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Supervisor’s Foreword

One of the most exciting events in general relativity and astrophysics in this
decade will be the first direct detection of gravitational waves. This will be
achieved by 2020. After their first detection, gravitational-wave astronomy will
begin and will be a new tool for observing general relativistic objects which have
been poorly explored. The black hole–neutron star binaries, which have not been
observed yet, are among the most promising sources of gravitational waves. The
first detection of them will be achieved by gravitational-wave observation, and we
expect that it will provide rich information for black hole–neutron star binaries and
properties of the neutron stars.

The merger remnant of black hole–neutron star binaries is also the leading
candidate for the central engines of short-duration gamma-ray bursts, for which the
progenitor has not been determined yet. A coincident observation of gravitational
waves and gamma-ray bursts could provide the definite answer for this unsolved
issue. In addition, a class of black hole–neutron star binaries is likely to eject
neutron-rich material through the tidal disruption event of the neutron star. The
ejected material is a promising transient source of UV, optical, and radio signals,
which also have not yet been detected. Observation of these electromagnetic
signals is one of the exciting unsolved issues in astronomy, and will be an
important method for exploring the black hole–neutron star binaries.

In near-future observations by gravitational-wave detectors and electromagnetic
telescopes, black hole–neutron star binaries will be explored in detail. However, to
extract physical and astrophysical information from the observational data, a theory
for their merger process is necessary. Numerical relativity is probably a unique
approach for determining the nature of the merger of black hole–neutron star
binaries.

Numerical relativity is the field in which Einstein’s equation and matter
equations are numerically and accurately solved in computers. Because the merger
processes are highly dynamical and general relativistic, numerical relativity is
required. Numerical relativity has been significantly developed in particular in the
past decade. Now, it is feasible to perform numerical-relativity simulations for a
variety of problems such as mergers of binary neutron stars and binary black holes.
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Among many others, the simulation for black hole–neutron star binaries was a new
topic in this field. The first simulation had been performed in 2006. Since then,
significant progress has been achieved in this community and Dr. Koutarou
Kyutoku, the author of this volume, has been a central person in this progress.

Dr. Kyutoku is one of the first persons who performed numerical-relativity
simulations for the merger of black hole–neutron star binaries systematically. In this
problem, there are several free parameters: masses of the black hole and neutron star
and black-hole spin. In addition, the equation of state of neutron stars is still poorly
known. Thus, the simulation has to be performed for a variety of possible equations
of state. Dr. Kyutoku performed a large number of simulations for a variety of
parameter sets and equations of state, and clarified the nature of the merger process,
merger remnants, and emitted gravitational waves in a comprehensive manner. This
volume presents the results of such a systematic investigation. In particular, he
pointed out the possibility that the equation of state for neutron stars, which is poorly
known, could be strongly constrained by the observation of high-frequency
gravitational waves for the first time. He also clarified that for a class of black
hole–neutron star binaries, the remnant is composed of a rapidly spinning black hole
surrounded by a massive and dense torus. Such a remnant is a promising candidate
for the central engine of short-duration gamma-ray bursts. These findings give
readers new insights in general relativity and high-energy astrophysics.

Kyoto, September 2012 Masaru Shibata
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Chapter 1
Introduction

The merger of black hole (BH)–neutron star (NS) binaries will give us a unique
opportunity to explore many aspects of unknown physics in the near future. Gravita-
tional waves from the merger of such binaries will tell us invaluable information of
the NS properties, especially of the equation of state (EOS) at nuclear and supranu-
clear density. In particular, the EOS strongly modifies the gravitational waveform
when the NS is tidally disrupted by the tidal force field of the BH before they merge.
A BH–hot, massive accretion disk system is naturally formed after the tidal dis-
ruption, and this system will launch a high-energy jet, which may be observed as
a short-hard gamma-ray burst (GRB). If cold, neutron-rich material in the NS is
ejected from the system after the tidal disruption, the material may accompany r
(rapid neutron capture)-process nucleosynthesis. In this chapter, we review physics
associated with the BH–NS binary merger, briefly summarize a history of BH–NS
studies, and present the purpose of this thesis.

1.1 Gravitational Waves from Compact Binaries

Coalescing binaries composed of a BH and/or a NS, which are frequently called
compact binaries, are among the most promising sources of gravitational waves for
ground-based laser-interferometric gravitational-wave detectors such as LIGO [1]
and Virgo [2]. Gravitational waves are propagation of the spacetime curvature, and
are one of the most distinguishing predictions of general relativity. The existence
of gravitational waves is confirmed indirectly by observing orbital decay of the
Hulse-Taylor binary pulsar, PSR B1913 + 16 [3]. Although we have not observed
gravitational waves directly yet (at the end of 2011), detections of gravitational waves
will be accomplished in a decade to come by planned next-generation gravitational-
wave detectors such as advanced LIGO, advanced Virgo, and KAGRA (formerly
LCGT) [4]. Namely, the era of gravitational-wave astronomy will begin [5]. Indeed,
current gravitational-wave detectors already begin to present scientifically meaning-
ful results using the absence of gravitational-wave detection [6–9].

K. Kyutoku, The Black Hole–Neutron Star Binary Merger in Full General Relativity, 1
Springer Theses, DOI: 10.1007/978-4-431-54201-8_1, © Springer Japan 2013
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Because gravitational waves are much more transparent to the absorption and
scattering by material than electromagnetic waves and even neutrinos are,
gravitational-wave astronomy is expected to become a powerful and unique way
to observe strongly gravitating phenomena in our Universe. Among such phenom-
ena, the merger of a BH–NS binary plays an important role to investigate properties
of the NS such as the radius and the EOS of a high-density nuclear matter [10–
15], and will have a significant impact on astrophysics and nuclear physics. Precise
knowledge of the NS EOS is also important to study the EOS of dark energy via
sole gravitational-wave observation of a relation between the luminosity distance and
the cosmological redshift [16], using a planned third-generation gravitational-wave
detector, the Einstein Telescope [17]. An important constraint on the NS EOS is
obtained from detection of a 1.97 ± 0.04M� NS, which is the most massive NS cur-
rently known, by a pulsar-timing observation [18]. However, we still do not know the
realistic EOS of the NS, because there is no robust measurement of the NS radius (see
Sect. 2.3.3). To determine or at least constrain the NS radius and EOS by observing
gravitational waves from the BH–NS binary, we have to prepare accurate theoretical
templates of gravitational waveforms employing a wide variety of the NS EOSs and
other physical parameters.

The coalescence of compact binaries is usually classified into three phases, i.e., the
inspiral phase, merger phase, and ringdown phase. Compact binaries are believed to
be formed mainly via two supernova explosions in a binary system [19], and formed
binaries gradually contract due to the gravitational radiation reaction. The inspiral
phase denotes the phase in which the radiation reaction timescale is much longer
than the orbital period (see below), so that the adiabatic approximation holds well.
In the inspiral phase, orbital evolution and emitted gravitational waves are computed
accurately by a post-Newtonian (PN) approximation (see [20] and references therein
for reviews). It is also important that a point-particle approximation also holds well
in the early inspiral phase, because the orbital separation is much larger than the size
of each object. As the binary separation decreases, the radiation reaction time scale
becomes comparable or even shorter than the orbital period, and also the finite size
effect becomes important. This phase is called the merger phase, and a computer
simulation by numerical relativity is the unique approach to investigate the merger
phase, because the nonlinearity of strong gravity and hydrodynamics play important
roles. The remnant BH left after the merger1 emits gravitational waves associated
with the quasinormal-mode oscillation, and settles into a stationary BH. This phase
is called the ringdown phase, and the frequency and damping time scale of the
quasinormal mode are computed by the BH perturbation technique (see [24] and
reference therein for reviews).

1 For the merger of binary NSs, a frequent outcome will not be a BH, but be a hypermassive
NS [21–23]. If the hypermassive NS is formed, gravitational waves just after the merger are not
emitted by the BH ringdown, but by oscillation of the hypermassive NS. We do not go into detail
of the hypermassive NS, because it is not relevant to the BH–NS binary. It should be noted that
gravitational waves from hypermassive NSs will tell us information at higher density than at the
central density of a canonical NS.

http://dx.doi.org/10.1007/978-4-431-54201-8_2


1.1 Gravitational Waves from Compact Binaries 3

1.1.1 The Quadrupole Formula and the Inspiral Phase

It is worthwhile to review basic properties of gravitational waves derived by the
lowest-order quadrupole formula [25], which is sufficient to describe semiquantita-
tive properties of the compact binary in the inspiral phase. Here, we consider a circular
binary consists of a BH with the mass MBH and a NS with the mass MNS, and denote
the mass ratio and the total mass by Q ≡ MBH/MNS and m0 ≡ MBH + MNS, respec-
tively. These symbols are used throughout this thesis. We denote the gravitational
constant and the speed of light by G and c, respectively2 throughout this thesis. The
orbital angular velocity for a given binary separation d is

Ω =
√

Gm0

d3 , (1.1)

and hence the orbital period is given by

Porb ≡ 2π

Ω
= 2π

√
d3

Gm0
, (1.2)

in Newtonian gravity. The quadrupole formula gives gravitational waves in the
transverse-traceless gauge in terms of a mass quadrupole moment as

hTT
ij = 2G

c4r

[
d2

dt2 QTT
ij

(
t − r

c

)]
, (1.3)

Qij ≡
∫
ρ

(
xi x j − 1

3
r2 fij

)
d3x, (1.4)

where ρ, r , and fij denote the rest-mass density, the coordinate distance from the
center of mass of the binary |xi |, and the flat three metric, respectively. In this
section, we assume that lowercase Latin indices denote Cartesian components, and
therefore we do not distinguish contravariant and covariant indices. We obey the
Einstein summation convention throughout this thesis, i.e., we always take the sum
of repeated indices for a pair of contravariant and covariant indices, and we also take
the sum of repeated covariant indices in this section. The superscript “TT” means
that the quantity is evaluated by a transverse-traceless projection using a unit vector
x̂i ≡ xi/r as

QTT
ij =

(
Pik Pjl − 1

2
Pij Pkl

)
Qkl , (1.5)

Pij = fij − x̂i x̂ j . (1.6)

2 G = 6.67 × 10−8 g−1 cm3 s−2, c = 3.00 × 1010 cm s−1.
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In the quadrupole approximation, the gravitational-wave luminosity is given by

(
dE

dt

)
GW

= G

5c4

〈
d3QTT

ij

dt3

d3QTT
ij

dt3

〉
, (1.7)

where the bracket stands for a value averaged over several wavelengths, and the
gravitational-wave luminosity from a circular binary is derived as

(
dE

dt

)
GW

= 32G4

5c5

m0 M2
BH M2

NS

d5
. (1.8)

Using the fact that the orbital binding energy of a circular binary is given by

E = −GMBH MNS

2d
, (1.9)

the lifetime of the binary is formally defined as the time required for the orbital
separation, d, becomes zero by

tGW = 5c5

256G3

d4

MBH MNSm0
(1.10)

� 14

(
d

9 × 106 km

)4 (
Q(1 + Q)

3 × 4

)−1 (
MNS

1.35M�

)−3

Gyr, (1.11)

assuming that all the formulae are valid up to d = 0 [26, 27]. Therefore, a compact
binary with d � 107 km merges within the age of the universe. Whereas a BH–NS
binary and a stellar-mass binary BHs have never been observed yet, many of the
already known binary NSs satisfy this condition [28].

For an elliptic orbit with a semimajor diameter d and an orbital eccentricity e, the
emission rate of energy and angular momentum is enhanced as

(
dE

dt

)
GW

=
(

dE

dt

)
GW,e=0

(
1 + 73

24
e2 + 37

96
e4

)
(1 − e2)−7/2, (1.12)

(
dJ

dt

)
GW

=
(

dJ

dt

)
GW,e=0

(
1 + 7

8
e2

)
(1 − e2)−2, (1.13)

and the enhancement of the energy loss is more significant than of the angular momen-
tum loss. Recall that the orbital binding energy of a binary is determined only by
the masses of components and the semimajor diameter, and the maximum value of
the orbital angular momentum is obtained for a circular binary. Using the fact that the
eccentricity is related to the orbital binding energy, E , and angular momentum, J, by
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e2 = 1 + 2m0 E J 2

G2 M3
BH M3

NS

. (1.14)

it is shown that the orbital eccentricity approaches zero more rapidly than the semi-
major diameter does as

a(e) = c0e12/19

1 − e2

(
1 + 121

304
e2

)870/2299

(1.15)

� c0e12/19 (for e2 � 1), (1.16)

where c0 is a constant determined by an initial condition. In other words, the grav-
itational radiation circularizes an elliptic binary orbit, and therefore the binary just
before the merger with d � 100 km is safely believed to be circular [26, 27].

1.1.2 The Estimated Detection Rate

Because the BH–NS binary has never been observed yet, the merger rate of the
BH–NS binary and the detection rate for ground-based detectors are fairly uncertain.
Theoretical estimations of the merger rate, e.g., the merger rate per 100 Myr−1 per
Milky Way Equivalent Galaxy, relies on the population synthesis (see [19, 29, 30] and
references therein for reviews). In the population synthesis, the merger rate is esti-
mated by Monte-Carlo simulations adopting models of stellar evolution, which are
calibrated to observations, such as supernova rates, pulsar distributions, and binary
NSs. The deficit of this method is a large number of uncertainties in the modeling.
For example, the initial mass function of binaries is more uncertain than the initial
mass function of single stars is. Main uncertainties of stellar and binary evolution
come from the mass-loss rate due to the stellar wind [31] and treatment of the evolu-
tion during the common-envelope phase [32]. Another difficulty is conversion from
the merger rate to the detection rate. Aside from precise evaluation of the horizon
distance (see below) for a given binary configuration, it is pointed out that the elliptic
galaxy contributes to the detection rate in a different manner from the spiral galaxy
does, because the star formation history is different [33]. As a result of these and
other issues, the estimated detection rate can differ by orders of magnitude.

At the end of 2011, the most plausible estimation of the detection rate may be the
one shown in [30], in which the authors summarizes an estimation of the compact
binary coalescence rate for Initial and Advanced LIGO–Virgo network. In particular,
the pessimistic, realistic, and optimistic detection rate of a BH–NS binary coales-
cence is estimated to be 7 × 10−5, 0.004, and 0.1 per year for the Initial configu-
ration, respectively, and 0.2, 10, and 300 per year for the Advanced configuration,
respectively. Although these values are still highly uncertain, it is sufficient to lead
us to believe that the BH–NS binary will be an important target of gravitational-wave
astronomy with the Advanced detectors.
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Before closing this section, it will be important to recall an expected strength of
gravitational waves in the quadrupole approximation. Using (1.3), it is shown that
an observed gravitational-wave amplitude at a distance D along the rotational axis
from a circular BH–NS binary with the orbital separation d is

h = 4G MBH MNS

c4 Dd
(1.17)

� 3.2 × 10−22
(

MNS

1.35M�

) (
Q/(1 + Q)

3/4

) (
6m0

c2d

)(
D

100 Mpc

)−1

, (1.18)

and the quadrupole-mode gravitational-wave frequency is given by twice the orbital
frequency as

f = Ω

π
(1.19)

� 810

(
6Gm0

c2d

)3/2 (
MNS

1.35M�

)−1 (
1 + Q

4

)−1

Hz. (1.20)

The spectral amplitude of gravitational waves in the quadrupole approximation is
derived by the stationary phase approximation as

|h̃( f )| =
√

5

24

G5/6

π2/3c3/2 D

M1/2
BH M1/2

NS

m1/6
0

f −7/6 (1.21)

� 4.4 × 10−25

×
(

MNS

1.35M�

)5/6 (
Q1/2/(1 + Q)1/6

31/2/41/6

) (
f

1 kHz

)−7/6

Hz−1. (1.22)

In the gravitational-wave data analysis, detectability of a signal is first estimated by
a signal-to-noise ratio (SNR) defined as

ρ2
SNR ≡ 4

∫ ∞

0

|h̃( f )|2
Sn( f )

d f, (1.23)

where Sn( f ) denotes the one-sided noise power spectral density of a detector. For
a given source, ρSNR depends on the distance to the source and on the noise power
spectral density. When a threshold SNR, which is typically taken to be 8, is specified,
the horizon distance for a detector is defined to be the distance at whichρSNR becomes
equal to the threshold SNR. Whereas it is not easy to compute the SNR due to detector-
dependent Sn( f ), the horizon distance for the BH–NS binary is estimated in [30] to be
70 and 927 Mpc for the Initial and Advanced configurations, respectively, assuming
a 10M� BH and a 1.4M� NS and using Sn( f ) obtained in [1]. Figure 1.1 shows the
noise amplitude spectral density

√
Sn( f ), which has a dimension of 1/

√
Hz, adopted

in [30].
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Fig. 1.1 The square root of noise power spectral densities (or the noise amplitude spectral densities)
of the Initial LIGO, the Initial Virgo, the Advanced LIGO, and the Advanced Virgo. The power
spectral density of the Initial LIGO is obtained by the LIGO S5 run [1], and that of the Initial Virgo
is obtained by the Virgo VSR2 run [2]. This figure is taken from [30]

1.2 Electromagnetic Emission from the Compact
Binary Merger

The merger of a BH–NS binary is a potential candidate for the progenitor of short-hard
GRBs in the so-called merger scenario [34], as well as the binary NSs are. The inves-
tigation of the central engine and emission mechanism of the GRB is one of the most
important problems in astrophysics. If a short-hard GRB is detected concurrently
with gravitational waves from a compact binary, the merger scenario is shown to be
highly convincing. Moreover, if electromagnetic counterparts of the compact binary
merger is detected, it helps the estimation of binary parameters by unambiguous (or
less ambiguous than solely by gravitational waves) determination of the location of
the gravitational-wave source on the celestial sphere [35]. The GRB is of course one
of the promising counterparts, because the delay time from the merger to the emis-
sion is assumed to be negligible. The detection of X-ray, optical, and radio afterglow
also helps the location determination, particularly when the GRB is not detected due
to the misalignment of the jet axis. Another interesting counterpart is a “kilonova,”
in which the electromagnetic radiation is emitted isotropically by decay of heavy
nuclei synthesized in the r-process. A possibility of the r-process is itself important
to explain the existence of heavy, neutron-rich elements, i.e., r-process elements,
with A � 90–110 such as 129I and 235U.

To fully investigate these high-energy phenomena associated with the compact
binary merger, it is necessary to perform numerical-relativity simulations incorporat-
ing neutrino transports and/or electromagnetic effects. Whereas it is now becoming
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possible to perform such simulations of the compact binary merger [22, 23], this
is beyond the scope of this thesis, in which we mainly focus on formation of the
remnant accretion disk in regard to these phenomena. Therefore, we review these
issues only briefly to elucidate importance of the compact binary merger for a wide
range of astrophysics.

1.2.1 Short-Hard Gamma-Ray Bursts and the Merger Scenario

The GRB is the most energetic explosion in our Universe, and is known to occur at
a cosmological distance (see [36, 37] and reference therein for reviews). From the
era of BATSE satellite, it is recognized that the duration of GRBs have a bimodal
distribution with a minimum around 2 s. Here, the duration means the so-called T90,
in which intermediate 90 % of the energy is emitted in 20–2000 keV. According to
this bimodality, GRBs are usually3 classified into two categories. One is the long
GRB, for which T90 > 2 s, and the other is the short GRB, for which T90 < 2 s.
Whereas ratios between two classes according to this classification are different for
different satellites, such as Swift, due to the different performance of instruments, the
bimodal character does not change. Here, care must be taken for two facts. First, this
classification is not very physical, and penetration from one class in a physical sense
into the other class in an observational sense is always unavoidable. Second, T90 is
determined at the satellite location, and do not represent the intrinsic time duration
of the GRB. Another important observational finding is that the spectrum of the short
GRB is harder than that of the long GRB by comparing the hardness ratio, which
is defined as the ratio of the fluence in 50–100 keV to that in 25–50 keV. Therefore
the short GRB is also called the short-hard GRB. These systematic differences lead
many researchers to believe that the long and short GRBs represent different classes
of astrophysical events.

The mechanism of the GRB is long under debate, and it is widely accepted that the
highly relativistic motion of the emission source is necessary to solve the “compact-
ness problem” [38, 39]. First of all, a typical size of the emission source is roughly
estimated to be cδt , where δt ∼ 10–100 ms is a shortest time scale of variability
in the GRB light curve. Next, when the energy flux and distance to the GRB are
observed, we can estimate the isotropic-equivalent luminosity, which is typically
1050–1052 erg s−1 for both long and short GRBs. It should be noted that such large
values heavily relies on the fact that the GRB occurs at a cosmological distance.4

The isotropic-equivalent energy is also estimated by multiplying the burst duration,
and the isotropic-equivalent energy is lower for short-hard GRBs as 1049–1051 erg
than for long GRBs due to a shorter time duration. Finally, using a typical energy of
the observed photon, we can estimate a photon number density in the emitting region

3 The existence of intermediate GRBs is also suggested by several observations, but is not conclusive.
4 We neglect the effect of the cosmological redshift for simplicity. This simplification does not
change the conclusion, particularly for short-hard GRBs.
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of the GRB. Assuming that the main source of opacity is the Thomson scattering by
electron–positron (e−e+) pairs,5 typical optical depth is estimated to be ∼1013, and
hence a thermal spectrum is expected. However, the observed spectrum of the GRB
is usually nonthermal, and indeed this compactness problem had been thought to be
evidence for galactic origins of GRBs before the BATSE observation.

The solution to this contradiction is to consider that the GRB source is in a highly
relativistic motion. For a high Lorentz factor of w 	 1, the size of the source is larger
by a factor of w2 due to relativistic corrections than naively estimated. A radial
correction due to the motion with a velocity v ≈ c(1 − 1/2w2) to us and an angular
correction due to the relativistic beaming within an angle θ ≈ 1/w for two points on
a spherical shell both modify the size of the emission region to be ∼w2cδt . Another
important correction is a Doppler shift of observed photons. Because the photon
energy at the source is reduced by a factor of w, the number of photons which can
create e−e+ pair plasma is also reduced. In particular, if the observed photon has a
number distribution N (E) of the form N (E)dE ∝ E−αdE, the number of photon
which can contribute to the pair production is reduced by a factor of w2(α−1) due to
the necessity of two photons and integration of distribution functions. Putting it all
together, the constraint on the Lorentz factor is obtained by the condition in which
the optical depth has to be smaller than unity, and it is usually said that w � 30 is
required to explain the short-hard GRB observation. Notice that this value is smaller
than the value assumed for a long GRB, w � 100. At any rate, central engines of
GRBs are required to be able to launch a jet with such a high Lorentz factor.

The long GRBs are now thought to be associated with a death of massive stars
[40], because a core-collapse supernova explosion sometimes follows the long GRB.
In this model, which is called the collapsar model, the central engine of the GRB
is assumed to be a BH–accretion disk system formed as a result of the stellar core
collapse, and this model is now thought to be convincing after many theoretical
efforts. It is difficult to explain the short-hard GRB by the collapsar model, however,
because some of short-hard GRBs are found to be associated with early-type galaxies
with low star-formation rates [41, 42]. This problem is not a problem for the merger
scenario, in which the inspiral and merger of a binary spend a long time after the
death of each component. The merger scenario also naturally explains observation in
that the short-hard GRB is found at a closer distance to the earth than the long GRB is,
say the cosmological redshift smaller than unity, even when it is not associated with
an early-type galaxy. Taking the fact that many properties of the long and short GRBs
are still common into account, such as a huge energy and a rapid time variability, it
is expected that a similar model of the central engine to the collapsar model explains
the short-hard GRB.

The short-hard GRBs (see [39, 43] and references therein for reviews) are thought
to originate from the merger of compact binary including NSs, such as a BH–NS
binary. The central engine is assumed to be a BH–accretion disk system in the merger
scenario, as well as in the collapsar model. According to the purpose of this thesis,

5 For a short-hard GRB, it is suggested that the opacity of e−e+ pair production from two photons
itself gives a weaker constraint compared to the case of a long GRB [39].



10 1 Introduction

we only focus on the BH–NS binary. If a NS is tidally disrupted during the merger of
a BH–NS binary, a system composed of a spinning BH and a hot, massive accretion
disk of �0.01M� may be formed. Such an outcome could be a central engine of the
GRB, because it could radiate a large amount of energy �1048 erg in a short time scale
of �2 s to launch a GRB jet if the accretion rate is high. This amount of energy may be
sufficient to explain the short GRB with a beaming effect, whereas it have to be noted
that the opening angle of the short-hard GRB jet is more uncertain than that of the
long GRB jet. One plausible mechanism of the GRB jet formation is neutrino–anti
neutrino (vv̄) annihilation and subsequent e−e+ pair production process [34, 44, 45].
If both temperature and density are high in the accretion disk, the neutrino cooling
via e+/e− capture will dominate over radiation and advection cooling [46]. The
neutrino luminosity can become large if the accretion rate is as high as 	0.1M� s−1,
and total efficiency of converting accreting masses first to the neutrino emission and
next to the e−e+ pair plasma is estimated to be ∼10−4 in optimal cases by several
calculations [39]. Therefore, the required mass of the accretion disk is �0.01M�.
Another mechanism is the magnetohydrodynamic process such as the Blandford-
Znajek mechanism [47, 48]. In this model, magnetized plasma is ejected from the
accretion disk into the funnel region around the rotational axis, and a Poynting-flux
dominated jet is launched along the rotational axis. This mechanism is shown to have
a higher efficiency depending on the BH spin than the neutrino mechanism [49], and
therefore it will be easier to explain the GRB if sufficient (in strength and geometry)
magnetic fields are provided by the accretion disk to drive the MHD jet.

Here, both mechanisms clearly require formation of an accretion disk as a result
of tidal disruption to drive a GRB jet. Only numerical relativity can answer quan-
titatively the question whether/when the formation of a massive accretion disk is
possible for the BH–NS binary merger.

1.2.2 The r-Process and the Kilonova

The possibility of the r-process in the BH–NS binary merger has long been inves-
tigated [50]. The r-process is a neutron capture process faster than the β-decay,
and is thought to be responsible for producing about a half of heavy, neutron-rich
nuclei above iron along the neutron-drip line (see [51, 52] and references therein for
reviews). Because a fairly high neutron flux is required for the neutron capture to
proceed faster than the β-decay, an astrophysical site where the r-process becomes
possible is a matter of debate for a long time. In particular, the solar abundance
shows a double-peaked structure around A ≈ 130 and 195, and therefore theoretical
models of the r-process have to reproduce this structure. It has been proposed that
the neutrino-driven wind from a newly-born NS after the supernova will produce a
neutron-rich, high-entropy material so that the r-process occur [53], but this model
is found to reproduce only the first peak at A ≈ 130 and do not reproduce the
structure above it, particularly the second peak at A ≈ 195, in typical situations.
Generally speaking, the requirements for the r-process site are high entropy, a low
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electron fraction, and a short dynamic time scale. If the NS material is ejected from
the BH–NS binary and becomes unbound as a result of tidal disruption, a very low
electron fraction of the NS material may provide a promising site of the r-process.

Radioactive decay of the r-process nuclei, if it is formed, is naturally observed
as an optical–UV transient event about a day after the merger, depending on the
mass of ejected material [54]. This event is named a “kilonova” in [55], because it is
brighter by a factor of ∼103 than a nova. An advantage of the kilonova is the fact that
isotropic emission is expected. Because the GRB and afterglow associated to it will
not always be observed for the BH–NS binary merger due to the misalignment of
the jet axis, the kilonova may be an important counterpart for the localization of the
gravitational-wave source [35]. Again, only numerical relativity is a unique tool to
investigate whether the ejected material becomes unbound and whether the physical
condition enables the ejected material to be a r-process site.

1.3 The Mass-Shedding Limit

The final fate of the BH–NS binary is classified into two categories.6 One is the case
in which the NS is not disrupted before the merger, and the NS is only swallowed
by the BH to form a massive, rapidly-spinning remnant BH. In this case, the NS
EOS affects gravitational waves only very weakly, and the GRB jet will not be
launched due to the lack of the energy budget. The other is the case in which the
NS is disrupted before the merger, and some of the disrupted material forms a hot,
massive accretion disk around the remnant BH. In this case, the NS EOS strongly
modifies gravitational waves in the late inspiral and merger phases, and the GRB jet
is expected if the mass of the accretion disk is sufficient. A large portion of the NS is
swallowed by the BH even if tidal disruption occurs, and the remnant BH becomes
massive and rapidly-spinning.

According to the above consideration, it is interesting to know an approximate
condition for tidal disruption to occur. Because it is difficult to define quantitatively
the tidal disruption, the mass shedding from the NS should be investigated as a
necessary condition of the tidal disruption. In context of the BH–NS binary merger,
the mass-shedding limit is defined as the point at which the self-gravity of the NS
and the BH tidal force become equal on the NS surface closest to the BH. Here for
simplicity, we neglect spins of each object and assume Newtonian gravity. Taking
tidal deformation of the NS into account, the mass-shedding limit is given in terms
of a binary separation dshed by

6 The possibility of a stable mass transfer is also suggested [56]. The stable mass transfer occurs if
the orbital separation increases faster than the NS radius increases when the mass is tidally stripped
from the NS (lighter component) to the BH (heavier component). We do not discuss the stable mass
transfer in more detail, because it has never been observed in numerical-relativity simulations. The
reason for this may be that the stable mass transfer requires a large mass ratio, whereas the mass
shedding requires a small mass ratio especially in full general relativity [57]. It does not exclude
the stable mass transfer for a BH–NS binary with a massive and rapidly-spinning BH.
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2G MBH(cR RNS)

d3
shed

= G MNS

(cR RNS)2
, (1.24)

where RNS and cR are the radius of the NS in the absence of tidal effect and a factor
of order unity denoting the tidal deformation, respectively. For a while, we only
focus on the dependence of the mass-shedding limit on physical quantities to derive
qualitative property of the mass-shedding limit. It is shown that the mass-shedding
limit in terms of a binary separation is written by7

dshed ∝ Q−2/3C −1 MBH, (1.25)

where C ≡ G MNS/(c2 RNS) is the compactness of the NS. It is also useful to rewrite
this relation in terms of a normalized orbital angular velocity as

GΩm0

c3 ∝ C 3/2(1 + Q)3/2√
Q

, (1.26)

assuming a circular orbit.
The mass-shedding limit should be compared to the innermost stable circular

orbit (ISCO) of the BH, inside which no material have a stable circular orbit around
the BH. The ISCO radius8 of the BH on the equatorial plane RISCO is proportional
to its mass, MBH, and the prefactor depends on the spin angular momentum of
the BH SBH [58]. For example, the ISCO radius for a Schwarzschild BH is given
by RISCO = 6G MBH/c2, and that for a extremely spinning Kerr BH is given by
RBH = G MBH/c2 for a prograde orbit. Figure 1.2 shows the ISCO radius as a
function of the nondimensional spin parameter a ≡ cSBH/(G M2

BH), as well as the
radius of the event horizon, which is given by

r+ = G MBH

c2

(
1 +

√
1 − a2

)
. (1.27)

By writing the ISCO radius using a spin-dependent parameter ζ as RISCO =
ζG MBH/c2, (1.25) is rewritten by

dshed

RISCO
∝ Q−2/3C −1ζ−1. (1.28)

If the value on the left-hand side is larger than unity, the mass shedding occurs outside
the BH ISCO, and therefore the accretion-disk formation is expected. Aside from

7 We essentially compare the mass density of each object.
8 In this thesis, “the ISCO radius” always represents “the ISCO radius in the Boyer-Lindquist
coordinates,” which is physical in the sense that it gives the proper circumferential length for
the equatorial circular orbit. It should be noted that the coordinate radius of the ISCO in
numerical-relativity simulation is different from the Boyer-Lindquist one.
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Fig. 1.2 The radius of the ISCO and the event horizon of the BH. The vertical axis denotes the radius
normalized by the BH mass, c2 R/(G MBH), and the horizontal axis denotes the nondimensional
spin parameter of the BH, cSBH/(G M2

BH)

a factor of order unity difference, this expression indicates that the mass shedding
outside the ISCO becomes easier for the BH–NS binary when

1. The mass ratio of the BH mass to the NS mass is small. Namely, the BH mass
should be small.

2. The compactness of NS is small, and hence the NS radius should be large.
3. The spin angular momentum of the BH is large in the magnitude and parallel with

the orbital angular momentum. Notice that ζ is a decreasing function of a for a
prograde orbit.

The first and second condition states that the tidal effect is the finite size effect of
the NS, and the effect becomes strong when the size of the NS (= RNS) is larger
compared to the size of the BH (∝ MBH) for a fixed value of the NS mass.

Quantitative derivation of the mass-shedding limit requires hydrodynamic com-
putations in curved spacetimes. Earlier studies assume the geodesic motion of the NS
center in the Kerr spacetime, and solve the Newtonian hydrostatics for an orbiting
NS with the tidal force tensor of the Kerr spacetime as an external force [59–62].
In these works, NS EOSs are chosen to be incompressible and the radiation reac-
tion are neglected. Therefore, care must be taken for the fact that the approximation
become inaccurate when the BH mass is comparable to the NS mass. The BH mass
which can cause the mass shedding is derived as

MBH = 4.7

(
MNS

1.35M�

)−1/2 (
RNS

10 km

)3/2 (
ζ

6

)−3/2

(1.29)

in [62]. Similar results are obtained in [63] for polytropic EOSs, and it is found
that the mass-shedding limit depends on the EOS. The effect of higher-order gravity
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and nuclear-theory based EOSs are incorporated in later works [13–15, 64, 65].
The most accurate computation of the mass-shedding limit may be fully general
relativistic computations of quasiequilibrium states in [66, 67] for a nonspinning
BH, an irrotational velocity field of the NS, and a polytropic EOS. The authors of
[66, 67] derived the mass-shedding limit in terms of the orbital frequency as

GΩm0

c3 = 0.270
C 3/2(1 + Q)3/2√

Q
, (1.30)

and this is equivalent to a gravitational-wave frequency

f = 1.15

√
1 + 1

Q

(
MNS

1.35M�

)1/2 (
RNS

10 km

)−3/2

kHz. (1.31)

Notice that
√

1 + 1/Q never falls below unity. Taking the fact that the mass shed-
ding outside the BH ISCO is rare for a massive BH, this relation suggests that the
gravitational-wave frequency at the mass shedding is typically larger than 1 kHz,
above which the sensitivity of ground-based detector becomes worse. The frequency
at the tidal disruption is always higher than that at the mass shedding [68], and hence
the sensitivity is much worse. To observe gravitational waves at the tidal disruption,
it is highly preferable to improve sensitivity at kHz range.

1.4 Black Hole–Neutron Star Binaries
in Numerical Relativity

General relativistic computations of quasiequilibrium states of the BH–NS binary are
initiated from an approximate treatment of the BH and a corotational velocity field of
the NS. An early, unpublished work of Miller [69] adopts the formalism similar to the
puncture method [70], whereas the treatment of the singularity is approximate and
the shift vector is determined by the minimal distortion gauge condition [71], not by a
modern quasiequilibrium condition. A work of Baumgarte et al. [72] solves equations
only in a neighborhood of the NS on a background Schwarzschild spacetime written
in Kerr-Schild coordinates, assuming that the BH mass is much larger than the NS
mass. A corotational velocity field of the NS is assumed in Baumgarte et al. [72], and
this method is extended to the irrotational velocity field of the NS and the isotropic
coordinate of the Schwarzschild BH in Taniguchi et al. [73]. Fully general relativistic
computations are done by several authors adopting the excision method to handle the
BH in a self-consistent manner, using a spectral method for the numerical accuracy
(see [74] and references therein for reviews). In a work of Grandclément [75, 76], a
flat background for the conformal metric (see Sect. 3.2) is adopted, and the boundary
condition on the horizon is slightly artificial [77, 78]. A work done by Taniguchi
et al. [79] adopts the nonrotating Kerr-Schild background for the conformal metric,

http://dx.doi.org/10.1007/978-4-431-54201-8_3
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and the flat conformal metric is chosen by the same authors later [66]. The boundary
condition on the horizon in the works of Taniguchi et al. [66, 79] are essentially
derived in the isolated horizon framework [80, 81], but the rotational state of the BH
is not controlled and corresponds to the corotational one. The irrotational condition
for the BH is imposed in the work of Grandclément [75, 76], and is also imposed
in the latest work of Taniguchi et al. [67]. A work of Foucart et al. [82] is done
by similar methods to those of Taniguchi et al. [67], and adopt a superposed Kerr-
Schild conformal metric [83] as well as the flat one. The authors also implement
an eccentricity reduction procedure [84] for the BH–NS binary. A quasiequilibrium
sequence of the BH–NS binary is also computed in the puncture framework by the
author of this thesis [85], improving the method developed for a corotational velocity
field in works of Shibata and Uryū [86, 87] (see also [68]) and adopting new condition
to determine the location of the rotational axis (see Sect. 3.4.3). All of these works
adopt the polytropic EOS with Γ = 2, and the effect of the BH spin is not taken into
account. These issues are improved in the computation of initial data for numerical
simulations.

Newtonian and pseudo-Newtonian simulations of the BH–NS binary mergers are
performed in several works. These simulations mainly focus on aspects other than
gravitational waves. For example, purely Newtonian (without radiation reaction)
smoothed-particle hydrodynamics (SPH) simulations with a polytropic EOS are per-
formed in works of Kluźniak and Lee (or Lee and Kluźniak) [88, 89] and subsequent
works by the same authors to investigate dynamical mass transfer in binaries with
corotational and irrotational NSs. In a work of Janka et al. [90], the Lattimer-Swesty
EOS [91] is adopted for a mesh-based numerical hydrodynamics, radiation reaction
terms are added, and neutrino emission is investigated incorporating microphysics
for corotational, irrotational, and counter-rotating NSs. Dynamics of accretion disks
are also investigated by Newtonian SPH simulations in a work of Rosswog et al. [92]
for corotational NSs, incorporating microphysics and radiation reaction. Later, this
work is improved to include a stronger effect of gravity using a pseudo-Newtonian
potential and to compute irrotational NSs by Rosswog [93]. A similar prescription
of gravity to that of [93] is also adopted in a work of Ruffert and Janka [94] with a
mesh-based numerical hydrodynamics with an ideal-gas EOS, and a nearly-extremal
BH spin is taken into account. Some works partially incorporate effects of full gen-
eral relativity in an approximate manner. In works done by Faber et al. [95, 96], SPH
simulations are performed in the conformal flatness approximation for the gravity
[97, 98] with a cold, polytropic EOS, and both corotational and irrotational velocity
NSs are adopted for initial conditions. Another SPH simulation is performed in a
work of Rantsiou et al. [99] on the background Kerr spacetime in the Kerr-Schild
coordinates, and the effect of the BH spin is investigated. In this work, a polytropic
EOS is adopted and the corotational NS is assumed for the initial condition. Other
approximate evolution scheme is proposed in a work of Soupuerta et al. [100], but
this work does not track orbital evolution up to the merger. Generally speaking, the
mass of the accretion disk becomes smaller as the treatment of gravity becomes more
accurate due to a stronger effect of gravitational attraction.

http://dx.doi.org/10.1007/978-4-431-54201-8_3
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Fully general relativistic simulations of the BH–NS binary merger have achieved
progress in recent years. The first merger simulation is performed in the works of
Shibata and Uryū [86, 87], where the NS fluid field is assumed to be corotational
in the initial condition. This is updated to the irrotational velocity field in a work of
Shibata and Taniguchi [68]. The initial condition of these works are computed by the
puncture method, and the evolution are also performed using the moving-puncture
method [101, 102]. Initial conditions computed by the excision method are evolved
using the moving-puncture method in a work of Etienne et al. [103], and the BH spin
is introduced in a later work of Etienne et al. [104]. All of these simulations are per-
formed using the finite differentiation method both for geometric and hydrodynamic
fields. The spectral method is applied for the geometric fields in a work of Duez
et al. [105], where the merger of an equal-mass binary is performed. These simu-
lations only tracks the relatively small number of orbits except for limited models,
and long-term simulations of nonspinning BH–NS binaries are performed in a work
of Shibata et al. [106] for a wide range of mass ratio to derive reliable gravitational
waves using an AMR code, SACRA [107]. It should be noted that preliminary sim-
ulations of BH–NS mergers are also performed in the first paper of SACRA [107].
The effect of magnetic field9 is first introduced in a work of Chawla et al. [108],
and the fallback time of disrupted material is also estimated. The effect of the mag-
netic field on the late-time dynamics of the merger remnant is later investigated in
a work of Etienne et al. [109]. The effect of the orientation of BH spins are inves-
tigated in a work of Foucart et al. [110], and simulations for a large mass ratio
binary with a 10M� BH are performed in another work of Foucart et al. [111],
where the spectral method is applied for geometric fields. It is important that all
of these simulations adopt a Γ = 2, ideal gas EOS. Exceptionally, ideal gas EOSs
with Γ �= 2 and the Shen EOS [112, 113] are adopted in the work of Duez et al.
[114] for short-term simulations of a fixed mass ratio and a fixed spin parameter
of the binary, whereas the microphysics is not incorporated to evolve the electron
fraction.

To date, only limited number of simulations have been performed taking into
account the nuclear-theory based EOS10 [114]. In particular, we still do not under-
stand the dependence of the merger process and resulting gravitational waveforms
on the EOS of the NS in detail. The author of this thesis extensively performed
systematic study of such dependence on the NS EOS for the first time in full general
relativity, for a wide range of the mass ratio and the BH spin [117–119].

9 Currently, there is no consistent method to compute quasiequilibrium states of magnetized compact
binaries. The simulation for a magnetized compact binary is performed by superposing a magnetic
field on a nonmagnetized initial condition, more or less artificially.
10 We should also mention works done by Stephens et al. and East et al. (the same authors except
for ordering) [115, 116], in which hyperbolic encounters of BH and NS are studied with the same
EOS as that adopted in this thesis.
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1.5 The Purpose of This Thesis and Convention

In this thesis, we study systematically the effect of the EOS on the merger process,
on the properties of remnants, and on gravitational waves of the BH–NS binary
merger. For this purpose, we perform fully general relativistic simulations of the
BH–NS binary merger for a wide range of parameters, i.e., the NS mass, BH mass
(or the mass ratio), BH spin, and NS EOS. Specifically, the NS EOS is modeled
systematically by a piecewise polytropic EOS, which we describe in Sect. 2.4, for
the first time in the study of the BH–NS binary merger. As for the BH spin, we only
focus on the cases in which the BH spin is zero or (anti) aligned with the orbital
angular momentum of the binary, and instead vary systematically the magnitude of
the BH spin. The NS mass is chosen to be values around the canonical mass of
observed binary NSs, 1.35M� [28], and the mass ratio of the BH to the NS is also
systematically varied from low masses to astrophysically realistic masses [120]. We
focus mainly on the case in which tidal disruption of the NS occur, i.e., the mass
ratio is small and/or the BH has a prograde11 spin.

This thesis is organized as follows. In Chap. 2, we review properties of the NS
associated with the EOS, and describe our model of the EOS adopted in this study. We
describe our method of computing initial conditions and of dynamical simulations
in Chaps. 3 and 4, respectively. Chapter 5 summarizes our diagnostics for dynamical
simulations. We show the result of simulations for nonspinning BH–NS binary merg-
ers in Chap. 6 to elucidate the effect of the NS EOS. The result of simulations for
spinning BH–NS binary mergers are shown in Chap. 7, focusing effects of both the
NS EOS and the BH spin. Finally, Chap. 8 is devoted to a summary and discussion.

Hereafter, we adopt the geometrical units in which G = c = 1, unless otherwise
stated. Our convention of notation for physically important quantities of the binary is
summarized in Table 1.1. The nondimensional spin parameter of the BH, total mass of
the system at infinite separation, mass ratio, and compactness of the NS are defined
as a = SBH/M2

BH, m0 = MBH + MNS, Q = MBH/MNS, and C = MNS/RNS,
respectively.

Lowercase Latin (i, j, . . .) and Greek (μ, v, . . .) indices denote spatial and space-
time components, respectively. Upper case Latin (A, B, . . .) indices denote com-
ponents on a two surface, such as (θ, ϕ), unless otherwise stated. We use the
spacetime metric signature (−,+,+,+), for which the flat metric takes the form
ημv = diag(−1, 1, 1, 1) in Cartesian coordinates. We typically denote the spacetime,
a spacelike hypersurface, and a spacelike two sphere by M ,Σ , and S , respectively.

As we do not take electromagnetic fields and radiation into account in this study,
geometric and hydrodynamic fields are always governed by the Einstein equations,

Gμv = 8πTμv, (1.32)

11 In this thesis, “prograde” and “retrograde” spins mean the BH spins which are aligned and
antialigned with the orbital angular momentum of the binary, respectively.

http://dx.doi.org/10.1007/978-4-431-54201-8_2
http://dx.doi.org/10.1007/978-4-431-54201-8_2
http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_4
http://dx.doi.org/10.1007/978-4-431-54201-8_5
http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_7
http://dx.doi.org/10.1007/978-4-431-54201-8_8
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Table 1.1 Our convention of notation for physically important quantities of a binary

Symbol

Mirr The irreducible mass of the BH
SBH The magnitude of the BH spin angular momentum
MBH The gravitational mass of the BH in isolation
MNS The gravitational mass of the NS in isolation
RNS The circumferential radius of the NS in isolation
M0 The Arnowitt-Deser-Misner mass of the system
m0 The total mass of the system at infinite separation
Ω The orbital angular velocity
Ω0 The orbital angular velocity of the initial configuration

Q The mass ratio
C The compactness of the NS
a The nondimensional spin parameter of the BH

the continuity equation of the baryon number or rest mass,

∇μ(ρuμ) = 0, (1.33)

and the local energy-momentum conservation equation,

∇αTμα = 0. (1.34)

We always assume an ideal fluid for the matter field, for which the energy-momentum
tensor is given by

Tμv = ρhuμuv + Pgμv, (1.35)

where h is the specific enthalpy defined by

h = 1 + ε + P

ρ
, (1.36)

and assume that the pressure P is determined from ρ and ε using the EOS of the
form

P = P(ρ, ε). (1.37)

Tables 1.2 and 1.3 summarizes our convention of notation for geometric and hydro-
dynamic variables, respectively. Notice that the energy density is given by

e = ρ(1 + ε) = ρh − P. (1.38)

Before closing this chapter, we summarize our mathematical convention [121, 122].
The Riemann tensor is defined by, for any 1-form ωμ,
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Table 1.2 Our convention of notation for geometric variables

Symbol

gμv The spacetime metric
∇μ The covariant derivative associated with gμv
4Γ μ αβ The Christoffel symbol of gμv
4 Rμvαβ The Riemann tensor of gμv
4 Rμv The Ricci tensor of gμv
4 R The scalar curvature of gμv

ημv The flat spacetime metric

nμ The timelike unit normal vector to a spacelike hypersurface Σ
γij The induced metric on a spacelike hypersurface Σ
Di The covariant derivative associated with γij

Γ k
ij The Christoffel symbol of γij

Ri jkl The Riemann tensor of γij

Rij The Ricci tensor of γij

R The scalar curvature of γij

Kij The extrinsic curvature of γij

K The trace of Kij

α The lapse function
β i The shift vector
fij The flat three metric
◦
Di The covariant derivative associated with fij◦
εi jk The Levi-Civita tensor associated with fij

si The spacelike outward unit normal to a two sphere S

qAB The induced two metric on a two sphere S

DA The covariant derivative associated with qAB

εAB The Levi-Civita tensor associated with qAB

R The scalar curvature of qAB

f AB The flat two metric on S

lμ The outgoing null vector
kμ The ingoing null vector
Θ(l) The expansion of lμ

Some of them only appear in the Appendix

∇μ∇vωα − ∇v∇μωα = 4 Rμvα
βωβ. (1.39)

Accordingly, for any vector vμ, the relation

∇μ∇vvα − ∇v∇μvα = −4 Rαμvβvβ (1.40)

holds as long as ∇μ is a torsion-free derivative operator. Although some of them
do not appear explicitly, it should be worthwhile to note that the four-, three-, and
two-dimensional Levi-Civita tensors are defined by
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Table 1.3 Our convention of notation for hydrodynamic variables

Symbol

Tμv The energy-momentum tensor
ρ The baryon rest-mass density
uμ The four velocity of the fluid
P The pressure
ε The specific internal energy
h The specific enthalpy
e The energy density
w The Lorentz factor of the fluid

εμvαβ = √−g(dx0)μ ∧ (dx1)v ∧ (dx2)α ∧ (dx3)β, (1.41)

εμvα = nβεβμvα = √
γ (dx1)μ ∧ (dx2)v ∧ (dx3)α, (1.42)

εμv = nαsβεαβμv = √
q(dx2)μ ∧ (dx3)v, (1.43)

because the integration is performed via these differential forms. The future directed
volume element of a three dimensional spacelike hypersurface seen from the four
dimensional spacetime is written by

dVμ = −nμ
√
γ d3x . (1.44)

The directed surface element of a two surface seen from the four dimensional space-
time is written by

dSμv = −(nμsv − sμnv)
√

qd2x, (1.45)

or accordingly seen from the three-dimensional space by

dSi = si
√

qd2x . (1.46)

The Gauss’ theorem for the divergence of a vector vμ and the Stokes’ theorem for
the divergence of an antisymmetric tensor Bμv,

∫
M

∇μvμ
√−gd4x =

∮
∂M

vμdVμ ,
∫
Σ

∇v BμvdVμ = 1

2

∮
∂Σ

BμvdSμv. (1.47)

are sometimes used without notice.
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88. W. Kluźniak, W.H. Lee, Astrophys. J. 494, L53 (1998)
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Chapter 2
Equations of State of Neutron Star Matter

The purpose of this thesis is to investigate dependence of gravitational waves on the
NS EOS, aiming for determining or at least constraining the EOS at high density
above the nuclear saturation density ρsat ≈ 2.7 × 1014 g cm−3 (or nsat ≈ 0.16 fm−3

in terms of the baryon number density) by gravitational-wave observation. Here, we
mean “cold, zero-temperature EOS” by “EOS,” because the finite-temperature effect
is believed to have a negligible role in determining the property of an isolated NS
and a NS just before the merger [1]. In this chapter, we review relations between the
NS properties and the NS EOS from a theoretical point of view, as well as describe
how the NS EOS is constrained by current astrophysical observation based on elec-
tromagnetic radiation. Finally, we describe our model of the cold, zero-temperature
EOS, i.e., the piecewise polytropic EOS [2], adopted in this thesis.

2.1 Formation and Cooling of (Proto-)Neutron Stars

The NS is believed to be formed after the core-collapse (Type-II) supernova of a
star with 8–25M� at the zero-age main sequence, where the precise mass range is
uncertain. The reason for this uncertainty is, on the one hand, associated with theo-
retical incompleteness in the modeling of supernova explosions. On the other hand,
the rotation and metalicity of the progenitor change the explosion characteristics, and
therefore the remnant object is not uniquely determined by the progenitor mass due
to a physical reason. At any rate, the NS is thought to be formed from the progenitor’s
iron core with the mass comparable to the Chandrasekhar mass, �1.4 M�, where
the exact value depends on the lepton fraction of the core. Here, we define the lepton
fraction to be a ratio of the lepton number density to the baryon number density,
as well as for the fraction of other particles. A newly-born NS at the core bounce
is a lepton-rich object with a large amount of trapped neutrinos due to a nucleonic
coherent scattering [3], and is surrounded by a shocked, high-entropy mantle [4, 5].
The nascent NS is usually called the “proto-neutron star (PNS),” because the lepton

K. Kyutoku, The Black Hole–Neutron Star Binary Merger in Full General Relativity, 25
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fraction is so large that neutrons are not the distinctly dominant constituent. If the
shock wave blows the envelope off and then accretion halts (a successful supernova),
the mantle emits the neutrino extensively and collapses with increasing its tempera-
ture up to ∼50 MeV. The PNS structure, such as the rest-mass density distribution,
is already close to that of a NS when the mantle collapses. Subsequently, neutrinos
in the PNS core escape on a diffusion time scale ∼10–15 s, and neutronize the PNS
into a NS via the reduction of the lepton fraction and the inverse β-decay. The delep-
tonization at this stage results in a PNS heating up to ∼30 MeV, because the escaping
neutrinos warm the PNS material by entropy generation during their diffusion, which
is often compared to the Joule heating. The heat flux from the collapsed mantle also
helps the warming of the interior. If some exotic particles such as hyperons emerge
as a result of the deleptonization, the PNS may collapse to a BH due to a possible
instability. Care must be taken for the fact that this evolutionary history neglects the
convection. The study of the PNS convection is in progress mainly from the perspec-
tive of the supernova explosion, for which the PNS convection is expected to work
as a mechanism to increase the neutrino luminosity (see, e.g., [6, 7]), whereas it may
not be important for the purpose of this section.

After ∼1 min of the core bounce, the mean free path of a neutrino becomes
comparable to the NS radius, and the NS becomes transparent to neutrinos so that
the NS starts to cool down rapidly (see [8, 9] and references therein for reviews). The
neutrino emissivity is high in the core region of the NS, and the crust region1 serves as
a heat reservoir at the early epoch. As a result of the thermal transport from the crust
to the core by the electron conduction, the NS gradually establishes an isothermal
structure in the thermal evolution time scale of the crust, ∼10–100 year [10]. This
time scale depends on the NS structure itself, and also on the thermal conductivity
and heat capacity, which are determined by microphysics such as the crustal neutron
superfluidity. After the isothermal structure is established, the cooling time scale
of the NS depends on the available cooling channel. One scenario is the so-called
enhanced cooling scenario, in which the direct URCA process,

n → p + e− + ν̄e, p → n + e+ + νe, (2.1)

is the main agent of neutrino emission. Although this process is very efficient to
radiate the thermal energy, it is not believed to occur for a long time, because it
is difficult to conserve energy and momentum simultaneously in these reactions
due to by far the large Fermi momentum of the neutron [1]. The conservations
can be satisfied only when the proton fraction is larger than ≈1/9 for such low
temperature [11]. This does not seem to be the case for the NS, for which the proton
fraction is estimated to be a few percent at the nuclear saturation density by the
β-equilibrium condition [12]. It should be noted that, however, the direct URCA

1 The definition of the crust and core of the NS is not decisive. In this section, we assume that the
crust and core is approximately divided by the rest-mass density �ρsat/2 at which nuclei begins
to merge into a huge nucleus. Our discussion does not depend on the precise value of the dividing
rest-mass density, as far as the crust region is reasonably thin.
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process becomes possible if exotic particles are present. Another promising scenario
is the so-called standard scenario, in which the modified URCA process,

n + (n, p) → p + (n, p)+ e− + ν̄e, p + (n, p) → n + (n, p)+ e+ + νe, (2.2)

is the agent of neutrino emission. This process satisfies the energy and momentum
conservations without difficulty thanks to the bystander particle. The deficit of this
scenario is the cooling rate is strongly suppressed by a factor of (kT/μn)

2 compared
to the direct URCA process. Here, k and μn are the Boltzmann constant2 and the
chemical potential of the neutron, respectively. In a typical situation, the chemical
potential (or the Fermi energy) of the NS matter is �50 MeV around the nuclear
saturation density and the NS temperature is ∼0.1–1 MeV at this stage [13], the
cooling rate is reduced by a factor of ∼104–105.

Figure 2.1 shows theoretical cooling curves for the two scenarios described above.
Observational data obtained by thermal X-ray emission are also shown, and these
observations suggest that the standard cooling scenario is close to the realistic one.

Fig. 2.1 Theoretical cooling curves for the standard (modified URCA) and enhanced cooling (direct
URCA) scenario for a 1.4M� NS. Upper four curves are for the standard scenario, and the lower
two curves are for the enhanced cooling scenario. The solid and dashed curves correspond to models
which adopt Fe and H envelopes, respectively. The red curves include the superfluidity and the blue
curves do not. The black boxes show observational data obtained by the thermal X-ray emission,
and the green boxes show the data for which the thermal optical emission is also reported. The age is
determined by the pulsar spin down or the proper motion of the star [9]. This figure is taken from [14]

2 k = 1.38 × 10−16 erg K−1.
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It is also interesting that the existence of the neutron superfluidity in the core region
is strongly suggested recently (at the end of 2011) by observing the rapid drop of the
surface temperature, which may be ascribed to breaking and formation of neutron
Cooper pairs, of the NS in Cassiopeia A by Chandra [15–17]. From the perspective
of the binary merger, a typical cooling time scale is orders of magnitude shorter the
typical time scale of the BH–NS binary merger,3 which is estimated to be ∼1 Gyr by
the population synthesis [18, 19]. For the purpose of this study, it should again be
noted that the typical Fermi energy of a zero temperature NS matter at the nuclear
saturation density is � 50 MeV, and the interior temperature is assumed to be only a
factor of ∼100 larger than the effective surface temperature shown in Fig. 2.1 [20].
Therefore, the matter inside the NS in the late inspiral phase is safely believed to
be well-approximated by a zero-temperature nuclear matter. Hence, we employ a
cold EOS, for which the rest-mass density, ρ, determines all other thermodynamical
quantities for calculating both the quasiequilibrium state of the BH–NS binary and
the coalescence of the BH–NS binary up to the merger.

2.2 Neutron Stars in Spherical Equilibria

Properties of a static, spherically symmetric NS is determined by equations of the
hydrostatic equilibrium and perturbation equations on it. Because the compactness
of the NS, which is defined by

C ≡ MNS

RNS
� 0.20

(
MNS

1.35M�

) (
10 km

RNS

)
, (2.3)

is typically ≈0.1–0.25 (see Table 2.2), these equations must take the effect of general
relativity into account. By contrast, unless the rotation is very rapid as a rotational
period Prot � 1 ms and/or the magnetic field is very strong as a typical strength of the
magnetic field �1017 Gauss, these effects are negligible, because the (absolute value
of the) gravitational binding energy of the NS ≈ 3M2

NS/5RNS is orders of magnitude
larger than the rotational and magnetic energies. The minimum spin period of the
NS is given by the mass-shedding limit, which is reached when the centrifugal force
becomes as strong as the gravitational attraction at the stellar surface in context of a
rotating star. The maximum strength of the magnetic field is given by the so-called
virial limit, [21] which is reached when the scalar virial theorem is satisfied by the
competition of the gravitational and magnetic energies. For properties of rotating
NSs, see [22] and references therein for reviews. Properties of NSs with purely
poloidal [23, 24] or purely toroidal [25, 26] magnetic fields are investigated, but
currently there exists no equilibrium model of NSs with both poloidal and toroidal
magnetic fields in full general relativity (but see [27–29]).

3 This is also the case for the binary NSs.
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2.2.1 The Tolman-Oppenheimer-Volkoff Equation

The structure of a static, spherically symmetric star is described by the Tolman-
Oppenheimer-Volkoff (TOV) equation [30, 31] in general relativity.4 In a static,
spherically symmetric spacetime, the line element is written as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2) (2.4)

without loss of generality, and nonzero components of the four velocity and the
energy-momentum tensor are given by

ut = e−ν(r)/2, Tt
t = −e, Tr

r = Tθ
θ = Tϕ

ϕ = P. (2.5)

(Notice that ν and λ are not the components of tensorial quantities, but functions
in this section. We expect that the confusion may not arise in this context.) From r
component of the local energy-momentum conservation equation and tt, tr, and rr
components of the Einstein equations, equations governing the hydrostatic equilib-
rium is derived as

dP

dr
= − (e + P)(m + 4πPr3)

r(r − 2m)
, (2.6)

dν

dr
= − 2

e + P

dP

dr
, (2.7)

eλ(r) =
(

1 − 2m

r

)−1

, (2.8)

m(r) ≡ 4π
∫ r

0
e(r ′)r ′2dr ′, (2.9)

where (2.6) is usually called the TOV equation. Hereafter, we focus on the NS,
whereas discussion below also holds for generic stars such as white dwarfs.

When the EOS of the form e = e(P) for the NS matter is specified, these equations
are solved numerically (some analytic solutions are also known [30, 33, 34]) from
the stellar center r = 0 to the stellar surface r = RNS, which is defined as the location
where the pressure vanishes. It should be noted that the coordinate radius of the NS,
RNS, obtained by solving the TOV equation is the circumferential radius, and has a
physical meaning. Initial conditions are

P = Pc, ν = ν0, m = 0, (2.10)

4 In Newtonian gravity, a spherical equilibrium for a polytropic EOS is described by the Lane-
Emden equation. The TOV equation with the (energy-)polytropic EOS is sometimes called the
relativistic Lane-Emden equation [32], whereas it is not as useful as the Newtonian one.



30 2 Equations of State of Neutron Star Matter

where Pc is the value of the pressure at the stellar center and ν0 is an arbitrary
constant. The precise value of ν(r) is changed by adding a constant so that ν(RNS) =
1 − 2MNS/RNS is satisfied, where MNS ≡ m(RNS) is the gravitational mass of
the NS, after solving the equations. For a given EOS, a sequence of the spherical
hydrostatic equilibrium is obtained as a one-parameter family of Pc, or is usually
reinterpreted as the family of the central rest-mass density ρc. The relation between
the gravitational mass, MNS, and the circumferential radius, RNS, of the spherical
equilibrium sequence is called the M–R relation of the NS.

2.2.2 The Tidal Love Number and Deformability

The l = 2 tidal deformability λ ≡ λ2 plays the most important role in the evolu-
tion of a compact binary among the quantities associated with the EOS [35]. The
tidal effect on the orbital evolution comes into play even at the Newtonian order,
and dominates the dynamics of a compact binary in the late inspiral phase [36, 37].
The tidal deformability represents the strength of the tidal effect on a generic star
in a quantitative manner. Although we do not investigate dependence of gravita-
tional waves and merger remnants on the tidal deformability in this thesis, it has
considerable significance to describe it for future development of gravitational-wave
templates [38]. The tidal deformability describes the response of a multipole moment
of the star to the tidal force, and the l-mode tidal deformability λl with dimension
[g cm2l−2 s2] is defined via the nondimensional tidal Love number kl as

λl = 2R2l+1
NS

(2l − 1)!!G kl , (2.11)

where we inserted G for clarity. More conveniently, nondimensional tidal deforma-
bility

Λl ≡ Gλl

(
c2

G MNS

)2l+1

= 2

(2l − 1)!!kl

(
c2 RNS

G MNS

)2l+1

, (2.12)

where we inserted G and c for clarity, is sometimes introduced [38]. The tidal Love
number characterizes the structure of a stellar configuration, which strongly depends
on the EOS for a star with given values of mass and radius, in a nondimensional
manner and in a different manner than the radius. In Newtonian gravity, tidal force
tensor due to the external gravitational potential Φext is defined by

Ei j ≡ ∂2Φext

∂xi∂x j
, (2.13)

and the mass quadrupole moment induced by the tidal force field is defined by (1.4),

http://dx.doi.org/10.1007/978-4-431-54201-8_1
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Qi j ≡
∫

ρ

(
xi x j − 1

3
r2 fi j

)
d3x . (2.14)

Assuming that the background configuration is spherically symmetric, the tidal
deformability relates these two quantities by

Qi j = −λEi j (2.15)

to a linear order of Ei j . Although the computation of the tidal Love number, kl , in
Newtonian gravity5 is found in the literature, e.g., [39, 40], the tidal Love number
of the NS has to be evaluated in general relativity as well as the mass and radius due
to its strong self-gravity.

General relativistic computation of the tidal Love number is performed by solving
the l = 2, static, and even-parity perturbation equation on the background stellar
configuration described by the TOV equation. Whereas precise formulations for this
computation is developed in [41, 42] in different coordinates, we describe the original
formulation of [43, 44] here for simplicity. Taking the Regge-Wheeler gauge [45],
perturbations on the metric and hydrodynamic variables are both decomposed into
modes associated with a spherical harmonics, Y lm(θ, ϕ), relying on the background
spherical symmetry. Hereafter, we only focus on the (l,m) = (2, 0) mode, because
the dominant role is played by the l = 2 mode and the perturbation equation does
not depend on m. The static, even-parity perturbation on the metric is written using
three functions H0(r), H2(r), and K (r) by

gαβ = g(0)αβ + hαβ, (2.16)

hαβ = diag
[
−eν(r)H0(r), eλ(r)H2(r), r

2 K (r), r2 sin2 θK (r)
]
αβ

× Y 20(θ, ϕ),

(2.17)

where g(0)αβ is the solution of the TOV equation. Nonzero components of the pertur-
bation on the four velocity and the energy-momentum tensor are

δut = −e−ν(r)/2 H0(r)

2
, δTt

t = −δe = −
(

dP

de

)−1

δP,

δTr
r = δTθ

θ = δTϕ
ϕ = δP. (2.18)

The perturbation equations are derived in [46] for general perturbations on a spheri-
cally symmetric background. Specifically in this case, the (θθ − ϕϕ) component of
the perturbed Einstein equations shows H ≡ H0 = −H2. Using rθ and (θθ + ϕϕ)

components to eliminate K and δP , the master equation of the perturbation H is
obtained by the (t t + ϕϕ) component as

5 In Newtonian gravity, the tidal Love number is computed by the Clairaut-Ladau equation.
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d2 H

dr2 + dH

dr

{
2

r
+ eλ

[
2m

r2 + 4πr(P − e)

]}

+ H

[
−6eλ

r2 + 4πeλ
(

5e + 9P + e + P

dP/de

)
−

(
dν

dr

)2
]

= 0, (2.19)

and is rewritten as a first-order differential equation for the logarithmic derivative,

y(r) ≡ r

H(r)

dH(r)

dr
, (2.20)

by [47]

dy

dr
+ y2

r
+ yeλ

[
1

r
+ 4πr(P − e)

]

+ r

[
−6eλ

r2 + 4πeλ
(

5e + 9P + e + P

dP/de

)
−

(
dν

dr

)2
]

= 0. (2.21)

This equation is solved from the stellar center to obtain y(RNS)with initial conditions
obtained from the regularity condition,

H = A2r2,
dH

dr
= 2A2r, y = 2, (2.22)

where the value of constant A2 is arbitrary, because the problem is the linear pertur-
bation. The choice of A2 does not influence the value of y and hence the tidal Love
number, as is expected.

Outside the star, homogeneous solutions to this equation are given analytically in
terms of the associated Legendre polynomials of order m = 2, P2

2 and Q2
2, as

H(r) = c1 Q2
2
( r

M
− 1

)
+ c2 P2

2
( r

M
− 1

)
, (2.23)

where c1 and c2 are constants, and this homogeneous solution asymptotically
approaches

H(r → ∞) → 8

5

(
M

r

)3

c1 + 3
( r

M

)2
c2 (2.24)

at large r . Meanwhile, in a local asymptotic frame of the NS, the metric coefficient6

which corresponds to the gravitational potential at large r is given by [48, 49]

6 The metric coefficients depend on the gauge choice, and actually the expression shown here is
derived not in the Regge-Wheeler gauge but in the de Donder gauge (harmonic coordinate). More
rigorous discussion of the gauge issues are presented in [41, 42].
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− 1 + gtt

2
→ − MNS

r
− 3

2r3 Qi j x̂ i x̂ j + r2

2
Ei j x̂ i x̂ j , (2.25)

where x̂ i ≡ xi/r . Assuming that the quadrupole moment is induced by the tidal field
via the tidal deformability λ as Qi j = −λEi j , the constants in the homogeneous
solution H(r) becomes

c1 = 15

8M3
NS

λE , c2 = M2
NS

3
E , (2.26)

where E ≡ Ei j x̂ i x̂ j . We also define the relativistic tidal Love number from λ as
k2 = 3λ/2R5

NS. Requiring the value and derivative of H(r) to be continuous at the
stellar surface, we finally obtain the value of the tidal Love number,

k2 ≡ 8C 5

5
(1 − 2C )2[2 + 2C (y − 1)− y]

×
{

2C
[
6 − 3y + 3C (5y − 8)

] + 4C 3[13 − 11y + C (3y − 2)+ 2C 2(1 + y)]

+ 3(1 − 2C )2[2 − y + 2C (y − 1)] ln(1 − 2C )

}−1

. (2.27)

In this expression, the prefactor (1 − 2C )2 makes the tidal Love number rapidly
decreasing function of the compactness, and the tidal Love number of a Schwarzschild
BH is known to be zero [41]. The tidal Love numbers for other l modes are obtained
by changing 6 in (2.21) to l(l +1), changing 2 in (2.22) to l, and homogeneous solu-
tions in the vacuum, (2.23), to the corresponding associated Legendre polynomials
of degree l and order m = 2 assuming appropriate behavior at r → ∞.

Before closing this section, we note that kl should be called the electric Love num-
ber in general relativity, because the NS has the magnetic and shape Love numbers
in addition [42]. In Newtonian gravity, the electric tidal Love number is also called
the apsidal constant or the second tidal Love number, and the shape Love number
corresponds to the first tidal Love number [40].

2.3 Current Constraints on the Equation of State

The NS EOS is highly uncertain so far, even at zero temperature. The theoretical cal-
culation of the NS EOS must handle the many-body problem of strongly interacting
particles, such as nucleons and mesons. Several computations are performed incor-
porating different particles and interactions, and adopting different computational
methods of the many-body problem, such as the variational method and the rela-
tivistic mean field theory (see candidate EOSs for, e.g., [2] and references therein).
These computations predict fairly different EOSs, and therefore the NS EOS is far
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from convergent from the theoretical point of view. Although the lattice quantum
chromodynamics are now trying to perform ab initio computations of the NS EOS,
there remains many difficulties to obtain the realistic EOS of the NS. It is also dif-
ficult to investigate properties of the NS matter by terrestrial experiments, because
the NS matter is cold, high density, and neutron-rich. All of these properties make
the experimental investigation difficult, and our experimental knowledge of the NS
matter is quite limited.

Another way to know the NS EOS is to observe properties of actual NSs in our
Universe. Although both accurate observation and an accurate modeling of the NS are
necessary, the astronomical observation provides invaluable information of the NS
and the NS EOS. In this section, we review the current constraints of the EOS obtained
by astronomical observation of NSs. (See [13] for a thorough review of this issue.)

2.3.1 The Maximum Mass

The existence of a NS maximum mass is a remarkable feature of general relativity,
and the NS maximum mass depends strongly on the NS EOS at high density. In
particular, inclusion of the strong interaction in addition to the degenerate pressure
of neutrons is essential to explain the observed NS mass [1]. Similarly, observation
of a massive NS can rule out the EOS candidate when the maximum mass of the NS
predicted by the EOS candidate is smaller than the observed mass of the NS.

We also address another importance of the NS maximum mass as a discriminator
of the BH and NS. Whereas it is difficult to obtain a tight theoretical bound on the NS
maximum mass independent of the EOS, it is of interest because the theoretical bound
enables us to observationally distinguish BHs from NSs without precise knowledge
of the NS EOS. A good or bad famous theoretical bound, Mmax = 3.2M�, is obtained
in [50] by the variational method (see also [51]). The assumption there is that the EOS
below a matching density ematch = 4.6×1014 g/cm3 is that of a free, degenerate neu-
tron gas, and the EOS above the matching density is chosen so that the sound velocity
is equal to the speed of light, P = e − ematch + Pmatch, where Pmatch is the pressure
of the degenerate neutron gas at the matching density. Later in [51, 52], which tackle
the problem by separating the core and envelope of the NS according to assumed
EOSs, dependence of the maximum mass on the matching density is found to be

Mmax(ematch) = 6.8

(
ematch

1014 g cm−3

)−1/2

M�, (2.28)

when the causality is imposed on the EOS. It is also shown that this value depends
only very weakly on the EOS below ematch, as far as the low-density EOS is chosen to
be that calculated from nuclear theory and the sound velocity is sufficiently smaller
than the speed of light. From this dependence of the matching density, it is evident
that the firm knowledge of the NS EOS up to higher density improves the theoretical
bound of the NS maximum mass.
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At the end of 2011, the most reliable.7 constraint on the NS EOS is obtained by a
radio pulsar-timing observation of a NS-white dwarf binary PSR J1614-2230, which
is observed as a millisecond pulsar [53]. In addition to its fairly relativistic character,
a remarkable feature of this binary is its very large inclination angle of the orbital
plane as 89.17 ± 0.02 degree, and therefore the binary configuration is approximately
edge-on. This geometry allows us to accurately measure the Shapiro time delay [57]
of the pulse from the NS caused by the white dwarf companion when the NS is behind
the white dwarf. The mass of the NS is determined to be 1.97 ± 0.04M� within a
1-σ error, and therefore the EOS which cannot support 1.93M� is now considered
to be ruled out.

Figure 2.2 shows this maximum mass constraint with the M–R relation of the NS
for several nuclear-theory-based EOSs, as well as some other constraints (see below).
Many of EOSs including exotic particles such as hyperons (actually, all EOSs plotted
in Fig. 2.2) are excluded by this maximum mass limit. The reason for this is that the
emergence of new particles unavoidably reduces the degeneracy of neutrons, and
results in a softening of the EOS and a smaller value of the maximum mass. This

Fig. 2.2 The summary of constraints on the NS EOS. The curves labeled by EOS names are the
relation between the mass and circumferential radius of a spherical NS for each EOS. The EOS
which does not go above the band labeled by “J1614-2230,” of which the NS mass is 1.97±0.04M�
[53], is considered to be ruled out. The top left regions above “GR,” “P < ∞,” and “causality”
is excluded theoretically by the condition in which the horizon does not exist (RNS = 2MNS), the
pressure at the stellar center is finite (RNS = 9MNS/4) [54], and the EOS is causal, i.e., the sound
velocity does not exceed the speed of light (RNS ≈ 2.9MNS), respectively. The right bottom region
below “rotation” is excluded by the observation of J1748-2446ad, which emits the pulse at 714 Hz
[55], so that the NS radius is not larger than the general relativistic mass-shedding limit [14]. Masses
of some other NSs are also shown. This figure is taken from [53]

7 Another candidate of the NS with the maximum mass is the black widow pulsar, PSR B1957+20.
It is reported that the NS mass may be 2.40 ± 0.12M� [56], but the reliability of the value is
questioned.
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does not immediately mean that the exotic particles do not exist, however, because
the addition of repulsive interactions such as ones mediated by vector bosons will
raise the maximum mass above the constraint, and will save EOSs including exotic
particles.

2.3.2 The Minimum Rotational Period

The rotational period of the NS is limited from below by the mass-shedding limit,
below which the centrifugal force at the stellar surface surpasses the NS self-gravity,
and therefore the NS cannot maintain itself. Whereas it is difficult to take the change
in the radius due to the rotational deformation into account, the mass-shedding limit is
written using the NS mass, MNS, and the equatorial radius of the rotating NS, Req, as

Pshed(MNS, Req) = 2π

√
R3

eq

MNS
, (2.29)

in Newtonian gravity. This is essentially the same as the Keplerian orbital period,
and the general-relativistic mass-shedding limit is determined by the condition in
which material at the stellar surface rotates with the angular frequency of a test par-
ticle in a circular orbit at that radius. The computation of the mass-shedding limit
in general relativity is more cumbersome, and several numerical computations are
performed to obtain an empirical formula [58–61]. A frequently-used fitting formula
of the general-relativistic mass-shedding limit for a given NS mass is

Pshed(MNS, RNS) = 0.93

(
MNS

M�

)−1/2 (
RNS

10 km

)3/2

ms, (2.30)

which describes the minimum period of the NS in terms of the mass, MNS, and the
radius, RNS, of the nonrotating configuration [62] (see also [13, 14]). In practice, this
empirical formula is used to set an upper limit on the NS radius from the observed
mass and rotational period of the NS.

At the end of 2011, the most rapidly rotating NS known is PSR J1748-2466ad,
which emits the pulse at 714 Hz [55]. The right bottom region of Fig. 2.2 depicts
the region excluded by combining this observation and (2.30).8 It should be noted
that the radius constraint for a given value of Prot becomes more severe for a smaller
value of MNS. At any rate, the constraint given by J1748-2466ad alone is not so
restrictive. Another candidate of the most rapidly rotating NS is an X-ray transient
XTE J1739-285, of which the X-ray burst is observed to oscillate at 1122 Hz [63].
However, it is uncertain whether this oscillation frequency really corresponds to the
NS rotational frequency. If 1122 Hz is really the NS rotational frequency, this would
give a severe constraint on the EOS.

8 The empirical relation used in this figure seems to be the relation denoted in [13], for which the
prefactor 0.93 becomes 0.96.
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2.3.3 The Radius

It is of fundamental astrophysical importance to know the radius of an object such
as a NS. Furthermore, the knowledge of the NS radius is important to determine or
constrain the NS EOS. It is proved that accurate observation of the M–R relation or
other combination of NS properties enables us to reconstruct the NS EOS [64, 65]
by solving the inverse problem. The difficulty is that, however, there exists consider-
able uncertainties in astronomical observations with electromagnetic radiation. For
example, the NS radius is strongly correlated with the distance to the NS, as well as
the radii of other astronomical objects do. Emission processes and the atmosphere
of the NS are also uncertain, and therefore the systematic error is unavoidably large.
By contrast, gravitational-wave astronomy is believed to accomplish the accurate,
systematic-error free measurement of the NS radius and/or properties of this kind
(say, tidal deformability) in the near future.

The most simple method to determine the NS radius may be to observe the
so-called radiation radius, which is defined as

R∞ ≡ RNS

(
1 − 2MNS

RNS

)−1/2

= RNS(1 + z), (2.31)

with the gravitational redshift [54],

z ≡ 1√
gtt (r = RNS)

− 1 =
(

1 − 2MNS

RNS

)−1/2

− 1. (2.32)

The definition of the radiation radius follows from the Stefan-Boltzmann law of the
blackbody radiation. In a flat spacetime, the flux F of a blackbody with the radius
RNS and the temperature T is given by

F =
(

RNS

D

)2

σT 4, (2.33)

where σ is the Stefan-Boltzmann constant,9 for an observer at a distance D. When
we take the spacetime curvature into account, the flux and temperature are modified
because of the gravitational redshift of the photon and the loss of the photon number
flux, which is defined by the number of incoming photons within a unit time interval.
Specifically, observed values are given by

F∞ = F

(1 + z)2
, T∞ = T

1 + z
, (2.34)

9 σ = 5.67 × 10−5 erg cm−2 s−1 K−4.
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where it is assumed that the spacetime is flat in the vicinity of the observer. As
a result, the “radius” which we can know is the radiation radius defined using a
modified Stefan-Boltzmann law by

F∞ =
(

R∞
D

)2

σT 4∞. (2.35)

The determination of the radiation radius is often performed by the X-ray observa-
tion, and the accuracy suffers from an uncertainty of the atmospheric model even if
the distance to the NS is accurately determined by other methods such as parallax
measurements. Furthermore, it is found that the optical observation usually gives
a larger flux than is expected from the X-ray observation, and this discrepancy is
thought to be ascribed to energy redistribution in the NS atmosphere. It should be
also noted that the NS radius as a solution of the TOV equation and the photospheric
radius of the NS will not agree exactly. Aside from several uncertainties in the radi-
ation radius, simultaneous observation of the radiation radius and the gravitational
redshift may give simultaneous estimate of the mass and radius of the NS. Although
there exists some observations of the gravitational redshift using absorption lines of
atmospheric nuclei [66], it is still too unclear to draw a definite conclusion.

It may be useful to present a recent attempt to estimate the NS radius using the
photospheric radius expansion burst in low mass X-ray binaries. The Type-I X-ray
burst is a thermonuclear burst of a helium and/or hydrogen layer accreted from the
companion, and the photospheric radius expansion burst is a subclass of the Type-I
X-ray burst [67]. In a photospheric radius expansion burst, the observed flux, F∞, first
increases, next keeps an approximately constant value, and finally decreases. During
the constant peak of the flux, the observed color temperature, T∞, first decrease
and then increase. After the maximum of the color temperature, which is called the
“touchdown” moment, the color temperature gradually decreases along with the flux.
If we define an emission area by A ≡ F∞/(σT 4∞), the area first increases and then
decreases during the flux peak, and keeps an approximately constant value after the
touchdown moment. The method for simultaneous determination of the NS mass,
NS radius, and distance to the NS is originally developed in [68], in which the author
claimed that the soft equations of state are ruled out using additional information
of the gravitational redshift [66]. This model assumes that, in the course of the
first decrease of the color temperature, the photosphere expands with the observed
Eddington flux,10 which is seen from an observer at a distance D � RNS as

Fedd,∞ = MNS

κes D2

√
1 − 2MNS

rph
, (2.36)

10 The observed Eddington flux from z is not reduced by a factor of 1/(1 + z)2 but by a factor of
1/(1 + z). Roughly speaking, the difference between the flux and the Eddington flux is a result of
stronger “local gravitational force” by a factor of 1 + z in general relativity.
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where κes is the opacity chosen to be that of electron scattering and rph is a time-
varying photospheric radius. Notice that the electron scattering opacity is written as

κes = 1 + X

2

σT

mp
≈ 0.2(1 + X) cm2 g−1, (2.37)

where X , σT, and mp are the hydrogen mass fraction, the Thomson cross section, and
the proton mass, respectively.11 Next, it is assumed that the photosphere contracts
to the “touchdown” radius, which is assumed to be the NS radius in [68], keeping
the Eddington flux and increasing the color temperature. The values of Fedd,∞ and
T∞ are observed at the touchdown moment, and these values are used to estimate
the photospheric radius at the touchdown moment using a color correction factor fc,
which denotes the ratio of the intrinsic color temperature Tc to the intrinsic effective
temperature Teff as fc ≡ Tc/Teff . Finally, with additional information such as the
gravitational redshift or the distance to the NS, these quantities are combined to give
the values of the NS mass and radius. As is described above, [68] used the informa-
tion of the gravitational redshift, and now it is more common to use an independent
measurement of the distance [69].

Whereas this method seems to work, there is several unclear assumptions. The
flux is assumed to be the Eddington one, the opacity is assumed to be that of elec-
tron scattering and the hydrogen fraction is also assumed, the color correction factor
is assumed to be known from a model calculation, and most importantly the photo-
spheric radius at the touchdown moment is identified with the NS radius. It is claimed
that the uncertainty of the NS radius is as small as �10 % within a 1-σ error in [70],
but it is also claimed that the uncertainty is as large as ≈20 % within a 1-σ error
in [69]. The reason for this is that restrictive assumptions listed above typically lead
to imaginary values of MNS and RNS when they are determined by Monte-Carlo
simulations. The authors of [70] forced their computation to obtain real values of
the mass and radius by restricting parameter spaces, and therefore a relatively tight
constraint was obtained. The authors of [69] claimed that these imaginary solutions
suggested that the model was internally inconsistent, and obtained looser constraints
developing more consistent model by relaxing the assumptions, e.g., rph � RNS. If
these and other possible unknown systematic uncertainties are well understood, this
method will serve as a tool to investigate NS properties such as the NS EOS.

Before closing this section, we describe several bounds on the radius or the com-
pactness of the NS obtained in a purely theoretical manner. First, the radius must be
so large that the BH horizon does not appear. This requires

RNS > 2MNS, (2.38)

assuming that the spin angular momentum of the object is negligible. Second, it is
known that the NS radius has to satisfy

11 σT = 6.65 × 10−25 cm2, mp = 1.67 × 10−24 g.
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RNS >
9

4
MNS, (2.39)

so that the pressure inside the NS is finite, as long as the energy density decreases to
the outward direction [54]. Finally, a more empirical bound on the radius,

RNS � 2.9MNS, (2.40)

is obtained by requiring that the sound velocity inside the NS does not exceed the
speed of light above some matching density, ematch [71, 72]. In particular, it is pointed
out that all quantities have to scale with the matching density, ematch, in [72], because
this is the only dimensional parameter entering the equation. This finding is consistent
with the scaling of the NS maximum mass, (2.28). The top left regions of Fig. 2.2 is
excluded by these constraints. As is naturally expected, the M–R relations computed
using nuclear-theory-based EOSs do not enter this prohibited region.

2.4 Piecewise Polytropes

To perform systematic investigations, it is preferable to adopt analytic EOSs rather
than tabulated, nuclear-theory-based EOSs, because the tabulated EOSs require the
interpolation during numerical computations, and therefore time-consuming. Fur-
thermore, EOSs parametrized by a small number of parameters are preferable from
the observational viewpoint, because the early-days observation of gravitational
waves will give us only limited information of the NS. For these reasons, several
effort has been spent to reproduce important properties of nuclear-theory-based EOSs
by analytic EOSs parametrized by a small number of parameters [2, 73, 74].

2.4.1 The Cold-Part Equation of State: Piecewise Polytropes

To model cold, nuclear-theory-based EOSs at high density with a small number of
parameters, we employ a piecewise polytropic EOS12. This is a phenomenologically
parametrized EOS of the form

P(ρ) = κiρ
Γi for ρi−1 ≤ ρ < ρi (1 ≤ i ≤ n), (2.41)

where n is the number of pieces used to parametrize an EOS, ρi is the rest-mass
density at the boundary of two neighboring i th and (i+1)th pieces, κi is the polytropic
constant for the i th piece, and Γi is the adiabatic index for the i th piece. Here,

12 The piecewise polytropic EOS has also been adopted in some of stellar core-collapse and super-
nova simulations, but the underlying idea is different. In these problems, the effect of the tempera-
ture is not at all negligible, and one-parameter EOSs only include these effects approximately. By
contrast, the one-parameter EOS is physically reasonable in the inspiral phase of the binary merger.
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ρ0 = 0, ρn → ∞, and other parameters (ρi , κi , Γi ) are freely chosen. Requiring the
continuity of the pressure at eachρi , 2n free parameters—say (κi , Γi )—determine the
EOS completely. The specific internal energy, ε, and hence the specific enthalpy, h,
are determined by the first law of thermodynamics,

dε = P

ρ2 dρ, (2.42)

dh = dP

ρ
, (2.43)

and continuity of each variable at boundary densities, ρi . Specifically, ε and h are
determined by

ε = εi−1 + κi

Γi − 1
ρΓi −1, (2.44)

h = 1 + εi−1 + κiΓi

Γi − 1
ρΓi −1 (2.45)

for the i th piece, where the integration constant εi is given by

ε0 = 0, εi = εi−1 + κi

Γi − 1
ρ
Γi −1
i − κi+1

Γi+1 − 1
ρ
Γi+1−1
i . (2.46)

It is shown that piecewise polytropic EOSs with four pieces approximately repro-
duce most properties of the nuclear-theory-based EOSs at high density [2]. Moreover,
if we focus on canonical-mass NSs with relatively low central density, the EOS at
high density plays a minor role. Thus, we adopt a simplified piecewise polytropic
EOS composed of two pieces, one of which models the crust EOS and the other of
which the core EOS. This simplification is based on the fact that NSs in the observed
binary NSs often have fairly small masses �1.4M� [75] and the maximum rest-mass
density in such NSs may not be so high that the EOS at high density plays only a
minor role in determining their structure. Furthermore, the maximum rest-mass den-
sity inside the NS should only decrease during the evolution of the BH–NS binary
due to tidal elongation of the NS by the companion BH.13

Table 2.1 lists the EOSs which we employ in this thesis. Following [79] (see also
[80–82]), we always fix the EOS for the crust region by parameters below:

Γ1 = 1.35692395, (2.47)

κ1/c
2 = 3.99873692 × 10−8

(
g cm−3

)1−Γ1
. (2.48)

The EOS for the core region is determined by two parameters. One is the adiabatic
index of the core EOS, Γ2. The other parameter is chosen to be the pressure p at a

13 For the merger of binary NSs, formation of a hypermassive NS with a large central rest-mass
density is the frequent outcome [76–78].
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Table 2.1 Key ingredients of the adopted EOSs

Model Γ2 log10 p (g/cm3) ρ1(1014 g cm−3) Mmax[M�] R12 (km) R135 (km) R145 (km)

2H 3.0 13.95 0.7033 2.835 15.12 15.23 15.28
1.5H 3.0 13.75 0.9308 2.525 13.63 13.69 13.72
H 3.0 13.55 1.232 2.249 12.25 12.28 12.27
HB 3.0 13.45 1.417 2.122 11.60 11.61 11.59
HBs 2.7 13.45 1.069 1.926 11.67 11.57 11.47
HBss 2.4 13.45 0.6854 1.701 11.74 11.45 11.19
B 3.0 13.35 1.630 2.003 10.98 10.96 10.93
Bs 2.7 13.35 1.269 1.799 10.88 10.74 10.61
Bss 2.4 13.35 0.8547 1.566 10.66 10.27 9.89

Γ2 is the adiabatic index in the core region and p is the pressure at the fiducial density ρfidu =
1014.7 g cm−3, which determines the polytropic constant κ2 of the core region and ρ1, the critical
rest-mass density separating the crust and core regions. Mmax is the maximum mass of the spherical
NS for a given EOS. R135, R12, and R145 are the circumferential radius the NS with MNS =
1.35M�, 1.2M�, and 1.45M�, respectively

fiducial density ρfidu = 1014.7 g cm−3, because p is closely related to the radius of the
NS with a canonical mass [12]. We vary values of these two parameters systematically
to investigate the effect of the core EOS. With given values of Γ2 and p, κ2 and ρ1
are determined as

κ2 = pρ
−Γ2
fidu , (2.49)

ρ1 =
(
κ1

κ2

)1/(Γ2−Γ1)

. (2.50)

It must be mentioned that the maximum mass constraint, Mmax ≥ 1.97 ± 0.04M�,
reported by [53] is not satisfied for the EOS with Γ2 �= 3. In spite of this deficit,14

the parameter sets in Table 2.1 are still meaningful to investigate dependence of
gravitational waves and merger remnants on the EOS.

Figure 2.3 shows the M–R relation, i.e., the relation between the mass, MNS, and
circumferential radius, RNS, of spherical NSs for piecewise polytropic EOSs adopted
in this study, as well as for a Γ = 2 polytropic EOS with κ/c2 = 2×10−16 g−1 cm3.
Figure 2.3 shows that for a given mass ∼1.35M�, the radius depends strongly on
the EOSs, whereas the radius for a given piecewise polytropic EOS depends only
weakly on the mass around the canonical mass ∼1.35M�. This weak dependence of
the radius on the mass is an often-seen feature for the nuclear-theory-based EOSs [13].
By contrast, the relation calculated with the Γ = 2 polytropic EOS does not show
this feature. Figure 2.3 illustrates that the dependence of the radius, RNS, on the
mass, MNS, is much stronger for the Γ = 2 polytropic EOS than for the piecewise
polytropic EOSs. This illustrates that the Γ = 2 polytropic EOS is not very realistic.

14 When we started this study, the NS mass of J1614-2230 was not known.
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Fig. 2.3 The relation between the mass and circumferential radius of spherical NSs for the piecewise
polytropic EOSs adopted in this study. For comparison, the relation for a Γ = 2 polytropic EOS
with κ/c2 = 2 × 10−16 g−1 cm3 is also shown

Comparison of the quantities among HB, HBs, and HBss EOS models in Table 2.1
reveals a complicated M–R relation: HB is not always stiffer15 than HBss. Indeed,
the radius with MNS = 1.2M� is largest for HBss and smallest for HB among three
models, whereas the radius with MNS = 1.35M� is largest for HB and smallest
for HBss. This complicated relation of the “stiffness” is due to the choice for the
combination (Γ2, p) (cf. Table 2.1). For a density smaller than ρfidu, HBss EOS is
stiffer than HB and HBs EOSs, whereas for a high density ρ > ρfidu, HB EOS
is stiffer than the others. For a given high-mass NS for which the central density is
much larger than ρfidu, the radius with HB EOS should be larger than that with other
two EOSs. By contrast, for a given low-mass NS for which the central density is not
very high, the radius with HB EOS should be the smallest.

Table 2.2 lists the compactness, l = 2 tidal Love number, and l = 2 nondimen-
sional tidal deformability for the EOS adopted in this study. Notice that the tidal
deformability, λ, is related to Λ by

λ � 4.72 × 1036
(
Λ

1000

) (
MNS

1.35M�

)5

g cm2 s2, (2.51)

which results from (2.12). By comparing 1.35M� NSs for HB, HBs, and HBss EOSs,
it is found that the tidal Love number depends strongly on the EOS, especially on Γ2,
even for NSs with similar values of the compactness. The fact that a larger value
of Γ2 leads to a larger value of k2 indicates that the NS is more susceptible to the
tidal force when the adiabatic index of the EOS is larger [83]. By contrast, it is also
found that the tidal Love number depends only weakly on the value of p for NSs with

15 In this thesis, the stiffness is simply determined by the magnitude of pressure for the nuclear-
density region. We do not determine it by the adiabatic index.
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Table 2.2 Important physical quantities of the adopted EOSs

Model C12 k12 Λ12 C135 k135 Λ135 C145 k145 Λ145

2H 0.1172 0.1453 4384 0.1309 0.1342 2325 0.1401 0.1265 1560
1.5H 0.1301 0.1313 2352 0.1456 0.1189 1211 0.1561 0.1105 795
H 0.1447 0.1165 1226 0.1624 0.1029 607 0.1744 0.0937 387
HB 0.1527 0.1088 873 0.1718 0.0946 422 0.1848 0.0851 263
HBs 0.1519 0.1005 829 0.1723 0.0855 375 0.1866 0.0754 222
HBss 0.1509 0.0886 756 0.1741 0.0723 301 0.1914 0.0610 158
B 0.1614 0.1010 615 0.1819 0.0861 289 0.1960 0.0763 176
Bs 0.1629 0.0910 529 0.1856 0.0752 228 0.2017 0.0645 129
Bss 0.1663 0.0765 402 0.1940 0.0586 142 0.2164 0.0456 64

C135(C12,C145), k135(k12, k145), andΛ135(Λ12,Λ145) are the compactness, l = 2 tidal Love num-
ber, and l = 2 nondimensional deformability of the NS with MNS = 1.35M�(1.2M�, 1.45M�),
respectively

similar values of compactness. This fact provokes the dependence of gravitational
waves on the values of both p and Γ2, not merely on the NS compactness.

2.4.2 Thermal Corrections

In dynamical simulations, the matter inside the NS becomes hot due to shock heating,
especially after the tidal disruption. Typically, the average temperature of the accre-
tion disk formed after the BH–NS merger becomes as high as several MeV [84, 85].
In such a phase, cold EOSs are no longer sufficient to model the material, and we have
to take the thermal effect into account. Because we are mainly focus on gravitational
waves and on prompt formation of accretion disks in this study, implementation of
a nuclear-theory-based finite-temperature EOS [77, 78] is beyond the scope of this
thesis. Therefore, we adopt a simple Γ -law, ideal-gas EOS for the thermal part as a
correction to the dominant, zero-temperature part. We first decompose the pressure
and specific internal energy into cold and thermal parts as

P = Pcold + Pth, ε = εcold + εth. (2.52)

We calculate the cold parts of both variables using the piecewise polytropic EOS
from the baryon rest-mass density, ρ, and then the thermal part of the specific internal
energy is defined from ε as

εth ≡ ε − εcold. (2.53)

Because εth vanishes in the absence of shock heating, εth is regarded as the finite-
temperature part. Finally, we compute the thermal part of the pressure according to

Pth = (Γth − 1)ρεth, (2.54)
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where we chooseΓth equal to the adiabatic index in the crust region,Γ1, for simplicity.
The effect of different choices of Γth should be investigated in the near future [86].

We can approximately estimate the temperature T of material as

εthc2 = 3kT

2mu
+ 11arT 4

4ρ
, (2.55)

where we inserted c for clarity, by assuming that the pressure is composed of the gas
pressure of free nuclei and the radiation pressure of photons, relativistic electrons, and
relativistic positrons [87]. Here, mu and ar are the atomic mass unit and the radiation-
density constant, respectively.16 It should be noted that the gas and radiation pressure
becomes equal at the temperature

Tc ≡
(

6kρ

11armu

)1/3

� 4 × 1010
(

ρ

1010 g cm−3

)1/3

K, (2.56)

and the gas pressure is dominant below this critical temperature. Figure 2.4 shows this
relation for the rest-mass density ρ = 1010, 1011, and 1012 g cm−3. More accurate
expression is obtained by considering the constituent nuclei such as α-particle for
gas pressure, nonzero degeneracies of electrons and positrons for radiation pressure,
and optical depths of neutrinos, which may be trapped and contribute to the pressure
when T � 1011 K and ρ � 1012 g cm−3, for radiation pressure [88, 89]. Especially,
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Fig. 2.4 An approximate relation (2.55) between the temperature T and the thermal part of the
specific internal energy εth. The curves for ρ = 1010, 1011, and 1012 g cm−3 are shown. The
curve for ρ = 1012 g cm−3 with trapped neutrinos and antineutrinos is also shown. Notice that
T = 1010 K ≈ 1 MeV, therefore electrons and positrons are safely assumed to be relativistic in the
temperature range shown here

16 mu = 1.66 × 10−24 g, ar = 7.57 × 10−15 erg cm−3 K−4.
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the prefactor 11/4 = 1 + 2 × (7/8) of the radiation pressure becomes 1 + 2 ×
(7/8) + 6 × (7/8) = 8 if neutrinos and antineutrinos of all the flavors are trapped.
Figure 2.4 also includes the curve for ρ = 1012 g cm−3 with trapped neutrinos and
antineutrinos.
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Chapter 3
Computing Initial Conditions

We employ BH–NS binaries in quasiequilibrium states for initial conditions of our
numerical simulations. In this chapter, we describe the formulation for the com-
putation of a quasiequilibrium state. The details of the formulation and numerical
methods, except for the issues on the BH spin, are described in [1], and the issues
related to the BH spin are described in [2]. Computations of the quasiequilibrium
states are performed using the spectral-method library LORENE [3].

3.1 Assumption

We compute a quasiequilibrium state of the BH–NS binary as a solution of the
initial value problem of general relativity [4]. As far as the orbital separation d is
large enough, the time scale tGW of the orbital contraction due to the gravitational
radiation reaction is much longer than the orbital period Porb. Specifically, tGW is
given by a lifetime of the binary, (1.10), and Porb is given by (1.2) in Newtonian
gravity. Hence, the ratio of tGW to Porb is written as

tGW

Porb
� 1.1

(
d

6m0

)5/2 (
(1 + Q)2

4Q

)
. (3.1)

In numerical simulations of the binary coalescences, we have to track �5 orbits
in order to calculate accurate gravitational waveforms during the late inspiral and
merger phases, and hence, the orbital separation of the initial configuration has to be
so large that we may safely neglect the gravitational radiation reaction. Thus, we give
a BH–NS binary in a quasicircular orbit, i.e., the binary in an approximate equilibrium
state in the corotating frame. To satisfy the quasiequilibrium requirements described
above, we assume the existence of a helical Killing vector with the orbital angular
velocity Ω ,

ξμ = (∂t )
μ +Ω(∂ϕ)

μ, (3.2)

where ∂ϕ is a generator of the rotation.
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We also assume that the NS is in the hydrostatic equilibrium in the corotating
frame, and has an irrotational velocity field, which is believed to be a reliable approx-
imation to an astrophysically realistic configuration of a compact binary just before
the merger. One of the reason for this is that the time scale of the NS spin-up due to
the tidal synchronization (tidal locking) is longer than the time scale of the orbital
contraction due to the gravitational radiation reaction, as far as the viscosity in the NS
is not extremely large [5, 6]. The other reason is that the typical observed rotational
period of the NS, Prot � 1 s, is much longer than the orbital period of the quasi-
equilibrium binary just before the merger. Furthermore, the NS rotational period is
assumed to increase secularly due to the magnetic dipole radiation [7], and formation
of a millisecond pulsar is hardly expected for the BH–NS binary due to the absence
of a recycling process, which may be driven by the accretion of material from a
less-evolved companion.1

3.2 The Initial Value Problem of General Relativity

Because the Einstein equations, (1.32), are written in a fully covariant manner, what
“solving the Einstein equations” means is highly nontrivial in general situations.
One attractive approach is to reformulate the Einstein equations from the perspective
of a Cauchy problem, in which given initial data evolves in time. This approach is
called the 3+1 formalism of general relativity [12], on which most formulations of
numerical relativity rely (see [13–15] for reviews). In this section, we review the 3+1
formalism and initial value problem of general relativity, and present the formulation
to solve the initial value problem.

3.2.1 The 3+1 Formalism

In the 3+1 formalism, the spacetime is considered to be foliated by a one-parameter
family of spatial hypersurfaces Σt , or a foliation {Σt }. In this formalism, we first
prepare initial data on a given initial hypersurface Σ0, and perform dynamical sim-
ulations to evolve the data into the future. One of fundamental geometric objects
in the 3+1 formalism is a timelike unit normal vector nμ to each slice, Σt , and an
observer whose four velocity is nμ is called the Eulerian observer. The direction of
the coordinate time is denoted by a time vector tμ, which is written as

tμ = (∂t )
μ = αnμ + βμ , βμnμ = 0, (3.3)

where α and βμ are called the lapse function and the shift vector, respectively. The
lapse function and the shift vector represent the coordinate or gauge freedom to

1 The recycling may be possible for binary NSs. Some effort to construct quasiequilibrium states
with arbitrary circulation is devoted [8–11].

http://dx.doi.org/10.1007/978-4-431-54201-8_1
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choose the time and spatial coordinates, respectively. The metric on Σt induced by
gμν , which is called the induced metric (or the first fundamental form), is given by

γμν ≡ gμν + nμnν . (3.4)

Using these variables, the line element in the spacetime is expressed as

ds2 = gμνdxμdxν = −α2dt2 + γi j (dxi + β i dt) (dx j + β j dt). (3.5)

Now, solving the Einstein equations is reformulated to computing the time evolution
of γi j , where the gauge variables (α, β i ) are chosen freely. The complete description
of the foliation requires the extrinsic curvature (or the second fundamental form),
which is defined by

Kμν ≡ −1

2
£nγμν. (3.6)

Roughly speaking, γi j and Ki j denote the “position” and “velocity” of the geometry,
respectively.2 In fact, the Einstein equations give evolution equations of Ki j , because
the Einstein equations are second-order differential equations. Decomposing the
energy-momentum tensor with respect to the Eulerian observer as

ρH ≡ T αβnαnβ = ρh(αut )2 − P, (3.7)

jμ ≡ −γμαT αβnβ = ρh(αut )(γμαuα), (3.8)

Sμν ≡ γμαγνβT αβ = ρh(γμαuα)(γνβuβ)+ Pγμν, (3.9)

we obtain the Hamiltonian constraint,

R + K 2 − Ki j K i j = 16πρH, (3.10)

the momentum constraint,

D j (K
i j − Kγ i j ) = 8π j i , (3.11)

the evolution equation of γi j ,

∂tγi j = −2αKi j + £βγi j , (3.12)

and the evolution equation of Ki j ,

∂t Ki j = −Di D jα + α

[
Ri j − 2Kik K j

k + K Ki j − 8π

(
Si j − 1

2
Sγi j

)

− 4πρHγi j

]
+ £βKi j . (3.13)

2 This viewpoint becomes clear in the canonical formulation of general relativity [12] (see the
Appendix A).
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The Hamiltonian and momentum constraints, (3.10) and (3.11), do not involve
second-order time derivatives of γi j , and this is the very reason why they are called
the constraint equations. The evolution equation of γi j , (3.12), denotes the kinematic
relation between the “position” and “velocity,” and the evolution equation of Ki j ,
(3.13), is the dynamical equation obtained from the Einstein equations.

3.2.2 Solving the Initial Value Problem

Initial data of the metric consists of (γi j , Ki j ) on a given initial hypersurface. For
these quantities to represent physical spacetimes, they must satisfy the Einstein con-
straint equations. In other words, we have to solve the Hamiltonian and momentum
constraints to give the initial data, (γi j , Ki j ), on an initial hypersurface with appropri-
ate physical settings. Here, the subtlety arises from the consideration of the number
of degrees of freedom (d.o.f). Whereas we have only four constraint equations, we
have to give twelve components of (γi j , Ki j ). Therefore, it is required to decompose
the eight freely chosen d.o.f and the four constrained d.o.f. to solve the constraints.
This problem is called the initial value problem of general relativity (see [4] and ref-
erence therein for reviews). Furthermore, it is desirable for initial data of a binary to
satisfy quasiequilibrium conditions in a corotating frame. For this purpose, we want
to determine initial data of (α, β i ) employing some parts of the Einstein evolution
equations. In this study, we compute the induced metric γi j , the extrinsic curvature
Ki j , the lapse function α, and the shift vector β i by a mixture of the extended confor-
mal thin-sandwich approach (XTCS) [16, 17] and the conformal transverse-traceless
(CTT) decomposition [13, 18, 19] in the puncture framework [20–22].

In the CTT approach, the induced metric is decomposed into a conformal factor
ψ and a background metric γ̂i j as

γi j = ψ4γ̂i j . (3.14)

We denote the covariant derivative associated with γ̂i j as D̂i . The extrinsic curvature
is also decomposed into trace, vector, and transverse-traceless tensor parts as

K i j = Ai j + 1

3
Kγ i j

= ψ−10 Âi j + 1

3
Kγ i j

= ψ−10
[

Âi j
TT +

(
L̂W

)i j
]

+ 1

3
Kγ i j , (3.15)

where L̂ is the longitudinal derivative operator defined by

(
L̂W

)i j ≡ D̂i W j + D̂ j W i − 2

3
γ̂ i j D̂k W k, (3.16)
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and the symbol “TT” stands for transverse-traceless, i.e.,

γ̂ i j Âi j
TT = 0 , D̂ j Âi j

TT = 0. (3.17)

It should be noted here that the index of W i is raised and lowered by the background
metric. The weight ψ−10 is introduced to preserve transverse-traceless nature of
Âi j

TT before and after the conformal transformation. Now we give (γ̂i j , K , Âi j
TT) as

freely specifiable data, and determine (ψ,W i ) from the Einstein constraint equations.
According to the decomposition above, the constraint equations, (3.10) and (3.11),
are rewritten to give

D̂2ψ = 1

8
ψ R̂ + 1

12
ψ5 K 2 − 1

8
ψ−7 Âi j Âi j − 2πψ5ρH, (3.18)

�̂LW i = 2

3
ψ6 Di K + 8πψ10 j i , (3.19)

where R̂ is the scalar curvature of γ̂i j and �̂L denotes the vectorial Laplacian operator
defined by

�̂LW i ≡ D j

(
L̂W

)i j = D̂2W i + 1

3
D̂i D̂ j W j + R̂ j

i W j . (3.20)

Equation (3.18) is called the York-Lichnerowicz equation. Among the freely speci-
fiable data, the maximal slicing condition K = 0 and an approximate no-radiation
condition Âi j

TT = 0 are often adopted to compute initial data. The choice of γ̂i j is
a matter of debate for a long time, and the conformal flatness condition γ̂i j = fi j

is often adopted by virtue of its simplicity and expectation that this condition also
corresponds to an approximate no-radiation condition.

The XCTS approach3 allows us to impose quasiequilibrium conditions on the
background metric, γ̂i j , and the trace of the extrinsic curvature, K . This is accom-
plished by specifying the time evolution of these quantities, which is not restricted to
the quasiequilibrium conditions in general, on the initial hypersurface. Because the
background metric has only five d.o.f due to the Hamiltonian constraint, we specify
the time derivative of γ̂i j up to this d.o.f by imposing traceless condition as

ûi j ≡ ∂t γ̂i j , γ̂
i j ûi j = 0. (3.21)

This restriction automatically ensures stationarity of the determinant, ∂t γ̂ = 0. Now
freely specifiable data are (γ̂i j , ûi j , K ). The conformal factor,ψ , is again determined
by solving the Hamiltonian constraint. The momentum constraint is rewritten as an
elliptic equation to determine the shift vector as

3 In the original CTS approach proposed in [16], only the quasiequilibrium condition on γ̂i j is
imposed. Later, this formalism is extended to give the equilibrium condition on K in [17]. The
XCTS essentially shares the formulation of historic papers, [23, 24].
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�̂Lβ
i −

(
L̂β

)i j
D̂ j

(
αψ−6

)
= 4

3
α D̂i K + αψ−6 D̂ j

(
ψ6

α
ûi j

)
+ 16παψ4 j i ,

(3.22)
using the fact that the conformally-weighted trace-part of the extrinsic curvature is
written as

Âi j = ψ6

2α

[(
L̂β

)i j − ûi j
]
. (3.23)

Notice that in the standard (X)CTS approach, it is not required to decompose Âi j into
vector and tensor parts. In order to determine the lapse function, α, time evolution
of the trace of the extrinsic curvature, ∂t K , is specified. The evolution equation
of K is derived by (3.12) and (3.13), and it turns out to give an elliptic equation to
determine αwhen ∂t K is specified. Using the Hamiltonian constraint and performing
the conformal transformation, we obtain

D̂2(αψ) = 1

8
αψ R̂ + 5

12
αψ−3 K 2 + 7

8
αψ−7 Âi j Âi j

− ψ5(∂t − £β)K + 2παψ5(ρH + 2S). (3.24)

Here, we write this equation as the elliptic equation to determine αψ , rather than
α itself, because source terms for αψ falls off more rapidly at spatial infinity than
for α. In the following of this section, we always assume the conformal flatness of
the induced metric,4 the maximal slicing condition, and their preservation in time as
follows:

γ̂i j = fi j , K = 0 , ûi j = 0 , ∂t K = 0. (3.25)

These quasiequilibrium conditions have to be imposed along the direction of the
helical symmetry as £ξ γ̂i j = 0 and £ξK = 0, and they can be replaced by ∂t γ̂i j = 0
and ∂tK = 0 in the conformal flatness approximation.

3.2.3 The Puncture Framework

To avoid divergence associated with the BH in the numerical computation, we adopt
the puncture method [20, 26, 27]. The conformal factor, ψ , and a weighted lapse
function � ≡ αψ is decomposed into singular and regular parts as

ψ = 1 + MP

2rBH
+ φ , � = 1 − M�

2rBH
+ η, (3.26)

4 The conformal flatness in the PN approximation holds in the 1PN order in the harmonic coordinates
[25].
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where we assume that the puncture is located at xi
P and rBH = |xi −xi

P| is a coordinate
distance from the puncture. Here, MP is a freely specifiable constant called the bare
mass, and M� is another freely specifiable constant. We determine the value of MP
to obtain a desired value of the (irreducible) mass of the BH. The value of M� is
determined by the condition in which the ADM and Komar mass agree, which holds
in the stationary, asymptotically flat spacetime [28, 29]. The conformally-weighted
extrinsic curvature is also decomposed into singular and regular parts as

Âi j = ÂBH
i j + ÂNS

i j . (3.27)

The former part is given by the so-called Bowen-York extrinsic curvature [30],

ÂBH
i j = 3

2r2
BH

[
P̄BH

i x̂ j + P̄BH
j x̂i − ( fi j − x̂i x̂ j )P̄

BH
k x̂k

]

+ 3

r3
BH

[ ◦
εkil S̄l

BH x̂ k x̂ j + ◦
εk jl S̄l

BH x̂ k x̂i

]
, (3.28)

where x̂ i ≡ (xi − xi
P)/rBH. P̄BH

i and S̄i
BH are constants,5 which correspond to

linear and spin angular momenta of the puncture, respectively. The index of x̂ i is
raised and lowered by the flat metric, fi j . The value of P̄BH

i is determined so that
the linear momentum of the binary vanishes, and the value of S̄i

BH is determined to
obtain a desired value of the BH spin angular momentum. The regular part, ÂNS

i j , is
decomposed as in the same way done in the CTT approach using an auxiliary vector
field W NS

i , and assumed to have no transverse-traceless part as

ÂNS
i j = ◦

Di W NS
j + ◦

D j W NS
i − 2

3
fi j

◦
Dk W k

NS. (3.29)

The equation to determine W NS
i is obtained by the momentum constraint as in the

same manner as the CTT approach, using the fact that the Bowen-York extrinsic
curvature is a homogeneous solution of the conformally-transformed momentum
constraint generated by a vector

W BH
i = − 1

4r

[
7P̄BH

i + x̂i x̂ j P̄BH
j

]
+ 1

r2

◦
εi jk x̂ j S̄k

BH. (3.30)

Finally, we obtain eight elliptic equations to determine (φ, β i , η,W i
NS) as

◦
D2φ = −1

8
ψ−7 Âi j Âi j − 2πψ5ρH, (3.31)

5 Here the “constant” means that values of Cartesian components do not depend on the position.

Formally,
◦

Di P̄BH
j = ◦

Di S̄ j
BH = 0.
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◦
D2β i + 1

3

◦
Di ◦

D jβ
j = 2 Âi j ◦

D j

(
�ψ−7

)
+ 16π�ψ3 j i , (3.32)

◦
D2η = 7

8
�ψ−8 Âi j Âi j + 2π�ψ4(ρH + 2S), (3.33)

◦
D2W NS

i + 1

3

◦
Di

◦
D j W j

NS = 8πψ6 ji . (3.34)

These equations are solved with outer boundary conditions derived by the asymptotic
flatness,6 i.e.,

φ|∞ , β i
∣∣∣∞ , η|∞ , W NS

i

∣∣∣∞ = 0. (3.35)

In contrast to the case of the excision method [31–33], we do not need to (and cannot)
impose inner boundary conditions on the BH horizon.

3.3 Hydrostatic Equilibria

To perform dynamical simulations of the binary merger containing the fluid, the
initial condition is desirable to be in a hydrostatic equilibrium. Namely, we want to
develop a formalism to compute the hydrostatic configuration to obtain the initial
data of the fluid variables (ρ, ε, h, uμ). In this section, we describe the formulation
to obtain hydrostatic configurations with an irrotational velocity field adopted in this
study [34].

3.3.1 The Hydrostatics in a Spacetime

To compute hydrostatic configurations, the state of the fluid flow have to be specified a
priori. According to our assumption, basic equations for the hydrostatics of a compact
binary in the quasiequilibrium state are derived from the condition of irrotation, or
the vanishing of the vorticity two-form [35–38],

ωμν ≡ (
gμ

α + uμuα
) (

gν
β + uνuβ

)
(∇αuβ − ∇βuα)

= h−1[∇μ(huν)− ∇ν(huμ)]
= 0, (3.36)

where we used the local energy-momentum conservation equation,

uα∇α(huμ)+ ∇μh = 0, (3.37)

6 In fact, the boundary condition on β i at spatial infinity can be β i |∞ = ◦
εijk� j xk , if we solve the

equations in the corotating frame of a binary. However, this does not influence the result in the
conformal flatness approximation, because the shift vector always appears in the equations with a
differentiated form, and this rotational part always vanishes.
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which is obtained by inserting (1.35), (1.33), and (2.43) into (1.34). In the helically
symmetric spacetime with a Killing vector field ξ i , the specific momentum of the
fluid huμ should be conserved along the direction of this symmetry, and therefore
we obtain

£ξ (huμ) = ξα∇α(huμ)− ξα∇μ(huα)+ ∇μ(huαξ
α)

= 0. (3.38)

Here, the sum of first and second terms of this equation vanishes in the irrotational
flow due to (3.36). Hence, we obtain the first integral of relativistic Euler equation,

huμξ
μ = −C, (3.39)

where C is the constant, the value of which we determine to obtain a desired baryon
rest mass of the NS. This equation is regarded as the equation to determine the specific
enthalpy, h, and all other thermodynamical quantities are obtained by h using the
cold EOS. Next, we find that the condition of irrotation, (3.36), implies the existence
of a velocity potential Ψ , which determines the four velocity by

uμ = h−1∇μΨ. (3.40)

The velocity potential is determined by an elliptic-type equation derived from the
continuity equation as

ρ∇μ∇μΨ + h∇μ
(ρ

h

)
∇μΨ = 0. (3.41)

3.3.2 The Hydrostatics in the Initial Value Problem

In order to solve the equations of hydrostatics, (3.39) and (3.41), as a part of the
initial value problem in general relativity, we perform the 3+1 splitting of the four
velocity [34]. First, recall that the helical Killing vector is written as

ξμ = αnμ + β
μ
rot , (3.42)

β
μ
rot = βμ +Ω(∂ϕ)

μ. (3.43)

We introduce an corotating observer of the binary, whose four velocity vμ is parallel
to the helical Killing vector and decomposed in a 3+1 manner as

vμ = Γ0(n
μ + Uμ

0 ) , nμUμ
0 = 0. (3.44)

Comparing this to the helical Killing vector, it turns out that

http://dx.doi.org/10.1007/978-4-431-54201-8_1
http://dx.doi.org/10.1007/978-4-431-54201-8_1
http://dx.doi.org/10.1007/978-4-431-54201-8_2
http://dx.doi.org/10.1007/978-4-431-54201-8_1
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vμ = Γ0

α
ξμ , Γ0 = α√

α2 − βrot
i β i

rot

= 1√
1 − U 0

i U i
0

, Ui
0 = β i

rot

α
. (3.45)

Notice that Γ0 = −nμvμ denotes the Lorentz factor of the corotating observer seen
from the Eulerian observer. The four velocity of the fluid, uμ, is decomposed in two
different ways as

uμ = Γ (vμ + Vμ) (where vαV α = 0) (3.46)

= Γn(n
μ + Uμ) (where nαUα = 0), (3.47)

where these two expressions correspond to ones seen from the corotating frame and
from the asymptotic inertial frame (or the Eulerian observer).7 By computing −vμuμ,
it is shown that

Γ = Γ0Γn(1 − UiU
i
0), (3.48)

Vμ = Γ0

1 − UiUi
0

[
(Ui − U 0

i )U
i
0nμ + (1 − U 0

i U i
0)U

μ − (1 − UiU
i
0)U

μ
0

]
, (3.49)

and therefore these quantities are derived by the quantities in the asymptotic inertial
frame of the binary. We now derive the explicit 3+1 form of the hydrostatic equations.
The first integral of the relativistic Euler equation, (3.39), becomes

hα
Γ

Γ0
= C, (3.50)

and this equation gives the specific enthalpy from geometric variables and the the
three velocity of the fluid. The three velocity is obtained by projecting the definition
of the velocity potential onto the initial hypersurface, and the Lorentz factor of the
fluid seen from the Eulerian observer is obtained by the normalization condition as

Ui = 1

hΓn
DiΨ , Γn =

√
1 + 1

h2 (D
iΨ )(DiΨ ). (3.51)

The equation to determine the velocity potential is obtained by decomposing (3.41),
and it derives

ρDi DiΨ + (DiΨ )(D
iρ)

= hΓnUi
0 Diρ + ρ

[
(DiΨ )

{
Di ln

(
h

α

)}
+ hUi

0 DiΓn

]
+ ρhΓn K , (3.52)

7 The Lorentz factor Γn is essential the same as w used in other chapter of this thesis.
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where we used the relation derived by the helical symmetry, ξμ∇μ(scalar) = 0. The
conformal transformation of this equation leads to the expression for γ̂i j = fi j and
K = 0 as

ρ
◦

D2ψ +
( ◦

Diψ
) ( ◦

Diρ
)

= ψ4hΓnUi
0

◦
Diρ + ρ

[( ◦
Diψ

) { ◦
Di ln

(
h

αψ2

)}
+ ψ4hUi

0

◦
DiΓn

]
. (3.53)

We further rewrite this equation introducing new thermodynamical variable,

ζ ≡ d ln(ln h)

d ln ρ
,

◦
Diρ = ρ

ζ ln h

◦
Di ln h, (3.54)

and dividing the velocity potential into internal and translational parts as

Ψ = Ψ0 + fi j W i
orbx j , W i

orb ≡ (ψ4hΓnUi
0)center, (3.55)

from numerical reasons. Finally, we solve

ζ ln h
◦

D2Ψ0 +
[
(1 − ζ ln h)

◦
Di ln h + ζ ln h

◦
Di ln(αψ2)

] ◦
DiΨ0

=
[
ψ4hΓnUi

0 − W i
orb

] ◦
Di ln h

+ ζ ln h

[
W i

orb

◦
Di

{
ln

(
h

αψ2

)}
+ ψ4hUi

0

◦
DiΓn

]
. (3.56)

This elliptic equation to determine Ψ0, for which the coefficient of the principal part
vanishes at the stellar surface, solved with the boundary condition

[
(1 − ζ ln h)

◦
Di ln h + ζ ln h

◦
Di ln(αψ2)

] ◦
DiΨ0

=
[
ψ4hΓnUi

0 − W i
orb

] ◦
Di ln h

+ ζ ln h

[
W i

orb

◦
Di

{
ln

(
h

αψ2

)}
+ ψ4hUi

0

◦
DiΓn

]
, (3.57)

at the stellar surface.8

3.4 Free Parameters

Our formalism for computing a quasiequilibrium binary contains free parameters,

MP , MΦ , P̄i
BH , S̄i

BH , C , Ω , xi
rot, (3.58)

8 In the practical computation, we take a different approach [34].
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which have to be determined in an appropriate manner. On the one hand, some of
these parameters have to be chosen so that the binary is in an appropriate quasi-
circular state. On other other hand, some parameters have to be chosen so that the
quasiequilibrium state is a member of a particular quasiequilibrium sequence, which
is specified by the BH mass, BH spin, and the NS mass. We solve the constraint and
hydrostatic equations described in Sect. 3.2 and Sect. 3.3 with an iterative method
until a sufficiently convergent solution is obtained, and the free parameters are deter-
mined in each step of this iterative procedure. Typically, we stop the iteration when
sufficient convergence of the enthalpy field is obtained [1].

3.4.1 Parameters Associated with the BH

The bare mass, MP, is determined to obtain a desired value of the irreducible mass of
the BH, which is obtained by the proper area of the apparent horizon (AH) of the BH,

Mirr ≡
√

AAH

16π
, AAH =

∫
SAH

√
qd2x, (3.59)

where we assume that the AH, SAH, is the intersection of the initial hypersurface,
Σ0, and an isolated horizon, H (see [39, 40] and references therein for reviews). The
desired value of Mirr itself is taken to be the irreducible mass of the BH which has
desired mass and spin parameters at infinite separation. (The mass and spin parame-
ters are defined below.) Because we do not know the position of the AH in advance
in the puncture framework, we have to determine the position of the AH numerically.
The AH is defined as a two surface on which the expansion of the outgoing null vector
lμ = (nμ+sμ)/

√
2 vanishes. The numerical procedure and the code to find an AH is

called the AH finder. In the computation of the quasiequilibrium states, we adopt the
method described in [41] for the AH finder. The detail is described in the Appendix C.

The other mass parameter, M�, is determined by the condition that the ADM
mass,9

MADM ≡ 1

16π

∮
∞
γ i jγ kl

( ◦
D jγik − ◦

Dkγi j

)
dSl (3.60)

= − 1

2π

∮
∞

◦
DiψdSi

= MP − 1

2π

∮
∞

◦
DiφdSi , (3.61)

and the Komar mass,10

9 See the Appendix A for the ADM integral.
10 Rigorously speaking, the Komar mass is defined only in a spacetime with a timelike Killing
vector field at spatial infinity.
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MK ≡ − 1

8π

∮
∞

∇μtνdSμν

= 1

4π

∮
∞

◦
DiαdSi

= M�

2
+ MP

2
+ 1

4π

∮
∞

( ◦
Diη − ◦

Diφ
)

dSi , (3.62)

agree, which holds when the spacetime is stationary and asymptotically flat [28, 29].
Here, it is assumed that the shift vector and extrinsic curvature fall off sufficiently
rapidly at spatial infinity so that they do not contribute to the surface integral. Equating
the former with the latter, MΦ is determined to be

MΦ = MP − 1

2π

∮
∞

( ◦
Diφ + ◦

Diη
)

dSi . (3.63)

The linear momentum parameter of the puncture, P̄BH
i , is determined so that

the total linear momentum of the binary vanishes. The ADM linear momentum is
computed by

Pi ≡ 1

8π

∮
∞
(Ki

j − Kγi
j )dS j , (3.64)

and therefore P̄BH
i is determined to be

P̄BH
i = −

∫
Σ

jiψ
6d3x, (3.65)

using the Gauss’ theorem with a little algebra. The ADM angular momentum of the
binary may also be defined by11

Ji ≡ 1

16π

◦
εi jk

∮
∞
(x j K kl − xk K jl)dSl . (3.66)

The spin angular momentum of the BH, SBH, is evaluated on the AH, SAH,
according to the isolated horizon framework. On the AH, we define an approximate
rotational Killing vector using the method developed in [42] with the normaliza-
tion condition proposed in [43]. The detail of the computation is described in the
Appendix C. We focus only on the case in which the BH spin is aligned or antialigned

11 The definition of the ADM angular momentum is ambiguous due to a supertranslation freedom
in general spacetimes. In the conformal flatness approximation, however, this quantity is defined
unambiguously [13, 14].
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with the angular momentum of the binary in this study, so that the axis of the BH spin
is uniquely determined to be the z axis. Therefore, we only consider the approximate
Killing vector φi associated with the rotation in this direction. Using φi obtained by
this method, the spin angular momentum of the BH SBH = S(φ)BH is computed via the
surface integral at the AH,

S(φ)BH = 1

8π

∫
SAH

Ki jφ
i dS j . (3.67)

We adjust S̄z
BH to obtain a desired value of SBH. We note that S̄z

BH and SBH do not
agree exactly in the BH–NS binary spacetime due to the contribution to the extrinsic
curvature from the NS, associated with Wi .

Because we adopt a conformal flatness approximation for the induced metric, the
Christodoulou mass of the BH evaluated on the AH [44],

MH =
√

M2
irr + S2

BH

4M2
irr

, (3.68)

and the gravitational mass evaluated at spatial infinity, MBH, do not agree even for a
single BH system due to the presence of so-called junk waves. This difference leads
to an ambiguity in defining the nondimensional spin parameter of the BH. Here,
we define the nondimensional spin parameter of the BH with respect to the mass
evaluated at spatial infinity, i.e.,

a ≡ SBH

M2
BH

, (3.69)

in a single BH spacetime for given values of Mirr and SBH. The reason for this is that
the mass and nondimensional spin parameter of the BH evaluated at the AH quickly
(in our simulations, within ∼1 ms) relax to MBH and a, defined at spatial infinity,
respectively, as the BH absorbs the junk radiation in the vicinity of the BH [43, 45].
We note that these values show the damping oscillation before the relaxation in the
same manner as the “scalar-curvature spin” of [43] shows, because our method of
evaluating these values in the simulation is basically the same as the method to define
the scalar-curvature spin in [43] (see Sect. 5.2.2).

3.4.2 Parameters Associated with the NS

The constant of the first integral of the Euler equation, C , is determined so that the
baryon rest mass of the NS,

MB ≡
∫
Σ

ρuμdVμ

http://dx.doi.org/10.1007/978-4-431-54201-8_5
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=
∫
Σ

ρΓnψ
6d3x, (3.70)

takes the desired value. The value itself is taken to be the baryon rest mass of the NS
which has the desired ADM mass, MNS, in isolation.

3.4.3 Parameters of the Binary

In addition to the geometric and hydrodynamic variables, we have to obtain the
value of the orbital angular velocity, Ω , and the location of the rotational axis or
the center of mass of the binary, xi

rot, to specify the binary configuration for a given
separation, d. In the following, we assume that the rotational axis is always chosen to
be the z axis, and describe the method to determineΩ and the position of each object,
which we assume to lie on the x axis. Notice that the position of the NS determines
the position of the BH uniquely and vice versa, as long as the value of d is given. We
still call this position-fixing procedure as determining the location of the rotational
axis, or the center of mass of the binary.

The orbital angular velocity of the binary, Ω , is determined by requiring the
force balance at the stellar center, which is defined as the location where the specific
enthalpy, h, takes the maximum value along the direction connecting two objects.
Namely, the stellar center is the point at which the relation,

∂ ln h

∂x

∣∣∣∣
center

= 0, (3.71)

holds. Using the logarithm of (3.50), this equation leads to12

(
∂ ln α

∂x
+ ∂Γ

∂x

)
center

= ∂Γ0

∂x

∣∣∣∣
center

, (3.72)

and inserting (3.45) and (3.43) into Γ0 derives

(
∂ ln α

∂x
+ ∂γ

∂x

)
center

= 1

2

[
1 − ψ4

α2 γ̂i j

(
β i +Ωxi

NS

) (
β j +Ωx j

NS

)]−1

×
[
∂

∂x

(
ψ4

α2

)
γ̂i j

(
β i +Ωxi

NS

) (
β j +Ωx j

NS

)

+ 2ψ4

α2 γ̂i j

(
β i +Ωxi

NS

) {
∂β j

∂x
+Ω(∂y)

j
}]∣∣∣∣

center
,

(3.73)

12 In fact, this expression is not complete because Γ also depends on Ω . However, this does not
cause any problem as far as we know.
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where the stellar center is assumed to be located at xi
NS. The angular velocity, Ω , is

obtained by solving this quadratic equation.
We have no definite condition to determine the location of the center of mass of the

binary in the puncture framework, although it is automatically determined by requir-
ing the total linear momentum of a binary vanishes in the excision method [31–33].
We use this ambiguity to reduce an unphysical initial orbital eccentricity, which is
unavoidable in the computation of quasicircular binaries.13 It was found [48, 1] that
orbits with a small eccentricity could be obtained using the “3PN-J method,” i.e., a
phenomenological method to determine the location of the rotational axis in which
the total angular momentum of the binary for a given value ofΩm0 agrees with that
calculated from the third-order PN (3PN) approximation. Specifically, the location
of the rotational axis is chosen from the condition that the orbital angular momentum
of the binary agrees with a sum of 3PN nonspin terms given in [49] and of 2.5PN spin
terms given in [50] (see also [51]) for a given value ofΩm0. When the spin angular
momentum of the BH is parallel to the orbital angular momentum of the binary and
the spin angular momentum of the NS is negligible, the PN formula of the orbital
angular velocity J (X) is given by

J (X)

m2
0

= νX−1/2
[

1 +
(

3

2
+ ν

6

)
X +

(
27

8
− 19

8
ν + ν2

24

)
X2

+
{

135

16
+

(
−209323

5040
+ 41

24
π2

)
ν + 31

24
ν2 + 7

1296
ν3

}
X3

+ a

(
−10

3
Qν − 5

2
ν

)
X3/2

+ a

{(
−7 + 217

72
ν

)
Qν +

(
−21

8
+ 35

12
ν

)
ν

}
X5/2

]
, (3.74)

where X = (Ωm0)
2/3 is the PN parameter and ν = MBH MNS/m2

0 = Q/(1 + Q)2

is the symmetric mass ratio. We found that the angular momentum of the binary
tends to be larger if the center of mass is chosen to be closer to the BH, for a given
separation, d. For completeness, we also show the PN formula of the binding energy
of a binary, E(X), as

E(X)

m0
= −ν

2
X

[
1 +

(
−3

4
− ν

12

)
X +

(
−27

8
+ 19

8
ν − ν2

24

)
X2

+
{
−675

64
+

(
209323

4032
− 205

96
π2

)
ν − 155

96
ν2 − 35

5184
ν3

}
X3

+ a

(
8

3
Qν + 2ν

)
X3/2

+ a

{(
8 − 31

9

)
Qν +

(
3 − 10

3
ν

)
ν

}
X5/2

]
. (3.75)

13 Some effort to reduce eccentricity is done by adding an approaching velocity [33, 46, 47].
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It is observed that the thermodynamic relation for a circular orbit [52],

dE

dΩ
= Ω

dJ

dΩ
, (3.76)

holds as a result of the balance equations of the energy and orbital angular momentum.
It should be noted that the numerical computation of the BH-NS binary with the 3PN-
J method seems to give a smaller value of |E(X)| than a value computed by the 3PN
approximation.
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Chapter 4
Methods of Simulations

Numerical simulations of binary mergers are performed using an adaptive-mesh
refinement (AMR) code SACRA [1]. In this chapter, we describe the formulation, the
gauge conditions, and the numerical scheme adopted in the code. They are essentially
the same as those described briefly in [2–4].

4.1 The BSSN-Puncture Formalism

The 3+1 formalism described in Chap. 3, it is usually called the ADM formalism [5],
seems to be an appropriate tool, at a first glance, to perform numerical simulations
as the Cauchy problem of general relativity. However, it is known that the ADM
formalism cannot be applied to numerical relativity, because the violation of the
constraint, which is unavoidable in numerical simulations due to numerical errors
and boundary conditions, increases monotonically and finally crashes the simulation.
This pathological behavior is due to the mathematical structure of the formalism and
resultant behavior of configuration variables at “off-shell”. Specifically, numerical
errors do not obey hyperbolic equations so that they cannot propagate to escape,
and the errors increase exponentially in the ADM formalism. Several effort has been
paid to avoid this constraint violation by reformulating evolution equations by many
researchers. To date, one of the most successful formalism in numerical relativity
is the so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [6, 7].
This formalism suppresses the constraint violation introducing new variables and
constraints simultaneously. More importantly, the momentum constraint is added to
the evolution equation to eliminate terms which purely correspond to the gauge mode
in the linear regime [8].

While the original BSSN formalism had been fairly successful in studying many
problems, such as instabilities of rotating stars and the merger of binary NSs, it
could not evolve the spacetime containing the singularity, i.e., the BH, for about
ten years after its birth. The evolution of binary BH mergers were first performed

K. Kyutoku, The Black Hole–Neutron Star Binary Merger in Full General Relativity, 67
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in a generalized harmonic formulation [9, 10], and soon after this first success two
groups succeeded in performing binary BH merger simulations based on the BSSN
formalism [11, 12]. One of the important modification is that the formalism developed
in [11, 12] evolves the inverse of the conformal factor (up to some positive power)
instead of the conformal factor itself or its logarithm, which diverges at the singularity.
The other important modification is the choice of the gauge condition, which is now
called the moving-puncture gauge. They adopted the 1+log slicing, or the “K -driver”
condition for the lapse function [13], and the “Γ -driver” condition for the shift
vector [14].

Before describing the BSSN-puncture formalism, we comment on the finite dif-
ferentiation method adopted in the gravitational part of SACRA. We evaluate the
spatial derivative by a fourth-order central finite difference, except for the advection
terms with the form β i∂i (variable), which are evaluated by a fourth-order noncen-
tered, upwind finite difference. To evaluate the fourth-order central differentiation
at the j th grid point, the data of ( j − 2)–( j + 2)th points are required. As for the
fourth-order upwind differentiation at j th point, the data of ( j − 3)–( j + 1)th or
( j − 1)–( j + 3)th points are required, depending on the windward direction. We
employ a fourth-order Runge-Kutta method for the time evolution.

4.1.1 BSSN Variables and Evolution Equations

SACRA [1] solves the Einstein evolution equations in the BSSN formalism with the
moving-puncture gauge condition in the Cartesian coordinates.1 In this formalism,
the evolution variables are changed from (γi j , Ki j ) to

W ≡ γ−1/6, (4.1)

γ̃i j ≡ γ−1/3γi j , (4.2)

Ãi j ≡ γ−1/3
(

Ki j − 1

3
Kγi j

)
, (4.3)

K ≡ γ i j Ki j , (4.4)

Γ̃ i ≡ γ̃ jk Γ̃ i
jk = −∂ j γ̃

i j , (4.5)

where Γ̃ k
i j is the Christoffel symbol of γ̃i j , and the choice of the conformal factor,

W , is taken from [16]. The most important change here is the introduction of the
conformal connection functions Γ̃ i as an independent variable. The reason to do this
is that the principal part of the conformal Ricci tensor, R̃i j , which is a complicated
second-order derivative operator on γ̃i j , becomes the Laplacian on γ̃i j , and the system

1 The BSSN formalism can be applied to other coordinate systems, such as spherical coordinates

[15]. Basically, it is only required to replace ∂i by
◦

Di , and subtract the Christoffel symbol of fi j ,
which vanishes in the Cartesian coordinates, from the Christoffel symbol of γ̃i j , Γ̃

k
i j .
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of equations becomes (weakly) hyperbolic [17]. The evolution equations of them are
obtained by performing conformal transformation to the ADM evolution equations
of (γi j , Ki j ), (3.12) and (3.13), and are given by

(
∂t − β i∂i

)
W = 1

3
W

(
αK − ∂iβ

i
)
, (4.6)

(
∂t − βk∂k

)
γ̃i j = −2α Ãi j + γ̃ik∂ jβ

k + γ̃ jk∂iβ
k − 2

3
γ̃i j∂kβ

k, (4.7)

(
∂t − βk∂k

)
Ãi j = −W 2

(
Di D jα − 1

3
γi j D2α

)
+ W 2α

(
Ri j − 1

3
Rγi j

)

+ α
(

K Ãi j − 2 Ãik Ã j
k
)

− 8πW 2α

(
Si j − 1

3
Sγi j

)

+ Ãik∂ jβ
k + Ã jk∂iβ

k − 2

3
Ãi j∂kβ

k, (4.8)

(
∂t − β i∂i

)
K = − D2α+α

[
Ãi j Ãi j + 1

3
K 2 + 4π(ρH + S)

]
, (4.9)

(
∂t −β j∂ j

)
Γ̃ i = − 2 Ãi j∂ jα+ 2α

(
Γ̃ i

jk Ã jk − 3

W
Ãi j∂ j W − 2

3
γ̃ i j∂ j K−8πγ̃ i j j j

)

+ γ̃ jk∂ j∂kβ
i + 1

3
γ̃ i j∂ j∂kβ

k

+
(
∂ j γ̃

jk
)
∂kβ

i − 2

3

(
∂ j γ̃

i j
)
∂kβ

k . (4.10)

Here, the Hamiltonian and momentum constraints are used to derive evolution
equations of K and Γ̃ i , respectively. Especially, eliminating ∂ j Ãi j , which can always
be set to zero by choosing the transverse-traceless gauge in the linear regime, from
the evolution equation of Γ̃ i is the essential part of the BSSN formalism. Finally,
the Ricci tensor is computed by

Ri j = R̃i j + RW
i j , (4.11)

R̃i j = −1

2
γ̃ kl∂k∂l γ̃i j + 1

2

(
γ̃ik∂ j Γ̃

k + γ̃ jk∂i Γ̃
k
)

+ 1

2
Γ̃ kl

l ∂k γ̃i j

+ Γ̃ kl
i Γ̃ jkl + Γ̃ kl

j Γ̃ikl + Γ̃ kl
i Γ̃kl j , (4.12)

RW
i j = 1

W
D̃i D̃ j W + 1

W
γ̃i j D̃2W − 2

W 2 γ̃i j

(
D̃k W

) (
D̃k W

)
, (4.13)

where Γ̃ i j
k ≡ γ̃ jl Γ̃ i

kl . In this decomposition, R̃i j and RW
i j approximately represent

gravitational-wave and gravitational-potential parts, respectively. As is described
above, the principal part of R̃i j is the Laplacian of γ̃i j thanks to the introduction of
Γ̃ i . Throughout these computations, Γ̃ i appears on the right-hand side only when it
is differentiated, and never used as it is. Namely, the first derivative of the conformal
metric, such as ∂ j γ̃

i j and Γ̃ kl
l , is always computed from γ̃i j . This trick makes the

numerical simulation stable.

http://dx.doi.org/10.1007/978-4-431-54201-8_3
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4.1.2 BSSN Constraints

In the BSSN formalism, the Hamiltonian and momentum constraints, (3.10) and
(3.11), are also subjected to the conformal transformation. In addition, new constraint
equations arise as the price of increasing new independent variables. The BSSN
constraint equations are given by

H ≡ R + 2

3
K 2 − Ãi j Ãi j − 16πρH = 0, (4.14)

Mi ≡ γ̃ jk D̃k Ãi j − 3

W
Ã j

i D̃ j W − 2

3
D̃i K − 8π ji = 0, (4.15)

γ̃ = f = 1, (4.16)

γ̃ i j Ãi j = 0, (4.17)

Γ̃ i = −∂ j γ̃
i j . (4.18)

Among these constraints, we explicitly force the algebraic constraints (4.16) and
(4.17) at all the time step, including the intermediate steps of the Runge-Kutta time
evolution, by recomputing the variables as

γ̃i j = γ̃−1/3γ̃i j , (4.19)

W = γ̃−1/6W, (4.20)

Ãi j = γ̃−1/3 Ãi j − 1

3

(
γ̃ kl Ãkl

) (
γ̃−1/3γ̃i j

)
, (4.21)

K = K + γ̃ i j Ãi j , (4.22)

where the left-hand side is the new values of the variables computed by the right-
hand side expression using the old values of the variables. The values of (γi j , Ki j )

do not change before and after this recomputation. Notice that these equations are all
satisfied automatically if the BSSN algebraic constraints are satisfied. The Hamil-
tonian and momentum constraints, H and Mi , are monitored during the simulation
to measure the degree of the constraint violation.

The BSSN formalism is called the free-evolution scheme, because the Einstein
constraint equations are not solved in the evolution. This is justified, because it
can be shown that the constraints are satisfied during the evolution as long as the
initial condition satisfy the constraints and the evolution is governed by the Einstein
evolution equations thanks to the Bianchi identity. The ADM formalism also shares
this feature, but it cannot halt the unstable growth of slight but unavoidable constraint
violation, in contrast to the BSSN formalism. There exists other formulation in which
some (typically, only the Hamiltonian constraint) or all of the Einstein constraint
equations are solved simultaneously, and they are called the partially-constrained
and fully-constrained scheme [15, 18].

http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
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4.1.3 The Moving Puncture Gauge Condition

Introducing an auxiliary variable Bi and a parameter ηs, which we typically set to
be2 ∼1/MBH in units of G = c = M� = 1, SACRA employs the moving-puncture
gauge in the form [20]

(
∂t − β j∂ j

)
α = −2αK , (4.23)

(
∂t − β j∂ j

)
β i = 3

4
Bi , (4.24)(

∂t − β j∂ j

)
Bi =

(
∂t − β j∂ j

)
Γ̃ i − ηs Bi . (4.25)

We always give initial data of the gauge variables by

α = W, β i = 0, Bi = 0, (4.26)

and never use the value given by the XTCS approach. In particular, replacing α is
important, because the lapse function computed in the puncture framework always
becomes negative around the puncture (approximately, inside the AH), and makes
the the simulation unstable. The motion of the puncture is obtained by integrating
the shift vector as

dxi
P

dt
= −β i , (4.27)

because the conformal factor, W , vanishes at the puncture [21], and therefore (4.6)
becomes

∂W

∂t
− β i ∂W

∂xi
= 0, (4.28)

which means that the characteristic velocity of the puncture is −β i [11].

4.2 Hydrodynamic Evolution Equations

In computational fluid dynamics, it is fairly advantageous to formulate evolution
equations in a conservative form [22, 23], i.e.,

∂t Q + ∂i Fi (Q) = S(Q), (4.29)

2 This parameter ηs has a dimension of the inverse of the time. Because this parameter introduces
a time scale to the gauge evolution equation, we cannot choose the time step size arbitrarily even if
the CFL condition is satisfied [19].
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for a state vector3 Q. If the numerical simulations are performed in the conservative
form throughout, conservation of “conserved quantities”, such as the total rest mass,
is ensured up to the truncation error. Although this does not hold if we adopt the AMR
technique, in which the interpolation is necessary, the violation of conservation still
gives us an estimate of the error associated with the AMR. The conservative form
is also advantageous to accurately capture the position of shock waves, which is the
most troublesome part of computational fluid dynamics.

The spatial differentiation involved in the source terms, S(Q), are evaluated by
a fourth-order central differentiation as is done for the gravitational part. The time
evolution is performed by a fourth-order Runge-Kutta time evolution. Our scheme
of evaluating the advection terms, ∂i Fi (Q), is described below.

4.2.1 Evolution Equations in a Conservative Form

The hydrodynamic evolution equation is obtained by the continuity equation and the
local energy-momentum conservation equation, (1.33) and (1.34), with decompos-
ing (1.34) into the space and time components by projecting onto the hypersurface,
γ
μ
i ∇νT νμ , and onto the four velocity of the Eulerian observer, nμ∇νT νμ . These equa-

tions give

∂tρ∗ + ∂i

(
ρ∗vi

)
= 0, (4.30)

∂t
(
ρ∗ûi

) + ∂ j

(
ρ∗ûi v j + Pα

√
γ δ

j
i

)
= −ρ∗

(
hw∂iα − û j ∂iβ

j + α

2hw
û j ûk∂iγ

jk
)

+ P∂i (α
√
γ ), (4.31)

∂t
(
ρ∗ê

) + ∂i

[
ρ∗êvi + P

√
γ

(
vi + βi

)]
= Pα

√
γ K − ρ∗ûiγ

i j ∂ jα

+ ρ∗α
hw

ûi û j K i j , (4.32)

where we define the Lorentz factor, three velocity, and conserved variables by

w ≡ −nμuμ = αut , (4.33)

vi ≡ dxi

dt
= ui

ut
, (4.34)

ρ∗ ≡ ρα
√
γ ut , (4.35)

ûi ≡ hui , (4.36)

ê ≡ hαut − P

ραut
. (4.37)

3 Here, the vector means merely a set of variables.

http://dx.doi.org/10.1007/978-4-431-54201-8_1
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In deriving these equations, it is essential to use (ut , ui ) rather than (ut , ui ) except
for the definition of vi , because we have no direct access to the latter quantities when
we use the former. Notice that all of the right-hand sides of (4.30), (4.31), and (4.32)
become zeros and the equations become those of special relativity, if the spacetime is
flat. This means that the rest mass, linear momentum, and energy are the conserved
quantities in a flat spacetime, and indeed the rest mass is the conserved quantity even
in the curved spacetime. The energy and linear momentum are not considered to be
conserved in general relativity, due to the well known absence of the well-defined
local gravitational energy and linear momentum.

The advection terms are handled with a high-resolution4 central scheme proposed
by Kurganov and Tadmor [24] with a third-order piecewise parabolic interpolation
for the cell reconstruction. To explain this scheme, which is a monotone upwind-
central scheme for conservation laws (MUSCL), let us consider the way to solve a
one-dimensional, source-free evolution equation in a conservative form,

∂t Q + ∂x Fx = 0, (4.38)

on a uniform grid with the grid size �x and with the time step size �t . Because
the differential equation does not make sense at discontinuities such as a shock
front, numerical schemes should be able to obtain a weak solution which satisfy the
conservation law in an integrated form,5

∫ ∫
(∂t Q + ∂x Fx )dtdx = 0. (4.39)

The solution at the time step n + 1 and at the grid point j is obtained by taking the
integration cell to be tn ≤ t ≤ tn+1 and x j−1/2 ≤ x ≤ x j+1/2, and is written by

Qn+1
j = Qn

j − �t

�x

(
Fn

j+1/2 − Fn
j−1/2

)
, (4.40)

where the superscript and subscript indicate the time step and grid point, respectively.
Hereafter, we discuss quantities at n to evaluate the right-hand side and omit super-
scripts.

The important question is how to evaluate the flux at the cell interface, F j−1/2
and F j+1/2. It is well known that using more information from the windward side
is essential for the numerical stability, so the upwind scheme is necessary. In the
scheme of Kurganov and Tadmor, the flux at F j−1/2 is evaluated in a flux difference
splitting (FDS) manner by

4 “High resolution” means that a higher-order accuracy is obtained for the smooth flow, while the
discontinuity is captured accurately by lowering the accuracy to a first order around discontinuities.
Godunov’s theorem states that the scheme must be a first order to capture the discontinuities without
invoking instabilities.
5 In this sense, the conservative scheme of computational fluid dynamics is sometimes considered
to be based on a finite volume method.
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F j−1/2 = 1

2

[
FR

j−1/2 + FL
j−1/2 − |a| j−1/2

(
QR

j−1/2 − QL
j−1/2

)]
, (4.41)

where L and R stand for the “left” and “right” state of the cell interface, respectively,
and |a| denotes the local propagation velocity. The local propagation velocity, |a|,
is computed as a maximum of the characteristic velocity which is defined by the
eigenvalue of the Jacobian matrix,

Mab ≡ ∂Fa

∂Qb
, (4.42)

where (a, b) denotes the components of the flux and state vectors. The eigenvalues
are computed both at left and right states, and the maximum value is searched over
both states. In general relativistic hydrodynamics, where the five-dimensional state
and flux vectors are given by

Q =

⎛
⎜⎜⎜⎜⎝

ρ∗
ρ∗ûx

ρ∗û y

ρ∗ûz

ρ∗ê

⎞
⎟⎟⎟⎟⎠ ,Fi =

⎛
⎜⎜⎜⎜⎝

ρ∗vi

ρ∗ûx vi + Pα
√
γ δi

x
ρ∗û yvi + Pα

√
γ δi

y
ρ∗ûzvi + Pα

√
γ δi

z
ρ∗êvi + P

√
γ (vi + β i )

⎞
⎟⎟⎟⎟⎠ , (4.43)

eigenvalues of the advection in i-direction are given by [25] triple roots vi and

λi± = viα2(1 − c2
s )− β i c2

s (α
2 − V 2)± αcs

√
(α2 − V 2)[γ i i (α2 − V 2c2

s )− (1 − c2
s )V

i V i ]
|α2 − V 2c2

s |
,

(4.44)
where V i ≡ vi + β i , V 2 ≡ γi j V i V j , and cs is the sound velocity defined by

c2
s ≡ 1

h

[(
∂P

∂ρ

)
ε

+ P

ρ2

(
∂P

∂ε

)
ρ

]
. (4.45)

It is noted that the derivatives for the sound velocity are computed as

(
∂P

∂ρ

)
ε

= KiΓi
Γi − Γth

Γi − 1
ρΓi −1 + (ε − εi−1)(Γth − 1), (4.46)

1

ρ

(
∂P

∂ε

)
ρ

= Γth − 1, (4.47)

with our EOS described in Sect. 2.4. Hence, the solution is obtained when the values
of physical quantities at left an right states are specified, using the local propagation
velocity determined as

|a| ≡ max
[∣∣∣λL±

∣∣∣ ,
∣∣∣λR±

∣∣∣ ,
∣∣∣vL

∣∣∣ ,
∣∣∣vR

∣∣∣] , (4.48)

http://dx.doi.org/10.1007/978-4-431-54201-8_2
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where we come back to the one-dimensional problem and omit superscript, i.
To determine the right state at j −1/2 and the left state at j +1/2 to high accuracy,

we adopt a third-order piecewise-parabolic interpolation around j for

ρ∗, ûi , ê, ε,
P

ρ
,

(
∂P

∂ρ

)
ε

,
1

ρ

(
∂P

∂ε

)
ρ

, (4.49)

whereas the geometric variables at j ± 1/2 are computed by a straightforward arith-
metic mean of the values at j and j ± 1. In the piecewise-parabolic interpolation,
the physical distribution of quantities are assumed to take a Taylor-expanded form,

Q(x) = Q(x j )+ (x − x j )
∂Q(x j )

∂x
+ 1

2
(x − x j )

2 ∂
2 Q(x j )

∂x2 , (4.50)

and the numerical value at x j is considered to be the cell-average of this distribution
function. Therefore, the distribution function is rewritten using the value at j as

Q(x) =
[

Q j − 1

24

(
∂2 Q

∂x2

)
j
(�x)2

]
+ (x − x j )

(
∂Q

∂x

)
j
+ 1

2
(x − x j )

2
(
∂2 Q

∂x2

)
j
.

(4.51)
Evaluating Q j , (∂Q/∂x) j , and (∂Q2/∂x2) j by the second-order, central finite dif-
ferentiation, we finally obtain

QL
j+1/2 = Q j + 1

3
�Q j+1/2 + 1

6
�Q j−1/2, (4.52)

QR
j−1/2 = Q j − 1

6
�Q j+1/2 − 1

3
�Q j−1/2, (4.53)

�Q j+1/2 ≡ Q j+1 − Q j , (4.54)

�Q j−1/2 ≡ Q j − Q j−1. (4.55)

In order to avoid (possibly unphysical) local extrema at the cell interface, we further
modify this expression using a minmod limiter defined by

minmod(a, b) =
⎧⎨
⎩

a, (b > a > 0, 0 > a > b)
b, (a > b > 0, 0 > b > a)
0, (a > 0 > b, b > 0 > a)

(4.56)

as

QL
j+1/2 = Q j + 1

3
minmod

(
�Q j+1/2, b�Q j−1/2

)

+ 1

6
minmod

(
�Q j−1/2, b�Q j+1/2

)
, (4.57)

QR
j−1/2 = Q j − 1

6
minmod

(
�Q j+1/2, b�Q j−1/2

)
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− 1

3
minmod

(
�Q j−1/2, b�Q j+1/2

)
, (4.58)

so that the total variation diminishing (TVD) condition is satisfied. In SACRA, the
parameter b is taken to be 3. In a uniform grid, this parameter has to satisfy 1 < b < 4
to avoid local extrema, and low and high values of b tend to lead dissipative and
unstable schemes, respectively.

4.2.2 Recovery of Primitive Variables

In the course of numerical simulations, we have to determine primitive variables
(ρ, ui , ε) consistently from the conserved variables (ρ∗, ûi , ê) and geometric vari-
ables at each time step. This procedure requires the determination of the Lorentz
factor, w, which is accomplished with the aid of the EOS and the normalization con-
dition of the four velocity, uμuμ = −1. Considering the enthalpy, h, as a function
of the Lorentz factor, w, the normalization condition indicates

f (w) ≡ 1 + γ i j ûi û j h(w)
−2 − w2 = 0. (4.59)

What we have to do here is to find a physically appropriate root, w, of this equation.
This is done by an iterative, Newton-Raphson method with an initial guess of w,
which we take to be a value at the previous step. Because the rest-mass density,
specific enthalpy, and specific internal energy are given by

ρ = ρ∗
w

√
γ
, (4.60)

h = ê

w
+ P

√
γ

ρ∗w
, (4.61)

ε = ê

w
+ P

√
γ

ρ∗w
− 1 − Pw

√
γ

ρ∗
, (4.62)

the pressure is also determined as a function of w. Specifically, we obtain using our
EOS described in Sect. 2.4,

h(w)−1 = [Γth(w
2 − 1)+ 1]

×
[
Γthwê + Ki

Γi − Γth

Γi − 1

(
ρ∗

w
√
γ

)Γi −1

− (Γth − 1)− εi−1(Γth − 1)

]−1

,

(4.63)

and now we solve (4.59) using this relation to obtain the correct value of w, and
hence (ρ, ui , ε) and h until sufficient convergence is obtained.

http://dx.doi.org/10.1007/978-4-431-54201-8_2


4.2 Hydrodynamic Evolution Equations 77

4.2.3 An Artificial Atmosphere

Because the vacuum is not allowed in any conservative hydrodynamic scheme, we
put an artificial atmosphere of a small density outside the NS. Specifically, we choose
a typical rest-mass density of the atmosphere ρmin to be 10−9ρmax, where ρmax is
the maximum rest-mass density in the NS at an initial instant. In typical situations,
ρmax ≈ 1015 gcm−3 and therefore ρmin ≈ 106 gcm−3. In the actual computation, we
further introduce a typical radius of the atmosphere Rcrit ≈ 150–200 km, and put an
atmosphere determined by

ρ∗ = exp

[
min

(
1 − r

Rcrit
, 0

)]
ρmin, (4.64)

if ρ∗ becomes zero or negative during the evolution. The conserved velocity, ûi , is
set to be zero, and the conserved energy density, ê, is set to be

ê = 1 + εcold(ρmin). (4.65)

The total rest mass of the atmosphere is always less than 10−4 M� (in many situations,
less than 10−5 M�), and hence, we can safely neglect spurious effects by accretion
of the atmosphere onto the remnant disk as far as the disk mass is much larger than
10−4 M�.

4.3 Adaptive Mesh Refinement

The computational difficulty in numerical relativity is that the problem usually
involves two different length scales. In dynamical simulations of the compact binary
coalescence, on the one hand, we have to resolve both compact objects with a suffi-
cient grid resolution to perform accurate simulations. The radius of the NS is typically
≈10–15 km, and the least required resolution is ≈250–400 m to obtain convergent
result by experience. On the other hand, we have to extend the computational domain
to the local wave zone of the initial quasiequilibrium state, because the usual boundary
condition and extracting technique of gravitational waves are both become accurate
only at local wave zones. A typical gravitational wavelength at an initial instant is
written using the initial angular velocity Ω0 as

λ0 ≡ πc

Ω0
= Gm0

c2

π

GΩ0m0/c3

≈ 250(1 + Q)

(
MNS

1.35M�

) (
0.025

GΩ0m0/c3

)
km, (4.66)
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where we inserted G and c for clarity. If we are willing to cover the whole com-
putational domain by the same resolution adapted to the compact object, the total
grid number becomes as large as ≈1011. Because ≈100–150 variables with double
precision (8 Bytes) are required for the Runge-Kutta time evolution of general rel-
ativistic hydrodynamic simulations, the total required memory will be ≈100 Tbyte
and unachievable.

An important fact is that such a high resolution is not required except for the
region in the vicinity of compact objects. Actually, �10 grid points are adequate to
resolve gravitational waves, whose wavelength is no less than ≈100 km even just
before the merger. Therefore, it is becoming a standard technique to use an adaptive
mesh refinement (AMR) technique in numerical relativity.6

4.3.1 The Grid Structure

SACRA adopts the AMR technique [1] of Berger-Oliger type [26] (see also [20]).
Figure 4.1 depicts the schematic view of the AMR algorithm implemented inSACRA,
which we describe below. The AMR grids consist of a number of computational
domains, each of which has uniform, nvertex-centered Cartesian grids with (2N +
1, 2N + 1, N + 1) for (x, y, z) with the equatorial symmetry at z = 0 imposed.
The AMR grids are classified into two categories. One is a coarser domain, which
covers a wide region, including both the BH and NS, with its origin fixed at the
approximate center of mass throughout the simulation. The other is a finer domain,
two sets of which comove with compact objects and cover the region in the vicinity
of these objects. We denote the edge length of the largest domain, the number of the
coarser domains, and the number of the finer domains by 2L , lc, and 2lf , respectively.
Namely, the total number of the domains is lc +2lf . The grid spacing for each domain
is hl = L/(2l N ), where l = 0–(lc + lf −1) is the depth of each domain. The size of a
time step (�t)l is determined by hl in each domain with the Courant-Friedrich-Levy
(CFL) factor, which we set to be 0.5 in this study. Hence, sizes of the time step of two
neighboring domains differ by a factor of 2, and a sub-cycling in time is necessary.
Namely, the time evolution of the lth domain is performed twice during single time
evolution of the (l − 1)th domain. Figure 4.1 shows this sub-cycling structure in
time. During the time evolution of (l − 1)th domain once with the time step �t , the
lth domain is evolved twice in time with �t/2. Similarly, the (l + 1)th domain is
evolved four times in time with�t/4. The ordering of this sub-cycling is determined
recursively so that each domain is maximally evolved as long as it does not precede
the domain located just above it.7 The number (1)–(7) in Fig. 4.1 shows the time
ordering for the specific configuration shown in the figure. Exceptionally, (�t)l<lc
in coarser domains are chosen to be the same as (�t)l=lc of the coarsest finer domains
in our simulations.

6 The other solution to the difficulty with different length scales is to use non-uniform grids.
7 In other words, the domain never precede any of the domains located above it.
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Fig. 4.1 The schematic figure of the AMR algorithm implemented in SACRA. This example shows
the evolution from t to t + �t for (l − 1)th (left), lth (middle), and (l + 1)th (right) domains,
where �t is the time step determined by the CFL number in the (l − 1)th domain. The coordinate
time proceeds upward, and the solid horizontal line denotes each computational grid at each time.
The dot-dashed horizontal line denotes the intermediate step of the Runge-Kutta time evolution.
Numbers in brackets denotes the ordering of the procedure. The inset at the right bottom shows the
configuration of the buffer zone, which is denoted by colored points, i.e., the red circles, purple
triangle, and blue crosses. The inner zone is denoted by black squares. The data of all buffer points
are given by the fifth-order Lagrange interpolation using the data of the domain located just above
it, when the time agrees with that of the domain located just above it (Step (1.5), (2.5), and (5.5)
in this figure, shown by red, curved arrows). The red circles are evolved using the same method as
for the inner zone during two Runge-Kutta evolution. This means that the spatial interpolation is
not performed at t + (�t/2), at which (l − 1)th domain does not have the data, for the red circles
of the lth domain. The purple triangle is also evolved in a similar way with the exception that it is
allowed to evaluate advection terms by a second-order, upwind finite difference when the windward
side is the outside. The data of blue crosses are given by the Lagrange interpolation of fifth- and
second-order in space and time, respectively, at all the time steps including the intermediate steps
of the Runge-Kutta evolution. In this example, this interpolation is performed at t + (�t/2) and
all the intermediate steps of (2) and (5) for the lth domain using the data at t −�t, t , and t +�t
of the (l − 1)th domain. After the catching-up in time with the domain located just above it, the
better-resolved data of the domain are populated to the domain located just above it (Step (4.5),
(7.5), and (7.75) in this figure, shown by green, curved arrows)

4.3.2 Boundary Conditions and Data in the Buffer Zone

For l = 0 domain, we put two boundary points in both positive and negative
directions. Values of metric quantities at these boundary points are determined by
the outgoing-wave boundary condition at all the time steps including the interme-
diate steps of the Runge-Kutta time evolution. The outgoing boundary condition is
written by

F(t, r) = [F(t −�t, r −�r)− F(∞)]r −�r

r
+ F(∞), (4.67)

where r denotes the distance from the coordinate origin and �r = �t in the unit of
c = 1, for a variable F which obeys the wave equation. The value of F(t−�t, r−�r)
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is determined by an spatial interpolation. The asymptotic flatness condition,

α → 1, β i → 0, Bi → 0, γ̃i j → fi j , Ãi j → 0, K → 0, Γ̃ i → 0, (4.68)

is imposed for the value of F(∞). Exceptionally, the boundary value of W is fixed
because the 1/r part of the conformal factor does not denote the wave component,
but the total mass of the system. We neglect the energy loss from the system due
to the gravitational radiation. The hydrodynamic variables at l = 0 domain are set
to be those of the vacuum, and we do not solve hydrodynamics at l = 0 domain.
Hence, they do not require boundary conditions. On the equatorial plane, we do
not impose the outgoing-wave boundary condition, but the equatorially-symmetric
boundary condition. Specifically,

F(−z) = F(z), F A(−z) = F A(z), Fz(−z) = −Fz(z)

FAB(−z) = FAB(z), FAz(−z) = −FAz(z), Fzz(−z) = Fzz(z), (4.69)

where (A, B) denote (x, y) components. This equatorially symmetric condition is
also applied to all the l = 0 computational domains.

All the other computational domains have six buffer points in both positive and
negative directions. The schematic configuration of the buffer zone is shown in the
inset at the right bottom of Fig. 4.1. The issues described in this paragraph are also
explained in the caption of Fig. 4.1 for the specific grid configuration shown in the
figure. In these domains, values at the buffer zone at the beginning of each time step
are computed using the fifth-order Lagrange interpolation in space from values of
the domain located just above them, when the coordinate time agrees with that of the
domain located just above them. In other words, the values are not interpolated at the
beginning of the “second” Runge-Kutta time evolution. Exceptionally, we switch to
lower-order interpolation to avoid numerical instability when the value of (ρ∗, ê, h)
becomes lower than that of the atmosphere. During the Runge-Kutta evolution, inner
three of six buffer points are evolved using the same method as in the inner zone,
i.e., true computational grids. The fourth point is also evolved, but the advection
terms are allowed to be evaluated by a second-order, upwind finite differentiation
when the windward side is the outside. It should be recalled that the fourth-order
upwind scheme requires three windward points, but the fourth point has only two
outer points. At the outer two of six buffer points, the variables are not evolved, and
instead the values of the variables are computed using the Lagrange interpolation,
which is fifth- and second-order in space and time, respectively, at the beginning
of the “second” Runge-Kutta time evolution and all the intermediate steps of the
Runge-Kutta time evolution. The interpolation in time is changed to a first-order one
for hydrodynamic variables to avoid numerical instability if the value oscillates in
time. After the two Runge-Kutta evolution, the data computed in the domain with a
better resolution are populated to the domain located just above it, which has a lower
resolution.
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Chapter 5
Diagnostics for Numerical Simulations

The purpose of this study is to analyze gravitational waves and merger remnants,
and clarify their dependence on the NS EOS. In this chapter, we describe methods
to extract gravitational waves from numerically computed spacetimes within a finite
domain, and to obtain values of physical quantities associated with the remnant disk
and BH.

5.1 Gravitational Waves

Identification of gravitational-wave contents in a numerically-computed spacetime
is not a trivial task. For example, the metric gμv constructed from (α, β i, γij) does
not directly related to the gauge-invariant, transverse-traceless gauge quantities even
in the weak field. Several extraction technique has been proposed, and compari-
son among different extraction techniques have been performed by several authors
[1–3]. The simplest method to extract gravitational waves is to use the quadrupole
formula, (1.3). In particular, this is the only method to compute gravitational waves
in Newtonian simulations. However, the definition of the mass quadrupole moment
is ambiguous in general relativity. One of successful methods is to adopt the gauge-
invariant, Regge-Wheeler-Zerilli-Moncrief formalism [4–6] at a finite coordinate
radius, but this method assumes a specific background in the far region, and also
sometimes introduce unphysical high-frequency noise [3]. In this study, gravita-
tional waves are extracted using the Newman-Penrose quantity [7–9], or the Weyl
scalar Ψ4, at a finite coordinate radius.

We note that the most reliable method so far may be the Cauchy-Characteristic-
Extraction (CCE) technique [3, 10], in which quantities associated with gravitational
waves are evolved from the finite extraction radius to future null infinity as a post
process. This method is more preferable than other methods in that it has no system-
atic errors associated with the finite extraction radius, but it cannot be implemented
easily (and we do not), because the CCE technique requires a different evolution
code based on the Bondi-Sachs coordinates [11, 12].

K. Kyutoku, The Black Hole–Neutron Star Binary Merger in Full General Relativity, 83
Springer Theses, DOI: 10.1007/978-4-431-54201-8_5, © Springer Japan 2013
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5.1.1 Extracting Gravitational Waves

The Weyl tensor, which is defined in the 4-dimensional spacetime as

Cαμβv ≡4 Rαμβv − 1

2

(
gαβ

4 Rμv − gαv
4 Rβμ − gβμ

4 Rαv + gμv
4 Rαβ

)

− 1

6
4 R(gαβgμv − gαvgβμ), (5.1)

contains information of the spacetime curvature irrelevant to the Ricci tensor,1

especially gravitational waves. The Weyl tensor is decomposed into “electric” and
“magnetic” parts [13], which are defined by

Eμv ≡ Cαμβvnαnβ, (5.2)

Bμv ≡ C∗
αμβvnαnβ, (5.3)

C∗
αμβv ≡ 1

2
Cαμλσ ε

λσ
βv (5.4)

for an observer nμ, as

Cαμβv = pαβEμv − pαv Eβμ − pβμEαv + pμv Eαβ
− nαBμλε

λ
βv + nμBαλε

λ
βv − nβBvλε

λ
αμ + nv Bβλε

λ
αμ, (5.5)

where pμv = gμv +2nμnv. Using symmetry properties of the Weyl tensor, which are
the same as those of the Riemann tensor, it is shown that the electric and magnetic
parts are symmetric, trace-free, and spatial, i.e.,

Eμαnα = Bμαnα = 0, (5.6)

which implies that these two tensors are computed on a spatial hypersurface of
constant time. Specifically, we obtain

Eij = Rij + K Kij − Ki
k K jk − 16π

3
ρHγij − 4π

[
Sij − 1

3
Sγij

]
, (5.7)

Bij = εi
mn[Dm Knj − 4πγ jm jn], (5.8)

using the Einstein equations.
Gravitational waves are extracted by calculating the outgoing part of the Weyl

scalar Ψ4 [7–9], which is defined from the Weyl tensor using null tetrads

1 In general relativity, the Ricci tensor has the same information as that of the energy-momentum
tensor.
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(lμ, kμ,mμ, m̄μ) by2

Ψ4 ≡ −Cαμβvm̄αkμm̄βkv (5.9)

at finite coordinate radii r ≈ 100m0 assuming that the spacetime is the vacuum. We
normalize the outgoing and ingoing null vectors as

lμ = 1√
2
(nμ + sμ), (5.10)

kμ = 1√
2
(nμ − sμ), (5.11)

and the complex null tetrad mμ is chosen to be

mμ = 1√
2

[
(e
θ̂
)μ + i

(
eϕ̂

)μ]
, (5.12)

where (e
θ̂
)μ and (eϕ̂)

μ are the normalized coordinate bases of θ and ϕ, respectively.3

After decomposing the Weyl tensor into the electric and magnetic parts, Ψ4 is found
to be evaluated by

Ψ4 = −(Eij − iBij)m̄
i m̄ j . (5.13)

We always decompose Ψ4 into modes associated with a spin-weighted spherical
harmonics of spin weight −2 as

Ψ4(r, θ, ϕ) =
∑
l,m

Ψ lm
4 (r)−2Ylm(θ, ϕ), (5.14)

where sYlm(θ, ϕ) is defined using the Wigner’s d-function dl
ms by

sYlm(θ, ϕ) = (−1)s
√

2l + 1

4π
dl

m(−s)(θ)e
imϕ, (5.15)

2 The signature of the Weyl scalar is not universal. Some authors use the opposite signature, and
then it is compensated by an additional minus sign for the relation between Ψ4 and gravitational
waves.
3 The Gram-Schmidt orthogonalization is not performed in SACRA. It is justified because the
orthogonality is satisfied at the limit of the infinite radius, where the weak field limit is achieved.
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dl
ms(θ) =

min(l+m,l−s)∑
k=max(0,m−s)

(−1)k
√
(l + m)!(l − m)!(l + s)!(l − s)!

(l + m − k)!(l − s − k)!k!(k + s − m)!

× cos2l+m−s−2k
(
θ

2

)
sin2k+s−m

(
θ

2

)
, (5.16)

by projecting on a sphere with a constant coordinate radius. In this study, we extract
all the l ≤ 4 and −l ≤ m ≤ l modes. Notice that ±m modes contain the same
information in the equatorially symmetric spacetime.

5.1.2 The Fixed-Frequency Integration Method

Because the Weyl tensor is equivalent to the Riemann tensor in the vacuum, the
gravitational waveform is obtained by integrating Ψ4 twice in time as

h+(t)− ih×(t) =
∫ t ∫ t ′

Ψ4(t
′′)dt ′′dt ′, (5.17)

with appropriate choices of two integration constants. Here, gravitational-wave
components are defined using the deviation of the metric from the background, flat
metric hμv ≡ gμv − ημv by

h+ ≡ 1

2
(h
θ̂ θ̂

− hϕ̂ϕ̂), (5.18)

h× ≡ h
θ̂ ϕ̂

= h
ϕ̂θ̂
, (5.19)

in the orthonormal basis, and the relation in the traceless-transverse gauge and
weak-field limit,

Rtit j = −Rtir j = Rrir j = −1

2

∂2hij

∂t2 , (5.20)

is assumed. However, it is difficult to know appropriate values of the integration
constants. To make the matter worse, it is well known that a straightforward evaluation
of (5.17) usually introduces unphysical drift components, which may be ascribed
to the random noise in numerical simulations [14]. In our previous works [15],4

we perform the straightforward integration of Ψ4(t), and then subtract a quadratic
function of the form a2t2 + a1t + a0 to fix the integration constants and eliminate

4 We also performed this direct time integration in [16, 17], and present refined results computed
by the fixed-frequency integration method, with which the results changes only very slightly for
nonspinning BH–NS binaries.
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unphysical drift components in the waveform, using the least-square fitting to obtain
coefficients a0, a1, and a2.

In this study, we adopt a fixed-frequency integration method proposed in [14] to
obtain gravitational waveforms with less unphysical components. In this method, we
first perform a Fourier transformation of Ψ4 as

Ψ̃4(ω) =
∫
Ψ4(t)e

−iωt dt. (5.21)

Using this, (5.17) is rewritten as

h+(t)− ih×(t) = − 1

2π

∫
Ψ̃4(ω)

ω2 eiωt dω. (5.22)

We then replace 1/ω2 of the integrand with 1/ω2
0 for |ω| < ω0, whereω0 is a positive

free parameter in this method. Namely, the gravitational waveform is computed as

h+(t)− ih×(t) = − 1

2π

∫
Ψ̃4(ω)

max[ω2, ω2
0]

eiωt dω. (5.23)

By appropriately choosing ω0, this procedure works as a high-pass filter, and
suppresses only unphysical, low-frequency drift components of gravitational waves.
In the simulation of the binary merger, the lowest frequency of physical gravitational
waves is naturally determined by the initial orbital angular frequency of the binary,
Ω0. As proposed in [14], we choose ω0 to be ∼0.8 mΩ0 for m 	= 0 mode gravi-
tational waves, where m is the azimuthal quantum number. For the m = 0 mode
gravitational waves, we adopt ω0 ∼ 0.8Ω0 and confirm that our results depend only
very weakly on this choice.

We also adopt this method to calculate the energy �E and angular momentum
�J in the z direction radiated by gravitational waves. These quantities are computed
by integrating the emission rate, which is written in terms of the Weyl scalar as
[18, 19]

dE

dt
= lim

r→∞
r2

16π

∮
S

∣∣∣∣
∫
Ψ4dt

∣∣∣∣
2

dΩ, (5.24)

dJ

dt
= − lim

r→∞
r2

16π

∮
S

Re

[(∫
Ψ̄4dt

) (∫ ∫
∂ϕΨ4dtdt ′

)
dΩ

]
, (5.25)

where S is a coordinate sphere of the radius r and dΩ = sin θdθdϕ. Explicit
expressions for these quantities in terms of mode coefficients are given in the Appen-
dix B. Although these rates must be evaluated at infinity, we alternatively use values
computed at a finite coordinate radius. The error associated with the finite radius
effect is estimated to be less than ≈5 %, and the error associated with the finite grid
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resolution seems to be larger.5 We can also compute the kick velocity of the remnant
BH by integrating the emission rate of the linear momentum,

dPi

dt
= lim

r→∞
r2

16π

∮
S

si

∣∣∣∣
∫
Ψ4dt

∣∣∣∣
2

dΩ, (5.26)

but we do not investigate the kick velocity in detail, because the kick velocity
necessarily involves the mode couplings between different (l,m)modes, and numer-
ical errors are large. This is also the case for x and y components of the orbital angular
velocity.

5.1.3 The Taylor-T4 Formula

To prepare the gravitational-wave templates for the actual data analysis, it is most
important to accurately model the evolution of the gravitational-wave frequency [20].
In principle, the orbital evolution of a circular binary in the inspiral phase, at which
the PN, adiabatic approximation is valid, is computed by

dΩ

dt
= L

dE/dΩ
, (5.27)

where the orbital binding energy E(X) and the gravitational-wave luminosity L (X)
are given by polynomials of a (square root of a) nondimensional angular velocity
X (t) = [Ω(t)m0]2/3 as the PN parameter, with some logarithmic terms of X . There-
fore, numerical relativity waveforms should agree with those predicted by the PN
approximation solving this equation in the early inspiral phase. However, it is known
that the orbital evolution depends strongly on how this equation is actually solved
[21, 22]. To perform meaningful comparisons, it is necessary to choose carefully the
practical method to compute the orbital evolution.

For comparisons between numerically calculated gravitational waveforms and
those calculated in the PN approximation, we adopt the Taylor-T4 formula for two-
point masses in circular orbits [21, 23, 24], which shows remarkable coincidence
with numerical relativity results for the nonspinning BH binaries, with an additional
contribution from the BH spin angular momentum [25]. In this formula, the time
evolution of the orbital angular velocity Ω(t) and orbital phase Φ(t) are computed
using X by expanding L /(dE/dX) into a single polynomial,

5 To reduce systematic errors associated with this issue, extrapolation ofΨ4(r) should be performed
assuming some functional form, e.g., Ψ4(r) = Ψ4(r → ∞)+ ∑

n>1 Ψ4,nr−n .
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and the orbital phase are computed by integrating the orbital frequency,

dΦ

dt
= X3/2

m0
, (5.29)

where v = Q/(1 + Q)2, χ ≡ aQ/(1 + Q), and γE ≈ 0.5772 is the Euler constant.
After X (t) and Φ(t) are obtained, we calculate the complex gravitational-wave
amplitude h22 of the (l,m) = (2, 2) mode and the spectrum6 up to the 3PN order
using the formula shown in [25, 26]. Here, h22 is

h22 = − 8

√
π

5

vm0

D
e−2iΦX

[
1 −

(
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42
− 55

42
v
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v − 2047
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v2
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{(
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v
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π + 24iv

}
X5/2

6 It is noted that the spectrum at high frequency for the Taylor-T4 formula depends on the loca-
tion where time-domain gravitational waves are truncated. It does not affect the fitting procedure
described in Chaps. 6 and 7 as far as we truncate the waveform before X and the amplitude become
too large.

http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_7
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, (5.30)

where D is the distance between the center of mass of the binary and an observer.
Another way for deriving an approximate waveform is to employ an effective

one-body (EOB) approach. In the EOB approach, the PN dynamics of two-point
masses are mapped onto the geodesic motion of a point particle in a Schwarzschild-
like spacetime by comparing the Hamiltonian (see [27] and references therein for
reviews). By a suitable resummation technique (the Padé approximation) with cali-
brating free parameters using numerical-relativity results for the binary BH merger,
the dynamics of a binary is tracked in a nonadiabatic manner beyond the ISCO,
where the traditional PN approximation completely breaks down. The inspiral-plunge
waveform obtained by the EOB approach is matched to the merger-ringdown wave-
form obtained by the BH perturbation technique (see [28] and references therein for
reviews) using values of the mass and spin of the remnant BH obtained by numerical-
relativity simulations. In [29], comparisons between numerical waveforms computed
in this study and those of the EOB approach are extensively performed.

5.2 Quantities of Merger Remnants

In this study, the material outside the AH is identified with the remnant disk after
the merger, and the quantities computed on the AH approximately represent the
properties of the BH, which should be defined through the event horizon in principle.
The location of the AH is always computed numerically during the simulation by
solving Θ(l) = 0 adopting the method described in the Appendix of [30].

5.2.1 Quantities of the Remnant Disk

To estimate the mass of the remnant disk, we calculate the total rest mass outside
the AH

Mr>rAH ≡
∫

r>rAH

ρ∗d3x, (5.31)

where rAH = rAH(θ, ϕ) is the radius of the AH as a function of the angular
coordinates. We possibly underestimated disk masses because some of the material
escapes from our computational domains and we cannot follow their return which
would occur if they are bounded. We also evaluate the total angular momentum of
the material located outside the AH, Jr>rAH , which is approximately defined by
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Jr>rAH ≡
∫

r>rAH

ρ∗ûϕd3x, (5.32)

where

ûϕ = xûy − yûx . (5.33)

5.2.2 Quantities of the Remnant Black Hole

We determine key quantities of the remnant BH, i.e., the mass MBH,f and nondimen-
sional spin parameter af , from the circumferential radius of the AH, assuming that
the deviation from the Kerr spacetime is negligible in the vicinity of a BH horizon.
We estimate the remnant BH mass, MBH,f , from the circumferential radius of the
AH along the equatorial plane Ce divided by 4π , i.e., Ce/4π , which gives the BH
mass in the stationary vacuum BH spacetime. Similarly, the nondimensional spin
parameter of the remnant BH, af , is estimated from the ratio of the circumferential
radius of the AH along the meridional plane Cp to Ce using the relation [31]

Cp

Ce
=

√
2r̂+
π

E

(
a2

f

2r̂+

)
. (5.34)

This also holds for the stationary vacuum BH with the nondimensional spin parameter
af , and estimating the BH spin by Cp/Ce is sometimes called the great circle method.

Here, r̂+ = 1+
√

1 − a2
f is a normalized radius of the horizon, and E(z) is an elliptic

integral

E(z) =
∫ π/2

0

√
1 − z sin2 θdθ. (5.35)

For comparison, the nondimensional spin parameter of the remnant BH is also
estimated from Ce and the irreducible mass of the remnant BH, Mirr,f , using the
relation

Mirr,f = Ce

4
√

2π

√
1 +

√
1 − af

2, (5.36)

which holds for the stationary vacuum BH. The spin parameter obtained using this
relation is referred to as af2 according to [15]. Finally, we also estimate af from the
values of the remnant BH computed using approximate conservation laws
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MBH,c ≡ M0 − Mr>rAH −�E, (5.37)

JBH,c ≡ J0 − Jr>rAH −�J. (5.38)

Here, we assume that the orbital angular momentum of the BH is negligible. The
nondimensional spin parameter of the remnant BH is defined by af1 ≡ JBH,c/M2

BH,c.
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Chapter 6
The Merger of Nonspinning Black
Hole–Neutron Star Binaries

We first study the nonspinning BH–NS binary merger to focus on the effect of the
NS EOS, apart from the effect of the BH spin. The previous works by three groups
[1–3] have found that the NSs in BH–NS binaries with high mass ratio Q � 4 are
barely subject to tidal disruption if the companion BH is not spinning. At the merger,
the BH swallows most of the NS matter at one moment and the remnant disk mass
is quite small or nearly equal to zero. Namely, the NS behaves approximately as a
point particle even at the ISCO. Gravitational waves emitted in such a case have a
similar waveform to that from a BH–BH binary. Because the behavior of NSs with
high-mass BH companions does not show remarkable dependence on the EOS, they
are unsuitable for the purpose of this chapter, i.e., to investigate the effect of the EOS
on gravitational waves and final outcomes. Thus, we focus only on low mass-ratio
binaries with Q = 2 and 3 in this chapter. Also, we choose relatively low-mass NSs,
because two-piece EOSs adopted in this thesis may not be appropriate for modeling
a high-mass NS with high central density, due to the lack of model parameters in the
high-density region.

6.1 Models and Setup of AMR Grids

Table 6.1 summarizes key quantities for the initial models employed in the present
numerical simulation. The labels for the models denote the name of the EOS, the
mass ratio, and the NS mass; e.g., 2H-Q2M135 is modeled by 2H EOS, and its mass
ratio and the NS mass are 2 and 1.35M�, respectively. The primary purpose of this
chapter is to study the dependence of gravitational waveforms and the final outcome
on (i) the EOS of NSs, (ii) the mass ratio, and (iii) the NS mass. These purposes are
reflected in our choice of the initial models.

We prepare quasiequilibrium states basically with the same value of Ω0m0 for
the same value of Q irrespective of the EOS. The value of Ω0m0 is chosen to be
small enough that the binaries spend more than 5 inspiral orbits before the onset of

K. Kyutoku, The Black Hole–Neutron Star Binary Merger in Full General Relativity, 93
Springer Theses, DOI: 10.1007/978-4-431-54201-8_6, © Springer Japan 2013
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Table 6.1 Key parameters and quantities for the initial conditions adopted in the numerical simu-
lations

Model GΩ0m0/c3 M∗[M�] C ρmax(1014 g cm−3) M0[M�] J0[G M2�/c]
2H-Q2M135 0.0250 1.455 0.1309 3.740 4.015 14.39
H-Q2M135 0.0280 1.484 0.1624 7.018 4.013 14.02
HB-Q2M135 0.0280 1.493 0.1718 8.262 4.013 14.02
HBs-Q2M135 0.0280 1.489 0.1723 9.154 4.013 14.02
HBss-Q2M135 0.0280 1.485 0.1741 1.082 4.013 14.02
B-Q2M135 0.0280 1.503 0.1819 9.761 4.013 14.02
Bs-Q2M135 0.0280 1.501 0.1856 1.137 4.013 14.02
Bss-Q2M135 0.0280 1.501 0.1940 1.490 4.013 14.02
2H-Q3M135 0.0280 1.455 0.1309 3.737 5.359 21.05
H-Q3M135 0.0300 1.484 0.1624 7.011 5.358 20.74
HB-Q3M135 0.0300 1.493 0.1718 8.254 5.358 20.74
B-Q3M135 0.0300 1.503 0.1819 9.751 5.357 20.74
2H-Q2M12 0.0220 1.282 0.1172 3.466 3.571 11.71
H-Q2M12 0.0280 1.303 0.1447 6.421 3.567 11.08
HB-Q2M12 0.0280 1.310 0.1527 7.522 3.567 11.08
B-Q2M12 0.0280 1.317 0.1614 8.832 3.567 11.08
HB-Q3M12 0.0280 1.310 0.1527 7.517 4.763 1.663
B-Q3M12 0.0280 1.317 0.1614 8.826 4.763 1.663

The initial angular velocity (Ω0) in units of c3/Gm0, baryon rest mass (M∗), compactness of
the NS in isolation (C ), maximum rest-mass density (ρmax), ADM mass of the system (M0), and
total angular momentum of the system (J0), respectively. The labels for the models denote the
name of the EOS, the mass ratio (Q), and the NS mass (MNS), where M135 (M12) stands for
MNS = 1.35M�(1.2M�)

the merger. For Q = 2 binaries, a smaller value of initial angular velocity is required
only for 2H EOS, because the NS with this EOS has a much larger radius than with
other EOSs and is sensitive to the BH tidal force even for a larger orbital separation;
to track �5 inspiral orbits before the tidal disruption, we have to choose the value
of Ω0m0 by ∼10 % as small as that for other EOSs. For the case of Q = 3, we also
choose smaller values of Ω0m0 for MNS = 1.2M� cases.

Table 6.2 summarizes the parameters of the grid structure for the simulations
in this chapter. In all the simulations, we choose (lc, lf) = (4, 4), and the value
of L is chosen to be larger than the gravitational wavelengths at an initial instant
λ0 ≡ π/Ω0. Because the gravitational wavelength decreases during the evolution
of the binaries, the outer boundary of the computational domains is guaranteed to
be located in the wave zone throughout the simulation. In this chapter, we typically
choose N = 50, with the exception that N = 54 for model Bss-Q2M135, in which
the NS is quite compact and needs to be resolved with a better grid resolution. Each
of the two finest domains covers the semimajor axis of the NS with 42–48 grid
points and the BH radius (the coordinate radius of the AH) with typically ≈10 Q grid
points, respectively. For several models arbitrarily chosen, we performed numerical
simulations with lower grid resolutions, N = 36 and 42, to check the convergence of
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Table 6.2 Setup of the grid structure for the computation with our AMR algorithm

Model �x/M0 Rdiam/�x L/λ0

2H-Q2M135 0.0471 90.8 2.377
H-Q2M135 0.0377 86.2 2.130
HB-Q2M135 0.0347 87.0 1.963
HBs-Q2M135 0.0353 85.2 1.996
HBss-Q2M135 0.0353 84.0 1.996
B-Q2M135 0.0330 85.1 1.863
Bs-Q2M135 0.0324 84.4 1.830
Bss-Q2M135 0.0270 95.4 1.650
2H-Q3M135 0.0353 89.0 1.996
H-Q3M135 0.0282 84.7 1.711
HB-Q3M135 0.0269 82.7 1.631
B-Q3M135 0.0247 83.8 1.497
2H-Q2M12 0.0565 86.9 2.510
H-Q2M12 0.0453 83.1 2.563
HB-Q2M12 0.0420 83.6 2.377
B-Q2M12 0.0392 83.4 2.218
HB-Q3M12 0.0306 84.6 1.713
B-Q3M12 0.0278 86.9 1.572

�x = h7 = L/(27 N ) is the grid spacing at the finest-resolution domain with L being the location of
the outer boundaries for each axis. Rdiam/�x denotes the grid number assigned inside the semimajor
diameter of the NS. λ0 is the gravitational wavelength of the initial configuration. In all the models,
both lc and lf are set to be 4

the numerical results (see the Appendix of [4, 5]). For N = 54 run, the total memory
required for the simulations is about 11.6 Gbytes. We perform numerical simulations
with personal computers of 12 Gbytes memory and of core-i7X processors with clock
speed 3.2 or 3.33 GHz. We use 2–6 processors to perform one job with an OPEN-MP
library. Typical computational time required to perform one simulation (for ∼40 ms
in physical time of coalescence) is 4 weeks for 6 processor case.

6.2 Orbital Evolution and General Merger Process

To obtain a realistic numerical result for gravitational waveforms and the final
outcome formed after the merger, it is necessary to exclude spurious effects associ-
ated with a noncircularity in the orbital motion as much as possible. To assess the
circularity of the orbital motion, we plot the evolution of the coordinate separation
xi

sep = xi
NS − xi

BH for model HB-Q2M135 in Fig. 6.1. Here, the position of the maxi-

mum rest-mass density is identified as the coordinate of the NS, xi
NS, and the location

of the puncture, xi
P, is the coordinate of the BH, xi

BH. This figure suggests that the
orbital eccentricity appears to be low throughout the whole evolution. Because �5
orbits are tracked, the eccentricity, which is likely to be nonzero initially, should
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Fig. 6.1 Evolution of the
coordinate separation of the
binary xi

sep for model HB-
Q2M135
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be suppressed by gravitational radiation reaction. We note that for all the models,
similar trajectories are found.

The coordinate separation shown above is a gauge-dependent quantity. To show
a stronger evidence that the eccentricity is suppressed to a small level, it is better
to plot a gauge-independent quantity. Figure 6.2 plots the evolution of the orbital
angular velocity defined from the (l,m) = (2, 2) mode of Ψ4 by

Ω(t) = 1

2

|Ψ4(l = m = 2)|
| ∫ Ψ4(l = m = 2)dt | , (6.1)

for models 2H-Q2M135, H-Q2M135, HB-Q2M135, and B-Q2M135. Here, the hor-
izontal axis is chosen to be an approximate retarded time defined by

tret = t − D − 2M0ln(D/M0). (6.2)

Fig. 6.2 Time evolution of
the orbital angular velocity
Ω(t)m0 for models 2H-
Q2M135, H-Q2M135, HB-
Q2M135, and B-Q2M135
as a function of a retarded
time defined by (6.2) with
an appropriate time shift.
The dotted curve denotes
the evolution of the orbital
angular velocity calculated by
the Taylor-T4 formula
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We here do not plot the curve after the onset of tidal disruption. For comparison,
the angular velocity derived from the Taylor-T4 formula is also plotted. To align the
curve in the inspiral phase for Ω(t)m0 ≤ 0.05, we appropriately shift the time for
each model. For tret � 0 ms, an unphysical (a junk wave) component contained in
the initial data dominates the waveform, and hence, Ω(t) derived from (6.1) does
not give the angular velocity.

Figure 6.2 shows that the angular velocity obtained in numerical simulations
agrees with that by the Taylor-T4 formula within a small modulation of �Ω/
Ω � 5 % irrespective of the models. With the fact that the orbital eccentricity is
approximately estimated as e ≈ �Ω/2Ω for e � 1, we conclude that the orbital
eccentricity is suppressed within ∼3 %. Figure 6.2 also shows that the deviation from
the Taylor-T4 result becomes remarkable in an earlier time for models with stiffer
EOSs such as 2H and H EOSs. This is due to the fact that the tidal elongation and
disruption of the NS occur at slightly earlier stages of the inspiral orbits for mod-
els with the stiffer EOSs. This illustrates the fact that the stiffness of the EOS is
reflected clearly in the gravitational-wave frequency (and gravitational-wave phase)
as a function of time.

Figures 6.3 and 6.4 plot the snapshots of the rest-mass density profiles and the
location of the AH on the equatorial plane at selected time slices for models 2H-
Q2M12 and B-Q3M135. Figure 6.3 illustrates the process in which the NS is tidally
disrupted to form a disk surrounding the companion BH. In this case, the NS is
disrupted far outside the ISCO and then forms a one-armed spiral arm with large
angular momentum. As a consequence of the angular momentum transport in the
arm, a large amount of materials spread outward and then form a disk around the BH.
We will report more details about the remnant disk in Sect. 6.5. Figure 6.4 illustrates
the case in which the NS is not tidally disrupted before it is swallowed by the BH.
In this case, the mass of the disk formed after the onset of the merger is negligibly
small.

6.3 Gravitational Waveforms

Figures 6.5–6.8 plot the (l,m) = (2, 2), plus-mode gravitational waveforms obtained
numerically (hereafter referred to as h+). All the waveforms are shown for an observer
located along the z axis (axis perpendicular to the orbital plane) and plotted as a
function of a retarded time tret . We plot the amplitude in a normalized form, Dh+/m0,
and the physical amplitude observed by an observer located at a hypothetical distance
D = 100 Mpc.

To validate the numerical waveforms, we compare them with the Taylor-T4
waveform, which is accurate up to 3.5PN order in phase and 3PN order in ampli-
tude, with an appropriate time shift; the time shift is carried out to align the curve
of Ω(t) as performed in Sect. 6.2. Figures 6.5–6.8 show that these two waveforms
agree with each other irrespective of models during the inspiral phase, except for
2–3 initial cycles. The reasons for this initial disagreement are that an approaching
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Fig. 6.3 Evolution of the rest-mass density profile in units of g cm−3 and the location of the AH on
the equatorial plane for model 2H-Q2M135. The filled circles denote the regions inside the AHs.
The color panels on the right-hand side of each figure show log10(ρ)

velocity associated with gravitational radiation reaction is not taken into account in
the initial data and also the initial condition does not exactly model a quasicircular
state, because we do not fully solve the Einstein equation for deriving it.

The numerical waveforms in the merger phase also (but due to a physical reason)
deviate from the Taylor-T4 ones both in phase and amplitude, in particular for models
with stiff EOSs, e.g., 2H-Q2M135 and 2H-Q2M12. For such models, ringdown
waveforms associated with the BH quasinormal mode are not seen in the merger and
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Fig. 6.4 The same as Fig. 6.3 but for model B-Q3M135

ringdown phases, and instead, the gravitational-wave amplitude damps suddenly in
the middle of the inspiral phase. The reason for this quick damping is that the NS is
tidally disrupted by the companion BH at an orbit in the inspiral phase within one
orbital period, and then, the disrupted material forms a relatively low-density and
nearly axisymmetric matter distribution around the BH, suppressing time variation
of a mass quadrupole moment. Because the gravitational-wave emission stops in
the middle of the inspiral motion, the maximum amplitude of gravitational waves
is smaller for such a binary than for a binary with no tidal disruption, as shown
in Figs. 6.5 and 6.6. All these facts illustrate that the finite size effect of the NS
significantly modifies gravitational waves derived in the point-particle approximation
(in the Taylor-T4 formula). On the other hand, ringdown gravitational waves are
clearly seen for models with soft EOSs (for which tidal disruption does not occur)
such as model B-Q3M135, in which the numerical and the Taylor-T4 waveforms are
in more excellent agreement even in the late inspiral phase.

Table 6.3 presents total radiated energy �E and angular momentum �J carried
away by gravitational waves. The contribution from all the l = 2–4 modes is taken
into account for �E and �J . We estimate systematic errors in the presented values
to be less than 10 %, which are associated mainly with the finite grid resolution
and partly with the finite extraction radii (cf. the Appendix of [4, 5]). We note that
the (l, |m|) = (2, 2) modes always contribute by �90 % to both for �E and �J .
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Fig. 6.5 (l,m) = (2, 2), plus-mode gravitational waveforms for models 2H-Q2M135, H-Q2M135,
HB-Q2M135, and HBs-Q2M135. All the waveforms are shown for an observer located along the z
axis (axis perpendicular to the orbital plane) and plotted as a function of a retarded time. For model
2H-Q2M135, the waveform is plotted as a function of tret − 5 ms to align it with other waveforms
(note that the initial value of Ω only for this model is smaller than those for other models). The
left axis denotes the amplitude normalized by the distance from the binary D and the total mass
m0. The right axis denotes the physical amplitude of gravitational waves observed at a hypothetical
distance 100 Mpc. The dotted curves denote the waveform calculated by the Taylor-T4 formula

The fraction of these modes is larger for binaries composed of less-compact NSs,
because only binaries which escape the tidal disruption in the late inspiral phase
can efficiently emit higher l-mode gravitational waves. Among other modes, (3, 3)
and (4, 4) modes constitute most of the remaining part of �J , whereas the order of
magnitude of the (2, 1) mode is as large as that of the (4, 4) mode for �E .

The numerical results shown in Table 6.3 illustrate a quantitative dependence of
gravitational-wave emission on the compactness of the NS: For a given mass ratio,
gravitational-wave emission continues for a longer duration and consequently total
radiated energy and angular momentum are larger for binaries composed of more
compact NSs. Comparison among the models with Q = 2 and MNS = 1.35M�
and with the same initial value of Ωm0 shows that both �E/M0 and �J/J0 are
monotonically increasing functions of the NS compactness C . This point is also
recognized from Figs. 6.5–6.8, e.g., from the comparison among gravitational waves
for models H-Q2M135, HB-Q2M135, and B-Q2M135 (note that for model 2H-
Q2M135 the simulation is started from a lower value of Ωm0 and it is not suitable
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Fig. 6.6 The same as Fig. 6.5 but for models HBss-Q2M135, B-Q2M135, Bs-Q2M135, and Bss-
Q2M135 is plotted as a function of tret − 9 ms

for this comparison). Table 6.3 also shows that�J/�E decreases as the EOS softens.
This is due to the fact that�J/�E ≈ m/Ω for a given angular harmonic of m, and
for a soft EOS, more radiation is emitted at large angular velocity, Ω .

6.4 Gravitational-Wave Spectra

Characteristic features of a gravitational waveform, such as characteristic frequen-
cies and their dependence on the EOS, are well reflected in the Fourier spectrum.
Figures 6.9–6.11 display gravitational-wave spectra for all the models with the
mass ratio Q = 2 and the models with the mass ratio Q = 3 and the NS mass
MNS = 1.35M�. We define the Fourier spectrum as a sum of each Fourier compo-
nent of two independent polarizations of the (l,m) = (2, 2) mode as

h̃( f ) =
√

|h̃+( f )|2 + |h̃×( f )|2
2

, (6.3)

h̃ A( f ) =
∫

e2π i f t h A(t)dt, (6.4)
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Fig. 6.7 The same as Fig. 6.5 but for models 2H-Q3M135, H-Q3M135, HB-Q3M135, and
B-Q3M135

where A denotes two polarization modes, + or ×. In calculating h̃( f ) from a numer-
ically obtained Weyl scalar, Ψ4, we always omit the unphysical radiation component
extracted at tret � 0 ms using a step function of retarded time as the window function
so that the spurious radiation component does not introduce unphysical oscillations
in the gravitational-wave spectrum. The spectrum amplitude for a low-frequency
region of f ≈ Ω(tret = 0)/π changes slightly if we include the spurious radiation
component. However, we believe that our use of the window function is physically
reasonable. We always show the spectrum based on gravitational waves observed
along the z axis (axis perpendicular to the orbital plane), which is the most optimistic
direction for the gravitational-wave detection. (To obtain an averaged amplitude, we
only need to multiply a factor of 0.4; e.g., see [8].) Because the Fourier components
of any dimensionless quantity have the dimension of time, we define a dimension-
less effective amplitude f h̃( f ). In the figure, we plot this quantity observed at a
hypothetical distance 100 Mpc as a function of f (Hz) or a normalized amplitude
f h̃( f )D/m0 as a function of dimensionless frequency f m0.

Figure 6.9 plots gravitational-wave spectra for Q = 2 and MNS = 1.35M� with
all the EOSs employed in this chapter. For all these models, the total mass is uni-
versally m0 = 4.05M�, and thus, a nondimensional quantity, f m0(= G f m0/c3),
is plotted at the bottom and f in units of Hz is plotted at the top. Also, a normalized
amplitude, f h̃( f )D/m0, is plotted at the left side and f h̃( f ) observed at a distance
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Fig. 6.8 The same as Fig. 6.5 but for models 2H-Q2M12, H-Q2M12, HB-Q2M12, and B-Q2M12.
Again, the waveform for model 2H-Q2M12 is plotted as a function of tret − 9 ms

of 100 Mpc from the binary is at the right side. For comparison, we also plot the
spectra derived from the quadrupole formula (e.g., [9]) and the Taylor-T4 formula
(dashed curves).

General qualitative features of the gravitational-wave spectrum by BH–NS bina-
ries are summarized as follows. In the early stage of the inspiral phase, during which
the orbital frequency is �1 kHz and the PN point-particle approximation works
well, the gravitational-wave spectrum is approximately reproduced by the Taylor-T4

formula. For this phase, the spectrum amplitude of f h̃( f ) decreases as f −ni where
ni = 1/6 for f � 1 kHz and the value of ni increases with f for f � 1 kHz. As
the orbital separation decreases, both the nonlinear effect of general relativity and
the finite size effect of the NS come into play, and as a result, the PN point-particle
approximation breaks down. If the tidal disruption sets in for a relatively large sepa-
ration (e.g. for 2H EOS), the amplitude of the gravitational-wave spectra damps for
a low frequency in the middle of the inspiral phase (before the ISCO is reached).
By contrast, if the tidal disruption does not occur or occurs at a close orbit near the
ISCO, the spectrum amplitude for a high frequency region ( f � 1 kHz) is larger
than that predicted by the Taylor-T4 formula (i.e., the value of ni decreases). In this
case, an inspiral-like motion continues even inside the ISCO for a dynamical time
scale and gravitational waves with a high amplitude are emitted. As a result, f h̃( f )



104 6 The Merger of Nonspinning Black Hole–Neutron Star Binaries

Table 6.3 Total radiated energy �E and angular momentum �J carried away by gravitational
waves

Model �E/M0(%) �J/J0(%) (�J/J0)/(�E/M0)

2H-Q2M135 0.55 14 26
H-Q2M135 1.1 20 18
HB-Q2M135 1.4 22 16
HBs-Q2M135 1.4 22 16
HBss-Q2M135 1.5 23 15
B-Q2M135 1.7 24 14
Bs-Q2M135 1.8 25 14
Bss-Q2M135 2.2 27 12
2H-Q3M135 0.65 16 25
H-Q3M135 1.4 22 16
HB-Q3M135 1.6 23 15
B-Q3M135 1.7 24 14
2H-Q2M12 0.40 12 30
H-Q2M12 0.73 16 22
HB-Q2M12 0.89 18 20
B-Q2M12 1.1 20 18
HB-Q3M12 1.2 21 18
B-Q3M12 1.4 23 17

�E and �J are normalized with respect to the initial ADM mass M0 and angular momentum J0,
respectively. We also show the ratio between �J and �E

becomes a slowly varying function of f for 1 kHz � f � fcut, where fcut ∼ 2–3
kHz is the so-called cutoff frequency which depends on the binary parameters as
well as the EOS of the NSs. (A more strict definition of fcut will be given below.)
A steep damping of the spectra for f � fcut is universally observed, and for softer
EOSs with a smaller radius of NSs, the frequency of fcut is higher. This cutoff fre-
quency is determined by the frequency of gravitational waves emitted when the NS
is tidally disrupted for the stiff EOSs or by the frequency of a quasinormal mode of
the formed BH for the soft EOSs. Therefore, the cutoff frequency provides potential
information for the EOS through the tidal-disruption event of the NSs, in particular
for the stiff EOSs.

Hereafter, we pay special attention to the cutoff frequency determined by the tidal
disruption. It is natural to expect that the NS compactness C primarily determines
the cutoff frequency in the combination, fcutm0, because the orbital angular velocity
at the onset of mass shedding, Rshed, is written as a function of Q and C as [10, 11]

Ωm0 ∝ C 3/2(1 + Q)3/2√
Q

. (6.5)

In fact, a qualitative correlation between C and fcutm0 was found in [1]. To reconfirm

this, we first plot gravitational-wave spectra f h̃( f )D/m0 as a function of f m0] for
Q = 2 with the different NS mass MNS = 1.35M� and 1.2M� in Fig. 6.10. This
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Fig. 6.9 Spectra of gravitational waves from BH-NS binaries for Q = 2 and MNS = 1.35M�
with all the EOSs chosen in this chapter. The bottom axis denotes the normalized dimensionless
frequency f m0(= G f m0/c3) and the left axis the normalized amplitude f h̃( f )D/m0. The top axis
denotes the physical frequency f in Hz and the right axis the effective amplitude f h̃( f ) observed at
a distance of 100 Mpc from the binaries. The short-dashed slope line plotted in the upper left region
denotes a planned noise curve of the Advanced-LIGO [6] optimized for 1.4M� NS–NS inspiral
detection (“Standard”), the long-dashed slope line denotes a noise curve optimized for the burst
detection (“Broadband”), and the dot-dashed slope line plotted in the lower right region denotes
a planned noise curve of the Einstein Telescope (“ET”) [7]. The upper transverse dashed line is
the spectrum derived by the quadrupole formula and the lower one is the spectrum derived by the
Taylor-T4 formula, respectively

Fig. 6.10 The same as Fig. 6.9
but for Q = 2 and for MNS =
1.35M� and 1.2M�. Only
the normalized amplitude
f h̃( f )D/m0 as a function of
the dimensionless frequency
f m0 is shown
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indeed shows fcutm0 increases monotonically with C irrespective of the NS mass
for the given mass ratio.

Figure 6.11 shows the gravitational-wave spectrum for MNS = 1.35M� and for
Q = 2 and 3. The top panel plots f h̃( f )D/m0 as a function of f m0 and the bottom
panel f h̃( f ) as a function of f for D = 100 Mpc. This shows that dependence of
fcutm0 on C for Q = 3 is weaker than for Q = 2. The reason for this is that the tidal
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Fig. 6.11 The same as Fig. 6.9 but for MNS = 1.35M� and for Q = 2 and 3. The top panel
shows the normalized amplitude f h̃( f )D/m0 as a function of the dimensionless frequency f m0.
The bottom panel shows the spectra observed at a distance of 100 Mpc. The spectra derived from
the quadrupole formula and the Taylor-T4 formula are plotted by the short-dashed (Q = 2) and
long-dashed lines (Q = 3)

effect is weaker for Q = 3, as discussed in Sect. 6.5. (As later shown in Fig. 6.12,
fcut for models H-Q3M135, HB-Q3M135, and B-Q3M135 are not determined by the
orbital frequency at tidal disruption but by the quasinormal-mode frequency of the
remnant BH, which sets an approximate upper limit on the frequency of gravitational
waves emitted in the merger.) Hence, the information of the EOS is not encoded in
gravitational waves for Q = 3 as strongly as for Q = 2. The bottom panel shows
that fcut is between ∼1 and 3 kHz depending weakly on the value of Q.

To analyze the cutoff frequency quantitatively and to strictly study its dependence
on EOSs, we perform a systematic fitting procedure. As is done in [1], we fit all the
spectra by a function with seven free parameters

h̃fit( f ) = h̃3PN( f )e−( f/ fins)
σins + Am0

D f
e−( f/ fcut)

σcut [1 − e−( f/ fins2)
σins2 ], (6.6)
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Fig. 6.12 fcutm0 as a function
of C in logarithmic scales.
The solid line is obtained by
a linear fitting of the data for
Q = 2 and Γ2 = 3. The short-
dashed and long-dashed lines
show approximate frequencies
of quasinormal mode of the
remnant BH for Q = 2 and
Q = 3, respectively
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where h̃3PN( f ) is the Fourier spectrum calculated by the Taylor-T4 formula and fins,
fins2, fcut, σins, σins2, σcut, and A are free parameters. The first and second terms of
(6.6) denote the spectrum models for the inspiral and merger phases, respectively.
We determine these free parameters by searching the minimum for a weighted norm
defined by ∑

i

{
[ fi h̃( fi )− fi h̃fit( fi )] f 1/3

i

}2
, (6.7)

where i denotes the data point for the spectrum. In [1], σins = 3.5 and σins2 = 5 are
fixed to save the computational costs. Here, these are chosen to be free parameters
to reproduce a more consistent spectrum with the original one.

Among these seven free parameters, we focus on fcut because it depends most
strongly on the compactness C and the EOS of the NS. Figure 6.12 plots fcutm0,
obtained in this fitting procedure, as a function of C . Also the typical quasinormal-
mode frequencies, fQNM, of the remnant BH calculated in Sect. 6.5 are plotted by the
two horizontal lines, which show that the values of fcutm0 for models H-Q3M135,
HB-Q3M135, and B-Q3M135 agree approximately with fQNM and indicates that fcut
for these models are irrelevant to the tidal disruption. For Q = 3, fcutm0 depends
clearly on the EOS only for C � 0.16. This agrees with the result with Γ = 2
polytropic EOS [1]. By contrast, fcutm0 for Q = 2 depends strongly on the NS
compactness C irrespective of MNS not only for the piecewise polytropic EOS but
also for Γ = 2 polytrope [1]. The solid line in Fig. 6.12 is the linear fitting of
ln( fcutm0) as a function of ln(C ) for Q = 2 and for the piecewise polytrope with
Γ2 = 3, and denoted by a well-approximated relation

ln( fcutm0) = (3.87 ± 0.12) ln C + (4.03 ± 0.22). (6.8)
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Thus, fcutm0 is approximately proportional to C 3.9 (for Q = 3 and Γ2 = 3, fcutm0
also appears to be proportional to C 4, although the number of data points is small
and thus this is not conclusive). This is a note-worthy point because the power of C
is much larger than 1.5, which is expected from the relation for the mass-shedding
limit, (6.5). Qualitatively, this increase in the power is natural because the duration
of a NS for the survival against tidal disruption after the onset of mass shedding
is in general longer for a more compact NS due to a stronger central condensation
of the mass. Equation 6.8 implies that the ratio fcut/ fshed (>1), where fshed is the
frequency of gravitational waves at the onset of mass shedding, is larger for the
larger values of C . This is the preferable feature, for an observer of gravitational
waves from BH–NS binaries who tries to constrain the EOS of the NSs, because the
dependence of fcutm0 on the EOS is enhanced.

Comparison of the values of fcutm0 for models HB-Q2M135 (Γ2 = 3.0 and
C = 0.1718), HBs-Q2M135 (Γ2 = 2.7 and C = 0.1723), and HBss-Q2M135
(Γ2 = 2.4 and C = 0.1741), for which the value of C is approximately identical,
shows that fcutm0 depends also on the adiabatic index of EOS in the central region,
Γ2. The reason for this is that the NSs with smaller values of Γ2 (but with the same
value of C ) have more centrally condensed density profile as can be seen from the
value of ρmax in Table 6.1, and hence, are less subject to tidal disruption ( fcutm0
becomes larger). Quantitatively, the value of fcutm0 increases by ∼20 %, when the
value of Γ2 is varied from 3 to 2.4. This result suggests that it may be possible to
constrain not only the compactness of a NS but also its density profile, e.g., the
tidal deformability of the NS [12], and detailed function of P(ρ) for the EOS, if
gravitational waves emitted during the merger of low-mass BH–NS binaries are
detected.

6.5 Properties of the Disk

If a NS is tidally disrupted before it is swallowed by the companion BH, a disk may
be formed around the BH. Figure 6.13 plots the time evolution of the rest mass of
the material located outside the AH Mr>rAH defined by (5.31). This shows that most
of the material is swallowed by the BH soon after the onset of the merger (or tidal
disruption) within ∼1 ms, but 1–10 % of total rest mass survives around the BH to be
a disk, if the tidal disruption occurs (see Table 6.4 which lists the numerical results
of Mr>rAH at t − tmerger ≈ 10 ms for all the models).

To clarify that the disk will survive for a time duration longer than the dynamical
time scale of the system, we estimate an accretion time scale. Figure 6.13 shows that
for t−tmerger � 5 ms, Mr>rAH for each model behaves approximately as Cexp(−t/td)
where C is a constant and td is the accretion time scale which we determine by a least-
square fitting of Mr>rAH(t) at t−tmerger ≈ 10 ms. The fourth column of Table 6.4 lists
the numerical results. It is found that the accretion time scale is always longer than

http://dx.doi.org/10.1007/978-4-431-54201-8_5
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Fig. 6.13 Evolution of the rest mass of the material located outside the AH, Mr>rAH , with an
appropriate time shift; in these plots, the time at the onset of the merger is taken as the time origin.
The top-left panel shows the results for models with Q = 2 and MNS = 1.35M� for all the
EOSs employed in this chapter. The top-right panel shows the results for selected models with
MNS = 1.35M� but with different values of Q. The bottom-left panel shows the results for selected
models with Q = 2 but with the different NS mass MNS. The bottom-right panel is the same as the
bottom-left panel except for the normalization of the mass, with respect to the initial rest mass M∗

the dynamical time scale of the remnant disk ∼10 ms, and hence, we conclude that
the BH–NS merger always forms a long-lived accretion disk, if the disk is formed.1

Figure 6.14 plots the values of Mr>rAH estimated at t − tmerger ≈ 10 ms as a
function of the NS compactness C and clarifies the dependence of the disk mass on
the EOS. This figure summarizes the key features as follows: (i) for a given mass ratio
and for a given adiabatic index of the core,Γ2, the disk mass decreases monotonically
with the increase of C for Mr>rAH � 0.1M�; (ii) for a given mass ratio and for a
given NS compactness, the disk mass increases slightly with the increase of Γ2; and
(iii) the disk mass is highly sensitive to the mass ratio of the binary, Q, for a given
mass and EOS of the NS. In the following, we observe these features from Fig. 6.13
in detail.

The top left panel of Fig. 6.13 plots the disk-mass evolution for binaries with
Q = 2, MNS = 1.35M� and for all the EOSs employed in this chapter. For this
sample, C ∝ R−1

NS since MNS is identical, and we find that the disk mass increases

1 Note that in the presence of magnetic fields, angular momentum transport by them works efficiently,
and thus, the accretion time scale may be shorter than that presented here in reality.
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Table 6.4 Several key quantities for the merger remnants

Model Mr>rAH [M�] td (ms) Ce/4πM0 Mirr/M0 Cp/Ce af af2 af1

2H-Q2M135 0.20 57 0.942 0.886 0.913 0.64 0.64 0.67
H-Q2M135 0.076 32 0.969 0.905 0.903 0.67 0.67 0.68
HB-Q2M135 0.032 24 0.978 0.912 0.902 0.67 0.67 0.69
HBs-Q2M135 0.024 22 0.980 0.914 0.902 0.67 0.67 0.69
HBss-Q2M135 0.014 21 0.980 0.915 0.902 0.67 0.67 0.69
B-Q2M135 0.0085 18 0.980 0.916 0.904 0.67 0.67 0.68
Bs-Q2M135 0.0053 23 0.980 0.917 0.906 0.66 0.66 0.68
Bss-Q2M135 7 × 10−4 · · · 0.977 0.917 0.910 0.65 0.65 0.67
2H-Q3M135 0.19 26 0.958 0.923 0.945 0.52 0.52 0.54
H-Q3M135 0.013 26 0.982 0.940 0.936 0.56 0.56 0.58
HB-Q3M135 0.0022 25 0.983 0.941 0.936 0.56 0.55 0.57
B-Q3M135 2 × 10−4 · · · 0.982 0.941 0.938 0.55 0.55 0.57
2H-Q2M12 0.21 66 0.937 0.885 0.918 0.62 0.62 0.66
H-Q2M12 0.12 28 0.958 0.900 0.907 0.66 0.66 0.68
HB-Q2M12 0.091 31 0.965 0.902 0.905 0.66 0.66 0.69
B-Q2M12 0.065 27 0.970 0.906 0.903 0.67 0.67 0.69
HB-Q3M12 0.044 30 0.977 0.936 0.937 0.55 0.55 0.57
B-Q3M12 0.011 28 0.982 0.939 0.935 0.56 0.56 0.58

All the quantities are estimated at t − tmerger ≈ 10 ms, where tmerger denotes the time of the merger.
Mr>rAH is the rest mass of the disk surrounding the BH; because the accretion is still ongoing at
the end of simulations due to the hydrodynamic angular momentum transport process, the values
listed give only an approximate mass of the long-lived accretion disk, which survives for a time
scale longer than the dynamical time scale ∼10 ms. td is the approximate accretion time scale
estimated around ≈10 ms after the merger, which we show only for the case Mr>rAH � 0.001M�.
Ce and Cp are the circumferential radii of the AH along the equatorial plane and meridional plane,
respectively, and Ce/4π is the approximate mass of the remnant BH. Mirr is the irreducible mass
of the remnant BH. af is the nondimensional spin parameter of the remnant BH estimated from
Cp/Ce. af2 and af1 are also the nondimensional spin parameters, estimated from the quantities on
the AH and approximate conservation laws, respectively

monotonically with C −1 (see Table 2.1 for C of each model); the disk mass is larger
for a model for which the tidal disruption occurs at a more distant orbit (i.e., for a
smaller value of fcut, cf. Fig. 6.12). This is quite reasonable because the earlier onset
of tidal disruption helps more materials to remain outside the ISCO of the BH.

Comparison of the results for models HB-Q2M135 (Γ2 = 3.0 and C = 0.1718),
HBs-Q2M135 (Γ2 = 2.7 and C = 0.1723), and HBss-Q2M135 (Γ2 = 2.4 and
C = 0.1741) indicates that the disk mass depends not only on the compactness of the
NS but also on the adiabatic index of the core,Γ2; a higher value ofΓ2 is preferable for
forming a massive disk. This dependence on Γ2 is consistent with the result reported
in [13]; the NS with a larger value of the adiabatic index is more subject to tidal
disruption (tidal disruption occurs for more distant orbital separation). The physical
interpretation for this result is that the degree of central mass concentration for NSs
of larger values of the adiabatic index is weaker, helping earlier tidal disruption (in

http://dx.doi.org/10.1007/978-4-431-54201-8_2
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Fig. 6.14 Disk mass Mr>rAH
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other words, we may say that the tidal Love number or deformability is larger for
the larger value of Γ2).

The top right panel of Fig. 6.13 plots the disk-mass evolution for the NS with
the same mass (MNS = 1.35M�) but with different mass ratio Q = 2 and Q = 3
and with HB and 2H EOSs. This, together with Fig. 6.14, shows that the disk mass
depends strongly on the mass ratio, in particular for the soft EOS. The reason for
this is simply that the NS is less subject to tidal disruption for a larger BH mass
(i.e., for weaker tidal force near the ISCO). The present result suggests that the disk
mass is much smaller than 0.01M� for BH–NS binaries with the typical NS mass
of MNS = 1.2–1.35M� and C � 0.16, if the BH is nonspinning and MBH � 4M�.
Only for the case C � 0.16, the disk mass may be larger than 0.01M� even with a
high-mass BH companion. This conclusion is in agreement with the previous studies
[1–3].

The two bottom panels of Fig. 6.13 compare the disk-mass evolution for models
2H-Q2M12 and 2H-Q2M135 and for models HB-Q2M12 and HB-Q2M135. In the
left panel we plot the disk mass in units of M� while the bottom right panel plots the
disk mass in units of M∗. We note that the NS radius depends weakly on the mass for
1.2M� ≤ MNS ≤ 1.35M� for both EOSs, and also the mass ratio Q is identical for
these models. Nevertheless, the disk mass depends strongly on the NS mass except
for models with stiff 2H EOS as seen in Table 6.4; it decreases with the increase of
MNS. Thus, not the NS radius RNS but C is the key parameter for determining the
disk mass.

Before closing this section, we summarize several key properties of the remnant
disk. Figure 6.15 plots the relation between Mr>rAH and the maximal rest-mass den-
sity ρmax of the remnant disk estimated at t − tmerger ≈ 10 ms. This clearly shows a
strong correlation between two quantities. The value of Mr>rAH increases approxi-
mately linearly with ρmax for Mr>rAH � 0.1M�, and for Mr>rAH ≥ 0.01M�, ρmax
is larger than 4 × 1011 g cm−3. Because the density is high and the temperature
should be also high enough (∼10 MeV if viscous effects or magnetohydrodynamic
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Fig. 6.15 Relation between
disk mass Mr>rAH and the
maximum density, ρmax,
estimated at t − tmerger ≈
10 ms. The maximum density
oscillates with time even in
the quasistationary phase, and
we here plot a value averaged
in one oscillation period M
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effects are taken into account [14–16]), neutrinos will be copiously produced in such
a disk in reality. Because of the high density and temperature, the cross section to
the nucleon will be large enough (∼10−41 cm2) to trap neutrinos inside the disk of
nucleon number density nn = ρ/mn � 1035 cm−3 where mn = 1.66 × 10−24 g
is nucleon mass [17–19]. Therefore, a neutrino-dominated accretion disk will be
always produced, if BH–NS binaries result in a system composed of the BH and
surrounding disk of mass larger than 0.01M�.

6.6 Properties of the Remnant BH

Table 6.4 shows several quantities associated with the remnant BH such as the mass
and spin, in addition to the disk mass. Unlike the disk mass, the mass and spin of
the remnant BH depend weakly on the EOS of the NS. For given values of Q and
MNS, the BH mass tends to be slightly smaller for stiffer EOS, primarily because the
fraction of the NS mass swallowed by the BH is smaller (the disk mass is larger).
The spin does not show such a clear dependence. The reason is that the spin angular
momentum of the remnant BH is affected by two competing processes; one is the
orbital angular momentum dissipation due to gravitational radiation reaction and the
other is the distribution of the angular momentum to the disk surrounding the BH.
The former dissipation effect is important for the case in which the NS is compact
and the tidal disruption does not occur as stated in Sect. 6.3. By contrast, the latter
effect is more important for the case in which the NS is less compact and the tidal
disruption occurs in the relatively early stage of the inspiral phase. Although the
relation�J > Jr>rAH always holds for all the models, we may also have the relation
�E � Mr>rAH . As a result, the nondimensional spin parameter of the remnant BH
depend very weakly on the EOS. For comparison, af1 and af2 defined in Chap. 5
are also shown in Table 6.4. It is found that af and af2 agree with each other within

http://dx.doi.org/10.1007/978-4-431-54201-8_5
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the error of �a = 0.001. By contrast, af1 does not agree well with the other two
estimates, as is found in [1], particularly when the massive remnant disk is formed:
the maximum error is �a ≈ 0.04. Taking into account the fact that the agreement
between Ce/4π and MBH,f is always better than 0.5 %, a possible reason for this
discrepancy is that (5.32) systematically underestimates the angular momentum of
the disk. Hereafter, we only refer to af as the nondimensional spin parameter of the
remnant BH.

The spin of the remnant BH is primarily determined by the mass ratio, Q; af =
0.66 ± 0.03 for Q = 2 and af = 0.54 ± 0.02 for Q = 3 (here ± signs do not imply
the error bars but signify differences due to the EOS). Thus, the spin parameter is
modified by the EOS only in ±5 %.

From the typical value of the spin parameter af and mass of the remnant BH
MBH,f , we estimate typical quasinormal-mode frequencies fQNM of the remnant BH
by the fitting formula [20]

fQNM MBH,f ≈ 1

2π

[
1.5251 − 1.1568(1 − af)

0.1292
]
. (6.9)

Then, fQNM ≈ 0.083/MBH,f for Q = 2 and ≈ 0.076/MBH,f for Q = 3, respectively.
Assuming that Ce/4π gives an approximate value of MBH,f , these values are in good
agreement with the ringdown part of gravitational waves for models Bss-Q2M135
and B-Q3M135, for which the disk masses are negligibly small, respectively. We note
that this estimation is valid only when the quasinormal modes of the BH are excited,
and actually the tidal disruption of the NS often suppresses the quasinormal-mode
excitation as can be seen in Figs. 6.5–6.8, in particular, for the stiff EOS such as 2H.
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Chapter 7
The Merger of Spinning Black
Hole–Neutron Star Binaries

In this chapter, numerical simulations are performed for a wide range of nondimen-
sional BH spin parameter, a, as well as for a variety of the mass ratios, Q. For
nonspinning BH–NS binaries, we already found that the low mass ratio of Q � 3
is required for tidal disruption of NSs to occur sufficiently outside the ISCO of the
BH unless the EOS is extremely stiff. If the tidal disruption occurs inside or at an
orbit very close to the ISCO, we do not see strong effects of the tidal disruption. In
such cases, gravitational waveforms are similar to those of a BH–BH binary even in
the merger phase, and the mass of the remnant disk is negligible [1]. However, the
allowed range of the mass ratio for the tidal disruption is modified drastically for a
BH–NS binary with the prograde BH spin [2, 3] because the ISCO radius1 of the
BH with a prograde spin becomes smaller by a factor of 1–6 [4] than that of the non-
spinning BH with the same mass. Strong spin effects for the tidal disruption are also
found in the numerical-relativity simulation of the spinning BH–NS binary merger
with a simplified, Γ -law EOS [5]. In this chapter, we perform a more systematic
study of the tidal disruption for different EOSs, masses of each component, and BH
spins.

7.1 Models and Setup of AMR Grids

Tables 7.1 and 7.2 summarize several key quantities for the initial conditions in
our numerical simulations. The labels for the model denote the EOS name, the
mass ratio, the NS mass, and the nondimensional spin parameter of the BH. Specif-
ically, “a75,” “a5,” and “a-5” correspond to the spin parameters a = 0.75, 0.5,
and −0.5, respectively. For example, HB-Q3M135a5 means that the EOS is HB and
(Q,MNS, a) = (3, 1.35M�, 0.5). Although we vary the NS mass systematically, the
results of the merger remnant are reported only for binaries with MNS = 1.35M�

1 In this thesis, “the ISCO radius” always represents “the ISCO radius in the Boyer-Lindquist
coordinates,” as is described in Sect. 1.3.
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Table 7.1 Key parameters and quantities for the initial conditions adopted in numerical simulations
for Q = 2 and 3

Model GΩ0m0/c3 M∗[M�] C ρmax(1014 g cm−3) M0[M�] J0[G M2�/c]
2H-Q2M135a75 0.025 1.455 0.1309 3.740 4.014 13.83
1.5H-Q2M135a75 0.028 1.468 0.1456 5.104 4.012 13.42
H-Q2M135a75 0.028 1.484 0.1624 7.019 4.012 13.42
HB-Q2M135a75 0.028 1.493 0.1718 8.263 4.012 13.42
B-Q2M135a75 0.028 1.503 0.1819 9.762 4.012 13.42
2H-Q2M135a5 0.025 1.455 0.1309 3.740 4.014 14.02
1.5H-Q2M135a5 0.028 1.468 0.1456 5.104 4.012 13.63
H-Q2M135a5 0.028 1.484 0.1624 7.018 4.012 13.63
HB-Q2M135a5 0.028 1.493 0.1718 8.263 4.012 13.63
B-Q2M135a5 0.028 1.503 0.1819 9.762 4.012 13.63
2H-Q2M135a-5 0.022 1.455 0.1309 3.740 4.019 15.15
H-Q2M135a-5 0.025 1.484 0.1624 7.018 4.017 14.74
HB-Q2M135a-5 0.028 1.493 0.1718 8.262 4.015 14.41
B-Q2M135a-5 0.028 1.503 0.1819 9.760 4.015 14.41
2H-Q2M12a75 0.025 1.282 0.1172 3.465 3.568 10.93
H-Q2M12a75 0.028 1.303 0.1447 6.421 3.566 10.60
HB-Q2M12a75 0.028 1.310 0.1527 7.523 3.566 10.60
B-Q2M12a75 0.028 1.317 0.1614 8.833 3.566 10.60
2H-Q2M145a75 0.025 1.572 0.1401 3.926 4.312 15.96
H-Q2M145a75 0.028 1.607 0.1744 7.452 4.309 15.48
HB-Q2M145a75 0.028 1.617 0.1848 8.811 4.309 15.48
B-Q2M145a75 0.028 1.629 0.1960 10.46 4.309 15.48
2H-Q3M135a75 0.028 1.455 0.1309 3.737 5.357 20.00
1.5H-Q3M135a75 0.030 1.468 0.1456 5.100 5.355 19.64
H-Q3M135a75 0.030 1.484 0.1624 7.013 5.355 19.64
HB-Q3M135a75 0.030 1.493 0.1718 8.256 5.355 19.64
B-Q3M135a75 0.030 1.503 0.1819 9.753 5.355 19.63
2H-Q3M135a5 0.028 1.455 0.1309 3.737 5.357 20.36
1.5H-Q3M135a5 0.030 1.468 0.1456 5.100 5.356 20.02
H-Q3M135a5 0.030 1.484 0.1624 7.012 5.356 20.01
HB-Q3M135a5 0.030 1.493 0.1718 8.255 5.356 20.01
B-Q3M135a5 0.030 1.503 0.1819 9.753 5.356 20.01
HB-Q3M135a-5 0.030 1.493 0.1718 8.253 5.359 21.46
2H-Q3M145a75 0.028 1.572 0.1401 3.923 5.754 23.07
H-Q3M145a75 0.030 1.607 0.1744 7.445 5.751 22.65
HB-Q3M145a75 0.030 1.617 0.1848 8.803 5.751 22.65
B-Q3M145a75 0.030 1.629 0.1960 10.45 5.751 22.65

The initial angular velocity (Ω0) in units of c3/Gm0, baryon rest mass (M∗), compactness of the
NS in isolation (C ), maximum rest-mass density (ρmax), ADM mass of the system (M0), and total
angular momentum of the system (J0), respectively. The labels for the models denote the name of
the EOS, the mass ratio (Q), the NS mass (MNS), and the nondimensional spin parameter of the
BH (a), where M135 (M12, M145) stands for MNS = 1.35M�(1.2M�, 1.45M�), and “a75,” “a5,”
and “a-5” correspond to the spin parameters a = 0.75, 0.5, and −0.5, respectively. (See Table 6.1
in Chap. 6 for models of nonspinning BH-NS binaries)

http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Table 7.2 The same as Table 7.1 but for Q = 4 and 5

Model GΩ0m0/c3 M∗[M�] C ρmax (1014 g cm−3) M0[M�] J0[G M2�/c]
2H-Q4M135a75 0.030 1.455 0.1309 3.735 6.702 26.07
H-Q4M135a75 0.032 1.484 0.1624 7.007 6.700 25.62
HB-Q4M135a75 0.032 1.493 0.1718 8.249 6.700 25.63
B-Q4M135a75 0.032 1.503 0.1819 9.746 6.700 25.62
2H-Q4M135a5 0.035 1.455 0.1309 3.732 6.698 25.64
H-Q4M135a5 0.035 1.484 0.1624 7.004 6.698 25.63
HB-Q4M135a5 0.035 1.493 0.1718 8.244 6.698 25.63
B-Q4M135a5 0.035 1.503 0.1819 9.740 6.698 25.63
2H-Q5M135a75 0.036 1.455 0.1309 3.730 8.044 30.95
H-Q5M135a75 0.036 1.484 0.1624 7.000 8.044 30.95
HB-Q5M135a75 0.036 1.493 0.1718 8.241 8.044 30.95
B-Q5M135a75 0.036 1.503 0.1819 9.736 8.043 30.95

in this chapter because the difference in the NS mass complicates the properties of
the remnant, such as the mass of the disk. Results for MNS �= 1.35M� are analyzed
only for gravitational waves.

For the same value of the mass ratio, we basically prepare the initial conditions
with the same value of the initial angular velocity,Ω0, normalized by the total mass of
the binary,Ω0m0. For 2H EOS, in which the NS radius is the largest, we exceptionally
adopt a smaller value of Ω0m0 than for other EOSs to guarantee �5 orbits before
tidal disruption occurs. The reason for this is that the tidal disruption occurs for a
large orbital separation in 2H EOS. When the BH has a prograde spin, the number of
orbits to the merger for a given value of Ω0m0 increases due to spin-orbit repulsive
interaction [6], compared to the nonspinning BH case. On the other hand, when the
BH has a retrograde spin, the number of orbits decreases due to spin-orbit attractive
interaction. For a = −0.5, the number of orbits is typically by ∼ 1 orbit smaller
than for a = 0. For this reason, we also prepare the initial condition with a smaller
value of Ω0m0 for H EOS and a = −0.5.

Tables 7.3 and 7.4 summarize the parameters of the grid structure for our sim-
ulations. The structure of the AMR grids depends primarily on the mass ratio
of the binary because the distances between two objects and the center of mass
depend strongly on the mass ratio for our initial models. Specifically, we choose
(lc, lf) = (4, 4) for all binaries with MNS = 1.35M� and Q = 2, 3, and 4. We
choose (lc, lf) = (3, 5) for binaries with Q = 5. For binaries with MNS �= 1.35M�,
we choose (lc, lf) = (3, 4) because we do not evaluate disk masses for them. In
all the simulations, L is chosen to be larger than or comparable to the gravitational
wavelengths at an initial instant λ0 ≡ π/Ω0. We always choose N = 50 for the best
resolved runs in the work of this chapter. One of the two finest regions covers the
semimajor axis of the NS by ∼42–45 grid points. The other covers the coordinate
radius of the AH typically by ∼5–10Q grid points, depending on the BH spin. We
also perform simulations with N = 36 and 42 for several arbitrary chosen models to
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Table 7.3 Setup of the grid structure for the simulation with our AMR algorithm for Q = 2 and 3

Model lc lf �x/M0 Rdiam/�x L/λ0

2H-Q2M135a75 4 4 0.0471 90.8 2.386
1.5H-Q2M135a75 4 4 0.0426 87.7 2.417
H-Q2M135a75 4 4 0.0377 86.2 2.138
HB-Q2M135a75 4 4 0.0347 87.1 1.968
B-Q2M135a75 4 4 0.0324 86.7 1.837
2H-Q2M135a5 4 4 0.0471 90.8 2.378
1.5H-Q2M135a5 4 4 0.0426 87.7 2.410
H-Q2M135a5 4 4 0.0377 86.2 2.131
HB-Q2M135a5 4 4 0.0347 87.2 1.962
B-Q2M135a5 4 4 0.0324 86.7 1.831
2H-Q2M135a-5 4 4 0.0470 90.7 2.092
H-Q2M135a-5 4 4 0.0376 86.4 1.902
HB-Q2M135a-5 4 4 0.0347 87.1 1.962
B-Q2M135a-5 4 4 0.0324 86.7 1.831
2H-Q2M12a75 3 4 0.0583 84.7 1.476
H-Q2M12a75 3 4 0.0442 85.3 1.252
HB-Q2M12a75 3 4 0.0410 85.7 1.162
B-Q2M12a75 3 4 0.0389 84.2 1.102
2H-Q2M145a75 3 4 0.0461 85.2 1.166
H-Q2M145a75 3 4 0.0347 85.3 0.985
HB-Q2M145a75 3 4 0.0316 87.1 0.896
B-Q2M145a75 3 4 0.0292 87.1 0.829
2H-Q3M135a75 4 4 0.0367 85.5 2.084
1.5H-Q3M135a75 4 4 0.0326 84.0 1.986
H-Q3M135a75 4 4 0.0282 84.7 1.718
HB-Q3M135a75 4 4 0.0260 85.6 1.581
B-Q3M135a75 4 4 0.0235 87.9 1.431
2H-Q3M135a5 4 4 0.0353 88.9 1.997
1.5H-Q3M135a5 4 4 0.0326 84.0 1.980
H-Q3M135a5 4 4 0.0282 84.7 1.712
HB-Q3M135a5 4 4 0.0260 85.7 1.576
B-Q3M135a5 4 4 0.0243 85.3 1.471
HB-Q3M135a-5 4 4 0.0260 85.7 1.576
2H-Q3M145a75 3 4 0.0328 87.7 0.933
H-Q3M145a75 3 4 0.0250 87.4 0.760
HB-Q3M145a75 3 4 0.0234 86.6 0.712
B-Q3M145a75 3 4 0.0214 87.7 0.651

lc and lf are the number of coarser domains and a half of finer domains, respectively. �x = hl =
L/(2l N ) (l = lc+lf −1) is the grid spacing at the finest-resolution domain with L being the location
of the outer boundaries along each axis. Rdiam/�x denotes the grid number assigned inside the
semimajor diameter of the NS. λ0 is the gravitational wavelength of the initial configuration. (See
Table 6.2 in Chap. 6 for models with nonspinning BHs)

http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Table 7.4 The same as Table 7.3 but for Q = 4 and 5

Model lc lf �x/M0 Rdiam/�x L/λ0

2H-Q4M135a75 4 4 0.0296 83.4 1.804
H-Q4M135a75 4 4 0.0223 84.5 1.450
HB-Q4M135a75 4 4 0.0203 86.5 1.319
B-Q4M135a75 4 4 0.0190 85.8 1.237
2H-Q4M135a5 4 4 0.0296 83.2 2.097
H-Q4M135a5 4 4 0.0219 85.9 1.548
HB-Q4M135a5 4 4 0.0205 85.5 1.448
B-Q4M135a5 4 4 0.0188 86.4 1.332
2H-Q5M135a75 3 5 0.0235 86.3 1.718
H-Q5M135a75 3 5 0.0180 86.2 1.314
HB-Q5M135a75 3 5 0.0167 86.3 1.224
B-Q5M135a75 3 5 0.0159 84.6 1.159

check the convergence of the results and find approximately the same level of conver-
gence as that found in the merger of nonspinning BH–NS binaries (see the Appendix
of [7–9]). For the Q = 5 runs, the total memory required is about 11.8 Gbytes. We
perform numerical simulations with personal computers of 12 Gbytes memory and
of core-i7X processors with clock speeds of 3.2 or 3.33 GHz. We use 2–6 proces-
sors to perform one job with an OPEN-MP library. The typical computational time
required to perform one simulation (for ∼50 ms in physical time of coalescence for
the a = 0.75 case) is 4 weeks for the 6 processor case.

7.2 Overview of the Merger Process

Figure 7.1 plots the evolution of the coordinate separation defined by xi
sep =

xi
NS−xi

BH for models HB-Q2M135a5, HB-Q2M135, and HB-Q2M135a-5, for which
Ω0m0 takes the same values. Here, xi

NS is the position of the maximum rest-mass
density and xi

BH is the location of the puncture, xi
P. Figure 7.1 shows that the num-

bers of orbits increases as the BH spin increases from retrograde to prograde [5].
Specifically, the number of orbit are ∼7, 5.5, and 4 for a = 0.5, 0, and −0.5, respec-
tively. This difference comes primarily from the spin-orbit interaction between these
two angular momenta [10]; in the PN approximation, a force proportional to the
inner product of the orbital and spin angular momenta of two objects appears at
1.5PN order. Here, we do not have to consider the NS spin angular momentum in
the assumption of the irrotational velocity field and, therefore, we only consider the
interaction between the orbital and BH spin angular momenta throughout this the-
sis. When these two angular momenta are parallel and the inner product is positive
(a > 0), an additional repulsive force works between the BH and NS. This repulsive
force reduces the orbital angular velocity because the centrifugal force associated
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Fig. 7.1 Evolution of the orbital separation xi
sep = xi

NS − xi
BH of binaries with (Q,MNS) =

(2, 1.35M�) and HB EOS. The left, middle, and right panels show the results with the prograde
BH spin a = 0.5, zero BH spin a = 0, and retrograde BH spin a = −0.5, respectively

with the orbital motion can be reduced, and hence, the luminosity of gravitational
radiation, which is proportional to Ω10/3, is also reduced. This strong dependence
of the luminosity on Ω makes the approaching velocity smaller in the late inspiral
phase, and, therefore, the number of orbits increases. Conversely, when these two
angular momenta are antiparallel (a < 0), an additional attractive force increases the
angular velocity and gravitational-wave luminosity in the late inspiral phase. In this
case, the orbital separation decreases faster due to a larger approaching velocity, and
the number of orbits becomes smaller as the retrograde BH spin increases. All these
results agree qualitatively with those of [5].

The fate of BH–NS binaries is classified into two categories. One is the case in
which the NS is disrupted by the BH tidal field before the BH swallows the NS,
and the other is the case in which the BH swallows the NS without tidal disruption.
In this chapter, we focus mainly on the former case. We plot snapshots of the rest-
mass density profiles and the location of the AH on the equatorial plane at selected
time slices for models HB-Q3M135a75, HB-Q3M135a5, and HB-Q3M135a-5 in
Figs. 7.2, 7.3, 7.4, respectively. The NS is disrupted outside the ISCO in the a > 0
cases (Figs. 7.2 and 7.3) and forms a one-armed spiral structure with a large angular
momentum. The material in the inner part of the spiral arm gradually falls onto the
BH due to angular momentum transport via hydrodynamic torque in the spiral arm.
The material with a sufficiently large specific angular momentum escapes the capture
by the BH and forms an accretion disk, which survives for a time much longer than
the dynamical time scale ∼ a few ms. We note that the prompt infall of the one-armed
spiral structure onto the BH occurs from a relatively narrower region for a = 0.5
than for a = 0.75. The reason is that the inner edge of the spiral arm contacts the
AH well before the arm becomes nearly axisymmetric due to a large radius of the
AH and ISCO for a = 0.5. The infall of the disrupted material from a narrow region
of the BH frequently occurs when the NS is tidally disrupted in a binary with a high
mass ratio, whereas this is rare in a binary with a nonspinning BH because the NS
is not disrupted in a high mass-ratio binary. This difference in the merger process
is well-reflected in gravitational waveforms (see Sect. 7.6). By contrast, the NS is
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Fig. 7.2 Evolution of the rest-mass density profile in units of g cm−3 and the location of the AH
on the equatorial plane for model HB-Q3M135a75. The filled circle denotes the region inside the
AH. The color panel on the right of each plot show log10(ρ)
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Fig. 7.3 The same as Fig. 7.2 but for model HB-Q3M135a5
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Fig. 7.4 The same as Fig. 7.2 but for model HB-Q3M135a-5

swallowed by the BH without tidal disruption, and essentially no material is left
outside the ISCO for model HB-Q3M135a-5 (Fig. 7.4).

Note that the feature of the NS tidal disruption appears very weakly not only for
model HB-Q3M135a-5 but also for model HB-Q3M135 (a = 0) because the mass
ratio Q = 3 is so high that the tidal effect is less important for the nonspinning BH
with the typical NS radius ∼11–12 km. The enhancement of the tidal effect by a
prograde BH spin results primarily from the decrease of the BH ISCO radius [4]. In
the Boyer-Lindquist coordinates, a Kerr BH has an ISCO with a smaller radius than
a Schwarzschild BH by a factor of ≥1/6, depending on a for a prograde orbit: The
ISCO radius approximately halves when the BH spin increases from a = 0 to 0.75.
On the other hand, the orbital separation at the onset of mass shedding depends only
weakly on the BH spin in the Boyer-Lindquist coordinates [11–13]. This decrease of
the ISCO radius enhances the possibility for the disrupted material to escape capture
by the BH and to form a more massive remnant disk than in the nonspinning BH
case. The retrograde BH spin plays an opposite role; the ISCO radius of the Kerr BH
increases by a factor of 1–1.5 for a retrograde orbit, and hence, the tidal effect is less
important in the merger process.

Before closing this subsection, we estimate the degree of (undesired) orbital eccen-
tricity in our simulations to assess the circularity of the orbital motion. For this pur-
pose, we compute the evolution of the gauge-invariant orbital angular velocityΩ(t),
which is defined from the (l,m) = (2, 2) mode of Ψ4 by

Ω(t) = 1

2

|Ψ4(l = m = 2)|
| ∫ Ψ4(l = m = 2)dt | . (7.1)

The evolution of the orbital angular velocity in our simulation agrees with that derived
from the Taylor-T4 formula in the inspiral phase within a small modulation, typically
�Ω/Ω � 5 %, which is equivalent to the orbital eccentricity of �3 %. This amount
of orbital eccentricity is as small as that observed in the nonspinning BH case with
a low mass ratio Q = 2.
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7.3 Global Properties of the Disk

The mass of the remnant disk reflects the significance of NS tidal disruption in a
clear way because the disk formation is a result of tidal disruption. A massive disk is
formed if tidal disruption of the NS occurs far outside the ISCO. If the mass shedding
starts in the vicinity of or inside the ISCO, only a small portion of the mass is left
outside the AH. The material is not left outside the AH when the mass shedding
does not occur before the BH swallows the NS, and the merger of a BH–NS binary
may be indistinguishable from that of a BH–BH binary except for very small tidal
corrections to the inspiral. Thus, the mass of a remnant disk is a reliable indicator of
the degree of tidal disruption.

Figure 7.5 plots the time evolution of the rest mass located outside the AH, Mr>rAH ,
for Q = 2 and 3 with different nondimensional BH spin parameters a = 0.75, 0.5, 0,
and −0.5. In both plots, MNS = 1.35M� and HB EOS are adopted. The dependence
of Mr>rAH on a for HB EOS found here is similar to those for other EOSs. We
set the time origin to be an approximate merger time tmerger. These plots indicate
that the mass of the material left outside the AH relaxes to a quasisteady value for
t − tmerger � 3–4 ms, and the relaxed value increases monotonically as the BH spin
increases from retrograde to prograde. This is consistent with the decrease of the
BH ISCO radius with the increase of its spin, as described in Sect. 7.2. In particular,
the remnant disk mass at ≈10 ms after the merger is �0.1M� for all the EOSs
with (Q, a) = (2,≥0.5) and (≤4, 0.75), as shown in Table 7.5, and �0.05M� for
(Q, a) = (3, 0.5), irrespective of the EOS. The formation of such a massive disk
may be encouraging for the BH–NS binary merger hypothesis of a short-hard GRB.
For the a = −0.5 cases, by contrast, massive accretion disks of �0.01M� are
not expected to be formed as merger remnants even for Q = 2 unless the EOS is
extremely stiff (the NS radius is ≈15 km). This fact indicates that the retrograde BH
spin is unfavorable for producing a central engine of a short-hard GRB.

The prograde BH spin enhances the disk formation dramatically for a BH–NS
binary with a high mass ratio, for which the disk mass is very low when the BH is
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Table 7.5 Several key quantities for the merger remnants for MNS = 1.35M�
Model Mr>rAH [M�] Ce/4πM0 MBH,c/M0 Mirr,f/M0 Cp/Ce af af2 af1

2H-Q2M135a75 0.32 0.913 0.915 0.789 0.807 0.87 0.87 0.95
1.5H-Q2M135a75 0.29 0.918 0.920 0.785 0.794 0.89 0.89 0.95
H-Q2M135a75 0.24 0.927 0.929 0.783 0.780 0.91 0.90 0.94
HB-Q2M135a75 0.21 0.933 0.934 0.783 0.772 0.91 0.91 0.94
B-Q2M135a75 0.18 0.937∗ 0.938 0.790∗ 0.778∗ 0.91∗ 0.91∗ 0.93
2H-Q2M135a5 0.27 0.925 0.926 0.825 0.843 0.81 0.81 0.84
1.5H-Q2M135a5 0.23 0.935 0.936 0.831 0.840 0.82 0.81 0.84
H-Q2M135a5 0.17 0.945 0.946 0.837 0.836 0.82 0.82 0.84
HB-Q2M135a5 0.14 0.951 0.952 0.840 0.832 0.83 0.83 0.84
B-Q2M135a5 0.095 0.959 0.960 0.846 0.830 0.83 0.83 0.84
2H-Q2M135a-5 0.13 0.961 0.962 0.931 0.954 0.48 0.48 0.50
H-Q2M135a-5 0.010 0.985 0.986 0.950 0.948 0.51 0.51 0.52
HB-Q2M135a-5 0.0021 0.985 0.986 0.952 0.950 0.50 0.50 0.51
B-Q2M135a-5 2 × 10−4 0.983 0.984 0.952 0.952 0.49 0.49 0.50
2H-Q3M135a75 0.35 0.927 0.927 0.807 0.815 0.86 0.86 0.90
1.5H-Q3M135a75 0.30 0.931 0.934 0.811 0.815 0.86 0.86 0.90
H-Q3M135a75 0.24 0.939 0.943 0.820 0.818 0.85 0.85 0.91
HB-Q3M135a75 0.22 0.941 0.943 0.812 0.805 0.87 0.87 0.90
B-Q3M135a75 0.15 0.949 0.951 0.824 0.812 0.86 0.86 0.89
2H-Q3M135a5 0.28 0.939 0.940 0.858 0.874 0.74 0.74 0.77
1.5H-Q3M135a5 0.23 0.946 0.948 0.862 0.871 0.75 0.75 0.78
H-Q3M135a5 0.16 0.955 0.957 0.867 0.866 0.76 0.76 0.78
HB-Q3M135a5 0.11 0.961 0.963 0.871 0.864 0.77 0.77 0.78
B-Q3M135a5 0.050 0.969 0.971 0.877 0.862 0.77 0.77 0.79
HB-Q3M135a-5 <10−4 0.986 0.987 0.973 0.980 0.32 0.32 0.33
2H-Q4M135a75 0.36 0.937 0.938 0.825 0.828 0.84 0.84 0.87
H-Q4M135a75 0.23 0.948 0.951 0.831 0.823 0.84 0.84 0.88
HB-Q4M135a75 0.18 0.953 0.956 0.833 0.821 0.85 0.85 0.88
B-Q4M135a75 0.11 0.960 0.963 0.837 0.817 0.85 0.85 0.88
2H-Q4M135a5 0.28 0.950 0.951 0.879 0.891 0.70 0.70 0.72
H-Q4M135a5 0.085 0.970 0.973 0.890 0.880 0.73 0.73 0.74
HB-Q4M135a5 0.024 0.976 0.979 0.894 0.878 0.74 0.74 0.75
B-Q4M135a5 0.0034 0.978 0.980 0.896 0.878 0.74 0.74 0.75
2H-Q5M135a75 0.36 0.946 0.947 0.838 0.835 0.82 0.82 0.85
H-Q5M135a75 0.17 0.960 0.963 0.844 0.827 0.84 0.84 0.86
HB-Q5M135a75 0.095 0.966 0.970 0.848 0.824 0.84 0.84 0.86
B-Q5M135a75 0.031 0.972 0.975 0.851 0.821 0.85 0.85 0.87

All the quantities are estimated at ≈10 ms after the approximate merger time t = tmerger . Mr>rAH

is the rest mass of the disk surrounding the BH; because the accretion is still ongoing due to the
hydrodynamic angular momentum transport process, the listed values only give approximate masses
of the long-lived accretion disks, which survive for a time longer than the dynamical time scale
∼ a few ms. Ce and Cp are the circumferential radii of the AH along the equatorial and meridional
planes, respectively. Ce/4π and MBH,c denote approximate masses of the remnant BH. Mirr,f is the
irreducible mass of the remnant BH, and af is the nondimensional spin parameter of the remnant
BH estimated from Cp/Ce. af2 and af1 are also the nondimensional spin parameters, estimated from
the quantities on the AH and approximate conservation laws, respectively. We note that the values
associated with the remnant BH for model B-Q2M135a75 (with an asterisk) are evaluated at ≈5
ms after the onset of the merger because the BH area decreases by �1 % at ≈10 ms after the onset
of the merger and the error becomes large
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Fig. 7.7 The disk mass Mr>rAH at ≈10 ms after the onset of the merger as a function of the NS
compactness C . The left and right panels show the results for Q = 2 (left) and Q = 3 (right)

nonspinning. We plot the time evolution of Mr>rAH for Q = 4 and 5 with different
EOSs in Fig. 7.6. In both plots, MNS = 1.35M� and a = 0.75 are adopted. Figure 7.6
clearly shows that a massive accretion disk is formed for Q = 4 and 5 if the BH has
a prograde spin of a = 0.75. Namely, the formation of a massive accretion disk is
universal for the merger of a BH–NS binary with a mass ratio of Q � 5 as far as
a ∼ 0.75 and MNS = 1.35M� (equivalently, MBH � 6.75M�). Note that a heavy
BH of MBH � 5M� is predicted to be realistic as an astrophysical consequence
of the stellar evolution with solar metallicity [14] (see, e.g., [15] for a population
synthesis study) and hence as a possible progenitor of the short-hard GRB.

For more quantitative discussion, we plot the disk mass estimated at ≈10 ms after
the merger for all the models with Q = 2 and for models with (Q, a) = (3,≥0) as
a function of the NS compactness, C , in Fig. 7.7. Numerical values of Mr>rAH are
shown in Table 7.5, as well as other quantities associated with the merger remnants.
For any fixed value of a, a negative correlation between Mr>rAH and C is found to hold
in Fig. 7.7. This correlation indicates that the NS with a larger compactness is less
subject to tidal deformation and disruption than the NS with a smaller compactness
for any fixed value of a. This correlation is expected from the nature of a tidal force
as a finite-size effect, as found in the study of nonspinning BH–NS binaries. On
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Fig. 7.8 The same as Fig. 7.7 but for a = 0.75 and a = 0.5 with Q = 2 − 5

the other hand, Fig. 7.7 again shows that the prograde BH spin increases the disk
mass for any fixed value of C . A remarkable fact is that the disk mass does not
decrease steeply to a value of 
0.1M� as the compactness increases for binaries
with (Q, a) = (≤3,≥0.5). We expect that the coalescence of a BH–NS binary with
(Q, a) = (≤3,≥0.5) may always produce a remnant disk of �0.01M� within a
plausible range of the NS compactness, C � 0.2, although it is possible only if
C � 0.18 for (Q, a) = (2, 0) and C � 0.16 for (Q, a) = (2,−0.5) or (3, 0).

The dependence of the disk mass on the NS compactness is different for different
values of the mass ratio. We plot in Fig. 7.8 the disk mass as a function of the NS
compactness as in Fig. 7.7, but for a = 0.75 and 0.5. This figure shows that the
disk mass depends more strongly on C when the mass ratio, Q, is larger. The disk
mass is larger for smaller values of Q when the EOS is soft and C � 0.16, except
for HB-Q2M135a75 and HB-Q3M135a75, for which the disk masses depend only
weakly on Q. This dependence on Q is expected from the comparison between the
mass-shedding radius, rshed, and the ISCO radius, rISCO,

rshed

rISCO
∝ C −1 Q−2/3, (7.2)

where we assume Newtonian gravity for simplicity. This relation states that a larger
amount of mass can escape the capture by the BH and can form an accretion disk
when Q is small because the mass shedding sets in at relatively more distant orbit.
However, the disk mass may be larger for larger values of Q when the EOS is stiff as
C � 0.15 for a ≥ 0.5 and 2 � Q � 5. This should be ascribed to the redistribution
process of the specific angular momentum of the NS to the disrupted material and
to subsequent behavior of the material (such as collision of the fluid elements in
spiral arms). This feature suggests that a binary with a larger value of Q, say Q � 6,
possibly form a massive remnant disk of �0.1M� and could be a progenitor of a
short-hard GRB if the EOS is stiff and the BH has a large spin �0.5.

To clarify the dependence of the disk mass on the BH spin, we plot the disk mass
as a function of a in Fig. 7.9. The EOS (and, equivalently, C ) is the same for each
plot. Again, we find a monotonic and steep increase of the disk mass as the increase
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of a for the fixed EOS and mass ratio. The enhancement of the disk mass by a
prograde spin is more dramatic for the compact NS (for the soft EOS). For example,
the difference in the disk mass between the cases of a = 0.75 and −0.5 is only by a
factor of ∼3 when Q = 2 and 2H EOS is adopted. This low amplification is natural
because tidal disruption of a large NS occurs at an orbit far enough from the ISCO
for a substantial amount of the disrupted material to escape the capture by the BH
irrespective of a and because at such a large orbital separation the spin-orbit coupling
effect is relatively weak. On the other hand, a few-orders-of-magnitude amplification
of the disk mass is seen when Q = 2 and HB EOS is adopted.

Finally, we comment on a possible unbound outflow. To estimate the rest mass of
unbound material, we compute

Mub ≡
∫

r>rAH

ρ∗ H(−ut − 1)d3x, (7.3)

where H(x) is a step function. Here, the material with ut < −1 should be considered
to have an unbound orbit. We find that Mub can be larger than 0.01M� at ≈10 ms
after the merger for the stiff EOS like 2H and H, and a ≥ 0. However, Mub does not
approach a constant value and rather continues to decrease. Therefore, it is unclear
whether Mub estimated at 10 ms after the merger can really become unbound or not,
and we do not show the precise values of Mub. When the EOS is not stiff, Mub is
negligible within the accuracy of our simulations.

7.4 Structure of the Remnant Disk

The structure of the remnant disk and its time evolution process depend on the mass
ratio of the binary. We plot the rest-mass density profile at ≈5 and 10 ms after the
onset of the merger for binaries with a = 0.75, HB EOS, and different values of
Q in Fig. 7.10. The left column of Fig. 7.10 is plotted for ≈5 ms after the onset of
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Fig. 7.10 The same as Fig. 7.2 with contour curves for ρ = 1010 and 1012 g cm−3 plotted. In all
the plots, HB EOS and a = 0.75 are adopted. The first, second, third, and fourth rows are for
Q = 2, 3, 4, and 5, respectively. The left column plots the snapshots at 5 ms after the onset of the
merger. The middle column plots the snapshots at 10 ms after the onset of the merger, and the right
column plots close-ups of the middle column
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the merger and shows that the dense material of ρ � 109 g cm−3 always extends
to �400 km. The spiral arm always spreads to a far region irrespective of EOSs, as
far as the tidal disruption results in a massive disk. These plots also suggest that
the accretion disk for a large value of Q—say, Q = 5—keeps a nonaxisymmetric
structure in the vicinity of the remnant BH at this time. This feature is qualitatively
the same for binaries with other EOSs. When Q is small as ∼2, the accretion disk
becomes nearly axisymmetric in ≈5 ms after tidal disruption because the dynamical
time scale of the system (which is proportional to the BH mass) is shorter for a smaller
value of Q. Also, because the ISCO radius of the BH is smaller, the maximum rest-
mass density, ρmax, of the disk (which should be approximately proportional to the
inverse square of the BH mass) reaches a higher value on average in time for a smaller
value of Q. It should be noted that the difference in ρmax comes primarily from the
difference in the radius and not from the difference in the disk mass, which do not
vary by an order of magnitude for a = 0.75 and Q = 2 − 5. This difference in the
nonaxisymmetric structure results in different features of gravitational waves (see
Sect. 7.6).

The middle and right columns of Fig. 7.10 plot snapshots at ≈10 ms after the onset
of the merger. At this time, nonaxisymmetric structures are not as significant as those
at ≈5 ms after the onset of the merger because the accretion disk settles toward an
approximately stationary state in the vicinity of the BH. The maximum values of
the rest-mass density, ρmax, in the accretion disk are still higher for a smaller value
of Q. Indeed, the right column of Fig. 7.10 shows that smaller values of Q result in
producing a wider region with ρ > 1012 g cm−3. By contrast, the disk for Q = 5
does not have such a high-density region. The smaller density may be unfavorable
to be the short-hard GRB model.

The size of a region where ρ > 1010 g cm−3 coincides approximately among four
models with different values of Q and is always ∼100 km. Furthermore, the middle
column suggests that the region of ρ > 108 g cm−3 extends to larger distances
when Q is larger. We plot the radial distribution of ρ along x and y axes for these
models in Fig. 7.11. Note that low-density regions near the origin are inside the BH.
These plots show that ρmax is systematically higher for the binary with a smaller
value of Q. These also show that the location of the isodensity surface of ρ =
1010 g cm−3 approximately coincides among different values of Q. Taking these
facts into account, we conclude that a typical profile of ρ(r) is steeper for smaller
values of Q in the vicinity of the BH. A region of �100 km away from the BH, where
the profile ρ(r) shows relatively shallow decrease and �1010 g cm−3, corresponds
to the tail component, as is seen in the middle column of Fig. 7.10.

7.5 Properties of the Remnant BH

Table 7.5 shows that masses and nondimensional spin parameters of the remnant BHs
depend weakly on the adopted EOSs. The mass of the remnant BH tends to become
large as the EOS softens for fixed values of (Q,MNS, a) for the case in which tidal
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Fig. 7.11 Radial distribution of the rest-mass density at 10 ms after the onset of the merger for
different values of Q. The left and right panels show the distribution along the x and y axes,
respectively. In both plots, (MNS, a) = (1.35M�, 0.75) and HB EOS are adopted

disruption of the NS occurs. The reason for this is that the tidal disruption occurs
near the ISCO, and then the BH swallows a large amount of the NS mass when the
EOS is soft. Exceptionally, the mass of the BH becomes slightly larger for H and
HB EOSs than for B EOS for binaries with (Q, a) = (2,−0.5). The reason for
this is that the remnant disk masses are small as �0.01M� for these cases and the
amount of the energy radiated by gravitational waves primarily determines the final
state (for more compact NSs, the radiated energy is larger because a closer inspiral
orbit is achieved). The spin angular momentum of the remnant BH SBH,f shows
similar behavior to that of the BH mass. The situation becomes complicated for a spin
parameter of the remnant BH defined by af = SBH,f/M2

BH,f ; the competition between
the mass and angular momentum losses from the system makes the dependence of
the nondimensional spin parameter of the remnant BH on the EOS very weak. For
comparison, af1 and af2 defined in Chap. 5 are also shown in Table 7.5. As is found in
Chap. 6, af and af2 agree with each other within the error of�a = 0.003, and af1 does
not agree well with the other two estimates particularly when the massive remnant
disk is formed and/or the mass of the BH is small: the maximum error is�a ≈ 0.08.
A possible reason for this discrepancy is again ascribed to the underestimation of the
angular momentum of the disk. Hereafter, we only refer to af as the nondimensional
spin parameter of the remnant BH.

The nondimensional spin parameter of the remnant BH depends strongly on the
initial spin parameter, a, and the mass ratio, Q. Approximate values of the nondi-
mensional spin parameter of the remnant BH, af , are shown in Fig. 7.12 as a function
of the initial BH spin parameter, a. We also plot lines obtained by a linear fitting of
data for Q = 2 and 3 of the following form,

af = 0.32a + 0.66 (Q = 2), (7.4)

af = 0.43a + 0.54 (Q = 3). (7.5)

http://dx.doi.org/10.1007/978-4-431-54201-8_5
http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Fig. 7.12 The typical nondi-
mensional spin parameters
of the remnant BH af as a
function of the initial BH spin
parameter a. The solid lines
are obtained by a linear fitting
of the data for Q = 2 and
Q = 3
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The relation for Q = 3 agrees approximately with the results reported in [5, 16]
within an error of �5 %, and the agreement becomes better for a larger value of
a. Figure 7.12 and these relations show that af is an approximately linear function
of a. In a zeroth approximation, the slope and intercept of the linear relation denote
the contribution from the initial BH spin angular momentum, SBH, and the orbital
angular momentum of the binary, J0, respectively. The larger slope for a larger value
of Q is explained by a larger contribution from the spin of the initial BH of mass
MBH = QMNS to the spin of the remnant BH of mass MBH,f ∼ (1+ Q)MNS. These
predict the value of the slope to be Q2/(1 + Q)2. However, the slope obtained by
numerical simulations is smaller by ∼25–30 % than this predicted slope, because
the amount of angular momenta redistributed to the remnant disk and extracted by
gravitational waves become larger for a larger value of a. The fitting function also
suggests that the merger of an extremely spinning BH of a = 1 and a NS with
an irrotational velocity field results in a remnant BH with af ≈ 0.98 for BH–NS
binaries with Q = 2 and 3 and hence never forms an overspinning BH, i.e., a BH
with af > 1. Furthermore, the results for Q = 4 shown in Table 7.5 also suggest
af ≈ 0.97 for the merger of an extremely spinning BH and an irrotational NS. These
results give a circumstantial support for cosmic censorship conjecture [17]. Whether
af � 0.98(<1) is an universal consequence of a general BH–NS binary merger
or not should be confirmed by simulations of higher mass-ratio binary mergers, in
particular, with (nearly) extremal BH spin.

From these typical values of af and MBH,f , we can estimate typical frequencies
of quasinormal modes (hereafter QNM) fQNM of the remnant BH by a fitting for-
mula [18]

fQNM MBH,f ≈ 1

2π
[1.5251 − 1.1568(1 − af)

0.1292]. (7.6)

We plot these values in Fig. 7.13. They are in good agreement with those of the
ringdown waveforms, if the QNM is excited after the merger.



7.6 Gravitational Waveforms 133

Fig. 7.13 The typical QNM
frequency of the remnant
BH normalized by its mass
fQNM MBH,f
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7.6 Gravitational Waveforms

In this section, we show (l,m) = (2, 2), plus-mode gravitational waveforms h+ for
selected models obtained in this study. We plot all the waveforms for an observer
along the z axis as a function of the approximate retarded time (the same as (6.2))

tret = t − D − 2M0 ln(D/M0). (7.7)

The amplitude of the waveforms is normalized as Dh+/m0 or we show physical
amplitude observed at a hypothetical distance D = 100 Mpc along the z axis. Grav-
itational waveforms calculated in the Taylor-T4 formula are plotted together in the
figures to validate the waveforms obtained in our numerical simulations during the
inspiral phase. Numerical waveforms during 2–3 initial cycles deviate from ones
obtained from the Taylor-T4 formula in all the cases due to the lack of an approach-
ing velocity in the initial data. This deficit is ascribed to insufficient modeling of
the quasiequilibrium state and improvement in the future is important to obtain more
accurate gravitational-wave templates [19, 20]. Our waveforms also deviate from the
Taylor-T4 waveforms in the late inspiral phase due to a physical reason, which we
describe below. Comparisons between waveforms obtained from simulations with
different grid resolutions are shown in the Appendix of [9].

Figure 7.14 shows the gravitational waveforms for binaries with HB EOS,
(Q,MNS) = (3, 1.35M�) but with different BH spin parameters, a = 0.75, 0.5,
0, and −0.5. This figure shows that the time to the merger, to which we refer approx-
imately as the time at which the maximum gravitational-wave amplitude is achieved,
forΩ0m0 = 0.030 becomes longer by ≈10 ms as the increase of the BH spin within
the range concerned here. This difference in the merger time owes primarily to the
spin-orbit interaction described in Sect. 7.2, and this behavior is qualitatively the
same for binaries with any EOS. The numerical and Taylor-T4 waveforms agree
well with each other during an inspiral phase for all the cases.

http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Fig. 7.14 (l,m) = (2, 2), plus-mode gravitational waves for models HB-Q3M135a75,
HB-Q3M135a5, HB-Q3M135, and HB-Q3M135a-5. All the waveforms are shown for an observer
located along the z axis (the axis of rotation) and plotted as a function of a retarded time. The left
axis denotes the amplitude normalized by the distance from the binary D and the total mass m0. The
right axis denotes the physical amplitude of gravitational waves observed at a hypothetical distance
100 Mpc. The dotted curves denote the waveform calculated by the Taylor-T4 formula

For the prograde BH spin cases, the Taylor-T4 formula does not track the evolution
for ∼0.5 inspiral orbit just before the merger. The Taylor-T4 amplitude departs
from that of numerical relativity and even diverges. Accordingly, the number of
gravitational-wave cycles differs by as much as unity between the numerical and
Taylor-T4 waveforms. The difference in the number of cycles is larger for higher
mass-ratio binaries with prograde BH spins. We show the waveforms for binaries with
(Q,MNS, a) = (4, 1.35M�, 0.75) and with (Q,MNS, a) = (5, 1.35M�, 0.75) for
2H, H, HB, and B EOSs in Figs. 7.15 and 7.16, respectively. The deviation is clear for
H, HB, and B EOSs in both figures. This difference indicates that the phase evolution
predicted by the Taylor-T4 formula is not sufficient to model the last inspiral phase
of a coalescing binary with the high mass ratio of Q � 3 and the prograde BH spin
of a � 0.5.

For the retrograde BH spin case (the bottom right panel of Fig. 7.14), the phase
evolution deviates between the numerical and Taylor-T4 waveforms in the last orbit
before the merger. This deviation may be partly ascribed to the small number of orbits
in our simulation but appears to be primarily ascribed to a larger angular velocity,
or equivalently a larger PN parameter, Ωm0, at the last orbit for a retrograde BH
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Fig. 7.15 The same as Fig. 7.14 but for models 2H-Q4M135a75, H-Q4M135a75, HB-Q4M135a75,
and B-Q4M135a75

spin. Thus, the Taylor-T4 formula seems to be again insufficient for modeling the
retrograde BH spin cases.

Figure 7.14 also shows that the gravitational waveform in the merger stage depends
strongly on the BH spin. For a binary with (Q, a) = (3, 0.75), gravitational waves
show a sudden decrease in the amplitude at tret ≈ 27 ms, which is a clear signature
of tidal disruption. Gravitational waves associated with the ringdown of a remnant
BH are absent due to the phase cancellation by nearly axisymmetric accretion of
the disrupted material. This feature is consistent with the formation of a massive
remnant disk, which is described in Sect. 7.3, for the prograde BH spin. For binaries
with (Q, a) = (3,≤ 0), on the other hand, gravitational waves end up with ringdown
waveforms associated with the remnant BHs because the tidal effect is very weak
throughout the merger. In these circumstances, gravitational waves do not show
strong signatures of tidal deformation and disruption of the NS.

Gravitational waves for a binary with (Q, a) = (3, 0.5) show a qualitatively
new feature (the top right panel of Fig. 7.14). In this case, a ringdown waveform of
the remnant BH is seen in the final stage, although the NS is tidally disrupted and
the disk mass is larger than 0.1M�. Namely, both tidal disruption of the NS and
excitation of a QNM of the remnant BH occur in a compatible manner. The same
feature is also found for a binary with a high mass ratio and a prograde BH spin,
i.e., (Q, a) = (≥4, 0.75), shown in Figs. 7.15 and 7.16 except for 2H EOS, with



136 7 The Merger of Spinning Black Hole–Neutron Star Binaries

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  5  10  15  20  25  30  35  40

-5e-22
-4e-22
-3e-22
-2e-22
-1e-22
 0
 1e-22
 2e-22
 3e-22
 4e-22
 5e-22

D
 h

 / 
m

0

h 
(1

00
M

pc
)

tret (ms)

2H-Q5M135a75

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  5  10  15  20  25  30  35  40

-5e-22
-4e-22
-3e-22
-2e-22
-1e-22
 0
 1e-22
 2e-22
 3e-22
 4e-22
 5e-22

D
 h

 / 
m

0

h 
(1

00
M

pc
)

tret (ms)

H-Q5M135a75

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  5  10  15  20  25  30  35  40

-5e-22
-4e-22
-3e-22
-2e-22
-1e-22
 0
 1e-22
 2e-22
 3e-22
 4e-22
 5e-22

D
 h

 / 
m

0

h 
(1

00
M

pc
)

tret (ms)

HB-Q5M135a75

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  5  10  15  20  25  30  35  40

-5e-22
-4e-22
-3e-22
-2e-22
-1e-22
 0
 1e-22
 2e-22
 3e-22
 4e-22
 5e-22

D
 h

 / 
m

0

h 
(1

00
M

pc
)

tret (ms)

B-Q5M135a75

Fig. 7.16 The same as Fig. 7.14 but for models 2H-Q5M135a75, H-Q5M135a75, HB-Q5M135a75,
and B-Q5M135a75

which the NS is disrupted at a fairly distant orbit. These waveforms are often seen
for BH–NS binaries with a heavy BH (or a high mass ratio) with the prograde BH
spin, which results in the NS tidal disruption, and is never seen for BH–NS binaries
with Q = 2 or high mass-ratio binaries with nonspinning BHs.

The ratio of the areal radius of the remnant BH to the NS radius, RNS, is intimately
related to the different excitation degree of the QNM between low and high mass-
ratio binaries in the presence of NS tidal disruption [21, 22]. Schematic pictures
of merger processes are depicted in Fig. 7.17. If tidal disruption does not occur, the
NS is simply swallowed by the BH and excites a QNM, as shown in the middle
panel of Fig. 7.17. If tidal disruption occurs in a binary with a low mass ratio, the
disrupted material spreads around the BH to soon form a nearly axisymmetric disk.
Approximately speaking, this occurs if the BH areal radius is smaller than the NS
radius, as is shown in the left panel of Fig. 7.17. Thus, the NS tidal disruption has
a strong effect to suppress the excitation of a QNM through the phase cancellation
in the low mass-ratio binary. However, the situation is different in a high mass-ratio
binary. Whereas the disrupted material forms an axisymmetric accretion disk around
the BH in a sufficiently long time duration, the accretion just after the merger does not
proceed in an axisymmetric way in high mass-ratio binaries, such as Q = 4, except
for the extremely stiff EOS. This is because the BH radius for Q = 4 approximately
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Fig. 7.17 Schematic pictures for three types of the merger process. The solid filled circle denotes
the BH, the distorted ellipsoid denotes the NS, the solid circle is the location of the ISCO, and the
dashed circle is the location of the radius at which the tidal disruption occurs. Left the NS is tidally
disrupted, and the spatial extent of the disrupted material is larger than or as large as that of the BH.
Middle the NS is not tidally disrupted. Right the NS is tidally disrupted, and the spatial extent of
the disrupted material is smaller than that of the BH

doubles that for Q = 2, and hence, the disrupted material takes longer time to spread
around the BH. In other words, the NS material accretes onto the BH coherently
even after the tidal disruption, as is shown in the right panel of Fig. 7.17, because the
BH radius is so large that the disrupted material cannot fully cover the BH surface
before the BH swallows a large portion of the material. In the exceptional 2H EOS
case, tidal disruption occurs sufficiently far outside the BH due to the large radius of
the NS, and hence, the disrupted material is able to spread around the BH to form a
nearly axisymmetric accretion disk before the prompt infall. Therefore, the QNM of
a remnant BH is not excited for 2H EOS.

7.7 Gravitational-Wave Spectrum

Key features of gravitational waves are reflected in the Fourier spectrum. In this
chapter, we define the Fourier spectrum as a sum of each Fourier component of two
independent polarizations of the (l, |m|) = (2, 2) mode as

h̃( f ) =
√

|h̃+( f )|2 + |h̃×( f )|2
2

, (7.8)

h̃ A( f ) =
∫

e2π i f t h A(t)dt, (7.9)

where A denotes two polarization modes, + or ×. We show a nondimensional spec-
trum, f h̃( f ), observed at a hypothetical distance of 100 Mpc as a function of the
gravitational-wave frequency, f (Hz), or a normalized amplitude, f h̃( f )D/m0, as a
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function of a nondimensional frequency, f m0. The amplitude of gravitational waves,
h A, is given as the amplitude observed along the z axis, which is the most optimistic
direction for the gravitational-wave detection. We note that the actual amplitude of
gravitational waves depends on an angle locating the source in the sky and on an
angle specifying the orientation of the orbital plane of the binary. The angular aver-
age of the effective amplitude is ≈0.4 f h̃( f ). We always exclude spurious radiation
components for tret � 0 ms, using a step function of the retarded time as a window
function.

To show the dependence of the gravitational-wave spectra on the BH spin parame-
ter, we plot the spectra for models HB-Q2M135a75, HB-Q2M135a5, HB-Q2M135,
and HB-Q2M135a-5 in the left panel of Fig. 7.18 and for models HB-Q3M135a75,
HB-Q3M135a5, HB-Q3M135, and HB-Q3M135a-5 in the right panel of Fig. 7.18.
In the early inspiral phase of f � 1 kHz, where the point-particle approximation
works well, the amplitude of the gravitational-wave spectrum for a given frequency
increases monotonically as a increases. This is a feature expected from the PN calcu-
lation and is explained by the spin-orbit interaction as follows: The power spectrum
of gravitational radiation is written as

dE

d f
∝ [ f h̃( f )]2. (7.10)

On the other hand, retaining only 1.5PN, the lowest-order spin-orbit interaction terms,
(4.10) and (4.14) of [10], derive the expression for this quantity as

dE

d f
= Q

3(1 + Q)2
X5/2

π f 2

[
1 + aX3/2

{
5(4Q + 3)

3(1 + Q)2

}]
. (7.11)

Thus, the effective amplitude, f h̃( f ), for a given frequency f increases monotoni-
cally as the BH spin parameter, a, increases in the inspiral phase.

Figure 7.19 plots the spectra for models 2H-Q2M135a75, H-Q2M135a75, HB-
Q2M135a75, and B-Q2M135a75, for which only the EOS is different, and indicates
that the amplitude in the early inspiral phase does not depend strongly on C . This is
because the finite-size effect of the NS does not play an important role in the early
inspiral phase (but, see [24, 25]), as already found for nonspinning BH–NS binaries.

In the late inspiral phase of 1 kHz � f � fcut, where fcut is a characteris-
tic frequency at which the spectrum starts damping exponentially (see below), the
amplitude is significantly larger than the Taylor-T4 formula for the cases in which
the NS is not disrupted. This is because the binaries in the inspiral and plunge after
the NS enters the BH’s ISCO emit gravitational waves in reality, whereas the Taylor-
T4 formula does not take into account the motion inside the ISCO. In contrast to the
spectrum calculated by the Taylor-T4 formula, which decreases steeply after the last
inspiral phase, the amplitude obtained from the simulation depends only weakly on
the gravitational-wave frequency in that phase, as far as the tidal disruption does not
occur.



7.7 Gravitational-Wave Spectrum 139

 2e-23

 3e-23
 4e-23
 5e-23
 6e-23
 8e-23
 1e-22

 2e-22

 3e-22
 4e-22
 5e-22

 500  700  1000  2000  3000  5000
 0.01

 0.02

 0.03
 0.04
 0.05
 0.06
 0.08
 0.1

 0.2

 0.3
 0.01  0.02  0.03 0.04  0.06 0.08 0.1

cp
M001ta

)f(hf~ f h
(f

) 
D

 / 
m

0
~

f (Hz)

HB Q=2

f m0

LCGT

Sta
nd

ar
d

Broadband
ET

a=0.75
a=0.5

a=0
a=-0.5  3e-23

 4e-23
 5e-23
 6e-23
 8e-23
 1e-22

 2e-22

 3e-22
 4e-22
 5e-22

 400 500  700  1000  2000  3000
 0.01

 0.02

 0.03
 0.04
 0.05
 0.06
 0.08
 0.1

 0.2
 0.01  0.02  0.03  0.04  0.06  0.08 0.1

cp
M001ta

)f( hf~ f h
(f

) 
D

 / 
m

0
~

f (Hz)

HB Q=3

f m0

LCGT

Sta
nd

ar
d

Broadband

ET
a=0.75
a=0.5

a=0
a=-0.5

Fig. 7.18 Gravitational-wave spectra for BH–NS binaries with HB EOS, MNS = 1.35M� and
a = 0.75, 0.5, 0, and −0.5. The left and right panels show the spectra for Q = 2 and 3, respectively.
The upper axis denotes the normalized frequency, f m0, and the right axis denotes the normalized
amplitude, f h̃( f )D/m0. The bottom axis denotes the frequency, f , in Hz, and the left axis denotes
the nondimensional amplitude of gravitational waves, f h̃( f ), observed at a hypothetical distance
100 Mpc from the binary along the z axis. The dashed curves are planned noise curves of the LCGT
(“LCGT”), the Advanced LIGO optimized for 1.4M� NS-NS detection (“Standard”), the Advanced
LIGO optimized for the burst detection (“Broadband”), and the Einstein Telescope (“ET”) [23]

Fig. 7.19 The same
as Fig. 7.18 but
for (Q,MNS, a) =
(2, 1.35M�, 0.75) with 2H,
H, HB, and B EOSs. The spec-
trum derived by the Taylor-T4
formula is also included
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The most fruitful information of the NS comes from the gravitational-wave spec-
trum in the merger phase through the “cutoff frequency,” fcut, which depends on the
BH spin as well as the NS compactness as described in Chap. 6 (see also [26]). If
the NS tidal disruption occurs, the spectrum damps at f = ftidal ∼ 2–4 kHz, which
denotes the frequency at the tidal disruption and depends sensitively on physical
parameters of the binary. In that case, gravitational waves for a higher frequency,
f � fcut ≈ ftidal, are not emitted by the binary in the inspiral motion but only
weakly by disrupted material. Because the disrupted material gradually spreads
around the BH to form a nearly axisymmetric disk, the emission of gravitational
waves is suppressed at the high frequency. Thus, the spectrum shows a relatively

http://dx.doi.org/10.1007/978-4-431-54201-8_6
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moderate damping around f ≈ fcut, which is closely related to the NS compactness
through the tidal disruption. The spectra for binaries with (Q, a) = (2,≥0) and
(3,≥0.5) in the left panel of Fig. 7.18 correspond to these cases. We see that the cut-
off frequency, fcut, for these models decreases as the BH spin parameter increases.
This is ascribed to the decrease of the orbital frequency at the tidal disruption for
a binary with the prograde BH spin. The enhancement of the effective centrifugal
force by the spin-orbit interaction reduces the orbital frequency at the tidal disrup-
tion, ftidal, although the orbital separation at the tidal disruption itself does not vary
much even in the presence of the BH spin. If the tidal disruption does not occur dur-
ing the merger, however, inspiral-like motion continues at higher frequencies near
and even inside the ISCO until the BH swallows the NS. In this case, the spectrum
amplitude depends only weakly on f in the frequency range f � fcut and damps for
f � fcut, which is closely related to the QNM frequency of the remnant BH, fQNM.
The spectra for (Q, a) = (2,−0.5) and (3,≤0) in Fig. 7.18 show this feature. Note
that the amplitude for model HB-Q3M135a-5 is smaller than for model HB-Q3M135
for the frequency range shown in Fig. 7.18 because tidal disruption does not play an
important role, and (7.11) applies throughout the merger in both cases.

It is noteworthy that a prograde BH spin is favorable for the gravitational-wave
detection in the inspiral phase and the estimation of fcut in the merger phase because
the prograde spin enhances the amplitude for a given frequency in the inspiral phase
and decreases the cutoff frequency in the merger phase. Note that the most sensitive
frequency range for ground-based detectors is f ∼ 10 Hz–1 kHz, which is usually
lower than fcut. Thus, the features found here are encouraging for the gravitational-
wave astronomy to become an important tool for investigating the NS radius and
EOS.

The gravitational-wave spectra of binaries with high mass ratios show qualita-
tively different behavior for a high frequency. Figure 7.20 plots the gravitational-
wave spectra obtained for models with (Q,MNS, a) = (4, 1.35M�, 0.75) and
(5, 1.35M�, 0.75). For these binaries (except for the model with 2H EOS), both
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Fig. 7.20 The same as Fig. 7.18 but with the left panel for (Q,MNS, a) = (4, 1.35M�, 0.75) and
the right panel for (5, 1.35M�, 0.75) with 2H, H, HB, and B EOSs. The spectrum derived by the
Taylor-T4 formula is also included
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Fig. 7.21 A schematic figure
of three types of gravitational-
wave spectra. Spectrum (i)
is for the case in which tidal
disruption occurs far outside
the ISCO, and spectrum (ii)
is for the case in which tidal
disruption does not occur.
Spectrum (iii) is for the case
in which tidal disruption
occurs and the QNM is also
excited. The filled and open
circles denote ftidal and fQNM,
respectively

f

f h(f)

(i)

(iii)

(ii)

f -1/6

the NS tidal disruption and the excitation of a QNM of the remnant BH occur as
is described in Sect. 7.6. Hence, the gravitational spectrum has two characteristic
frequencies, i.e., ftidal and fQNM, simultaneously. The spectra plotted in Fig. 7.20
indeed show such features. After the NS is tidally disrupted, the amplitude of the
gravitational-wave spectrum shows a slow damp for f � ftidal ≈ 2 kHz. Then, the
spectrum damps steeply above the frequency of the QNM, f � fQNM ≈ 3 kHz.
A schematic figure of different spectra is depicted in Fig. 7.21, and the spectrum
described in this paragraph corresponds to spectrum (iii) in this figure. This suggests
that the cutoff frequency, fcut, of a high mass-ratio binary is not determined by a
unique physical process like NS tidal disruption or a ringdown of a remnant BH, as
far as both of them occur.

To estimate the cutoff frequency quantitatively, we fit the gravitational-wave spec-
tra by a function with seven free parameters of the form (essentially the same as (6.6))

f h̃fit( f )D

m0
= f h̃3PN( f )D

m0
e−( f/ fins)

σins + Ae−( f/ fdam)
σdam [1 − e−( f/ fins2)

σins2 ],
(7.12)

where h̃3PN( f ) is the Fourier spectrum calculated by the Taylor-T4 formula. The first
term in (7.12) models the inspiral spectrum, and the second term models the merger
and ringdown spectra. We determine seven free parameters fins, fins2, fdam, σins,

σins2, σdam, and A by the condition that the following weighted norm is minimized
(the same as (6.7)):

∑
i

{
[ fi h̃i ( fi )− fi h̃fit( fi )] f 1/3

i

}2
. (7.13)

Here, i denotes the data point for the spectrum. In Chap. 6 (see also [26]), we identify
fdam in (7.12) with fcut, which is most strongly correlated with the NS compactness

http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Fig. 7.22 The fitting for
model HB-Q2M135a75. The
long-dashed and middle-
dashed curves show the first
and second terms of (7.12),
respectively. The short-dashed
curve is the sum of these two
terms
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for nonspinning BH–NS binaries.2 In this chapter, however, we obtain no strong
correlation between fdam (and the other parameters) and any parameter of physical
importance, such as a or C . The reason may be ascribed to the inadequacy of the
functional form of (7.12), where the set of free parameters is degenerate to some
extent. In particular, such a degeneracy is severe for a high mass-ratio binary due
to two reasons. First, modeling an inspiral spectrum by the Taylor-T4 formula is
inadequate for the late inspiral phase of a high mass-ratio binary due to the lack
of information from the Taylor-T4 formula, as is described in Sect. 7.6. Second,
there is no unique, physically motivated identification of fcut when both the NS tidal
disruption and the QNM excitation occur. (Fortunately, these degeneracies did not
cause problems in the case of the nonspinning BH–NS binary with a low mass ratio
in Chap. 6.) To overcome these problems with the fitting procedure, we redefine fcut
as the higher one of two frequencies at which the second term in (7.12) takes a half
value of its maximum. An example of this fitting procedure is shown in Fig. 7.22. In
this figure, Hmax corresponds to the maximum value of the second term in (7.12).
We find that this definition of fcut works well to read off the NS compactness from
the gravitational-wave spectrum.

Figure 7.23 shows fcutm0 for spectra obtained for all binaries with Q = 2 as a
function of the NS compactness, C , in logarithmic scales. We also plot the typical
QNM frequency of the remnant BH, fQNM, which depends primarily on a of the
initial BH for a fixed value of Q. For each value of a, we find that fcutm0 increases
monotonically as C increases, and an approximate power law holds as

ln( fcutm0) ≈ p(a) ln C + q(a) (Q = 2), (7.14)

where p(a)(>0) and q(a) depend only on a, for any value of a when Q = 2. This
monotonic relation between fcutm0 and C suggests us a possibility to extract the
compactness, C , of a NS from the gravitational-wave observation. It is noteworthy

2 We refer to fdam as fcut throughout in Chap. 6. In this chapter, we distinguish fdam from fcut
because the method for determining fdam is different from that for fcut .

http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Fig. 7.23 The cutoff fre-
quency times the total mass
fcutm0 as a function of the
NS compactness C for Q = 2
binaries in logarithmic scales.
The solid and dashed lines are
obtained by linear fittings of
data for a = 0.75 and a = 0,
respectively. Horizontal lines
denote the typical QNM fre-
quencies of the remnant BHs.
We note that fQNM > fcut for
a = 0.75 as long as C ≤ 0.2  0.01
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that this relation includes only C but neither MNS nor RNS independently. It should
also be noted that the simple relation found here is a consequence of our choice
for a common value of the adiabatic index of the core EOS, 
2 = 3 (see Chap. 6).
The increase of fcutm0 with the increase of C indicates that a more compact NS
is less subject to the BH tidal effect and disrupted at a closer orbit to the BH than
a less compact NS is. The difference in fcutm0 due to the difference in a becomes
clearer for larger values of C , and conversely, fcutm0 depends only weakly on a if
the compactness is as small as ≈ 0.12. The weak dependence on a for the small
values of C is due to the fact that the effect of the BH spin at a distant orbit, at which
the NS with a large radius is disrupted, is weak.

Figure 7.23 also shows that p(a) is a decreasing function of a. More specifically
we obtain the relations

ln( fcutm0) = (2.92 ± 0.06) ln C + (2.32 ± 0.12) (7.15)

for a = 03 and

ln( fcutm0) = (2.39 ± 0.06) ln C + (1.11 ± 0.11) (7.16)

for a = 0.75 by a linear fitting. The decreasing nature of p(a) is explained by the
fact that the spin-orbit repulsive force for the prograde BH spin, which reduces the
orbital frequency at the NS tidal disruption, works efficiently for a close orbit and
hence for the NS with a large value of C . It is important that p(a) is always larger
than 1.5, which is expected from the analysis of the condition for the mass shedding,

Ωm0 ∝ C 3/2(1 + Q)3/2√
Q

. (7.17)

3 The relation between fcutm0 and C is different from the one obtained in Chap. 6 due to the different
definition of fcut .

http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Fig. 7.24 The same as Fig. 7.23 but for a = 0.75 (left) and 0.5 (right). In both panels, fQNM > fcut
for Q = 2

The large value of p(a) is favorable for determining the NS compactness from
the gravitational-wave observation because the dependence of fcut on C becomes
stronger. Note that fcut is always lower than the QNM frequency of the remnant
BH for a realistic range of the compactness C � 0.2 for (Q, a) = (2,�0). If a is
negative, on the other hand, fcut for the binary with a compact NS of C � 0.18 may
be determined by the QNM frequency, fQNM, and it will be difficult to determine the
NS compactness from the cutoff frequency.

Figure 7.24 shows the fcutm0–C relation of gravitational-wave spectra obtained
for all binaries with a = 0.75 and a = 0.5. This figure, combined with Fig. 7.23,
clearly indicates that the approximate power law of the form

ln( fcutm0) = p(Q, a) ln C + q(Q, a) (7.18)

holds for binaries of C � 0.2 with Q = 5 as far as a ∼ 0.75 and with Q ≤ 4
as far as a ∼ 0.5. The striking feature is that the cutoff frequency is lower than
the QNM frequency of the remnant BH, fQNM, for (Q, a) = (≤4, 0.75) and for
(Q, a) = (≤3, 0.5) even if a QNM is excited. Accordingly, fcut shows a strong
correlation with C . For (Q, a) = (5, 0.75) and (4, 0.5), fcut is lower than fQNM
as far as C � 0.18 and 0.17, respectively, and, therefore, the strong correlation
between fcut and C is found within this range. Although fcut for the binary with
a high mass ratio should not be considered as ftidal due to the QNM excitation,
monotonic relations between fcutm0 and C gives us an opportunity to explore the
NS radius and EOS. It should be noted that gravitational waves from a higher mass-
ratio binary are more subject to the gravitational-wave detection due to the larger
amplitude in the inspiral phase and the lower cutoff frequency. We again note that a
massive BH of MBH � 5M� is an astrophysically realistic consequence of the stellar
evolution [14, 15]. Taking these facts into account, we conclude that gravitational
waves from the BH–NS binary are a promising tool to investigate the NS radius and
EOS in the next decade.
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7.8 Energy and Angular Momentum Radiated
by Gravitational Waves

Tables 7.6 and 7.7 list the total energy �E/M0 and angular momentum �J/J0
radiated by gravitational waves. We estimate systematic errors in the estimation of
�E and �J to be ∼10 %, which are ascribed mainly to the finite grid resolution
and partly to the finite extraction radius for Ψ4. Because �E and �J depend on the
choice of Ω0m0, we do not compare directly the results obtained for models with
different values of Ω0m0 and accordingly models with different values of Q (see
Tables 7.1 and 7.2).

Contributions from all the l = 2–4 modes of gravitational waves are taken into
account. The (l, |m|) = (2, 2) mode always contributes by �85 % to �E and �J .
�E and�J taken away by higher-mode gravitational waves are substantial for high
mass-ratio binaries. For example, the (3, 3) mode contributes by ∼ 2, 5, 7.5, and
10 % for binaries with Q = 2, 3, 4, and 5, respectively. The (4, 4)mode gravitational
waves contribute by 1 ∼ 2 % for binaries with Q = 3–5. These values depend only
weakly on a and the EOS, and contributions of modes with l �= m are negligible
compared to those of l = m modes.

Tables 7.6 and 7.7 show that �E/M0 and �J/J0 increase monotonically as the
NS compactness, C , increases for binaries with fixed values of (Q, a). This is the
same result as that obtained for nonspinning BH–NS binaries and is explained by a
longer inspiral phase for a softer EOS due to the later onset of mass shedding and
the later tidal disruption. The ratio between these two values, (�J/J0)/(�E/M0),
decreases as C increases. This agrees again with the result for the nonspinning BH
cases and is explained by a relation �J/�E ≈ m/Ω for a given angular harmonic
of m and by the fact that more radiation is emitted from the orbit of a larger value
of Ω for a softer EOS. Note that these arguments are based on little dependence of
gravitational-wave luminosity in the inspiral phase on C for a fixed value of a; tidal
correction to the luminosity in the inspiral phase is not important.

Table 7.6 shows that �E/M0 does not depend strongly on a, while �J/J0
increases as a increases in many cases for a fixed value of C . Remember that dE/d f
in the inspiral phase increases for a large value of a, as is given by (7.11). However,
the orbital frequency, Ω , at the tidal disruption decreases for a large value of a due
to the spin-orbit interaction. Because of these two competing effects, the binding
energy at the tidal disruption depends only weakly on a, and hence, �E/M0 does
not change very much among different values of a. The increase of�J/J0 for a large
value of a is due to the large value of dE/d f in the inspiral phase, during which Ω
is relatively low, and to the approximate relation �J ≈ m�E/Ω , which enhances
the contribution of low-frequency gravitational waves.

Finally, we comment on the linear momentum�P radiated by gravitational waves
and an associated kick velocity vkick ≡ �P/M0 of the remnant BH. Because
of the mass and spin asymmetries, the remnant BH achieves the kick velocity of
∼100–250 km s−1 when the effect of tidal disruption is weak, e.g., for models HB-
Q3M135a-5 and B-Q3M135. Although our results for �P do not converge as well



146 7 The Merger of Spinning Black Hole–Neutron Star Binaries

Table 7.6 Total radiated energy �E and angular momentum �J carried away by gravitational
waves for Q = 2 and 3

Model �E/M0 (%) �J/J0 (%) (�J/J0)/(�E/M0)

2H-Q2M135a75 0.58 16 27
1.5H-Q2M135a75 0.79 19 24
H-Q2M135a75 1.1 24 21
HB-Q2M135a75 1.4 26 19
B-Q2M135a75 1.7 29 17
2H-Q2M135a5 0.60 17 26
1.5H-Q2M135a5 0.79 19 24
H-Q2M135a5 1.2 24 20
HB-Q2M135a5 1.4 26 19
B-Q2M135a5 1.7 28 17
2H-Q2M135a-5 0.57 15 26
H-Q2M135a-5 1.1 19 16
HB-Q2M135a-5 1.4 19 14
B-Q2M135a-5 1.6 21 13
2H-Q2M12a75 0.40 12 30
H-Q2M12a75 0.79 19 24
HB-Q2M12a75 0.95 21 22
B-Q2M12a75 1.2 24 21
2H-Q2M145a75 0.73 19 25
H-Q2M145a75 1.5 27 19
HB-Q2M145a75 1.7 30 17
B-Q2M145a75 2.1 32 15
2H-Q3M135a75 0.72 20 28
1.5H-Q3M135a75 0.97 23 24
H-Q3M135a75 1.3 27 20
HB-Q3M135a75 1.6 30 19
B-Q3M135a75 2.0 34 17
2H-Q3M135a5 0.70 19 27
1.5H-Q3M135a5 0.94 22 23
H-Q3M135a5 1.4 26 19
HB-Q3M135a5 1.7 29 17
B-Q3M135a5 2.0 31 15
HB-Q3M135a-5 1.3 19 14
2H-Q3M145a75 0.88 22 25
H-Q3M145a75 1.7 31 18
HB-Q3M145a75 2.1 34 16
B-Q3M145a75 2.5 37 15

�E and �J are normalized with respect to the initial ADM mass M0 and angular momentum J0,
respectively. We also show the ratio between �J and �E . (See Table 6.3 in Chap. 6 for models of
nonspinning BH–NS binaries)

http://dx.doi.org/10.1007/978-4-431-54201-8_6
http://dx.doi.org/10.1007/978-4-431-54201-8_6
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Table 7.7 The same as Table 7.6 but for Q = 4 and 5

Model �E/M0 (%) �J/J0 (%) (�J/J0)/(�E/M0)

2H-Q4M135a75 0.81 23 28
H-Q4M135a75 1.5 31 21
HB-Q4M135a75 1.8 33 19
B-Q4M135a75 2.1 36 17
2H-Q4M135a5 0.72 19 27
H-Q4M135a5 1.5 27 19
HB-Q4M135a5 1.7 29 17
B-Q4M135a5 1.9 31 16
2H-Q5M135a75 0.83 24 29
H-Q5M135a75 1.6 33 20
HB-Q5M135a75 1.9 35 19
B-Q5M135a75 2.1 36 17

as those for �E and �J due to the slow convergence of (l,m) �= (2, 2) mode
gravitational waves, the values of vkick are in reasonable agreements with the fitting
formula derived using the results of simulations for the binary BH merger [27, 28].
By contrast, vkick is suppressed to �100 km s−1 when tidal disruption occurs far out-
side the ISCO. The reason for this is that the tidal disruption suppresses significantly
the gravitational radiation from the last inspiral and merger phases, during which the
linear momentum is emitted most efficiently. This trend is consistent with the result
found in [26].

References

1. B.D. Lackey, K. Kyutoku, M. Shibata, P.R. Brady, J.L. Friedman, Phys. Rev. D 85, 044061
(2012)

2. M. Shibata, Prog. Theor. Phys. 96, 917 (1996)
3. P. Wiggins, D. Lai, Astrophys. J. 532, 530 (2000)
4. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972)
5. Z.B. Etienne, Y.T. Liu, S.L. Shapiro, T.W. Baumgarte, Phys. Rev. D 79, 044024 (2009)
6. L. Blanchet, Living Rev. Relativ. 9, 4 (2006)
7. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 82, 044049 (2010)
8. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 049902(E) (2011)
9. K. Kyutoku, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 064018 (2011)

10. L.E. Kidder, Phys. Rev. D 52, 821 (1995)
11. L.G. Fishbone, Astrophys. J. 185, 43 (1973)
12. J.A. Marck, Proc. R. Soc. Lond. 385, 431 (1983)
13. M. Ishii, M. Shibata, Y. Mino, Phys. Rev. D 71, 044017 (2005)
14. J.E. McClintock, R.A. Remillard, in Compact Stellar X-ray Sources, ed. by W.H.G. Lewin, M.

van der Klis (Cambridge University Press, Cambridge, 2006)
15. K. Belczynski, T. Bulik, C.L. Fryer, A. Ruiter, F. Valsecchi, J.S. Vink, J.R. Hurley, Astrophys.

J. 714, 1217 (2010)
16. F. Foucart, M.D. Duez, L.E. Kidder, S.A. Teukolsky, Phys. Rev. D 83, 024005 (2011)



148 7 The Merger of Spinning Black Hole–Neutron Star Binaries

17. R. Penrose, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W.
Israel (Cambridge University Press, Cambridge, 1979)

18. E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009)
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Chapter 8
Summary

We performed numerical simulations of the BH–NS binary merger for a wide range
of binary parameters using a fully general relativistic AMR code, SACRA, with nine
piecewise polytropic EOSs. In this work, we employed the EOSs with two free para-
meters which determine the core EOSs. The crust EOS was fixed throughout the
study, and the core EOS was varied for a wide range to perform systematic investiga-
tion. We investigated the dependence of the merger process, properties and structures
of the remnant disk, properties of the remnant BH, gravitational waveforms, and their
spectra on the NS EOS. In particular, we focused on the case in which the mass ratio
is small and/or the BH has a prograde spin, and the tidal disruption of the NS by a
companion BH plays an important role. We adopted a number of parameters for the
mass ratio, NS mass, and BH spin, which is zero or (anti)aligned with the orbital
angular momentum of a binary. By preparing the initial condition with a distant orbit
and a small eccentricity, we always tracked �5 quasicircular orbits in the inspiral
phase and studied the merger phase in a realistic setting. We also evolved the merger
remnant, i.e., the BH-disk system, until they settled to a quasistationary state. In the
following, we summarize the conclusions of this thesis.

8.1 Summary of Our Results

First, the conclusion for the remnant disk and BH is as follows:

1. The disk mass depends strongly on the EOS, because the EOS determines the
location at which the tidal disruption occurs through the compactness C of the
NS. For a nonspinning BH–NS binary, the disk mass is correlated strongly with
the NS compactness C , and for Q = 2, it can be �0.01M� for a wide range of
the EOSs and the NS masses. However, the disk mass is tiny for Q = 3, unless
the EOS is extremely stiff like 2H EOS or the NS mass is low. For the BH-NS
binaries consisting of a nonspinning BH, the disk mass can be �0.01M� for
Q = 3, only for the case in which C � 0.16.
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2. It is shown that a prograde BH spin enhances the effect of NS tidal disruption
by the spin-orbit interaction. The mass of the remnant disk increases as the BH
spin increases, because the ISCO radius of the BH becomes small. A remarkable
point is that the BH-NS binary with a high mass ratio of even Q = 5 can form a
sufficiently massive disk of �0.1M� for a wide range of the NS compactness if
the BH has a prograde spin of a = 0.75. This amount of the disk mass for a high
mass-ratio binary is hardly expected if the BH is nonspinning. This fact suggests
that the formation of a BH-massive accretion disk system is a frequent outcome
of the BH-NS binary merger with a prograde BH spin and, may be encouraging
for the merger scenario of a short-hard GRB. By contrast, the disk mass becomes
very small if the BH has a retrograde spin.

3. It is shown that some portion of the disrupted material can extend to �400 km
from the BH if the massive disk is formed. The maximum rest-mass density in
the disk is larger for binaries with smaller values of Q, because the ISCO radius
and the length scale of the system are smaller for such binaries. The extent of the
disk could be larger for a larger value of Q. For such a remnant disk, the lifetime
should be longer.

4. The spin parameter of the remnant BH depends primarily on the spin parameter of
the initial BH, a, and the mass ratio, Q. By contrast, the spin parameter depends
only weakly on the EOS for given masses of the BH and NS, unlike the disk mass.
In particular, extrapolation of our results suggests that the merger of an extremely
spinning BH and an irrotational NS does not form an overspinning BH.

Next, the conclusion for gravitational waves is as follows:

1. For the case in which the tidal disruption occurs before the orbit reaches the
ISCO, the gravitational-wave amplitude decreases quickly at its onset, and the
emission of ringdown gravitational waves associated with the quasinormal mode
of the remnant BH is suppressed for a nonspinning BH–NS binary. Only in the
nonspinning BH–NS binaries with low values of mass ratio, the tidal effects
play an important role, and hence the remarkable dependence of the gravitational
waveforms on the EOS is found only for such cases. With stiffer EOSs, the
radius of the NS becomes larger and the tidal effect is more relevant than with
softer EOSs.

2. The gravitational waveform also depends strongly on the BH spin. The number of
gravitational-wave cycles becomes larger for a prograde BH spin than that for a
zero BH spin in the inspiral phase, because an additional repulsive force due to the
spin-orbit interaction reduces gravitational-wave luminosity and an approaching
velocity of the binary. We found that the Taylor-T4 formula does not reproduce
the phase evolution in the late inspiral phases accurately, especially when the
mass ratio is large.

3. For nonspinning BH–NS binaries, the waveforms are classified simply into two
categories. When tidal disruption of the NS occurs, the waveform is composed
of an inspiral waveform and a prompt shutdown at the tidal disruption. When
tidal disruption does not occur, the waveform is composed of inspiral and QNM
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waveforms. However, we find that the NS tidal disruption and the excitation of a
QNM can occur simultaneously for binaries with a high mass ratio and a prograde
BH spin. This is because the disrupted material cannot become axisymmetric
before the prompt infall due to a larger BH areal radius for a larger value of Q. As
a result, the material accretes onto the remnant BH coherently, and therefore the
QNM of the remnant BH is excited, except for the case in which the extremely
stiff EOS is adopted.

4. The Fourier spectrum of gravitational waves is characterized by a cutoff frequency,
fcut, above which the spectrum amplitude exponentially damps. We find that the
cutoff frequency fcut depends strongly on the mass ratio and the compactness C
of the NS. For a given small mass ratio such as Q = 2, the value of fcut increases
monotonically and steeply with C , depending weakly on the adiabatic index, Γ2,
of the core EOS. For the nonspinning BH–NS binaries, we derive the power-law
relation between C and fcut for Q = 2 and Γ2 = 3 as fcut ∝ C 3.9, in which
the power index of C is significantly larger than 1.5 which is expected from the
analysis of the mass-shedding limit. This implies that the dependence of fcut on
C is stronger than that for fshed, and indicates that the observation of fcut will
play a role for constraining the value of C .

5. The cutoff frequency of the gravitational-wave spectrum is correlated with the
NS compactness in a clear manner when the NS is disrupted, and the BH spin
modifies this correlation. The prograde BH spin decreases the cutoff frequency
for fixed values of C and Q, because the angular velocity at the tidal disruption
becomes smaller than that for a = 0. The cutoff frequency is lower for a smaller
value of C for fixed values of Q and a, as in the case of nonspinning BH–NS
binaries, because the tidal effect is stronger and the disruption occurs at a more
distant orbit. The BH spin also modifies the spectrum for the inspiral phase.
Specifically, the spectrum amplitude for a given frequency in the inspiral phase
becomes large when the BH has a prograde spin, and this is consistent with the
PN estimation. Both the low cutoff frequency and large spectrum amplitude in
the inspiral phase for a prograde BH spin are encouraging for gravitational-wave
astronomy to become a tool to investigate the NS compactness and EOS. It is
noteworthy that the BH–NS binary with a high mass ratio of Q � 5 is a more
promising target for ground-based gravitational-wave detectors if the BH has a
prograde spin and the NS tidal disruption occurs.

6. Varying the core EOS modifies the value of fcut , because the central density profile
and tidal deformability of the NS depends on the stiffness of the core EOS. For the
variation fromΓ2 = 3 to 2.4, the value of fcut is modified by ∼20 %. This suggests
that the details of the core EOS for ρ � 1015 g cm−3 may play an important role
for determining the gravitational waveform from the BH-NS binaries composed
of high-mass NSs.
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8.2 Future Work

Finally, we list several issues to be explored in the future.

1. The models of BH–NS binaries adopted in this thesis are not sufficiently
astrophysically realistic because of a relatively small mass ratio, Q, and the
complete alignment of the BH spin angular momentum to the orbital angular
momentum of a binary. It is necessary to compute gravitational waves from a
binary with the large mass ratio and with the BH spinning in the direction not
aligned with the orbital angular velocity [1, 2]. It is also important to perform
simulations of (nearly-)extremely spinning BH–NS binaries. It should be noted
that, however, it is difficult to compute initial data with such a large spin in the
puncture framework [3]. This issue must be overcome in the near future [4].

2. Piecewise polytropic EOSs with two pieces employed in this thesis are not
accurate enough to model high-mass NSs with large central density of ρmax �
1015 g cm−3 [5]. More detailed (piecewise polytropic) EOSs are necessary to cal-
culate gravitational waves from a BH–relatively massive NS binary merger for
which the tidal deformation and disruption of the NS plays an important role, i.e.,
BH–NS binaries with moderately large BH spins of a � 0.75. The (undesirable)
effect of approximate treatment of thermal effects is also a matter of debate.

3. The implementation of detailed microphysics, such as a finite-temperature effect
and a neutrino transport process, is essential even qualitatively to explore the
evolution of the remnant BH–accretion disk system and to discuss the jet launch
such that short-hard GRBs require. Recently, we perform fully general relativistic
simulations of binary NS mergers incorporating a finite-temperature nucleonic
and hyperonic EOS with and an approximate neutrino emission scheme [6, 7].
We plan to work on BH–NS binary mergers along these lines. The magnetic field
may also be important for the investigation of short-hard GRBs [8, 9].
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Appendix A
The Canonical Formulation
of General Relativity

The meaning of the 3 + 1 decomposition and the Arnowitt-Deser-Misner (ADM)
integral become clear when general relativity is written in the canonical formula-
tion [1]. In this Appendix, we review the canonical formulation of general relativity
and introduce the ADM integral as a surface integral (see [2, 3] for the details).
The spacetime is denoted by M , a spacelike hypersurface is denoted by Σ , and the
timelike tube foliated by two surfaces S is denoted by B.

A.1 Lagrangian Formulation

The Lagrangian density of general relativity is given by

LG = 4R
√−g, (A.1)

and the Einstein equations are obtained by extremizing the Einstein-Hilbert action,

SG = 1

16π

∫
M

4R
√−gd4x, (A.2)

with respect to the variation of the metric δgμν . Here, the equation of motion is
invariant up to a constant rescaling of the action, and the constant 1/16π is chosen
for later convenience.1 Using relations

1 Specifically, we take this value so that the value of the Hamiltonian agrees with the value of the
energy in the Newtonian limit.
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δ
(√−g

) = 1

2

√−ggαβδgαβ = −1

2

√−ggαβδg
αβ, (A.3)

δ4Rμν = 1

2

(
−gαβ∇α∇βδgμν − gαβ∇μ∇νδgαβ

+ gαβ∇α∇μδgνβ + gαβ∇α∇νδgμβ
)
, (A.4)

the variation of SG is written as

δSG = 1

16π

∫
M

Gμνδg
μν√−gd4x + 1

16π

∫
M

∇μvμ
√−gd4x, (A.5)

vμ ≡ ∇αδgμα − gαβ∇μδgαβ. (A.6)

The action of the matter is generally written as

SM = αM

∫
M

LMd4x, (A.7)

where αM and L are a coupling constant and the matter Lagrangian density, respec-
tively. The energy-momentum tensor is defined by

Tμν ≡ − 2αM√−g

δLM

δgμν
, (A.8)

and therefore the variation of SM is written as

δSM = 1

16π

∫
M

−8πTμνδg
μν√−gd4x. (A.9)

When the divergence term of (A.5) can be dropped using the Gauss’ theorem, the
variation of S = SG + SM with respect to the spacetime metric gives the Einstein
equations,

Gμν = 8πTμν, (A.10)

in the bulk spacetime. Because SG have to be invariant under diffeomorphisms, the
contracted Bianchi identity ∇αGμα = 0 is derived when we write the variation of
metric as δgμν = −£wgμν for a generator of the diffeomorphism, wμ. The diffeomor-
phism invariance of SM derives the local energy-momentum conservation equation,
∇αTμα = 0, if the equation of motion is satisfied.2

2 It should be noted that the equation of motion for the matter field is obtained by the variation of
SM with respect to the matter field, although the local energy-momentum conservation sometimes
gives the equation of motion. For example, the Lagrangian density of a Klein-Gordon scalar field
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It is not obvious that we can always drop the divergence term ∇μvμ, and indeed we
cannot do in general. Such a complexity arises due to a peculiar feature of the Einstein-
Hilbert action, which contains the second derivative of the metric in the scalar cur-
vature. For a spacetime in which the value of the metric is fixed on the boundary
∂M but that of the first derivative is not, this action have to be supplemented with
proper boundary terms [4, 5], i.e., the so-called Gibbons-Hawking-York term. For
simplicity, we assume that the spacetime is bounded by two spacelike hypersur-
faces Σ1 (past) and Σ2 (future) and a timelike tube foliated by two surfaces B. The
divergence term is rewritten using the Gauss’ theorem and relations for a spacelike
hypersurface,

nμvμ = nμγ αβ(∇βδgμα − ∇μδgαβ) = −nμγ αβ∇μδgαβ, (A.14)

δK = −γμαδCμαβnβ = −1

2
nμγ αβ∇μδgαβ, (A.15)

where δCμαβ is the difference between covariant derivatives (or the Christoffel
symbol) associated with the original and perturbed metric. We also adopt similar
relations for the timelike tube by denoting the induced metric and the extrinsic
curvature3 by

hμν ≡ gμν − sμsν, (A.16)

Kμν ≡ −1

2
£shμν, (A.17)

and we observe that the variation of the Einstein-Hilbert action leads

footnote 2 (continued)
φ with a given potential V(φ) (such as m2φ2) is

LKG = −
[

1

2
gαβ(∇αφ)(∇βφ)+ V(φ)

]√−g, (A.11)

and hence the energy-momentum tensor is given by

TKG
μν = (∇μφ)(∇νφ)− gμν

[
(∇αφ)(∇αφ)+ V(φ)

]
, (A.12)

where αKG is chosen to be the unity. The equation of motion is given by the variation with respect
to φ, and becomes

δLKG

δφ
∝ ∇α∇αφ − V ′(φ) = 0, (A.13)

where the prime denotes the derivative with respect to φ, and it is seen that this equation is also
derived from ∇αTμα = 0. However, we have to rely on the variation with respect to the fields when
we have more than one scalar fields.
3 The signature of the extrinsic curvature is not universal, and [2, 3] use opposite convention. Ours
is consistent with, e.g., that of [6, 7].
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δSG = 1

16π

∫
M

Gμνδg
μν√−gd4x + 1

8π

∫
B
δK

√−hd3x

− 1

8π

∫
Σ2

δK
√
γ d3x + 1

8π

∫
Σ1

δK
√
γ d3x. (A.18)

Notice again that the value of the metric itself is fixed on the boundaries. This
expression elucidates the necessity of adding Gibbons-Hawking-York terms,

SGHY = − 1

8π

∫
B

K
√−hd3x + 1

8π

∫
Σ2

K
√
γ d3x − 1

8π

∫
Σ1

K
√
γ d3x, (A.19)

to have a well-posed variational problem. In order to have a finite value of the action,
we have to also add

SGHY,0 = 1

8π

∫
B

K0
√−hd3x − 1

8π

∫
Σ2

K0
√
γ d3x + 1

8π

∫
Σ1

K0
√
γ d3x, (A.20)

where K0 and K0 are extrinsic curvatures evaluated at the flat spacetime. This term
is not subjected to the variation of the metric. By adding all terms, we obtain the total
action,

S = SG + SM + SGHY + SGHY,0. (A.21)

A.2 Hamiltonian Formulation

Hamiltonian formulation of general relativity is derived in a usual way from the
Lagrangian formulation with the aid of the 3 + 1 decomposition. Hereafter, we
always assume that the spacetime is foliated by a one-parameter family of spacelike
hypersurfaces {Σt}, and denote the future-directed normal vector by nμ. We also
assume that the time vector is written by tμ = αnμ + βμ. The 3 + 1 decomposition
of the gravitational part is performed using the relation,

4R = 4Rμανβγ
μνγ αβ − 24Rμνnμnν

= R − K2 + KijK
ij + 2∇μ(nμ∇νnν − nν∇νnμ). (A.22)

The first three terms give the bulk contribution, and the last divergence term gives
the surface contribution. The surface term cancels with the Gibbons-Hawking-York
term atΣ1 andΣ2 as is naturally expected, and only the integral at B contributes to
the action. Combining with the Gibbons-Hawking-York term, we have
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SG + SGHY + SGHY,0 = 1

16π

∫ [∫
Σt

(R − K2 + KijK
ij)α

√
γ d3x

− 2
∮
St

(k − k0)α
√

qd2x

]
dt, (A.23)

where kAB is the extrinsic curvature of the induced metric qAB at a two surface, St ,
and k is its trace. The trace of the extrinsic curvature of St evaluated at the flat
spacetime is denoted by k0.

The Hamiltonian density is derived from the bulk term, when we specify con-
figuration variables. It is convenient to choose the configuration variables, which
represents the spacetime metric, to be (α, βi, γij). Recall the extrinsic curvature is
related to these variables by

Kij = − 1

2α
(γ̇ij − Diβj − Djβi), (A.24)

where the dot denotes the time derivative. The Lagrangian density is easily rewritten
by inserting this relation, and the canonical conjugate momentum, or momentum
density, variables are found to be

π0 ≡ δLG

δα̇
= 0, (A.25)

π i ≡ δLG

δβ̇i
= 0, (A.26)

π ij ≡ δLG

δγ̇ij
= −√

γ
(

Kij − Kγ ij
)
. (A.27)

It is important to observe that the momentum variables conjugate to (α, βi) are not
defined, because these configuration variables serve as gauge variables. The bulk
Hamiltonian density is given by the Legendre transformation as

HG = π ijγ̇ij − LG

= −α√
γR + α√

γ

(
π ijπij − 1

2
π2
)

+ 2
√
γDi

(
π ijβj√
γ

)
− 2

√
γ βjDi

(
π ij

√
γ

)
(A.28)

= −α√
γ
(

R + K2 − KijK
ij
)

− 2
√
γDi

[
βj(K

ij − Kγ ij)
]

+ 2
√
γ βjDi(K

ij − Kγ ij), (A.29)

and the Hamiltonian is given by an integration on Σt as
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HG = 1

16π

∫
Σt

[
−α

(
R + 1

2γ
π2 − 1

γ
π ijπij

)
− 2βjDi

(
π ij

√
γ

)]√
γ d3x

+ 1

8π

∮
St

[
α(k − k0)+ βjπ

ijsi√
γ

]
√

qd2x (A.30)

= 1

16π

∫
Σt

[
−α

(
R + K2 − KijK

ij
)

+ 2βjDi

(
Kij − Kγ ij

)]√
γ d3x

+ 1

8π

∮
St

[
α(k − k0)− βj

(
Kij − Kγ ij

)
si

]√
qd2x. (A.31)

The Hamiltonian density of the matter is simply given by

HM = −16παMLM, (A.32)

because the Lagrangian density of the matter does not depend on the time derivative of
the metric quantities as far as we concern. Here, we include 16παM into the definition
of the Hamiltonian density for simplicity, and the total Hamiltonian density is given
by the sum of gravitational and matter terms.

Before going to the variation of the gravitational term, we derive the expression for
the variation of the matter term. Using the fact that the spacetime metric is written as

gμν = γ μν − 1

α2 (t
μ − βμ)(tν − βν), (A.33)

the variation of gμν with respect to (α, βi, γij) are given by

δgμν

δα
= 2

α
nμnν, (A.34)

δgμν

δβi
= 2

α
γ iμnν, (A.35)

δgμν

δγij
= −γ iμγ jν − 2

α
γ iμnνβ j. (A.36)

Therefore, the variation of the matter Hamiltonian density is found to be

δHM

δα
= 16π

√
γ ρH, (A.37)

δHM

δβi
= −16π

√
γ ji, (A.38)

δHM

δγij
= −8πα

√
γ Sij + 16π

√
γ jiβ j, (A.39)

where we used (A.8) and the definition of variables in Sect. 3.2.1, (3.7), (3.8),
and (3.9).

http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
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The variation of the Hamiltonian density with respect to the lapse function, shift
vector, induced metric, and the momentum density derives the Hamiltonian con-
straint, momentum constraint, evolution equation of the momentum density, and
evolution equation of the induced metric, respectively. Here, the boundary condition
is taken to be

δα = 0, δβi = 0, δγij = 0, (A.40)

and δπ ij is not constrained. First, the variation with respect to (α, βi) have to be
zero, so that (π0, π i) do not evolve in time. Because the surface term is not varied
due to the boundary condition, we obtain the Hamiltonian constraint, (3.10), and
the momentum constraint, (3.11). To vary the Hamiltonian density with respect to
(γij, π

ij), it is useful to rewrite the bulk term of the gravitational part as

HG = −α√
γR + α√

γ

(
π ijπij − 1

2
π2
)

+ π ijDiβj + π ijDjβi. (A.41)

The evolution equation of the induced metric is given by a standard relation,

γ̇ij = δH

δπ ij
, (A.42)

and this gives (3.12). Note that this relation involves no matter terms, because the
matter Hamiltonian does not depend onπ ij . The evolution equation of the momentum
density is given by

π̇ ij = −δH
δγij

, (A.43)

and this variation is accomplished using relations derived in the previous section, say
δRij and δCk

ij. It is customary to use the momentum constraint to derive this evolution
equation. It should be noted that the surface contribution derived from the variation
of the bulk Hamiltonian cancels with the variation of the surface Hamiltonian, as
is naturally expected. The evolution equation of the extrinsic curvature, (3.13), is
obtained by the definition ofπ ij, evolution equations, and the Hamiltonian constraint.

A.3 Boundary Values and the ADM Integral

The value of the Hamiltonian in an instant is solely determined by the boundary
terms,

H = 1

8π

∮
St

[
α(k − k0)− βi(K

ij − Kγ ij)sj

]√
qd2x, (A.44)

http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
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when the Hamiltonian and momentum constraints are satisfied. The energy and
momentum of the system are defined via this boundary value of the Hamiltonian
[1, 8].

Because the energy is the charge associated with the time translation, the value
of the ADM energy is computed by an inertial observer, (α = 1, βi = 0), at spatial
infinity by [9]

EADM ≡ 1

8π
lim

St→∞

∮
St

(k − k0)
√

qd2x. (A.45)

By rewriting this [10], an original expression of the ADM energy,

EADM = 1

16π
lim

St→∞

∮
St

[ ◦
D jγij − ◦

Di( f jkγjk)
]

si√qd2x, (A.46)

is obtained when we assume sufficiently rapid falloff of the induced metric, i.e.,
asymptotic flatness condition. Specifically,

γij − fij = O(r−1) , ∂kγij = O(r−2), (A.47)

in Cartesian-type coordinates. This expression is the same as (3.60), where we denote
this quantity as the ADM mass, MADM.

The ADM linear momentum is defined using asymptotic translational Killing
vectors, ∂ j

(i), where the subscript i = x, y, z denotes the label of the Killing vector.
The ADM linear momentum is obtained by setting α = 0 and βj = ∂(i)j as

Pi ≡ 1

8π
lim

St→∞

∮
St

(Kjk − Kγjk)∂
j
(i)s

k√qd2x, (A.48)

where we also assume sufficiently rapid falloff of the extrinsic curvature,

Kij = O(r−2) , ∂kKij = O(r−3). (A.49)

The expression above agrees with (3.64) when we substitute ∂ j
(i) = δi

j. The ADM
energy and linear momentum composes an ADM 4-momentum vector,

Pμ = (−EADM,Pi), (A.50)

which behaves in a proper way under the Poincaré transformation [1].
An ADM-like angular momentum may be defined using asymptotic rotational

Killing vectors, φ j
(i), as

Ji ≡ 1

8π
lim

St→∞

∮
St

(Kjk − Kγjk)φ
j
(i)xsk√qd2x. (A.51)

http://dx.doi.org/10.1007/978-4-431-54201-8_3
http://dx.doi.org/10.1007/978-4-431-54201-8_3
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Using the fact that the rotational Killing vector is expressed as φ(i)j = ◦
εjklδi

kxl and
is orthogonal to si, it is shown that this expression is equivalent to (3.66). However,
the care must be taken to compute this quantity, because the value of the ADM-
like angular momentum is known to depend on the gauge choice via the so-called
supertranslation ambiguity. To overcome this, we should adopt the quasi-isotropic
and asymptotically maximal gauge [6].

http://dx.doi.org/10.1007/978-4-431-54201-8_3


Appendix B
Gravitational Waves

Gravitational waves are no doubt important for the purpose of this thesis. In this
Appendix, we first review basic properties of gravitational waves [11]. Next, we
summarize the radiation of the energy, linear momentum, and the angular momen-
tum, focusing on the decomposition using spin-weighted spherical harmonics (see
e.g., [12] for the details). In this Appendix, the partial derivative and the covari-
ant derivative associated with ημν are both denoted by ∂μ, and we expect that the
meaning can be understood in the context.

B.1 The Propagation of Gravitational Waves

Gravitational waves are identified as the perturbation on the background metric,
which we typically consider to be the flat one. For later convenience, we consider the
background metric ḡμν as a general metric, and investigate the propagation of the
perturbation hμν on the background. We assume that the perturbation is sufficiently
small in the sense that the condition |hμν | ≤ 1 is satisfied in Cartesian-like coordi-
nates. Hereafter, typical amplitude of the perturbation is denoted by h, although we
also use h for its trace, h ≡ ḡμνhμν . The full spacetime metric is written by

gμν = ḡμν + hμν, (B.1)

and its inverse is written to a linear order of h by

gμν = ḡμν − hμν + O(h2), (B.2)

where indices of hμν is raised and lowered by the background metric, ḡμν . The first
order deviation of the Christoffel symbol and Riemann tensor from the background
ones, which are computed solely by ḡμν , are written as

(1)Γ αμν = 1

2
ḡαβ

(∇μhνβ + ∇νhμβ − ∇βhμν
)
, (B.3)

K. Kyutoku, The Black Hole–Neutron Star Binary Merger in Full General Relativity, 163
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(1)Rαμβ
ν = 1

2

(
∇μ∇αhβ

ν + ∇μ∇βhα
ν − ∇μ∇νhαβ

− ∇α∇μhβ
ν − ∇α∇βhμ

ν + ∇α∇νhβμ

)
, (B.4)

where ∇μ denotes the covariant derivative associated with the background metric,
ḡμν , in this Appendix. The first-order Ricci tensor is

(1)Rμν = 1

2

(
−∇α∇αhμν − ∇μ∇νh + ∇μ∇αhαν + ∇ν∇αhαμ

+ R̄μαhν
α + R̄ναhμ

α + R̄αμνβhαβ + R̄ανμβhαβ
)
, (B.5)

where barred quantities in this expression denote the background curvature, and the
scalar curvature is

(1)R = ḡμν(1)Rμν − hμν R̄μν. (B.6)

The Einstein tensor is computed straightforwardly by these quantities, and it is more
conveniently expressed using the trace-reverse tensor defined by

h̄μν ≡ hμν − 1

2
hḡμν, (B.7)

as

(1)Gμν = 1

2

(
−∇α∇α h̄μν + ∇μ∇α h̄να + ∇ν∇α h̄μα − ḡμν∇α∇β h̄αβ

+ R̄μα h̄ν
α + R̄να h̄μ

β − 2R̄μανβ h̄αβ − h̄μν R̄ + ḡμν h̄αβ R̄αβ

)
. (B.8)

Hereafter in this section, we only consider the vacuum spacetime, and hence both
the energy-momentum tensor and background Ricci tensor vanish. The first-order
Einstein equations derive the equation governing h̄μν as

∇α∇α h̄μν + ḡμν∇α∇β h̄αβ − ∇μ∇α h̄να − ∇ν∇α h̄μα = −2R̄μανβ h̄αβ. (B.9)

The discussion becomes clear when the harmonic gauge,4

4 This condition is equivalent to ∇α∇αxμ = 0 to a linear order in hμν . In the post-Newtonian
expansion, the background metric is chosen to be the flat one and the harmonic coordinate is
defined by

∂α
(√−ggμα − ημα

) = 0. (B.10)
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∇α h̄μα = 0, (B.11)

is chosen. In this gauge, the first-order Einstein equations in a vacuum become

∇α∇α h̄μν = −2R̄μανβ h̄αβ. (B.12)

In particular, when the background spacetime is the flat spacetime, the first-order
Einstein equations become

∂α∂α h̄μν = 0, (B.13)

which clearly shows that the perturbation of the metric propagates as waves, i.e.,
gravitational waves. The residual gauge freedom5 of the harmonic gauge is fixed by
taking the transverse-traceless gauge,

h̄ = h̄ti = 0, (B.14)

and the time component of the harmonic gauge further derives h̄tt = 0, if we have
h̄tt = 0 is satisfied at a certain instant. The traceless nature implies that hμν and h̄μν
are identical in this gauge. The spatial components of the harmonic gauge give

∂jh
ij = 0, (B.15)

and this equation combined with the fact that hμν satisfies the wave equation shows
the transverse nature of hμν . Specifically, when the direction of propagation is chosen
to be the z axis with the frequency ω and the wave vector ki = (0, 0, k), gravitational
waves in the transverse-traceless gauge is written by two independent functions h+
and h× as

hμν = h+(t, z)e+
μν + h×(t, z)e×

μν, (B.16)

h+(t, z) = A+ cos(ωt − kz +Φ+) , h×(t, z) = A× cos(ωt − kz +Φ×), (B.17)

e+
μν = [

(ex)μ(ex)ν − (ey)μ(ey)ν
]

e×
μν = [

(ex)μ(ey)ν + (ey)μ(ex)ν
]
, (B.18)

where (ex)
μ and (ey)

μ are orthonormal bases in the x and y direction, respectively. The
combination of them, e+

μν and e×
μν are called the polarization tensors. The amplitude

of each mode, A+ and A×, are arbitrary, and the phase, Φ+ and Φ×, are determined
by the initial condition. Because the first order equation is a linear equation, gen-
eral gravitational waves are described by a superposition of this wave solution. The
physical, gauge-invariant information of gravitational waves are totally described by

5 The harmonic gauge gives the evolution of gauge variables, i.e., the lapse function and shift vector,
in the 3 + 1 language. Fixing the residual corresponds to giving initial data of the lapse function
and shift vector.
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these two functions, h+ and h×, and they are written as

h+ = 1

2

(
h
θ̂ θ̂

− hϕ̂ϕ̂
)
, (B.19)

h× = h
θ̂ ϕ̂

= h
ϕ̂θ̂
, (B.20)

in the orthonormal basis of spherical coordinates. Assuming that gravitational waves
are propagating in the radial direction, which have the form ∼h(t − r)/r at a large
separation from the origin, i.e., ∂rh = −ḣ, the component of the Riemann tensor is
related to the metric perturbation by

Rtitj = −Rtirj = Rrirj = −1

2

∂2hij

∂t2 . (B.21)

It is also important that the first-order Riemann tensor around the Minkowski space-
time is gauge-invariant quantity, and therefore the Riemann tensor computed in the
transverse-traceless gauge has physical meanings.

B.2 The Energy-Momentum Tensor of Gravitational
Waves

The energy-momentum tensor of gravitational waves (or gravitons) are not defined
locally, because it is always possible to eliminate them due to the equivalence
principle. Instead, an averaged energy-momentum tensor can be defined via the
second-order perturbation of the Ricci tensor [13, 14]. The other method to define the
energy-momentum tensor, again as an averaged quantity, is to rely on the Noether’s
theorem.

First, we derive the energy-momentum tensor from the metric perturbation. We
assume that the “background metric” and “gravitational waves” is always distin-
guished from their typical length and/or time scales [15]. The background is iden-
tified as the component with large length and/or long time scales, and gravitational
waves are identified as the component with small length and/or short time scales. For
simplicity, we focus on the case in which the background has a typical frequency fB,
which is much smaller than the frequency of gravitational waves, f . The Ricci tensor
is expanded by the order of the metric perturbation, h, around the background value
as

Rμν = R̄μν + (1)Rμν + (2)Rμν + O(h3), (B.22)

and decomposition of components yields
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R̄μν = −
(
(2)Rμν

)low + 8π

(
Tμν − 1

2
gμνT

)low

, (B.23)

for low frequency, and

(1)Rμν = −
(
(2)Rμν

)high + 8π

(
Tμν − 1

2
gμνT

)high

, (B.24)

for high frequency. The second-order perturbation of the Ricci tensor is given by

(2)Rμν = 1

2
ḡαβ ḡλσ

[
hαλ(∇ν∇μhβσ + ∇β∇σhμν − ∇β∇νhμσ − ∇β∇μhνσ )

+ 1

2
∇μhαλ∇νhβσ + ∇λhνα(∇σhμβ − ∇βhμσ )

+
(

1

2
∇αhλσ − ∇λhασ

)

× (∇νhμβ + ∇μhνβ − ∇βhμν)

]
, (B.25)

where we dropped background curvature terms associated with the permutation of
derivatives, because we assume that the background curvature is associated with
large scale and/or slowly varying components of the background metric.

The r.h.s of the low-frequency equation, (B.23), gives the definition of the “energy-
momentum tensor of gravitational waves” as a source of the spacetime curvature
due to the terms quadratic in gravitational waves, hμν . It should be noted that, in the
absence of the matter, the smallness of R̄μν and (2)Rμν has to balance for this equation
to hold, and therefore we find that h ∼ fB/f holds.6 Because the separation is done in
the intermediate scale between fB and f , gravitational waves have to be averaged over
several periods or wavelengths. Because these two are equivalent for gravitational
waves, we perform spatial averaging of (2)Rμν , and therefore the gravitational-wave
energy-momentum tensor is defined by

tμν ≡ − c4

8πG

〈
(2)Rμν − 1

2
ḡμν

(2)R

〉
, (B.26)

where the bracket denotes the spatial average and the trace of second-order Ricci
tensor is taken with respect to the background metric. We inserted G and c for clarity.
The averaging of the second-order Einstein tensor around the flat spacetime is now
sufficient to derive an explicit expression, and we obtain

tμν = c4

32πG
〈∂μhij∂νhij〉, (B.27)

6 On the other hand, the high-frequency component shown that gravitational waves propagate on
the curved background if it is a vacuum.
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where we evaluate this in the transverse-traceless gauge, make use of the wave equa-
tion, and perform integration by parts to drop the surface terms. We inserted G and
c for clarity. This quantity is invariant under the residual gauge transformation of
the harmonic gauge, and therefore physically meaningful. In the flat and vacuum
spacetime, the gravitational-wave energy-momentum tensor satisfies the conserva-
tion equation,

∂αtμα = 0. (B.28)

The energy contained in the volume is evaluated by the spatial integration of ttt ,
and the linear momentum is evaluated by the integration of tti. The radiation flux is
defined by the loss rate of these integrated quantities, and the use of the conservation
equation and the Gauss’ theorem derives the expression for the gravitational-wave
flux. It is convenient to express these quantities in terms of a complex gravitational-
wave function H ≡ h+−ih×, and the energy and linear momentum fluxes are written
as

dE

dt
= lim

r→∞
r2

16π

∮
S

∣∣Ḣ∣∣2 dΩ, (B.29)

dPi

dt
= lim

r→∞
r2

16π

∮
S

si
∣∣Ḣ∣∣2 dΩ. (B.30)

Here we used the fact that the function H takes the form ∼H(t − r)/r at spatial
infinity, i.e., ∂rH = −Ḣ. Notice that this expression is also obtained by simply
integrating the ttμ on a coordinate sphere and taking the limit of infinite distance.

Deriving the angular momentum of gravitational waves is not straightforward with
the energy-momentum tensor [16]. It is easier to compute the angular momentum by
the Noether’s theorem with respect to the rotational symmetry of the flat spacetime.
The Lagrangian of gravitons, or gravitational waves, are derived by expanding the
Einstein-Hilbert action to the second order around the flat spacetime, and it derives

(2)LG = − 1

4π

(
∂μhαβ∂

μhαβ − ∂μh∂μh + 2∂μhμν∂νh − 2∂μhμν∂αhαν
)
. (B.31)

The standard procedure to derive the energy-momentum tensor in the harmonic
gauge gives the same result as (B.27), taking the prefactor 1/16π into account, as is
naturally expected. The angular momentum of gravitational waves can be defined in
the transverse-traceless gauge as a Noether charge with respect to the spatial rotation
symmetry (see [11] for the detail) as

Ji = c3

32πG

∫ (
−◦
εiklḣmnxk∂lhmn + 2

◦
εiklhk

mḣml

)
d3x, (B.32)
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where we again take the prefactor into account and inserted G and c for clarity.
The first term in the integrand is considered to be the orbital angular momentum,
and the second term is the spin-2 angular momentum of the graviton. The angular
momentum flux is evaluated by the integral of this charge behind the wave front, and
a straightforward computation shows that [12]

dJi

dt
= − lim

r→∞
r2

32π

∮
S

ḣij£φ(i)hijdΩ, (B.33)

where φ(i) is the rotational Killing vector. Further, introducing two complex vectors

(φ±)i ≡ (φx)
i ± i(φy)

i, (B.34)

and another two complex vectors7

(e±)i ≡ 1√
2

[
(e
θ̂
)i ∓ i(eϕ̂)

i
]
, (B.35)

it is shown that gravitational waves in the transverse-traceless gauge, (B.16), is writ-
ten as

hij = H(e−)i(e−)j + H̄(e+)i(e+)j. (B.36)

This expression shows that H and H̄ has the spin weight8 −2 and 2, respectively. We
further define two angular momentum operators,

Ĵ± ≡ φi±∂i − i
s

sin θ
e±iϕ, (B.37)

and it is shown with some computation that

ḣij£φ±hij = 2Re
[ ˙̄HĴ±H

]
, (B.38)

Finally, using the angular momentum operators,

7 These correspond to two of null tetrads m̄μ and mμ in the flat spacetime.
8 A scalar f is called “it has a spin weight s” if it transforms as f → e−isψ f when the coordinate
bases are rotated by an angle ψ . The spin weight of the component of tensorial quantities is easily
understood by the number of e+ and e− attached to it.
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Ĵx ≡ 1

2

(
Ĵ+ + Ĵ−

)

= − sin ϕ∂θ − cosϕ
(

cot θ∂ϕ − i
s

sin θ

)
, (B.39)

Ĵy ≡ 1

2i

(
Ĵ+ − Ĵ−

)

= cosϕ∂θ − sin ϕ
(

cot θ∂ϕ − i
s

sin θ

)
, (B.40)

Ĵz = ∂ϕ, (B.41)

the angular momentum flux is written as

dJi

dt
= − lim

r→∞
r2

16π
Re

∮
S

˙̄HĴiHdΩ. (B.42)

B.3 The Mode Decomposition of the Flux

In numerical relativity, gravitational waves are often extracted by the Weyl scalarΨ4,
which has a spin weight −2 and is related to H by Ψ4 = Ḧ (see Sect. 5.1). Because
it is customary to decompose Ψ4 using the spin-weighted spherical harmonics as

Ψ4(r, θ, ϕ) =
∞∑

l=2

l∑
m=−l

Ψ lm
4 (r)−2Ylm(θ, ϕ), (B.43)

it is quite useful to give the expression of the flux in terms of the coefficient for each
mode (see [12] for the detail). The spin-weighted spherical harmonics is related to
the complex conjugate by,

sȲ
lm = (−1)m+s−sY

l,−m, (B.44)

satisfy the orthogonality relation,

∮
S

sY
lm(θ, ϕ)s′ Ȳ l′m′

dΩ = δss′δll′δmm′ , (B.45)

and the integration of triple product are given by

∮
S

s1 Yl1m1(θ, ϕ)s2 Yl2m2(θ, ϕ)s3 Yl3m3(θ, ϕ)dΩ

=
√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

−s1 −s2 −s3

)(
l1 l2 l3
m1 m2 m3

)
, (B.46)

http://dx.doi.org/10.1007/978-4-431-54201-8_5
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where the Wigner 3j symbol are given by, for example,

(
l1 l2 l3
m1 m2 m3

)
= (−1)l1−m1δm1+m2+m3,0

×
√
(l1 + l2 − l3)!(l3 + l1 − l2)!(l2 + l3 − l1)!(l3 + m3)!(l3 − m3)!
(l1 + l2 + l3 + 1)!(l1 + m1)!(l1 − m1)!(l2 + m2)!(l2 − m2)!

×
∑
k≥0

(−1)k

k!
(l2 + l3 + m1 − k)!(l1 − m1 + k)!

(l3 − l1 + l2 − k)!(l3 − m3 − k)!(l1 − l2 + m3 + k)! . (B.47)

In the Wigner 3j symbol, the sum is taken over as long as numbers in parentheses
are all non-negative. The angular momentum operators act on the spin-weighted
spherical harmonics as

ĴzsY
lm = imsY

lm, (B.48)

Ĵ±sY
lm = i

√
(l ∓ m)(l + 1 ± m)sY

l,m±1, (B.49)

and this is the same as the standard spherical harmonics apart from the definition of
the angular momentum operator.

The energy flux is simply given by

dE

dt
= lim

r→∞
r2

16π

∑
l,m

∣∣∣∣
∫
Ψ lm

4 dt

∣∣∣∣
2

, (B.50)

where the summation is taken over l ≥ 2 and −l ≤ m ≤ l. This summation con-
vention is used throughout this section. The computation of linear momentum flux
involves the triple product including l = 1, s = 0 harmonics via si. The momentum
fluxes in the x and y direction are conveniently expressed in terms of a complex
variable P+ ≡ Px + iPy as

dP+
dt

= lim
r→∞

r2

8π

∑
l,m

∫
Ψ lm

4 dt

×
∫ (

almΨ̄
l,m+1
4 + bl,−mΨ̄

l−1,m+1
4 − bl+1,m+1Ψ̄

l+1,m+1
4

)
dt, (B.51)

dPz

dt
= lim

r→∞
r2

16π

∑
l,m

∫
Ψ lm

4 dt

×
∫ (

clmΨ̄
lm
4 + dlmΨ̄

l−1,m
4 + dl+1,mΨ̄

l+1,m
4

)
dt, (B.52)

where coefficients are given by
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alm =
√
(l − m)(l + m + 1)

l(l + 1)
, (B.53)

blm = 1

2l

√
(l + 2)(l − 2)(l + m)(l + m − 1)

(2l + 1)(2l − 1)
, (B.54)

clm = 2m

l(l + 1)
, (B.55)

dlm = 1

l

√
(l + 2)(l − 2)(l + m)(l − m)

(2l + 1)(2l − 1)
. (B.56)

The angular momentum flux is obtained applying the angular momentum operator
on the spin-weighted spherical harmonics, and given by

dJx

dt
= lim

r→∞
r2

32π
Im

⎡
⎣∑

l,m

∫∫
Ψ lm

4 dtdt′

∫ (
flmΨ̄

l,m+1
4 + fl,−mΨ̄

l,m−1
4

)
dt

]
, (B.57)

dJy

dt
= − lim

r→∞
r2

32π
Re

⎡
⎣∑

l,m

∫∫
Ψ lm

4 dtdt′

∫ (
flmΨ̄

l,m+1
4 − fl,−mΨ̄

l,m−1
4

)
dt

]
, (B.58)

dJz

dt
= lim

r→∞
r2

16π
Im

[∑
lm

m
∫∫

Ψ lm
4 dtdt′

∫
Ψ̄ lm

4 dt

]
, (B.59)

where flm = √
(l − m)(l + m + 1).



Appendix C
Locating the Apparent Horizon
and Computing an Approximate Killing
Vector in the Initial Value Problem

To compute the mass and spin angular momentum of the BH in the initial data,
especially those devoid of the axisymmetry, it is necessary to locate the apparent
horizon (AH) and the approximate Killing vector (AKV) on the AH. In particular,
the location of the AH is not known a priori in the puncture framework, whereas the
location is prescribed by the boundary condition in the excision framework. In this
appendix, we review the method to locate the AH and to compute an AKV on the
AH in the initial value problem. In this appendix, the AH is denoted by S .

C.1 The Apparent Horizon Finder

The location of the AH, which is defined as a two surface where the expansion of the
outgoing null vector vanishes,9 is determined using the method developed in [17].
The outgoing null vector is chosen to be

lμ = 1√
2
(nμ + sμ), (C.1)

where sμ is the spatial, outward unit normal vector to the AH, and the expansion of
lμ is defined by

Θ (l) ≡ qμν∇μlν

= 1√
2
(Dis

i − K + Kijs
isj). (C.2)

Hence, we have to solve the equation

9 Rigorously saying, this is the definition of the marginally outer trapped surface. For the marginally
outer trapped surface to be an AH, the expansion of the ingoing null vector have to be non-positive.
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Dis
i − K + Kijs

isj = 0 (C.3)

in order to find the location r = h(θ, ϕ) of the AH. Here, it is already assumed that
the AH is topologically S2, and is not distorted too much to be represented by a
single-valued function of angular coordinates [18]. For later convenience, it is useful
to rewrite this equation as

qij(Disj − Kij) = 0, (C.4)

where qij ≡ γij − sisj, which is the induced metric on S . It is also useful to realize
that the AH is considered to be a constant surface of the function,

F(r, θ, ϕ) ≡ r − h(θ, ϕ). (C.5)

Because the unit normal si is defined as

si ≡ DiF√
γ jk(DjF)(DkF)

, (C.6)

the exact unit normal to the AH is unknown until the location of the AH is specified.
Inversely, this equation is solved to find a correct function h(θ, ϕ) by an iterative
method, starting from some initial guess for h(θ, ϕ). Because the initial value problem
itself is solved by the iterative method, the initial guess is chosen to be the function
at the previous step with the exception for the very initial step, at which we choose
h = M/2. Equation (C.4) becomes

qij

[
DiDjF√

γ kl(DkF)(DlF)
− Kij

]
= 0, (C.7)

using qijsj = 0. Defining the difference between Di and
◦

Di as

Δk
ij ≡ 1

2
γ kl

( ◦
Diγjl + ◦

Djγjl − ◦
Dlγij

)
, (C.8)

the conformal transformation of this equation leads

◦
Di

◦
DiF

ψ4
√
γ kl(DkF)(DlF)

− sisj
◦

Di
◦

DjF√
γ kl(DkF)(DlF)

− qij

(
Δm

ij
◦

DmF√
γ kl(DkF)(DlF)

+ Kij

)
= 0.

(C.9)

It can be shown by a little algebra that
◦

Di
◦

Di F is expanded as
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◦
Di ◦

DiF = − 1

ψ4
√
γ ij(DiF)(DjF)h2

(�θϕ − 2)h, (C.10)

where �θϕ is the angular Laplacian operator given by

�θϕ ≡ ∂2

∂θ2 + cos θ

sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2 . (C.11)

Finally, we obtain an elliptic-type equation to determine h(θ, ϕ) as

(Δθϕ − 2)h = −ψ4h2
√
γ kl(DkF)(DlF)

×
{

sisj
◦

Di
◦

DjF√
γ kl(DkF)(DlF)

+ qij

(
Δm

ij
◦

DmF√
γ kl(DkF)(DlF)

+ Kij

)}
. (C.12)

For example, this equation is actually satisfied for the Schwarzschild BH in the
isotropic coordinates,

h(θ, ϕ) = M

2
, ψ = 1 + M

2r
,Kij = 0. (C.13)

C.2 The Approximate Rotational Killing Vector

Because the BH–NS binary spacetime is not stationary nor axisymmetric, any Killing
vector does not exist. Especially, there is no rotational Killing vector around the
BH. However, the BH is believed to be in an approximately axisymmetric state
intrinsically, if the distance between the BH and NS is fairly large and tidal distortion
is not severe. In this situation, it may be possible to define an approximate rotational
Killing vector on the BH horizon in a quasilocal manner. For this purpose, we adopt
the method developed in [19] to compute an AKV with the normalization condition
proposed in [20]. There is another commonly-used method proposed in [21], but the
method adopted in this study is advantageous in that the obtained AKV satisfies the
divergence-free condition by construction (see below).

Because we are trying to find a vector field which is close to the Killing vector
field, we want to have a vector field satisfying at least some part of the Killing
equation,

DAφB + DBφA = 0. (C.14)

It is known that, to define a gauge-invariant angular momentum in the isolated horizon
framework, the approximate Killing vector must be divergence free [22], and the
divergence-free property results from the trace of the Killing equation. Therefore,
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we assume φA to be expressed in a general form of the divergence-free vector field
on a two surface,

φA = εABDBv, (C.15)

where v is a scalar function on S , and try to minimize the norm of the shear defined as

‖σ‖2 ≡
∮
S
σABσ

AB√
qd2x, σAB ≡ 1

2
(DAφB + DBφA − qABDCφ

C), (C.16)

by a variational method to find a vector field which is the closest to the Killing
vector field. Minimizing ‖σ‖2 is equivalent to minimizing the residual, trace-free
part of the Killing equation. If we want to solve this variational problem with respect
to v, however, we may only obtain v = const and φA = 0, which is a trivial kernel
of the variational operator. Therefore, we adopt the Lagrange-multiplier technique
introducing the multiplier λ and a constant N , so that the norm of the approximate
Killing vector is fixed to a nonzero value. Specifically, we require the normalization
condition,

∮
S

RφAφ
A√

qd2x = N, (C.17)

where the weight R is chosen to make the integrand nondimensional, to be satisfied.
Integrating by parts, the functional we want to minimize becomes

∮
S

v
[
D4 + RD2 + (DAR)DA

]
v
√

qd2x

− λ

{∮
S

v[RD2 + (DAR)DA]v√qd2x + N

}
, (C.18)

and the variation with respect to v gives

[D4 + RD2 + (DAR)DA]v = λ[RD2 + (DAR)DA]v. (C.19)

The Lagrange multiplier, λ, is determined to be the smallest eigenvalue of this vari-
ational problem. In the actual computation, we solve this problem by rewriting as

D2L = (1 − λ)

[
1

2

(
DAR

)
(DAv)− RL

]
,

D2v = −2L, (C.20)

where L is related to the derivative of the Killing vector by

DAφB = LεAB + σAB. (C.21)
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Notice that the value of N is not determined in this procedure. For example, the
exact solution for a flat two surface with a constant radius r is given in terms of the
spherical harmonics Y10 by

v = r2 cos θ,L = cos θ, (C.22)

where R = 2/r2, up to a constant scaling. In practice, we decompose the induced
metric into flat and deviation parts as

√
qqAB = f AB + rAB, (C.23)

and rewrite D2 so that the operator becomes the sum of an angular Laplacian and
correction terms.

We next have to fix the normalization of v, of which the scaling was unconstrained
up to a constant. For this purpose, it is useful to introduce a coordinate system
(v, ϕ) on S . If the approximate Killing vector is parametrized by a parameter τ
as φA = (d/dτ)A, for which the integral curve C of φi corresponds to the contour
line of v by definition, it can be shown that the increase of τ along one circle of C
parametrized by v is

τ(v) =
∮
C

dϕ

φϕ(v, ϕ)

=
∮
C

√
qdϕ, (C.24)

and therefore averaging this on S yields

〈τ 〉 = AAH

vmax − vmin
. (C.25)

We fix the normalization of v by requiring 〈τ 〉 = 2π . In practice, we require

∮
S
(v − 〈v〉)2√qd2x = A3

AH

48π2 , (C.26)

which holds for the Kerr BH (including a coordinate sphere in the flat spacetime),
for the sake of a numerical accuracy.
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