x3
ẋ4 = −k4x4

(18)
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The parameter estimation errors are defined as

⎧
⎪⎪⎨

⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)

(19)

In view of (19), we can simplify the plant dynamics (18) as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = ebx1 − epx1x3 − k2x2
ẋ3 = −ecx3 − k3x3
ẋ4 = −k4x4

(20)

Differentiating (19) with respect to t , we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)

(21)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep) = 1

2

(
x2
1 + x2

2 + x2
3 + x2

4

) + 1

2

(
e2a + e2b + e2c + e2p

)
(22)

Differentiating V along the trajectories of (20) and (21), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 − k4x2

4 + ea

[
x1(x2 − x1) − ˙̂a

]

+ eb

[
x1x2 − ˙̂b

]
+ ec

[
−x2

3 − ˙̂c
]

+ ep

[
−x1x2x3 − ˙̂p

] (23)

In view of (23), we take the parameter update law as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = x1x2˙̂c(t) = −x2
3˙̂p(t) = −x1x2x3

(24)

Next, we state and prove the main result of this section.

Theorem 1 The novel 4-D hyperchaotic system (16) with unknown system parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (17) and the parameter update law (24), where k1, k2, k3, k4 are positive
gain constants.



172 S. Vaidyanathan et al.

Proof We prove this result by applying Lyapunov stability theory [11].
We consider the quadratic Lyapunov function defined by (22), which is clearly a

positive definite function on R8.
By substituting the parameter update law (24) into (23), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 − k4x2
4 (25)

From (25), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞.

We define k = min{k1, k2, k3, k4}.
Then it follows from (25) that

V̇ ≤ −k‖x(t)‖2 (26)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (27)

Integrating the inequality (27) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (28)

From (28), it follows that x ∈ L2.
Using (20), we can conclude that ẋ ∈ L∞.
UsingBarbalat’s lemma [11], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R4.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (16) and (24), when the adaptive
control law (17) is applied.

The parameter values of the novel 4-D hyperchaotic system (16) are taken as in
the hyperchaotic case (2), i.e.

a = 12, b = 36, c = 5, p = 12 (29)

We take the positive gain constants as ki = 6 for i = 1, . . . , 4.
Furthermore, as initial conditions of the novel 4-D hyperchaotic system (16), we

take
x1(0) = 6.2, x2(0) = 3.8, x3(0) = −7.2, x4(0) = −5.6 (30)
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Fig. 5 Time-history of the controlled states x1, x2, x3, x4

Also, as initial conditions of the parameter estimates, we take

â(0) = 5.1, b̂(0) = 9.3, ĉ(0) = 1.9, p̂(0) = 3.4 (31)

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D
hyperchaotic system (16) is depicted.

5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally synchronizing identical novel 4-D hyperchaotic systems with
unknown parameters.

As the master system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x4
ẋ2 = bx1 − px1x3 + x4
ẋ3 = x1x2 − cx3
ẋ4 = −x1 − x2

(32)
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In (32), x1, x2, x3, x4 are the states and a, b, c, p are unknown system parameters.
As the slave system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a(y2 − y1) + y4 + u1

ẏ2 = by1 − py1y3 + y4 + u2

ẏ3 = y1y2 − cy3 + u3

ẏ4 = −y1 − y2 + u4

(33)

In (33), y1, y2, y3, y4 are the states and u1, u2, u3, u4 are the adaptive controls
to be determined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters
a, b, c, p, respectively.

The synchronization error between the novel hyperchaotic systems (32) and (33)
is defined by ⎧

⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(34)

Then the synchronization error dynamics is obtained as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = a(e2 − e1) + e4 + u1

ė2 = be1 + e4 − p(y1y3 − x1x3) + u2

ė3 = −ce3 + y1y2 − x1x2 + u3

ė4 = −e1 − e2 + u4

(35)

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −â(t)(e2 − e1) − e4 − k1e1
u2 = −b̂(t)e1 − e4 + p̂(t)(y1y3 − x1x3) − k2e2
u3 = ĉ(t)e3 − y1y2 + x1x2 − k3e3
u4 = e1 + e2 − k4e4

(36)

where k1, k2, k3, k4 are positive gain constants.
Substituting (36) into (35), we get the closed-loop error dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) − k1e1

ė2 =
[
b − b̂(t)

]
e1 − [

p − p̂(t)
]
(y1y3 − x1x3) − k2e2

ė3 = − [
c − ĉ(t)

]
e3 − k3e3

ė4 = −k4e4

(37)
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The parameter estimation errors are defined as

⎧
⎪⎪⎨

⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)

(38)

In view of (38), we can simplify the error dynamics (37) as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = ebe1 − ep(y1y3 − x1x3) − k2e2
ė3 = −ece3 − k3e3
ė4 = −k4e4

(39)

Differentiating (38) with respect to t , we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)

(40)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec, ep) = 1

2

(
e21 + e22 + e23 + e24

) + 1

2

(
e2a + e2b + e2c + e2p

)
(41)

Differentiating V along the trajectories of (39) and (40), we obtain

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 + ea

[
e1(e2 − e1) − ˙̂a

]

+ eb

[
e1e2 − ˙̂b

]
+ ec

[
−e23 − ˙̂c

]
+ ep

[
−e2(y1y3 − x1x3) − ˙̂p

] (42)

In view of (42), we take the parameter update law as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂b(t) = e1e2˙̂c(t) = −e23˙̂p(t) = −e2(y1y3 − x1x3)

(43)

Next, we state and prove the main result of this section.

Theorem 2 The novel hyperchaotic systems (32) and (33) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
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the adaptive control law (36) and the parameter update law (43), where k1, k2, k3, k4
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [11].
We consider the quadratic Lyapunov function defined by (41), which is clearly a

positive definite function on R8.
By substituting the parameter update law (43) into (42), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 − k4e24 (44)

From (44), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞. (45)

We define k = min{k1, k2, k3, k4}.
Then it follows from (44) that

V̇ ≤ −k‖e(t)‖2 (46)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (47)

Integrating the inequality (47) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (48)

From (48), it follows that e ∈ L2.
Using (39), we can conclude that ė ∈ L∞.
UsingBarbalat’s lemma [11], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R4.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (32), (33) and (43), when the
adaptive control law (36) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (2), i.e. a = 12, b = 36, c = 5 and p = 12.

We take the positive gain constants as ki = 6 for i = 1, . . . , 4.
Furthermore, as initial conditions of the master system (32), we take

x1(0) = 4.2, x2(0) = −5.8, x3(0) = 7.3, x4(0) = 9.1 (49)
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Fig. 10 Time-history of the synchronization errors e1, e2, e3, e4

As initial conditions of the slave system (33), we take

y1(0) = −8.4, y2(0) = 3.5, y3(0) = −2.1, y4(0) = −6.4 (50)

Also, as initial conditions of the parameter estimates, we take

â(0) = 3.1, b̂(0) = 12.4, ĉ(0) = 4.7, p̂(0) = −5.8 (51)

Figures6, 7, 8 and 9 describe the complete synchronization of the novel hyper-
chaotic systems (32) and (33), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3, e4.

6 Circuit Realization of the Novel 4-D Hyperchaotic System

The electronic circuit modelling the hyperchaotic system (1) is realized by using
off-the-shelf components such as resistors, capacitors, operational amplifiers and
multipliers. Using the design approach based on the operational amplifiers [17, 73,
76], we have the circuit as shown in Fig. 11 where each state variable of system (1),
i.e. x1, x2, x3, x4 is implemented as the voltage across the corresponding capacitors
C1, C2, C3, and C4, respectively.
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Fig. 11 The designed electronic circuit schematic of the ten-term novel 4-D hyperchaotic system
with two quadratic nonlinearities

The circuital equations of the circuit in Fig. 11 are obtained as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvC1

dt
= 1

R1C1
vC2 − 1

R2C1
vC1 + 1

R3C1
vC4

dvC2

dt
= 1

R4C2
vC1 − 1

10R5C2
vC1vC3 + 1

R6C2
vC4

dvC3

dt
= 1

10R7C3
vC1vC2 − 1

R8C3
vC3

dvC4

dt
= − 1

R9C4
vC1 − 1

R10C4
vC3

(52)

where vC1 , vC2 , vC3 , and vC4 are the voltages across the capacitors C1, C2, C3, and
C4, respectively.

The power supplies of all active devices are ±15VDC . The TL084 operational
amplifiers are used in this work. The values of components in Fig. 11 are seleceted
to match the parameters of system (1) as follows: R1 = R2 = 30 k�, R3 = R6 =
R9 = R10 = R = 360 k�, R4 = 10 k�, R5 = 3 k�, R7 = 36 k�, R8 = 72 k�, and
C1 = C2 = C3 = C4 = 1nF .

The designed circuit is implemented in the electronic simulation packageCadence
OrCAD. The obtained results are summarized in Figs. 12, 13, 14 and 15, which
indicate the hyperchaotic attractors in vC1 − vC2 , vC1 − vC3 , vC1 − vC4and vC2 − vC3

planes.
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Fig. 12 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC1 − vC2 plane

Fig. 13 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC1 − vC3 plane
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Fig. 14 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC1 − vC4 plane

Fig. 15 Phase portrait result
of the designed electronic
circuit obtained from
OrCAD in vC2 − vC3 plane
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7 Conclusions

In this work, a ten-term novel 4-D hyperchaotic system with two quadratic non-
linearities was presented. Fundamental dynamics of the new system were investi-
gated through dissipativity, equilibria, rotation symmetry, Lyapunov exponents and
Kaplan–Yorke dimension. In addition, an adaptive controllerwas designed not only to
stabilize the novel hyperchaotic systemwith unknown parameters but also to achieve
global chaos synchronization of two identical such systems with unknown system
parameters. MATLAB simulations were depicted to illustrate all the main results
derived in this work. Furthermore, an electronic circuit realization of the novel hyper-
chaotic system using the electronic simulation package Cadence OrCAD confirmed
the feasibility of the theoretical model. Hence, it is believed that the new system due
to its hyperchaotic nature, can be used in diverse chaos-based applications, such as
in secure communication schemes. So, the complex dynamical behavior of this sys-
tem and its applications in various scientific fields will be further explored in future
research.
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Abstract In this work, we describe an eight-term novel highly chaotic system with
three quadratic nonlinearities. The phase portraits of the novel highly chaotic system
are illustrated and the dynamic properties of the highly chaotic system are discussed.
The novel highly chaotic system has three unstable equilibrium points. We show that
the equilibrium point at the origin is a saddle point, while the other two equilibrium
points are a saddle-focus and a critical point. The novel highly chaotic system has
rotation symmetry about the x3 axis. The Lyapunov exponents of the novel highly
chaotic system are obtained as L1 = 7.6557, L2 = 0 and L3 = −24.6796, while the
Kaplan–Yorke dimension of the novel chaotic system is obtained as DK Y = 2.3102.
Since the maximal Lyapunov exponent of the novel chaotic system has a high value,
viz. L1 = 7.6557, the novel chaotic system is highly chaotic. Since the sum of the
Lyapunov exponents is negative, the novel chaotic system is dissipative. Next, we
derive new results for the global chaos control of the novel highly chaotic systemwith
unknown parameters using adaptive control method. We also derive new results for
the global chaos synchronization of the identical novel highly chaotic systems with
unknown parameters using adaptive control method. The main control results are
established using Lyapunov stability theory. MATLAB simulations are depicted to
illustrate the phase portraits of the novel highly chaotic system and also the adaptive
control results derived in this work.
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1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [11], Rössler system [20], ACT system [2], Sprott systems [25], Chen system
[6], Lü system [12], Cai system [5], Tigan system [35], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [108], Zhu system [109], Li system [10], Sundarapandian systems [28, 32],
Vaidyanathan systems [44, 46, 48–51, 55, 66, 67, 81, 82, 84, 90, 92, 95, 98, 99,
101], Pehlivan system [15], Sampath system [21], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [56, 60, 62, 64, 68, 72–74], biological systems [54, 57–59, 61, 63,
65, 69–71, 75–79], memristors [1, 16, 105], lasers [4], oscillations [36], robotics [7,
104], electrical circuits [13, 103], cryptosystems [19, 37], secure communications
[106, 107], etc.

The control of a chaotic system aims to stabilize or regulate the system with
the help of a feedback control. There are many methods available for controlling a
chaotic system such as active control [26, 38, 39], adaptive control [27, 40, 45, 47,
53, 80, 91, 97, 100], sliding mode control [42, 43], backstepping control [14, 94,
102], etc.

There aremanymethods available for chaos synchronization such as active control
[8, 22, 23, 85, 87, 93], adaptive control [24, 29–31, 41, 83, 86], slidingmode control
[33, 52, 89, 96], backstepping control [17, 18, 34, 88], etc.

In this research work, we announce an eight-term novel highly chaotic system
with three quadratic nonlinearities. Using adaptive control method, we have also
derived new results for the global chaos control of the novel highly chaotic system
and global chaos synchronization of the identical novel highly chaotic systems when
the system parameters are unknown.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the eight-term novel highly chaotic system. Section3 details the
dynamic analysis and properties of the novel highly chaotic system. The Lyapunov
exponents of the novel chaotic system are obtained as L1 = 7.6557, L2 = 0 and
L3 = −24.6796, while the Kaplan–Yorke dimension of the novel chaotic system
is obtained as DK Y = 2.3102. Since the maximal Lyapunov exponent of the novel
chaotic system has a high value, viz. L1 = 7.6557, the novel chaotic system is highly
chaotic.

In Sect. 4, we derive new results for the global chaos control of the novel highly
chaotic system with unknown parameters. In Sect. 5, we derive new results for the
global chaos synchronization of the identical novel highly chaotic systems with
unknown parameters. Section6 contains a summary of the main results derived in
this work.
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2 A Novel 3-D Highly Chaotic System

In this section, we describe an eight-term novel chaotic system, which is given by
the 3-D dynamics

⎧
⎪⎨

⎪⎩

ẋ1 = a(x2 − x1) + cx2x3
ẋ2 = px1 − bx2 − x1x3
ẋ3 = x2

1 − x3

(1)

where x1, x2, x3 are the states and a, b, c, p are constant, positive parameters.
The novel 3-D system (1) is an eight-term polynomial systemwith three quadratic

nonlinearities.
The system (1) exhibits a highly chaotic attractor for the parameter values

a = 15, b = 1.1, c = 12, p = 90 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 0.2, x2(0) = 0, x3(0) = 0.4 (3)

Figure1 depicts the 3-D phase portrait of the novel highly chaotic system (1),
while Figs. 2, 3 and 4 depict the 2-D projection of the novel highly chaotic system
(1) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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Fig. 1 3-D phase portrait of the novel highly chaotic system
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Fig. 2 2-D projection of the novel highly chaotic system on the (x1, x2) plane
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Fig. 3 2-D projection of the novel highly chaotic system on the (x2, x3) plane



Analysis, Adaptive Control and Synchronization of a Novel . . . 193

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

x
1

x 3

Fig. 4 2-D projection of the novel highly chaotic system on the (x1, x3) plane

3 Analysis of the Novel 3-D Highly Chaotic System

In this section, we give a dynamic analysis of the 3-D novel highly chaotic system
(1). We take the parameter values as in the chaotic case (2), viz. a = 15, b = 1.1,
c = 12 and p = 90.

3.1 Dissipativity

In vector notation, the novel chaotic system (1) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦, (4)

where

⎧
⎪⎨

⎪⎩

f1(x1, x2, x3) = a(x2 − x1) + cx2x3
f2(x1, x2, x3) = px1 − bx2 − x1x3
f3(x1, x2, x3) = x2

1 − x3

(5)
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Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (6)

The divergence of the novel chaotic system (4) is found as

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −(a + b + 1) = −μ < 0 (7)

since μ = a − b + c = 21 > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel chaotic system (1) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of
zero volume, and the asymptotic motion of the novel chaotic system (1) settles onto
a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (2), viz. a = 15, b = 1.1, c = 12
and p = 90.

It is easy to see that the system (1) has three equilibrium points, viz.

E0 =
⎡

⎣
0
0
0

⎤

⎦, E1 =
⎡

⎣
9.4860
0.1300
89.9849

⎤

⎦, E2 =
⎡

⎣
−9.4860
0.1300

−89.9849

⎤

⎦ (10)

The Jacobian of the system (1) at any point x ∈ R3 is calculated as
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J (x) =
⎡

⎢
⎣

−a a + cx3 cx2
p − x3 −b −x1
2x2 0 −1

⎤

⎥
⎦ =

⎡

⎢
⎣

−15 15 + 12x3 12x2
90 − x3 −1.1 −x1
2x2 0 −1

⎤

⎥
⎦ (11)

We find that the matrix J0 = J (E0) has the eigenvalues

λ1 = −1, λ2 = −45.4439, λ3 = 29.3439 (12)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
We find that the matrix J1 = J (E1) has the eigenvalues

λ1 = −21.9770, λ2,3 = 2.4385 ± 10.8119i (13)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
We find that the matrix J2 = J (E2) has the eigenvalues

λ1 = 0, λ2,3 = −8.55 ± 437.77i (14)

Thus, E2 is a critical point, which can be easily seen as unstable.

3.3 Symmetry and Invariance

It is easy to see that the system (1) is invariant under the change of coordinates

(x1, x2, x3) �→ (−x1,−x2, x3) (15)

Thus, it follows that the 3-D novel chaotic system (1) has rotation symmetry about
the x3-axis and that any non-trivial trajectory must have a twin trajectory.

Next, it is easy to see that the x3-axis is invariant under the flow of the 3-D novel
chaotic system (1). The invariant motion along the x3-axis is characterized by

ẋ3 = −x3, (16)

which is globally exponentially stable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the chaotic case (2). We
take the initial state of the novel system (1) as given in (3).
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Then the Lyapunov exponents of the system (1) are numerically obtained as

L1 = 7.6557, L2 = 0, L3 = −24.6796 (17)

Also, the Kaplan–Yorke dimension of the novel chaotic system (1) is found as

DK Y = 2 + L1 + L2

|L3| = 2.3102 (18)

4 Adaptive Control of the Novel Highly Chaotic System

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally stabilizing the novel 3-D highly chaotic system with unknown
parameters.

Thus, we consider the novel highly chaotic system given by

⎧
⎪⎨

⎪⎩

ẋ1 = a(x2 − x1) + cx2x3 + u1

ẋ2 = px1 − bx2 − x1x3 + u2

ẋ3 = x2
1 − x3 + u3

(19)

In (19), x1, x2, x3 are the states and u1, u2, u3 are the adaptive controls to be deter-
mined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters a, b, c, p,
respectively.

We consider the adaptive feedback control law

⎧
⎪⎨

⎪⎩

u1 = −â(t)(x2 − x1) − ĉ(t)x2x3 − k1x1

u2 = − p̂(t)x1 + b̂(t)x2 + x1x3 − k2x2
u3 = −x2

1 + x3 − k3x3

(20)

where k1, k2, k3 are positive gain constants.
Substituting (20) into (19), we get the closed-loop plant dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = [
a − â(t)

]
(x2 − x1) + [

c − ĉ(t)
]

x2x3 − k1x1

ẋ2 = [
p − p̂(t)

]
x1 −

[
b − b̂(t)

]
x2 − k2x2

ẋ3 = −k3x3

(21)

The parameter estimation errors are defined as
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)

eb(t) = b − b̂(t)

ec(t) = c − ĉ(t)

ep(t) = p − p̂(t)

(22)

In view of (22), we can simplify the plant dynamics (21) as

⎧
⎪⎨

⎪⎩

ẋ1 = ea(x2 − x1) + ecx2x3 − k1x1
ẋ2 = epx1 − ebx2 − k2x2
ẋ3 = −k3x3

(23)

Differentiating (22) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)

(24)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep) = 1

2

(
x2
1 + x2

2 + x2
3

) + 1

2

(
e2a + e2b + e2c + e2p

)
(25)

Differentiating V along the trajectories of (23) and (24), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 + ea

[
x1(x2 − x1) − ˙̂a

]

+eb

[
−x2

2 − ˙̂b
]

+ ec

[
x1x2x3 − ˙̂c

]
+ ep

[
x1x2 − ˙̂p

] (26)

In view of (26), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)
˙̂b(t) = −x2

2

˙̂c(t) = x1x2x3
˙̂p(t) = x1x2

(27)

Next, we state and prove the main result of this section.

Theorem 1 The novel 3-D highly chaotic system (19) with unknown system parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (20) and the parameter update law (27), where k1, k2, k3 are positive
gain constants.
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Proof We prove this result by applying Lyapunov stability theory [9].
We consider the quadratic Lyapunov function defined by (25), which is clearly a

positive definite function on R7.
By substituting the parameter update law (27) into (26), we obtain the time-

derivative of V as

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 (28)

From (28), it is clear that V̇ is a negative semi-definite function on R7.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (28) that

V̇ ≤ −k‖x(t)‖2 (29)

Thus, we have

k‖x(t)‖2 ≤ −V̇ (30)

Integrating the inequality (30) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (31)

From (31), it follows that x ∈ L2.
Using (23), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [9], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R3.
Hence, the novel highly chaotic system (19) with unknown system parameters is

globally and exponentially stabilized for all initial conditions by the adaptive control
law (20) and the parameter update law (27).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (19) and (27), when the adaptive
control law (20) is applied.

The parameter values of the novel 3-D highly chaotic system (19) are taken as in
the chaotic case (2), i.e.

a = 15, b = 1.1, c = 12, p = 90 (32)
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Fig. 5 Time-history of the controlled states x1, x2, x3

We take the positive gain constants as

k1 = 5, k2 = 5, k3 = 5 (33)

Furthermore, as initial conditions of the novel highly chaotic system (19), we take

x1(0) = 22.3, x2(0) = 14.7, x3(0) = −6.4 (34)

Also, as initial conditions of the parameter estimates, we take

â(0) = 3.7, b̂(0) = 4.3, ĉ(0) = 1.5, p̂(0) = 18.1 (35)

In Fig. 5, the exponential convergence of the controlled states of the 3-D novel
highly chaotic system (19) is depicted.

5 Adaptive Synchronization of the Identical Novel Highly
Chaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally synchronizing identical 3-D novel highly chaotic systems with
unknown parameters. The main result is established using Lyapunov stability theory.
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As the master system, we consider the novel 3-D chaotic system given by

⎧
⎪⎨

⎪⎩

ẋ1 = a(x2 − x1) + cx2x3
ẋ2 = px1 − bx2 − x1x3
ẋ3 = x2

1 − x3

(36)

In (36), x1, x2, x3 are the states and a, b, c, p are unknown system parameters.
As the slave system, we consider the novel 3-D chaotic system given by

⎧
⎪⎨

⎪⎩

ẏ1 = a(y2 − y1) + cy2y3 + u1

ẏ2 = py1 − by2 − y1y3 + u2

ẏ3 = y21 − y3 + u3

(37)

In (37), y1, y2, y3 are the states and u1, u2, u3 are the adaptive controls to be deter-
mined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters a, b, c, p,
respectively.

The synchronization error between the novel chaotic systems is defined by

⎧
⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(38)

Then the error dynamics is obtained as

⎧
⎪⎨

⎪⎩

ė1 = a(e2 − e1) + c(y2y3 − x2x3) + u1

ė2 = pe1 − be2 − y1y3 + x1x3 + u2

ė3 = −e3 + y21 − x2
1 + u3

(39)

We consider the adaptive feedback control law

⎧
⎪⎨

⎪⎩

u1 = −â(t)(e2 − e1) − ĉ(t)(y2y3 − x2x3) − k1e1

u2 = − p̂(t)e1 + b̂(t)e2 + y1y3 − x1x3 − k2e2
u3 = e3 − y21 + x2

1 − k3e3

(40)

where k1, k2, k3 are positive gain constants.
Substituting (40) into (39), we get the closed-loop error dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) + [

c − ĉ(t)
]
(y2y3 − x2x3) − k1e1

ė2 = [
p − p̂(t)

]
e1 −

[
b − b̂(t)

]
e2 − k2e2

ė3 = −k3e3

(41)
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The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)

eb(t) = b − b̂(t)

ec(t) = c − ĉ(t)

ep(t) = p − p̂(t)

(42)

In view of (42), we can simplify the error dynamics (41) as

⎧
⎪⎨

⎪⎩

ė1 = ea(e2 − e1) + ec(y2y3 − x2x3) − k1e1
ė2 = epe1 − ebe2 − k2e2
ė3 = −k3e3

(43)

Differentiating (42) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)

(44)

We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec, ep) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b + e2c + e2p

)
(45)

Differentiating V along the trajectories of (43) and (44), we obtain

V̇ = −k1e21 − k2e22 − k3e23 + ea

[
e1(e2 − e1) − ˙̂a

]
+ eb

[
−e22 − ˙̂b

]

+ec

[
e1(y2y3 − x2x3) − ˙̂c

]
+ ep

[
e1e2 − ˙̂p

] (46)

In view of (46), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = e1(e2 − e1)
˙̂b(t) = −e22
˙̂c(t) = e1(y2y3 − x2x3)
˙̂p(t) = e1e2

(47)

Next, we state and prove the main result of this section.
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Theorem 2 The novel highly chaotic systems (36) and (37) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (40) and the parameter update law (47), where k1, k2, k3
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [9].
We consider the quadratic Lyapunov function defined by (45), which is clearly a

positive definite function on R7.
By substituting the parameter update law (47) into (46), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (48)

From (48), it is clear that V̇ is a negative semi-definite function on R7.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞. (49)

We define k = min{k1, k2, k3}.
Then it follows from (48) that

V̇ ≤ −k‖e(t)‖2 (50)

Thus, we have

k‖e(t)‖2 ≤ −V̇ (51)

Integrating the inequality (51) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (52)

From (52), it follows that e ∈ L2.
Using (43), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [9], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
Hence, we have proved that novel highly chaotic systems (36) and (37) with

unknown system parameters are globally and exponentially synchronized for all
initial conditions.

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (36), (37) and (47), when the
adaptive control law (40) is applied.
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The parameter values of the novel chaotic systems are taken as in the chaotic case
(2), i.e.

a = 15, b = 1.1, c = 12, p = 90 (53)

We take the positive gain constants as ki = 5 for i = 1, 2, 3.
Furthermore, as initial conditions of the master system (36), we take

x1(0) = 2.4, x2(0) = 3.7, x3(0) = 6.3 (54)

As initial conditions of the slave system (37), we take

y1(0) = 3.6, y2(0) = 1.5, y3(0) = 9.2 (55)

Also, as initial conditions of the parameter estimates, we take

â(0) = 12.1, b̂(0) = 10.3, ĉ(0) = 15.4, p̂(0) = 20.9 (56)

Figures6, 7 and 8 describe the complete synchronization of the novel highly
chaotic systems (36) and (37), while Fig. 9 describes the time-history of the synchro-
nization errors e1, e2, e3.
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Fig. 6 Synchronization of the states x1 and y1



204 S. Vaidyanathan

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−150

−100

−50

0

50

100

Time (sec)

x 2, y
2

x
2

y
2

Fig. 7 Synchronization of the states x2 and y2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

Time (sec)

x 3, y
3

x
3

y
3

Fig. 8 Synchronization of the states x3 and y3



Analysis, Adaptive Control and Synchronization of a Novel . . . 205

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

Time (sec)

e 1, e
2, e

3

e
1

e
2

e
3

Fig. 9 Time-history of the synchronization errors e1, e2, e3

6 Conclusions

This work announced an eight-term novel highly chaotic systemwith three quadratic
nonlinearities. First, the qualitative properties of the highly chaotic system are dis-
cussed. We showed that the novel highly chaotic system has three unstable equilib-
rium points. The novel highly chaotic system has rotation symmetry about the x3
axis. The Lyapunov exponents of the novel highly chaotic system have been obtained
as L1 = 7.6557, L2 = 0 and L3 = −24.6796, while the Kaplan–Yorke dimension
of the novel chaotic system has been derived as DK Y = 2.3102. Since the maximal
Lyapunov exponent of the novel chaotic system has a high value, viz. L1 = 7.6557,
the novel chaotic system is highly chaotic. Since the sum of the Lyapunov exponents
is negative, the novel chaotic system is dissipative. Then we derived new results for
the global chaos control of the novel highly chaotic system with unknown parame-
ters using adaptive control method. We also derived new results for the global chaos
synchronization of the identical novel highly chaotic systems with unknown para-
meters using adaptive control method. The main control results have been proved
using Lyapunov stability theory. MATLAB simulations were shown to illustrate all
the results derived in this work.
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Qualitative Analysis and Adaptive Control
of a Novel 4-D Hyperchaotic System

Sundarapandian Vaidyanathan

Abstract In thiswork,we announce anine-termnovel 4-Dhyperchaotic systemwith
two quadratic nonlinearities. The phase portraits of the nine-term novel hyperchaotic
system are depicted and the qualitative properties of the novel hyperchaotic system
are discussed. The novel hyperchaotic system has a unique equilibrium at the origin,
which is a saddle point. The Lyapunov exponents of the novel hyperchaotic system
are obtained as L1 = 5.3131, L2 = 0.1122, L3 = 0 and L4 = −38.3607. Since the
maximal Lyapunov exponent of the novel hyperchaotic system has a high value, viz.
L1 = 5.3131, the system shows highly hyperchaotic behavior. Also, the Kaplan–
Yorke dimension of the novel hyperchaotic system is obtained as DKY = 3.1414.
Since the sum of the Lyapunov exponents is negative, the novel hyperchaotic system
is dissipative. Next, an adaptive controller is designed to globally stabilize the novel
hyperchaotic system with unknown parameters. Finally, an adaptive controller is
also designed to achieve global chaos synchronization of the identical hyperchaotic
systems with unknown parameters. MATLAB simulations are depicted to illustrate
all the main results derived in this work.

Keywords Chaos · Chaotic systems · Hyperchaos · Hyperchaotic systems ·
Adaptive control · Synchronization

1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [15], Rössler system [23], ACT system [2], Sprott systems [30], Chen system
[5], Lü system [16], Cai system [4], Tigan system [40], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [111], Zhu system [113], Li system [12], Wei-Yang system [106],
Sundarapandian systems [33, 37], Vaidyanathan systems [47, 49, 51–54, 58, 69,
70, 84, 85, 87, 93, 95, 97, 100, 101, 103], Pehlivan system [17], Sampath system
[25], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [59, 63, 65, 67, 71, 75–77], biological systems [57, 60–62, 64,
66, 68, 72–74, 78–82], memristors [1, 19, 104], etc.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [3]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
miscellaneous applications in engineering such as secure communications [7, 14,
108], cryptosystems [8, 22, 112], fuzzy logic [29, 110], electrical circuits [107,
109], etc.

The first 4-D hyperchaotic system was found by Rössler [24]. Many hyperchaotic
systems have been reported in the chaos literature such as hyperchaotic Lorenz
system [9], hyperchaotic Lü system [6], hyperchaoticChen system [13], hyperchaotic
Wang system [105], hyperchaotic Vaidyanathan systems [48, 56, 83, 94, 99, 102],
hyperchaotic Pham system [18], etc.

The control of a chaotic or hyperchaotic system aims to stabilize or regulate the
system with the help of a feedback control. There are many methods available for
controlling a chaotic system such as active control [31, 41, 42], adaptive control [32,
43, 50], sliding mode control [45, 46], backstepping control [96], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [10, 26, 27, 88, 90], adaptive control
[28, 34–36, 44, 86, 89], sliding mode control [38, 55, 92, 98], backstepping control
[20, 21, 39, 91], etc.

In this research work, we announce a nine-term novel 4-D hyperchaotic system
with two quadratic nonlinearities. We have also designed adaptive controllers for
stabilization and synchronization of the novel hyperchaotic systems when the system
parameters are unknown.

This work is organized as follows. Section2 describes the dynamics of the novel
4-D hyperchaotic system. Section3 details the qualitative properties of the novel
hyperchaotic system. The Lyapunov exponents of the novel hyperchaotic system
are obtained as L1 = 5.3131, L2 = 0.1122, L3 = 0 and L4 = −38.3607, while the
Kaplan–Yorke dimension of the novel hyperchaotic system is obtained as DKY =
3.1414.
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In Sect. 4, we design an adaptive controller to globally stabilize the novel hyper-
chaotic system with unknown parameters. In Sect. 5, an adaptive controller is
designed to achieve global chaos synchronization of the identical novel hyperchaotic
systems with unknown parameters. Section6 summarizes the main results derived
in this work.

2 A Novel 4-D Hyperchaotic System

In this section, we describe a nine-term novel hyperchaotic system, which is given
by the 4-D dynamics ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + x4
ẋ2 = bx1 − x1x3
ẋ3 = x1x2 − cx3
ẋ4 = −p(x1 + x2)

(1)

where x1, x2, x3, x4 are the states and a, b, c, p are constant positive parameters.
The novel 4-D system (1) is a nine-term polynomial system with two quadratic

nonlinearities.
The system (1) exhibits a strange hyperchaotic attractor for the parameter values

a = 30, b = 340, c = 3, p = 6 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 2.8, x2(0) = 2.4, x3(0) = 2.5, x4(0) = 2.6 (3)

Figures1, 2, 3 and 4 show the 3-D projection of the novel hyperchaotic system
(1) on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.

3 Analysis of the Novel 4-D Hyperchaotic System

In this section, we give a dynamic analysis of the 4-D novel hyperchaotic system (1).
We take the parameter values as in the hyperchaotic case (2).

3.1 Dissipativity

In vector notation, the novel hyperchaotic system (1) can be expressed as
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Fig. 1 3-D projection of the novel hyperchaotic system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the novel hyperchaotic system on the (x1, x2, x4) space

ẋ = f (x) =

⎡

⎢
⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤

⎥
⎥
⎦ , (4)
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Fig. 3 3-D projection of the novel hyperchaotic system on the (x1, x3, x4) space

−400
−200

0
200

400

0

200

400

600

800
−300

−200

−100

0

100

200

300

x2
x3

x 4

Fig. 4 3-D projection of the novel hyperchaotic system on the (x2, x3, x4) space

where ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x1, x2, x3, x4) = a(x2 − x1) + x4
f2(x1, x2, x3, x4) = bx1 − x1x3
f3(x1, x2, x3, x4) = x1x2 − cx3
f4(x1, x2, x3, x4) = −p(x1 + x2)

(5)



216 S. Vaidyanathan

Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt(Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (6)

The divergence of the novel hyperchaotic system (4) is found as:

∇ · f = ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

+ ∂f4
∂x4

= −(a + c) = −μ < 0 (7)

Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 dx4 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel hyperchaotic system (1) is dissipative. Hence, the system
limit sets are ultimately confined into a specific limit set of zero hypervolume, and
the asymptotic motion of the novel hyperchaotic system (1) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the hyperchaotic case (2).
It is easy to see that the system (1) has a unique equilibrium at the origin.
To test the stability type of the equilibrium pointE0 = 0, we calculate the Jacobian

matrix of the novel hyperchaotic system (1) at x = 0:
We find that

J
Δ= J(E0) =

⎡

⎢
⎢
⎢
⎢
⎣

−30 30 0 1

340 0 0 0

0 0 −3 0

−6 −6 0 0

⎤

⎥
⎥
⎥
⎥
⎦

(10)
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The matrix J has the eigenvalues

λ1 = −117.1588, λ2 = −3, λ3 = 0.2002, λ4 = 86.9585 (11)

This shows that the equilibrium point E0 = 0 is a saddle-point, which is unstable.

3.3 Rotation Symmetry About the x3-Axis

It is easy to see that the novel 4-D hyperchaotic system (1) is invariant under the
change of coordinates

(x1, x2, x3, x4) �→ (−x1,−x2, x3,−x4) (12)

Since the transformation (12) persists for all values of the system parameters, it
follows that the novel 4-D hyperchaotic system (1) has rotation symmetry about the
x3-axis and that any non-trivial trajectory must have a twin trajectory.

3.4 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 4-D novel hyper-
chaotic system (1). The invariant motion along the x3-axis is characterized by the
scalar dynamics

ẋ3 = −cx3, (c > 0) (13)

which is globally exponentially stable.

3.5 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the hyperchaotic case (2),
i.e. a = 30, b = 340, c = 3 and p = 6.

We take the initial state of the novel system (1) as given in (3).
Then the Lyapunov exponents of the system (1) are numerically obtained using

MATLAB as

L1 = 5.3131, L2 = 0.1122, L3 = 0, L4 = −38.3607 (14)

Since there are two positive Lyapunov exponents in (14), the novel system (1)
exhibits hyperchaotic behavior.
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Since the maximal Lyapunov exponent of the system (1) has a high value, viz.
L1 = 5.3131, the system is highly hyperchaotic.

Since L1 + L2 + L3 + L4 = −32.9354 < 0, it follows that the novel hyperchaotic
system (1) is dissipative.

Also, the Kaplan–Yorke dimension of the novel hyperchaotic system (1) is cal-
culated as

DKY = 3 + L1 + L2 + L3

|L4| = 3.1414, (15)

which is fractional.

4 Adaptive Control of the Novel Hyperchaotic System

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally stabilizing the novel 4-D hyperchaotic system with unknown
parameters.

Thus, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + x4 + u1
ẋ2 = bx1 − x1x3 + u2
ẋ3 = x1x2 − cx3 + u3
ẋ4 = −p(x1 + x2) + u4

(16)

In (16), x1, x2, x3, x4 are the states and u1, u2, u3, u4 are the adaptive controls
to be determined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters
a, b, c, p, respectively.

We consider the adaptive feedback control law

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = −â(t)(x2 − x1) − x4 − k1x1

u2 = −b̂(t)x1 + x1x3 − k2x2
u3 = −x1x2 + ĉ(t)x3 − k3x3
u4 = p̂(t)(x1 + x2) − k4x4

(17)

where k1, k2, k3, k4 are positive gain constants.
Substituting (17) into (16), we get the closed-loop plant dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = [a − â(t)](x2 − x1) − k1x1

ẋ2 = [b − b̂(t)]x1 − k2x2
ẋ3 = −[c − ĉ(t)]x3 − k3x3
ẋ4 = −[p − p̂(t)](x1 + x2) − k4x4

(18)
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The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)

eb(t) = b − b̂(t)

ec(t) = c − ĉ(t)

ep(t) = p − p̂(t)

(19)

In view of (19), we can simplify the plant dynamics (18) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = ebx1 − k2x2
ẋ3 = −ecx3 − k3x3
ẋ4 = −ep(x1 + x2) − k4x4

(20)

Differentiating (19) with respect to t, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)

ėc(t) = −˙̂c(t)
ėp(t) = −˙̂p(t)

(21)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep) = 1

2

(
x21 + x22 + x23 + x24

) + 1

2

(
e2a + e2b + e2c + e2p

)
(22)

Differentiating V along the trajectories of (20) and (21), we obtain

V̇ = −k1x21 − k2x22 − k3x23 − k4x24 + ea

[
x1(x2 − x1) − ˙̂a

]

+ eb

[
x1x2 − ˙̂b

]
+ ec

[
−x23 − ˙̂c

]
+ ep

[
−x4(x1 + x2) − ˙̂p

]
(23)

In view of (23), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)
˙̂b(t) = x1x2
˙̂c(t) = −x23
˙̂p(t) = −x4(x1 + x2)

(24)

Next, we state and prove the main result of this section.
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Theorem 1 The novel 4-D hyperchaotic system (16) with unknown system parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (17) and the parameter update law (24), where k1, k2, k3, k4 are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory [11].
We consider the quadratic Lyapunov function defined by (22), which is clearly a

positive definite function on R8.
By substituting the parameter update law (24) into (23), we obtain the time-

derivative of V as
V̇ = −k1x21 − k2x22 − k3x23 − k4x24 (25)

From (25), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞.

We define k = min{k1, k2, k3, k4}.
Then it follows from (25) that

V̇ ≤ −k‖x(t)‖2 (26)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (27)

Integrating the inequality (27) from 0 to t, we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (28)

From (28), it follows that x ∈ L2.
Using (20), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [11], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R4.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (16) and (24), when the adaptive
control law (17) is applied.

The parameter values of the novel 4-D hyperchaotic system (16) are taken as in
the hyperchaotic case (2), i.e.

a = 30, b = 340, c = 3, p = 6 (29)
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Fig. 5 Time-history of the controlled states x1, x2, x3, x4

We take the positive gain constants as ki = 6 for i = 1, . . . , 4.
Furthermore, as initial conditions of the novel 4-D hyperchaotic system (16), we

take
x1(0) = 7.5, x2(0) = −6.2, x3(0) = 9.3, x4(0) = −10.8 (30)

Also, as initial conditions of the parameter estimates, we take

â(0) = 1.4, b̂(0) = 20.3, ĉ(0) = 10.5, p̂(0) = 15.7 (31)

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D
hyperchaotic system (16) is shown.

5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally synchronizing identical novel 4-D hyperchaotic systems with
unknown parameters.
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As the master system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + x4
ẋ2 = bx1 − x1x3
ẋ3 = x1x2 − cx3
ẋ4 = −p(x1 + x2)

(32)

In (32), x1, x2, x3, x4 are the states and a, b, c, p are unknown system parameters.
As the slave system, we consider the 4-D novel hyperchaotic system given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ1 = a(y2 − y1) + y4 + u1
ẏ2 = by1 − y1y3 + u2
ẏ3 = y1y2 − cy3 + u3
ẏ4 = −p(y1 + y2) + u4

(33)

In (33), y1, y2, y3, y4 are the states and u1, u2, u3, u4 are the adaptive controls
to be determined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters
a, b, c, p, respectively.

The synchronization error between the novel hyperchaotic systems (32) and (33)
is defined by ⎧

⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(34)

Then the synchronization error dynamics is obtained as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = a(e2 − e1) + e4 + u1
ė2 = be1 − y1y3 + x1x3 + u2
ė3 = −ce3 + y1y2 − x1x2 + u3
ė4 = −p(e1 + e2) + u4

(35)

We consider the adaptive feedback control law

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = −â(t)(e2 − e1) − e4 − k1e1

u2 = −b̂(t)e1 + y1y3 − x1x3 − k2e2
u3 = ĉ(t)e3 − y1y2 + x1x2 − k3e3
u4 = p̂(t)(e1 + e2) − k4e4

(36)

where k1, k2, k3, k4 are positive gain constants.
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Substituting (36) into (35), we get the closed-loop error dynamics as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) − k1e1

ė2 =
[
b − b̂(t)

]
e1 − k2e2

ė3 = − [
c − ĉ(t)

]
e3 − k3e3

ė4 = − [
p − p̂(t)

]
(e1 + e2) − k4e4

(37)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)

eb(t) = b − b̂(t)

ec(t) = c − ĉ(t)

ep(t) = p − p̂(t)

(38)

In view of (38), we can simplify the error dynamics (37) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = ebe1 − k2e2
ė3 = −ece3 − k3e3
ė4 = −ep(e1 + e2) − k4e4

(39)

Differentiating (38) with respect to t, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)

ėc(t) = −˙̂c(t)
ėp(t) = −˙̂p(t)

(40)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec, ep) = 1

2

(
e21 + e22 + e23 + e24

) + 1

2

(
e2a + e2b + e2c + e2p

)
(41)

Differentiating V along the trajectories of (39) and (40), we obtain

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 + ea

[
e1(e2 − e1) − ˙̂a

]

+ eb

[
e1e2 − ˙̂b

]
+ ec

[
−e23 − ˙̂c

]
+ ep

[
−e4(e1 + e2) − ˙̂p

]
(42)
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In view of (42), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = e1(e2 − e1)
˙̂b(t) = e1e2
˙̂c(t) = −e23
˙̂p(t) = −e4(e1 + e2)

(43)

Next, we state and prove the main result of this section.

Theorem 2 The novel hyperchaotic systems (32) and (33) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (36) and the parameter update law (43), where k1, k2, k3, k4
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [11].
We consider the quadratic Lyapunov function defined by (41), which is clearly a

positive definite function on R8.
By substituting the parameter update law (43) into (42), we obtain

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 (44)

From (44), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞. (45)

We define k = min{k1, k2, k3, k4}.
Then it follows from (44) that

V̇ ≤ −k‖e(t)‖2 (46)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (47)

Integrating the inequality (47) from 0 to t, we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (48)

From (48), it follows that e ∈ L2.
Using (39), we can conclude that ė ∈ L∞.
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Using Barbalat’s lemma [11], we conclude that e(t) → 0 exponentially as t → ∞
for all initial conditions e(0) ∈ R4.

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (32), (33) and (43), when the
adaptive control law (36) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (2), i.e. a = 30, b = 340, c = 3 and p = 6.

We take the positive gain constants as ki = 6 for i = 1, . . . , 4.
Furthermore, as initial conditions of the master system (32), we take

x1(0) = −15.3, x2(0) = 2.8, x3(0) = −6.7, x4(0) = 12.9 (49)

As initial conditions of the slave system (33), we take

y1(0) = 25.4, y2(0) = −3.5, y3(0) = 4.2, y4(0) = −9.4 (50)

Also, as initial conditions of the parameter estimates, we take

â(0) = 12.1, b̂(0) = 10.4, ĉ(0) = 14.7, p̂(0) = 25.8 (51)
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Figures6, 7, 8 and 9 describe the complete synchronization of the novel hyper-
chaotic systems (32) and (33), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3, e4.

6 Conclusions

In this work, we described a nine-term novel 4-D hyperchaotic system with two
quadratic nonlinearities. We discussed the qualitative properties of the novel hyper-
chaotic system in detail. The novel hyperchaotic system has a unique equilibrium at
the origin, which is a saddle-point and unstable. The novel hyperchaotic system has a
rotation symmetry about the x3-axis. The x3 axis is an invariant manifold for the novel
hyperchaotic system.TheLyapunov exponents of the novel hyperchaotic systemhave
been obtained as L1 = 5.3131, L2 = 0.1122, L3 = 0 and L4 = −38.3607. Since the
maximal Lyapunov exponent of the novel hyperchaotic system has a high value, viz.
L1 = 5.3131, the system shows highly hyperchaotic behavior. Also, the Kaplan–
Yorke dimension of the novel hyperchaotic system is obtained as DKY = 3.1414.
Since the sum of the Lyapunov exponents is negative, the novel hyperchaotic system
is dissipative.Next, an adaptive controllerwas designed to globally stabilize the novel
hyperchaotic system with unknown parameters. Finally, an adaptive controller was
also designed to achieve global chaos synchronization of the identical hyperchaotic
systems with unknown parameters. MATLAB simulations were shown to depict all
the main results derived in this work.
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Global Chaos Control and Synchronization
of a Novel Two-Scroll Chaotic System
with Three Quadratic Nonlinearities

Sundarapandian Vaidyanathan

Abstract In this work, we describe a seven-term two-scroll novel chaotic system
with three quadratic nonlinearities. The phase portraits of the two-scroll novel chaotic
system are illustrated and the dynamic properties of the novel chaotic system are dis-
cussed. The novel chaotic system has two unstable equilibrium points. We show that
the equilibrium point at the origin is a saddle point, while the other equilibrium point
is a saddle-focus. The novel chaotic system has rotation symmetry about the x3 axis.
The Lyapunov exponents of the novel chaotic system are obtained as L1 = 3.1464,
L2 = 0 and L3 = −24.0635, while theKaplan–Yorke dimension of the novel chaotic
system is obtained as DK Y = 2.1308. Since the sum of the Lyapunov exponents is
negative, the novel chaotic system is dissipative. Next, we derive new results for the
global chaos control of the novel two-scroll chaotic system with unknown parame-
ters using adaptive control method. We also derive new results for the global chaos
synchronization of the identical novel two-scroll chaotic systems using adaptive
control method. The main control results are established using Lyapunov stability
theory. MATLAB simulations are shown to illustrate the phase portraits of the novel
two-scroll chaotic system and also the adaptive control results derived in this work.

Keywords Chaos · Chaotic systems · Chaos control · Adaptive control · Synchro-
nization

1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [2].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [9], Rössler system [18], ACT system [1], Sprott systems [23], Chen system
[4], Lü system [10], Cai system [3], Tigan system [33], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [105], Zhu system [106], Li system [8], Sundarapandian systems [26, 30],
Vaidyanathan systems [41, 43, 45–48, 52, 63, 64, 78, 79, 81, 87, 89, 92, 95, 96,
98], Pehlivan system [13], Sampath system [19], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [53, 57, 59, 61, 65, 69–71], biological systems [51, 54–56, 58,
60, 62, 66–68, 72–76], memristors [14, 102], robotics [5, 101], electrical circuits
[11, 100], cryptosystems [17, 34], secure communications [103, 104], etc.

The control of a chaotic system aims to stabilize or regulate the system with
the help of a feedback control. There are many methods available for controlling a
chaotic system such as active control [24, 35, 36], adaptive control [25, 37, 42, 44,
50, 77, 88, 94, 97], sliding mode control [39, 40], backstepping control [12, 91, 99],
etc.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) which has the design goal of using the output of the master system
to control the slave system so that the output of the slave system tracks the output of
the master system asymptotically with time. Thus, if x(t) and y(t) denote the state
of the master and slave systems, then the design goal of complete synchronization
(CS) is to satisfy the condition

lim
t→∞ ‖x(t) − y(t)‖ = 0 for all x(0), y(0) ∈ Rn (1)

There aremanymethods available for chaos synchronization such as active control
[6, 20, 21, 82, 84, 90], adaptive control [22, 27–29, 38, 80, 83], slidingmode control
[31, 49, 86, 93], backstepping control [15, 16, 32, 85], etc.

In this research work, we announce a seven-term novel two-scroll chaotic system
with three quadratic nonlinearities. Using adaptive control method, we have also
derived new results for the global chaos control of the novel two-scroll chaotic
system and global chaos synchronization of the identical novel two-scroll chaotic
systems when the system parameters are unknown.

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the seven-term novel two-scroll chaotic system. Section3
details the dynamic analysis and properties of the novel two-scroll chaotic system.
The Lyapunov exponents of the novel chaotic system are obtained as L1 = 3.1464,
L2 = 0 and L3 = −24.0635, while theKaplan–Yorke dimension of the novel chaotic
system is obtained as DK Y = 2.1308.

In Sect. 4, we derive new results for the global chaos control of the novel two-
scroll chaotic system with unknown parameters. In Sect. 5, we derive new results for
the global chaos synchronization of the identical novel two-scroll chaotic systems
with unknown parameters. Section6 contains a summary of the main results derived
in this work.
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2 A Novel 3-D Two-Scroll Chaotic System

In this section, we describe a seven-term novel chaotic system, which is given by the
3-D dynamics ⎧

⎨

⎩

ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx2 − x1x3
ẋ3 = x1x2 − cx3

(2)

where x1, x2, x3 are the states and a, b, c are constant positive parameters.
The novel 3-D system (2) is a seven-term polynomial system with three quadratic

nonlinearities.
The system (2) exhibits a two-scroll chaotic attractor for the parameter values

a = 36, b = 20, c = 5 (3)

For numerical simulations, we take the initial conditions as

x1(0) = 0.2, x2(0) = 0, x3(0) = 0.4 (4)

Figure1 depicts the 3-D phase portrait of the novel two-scroll chaotic system (2),
while Figs. 2, 3 and 4 depict the 2-D projection of the novel two-scroll chaotic system
(2) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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Fig. 1 3-D phase portrait of the novel two-scroll chaotic system
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Fig. 2 2-D projection of the novel two-scroll chaotic system on the (x1, x2) plane
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Fig. 3 2-D projection of the novel two-scroll chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the novel two-scroll chaotic system on the (x1, x3) plane

3 Analysis of the Novel 3-D Two-Scroll Chaotic System

In this section, we give a dynamic analysis of the 3-D novel chaotic system (2). We
take the parameter values as in the chaotic case (3), viz. a = 36, b = 20 and c = 5.

3.1 Dissipativity

In vector notation, the novel chaotic system (2) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (5)

where ⎧
⎨

⎩

f1(x1, x2, x3) = a(x2 − x1) + x2x3
f2(x1, x2, x3) = bx2 − x1x3
f3(x1, x2, x3) = x1x2 − cx3

(6)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
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By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (7)

The divergence of the novel chaotic system (5) is found as

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −(a − b + c) = −μ < 0 (8)

since μ = a − b + c = 21 > 0.
Inserting the value of ∇ · f from (8) into (7), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV (t) (9)

Integrating the first order linear differential equation (9), we get

V (t) = exp(−μt)V (0) (10)

Since μ > 0, it follows from Eq. (10) that V (t) → 0 exponentially as t → ∞.
This shows that the novel chaotic system (2) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of
zero volume, and the asymptotic motion of the novel chaotic system (2) settles onto
a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (3).
It is easy to see that the system (2) has two equilibrium points, viz.

E0 =
⎡

⎣
0
0
0

⎤

⎦ and E1 =
⎡

⎣
10.0000
7.1555

14.3110

⎤

⎦ (11)

The Jacobian of the system (2) at any point x ∈ R3 is calculated as

J (x) =
⎡

⎣
−a a + x3 x2
−x3 b −x1
x2 x1 −c

⎤

⎦ =
⎡

⎣
−36 36 + x3 x2
−x3 20 −x1
x2 x1 −5

⎤

⎦ (12)
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We find that the matrix J0 = J (E0) has the eigenvalues

λ1 = −5, λ2 = −36, λ3 = 20 (13)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
We also find that the matrix J1 = J (E1) has the eigenvalues

λ1 = −28.1171, λ2,3 = 3.5586 ± 17.7834i (14)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.

3.3 Rotation Symmetry About the x3-Axis

It is easy to see that the system (2) is invariant under the change of coordinates

(x1, x2, x3) �→ (−x1,−x2, x3) (15)

Thus, the 3-D novel chaotic system (2) has rotation symmetry about the x3-axis
and that any non-trivial trajectory must have a twin trajectory.

3.4 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 3-D novel chaotic
system (2). The invariant motion along the x3-axis is characterized by

ẋ3 = −cx3, (c > 0) (16)

which is globally exponentially stable.

3.5 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (2) as in the chaotic case (3). We
take the initial state of the novel system (2) as given in (4).

Then the Lyapunov exponents of the system (2) are numerically obtained as

L1 = 3.1464, L2 = 0, L3 = −24.0635 (17)
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From (17), we note that the Maximal Lyapunov Exponent (MLE) of the novel
chaotic system (2) is given by L1 = 3.1464. Since the sumof theLyapunov exponents
in (17) is negative, we conclude that the novel chaotic system (2) is dissipative.

Also, the Kaplan–Yorke dimension of the novel chaotic system (2) is found as

DK Y = 2 + L1 + L2

|L3| = 2.1308 (18)

4 Adaptive Control of the Novel 3-D Two-Scroll Chaotic
System

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the novel 3-D two-scroll chaotic system with unknown
parameters.

Thus, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẋ1 = a(x2 − x1) + x2x3 + u1

ẋ2 = bx2 − x1x3 + u2

ẋ3 = x1x2 − cx3 + u3

(19)

In (19), x1, x2, x3 are the states and u1, u2, u3 are the adaptive controls to be deter-
mined using estimates â(t), b̂(t), ĉ(t) for the unknown parameters a, b, c, respec-
tively.

We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −â(t)(x2 − x1) − x2x3 − k1x1
u2 = −b̂(t)x2 + x1x3 − k2x2
u3 = −x1x2 + ĉ(t)x3 − k3x3

(20)

where k1, k2, k3 are positive gain constants.
Substituting (20) into (19), we get the closed-loop plant dynamics as

⎧
⎨

⎩

ẋ1 = [a − â(t)](x2 − x1) − k1x1
ẋ2 = [b − b̂(t)]x2 − k2x2
ẋ3 = −[c − ĉ(t)]x3 − k3x3

(21)

The parameter estimation errors are defined as

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(22)
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In view of (22), we can simplify the plant dynamics (21) as

⎧
⎨

⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = ebx2 − k2x2
ẋ3 = −ecx3 − k3x3

(23)

Differentiating (22) with respect to t , we obtain

⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(24)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec) = 1

2

(
x2
1 + x2

2 + x2
3

) + 1

2

(
e2a + e2b + e2c

)
(25)

Differentiating V along the trajectories of (23) and (24), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 + ea

[
x1(x2 − x1) − ˙̂a

]

+eb

[
x2
2 − ˙̂b

]
+ ec

[
−x2

3 − ˙̂c
] (26)

In view of (26), we take the parameter update law as

⎧
⎪⎨

⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = x2
2˙̂c(t) = −x2

3

(27)

Next, we state and prove the main result of this section.

Theorem 1 The novel 3-D two-scroll chaotic system (19) with unknown system
parameters is globally and exponentially stabilized for all initial conditions by the
adaptive control law (20) and the parameter update law (27), where k1, k2, k3 are
positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [7].
We consider the quadratic Lyapunov function defined by (25), which is clearly a

positive definite function on R6.
By substituting the parameter update law (27) into (26), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 (28)

From (28), it is clear that V̇ is a negative semi-definite function on R6.
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Thus, we can conclude that the state vector x(t) and the parameter estimation
error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t) ec(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (28) that

V̇ ≤ −k‖x(t)‖2 (29)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (30)

Integrating the inequality (30) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (31)

From (31), it follows that x ∈ L2.
Using (23), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [7], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (19) and (27), when the adaptive
control law (20) is applied.

The parameter values of the novel 3-D two-scroll chaotic system (19) are taken
as in the chaotic case (3), i.e.

a = 36, b = 20, c = 5 (32)

We take the positive gain constants as

k1 = 5, k2 = 5, k3 = 5 (33)

Furthermore, as initial conditions of the novel 3-D chaotic system (19), we take

x1(0) = 12.5, x2(0) = 32.7, x3(0) = −15.4 (34)

Also, as initial conditions of the parameter estimates, we take

â(0) = 2.7, b̂(0) = 10.3, ĉ(0) = 7.4 (35)
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In Fig. 5, the exponential convergence of the controlled states of the 3-D novel
two-scroll chaotic system (19) is depicted.

5 Adaptive Synchronization of the Identical Novel
Two-Scroll Chaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical 3-D novel two-scroll chaotic systems with
unknown parameters.

As the master system, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx2 − x1x3
ẋ3 = x1x2 − cx3

(36)

In (36), x1, x2, x3 are the states and a, b, c are unknown system parameters.
As the slave system, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẏ1 = a(y2 − y1) + y2y3 + u1

ẏ2 = by2 − y1y3 + u2

ẏ3 = y1y2 − cy3 + u3

(37)
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In (37), y1, y2, y3 are the states and u1, u2, u3 are the adaptive controls to be deter-
mined using estimates â(t), b̂(t), ĉ(t) for the unknown parameters a, b, c, respec-
tively.

The synchronization error between the novel chaotic systems is defined by

⎧
⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(38)

Then the error dynamics is obtained as

⎧
⎨

⎩

ė1 = a(e2 − e1) + y2y3 − x2x3 + u1

ė2 = be2 − y1y3 + x1x3 + u2

ė3 = −ce3 + y1y2 − x1x2 + u3

(39)

We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −â(t)(e2 − e1) − y2y3 + x2x3 − k1e1
u2 = −b̂(t)e2 + y1y3 − x1x3 − k2e2
u3 = ĉ(t)e3 − y1y2 + x1x2 − k3e3

(40)

where k1, k2, k3 are positive gain constants.
Substituting (40) into (39), we get the closed-loop error dynamics as

⎧
⎪⎨

⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) − k1e1

ė2 =
[
b − b̂(t)

]
e2 − k2e2

ė3 = − [
c − ĉ(t)

]
e3 − k3e3

(41)

The parameter estimation errors are defined as

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(42)

In view of (42), we can simplify the error dynamics (41) as

⎧
⎨

⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = ebe2 − k2e2
ė3 = −ece3 − k3e3

(43)

Differentiating (42) with respect to t , we obtain
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⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(44)

We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b + e2c

)
(45)

Differentiating V along the trajectories of (43) and (44), we obtain

V̇ = −k1e21 − k2e22 − k3e23 + ea

[
e1(e2 − e1) − ˙̂a

]

+eb

[
e22 − ˙̂b

]
+ ec

[
−e23 − ˙̂c

] (46)

In view of (46), we take the parameter update law as

⎧
⎪⎨

⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂b(t) = e22˙̂c(t) = −e23

(47)

Next, we state and prove the main result of this section.

Theorem 2 The novel two-scroll chaotic systems (36) and (37) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (40) and the parameter update law (47), where k1, k2, k3
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [7].
We consider the quadratic Lyapunov function defined by (45), which is clearly a

positive definite function on R6.
By substituting the parameter update law (47) into (46), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (48)

From (48), it is clear that V̇ is a negative semi-definite function on R6.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t)

]T ∈ L∞. (49)

We define k = min{k1, k2, k3}.
Then it follows from (48) that

V̇ ≤ −k‖e(t)‖2 (50)
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Thus, we have
k‖e(t)‖2 ≤ −V̇ (51)

Integrating the inequality (51) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (52)

From (52), it follows that e ∈ L2.
Using (43), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [7], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
Hence, we have proved that novel two-scroll chaotic systems (36) and (37) with

unknown system parameters are globally and exponentially synchronized for all
initial conditions.

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (36), (37) and (47), when the
adaptive control law (40) is applied.

The parameter values of the novel chaotic systems are taken as in the chaotic case
(3), i.e.

a = 36, b = 20, c = 5 (53)

We take the positive gain constants as ki = 5 for i = 1, 2, 3.
Furthermore, as initial conditions of the master system (36), we take

x1(0) = 32.4, x2(0) = −15.8, x3(0) = −26.7 (54)

As initial conditions of the slave system (37), we take

y1(0) = 12.7, y2(0) = 3.5, y3(0) = 14.2 (55)

Also, as initial conditions of the parameter estimates, we take

â(0) = 2.1, b̂(0) = 20.4, ĉ(0) = 25.3 (56)

Figures6, 7 and 8 describe the complete synchronization of the novel chaotic
systems (36) and (37), while Fig. 9 describes the time-history of the synchronization
errors e1, e2, e3.
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6 Conclusions

In this work, we described a seven-term two-scroll novel chaotic system with three
quadratic nonlinearities and discussed the qualitative properties of the system. We
derived new results for the global chaos control of the novel two-scroll chaotic system
with unknownparameters using adaptive controlmethod.We also derived new results
for the global chaos synchronization of the identical two-scroll chaotic systems using
adaptive control method. MATLAB simulations were shown to illustrate all the main
results derived in this work.
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A Novel 3-D Circulant Chaotic System
with Labyrinth Chaos and Its Adaptive
Control

Sundarapandian Vaidyanathan

Abstract In this work, we describe a novel 3-D dissipative circulant chaotic system
with labyrinth chaos. The novel chaotic system is a nine-termpolynomial systemwith
six sinusoidal nonlinearities. The phase portraits of the novel circulant chaotic system
are illustrated and the dynamic properties of the novel circulant chaotic system are
discussed. The novel circulant chaotic system has infinitely many equilibrium points
and it exhibits labyrinth chaos. We show that all the equilibrium points of the novel
circulant chaotic system are saddle-foci and hence they are unstable. The Lyapunov
exponents of the novel circulant chaotic system are obtained as L1 = 2.1714, L2 = 0
and L3 = −2.2373, while the Kaplan–Yorke dimension of the novel circulant chaotic
system is obtained as DKY = 2.9705. Since the Kaplan–Yorke dimension of the the
novel circulant chaotic system has a very large value and close to three, the novel
circulant chaotic system with labyrinth chaos exhibits highly complex behaviour.
Since the sum of the Lyapunov exponents is negative, the novel chaotic system is
dissipative. Next, we derive new results for the global chaos control of the novel
circulant chaotic system with unknown parameters using adaptive control method.
We also derive new results for the global chaos synchronization of the identical novel
circulant chaotic systems with unknown parameters using adaptive control method.
The main control results are established using Lyapunov stability theory. MATLAB
simulations are depicted to illustrate the phase portraits of the novel circulant chaotic
system and also the adaptive control results derived in this work.
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1 Introduction

In the last few decades, chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [11], Rössler system [20], ACT system [2], Sprott systems [25], Chen system
[6], Lü system [12], Cai system [5], Tigan system [37], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [110], Zhu system [111], Li system [10], Sundarapandian systems [29, 33],
Vaidyanathan systems [46, 48, 50–53, 57, 68, 69, 83, 84, 86, 92, 94, 97, 100, 101,
103], Pehlivan system [15], Sampath system [21], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [58, 62, 64, 66, 70, 74–76], biological systems [56, 59–61, 63, 65,
67, 71–73, 77–81], memristors [1, 16, 107], lasers [4], oscillations [38], robotics [7,
106], electrical circuits [13, 105], cryptosystems [19, 39], secure communications
[108, 109], etc.

The control of a chaotic system aims to stabilize or regulate the system with
the help of a feedback control. There are many methods available for controlling a
chaotic system such as active control [27, 40, 41], adaptive control [28, 42, 47, 49,
55, 82, 93, 99, 102], sliding mode control [44, 45], backstepping control [14, 96,
104], etc.

There aremanymethods available for chaos synchronization such as active control
[8, 22, 23, 87, 89, 95], adaptive control [24, 30–32, 43, 85, 88], slidingmode control
[34, 54, 91, 98], backstepping control [17, 18, 35, 90], etc.

In this research work, we announce a novel circulant chaotic system with
Labyrinth chaos. Using adaptive control method, we have also derived new results
for the global chaos control of the novel circulant chaotic system and global chaos
synchronization of the identical novel highly chaotic systems when the system para-
meters are unknown.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the novel circulant chaotic system. Section3 details the qualitative
properties of the novel highly chaotic system. The novel circulant chaotic system
has infinitely many equilibrium points and it exhibits labyrinth chaos. The Lyapunov
exponents of the novel chaotic system are obtained as L1 = 2.1714, L2 = 0 and
L3 = −2.2373, while the Kaplan–Yorke dimension of the novel chaotic system is
obtained as DKY = 2.9705. The large value of DKY indicates the high complexity of
the novel circulant chaotic system.

In Sect. 4, we derive new results for the global chaos control of the novel circulant
chaotic system with unknown parameters. In Sect. 5, we derive new results for the
global chaos synchronization of the identical novel circulant chaotic systems with
unknown parameters. Section6 contains the conclusions of this work.
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2 A Novel 3-D Circulant System with Labyrinth Chaos

A particularly elegant chaos system is one in which the variables are cyclically
symmetric [26]. Thus, a 3-D circulant system has the form

⎧
⎨

⎩

ẋ1 = ϕ(x1, x2, x3)
ẋ2 = ϕ(x2, x3, x1)
ẋ3 = ϕ(x3, x1, x2)

(1)

where all the functions are the same except the state variables which are rotated.
A famous circulant chaotic system is the Thomas system [36], which can be

expressed as ⎧
⎨

⎩

ẋ1 = sin x2 − bx1
ẋ2 = sin x3 − bx2
ẋ3 = sin x1 − bx3

(2)

where b is a constant that corresponds to how dissipative the system is, and acts as
a bifurcation parameter. The Thomas system (2) is found chaotic when

b = 0.2082 (3)

For numerical simulations, we take the initial state of the Thomas system (2) as

x1(0) = 0.4, x2(0) = 0, x3(0) = 0 (4)

The Lyapunov exponents of the Thomas circulant system (2) for the initial state
(4) and the parameter value (3) are numerically found as

L1 = 0.0179, L2 = 0, L3 = −0.6376 (5)

Thus, the Kaplan–Yorke dimension of the Thomas circulant system (2) is derived
as

DKY = 2 + L1 + L2

|L3| = 2.0281 (6)

It is also easy to see that the Thomas circulant system (2) has infinitely many
equilibrium points given by

Eθ =
⎡

⎣
θ

θ

θ

⎤

⎦ , (7)

where θ is a root of the transcendental equation

sin θ = bθ, (b = 0.2082) (8)
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Fig. 1 3-D phase portrait of the Thomas circulant chaotic system with labyrinth chaos

Since the Eq. (8) has infinitely many roots θ , it follows that the Thomas circulant
system (2) has infinitely many equilibrium points Eθ given by (7).

Figure1 depicts the 3-D phase portrait of the Thomas circulant chaotic system (2)
with labyrinth chaos.

In this researchwork, we announce a novel circulant chaotic systemwith labyrinth
chaos, which is described by

⎧
⎨

⎩

ẋ1 = a(sin x2 − cos x2) − bx1
ẋ2 = a(sin x3 − cos x3) − bx2
ẋ3 = a(sin x1 − cos x1) − bx3

(9)

where a and b are constant, positive, parameters.
The novel circulant system (9) is chaotic when we take the parameter values as

a = 14, b = 0.02 (10)

For numerical simulations, we take the initial state of the circulant system (9) as

x1(0) = 2.5, x2(0) = 2.8, x3(0) = 2.5 (11)

TheLyapunov exponents of the novel circulant system (9) for the parameter values
(10) and the initial state (11) are numerically found as

L1 = 2.1714, L2 = 0, L3 = −2.2373 (12)
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Thus, the Kaplan–Yorke dimension of the novel circulant system (9) is derived as

DKY = 2 + L1 + L2

|L3| = 2.9705 (13)

The maximal Lyapunov exponent of the novel circulant chaotic system (9) is
L1 = 2.1714, which is much higher than the maximal Lyapunov exponent of the
Thomas circulant chaotic system (2), viz. L1 = 0.0179.

Also, the Kaplan–Yorke dimension of the novel circulant chaotic system (9)
is DKY = 2.9705, which is much higher than the Kaplan–Yorke dimension of the
Thomas circulant chaotic system (2), viz. DKY = 2.0281.

This shows that the novel circulant chaotic system (9) exhibits more chaotic
behaviour than the Thomas circulant system (2). Also, the large value of DKY , which
is close to three, indicates that it exhibits high complexity.

It is also easy to see that the novel circulant circulant system (9) has infinitely
many equilibrium points given by

Eθ =
⎡

⎣
θ

θ

θ

⎤

⎦ , (14)

where θ is a root of the transcendental equation

sin θ − cos θ = b

a
θ, (a = 14, b = 0.02) (15)

If we define

μ = b

a
, (16)

then we can express (15) equivalently as

sin θ − cos θ = μθ, (μ = 0.0014) (17)

Since the Eq. (17) has infinitely many roots θ , it follows that the novel chaotic
circulant system (9) has infinitely many equilibrium points Eθ given by (14).

In this work, we shall show that all the equilibrium points Eθ , (θ ∈ R) are saddle-
focus points, which are unstable.

Figure2 depicts the 3-D phase portrait of the novel circulant chaotic system (9)
with labyrinth chaos.

Figures3, 4 and 5 depict the 2-D projection of the novel circulant chaotic system
(9) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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Fig. 2 3-D phase portrait of the novel circulant chaotic system with labyrinth chaos
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Fig. 5 2-D projection of the novel circulant chaotic system on the (x1, x3) plane
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3 Analysis of the Novel 3-D Circulant Chaotic System

In this section, we study the qualitative properties of the 3-D novel circulant chaotic
system (9). We take the parameter values as in (10), viz. a = 14 and b = 0.02.

3.1 Dissipativity

In vector notation, the novel chaotic system (9) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (18)

where ⎧
⎨

⎩

f1(x1, x2, x3) = a(sin x2 − cos x2) − bx1
f2(x1, x2, x3) = a(sin x3 − cos x3) − bx2
f3(x1, x2, x3) = a(sin x1 − cos x1) − bx3

(19)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt(Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (20)

The divergence of the novel chaotic system (18) is found as

∇ · f = ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

= −3b = −ε < 0 (21)

where ε = 3b = 0.06 > 0.
Inserting the value of ∇ · f from (21) into (20), we get

V̇ (t) =
∫

Ω(t)

(−ε) dx1 dx2 dx3 = −εV (t) (22)

Integrating the first order linear differential equation (22), we get

V (t) = exp(−εt)V (0) (23)

Since ε > 0, it follows from Eq. (23) that V (t) → 0 exponentially as t → ∞.
This shows that the novel chaotic system (9) is dissipative.
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Hence, the system limit sets are ultimately confined into a specific limit set of
zero volume, and the asymptotic motion of the novel chaotic system (9) settles onto
a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (10), viz. a = 14 and b = 0.02.
It is easy to see that the novel circulant circulant system (9) has infinitely many

equilibrium points given by

Eθ =
⎡

⎣
θ

θ

θ

⎤

⎦ , (24)

where θ is a root of the transcendental equation

sin θ − cos θ = b

a
θ, (a = 14, b = 0.02) (25)

If we define

μ = b

a
, (26)

then we can express (25) equivalently as

sin θ − cos θ = μθ, (μ = 0.0014) (27)

Since the Eq. (27) has infinitely many roots θ , the novel chaotic circulant system
(9) has infinitely many equilibrium points Eθ given by (24).

Using MATLAB, some equilibrium points of the novel chaotic circulant system
(9) can be listed as follows:

. . . ,

⎡

⎣
−2.3538
−2.3538
−2.3538

⎤

⎦ ,

⎡

⎣
0.7862
0.7862
0.7862

⎤

⎦ ,

⎡

⎣
3.9230
3.9230
3.9230

⎤

⎦ ,

⎡

⎣
7.0757
7.0757
7.0757

⎤

⎦ , . . . (28)

The Jacobian matrix of the novel circulant chaotic system (9) at any point x ∈ R3

is obtained as

J(x) =
⎡

⎣
−b a(cos x2 + sin x2) 0
0 −b a(cos x3 + sin x3)

a(cos x1 + sin x1) 0 −b

⎤

⎦ (29)



266 S. Vaidyanathan

For all equilibrium points Eθ , the matrix J(Eθ ) has the same eigenvalues viz.

λ1 = −19.8188, λ2,3 = 9.8794 ± 17.1463 i (30)

Thus, all the equilibrium points Eθ of the novel circulant chaotic system (9) are
saddle-focus points, which are unstable.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (9) as in the chaotic case (10), viz.
a = 14 and b = 0.02. We take the initial state of the novel system (9) as given in
(11).

Then the Lyapunov exponents of the system (9) are numerically obtained as

L1 = 2.1714, L2 = 0, L3 = −2.2373 (31)

Thus, the maximal Lyapunov exponent of the novel circulant chaotic system (9)
is L1 = 2.1714 > 0.

Since the sum of the Lyapunov exponents of the novel circulant chaotic system
(9) is negative, the system is dissipative.

Also, the Kaplan–Yorke dimension of the novel circulant chaotic system (9) is
found as

DKY = 2 + L1 + L2

|L3| = 2.9705 (32)

which is a very high value as it is close to three. This shows the high complexity
of the novel circulant chaotic system (9). Hence, it is suitable for many engineering
applications such as cryptosystems, secure communications, etc.

4 Adaptive Control of the Novel Circulant Chaotic System

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the novel 3-D circulant chaotic system with unknown
parameters.

Thus, we consider the novel circulant chaotic system given by

⎧
⎨

⎩

ẋ1 = a(sin x2 − cos x2) − bx1 + u1
ẋ2 = a(sin x3 − cos x3) − bx2 + u2
ẋ3 = a(sin x1 − cos x1) − bx3 + u3

(33)
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In (33), x1, x2, x3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates â(t), b̂(t) for the unknown parameters a, b, respectively.

To simplify the notation, we define

F(α) = sin α − cosα (34)

Using (34), we can represent (33) in a simple form as

⎧
⎨

⎩

ẋ1 = aF(x2) − bx1 + u1
ẋ2 = aF(x3) − bx2 + u2
ẋ3 = aF(x1) − bx3 + u3

(35)

We consider the adaptive feedback control law

⎧
⎪⎨

⎪⎩

u1 = −â(t)F(x2) + b̂(t)x1 − k1x1
u2 = −â(t)F(x3) + b̂(t)x2 − k2x2
u3 = −â(t)F(x1) + b̂(t)x3 − k3x3

(36)

where k1, k2, k3 are positive gain constants.
Substituting (36) into (35), we get the closed-loop plant dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = [
a − â(t)

]
F(x2) −

[
b − b̂(t)

]
x1 − k1x1

ẋ2 = [
a − â(t)

]
F(x3) −

[
b − b̂(t)

]
x2 − k2x2

ẋ3 = [
a − â(t)

]
F(x1) −

[
b − b̂(t)

]
x3 − k2x3

(37)

The parameter estimation errors are defined as

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(38)

In view of (38), we can simplify the plant dynamics (37) as

⎧
⎨

⎩

ẋ1 = eaF(x2) − ebx1 − k1x1
ẋ2 = eaF(x3) − ebx2 − k2x2
ẋ3 = eaF(x1) − ebx3 − k2x3

(39)

Differentiating (38) with respect to t, we obtain

{
ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
(40)
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We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb) = 1

2

(
x21 + x22 + x23

) + 1

2

(
e2a + e2b

)
(41)

Differentiating V along the trajectories of (39) and (40), we obtain

V̇ = −k1x21 − k2x22 − k3x23 + ea

[
x1F(x2) + x2F(x3) + x3F(x1) − ˙̂a

]

+ eb

[
−x21 − x22 − x23 − ˙̂b

]
(42)

In view of (42), we take the parameter update law as

{ ˙̂a(t) = x1F(x2) + x2F(x3) + x3F(x1)˙̂b(t) = −x21 − x22 − x23
(43)

Next, we state and prove the main result of this section.

Theorem 1 The novel 3-D circulant chaotic system (35)with unknown system para-
meters is globally and exponentially stabilized for all initial conditions by the adap-
tive control law (36) and the parameter update law (43), where k1, k2, k3 are positive
gain constants and F(α) is defined by (34).

Proof We prove this result by applying Lyapunov stability theory [9].
We consider the quadratic Lyapunov function defined by (41), which is clearly a

positive definite function on R5.
By substituting the parameter update law (43) into (42), we obtain the time-

derivative of V as
V̇ = −k1x21 − k2x22 − k3x23 (44)

From (44), it is clear that V̇ is a negative semi-definite function on R5.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (44) that

V̇ ≤ −k‖x(t)‖2 (45)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (46)
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Integrating the inequality (46) from 0 to t, we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (47)

From (47), it follows that x ∈ L2.
Using (39), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [9], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R3.
This completes the proof. �
For the numerical simulations, the classical fourth-order Runge–Kutta method

with step size h = 10−8 is used to solve the systems (35) and (43), when the adaptive
control law (36) is applied.

The parameter values of the novel 3-D circulant chaotic system (35) are taken as
in the chaotic case (10), i.e. a = 14 and b = 0.02.

We take the positive gain constants as ki = 5 for i = 1, 2, 3.
Furthermore, as initial conditions of the novel highly chaotic system (35), we take

x1(0) = 15.3, x2(0) = 12.7, x3(0) = −16.9 (48)

Also, as initial conditions of the parameter estimates, we take

â(0) = 25.3, b̂(0) = 14.8 (49)

In Fig. 6, the exponential convergence of the controlled states of the 3-D novel
highly chaotic system (35) is depicted.

5 Adaptive Synchronization of the Identical Novel
Circulant Chaotic Systems

In this section, we apply adaptive control method to derive an adaptive feedback
control law for globally synchronizing identical 3-D novel circulant chaotic systems
with unknown parameters.

To simplify the notation, we define

F(α) = sin α − cosα (50)

As the master system, we consider the novel circulant chaotic system given by

⎧
⎨

⎩

ẋ1 = aF(x2) − bx1
ẋ2 = aF(x3) − bx2
ẋ3 = aF(x1) − bx3

(51)
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Fig. 6 Time-history of the controlled states x1, x2, x3

In (51), x1, x2, x3 are the states and a, b are unknown system parameters.
As the slave system, we consider the novel circulant chaotic system given by

⎧
⎨

⎩

ẏ1 = aF(y2) − by1 + u1
ẏ2 = aF(y3) − by2 + u2
ẏ3 = aF(y1) − by3 + u3

(52)

In (52), y1, y2, y3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates of the unknown system parameters.

The synchronization error between the novel chaotic systems is defined by

⎧
⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(53)

Then the error dynamics is obtained as

⎧
⎨

⎩

ė1 = a[F(y2) − F(x2)] − be1 + u1
ė2 = a[F(y3) − F(x3)] − be2 + u2
ė3 = a[F(y1) − F(x1)] − be3 + u3

(54)

To simplify the notation, we define

G(α, β) = F(β) − F(α) (55)
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Then the error dynamics (54) can be simplified as

⎧
⎨

⎩

ė1 = a G(x2, y2) − be1 + u1
ė2 = a G(x3, y3) − be2 + u2
ė3 = a G(x1, y1) − be3 + u3

(56)

We consider the adaptive feedback control law

⎧
⎪⎨

⎪⎩

u1 = −â(t) G(x2, y2) + b̂(t)e1 − k1e1
u2 = −â(t) G(x3, y3) + b̂(t)e2 − k2e2
u3 = −â(t) G(x1, y1) + b̂(t)e3 − k3e3

(57)

where k1, k2, k3 are positive gain constants.
Substituting (57) into (56), we get the closed-loop error dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = [
a − â(t)

]
G(x2, y2) −

[
b − b̂(t)

]
e1 − k1e1

ė2 = [
a − â(t)

]
G(x3, y3) −

[
b − b̂(t)

]
e2 − k2e2

ė3 = [
a − â(t)

]
G(x1, y1) −

[
b − b̂(t)

]
e3 − k3e3

(58)

The parameter estimation errors are defined as

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(59)

In view of (59), we can simplify the error dynamics (58) as

⎧
⎨

⎩

ė1 = eaG(x2, y2) − ebe1 − k1e1
ė2 = eaG(x3, y3) − ebe2 − k2e2
ė3 = eaG(x1, y1) − ebe3 − k3e3

(60)

Differentiating (59) with respect to t, we obtain

{
ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
(61)

We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b

)
(62)
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Differentiating V along the trajectories of (60) and (61), we obtain

V̇ = −k1e21 − k2e22 − k3e23

+ea

[
e1G(x2, y2) + e2G(x3, y3) + e3G(x1, y1) − ˙̂a

]

+eb

[
−e21 − e22 − e23 − ˙̂b

]
(63)

In view of (63), we take the parameter update law as

{ ˙̂a(t) = e1G(x2, y2) + e2G(x3, y3) + e3G(x1, y1)˙̂b(t) = −e21 − e22 − e23
(64)

Next, we state and prove the main result of this section.
This result is proved by applying adaptive control theory and Lyapunov stability

theory.

Theorem 2 The novel circulant chaotic systems (51) and (52) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (57) and the parameter update law (64), where k1, k2, k3 are
positive gain constants and F, G are defined by the Eqs. (50) and (55), respectively.

Proof We prove this result by applying Lyapunov stability theory [9].
We consider the quadratic Lyapunov function defined by (62), which is clearly a

positive definite function on R5.
By substituting the parameter update law (64) into (63), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (65)

From (65), it is clear that V̇ is a negative semi-definite function on R5.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t)

]T ∈ L∞. (66)

We define k = min{k1, k2, k3}.
Then it follows from (65) that

V̇ ≤ −k‖e(t)‖2 (67)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (68)
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Integrating the inequality (68) from 0 to t, we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (69)

From (69), it follows that e ∈ L2.
Using (60), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [9], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
Hence, we have proved that novel circulant chaotic systems (51) and (52) with

unknown system parameters are globally and exponentially synchronized for all
initial conditions.

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (51), (52) and (64), when the
adaptive control law (57) is applied.

The parameter values of the novel chaotic systems are taken as in the chaotic case
(10), i.e.

a = 14, b = 0.02 (70)

We take the positive gain constants as

k1 = 5, k2 = 5, k3 = 5 (71)

Furthermore, as initial conditions of the master system (51), we take

x1(0) = 5.4, x2(0) = 12.7, x3(0) = 4.9 (72)

As initial conditions of the slave system (52), we take

y1(0) = 14.5, y2(0) = 3.5, y3(0) = 10.2 (73)

Also, as initial conditions of the parameter estimates, we take

â(0) = 6.1, b̂(0) = 24.8 (74)

Figures7, 8 and 9 describe the complete synchronization of the novel circulant
chaotic systems (51) and (52), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3.
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6 Conclusions

In this work, we announced a novel 3-D dissipative circulant chaotic system with
Labyrinth chaos. The novel chaotic system is a nine-term polynomial systemwith six
sinusoidal nonlinearities. The phase portraits of the novel circulant chaotic system
were illustrated and the qualitative properties of the novel circulant chaotic system
were discussed. The novel circulant chaotic system has infinitely many equilibrium
points and it exhibits labyrinth chaos. We showed that all the equilibrium points
of the novel circulant chaotic system are saddle-foci and hence they are unstable.
The Lyapunov exponents of the novel circulant chaotic system were obtained as
L1 = 2.1714, L2 = 0 and L3 = −2.2373, while the Kaplan–Yorke dimension of the
novel circulant chaotic system was derived as DKY = 2.9705. Since the Kaplan–
Yorke dimension of the the novel circulant chaotic system has a very high value
and close to three, the novel circulant chaotic system with labyrinth chaos exhibits
highly complex behaviour. Hence, it is suitable for engineering applications such as
cryptosystems, secure communications, etc. In this work, we also derived new results
for the global chaos control of the novel circulant chaotic system with unknown
parameters using adaptive control method. Finally, we also derived new results for
the global chaos synchronization of the identical novel circulant chaotic systemswith
unknown parameters using adaptive control method. The main control results were
established using Lyapunov stability theory. MATLAB simulations were depicted to
illustrate all the main results of this work.
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A 3-D Novel Jerk Chaotic System
and Its Application in Secure Communication
System and Mobile Robot Navigation

Aceng Sambas, Sundarapandian Vaidyanathan, Mustafa Mamat,
W.S. Mada Sanjaya and Darmawan Setia Rahayu

Abstract In this work, we study the complex dynamics of a six-term 3-D novel
jerk chaotic system with two hyperbolic sinusoidal nonlinearities, which was pro-
posed by Vaidyanathan et al. Arch Control Sci 24(3):375–403, 2014, [98]. The initial
study in this chapter is to analyze the eigenvalue structures, various attractors, Lya-
punov exponent analysis, Kaplan Yorke dimension, FFT analysis and Poincaré map
analysis. We have studied the dynamic behavior of the system in the case of the bidi-
rectional coupling via a linear resistor. Both experimental and simulation results have
shown that chaotic synchronization is possible. Furthermore, the effectiveness of the
bidirectional coupling method scheme between two identical 3-D novel jerk chaotic
systems in a secure communication system is presented in detail. Also, the driving
strategy of a mobile robot is studied, in order to generate the most unpredictable tra-
jectory. Kinematics model of the robot’s movement has been created and combined
with the networking system of a 3-D novel jerk circuit so that the movement of the
robot is very difficult to predict. Finally, numerical simulations by using MATLAB
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2010, experimental results, as well as the implementation of circuit simulations by
using Proteus has been performed in this study.

Keywords Chaos · Jerk systems ·Bidirectional coupling ·Chaos synchronization ·
Secure communication · Mobile robot

1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologicallymixing andwith dense periodic orbits [5]. Sensitivity
to initial conditions of chaotic systems is popularly known as the butterfly effect.
Small changes in an initial state will make a very large difference in the behavior of
the system at future states.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [16], Moore–Spiegel system [20], Rössler system [33], ACT system [4],
Sprott systems [52], Chen system [7], Lü system [10], Cai system [6], Tigan system
[64], Malasoma system [18], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [118], Zhu system [119], Li system [12],Wei–Yang system [114], Han system
[11], Sundarapandian systems [57, 61], Vaidyanathan systems [68, 70, 72–76, 80,
81, 84, 85, 98, 100, 102, 103, 105], Pehlivan system [28], Sampath–Vaidyanathan
system [42], Pandey system [25], Pham system [31], etc.

The synchronization of chaotic systems is a phenomenon that occurs when two or
more chaotic systems are coupled or when a chaotic system drives another chaotic
system [110, 113]. Because of the butterfly effect which causes exponential diver-
gence of the trajectories of two identical chaotic systems started with nearly the same
initial conditions, the synchronization of chaotic systems is a challenging research
problem in the chaos literature [5].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) of a pair of chaotic systems called the master and slave systems.
The design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Chaos theory has important applications in several branches of science and engi-
neering like physics [51, 104], economics [106], biology [43, 77], ecology [44],
psychology [54], chemical reactions [21, 78, 79], robotics [19, 24, 108], random
bits generator [107], encryption [1, 2, 14, 109], communication devices [3, 8], secure
communication system [39–41, 117], circuits [13, 112], memristors [30, 32, 111],
neural networks [15], fuzzy systems [23], etc.

Synchronization of chaotic systems deals with the problem of synchronizing the
respective states of two chaotic systems called as master and slave systems asymp-
totically with time. Because of the butterfly effect, which causes the exponential
divergence of the trajectories of two identical chaotic systems started with nearly



A 3-D Novel Jerk Chaotic System and Its Application in Secure … 285

the same initial conditions, synchronizing two chaotic systems is seemingly a very
challenging problem in the chaos literature. Pecora and Carroll pioneered research
on the chaos synchronization problem with a seminal work [27].

Over the last three decades, various types of chaos synchronization problems
have been proposed in the chaos literature, which include complete synchronization
[26, 34, 36, 56, 63, 66, 69, 71, 88, 89, 91–93, 95, 97, 99, 101], anti-synchronization
[58, 59, 67, 82, 86, 87, 96], hybrid synchronization [9, 35, 37, 60, 62, 65, 83, 90,
94], generalized synchronization [38], impulsive synchronization [110], unidirec-
tional synchronization [40], bidirectional synchronization [41], projective synchro-
nization [17], generalized projective synchronization [45–49], etc.

Synchronization of chaotic systems is a key issue in symmetric chaos based secure
communication schemes. Many researchers demonstrated, using simulation, that
chaos can be synchronized and applied to secure communication schemes such as
secure fiber optical communication scheme using chaos [3], secure communication
based on chaotic stream cipher [117], secure communicationwith chaotic lasers [50],
chaotic communication on a satellite formation flying [8] and satellite communica-
tions using transiently chaotic neural networks [15].

In mobile robot navigation, recent efforts to apply the theory of dynamical sys-
tems to robotic include the study of chaos in patrol mobile robot [19], floor-cleaning
operation robot [24], motion control of robots using a chaotic truly random bits gen-
erator [107], chaotic mobile robot using fuzzy logic [23] and chaotic robot prediction
by neuro-fuzzy control [22].

In this work, we investigate the novel Vaidyanathan jerk chaotic system with two
hyperbolic sinusoidal nonlinearities [98]. Basic dynamical properties of the novel
Vaidyanathan novel jerk chaotic system are analyzed bymeans of equilibrium points,
eigenvalue structures, Lyapunov exponents. Kaplan Yorke dimension, Poincaré map
and FFT analysis. To confirm the validity of the theoretical model, we also discuss the
implementation of the novel Vaidyanathan jerk chaotic system by circuit design and
simulation in MultiSIM. Furthermore, simulation results are used to visualize and
illustrate the effectiveness of Vaidyanathan jerk chaotic system in synchronization
and secure communication. In mobile robot navigation, kinematic model, numerical
simulation and experimental results have been performed in this study.

In Sect. 2, a 3-D novel Vaidyanathan jerk chaotic system [98] is introduced and
its qualitative properties are discussed in detail. In Sect. 3, the circuital realization
of the Vaidyanathan jerk chaotic system is described. In Sect. 4, the bidirectional
method is applied to synchronize identical novel Vaidyanathan jerk chaotic systems.
In Sect. 5, the chaoticmasking communicationmethod of the 3-DnovelVaidyanathan
jerk chaotic system is realized using MATLAB and MultiSIM programs. In Sect. 6,
chaotic navigation mobile robot using 3-D novel Vaidyanathan jerk chaotic system
is presented in detail. Section7 summarizes the main results derived in this work.
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2 3-D Novel Vaidyanathan Jerk Chaotic System

Moore and Spiegel found a model for the irregular variability in the luminosity of
stars [20]. Moore–Spiegel chaotic system is given by the third order differential
equation ...

x = −ẍ + 9ẋ − x2ẋ − 5x (1)

In mechanics, if x represents the displacement of a body, then ẋ and ẍ represent
the velocity and acceleration of the body, respectively. The third order derivative

...
x

is called the jerk of the body. Thus, the Moore–Spiegel system (1) represents a jerk
dynamics.

By defining state variables x1 = x, x2 = ẋ and x3 = ẍ, we can also represent the
Moore–Spiegel jerk dynamics (1) in system form as

ẋ1 = x2
ẋ2 = x3
ẋ3 = −5x1 + (9 − x21)x2 − x3

(2)

In system form, the Moore–Spiegel chaotic system (2) is a six-term polynomial
chaotic system with a cubic nonlinearity.

The simplest cubic case of a jerk chaotic dynamics was proposed by Malasoma
[18]. Malasoma cubic jerk dynamics is given by

...
x = −aẍ + xẋ2 − x, (3)

which is chaotic for a = 2.03.
In system form, Malasoma chaotic dynamics (3) can be represented as

ẋ1 = x2
ẋ2 = x3
ẋ3 = −x1 + x1x22 − ax3

(4)

In 2000, Sprott found a new class of chaotic circuits using piecewise linear func-
tions [53]. In 2009, Sun and Sprott found a simple jerk system with piecewise
exponential nonlinearity [55]. There is also some interest in the literature in finding
hyperjerk hyperchaotic systems and a recent work [101] discusses the properties of
the Vaidyanathan hyperjerk system. In this work, we investigate the properties of the
3-D novel Vaidyanathan jerk chaotic system [98].

The 3-D novel Vaidyanathan jerk chaotic system is described by

⎧
⎨

⎩

ẋ = y
ẏ = z
ż = x − a

[
sinh(x) + sinh(y)

] − bz
(5)

where a and b are positive parameters.
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In [101], it was shown that the Vaidyanathan jerk system (5) is chaotic when
a = 0.4 and b = 0.8.

In this work, we take the parameters of the Vaidyanathan jerk system (5) as
a = 0.4 and b = 0.67. For numerical simulations, we take the initial condition as
(x0, y0, z0) = (0.8, 1.2, 0.5).

2.1 Equilibrium Points

The equilibrium points of the 3-D novel Vaidyanathan jerk system (5) for the chaotic
case a = 0.4 and b = 0.67 are obtained by solving the system of equations

⎧
⎨

⎩

y = 0
z = 0
x − a

[
sinh(x) + sinh(y)

] − bz = 0
(6)

Solving the system (6), we obtain

x − 0.4 sinh(x) = 0, y = 0, z = 0 (7)

Thus, we find that the Vaidyanathan jerk system (5) has three equilibrium points
given by

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E+ =
⎡

⎣
2.5527

0
0

⎤

⎦ , E− =
⎡

⎣
−2.5527

0
0

⎤

⎦ (8)

To test the stability type of the equilibrium points E0, E+, E−, we calculate the
Jacobian matrix of the novel Vaidyanathan jerk chaotic system (5) at any point x
(with a = 0.4 and b = 0.67):

J(x) =
⎡

⎣
0 1 0
0 0 1

1 − 0.4 cosh(x) −0.4 cosh(y) −0.67

⎤

⎦ (9)

We find that

J0 = J(E0) =
⎡

⎣
0 1 0
0 0 1
0.6 −0.4 −0.67

⎤

⎦ (10)

which has the eigenvalues

λ1 = 0.5553, λ2,3 = −0.6127 ± 0.8397i (11)
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This shows that the equilibrium point E0 is a saddle-focus, which is unstable.
Next, we find that

J+ = J(E+) =
⎡

⎣
0 1 0
0 0 1

−1.5839 −0.4 −0.67

⎤

⎦ (12)

which has the eigenvalues

λ1 = −1.2998, λ2,3 = 0.3149 ± 1.0580i (13)

This shows that the equilibrium point E+ is a saddle-focus, which is unstable.
Since J(E−) = J(E+), the matrices J(E−) and J(E+) have the same eigenvalues.
This shows that the equilibrium point E− is also a saddle-focus, which is unstable.

2.2 Numerical Simulation Using MATLAB

Numerical simulations of the Vaidyanathan jerk chaotic system (5) are carried out
by usingMATLAB 2010. The fourth-order Runge–Kutta method is used to solve the
system of differential equations (5).

We consider the parameter values as a = 0.4 and b = 0.67. We take the initial
condition as (x0, y0, z0) = (0.8, 1.2, 0.5).

Figure1a–c show the 2-D projections of the strange attractor of the Vaidyanathan
jerk system (5) on to the x−y plane, the y−z plane and the x−z plane, respectively.
The time series of the Vaidyanathan jerk circuit’s variables are shown in Fig. 1d.

2.3 Lyapunov Exponents and Lyapunov Dimension

Lyapunov exponent of a dynamical system is a measure of exponential divergence
of orbits, which characterizes the rate of separation of very close trajectories [5]. In a
three dimensional system, like the Vaidyanathan jerk system (5), there are three Lya-
punov exponents (LE1, LE2, LE3). In more details, for a 3-D continuous dissipative
system, the values of the Lyapunov exponents are useful for distinguishing among
the various types of phase orbits. So, the possible spectra of attractors, of this class
of dynamical systems, can be classified into four groups, based on the Lyapunov
exponents [115].

• (λ1, λ2, λ3)−→(−,−,−): a fixed point
• (λ1, λ2, λ3)−→(0,−,−): a limit point.
• (λ1, λ2, λ3)−→(0, 0,−): a 2-torus.
• (λ1, λ2, λ3)−→(+, 0,−): a strange attractor.
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Fig. 1 Numerical simulation results using MATLAB 2010, for a = 0.4, b = 0.67, in a x−y plane,
b x−z plane, c y−z plane, d time series of x, y, z signals

Lyapunov dimension of a chaotic system is also called Kaplan–Yorke dimension,
which gives an estimate of the rate of entropy production and of the fractal dimension
of the chaotic dynamical system [5].

We take the parameter values as a = 0.4 and b = 0.67. We take the initial condi-
tion as (x0, y0, z0) = (0.8, 1.2.0.5). Then the values of the Lyapunov exponents of
the Vaidyanathan jerk system (5) are numerically obtained as

L1 = 0.0905, L2 = 0, L3 = −0.7576 (14)

The dynamics of the Lyapunov exponents of the Vaidyanathan jerk system (5) is
shown in Fig. 2.

Thus, the maximal Lyapunov exponent (MLE) of the 3-D novel Vaidyanathan
jerk system (5) is L1 = 0.0905 > 0, which means that the Vaidyanathan jerk system
(5) has a chaotic behavior for the parameter values a = 0.4, b = 0.67.



290 A. Sambas et al.

Fig. 2 The dynamics of
Lyapunov exponents of the
Vaidyanathan jerk system for
a = 0.4, b = 0.67

Since the sum of the Lyapunov exponents is negative, the 3-D novel Vaidyanathan
jerk system (5) is dissipative.

Also, the Kaplan–Yorke dimension of the Vaidyanathan jerk system (5) is
obtained as

DKY = 2 + L1 + L2

|L3| = 2.1195, (15)

which is fractional.

Fig. 3 The frequency
spectrum generated
numerically from chaotic
system, Spectrum z versus
frequency, for
a = 0.4, b = 0.67
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Fig. 4 A gallery of Poincaré maps for the Vaidyanathan jerk chaotic system for a = 0.4, b = 0.67.
The plots give the maxima of a y(n + 1) versus those of y(n); b z(n + 1) versus those of z(n)
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2.4 FFT Analysis

Fourier transform can be used to convert a signal in the time domain to the frequency
domain (spectrum). In this study, differential equations in the time domain become
algebraic operations in the frequency domain.

The frequency spectra of signal z is generated numerically from the 3-D novel
Vaidyanathan jerk chaotic system (5), is shown in Fig. 3. One can note that the
bandwidth of signal z is in about 0–1.5kHz.

2.5 Poincaré Map Analysis

The Poincaré map is a useful tool for analysing the dynamical characteristics of
chaotic system. It is used to discuss the dynamical behaviour of the 3-D novel
Vaidyanathan jerk chaotic system (5). In the chaotic case, the phase portrait of the
Vaidyanathan jerk chaotic system (5) is very dense in the sense that the trajectories
of the motion are very close to each other. It can be only indicative of the minima
and maxima of the motion. Any other characterization of the motion is difficult to
be interpreted. So, one way to capture the qualitative features of the strange attractor
is to obtain the Poincaré map [11]. Figure4a, b show the Poincaré section map by
using MATLAB for a = 0.4, b = 0.67.

3 Circuitry Design of the Vaidyanathan Jerk Chaotic
System

Chaotic phenomena in electric circuits have been studied with great interest. The
circuit employs simple electronic elements, such as resistors, capacitors, multiplier
and operational amplifiers. In this circuit (Fig. 5), the voltages of C1, C2, C3 are used
as x, y and z, respectively.

The corresponding circuit equation can be described as

dVC1

dt
= 1

C1R1
VC2

dVC2

dt
= 1

C2R2
VC3

dVC3

dt
= 1

C3R3
VC1 − 1

C3R4
sinh(VC1) − 1

C3R5
sinh(VC2) − 1

C3R6
VC3

(16)

We choose R1 = R2 = R3 = R7 = R8 = R9 = R10 = R11 = R12 = R17 =
10K�, R4 = R5 = 250�, R6 = 15K�, R16 = R20 = 1M�, R15 = R19 = 60K�.
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Fig. 5 Schematic of the Vaidyanathan jerk chaotic system by using MultiSIM 10.0

Fig. 6 Various projections of the Vaidyanathan chaotic attractor using MultiSIM 10.0, for a =
0.4, b = 0.67, a x−y plane, b x−z plane, c y−z plane
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R14 = R18 = 120K�, C1 = C2 = C3 = C4 = 10nF. The circuit has three integra-
tors (by usingOp-ampTL082CD) in a feedback loop and sixmultipliers (ICAD633).
The supplies of all active devices are ±9V. With MultiSIM 10.0, we obtain the
experimental observations of system (16) as shown in Fig. 6. As compared with
Fig. 1, a good qualitative agreement between the numerical simulations and the Mul-
tiSIM 10.0 results of the 3-D novel Vaidyanathan jerk chaotic system is confirmed.

Fig. 7 Phase portrait of x2 vs x1 and error x2 − x1 in the case of bidirectionally coupled 3-D novel
Jerk circuits, for a Bidirectional synchronization for gc = 0.5, b error x2 − x1 numerical results for
gc = 0.5, c Bidirectional synchronization for gc = 0.4 (full synchronization) and d error x2 − x1
numerical results for gc = 0.4
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4 Bidirectional Chaotic Synchronization

4.1 Mathematical Model of Bidirectional Synchronization

Synchronization between coupled chaotic systems has received considerable
attention and led to communication applications. With coupling method and
synchronizing identical chaotic systems, a message signal sent by a transmitter sys-
tem can be reproduced at a receiver under the influence of a single chaotic signal
through synchronization. This work presents the study of numerical simulation of

Fig. 8 Bidirectional chaotic synchronization 3-D novel Jerk circuit by using MultiSIM 10.0
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chaos synchronization of coupled chaotic 3-D novel Jerk chaotic circuits. The fol-
lowing (bidirectional coupling) configuration is described below:

ẋ1 = y1
ẏ1 = z1 + gc(y2 − y1)
ż1 = x1 − a[sinh(x1) + sinh(y1)] − bz1
ẋ2 = y2
ẏ2 = z2 + gc(y1 − y2)
ż2 = x2 − a[sinh(x2) + sinh(y2)] − bz2

(17)

The coupling coefficient gc is present in the equations of both systems, since
the coupling between them is mutual. Numerical simulations of system (17), by
using the fourth-order Runge–Kutta method, are used to describe the dynamics of
chaotic synchronization of bidirectionally coupled 3-D novel Jerk chaotic systems.
In bidirectional (mutual) coupling, both coupled systems are connected in such a
way that theymutually influence each other’s behavior. Synchronization numerically
appears for a coupling factor gc ≥ 0.5 as shown in Fig. 7a, with error ex = x1 −
x2 −→ 0, which implies the complete synchronization.

4.2 Analog Circuit Simulation in MultiSIM

Simulation results show that the two systems are synchronized well. Figure8 shows
the circuit schematic for implementing the bidirectional synchronization of coupled
Jerk systems.Chaotic synchronization appears for a coupling strengthR21 ≤100m�,
as shown in Fig. 9a. For different initial conditions or resistance coupling strength
R21 > 100m�, the synchronization cannot occur as shown in Fig. 9b.

Fig. 9 Synchronization phase portrait of x2 versus x1, for a R21 = 100m� and b R21 = 1�

MultiSIM 10.0, for a = 0.4, b = 0.67
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5 Application in Secure Communication System

5.1 Mathematical Model of Secure Communication Systems

To study the effectiveness of signal masking approach in the 3-D novel Jerk circuit,
we first set the information-bearing signal ms(t) in the form of square wave:

ms(t) = 4

π

∞∑

n=1

1

2n − 1
sin[(2n − 1)2π ft] (18)

The sum of the signal ms(t) and the chaotic signal m3−DnovelJerkcircuit(t), produced
by the 3-D novel Jerk circuit, is the new encryption signal mencryption(t), which is
given by Eq. (19).

mencryption(t) = ms(t) + m3−DnovelJerkcircuit(t) (19)

The signal m3−DnovelJerkcircuit(t) is one of the parameters of Eq.5. After finishing the
encryption process the original signal can be recovered with the following procedure.

mdecryption(t) = mencryption(t) − m3−DnovelJerkcircuit(t) (20)

So, mdecryption(t)is the original signal and must be the same with ms(t). Due to the
fact that the input signal can be recovered from the output signal, it turns out that it
is possible to implement a secure communication system using the proposed chaotic
system.

5.2 Numerical Simulation of Secure Communication Systems

In chaos-based secure communication scheme, chaos synchronization is the critical
issue, because the two identical chaos generators in the transmitter and the receiver
end need to be synchronized. Information signal is added to the chaotic signal at
transmitter and at receiver the masking signal is regenerated and subtracted from the
receiver signal [116]. Figure10a–c show the MATLAB 2010 numerical simulation
results for the proposed chaotic masking communication scheme.

5.3 Analog Circuit Simulation of Secure Communication
System

Information is masked by chaotic signals at the transmitter, and then sent to the
receiver by the public channel. Finally the encrypted signals are decrypted at the
receiver. In this system, the key issue is that the two identical chaos generators
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Fig. 10 MATLAB 2010 simulation of 3-D novel Jerk circuit masking communication systemwhen
amplitude is 1V and frequency 1kHz: a Information signal. b Chaotic masking transmitted signal.
c Retrieved signal

Fig. 11 The principle
diagram of chaos-based
secure communication

in the transmitter end and the receiver end need to be synchronized. Thus, chaos
synchronization is the key technique throughout this whole process [116]. The prin-
ciple diagram of symmetric chaos-based secure communication schemes is shown
in Fig. 11.
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Fig. 12 MultiSIM 10.0 outputs of Jerk circuit masking communication systems, when amplitude
is 1V and frequency 1kHz: a Information signal. b Chaotic masking transmitted signal. c Retrieved
signal

The information signal is a sinusoidal pulse signal of frequency f = 1kHz and
amplitude A = 1V (Fig. 12a), provided by an external source. In Fig. 12c we can see
that the recovered signal is exactly the same with the information signal, while the
transmitted signal (Fig. 12b), where the chaotic masking transmitted signal. Simu-
lation results with MultiSIM 10.0 have shown that the performance of chaotic 3-D
novel Jerk circuits in chaotic masking and message recovery is very satisfactory.

6 Application in Mobile Robot Navigation

6.1 Mathematical Models of Mobile Robot Navigation

In a chaos-based navigation system, chaos is used to control the movement of the
system. Most of the chaos is used to control the movement of the system Arduino.
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The main purpose of the research in combining chaotic systems with robots is that
a chaotic system is very sensitive to initial conditions and hence it is very hard to
predict the trajectory of the system.

There are three conditions in a dynamic system to produce chaos-based robot
trajectory [108].

• It must be very sensitive on initial conditions. This feature contributes to the
desired robot unexpected path planning and making long-term chaotic trajectory
prediction

• Its chaotic orbits must be dense. The trajectory of a dynamical system is dense, if
it comes arbitrarily close to any point in the domain.

• It must be topologically mixing. That is, the chaotic system will move over time
so that each designated area of the trajectory will eventually cover part of any
particular region.

An advantage of using chaos is that the behavior of the robot can be predicted in
advance by the system designer. So, an autonomous mobile robot with such charac-
teristics may be used successfully as mobile robot navigation.

Kinematics is the study of the mathematics of motion without considering the
forces that develop a relationship between control parameters and the behavior of a
system in space. The model of the robot is as shown in Fig. 13.

For a differential drive the kinematics equations in the world frame are as follows

• vr(t) = linear velocity of right wheel
• vl(t) = linear velocity of left wheel
• wr(t) = angular velocity of right wheel
• wl(t) = angular velocity of left wheel
• r = nominal radius of each wheel
• L = distance between the two wheels
• R = Instantaneous curvature radius of the robot trajectory, relative to themid-point
axis

• ICC = Instantaneous Center of Curvature
• R − L

2 = Curvature radius of trajectory described by left wheel
• R + L

2 = Curvature radius of trajectory described by right wheel

Fig. 13 Kinematic model of
mobile robot
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With respect to ICC the angular velocity of the robot is given as follows:

w(t) = vr(t)

R + L
2

w(t) = vl(t)

R + L
2

(21)

w(t) = vr(t) − vl(t)

L

The instantaneous curvature radius of the robot trajectory relative to themid-point
axis is given as:

R = L(vl(t) + vr(t))

2(vl(t) + vr(t))
(22)

Therefore the linear velocity of the robot is given as:

v(t) = w(t)R = 1

2
(vr(t) + vl(t)) (23)

The kinematics equations in the world frame can be represented as follows [29]:

Ẋ = v(t) cos θ(t)
Ẏ = v(t) sin θ(t)
θ̇ = w(t)

(24)

These are the equations that are used to build amodel of the robot. These equations
were used to simulate the robot in MATLAB. The 3-D novel Vaidyanathan jerk
system controller was tested and fine-tuned on this model as well as compared with
other controllers for optimum results.

6.2 Numerical Simulation of Mobile Robot Navigation

In this work, the three proposed dynamical systemswere solved numerically by using
the fourth order Runge–Kutta algorithm. Searching for sets of optimal parameters
for the 3D novel jerk system for generating the best possible patterns is very time-
consuming task. Therefore, for convenience we retain their original parameters of
these systems as used in the literature. Here is the equation of linear velocity and
angular velocity, where in the linear velocity of right wheel and linear velocity of
left wheel are replaced by a chaotic signal x and y:

v(t) = 1

2
(ẋ(t) + ẏ(t))

w(t) = ẋ(t) − ẏ(t)

L

(25)
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By combining Eqs. (5) and (24), the following dynamics is obtained.

ẋ = y
ẏ = z
ż = x − a[sinh(x) + sinh(y)] − bz
Ẋ = v(t) cos θ(t)
Ẏ = v(t) sin θ(t)z
θ̇ = w(t)

(26)

The system (26) describes the mobile robot navigation based on the novel
Vaidyanathan jerk system. The behavior of the 3D novel Vaidyanathan jerk sys-
tem is chaotic. The chaotic mobile robot trajectory shown in Fig. 14 may be obtained
by solving the system dynamics (26) by taking the parameter values and initial con-
ditions as

a = 0.4, b = 0.67, L = 0.05, (x0, y0, z0) = (0.8, 1, 2, 0.5), (X0, Y0, θ0) = (0, 0, 0)

The duration for run-time for simulation was taken as T = 10,000 s.
Figure14 shows the motion of the mobile robot with the proposed controller. It

is observed that the motion of the robot is unpredictable and with sensitive depen-
dence on the initial condition. The trajectories generated by (26) scanned the whole
workspace regardless of the shape of workspace.

In Fig. 14, the mobile robot motion path with equation x and y for PWM shows
significantly higher value of coverage rate in regard to the other systems, where
the 72% of the terrain shows to be covered by the robot. The results show that the
mobile robot navigation systems with combining the equation x − y have a better
level of coverage rate. The robot’s workplace is supposed to be a square terrain
with dimensions M = 5m × 5m = 25m2 in normalized unit cells. Furthermore, a

Fig. 14 Trajectory mobile
robot navigation of 3D novel
Jerk system using MATLAB
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second interesting evaluation criterion is the coverage time of the system, which is
the total time for the system to cover the entire terrain.

6.3 Experimental Results of Mobile Robot Navigation

Embedded controller realizations are generally subject to stronger constraints than
their PC-based counterparts regarding speed, memory, and the environment in which
the embedded system operates. In this work, the hardware used in building the robot
along with the software implementation are given. The basic hardware components
used are, motor driver type L293D and Arduino Uno ATMEGA 328P.

In this work the experimental results concerning the coverage performance of
an autonomous mobile robot, by using equation 3-D novel Jerk system the chaotic
motion controller, are presented. Chaos signal from the computer via serial commu-
nication is sent to the Arduino. Furthermore, the Arduino sends a command in the
form of PWM to drive the linear velocity of right wheel and linear velocity of left
wheel. Figure15 shows the circuit schematic of principle mobile robot navigation.
The autonomous mobile robot of this work is a four wheels platform, in which only
the two wheels are independently controlled on velocity and rotation sense by using
two gear motors Fig. 16.

The 3-D novel Vaidyanathan jerk system shows significantly higher value of
coverage rate in regard to the other systems. The 3-D novel Vaidyanathan jerk system
has the better performance which is obvious in Fig. 17, where the terrain shows to be
covered by the robot. This happens because the 3-D novel Vaidyanathan jerk system
produces a mobile robot’s orbit which is constituted by spiral curves that abstain
longer distances concerning the other two systems.

Fig. 15 Schematic of principle mobile robot navigation using Proteus
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Fig. 16 The chaotic autonomous mobile robot

Fig. 17 Experimental results of the mobile robot motion path

7 Conclusion

In this work, we studied the complex dynamics of a six-term 3-D novel jerk
chaotic system with two hyperbolic sinusoidal nonlinearities, which was proposed
by Vaidyanathan et al. [98]. The complex dynamics of the novel jerk chaotic system
has also been explored in detail including eigenvalue structures, various attractors,
Lyapunov exponent analysis, Kaplan–Yorke dimension, FFT analysis and Poincaré



A 3-D Novel Jerk Chaotic System and Its Application in Secure … 305

map analysis. Moreover, it is implemented via a designed circuit and tested experi-
mentally with MultiSIM. The MultiSIM results of the 3D novel Vaidyanathan jerk
system were well agreed with the simulation results.

The chaotic synchronization of two identical 3-D novel Vaidyanathan jerk system
has been investigated by implementing bidirectional method technique. The pro-
posed method of synchronization between chaotic circuits can be applied success-
fully to a secure communication scheme. Chaos synchronization and chaos masking
were realized by using MATLAB 2010 and MultiSIM 10.0 programs. The compar-
ison between MATLAB 2010 and MultiSIM 10.0 simulation results demonstrate
the effectiveness of the proposed secure communication scheme. Finally, the effec-
tiveness of the bidirectional scheme between two identical 3-D novel Vaidyanathan
jerk circuits in a secure communication system is presented in details. Integration of
theoretical physics, the numerical simulation by usingMATLAB 2010, as well as the
implementation of circuit simulations by using MultiSIM 10.0 have been performed
in this study.

In mobile robot navigation, the driving strategy of a mobile robot is presented, in
order to generate the most unpredictable trajectory, as well as the trajectory with the
higher coverage rate of a specific terrain. 3D novel Jerk system shows significantly
higher value of coverage rate in regard to the other systems, which is the criterion of
success of such robot’s mission, among the proposed dynamical systems. This is due
to the nature of the jerk chaotic attractors produced by the 3-D novel Vaidyanathan
jerk chaotic system. This study has some flaws, especially in the delivery of data
from the computer to the Arduino still using USB. It is possible to use the wireless
mobile robot navigation system in future research.
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On the Verification for Realizing Multi-scroll
Chaotic Attractors with High Maximum
Lyapunov Exponent and Entropy

E. Tlelo-Cuautle, M. Sánchez-Sánchez, V.H. Carbajal-Gómez,
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Abstract Nowadays, many works have been presented regarding the modeling,
simulation and circuit realization of different kinds of continuous-time multi-scroll
chaotic attractors. However, very few works describe the experimental realization of
attractors having highmaximumLyapunov exponent (MLE) and high entropy, which
are desirable characteristics to guarantee better chaotic unpredictability. For instance,
two chaotic oscillators having the same MLE values can behave in a very different
way, e.g. showing different entropy values. That way, we describe the experimental
realization of an optimized multi-scroll chaotic oscillator with both high MLE and
entropy. First, the MLE is optimized by applying an evolutionary algorithm, which
provides a set of feasible solutions. Second, the associated entropy is evaluated
for each feasible solution. In this chapter, experimental results are shown for the
electronic implementation of a chaotic oscillator generating 2-, 5- and 10-scrolls.
Finally, the experimental results show that by increasing the number of scrolls both
theMLEand its associated entropy increase in a similar proportion, thus guaranteeing
better unpredictability.
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1 Introduction

In Electronics, a great variety of chaotic oscillators has been implemented with
different kinds of electronic devices [7, 15, 19], using integrated circuits technology
[20], and more recently by using field programmable gate arrays [17]. In addition,
recent works show a relationship between the number of scrolls and the value of the
maximum Lyapunov exponent (MLE) [2, 18], and also a relationship between the
number of scrolls and the associated entropy [23]. Both characteristics associated to
MLE and entropy are quite desirable to improve for the development of enhanced
applications in nonlinear systems, like for example: the implementation of random
number generators [1, 4, 10, 23] that are quite useful in robotics [16, 21].

In this chapter we show the experimental realization of multi-scroll chaotic attrac-
tors that are optimized to provide a high value of the MLE, and for each attractor it
is also guaranteed to have a good distribution of the trajectories that is visualized in
the phase-space portraits. As concluded in [23], the next sections show that the MLE
increases by increasing the number of scrolls, indicating a better unpredictability
of the dynamical system due to the increment of its associated entropy. In addition,
we also show the experimental realization of multi-scroll chaotic attractors having a
uniform distribution of its trajectories in the phase-space portrait, because when the
phases are not well distributed among all the scrolls, some scrolls cannot be formed,
thus leading to a pretty difficult problem for the electronic implementation.

The optimization algorithm proposed in [2], is applied herein. It is based on the
evolutionary algorithm known as non-dominated sorting genetic algorithm (NSGA-
II) [3], and it optimizes two characteristics, namely: (a) Maximizing the positive
Lyapunov exponent, and (b) minimizing the dispersions of the phase transitions
among all scrolls in an attractor. The results of the optimization algorithm show that
both characteristics are in conflict, so that a feasible set of solutions is provided to
select the best one according to the problem at hand.

From the set of feasible solutions provided by applying [2], we select some multi-
scroll chaotic attractors having highMLE, and then we realize experiments by imple-
menting the chaotic oscillators with commercially available operational amplifiers.
The purpose of the experiments are oriented to verify the relationship on the number
of scrolls, their MLE value and the associated entropy.

The case of study is the multi-scroll chaotic oscillator based on saturated non-
linear function series, already described in [7]. It is a third order continuous-time
dynamical system, and then it has three Lyapunov exponents, one being positive,
which is known as MLE and its value indicates the degree of chaotic behavior. It
is optimized by applying the evolutionary algorithm given in [2], and its associ-
ated entropy is evaluated from both numerical simulations and experimental data
for generating 2-, 5- and 10-scrolls. The goal of performing the experiments is to
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verify that the higher the number of scrolls the higher the MLE and its associated
entropy [9]. Further, optimized chaotic oscillators should improve applications like
random number generators [1, 4, 10, 16, 21, 23], synchronization [6], and secure
communication systems [5], for instance.

2 Multi-scroll Chaotic Oscillators

The study of chaotic dynamical systems traces its origin to the findings of E.N. Lorenz
in the early 1960s. His interest in weather forecasting led him to the discovery of a
nonlinear dynamical system that displayed high sensitivity to the initial conditions,
an essential property of chaotic systems. Ever since then, decades of research have
expanded the understanding of this ubiquitous phenomena and produced several
applications in different areas of engineering.

Dynamical systems describe motion in nature that can be modeled by equations
of the following forms:

ẋ(t) = f (a, x(t)) t > 0 (1)

and
x(n + 1) = f (a, x(n)) n ∈ N (2)

In these equations, the state variables of the dynamical system are represented by
x(t) and x(n). The possible values of the state variables imply that (1) is a differential
equation while (2) is a difference equation or map. In both cases, x represents a q-
dimensional state vector, i.e. x ∈ Rq. The control parameter a (also called bifurcation
parameter) has m components such that a ∈ Rm. The control parameter affects the
evolution of the state variables, and the relationship between the parameters and the
state variables is defined by a function f . The range of f is in the same space of the
state vector x. Chaos, defined colloquially as irregular an unpredictable behavior, can
stem from dynamical systems as long as f has the suitable properties. Likewise, a
must be set to the appropriate values in order to precipitate a transition to chaos. The
chaotic behavior product of dynamical systems is known as deterministic chaos.

In electronics, chaotic oscillators have been implemented to generate double or
multi-scroll chaotic attractors. In the last case, multi-scrolls have been generated
by using different kinds of electronic devices [7, 15, 19], as well as by designing
integrated circuits [20] or by using configurable digital architectures [17]. However,
analog realizations suffer the limitations of the electronic devices [11], or suffer
the variations problems from integrated circuit fabrication technologies as shown in
[20], where a variation in process, voltage or temperature (PVT)may degrade or even
eliminate the normal behavior of a chaotic oscillator, rendering it useless. That way,
still more research is done regarding the design of chaotic oscillators using analog
devices. In this chapter, the chaotic oscillator is realized by using commercially
available operational amplifiers.
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The case of study is themulti-scroll chaotic oscillator based on saturated nonlinear
function series [7], which can be described by the system of differential equations
given by (3), where a, b, c, and d1 are positive constants that can have values in the
interval [0, 1]. In (3), the dynamical system is controlled by a saturated nonlinear
function series f that is approximated by piecewise-linear functions.

ẋ = y

ẏ = z

ż = −ax − by − cz + d1f (x; m)

(3)

In the following, we describe in detail how the saturated function f in (3) is
obtained. Let f0 be the saturated function:

f0(x; m) =

⎧
⎪⎨

⎪⎩

1, if x > m
x
m , if |x| ≤ m

−1, if x < −m,

(4)

where 1/m is the slope of themiddle segment andm > 0; the upper radial {f0(x; m) =
1 |x > m}, and the lower radial {f0(x; m) = −1 |x < −m} are called saturated
plateaus, and the segment {f0(x; m) = x/m | |x| ≤ m} between the two saturated
plateaus is called saturated slope.

Lets us consider now the saturated functions fh and f−h defined as:

fh(x; m, h) =

⎧
⎪⎨

⎪⎩

2, if x > h + m
x−k

m + 1, if |x − h| ≤ m

0, if x < h − m,

(5)

and

f−h(x; m,−h) =

⎧
⎪⎨

⎪⎩

0, if x > h + m
x−k

m − 1, if |x − h| ≤ m

−2, if x < h − m,

(6)

where h is called the saturated delay time and h > m. Therefore, a saturated function
series for a chaotic oscillator with s scrolls is defined as the function:

f (x; m) =
s−2∑

i=0

f2i−s+2(x; m, 2i − s + 2) (7)

where s > 2.
For example, using f = f0 in (3), a 2-scrolls chaotic oscillator can be gener-

ated. Therefore, the saturated function series to generate 3-scrolls is f (x; m) =
f−1(x; m,−1) + f1(x; m, 1). To generate a 4-scrolls attractor it will be f (x; m) =
f−2(x; m,−2) + f0(x; m) + f2(x; m, 2), and so on.
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In [2], the optimization of theMLE requires as input data, the number of scrolls to
be generated. Then, a bi-objective optimization problem is encoded: (i) to maximize
MLE, and (ii) to minimize the variability in the oscillator’s phase-space transitions
or the trajectories. From (3), the optimization problem is devoted to find the values
of the four coefficient variables a, b, c and d1 that solve both objectives (i) and (ii).
Those four coefficients can take values within the range [0.0, 1.0], and one decides
how many decimal numbers to use.

3 Computing Lyapunov Exponents and Entropy

Lyapunov exponents are asymptotic measures that characterize the average rate of
growth (or shrinking) of small perturbations to the solutions of a dynamical sys-
tem. Lyapunov exponents provide quantitative measures of response sensitivity of a
dynamical system to small changes in initial conditions. The number of Lyapunov
exponents is equal to the number of states variables in the dynamical system, and at
least three state variables are required to generate chaotic behavior. In this chapter,
the case of study is a multi scroll chaotic oscillator having three state variables,
described by (3). The experimental results presented in the next sections will verify
what is already known that by increasing the number of scrolls both the MLE and
its associated entropy increase in a similar proportion [23].

3.1 Lyapunov Exponents

Lets us consider an n-dimensional dynamical system:

ẋ = f (x), t > 0, x(0) = x0 ∈ R
n (8)

where x and f are n-dimensional vector fields. To determine the n-Lyapunov expo-
nents of the system one have to find the long term evolution of small perturbations
to a trajectory, which are determined by the variational equation of (8),

ẏ = ∂f

∂x

(
x(t)

)
y = J

(
x(t)

)
y (9)

where J is the n × n Jacobian matrix of f . A solution to (9) with a given initial
perturbation y(0) can be written as

y(t) = Y(t)y(0) (10)
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with Y(t) as the fundamental solution satisfying

Ẏ = J
(
x(t)

)
Y , Y(0) = In (11)

Here In denotes the n × n identity matrix. If we consider the evolution of an
infinitesimal n-parallelepiped [p1(t), . . . , pn(t)] with the axis pi(t) = Y(t)pi(0) for
i = 1, . . . , n,where pi(0) denotes an orthogonal basis ofRn. The ith Lyapunov expo-
nent, which measures the long-time sensitivity of the flow x(t) with respect to the
initial data x(0) at the direction pi(t), is defined by the expansion rate of the length
of the ith axis pi(t) and is given by

λi = lim
t→∞

1

t
ln

∥
∥pi(t)

∥
∥ (12)

In summary, the Lyapunov exponents can be computed as follows [2, 13, 18, 22]:

1. Initial conditions of the system and the variational system are set to X0 and In×n,
respectively.

2. The systems are integrated by several steps until an orthonormalization period
TO is reached. The integration of the variational system Y = [y1, y2, y3] depends
on the specific Jacobian that the original system X is using in the current step.

3. The variational system is orthonormalized by using the standard Gram-Schmidt
method [12], and the logarithm of the norm of each Lyapunov vector contained
in Y is obtained and accumulated in time.

4. The next integration is carried out by using the new orthonormalized vectors as
initial conditions. This process is repeated until the full integration period T is
reached.

5. The Lyapunov exponents are obtained by

λi ≈ 1
T

T∑

j =TO

ln
∥
∥yi

∥
∥

The time-step selection was set as in [18], by using the minimum absolute value
of all the eigenvalues of the system λmin, and ψ was chosen well above the sample
theorem as 50.

tstep = 1

λminψ

The orthogonalization period TOwas chosen about 50 tstep. This procedure is used
herein as in [2] to optimize the MLE.
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3.2 Evaluation of Entropy

For chaotic oscillators, the entropy is an alternative choice to Lyapunov exponents
because it reveals aspects of the underlying dynamical system (i.e., it quantifies the
stretching and the folding aspects at the same time). In this manner, in this chapter
the entropy is evaluated because its rate of growth is an interesting parameter to
quantify disorder in chaotic oscillators. In the same direction, as chaotic attractors
can be recognized by visual inspection in their phase-space portraits, we perform a
numerical quantification of chaos by optimizing the MLE of the chaotic oscillator
described by (3). The entropy has also some relationships of interest as for the sum of
Lyapunov exponents [13, 14], which measure the instability of nearby trajectories.

The entropy is computed herein by applying the algorithm presented by Modde-
meijer, which is online available at http://www.cs.rug.nl/~rudy/matlab/. That way,
in Sect. 5, we list 10 values of the MLE and their associated entropy that is evalu-
ated from both numerical simulation and experimental data for generating 2-, 5- and
10-scrolls attractors.

4 Circuit Realization with Commercially Available
Operational Amplifiers

The multi-scroll chaotic oscillator based on saturated nonlinear function series f is
described by (3). For the circuit realization, one should approximate function f by
piecewise-linear (PWL) segments as follows:

f (x; k, h, p, q) =

⎧
⎪⎪⎨

⎪⎪⎩

(2q + 1)k,

k(x − ih) + 2ik,

(2i + 1)k,

−(2p + 1)k.

(13)

with
x > qh + 1
|x − ih| ≤ 1, −p ≤ i ≤ q
ih + 1 < x < (i + 1)h − 1, −p ≤ i ≤ q − 1
x < −ph − 1.

For instance, Fig. 1 shows two kinds of saturated functions. The one with 5 linear
segments is used to generate odd number of scrolls, and the one with 7 segments
is used to generate even number of scrolls. The difference is that the one on the
right has an slope crossing the origin of the plane. Thus, by increasing the number
of segments from the three near the origin in Fig. 1b, one generates as many even
number of scrolls as the number of saturated levels, which are the linear segments
with slope= 0. In a similar way, starting from five segments, as the PWL description

http://www.cs.rug.nl/~rudy/matlab/
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Fig. 1 PWL descriptions of
a saturated nonlinear
function series to generate a
3-scrolls, and b 4-scrolls
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h1

h -1 h +1
x

(a)

h -1 h +1

k

2k

3k

h1 x

(b)

in Fig. 1a, one can generate as many odd number of scrolls as the number of saturated
levels.

In simulating multi-scroll chaotic oscillators, one should scale the values to be
realized with electronic devices. For example, by simulating 6-scrolls one needs a
PWL description like the one in Fig. 1b but with 11 segments (6 saturated levels
plus 5 slopes). Therefore, by setting a, b, c, d1 = 0.7, k = 10, h = 20, p = q = 2,
the simulation result is shown in Fig. 2. As one sees, the ranges for the vertical
and horizontal axes are around ±12 and ±60, respectively. It is pretty clear that
the horizontal range cannot be realized using commercially available operational
amplifiers because they can be biased only up to ±18V.

To copewith this problemone can scale the PWLdescription bymodifying (13) by
α. Now, the saturated nonlinear function series is redefined by (14), where α allows
that k < 1, because the chaos condition now applies on s = k

α
, the new slope. In this

manner, k andα can be selected to allow k < 1, so that the ranges in (13) can be scaled.
As a result, now the generation of a 6-scrolls attractor with a = b = c = d1 = 0.7,
k = 1, α = 0.1, s = 10, h = 2, and p = q = 2, is shown in Fig.3. As one sees, the
ranges of the attractor are within the ranges that can be processed by commercially
available operational amplifiers. Besides, it is possible to compute small ranges for
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Fig. 2 Generating a
6-scrolls attractor without
scaling
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Fig. 3 Generating 6-scrolls
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Fig. 4 Block diagram
description of (3)
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realizing attractors with integrated circuit technology [20], it just depends on setting
the values of k and α.

f (x1; k, h, p, q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2q + 1)k x1 > qh + α
k
α
(x1 − ih) + 2ik | x1 − ih |≤ α

−p ≤ i ≤ q
(2i + 1)k ih + α < x1 < (i + 1)h − α

−p ≤ i ≤ q − 1
−(2p + 1)k x1 < −ph − α

(14)

By applying flow diagrams from linear systems, the dynamical system in (3) can
be described by the block diagram shown in Fig. 4. An analogy to electronics, the
diagram consists of 3 integrators, 1 adder, one current-to-voltage (I/V) converter, one
block for the saturated nonlinear function series (f (x1)) and amplifiers. In thismanner,
each block can be realized with commercially available operational amplifiers. One
of the realizations is shown in Fig. 5, where the block for (f (x1)) is labeled SNLF.

For realizing the nonlinear saturated function series, one can take advantage of the
saturation properties of the operational amplifiers. In thismanner, two saturated levels
can be implemented in voltagemode by using the finite-gainmodel of the operational
amplifier, as shown in Fig. 6. It is clear that by simulation, several limitations can
be included, for example: gain, bandwidth, slew rate and saturation [11]. Therefore,
if a shift-voltage (±E) is added, one gets the shifted-voltage saturated functions
described by (15) for positive and negative shifts, respectively, these effects are
shown in Fig. 7.

Vo = Av

2

(

|Vi + Vsat

Av
− E| − |Vi − Vsat

Av
− E|

)

(15)

Vo = Av

2

(

|Vi + Vsat

Av
+ E| − |Vi − Vsat

Av
+ E|

)

The saturated nonlinear function series can now be implemented as shown in
Fig. 8, where the number of operational amplifiers equals the number of scrolls to
be generated, minus one. The reason is that one operational amplifier can generate
2-scrolls, then one needs three amplifiers to generate 3-scrolls, and so on. In the same
manner, to generate a saturated nonlinear function with different voltage-shifts, then
E takes different values in (15). On the other hand, the values of the plateaus k, in
voltage and current, the breakpoints α, the slope s and the saturated delays h are
evaluated by (16) [15, 19].

k = RixIsat, Isat = Vsat

Rc
, α = Riz|Vsat|

Rfz
, h = Ei

(1 + Riz

Rfz
)

(16)
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Fig. 5 Circuit realization of (3) by using commercial operational amplifiers
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Fig. 6 Finite gain model of
the operational amplifier

Fig. 7 Shift of the voltage
when E takes a Negative and
b Positive values

(a)

(b)

E

E

5 Experimental Verification Results

To have control on varying the coefficients a, b, c and d1 in (3), the multi-scroll
chaotic oscillator was implemented as shown in Fig. 5, where the block sketching
the saturated nonlinear function (SNLF) is shown in Fig. 8. The values of the circuit
elements are: C = 1nF, R = 1M�, Ria = Rib = Ric = Rid = 10 k�, Ri = Rf , with
Vsat = ±16 to ±18V. Besides, to set the corresponding values of the coefficients a,
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Fig. 8 Realization of the saturated nonlinear function series using operational amplifiers

Table 1 Optimized MLE and its associated entropy for generating 2-scrolls

Case a b c d1 MLE Simulated
entropy

1 1.0000 1.0000 0.4997 1.0000 0.3761 1.4742

2 1.0000 0.7884 0.6435 0.6665 0.3713 1.0709

3 0.8661 1.0000 0.3934 0.9903 0.3607 1.15806

4 0.7746 0.6588 0.5846 0.4931 0.3460 1.1133

5 1.0000 0.7000 0.6780 0.1069 0.3437 0.7281

6 1.0000 0.7000 0.7000 0.2542 0.3425 1.16843

7 0.7743 0.6716 0.5892 1.8469 0.3391 1.5712

8 0.9248 0.7491 0.6686 0.6814 0.3385 1.1628

9 0.7178 0.6593 0.5546 0.2247 0.3376 0.2925

10 0.7060 0.6451 0.5523 0.2181 0.3320 0.2765

11 0.7060 0.7000 0.7000 0.7000 0.2658 1.3312

b, c and d1, associated to the optimized values for MLE listed in Tables1, 2 and 3,
linear precision potentiometers were used to tune the four decimals. In Fig. 5, the
resistances associated to the four coefficients are labeled as: Rfa, Rfb, Rfc, Rfd .
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Table 2 Optimized MLE and its associated entropy for generating 5-scrolls

Case a b c d MLE Entropy
simulated

Entropy
experi-
ment

1 1.0000 0.7250 0.2250 1.0000 0.6919 2.2481 2.0131

2 0.9880 0.7140 0.2050 1.0000 0.6914 2.2962 2.1472

3 0.9890 0.7300 0.2070 1.0000 0.6908 2.2708 2.0779

4 0.9910 0.6810 0.2300 0.9810 0.6814 2.2906 2.1175

5 0.9880 0.7480 0.1890 1.0000 0.6663 1.3800 1.9619

6 0.9840 0.6810 0.2270 0.9830 0.6651 2.3365 2.0757

7 0.9890 0.6810 0.2040 0.9790 0.6645 2.1736 2.3032

8 1.0000 0.7840 0.2000 1.0000 0.6533 2.2628 2.3024

9 0.9800 0.7960 0.1570 1.0000 0.6523 1.3214 2.1260

10 1.0000 0.7330 0.2050 1.0000 0.6471 2.2560 2.0287

11 0.7000 0.7000 0.7000 0.7000 0.2840 2.2352 1.9403

Table 3 Optimized MLE and its associated entropy for generating 10-scrolls

Case a b c d MLE Entropy
simulated

Entropy
experi-
ment

1 1.0000 0.5160 0.1190 1.0000 0.8853 2.8882 2.6302

2 1.0000 0.5054 0.1140 1.0000 0.8826 2.9032 2.6152

3 1.0000 0.5130 0.1180 1.0000 0.8792 2.8863 2.6193

4 1.0000 0.5410 0.1060 1.0000 0.8712 2.8874 2.5166

5 1.0000 0.5930 0.0840 1.0000 0.8545 2.8664 2.4594

6 1.0000 0.5160 0.1580 1.0000 0.8438 2.9273 2.6874

7 1.0000 0.6430 0.0975 1.0000 0.8314 2.8957 2.4891

8 1.0000 0.7000 0.1160 1.0000 0.7825 2.8788 2.6890

9 1.0000 0.7995 0.2127 0.9831 0.7249 2.6036 1.8740

10 1.0000 0.7200 0.4195 1.0000 0.6177 2.8748 2.6213

11 0.7000 0.7000 0.7000 0.7000 0.3026 2.8956 2.6157

Themeasurementswere performed using a 200MHzoscilloscopewith a sampling
frequency of 1G/s. This equipment introduces errors in saving the samples, so that
it is reflected in the differences when computing the entropy from simulated and
experimental results, as shown in Tables2 and 3.

The experimental results for the realization of the saturated nonlinear function
series with 3 and 19 segments, to generate 2- and 10-scrolls, respectively, are shown
in Fig. 9. Other saturated nonlinear function series can be generated as already shown
in [8, 11].
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Fig. 9 Experimental results
for the saturated nonlinear
function series with a 3, and
b 19 segments

Figure10 shows the simulation results for six cases from Table1. As one sees,
case 11 has the lowest MLE, where all coefficients are set to traditional values of 0.7,
as used in [8]. Furthermore, when applying [2], the other 10 cases provide higher
MLEs, because the coefficients a, b, c and d1 were varied (optimized). The simulated
entropy also shown in Table1, shows slight variations when the MLE increases, but
it can be appreciated that in general it increases as MLE does it.

Figure11 shows experimental results for generating two-scrolls for six cases in
Table1. As one sees, the more complex behavior appears for the highest MLE.
This is better appreciated when incrementing the number of scrolls, as shown in the
following cases for generating 5- and 10-scrolls.

Figure12 shows six cases from Table2. In these cases it is better appreciated that
the higher the value of the MLE, the better the complex behavior of the 5-scrolls
attractor, i.e. the scrolls are less defined in the phase-space portraits, as already
shown in [2]. This is indeed confirmed in Fig. 13 for generating a 5-scrolls attractor,
for which we list the entropy computed from experimental data. It can be appreciated
that the entropy increases as MLE does it.

Figure14 shows six simulation results for generating 10-scrolls from Table3. As
one sees, case 11 is generated when the four coefficients have the same value of 0.7,
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Fig. 10 Simulation results generating 2-scrolls for six cases in Table1

for which the 10-scrolls are pretty good appreciated. However, the scrolls become
more complex as the MLE increases, so that case 2 in Fig. 14 shows a more complex
attractor.

The simulated entropy in Table3 shows a little bit difference for the 11 cases,
where cases 2 and 6 have the higher simulated entropy value.
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Fig. 11 Experimental results generating 2-scrolls for six cases in Table1

Figure15 shows six experimental cases from Table3. The 10-scrolls attractors
for those cases were generated using the saturated nonlinear function series shown
in Fig. 9b, with 19 segments. As supposed, case 1 has the more complex chaotic
behavior because it has the highest MLE. The other 5 cases shown in Fig. 15 are also
complex because MLE is higher than when using traditional coefficient values of
0.7 [8]. In that case, the scrolls are more defined in the phase space diagram, as for
the simulated case 11 in Fig. 14. As it was done for the 5-scrolls attractor, we list the
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Fig. 12 Simulation results generating 5-scrolls for six cases in Table2

entropy computed from experimental data in Table3. Again, it can be appreciated
that the entropy varies as MLE does it.

Figure16 shows the state variable x for case 11, where one can count quite clearly
the 10 levels that are associated to the 10 saturated levels of the saturated nonlinear
function series shown in Fig. 9b. A similar behavior is for the state variable x for the
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Fig. 13 Experimental results generating 5-scrolls for six cases in Table2

other cases, but the phase space portraits are more complex as MLE being increased,
as shown in Figs. 14 and 15.

From the simulated and experimental data, it can be concluded that the more
scrolls are generated the higher the values for the entropy and MLE.

It is worth mentioning that because we used a 200MHz oscilloscope with a sam-
pling frequency of 1G/s, the saved experimental data is contaminatedwith undesired
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Fig. 14 Simulation results generating 10-scrolls for six cases in Table3

frequencies, as shown in Fig. 17. It means that one should filter the experimental
signal to avoid aliasing and then recover the chaotic signal. Figure18 shows the
comparison of the signals in the phase space portraits, when they are plotted directly
from the experimental data, and after the signal is filtered.
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Fig. 15 Experimental results generating 10-scrolls for six cases in Table3

Fig. 16 Counting 10 levels when generating a 10-scrolls attractor
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Fig. 17 Signal from experimental data and after it is filtered in MATLABTM
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Fig. 18 Phase space portraits for the 10-scrolls attractor from: a experimental data and, b after it
is filtered
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Fig. 19 Phase space portraits from experimental data showing 5-scrolls with the highest a MLE
and, b entropy

The signals were filtered in MATLAB using y= sgolayfilt(x, k, f ) (a Savitzky–
Golay Finite Impulse Response smoothing filter). If x is a matrix, sgolayfilt operates
on each column. The polynomial order k must be less than the frame size f , which
must be odd. In our experiments, we used k = 9 and f = 31, to approximate the
experimental data to the observed signals in the oscilloscope.

Finally, from the filtered data and from Tables2 and 3, we selected the cases
with the highest values for the MLE and their associated entropy computed from
experimental data, so that they are shown in Figs. 19 and 20 for generating 5- and
10-scrolls, respectively.
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Fig. 20 Phase space portraits from experimental data showing 10-scrolls with the highest a MLE
and, b entropy

6 Conclusion

This article showed the experimental verification on optimizing the MLE in a multi-
scroll chaotic oscillator based on saturated function series, and its associated entropy.
The optimization of MLE was performed by applying an evolutionary algorithm for
generating 2-, 5- and 10-scrolls.

The laboratory experiments confirmed that the chaotic behavior becomes more
complex asMLE ismaximized. Furthermore, to better confirm the chaotic complexity
associated to the value of MLE, we listed the associated entropy from simulated and
experimental data for generating 2-, 5- and 10-scrolls attractors.

It was also discussed that to eliminate the undesired frequencies introduced by the
poor sampling of the oscilloscope, the experimental data (signal) should be filtered.

As a final conclusion, the experiments showed that multi-scroll chaotic oscillators
have a more complex chaotic behavior when the number of scrolls increases. For
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instance, Tables1, 2 and 3 clearly show that by increasing the number of scrolls,
when the chaotic oscillator is optimized, both MLE and the entropy increases.
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Chaotic Synchronization of CNNs
in Small-World Topology Applied
to Data Encryption

A.G. Soriano-Sánchez, C. Posadas-Castillo, M.A. Platas-Garza
and C. Elizondo-González

Abstract Thiswork addresses the synchronization of chaos and itsmain application.
Three different models of CNN are considered as generators of chaotic behavior. The
Watts–Strogatz and Newman–Watts algorithms are used to arrange the chaotic CNN
models in small-world topology. The resulting complex network is carried synchrony
with the Complex Systems Theory. Prior to encryption, recently established selec-
tion criteria, which consider energy and frequency characteristics, are used to choose
the chaotic signal that best hides the message. After selecting the signal, encryption,
transmission and retrieval of a confidential message are performed. When consid-
ering the message requirements by using the selection criteria, the security level of
encryption is improved in the time and frequency domain.

Keywords Chaotic CNNs ·Chaos synchronization · Small-world networks · Secret
communications

1 Introduction

In this work, chaos synchronization and chaotic encryption are discussed. Both fields
have been extensively studied due to their importance for engineering. As a result, a
big part of their body of knowledge has been established in the last two decades.
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Chaos as we know it today has its beginning in the early 1960s. With the appear-
ance of computers, it was possible to visualize the behavior of some systems from the
solution of their differential equations. That was when Edward N. Lorenz published
his historical article ondeterministic nonperiodicflow [27].Byusingnumericalmeth-
ods, Lorenz obtained the trajectories of equations describing the forced dissipative
hydrodynamic flow to be identified in phase space. As a result, a lot of information on
chaos subsequently emerged. Chaos turned out to be such an interesting phenomenon
that many systems have been created solely to generate it and deepen its study.

Among the best known chaos generators can be found conventional chaotic oscil-
lators like Chua, Lorenz and Rössler models [10, 27, 31, 41], multi-scroll attractor
chaotic oscillators [29, 30, 55, 64], fractional-order chaotic oscillators [19, 38, 54]
and Cellular Neural Networks [4, 39, 67, 68], for instance.

The so-called Cellular Neural Networks (CNNs) have been extensively studied
since their beginning three decades ago. The acronym CNN for Cellular Neural Net-
work was first introduced by L.O. Chua and L. Yang in 1988 [11]. The best features
of these systems are: on one hand, their ability of real-time signal processing; on
the other hand, their local interconnection makes them tailor-made for monolithic
implementation [11, 65]. We are interested in the application that interpreted CNN
as Cellular Nonlinear Networks. In this way, CNNs are considered for generating
chaotic signals. We are interested in three different CNNs that exhibit chaotic behav-
ior: the standard CNN model (Chua–Yang) [11], the chaotic 3D CNN [18] and the
Lu–He CNNmodel [28]. In addition to the complexity generated by locally coupled
nonlinear dynamical systems to generate a specific behavior, we will arrange the
CNNs in small-world topology to generate a network to be synchronized.

Chaos synchronization has its beginning in the early 1990s when L.M. Pecora
and T.L. Carroll synchronized, for the first time, two identical chaotic oscillators
with different initial conditions [35]. The basic concepts and applications of chaos
synchronization were established some years later.

In 1994, C.W.Wu and L.O. Chua defined concepts such as asymptotic and partial
synchronization. They established the relation between asymptotic synchronization
and asymptotic stability [62]. The role of unstable periodic orbits in synchronous
chaotic behavior was investigated by J.F. Heagy et al. in 1995 [17]. They proved how
desynchronized bursting behavior is initiated, and suggested taking this phenomenon
into account to yield high quality chaotic synchronization.

In 1996, N.F. Rulkov discussed the cooperative behavior related to the regimes of
synchronized chaos and outlined some examples that illustrate different types of iden-
tical chaotic oscillations [42]. One year later, L.M. Pecora et al. reviewed the basics
of chaotic synchronization and examined coupling configurations as well as secure
communication schemes [36]. G. Kulumbán et al. provided a unified approach for
the analysis and comparison of conventional and chaotic communications systems,
clarifying the role of synchronization for chaotic communications and describing
chaotic synchronization schemes [21].

Since then, chaotic encryption has attracted the interest of researchers. As a
result, chaotic communications have been implemented extensively, this because
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non-periodicity and apparent randomness of chaotic signals seem to be their main
benefits [22].

Three major encryption schemes have been proposed for private communications
[13]: chaotic masking scheme [3, 37, 56], chaos shift keying scheme [20, 63, 66]
and chaotic modulation scheme [5, 8, 58]. Recently, new encryption techniques and
communication schemes have been formulated. Some of them consider generating
pseudo-random sequences by iterating chaotic maps to encrypt image blocks [25].
The aimwas to generate pseudo-random sequences with high initial-value sensitivity
and good randomness. Some others focus on the robustness and security [7]. In order
to increase the security of the algorithm, the size of the key space and the complexity
of the coupling parameters are increased.

On the other hand, several methods have been proposed to achieve chaotic syn-
chronization, which is a key step in the private communication process. The most
important results that have been derived from this research are: firstly, the discovery
that the behavior of many biological and non-biological systems can be modeled
by the dynamics of complex networks: modeling of the human brain [49, 52], the
spread of epidemics in a population [44] and modeling of economic systems [23].
Secondly, the effect of topology on the realization of system processes: synchro-
nization of networked nonlinear systems [2, 50], synchronization of pyloric central
pattern generator of the lobster [12], the presence of Alzheimer in a human brain
[53] and stable growth of a neurons population [14], for instance.

The above quoted papers are some results of the investigation of complex networks
arranged in a particular way, small-world topology. The small-world networks have
their beginning in the 1960s when Stanley Milgram performed an experiment that
led to the well-known concept of six degrees of separation [15]. According to [61]
and [32], Milgram’s experiment consisted of randomly distributed letters to people
in Nebraska to be sent to Boston by people who might know the consignee. Milgram
found that it had only taken an average of six steps for a letter to get fromNebraska to
Boston. He concluded that six was the average number of acquaintances separating
people in the entire world.

Such networks became popular after D.J. Watts and S.H. Strogatz published the
algorithm to introduce the small-world property into a regular network. They showed
that the resulting network fulfilled two main characteristics: high clustering coeffi-
cient and short average path length [61]. After this pioneering work, many researcher
turned their attention to those types of networks during the next years.

This work carries out a process of secret communication by using chaos. The
chaotic signal, which encrypts the message, is chosen based on its energy and fre-
quency characteristics to ensure good encryption. Three models of CNNs are used
as chaos generators arranged in small-world topology. The resulting network is syn-
chronized by the Complex System Theory.

The remainder of the chapter is organized as follows: a brief review on complex
dynamical networks and their synchronization is given in Sect. 2. Section3 provides
the explanation of the small-world algorithms and the description of some basic
network characteristics. Section4 provides the definition and necessary concepts of
CNNs as well as the model descriptions and the corresponding chaotic attractors.
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Section5 provides the necessary conditions to achieve synchronization and examples
of small-world network synchronization. Section6 provides two selection criteria to
evaluate the masking signal as well as the chaotic encryption, transmission and
retrieval of a confidential message. Section7 provides the results interpretation and
some remarks on the chaotic encryption and small-world algorithms. Some conclu-
sions and the possible direction of the research are given in Sect. 8.

2 Complex Networks

In the present section we will address the topic of complex networks and their syn-
chronization. We will provide the definition of a complex network and the coupling
matrix technique, which is used to achieve synchrony.

Among the possible definitions of a complex network, we will use the one sug-
gested by Wang [59].

Definition 1 A complex network is defined as an interconnected set of oscillators
(two or more), where each oscillator is a fundamental unit, with its dynamic depend-
ing of the nature of the network.

Each oscillator is defined as follows

ẋi = f (xi) + ui, xi(0), i = 1, 2, . . . , N, (1)

where N is the network’s size, xi = [xi1, xi2, . . . , xin] ∈ R
n represents the state

variables of the oscillator i. xi(0) ∈ R
n are the initial conditions for oscillator i.

ui ∈ R
n establishes the synchronization between two or more oscillators and is

defined as follows [60]

ui = c
N∑

j=1

aij�xj, i = 1, 2, . . . , N . (2)

The constant c > 0 represents the coupling strength. � ∈ R
n×n is a constant

matrix to determine the coupled state variable of each oscillator. Assume that � =
diag(r1, r2, . . . , rn) is a diagonal matrix. If two oscillators are linked through their
kth state variables, then, the diagonal element rk = 1 for a particular k and rj = 0
for j �= k.

Synchronization is achieve through (2), where aij are the elements of A ∈ R
N×N

which is the coupling matrix. The matrix A shows the connections between oscil-
lators; if the oscillator ith is connected to the oscillator jth, then aij = 1, otherwise
aij = 0 for i �= j. The diagonal elements of A matrix are defined as
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aii = −
N∑

j=1,j �=i

aij = −
N∑

j=1,j �=i

aji i = 1, 2, . . . , N . (3)

The dynamical complex network (1) and (2) is said to achieve synchronization if

x1(t) = x2(t) = · · · = xN(t) as t → ∞. (4)

In this chapter we will synchronize N-coupled CNNs arranged in small-world
topology.

3 Small-World Networks

Even though the small-world property was derived from a research social in nature,
numerous applications have been found in different fields ranging from engineering
to biology [1, 16, 26, 40], therefore it has become a topic widely studied.

The small-world property consists in the existence of long-range links connecting
pairs of nodes distant from each other. The concept of the six degrees of separation
is implied due to it is needed a small number of steps (acquaintances) to reach any
node in this type of networks.

Two of the most important features of complex networks that will be affected by
the small-world property are the following: on one hand the clustering coefficient C,
which is defined as the average fraction of pairs of neighbors of an oscillator that are
also neighbors of each other, the clustering coefficient Ci of the oscillator i is defined
as the ratio between the actual number Ei of edges that exist between ki oscillators
and the total number ki(ki − 1)/2, so

Ci = 2Ei

ki(ki − 1)
. (5)

The clustering coefficient C of the whole network is the averaged of Ci over all
i. On the other hand the average path length L, which is defined as the distance
between two oscillators averaged over all pairs of oscillators [6, 59]

L = 1

N(N − 1)

∑

i �=j

dij, 1 ≤ i, j ≤ N (6)

where dij is the distance between node i and node j. Due to the existence of long-
range links, the small-world network has high clustering coefficient C(N, p) and
short average path length L(N, p).

In the following, the algorithms to introduce the small-world property will be
described.
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Fig. 1 Evolution of the Watts–Strogatz small-world algorithm. The solid lines are the links in their
original positions. The dash–dot line is the rewired link to a randomly chosen position

3.1 Watts–Strogatz Small-World Algorithm

In 1998 D.J. Watts and S.H. Strogatz proposed an algorithm to introduce the small-
world property into a regular network. Such network is arranged in the nearest neigh-
bor topology, which is a ring lattice with periodic boundary conditions [34].

The Watts–Strogatz model is created by rewiring a certain amount of the existing
links to new randomly chosen positions. Restrictions are:

1. The size of the networks remains unchanged.
2. The amount of links remains unchanged.
3. No CNN is allowed to have multiple links with other CNN.
4. No CNN is allowed to have links with itself.
5. The relation N � k must hold,

where N is the size of the network, k is the periodic boundary condition, i.e., CNN i
is connected with i ± 1, i ± 2, . . . , i ± k neighboring CNNs; p is the probability to
rewire a link, thus Nkp are the long-range links that can be created. Figure1 shows
the evolution of the Watts–Strogatz small-world algorithm.

When p = 0 the topology remains unchanged and the network is considered
regular. When 0 < p < 1 one obtains a small-world network. At the point where
p = 1 all the links have been rewired and the network topology has become random.
An important issue to be taken under consideration is the fact that this algorithm can
lead us to generate isolated cluster since it breaks the existing links.

3.2 Newman–Watts Small-World Algorithm

After Watts and Strogatz published their pioneering algorithm to generate small-
world networks, a revised version emerged one year later. In 1999, M.E.J. New-
man and D.J. Watts proposed a modified version of the original small-world model
[33, 34].
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Fig. 2 Evolution of the Newman–Watts small-world algorithm. The solid lines are the original
links. The dash–dot lines are the links randomly added

Newman–Watts algorithm also starts from the nearest neighbor topology, but
unlike the previous case, the algorithm introduces the small-world property by adding
links to pairs of CNN randomly chosen. Restrictions remain almost the same except
for the second one which has been removed.

To determine the amount of links to be added we consider the following: a CNN
i is already connected with its 2k neighboring CNNs. The fourth restriction does not
allow the CNN i to have links with itself, thus, it can connect N − (2k + 1) CNNs
more; therefore, for the whole network we have N(N − (2k + 1)) links. However,
since the considered network is undirected and the third restriction does not allow
multiple links between pairs of CNNs, the connection from CNN i to CNN j is the
same as the connection from CNN j to CNN i; therefore we have N(N − (2k +1))/2
possible links. As the Newman–Watts algorithm is applied, N(N − (2k + 1))p/2
links are introduced.

Figure2 shows the evolution of the Newman–Watts small-world algorithm.When
p = 0, as in the previous case, the topology remains unchanged and the network is
considered regular. When 0 < p < 1 one obtains a small-world network by adding
links to randomly pairs of CNNs. At the point where p = 1 all the possible links
have been added and the network has become globally coupled.

Figure3 depicts the evolution of the clustering coefficient for a network with
different values of k when applying the small-world algorithms. As abovementioned,
both algorithms have led us to a different type of network. When p = 1, Watts–
Strogatz algorithm generates a random network whose clustering coefficient is small
(Fig. 3a), i.e. the network has a low connectivity. On the other hand, Newman–Watts
algorithm generates a globally coupled network whose clustering coefficient is the
highest possible (Fig. 3b), i.e., every pair of CNN has a link.

In this chapter we will use both small-world algorithms in order to determine the
advantages that these could bring to achieve synchronization.
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Fig. 3 Evolution of the clustering coefficient of a network where N = 100 and k = 2, 4, 6, 8, 10
when applying small-world algorithms: a Clustering coefficient when links are rewired (Watts–
Strogatz algorithm). b Clustering coefficient when links are added (Newman–Watts algorithm)

4 CNNs as Chaos Generators

The present section focuses on the definition and description of a CNN. Authors
will first provide the definition of a CNN and its general characteristics. Then, the
mathematical models to be used will be described and examples of their chaotic
attractors will be shown.

4.1 Cellular Neural Network

Among the existing definitions of CNNs, authors resort to the following one given
in [11]:

Definition 2 A Cellular Neural Network is an spatial arrangement consisting of
locally-coupled cells. Each cell is a dynamical system which has an input, an output
and a state evolving according to some prescribed dynamical laws. The cell in row i
and column j is denoted as C(i, j) and it is said to be isolated if it is not coupled to
any other cell.

The variables for an isolated cell are [11]: input u(t) ∈ R
u, threshold z(t) ∈ R

z

which is usually assumed to be scalar, state x(t) ∈ R
x and output y(t) ∈ R

y. An
example of an isolated cell is given in Fig. 4.

Each cell is coupled only among the neighboring cells lying within some pre-
scribed sphere of influence with radius r, i.e., the r-neighborhood of the cell, which
is defined as follows [11]

Sr(i, j) = {C(k, l)|max {|k − i|, |l − j|} ≤ r, 1 ≤ k ≤ M, 1 ≤ l ≤ N} . (7)
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Fig. 4 A two-dimensional
isolated cell: input
uij(t) ∈ R

u, threshold
zij(t) ∈ R

z , state xij(t) ∈ R
x

and output yij(t) ∈ R
y

Fig. 5 M × N arrays of the
cell C(i, j): 3 × 3 array
obtained with r = 1
(dash–dot line) and 5 × 5
array by using r = 2 (dash
line)

Depending on the magnitude of the r-neighborhood, one can build M × N rec-
tangular arrays of cells. Figure5 shows two possible arrangements formed by the
sphere of influence of cell C(i, j): a 3× 3 array obtained by using r = 1 and a 5× 5
array obtained by using r = 2. The resulting network, which can be 1-D as shown in
Fig. 6a or 2-D as shown in Fig. 6b, is governed mathematically by four specifications
[9]:

(a) (b)

Fig. 6 Cells (represented by octagons) forming CNNs of different dimensions: a 1-D CNN. b 2-D
CNN
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• Cell dynamics,
• Synaptic law,
• Boundary conditions,
• Initial conditions.

The cell dynamics are defined by the state equations. The synaptic law defines
the coupling between the considered cell Ci and the cells included within the sphere
of influence Si. The boundary conditions define the neighborhood of those cells that
are located on an edge of the array. The most common boundary conditions for 2-D
CNNs are [65]:

1. Fixed (Dirichlet) boundary conditions:

xi,0 = E1, i ∈ {1, 2, . . . , M}, (8a)

xi,N+1 = E2, i ∈ {1, 2, . . . , M}, (8b)

x0,i = E3, j ∈ {1, 2, . . . , N}, (8c)

xM+1,j = E4, j ∈ {1, 2, . . . , N}, (8d)

where E1, E2, E3 and E4 ∈ R.
2. Zero-Flux (Neumann) boundary conditions:

xi,0 = xi,1, i ∈ {1, 2, . . . , M}, (9a)

xi,N+1 = xi,M , i ∈ {1, 2, . . . , M}, (9b)

x0,i = x1,j, j ∈ {1, 2, . . . , N}, (9c)

xM+1,j = xN,j, j ∈ {1, 2, . . . , N}. (9d)

3. Periodic (Toroidal) boundary conditions:

xi,0 = xi,M , i ∈ {1, 2, . . . , M}, (10a)

xi,N+1 = xi,1, i ∈ {1, 2, . . . , M}, (10b)

x0,i = xN,j, j ∈ {1, 2, . . . , N}, (10c)

xM+1,j = x1,j, j ∈ {1, 2, . . . , N}. (10d)

4.2 Models of CNNs

Below, the mathematical models of the CNNs are provided. Examples of their states
and chaotic attractors are given aswell. Thesemodelswill be used as chaos generators
and will be arranged in small-world topology to be synchronized.



Chaotic Synchronization of CNNs in Small-World … 347

4.2.1 The Standard CNN

We will describe first the Chua–Yang model which is widely known as the standard
model because it has been extensively studied. The standard CNN is described as
follows [11]

ẋij = −xij + zij +
∑

kl∈Sr(i,j)

aklykl +
∑

kl∈Sr(i,j)

bklvkl, i = 1, . . . , M ; j = 1, . . . , N, (11)

yij = f (xij), (12)

where zij is a scalar for simplicity, Sr(i, j) is the sphere of influence with radius r, i.e.,
the r-neighborhood of the cell.

∑

kl∈Sr(i,j)
aklykl and

∑

kl∈Sr(i,j)
bklvkl are the local couplings,

and

f (xij) = 1

2

(|xij + 1| − |xij − 1|) . (13)

For the particular case where M = 1 and N = 2, (11) and (12) assume the simpler
form of a 1 × 2 array [71]

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = −x1 + a00f (x1) + a01f (x2) + b00v1(t),
ẋ2 = −x2 + a0,−1f (x1) + a00f (x2) + b00v2(t),
y1 = f (x1),
y2 = f (x2),

(14)

where by using a00 = 2, a0,−1 = 1.2, a01 = −1.2, b00 = 1, v1(t) = 4.04sin (πt/2)
and v2(t) = 0, we simplify (14) to

{
ẋ1 = −x1 + 2f (x1) − 1.2f (x2) + 4.04 sin

( π
2 t

)
,

ẋ2 = −x2 + 1.2f (x1) + 2f (x2),
(15)

with the nonlinear function

f (x1,2) = 1

2

(|x1,2 + 1| − |x1,2 − 1|) . (16)

It was first shown in [71] that (15) and (16) exhibited chaotic behavior for the
parameters given. Figure7a, b shows an example of the chaotic attractor and the state
variables respectively generated from (15) and (16).
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Fig. 7 a View (x1, x2)-plane for the chaotic attractor of the standard CNN (15) and (16). b x1(t)
and x2(t) state variables obtained with x(0) = [−0.2, 0.1]T

4.2.2 Chaotic 3D CNN

The second model taken under consideration is the so-called chaotic 3D CNN. This
model is a simpler form of the biological one proposed by J. J. Hopfield which was
described as follows [18]

Ci

(
dui

dt

)

= − ui

Ri
+

∑

j

TijVj + Ii, (17)

Vi = gi(ui), (18)

to model the graded response and the effect of the action potentials. Tij was biolog-
ically viewed as a description of the synaptic interconnection strength from neuron
j to neuron i. Vi is the output of the neuron j and it is bounded above and below
V 0

i ≤ Vi ≤ V 1
i . The simplified model of the Hopfield system is described as follows

[69]
ẋ = −x + T tanh(x), (19)

where the state vector x ∈ R
3, tanh(x) = [tanh(x1) tanh(x2) tanh(x3)]T and

T =
⎡

⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤

⎦ =
⎡

⎣
1.49 2 1
−2 1.7 0
4 −4 2

⎤

⎦ . (20)

The chaotic 3D CNN described by (19) exhibits chaotic behavior for parameters
given in (20) [69]. References [24, 70] give alternative parameters for (19) to exhibit
chaotic or hyperchaotic behavior. An example of the chaotic attractor and state vari-
ables are shown in Fig. 8a, b respectively. They were obtained by using the initial
conditions x(0) = [−0.2, 0.1, 0.1]T .



Chaotic Synchronization of CNNs in Small-World … 349

−1.5
−1

−0.5
0

0.5
1

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

(a)
0 20 40 60 80 100 120 140 160 180

−1
0
1

0 20 40 60 80 100 120 140 160 180

−2

0

2

0 20 40 60 80 100 120 140 160 180

−5
0
5

(b)

Fig. 8 a View (x, y, z)-plane for the chaotic attractor of the 3D CNN in (19). b x1(t), x2(t) and
x3(t) states variables obtained with x(0) = [0.1, −0.2, −0.2]T

4.2.3 Lu–He CNN

The thirdmodel under consideration is the one-dimensional Lu–He systemwith time-
delay. The importance of the model is due to it is well-know that chaotic behavior
cannot be found in continuous systems with less than two dimensions. It does not
seem to be true for systems with delay. That is what H. Lu et al. claimed and proved
when first proposed a simple equation with only one variable as chaos generator
[28]. This model has been widely studied and different modalities have emerged [39,
45–48, 57]. The time-delay Lu–He system is described as follows [28]

ẋ(t) = 0.001x(t) − 3.8 (|xτ + 1| − |xτ − 1|) + 2.85

(∣
∣
∣
∣xτ + 4

3

∣
∣
∣
∣ −

∣
∣
∣
∣xτ − 4

3

∣
∣
∣
∣

)

,

(21)

where xτ = x(t − τ). Equation (21) has an infinite-dimensional solution space, with
initial condition as any continuous function defined on the closed interval [−τ, 0]
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Fig. 9 a View (x(t), x(t − τ))-plane for the chaotic attractor of the Lu–He system in (21). b x(t)
(solid line) and x(t − τ) (dash line) states variables obtained with x(0) = −1
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[28]. By considering τ = 1, we choose the arbitrary function φ0 = 0.5 ∈ [−τ, 0] for
t ∈ [0, τ]. By using the initial condition x(0) = −1 we obtain the chaotic attractor
and the x(t) state shown in Fig. 9a, b respectively.

These CNNmodels will be used as the chaotic oscillators to be arranged in small-
world topology. The resulting arrangement, which is a small-world network, will be
synchronized via the coupling matrix as explained in Sect. 2.

5 Synchronization of N Chaotic CNNs Arranged
in Small-World Topology

Section5will be devoted to achieve synchronization between chaotic CNNs arranged
in a specific topology. The CNNmodels described in Sect. 4 will be used to compose
the small-world networks. The small-world property will be introduced by the algo-
rithms described in Sect. 3. In the following, conditions to achieve synchronization
are provided.

5.1 Conditions for Synchronization by Using
the Coupling Matrix

Suppose there are no isolated clusters in the complex network, then the coupling
matrix A is a symmetric irreducible matrix, so one eigenvalue of A is zero and all the
other eigenvalues are strictly negative, this means, λ2,...,N(A) < 0.

Theorem 1 [59] Consider the dynamical network (1). Let

0 = λ1 > λ2 ≥ λ3 · · · ≥ λN , (22)

be the eigenvalues of its coupling matrix A. Suppose that there exist an n×n diagonal
matrix H > 0 and two constants d̄ < 0 and τ > 0, such that

[
Df (s (t)) + d�

]T
H + H

[
Df (s (t)) + d�

] ≤ −τIn, (23)

for all d ≤ d̄, where In ∈ R
n×n is an unit matrix. If moreover,

cλ2 ≤ d̄, (24)

then the synchronization state (4) is exponentially stable.
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The coupling strength is computed as follows

c ≥
∣
∣
∣
∣
∣

d̄

λ2

∣
∣
∣
∣
∣
, (25)

which will affect the stability of the synchronization state (4) through the control
law (2).

5.2 Synchronization Results

In the following, complex networks of identical chaotic CNNs will be synchronized.
The CNNs considered can be either the standard CNN (Chua–Yangmodel) described
by (15) and (16), the chaotic 3D CNN described by (19) and (20) or the Lu–He CNN
model described by (21).

Considering a synchronization scheme of N-coupled chaotic CNN, the coupling
matrix of the original topology (nearest neighbor) is obtained as explained in Sect. 2.
All its eigenvalues are 0 = λ1 > λ2 ≥ λ3 · · · ≥ λN . As the small-world property is
introduced, the largest nonzero eigenvalue λ2(p)will vary, thus, the coupling strength
given by (25) becomes

c(p) ≥
∣
∣
∣
∣
∣

d̄

λ2(p)

∣
∣
∣
∣
∣
. (26)

The coupling strength c(p) is computed for each λ2(p), which varies depending on
the small-world algorithm. The obtained ratio is the lowest boundary necessary for
each type of CNN to reach synchrony and it decreases as the probability increases.

The following characteristics apply to Case 1, Case 2 andCase 3: initial conditions
were randomly generated for each chaotic CNN within the range [−16, 10] without
repeating them. The Gamma matrix is defined such that synchronization is achieved
by the first state variable, i.e., for the standard CNN (Case 1) � = diag(1, 0), for
the chaotic 3D CNN (Case 2) � = diag(1, 0, 0) and finally, for the Lu–He CNN
(Case 3) � = 1. The size of the complex network is N = 300 for all cases. The
periodic boundary conditions are k = 3 (Case 1 and Case 3) and k = 10 (Case 2).
The small-world property is introduced by Newman–Watts algorithm (Case 1 and
Case 3) and Watts–Strogatz algorithm (Case 2). The long-range connections will be
either added or created as p grows.

The coupling strength is computed according to (26) and the resulting values are
depicted in Fig. 10, where d̄ = −10 and d̄ = −1 were used for the standard CNN
and the Lu–He CNN models respectively when using Newman–Watts algorithm.
According to (2), the control laws ui1 for i = 1, . . . , N are given by the A matrix
nonzero elements for all cases.
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Fig. 10 Evolution of the
coupling strength lower
boundary for two types of
CNN as function of the
probability when using the
Newman–Watts small-world
algorithm. The size of the
network N = 300 with a
periodic boundary condition
k = 3

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

λ

5.2.1 Case 1: Synchronization of N Standard CNNs

By using d̄ = −10, the chaotic state variables x1(t) and x2(t) of a single standard
CNN described by (15)–(16) are stabilized. The coupling strength c is computed
from (26), thus, c(p) ≥ | − 10/λ2(p)| which lower boundary is given in Fig. 10 with
“+”-mark.

The set of equations that describes the complex network is given as follows

⎧
⎨

⎩

ẋi1 = −xi1 + 2f (xi1) − 1.2f (xi2) + 4.04 sin
( π
2 t

) + c
N∑

j=1
aijxj1,

ẋi2 = −xi2 + 1.2f (xi1) + 2f (xi2),

(27)

with the nonlinear function

f (xi1,2) = 1

2

(|xi1,2 + 1| − |xi1,2 − 1|) , (28)

where 1 ≤ i ≤ 300. By using p = 0.2, the coupling strength was set in c = 1
and the following synchronization results were obtained. Figure11a shows the time
evolution of some chaotic state variables xj1 and xj2 for j = 26, 53, 249, 130.
Figure11b shows the phase portraits between some arbitrary chosen states and the
chaotic attractor. Synchronization is confirmed by the phase portraits, therefore,
condition x1(t) = x2(t) = · · · = xN (t) as t → ∞ holds.

5.2.2 Case 2: Synchronization of N Chaotic 3D CNN

By using d̄ = −1 the chaotic state variables x1(t), x2(t) and x3(t) of a single chaotic
3D CNN described by (19) and (20) are stabilized. The coupling strength is obtained
by using (26) as follows c(p) ≥ |−1/λ2(p)|. Note that we only have to determine
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Fig. 11 a Time evolution of state variables xj1 and xj2 for j = 26, 53, 249, 130. b Phase portraits
to corroborate synchronization between xi1 versus xj1 for i = 1, 61, 121; j = 121, 181, 241 and
view (x14,1, x14,2)-plane of the chaotic attractor

λ2(p) which will vary as the network varies through the probability p. For this case,
the small-world property will be introduced by the Watts–Strogatz algorithm.

The equations that describe the complex network are given as follows

ẋi = −xi + T tanh(xi) + c
N∑

j=1

aij�xj, 1 ≤ i ≤ 300, (29)

where

T =
⎡

⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤

⎦ =
⎡

⎣
1.49 2 1
−2 1.7 0
4 −4 2

⎤

⎦ . (30)

For this case by using p = 0.4, the corresponding coupling strength is c = 0.5.
Synchronization results are the following. Figure12a shows the time evolution of
some state variables xj1, xj2 and xj3 for j = 55, 242, 72, 174. Figure12b provides the
phase portraits between some arbitrary chosen states and the corresponding chaotic
attractor for the network (29) and (30). Synchronization is verified by the phase
portraits, thus, the condition x1(t) = x2(t) = · · · = xN (t) as t → ∞ holds as well.

5.2.3 Case 3: Synchronization of N Lu–He CNN

Similarly as in the previous cases, we proceeded tomeet the conditions of Theorem1.
By using d̄ = −1 the chaotic state variables x(t) and x(t −τ) of a single Lu–He CNN
described by (21) are stabilized. The coupling strength is obtained by using (26) as
follows c(p) ≥ |−1/λ2(p)|which lower boundary is given in Fig. 10 with “×”-mark.
The small-world property will be introduced by the Newman–Watts algorithm as in
Case 1.
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Fig. 12 a Time evolution of state variables xj1, xj2 and xj3 for j = 55, 242, 72, 174. b
Phase portraits to corroborate synchronization between xi1 versus xj1 for i = 100, 120, 200;
j = 200, 250, 300 and view (x1,1, x1,2, x1,3)-plane of the chaotic attractor
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Fig. 13 a Time evolution of state variables xj1 for j = 69, 98, 21, 95. b Phase portraits to
corroborate synchronization between xi1 versus xj1 for i = 29, 30, 205; j = 205, 244, 283 and
view (x1(t), x1(t − τ))-plane of the chaotic attractor

Equations describing the complex network are given as follows

ẋi(t) = 0.001xi(t) − 3.8
(∣
∣xi,τ + 1

∣
∣ − ∣

∣xi,τ − 1
∣
∣
)

+2.85

(∣
∣
∣
∣xi,τ + 4

3

∣
∣
∣
∣ −

∣
∣
∣
∣xi,τ − 4

3

∣
∣
∣
∣

)

+ c
N∑

j=1

aijxj, (31)

where xi,τ = xi(t − τ) and 1 ≤ i ≤ 300. By using p = 0.3, the coupling strength was
set in c = 1. The following synchronization results were obtained. Figure13a shows
the time evolution of some state variables arbitrary chosen xj1 for j = 69, 98, 21, 95.
Figure13b depicts the phase portraits between some arbitrary chosen states and the
corresponding chaotic attractor. Synchronization is confirmed by the phase portraits,
therefore, condition x1(t) = x2(t) = · · · = xN (t) as t → ∞ holds.
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In the remainder of this work, one of the most important application of chaotic
signals will be described. A process of secret communication will be performed by
using the presented chaotic signals.

6 Chaotic Encryption

One of the most important application of chaos in engineering is secret communi-
cations. Chaotic encryption has become one of the most feasible alternatives to hide
a confidential message; as a result, it has been deeply studied for the last decade or
two which resulted in the appearance of several ways to encrypt [3, 8, 37, 58, 63,
66]. However, chaotic encryption seems to be vulnerable when omitting the energy
and spectral characteristics of signals involved. For this reason, the chaotic signals
considered will be evaluated to determine a suitable one to be used when encrypting
the confidential message.

6.1 Chaotic Signals Evaluation

In the following, the criteria for assessing the quality of the candidate signals to
encrypt will be briefly described. The resulting indices, which were applied to the
signals showed in the synchronization process, will be given as well. These data will
be used to select the best chaotic signal to encrypt a confidential message.

The first selection criterion considers the energy level of the chaotic signal, which
suggests the bigger the energy level, the better the signal to encrypt. The criterion is
described as follows [51]

N−1∑

n=0

|xc(n)|2 �
N−1∑

n=0

|xm(n)|2, (32)

where xc(n) is the samples set of the chaotic signal and xm(n) is the samples set of
the message (digital audio). The criterion, J1 is defined as the ratio between the right
and the left parts of (32), i.e., J1 yields the times the chaotic signal energy exceeds
the message energy, therefore, J1 � 1 results in a good encryption.

The second criterion considers the chaotic signal energy in a frequency range
which result to be the range where the most energy of the message is located. This is
done to ensure good encryption from the frequency domain. The criterion is described
as follows [51]

N−1∑

k=0

α(k)|Xc(k)|2 �
N−1∑

k=0

α(k)|Xm(k)|2, (33)
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whereXc(k) are the chaotic signal spectrum samples,Xm(k) are themessage spectrum
samples and α(k) is a frequency weighting function that selects the range where the
message is located. J2 is defined as the ratio between right and left parts of (33),
which gives the relation between chaotic signal energy and message energy in a
specific frequency band if α(k) = 1 in K ∈ [k1, k2]. Criterion J2 will yield how
many times the weighted chaotic signal energy exceeds the weighted energy of the
message, thus, J2 � 1 results in a good encryption.

As an additional tool, the index of correlation between themessage and its encryp-
tion will allow us to support the choice of the chaotic signal. The correlation index
is defined as follows [43]

rxy = cov(X, Y)

σXσY
, (34)

where σ is the standard deviation. In terms of mean and expectation, the covariance
cov(X, Y) can be expressed as E

[
(X − μX)(Y − μY )

]
, where μ is the mean of X or

Y and E is the expectation. The resulting index is within [−1, 1]. It is said that x and
y are weakly (strongly) correlated if rxy ≈ 0 (rxy ≈ ±1). When rxy = −1 there is a
total negative correlation while rxy = 0 means there is no correlation.

The indices corresponding to each type of CNN are given in Table1. These data
were obtained from the complex networks previously synchronized. The weighting
function α(k) has a unity gain in the message’s frequency range 0.01–5kHz and null
elsewhere. The total energy of the message is 3.6085 ×103.

Two things are worth mentioning from Table1: in the first place, the fact that the
chaotic states generated by the CNN standard model seem to be better candidates
since all their values resulted to be J1 > 1 and J2 > 1. In the second place, we
highlight the resulting values of J1 and J2 corresponding to the x1,2 state of the
standard CNN model. It may be noticed that, according to J2, almost all the chaotic

Table 1 Data obtained from the state vector of the CNN1 of each complex network in Sect. 5:
resulting indices J1, J2 after applying selection criteria (32) and (33) and the correlation between
the message m(t) and its encryption s(t) in time and frequency domain rm,s and Rm,s respectively

CNN model State Ea J1 J2 rm,s Rm,s

CNN
standard

x1,1 3.6447b 10.1004 1.4491 0.0046 0.0118

x1,2 0.7651b 2.1204 2.2055 0.0067 −0.0021

Chaotic 3D
CNN

x1,1 0.2159b 0.5984 1.7435 0.0023 0.0049

x1,2 0.5816b 1.6118 0.4302 0.0012 −0.0138

x1,3 6.6921b 18.5455 0.6181 0.0041 0.025

Lu–He
CNN

x1 0.022 6.1022c 0.0025 0.1716d 0.1148d

aChaotic signal energy
b×104
c×10−6

d×10−3
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signal energy is located in the message’s frequency range. The reader has to notice
that even when the x1,3 state corresponding to the chaotic 3D CNN model has a big
J1, the corresponding J2 < 1 which means that almost all the chaotic signal energy
is outside the range of interest.

Columns rm,s andRm,s give us the correlation between themessage and its encryp-
tion, rm,s is the correlation index in time domain while Rm,s was obtained from their
frequency spectrumwhen using all available signals. The lower the index, the weaker
the correlation between the message and its encryption. With these data we can con-
firm the election of the chaotic signal to encrypt the message.

6.2 Encryption Results

The end result of this research is to apply the apparent randomness of chaotic sys-
tems to hide information, and use their ability to be synchronized to retrieve it. For
this purpose, the chaotic systems are CNNs arranged in small-world topology. The
chaotic signal to mask the message is selected according to its encryption capability
determined by (32) and (33). It is highly recommended to choose the chaotic signal
based on both criteria J1 and J2 to prevent a bad encryption.

In the following, the encryption, transmission and retrieval of a confidential mes-
sage will be carried out. Figure14 shows the two-channel communication diagram
with multi-user modality that will be used. The additive chaotic encryption will be
utilized to hide the confidential message. It consist on the application of autonomous
chaotic oscillators whose output signal is added to the information signal. This sum
is sent over a communication channel. Another chaotic signal of the encoder is also
transmitted and used by the decoder to synchronize an equivalent chaotic oscillator

Fig. 14 Two-channel communication diagram with multi-user modality
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Fig. 15 Resulting signals of the communication process. At the top, the message m(t) to be
encrypted. In the middle the transmitted signal s(t) which is the sum of the x1,2 chaotic state
and the confidential message m(t). At the bottom, the retrieved message m′(t)

with the encoder system. The reconstructed chaotic signal is then subtracted from
the sum transmitted which finally restores the information [13].

Wewill consider as a confidentialmessage to be transmitted a short part of the clas-
sical song Le nozze di Figaro (The Marriage of Figaro) by W. A. Mozart. Figure15
shows the resulting signals of the communication process. At the top, the message to
be encrypted m(t); in the middle, the encrypted message s(t) = x1,2(t)+m(t) which
is transmitted by the second channel; finally at the bottom, the retrieved message
m′(t) = s(t) − x′

1,2(t) for every user.
The encryption was made by using the x1,2 state of the standard CNN model,

since as explained, almost all its energy is located in the message’s frequency band.
Without hesitation, selecting the chaotic signal based on its energy and bandwidth
characteristics improves the security level of the encrypted message, since it is pre-
vented from retrieval by conventional filtering techniques.

7 Discussion

In this section the strengths and weaknesses of the three main results of this work
are discussed.

Firstly, we highlight the synchronization of complex networks composed of
chaotic CNN models arranged in small world topology.

For purposes of encryption, the use of such systems allows us to generate a
wide variety of chaotic signals, since due to its structure, the number of chaotic
signals generated by a CNN varies according to its dimension, which makes the
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selection process more effective, since the greater the number of signals evaluated,
more extensive is the field of requirements that can be met.

Secondly, we highlight the use of criteria, which consider energy and frequency
characteristics, to select the chaotic signal to hide the message. This brings an
improvement in the security level of the encrypted message, since knowing its band-
width allows us to choose a suitable chaotic signal to cover those frequencies. As
a result, the encrypted message is prevented from being retrieved by using filtering
techniques. However, the proposed criteria do not provide local information of the
chaotic signal, i.e., the criteria do not allow us to know if its magnitude is insufficient
to mask the message in a given time interval.

Correlation indices (Table1 columns rm,s and Rm,s) supported the choice of the
chaotic signal since they are very close to zero. This ensures that the encrypted
message is weakly correlated with the original one, therefore, the chosen chaotic
signal properly encrypts the confidential information.

As the third and final result, we have the encryption, transmission and retrieval
of a confidential message. This was possible by making use of the ability of chaotic
systems to be synchronized. The chaotic system, shown in the communication dia-
gram (Fig. 14), is a complex network with small-world topology. This turns out to
be novel, since usually the system that generates the chaotic signal is a single oscil-
lator, so emerging dynamics, present in complex systems, can be exploited. Because
it was possible to achieve identical synchronization, the confidential message was
fully retrieved.

8 Conclusion

In this work the synchronization of complex networks with small-world topology
composed of chaotic CNNs models was performed. Synchronization was accom-
plished by using the technique of coupling matrix. The simulations showed the
importance of the probability when computing the coupling strength. We concluded
that the bigger the probability, the smaller the coupling strength.

Another important aspect that involves the probability is the clustering coefficient,
which varies considerably as a function of probability p (Fig. 3a, b). For purposes
of synchronization, both algorithms could be merged into a combination to keep the
network clustering coefficient as big as possible, i.e., by choosing Watts–Strogatz
algorithm for small values of p and Newman–Watts algorithm for large values of p
and thus promote the status of synchrony.

The encryption results allow us to determine that selecting the chaotic signal
according to indices delivered by the criteria (Table1), the message will be encrypted
properly and there will be no need to attenuate the message intensity. Once again,
we emphasize the importance of considering the message requirements, especially
its frequency location, when selecting the chaotic signal to hide it.

Private communications using chaos have still issues to be addressed to improve
the security of the encrypted message. Adding a third selection criterion that con-
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siders the modulation of chaotic signal energy to the frequency band of interest, or
perform multiple encryption using different frequency bands surely will impact on
the effectiveness of the encryption.
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Fuzzy Adaptive Synchronization
of Incommensurate Fractional-Order
Chaotic Systems

A. Bouzeriba, A. Boulkroune, T. Bouden and S. Vaidyanathan

Abstract This chapter presents a fuzzy adaptive control scheme for achieving a
generalized projective synchronization (GPS) of two incommensurate fractional-
order chaotic systems. The master system and the slave system are assumed to be
with non-identical structure, external dynamical disturbances, uncertain models and
distinct fractional-orders. The adaptive fuzzy systems are employed for approximat-
ing some unknown nonlinear functions. Lyapunov method is adopted for deriving
the adaptation laws and proving the stability of the closed-loop system. Under mild
assumptions, the proposed control scheme can guarantee all the signals in the closed-
loop system remain bounded and the synchronization errors converge asymptotically
towards a small of neighbourhood of the origin. Finally, numerical experiment results
are presented to show the effectiveness of the proposed synchronization scheme.

Keywords Fuzzy adaptive control · Incommensurate fractional-order systems ·
Chaotic systems · Chaos synchronization

1 Introduction

Fractional calculus is an area of mathematics that deals with differentiation and
integration of arbitrary orders. Recently, the fractional calculus has been studied
with increasing interest from chemists, physicians and engineers. In fact, it was
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found that various systems in interdisciplinary fields can be precisely modelled
by fractional-order differential equations such as [5, 39]: dielectric polarization,
electrode-electrolyte polarization, viscoelastic systems, electromagnetic waves, heat
diffusion systems, finance systems, batteries, neurons, and so on. That is to say, frac-
tional derivatives give a superb instrument for a precise description of memory and
heredity features of several material and processes.

Chaotic systems are nonlinear and deterministic rather than probabilistic. They
are characterized by the self similarity of the strange attractor and unusual sensitivity
to initial conditions quantified by fractal dimension and the existence of a positive
Lyapunov exponent, respectively, [2]. Recently, many works have shown that some
fractional-order systems can behave chaotically, namely fractional-order Rössler
system [23], fractional-order Lorenz system [20], fractional-order Arneodo system
[32], fractional-order Lü system [16].

Synchronization problem consists in designing a slave system whose behavior
mimics another system (i.e. master system). The latter drives the slave system via
the transmitted signals. In the literature, various types of the chaos synchronization
have been revealed, such as complete synchronization (CS) [11, 14, 45], phase syn-
chronization (PHS) [33, 37], lag synchronization (LS) [12, 24], generalized synchro-
nization (GS) [51], generalized projective synchronization (GPS) [25, 27, 40–44, 47,
55]. However, all these synchronization methods focus on integer-order chaotic sys-
tems, which is a very special case of the non-integer-order (i.e. fractional-order)
chaotic systems. In addition, it has been assumed in [11, 12, 14, 24, 25, 27, 33, 37,
45, 51, 55] that models of the chaotic systems are almost known. Therefore, it is very
interesting to extend these fundamental results to uncertain fractional-order chaotic
systems and to incorporate an online function approximator (such as adaptive fuzzy
system) to deal with model uncertainties.

Based on the universal approximation feature of the fuzzy systems [50], fuzzy
adaptive control schemes [3, 4, 6, 15, 21, 35, 36, 48, 49] have been developed for
a class of uncertain chaotic systems with integer-order. In these schemes, the fuzzy
logic systems are employed to online estimate the uncertain nonlinear functions. The
stability of the closed-loop system has been analyzed in Lyapunov sense. In order to
deal with the bounded external disturbances and fuzzy approximation errors, a robust
control term has been added to the dominate fuzzy adaptive control term. This robust
control term can be designed by a sliding mode control (SMC) approach [6, 15,
35, 36] and an H∞ control approach [21, 48, 49]. However, these synchronization
schemes [6, 15, 21, 35, 36, 48, 49] are limited to uncertain chaotic integer-order
systems.

Synchronization of fractional-order chaotic systems is yet considered as a chal-
lenging research topic [22, 28–31, 52–54]. In [54], chaos synchronization of variable-
order fractional financial system based on active control method has been studied. In
[52], a local stability criterion for synchronization of incommensurate fractional-
order chaotic systems has been derived based on the stability theory of linear
incommensurate fractional-order differential equations. A modified projective syn-
chronization via active SMC of two different fractional-order systems has been
proposed in [53]. The author of [22] has designed an impulsive synchronization
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system for fractional order chaotic systems. Chaos synchronization between two
different uncertain fractional order chaotic systems has been studied based on adap-
tive fuzzy sliding mode control in [31]. A generalized projective synchronization of
fractional order chaotic system has been developed in [28] using an adaptive fuzzy
sliding mode control strategy. In [30], an adaptive fuzzy control based synchroniza-
tion of uncertain fractional-order chaotic systemswith time delay has been proposed.
In [29]. An adaptive fuzzy logic controller has been designed for achieving an H∞
synchronizing for a class of uncertain fractional-order chaotic systems. However,
the fundamental results of [29–31] are already questionable, because the stability
analysis has not been derived rigorously in mathematics, as stated in [1, 46].

In the current chapter, a direct adaptive fuzzy control is designed to achieve a GPS
of two different incommensurate fractional-order chaotic systems with uncertain
dynamics and external disturbances. Lyapunov method is adopted to carry out the
design of the adaptation laws and the stability analysis of the corresponding closed-
loop system. To show the effectiveness of the proposed synchronization scheme, an
illustrative example will be presented. Compared to the previous works [22, 28–31,
52–54], the main contributions of this chapter are:

(1) The master and slave systems are assumed to be with non-identical structure,
external dynamical disturbances, uncertainmodels and distinct fractional-orders.
To the best of our knowledge, the design of a direct adaptive fuzzy control for
such a class of fractional-order chaotic systems has not been formerly considered
in the control literature.

(2) The conditions imposed in the previous literature [22, 52–54] on full or partial
knowledge of the models of the master and slave systems are neglected here. In
fact, the adaptive fuzzy systems incorporated in the proposed controller permits
to online approximate the uncertain functions.

(3) Unlike the closely related works [29–31], the stability analysis of the underlying
closed-loop system is rigorously established in this paper, through the use of
some properties of the Caputo fractional-order derivative [13, 19, 26, 34, 38,
56].

(4) Compared to [28], the proposed control law is very simple, continuous and free of
singularity problem. Moreover, one does not use the fractional-order derivatives
of the master state vector as input for the designed fuzzy systems.

2 Basic Definitions and Preliminaries
for Fractional-Order Systems

The most frequently used definitions for fractional derivatives are: Riemann–
Liouville, Grünwald–Letnikov, and Caputo definitions [34]. As the Caputo frac-
tional operator is more consistent than another ones [13, 19, 26, 34, 38, 56], then
this operator will be employed in the rest of this paper. Also, a modification of
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Adams–Bashforth–Moulton algorithmproposed in [17, 18]will be used for computer
numerical simulation of the Caputo fractional-order differential equations.

The Caputo fractional derivative of a function x(t) with respect to time is defined
as follows [34]:

Dα
t x(t) = 1

�(m − α)

t∫

0

(t − τ)−α+m−1x (m)(τ )dτ, (1)

where m = [α] + 1, [α] is the integer part of α, Dα
t is called the α-order Caputo

differential operator, and �(.) is the well-known Euler’s gamma function:

�(P) =
∞∫

0

t p−1e−t dt; with �(P + 1) = P�(P) (2)

This function can be seen as an extension of the factorial to real number arguments.
The following properties of the Caputo fractional-order derivative will be

employed in the sequent sections [13, 26, 34]:

Property 1 Let 0 < q < 1, then

Dx(t) = D1−q
t Dq

t x(t), where D = d

dt
. (3)

Property 2 The Caputo fractional derivative operator is a linear operator:

Dq
t (νx(t) + μy(t)) = νDq

t x(t) + μDq
t y(t), (4)

where ν and μ are real constants.
Especially, Dq

t x(t) = Dq
t (x(t) + 0) = Dq

t x(t) + Dq
t 0, then, we have Dq

t 0 = 0.

Property 3 Consider a Caputo fractional nonlinear system [19, 38, 56]:

Dq
t x(t) = f (x(t)), with 0 < q < 1 (5)

If one assumes that f (x(t))satisfies the Lipchitz condition with respect to x, i.e.,

‖ f (x(t)) − f (x1(t))‖ ≤ � ‖x(t) − x1(t)‖ , (6)

where � is a positive constant. Without loss of generality, one also assumes that
f (x)satisfies f (x) = 0 at x = 0.

It follows that:
‖ f (x(t))‖ ≤ � ‖x(t)‖ , (7)
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3 Problem Statement and Fuzzy Logic Systems

3.1 Problem Statement

Our main motivation consists in designing a fuzzy adaptive control system achieving
a GPS between two different fractional-order chaotic systems. Figure1 presents this
proposed synchronization scheme.

The uncertain fractional-order chaoticmaster system can be given in the following
form:

Dαi
t xi = fmi (x), for i = 1, . . . , n (8)

where Dαi
t = dαi

dtαi , 0 < αi < 1is the fractional-order, x = [x1, . . . , xn]T ∈ Rn is the
state vector that is measurable, and fmi (x) is an unknown continuous nonlinear
function.

The slave system is described by

Dβi
t yi = fsi (y) + ui + di (t, y), for i = 1, . . . , n (9)

where 0 < βi < 1 is the fractional-order of the states of the slave system, fsi (y) is an
unknown continuous nonlinear function, y = [y1, . . . , yn]T ∈ Rn is its state vector
which is also assumed to be measurable. uis the control input to be determined,
and di (t, y)denotes the lumped disturbances that can include unmodeled dynamics,
parametric variations, and external and noise disturbances.

Remark 1 Compared to [22, 28–31, 52–54], the systems (8) and (9) considered
in this paper represent a relatively large class of uncertain fractional-order chaotic
systems, for the following reasons:

( )y t

λ −

Slave system

1
1 1 1 1( ) ( , )t SD y f y u d t yβ = + +

( ) ( , )n
t n sn n nD y f y u d t yβ = + +

Fuzzy adaptive 

controller 

u

Master system

1
1 1( )t mD x f xα =

( )n
t n mnD x f xα =

+

( )Mx t

Fig. 1 The proposed chaos synchronization scheme
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(a) Many chaotic systems can be described in this considered form, such as
fractional-order Chen system, fractional-order Lorenz system, fractional-order
Lü system, fractional-order unified chaotic system, and so on.

(b) Themaster system and slave system are assumed to be completely different, with
incommensurate (or inhomogeneous) fractional-orders (i.e. α1 �= α2 �= · · · �=
αn, and β1 �= β2 �= · · · �= βn)and with different orders (i.e. αi �= βi , and∑n

1 αi �= ∑n
1 βi ).

(c) Both systems are assumed to be with uncertain dynamics (i.e. fmi (x) and fsi (y)

are unknown). The slave system is affected by external dynamic disturbances.

Remark 2 If (α1 = α2 = · · · = αn) and (β1 = β2 = · · · = βn), the GPS of different
incommensurate fractional-order chaotic systems will be reduced to a GPS of differ-
ent commensurate fractional-order chaotic systems. Especially, if α1 = α2 = · · · =
αn = 1 and β1 = β2 = · · · = βn = 1, the GPS of different commensurate fractional-
order chaotic systems will become a GPS of integer-order chaotic systems.

Our objective is to design an appropriate fuzzy adaptive control law ui (for all
i = 1, . . . , n)such that a GPS between the master system (8) and the slave system
(9) is practically realized, while ensuring the boundedness of all closed-loop system
signals.

The synchronization error variables between the two systems are defined as
follows:

ei = yi − λi xi , for i = 1, . . . , n (10)

where λi is the scaling factor that defines a proportional relation between the syn-
chronized systems.

Remark 3 If λ1 = λ2 · · · = λn = λ, the GPS problem becomes a projective syn-
chronization (PS) problem. In particular, if λ = 1 and −1, this problem is further
reduced to CS and anti-phase synchronization (AS), respectively. If the scaling fac-
torsλ1 = λ2 · · · = λn = 0, the synchronization problem is turned into a chaos control
problem.

Remark 4 As the GPS is a more general definition that the PS, it is obvious that
the unpredictability of the scaling matrix M = diag(λ1, λ2, . . . , λn), in GPS can
additionally enhance the security in communication applications.

Now, as in [38], one defines a new error variable Si such that:

D1−βi
t Si = ei , for i = 1, 2, . . . , n (11)

According to Property1, one can rewrite (11) as follows:

Dβi
t D1−βi

t Si = Ṡi = Dβi
t ei = fsi (y) + ui − λi Dβi

t xi + di (t, y). (12)

or
Ṡi = φi (x, y, di ) + ui , (13)



Fuzzy Adaptive Synchronization of Incommensurate . . . 369

with
φi (x, y, di ) =

[
fsi (y) − λi Dβi

t xi

]
+ di (t, y) (14)

Remark 5 By dynamics (13), we know that the GPS between the master system
(8) and the slave system (9) is transformed into the following problem: designing a
control law ui such that the dynamics (13) is practically stabilized. In short, this GPS
problem becomes stabilization one.

Remark 6 Since the nonlinear function φi (x, y, di ) is uncertain, the design of a
control law to stabilize the dynamics (13) is not easy. To overcome such a problem,
one will use later an adaptive fuzzy system to estimate the functional upper-bound
of φi (x, y, di ).

Remark 7 From (11) and according to Properties1–3 of theCaputo fractional deriva-
tive operator [13, 19, 26, 34, 38, 56], one can easily show the existence of a positive
real number li , such that |ei | ≤ li |Si |. Hence, Si = 0 implies that ei = 0 and the
boundedness of Si implies that of ei .

3.2 Fuzzy Approximator

The basic components of a fuzzy logic system include a fuzzifier, a fuzzy knowledge-
base, an inference engine and a defuzzifier [7–10, 50]. The fuzzy inference engine
uses a set of fuzzy If–Then rules to perform a mapping from an input xT =
[x1, . . . , xn] ∈ Rn to an output f̂ ∈ R. The i th fuzzy rule is written as:

R(i): i f x1 is Ai
1 and . . . and xn is Ai

n then f̂ is f i , (15)

where Ai
1, Ai

2, . . . , and Ai
n are fuzzy sets and f i is a fuzzy singleton for the output

in the i th rule.
If one uses a singleton fuzzifier, product inference, and center-average defuzzifier,

the output of this fuzzy logic system can be simply formulated as

f̂ (x) =
∑m

i=1 f i
(∏n

j=1 μAi
j
(x j )

)

∑m
i=1

(∏n
j=1 μAi

j
(x j )

) = θT ψ(x), (16)

where μAi
j
(x j ) is the membership function of the fuzzy set Ai

j , m is the number of

fuzzy rules, θT = [
f 1, . . . , f m

]
is the adaptive parameter (consequent parameters)

vector, and ψT = [
ψ1, ψ2, . . . , ψm

]
where

ψ i (x) =
∏n

j=1 μAi
j
(x j )

∑m
i=1

(∏n
j=1 μAi

j
(x j )

) (17)
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is the fuzzy basis function (FBF).
The fuzzy logic system (16) is able to uniformly approximate any real continuous

function f (x) defined on a compact set to any arbitrary accuracy [7–10, 50]. Of
particular importance, one assumes that the FBFs, i.e. ψ(x), are properly specified
in advance by designer. However, the vector θ is determined by some adequate
adaptive laws that will be designed later.

4 Design of Fuzzy Adaptive Controller

In the sequel, the following mild assumptions are required:

Assumption 1 The unknown external disturbance satisfies:

|di (t, y)| ≤ d̄i (y), (18)

where d̄i (y) is an unknown continuous positive function.

Assumption 2 There exists an unknown continuous positive function φ̄i (y) such
that:

|φi (x, y, di )| ≤ φ̄i (y), for i = 1, . . . , n (19)

The unknown function φ̄i (y) can be approximated, on a compact set �y , by the
linearly parameterized fuzzy systems (16) as follows:

ˆ̄φi (y, θi ) = θT
i ψi (y), with i = 1, . . . , n (20)

where ψi (y) is the FBF vector, which is determined a priori by the designer, and θi

is the vector of the adjustable parameters of this fuzzy system.
Without loss of generality, we assume that there exists an optimal fuzzy approx-

imator with m∗ fuzzy rules that can identify the nonlinear function φ̄i (y) with a
minimal approximation error, i.e.

φ̄i (y) = ˆ̄φi (y, θ∗
i ) + δi (y) = θ∗T

i ψi (y) + δi (y) (21)

where δi (y) is the minimal approximation error and usually assumed to be bounded
for all y ∈ �y, i.e. |δi (y)| ≤ δ̄i , with δ̄i is an unknown constant [7–10, 50], and

θ∗
i = argminθi

[
supy∈�y

∣
∣
∣φ̄i (y) − ˆ̄φi (y, θi )

∣
∣
∣

]
(22)

Notice that θ∗
i is the optimal value of θi [7–10, 50] andmainly introduced for analysis

purposes. Its value is not needed when implementing the controller.
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From the previous analysis, one can get the following expressions:

ˆ̄φi (y, θi ) − φ̄i (y) = ˆ̄φi (y, θi ) − ˆ̄φi (y, θ∗
i ) + ˆ̄φi (y, θ∗

i ) − ˆ̄φi (y),

= θT
i ψi (y) − θ∗T

i ψi (y) − δi (y),

= θ̃T
i ψi (y) − δi (y). (23)

with θ̃i = θi − θ∗
i , for i = 1, . . . , n.

For the master-slave system (8) and (9), the control law can be designed as:

ui = −ρ2
i (t)Si

(ρi |Si | + εi )
for i = 1, . . . , n (24)

with ρi (t) = θT
i ψi (y) + k0i + k1i |Si |, where k0i is an adaptive parameter which will

be designed later, and k1i > 0 is a positive design parameter. εi > 0 is a positive and
small design parameter.

From (13), we have

Si Ṡi = Siφi (x, y, di ) + Si ui ≤ |Si | φ̄i (y) + Si ui (25)

Using (23) and substituting the control law (24) into (25) yields

Si Ṡi ≤ |Si | φ̄i (y) − ρ2
i (t)S2

i /(ρi |Si | + εi ) + ρi |Si | − ρi |Si |
≤ − |Si | θ̃T

i ψi (y) + |Si | |δi (y)| − k0i |Si | − k1i S2
i + εi . (26)

Adaptation laws are designed as follows:

θ̇i = γθ i (|Si | ψi (y) − σθ iθi ), with θi j (0) > 0 (27)

k̇0i = γki (|Si | − σki k0i ), with k0i (0) > 0 (28)

where γθ i , σθ i , σki and γki are strictly positive design parameters.
Now, we are in a position to present our main result.

Theorem 1 For the master-slave system (8) and (9), if Assumptions1 and 2 are valid,
the control law (24) together with its adaptation laws (27) and (28) can guarantee
the following properties:

• All the signals in the closed-loop system are bounded.
• Signals Si and ei asymptotically converge to a residual set that can be made small

by properly adjusting the design parameters.

Proof Consider the following Lyapunov function candidate:

Vi = 1

2
S2

i + 1

2γθ i

∥
∥
∥θ̃i

∥
∥
∥
2 + 1

2γki
k̃2
0i , (29)
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with k̃0i = k0i − k∗
0i , where k∗

0i = δ̄i .

Differentiating Vi with respect to time yields

V̇i = Si Ṡi + 1

γθ i
θ̃T

i θ̇i + 1

γki
k̇0i k̃0i (30)

Using (26)–(28), V̇i becomes

V̇i ≤ −k1i S2
i + εi − σθ i θ̃

T
i θi − σki k0i k̃0i . (31)

It is clear that

− σθ i θ̃
T
i θi ≤ −σθ i

2

∥
∥
∥θ̃i

∥
∥
∥
2 + σθ i

2

∥
∥θ∗

i

∥
∥2

(32)

− σki k0i k̃0i ≤ −σki

2
k̃2
0i + σki

2
k∗2
0i (33)

Substituting (32) and (33) into (31), we get

V̇i ≤ −k1i S2
i − σθi

2

∥
∥
∥θ̃i

∥
∥
∥
2 − σki

2
k̃2
0i + σki

2
k∗2
0i + σθ i

2

∥
∥θ∗

i

∥
∥2 + εi

≤ −ηi Vi + μi (34)

with μi = σki
2 k∗2

0i + σθ i
2

∥
∥θ∗

i

∥
∥2 + εi and ηi = min

{
2k1i , σθi γθi , σkiγki

}
.

Therefore, we get

0 ≤ Vi (t) ≤ μi

ηi
+

(

Vi (0) − μi

ηi

)

e−ηi t (35)

which means that all the signals of the closed-loop system are bounded. Especially,
we have

|Si | ≤
√
2μi

ηi
, when t → ∞ (36)

Therefore, Si converges to an adjustable residual set (defined by (36)). Since μi

can be selected arbitrary and ηi only depends on the design parameters (that can be
selected sufficiently large), the ultimate bounds of the error Si can be made arbitrary
small.

Based on Remark7 and Properties1–3, the synchronization errors are stable and
also converge to an adjustable residual set. �

Remark 8 It is worth noting that the synchronization of the fractional-order chaotic
systems with known or partially known dynamics has been comprehensively studied
inmanyworks [22, 29–31, 52–54]. But, to the best of our knowledge, there are no the-
oretical or applied works in the literature on the synchronization of incommensurate
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fractional-order chaotic systems with completely unknown and different models and
dynamic disturbances, except the works of [29–31] which are already questionable
(as stated in [1, 46]). Hence, the results of [22, 29–31, 52–54] cannot be directly
applied to the considered master-slave system.

5 Simulation Results

The proposed controller will be applied to synchronize two different chaotic systems
with distinct fractional-orders. We will consider three simulation cases according to
the value of λi .

We consider the fractional-order Chua’s oscillator system [57] as the master sys-
tem, which is described by

⎧
⎨

⎩

Dα1
t x1 = a(x2 − x1 − f (x1)),

Dα2
t x2 = x1 − x2 + x3,

Dα3
t x3 = −bx2 − cx3,

(37)

Fig. 2 Simulation results of an anti-phase projective synchronization
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where f (x1) = m1x1 + 1
2 (m0 − m1) (|x1 + 1| − |x1 − 1|) , m0 = −1.1726, m1 =

−0.7872, a = 10, 725, b = 10.593, c = 0.268. The system (37) is a chaotic attractor
for α1 = 0.93, α2 = 0.99 and α3 = 0.92, [57].

The controlled fractional-order Rössler system in [23] is considered as the slave
system, which is described by:

⎧
⎨

⎩

Dβ1
t y1 = −(y2 + y3) + u1 + d1(t),

Dβ2
t y2 = y1 + ay2 + u2 + d2(t),

Dβ3
t y3 = b + y3(y1 − c) + u3 + d3(t),

(38)

where a = 0.5, b = 0.2 and c = 10. For ui = 0 and di (.) = 0, the system (38) has a
chaotic behavior for β1 = 0.9, β2 = 0.85 and β3 = 0.95.

The external dynamic disturbances are selected as follows: d1(t) = d2(t) =
d3(t) = 0.2 sin(3t) + 0.2 cos(3t).

The initial conditions are: x(0) = [x1(0), x2(0), x3(0)]
T = [0.2,−0.1, 0.1]T and

y(0) = [y1(0), y2(0), y3(0)]
T = [0.5, 1.5, 0.1]T .

The adaptive fuzzy systems, θT
i ψi (y), with i = 1, 2, 3, have the vector y =

[y1, y2, y3]T as input. For each input variable of these fuzzy systems, as in [8], we
define three (one triangular and two trapezoidal) membership functions uniformly
distributed on the intervals [−2, 2]. The design parameters are chosen as follows:

Fig. 3 Simulation results of a complete projective synchronization
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k11 = k12 = k13 = 10, γθ1 = γθ2 = γθ3 = 50, σθ1 = σθ2 = σθ3 = 0.001, σk1 = σk2 =
σk3 = 0.05.

The initial conditions for the adaptive parameters are selected as: θ1 j (0) =
θ2 j (0) = θ3 j (0) = 0.001and k0i (0) = 0.001.

Three simulation cases will be considered.

Case 1: Anti-phase projective synchronization (λi = −0.5).
The obtained results are given in Fig. 2. It is clear that the trajectories of slave
system (y1, y2, y3) practically and quickly converge to that of the master system
(λ1x1, λ2x2, λ3x3). Hence, the projective anti-phase synchronization between the
master and slave systems is effectively realized.

Case 2: Complete projective synchronization (λi = 0.2).
Theobtained simulation results for this complete projective synchronization are given
in Fig. 3. From this figure, it is clear that the trajectories of slave system (y1, y2, y3)
effectively track to that of the master system (λ1x1, λ2x2, λ3x3). The corresponding
control signals are also bounded, continuous and admissible.

Case 3: Generalized projective synchronization (λ1 = 1, λ2 = −1, λ3 = 0.5).
Figure4 depicts the generalized projective synchronization between the master sys-
tem (37) and the slave system (38).

Fig. 4 Simulation results of a generalized projective synchronization
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6 Conclusion

This chapter has been conducted to investigate the problemofGPS of two incommen-
surate fractional-order chaotic systems with uncertain dynamics and external distur-
bances. The master and slave system are assumed to be with different fractional-
orders and different structure. This GPS has been practically achieved by using a
smooth fuzzy adaptive control law. The adaptive fuzzy systems, incorporated in the
controller, are employed for approximating unknown nonlinear functions. Further-
more, a Lyapunov based analysis has been carried out to conclude about the practical
stability as well as the asymptotic convergence of the underlying synchronization
errors towards a small of neighborhood of the origin. Finally, numerical simulations
have been given to verify the effectiveness of our synchronization scheme.
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Abstract The last three decades the subject of nonlinear circuits has become an
interesting topic not only due to its applications in various fields but also for educa-
tional aims. In this direction, Chua’s circuit is considered a cornerstone because it is
a unique platform both for the understanding of nonlinear phenomena and the study
of experimental chaos as well. So, in this chapter, a new laboratory setup of Chua’s
oscillator circuit is presented. The proposed realization is suitable for studying, in
the laboratory, the design of a nonlinear circuit step by step. It is also a very useful
tool for illustrating in the oscilloscope well-known phenomena related with chaos
theory, such as period doubling route to chaos, crisis phenomena, intermittency, and
attractors’ coexistence. The proposed platform could be a useful laboratory-based
educational tool for teaching nonlinear circuits in courses related with nonlinear
dynamics and chaos for undergraduate, postgraduate and Ph.D. students.
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1 Introduction

For decades, the engineering undergraduate education in the area of circuit and
design has been mainly focused in linear models. The reason is that linear system
theory has been thoroughly developed and mathematical tools are available to ana-
lyze such systems. This philosophy has led many scientists and experimentalists to
disregard many observed phenomena because linear system theory cannot explain
them. Furthermore, in the last decades, there is a strong interest in exploring systems
that display unusual complicated waveforms, commonly known as strange attractors.
These attractors have been increasingly observed in several nonlinear deterministic
systems.

Therefore, it is important for today’s students to be exposed to these complex
chaos phenomena. As a consequence, electronic oscillators generating chaotic wave-
forms are the most convenient tools for practical training of students taking courses
on nonlinear dynamics and chaos [1, 4, 34–36, 40]. From a didactical point of
view, the oscillator should not be higher than a third-order system and preferably
autonomous. In more details, the system should have at least three state variables in
order to be chaotic, according to Poincaré–Bendixson theorem, while the choice of
an autonomous system is done because this will eliminate the need for an external
driving input such as a sinusoidal source. Also, it should contain a single, simply
defined and common nonlinear unit. Smooth, monotonous and unambiguous non-
linear functions are preferred to piecewise linear, non-monotonous and ambiguous
ones. From a technical point of view the circuit should contain as few elements as
possible. All the devices should be commercially available and cheap. The circuit
should be easy to build and tune up. Also, the oscillator should operate at kilohertz
frequencies to simplify the measuring procedures.

For this reason a number of chaotic oscillators have been described in literature
[7]. However, the first nonlinear circuit, the Chua’s oscillator, which is designed for
exploring chaos in the laboratory, is the most suitable from all, because it shows
a very rich dynamical behavior [17, 23]. Until now, a great variety of nonlinear
phenomena, such as routes to chaos, stochastic resonance, signal amplification via
chaos, 1/f noise generation, antimonotonicity, period adding, crisis phenomena etc.,
have been discovered in Chua’s oscillator circuit.

In this chapter, a new laboratory setup of Chua’s oscillator circuit is presented.
The proposed realization is suitable for studying, in the laboratory, the design of a
nonlinear circuit step by step. It is also very useful for illustrating in the oscilloscope
the aforementioned phenomena that a nonlinear circuit can produce. So, this work
presents a laboratory-based educational tool for teaching nonlinear circuits in courses
relatedwith nonlinear dynamics and chaos for undergraduate, postgraduate andPh.D.
students.
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This chapter is organized as follows. In Sect. 2 the history of Chua’s oscillator
circuit as well as its detailed description are reported in details. The design procedure
of the proposed laboratory setup of this circuit is presented step by step in Sect. 3. In
Sect. 4 the experiments, which could be done with this laboratory-based educational
tool are described and the obtained results are illustrated. Finally, Sect. 5 includes
the conclusion remarks of this chapter and some thoughts for future work.

2 The Circuit of Chua’s Oscillator

2.1 History

Chaos has preoccupied scientists since the late of 19th century. In more details,
the study began in 1889 by Henry Poincaré [38], who was the first that observed
this kind of dynamical behavior. However, chaos theory begins to take form in the
secondhalf of the 20th century after observations of the evolution of different physical
systems [29, 30], while many scientists confirmed that chaos finds application in all
disciplines, including biology, chemistry,mechanics, economics, etc. [15, 18, 27, 33,
34]. Chaos results from the exceptional sensitivity of a system to initial conditions,
an effect which is popularly referred to as the “Butterfly Effect” [21].

From 1983 onwards there is a surge in the study of chaos in electronic circuits.
It started with the design of the first autonomous chaotic electronic circuit by Chua
in 1983 [8, 10, 11, 17]. In order to reach, however, the implementation of chaotic
circuits, the design of nonlinear and negative resistors, including dynatron vacuum
tubes [22], kallirotron, transitron, etc. preceded [6, 41]. The discovery of the transistor
in 1947 led to the investigation of solid state negative resistors [3]. In 1958 Esaki
discovered the tunnel diode and eight years later the Gunn diode [14, 42]. However,
the discovery of operational amplifiers gave scientists the possibility to easily and
quickly build nonlinear elements with piecewise-linear functions of current versus
voltage.

The Chua circuit is the first nonlinear circuit designed to confirm experimentally
the appearance of chaos. This circuit is considered a paradigm because it is a fact
that Chua’s circuit is the first chaotic system in which chaos was systematically
derived, physically confirmed and rigorously analyzed. Inmore details, Chua’s circuit
constituted for three decades the simplest chaotic circuit and it consists of only five
components: two capacitors, an inductor, a resistance and a nonlinear element, known
as a Chua diode (Fig. 1). Although the capacitors, the inductor and the resistor are
conventional parts, the nonlinear element can be designed and implemented in many
ways, depending on the use that it is intended for.

Historically, the birth of the Chua circuit emerged in 1983 during the visit of
Leon Chua at the lab of Takashi Matsumoto at the University of Waseda in Tokyo
[10, 11]. At that time there was a strong desire to implement circuits, which would
provide experimental confirmation of chaos, a phenomenon that until then had been
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Fig. 1 The Chua circuit

observed and studied in simulation level only. This desirewas forChua themotivation
to explore the possibility of drawing an autonomous chaotic circuit. However, the
startingpoint of this effortwasdifferent from thatwhichhas been followed inprevious
years by various researchers, and rather than starting from known chaotic dynamical
systems, such as the Lorenz or the Rössler system [29, 39], he attempted to design
an autonomous nonlinear circuit that exhibits chaotic behavior.

For this reason, Chua decided that the circuit should have three equilibria, as few
passive components as possible and a single nonlinear resistor with a split linear
voltage-current characteristic. So, the characteristic of the nonlinear resistor had to
consist of three sections, each with a negative slope. Also, because all the other
components of the circuit were passive, the nonlinear resistor NR had to be an active
element, in order to ensure the instability of the equilibrium points.

This observation combined with the fact that the characteristic of the nonlinear
resistor NR should be a function controlled by voltage, as it was easier to be designed,
led Chua to the design of the voltage-current characteristic of Fig. 2. However, as
all physical resistors are ultimately passive elements, which means that for large
values of voltage and current the power consumed, P= iυ, is positive, Chua settled
on the characteristic of Fig. 3, where the two additional outer sections do not affect
the circuit equilibria but ensure the above requirements.

After the design of the circuit, Chua cooperated with Matsumoto and Komuro [9]
and chose the values of each element via simulations while taking into consideration
the fact that the line load should intersect with the characteristic of the nonlinear
resistor NR at three points. After this procedure they eventually discovered that the
circuit can produce double-scroll chaotic attractors, thus achieving the mission for
which it was designed.
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Fig. 2 The current-voltage
characteristic of the
non-linear resistor NR of the
circuit, as originally
designed by Chua

Fig. 3 The current-voltage
characteristic of the
non-linear resistor NR of the
circuit, as the final result

2.2 The Description of Chua’s Oscillator

The Chua circuit of Fig. 1 is described mathematically by the following set of differ-
ential equations: ⎧

⎪⎨

⎪⎩

C1
dυ1
dt = G (υ2 − υ1) − f (υ1)

C2
dυ2
dt = G (υ1 − υ2) + iL

L diL
dt = −υ2

(1)

whereG =1/R and f (.) = iR is the voltage-current function of the nonlinear element.
However, given the small parasitic ohmic resistance R0 of the inductor, the

so-called Chua’s oscillator circuit arises (Fig. 4).
The Chua’s oscillator circuit is described respectively by the following system of

differential equations:
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Fig. 4 The Chua’s oscillator
circuit

⎧
⎪⎨

⎪⎩

C1
dυ1
dt = G (υ2 − υ1) − f (υ1)

C2
dυ2
dt = G (υ1 − υ2) + iL

L diL
dt = −υ2 − R0iL

(2)

or, alternatively, by the following normalized system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dτ

= α [y − x − f (x)]

dy
dτ

= x − y + z

dz
dτ

= −βy − γ z

(3)

where constitutive variables x = υ1/E1 and y = υ2/E1 represent the voltages across
the capacitors C1 and C2, while the variable z = (iL R)/E1 represents the current
flowing through the inductor L . The dimensionless time τ is defined as τ = t /RC2

and the normalized parameters α, β and γ as: α = C2/C1, β = R2C2/L and γ =
RR0C2/L , respectively.

In addition, the dimensionless form of the nonlinear function f (x) of the NR

Chua diode is given by the following equation:

f (x) = mcx + 0.5 (ma − mb) (|x + 1| − |x − 1|)
+ 0.5 (mb − mc) (|x + E2/E1| − |x − E2/E1|) (4)

where ma = RGa , mb = RGb and mc = RGc.
As it is mentioned, the circuit of Chua’s oscillator can produce double-scroll

attractors (Fig. 5), which are an indication of the generated chaotic behavior of the
circuit.
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Fig. 5 The double-scroll
chaotic attractor generated
by the Chua’s oscillator
circuit

More specifically, the Chua oscillator circuit has three equilibria. The first of these
is at the origin, (x , y, z) = (0, 0, 0), while the other two are at the points:

P+ (x, y, z) =
(

− 1

G + Gb
(Ga − Gb) E1, 0,

G

G + Gb
(Ga − Gb) E1

)

and

P− (x, y, z) =
(

1

G + Gb
(Ga − Gb) E1, 0,− G

G + Gb
(Ga − Gb) E1

)

,

where G = 1
R+R0

.
The equilibrium points P+ and P− are located at the centers of the holes of the

created scrolls (Fig. 5). A typical orbit that produces double-scroll chaotic attractors
rotates around one of the two equilibrium points in a random way and when the orbit
moves away from it, it is attracted by the other equilibrium point and repeats the
same procedure producing the double-scroll chaotic attractor of Fig. 5.

The Chua oscillator circuit is the most typical representative of a larger class
of nonlinear circuits, known as Chua’s Circuit Family. A circuit, described by the
constitutive equation ẋ = f (x) belongs to this class if and only if [17]:

1. The function f (·) is continuous,
2. The function f (·) is characterized by odd symmetry, i.e. f (−x) = −f (x) and
3. The state space can be divided by two parallel planes U1 and U−1 into three

sections, D1, D0 and D−1.

According to Chua:
“The Chua oscillator circuit is structurally the simplest and dynamically the most

complex member of Chua’s circuit family.” [8]
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To date, a large number of nonlinear phenomena associated with chaos theory, has
been recorded in literature, produced by members of Chua’s circuit family, such as:

• Routes to chaos (e.g. by period doubling) [16].
• The phenomenon of antimonotonicity [13, 24].
• The phenomenon of period addition [37].
• Resonance phenomena [2].
• Signal amplification through chaos, when the circuit operates in area of the simple
scroll attractor [20].

2.3 Implementation of Chua’s Diode

The Chua’s oscillator circuit can be circuitally implemented in many ways. As all
linear elements (resistors, capacitors, inductor), that comprise the circuit are ready
to find in commerce, the interest focuses on how to implement the nonlinear element
NR . Today various realizations based on the use of operational amplifiers [23, 43]
diode [31], transistor [32] and transconductance amplifiers [12] have been proposed.

In this work, the typical voltage-current nonlinear element (Chua diode) of the
circuit of Chua’s oscillator derived from the parallel connection of two negative resis-
tance converters NR1 and NR2. The first NR1 consists of three sections with slopes
Ga1 and Gb1, while the breakpoints are ±E2, as shown in Fig. 6b. Correspondingly,
the second negative resistance NR2 converter consists of three sections with slopes
Ga2 and Gb2, and the breakpoints are ±E1, as illustrated in Fig. 6a. The final charac-
teristic of the diode Chua, resulting from the parallel connection of the two negative
resistance converters NR1 and NR2, consists of five sections with slopes Ga , Gb and
Gc, while the two breakpoints are ±E1and ±E2 (Fig. 6c).

Figure7 shows the complete Chua’s oscillator circuit, where the nonlinear ele-
ment NR has been implemented using two parallel-connected negative resistance
converters NR1 and NR2, implemented with op-amps. Assuming that R1 = R2, the
slopes of the characteristic of NR1 are Gb1 = 1/R1 and Ga1 = −1/R3, while the
breakpoints are E2 = ± R3

R2+R3
Esat . Respectively, assuming R4 = R5 the slopes

of characteristic of NR2 is Gb2 = 1/R4 and Ga2 = −1/R6, while the break-
points are E1 = ± R6

R5+R6
Esat . Therefore, as shown graphically in Fig. 12, we get:

Ga = Ga1 + Ga2 and Gb = Ga1 + Gb2.

3 The Proposed Educational Tool Based on Chua’s
Oscillator Circuit

In this section the proposed laboratory setup of Chua’s oscillator circuit for studying,
in the laboratory, is presented. This laboratory setup consists of two independent
circuits (A) and (B) (Fig. 8), which when they are connected, as it will be described
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Fig. 6 Finding the
voltage-current characteristic
of the Chua diode
graphically. a The υ-i
characteristic of NR2, b the
υ-i characteristic of NR1 and
c the υ-i characteristic of the
parallel combination of NR1
and NR2

in details below, provide the user with the Chua’s oscillator circuit. These two circuits
(A) and (B) are inside plastic transparent boxes, in order to bemore robust for teaching
purposes in undergraduate or postgraduate laboratories.

The circuit A carries out the portion of theChua’s oscillator circuit, which includes
the elements L , R0, and C1, while at the top of the device there are connectors for the
connection of the variable resistor R and the variable capacitor C2, through which a
greater degree of freedom regarding the regulation of the circuit configuration and
hence the dynamic behavior can be achieved.

The circuit B implements the nonlinear resistor (Chua diode) of the Chua’s oscil-
lator circuit. For its implementation two potentiometers R3P and R6P are used, as
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Fig. 7 Chua’s oscillator circuit as implemented using operational amplifiers

Fig. 8 The circuits (A) and (B) as parts of the Chua’s oscillator circuit
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Table 1 Values of the
components of circuit A

Components Values

L 18mH

R0 10�

R Variable resistor

C1 8.2nF

C2 Variable capacitor

Table 2 Values of the
components of circuit B

Components Values

R1 1.5k�

R2 1.5k�

R3 2k� (+R3P = 1k� →
potentiometer)

R4 22k�

R5 22k�

R6 3k� (+R6P = 1k� →
potentiometer)

Operational amplifier OP07

shown in Fig. 8, for adjusting the resistance values of R3 = 2k� (+R3P = 1k� →
potentiometer) and R6 = 3k� (+R6P = 1k� → potentiometer). At the top there is
a switch, which when is in position off (right) isolates the two potentiometers from
the circuit, in order to be adjusted to the chosen values. Therefore, through the setting
of these two potentiometers a greater degree of freedom in terms of configuration
of the i-υ characteristic of the Chua’s diode and therefore the dynamic behavior of
the Chua’s oscillator circuit, is achieved. Moreover, in the right part of the device
there are connector terminals for the positive (V +), the negative (V −) supply and
the ground. Finally, the two LEDs, when lit, confirm that the operating voltage of
the device is in the permissible operating limits of the circuit.

In Tables1 and 2 the values of the elements of the two circuits (A) and (B) are
displayed.

4 Experimental Procedure

In this section the experimental results of the use of Chua’s oscillator circuit are pre-
sented. In more details, the experimental characteristic of the nonlinear resistor with
two different methods as well as the experimental observation of circuit’s dynamic
behavior are studied by using the proposed laboratory setup of the Chua’s oscillator
circuit.
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Table 3 Values of
potentiometers of the
non-linear resistor circuit

Potentiometer Value (�)

R3P 200

R6P 300

4.1 Experimental Characteristic of the Nonlinear Resistor
of Chua’s Oscillator Circuit

In order to find the experimental characteristic of the nonlinear resistor of the Chua
oscillator circuit, circuit (B) is used. For this purposewe followed two differentmeth-
ods. The first method allows the supervisory observation of the desired characteristic
by using the oscilloscope, while the second method is the analytical finding of the
experimental characteristic through measurement of voltages and currents (υR , iR)

of the nonlinear resistor with the help of the multimeter. For the aim of this work,
the potentiometers are adjusted to the values as shown in Table3.

4.1.1 Supervisory Observation of Circuit’s Characteristic

For the supervisory observation of the experimental characteristic of the nonlinear
resistor of Chua oscillator circuit, we used the circuit of Fig. 9, in which the resistor
values are determined in the previous measurement.

The voltage υS is a triangular low-frequency voltage signal (200Hz) with ampli-
tude VS = 10V, which is applied via the resistor RS to the nonlinear resistor NR ,
which is part of the circuit B. Also, the supplied voltages of op-amps are ±10V.

The resistor RS is used for measuring the current iR flowing through the nonlinear
resistor when a voltage υR is applied at its ends. A suitable for this purpose resistance
value of RS is 100�. Then the voltage across the resistor RS is:

υRs = − iR Rs = −100 iR (5)

Therefore, with the setup of Fig. 9 the voltage υRs can be displayed on an oscillo-
scope, and indirectly the current iR versus the voltage υR (Fig. 10). For this purpose,
the channel Y of the oscilloscope is connected to the ends of the resistor RS and
the signal is inverted, while the channel X is connected to the ends of the nonlinear
resistor, by setting the oscilloscope at XY mode.

4.1.2 Analytical Measurement of Circuit’s Characteristic

At this section the analytical finding of the experimental characteristic of the non-
linear resistor through the measurement of voltages and currents (υR, iR) using the
multimeter, is presented. For this purpose, the circuit of Fig. 11 is implemented,
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Fig. 9 The circuit for the supervisory observation of the experimental characteristic of the nonlinear
resistor of the Chua’s oscillator circuit

Fig. 10 The experimental
i-υ characteristic of the
nonlinear resistor NR
(horizontal axes 2 V/div,
vertical axes 2 V/div)

where the nonlinear resistor NR is supplied by a DC voltage source υR = υDC ,
producing a current iR . In Fig. 12 the i-υ characteristic of the nonlinear resistor NR ,
which is obtained with this method, is shown. With this procedure, the exact values
of the experimental breakpoints, saturation voltages and slopes of the five-segments
of the i-υ characteristic are measured as they are presented in Table4.
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Fig. 11 The circuit for finding in analytical way the i-υ characteristic of the nonlinear resistor of
the Chua’s oscillator circuit

Fig. 12 The i-υ
characteristic of the
nonlinear resistor NR ,
through the measurement of
voltages and currents using
the multimeter

4.2 Experimental Study of Circuit’s Dynamics

In order to study the dynamics of the Chua’s oscillator circuit, the two circuits A and
B are connected, while a resistor box, for adjusting the resistor R and a capacitor
box, for adjusting the capacitor C2, are used, as shown in Fig. 13. Also the channels
X and Y of the oscilloscope are connected to the ends of the capacitors C2 and C1,
respectively, so that the voltages υ2 and υ1 could be displayed on the oscilloscope.

Next, the two possible way of studying the circuit’s dynamics is presented in
details. Keeping each time the value of the element R (or C2) constant and varying
the value of the other C2 (or R), the phenomena related to the dynamic behavior
of the circuit (e.g., path to the chaos through period doubling, attractors crisis, anti-
monotonicity, coexistence of attractors) are observed at the oscilloscope.
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Table 4 Experimental breakpoints, saturation voltages and slopes of the five-segments of the i-υ
characteristic

Parameters Values

–E1 –1.2116V

E1 1.2011V

–E2 –4.84V

E2 4.84V

– Esat –6.43V

Esat 6.43V

Ga –0.7849mS

G+
b –0.1650mS

G−
b –0.1659mS

G−
c 1.3694mS

G+
c 1.3729mS

Fig. 13 Setup for the experimental study of the dynamic behavior of the Chua’s oscillator circuit

4.2.1 Chua’s Oscillator Dynamics by Varying the Capacitor C2

In the first case, the resistor R is kept constant (R = 1.5k�), while the capacitor
C2 play the role of the bifurcation parameter. Starting from low values of C2 (C2 =
20nF) the system is in the stable equilibrium point P+ or P− (Fig. 14). However,
by increasing the value of C2 the first bifurcation that can be observed is the loss of



394 A.E. Giakoumis et al.

Fig. 14 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 20nF.
(Stable equilibrium point
P+) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

stability of the equilibrium point through a Hopf bifurcation and, thus, the birth of
two symmetric stable limit cycles of period-1. One of these symmetric limit cycles
can be shown in Fig. 15 for C2 = 40nF.

Increasing further the value of C2, a sequence of period-doubling bifurcations
can be observed. Period-2 and period-4 limit cycles are displayed in Figs. 16 and 17,
respectively. This sequence of period-doubling bifurcations leads to chaos through
the well-known period-doubling route to chaos. The chaotic attractor that can be
observed is shown in Figs. 18 and 21, for C2 = 66nF and C2 = 71nF. This attractor
is confined to the two regions D1 and D0 and is referred to either as single-scroll
chaotic attractor or Rössler screw-type attractor for its resemblance to the structure of
the Rössler attractor. Since the circuit is symmetric, a mirrored single-scroll attractor
lies in the regions D−1 and D0 (Fig. 19), which is produced for different set of circuit’s
initial conditions. This is the phenomenon of attractors’ coexistence, which is very
usual in chaotic systems. The region of values of the capacitorC2, in which the circuit
is in a single-scroll chaotic state, interrupted by a small window, in which the circuit
is in a period-3 steady state (Fig. 20). This phenomenon is very common in chaotic
systems [28].

For further increasing the values of the capacitor C2, the two distinct single attrac-
tors grow in size until they collide giving birth to the double-scroll chaotic attractor,
which spans all the three regions D1, D0 and D−1, as shown in Figs. 22 and 23 for
C2 = 100nF and C2 = 200nF, respectively.
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Fig. 15 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 40nF.
(Period-1 steady state)
Horizontal axes 0.5 V/div,
vertical axes 0.2 V/div

Fig. 16 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 60nF.
(Period-2 steady state)
Horizontal axes 0.5 V/div,
vertical axes 0.2 V/div

Fig. 17 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 64nF.
(Period-4 steady state)
Horizontal axes 0.5 V/div,
vertical axes 0.2 V/div
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Fig. 18 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 66nF.
(Single-scroll chaotic
attractor) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 19 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 66nF.
(Single-scroll chaotic
attractor) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 20 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 70nF.
(Period-3 steady state)
Horizontal axes 0.5 V/div,
vertical axes 0.2 V/div
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Fig. 21 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 = 71nF.
(Single-scroll chaotic
attractor) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 22 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
100nF. (Double-scroll
chaotic attractor) Horizontal
axes 0.5 V/div, vertical axes
0.2 V/div

Fig. 23 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
200nF. (Double-scroll
chaotic attractor) Horizontal
axes 0.5 V/div, vertical axes
0.2 V/div
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Fig. 24 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
210nF. (Single-scroll chaotic
attractor) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 25 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
230nF. (Period-3 steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 26 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
232nF. (Single-scroll chaotic
attractor) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div
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Fig. 27 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
238nF. (Period-4 steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 28 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
250nF. (Period-2 steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 29 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
260nF. (Period-1 steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div
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Fig. 30 Experimental phase
portrait of υ2 versus υ1, for
R = 1.5k� and C2 =
270nF. (Stable equilibrium
point P+) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 31 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.65k�. (Stable equilibrium
point P+) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

For values of C2 greater than 200nF a reverse route from a double-scroll chaotic
attractor to a single-scroll chaotic attractor (Figs. 24 and 26), which is interrupted
again by a period-3 steady state (Fig. 25) andfinally to a period-1 steady state (Fig. 29)
through a reverse sequence of period-doubling (Figs. 27 and 28) is observed. In
Fig. 30, for C2 = 270nF the circuit results to a stable equilibrium point.

All this route of system’s dynamic behavior, by following the forward and reverse
period doubling sequences, e.g. period-1 → period-2 → period-4 → · · · → single-
scroll attractor→double-scroll attractor→ single-scroll attractor→ · · · →period-4
→ period-2→ period-1, is the well-known phenomenon of antimonotonicity [5, 25,
26].
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Fig. 32 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.65k�. (Stable equilibrium
point P−) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 33 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R = 1.6k�.
(Period-1 steady state)
Horizontal axes 0.5 V/div,
vertical axes
0.2 V/div

4.2.2 Chua’s Oscillator Dynamics by Varying the Resistor R

In the second case, the capacitor C2 is kept constant (C2 = 80nF), while the resistor
plays the role of the bifurcation parameter. For large values of R (R = 1.65k�)

whether the system is in the stable equilibrium point P+ or P−, depends on circuit’s
initial conditions (Figs. 31 and 32). However, by decreasing the value of R the first
bifurcation that can be observed is the loss of stability of the equilibriumpoint through
a Hopf bifurcation, as in the previous case, and thus, the birth of a symmetric stable
limit cycles of period-1 is produced (Fig. 33).

Decreasing further the value of R, a sequence of period-doubling bifurcations
can be observed. Period-2 and period-4 limit cycles are displayed in Figs. 34 and 35,
respectively. This sequence of period-doubling bifurcations leads to a single-scroll
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Fig. 34 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.54k�. (Period-2 steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 35 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.526k�. (Period-4 steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

chaotic attractor through the well-known period-doubling route to chaos (Fig. 36).
For further decreasing of the value of R, a double-scroll chaotic attractor is observed,
as shown in Figs. 37, 39 and 41 for R = 1.49k�, R = 1.42k� and R = 1.35k�,
respectively. This region of values of R, in which the circuit is in a double-scroll
chaotic attractor’s behavior, interrupted by windows, in which the circuit is in sym-
metric periodic behavior (Fig. 38) or in asymmetric periodic behavior (Fig. 40).

Finally, the circuit, for further decreasing the value of R, results to a stable external
limit cycle of period-1 (Fig. 42). This behavior coexists with the double-scroll chaotic
attractor and is a consequence of the formof i-υ characteristic of the nonlinear resistor
NR . In fact, when the three segment nonlinearity of Fig. 2 is considered, for large
initial conditions the behavior of the circuit may be unstable, which is clearly not
the case of a real circuit. However, when the five segment nonlinearity of Fig. 3 is
taken into account, it can be demonstrated that the double-scroll attractor coexists
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Fig. 36 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.51k�. (Single-scroll
chaotic attractor) Horizontal
axes 0.5 V/div, vertical axes
0.2 V/div

Fig. 37 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.49k�. (Double-scroll
chaotic attractor) Horizontal
axes 0.5 V/div, vertical axes
0.2 V/div

with a stable external limit cycle and that an unstable saddle-type periodic orbit
separates the basins of attraction of the two attractors. This phenomenon is known
as a boundary crisis [19].

5 Conclusion

In this chapter, a new laboratory setup of Chua’s oscillator circuit was presented. The
proposed realization is suitable for teaching, in the laboratory, courses related with
nonlinear circuits and chaos for undergraduate, postgraduate and Ph.D. students. It
constituted of two independent circuits, which the first one is the nonlinear resistor
while the second is the rest of the Chua’s oscillator circuit. In this way, experiments
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Fig. 38 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.43k�. (Periodic steady
state) Horizontal axes
0.5 V/div, vertical axes
0.2 V/div

Fig. 39 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.42k�. (Double-scroll
chaotic attractor) Horizontal
axes 0.5 V/div, vertical axes
0.2 V/div

related with the finding of the i-υ characteristic curve, for different values of the
resistors R3 and R6, could be done in the laboratory. Also, the dynamic behavior of
Chua’s oscillator circuit could be studied by changing either the value of the resistor
R or the value of the capacitor C2.

So, the proposed laboratory setup of Chua’s oscillator circuit offers to the student
a great variety of exercises throughwhichwell-known phenomena related with chaos
theory, such as period-doubling route to chaos, crisis phenomena, intermittency, and
attractors’ coexistence, can be experimentally observed. As a future thought, the
realization of other interesting nonlinear circuits and memristor emulators, in such
way, could be done.
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Fig. 40 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.36k�. (Periodic
asymmetric attractor)
Horizontal axes
0.5 V/div, vertical axes 0.2
V/div

Fig. 41 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.35k�. (Double-scroll
chaotic attractor) Horizontal
axes 0.5 V/div, vertical axes
0.2 V/div

Fig. 42 Experimental phase
portrait of υ2 versus υ1, for
C2 = 80nF and R =
1.32k�. (Period-1 steady
state) Horizontal axes 1
V/div, vertical axes 0.5 V/div



406 A.E. Giakoumis et al.

References

1. Alligood KT, Sauer TD, Yorke JA (2000) Chaos: an introduction to dynamical systems.
Springer, New York

2. Anishchenko V, Safonova M, Chua LO (1992) Stochastic resonance in Chua’s circuit. Int J
Bifurc Chaos 2:397–401

3. ArnsRG (1998) The other transistor: early history of themetal-oxide semiconductor field-effect
transistor. Eng Sci Educ J 7(5):233–240

4. Baker GL, Gollub JP (1990) Chaotic dynamics: an introduction. Cambridge University Press,
Cambridge

5. Bier M, Bountis TC (1984) Remerging Feigenbaum trees in dynamical systems. Phys Lett A
104:239–244

6. Brunetti C (1939) The transitron oscillator. Proc IRE 27(2):88–94
7. Chen G, Ueta T (2002) Chaos in circuits and systems. World Scientific, Singapore
8. Chua LO (1994) Chua’s circuit 10 year later. Int J Bifurc Chaos 22:279–305
9. Chua LO, Yu J, YuY (1983) Negative resistance devices. Int J Circuit Theory Appl 11:161–186
10. Chua LO,Wu CW, Huang A, Zhong GQ (1993) A universal circuit for studying and generating

chaos—part I: routes to chaos. IEEE Trans Circuits Syst I 40(10):732–744
11. Chua LO,Wu CW, Huang A, Zhong GQ (1993) A universal circuit for studying and generating

chaos—part II: strange attractors. IEEE Trans Circuits Syst I 40(10):745–761
12. Cruz JM, Chua LO (1992) A CMOS IC nonlinear resistor for Chua’s circuit. ERL Memoran-

dum, Electronics Research Laboratory, University of California, Berkeley
13. Dawson P, Grebogi C, Yorke J, Kan I (1992) Antimonotonicity-inevitable reversal of period

doubling cascades. Phys Lett A 162:249–252
14. Esaki L (1958) New phenomenon in narrow germanium p-n junctions. Phys Rev 109(2):603
15. Field RJ, Györgyi L (1993) Chaos in chemistry and biochemistry. World Scientific Publishing,

Singapore
16. Feigenbaum MJ (1979) The universal metric properties of nonlinear transformations. J Stat

Phys 21:669–706
17. Fortuna L, Frasca M, Xibilia MG (2009) Chua’s circuit implementations: yesterday, today and

tomorrow. World Scientific, Singapore
18. Grebogi C, Yorke J (1997) The impact of chaos on science and society. United Nations Uni-

versity Press, Tokyo
19. Grebogi C, Ott E, Yorke JA (1983) Crises: sudden changes in chaotic attractors and chaotic

transients. Phys D 7:181–200
20. Halle K, Chua LO, Anishchenko V, Safonova M (1992) Signal amplification via chaos: exper-

imental evidence. Int J Bifurc Chaos 2:1011–1020
21. Hasselblatt B, Katok A (2003) A first course in dynamics: with a panorama of recent develop-

ments. Cambridge University Press, Cambridge
22. Hull AW (1918) The dynatron: a vacuum tube possessing negative electric resistance. Proc Inst

Radio Eng 6(1):5–35
23. Kennedy MP (1992) Robust op amp realization of Chua’s circuit. Frequenz 46(3–4):66–80
24. Kocarev L, Halle K, Eckert K, Chua LO (1993) Experimental observations of antimonotonicity

in Chua’s circuit. Int J Bifurc Chaos 3:1051–1055
25. Kyprianidis IM, Fotiadou ME (2006) Complex dynamics in Chua’s canonical circuit with a

cubic nonlinearity. WSEAS Trans Circuits Syst 5:1036–1043
26. Kyprianidis IM, Haralabidis P, Stouboulos IN, Bountis T (2000) Antimonotonicity and

chaotic dynamics in a fourth order autonomous nonlinear electric circuit. Int J Bifurc Chaos
10:1903–1915

27. Kyrtsou C, Vorlow C (2005) Complex dynamics in macroeconomics: a novel approach. In:
Diebolt C, Kyrtsou C (eds) New trends in macroeconomics. Springer, Berlin, pp 223–245.
ISBN-13: 978-3-540-21448-9

28. Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82(10):985–992



Implementation of a Laboratory-Based Educational Tool … 407

29. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141
30. Mandelbrot B (1977) The fractal geometry of nature. W.H. Freeman Company, New York
31. Matsumoto T (1984) A chaotic attractor from Chua’s circuit. IEEE Trans Circuits Syst CAS–

31(12):1055–1058
32. Matsumoto T, Chua LO, Tokumasu K (1986) Double scroll via a two-transistor circuit. IEEE

Trans Circuits Syst 33(8):828–835
33. May RM (1976) Theoretical ecology: principles and applications. W.B. Saunders Company,

Philadelphia
34. Moon FC (1987)Chaotic vibrations: an introduction for applied scientists and engineers.Wiley,

New York
35. Nicolis G (1995) Introduction to nonlinear science. Cambridge University Press, Cambridge
36. Ott E (1993) Chaos in dynamical systems. Cambridge University Press, Cambridge
37. Pivka L, Spany V (1993) Boundary surfaces and basin bifurcations in Chua’s circuit. J Circuits

Syst Comput 3:441–470
38. Poincaré JH (1890) Sur le probleme des trois corps et les equations de la dynamique.Divergence

des series de M. Lindstedt. Acta Math 13:1–270
39. Rössler OE (1976) An equation for continuous chaos. Phys Lett 57A(5):397–398
40. Strogatz SH (1994) Nonlinear dynamics and chaos. Addison-Wesley, New York
41. Turner LB (1920) The Kallirotron. An aperiodic negative-resitance triode combination. Radio

Rev 1:317–329
42. Voelcker J (1989) The Gunn effect. IEEE Spectr 26(7). doi:10.1109/6.29344
43. Zhong GQ, Ayron F (1985) Experimental confirmation of chaos from Chua’s circuit. Int J

Circuit Theory Appl 13(11):93–98

http://dx.doi.org/10.1109/6.29344


Control of Shimizu–Morioka Chaotic System
with Passive Control, Sliding Mode Control
and Backstepping Design Methods:
A Comparative Analysis

Uğur Erkin Kocamaz, Yilmaz Uyaroğlu and Sundarapandian Vaidyanathan

Abstract This chapter investigates the control of continuous timeShimizu–Morioka
chaotic system with unknown system parameters by means of three different control
approaches, namely passive control, sliding mode control and backstepping design.
Based on the properties of sliding mode control theory, the appropriate surfaces are
designed. Lyapunov functions are used to realize that the passive controller and back-
stepping controllers ensure the global asymptotic stability of the system. Owing to
the controllers, the Shimizu–Morioka chaotic system stabilizes towards its equilib-
rium points in the state space. Numerical simulations are performed to show and
compare the efficiency of the proposed control methods.

Keywords Shimizu–Morioka chaotic system · Passive control · Sliding mode con-
trol · Backstepping design · Chaos control

1 Introduction

Since Lorenz found the first chaotic attractor [21], plenty of new chaotic attractors
have been discovered. Henon map [10], Rössler attractor [33], Chua’s double scroll
[24], Chen [5] and Lü [22] chaotic systems are the well-known and most studied
ones. Shimizu and Morioka [35] introduced a continuous time chaotic system and
Shimizu–Morioka chaotic system has become one of the important chaotic systems.
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This system shows similar bifurcation as in the Lorenz chaotic attractor, but it is
not equivalent to the Lorenz chaotic system in the topological structure. All of the
chaotic systems have different characteristics and the investigations on the dynamic
behaviours of them such as Lyapunov exponents, Hopf bifurcation analysis, topolog-
ical structure, stability, control and synchronization are realized separately in many
papers. Recently, several novel chaotic attractors have also been presented [18, 32],
and many more will be revealed due to their potential applications especially in data
encryption and secure communication [1, 30].

A nonlinear system under chaotic behaviour might have undesired trajectories,
so the control of chaotic systems has become one of the major research areas for
the nonlinear systems. When the control of a chaotic system is achieved, the system
stabilizes towards its equilibrium points. At first, Hubler [11] introduced an adaptive
control for chaotic systems. Then, Ott, Grebogi and Yorke [29] proposed a method
called OGY for controlling chaotic systems. After these pioneering studies, various
effective methods have been applied for the control of chaotic systems such as linear
feedback [17], nonlinear feedback [51], adaptive [16], sliding mode [2, 13, 26, 47,
48], passive [4, 8, 23, 31, 49], backstepping design [26, 27, 46, 50] and impulsive
[44] controls. Among them, the passive control method has been gaining importance
in the control of chaotic systems on account of using only one state controller which
provides considerable significance in reducing the cost and complexity. The passivity
theory keeps the system internally stable with implementing a controller which ren-
ders the closed loop system passive upon the properties of the system. Recently, the
passive control method has been implemented for the control of Lorenz [49], Chen
[31], unified [4], Rabinovich [8], n-dimensional [23] chaotic systems. The sliding
mode control is one of thewell-known controlmethods, and its dynamic performance
is determined by the prescribed manifold or sliding surface where a switching struc-
ture gets the control. Itmaintains discontinuous control by enforcing the system states
to stay on the sliding surface [36]. In recent years, the sliding mode control has been
successfully applied in the control of Lorenz [48], Chua [13], Rössler [2], Duffing–
Holmes [47], Arneodo [26] chaotic systems. Backstepping design is a systematic
control method that combines the choice of a Lyapunov function with the design of a
feedback controller. First, a small subsystem is only considered, for which a virtual
control law is constructed. Then, the design is extended in several steps until the
control laws for the full system have been constructed [9]. It has been successfully
used to control chaotic Lorenz [46], Chen [46], Lü [46], Arneodo [26], hyperchaotic
Rössler [50], hyperchaotic Liu [27] systems. The methodology of passive control,
sliding mode control and backstepping design methods can be reached in number
of papers [8, 27, 40, 46, 47, 49]. In some papers, the control of chaotic systems is
investigated by using more than one method with giving comparative analyses [6,
26, 28, 43, 45].

Since the continuous time Shimizu–Morioka chaotic system was introduced [30],
its dynamical behaviours and properties have been extensively investigated in some
papers [7, 15, 19, 20, 25, 34, 37]. The synchronization of Shimizu–Morioka chaotic
system is implemented with active control [14, 38, 40], feedback control [17],
adaptive control [41], sliding mode control [40] and linear-nonlinear decomposition
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[3] methods. Feedback controllers [17], adaptive controllers [41], delayed feedback
controllers [7] and linearized feedback controllers [12] are employed for the control
of continuous time Shimizu–Morioka chaotic system. According to the literature
review, the control of Shimizu–Morioka chaotic system was not investigated with
the passive control, sliding mode control and backstepping design approaches.

This chapter concerns on the further investigations on the control of Shimizu–
Morioka chaotic system. First, a brief description of continuous time nonlinear
Shimizu–Morioka system is given in Sect. 2. Then, three different control methods,
namely passive control, sliding mode control and backstepping design, are applied
for achieving the control of this nonlinear system to its equilibrium points in Sect. 3.
Afterwards, numerical simulations are demonstrated to verify and compare the effec-
tiveness of the control results for the Shimizu–Morioka chaotic system in Sect. 4.
Finally, Sect. 5 concludes the chapter.

2 Shimizu–Morioka Chaotic System

The continuous time Shimizu–Morioka chaotic system is defined by a set of three
first-order differential equations as

⎧
⎨

⎩

ẋ = y,

ẏ = (1 − z)x − ay,

ż = −bz + x2,

(1)

where x , y, z are state variables and a, b are positive constant parameters [35]. It
exhibits chaotic behaviour when the parameter values are selected as a = 0.75 and
b = 0.45 [41]. According to these parameters and the initial conditions x(0) = 0,
y(0) = 0.25 and z(0) = 1, the time series of Shimizu–Morioka system are illustrated
in Fig. 1, the 2D phase plots are illustrated in Fig. 2, and the 3D phase plane is
illustrated in Fig. 3.

The equilibria of Shimizu–Morioka chaotic system (1) can be found with getting
ẋ = 0, ẏ = 0 and ż = 0 as follows:

⎧
⎨

⎩

y = 0,
(1 − z)x − ay = 0,
−bz + x2 = 0.

(2)

Hence, the Shimizu–Morioka chaotic system has three equilibrium points; E0(0,
0, 0), E1(

√
b, 0, 1) and E2(–

√
b, 0, 1). When the b parameter is equal to 0.45, the

equilibrium points become E1(0.67082, 0, 1) and E2(–0.67082, 0, 1).
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Fig. 1 Time series of Shimizu–Morioka chaotic system for a x signals, b y signals, c z signals

Fig. 2 Phase plots of Shimizu–Morioka chaotic system in a x–y phase plot, b x–z phase plot,
c y–z phase plot
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Fig. 3 3D phase plane of
Shimizu–Morioka chaotic
system

3 Control of Shimizu–Morioka Chaotic System

3.1 Passive Control

In this section, passive control method is applied to system (1) in order to control the
Shimizu–Morioka chaotic system to equilibrium points. When the passive controller
u is added to system (1), it changes into the following form:

⎧
⎨

⎩

ẋ1 = x2 + u,

ẋ2 = (1 − x3)x1 − ax2,
ẋ3 = −bx3 + x1 2.

(3)

The state variable x1 is considered as the output of the system and assuming that
y = x1, z1 = x2, z2 = x3, z = [z1z2]T , then system (3) becomes

⎧
⎨

⎩

ż1 = (1 − z2)y − az1,
ż2 = −bz2 + y2,
ẏ = z1 + u.

(4)

The passivity theory has the following generalized form

{
ż = f0(z) + p(z, y)y,

ẏ = b(z, y) + a(z, y)u,
(5)

where system (4) can be expressed in the normal form of system (5) as follows:

f0(z) =
[−az1

−bz2

]

, (6)
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p(z, y) =
[
1 − z2
2y

]

, (7)

b(z, y) = z1, (8)

a(z, y) = 1. (9)

Let, the storage function is selected as V (z, y) = W (z) + 0.5(y2)where W (z) =
0.5(z1 2 + z2 2) is the Lyapunov function of f0(z) with W (0) = 0. Then, by taking
the derivative of W (z) with Eq. (6),

Ẇ (z) = ∂W (z)

∂z
f0(z) = [ z1 z2]

[−az1
−bz2

]

= −az1
2 − bz2

2. (10)

Because W (z) ≥ 0 and Ẇ (z) ≤ 0, it can be concluded that W (z) is the Lyapunov
function of f0(z) and the f0(z) is globally asymptotically stable [8]. So, the con-
trolled Shimizu–Morioka chaotic system (3) is a minimum phase system based on
the Lyapunov stability. According to the passivity theory, the controlled system can
be equivalent to a passive system and globally asymptotically stabilized at its zero
equilibrium point by the following state controller [49]:

u = a(z, y)−1

[

−bT (z, y) − ∂W (z)

∂z
p(z, y) − αy + v

]

= 1−1

[

−z1 − [
z1 z2

]
[
1 − z2
2y

]

− αy + v

]

= −2z1 + z1z2 − 2z2y − αy + v (11)

where α > 0 is a real constant and v is an external input signal. Providing that the
conversions y = x1, z1 = x2 and z2 = x3 are taken back, the controller u can be
denoted by the following form:

u = −2x2 + x2x3 − 2x1x3 − αx1 + v. (12)

The control of Shimizu–Morioka chaotic system (3) by using the passive control
method is completed with Eq. (12). Hence, the control of Shimizu–Morioka chaotic
system with uncertain parameters by means of passive control is achieved.

Substituting Eq. (12) into system (3) yields

⎧
⎨

⎩

ẋ1 = −x2 + x2x3 − 2x1x3 − αx1 + v,
ẋ2 = (1 − x3)x1 − ax2,
ẋ3 = −bx3 + x1 2.

(13)
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Although the passive controlled Shimizu–Morioka chaotic system changes the
equilibria of the system, the controller stabilizes the chaotic systemat any equilibrium
point with adjusting the v parameter. Let ẋ = 0 and then the controlled system (13)
becomes ⎧

⎨

⎩

0 = −x2 + x2x3 − 2x1x3 − αx1 + v,
0 = (1 − x3)x1 − ax2,
0 = −bx3 + x1 2.

(14)

Thus, ⎧
⎨

⎩

x3 = x2
1/b,

x2 = (x1 − x1 3/b)/a,

v = −(x2
1 x2 − 2x1 3)/b + x2 + αx1.

(15)

The conditions in Eq. (15) maintain the global asymptotical stability of Shimizu–
Morioka chaotic system towards its E0(0, 0, 0), E1(

√
b, 0, 1) and E2(–

√
b, 0, 1)

equilibrium points.

3.2 Sliding Mode Control

In this section, slidingmode controlmethod is applied to system (1) in order to control
the Shimizu–Morioka chaotic system to equilibrium points. When the sliding mode
controllers u1, u2 and u3 are added to system (1), it changes into the following form:

⎧
⎨

⎩

ẋ1 = x2 + u1,

ẋ2 = (1 − x3)x1 − ax2 + u2,

ẋ3 = −bx3 + x2
1 + u3.

(16)

Afixed point of system (16) can be denoted as (xd , yd , zd). After that, the trajectory
error states are determined as e1 = x1 – xd , e2 = x2 – yd and e3 = x3 – zd . Then the
state variables are obtained as x1 = e1 + xd , x2 = e2 + yd and x3 = e3 + zd , the
error state dynamic equations of system (16) become

⎧
⎨

⎩

ė1 = e2 + yd + u1,

ė2 = (1 − (e3 + zd))(e1 + xd) − a(e2 + yd) + u2,

ė3 = −b(e3 + zd) + (e1 + xd)
2 + u3.

(17)

The error dynamic equations of system (17) can be rewritten as follows:

⎧
⎨

⎩

ė1 = e2 + yd + u1,

ė2 = (1 − zd)e1 − ae2 − xde3 − e1e3 + xd − ayd − xd zd + u2,

ė3 = e1 2 + 2xde1 − be3 + xd
2 − bzd + u3.

(18)

The yd , xd – ayd – xd zd and x2
d – bzd equations in system (18) are stable values and

do not affect the system dynamics when controlling to the zero equilibrium point.
Therefore, the error state dynamic equations of system (18) can be simplified as
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⎧
⎨

⎩

ė1 = e2 + u1,

ė2 = (1 − zd)e1 − ae2 − xde3 − e1e3 + u2,

ė3 = 2xde1 − be3 + e21 + u3.

(19)

The error dynamics (19) are regularized in the matrix notation as

ė = Ae + η(x, y) + u (20)

where

A =
⎡

⎣
0 1 0

1 − zd −a −xd

2xd 0 −b

⎤

⎦ , η(x, y) =
⎡

⎣
0

−e1e3
e21

⎤

⎦ , u =
⎡

⎣
u1

u2

u3

⎤

⎦ . (21)

Based on the sliding mode theory, the control signal u is defined as [40]:

u(t) = −η(x, y) + Bv(t) (22)

where B is selected so that (A, B) is controllable. So, B is chosen as

B = [ 0 1 1]T. (23)

According to the Hurwitz criterion, the vector C must be selected such that the
system matrix of the controlled dynamics [I − B(C B)−1C]A has all eigenvalues
with negative real parts. The sliding mode variable C is taken as [9.5 2.5 –1.5] for
the E0 and E2 equilibrium points. Then, the sliding surface is constructed as

s = Ce = [ 9.5 2.5 −1.5 ]e = 9.5e1 + 2.5e2 − 1.5e3 (24)

which makes the sliding mode state equation asymptotically stable. The selected C
vector does not maintain the Hurwitz criterion for the E1 equilibrium point, so it is
selected differently as [–1.25 –2.5 3.5]. Then, the surface for E1 equilibrium point
becomes

s = Ce = [−1.25 −2.5 3.5 ]e = −1.25e1 − 2.5e2 + 3.5e3. (25)

From the property of the sliding mode control methodology [40]:

v(t) = −(C B)−1 [
C(k I + A)e + qsign(s)

]
(26)

where I is the identity matrix and k, q are positive real constants. A large value of k
may cause chattering and an appropriate value of q reduces the chattering and also
speeds up the reaching time to the sliding surface.

After that, the required sliding mode control signal is determined by Eq. (22)
where η(e) and B are obtained from Eqs. (21) and (23), respectively:
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⎧
⎨

⎩

u1 = 0,
u2 = (x − xd)(z − zd) + v(t),
u3 = −(x − xd)

2 + v(t).
(27)

The control of Shimizu–Morioka chaotic system (16) by using the sliding mode
control method is completed with Eq. (27). Hence, the control of Shimizu–Morioka
chaotic system with uncertain parameters by means of sliding mode control is
achieved.

3.3 Backstepping Design

In this section, backstepping controlmethod is applied to system (1) in order to control
the Shimizu–Morioka chaotic system to equilibrium points. When the backstepping
controllers u1, u2 and u3 are added to system (1), it changes into the following form:

⎧
⎨

⎩

ẋ1 = x2 + u1,

ẋ2 = (1 − x3)x1 − ax2 + u2,

ẋ3 = −bx3 + x2
1 + u3.

(28)

Afixed point of system (28) can be denoted as (xd , yd , zd). After that, the trajectory
error states are determined as e1 = x1 – xd , e2 = x2 – yd and e3 = x3 – zd . Then the
state variables are obtained as x1 = e1 + xd , x2 = e2 + yd and x3 = e3 + zd , the
error state dynamic equations of system (28) become

⎧
⎨

⎩

ė1 = e2 + yd + u1,

ė2 = (1 − (e3 + zd))(e1 + xd) − a(e2 + yd) + u2,

ė3 = −b(e3 + zd) + (e1 + xd)
2 + u3.

(29)

System (29) can be considered as a control problem with control inputs u1, u2

and u3, which are the functions of the error vectors e1, e2 and e3.
There are three steps in the following backstepping design procedure. At the

i th step, an intermediate control function αi will be obtained by constructing an
appropriate Lyapunov function Vi .

Step 1: Define w1 = e1. Then its derivative is

ẇ1 = e2 + yd + u1, (30)

where e2 = α1(w1) is regarded as a virtual controller.
For the design ofα1(w1) to stabilize thew1—subsystem (30), a Lyapunov function

V1 is chosen as

V1 = 1

2
w2
1. (31)
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The derivative of V1 is

V̇1 = w1ẇ1 = w1(α1(w1) + yd + u1). (32)

If u1 = –yd and α1(w1) = −w1, then V̇1 is obtained as

V̇1 = −w2
1, (33)

which is negative definite. This implies that the w1—subsystem (30) is globally
asymptotically stable.

Since the virtual control function α1(w1) is estimative, the error variable can be
defined as

w2 = e2 − α1(w1) = e2 + w1. (34)

Then, the following (w1, w2)—subsystem is obtained

{
ẇ1 = w2 − w1,

ẇ2 = (1 − e3 − zd)(w1 + xd) + (1 − a)(w2 − w1) − ayd + u2,
(35)

where e3 = α2(w1, w2) is regarded as a virtual controller.
Step 2: In this step, the following Lyapunov function V2 is constructed to stabilize

the (w1, w2)—subsystem (35)

V2 = 1

2
(w2

1 + w2
2). (36)

Its derivative is

V̇2 = − w2
1 + w2(w1 + (1 − α2 − zd)(w1 + xd) + (1 − a)(w2 − w1)

− ayd + u2). (37)

If α2(w1, w2) = 0, then

u2 = −2w1 − xd + zd(w1 + xd) − (1 − a)(w2 − w1) + ayd − k1w2, (38)

where k1 > 0 is a gain constant.
Substituting Eq. (38) into Eq. (37) yields

V̇2 = −w2
1 − k1w

2
2, (39)

which is negative definite. This implies that the (w1, w2)—subsystem (35) is globally
asymptotically stable.

Since the virtual control function α2(w1, w2) is estimative, the error variable can
be defined as

w3 = e3 − α2(w1, w2) = e3. (40)
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Then, the following (w1, w2, w3)—subsystem is obtained

⎧
⎨

⎩

ẇ1 = w2 − w1,

ẇ2 = −w1 − w3(w1 + xd) − k1w2,

ẇ3 = −b(w3 + zd) + (w1 + xd)
2 + u3.

(41)

Step 3: In order to stabilize the (w1,w2,w3)—subsystem (41), the followingLyapunov
function is constructed

V3 = 1

2
(w2

1 + w2
2 + w2

3). (42)

The derivative of V3 is

V̇3 = −w2
1 − k1w

2
2 + w3(−w2(w1 + xd) − b(w3 + zd) + (w1 + xd)

2 + u3). (43)

Then, the controller u3 can be taken as

u3 = w2(w1 + xd) + b(w3 + zd) − (w1 + xd)
2 − k2w3, (44)

where k2 > 0 is a gain constant.
Substituting Eq. (44) into Eq. (43) yields

V̇3 = −w2
1 − k1w2

2 − k2w2
3, (45)

which is negative definite. This implies that the (w1, w2, w3)—subsystem (41) is
globally asymptotically stable.

Since w1 = e1, w2 = e2 – α1(w1) and w3 = e3 – α2(w1, w2), this implies that (e1,
e2, e3) → (0, 0, 0) as t → ∞. Hence, the control of Shimizu–Morioka chaotic system
with uncertain parameters by means of backstepping design is achieved.

In summary, the backstepping control that achieves global asymptotic stability of
the error dynamics (29) is

⎧
⎨

⎩

u1 = −yd ,

u2 = −2w1 − xd + zd(w1 + xd) − (1 − a)(w2 − w1) + ayd − k1w2,

u3 = w2(w1 + xd) + b(w3 + zd) − (w1 + xd)
2 − k2w3,

(46)

where k1, k2 are positive gain constants and w1, w2, w3 are defined by

⎧
⎨

⎩

w1 = e1,
w2 = e1 + e2,
w3 = e3.

(47)
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4 Numerical Simulations

In this section, numerical simulations are performed to demonstrate the control of
Shimizu–Morioka chaotic system in Eqs. (3), (16) and (28). The fourth-order Runge–
Kutta method is used in all numerical simulations with variable time step. The para-
meter values of Shimizu–Morioka system are considered as a = 0.75 and b = 0.45
with the initial conditions x(0) = 0, y(0) = 0.25 and z(0) = 1 to ensure the chaotic
behaviour. The passive control parameter is chosen as α = 10, the sliding mode con-

Fig. 4 The controlled Shimizu–Morioka chaotic system towards E0(0, 0, 0) equilibrium point
when the controllers are activated at t = 20 for a x signals, b y signals, c z signals
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trol parameters are selected as k = 10, q = 0.1 and the backstepping control gains are
taken as k1 = 5, k2 = 5. The controllers are activated at t = 20 in the simulations.

A chaotic system stabilizes towards a desired equilibrium point with sliding mode
and backstepping controllers by adjusting its xd , yd and zd parameters. For instance,
xd = √

b, yd = 0 and zd = 1 for the E1(
√

b, 0, 1) equilibrium point. A passive
controller slightly changes the controlled system but it still preserves to stabilize
towards the equilibrium points with adjusting the v parameter. According to the
conditions in Eq. (15) with the parameter values b = 0.45 and α = 10, the v passive
control parameter is calculated as 0, 8.0498 and –8.0498 for the E0(0, 0, 0), E1(

√
b,

0, 1) and E2(–
√

b, 0, 1) equilibrium points, respectively.

Fig. 5 The controlled Shimizu–Morioka chaotic system towards E1(
√

b, 0, 1) equilibrium point
when the controllers are activated at t = 20 for a x signals, b y signals, c z signals
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The simulation results of controlled Shimizu–Morioka chaotic system with
the passive control, sliding mode control and backstepping design methods to
E0 (0, 0, 0),E1(

√
b, 0, 1) and E2(–

√
b, 0, 1) equilibrium points are shown in Figs. 4,

5 and 6, respectively.
As expected, the related figures show that the outputs of Shimizu–Morioka chaotic

system converge to its equilibrium points in an appropriate time period, after the
passive controller, the sliding mode controllers and backstepping controllers are
activated. Thus, computer simulations have confirmed all the theoretical analyses
of proposed passive control, sliding mode control and backstepping design meth-

Fig. 6 The controlled Shimizu–Morioka chaotic system towards E2(–
√

b, 0, 1) equilibrium point
when the controllers are activated at t = 20 for a x signals, b y signals, c z signals
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ods. Figures4, 5 and 6 include comparative results for the control of Shimizu–
Morioka chaotic system. While the control is provided at t ≥ 24 by using the sliding
mode controllers, it is observed when t ≥ 25 with the backstepping controllers and
t ≥ 29 with the passive controller for the E0(0, 0, 0) equilibrium point. Furthermore,
the control is firstly observed owing to the sliding mode controllers for the E1(

√
b, 0,

1) and E2(–
√

b, 0, 1) equilibrium points. By comparison of the passive control, slid-
ing mode control and backstepping design methods at the same specified values of
Shimizu–Morioka chaotic system, it can be concluded that the sliding mode control
method is more successfully on achieving the control of Shimizu–Morioka chaotic
system.

5 Conclusion

In this chapter, a single passive controller, two sliding mode controllers and three
backstepping controllers have been designed to realize the global asymptotical sta-
bility of continuous time Shimizu–Morioka chaotic system towards its equilibrium
points with parameter uncertainties. Simulation results are demonstrated to verify all
the theoretical analyses. In addition, the performances of the proposed control meth-
ods are compared with the numerical simulations. They have shown that the sliding
mode controllers regulate the control of Shimizu–Morioka chaotic system in a better
time period than the passive controller and backstepping controllers, which exposes
the effectiveness of sliding mode control method. Backstepping design method also
gives good control results. On the other hand, the advantage of passive controlmethod
is to achieve the control of Shimizu–Morioka chaotic systemwith only one state con-
troller which provides easiness in implementation and low-cost production.
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Generalized Projective Synchronization
of a Novel Chaotic System with a Quartic
Nonlinearity via Adaptive Control

Sundarapandian Vaidyanathan and Sarasu Pakiriswamy

Abstract In this work, we announce a 3-D six-term novel chaotic system with a
quartic nonlinearity. Next, the qualitative properties of the novel chaotic system are
discussed in detail. We show that the novel chaotic system has three unstable equi-
librium points. The Lyapunov exponents of the novel chaotic system are obtained
as L1 = 0.1507, L2 = 0 and L3 = −0.9521, while the Kaplan–Yorke dimension
of the novel chaotic system is obtained as DK Y = 2.1583. The maximal Lyapunov
exponent (MLE) of the novel chaotic system is obtained as L1 = 0.1507. Using
Lyapunov stability theory, this work also derives an adaptive controller for the gen-
eralized projective synchronization (GPS) of identical novel chaotic systems with
unknown parameters. In the chaos literature, many types of synchronization such
as complete synchronization (CS), anti-synchronization (AS), hybrid synchroniza-
tion (HS), projective synchronization (PS) and generalized synchronization (GS) are
considered for the synchronization of a pair of chaotic systems called master and
slave systems. All these types of synchronization are special cases of the general-
ized projective synchronization (GPS) of chaotic systems.MATLAB plots have been
depicted to illustrate the phase portraits of the novel chaotic system and also the GPS
results for the novel chaotic systems using adaptive controllers.
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologically mixing and with dense periodic orbits. Sensitivity to
initial conditions of chaotic systems is popularly known as the butterfly effect. Small
changes in an initial state will make a very large difference in the behavior of the
system at future states.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [15], Rössler system [29], ACT system [2], Sprott systems [37], Chen system
[9], Lü system [16], Cai system [7], Tigan system [48], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [132], Zhu system [133], Li system [14], Wei–Yang system [126],
Sundarapandian systems [40, 45], Vaidyanathan systems [59, 60, 62–65, 68, 79,
80, 94, 97, 101, 112, 114, 116, 118, 119, 121], Pehlivan system [21], Sampath–
Vaidyanathan system [30], etc.

The synchronization of chaotic systems is a phenomenon that occurs when two or
more chaotic systems are coupled or when a chaotic system drives another chaotic
system. Because of the butterfly effect which causes exponential divergence of the
trajectories of two identical chaotic systems started with nearly the same initial
conditions, the synchronization of chaotic systems is a challenging research problem
in the chaos literature [3, 4].

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [69, 73, 75, 77, 81, 85–87], biological systems [67, 70–72, 74,
76, 78, 82–84, 88–92], memristors [1, 22, 125], lasers [6], oscillations [49], robotics
[11, 124], electrical circuits [17, 123], cryptosystems [28, 50], secure communica-
tions [127, 128], etc.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) of a pair of chaotic systems called the master and slave systems.
The design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [8, 20]. The active control method [38, 52, 57, 103, 107] is
commonly usedwhen the systemparameters are available formeasurement.Adaptive
control method [39, 53, 61, 93, 104, 106, 113, 117, 120] is commonly used when
some or all the system parameters are not available for measurement and estimates
for the uncertain parameters of the systems.

Backstepping control method [23–27, 47, 109, 115, 122] is also used for the
synchronization of chaotic systems, which is a recursive method for stabilizing the
origin of a control system in strict-feedback form. Sliding mode control method
[46, 54, 56, 58, 66, 95, 96, 110, 111] is also a popularmethod for the synchronization
of chaotic systems.

In the chaos literature, many types of synchronization schemes have been pro-
posed such as complete synchronization [38, 52, 57, 103, 107], anti-synchronization
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[41–43, 55, 102], hybrid synchronization [12, 44, 51, 105, 108], generalized syn-
chronization [5, 10, 130], projective synchronization [36, 129, 131], generalized
projective synchronization [18, 19, 31–35, 98–100], etc.

In generalized projective synchronization (GPS), the responses of the synchro-
nized dynamical states synchronize up to a constant scaling matrix α. The complete
synchronization (CS) and anti-synchronization (AS) are special cases of the gen-
eralized projective synchronization where the scaling matrix α = I and α = −I ,
respectively. Hybrid, projective and generalized synchronization are special cases of
the generalized projective synchronization of chaotic systems.

In this work, we first announce a 3-D six-term novel chaotic system with a quartic
nonlinearity. Next, the qualitative properties of the novel chaotic system are dis-
cussed in detail. This work derives new results for adaptive controller design for the
generalized projective synchronization (GPS) of the identical novel chaotic systems.

This work is organized as follows. Section2 discusses the dynamic equations of
the novel chaotic system. Section3 discusses the qualitative properties of the novel
chaotic system. In this section, we show that the novel chaotic system has three
unstable equilibrium points. The Lyapunov exponents of the novel chaotic system
are obtained as L1 = 0.1507, L2 = 0 and L3 = −0.9521, while the Kaplan–Yorke
dimension of the novel chaotic system is obtained as DK Y = 2.1583. The maximal
Lyapunov exponent (MLE) of the novel chaotic system is obtained as L1 = 0.1507.

InSect. 4,wederive newGPS results for the adaptive controller design for identical
novel chaotic systems, when the system parameters are unknown. In Sect. 5, we
summarize the main results obtained in this work.

2 A Six-Term 3-D Novel Chaotic System

In this work, we announce a six-term novel chaotic system described by the 3-D
dynamics

ẋ1 = x2
ẋ2 = x1 − ax2 − x1x3
ẋ3 = −bx3 + x4

1

(1)

where x1, x2, x3 are the states and a, b are constant, positive, parameters.
The system (1) exhibits a strange chaotic attractor when the parameter values

are taken as
a = 0.5, b = 0.3 (2)

For numerical simulations, we take the initial values of the Vaidyanathan chaotic
system (1) as

x1(0) = 0.1, x2(0) = 0.2, x3(0) = 0.1 (3)
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Figure1 shows the 3-D phase portrait of the novel chaotic system (1). Figures2, 3
and 4 show the 2-Dprojections of the novel chaotic system (1) on the (x1, x2), (x2, x3)
and (x1, x3) coordinate planes respectively.

−1.5
−1

−0.5
0

0.5
1

1.5
2

−3
−2

−1
0

1
2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x
1

x2

x 3

Fig. 1 3-D phase portrait of the Vaidyanathan chaotic system

−2 −1.5 −1 −0.5 0 0.5

1

1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

x
2

Fig. 2 2-D projection of the Vaidyanathan chaotic system on the (x1, x2) plane



Generalized Projective Synchronization of a Novel Chaotic System … 431

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x
2

x 3
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3 Qualitative Properties of the 3-D Novel Chaotic System

In this section, we give a dynamic analysis of the 3-D novel jerk chaotic system (1).

3.1 Dissipativity

In vector notation, the novel system (1) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (4)

where
⎧
⎨

⎩

f1(x1, x2, x3) = x2
f2(x1, x2, x3) = x1 − ax2 − x1x3
f3(x1, x2, x3) = −bx3 + x4

1

(5)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (6)

The divergence of the novel jerk system (4) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −a − b = −μ < 0 (7)

where μ = a + b > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel 3-D chaotic system (1) is dissipative. Hence, the system
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limit sets are ultimately confined into a specific limit set of zero volume, and the
asymptotic motion of the novel chaotic system (1) settles onto a strange attractor of
the system.

3.2 Equilibrium Points

The equilibrium points of the novel chaotic system (1) are obtained by solving the
equations

⎧
⎨

⎩

f1(x1, x2, x3) = x2 = 0
f2(x1, x2, x3) = x1 − ax2 − x1x3 = 0
f3(x1, x2, x3) = −bx3 + x4

1 = 0
(10)

We take the parameter values as in the chaotic case, viz. a = 0.5 and b = 0.3.
Solving the Eq. (10), we get three equilibrium points of the novel chaotic system

(1), viz.

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E1 =
⎡

⎣
0.7401

0
1

⎤

⎦ and E2 =
⎡

⎣
−0.7401

0
1

⎤

⎦ (11)

To test the stability type of the equilibrium point E1, we calculate the Jacobian
matrix of the novel chaotic system (1) at any point x :

J (x) =
⎡

⎣
0 1 0

1 − x3 −a −x1
4x3

1 0 −b

⎤

⎦ =
⎡

⎣
0 1 0

1 − x3 −0.5 −x1
4x3

1 0 −0.3

⎤

⎦ (12)

We find that

J0
�= J (E0) =

⎡

⎣
0 1 0
1 −0.5 0
0 0 −0.3

⎤

⎦ (13)

The matrix J0 has the eigenvalues

λ1 = 0.7808, λ2 = −0.3, λ3 = −1.2808 (14)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
Next, we find that

J1
�= J (E1) =

⎡

⎣
0 1 0
0 −0.5 −0.7401

1.6216 0 −0.3

⎤

⎦ (15)
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The matrix J1 has the eigenvalues

λ1 = −1.3486, λ2,3 = 0.2743 ± 0.9026i (16)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
A simple calculation shows that J2 = J (E2) has the same eigenvalues as J1.
Thus, the equilibrium point E2 is also a saddle-focus, which is unstable.
Hence, the novel chaotic system (1) has three unstable equilibrium points, viz.

E0, E1 and E2.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system as (1) a = 0.5 and b = 0.3. We
take the initial state of the system (1) as given in (3).

Then the Lyapunov exponents of the novel system (1) are numerically obtained
using MATLAB as

L1 = 0.1507, L2 = 0, L3 = −0.9521 (17)

Thus, the maximal Lyapunov exponent (MLE) of the novel system (1) is positive,
which means that the system has a chaotic behavior.

Since L1 + L2 + L3 = −0.8014 < 0, it follows that the novel chaotic system (1)
is dissipative.

Also, the Kaplan–Yorke dimension of the novel chaotic system (1) is obtained as

DK Y = 2 + L1 + L2

|L3| = 2.1583 (18)

which is fractional.

4 Adaptive Controller Design for the GPS
of Novel Chaotic Systems

In this section, we design an adaptive controller for the generalized projective syn-
chronization (GPS) of the identical novel chaotic systems, when the system parame-
ters are unknown.

As the master system, we consider the novel chaotic system

ẋ1 = x2
ẋ2 = x1 − ax2 − x1x3
ẋ3 = −bx3 + x4

1

(19)

where x1, x2, x3 are the states and a, b are unknown parameters.
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As the slave system, we consider the controlled novel chaotic system

ẏ1 = y2 + u1

ẏ2 = y1 − ay2 − y1y3 + u2

ẏ3 = −by3 + y41 + u3

(20)

where y1, y2, y3 are the states and u1, u2, u3 are adaptive controls to be designed
using estimates for unknown parameters.

For the GPS of the identical novel chaotic systems (19) and (20), we define the
GPS synchronization error as

e1 = y1 − m1x1
e2 = y2 − m2x2
e3 = y3 − m3x3

(21)

where m1, m2, m3 are real scaling constants.
The error dynamics is obtained by differentiating (21) as

ė1 = y2 − m1x2 + u1

ė2 = y1 − m2x1 − ae2 − y1y3 + m2x1x3 + u2

ė3 = −be3 + y41 − m3x4
1 + u3

(22)

We consider the adaptive controller defined by

u1 = −y2 + m1x2 − k1e1
u2 = −y1 + m2x1 + â(t)e2 + y1y3 − m2x1x3 − k2e2
u3 = b̂(t)e3 − y41 + m3x4

1 − k3e3

(23)

where k1, k2, k3 are positive gain constants and â(t), b̂(t) are estimates of the
unknown parameters a, b, respectively.

Substituting (23) into (22), we get the closed-loop control system

ė1 = −k1e1

ė2 = − [
a − â(t)

]
e2 − k2e2

ė3 = −
[
b − b̂(t)

]
e3 − k3e3

(24)

We define the parameter estimation errors as

ea(t) = a − â(t)
eb(t) = b − b̂(t)

(25)
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Using (25), we can simplify the error dynamics as

ė1 = −k1e1
ė2 = −eae2 − k2e2
ė3 = −ebe3 − k3e3

(26)

Differentiating (25) with respect to t , we obtain

ėa = −˙̂a(t)

ėb = − ˙̂b(t)
(27)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (e1, e2, e3, ea, eb) = 1

2

(
e21 + e22 + e23 + e2a + e2b

)
(28)

Differentiating V along the trajectories of (26) and (27), we obtain

V̇ = −k1e
2
1 − k2e22 − k3e23 + ea

[
−e22 − ˙̂a

]
+ eb

[
−e23 − ˙̂b

]
(29)

In view of Eq. (29), we take the parameter update law as

˙̂a = −e22˙̂b = −e23
(30)

Next, we state and prove the main result of this section.

Theorem 1 The adaptive control law defined by (23) and the parameter update law
(30) achieve global and exponential generalized projective synchronization (GPS)
between the identical Vaidyanathan systems (19) and (20) with unknown parameters,
where k1, k2, k3 are positive gain constants.

Proof We consider the quadratic Lyapunov function defined by (28), which is clearly
a positive definite function on R7.

By substituting the parameter update law (30) into (29), we obtain the time-
derivative of V as

V̇ = −k1e21 − k2e22 − k3e23 (31)

From (31), it is clear that V̇ is a negative semi-definite function on R7.
Thus, we conclude that the GPS error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t)

]T ∈ L∞.
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We define k = min{k1, k2, k3}.
Then it follows from (31) that

V̇ ≤ −k‖e(t)‖2 (32)

Thus, we have

k‖e(t)‖2 ≤ −V̇ (33)

Integrating the inequality (33) from 0 to t , we get

k

t∫

0

‖e(τ )‖2dτ ≤ V (0) − V (t) (34)

From (34), it follows that e ∈ L2.
Using (26), we conclude that ė ∈ L∞.
UsingBarbalat’s lemma [13], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
This completes the proof. �
For numerical simulations using MATLAB, we use the classical fourth order

Runge–Kutta method with h = 10−8 for solving systems of differential equations.
The parameter values of the Vaidyanathan chaotic systems are taken as in the

chaotic case (2), i.e.

a = 0.5, b = 0.3 (35)

We take the gains as

k1 = 8, k2 = 8, k3 = 8 (36)

We the GPS scales as

m1 = 2.3, m2 = 1.4, m3 = 1.7 (37)

As initial values of the master system (19), we take

x1(0) = 3.2, x2(0) = −2.9, x3(0) = 1.5 (38)

As initial values of the slave system (20), we take

y1(0) = 1.7, y2(0) = 1.2, y3(0) = 4.3 (39)
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As initial values of the parameter estimates, we take

â(0) = 5.2, b̂(0) = 9.4 (40)

Figures5, 6 and 7 depict the GPS of the identical novel chaotic systems (19)
and (20). Figure8 depicts the time-history of the GPS synchronization errors
e1, e2, e3.

5 Conclusions

In this work, we described a 3-D six-term novel chaotic system with a quartic non-
linearity. We discussed the qualitative properties of the novel chaotic system are
discussed in detail. We showed that the novel chaotic system has three unstable
equilibrium points. The Lyapunov exponents of the novel chaotic system have been
obtained as L1 = 0.1507, L2 = 0 and L3 = −0.9521, while the Kaplan–Yorke
dimension of the novel chaotic system has been obtained as DK Y = 2.1583. Using
Lyapunov stability theory, we also derived an adaptive controller for the general-
ized projective synchronization (GPS) of the identical novel chaotic systems with
unknown parameters. MATLAB plots have been depicted to illustrate the phase por-
traits of the novel chaotic system and also the GPS results for the novel chaotic
systems using adaptive control.
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A Novel 4-D Hyperchaotic Chemical Reactor
System and Its Adaptive Control

Sundarapandian Vaidyanathan and Abdesselem Boulkroune

Abstract Chaos in nonlinear dynamics occurs widely in physics, chemistry, biol-
ogy, ecology, secure communications, cryptosystems and many scientific branches.
Chaotic systems have important applications in science and engineering. In this
work, we derive a twelve-term novel 4-D hyperchaotic system by introducing a state
feedback control to the 3-D chemical chaotic reactor obtained by Huang, Yang, J
Math Chem 38(1):107–117, 2015, [11]. The phase portraits of the twelve-term novel
hyperchaotic chemical reactor system are depicted and the qualitative properties of
the novel hyperchaotic system are discussed. The Lyapunov exponents of the novel
hyperchaotic chemical reactor system are obtained as L1 = 0.2263, L2 = 0.0365,
L3 = 0 and L4 = −10.8396. Also, the Kaplan–Yorke dimension of the novel hyper-
chaotic chemical reactor system is obtained as DK Y = 3.0240. Since the sum of
the Lyapunov exponents is negative, the novel hyperchaotic system is dissipative.
Next, an adaptive controller is designed to globally stabilize the novel hyperchaotic
system with unknown parameters. Finally, an adaptive controller is also designed
to achieve global chaos synchronization of the identical hyperchaotic systems with
unknown parameters. MATLAB simulations are depicted to illustrate all the main
results derived in this work.
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1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-
iour in deterministic nonlinear dynamical systems. For the motion of a dynamical
system to be chaotic, the system variables should contain some nonlinear terms
and the system must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [18], Rössler system [26], ACT system [2], Sprott systems [33], Chen system
[6], Lü system [19], Cai system [4], Tigan system [43], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [114], Zhu system [116], Li system [16], Wei–Yang system [110],
Sundarapandian systems [36, 40], Vaidyanathan systems [50, 52, 54–57, 61, 72,
73, 87, 88, 90, 96, 98, 100, 103, 104, 106], Pehlivan system [20], Sampath system
[28], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [62, 66, 68, 70, 74, 78–80], biological systems [60, 63–65, 67,
69, 71, 75–77, 81–85], memristors [1, 22, 107], etc.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [3]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [7, 15, 111], cryptosystems [10, 25,
115], fuzzy logic [32, 113], electrical circuits [109, 112], etc.

The first 4-D hyperchaotic system was found by Rössler [27]. Many hyperchaotic
systems have been reported in the chaos literature such as hyperchaotic Lorenz sys-
tem [12], hyperchaotic Lü system [5], hyperchaotic Chen system [17], hyperchaotic
Wang system [108], hyperchaotic Vaidyanathan systems [51, 59, 86, 97, 102, 105],
hyperchaotic Pham system [21], etc.

The control of a chaotic or hyperchaotic system aims to stabilize or regulate the
system with the help of a feedback control. There are many methods available for
controlling a chaotic system such as active control [34, 44, 45], adaptive control [35,
46, 53], sliding mode control [48, 49], backstepping control [99], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [13, 29, 30, 91, 93], adaptive control
[31, 37–39, 47, 89, 92], slidingmode control [41, 58, 95, 101], backstepping control
[23, 24, 42, 94], etc.

Recently, Huang and Yang derived a chemical reactor model by considering reac-
tor dynamics with five steps [11]. For the non-dimensionalized dynamical evolu-
tions of the Huang–Yang chaotic reactor, the Lyapunov exponents were obtained as
L1 = 0.4001, L2 = 0 and L3 = −11.8762.

In this researchwork, we derive a novel 4-D hyperchaotic chemical reactor system
by adding a state feedback control to the 3-D Huang–Yang chemical reactor.
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This work is organized as follows. Section2 describes the dynamics of the twelve-
termnovel 4-Dhyperchaotic chemical reactor system. Section3 details the qualitative
properties of the novel hyperchaotic chemical system. The Lyapunov exponents of
the novel hyperchaotic chemical system are obtained as L1 = 0.4119, L2 = 0.0434,
L3 = 0 and L4 = −11.9003, while the Kaplan–Yorke dimension of the novel hyper-
chaotic system is obtained as DK Y = 3.0383.

In Sect. 4, we design an adaptive controller to globally stabilize the novel hyper-
chaotic chemical reactor system with unknown parameters. In Sect. 5, an adaptive
controller is designed to achieve global chaos synchronization of the identical novel
hyperchaotic chemical reactor systems with unknown parameters. Section6 contains
the conclusions of this work.

2 A Novel 4-D Hyperchaotic Chemical Reactor System

The well-stirred chemical reactor dynamics model of Huang–Yang [11] consist of
the following five steps given below.

A1 + X
k−1−⇀↽−
k1

2X (1a)

X + Y
k2−→ 2Y (1b)

A5 + Y
k3−→ A2 (1c)

X + Z
k4−→ A3 (1d)

A5 + Z
k−5−⇀↽−
k5

2Z (1e)

Equations (1a) and (1e) indicate reversible steps, while Eqs. (1c)–(1e) indicate
non-reversible steps of the Huang–Yang chemical reactor [11].

In (1), A1, A4, A5 are initiators and A2, A3 are products. The intermediates whose
dynamics are followed are X , Y and Z .

Assuming an ideal mixture and a well-stirred reactor, the macroscopic rate equa-
tions for the Huang–Yang chemical reactor can be written in non-dimensionalized
form as ⎧

⎨

⎩

ẋ = a1x − k−1x2 − xy − xz
ẏ = xy − a5y
ż = a4z − xz − k−5z2

(2)
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In (2), x , y and z are the mole fractions of X , Y and Z . Also, the rate constants
k1, k3 and k5 are incorporated in the parameters a1, a5 and a4.

To simplify the notations, we rename the constants and express the chemical
reactor system (2) as ⎧

⎨

⎩

ẋ = ax − px2 − xy − xz
ẏ = xy − cy
ż = bz − xz − qz2

(3)

Huang and Yang [11] showed that the chemical reactor system (3) is chaotic,
when the system parameters are chosen as

a = 30, b = 16.5, c = 10, p = 0.415, q = 0.5 (4)

The Lyapunov exponents of the Huang–Yang chemical reactor system (3) for the
parameter values (4) are numerically obtained as

L1 = 0.2138, L2 = 0, L3 = −10.8292 (5)

In this section, we derive a twelve-term novel hyperchaotic system by introducing
a state feedback control to the Huang–Yang chemical reactor system (3).

Our novel hyperchaotic chemical chaotic reactor system is described by the 4-D
dynamics ⎧

⎪⎪⎨

⎪⎪⎩

ẋ = ax − px2 − xy − xz
ẏ = xy − cy + sw
ż = bz − xz − qz2

ẇ = −r(x + z)

(6)

where x, y, z, w are the states and a, b, c, p, q, r, s are constant positive parameters.
The 4-D system (6) consists of twelve terms on the right hand side with six

quadratic nonlinearities.
The system (6) exhibits a strange hyperchaotic attractor for the parameter values

a = 30, b = 16.5, c = 10, p = 0.415, q = 0.5, r = 0.07, s = 0.0001 (7)

For numerical simulations, we take the initial conditions as

x(0) = 3, y(0) = 0, z(0) = 0.1, w(0) = 0.1 (8)

Figures1, 2, 3 and 4 the 3-D projection of the novel hyperchaotic system (6) on
the (x, y, z), (x, y, w), (x, z, w) and (y, z, w) spaces, respectively.
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Fig. 1 3-D projection of the novel hyperchaotic system on the (x, y, z) space
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Fig. 2 3-D projection of the novel hyperchaotic system on the (x, y, w) space
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Fig. 3 3-D projection of the novel hyperchaotic system on the (x, z, w) space
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Fig. 4 3-D projection of the novel hyperchaotic system on the (y, z, w) space

3 Analysis of the Novel 4-D Hyperchaotic Chemical
Reactor System

In this section, we give a dynamic analysis of the novel 4-D hyperchaotic chemical
reactor system (6). We take the parameter values as in the hyperchaotic case (7).
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3.1 Equilibrium Points

It is easy to see that the hyperchaotic chemical reactor system (6) has an equilibrium
at the origin.

We take the parameter values as in the hyperchaotic case (7).
To test the stability type of the equilibriumpoint E0 = 0, we calculate the Jacobian

matrix of the novel hyperchaotic system (6) at E0 = 0:
We find that

J
Δ= J (E0) =

⎡

⎢
⎢
⎣

a 0 0 0
0 −c 0 s
0 0 b 0

−r 0 −r 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

30 0 0 0
0 −10 0 0.0001
0 0 16.5 0

−0.07 0 −0.07 0

⎤

⎥
⎥
⎦ (9)

The matrix J has the eigenvalues

λ1 = −10, λ2 = 0, λ3 = 16.5, λ4 = 30 (10)

This shows that the equilibrium point E0 = 0 is a saddle-point, which is unstable.

3.2 Invariance

It is easy to see that the (z, w) plane is invariant under the flow of the novel 4-D
hyperchaotic system (6). The invariantmotion along the (z, w)-plane is characterized
by the planar dynamics {

ż = bz − qz2

ẇ = −r z
(11)

which is unstable because b is a positive constant.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the 4-D chemical reactor system (6) as in the hyper-
chaotic case (7).

We take the initial state of the novel system (6) as given in (8).
Then the Lyapunov exponents of the system (6) are numerically obtained using

MATLAB as

L1 = 0.2263, L2 = 0.0365, L3 = 0, L4 = −10.8396 (12)

Since there are two positive Lyapunov exponents in (12), the novel system (6)
exhibits hyperchaotic behavior.
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Since L1 + L2 + L3 + L4 = −10.6768 < 0, it follows that the novel hyper-
chaotic system (6) is dissipative.

The Kaplan–Yorke dimension [8, 9] of a chaotic system of order n is defined as

DK Y = j + L1 + · · · + L j

|L j+1| (13)

where L1 ≥ L2 ≥ · · · ≥ Ln are the Lyapunov exponents of the chaotic system and j
is the largest integer for which L1 + L2 + · · · + L j ≥ 0. (Kaplan–Yorke conjecture
states that for typical chaotic systems, DK Y ≈ DL , the information dimension of the
system.)

Thus, the Kaplan–Yorke dimension of the novel hyperchaotic chemical reactor
system (6) is calculated as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.0240, (14)

which is fractional.

4 Adaptive Control of the Novel 4-D Hyperchaotic
Chemical Reactor System

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the novel 4-D hyperchaotic chemical reactor system with
unknown parameters.

Thus, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ax − px2 − xy − xz + ux

ẏ = xy − cy + sw + uy

ż = bz − xz − qz2 + uz

ẇ = −r(x + z) + uw

(15)

In (15), x, y, z, w are the states and ux , uy , uz , uw are the adaptive controls to be
determined using estimates of the unknown system parameters.

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

ux = −â(t)x + p̂(t)x2 + xy + xz − kx x
uy = −xy + ĉ(t)y − ŝ(t)w − ky y
uz = −b̂(t)z + xz + q̂(t)z2 − kzz
uw = r̂(t)(x + z) − kww

(16)

where kx , ky, kz, kw are positive gain constants.
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Substituting (16) into (15), we get the closed-loop plant dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = [a − â(t)]x − [p − p̂(t)]x2 − kx x
ẏ = −[c − ĉ(t)]y + [s − ŝ(t)]w − ky y
ż = [b − b̂(t)]z − [q − q̂(t)]z2 − kzz
ẇ = −[r − r̂(t)](x + z) − kww

(17)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)
er (t) = r − r̂(t)
es(t) = s − ŝ(t)

(18)

In view of (18), we can simplify the plant dynamics (17) as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ea x − epx2 − kx x
ẏ = −ec y + esw − ky y
ż = ebz − eq z2 − kzz
ẇ = −er (x + z) − kww

(19)

Differentiating (18) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėa = −˙̂a
ėb = − ˙̂b
ėc = −˙̂c
ėp = − ˙̂p
ėq = − ˙̂q
ėr = −˙̂r
ės = −˙̂s

(20)

We consider the quadratic candidate Lyapunov function defined by

V = 1

2

(
x2 + y2 + z2 + w2

) + 1

2

(
e2a + e2b + e2c + e2p + e2q + e2r + e2s

)
(21)

Differentiating V along the trajectories of (19) and (20), we obtain

V̇ = −kx x2 − ky y2 − kzz2 − kww2 + ea

[
x2 − ˙̂a

]
+ eb

[
z2 − ˙̂b

]
+ ec

[
−y2 − ˙̂c

]

+ep

[
−x3 − ˙̂p

]
+ eq

[
−z3 − ˙̂q

]
+ er

[
−(x + z)w − ˙̂r

]
+ es

[
yw − ˙̂s

]

(22)
In view of (22), we take the parameter update law as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂a(t) = x2

˙̂b(t) = z2

˙̂c(t) = −y2

˙̂p(t) = −x3

˙̂q(t) = −z3

˙̂r(t) = −(x + z)w
˙̂s(t) = yw

(23)

Next, we state and prove the main result of this section.

Theorem 1 The novel 4-D hyperchaotic chemical reactor system (15) with unknown
system parameters is globally and exponentially stabilized for all initial conditions by
the adaptive control law (16) and the parameter update law (23), where kx , ky, kz, kw

are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [14].
We consider the quadratic Lyapunov function defined by (21), which is clearly a

positive definite function on R11.
By substituting the parameter update law (23) into (22), we obtain the time-

derivative of V as
V̇ = −kx x2 − ky y2 − kzz2 − kww2 (24)

From (24), it is clear that V̇ is a negative semi-definite function on R11.
Thus, we can conclude that the state vector X (t) = (x(t), y(t), z(t), w(t)) and

the parameter estimation error are globally bounded.
We define k = min{kx , ky, kz, kw}.
Then it follows from (24) that

V̇ ≤ −k‖X (t)‖2 (25)

Thus, we have
k‖X (t)‖2 ≤ −V̇ (26)

Integrating the inequality (26) from 0 to t , we get

k

t∫

0

‖X (τ )‖2 dτ ≤ V (0) − V (t) (27)

From (27), it follows that X ∈ L2.
Using (19), we can conclude that Ẋ ∈ L∞.
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Using Barbalat’s lemma [14], we conclude that X (t) → 0 exponentially as
t → ∞ for all initial conditions X (0) ∈ R4.

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (15) and (23), when the adaptive
control law (16) is applied.

The parameter values of the novel 4-D hyperchaotic system (15) are taken as in
the hyperchaotic case (7), i.e.

a = 30, b = 16.5, c = 10, p = 0.415, q = 0.5, r = 0.07, s = 0.0001 (28)

We take the positive gain constants as kx = 20, ky = 10, kz = 10 and kw = 10.
Furthermore, as initial conditions of the novel 4-D hyperchaotic chemical reactor

system (15), we take

x(0) = 5.1, y(0) = 2.3, z(0) = 1.8, w(0) = 2.7 (29)

Also, as initial conditions of the parameter estimates, we take

â(0) = 2, b̂(0) = 5, ĉ(0) = 3, p̂(0) = 12, q̂(0) = 24, r̂(0) = 8, ŝ(0) = 10
(30)

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D
hyperchaotic chemical reactor system (15) is depicted.
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Fig. 5 Time-history of the controlled states x, y, z, w
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5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Chemical Reactor Systems

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical novel 4-D hyperchaotic chemical chaotic
reactor systems with unknown parameters.

As the master system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = ax1 − px2
1 − x1y1 − x1z1

ẏ1 = x1y1 − cy1 + sw1

ż1 = bz1 − x1z1 − qz21
ẇ1 = −r(x1 + z1)

(31)

In (31), x1, y1, z1, w1 are the states and a, b, c, p, q, r, s are unknown parameters.
As the slave system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ2 = ax2 − px2
2 − x2y2 − x2z2 + ux

ẏ2 = x2y2 − cy2 + sw2 + uy

ż2 = bz2 − x2z2 − qz22 + uz

ẇ2 = −r(x2 + z2) + uw

(32)

In (32), y1, y2, y3, y4 are the states and ux , uy, uz, uw are the adaptive controls.
The synchronization error is defined by

⎧
⎪⎪⎨

⎪⎪⎩

ex = x2 − x1
ey = y2 − y1
ez = z2 − z1
ew = w2 − w1

(33)

Then the synchronization error dynamics is obtained as

⎧
⎪⎪⎨

⎪⎪⎩

ėx = aex − p(x2
2 − x2

1 ) − x2y2 + x1y1 − x2z2 + x1z1 + ux

ėy = −cey + x2y2 − x1y1 + sew + uy

ėz = bez − x2z2 + x1z1 − q(z22 − z21) + uz

ėw = −r(ex + ez) + uw

(34)

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

ux = −â(t)ex + p̂(t)(x2
2 − x2

1 ) + x2y2 − x1y1 + x2z2 − x1z1 − kx ex

uy = ĉ(t)ey − x2y2 + x1y1 − ŝ(t)ew − kyey

uz = −b̂(t)ez + x2z2 − x1z1 + q̂(t)(z22 − z21) − kzez

uw = r̂(t)(ex + ez) − kwew

(35)
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In (35), kx , ky, kz, kw are positive gain constants.

Substituting (35) into (34), we get the closed-loop error dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ėx = [a − â(t)]ex − [p − p̂(t)](x2
2 − x2

1 ) − kx ex

ėy = −[c − ĉ(t)]ey + [s − ŝ(t)]ew − kyey

ėz = [b − b̂(t)]ez − [q − q̂(t)](z22 − z21) − kzez

ėw = −[r − r̂(t)](ex + ez) − kwew

(36)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)
er (t) = r − r̂(t)
es(t) = s − ŝ(t)

(37)

In view of (37), we can simplify the error dynamics (36) as

⎧
⎪⎪⎨

⎪⎪⎩

ėx = eaex − ep(x2
2 − x2

1 ) − kx ex

ėy = −ecey + esew − kyey

ėz = ebez − eq(z22 − z21) − kzez

ėw = −er (ex + ez) − kwew

(38)

Differentiating (37) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėa = −˙̂a
ėb = − ˙̂b
ėc = −˙̂c
ėp = − ˙̂p
ėq = − ˙̂q
ėr = −˙̂r
ės = −˙̂s

(39)

We consider the quadratic candidate Lyapunov function defined by

V = 1

2

(
e2x + e2y + e2z + e2w

) + 1

2

(
e2a + e2b + e2c + e2p + e2q + e2r + e2s

)
(40)

Differentiating V along the trajectories of (38) and (39), we obtain
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V̇ = −kx e2x − kye2y − kze2z − kwe2w + ea

[
e2x − ˙̂a

]
+ eb

[
e2z − ˙̂b

]

+ec

[
−e2y − ˙̂c

]
+ ep

[
−ex (x2

2 − x2
1 ) − ˙̂p

]
+ eq

[
−ez(z22 − z21) − ˙̂q

]

+er

[
−(ex + ez)ew − ˙̂r

]
+ es

[
eyew − ˙̂s

]
(41)

In view of (41), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂a(t) = e2x˙̂b(t) = e2z˙̂c(t) = −e2y˙̂p(t) = −ex (x2
2 − x2

1 )˙̂q(t) = −ez(z22 − z21)˙̂r(t) = −(ex + ez)ew˙̂s(t) = eyew

(42)

Theorem 2 The novel hyperchaotic chemical reactor systems (31) and (32) with
unknown system parameters are globally and exponentially synchronized for all
initial conditions by the adaptive control law (35) and the parameter update law
(42), where kx , ky, kz, kw are positive gain constants.

Proof We consider the quadratic Lyapunov function defined by (40), which is clearly
a positive definite function on R11.

By substituting the parameter update law (42) into (41), we obtain

V̇ = −kx e2x − kye2y − kze
2
z − kwe2w (43)

From (43), it is clear that V̇ is a negative semi-definite function on R11.
Thus, we can conclude that the error vector e(t) = (ex (t), ey(t), ez(t), ew(t)) and

the parameter estimation error are globally bounded.
We define k = min{k1, k2, k3, k4}.
Then it follows from (43) that

V̇ ≤ −k‖e(t)‖2 (44)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (45)

Integrating the inequality (45) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (46)

From (46), it follows that e ∈ L2. Using (38), we can conclude that ė ∈ L∞.
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UsingBarbalat’s lemma [14], we conclude that e(t) → 0 exponentially as t → ∞
for all initial conditions e(0) ∈ R4. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (31), (32) and (42), when the
adaptive control law (35) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (7).

We take the positive gain constants as kx = 20, ky = 10, kz = 10 and kw = 10.
Furthermore, as initial conditions of the master system (31), we take

x1(0) = 5.2, x2(0) = 2.8, x3(0) = 4.3, x4(0) = 7.6 (47)

As initial conditions of the slave system (32), we take

y1(0) = 6.4, y2(0) = 3.5, y3(0) = 7.2, y4(0) = 5.4 (48)

Also, as initial conditions of the parameter estimates, we take

â(0) = 12, b̂(0) = 4, ĉ(0) = 1, p̂(0) = 8, q̂(0) = 6, r̂(0) = 5, ŝ(0) = 7 (49)

Figures6, 7, 8 and 9 describe the complete synchronization of the novel hyper-
chaotic systems (31) and (32), while Fig. 10 describes the time-history of the syn-
chronization errors ex , ey, ez, ew.
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6 Conclusions

Chaos and hyperchaos have important applications in science and engineering. Since
a hyperchaotic system has at least two positive Lyapunov exponents, the dynamics
of a hyperchaotic system can expand in several different directions simultaneously.
Thus, hyperchaotic systems have more complex behaviour than chaotic systems and
they havemiscellaneous applications in areas like secure communications, cryptosys-
tems, etc. In this work, we derived a twelve-term novel 4-D hyperchaotic system by
introducing a state feedback control to the 3-D chemical chaotic reactor obtained
by Huang and Yang [11]. The qualitative properties of the novel hyperchaotic sys-
tem were discussed in detail. The Lyapunov exponents of the novel hyperchaotic
chemical reactor system were obtained as L1 = 0.2263, L2 = 0.0365, L3 = 0 and
L4 = −10.8396,while theKaplan–Yorkedimensionof the novel hyperchaotic chem-
ical reactor system was derived as DKY = 3.0240. Since the sum of the Lyapunov
exponents is negative, the novel hyperchaotic system is dissipative. Next, an adap-
tive controller was designed to globally stabilize the novel hyperchaotic system with
unknown parameters. Finally, an adaptive controller was also designed to achieve
global chaos synchronization of the identical hyperchaotic systems with unknown
parameters. MATLAB simulations were shown to validate and illustrate the main
results derived in this work.
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A Novel 5-D Hyperchaotic System
with a Line of Equilibrium Points
and Its Adaptive Control

Sundarapandian Vaidyanathan

Abstract Chaos theory describes the qualitative study of unstable aperiodic
behavior in deterministic nonlinear dynamical systems. Chaos theory has applica-
tions in several fields of science and engineering. A hyperchaotic system is gen-
erally defined as a chaotic system with at least two positive Lyapunov exponents.
In this research work, we announce a novel 5-D hyperchaotic system with an infi-
nite line of equilibrium points. The novel 5-D hyperchaotic system has fifteen terms
on the right hand side with two quadratic nonlinearities. The phase portraits of the
5-D novel hyperchaotic system are depicted and the qualitative properties of the
novel hyperchaotic system are discussed. All the equilibrium points of the novel 5-D
hyperchaotic system are unstable. The Lyapunov exponents of the 5-D novel hyper-
chaotic system are obtained as L1 = 1.2995, L2 = 0.2505, L3 = 0.0615, L4 = 0 and
L5 = −17.5932. The maximal Lyapunov exponent of the novel hyperchaotic system
is L1 = 1.2995. Also, the Kaplan–Yorke dimension of the 5-D novel hyperchaotic
system is obtained as DKY = 4.0916. Since the sum of the Lyapunov exponents is
negative, the 5-D novel hyperchaotic system is dissipative. Next, an adaptive con-
troller is designed to globally stabilize the novel hyperchaotic system with unknown
parameters. Finally, an adaptive controller is also designed to achieve global chaos
synchronization of the identical hyperchaotic systems with unknown parameters.
MATLAB simulations are depicted to illustrate all the main results derived in this
work for the 5-D novel hyperchaotic system.
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1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3]. Some classical para-
digms of 3-D chaotic systems in the literature are Lorenz system [17], Rössler system
[25], ACT system [2], Sprott systems [32], Chen system [6], Lü system [18], Cai
system [4], Tigan system [42], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [113], Zhu system [115], Li system [15], Wei-Yang system [109],
Sundarapandian systems [35, 39], Vaidyanathan systems [49, 51, 53–56, 60, 71,
72, 86, 87, 89, 95, 97, 99, 102, 103, 105], Pehlivan system [19], Sampath system
[27], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [61, 65, 67, 69, 73, 77–79], biological systems [59, 62–64, 66,
68, 70, 74–76, 80–84], memristors [1, 21, 106], etc.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [3]. Thus, the dynamics of a hyperchaotic system can expand in
several different directions simultaneously. Hyperchaotic systems possess complex
behaviour and they have miscellaneous applications in engineering such as secure
communications [7, 13, 110], cryptosystems [8, 24, 114], fuzzy logic [31, 112],
electrical circuits [108, 111], etc.

Theminimal dimension of an autonomous hyperchaotic system is four. The first 4-
D hyperchaotic system was found by Rössler [26]. Many hyperchaotic systems have
been reported in the chaos literature such as hyperchaotic Lorenz system [10], hyper-
chaotic Lü system [5], hyperchaotic Chen system [16], hyperchaotic Wang system
[107], hyperchaotic Vaidyanathan systems [50, 58, 85, 96, 101, 104], hyperchaotic
Pham system [20], etc.

The control of a chaotic or hyperchaotic system aims to stabilize or regulate the
system with the help of a feedback control. There are many methods available for
controlling a chaotic system such as active control [33, 43, 44], adaptive control [34,
45, 52], sliding mode control [47, 48], backstepping control [98], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [11, 28, 29, 90, 92], adaptive control
[30, 36–38, 46, 88, 91], slidingmode control [40, 57, 94, 100], backstepping control
[22, 23, 41, 93], etc.

Recently, there is good interest in the chaos literature in the finding of chaotic or
hyperchaotic systems with line equilibrium [9, 14].

In this research work, we announce a novel 5-D hyperchaotic system with a line
of equilibrium points given by

Ek = [
0, 0, 0, k, −k

]T
, (k ∈ R) (1)
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All the equilibrium points (1) of the novel 5-D hyperchaotic system are unstable.
The novel 5-D hyperchaotic system has fifteen terms on the right hand side with two
quadratic nonlinearities. We have also designed adaptive controllers for stabilization
and synchronization of the novel hyperchaotic systems when the system parameters
are unknown.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the fifteen-term novel 5-D hyperchaotic system. Section3 details
the qualitative properties of the novel hyperchaotic system. The Lyapunov exponents
of the 5-D novel hyperchaotic system are obtained as L1 = 1.2995, L2 = 0.2505,
L3 = 0.0615, L4 = 0 and L5 = −17.5932. The maximal Lyapunov exponent of the
novel hyperchaotic system is L1 = 1.2995. Also, the Kaplan–Yorke dimension of the
5-D novel hyperchaotic system is obtained as DKY = 4.0916. Since the sum of the
Lyapunov exponents is negative, the 5-D novel hyperchaotic system is dissipative.

In Sect. 4, we design an adaptive controller to globally stabilize the novel 5-D
hyperchaotic system with unknown parameters. In Sect. 5, an adaptive controller is
designed to achieve global chaos synchronization of the identical novel 5-D hyper-
chaotic systems with unknown parameters. Section6 summarizes the main results
derived in this work.

2 A Novel 5-D Hyperchaotic System

In [58], Vaidyanathan derived an eleven-term novel 4-D hyperchaotic system with
only two quadratic nonlinearities, which is described by the dynamics

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x3 + x4
ẋ2 = cx1 − x1x3 + x4
ẋ3 = −bx3 + x1x2
ẋ4 = −d(x1 + x2)

(2)

where x1, x2, x3, x4 are the states and a, b, c, d are constant positive parameters.
In [58], Vaidyanathan showed that the system (2) exhibits a strange hyperchaotic

attractor, when the parameters take the values

a = 12, b = 4, c = 100, d = 5 (3)

In [58], Vaidyanathan showed that the system (2) has a unique equilibrium at
the origin, which is a saddle-point. Hence, x = 0 is an unstable equilibrium of the
hyperchaotic system.

In [58], the Lyapunov exponents of the Vaidyanathan hyperchaotic system (2) for
the parameter values (3) have been numerically obtained using MATLAB as

L1 = 1.3981, L2 = 0.2393, L3 = 0, L4 = −17.6509 (4)
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Also, the Kaplan–Yorke dimension of the Vaidyanathan hyperchaotic system (2)
has been calculated as

DKY = 3 + L1 + L2 + L3

|L4| = 3.0928 (5)

In this research work, we obtain a novel 5-D hyperchaotic system by adding a
state feedback control to the 4-D Vaidyanathan hyperchaotic system as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + x3 + x4 + x5
ẋ2 = cx1 − x1x3 + x4 + x5
ẋ3 = −bx3 + x1x2
ẋ4 = −d(x1 + x2)
ẋ5 = −p(x1 + x2)

(6)

where x1, x2, x3, x4, x5 are the states and a, b, c, d, p are constant positive parameters.
The 5-D system (6) has fifteen terms on the right hand sidewith only two quadratic

nonlinearities.
The 5-D system (6) exhibits a strange hyperchaotic attractor when the parameter

values are taken as

a = 12, b = 4, c = 100, d = 5, p = 1 (7)

For numerical simulations, we take the initial conditions of the 5-D system (6) as

x1(0) = 0.5, x2(0) = 1.1, x3(0) = 0.8, x4(0) = 0.1, x5(0) = 1.2 (8)

The Lyapunov exponents of the 5-D system (6) for the parameter values (7) and
for the initial conditions (8) are numerically determined using MATLAB as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1 = 1.2995
L2 = 0.2505
L3 = 0.0615
L4 = 0
L5 = −17.5932

(9)

Thus, the 5-D system (6) is hyperchaotic with three positive Lyapunov exponents.
Figures1, 2, 3 and 4 the 3-D projection of the 5-D hyperchaotic system (6) on the

(x1, x2, x3), (x1, x3, x5), (x2, x3, x4) and (x3, x4, x5) spaces, respectively.
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Fig. 1 3-D projection of the novel hyperchaotic system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the novel hyperchaotic system on the (x1, x3, x5) space
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3 Analysis of the Novel 5-D Hyperchaotic System

3.1 Dissipativity

In vector notation, the novel 5-D hyperchaotic system (6) can be expressed as

ẋ = f (x) =

⎡

⎢
⎢
⎢
⎢
⎣

f1(x1, x2, x3, x4, x5)
f2(x1, x2, x3, x4, x5)
f3(x1, x2, x3, x4, x5)
f4(x1, x2, x3, x4, x5)
f5(x1, x2, x3, x4, x5)

⎤

⎥
⎥
⎥
⎥
⎦

, (10)

where ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x1, x2, x3, x4, x5) = a(x2 − x1) + x3 + x4 + x5
f2(x1, x2, x3, x4, x5) = cx1 − x1x3 + x4 + x5
f3(x1, x2, x3, x4, x5) = −bx3 + x1x2
f4(x1, x2, x3, x4, x5) = −d(x1 + x2)
f5(x1, x2, x3, x4, x5) = −p(x1 + x2)

(11)

Let Ω be any region in R5 with a smooth boundary and also, Ω(t) = Φt(Ω),

where Φt is the flow of f . Furthermore, let V(t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇(t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 dx5 (12)

The divergence of the novel 5-D system (6) is found as:

∇ · f = ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

+ ∂f1
∂x4

+ ∂f1
∂x5

= −a − b = −μ (13)

where μ = a + b.
For the choice of parameter values given in (7), we find that μ = 16 > 0.
Inserting the value of ∇ · f from (13) into (12), we get

V̇(t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 dx4 dx5 = −μV(t) (14)

Integrating the first order linear differential equation (14), we get

V(t) = exp(−μt)V(0) (15)
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Since μ > 0, it follows from (15) that V(t) → 0 exponentially as t → ∞. This
shows that the novel 5-D hyperchaotic system (6) is dissipative. Hence, the system
limit sets are ultimately confined into a specific limit set of zero volume, and the
asymptotic motion of the novel 5-D hyperchaotic system (6) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

The equilibrium points of the 5-D novel hyperchaotic system (6) are obtained by
solving the equations

a(x2 − x1) + x3 + x4 + x5 = 0 (16a)

cx1 − x1x3 + x4 + x5 = 0 (16b)

−bx3 + x1x2 = 0 (16c)

−d(x1 + x2) = 0 (16d)

−p(x1 + x2) = 0 (16e)

We take the parameter values as in the Eq. (7).
It is easy to see that the 5-D novel hyperchaotic system (6) has a line of equilibrium

points given by

Ek =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
k

−k

⎤

⎥
⎥
⎥
⎥
⎦

, (k ∈ R) (17)

The Jacobian matrix of the 5-D hyperchaotic system (6) at any equilibrium point
Ek is obtained as the constant matrix

J = J (Ek) =

⎡

⎢
⎢
⎢
⎢
⎣

−a a 1 1 1
c 0 0 1 1
0 0 −b 0 0

−d −d 0 0 0
−p −p 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

−12 12 1 1 1
100 0 0 1 1
0 0 −4 0 0

−5 −5 0 0 0
−1 −1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

(18)

The eigenvalues of the matrix J (x�) are numerically obtained as

λ1 = −41.2426, λ2 = −4, λ3 = 0, λ4 = 0.6305, λ5 = 28.6121 (19)

Thus, all the line equilibrium points Ek are unstable.
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3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

For the parameter values given in the Eq. (7) and for the initial conditions (8), the
Lyapunov exponents of the 5-D novel hyperchaotic system (6) are numerically cal-
culated using MATLAB as

L1 = 1.2995, L2 = 0.2505, L3 = 0.0615, L4 = 0, L5 = −17.5932 (20)

Thus, the 5-D novel hyperchaotic Lorenz system (6) has three positive Lya-
punov exponents. Also, the maximal Lyapunov exponent (MLE) of the system (6)
is obtained as L1 = 1.2995.

Since the sum of the Lyapunov exponents is negative, the novel hyperchaotic
system (6) is dissipative.

Also, the Kaplan–Yorke dimension of the novel hyperchaotic system (6) is
obtained as

DKY = 4 + L1 + L2 + L3 + L4

|L5| = 4.0916 (21)

which is fractional.
Since the 5-D hyperchaotic Lorenz system (6) has three positive Lyapunov expo-

nents, it has a very complex dynamics and the system trajectories can be expended
in three different directions.

4 Adaptive Control of the Novel 5-D Hyperchaotic System

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally stabilizing the novel 5-D hyperchaotic system with unknown
parameters.

Thus, we consider the novel 5-D hyperchaotic system given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + x3 + x4 + x5 + u1
ẋ2 = cx1 − x1x3 + x4 + x5 + u2
ẋ3 = −bx3 + x1x2 + u3
ẋ4 = −d(x1 + x2) + u4
ẋ5 = −p(x1 + x2) + u5

(22)

In (22), x1, x2, x3, x4, x5 are the states and u1, u2, u3, u4, u5 are the adaptive
controls to be determined using estimates â(t), b̂(t), ĉ(t), d̂(t), p̂(t) for the unknown
parameters a, b, c, d, p, respectively.
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We consider the adaptive feedback control law

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = −â(t)(x2 − x1) − x3 − x4 − x5 − k1x1
u2 = −ĉ(t)x1 + x1x3 − x4 − x5 − k2x2
u3 = b̂(t)x3 − x1x2 − k3x3
u4 = d̂(t)(x1 + x2) − k4x4
u5 = p̂(t)(x1 + x2) − k5x5

(23)

where k1, k2, k3, k4, k5 are positive gain constants.
Substituting (23) into (22), we get the closed-loop plant dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = [a − â(t)](x2 − x1) − k1x1
ẋ2 = [c − ĉ(t)]x1 − k2x2
ẋ3 = −[b − b̂(t)]x3 − k3x3
ẋ4 = −[d − d̂(t)](x1 + x2) − k4x4
ẋ5 = −[p − p̂(t)](x1 + x2) − k5x5

(24)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ed(t) = d − d̂(t)
ep(t) = p − p̂(t)

(25)

In view of (25), we can simplify the plant dynamics (24) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = ecx1 − k2x2
ẋ3 = −ebx3 − k3x3
ẋ4 = −ed(x1 + x2) − k4x4
ẋ5 = −ep(x1 + x2) − k5x5

(26)

Differentiating (25) with respect to t, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
ėc(t) = −˙̂c(t)
ėd(t) = −˙̂d(t)
ėp(t) = −˙̂p(t)

(27)
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We consider the quadratic candidate Lyapunov function defined by

V(x, ea, eb, ec, ed, ep) = 1

2

5∑

i=1

x2i + 1

2

(
e2a + e2b + e2c + e2d + e2p

)
(28)

Differentiating V along the trajectories of (26) and (27), we obtain

V̇ = −k1x21 − k2x22 − k3x23 − k4x24 − k5x25

+ ea

[
x1(x2 − x1) − ˙̂a

]
+ eb

[
−x23 − ˙̂b

]
+ ec

[
−x23 − ˙̂c

]

+ ed

[
−x4(x1 + x2) − ˙̂d

]
+ ep

[
−x5(x1 + x2) − ˙̂p

]
(29)

In view of (29), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = −x23˙̂c(t) = x1x2˙̂d(t) = −x4(x1 + x2)˙̂p(t) = −x5(x1 + x2)

(30)

Next, we state and prove the main result of this section.

Theorem 1 The novel 5-D hyperchaotic system with unknown system (22) parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (23) and the parameter update law (30), where ki, (i = 1, . . . , 5) are
positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [12].
We consider the quadratic Lyapunov function defined by (28), which is clearly a

positive definite function on R10.
By substituting the parameter update law (30) into (29), we obtain the time-

derivative of V as

V̇ = −k1x21 − k2x22 − k3x23 − k4x24 − k5x25 (31)

From (31), it is clear that V̇ is a negative semi-definite function on R10.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) x5(t) ea(t) eb(t) ec(t) ed(t) ep(t)

]T ∈ L∞.

We define k = min{k1, k2, k3, k4, k5}.
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Then it follows from (31) that

V̇ ≤ −k‖x(t)‖2 (32)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (33)

Integrating the inequality (33) from 0 to t, we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V(0) − V(t) (34)

From (34), it follows that x ∈ L2.
Using (26), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [12], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R5.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (22) and (30), when the adaptive
control law (23) is applied.

The parameter values of the novel 4-D hyperchaotic system (22) are taken as in
the hyperchaotic case (7), i.e.

a = 12, b = 4, c = 100, d = 5, p = 1 (35)

We take the positive gain constants as

k1 = 5, k2 = 5, k3 = 5, k4 = 5, k5 = 5 (36)

Furthermore, as initial conditions of the novel 5-D hyperchaotic system (22), we
take

x1(0) = 12.5, x2(0) = −16.2, x3(0) = 19.4, x4(0) = 20.8, x5(0) = 14.3
(37)

Also, as initial conditions of the parameter estimates, we take

â(0) = 1.4, b̂(0) = 20.3, ĉ(0) = 10.5, d̂(0) = 15.7, p̂(0) = 22.1 (38)

In Fig. 5, the exponential convergence of the controlled states of the novel 5-D
hyperchaotic system (22) is shown.
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Fig. 5 Time-history of the
controlled states
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5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally synchronizing identical novel 5-D hyperchaotic systems with
unknown parameters. We use Lyapunov stability theory to prove the main adaptive
control result.

As the master system, we consider the novel 5-D hyperchaotic system given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + x3 + x4 + x5
ẋ2 = cx1 − x1x3 + x4 + x5
ẋ3 = −bx3 + x1x2
ẋ4 = −d(x1 + x2)
ẋ5 = −p(x1 + x2)

(39)

In (39), x1, x2, x3, x4, x5 are the states and a, b, c, d, p are unknown system para-
meters.

As the slave system, we consider the novel 5-D hyperchaotic system given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ1 = a(y2 − y1) + y3 + y4 + y5 + u1
ẏ2 = cy1 − y1y3 + y4 + y5 + u2
ẏ3 = −by3 + y1y2 + u3
ẏ4 = −d(y1 + y2) + u4
ẏ5 = −p(y1 + y2) + u5

(40)

The synchronization error between the novel hyperchaotic systems (39) and (40)
is defined by

ei = yi − xi, (i = 1, 2, . . . , 5) (41)
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Then the synchronization error dynamics is obtained as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = a(e2 − e1) + e3 + e4 + e5 + u1
ė2 = ce1 + e4 + e5 − y1y3 + x1x3 + u2
ė3 = −be3 + y1y2 − x1x2 + u3
ė4 = −d(e1 + e2) + u4
ė5 = −p(e1 + e2) + u5

(42)

We consider the adaptive feedback control law

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = −â(t)(e2 − e1) − e3 − e4 − e5 − k1e1
u2 = −ĉ(t)e1 − e4 − e5 + y1y3 − x1x3 − k2e2
u3 = b̂(t)e3 − y1y2 + x1x2 − k3e3
u4 = d̂(t)(e1 + e2) − k4e4
u5 = p̂(t)(e1 + e2) − k5e5

(43)

where k1, k2, k3, k4, k5 are positive gain constants.
Substituting (43) into (42), we get the closed-loop error dynamics as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) − k1e1

ė2 = [
c − ĉ(t)

]
e1 − k2e2

ė3 = −
[
b − b̂(t)

]
e3 − k3e3

ė4 = −
[
d − d̂(t)

]
(e1 + e2) − k4e4

ė5 = − [
p − p̂(t)

]
(e1 + e2) − k5e5

(44)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ed(t) = d − d̂(t)
ep(t) = p − p̂(t)

(45)

In view of (45), we can simplify the error dynamics (44) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = ece1 − k2e2
ė3 = −ebe3 − k3e3
ė4 = −ed(e1 + e2) − k4e4
ė5 = −ep(e1 + e2) − k5e5

(46)
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Differentiating (45) with respect to t, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
ėc(t) = −˙̂c(t)
ėd(t) = −˙̂d(t)
ėp(t) = −˙̂p(t)

(47)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V(e, ea, eb, ec, ed, ep) = 1

2

5∑

i=1

e2i + 1

2

(
e2a + e2b + e2c + e2d + e2p

)
(48)

Differentiating V along the trajectories of (46) and (47), we obtain

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 − k5e25

+ ea

[
e1(e2 − e1) − ˙̂a

]
+ eb

[
−e23 − ˙̂b

]
+ ec

[
e1e2 − ˙̂c

]

+ ed

[
−e4(e1 + e2) − ˙̂d

]
+ ep

[
−e5(e1 + e2) − ˙̂p

]
(49)

In view of (49), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂b(t) = −e23˙̂c(t) = e1e2˙̂d(t) = −e4(e1 + e2)˙̂p(t) = −e5(e1 + e2)

(50)

Next, we state and prove the main result of this section.

Theorem 2 The novel 5-D hyperchaotic systems (39) and (40) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (43) and the parameter update law (50), where ki, (i =
1, . . . , 5) are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [12].
We consider the quadratic Lyapunov function defined by (48), which is clearly a

positive definite function on R10.
By substituting the parameter update law (50) into (49), we obtain

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 − k5e25 (51)
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From (51), it is clear that V̇ is a negative semi-definite function on R10.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) e5(t) ea(t) eb(t) ec(t) ed(t) ep(t)

]T ∈ L∞. (52)

We define k = min{k1, k2, k3, k4, k5}.
Then it follows from (51) that

V̇ ≤ −k‖e(t)‖2 (53)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (54)

Integrating the inequality (54) from 0 to t, we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V(0) − V(t) (55)

From (55), it follows that e ∈ L2.
Using (46), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [12], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R5.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the 5-D systems (39), (40) and (50), when
the adaptive control law (43) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (7), i.e.

a = 12, b = 4, c = 100, d = 5, p = 1 (56)

We take the positive gain constants as ki = 5 for i = 1, 2, . . . , 5.
Furthermore, as initial conditions of the master system (39), we take

x1(0) = 6.3, x2(0) = 5.8, x3(0) = −2.7, x4(0) = 14.5, x5(0) = −16.7
(57)

As initial conditions of the slave system (40), we take

y1(0) = 15.4, y2(0) = −13.5, y3(0) = 14.2, y4(0) = −29.4, y5(0) = 22.8
(58)
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Also, as initial conditions of the parameter estimates, we take

â(0) = 2.1, b̂(0) = 4.7, ĉ(0) = 3.2, d̂(0) = 12.4, p̂(0) = 25.8 (59)

Figures6, 7, 8, 9 and 10 describe the complete synchronization of the novel 5-D
hyperchaotic systems (39) and (40), while Fig. 11 describes the time-history of the
synchronization errors e1, e2, e3, e4, e5.

Fig. 6 Synchronization of
the states x1 and y1
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Fig. 7 Synchronization of
the states x2 and y2
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Fig. 8 Synchronization of
the states x3 and y3
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Fig. 9 Synchronization of
the states x4 and y4
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Fig. 10 Synchronization of
the states x5 and y5
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Fig. 11 Time-history of the
synchronization errors
e1, e2, e3, e4, e5
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6 Conclusions

In this research work, we described a novel 5-D hyperchaotic system with an infinite
line of equilibrium points. All the equilibrium points of the novel 5-D hyperchaotic
system are unstable. The novel 5-D hyperchaotic system has fifteen terms on the right
hand side with two quadratic nonlinearities. The phase portraits of the 5-D novel
hyperchaotic system are depicted and the qualitative properties of the novel hyper-
chaotic system are discussed. TheLyapunov exponents of the 5-D novel hyperchaotic
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system have been obtained as L1 = 1.2995, L2 = 0.2505, L3 = 0.0615, L4 = 0 and
L5 = −17.5932, The maximal Lyapunov exponent of the novel hyperchaotic system
is L1 = 1.2995. while the Kaplan–Yorke dimension of the 5-D novel hyperchaotic
system is obtained as DKY = 4.0916. Next, an adaptive controller was designed to
globally stabilize the novel hyperchaotic system with unknown parameters. Finally,
an adaptive controller was also designed to achieve global chaos synchronization of
the identical hyperchaotic systems with unknown parameters. MATLAB simulations
were shown to illustrate all the main results derived in this work.
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Analysis, Control and Circuit Simulation
of a Novel 3-D Finance Chaotic System

S. Vaidyanathan, Ch.K. Volos, O.I. Tacha, I.M. Kyprianidis,
I.N. Stouboulos and V.-T. Pham

Abstract There is a growing interest in developing nonlinear dynamical systems
for economic models displaying chaotic behaviour. In this work, we describe an
eight-term novel 3-D finance chaotic system consisting of two nonlinearities (one
quadratic and one quartic). The phase portraits of the novel 3-D finance chaotic
system are depicted using MATLAB. We give a dynamic analysis of the novel 3-D
finance chaotic system. The novel chaotic system has three equilibrium points of
which one equilibrium point on the x2 axis is a saddle point, while the other two
equilibrium points are saddle-foci. The novel finance chaotic system has rotation
symmetry about the x2 axis. The Lyapunov exponents of the novel finance chaotic
system are obtained as L1 = 0.1209, L2 = 0 and L3 = −0.4321, while the Kaplan–
Yorke dimension of the novel finance chaotic system is obtained as DKY = 2.2798.
Since the sum of the Lyapunov exponents is negative, the novel chaotic system
is dissipative. Next, we derive new results for the global chaos control of the novel
finance chaotic systemwith unknown parameters using adaptive control method. The
chaos control problem aims to regulate the states of the novel finance chaotic system
to desired constant values. The main adaptive control result for the novel finance
chaotic system is established using Lyapunov stability theory. Finally, an electronic
circuit realization of the novel finance chaotic system using Spice is presented in
detail to confirm the feasibility of the theoretical model.
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1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3, 13, 15, 25]. Some
classical paradigms of 3-D chaotic systems in literature are the Lorenz system [17],
Rössler system [22], ACT system [2], Sprott systems [24], Chen system [6], Lü
system [18], Cai system [5], Tigan system [30], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [90], Zhu system [91], Li system [16], Sundarapandian systems [28, 29],
Vaidyanathan systems [36, 38, 40–43, 46, 57, 58, 72–75, 77, 79, 81, 82, 84],
Pehlivan system [20], Sampath system [23], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [47, 51, 53, 55, 59, 63–65], biological systems [45, 48–50, 52,
54, 56, 60–62, 66–70], memristors [1, 21, 89], etc.

The control of a chaotic system aims to stabilize or regulate the system with
the help of a feedback control. There are many methods available for controlling a
chaotic system such as active control [26, 31, 32], adaptive control [27, 33, 37, 39,
44, 71, 76, 80, 83], sliding mode control [34, 35], backstepping control [19, 78, 85],
etc.

In recent years, there is significant interest in applying nonlinear dynamical sys-
tems to model finance systems displaying chaotic behaviour [4, 7–10, 86–88]. The
study of complexity of economy and finance systems has important theoretical and
practical meaning and it is the developmental direction of complex nonlinear eco-
nomic systems.

In this work, we describe an eight-term novel 3-D finance chaotic system con-
sisting of two nonlinearities (one quadratic and one quartic). Our novel 3-D finance
chaotic system is obtained by modifying the dynamics of the finance chaotic system
described in [10].

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the novel 3-D finance chaotic system. Section3 details the
qualitative analysis and properties of the novel finance chaotic system.

InSect. 3, theLyapunovexponents of the novel finance chaotic systemare obtained
as L1 = 0.1209, L2 = 0 and L3 = −0.4321, while the Kaplan–Yorke dimension of
the novel chaotic system is obtained asDKY = 2.2798. Themaximal Lyapunov novel
exponent of the novel finance chaotic system is L1 = 0.1209. Since the sum of the
Lyapunov exponents is negative, the novel finance chaotic system is dissipative.

In Sect. 4, we derive new results for the global chaos control of the novel finance
chaotic system with unknown parameters.

In Sect. 5, an electronic circuit realization of the novel finance chaotic system
using Spice is presented to confirm the feasibility of the theoretical model. Section6
contains the conclusions of this work.
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2 A Novel 3-D Finance Chaotic System

In [10], Gao and Ma studied the finance chaotic system described by the dynamics

⎧
⎨

⎩

ẋ1 = x3 + (x2 − a)x1
ẋ2 = 1 − bx2 − x21
ẋ3 = −x1 − cx3

(1)

where x1, x2, x3 are the states and a, b, c are constant, positive, parameters.
In the finance model (1), x1 denotes the interest rate, x2 denotes the investment

demand and x3 denotes the price index. The parameter a denotes the savings, b
denotes the investment cost and c denotes the commodities demand elasticity.

In [10], it was shown that the system (1) exhibits a strange chaotic attractor for
the parameter values

a = 6, b = 0.1, c = 1 (2)

For the initial values

x1(0) = 0.6, x2(0) = 0.2, x3(0) = 0.8 (3)

and for the parameter values (2), the Lyapunov exponents of the finance chaotic
system (1) can be numerically obtained as

L1 = 0.0833, L2 = 0, L3 = −0.4101 (4)

The Kaplan–Yorke dimension [11, 12] of a chaotic system of order n is defined
as

DKY = j + L1 + · · · + Lj

|Lj+1| (5)

where L1 ≥ L2 ≥ · · · ≥ Ln are the Lyapunov exponents of the chaotic system and j
is the largest integer for which L1 + L2 + · · · + Lj ≥ 0. (Kaplan–Yorke conjecture
states that for typical chaotic systems, DKY ≈ DL, the information dimension of the
system.)

Thus, theKaplan–Yorkedimensionof thefinance chaotic system (1) canbenumer-
ically obtained as

DKY = 2 + L1 + L2

|L3| = 2.2031 (6)

In this section, we describe an eight-term novel finance chaotic system, which is
obtained by modifying the second equation in the dynamics of (1) as

⎧
⎨

⎩

ẋ1 = x3 + (x2 − a)x1
ẋ2 = 1 − bx2 − x41
ẋ3 = −x1 − cx3

(7)
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The novel finance system (7) is an eight-term polynomial system with two non-
linearities (one quadratic and one quartic).

The novel finance system (7) exhibits a strange chaotic attractor for the parameter
values

a = 7.5, b = 0.1, c = 1 (8)

For numerical simulations, we take the initial conditions as

x1(0) = 0.6, x2(0) = 0.2, x3(0) = 0.8 (9)

In this paper, we shall show that for the parameter values (8) and for the initial
conditions (9), the Lyapunov exponents of the novel finance chaotic system (7) are
given by

L1 = 0.1209, L2 = 0, L3 = −0.4321 (10)

Thus, the Kaplan–Yorke dimension of the novel finance chaotic system (7) can
be numerically obtained as

DKY = 2 + L1 + L2

|L3| = 2.2798 (11)

From Eqs. (4) and (10), we note that the maximal Lyapunov exponent of the
Gao–Ma finance chaotic system (1) is L1 = 0.0833, while the maximal Lyapunov
exponent of the novel finance chaotic system (7) is L1 = 0.1209.
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Fig. 1 3-D phase portrait of the novel finance chaotic system
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From Eqs. (6) and (11), we note that the Kaplan–Yorke dimension of the Gao–Ma
finance chaotic system (1) is DKY = 2.2031, while the Kaplan–Yorke dimension of
the novel finance chaotic system (7) is DKY = 2.2798.

The above observations show that the novel finance chaotic system (7) displays
more complexity than the Gao–Ma finance chaotic system (1).

Figure1 depicts the 3-D phase portrait of the novel finance chaotic system (7),
while Figs. 2, 3 and 4 depict the 2-D projection of the novel finance chaotic system
(7) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.

From Figs. 1, 2, 3 and 4, we deduce that the strange chaotic attractor of the novel
finance chaotic system (7) can be classified as a two-scroll chaotic attractor.

Fig. 2 2-D projection of the
novel finance chaotic system
on the (x1, x2) plane
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Fig. 3 2-D projection of the
novel finance chaotic system
on the (x2, x3) plane
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Fig. 4 2-D projection of the
novel finance chaotic system
on the (x1, x3) plane

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 3

3 Analysis of the Novel 3-D Finance Chaotic System

In this section, we give a dynamic analysis of the 3-D novel chaotic system (7). We
take the parameter values as in the chaotic case (8), viz. a = 7.5, b = 0.1 and c = 1.

3.1 Equilibrium Points

It is easy to see that the system (7) has three equilibrium points, viz.

E1 =
⎡

⎣
0
10
0

⎤

⎦ , E2 =
⎡

⎣
0.6223
8.5000

−0.6223

⎤

⎦ and E3 =
⎡

⎣
−0.6223
8.5000
0.6223

⎤

⎦ (12)

The Jacobian of the system (7) at any point x ∈ R3 is calculated as

J(x) =
⎡

⎣
x2 − a x1 1
−4x31 −b 0
−1 0 −c

⎤

⎦ =
⎡

⎣
x2 − 7.5 x1 1
−4x31 −0.1 0
−1 0 −1

⎤

⎦ (13)

We find that the matrix J1 = J(E1) has the eigenvalues

λ1 = −0.6861, λ2 = −0.1, λ3 = 2.1861 (14)

This shows that the equilibrium point E1 is a saddle-point, which is unstable.
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Next, we find that the matrix J2 = J(E2) has the eigenvalues

λ1 = −0.6369, λ2,3 = 0.2685 ± 0.9326i (15)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
We also find that the matrix J3 = J(E3) has the eigenvalues

λ1 = −0.6369, λ2,3 = 0.2685 ± 0.9326i (16)

This shows that the equilibrium point E3 is also a saddle-focus, which is unstable.

3.2 Rotation Symmetry About the x2-axis

It is easy to see that the system (7) is invariant under the change of coordinates

(x1, x2, x3) �→ (−x1, x2,−x3) (17)

Thus, it follows that the 3-D novel finance chaotic system (7) has rotation symme-
try about the x2-axis and that any non-trivial trajectory must have a twin trajectory.

3.3 Invariance

It is easy to see that the x2-axis is invariant under the flow of the 3-D novel finance
chaotic system (7). The invariant motion along the x2-axis is characterized by

ẋ2 = 1 − bx2, (b > 0) (18)

which is stable, but not asymptotically stable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (7) as in the chaotic case (8). We
take the initial state of the novel system (7) as given in (9).

Then the Lyapunov exponents of the system (7) are numerically obtained as

L1 = 0.1209, L2 = 0, L3 = −0.4321 (19)

Thus, the maximal Lyapunov exponent of the novel finance chaotic system (7) is
found as L1 = 0.1209.
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Also, the Kaplan–Yorke dimension of the novel chaotic system (7) is found as

DKY = 2 + L1 + L2

|L3| = 2.2798 (20)

4 Adaptive Control of the Novel 3-D Finance Chaotic
System

In this section, we consider the controlled novel 3-D finance chaotic system given
by ⎧

⎨

⎩

ẋ1 = x3 + (x2 − a)x1 + u1
ẋ2 = 1 − bx2 − x41 + u2
ẋ3 = −x1 − cx3 + u3

(21)

where x1, x2, x3 are the states and a, b, c are unknown system parameters.
We consider the research problem of finding adaptive controls u1, u2, u3 so as to

regulate the states x1, x2, and x3 of the system (21) to desired constant values α, β

and γ respectively.
Thus, we define the control error as

⎧
⎨

⎩

e1(t) = x1(t) − α

e2(t) = x2(t) − β

e3(t) = x3(t) − γ

(22)

Then the error dynamics is determined as

⎧
⎨

⎩

ė1 = (e3 + γ ) + (e2 + β)(e1 + α) − a(e1 + α) + u1
ė2 = 1 − b(e2 + β) − (e1 + α)4 + u2
ė3 = −(e1 + α) − c(e3 + γ ) + u3

(23)

We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −(e3 + γ ) − (e2 + β)(e1 + α) + â(t)(e1 + α) − k1e1
u2 = −1 + b̂(t)(e2 + β) + (e1 + α)4 − k2e2
u3 = (e1 + α) + ĉ(t)(e3 + γ ) − k3e3

(24)

where k1, k2, k3 are positive gain constants.
Substituting (24) into (23), we get the closed-loop plant dynamics as

⎧
⎨

⎩

ė1 = −[a − â(t)](e1 + α) − k1e1
ė2 = −[b − b̂(t)](e2 + β) − k2e2
ė3 = −[c − ĉ(t)](e3 + γ ) − k3e3

(25)
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The parameter estimation errors are defined as

⎧
⎨

⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(26)

In view of (26), we can simplify the plant dynamics (25) as

⎧
⎨

⎩

ė1 = −ea(e1 + α) − k1e1
ė2 = −eb(e2 + β) − k2e2
ė3 = −ec(e3 + γ ) − k3e3

(27)

Differentiating (26) with respect to t, we obtain

⎧
⎪⎨

⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
ėc(t) = −˙̂c(t)

(28)

We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b + e2c

)
(29)

Differentiating V along the trajectories of (27) and (28), we obtain

⎧
⎨

⎩

V̇ = −k1e21 − k2e22 − k3e23 + ea

[
−e1(e1 + α) − ˙̂a

]

+ eb

[
−e2(e2 + β) − ˙̂b

]
+ ec

[
−e3(e3 + γ ) − ˙̂c

] (30)

In view of (30), we take the parameter update law as

⎧
⎪⎨

⎪⎩

˙̂a(t) = −e1(e1 + α)
˙̂b(t) = −e2(e2 + β)
˙̂c(t) = −e3(e3 + γ )

(31)

Next, we state and prove the main result of this section.

Theorem 1 The states x1, x2 and x3 of the novel 3-D finance chaotic system (21) with
unknown system parameters are globally and exponentially regulated for all initial
conditions to the desired constant values α, β and γ , respectively, by the adaptive
control law (24) and the parameter update law (31), where k1, k2, k3 are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory [14].
We consider the quadratic Lyapunov function defined by (29), which is clearly a

positive definite function on R6.
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By substituting the parameter update law (31) into (30), we obtain the time-
derivative of V as

V̇ = −k1e21 − k2e22 − k3e23 (32)

From (32), it is clear that V̇ is a negative semi-definite function on R6.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (32) that

V̇ ≤ −k‖e(t)‖2 (33)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (34)

Integrating the inequality (34) from 0 to t, we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (35)

From (35), it follows that e ∈ L2.
Using (27), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [14], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
Hence, it follows that the states x1, x2 and x3 of the novel 3-D finance chaotic

system (21) with unknown system parameters a, b and c are globally and exponen-
tially regulated for all initial conditions to the desired constant values α, β and γ ,
respectively, by the adaptive control law (24) and the parameter update law (31).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (21) and (31), when the adaptive
control law (24) is applied.

The parameter values of the novel 3-D finance chaotic system (21) are taken as
in the chaotic case (8), i.e.

a = 7.5, b = 0.1, c = 1 (36)
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Fig. 5 Time-history of the
regulated states x1, x2, x3
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We take the positive gain constants as

k1 = 10, k2 = 10, k3 = 10 (37)

Furthermore, as initial conditions of the novel 3-D finance chaotic system (21),
we take

x1(0) = 3.1, x2(0) = 5.7, x3(0) = 2.4 (38)

As initial conditions of the parameter estimates, we take

â(0) = 3.4, b̂(0) = 2.8, ĉ(0) = 4.7 (39)

As the desired values of the states, we take

α = 3, β = 2, γ = 1 (40)

In Fig. 5, the exponential convergence of the regulated states of the 3-D novel
finance chaotic system (21) is depicted.

It is seen that the states x1, x2, x3 of the novel finance chaotic system (21) converge
to the desired steady-state values in 30s.

5 Circuit Simulation of the Novel Finance Chaotic System

In this section, circuit implementation of the novel finance chaotic system is studied.
The electronic circuit realizing the new system (7) is designed using operational
amplifier approach [74, 77, 83] and shown in Fig. 6. Each state variable of system
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Fig. 6 The designed electronic circuit schematic of the novel finance chaotic system

(7), i.e. x1, x2, x3 is implemented as the voltage across the corresponding capacitors
C1, C2, and C3, respectively. The circuital equations of the designed circuit are

⎧
⎪⎪⎨

⎪⎪⎩

dvC1
dt = 1

R1C1
vC3 + 1

10R2C1
vC1vC2 − 1

R3C1
vC1

dvC2
dt = − 1

R4C2
Ve − 1

R5C2
vC2 − 1

1000R6C2
v4C1

dvC3
dt = − 1

R7C3
vC1 − 1

R8C3
vC3

(41)

where vC1 , vC2 , and vC3 denote the voltages across the capacitors C1, C2, and C3,
respectively.

The TL084 operational amplifiers are used in this work. The power supplies of the
operational amplifiers are±15VDC . The values of components in Fig. 6 are chosen to
match the parameters of system (7) as follows: R1 = R4 = R7 = R8 = R9 = R10 =
400 k�,R2 = 40 k�,R3 = 53.333 k�,R5 = 4M�,R6 = 0.4 k�,Ve = −1VDC , and
C1 = C2 = C3 = 1 nF.

The designed circuit is implemented by using the electronic simulation package
Cadence OrCAD. The obtained results are presented in Figs. 7, 8 and 9, which show
the chaotic attractors in vC1 − vC2 , vC2 − vC3 , and vC1 − vC3 planes, respectively. It is
easy to see a good agreement between the circuital attractors and theoretical ones.
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Fig. 7 Chaotic attractor of
the designed electronic
circuit in vC1 − vC2 plane

Fig. 8 Chaotic attractor of
the designed electronic
circuit in vC2 − vC3 plane
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Fig. 9 Chaotic attractor of
the designed electronic
circuit in vC1 − vC3 plane

6 Conclusions

In this chapter, the dynamics of a eight-term novel 3-D finance chaotic system con-
sisting of two nonlinearities (one quadratic and one quartic), were investigated. The
model describes the time variation of three state variables: the interest rate (x1), the
investment demand (x2) and the price index (x3). From the economical point of view,
the factors that influence changes in the variable x1 mainly come from the invest-
ment market and the structural adjustment from the prices. The changing rate of x2
is in proportion to the rate of investment, and in proportion to an inversion with the
cost of investment and interest rates. Furthermore, changes in x3 are controlled by a
contradiction between supply and demand in commercial markets and are also influ-
enced by inflation rates. So, as parameters in the proposed system the saving amount,
cost per investment and the elasticity of demand of commercial markets, have been
chosen. Interesting features of this novel finance system, such as a chaotic behav-
ior and a rotation symmetry about the x2 axis were investigated. Also, new results
for the global chaos control of the proposed finance chaotic system with unknown
parameters using adaptive control method was presented. This, approach is a very
interesting research subject due to the fact that the chaos control problem aims to
regulate the states of the novel finance chaotic system to desired constant values. In
economy, this result has a significant interest, especially in cases in which finance
systems need to be regulated. Finally, an electronic circuit realization of the novel
finance chaotic system using Spice was presented in detail to confirm the feasibility
of the theoretical model.
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A Novel Highly Hyperchaotic System
and Its Adaptive Control

Sundarapandian Vaidyanathan

Abstract In this work, we describe a twelve-term novel highly hyperchaotic system
with four quadratic nonlinearities and an exponential nonlinearity. The phase por-
traits of the twelve-term novel hyperchaotic system are depicted and the qualitative
properties of the novel hyperchaotic system are discussed. The novel hyperchaotic
system has two unstable equilibrium points. The Lyapunov exponents of the novel
hyperchaotic system are obtained as L1 = 14.5577, L2 = 0.1225, L3 = 0 and
L4 = −36.3884. The maximal Lyapunov exponent of the novel hyperchaotic sys-
tem has a high value, viz. L1 = 14.5577. Thus, the novel 4-D system shows highly
hyperchaotic behavior. Also, the Kaplan–Yorke dimension of the novel hyperchaotic
system is obtained as DK Y = 3.4045, which is a high value for a 4-D hyperchaotic
system. Since the sum of the Lyapunov exponents is negative, the novel hyperchaotic
system is dissipative. Next, an adaptive controller is designed to globally stabilize the
highly hyperchaotic systemwith unknown parameters. Finally, an adaptive controller
is also designed to achieve global chaos synchronization of the identical highly hyper-
chaotic systems with unknown parameters. MATLAB simulations are presented to
depict the phase portraits of the novel highly hyperchaotic system and illustrate all
the main adaptive control results derived in this work.

Keywords Chaos · Chaotic systems · Hyperchaos · Hyperchaotic systems ·
Adaptive control · Synchronization

1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3].
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [15], Rössler system [23], ACT system [2], Sprott systems [30], Chen system
[6], Lü system [16], Cai system [4], Tigan system [40], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [112], Zhu system [114], Li system [13], Wei-Yang system [108],
Sundarapandian systems [33, 37], Vaidyanathan systems [47, 49, 51–54, 58, 69,
70, 84, 85, 87, 93, 95, 98, 101, 102, 104], Pehlivan system [17], Sampath system
[25], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [59, 63, 65, 67, 71, 75–77], biological systems [57, 60–62, 64,
66, 68, 72–74, 78–82], memristors [1, 19, 105], etc.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [3]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [7, 12, 109], cryptosystems [8, 22,
113], fuzzy logic [29, 111], electrical circuits [107, 110], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [24]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [9], hyperchaotic Lü system [5], hyperchaotic Chen system [14],
hyperchaotic Wang system [106], hyperchaotic Vaidyanathan systems [48, 56, 83,
94, 96, 100, 103], hyperchaotic Pham system [18], etc.

The control of a chaotic or hyperchaotic system aims to stabilize or regulate the
system with the help of a feedback control. There are many control methods such as
active control [31, 41, 42], adaptive control [32, 43, 50], sliding mode control [45,
46], backstepping control [97], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many control methods for
synchronization such as active control [10, 26, 27, 88, 90], adaptive control [28,
34–36, 44, 86, 89], sliding mode control [38, 55, 92, 99], backstepping control [20,
21, 39, 91], etc.

In this research work, we announce a twelve-term novel 4-D hyperchaotic system
with four quadratic nonlinearities and an exponential nonlinearity. Section2describes
the dynamic equations and phase portraits of the twelve-term novel 4-D hyperchaotic
system. Section3 details the qualitative properties of the novel highly hyperchaotic
system. The Lyapunov exponents of the novel hyperchaotic system are obtained
as L1 = 14.5577, L2 = 0.1225, L3 = 0 and L4 = −36.2884. Since the maximal
Lyapunov exponent of the novel hyperchaotic system is very high, viz. L1 = 14.5577,
it follows that the novel hyperchaotic system is highly hyperchaotic.
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2 A Novel 4-D Hyperchaotic System

In this section, we describe a twelve-term novel hyperchaotic system described by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + qx4
ẋ2 = bx1 − cx1x3 + qx4
ẋ3 = exp(x1x2) − px3 + x2

1 + x2
2

ẋ4 = −r x2

(1)

where x1, x2, x3, x4 are the states and a, b, c, p, q, r are constant positive parameters.
The system (1) exhibits a strange hyperchaotic attractor for the parameter values

a = 13.8, b = 41, c = 0.4, p = 10.6, q = 2.8, r = 3.5 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 0.4, x2(0) = 0.2, x3(0) = 0.2, x4(0) = 0.4 (3)

Figures1, 2, 3 and 4 show the 3-D projection of the novel hyperchaotic system
(1) on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.
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Fig. 1 3-D projection of the novel hyperchaotic system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the novel hyperchaotic system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the novel hyperchaotic system on the (x1, x3, x4) space
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Fig. 4 3-D projection of the novel hyperchaotic system on the (x2, x3, x4) space

3 Analysis of the Novel 4-D Hyperchaotic System

In this section, we give a dynamic analysis of the 4-D novel hyperchaotic system (1).
We take the parameter values as in the hyperchaotic case (2).

3.1 Dissipativity

In vector notation, the novel hyperchaotic system (1) can be expressed as

ẋ = f (x) =

⎡

⎢
⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤

⎥
⎥
⎦ , (4)

where ⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3, x4) = a(x2 − x1) + x2x3 + qx4
f2(x1, x2, x3, x4) = bx1 − cx1x3 + qx4
f3(x1, x2, x3, x4) = exp(x1x2) − px3 + x2

1 + x2
2

f4(x1, x2, x3, x4) = −r x2

(5)

Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the hypervolume of Ω(t).
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By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (6)

The divergence of the novel hyperchaotic system (4) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

+ ∂ f4
∂x4

= −(a + p) = −μ < 0 (7)

Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 dx4 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel hyperchaotic system (1) is dissipative. Hence, the system
limit sets are ultimately confined into a specific limit set of zero hypervolume, and
the asymptotic motion of the novel hyperchaotic system (1) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the hyperchaotic case (2).
It is easy to see that the system (1) has two equilibrium points given by

E1 =

⎡

⎢
⎢
⎣

0
0

0.0943
0

⎤

⎥
⎥
⎦ and E2 =

⎡

⎢
⎢
⎣

−38.0946
0

−137
−187.7521

⎤

⎥
⎥
⎦ (10)

The Jacobian matrix of the system (1) at any point x ∈ R4 is given by

J (x) =

⎡

⎢
⎢
⎣

−a a + x3 x2 q
b − cx1 0 −cx1 q

x2 exp(x1x2) + 2x1 x1 exp(x1x2) + 2x2 −p 0
0 −r 0 0

⎤

⎥
⎥
⎦ (11)
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Thus, the Jacobian matrix at E1 is obtained as

J1 = J (E1) =

⎡

⎢
⎢
⎣

−13.8 13.8943 0 2.8
41 0 0 2.8
0 0 −10.6 0
0 −3.5 0 0

⎤

⎥
⎥
⎦ (12)

which has the eigenvalues

λ1 = −31.8864, λ2 = −10.6, λ3 = 0.9848, λ4 = 17.1015 (13)

This shows that E1 is a saddle-point, which is unstable.
Next, the Jacobian matrix at E1 is obtained as

J2 = J (E2) =

⎡

⎢
⎢
⎣

−13.8 −123.2 0 2.8
56.2378 0 15.2378 2.8

−76.1892 −38.0946 −10.6 0
0 −3.5 0 0

⎤

⎥
⎥
⎦ (14)

which has the eigenvalues

λ1 = −0.0669, λ2 = 7.7477, λ3,4 = −16.0404 ± 87.4911 i (15)

This shows that E2 is a saddle-focus, which is unstable.

3.3 Rotation Symmetry About the x3-Axis

It is easy to see that the novel 4-D hyperchaotic system (1) is invariant under the
change of coordinates

(x1, x2, x3, x4) �→ (−x1,−x2, x3,−x4) (16)

Since the transformation (16) persists for all values of the system parameters, it
follows that the novel 4-D hyperchaotic system (1) has rotation symmetry about the
x3-axis and that any non-trivial trajectory must have a twin trajectory.

3.4 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 4-D novel hyper-
chaotic system (1).
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The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = 1 − px3, (c > 0) (17)

which is stable, but not asymptotically stable.

3.5 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the hyperchaotic case (2),
i.e.

a = 13.8, b = 41, c = 0.4, p = 10.6, q = 2.8, r = 3.5 (18)

We take the initial state of the novel system (1) as given in (3).
Then the Lyapunov exponents of the system (1) are numerically obtained using

MATLAB as

L1 = 14.5577, L2 = 0.1225, L3 = 0, L4 = −36.3884 (19)

Since there are two positive Lyapunov exponents in (19), the novel system (1)
exhibits hyperchaotic behavior.

Since the maximal Lyapunov exponent of the system (1) has a high value, viz.
L1 = 14.5577, the system is highly hyperchaotic.

Since L1+ L2+ L3+ L4 = −21.6082 < 0, it follows that the novel hyperchaotic
system (1) is dissipative.

Also, the Kaplan–Yorke dimension of the novel hyperchaotic system (1) is cal-
culated as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.4045 (20)

The high value of DK Y shows the complex behaviour of the novel hyperchaotic
system (1).

4 Adaptive Control of the Novel Highly Hyperchaotic
System

In this section, we apply adaptive control method to derive an adaptive feedback
control law for globally stabilizing the novel 4-D highly hyperchaotic system with
unknown parameters.
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Thus, we consider the controlled novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + qx4 + u1

ẋ2 = bx1 − cx1x3 + qx4 + u2

ẋ3 = exp(x1x2) − px3 + x2
1 + x2

2 + u3

ẋ4 = −r x2 + u4

(21)

In (21), x1, x2, x3, x4 are the states and u1, u2, u3, u4 are the adaptive controls to
be determined using estimates of the unknown system parameters.

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −â(t)(x2 − x1) − x2x3 − q̂(t)x4 − k1x1
u2 = −b̂(t)x1 + ĉ(t)x1x3 − q̂(t)x4 − k2x2
u3 = −exp(x1x2) + p̂(t)x3 − x2

1 − x2
2 − k3x3

u4 = r̂(t)x2 − k4x4

(22)

where k1, k2, k3, k4 are positive gain constants.
Substituting (22) into (21), we get the closed-loop plant dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = [a − â(t)](x2 − x1) + [q − q̂(t)]x4 − k1x1
ẋ2 = [b − b̂(t)]x1 − [c − ĉ(t)]x1x3 + [q − q̂(t)]x4 − k2x2
ẋ3 = −[p − p̂(t)]x3 − k3x3
ẋ4 = −[r − r̂(t)]x2 − k4x4

(23)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)
er (t) = r − r̂(t)

(24)

In view of (24), we can simplify the plant dynamics (23) as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = ea(x2 − x1) + eq x4 − k1x1
ẋ2 = ebx1 − ecx1x3 + eq x4 − k2x2
ẋ3 = −epx3 − k3x3
ẋ4 = −er x2 − k4x4

(25)

Differentiating (24) with respect to t , we obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)
ėr (t) = −˙̂r(t)

(26)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep, eq , er ) = 1

2

4∑

i=1

x2
i + 1

2

(
e2a + e2b + e2c + e2p + e2q + e2r

)
(27)

Differentiating V along the trajectories of (25) and (26), we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V̇ = − k1x2
1 − k2x2

2 − k3x2
3 − k4x2

4 + ea

[
x1(x2 − x1) − ˙̂a

]

+ eb

[
x1x2 − ˙̂b

]
+ ec

[
−x1x2x3 − ˙̂c

]
+ ep

[
−x2

3 − ˙̂p
]

+ eq

[
x1x4 + x2x4 − ˙̂q

]
+ er

[
−x2x4 − ˙̂r

]
(28)

In view of (28), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = x1x2˙̂c(t) = −x1x2x3˙̂p(t) = −x2
3˙̂q(t) = (x1 + x2)x4˙̂r(t) = −x2x4

(29)

Next, we state and prove the main result of this section.

Theorem 1 The novel 4-D hyperchaotic system (21) with unknown system parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (22) and the parameter update law (29), where k1, k2, k3, k4 are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory [11].
We consider the quadratic Lyapunov function defined by (27), which is clearly a

positive definite function on R10.
By substituting the parameter update law (29) into (28), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 − k4x2
4 (30)

From (30), it is clear that V̇ is a negative semi-definite function on R10.
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Thus, we can conclude that the state vector x(t) and the parameter estimation
error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ep(t) eq(t) er (t)

]T ∈ L∞.

We define k = min{k1, k2, k3, k4}.
Then it follows from (30) that

V̇ ≤ −k‖x(t)‖2 (31)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (32)

Integrating the inequality (32) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (33)

From (33), it follows that x ∈ L2.
Using (25), we can conclude that ẋ ∈ L∞.
UsingBarbalat’s lemma [11], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R4.
Thus, the novel 4-D hyperchaotic system (21) with unknown system parameters is

globally and exponentially stabilized for all initial conditions by the adaptive control
law (22) and the parameter update law (29).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (21) and (29), when the adaptive
control law (22) is applied.

The parameter values of the novel highly hyperchaotic system (21) are taken as
in the hyperchaotic case (2), i.e.

a = 13.8, b = 41, c = 0.4, p = 10.6, q = 2.8, r = 3.5 (34)

We take the positive gain constants as ki = 6 for i = 1, 2, 3, 4.
Furthermore, as initial conditions of the novel 4-D hyperchaotic system (21), we

take
x1(0) = 3.2, x2(0) = 6.8, x3(0) = 4.7, x4(0) = 10.3 (35)

Also, as initial conditions of the parameter estimates, we take

â(0) = 3, b̂(0) = 11, ĉ(0) = 14, p̂(0) = 6, q̂(0) = 1, r̂(0) = 7 (36)
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Fig. 5 Time-history of the controlled states x1, x2, x3, x4

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D
hyperchaotic system (21) is shown.

5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Systems

In this section, we apply adaptive control method to derive an adaptive feedback con-
trol law for globally synchronizing identical novel 4-D highly hyperchaotic systems
with unknown parameters.

As the master system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + qx4
ẋ2 = bx1 − cx1x3 + qx4
ẋ3 = exp(x1x2) − px3 + x2

1 + x2
2

ẋ4 = −r x2

(37)

In (37), x1, x2, x3, x4 are the states and a, b, c, p are unknown system parameters.
As the slave system, we consider the 4-D novel hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a(y2 − y1) + y2y3 + qy4 + u1

ẏ2 = by1 − cy1y3 + qy4 + u2

ẏ3 = exp(y1y2) − py3 + y21 + y22 + u3

ẏ4 = −r y2 + u4

(38)
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The synchronization error between the novel hyperchaotic systems (37) and (38)
is defined by ⎧

⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(39)

Then the synchronization error dynamics is obtained as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = a(e2 − e1) + qe4 + y2y3 − x2x3 + u1

ė2 = be1 + qe4 − c(y1y3 − x1x3) + u2

ė3 = −pe3 + exp(y1y2) − exp(x1x2) + y21 + y22 − x2
1 − x2

2 + u3

ė4 = −re2 + u4

(40)

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −â(t)(e2 − e1) − q̂(t)e4 − y2y3 + x2x3 − k1e1
u2 = −b̂(t)e1 − q̂(t)e4 + ĉ(t)(y1y3 − x1x3) − k2e2
u3 = p̂(t)e3 − exp(y1y2) + exp(x1x2) − y21 − y22 + x2

1 + x2
2 − k3e3

u4 = r̂(t)e2 − k4e4

(41)

where k1, k2, k3, k4 are positive gain constants.
Substituting (41) into (40), we get the closed-loop error dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) + [

q − q̂(t)
]

e4 − k1e1

ė2 =
[
b − b̂(t)

]
e1 + [

q − q̂(t)
]

e4 − [
c − ĉ(t)

]
(y1y3 − x1x3) − k2e2

ė3 = − [
p − p̂(t)

]
e3 − k3e3

ė4 = − [
r − r̂(t)

]
e2 − k4e4

(42)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)
er (t) = r − r̂(t)

(43)

In view of (43), we can simplify the error dynamics (42) as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = ea(e2 − e1) + eqe4 − k1e1
ė2 = ebe1 + eqe4 − ec(y1y3 − x1x3) − k2e2
ė3 = −epe3 − k3e3
ė4 = −er e2 − k4e4

(44)
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Differentiating (43) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)
ėr (t) = −˙̂r(t)

(45)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec, ep, eq , er ) = 1

2

4∑

i=1

e2i + 1

2

(
e2a + e2b + e2c + e2p + e2q + e2r

)
(46)

Differentiating V along the trajectories of (44) and (45), we obtain

V̇ = − k1e21 − k2e22 − k3e
2
3 − k4e24 + ea

[
e1(e2 − e1) − ˙̂a

]

+ eb

[
e1e2 − ˙̂b

]
+ ec

[
−e2(y1y3 − x1x3) − ˙̂c

]
+ ep

[
−e23 − ˙̂p

]

+ eq

[
e1e4 + e2e4 − ˙̂q

]
+ er

[
−e2e4 − ˙̂r

]
(47)

In view of (47), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂b(t) = e1e2˙̂c(t) = −e2(y1y3 − x1x3)˙̂p(t) = −e23˙̂q(t) = (e1 + e2)e4˙̂r(t) = −e2e4

(48)

Theorem 2 The novel highly hyperchaotic systems (37) and (38) with unknown
system parameters are globally and exponentially synchronized for all initial con-
ditions by the adaptive control law (41) and the parameter update law (48), where
k1, k2, k3, k4 are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [11].
We consider the quadratic Lyapunov function defined by (46), which is clearly a

positive definite function on R10.
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By substituting the parameter update law (48) into (47), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 − k4e24 (49)

From (49), it is clear that V̇ is a negative semi-definite function on R10.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded. We define k = min{k1, k2, k3, k4}.
Then it follows from (49) that

V̇ ≤ −k‖e(t)‖2 (50)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (51)

Integrating the inequality (51) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (52)

From (52), it follows that e ∈ L2. Using (44), we can conclude that ė ∈ L∞.
UsingBarbalat’s lemma [11], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R4. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (37), (38) and (48), when the
adaptive control law (41) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (2).

We take the positive gain constants as ki = 6 for i = 1, . . . , 4.
Furthermore, as initial conditions of the master system (37), we take

x1(0) = −3.9, x2(0) = 2.8, x3(0) = 1.7, x4(0) = −8.3 (53)

As initial conditions of the slave system (38), we take

y1(0) = 2.4, y2(0) = 3.5, y3(0) = −4.2, y4(0) = 9.2 (54)

Also, as initial conditions of the parameter estimates, we take

â(0) = 2, b̂(0) = 6, ĉ(0) = 4, p̂(0) = 7, q̂(0) = 12, r̂(0) = 5 (55)

Figures6, 7, 8 and 9 describe the complete synchronization of the novel hyper-
chaotic systems (37) and (38), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3, e4.
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Fig. 10 Time-history of the synchronization errors e1, e2, e3, e4

6 Conclusions

In this research work, we announced a twelve-term novel 4-D highly hyperchaotic
system with four quadratic nonlinearities and an exponential nonlinearity. We dis-
cussed the qualitative properties of the novel hyperchaotic system in detail. The
novel hyperchaotic system has two unstable equilibrium points. The Lyapunov expo-
nents of the novel hyperchaotic system have been found as L1 = 14.5577, L2 =
0.1225, L3 = 0 and L4 = −36.3884. Since the maximal Lyapunov exponent of
the novel hyperchaotic system has a high value, viz. L1 = 14.5577, the novel 4-D
system shows highly hyperchaotic behavior. Also, the Kaplan–Yorke dimension of
the novel hyperchaotic system has been calculated as DK Y = 3.4045, which is a high
value for a 4-D hyperchaotic system. Since the sum of the Lyapunov exponents is
negative, the novel hyperchaotic system is dissipative. Next, we designed an adaptive
controller to globally stabilize the novel highly hyperchaotic system with unknown
parameters. We also designed an adaptive controller to achieve global chaos syn-
chronization of the identical highly hyperchaotic systems with unknown parameters.
MATLAB simulations were shown to depict the phase portraits of the novel highly
hyperchaotic system and illustrate all the main control results derived in this work.



A Novel Highly Hyperchaotic System and Its Adaptive Control 531

References

1. Abdurrahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based
neural networks with time-varying delays. Neural Netw 69:20–28

2. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure.
Commun Math Phys 79(4):573–576

3. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, vol 581.
Springer, Germany

4. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J
Uncertain Syst 1(3):235–240

5. Chen A, Lu J, Lü J, Yu S (2006) Generating hyperchaotic Lü attractor via state feedback
control. Phys A 364:103–110

6. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(7):1465–1466
7. Filali RL, BenrejebM,Borne P (2014)On observer-based secure communication design using

discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19(5):1424–1432
8. Hammami S (2015) State feedback-based secure image cryptosystem using hyperchaotic

synchronization. ISA Trans 54:52–59
9. Jia Q (2007) Hyperchaos generated from the Lorenz chaotic system and its control. Phys Lett

A 366:217–222
10. KarthikeyanR, SundarapandianV (2014)Hybrid chaos synchronization of four-scroll systems

via active control. J Electr Eng 65(2):97–103
11. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, New Jersey
12. Li C, Liao X,Wong KW (2005) Lag synchronization of hyperchaos with application to secure

communications. Chaos Solitons Fractals 23(1):183–193
13. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393
14. Li X (2009) Modified projective synchronization of a new hyperchaotic system via nonlinear

control. Commun Theor Phys 52:274–278
15. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141
16. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12(3):659–661
17. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design

of a novel butterfly attractor. J Sound Vib 333(20):5077–5096
18. Pham VT, Volos C, Jafari S, Wang X, Vaidyanathan S (2014) Hidden hyperchaotic attrac-

tor in a novel simple memristive neural network. Optoelectron Adv Mater Rapid Commun
8(11–12):1157–1163

19. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic
system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci
Technol Rev 8(2):205–214

20. Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of n-scroll Chua circuits using
adaptive backstepping control designwith recursive feedback.Malays JMath Sci 73(1):73–95

21. Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coul-
let chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):
293–320

22. Rhouma R, Belghith S (2008) Cryptanalysis of a new image encryption algorithm based on
hyper-chaos. Phys Lett A 372(38):5973–5978

23. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398
24. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157
25. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll

chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev
8(2):1–6

26. Sarasu P, Sundarapandian V (2011) Active controller design for generalized projective syn-
chronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33

27. Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyper-
chaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput
6(5):216–223



532 S. Vaidyanathan

28. Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll
systems via adaptive control. Int J Soft Comput 7(4):146–156

29. Senouci A, Boukabou A (2014) Predictive control and synchronization of chaotic and hyper-
chaotic systems based on a T − S fuzzy model. Math Comput Simul 105:62–78

30. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650
31. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci

42(2):289–299
32. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao

chaotic system. Lect Notes Electr Eng 131:319–327
33. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via

active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52
34. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and

hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control EngAppl 4(2):18–25
35. SundarapandianV,KarthikeyanR (2011) Anti-synchronization of Lü and Pan chaotic systems

by adaptive nonlinear control. Eur J Sci Res 64(1):94–106
36. Sundarapandian V, Karthikeyan R (2012) Adaptive anti-synchronization of uncertain Tigan

and Li systems. J Eng Appl Sci 7(1):45–52
37. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design

of a novel chaotic system. Math Comput Model 55(7–8):1904–1915
38. Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization

of four-wing chaotic systems. Int J Soft Comput 6(5):224–231
39. Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of n-scroll

hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J
Math Sci 7(2):219–246

40. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos Solitons Fractals 36:
1315–1319

41. Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. CommunCom-
put Inf Sci 133:98–107

42. Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf
Sci 198:1–9

43. Vaidyanathan S (2012) Adaptive controller and syncrhonizer design for the Qi-Chen chaotic
system. Lect Notes Inst Comput Sci Soc-Inf Telecommun Eng 84:73–82

44. Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via
adaptive control. Int J Control Theory Appl 5(1):41–59

45. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control
method. Int J Control Theory Appl 5(2):117–123

46. Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su
chaotic system. Int J Control Theory Appl 5(1):15–20

47. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity.
Far East J Math Sci 79(1):135–143

48. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic non-
linearities and its control. Int J Control Theory Appl 6(2):97–109

49. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems
with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci
Technol Rev 6(4):53–65

50. Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system
via adaptive control. Adv Intell Syst Comput 177:1–10

51. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic systemwith three quadratic
nonlinearities. Far East J Math Sci 84(2):219–226

52. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial
chaotic systems with three quadratic nonlinearities. Eur Phys J: Spec Top 223(8):1519–1529

53. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic
system with three quadratic nonlinearities. Int J Modell Identif Control 22(1):41–53



A Novel Highly Hyperchaotic System and Its Adaptive Control 533

54. Vaidyanathan S (2014) Generalized projective synchronisation of novel 3-D chaotic systems
with an exponential non-linearity via active and adaptive control. Int J Modell Identif Control
22(3):207–217

55. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via
sliding mode control. Int J Modell Identif Control 22(2):170–177

56. Vaidyanathan S (2014) Qualitative analysis and control of an eleven-term novel 4-D hyper-
chaotic system with two quadratic nonlinearities. Int J Control Theory Appl 7:35–47

57. Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive bio-
logical control. Int J Pharm Tech Res 8(4):632–640

58. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities,
its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol
Rev 8(2):106–115

59. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its adaptive control. Int
J Chem Tech Res 8(7):146–158

60. Vaidyanathan S (2015) Adaptive backstepping control of enzymes-substrates system with
ferroelectric behaviour in brain waves. Int J Pharm Tech Res 8(2):256–261

61. Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-
species biological system. Int J Pharm Tech Res 8(4):622–631

62. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with
ferroelectric behaviour in brain waves. Int J Pharm Tech Res 8(5):964–973

63. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J Pharm Tech Res
8(3):377–382

64. Vaidyanathan S (2015) Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Int
J Pharm Tech Res 8(6):117–127

65. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J Chem
Tech Res 8(2):612–621

66. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species
biological systems. Int J Pharm Tech Res 8(5):928–937

67. Vaidyanathan S (2015) Adaptive synchronization of novel 3-D chemical chaotic reactor sys-
tems. Int J Chem Tech Res 8(7):159–171

68. Vaidyanathan S (2015) Adaptive synchronization of the identical FitzHugh-Nagumo chaotic
neuron models. Int J Pharm Tech Res 8(6):167–177

69. Vaidyanathan S (2015) Analysis, control and synchronization of a 3-D novel jerk chaotic
system with two quadratic nonlinearities. Kyungpook Math J 55:563–586

70. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system
with an exponential nonlinearity. Int J Modell Identif Control 23(2):164–172

71. Vaidyanathan S (2015) Anti-synchronization of Brusselator chemical reaction systems via
adaptive control. Int J Chem Tech Res 8(6):759–768

72. Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange
chaotic attractor. Int J Pharm Tech Res 8(5):956–963

73. Vaidyanathan S (2015) Chaos in neurons and synchronization of Birkhoff-Shaw strange
chaotic attractors via adaptive control. Int J Pharm Tech Res 8(6):1–11

74. Vaidyanathan S (2015) Coleman-Gomatam logarithmic competitive biology models and their
ecological monitoring. Int J Pharm Tech Res 8(6):94–105

75. Vaidyanathan S (2015) Dynamics and control of Brusselator chemical reaction. Int J Chem
Tech Res 8(6):740–749

76. Vaidyanathan S (2015) Dynamics and control of Tokamak system with symmetric and mag-
netically confined plasma. Int J Chem Tech Res 8(6):795–803

77. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel
sliding mode control method. Int J Chem Tech Res 8(7):209–221

78. Vaidyanathan S (2015) Global chaos synchronization of the forced Van der Pol chaotic oscil-
lators via adaptive control method. Int J Pharm Tech Res 8(6):156–166

79. Vaidyanathan S (2015) Global chaos synchronization of the Lotka-Volterra biological systems
with four competitive species via active control. Int J Pharm Tech Res 8(6):206–217



534 S. Vaidyanathan

80. Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and
their ecological monitoring. Int J Pharm Tech Res 8(5):974–981

81. Vaidyanathan S (2015) Lotka-Volterra two species competitive biology models and their
ecological monitoring. Int J Pharm Tech Res 8(6):32–44

82. Vaidyanathan S (2015) Output regulation of the forced Van der Pol chaotic oscillator via
adaptive control method. Int J Pharm Tech Res 8(6):106–116

83. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system.
Stud Comput Intell 581:3–17

84. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D
novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaosmodelling and control systems
design, vol 581. Studies in computational intelligence. Springer, Germany, pp 19–38

85. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a
seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

86. Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term
Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163

87. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its
generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):
52–60

88. Vaidyanathan S, Rajagopal K (2011) Hybrid synchronization of hyperchaotic Wang-Chen
and hyperchaotic Lorenz systems by active non-linear control. Int J Syst Signal Control Eng
Appl 4(3):55–61

89. Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and
hyperchaotic Wang systems via adaptive control. Int J Soft Comput 7(1):28–37

90. Vaidyanathan S, Rasappan S (2011) Global chaos synchronization of hyperchaotic Bao and
Xu systems by active nonlinear control. Commun Comput Inf Sci 198:10–17

91. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of n-scroll Chua circuit
and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng
39(4):3351–3364

92. Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via
sliding mode control. Int J Autom Comput 9(3):274–279

93. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative
no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

94. Vaidyanathan S, Volos C, PhamVT (2014) Hyperchaos, adaptive control and synchronization
of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE
implementation. Arch Control Sci 24(4):409–446

95. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping
control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two
hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

96. Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementa-
tion of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J
Modell Identif Control 23(3):267–277

97. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global
chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58

98. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis,
adaptive control and synchronization of a seven-term novel 3-D chaotic system with three
quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev
8(2):130–141

99. Vaidyanathan S, Sampath S,AzarAT (2015)Global chaos synchronisation of identical chaotic
systems via novel sliding mode control method and its application to Zhu system. Int JModell
Identif Control 23(1):92–100

100. Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and
synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation.
Nonlinear Dyn 25(1):135–158



A Novel Highly Hyperchaotic System and Its Adaptive Control 535

101. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adap-
tive control and anti-synchronization of a six-term novel jerk chaotic system with two expo-
nential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

102. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive syn-
chronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and
its circuit simulation. J Eng Sci Technol Rev 8(2):181–191

103. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE
implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J
Eng Sci Technol Rev 8(2):232–244

104. Vaidyanathan S, Volos CK, PhamVT (2015)Global chaos control of a novel nine-term chaotic
systemvia slidingmode control. In:AzarAT,ZhuQ (eds)Advances and applications in sliding
mode control systems, vol 576. Studies in computational intelligence. Springer, Germany, pp
571–590

105. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memris-
tor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol
Rev 8(2):157–173

106. Wang J, Chen Z (2008) A novel hyperchaotic system and its complex dynamics. Int J Bifurc
Chaos 18:3309–3324

107. Wei X, Yunfei F, Qiang L (2012) A novel four-wing hyper-chaotic system and its circuit
implementation. Procedia Eng 29:1264–1269

108. Wei Z, Yang Q (2010) Anti-control of Hopf bifurcation in the new chaotic system with two
stable node-foci. Appl Math Comput 217(1):422–429

109. Wu X, Zhu C, Kan H (2015) An improved secure communication scheme based pas-
sive synchronization of hyperchaotic complex nonlinear system. Appl Math Comput 252:
201–214

110. Yujun N, Xingyuan W, Mingjun W, Huaguang Z (2010) A new hyperchaotic system and its
circuit implementation. Commun Nonlinear Sci Numer Simul 15(11):3518–3524

111. Zhang H, Liao X, Yu J (2005) Fuzzy modeling and synchronization of hyperchaotic systems.
Chaos Solitons Fractals 26(3):835–843

112. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys
Lett A 372(36):5773–5777

113. Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences.
Opt Commun 285(1):29–37

114. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell
Inf Manag 2:104–109



Sliding Mode Controller Design
for the Global Stabilization of Chaotic
Systems and Its Application to Vaidyanathan
Jerk System

Sundarapandian Vaidyanathan

Abstract Chaos in nonlinear dynamics occurs widely in physics, chemistry, biol-
ogy, ecology, secure communications, cryptosystems and many scientific branches.
Control of chaotic systems is an important research problem in chaos theory. Sliding
mode control is an important method used to solve various problems in control sys-
tems engineering. In robust control systems, the slidingmode control is often adopted
due to its inherent advantages of easy realization, fast response and good transient
performance as well as insensitivity to parameter uncertainties and disturbance. In
this work, we derive a novel sliding mode control method for the global stabiliza-
tion of chaotic systems. The general control result derived using novel sliding mode
control method is proved using Lyapunov stability theory. As an application of the
general result, the problem of global stabilization of the Vaidyanathan jerk chaotic
system (2015) is studied and a new sliding mode controller is derived. The Lyapunov
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1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-
iour in deterministic nonlinear dynamical systems. For the motion of a dynamical
system to be chaotic, the system variables should contain some nonlinear terms
and the system must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions [9].

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [30], Rössler system [40], ACT system [1], Sprott systems [43], Chen system
[15], Lü system [31], Liu system [29], Cai system [14], Chen–Lee system [16], Tigan
system [51], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [116], Zhu system [117], Li system [25], Wei–Yang system [111],
Sundarapandian systems [48, 49], Vaidyanathan systems [60, 63, 65–68, 70, 81,
95–97, 99, 101, 104, 106–108], Pehlivan system [35], Sampath system [41], Pham
system [36],etc.

Chaos theory and control systems have many important applications in science
and engineering [2, 10–13, 118]. Some commonly known applications are oscillators
[22, 42], lasers [26, 113], chemical reactors [71, 75, 77, 79, 82, 86–88], biological
systems [69, 72–74, 76, 78, 83–85, 89, 91–93], ecology [18, 45], encryption [24,
115], cryptosystems [39, 52], mechanical systems [4–8], secure communications
[17, 33, 114], robotics [32, 34, 109], cardiology [38, 112], intelligent control [3,
27], neural networks [20, 21, 28], finance [19, 44], memristors [37, 110], etc.

Control or regulation of a chaotic system deals with the design of a state feedback
control law so as to stabilize or regulate the trajectories of the chaotic system. Many
techniques have been devised for the global control of chaotic systems such as the
active control method [46, 47, 55, 56, 102], adaptive control method [61, 62, 64,
90, 94, 100, 103, 105], sliding mode control method [50, 57–59, 98], etc.

In the sliding mode control theory, the control dynamics will have two sequential
modes, viz. the reaching mode and the sliding mode. Basically, a sliding mode
controller (SMC) design consists of two parts: hyperplane design and controller
design. A hyperplane is first designed via the pole-placement approach in themodern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall system is guaranteed by the sliding condition and by a stable
hyperplane.

The sliding mode control method is an effective control tool which has the advan-
tages of low sensitivity to parameter variations in the plant and disturbances affecting
the plant.
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In this work, we use a novel sliding mode control method for deriving a general
result for the global stabilization of chaotic systems using sliding mode control
(SMC) theory.

The general control result derived using novel sliding mode control method is
proved using Lyapunov stability theory. As an application of the general result, the
problemof global stabilization of theVaidyanathan jerk chaotic system [80] is studied
and a new sliding mode controller is derived.

This work is organized as follows. Section2 contains the problem statement of
global chaos control of chaotic systems. Section3 describes the novel sliding mode
controller design for globally stabilizing chaotic systems. The general control result
derived using novel sliding mode control method is proved using Lyapunov stability
theory.

Section4 describes the Vaidyanathan jerk chaotic system [80] and its properties.
The Lyapunov exponents of the Vaidyanathan jerk system are obtained as L1 =
0.12476, L2 = 0 and L3 = −1.12451. Since the Vaidyanathan jerk system has a
positive Lyapunov exponent, it is chaotic. The Maximal Lyapunov Exponent (MLE)
of the Vaidyanathan jerk system is given by L1 = 0.12476. Also, the Kaplan–Yorke
dimension of the Vaidyanathan jerk system is obtained as DKY = 2.11095.

Section5 describes the application of the general result derived in Sect. 3 for
the global chaos control of the Vaidyanathan jerk chaotic system [80]. Numerical
simulations using MATLAB have been shown to depict the phase portraits of the
Vaidyanathan jerk system and the sliding mode controller design for the global
stabilization of the Vaidyanathan jerk system. Section6 contains the conclusions
of this work.

2 Problem Statement

This section gives a problem statement for the global chaos control of a given chaotic
system.

To start with, we consider a chaotic system given by

ẋ = Ax + f (x) + u (1)

where x ∈ Rn denotes the state of the system, A ∈ Rn×n denotes the matrix of system
parameters, f (x) ∈ Rn contains the nonlinear parts of the system and u is the control.

Thus, the global chaos control for the given chaotic system (1) can be stated
as follows: Find a feedback controller u(x) so as to render the state x(t) of the
corresponding closed-loop system to be globally asymptotically stable for all values
of x(0) ∈ Rn, i.e.

lim
t→∞ ‖x(t)‖ = 0 for all x(0) ∈ Rn (2)
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3 A Novel Sliding Mode Control Method for Global
Stabilization of Chaotic Systems

This section details the main results of this work, viz. novel sliding mode controller
design for achieving global asymptotic stabilization of a given chaotic system.

First, we start the design by setting the control as

u(t) = −f (x) + Bv(t) (3)

In Eq. (3), B ∈ Rn is chosen such that (A,B) is completely controllable.
By substituting (3) into (1), we get the closed-loop plant dynamics

ẋ = Ax + Bv (4)

The system (4) is a linear time-invariant control system with single input v.
Next, we start the sliding controller design by defining the sliding variable as

s(x) = Cx = c1x1 + c2x2 + · · · + cnxn, (5)

where C ∈ R1×n is a constant vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {x ∈ Rn : s(x) = Cx = 0} (6)

We shall assume that a sliding motion occurs on the hyperplane S.
In sliding mode, the following equations must be satisfied:

s = 0 (7a)

ṡ = CAx + CBv = 0 (7b)

We assume that
CB �= 0 (8)

The sliding motion is influenced by the equivalent control derived from (7b) as

veq(t) = −(CB)−1 CAx(t) (9)

By substituting (9) into (4), we obtain the equivalent system dynamics in the
sliding phase as

ẋ = Ax − (CB)−1CAx = Ex, (10)

where
E = [

I − B(CB)−1C
]

A (11)



Sliding Mode Controller Design for the Global Stabilization … 541

We note that E is independent of the control and has at most (n − 1) non-zero
eigenvalues, depending on the chosen switching surface, while the associated eigen-
vectors belong to ker(C).

Since (A,B) is controllable, we can use sliding control theory [53, 54] to choose
B and C so that E has any desired (n − 1) stable eigenvalues.

This shows that the dynamics (10) is globally asympotically stable.
Finally, for the sliding controller design, we apply a novel sliding control law, viz.

ṡ = −ks − qs2 sgn(s) (12)

In (12), sgn(·) denotes the sign function and the SMC constants k > 0, q > 0 are
found in such a way that the sliding condition is satisfied and that the sliding motion
will occur.

By combining Eqs. (7b), (9) and (12), we finally obtain the slidingmode controller
v(t) as

v(t) = −(CB)−1
[
C(kI + A)x + qs2 sgn(s)

]
(13)

Next, we establish the main result of this section.

Theorem 1 The chaotic system (1) is globally asymptotically stabilized for all initial
conditions x(0) in Rn, where v is defined by the novel sliding mode control law (13),
B ∈ Rn×1 is such that (A,B) is controllable, C ∈ R1×n is such that CB �= 0 and the
matrix E defined by (11) has (n − 1) stable eigenvalues.

Proof Upon substitution of the control laws (3) and (13) into the system dynamics
(1), we obtain the closed-loop system as

ẋ = Ax − B(CB)−1
[
C(kI + A)x + qs2 sgn(s)

]
(14)

We shall show that the error dynamics (14) is globally asymptotically stable by
considering the quadratic Lyapunov function

V (x) = 1

2
s2(x) (15)

The sliding mode motion is characterized by the equations

s(x) = 0 and ṡ(x) = 0 (16)

By the choice of E, the dynamics in the sliding mode given by Eq. (10) is globally
asymptotically stable.

When s(x) �= 0, V (x) > 0.
Also, when s(x) �= 0, differentiating V along the error dynamics (14) or the equiv-

alent dynamics (12), we get

V̇ (x) = sṡ = −ks2 − qs3 sgn(s) < 0 (17)
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Hence, by Lyapunov stability theory [23], the error dynamics (14) is globally
asymptotically stable for all x(0) ∈ Rn.

This completes the proof. �

4 Vaidyanathan Jerk Chaotic System and Its Properties

In this section, we describe the Vaidyanathan jerk chaotic system [80] and discuss
its dynamic properties.

The Vaidyanathan jerk chaotic system [80] is described by the 3-D dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − bx2 − x3 − x21 − x22

(18)

where x1, x2, x3 are the states and a, b are constant, positive, parameters.
In [80], it was shown that the system (18) exhibits a strange chaotic attractor,

when the parameters take the values

a = 7.5 b = 4 (19)

For numerical simulations, we take the initial values of the Vaidyanathan jerk
chaotic system (18) as

x1(0) = 0.2, x2(0) = 0.6, x3(0) = 0.4 (20)

For the parameter values in (19) and the initial values in (20), the Lyapunov
exponents of the Vaidyanathan jerk system (18) are numerically obtained as

L1 = 0.12476, L2 = 0, L3 = −1.12451 (21)

Since the sum of the Lyapunov exponents in (21) is negative, the Vaidyanathan
jerk system (18) is dissipative.

The Kaplan–Yorke dimension of the Vaidyanathan jerk system (18) is calculated
as

DKY = 2 + L1 + L2

|L3| = 2.11095, (22)

which is fractional.
It is easy to show that the Vaidyanathan hyperjerk system (18) has two equilibrium

points given by

E0 =
⎡

⎣
0
0
0

⎤

⎦ and E1 =
⎡

⎣
7.5
0
0

⎤

⎦ (23)
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In [80], it was shown that both E0 and E1 are saddle-focus points, and hence they
are unstable.

For the initial conditions given in (20), phase portraits of the Vaidyanathan jerk
system (18) are plotted using MATLAB.

Figures1 shows the strange chaotic attractor of the Vaidyanathan jerk system (18).
Figures2, 3 and 4 show the 2-D projection of the Vaidyanathan jerk system (18) on
the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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5 Sliding Mode Controller Design for the Global
Stabilization of Vaidyanathan Jerk System

In this section, we describe the sliding mode controller design for the global stabi-
lization of Vaidyanathan jerk system [80] by applying the novel method described
by Theorem1 in Sect. 3.

Thus, we consider the controlled Vaidyanathan jerk system given by

ẋ1 = x2 + u1
ẋ2 = x3 + u2
ẋ3 = ax1 − bx2 − x3 − x21 − x22 + u3

(24)

In matrix form, we can write the error dynamics (24) as

ẋ = Ax + ψ(x) + u (25)

The matrices A and ψ in (25) are given by

A =
⎡

⎣
0 1 0
0 0 1
a −b −1

⎤

⎦ , ψ(x) =
⎡

⎣
0
0

−x21 − x22

⎤

⎦ (26)

We follow the procedure given in Sect. 3 for the construction of the novel sliding
controller to achieve global stabilization of the Vaidyanathan jerk system (24).

We take the parameter values of a and b as in the chaotic case, i.e.

a = 7.5, b = 4 (27)

First, we set u as
u(t) = −ψ(x) + Bv(t) (28)

where B is selected such that (A,B) is completely controllable.
A simple choice of B is

B =
⎡

⎣
1
1
1

⎤

⎦ (29)

It can be easily checked that (A,B) is completely controllable.
Next, we take the sliding variable as

s(x) = Cx = [
1 −1 −20

]
e = x1 − x2 − 20x3 (30)
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If we define E = [I − B(CB)−1C]A, then the matrix E has the eigenvalues

eig(E) = {0,−1.7500 ± 2.1243i} (31)

which shows that the motion along the sliding manifold is globally asymptotically
stable.

Next, we take the sliding mode gains as

k = 5, q = 0.2 (32)

From Eq. (13) in Sect. 3, we obtain the novel sliding control v as

v(t) = −7.25x1 + 3.8x2 − 4.05x3 + 0.01s2 sgn(s) (33)

As an application of Theorem1 to the identical Vaidyanathan jerk chaotic system,
we obtain the following main result of this section.

Theorem 2 Vaidyanathan jerk chaotic system (24) is globally and asymptoti-
cally stabilized for all initial conditions x(0) ∈ R3 with the sliding controller u
defined by (28), where ψ(x) is defined by (26), B is defined by (29) and v is
defined by (33). �

For numerical simulations, we use MATLAB for solving the systems of differ-
ential equations using the classical fourth-order Runge–Kutta method with step size
h = 10−8.
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The parameter values of the Vaidyanathan jerk system are taken as in the chaotic
case, viz. a = 7.5 and b = 4.

The sliding mode gains are taken as k = 5 and q = 0.2.
As an initial condition for the Vaidyanathan jerk system (24), we take

x1(0) = 5.7, x2(0) = 8.2, x3(0) = 14.3 (34)

Figure5 shows the time-history of the controlled states x1, x2, x3.

6 Conclusions

In this work, we derived a novel sliding mode control method for the global stabiliza-
tion of chaotic systems. The general control result derived using novel sliding mode
control method was proved using Lyapunov stability theory. As an application of the
general result, the problem of global stabilization of the Vaidyanathan jerk chaotic
system (2015) was studied and a new sliding mode controller has been derived.
The Lyapunov exponents of the Vaidyanathan jerk system have been obtained as
L1 = 0.12476, L2 = 0 and L3 = −1.12451. Since the Vaidyanathan jerk system has
a positive Lyapunov exponent, it is chaotic. TheMaximal LyapunovExponent (MLE)
of the Vaidyanathan jerk system is seen as L1 = 0.12476. Also, the Kaplan–Yorke
dimension of the Vaidyanathan jerk system has been derived as DKY = 2.11095.
Numerical simulations using MATLAB were shown to depict the phase portraits of
the Vaidyanathan jerk system and the sliding mode controller design for the global
stabilization of the Vaidyanathan jerk system.
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System via Backstepping Control Method
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Abstract In this work, we first describe the Ghorui jerk chaotic system (2000)
describing a strange attractor of a thermal arc plasma system based on triple convec-
tion theory. The phase portraits of the rod-type plasma torch chaotic system are
displayed and the dynamic properties of the rod-type plasma torch chaotic sys-
tem are discussed. We show that the rod-type plasma torch chaotic system has
three unstable equilibrium points on the x1-axis. The Lyapunov exponents of the
rod-type plasma torch chaotic system are obtained as L1 = 0.3451, L2 = 0 and
L3 = −1.3509. Clearly, the Maximal Lyapunov Exponent (MLE) of the rod-type
plasma torch chaotic system is given by L1 = 0.3451. Since the sum of the Lya-
punov exponents of the rod-type plasma torch chaotic system is negative, the chaotic
system is dissipative. Also, the Kaplan–Yorke dimension of the rod-type plasma
torch chaotic system is obtained as DK Y = 2.2555. Next, an adaptive backstepping
controller is designed to globally stabilize the rod-type plasma torch chaotic system
with unknown parameters. Moreover, an adaptive backstepping controller is also
designed to achieve global chaos synchronization of the identical rod-type plasma
torch chaotic systems with unknown parameters. The backstepping control method
is a recursive procedure that links the choice of a Lyapunov function with the design
of a controller and guarantees global asymptotic stability of strict feedback systems.
MATLAB simulations have been shown to illustrate all the main results derived in
this work.
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1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [18], Rössler system [30], ACT system [2], Sprott systems [38], Chen system
[7], Lü system [19], Cai system [5], Tigan system [49], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [130], Zhu system [131], Li system [15], Wei-Yang system [125],
Sundarapandian systems [41, 46], Vaidyanathan systems [59, 60, 62–65, 68, 79,
80, 94, 97, 99, 108, 111, 113, 115, 117, 118], Pehlivan system [22], Sampath
system [31], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [69, 73, 75, 77, 81, 85–87], biological systems [67, 70–72, 74, 76,
78, 82–84, 88–92], memristors [1, 23, 123], lasers [4], oscillations [50], robotics [11,
122], electrical circuits [20, 121], cryptosystems [29, 51], secure communications
[127, 128], etc.

Many methods have been designed for control and regulation of chaotic systems
such as active control [39, 40, 53], adaptive control [109, 116, 119], backstepping
control [16, 124], sliding mode control [56, 58], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [3].

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 21]. The active control method [13, 32, 33, 45, 52,
57, 100, 101, 104] is typically used when the system parameters are available for
measurement. Adaptive control method [34–36, 42–44, 55, 61, 93, 98, 102, 103,
110, 114] is typically used when some or all the system parameters are not available
for measurement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [9, 17, 126, 129] and time-delay feed-
back control method [8, 12, 37] are also used for synchronization of chaotic systems.
Backstepping control method [24–28, 48, 105, 112, 120] is also used for the syn-
chronization of chaotic systems. Backstepping control is a recursive method for
stabilizing the origin of a control system in strict-feedback form [14]. Another pop-
ular method for the synchronization of chaotic systems is the sliding mode control
method [47, 54, 66, 95, 96, 106, 107], which is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous control
signal that forces the system to “slide” along a cross-section of the system’s normal
behavior.
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In the recent decades, there is some good interest in finding jerk chaotic systems,
which are described by the third-order ODE

...
x = j (x, ẋ, ẍ) (1)

The differential equation (1) is called “jerk system” because the third order time
derivative in mechanical systems is called jerk.

By defining phase variables x1 = x, x2 = ẋ and x3 = ẍ , the jerk differential equa-
tion (1) can be expressed as a 3-D system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = j (x1, x2, x3)

(2)

Thermal plasma technology is of great importance in industry where it is applied
in the manufacture of novel materials, eliminating poisonous waste, and in enabling
secure and effective production. The efficiency of plasma technology in modern
industry is affectedmainly by the instruments used to produce plasma such as plasma
fluctuations. In the recent decades, a diagrammatic plasma torch has been proposed
for studying fluctuations in practical tests. Especially, it was shown that the inherent
variations in plasma instruments can exhibit chaotic dynamical behaviour [10].

In this research work, we study an important jerk 3-D system, viz. Ghorui’s rod-
type plasma torch chaotic system [10] which is based on triple convection theory.

Also, we use backstepping control method for the global stabilization and syn-
chronization of the Ghorui’s rod-type plasma torch chaotic system.

In control theory, backstepping is a control technique used to derive control laws
associated with an appropriate Lyapunov function, which guarantees the stability
of nonlinear systems. The idea of backstepping control method is to recursively
select some appropriate functions of state variables in pseudo-control inputs for
lower dimension subsystems of the overall system. Each backstepping stage yields
a new pseudo-control design, which is expressed in terms of the pseudo-control
designs obtained from the previous design stages. Finally, a backstepping feedback
controller is obtained when the backstepping design procedure is terminated. This
backstepping feedback controller achieves the original design objective due to the
final Lyapunov function and it is produced by summing up the Lyapunov functions
associated with each individual design stage.

This research work is organized as follows. Section2 describes the dynamic
equations and phase portraits of the Ghorui’s rod-type plasma torch chaotic sys-
tem. Section3 details the qualitative properties of the rod-type plasma torch chaotic
system. We show that the rod-type plasma torch chaotic system has three unstable
equilibrium points on the x1-axis. The Lyapunov exponents of the rod-type plasma
torch chaotic system are obtained as L1 = 0.3451, L2 = 0 and L3 = −1.3509, while
the Kaplan–Yorke dimension of the rod-type plasma torch chaotic system is obtained
as DK Y = 2.2555.
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In Sect. 4, we design an adaptive backstepping controller to globally stabilize
the rod-type plasma torch chaotic system with unknown parameters. In Sect. 5, an
adaptive backstepping controller is designed to achieve global chaos synchronization
of the identical rod-type plasma torch chaotic systems with unknown parameters.
Section6 contains the conclusions of this work.

2 Rod-Plasma Torch 3-D Chaotic System

The following differential equation is considered for the modelling of a thermal arc
plasma based on triple convection theory [10]:

...
F + Ω2 F̈ + Ω1 Ḟ + Ω0F = ±F3 (3)

Thermo-physical parameters such as the plasma torch tool, flow speed of plasma
gas, and arc current determine the parameters of Eq. (3). To study the dynamical
behaviour of the plasma torch, the coefficients in Eq. (3) are considered as in [10].

Thus, we rewrite the Ghorui’s thermal arc plasma equation (3) as

...
F + F̈ + bḞ − aF = −F3 (4)

where a and b are constant, positive, parameters.
The state-space model of the rod-plasma torch equation (4) can be described as

follows. ⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − bx2 − x3 − x3

1

(5)

where x1, x2, x3 are the states and a, b are constant, positive parameters.
In [10], it was shown that the system (5) exhibits a strange chaotic attractor for

the parameter values
a = 130, b = 50 (6)

For numerical simulations, we take the initial conditions as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1 (7)

Figure1 shows the 3-D phase portrait of the rod-type plasma torch chaotic system
(5). Figures2, 3 and 4 show the 2-D projection of the rod-type plasma torch chaotic
system (5) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.



Adaptive Control and Synchronization of a Rod-Type Plasma … 557

−15
−10

−5
0

5
10

15
20

−100

−50

0

50

100
−800

−600

−400

−200

0

200

400

600

x
1

x
2

x
3

Fig. 1 3-D phase portrait of the rod-type plasma torch chaotic system
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3 Analysis of the 3-D Rod-Type Plasma Torch
Chaotic System

3.1 Dissipativity

In vector notation, the rod-type plasma torch system (5) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (8)

where ⎧
⎨

⎩

f1(x1, x2, x3) = x2
f2(x1, x2, x3) = x3
f3(x1, x2, x3) = ax1 − bx2 − x3 − x3

1

(9)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (10)

The divergence of the novel jerk system (8) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −1 < 0 (11)

since b is a positive parameter.
Inserting the value of ∇ · f from (11) into (10), we get

V̇ (t) =
∫

Ω(t)

(−b) dx1 dx2 dx3 = −V (t) (12)

Integrating the first order linear differential equation (12), we get

V (t) = exp(−t)V (0) (13)

Since b > 0, it follows from Eq. (13) that V (t) → 0 exponentially as t → ∞.
This shows that the rod-type plasma torch chaotic system (5) is dissipative. Hence,
the system limit sets are ultimately confined into a specific limit set of zero volume,
and the asymptotic motion of the rod-type plasma torch chaotic system (5) settles
onto a strange attractor of the system.
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3.2 Equilibrium Points

The equilibrium points of the rod-type plasma torch chaotic system (5) are obtained
by solving the equations

⎧
⎨

⎩

f1(x1, x2, x3) = x2 = 0
f2(x1, x2, x3) = x3 = 0
f3(x1, x2, x3) = ax1 − bx2 − x3 − x3

1 = 0
(14)

We take the parameter values as in the chaotic case, viz. a = 130 and b = 50.
Solving the Eq. (14), we get three equilibrium points of the rod-type plasma torch

chaotic system (5) as

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E1 =
⎡

⎣

√
130
0
0

⎤

⎦ , E2 =
⎡

⎣
−√

130
0
0

⎤

⎦ (15)

To test the stability type of the equilibriumpoints, we calculate the Jacobianmatrix
of the rod-type plasma torch chaotic system (5) at any point x :

J (x) =
⎡

⎣
0 1 0
0 0 1

130 − 3x2
1 −50 −1

⎤

⎦ (16)

We find that

J0
�= J (E0) =

⎡

⎣
0 1 0
0 0 1

130 −50 −1

⎤

⎦ (17)

The matrix J0 has the eigenvalues

λ1 = 2.2650, λ2,3 = −1.6325 ± 7.3980 i (18)

This shows that the equilibrium point E0 is a saddle-focus, which is unstable.
Next, we find that

J1
�= J (E0) =

⎡

⎣
0 1 0
0 0 1

−260 −50 −1

⎤

⎦ (19)

The matrix J1 has the eigenvalues

λ1 = −4.1312, λ2,3 = 1.5656 ± 7.7772 i (20)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
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We also find that

J2
�= J (E0) =

⎡

⎣
0 1 0
0 0 1

−260 −50 −1

⎤

⎦ (21)

The matrix J2 has the eigenvalues

λ1 = −4.1312, λ2,3 = 1.5656 ± 7.7772 i (22)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
Thus, the rod-type plasma torch chaotic system (5) has three unstable equilibrium

points on the x1-axis.

3.3 Invariance

The rod-type plasma torch chaotic system (5) is invariant under the coordinates
transformation

(x1, x2, x3) �→ (−x1,−x2,−x3) (23)

This shows that the rod-type plasma torch chaotic system (5) has point-reflection
symmetry about the origin and every non-trivial trajectory of the system (5) must
have a twin trajectory.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the rod-type plasma torch system (5) as a = 130
and b = 50. We take the initial state of the rod-type plasma torch system (5) as given
in (7).

Then the Lyapunov exponents of the rod-type plasma torch system (5) are numer-
ically obtained using MATLAB as

L1 = 0.3451, L2 = 0, L3 = −1.3509 (24)

Thus, themaximalLyapunov exponent (MLE)of the rod-type plasma torch system
(5) is positive, which means that the system has a chaotic behavior.

Since L1 + L2 + L3 = −1.0058 < 0, it follows that the rod-type plasma torch
chaotic system (5) is dissipative.
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Also, the Kaplan–Yorke dimension of the rod-type plasma torch chaotic system
(5) is obtained as

DK Y = 2 + L1 + L2

|L3| = 2.2555 (25)

4 Adaptive Control of the Rod-Type Plasma Torch Chaotic
System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the rod-type plasma torch chaotic system with
unknown parameters.

Thus, we consider the rod-type plasma torch chaotic system given by

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − bx2 − x3 − x3

1 + u
(26)

In (26), x1, x2, x3 are the states, a, b are unknown constant parameters, and u is
a backstepping control law to be determined using estimates â(t) and b̂(t) for the
unknown parameters a and b, respectively.

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(27)

Differentiating (27) with respect to t , we obtain the following equations:

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(28)

Next, we shall state and prove the main result of this section.

Theorem 1 The 3-D rod-type plasma torch chaotic system (26), with unknown para-
meters a and b, is globally and exponentially stabilized by the adaptive feedback
control law,

u(t) = − [
3 + â(t)

]
x1 −

[
5 − b̂(t)

]
x2 − 2x3 + x3

1 − kz3 (29)

where k > 0 is a gain constant,

z3 = 2x1 + 2x2 + x3, (30)
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and the update law for the parameter estimates â(t), b̂(t)) is given by

{ ˙̂a(t) = x1z3˙̂b(t) = −x2z3
(31)

Proof We prove this result via Lyapunov stability theory [14].
First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (32)

where
z1 = x1 (33)

Differentiating V1 along the dynamics (26), we get

V̇1 = z1 ż1 = x1x2 = −z21 + z1(x1 + x2) (34)

Now, we define
z2 = x1 + x2 (35)

Using (35), we can simplify the Eq. (34) as

V̇1 = −z21 + z1z2 (36)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(37)

Differentiating V2 along the dynamics (26), we get

V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (38)

Now, we define
z3 = 2x1 + 2x2 + x3 (39)

Using (39), we can simplify the Eq. (38) as

V̇2 = −z21 − z22 + z2z3 (40)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b (41)
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Differentiating V along the dynamics (26), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (42)

Equation (42) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (43)

where
S = z3 + z2 + ż3 = z3 + z2 + 2ẋ1 + 2ẋ2 + ẋ3 (44)

A simple calculation gives

S = (3 + a)x1 + (5 − b)x2 + 2x3 − x3
1 + u (45)

Substituting the adaptive control law (29) into (45), we obtain

S = [
a − â(t)

]
x1 −

[
b − b̂(t)

]
x2 − kz3 (46)

Using the definitions (28), we can simplify (46) as

S = ea x1 − ebx2 − kz3 (47)

Substituting the value of S from (47) into (43), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

(
x1z3 − ˙̂a

)
+ eb

(
−x2z3 − ˙̂b

)
(48)

Substituting the update law (31) into (48), we get

V̇ = −z21 − z22 − (1 + k)z23, (49)

which is a negative semi-definite function on R5.
From (49), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t)

] ∈ L∞ (50)

Also, it follows from (49) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (51)

That is,
‖z‖2 ≤ −V̇ (52)
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Integrating the inequality (52) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (53)

From (53), it follows that z(t) ∈ L2.
From Eq. (26), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [14], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial con-

ditions x(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (26) and
(31), when the adaptive control law (29) is applied.

The parameter values of the novel jerk chaotic system (26) are taken as

a = 130, b = 50 (54)

We take the positive gain constant as k = 10.
Furthermore, as initial conditions of the novel rod-type plasma torch chaotic

system (26), we take

x1(0) = 12.6, x2(0) = 8.2, x3(0) = 6.3 (55)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 15.9, b̂(0) = 26.7 (56)

In Fig. 5, the exponential convergence of the controlled states x1(t), x2(t), x3(t)
is depicted, when the adaptive control law (29) and (31) are implemented.

5 Adaptive Synchronization of the Identical Rod-Type
Plasma Torch Chaotic Systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel rod-type
plasma torch chaotic systems with unknown parameters.



566 S. Vaidyanathan

0 1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

10

20

30

40

Time (sec)

x 1, x
2, x

3

x
1

x
2

x
3

Fig. 5 Time-history of the controlled states x1, x2, x3

As themaster system, we consider the rod-type plasma torch chaotic system given
by ⎧

⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − bx2 − x3 − x3

1

(57)

where x1, x2, x3 are the states of the system, and a, b are unknown, constant para-
meters.

As the slave system, we consider the rod-type plasma torch chaotic system given
by ⎧

⎨

⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = ay1 − by2 − y3 − y31 + u

(58)

where y1, y2, y3 are the states of the system, and u is a backstepping control to
be determined using estimates â(t) and b̂(t) for the unknown parameters a and b,
respectively.

We define the synchronization error between the states of the master system (57)
and the slave system (58) as ⎧

⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(59)
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Then the error dynamics is easily obtained as

⎧
⎨

⎩

ė1 = e2
ė2 = e3
ė3 = ae1 − be2 − e3 − y31 + x3

1 + u
(60)

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(61)

Differentiating (61) with respect to t , we obtain

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(62)

Theorem 2 The identical 3-D novel rod-type plasma torch chaotic systems (57) and
(58) with unknown parameters a and b are globally and exponentially synchronized
by the adaptive control law

u = − [
3 + â(t)

]
e1 −

[
5 − b̂(t)

]
e2 − 2e3 + y31 − x3

1 − kz3 (63)

where k > 0 is a gain constant,

z3 = 2e1 + 2e2 + e3, (64)

and the update law for the parameter estimates â(t), b̂(t) is given by

{ ˙̂a(t) = e1z3˙̂b(t) = −e2z3
(65)

Proof First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (66)

where
z1 = e1 (67)

Differentiating V1 along the error dynamics (60), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (68)
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Now, we define
z2 = e1 + e2 (69)

Using (69), we can simplify the Eq. (68) as

V̇1 = −z21 + z1z2 (70)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(71)

Differentiating V2 along the error dynamics (60), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (72)

Now, we define
z3 = 2e1 + 2e2 + e3 (73)

Using (73), we can simplify the Eq. (72) as

V̇2 = −z21 − z22 + z2z3 (74)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, ea, eb) = V2(z1, z2) + 1

2
z23 + 1

2
e2a + 1

2
e2b (75)

Differentiating V along the error dynamics (60), we get

V̇ = −z21 − z22 − z23 + z3(z3 + z2 + ż3) − ea
˙̂a − eb

˙̂b (76)

Equation (76) can be written compactly as

V̇ = −z21 − z22 − z23 + z3S − ea
˙̂a − eb

˙̂b (77)

where
S = z3 + z2 + ż3 = z3 + z2 + 2ė1 + 2ė2 + ė3 (78)

A simple calculation gives

S = (3 + a)e1 + (5 − b)e2 + 2e3 − y31 + x3
1 + u (79)
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Substituting the adaptive control law (63) into (79), we obtain

S = [
a − â(t)

]
e1 −

[
b − b̂(t)

]
e2 − kz3 (80)

Using the definitions (62), we can simplify (80) as

S = eae1 − ebe2 − kz3 (81)

Substituting the value of S from (81) into (77), we obtain

V̇ = −z21 − z22 − (1 + k)z23 + ea

[
e1z3 − ˙̂a

]
+ eb

[
−e2z3 − ˙̂b

]
(82)

Substituting the update law (65) into (82), we get

V̇ = −z21 − z22 − (1 + k)z23, (83)

which is a negative semi-definite function on R5.
From (83), it follows that the vector z(t) = (z1(t), z2(t), z3(t)) and the parameter

estimation error (ea(t), eb(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) ea(t) eb(t)

] ∈ L∞ (84)

Also, it follows from (83) that

V̇ ≤ −z21 − z22 − z23 = −‖z‖2 (85)

That is,
‖z‖2 ≤ −V̇ (86)

Integrating the inequality (86) from 0 to t , we get

t∫

0

|z(τ )|2 dτ ≤ V (0) − V (t) (87)

From (87), it follows that z(t) ∈ L2.
From Eq. (60), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [14], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R3.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial con-

ditions e(0) ∈ R3.
This completes the proof. �
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For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of rod-type plasma torch chaotic
systems, which are taken as the master and slave systems.

The parameter values of the rod-type plasma torch chaotic systems are taken as
in the chaotic case, i.e. a = 130 and b = 50.

We take the positive gain constant as k = 10.
Furthermore, as initial conditions of the master system (57), we take

x1(0) = 7.2, x2(0) = 4.9, x3(0) = −10.1 (88)

As initial conditions of the slave system (58), we take

y1(0) = −14.8, y2(0) = −16.5, y3(0) = 8.3 (89)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 12.7, b̂(0) = 28.5 (90)

In Figs. 6, 7 and 8, the complete synchronization of the identical 3-D rod-type
plasma torch chaotic systems (57) and (58) is depicted.

Also, in Fig. 9, the time-history of the synchronization errors e1(t), e2(t), e3(t),
is depicted.
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6 Conclusions

In this work, we first described the Ghorui jerk chaotic system (2000) describing a
strange attractor of a thermal arc plasma system based on triple convection theory.
The phase portraits of the rod-type plasma torch chaotic system were displayed and
the dynamic properties of the rod-type plasma torch chaotic system were discussed.
We established that the rod-type plasma torch chaotic system has three unstable
equilibrium points on the x1-axis. The Lyapunov exponents of the rod-type plasma
torch chaotic systemhave been obtained as L1 = 0.3451, L2 = 0 and L3 = −1.3509.
Since the sumof the Lyapunov exponents of the rod-type plasma torch chaotic system
is negative, the chaotic system is dissipative. Also, the Kaplan–Yorke dimension
of the rod-type plasma torch chaotic system has been derived as DK Y = 2.2555.
Next, an adaptive backstepping controller was designed to globally stabilize the rod-
type plasma torch chaotic system with unknown parameters. Moreover, an adaptive
backstepping controller was also designed to achieve global chaos synchronization
of the identical rod-type plasma torch chaotic systems with unknown parameters.
MATLAB simulations were shown to illustrate all the main results derived in this
work.
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Abstract In this work, we describe a seven-term novel chaotic systemwith a quartic
nonlinearity and two quadratic nonlinearities. The phase portraits of the novel chaotic
system are illustrated and the dynamic properties of the chaotic system are discussed.
The novel 3-D chaotic system has three unstable equilibrium points. We show that
the equilibrium point at the origin is a saddle point, while the other two equilibrium
points are saddle-foci.We show that novel 3-D chaotic system has rotation symmetry
about the x3-axis. We also show that the x3-axis is invariant under the flow of the 3-D
novel chaotic system. The Lyapunov exponents of the novel 3-D chaotic system are
obtained as L1 = 0.75364, L2 = 0 and L3 = −2.50392, while the Kaplan–Yorke
dimension of the novel chaotic system is obtained as DK Y = 2.3010. Since the sum
of the Lyapunov exponents is negative, the novel chaotic system is dissipative. Next,
we derive new results for the global chaos control of the novel 3-D chaotic system
with unknown parameters using adaptive control method. We also derive new results
for the global chaos synchronization of the identical novel 3-D chaotic systems with
unknown parameters using adaptive control method. The main control results are
established using Lyapunov stability theory. MATLAB simulations are depicted to
illustrate the phase portraits of the novel 3-D chaotic system and also the adaptive
control results derived in this work.

Keywords Chaos · Chaotic systems · Chaos control · Adaptive control · Synchro-
nization

S. Vaidyanathan (B)
Research and Development Centre, Vel Tech University, Avadi,
Chennai 600062, Tamil Nadu, India
e-mail: sundarvtu@gmail.com

© Springer International Publishing Switzerland 2016
S. Vaidyanathan and C. Volos (eds.), Advances and Applications
in Chaotic Systems, Studies in Computational Intelligence 636,
DOI 10.1007/978-3-319-30279-9_25

579



580 S. Vaidyanathan

1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others [3].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [11], Rössler system [20], ACT system [2], Sprott systems [25], Chen system
[6], Lü system [12], Cai system [5], Tigan system [35], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [108], Zhu system [109], Li system [10], Sundarapandian systems [28, 32],
Vaidyanathan systems [44, 46, 48–51, 55, 66, 67, 81, 82, 84, 90, 92, 95, 98, 99,
101], Pehlivan system [15], Sampath system [21], etc.

Chaos theory has applications in several fields of science and engineering such as
chemical reactors [56, 60, 62, 64, 68, 72–74], biological systems [54, 57–59, 61,
63, 65, 69–71, 75–79], memristors [1, 16, 105], lasers [4], oscillations [36], robotics
[7, 104], electrical circuits [13, 103], cryptosystems [19, 37], secure communications
[106, 107], etc.

The control of a chaotic system aims to stabilize or regulate the system with
the help of a feedback control. There are many methods available for controlling a
chaotic system such as active control [26, 38, 39], adaptive control [27, 40, 45, 47,
53, 80, 91, 97, 100], sliding mode control [42, 43], backstepping control [14, 94,
102], etc.

There aremanymethods available for chaos synchronization such as active control
[8, 22, 23, 85, 87, 93], adaptive control [24, 29–31, 41, 83, 86], slidingmode control
[33, 52, 89, 96], backstepping control [17, 18, 34, 88], etc.

In this research work, we announce a seven-term novel 3-D chaotic system with a
quartic nonlinearity and two quadratic nonlinearities. Using adaptive controlmethod,
we have also derived new results for the global chaos control of the novel 3-D chaotic
system and global chaos synchronization of the identical novel 3-D chaotic systems
when the system parameters are unknown.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the seven-term novel 3-D chaotic system. Section3 details the
dynamic analysis and properties of the novel 3-D chaotic system. The Lyapunov
exponents of the novel chaotic system are obtained as L1 = 0.75364, L2 = 0 and
L3 = −2.50392, while the Kaplan–Yorke dimension of the novel chaotic system is
obtained as DK Y = 2.3010. We show that novel 3-D chaotic system has rotation
symmetry about the x3-axis. We also that the x3-axis is invariant under the flow of
the 3-D novel chaotic system.

In Sect. 4, we derive new results for the global chaos control of the novel
3-D chaotic system with unknown parameters. In Sect. 5, we derive new results
for the global chaos synchronization of the identical novel 3-D chaotic systems with
unknown parameters. Section6 contains a summary of the main results derived in
this work.
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2 A Novel 3-D Chaotic System

In this section, we describe a seven-term novel chaotic system, which is given by the
3-D dynamics ⎧

⎨

⎩

ẋ1 = x2 + x2x3
ẋ2 = ax1 − x2 − x1x3
ẋ3 = − bx3 + x4

1

(1)

where x1, x2, x3 are the states and a, b are constant, positive parameters.
The novel 3-D system (1) is a seven-term polynomial system with a quartic non-

linearity and two quadratic nonlinearities.
The system (1) exhibits a strange chaotic attractor for the parameter values

a = 4, b = 0.75 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 1, x2(0) = 1, x3(0) = 1 (3)

Figure1 depicts the 3-D phase portrait of the novel chaotic system (1), while
Figs. 2, 3 and 4 depict the 2-D projection of the novel chaotic system (1) on the
(x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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Fig. 1 3-D phase portrait of the novel highly chaotic system
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Fig. 2 2-D projection of the novel highly chaotic system on the (x1, x2) plane
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Fig. 3 2-D projection of the novel highly chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the novel highly chaotic system on the (x1, x3) plane

3 Analysis of the Novel 3-D Highly Chaotic System

In this section, we give a dynamic analysis of the 3-D novel highly chaotic system
(1). We take the parameter values as in the chaotic case (2), viz. a = 4 and b = 0.75.

3.1 Dissipativity

In vector notation, the novel chaotic system (1) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (4)

where ⎧
⎨

⎩

f1(x1, x2, x3) = x2 + x2x3
f2(x1, x2, x3) = ax1 − x2 − x1x3
f3(x1, x2, x3) = −bx3 + x4

1

(5)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
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By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (6)

The divergence of the novel chaotic system (4) is found as

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −1 − b = −μ < 0 (7)

since μ = 1 + b = 1.75 > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel chaotic system (1) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of
zero volume, and the asymptotic motion of the novel chaotic system (1) settles onto
a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (2), viz. a = 4 and b = 0.75.
It is easy to see that the system (1) has three equilibrium points, viz.

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E1 =
⎡

⎣
3

1
4

0
4

⎤

⎦ , E2 =
⎡

⎣
−3

1
4

0
4

⎤

⎦ (10)

The Jacobian of the system (1) at any point x ∈ R3 is calculated as

J (x) =
⎡

⎣
0 1 + x3 x2

4 − x3 −1 −x1
4x3

1 0 −0.75

⎤

⎦ (11)
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The Jacobian of the system (1) at E0 is obtained as

J0 = J (E0) =
⎡

⎣
0 1 0
4 −1 0
0 0 −0.75

⎤

⎦ (12)

We find that the matrix J0 has the eigenvalues

λ1 = −0.75, λ2 = −2.5616, λ3 = 1.5616 (13)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The Jacobian of the system (1) at E1 is obtained as

J1 = J (E1) =
⎡

⎣
0 5 0
0 −1 −1.3161

9.1180 0 −0.75

⎤

⎦ (14)

We find that the matrix J1 has the eigenvalues

λ1 = −4.5204, λ2,3 = 1.3852 ± 3.3696i (15)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The Jacobian of the system (1) at E2 is obtained as

J2 = J (E2) =
⎡

⎣
0 5 0
0 −1 −1.3161

9.1180 0 −0.75

⎤

⎦ (16)

We find that the matrix J2 has the eigenvalues

λ1 = −4.5204, λ2,3 = 1.3852 ± 3.3696i (17)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.

3.3 Symmetry and Invariance

It is easy to see that the system (1) is invariant under the change of coordinates

(x1, x2, x3) �→ (−x1,−x2, x3) (18)

Thus, it follows that the 3-D novel chaotic system (1) has rotation symmetry about
the x3-axis and that any non-trivial trajectory must have a twin trajectory.
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Next, it is easy to see that the x3-axis is invariant under the flow of the 3-D novel
chaotic system (1). The invariant motion along the x3-axis is characterized by

ẋ3 = −bx3, (b > 0) (19)

which is globally exponentially stable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the chaotic case (2), i.e.

a = 4, b = 0.75 (20)

We take the initial state of the novel system (1) as given in (3), i.e.

x1(0) = 1, x2(0) = 1, x3(0) = 1 (21)

Then the Lyapunov exponents of the system (1) are numerically obtained as

L1 = 0.75364, L2 = 0, L3 = −2.50392 (22)

Since the sum of the Lyapunov exponents is negative, we conclude that the novel
chaotic system (1) is dissipative.

Also, the Kaplan–Yorke dimension of the novel chaotic system (1) is found as

DK Y = 2 + L1 + L2

|L3| = 2.3010 (23)

4 Adaptive Control of the Novel 3-D Chaotic System

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the novel 3-D chaotic system with unknown system
parameters.

Thus, we consider the novel 3-D chaotic system with controls given by

⎧
⎨

⎩

ẋ1 = x2 + x2x3 + u1

ẋ2 = ax1 − x2 − x1x3 + u2

ẋ3 = −bx3 + x4
1 + u3

(24)

In (24), x1, x2, x3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates â(t), b̂(t) for the unknown parameters a, b, respectively.
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We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −x2 − x2x3 − k1x1
u2 = −â(t)x1 + x2 + x1x3 − k2x2
u3 = b̂(t)x3 − x4

1 − k3x3

(25)

where k1, k2, k3 are positive gain constants.
Substituting (25) into (24), we get the closed-loop plant dynamics as

⎧
⎨

⎩

ẋ1 = −k1x1
ẋ2 = [a − â(t)]x1 − k2x2
ẋ3 = −[b − b̂(t)]x3 − k3x3

(26)

The parameter estimation errors are defined as

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(27)

In view of (27), we can simplify the plant dynamics (26) as

⎧
⎨

⎩

ẋ1 = −k1x1
ẋ2 = ea x1 − k2x2
ẋ3 = −ebx3 − k3x3

(28)

Differentiating (27) with respect to t , we obtain

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(29)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb) = 1

2

(
x2
1 + x2

2 + x2
3

) + 1

2

(
e2a + e2b

)
(30)

Differentiating V along the trajectories of (28) and (29), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 + ea

[
x1x2 − ˙̂a

]
+ eb

[
−x2

3 − ˙̂b
]

(31)

In view of (31), we take the parameter update law as

{ ˙̂a(t) = x1x2˙̂b(t) = −x2
3

(32)

Next, we state and prove the main result of this section.



588 S. Vaidyanathan

Theorem 1 The novel 3-D chaotic system (24) with unknown system parameters
is globally and exponentially stabilized for all initial conditions by the adaptive
control law (25) and the parameter update law (32), where k1, k2, k3 are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory [9].
We consider the quadratic Lyapunov function defined by (30), which is clearly a

positive definite function on R5.
By substituting the parameter update law (32) into (31), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 (33)

From (33), it is clear that V̇ is a negative semi-definite function on R5.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (33) that

V̇ ≤ −k‖x(t)‖2 (34)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (35)

Integrating the inequality (35) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (36)

From (36), it follows that x ∈ L2.
Using (28), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [9], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R3.
Hence, the novel highly chaotic system (24) with unknown system parameters is

globally and exponentially stabilized for all initial conditions by the adaptive control
law (25) and the parameter update law (32).

This completes the proof. �
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For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (24) and (32), when the adaptive
control law (25) is applied.

The parameter values of the novel 3-D chaotic system (24) are taken as in the
chaotic case (2), i.e.

a = 4, b = 0.75 (37)

We take the positive gain constants as

k1 = 6, k2 = 6, k3 = 6 (38)

Furthermore, as initial conditions of the novel highly chaotic system (24), we take

x1(0) = 12.7, x2(0) = 24.8, x3(0) = −16.9 (39)

Also, as initial conditions of the parameter estimates, we take

â(0) = 15.7, b̂(0) = 14.3 (40)

In Fig. 5, the exponential convergence of the controlled states of the 3-D novel
chaotic system (24) is depicted.
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Fig. 5 Time-history of the controlled states x1, x2, x3
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5 Adaptive Synchronization of the Identical Novel
Chaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical novel 3-D chaotic systems with unknown
parameters. The main result is established using Lyapunov stability theory.

As the master system, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẋ1 = x2 + x2x3
ẋ2 = ax1 − x2 − x1x3
ẋ3 = −bx3 + x4

1

(41)

In (41), x1, x2, x3 are the states and a, b, c, p are unknown system parameters.
As the slave system, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẏ1 = y2 + y2y3 + u1

ẏ2 = ay1 − y2 − y1y3 + u2

ẏ3 = −by3 + y41 + u3

(42)

In (42), y1, y2, y3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates â(t), b̂(t) for the unknown parameters a, b, respectively.

The synchronization error between the novel chaotic systems is defined by

⎧
⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(43)

Then the error dynamics is obtained as

⎧
⎨

⎩

ė1 = e2 + y2y3 − x2x3 + u1

ė2 = ae1 − e2 − y1y3 + x1x3 + u2

ė3 = −be3 + y41 − x4
1 + u3

(44)

We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −e2 − y2y3 + x2x3 − k1e1
u2 = −â(t)e1 + e2 + y1y3 − x1x3 − k2e2
u3 = b̂(t)e3 − y41 + x4

1 − k3e3

(45)

where k1, k2, k3 are positive gain constants.
Substituting (45) into (44), we get the closed-loop error dynamics as

⎧
⎨

⎩

ė1 = −k1e1
ė2 = [a − â(t)]e1 − k2e2
ė3 = −[b − b̂(t)]e3 − k3e3

(46)
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The parameter estimation errors are defined as

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(47)

In view of (47), we can simplify the error dynamics (46) as

⎧
⎨

⎩

ė1 = −k1e1
ė2 = eae1 − k2e2
ė3 = −ebe3 − k3e3

(48)

Differentiating (47) with respect to t , we obtain

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(49)

We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b

)
(50)

Differentiating V along the trajectories of (48) and (49), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 + ea

[
e1e2 − ˙̂a

]
+ eb

[
−e23 − ˙̂b

]
(51)

In view of (51), we take the parameter update law as

{ ˙̂a(t) = e1e2˙̂b(t) = −e23
(52)

Next, we state and prove the main result of this section.

Theorem 2 The novel 3-D chaotic systems (41) and (42) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (45) and the parameter update law (52), where k1, k2, k3
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [9].
We consider the quadratic Lyapunov function defined by (50), which is clearly a

positive definite function on R5.
By substituting the parameter update law (52) into (51), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (53)

From (53), it is clear that V̇ is a negative semi-definite function on R5.
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Thus, we can conclude that the error vector e(t) and the parameter estimation
error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t)

]T ∈ L∞. (54)

We define k = min{k1, k2, k3}.
Then it follows from (53) that

V̇ ≤ −k‖e(t)‖2 (55)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (56)

Integrating the inequality (56) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (57)

From (57), it follows that e ∈ L2.
Using (48), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [9], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (41), (42) and (52), when the
adaptive control law (45) is applied.

The parameter values of the novel chaotic systems are taken as in the chaotic
case (2), i.e. a = 4 and b = 0.75. We take the positive gain constants as ki = 6 for
i = 1, 2, 3.

As initial conditions of themaster system (41),we take x1(0) = 2.4, x2(0) = −1.7
and x3(0) = −2.3.

As initial conditions of the slave system (42), we take y1(0) = 3.6, y2(0) = 2.2
and y3(0) = 5.1.

Also, as initial conditions of the parameter estimates, we take â(0) = 8.1 and
b̂(0) = 7.4.

Figures6, 7 and 8 describe the complete synchronization of the novel highly
chaotic systems (41) and (42), while Fig. 9 describes the time-history of the synchro-
nization errors e1, e2, e3.
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6 Conclusions

In this work, we announced a seven-term novel chaotic system with a quartic non-
linearity and two quadratic nonlinearities. The phase portraits of the novel chaotic
system were illustrated and the dynamic properties of the chaotic system were dis-
cussed. We showed that the novel 3-D chaotic system has three unstable equilib-
rium points. Explicitly, we established that the equilibrium point at the origin is a
saddle point, while the other two equilibrium points are saddle-foci. We showed
that novel 3-D chaotic system has rotation symmetry about the x3-axis. We also
showed that the x3-axis is invariant under the flow of the 3-D novel chaotic system.
The Lyapunov exponents of the novel 3-D chaotic system have been obtained as
L1 = 0.75364, L2 = 0 and L3 = −2.50392, while the Kaplan–Yorke dimension of
the novel chaotic system has been derived as DK Y = 2.3010. Since the sum of the
Lyapunov exponents is negative, the novel chaotic system is dissipative. Next, we
established new results for the global chaos control of the novel 3-D chaotic sys-
tem with unknown parameters using adaptive control method. We also established
new results for the global chaos synchronization of the identical novel 3-D chaotic
systems with unknown parameters using adaptive control method. The main control
results were proved using Lyapunov stability theory. MATLAB simulations have
been shown to illustrate the phase portraits of the novel 3-D chaotic system and also
the adaptive control results derived in this work.
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