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Preface

From 18 to 20 May 2010, Berlin was the focal point of the community working
on testbeds and experimental infrastructures. Berlin hosted and welcomed the
6th International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities, better known as TridentCom 2010.

More than 100 experts attended the conference that provided a forum to
explore existing and planned testbed concepts, infrastructures, and tools for ad-
dressing the research and business challenges of ICT convergence. The technical
program represented a snapshot of the best-of-breed international research on
testbeds and research infrastructures conducted in Europe, the Americas, Asia,
and Australia. The strong technical program during the three days brought to-
gether researchers from across the world that presented and discussed their latest
results. Out of more than 100 submitted contributions, the Program Committee
finally selected after a peer-review process 15 full papers, 26 practices papers,
and 22 posters. Overall the presented contributions originate from 22 nations
underlining the world-wide scope and significance of the conference.

Thomas Magedanz from Fraunhofer FOKUS and Technical University Berlin,
who acted as the General Chair, opened the conference by pointing out that the
research and development in the areas of converging networks, unified communi-
cations, as well as emerging cross-sector smart applications is getting increasingly
complex and expensive. For this reason open testbeds and research infrastruc-
tures are becoming the enabling infrastructure for achieving innovations in var-
ious domains, ranging from networking and services up to various application
domains.

In the first keynote session, Max Lemke from the European Commission
presented the European view on the role of experimentation in future Internet
research. He also gave an outlook on the future activities in this area that are
subsumed under the Future Internet Research and Experimentation (FIRE) Ini-
tiative. Chip Elliott from the GENI project office presented the approach taken
in the USA towards exploring networks of the future. He presented the current
status and plans of GENI (Global Environment for Network Innovations) as
well as the program activities of the GENI project office. Phuoc Tran-Gia from
the University of Würzburg presented in his keynote the concept and federation
issues of the G-Lab project, a large German initiative to deploy testbeds and
experimental platforms in Germany.

In the second keynote session, Akihiro Nakao from the University of Tokyo
presented the relevant activities in Japan towards the design and development
of testbeds for the future Internet. He devoted particular attention to infrastruc-
tures that support visualization as one of the fundamental concepts in the area.
Finally, Bernard Barani from the European Commission presented the Euro-
pean Public Private Partnership on the Future Internet (PPP-FI). The PPP-FI
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implicitly had a strong influence on the conference, as it represents a significant
effort to demonstrate future Internet services and applications.

With the emergence of the future Internet, including the network of the
future, the Internet of things, and the Internet of services, the traditional borders
of network and service layers are vanishing. Cross-layer experimental platforms
are being established around the globe to enable rapid prototyping and validation
of innovative ideas but also taking into account migration and interworking with
existing network and service platforms. Thus, this year’s TridentCom emphasized
Testbeds and Experimental Facilities for the Future Internet and also featured
additional testbed highlights from other domains. The accepted contributions
resulted in 11 technical sessions, addressing:

– Federated and large-scale testbeds
– Future Internet testbeds
– Future wireless testbeds
– Monitoring in large scale testbeds
– Network and resource visualization for future Internet research
– Future Internet testbeds for wireless sensors, media, and mobility
– Wireless and mobile networking testbeds
– Monitoring, QoS, and application instrumentation in large-scale testbeds
– Management, provisioning, and tools for future network testbeds
– Experimentally driven research and user experience testbeds

The conference program also featured an interactive panel and three tutorials.
TridentCom 2010 was also the site of the second focused workshop on Open
NGN and IMS Testbeds (ONIT).

The TridentCom conference “brand” is now established as the main yearly
conference of the research and development community for testbeds and experi-
mental infrastructures. The sixth conference this year impressively demonstrated
that the community is very active and is taking up the challenge to deploy the
necessary infrastructure for supporting future Internet and future network re-
search.

The conference concluded with the announcement that the next conference,
TridentCom 2011, will take place in Shanghai, the flourishing center of com-
merce, finance, and business of China, organized by the Chinese National Engi-
neering Research Center for Broadband Networks and Applications.

Further information is available at http://www.tridentcom.org

May 2010
Thomas Magedanz

Jeff Chase
Anastasius Gavras

Nguyen Huu Thanh



Organization

Steering Committee

Imrich Chlamtac Create-Net, University of Trento, Italy
Csaba A. Szabo BUTE, Hungary

General Chair

Thomas Magedanz TU Berlin, Fraunhofer Fokus, Germany

Program Committee Co-chairs

Anastasius Gavras Eurescom, Germany
Nguyen Huu Thanh Hanoi University of Technology, Vietnam
Jeff Chase Duke University, USA

Conference Coordinator

Barbara Torok ICST

Workshops Chair

Paul Müller University of Kaiserslautern, Germany

Demonstrations Chair

Sandor Szabo BUTE, Hungary

Tutorials Chair

Thomas Magedanz TU Berlin, Fraunhofer Fokus, Germany

Publicity Chair

Carlos Becker Westphall Universidade Federal de Santa Catarina,
Brazil

Publications Chair

Milon Gupta Eurescom, Germany



VIII Organization

Local Arrangements Chair

Brigitte Henckel Fraunhofer Fokus, Germany

Web Chair

Sibylle Kolb Eurescom Germany

Technical Program Committee

Sudhir Aggarwal Florida State University, USA
Khalid Al-Begain University of Glamorgan, UK
Anish Arora Ohio State University, USA
Paolo Bellavista University of Bologna, Italy
Carlos Jesús
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Gábor Kurucz, Sándor Laki, Péter Mátray, József Stéger,
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Sándor P. Fekete

System-Level Service Assurance—The H∀Mcast Approach to Global
Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Thomas C. Schmidt and Matthias Wählisch
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Abstract. This paper describes AutoNetkit, an auto-configuration tool for com- 
plex network emulations using Netkit, allowing large-scale networks to be 
tested on commodity hardware. AutoNetkit uses an object orientated approach 
for router configuration management, significantly reducing the complexities in 
large-scale network configuration. Using AutoNetkit, a user can generate large 
and complex emulations quickly without errors. We have used AutoNetkit to 
successfully generate a number of different large networks with complex  
routing/security policies. In our test case, AutoNetkit can generate 100,000 
lines of device configuration code from only 50 lines of high-level network 
specification code. 

1   Introduction 

Emulation is a key enabling technology in network research. It allows experiments 
that are more realistic than simulations, which would otherwise be expensive to con-
struct in hardware. Hardware networks are also difficult to reconfigure if multiple 
different test networks are needed for a large-scale experiment. 

However, it is almost as hard to build large-scale, complex networks in emulation 
as it is in hardware. Emulation removes issues such as the need to physically place 
interconnecting wires, but still requires configuration of many devices, including 
routers and switches. Router configuration is particularly difficult in complex networks 
[2, 3, 8]. Manual configuration is the root of the problem, because it introduces the 
possibility of human error, and lacks transparency as it is not self-documenting. 

We will be examining large-scale networks, which may contain thousands of 
routers. Although this could involve hundreds or thousands of configuration files, the 
amount of data which differs between these files is often relatively small, and typi-
cally limited to areas such as IP configuration, community attributes, and small 
changes to routing weights and policy. The majority of complex configuration 
changes are reserved for BGP policy implementations on the network’s edge. For 
instance, in a small Netkit network of only 14 routers, configuration files for these 
routers can be compressed by a factor of 40 (using gzip), showing a large amount of 
redundancy and repetition in these files. We wish to focus on only those items of data 
which are crucial in differentiating the network configs, not to the vast bulk of con-
figuration information required to meet the syntactic requirements of a vendor’s  
configuration language. 
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A solution to this problem is the use of fixed templates. A typical configuration tem-
plate has relatively small amounts of crucial varying information inserted at the correct 
point. This provides user with several benefits. From an operational viewpoint, we now 
change a much smaller amount of data to describe a functioning system. Additionally, 
an automatic generation mechanism can be made self documenting, so that the changes 
made are much easier to track, and if necessary, reverse. But fixed templates can only 
go so far. Most complex tasks are still configured manually. For example, network 
resources such as IP address blocks and BGP community attributes are still manually 
allocated. These tasks can quickly become complex for large networks. 

This paper is one of the first steps towards fully automated configuration, generated 
from a description of network capabilities. We describe AutoNetkit, which provides a 
high-level approach to specifying network functionality. We have implemented an 
automated mechanism to generate and deploy configurations for networks emulated 
using the Netkit framework. The task is non-trivial, particularly for BGP (Border 
Gateway Protocol) configuration, which is highly technical and non-transparent [8]. 
We plan to add support for other platforms in the future, such as Cisco IOS and Juni-
per Junos, described using the same high-level approach. 

AutoNetkit enables Netkit users to create larger and more complex networks, easily 
and quickly. It is written in Python, making it portable and easily extensible. It also 
allows scripted creation of networks so that a series of networks can be created, and 
tests run on each. 

The results are not just useful for Netkit, they provide insights into the general 
problem of automating network configuration for real networks. Furthermore, emu-
lations powered by AutoNetkit have important applications in operational networks. 
By being able to construct a fundamental model of the key aspects of a network, we are 
in a position to carry out tests on this network within an emulated environment. We can 
also test proposed changes to our network, such as maintenance or upgrades, on an 
emulated network which reflects our real network. We refer to this mirrored network 
model as the shadow model. The shadow model of the network allows us to reserve 
infrastructure for future development, test future growth options, and to determine the 
outcome of failure scenarios. This is also of great benefit to operational staff; they can 
have a much better idea of the performance of their network, under a wide variety of 
scenarios, without needing to physically realise that scenario. 

AutoNetkit is based on an emulation approach to network research. This differs 
to simulation approaches; in our emulations we run virtual instances of real routers, 
communicating through real routing protocols, whereas simulations instead approxi- 
mate router behaviour [4]. At the other end of the spectrum, testbeds [13] provide 
real hardware-based networks, and so are more realistic, but also more expensive and 
less flexible. AutoNetkit aims to address the middle ground, allowing the user to 
quickly and cheaply carry out realistic network research. 

2   Background 

2.1   Netkit 

Netkit is an open source software package which simplifies the process of creating and 
connecting virtual network devices using User Mode Linux (UML) [15]. UML allows 
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multiple virtual Linux systems to be run on the same host Linux system, with each vir-
tual systems retaining standard Linux features. In particular, networking is configured 
using standard tools. Additional software packages can be installed for extra features, 
such as BIND for DNS services, or the Quagga routing suite. Quagga provides an im-
plementation of common routing protocols, allowing a Linux system to function as an 
IP router. 

Netkit provides a set of tools to manage the process of setting up and launching a 
UML virtual system. Once an emulated network has been specified in a configura-
tion file, Netkit takes care of creating and launching the UML virtual systems. Typi-
cally, Netkit creates one virtual host for each router and launches routing services on 
each of these routers. Each router has one or more virtual network interfaces that are 
connected using virtual switches. These switches and the routing services running on 
the routers allow emulations of large networks. 

Netkit simplifies the process of launching the emulated network, including services 
and virtual switches. However it does not provide tools to automate the configuration 
of each network device. Netkit emulations can be extended beyond one physical host 
machine, which we will describe in this paper. 

Examples of Netkit networks. Figure 1 shows an example, drawn from the test 
example given in [1], of a Netkit network which emulates a small Internet. To emu-
late this network Netkit requires a description of each network device and the links 
between them. Routing requires a set of configuration files for each network device. 
These describe interface configuration, such as IP addressing, and interior routing 
protocols, such as IS-IS or OSPF. Border routers also require the BGP exterior rout-
ing protocols to be configured. The network in Figure 1 with only 14 routing devices 
requires more than 500 lines of configuration code, most of which is described in an 
arcane low-level router configuration language. 

One of the strengths of emulation is to build networks larger than would be af-
fordable to construct in hardware. It is easy to conceive of networks with thousands of 
devices and tens of thousands of lines of configuration code [17], but, at present, 
emulating these networks is constrained by the configuration process. What is more, 
many research projects require evaluations on multiple networks to test robustness 
and flexibility. The complexity of device configuration means that creating a large-
scale network is a time consuming and error-prone process. This is true for both physi-
cal networks and emulated networks. Our tool simplifies this configuration process: 
our large-scale example network consists of 527 routers connected by 1634 links, a 
size which would be infeasible to manually generate. 

Other Emulation Tools. VNUML [10] is a medium scale software emulator, similar 
to Netkit, that uses a User-Mode Linux kernel. There are also other emulation tools 
such as Einar [7]. As AutoNetkit has been designed to be a high-level auto-
configuration tool, independent of a specific emulation technique, it could be used in 
these emulation environments with only minor modifications. 

2.2   Router Configuration 

Each equipment vendor has a specific configuration language used to configure their 
routers. These languages differ between vendors; to configure the same feature on two 
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Fig. 1. Small Internet Netkit Lab [1] 

different routers may involve very different syntax. This requires an operator to 
learn a new configuration language for each vendor, limits code portability, and 
makes it difficult to manage a network containing routers from different vendors. 

An example of a Quagga BGP configuration file is below, showing low level con- 
figuration requirements. Quagga is an open source routing protocol suite [14], used 
by Netkit. Quagga configuration syntax is similar to that used in Cisco routers, but 
very different to Juniper router syntax. All network related numbers in these configu-
rations, such as IP addresses and AS numbers, must be consistent across all network 
devices. 
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router bgp 300 
network 200.1.0.0/16 
 
network 200.1.0.0/17 
! 
neighbor 11.0.0.10 remote-as 30 
neighbor 11.0.0.10 description Router as30r1  
neighbor 11.0.0.10 prefix-list mineOutOnly out  
neighbor 11.0.0.10 prefix-list defaultIn in 
! 
ip prefix-list mineOutOnly permit 200.1.0.0/16  
ip prefix-list mineOutOnly permit 200.1.0.0/17  
ip prefix-list defaultIn permit 0.0.0.0/0 
 
 

Common router configuration tasks include setting up each interface and configur- 
ing the routing protocols used to exchange routing information. A correctly operat-
ing network requires each router’s configuration to be syntactically and semantically 
correct with configurations consistent across the network. If these conditions are not 
met, the network will not operate correctly. For example, the IP address at each end 
of a point to point link must belong to the same subnet. 

These configuration files are usually generated by hand — a slow process with the 
time taken being roughly proportional to the number of devices in the network. Each 
router must have its own configuration file, and manually generating each configura-
tion file is impractical for large networks. Template based configuration methods [2,8] 
are an improvement, but still require network resources to be allocated. Efficiently 
allocating network resources such as IP address blocks, BGP community attributes 
can quickly become complex for large networks. 

Our goal is to automate this configuration process. This is a complex problem for 
a hardware device based network: hardware faults, device dependent configuration 
languages, physical device connections, and multiple users accessing the system all 
must be considered. Auto-configuration of a software based network is a more con-
strained problem. When using Netkit we are able to dictate the target platform, and 
ensure that the underlying network connections meet the desired structure. Configu-
ration of emulated networks still present a number of configuration problems such as 
routing and security policy implementation, automatic IP address allocation, which 
will be discussed in this paper. Existing configuration tools for Netkit such as Net-
kit Interface Utility for Boring Basic Operations (NIUBBO) [19], do not provide 
these features and only allow small networks with very basic routing options. Even 
though languages such as RPSL [22] and its associated tool RtConfig [23] can be 
used for complex BGP policy specification and configuration generation, they still 
work at the device level. AutoNetkit aims at a higher level, being able to configure 
networks from high-level concepts. 
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3   AutoNetkit 

AutoNetkit automates the process of creating a large and complex network. The 
aim of AutoNetkit is to allow a user to say what they want to achieve with a 
network, such as the business relationship to be expressed or the logical structure of 
the network without requiring details of specific device configuration. Instead of 
assigning specific values to configuration parameters of the devices, we want to be 
able to express high-level concepts for the network such as: “There must be at 
least one DNS server in the network”; “Business relationship with neighboring ASs 
should be enforced”; and “OSPF link weights should be assigned using algorithm 
ABC”. 

 

Fig. 2. AutoNetkit System Overview 

We adopt an approach inspired by [3]. The system is illustrated in Figure 2. The user 
specifies a network model which describes the logical structure of the network and 
the resources in the network such as devices, IP address blocks. In addition, the user 
needs to specify the rules/policies for the network such as routing policies. The 
rules/policies pull in fragments (small templates of configuration code) to imple-
ment the network. These components are described below. The system design al-
lows the use of plugins to interact with the network model. This may involve reading 
and modifying network object attributes. 

The AutoNetkit language is implemented as an object oriented language using Py-
thon [21]. Object orientated languages are well suited to configuration specification 
as they allow natural expression of network devices as objects [6, 12]. To aid in de-
scribing the components of our approach we will use the simple, but non-trivial 
network as in Figure 1. The AS level topology and BGP policies applied to these 
networks are shown in Figure 3. 

3.1   The Network Specification 

The network model is specified by the network designer using the AutoNetkit lan-
guage. This model describes the resources, devices, and logical structure of the net-
work. The details of these objects are described below. 
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Fig. 3. AS level topology showing high-level specification of desired inter-AS policies for 
the network in Figure 1. Two types of business relationships are shown. Customer-provider 
relationships are shown as the dashed line between two vertically adjacent nodes — the AS on 
the lower layer is the customer and the AS on the upper layer is the provider. The peering 
relationship is shown as the horizontal solid line between AS20 and AS30. The figure also shows 
two other BGP policies: load balancing over multiple links, and a back-up link. 

Resources in the network. Each network resource is represented by an object in the 
AutoNetkit language, with attributes managed or modified by the network policies. 
The two main resources are IP address blocks and devices. Examples of these are 
provided below: 

 
– IP address blocks; 

### Networks with IP address resource  
AS1=Network(1,[’1.0.0.0/8’,’100.0.0.0/8’]) 
AS20=Network(20, [’20.0.0.0/8’] )  
AS100=Network(100, [’100.0.0.0/8’] ) 
AS200=Network(200, [’200.1.0.0/16’] ) 

– Devices (routers, switches, etc.). 

AS1.add_router(’AS1R1’,’Quagga’,’Router 1’) 
 

In the above example, each AS is given a set of one or more address blocks. These 
are used to assign IP addresses to the interfaces in that AS. Each router is represented 
by an object inside the AS object. In this example, a router object, AS1R1, is added 
to an autonomous system, AS1, with the specified initial values assigned to the router 
object attributes. During the configuration process, objects inside the AS are  
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modified to satisfy user specified connectivity and policy requirements. For exam-
ple, interface objects will be added to the AS1R1 router object for connectivity 
configuration and BGP objects will be added to this router object to implement busi-
ness relationships with other ASs. 

Network Logical Structure. The user is also required to specify the logical structure 
of the network, describing how the devices will be interconnected. This specification 
may include details such as link capacity, and link weight. Link weights can be as- 
signed to links or interfaces, and are used to control the path decisions made by rout-
ing protocols. 

A link between routers in the same AS can be easily setup using the add link com- 
mand in default mode, which takes 2 routers as parameters and creates a link between 
them. It will automatically add an interface to each router and assign an appropriate IP 
address to each interface. 

### add intra AS links 
AS100.add_link(AS100R1, AS100R2) 
AS100.add_link(AS100R1, AS100R3) 

When creating a link that spans two autonomous systems, we use the add link com- 
mand with specific options. If the remote autonomous system is managed by another 
entity (such as another ISP), its configuration is outside of our control. In this case, 
we cannot automatically assign the remote router an IP address, so we provide the 
option for a user to choose to manually specify link IP address details. This configura-
tion flexibility is shown in the following example: 

### add inter AS links 
AS30.add_link(AS30R1,AS300,AS300R1, constraints = 
{"subnet":’11.0.0.8/30’,"int1ip":’11.0.0.10’, 

"int2ip": ’11.0.0.9’}) 

We have described what is specified in the network model, but it is also important to 
consider what is not specified. Everything in the network model is specified by the user. 
For instance, the user indicates which routers are interconnected (although this may 
be the output of a network generation program such as BRITE [16]). Hence, it is im-
portant to avoid specifying pieces of no interest to users, even though they may be 
required in the actual network configuration. 

It is common to implement a point-to-point link between two routers as a /30 subnet, 
which provides a usable IP address for each end of the link. Each interface in a link 
must be within the same subnet, but the choice of the subnet itself is often unimpor-
tant, provided that the allocation is not used again elsewhere in the network. It is a sim-
ple task for an auto-configuration tool to choose such addresses from allocated 
blocks, saving the user from needless work in making specific allocations that they 
are not concerned with. Automating allocation tasks also reduces the chance of bugs 
due to human error. 

Similarly, creating a link requires the interfaces on each end of the link to be con-
figured, but the specific settings are often unimportant, providing they are consistent 
at both ends of the link. An example is routing policies, which are applied to an inter-
face. Automating allocation tasks is analogous to using a software compiler to handle 
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low level resource allocation, freeing the programmer to write high-level code de-
scribing only the functions they are concerned with. 

3.2   Resource Allocation 

As discussed, the compiler must realise the high-level network model, converting it 
into a detailed model based on the implementation details. IP addresses are allocated 
by taking the pool of IP addresses specified when the AS object was created, dividing 
them into the relevant size subnet, and then allocating an IP from this subnet to the 
relevant interface. This automated process avoids conflicting IP addresses and en-
sures each interface has an IP address belonging to the same subnet. 

There are some issues that need to be considered carefully in this step. For instance, 
although not needed, it can make it easier for a user if this process is deterministic. 
Determinism is the property where instantiating the same network twice will result in 
the same resource allocations being made. However, changing a subset of the inputs 
should not necessarily lead to a widespread change in the final allocation and we may 
wish to limit the effect of change on the allocations in an instantiated network. We refer 
to the property of an allocation scheme to limit unnecessary change as insensitivity. To 
implement this property we use a sticky allocation mechanism. 

Sticky allocation allows the allocation to a subset of nodes in the network to remain 
constant in the face of change, unless the change will force a change in allocation, 
either through address space exhaustion or the addition of links or hardware that di-
rectly connect to that subset. The major advantage of sticky allocation is that it limits 
the number of configuration changes that are required on the target devices, and this 
allows more efficient incremental improvements to be carried out in the network. 
Neither of these features are required but they are desirable, as they improve effi-
ciency and make debugging easier. Our current tool makes deterministic and sticky 
allocations. 

We show part of the resource allocation for router AS20R1 in AS20 of the example 
in Figure 1 

eth0 20.255.255.253/30 
eth1 11.0.0.6/30 
lo 127.0.0.1 
lo:1 1.1.1.1/30 

The interfaces have been automatically configured, with their IP addresses either 
assigned from the pool of available addresses given for that AS, or from the user’s 
manually specified settings in the case of an inter AS link. The loop back interface lo:1 
is also configured on the router for use by the BGP routing protocol. 

3.3   Rule/Policy Specifications 

Rules are used to describe high-level requirements placed on a network, and range 
from routing policies to security and resiliency requirements. To define high-level 
requirements, the user needs to specify which rules are going to apply to which ob-
jects inside the network as part of the input. Each rule is broken down further to a set 
of smaller objects called fragments. A fragment is the smallest element that can be 
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easily translated into device specific configuration code. Fragments are described in 
more detail in the next section. A rule/policy is a precise statement of which frag-
ments will be applied to which device objects and the exact values of the attributes 
that the fragment is going to give to the object. Rules are implemented in AutoNetkit 
as objects. Typical rules are routing policies. For example, to specify the interior 
gateway protocol (IGP) to be OSPF with configurable area information 

## Add IGP logic 
scope={’type’:’router’,’select’:’all’} 
parameters=[’Area’,’new’,1] # OSPF parameters 
AS100.add_rule(’OSPF’,scope,para) 

and to enforce business relationship with neighbour ASs, AS100 adds the peering() 
policy to all of its sessions. 

## BGP policy for enforcing peering relationship 
scope={’type’:’session’,’select’:’all’} 
parameters={} 
Rule = peering(scope,parameters) 
AS100.add_BGP_policy(’Enforce business relationship’, Rule) 

AutoNetkit has a library of rules (i.e., network services/ policies) implemented. 
These include rules to set up DNS server, a large set of different BGP policies to main- 
tain business relationship, contract obligations, security and back-up requirements. 
The user needs to specifies in the rule specification which of these rules are going to be 
used in each network. Each rule requires a “scope” and a “parameters” input. The 
“scope” defines the BGP sessions that the policy applies to, and the “parameters” 
field is used to provide special parameters to the policies. 

3.4   Fragments 

Many router configurations have a high degree of similarity, which allows for the 
script based configuration methods discussed previously. It also simplifies the con-
figuration process, allowing most device specific configuration to be performed with 
simple templates. These templates are filled in with the relevant values from a re-
source database, created based on the network model. 

Some components of a router configuration are only needed on certain routers, e.g., 
we only require eBGP on edge routers. Simple templates are less useful in these 
cases. Instead we use the concept of fragments [3]: small pieces of configuration 
code, each typically controlling a single configuration aspect. Each fragment is de-
fined by the object attributes that it will creates or modifies. 

Complex tasks require several fragments. AutoNetkit also provides an extensive li-
brary of fragments that can be used to construct the policies. These fragments can be 
used to implement almost all realistic BGP policies including black hole, Martian filters, 
and peering. For example, a peering policy can be realised by using one fragment to 
mark all routes on ingress with a community that encodes the peering type of the BGP 
session. On egress the routes are filtered based on the community tags and the peering 
type of the session, using another fragment. The peering type, a parameter of the ses-
sion, determines which fragment (BGP statement) to use. Additional fragments can be 
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used if complex traffic policies are implemented using the peering type. As discussed, 
we have used these fragments to implement a library of BGP policies, including load 
balancing and a back-up link, as per the example of Figure 1. 

3.5   Plugins 

AutoNetkit has been designed to be extensible, allowing the user to interact with the 
network structure using plugins. We have implemented a plugin which exports the 
network as a graph, where routers are represented by nodes and links by edges. Opera-
tions can be carried out on this graph, and the results applied back to the AutoNetkit 
network objects. The NetworkX   [18] Python package is used to represent and 
analyse networks. This package includes common graph analysis functions such as 
shortest path or resiliency algorithms, which can be used to study the network model 
in AutoNetkit. 

The graph structure allows existing research to be implemented in a Netkit network. 
As an example we have implemented a standard traffic engineering algorithm. The 
algorithm optimises link utilization (minimises congestion), by adapting the link 
weights used by the network’s routing protocol to choose shortest paths [9]. The 
result is that traffic is balanced across network paths (it may be surprising that this 
simple form of traffic engineering is effective, but previous results [9] have shown it 
can be almost as good as MPLS). Our implementation uses the network model de-
scribed above via the plugin architecture, as well as a user provided traffic matrix. 
This algorithm is used to analyse and optimise a network created using AutoNetkit, 
and apply the optimised weights to the network, where they are used to generate the 
appropriate configuration file entries. 

We have also used simple mathematical functions to deliver powerful network re-
sults. The NetworkX function to find the central node in a graph is used for optimal 
server placement: the DNS server in each network can be automatically set to be the 
central node in the network. AutoNetkit’s plugin framework allows users to easily ap-
ply mathematical research to networking, and then analyse the results in an emulated 
environment. AutoNetkit includes tools to verify the correct application of these 
weights, which we will describe later. 

3.6   Compiler 

The compiler produces configuration files for the Netkit devices, based on the net-
work description, the rule/policy specification, and the library of available rules and 
fragments. 

The compilation process starts by creating an object for each device declared in 
the network specification. It then examines the rules, creating an object for each rule, 
and attaching relevant device objects. The template implementation of each rule is 
then read, and the fragment objects for that rule created. These fragment objects are 
then attached to the appropriate device objects, as specified by the rule. 

After the fragment objects have been attached to the device objects, the individual 
device configurations take place. The compiler first configures interface objects, 
assginging the IP address and network mask to each interface object, as per the re-
source allocation process described earlier. The router objects are then configured, 
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with the internal routing protocols configured first using the IGP fragment objects, and 
BGP using BGP fragments, if required. 

Fragments within each device and across different devices may have a dependency 
relationship: some fragments need to be applied before the others, and multiple frag- 
ments can modify the same attribute in the device objects. This is especially the case for 
BGP fragments. One of the most important tasks of the compiler is to resolve these 
dependencies. AutoNetkit provides two simple methods to solve these dependency 
problems. First, all fragments are given a unique sequence number, used to capture the 
order dependency between fragments. A fragment with small sequence number is 
always applied before a segment with larger sequence number. Second, after se-
quencing if two fragments still attempt to modify the same attribute, AutoNetkit 
issues a warning and does not configure the device where conflict occurs. In this case 
the user must manually resolve the conflict. While these two simple methods are suc-
cessful in resolving all test networks, more advanced methods are needed to resolve 
complex dependencies. These are the topics of our future research. 

Once the conflicts are resolved, the device objects are configured and written in 
Quagga syntax to the configuration files, ready for deployment. 

3.7   Deployment and Verification 

AutoNetkit simplifies the process of automatically deploying the generated configu-
ration files to a Linux machine running Netkit. The deployment module copies across 
the configuration files, stops any previous Netkit labs, starts the new lab, and verifies 
that all hosts have been successfully started. 

The deployment module can verify that the output of the optimisation plugin, de-
tailed previously, was successfully applied to the running network. It compares the 
output of the NetworkX shortest paths algorithm for each source-destination pair in 
the network, against the traceroute command output for the Netkit network each pair 
in the network. 

3.8   Emulation Scalability 

The use of software to emulate a network simplifies some aspects of hardware net-
works, but also introduces new considerations. The most important is the resources 
the virtual systems requires from the host system, including memory and processor 
usage, which increase with emulated network size. 

A typical Netkit virtual system requires a minimum of 6MB RAM from the physi-
cal host for the basic services required to run Linux, such as the kernel. This increases 
to approximately 16 MB of RAM if the virtual system is to act as a router. More 
memory are required to provide network monitoring tools, such as traceroute, ping, 
and tcpdump. Packet inspection can be performed using tcpdump, but is more suitable 
for debugging than large-scale traffic analysis: due to resource constraints, emulated 
networks are better suited to testing protocols than large traffic flows. 

Resource constraints limit the number of virtual systems that can be run on a  
single Linux machine. To emulate large networks we run emulations on multiple 
Linux machines, which are connected using vde_switch [5]. The size of the emulated 
network is then limited only by number of physical Linux hosts available, rather than 
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the resources of a single machine. This allows large-scale simulations to be deployed 
using a number of inexpensive Linux machines. We have successfully used 
vde_switch to scale Netkit emulated networks to several hundred virtual routers, 
across multiple physical machines. 
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Fig. 4. Basic memory consumption with BGP and OSPF (left) and the additional memory con- 
sumption with ping and tcpdump running inside the virtual machines (right)  

Memory consumption on these virtual routers grows linearly with the size of the net-
work, for both case of with and without running applications. This is shown in Figure 4. 
Note that the memory consumption also depends on the size of the data inside the appli-
cations. For example, large BGP tables can easily consume more than 16MB. 

3.9   Visualization 

AutoNetkit allows the user to plot their networks, providing visual confirmation of 
designs and aiding in troubleshooting. The NetworkX graph representations discussed 
previously are used with pydot [20], a library to plot NetworkX graphs using  
Graphviz [11] graph visualisation software. We have made formatting customisations 
to better suit the display of computer networks, which can be be seen in Figure 5. This 
figure shows a section of the visualisation generated from AutoNetkit, based on the 
lab described in Figure 1. Different link types can be seen; internal links are shown as 
solid lines and external links are shown as dashed lines. Interface and subnet details 
are also visible. Future work will add additional visualisation features. 

4   AutoNetkit Performance: A Case Study 

We have evaluated AutoNetkit performance in two areas: scalability, by generating a 
large-scale test network, and ease of use, by comparing AutoNetkit to manually con-
figuring the demonstration network shown in Figure 1. 
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Fig. 5. Visualisation output showing the topology for AS20 in Figure 1. IGP links are shown as 
solid lines and eBGP links are shown as dashed lines. Resources such as interface numbers and 
IP addresses have been automatically allocated by AutoNetkit. 

A large-scale network can be quickly and easily. For instance, to configure a ran- 
domly generated network of 100 ASs, with 527 routers connected by 1634 links, over 
100,000 lines of device configuration code are needed. AutoNetkit only requires 50 
lines of high-level code, consisting of loops to generate each AS, add routers to the 
AS, and then interconnect these routers. Generating this network, including configura-
tion of OSPF, BGP, and DNS, is fast: AutoNetkit takes only 15 seconds on standard 
desktop computer, with a 3 GHz Intel Core2 Duo CPU processor. 

We also configured the Netkit demonstration network, shown in Figure 1. This net- 
work may appear simple compared to large-scale networks, but still requires exten-
sive configuration, including OSPF, BGP, DNS, and appropriate resource allocations. 
This adds a significant overhead to testing a simple network. Using AutoNetkit, the 
network model and policies for the this network can be described in 100 lines of 
AutoNetkit code, compared to 500 lines of device-specific configuration code. The 
AutoNetkit code is high-level and descriptive, and allows the user to deal with their 
network, not device configuration. It is also easy to alter the network: adding a link or 
router is simple in AutoNetkit, a task which is tedious and error-prone when manually 
creating configuration files. 

5   Discussion 

AutoNetkit achieves the goal of automating network configuration for Netkit, and 
provides a number of benefits: 
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– Scale at lower cost: the cost (in time) for configuring a large network is reduced, and 
is sublinear (rather than the linear costs of generating the whole network effec-
tively by hand). 

– Reliability: the reliability of emulations is improved, in the sense that we can 
be more confident that the emulated network is exactly what we intended, i.e., there 
are no misconfigurations that might stall routing, and hence change the perform-
ance of the network. 

– Consistency: consistency is part of reliability (consistency across routers is needed), 
but it also involves consistency between the network, and the operators view of the 
network, which is critical for ongoing design, debugging, and transparency. 

– Flexibility: our approach maintains the flexibility of Netkit to emulate complex 
networks and protocols. 

– Scripting: AutoNetkit is written in Python, and so can be easily scripted into larger 
sets of experiments, for instance creating multiple instances of networks to com-
pare performance of different configuration. 

Another way to view the activity is by analogy to programming. In the grim old 
days, when programs were written in machine code, only a few gurus could program, 
and they were highly specialized to particular machines. Programs were typically 
very limited in size, and complexity. The advent of high-level programming languages 
made programming a commodity skill, and separated the meaning of programs from 
the particular hardware. Larger and more complex programs have resulted. More 
recently, software-engineering and related programming tools including integrated 
programming environments, standard portable APIs, and specification languages have 
helped enable very large software projects, with what could be described as a produc-
tion line for code. 

One view of AutoNetkit is as a high-level language and compiler for Netkit. Similar 
to the benefit that high-level languages bring to programming, AutoNetkit can make 
the network configuration process much easier, and enable emulations of large and 
complex networks. 

6   Conclusions and Future Work 

We have developed AutoNetkit, a tool that allows a user to easily generate large-scale 
emulated networks. AutoNetkit has been successfully used to generate a number 
of test networks, including one of the principal Netkit test labs described in Figure 1. 
AutoNetkit will be made available at http://bandicoot.maths.adelaide. 
edu.au/AutoNetkit/ 

There are many additional features we intend to implement in the future. We plan 
to extend AutoNetkit to other emulators and to real networks, including deployment 
to hardware networks consisting of Cisco and Juniper devices. We will also imple-
ment additional features in AutoNetkit for other routing protocols, such as RIP and 
IS-IS, support for MPLS, and filtering using Access Control Lists. It is important for 
an auto-configuration tool to test generated configurations. We currently perform path 
checking using traceroute, and will expand this verification in future AutoNetkit  
development. 
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Abstract. UltraScience Net is a network research testbed for support-
ing the development and testing of wide-area networking technologies for
high-performance computing and storage systems. It provides dynamic,
dedicated, high-bandwidth channels to support large data transfers, and
also provides stable high-precision channels to support fine command
and control operations. Its data-plane consists of 8,600 miles of cross-
country dual OC192 backbone, which can be dynamically provisioned at
different bandwidths. Its out-of-band control-plane is implemented using
hardware Virtual Private Network (VPN) devices. In terms of the testbed
infrastructure, it demonstrated the following capabilities: (i) ability to
build and operate national-scale switched network testbeds, (ii) provi-
sioning of suites of 1 and 10 Gbps connections of various lengths up
to 70,000 and 8,600 miles, respectively, through automated scripts, (iii)
secure control-plane for signaling and management operations, and (iv)
bandwidth scheduler for in-advance connection reservation and provi-
sioning. A number of structured and systematic experiments were con-
ducted on this facility for the following tasks: (i) performance analysis
and peering of layer 1-3 connections and their hybrid concatenations,
(ii) scalability analysis of 8Gbps InfiniBand (IB) transport over wide-
area connections of thousands of miles, (iii) diagnosis of TCP perfor-
mance problems in using dedicated connections to supercomputers, (iv)
detailed TCP performance analysis of wide-area application acceleration
devices, and (v) TCP throughput improvements due to 10Gbps High
Assurance Internet Protocol Encryptor (HAIPE) devices.

Keywords: Network testbed, dedicated channels, SONET, 10GigE
WAN-PHY, control-plane, data-plane, bandwidth scheduler, WAN ac-
celerators, HAIPE, InfiniBand.

1 Introduction

Large-scale computing and storage applications require high-performance
networking capabilities of two broad classes: (a) high bandwidth connections,
typically with multiples of 10Gbps, to support bulk data transfers, and (b) sta-
ble bandwidth connections, typically at much lower bandwidths such as 100s
of Mbps, to support operations such as computational steering, remote visu-
alization and remote control of instrumentation. These networking capabilities
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may be achieved by providing dedicated connections of the required bandwidths
directly between the end users or applications. Such connections are needed
only for certain durations between select sites, for example, for archiving at a
remote storage facility a terabyte dataset produced on a supercomputer, or ac-
tively monitoring and steering a computation on a supercomputer from a remote
user workstation. Current Internet technologies, however, are severely limited in
meeting these demands because such bulk bandwidths are available only in the
backbone, and stable control channels are hard to realize over shared network
infrastructures. The design, building and operation of the needed network in-
frastructure with such capabilities require a number of technologies that are not
readily available in Internet environments, which are typically based on shared,
packet-switched frameworks. Furthermore, there have been very few network ex-
perimental facilities where such component technologies can be developed and
robustly tested at the scale needed for large-scale computing and storage systems
distributed across the country or around the globe.

The UltraScience Net (USN) was commissioned in 2004 by the U. S. Depart-
ment of Energy (DOE) to facilitate the development of high-performance net-
working technologies needed for large-scale science applications, and has been
supported by U. S. Department of Defense (DOD) since 2007. USN’s footprint
consists of dual dedicated OC192 connections, from Oak Ridge to Chicago to
Seattle to Sunnyvale. It supports dynamic provisioning of dedicated 10Gbps
channels as well as dedicated connections at 150Mbps resolution. There have
been a number of testbeds such as UCLP [30], CHEETAH [6], DRAGON [15],
HOPI [13] and others that provide dedicated dynamic channels, and in compar-
ison, USN has larger backbone bandwidth and footprint. Compared to research
initiatives such as GENI [12] in the U.S., FIRE [11] and FEDERICA [10] in
Europe, AKARI [3] in Japan, and CNGI [7] in China, USN has a more focused
goal of high-performance applications as in CARRIOCAS project [4] and ARRA
ANI [28]. However, we note that USN has been operational for the past five
years compared to CARRIOSCAS and ARRA ANI, which are currently being
deployed.

The contributions of USN project are in two categories:

(a) Infrastructure Technologies for Network Experimental Facility:
USN developed and/or demonstrated a number of infrastructure technolo-
gies needed for a national-scale network experimental facility. In terms of
backbone connectivity at DWDM, USN’s design and deployment is simi-
lar to the Internet. However, its data-plane is different in that it can be
partitioned into isolated layer-1 or layer-2 connections. Its control-plane is
quite different mainly due to the ability of users and applications to setup
and tear down channels as needed as in [31,4,28]. In 2004, USN design re-
quired several new components including a Virtual Private Network (VPN)
infrastructure, a bandwidth and channel scheduler, and a dynamic signaling
daemon. The control-plane employs a centralized scheduler to compute the
channel allocations and a signaling daemon to generate configuration signals
to switches.
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(b) Structured Network Research Experiments: A number of network re-
search experiments have been conducted on USN. It settled an open matter
by demonstrating that the bandwidth of switched connections and Multiple
Protocol Label Switching (MPLS) tunnels over routed networks are com-
parable [22]. Furthermore, such connections can be easily peered, and the
bandwidth stability of the resultant hybrid connections is still comparable
to the constituent pure connections. USN experiments demonstrated that
InfiniBand transport can be effectively extended to wide-area connections of
thousands of miles, which opens up new opportunities for efficient bulk data
transport [24,18]. USN provided dedicated connections to Cray X1 super-
computer and helped diagnose TCP performance problems which might have
been otherwise incorrectly attributed to traffic on shared connections [21].
Also, experiments were conducted to assess the performance of application
acceleration devices that employ flow optimization and data compression
methods to improve TCP performance [19]. USN demonstrated file trans-
fer rates exceeding 1Gbps over 1GigE connections of thousands of miles.
Recently, experiments were conducted to assess the effect of 10Gbps High
Assurance Internet Protocol Encryptor (HAIPE) devices on TCP through-
put over wide-area connections. Somewhat surprisingly, these devices lead
to improvements in TCP throughput over connections of several thousands
of miles [17].

This paper is organized as follows. In Section 2, we describe USN technologies
for data- and control-planes. The results from network experiments are described
in Section 3. This paper provides an overview of these topics and details can be
found in the references [23,20,22,19,21,25,24,17,18,16].

Fig. 1. UltraScience Net backbone consists of dual 10 Gbps lambdas from Oak Ridge
to Chicago to Seattle to Sunnyvale
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2 USN Infrastructure and Technologies

USN infrastructure is supported by co-location sites at Oak Ridge, Chicago,
Seattle and Sunnyvale as shown in Figure 1. USN backbone utilizes ORNL net-
work infrastructure to provide two OC192 SONET connections from Oak Ridge
to Chicago, and two OC192 SONET connections from National Lambda Rail
(NLR) between Chicago, Seattle and Sunnyvale. USN peered with ESnet [9] at
both Chicago and Sunnyvale, and with Internet2 [14] in Chicago. USN architec-
ture is based on out-of-band control-plane as shown in Figure 2, since lack of
data-plane continuity makes in-band signaling infeasible.

Fig. 2. USN architecture is based on separate data- and control-planes

2.1 Data-Plane

The data-plane of USN consists of two dedicated OC192 SONET (9.6 Gbps)
connections as shown in Figure 3, which are terminated on Ciena CDCI core
switches. At Oak Ridge, Chicago and Sunnyvale nodes, Force10 E300 Ether-
net switches are connected to the corresponding core switches. At Oak Ridge
and Chicago core switches also provide 1GigE ports. A variety of data-plane
connections can be provisioned using combinations of core and edge switches.
SONET connections with bandwidth in the range, 150Mbps - 9.6Gbps, at OC3
(150Mbps) resolution can be provisioned using the core switches. 1GigE con-
nections can be provisioned using OC21 connections between the core switches
and cross-connecting them to their 1GigE ports using General Framing Protocol
(GFP). Wide-area OC192 connections are provisioned by switching entire lamb-
das exclusively at core switches. 10GigE WAN-PHY connections are provisioned
by terminating OC192 connections on edge switches at the ends; also, interme-
diate WAN-PHY connections may be provisioned by utilizing E300 switches at
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those nodes. Connections switched at 10GigE LAN-PHY are realized by utilizing
E300 switches to terminate the WAN-PHY connections and then suitably cross-
connecting them to LAN-PHY ports. Thus, USN provides dedicated channels of
various resolutions at distances ranging from few hundred miles to thousands of
miles, which may be terminated on third party routers or switches or hosts. USN
also provides Linux hosts connected to edge switches as shown in Figure 3 to
support the development and testing of protocols, middleware, and applications.

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

USN Data-Plane: Node Configuration
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Fig. 3. USN data-plane

In conducting experiments to test the distance scalability of devices and pro-
tocols, suites of connections with varying lengths are provisioned between two
fixed ports. A suite of 10Gbps connections of lengths 0, 1400, 6600 and 8600 miles
are provisioned as shown in Figure 4(a) for InfiniBand experiments. By utilizing
OC21 multiplexing we provision 1GigE non-interfering connections on a single
OC192 connection, and by switching them at the ends realize several lengths.
By using 700 mile dual OC192 connections between Oak Ridge and Chicago
we create 1GigE connections with lengths from 0 to 12600 miles in increments
of 1400 miles as shown in Figure 4(b). We developed automated scripts that
dynamically cycle through all connections of a test suite by invoking a single
script.

2.2 Control-Plane

USN control plane consists of the following components [23]: (a) client interface,
(b) server front-end, (c) user management, (d) token management, (e) database
management, (f) bandwidth scheduler, and (g) signaling daemon. USN control-
plane software is implemented in C++ using CGI and PHP scripts for the server
and JavaScript and HTML for user interface. It is deployed on a central manage-
ment node on a Linux workstation at ORNL. The control-plane is implemented
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(a) 10Gbps OC192 connections
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Fig. 4. Suites of 1 and 10 Gbps connections provisioned on USN

using hardware-based VPN devices as shown in Fig. 5. Secure VPN tunnels are
implemented using a main unit (Netscreen NS-50) at ORNL and secondary units
(Netscreen NS-5) at each of the remote sites so that only authenticated and au-
thorized traffic is allowed, and the traffic is encrypted. Each VPN tunnel carries
three types of encrypted traffic flows: (i) user access to hosts, (ii) management
access to hosts and switches, and (iii) the signaling messages to switches.

Fig. 5. USN control-plane

Based on network topology and bandwidth allocations, the scheduler com-
putes a path as per user request. The signaling daemon executes scripts to set
up or tear down the needed connections. The CDCI core switches are signaled
using TL1 commands, and E300 edge switches are signaled using CLI commands.
In both cases, EXPECT scripts are utilized by the signaling daemon to login
via encrypted VPN tunnels to issue the commands. The bandwidth scheduling
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algorithms are developed for: (i) a specified bandwidth in a specified time slot,
(ii) earliest available time with a specified bandwidth and duration, (iii) high-
est available bandwidth in a specified time slot, and (iv) all available time slots
with a specified bandwidth and duration. The first three algorithms are exten-
sions of the classical Dijkstra’s algorithm [8], and the last one is an extension
of Bellman-Ford algorithm, which is an improvement over previous transitive
closure algorithm [20]. USN control-plane has the first (2005) implementation of
mathematically-validated advance scheduling capability, and more recently such
capabilities have been developed in [4,31,2].

3 USN Network Experiments

In this section, we present a summary of experiments conducted on USN facility;
their detailed accounts can be found in the references.

3.1 Hybrid Network Connections

Dedicated bandwidth connections may be provisioned at layers 1 through 3 or
as combinations. For example, they can be MPLS tunnels over routed network
as in ESnet [2], or Ethernet over SONET as in CHEETAH [33], or InfiniBand
over SONET as in USN [5], or pure Ethernet paths [1]. An objective comparison
of the characteristics of the connections using these technologies is important in
making deployment decisions. Once deployed, the costs of replacing them could
be very high, for example, replacing MPLS tunnels with SONET circuits entails
replacing routers with switches. We collected measurements and compared the
throughput and message delays over OC21C SONET connections, 1Gbps MPLS
tunnels, and their concatenations over USN and ESnet.

For these experiments we utilized (a) OC21C connections of lengths 700, 1400,
..., 6300 miles on USN as described in the previous section, and (b) 1Gbps 3600
mile VLAN-tagged MPLS tunnel on ESnet between Chicago and Sunnyvale
via Cisco and Juniper routers. USN peered with ESnet in Chicago as shown
in Figure 6, and 1GigE USN and ESnet connections are cross-connected using
E300 switch. This configuration provided hybrid dedicated channels of varying
lengths, 4300, 5700, ... , 9900 miles, composed of Ethernet-mapped layer 1 and
layer 3 connections. We collected throughput measurements using iperf and Peak
Link Utilization Protocol (PLUT) over these connections.

For TCP, we varied the number of streams n from 1 and 10, and for UDP we
varied the target rate as 100, 200, ..., 1000, 1100 Mbps; each set of measurements
is repeated 100 times. First, we consider USN and ESnet connections of lengths
3500 and 3600 miles respectively and their concatenation. TCP throughput is
maximized when n is around 7 or 8 and remained constant around 900, 840
and 840 Mbps for SONET, MPLS and hybrid connections, respectively. For
UDP, the peak throughput is 957, 953 and 953 Mbps for SONET, MPLS and
hybrid connections, respectively. Hence, there is difference of 60Mbps and 4Mbps
between the TCP and UDP peak throughput, respectively, over SONET and
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MPLS connections. Also, there is a difference in peak throughput achieved by
TCP and UDP in all cases, namely, 57 and 93 Mbps for SONET and MPLS
connections, respectively. We measured file transfer rates over these connections
using UDP-based PLUT, which achieved 955, 952 and 952 over SONET, MPLS
and hybrid connections, respectively.

USN thus demonstrated that connections provisioned at layers 1-3 can be
peered and carried across networks using VLAN technologies, and throughput
and message delay measurements indicate comparable performance of layer 1,
layer 3 and hybrid connections (detailed results can be found in [22]).

3.2 InfiniBand over Wide-Area

The data transport across wide-area networks has traditionally been based on
1/10GigE technologies combined with SONET or WAN-PHY technologies in the
wide-area. InfiniBand was originally developed for data transport over enterprise-
level interconnections for clusters, supercomputers and storage systems. It is
quite common to achieve data transfer rates of 7.6 Gbps using commodity IB
Host Channel Adapters (HCA) (SDR 4X, 8 Gbps peak) by simply connecting
them to IB switches. However, geographically separated IB deployments still
rely on transition to TCP/IP and its ability to sustain 7.0-8.0 Gbps rates for
wide-area data transfers, which by itself requires significant per-connection op-
timization. Recently, there have been hardware implementations of InfiniBand
over Wide-Area (IBoWA) devices, in particular Longbow XR and NX5010ae.

USN was among the first to conduct experiments that showed that these
technologies could provide throughput far superior to TCP for dedicated high
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bandwidth data transfers [24]. We utilize 0.2, 1,400, 6,600 and 8,600 mile con-
nections and Longbow IBoWA devices in configurations shown in Figure 4 (a).
Our results indicate that IB throughput of 7.6Gbps (4x) scales well (with 5%
degradation) with no customization to 8600 mile 10GigE and OC192 connections
as shown below:

connection length (miles) 0.2 1400 6600 8600 average
average throughput (Gbps) 7.48 7.47 7.37 7.34 7.47
std, dev (Mbps) 45.27 0.07 0.09 0.07 11.40
decrease per mile (Mbps/mile) 0 0.012 0.017 0.016 0.015

In contrast, various TCP (BIC, HTCP, HSTCP and CUBIC) achieved only
a few Gbps on this connection. An additional benefit of IBoWA solution is that
one could utilize native IB solutions to access remote files systems. However,
this solution performed poorly under cross-traffic and dynamic bandwidth con-
ditions, wherein cross-traffic levels of above 2Gbps degraded IB throughputs to
about 1Gbps over 8600 mile connection. Thus this approach is mainly suited for
dedicated high-bandwidth connections. This work illustrates that transport solu-
tions for high-performance applications could be radically different from current
TCP/IP based solutions. More details on this work can be found in [5,24,18].

3.3 Dedicated Connections to Supercomputers

The shared Internet connection from Cray X1 supercomputer at ORNL to North
Carolina State University (NCSU) is provisioned at a peak rate of 1Gbps in 2006.
But, the data path is complicated. Data from a Cray node traverses System Port
Channel (SPC) channel and then transits to FiberChannel (FC) connection to
CNS (Cray Network Subsystem) as shown in Figure 7. Then CNS converts FC
frames to Ethernet LAN segments and sends them onto GigE NIC. These Ether-
net frames are then mapped at ORNL router onto SONET long-haul connection
to NCSU; then they transit to Ethernet LAN and arrive at the cluster node
via GigE NIC. Thus the data path consists of a sequence of different segments:
SPC, FC, Ethernet LAN, SONET long-haul, and Ethernet LAN. The default
TCP over this connection achieved throughputs of the order 50 Mbps. Then bbpc
protocol adapted for Cray X1 achieved throughputs in the range 200-300Mbps
using multiple TCP streams. This low throughput is thought to have been the
result of traffic congestion on the shared connection.

Since the capacity of Cray X1’s NIC is limited to shared 1Gbps, we developed a
dedicated interconnection configuration with 1Gbps capacity by using USN host
and direct FC connections from Cray. Hurricane protocol that achieved 90%
utilization on other 1Gbps connections was tuned for this configuration. But it
only achieved throughputs of the order 400Mps when no jobs are running on
Cray X1. Furthermore, its throughput degraded to 200Mbps as jobs are brought
online. The throughput problem was diagnosed to the inadequate CPU cycles
being allocated to TCP stack, and the network connection had not been the
main bottleneck from the start.
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3.4 Wide-Area Application Accelerators

To address the challenges of optimizing the wide-area transport performance,
new generation devices are being developed that can simply be “dropped-in”
at the network edges. These devices transparently optimize the network flow
performance using a combination of Data Redundancy Elimination (DRE) [27],
TCP Flow Optimization (TFO) [26] and network data compression [29]. Cisco
Wide Area Application Services (WAAS) products are examples of these new
technologies. We conducted experiments to quantify the performance of Cisco
WAE-500 and WAE-7300 series devices over 1Gbps connections.

We measured iperf TCP throughputs on paths with and without WAAS de-
vices at the ends, called WAAS and non-WAAS paths respectively. We used
various connection lengths shown in Figure 4(a) and varied the number of par-
allel streams from 1 to 50. The relative performance of WAAS and non-WAAS
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paths for default TCP are summarized in Figure 8. For single streams, WAAS
throughput is higher by at least factor of 10 and was as high as 40 in some in-
stances as shown in 8(a). For most multiple streams, WAAS paths throughputs
are at least three times higher than non-WAAS paths. The two distinguishing
features of WAAS paths are: (a) throughputs reached their maximum with about
5-10 streams, where as non-WAAS paths needed 40 or more streams to reach
same levels, (b) WAAS path throughputs were not monotonic in the number of
streams unlike the non-WAAS paths.

To study the effects of file contents, we measured file transfer throughputs
using iperf with -F option for three different types of files over 1400 mile 1Gbps
connection: (a) file with repeated bytes, (b) file with uniformly randomly gen-
erated bytes, and (c) supernova simulation files in hdf format. We also gziped
these files and utilized them in iperf measurements; gzip implements Limpel-Ziv
(LZ) compression on the entire file unlike the incremental implementation on
WAE devices. In case (a), gziped file is highly compressed to about 1030 times
smaller than the original size, and in case (c) compressed file size is about 0.6831
times the original size. In case (b), however, the gziped file is larger by 0.01%
since the file contents were not compressible and the header added to the size.

TFO achieved the best performance for hdf files with throughputs exceeding
1Gbps with 3-6 streams. Least performance improvements are observed for files
with repeated contents and random contents. TFO combined with LZ achieved
the best performance for hdf files with throughputs exceeding 1Gbps (1017Mbps)
with 4-5 streams as shown in Figure 8(b). This performance is about the same
order as TFO alone. Least performance improvements are observed for files with
random contents, but the performance is much higher than using TFO alone
but somewhat lower than using TFO and DRE. In particular, throughputs of
900Mbps were achieved with more than 13 streams, whereas TFO-DRE achieved
950 Mbps with 7 streams. But TFO-LZ performed better than using TFO alone
which could sustain 852Mbps with 13 or more streams. USN experimental results
can be summarized as follows: (i) highest and lowest throughputs are achieved for
hdf and random data files, respectively; (ii) most throughputs were maximized
by utilizing 5-10 parallel TCP streams; and (iii) pre-compression of files using
gzip did not have a significant effect. In all cases, throughput measurements
varied when experiments were repeated.

3.5 IP Encryption Devices

Recent High Assurance Internet Protocol Encryptor (HAIPE) devices are de-
signed to provide 10 Gbps encrypted IP traffic flows. HAIPE is Type 1 encryp-
tion device that utilizes cryptography Suites A and B for encrypting IP packet
flows. HAIPE’s interoperability specification is based on IPsec with additional
restrictions and enhancements. They act as gateways between two enclaves to
exchange data over an untrusted or lower-classification network. HAIPE de-
vice looks up the destination IP address of a packet in its internal Security
Association Database (SAD) and picks up the encrypted tunnel based on the
appropriate entry. They use internal Security Policy Database (SPD) to set up
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tunnels with appropriate algorithms and settings. We generate the performance
profiles for TCP and UDP with and without encryption devices. We enabled
jumbograms consistently at all devices on the encrypted path, which achieved
better performance compared to unencrypted path: (a) for connections 1400
miles and shorter, same throughput levels as unencrypted case were achieved
with less number of parallel streams, and (b) throughput improved by more
than 50% for longer connections. Thus for TCP, the encryption devices have an
effect equivalent to reducing the end-to-end latency which in turn increases the
throughput.
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Fig. 9. Wide-area connections with and without HAIPE devices

The hosts are connected to Fujitsu 10 GigE switch which provides multiple
connections to E300 switch. First pair of connections are via HAIPE devices
as shown in Figure 4, and the second pair are direct connections. By appropri-
ately utilizing VLANS as shown in Figure 9 we realize wide-area connections
between pairs of hosts with and without HAIPE devices to realize encrypted
and plain connections, respectively. Thus this setup enables side-by-side com-
parison of the performance of encrypted and plain connections. The same mea-
surement software is used in both cases, and IP address scheme is used to di-
rect the flows onto the encrypted and plain connections as needed. The same
wide-area connection is used for both types of traffic, and the experiments are
mutually exclusively scheduled so that only one type of traffic is allowed during
each test.

We generate throughput profiles for TCP and UDP between hosts connected
over connections of different lengths to characterize the achievable throughputs
and the corresponding configuration parameters. For TCP, let TTCP (d, n), de-
note the throughput measurement for files transfers using iperf with -F option
over connection of length d using n TCP streams. Let T̄TCP (d, n) denote the
average TCP throughput over 10 repeated measurements. TCP distance-profiles
are generated by measuring throughputs TTCP (d, n) for the number of parallel
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streams n from 1 to 20, for connection length d = 0.2, 1400, 6600, 8600 miles.
To collect the stability-profile for fixed connection length d, we repeat through-
put measurements 10 times, for n = 1, 2, . . .20 for TCP, and r = 4, 5, 6, 10,
11 Gbps.

We show the performance profiles without encryptors in Figure 10. For local
connections, TCP throughput of 9.17 Gbps was achieved with 6 parallel streams,
and it was 8.10 Gbps over 1400 mile connection with 15 streams. However, the
throughput was about 1Gbps for 8600 mile connection even with 20 streams.
These results were produced with BIC congestion control [32], and similar results
with other congestion control modules are described in [24].
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We collected iperf measurements over when encryptors are included, and the
results are shown in Figure 11. There are several interesting observations. (i)
for local connection 9Gbps throughputs were achieved with 2-3 parallel streams
compared to 6 streams needed for unencrypted connection; (ii) for 1400 mile
connection, 8Gbps throughput was achieved with about 12 parallel streams com-
pared to about 20 for unencrypted case; and (ii) for 8600 mile connection, 1.57
Gbps throughput was achieved with 20 streams compared to about 1Gbps for the
unencrypted connection. In summary, the TCP file transfer throughputs were
higher when encryptors were employed for the same number of parallel streams
as shown in Figure 12. Such throughput improvement is consistently present in
all performance profiles at all tested connection lengths. This performance im-
provement is attributed to the availability of buffers on HAIPE devices which
smoothens TCP dynamics and has an effect similar to shortened RTT.
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4 Conclusions

UltraScience Net is a national-scale testbed conceived and built in support of the
development of high-performance networking technologies. It developed and/or
tested infrastructure technologies needed for national-scale network experimental
facilities, and also supported a number of high-performance research network
experiments.

It would of interest to complement USN’s experimental facilities with capabil-
ities to (a) realize user-specified network footprints, and (b) analyze, interpolate
and extrapolate the collected measurements. It would be beneficial to develop
methods to map and realize a user-specified target network on USN infrastruc-
ture as closely as possible; such capability enables the testing of national-scale
networks which are more general than the connection suites described here.
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Despite the availability of connection suites, there are limits on the lengths of
connections that can be physically realized on USN. It would be interesting to
develop the theory and tools for the design of network experiments to: (i) iden-
tify a set of probe connections to optimize the cost and information from the
measurements collected, and (ii) suitably interpolate or extrapolate the measure-
ments to predict the performance at desired connection lengths and also derive
qualitative performance profiles.
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Abstract. Currently, a number of research activities worldwide focus on re-
source federations to enable remote resource access and  the setup of large 
scale experiments. With the global efforts  in sharing experimental facility re-
sources across organizational boundaries, interoperability issues are becoming 
increasingly important. To this end, this paper describes a model that defines 
the necessary entities for inter resource federation scenarios. The model is then 
discussed by means of a concrete use case federating Panlab and  PlanetLab re-
sources. In this respect Panlab and PlanetLab are considered to be federations 
themselves. Our findings show that the two approaches can be matched fol-
lowing the general model. This allows for federating resources not only 
across the boundaries of administrative (organizational) domains but even 
across the boundaries of federations. Those federations in themselves provide 
collections of resources offered by several administrative domains and use dif-
ferent control frameworks to enable resource access and management. 

Keywords: Resource Federation, Model, Panlab, PlanetLab, SFA, Teagle,  
Interoperability. 

1   Introduction 

The current trend of federation is followed by several research projects and programs 
worldwide. While the concept of federation can be applied to a number of fields such 
as identity management, networking, trust, and security, in the context of this paper 
we concentrate on the federation of testbeds and experimental facilities. Generally, a 
federation is understood to be an organization within which smaller divisions have 
some internal autonomy (Oxford definition). Merriam-Webster defines federal as: (1) 
formed  by a compact between political units that surrender their individual sover-
eignty to a central authority but retain limited residuary powers of government; (2) of 
or constituting a form of government in which power is distributed between a central 
authority and a number of constituent territorial units. 

This concept, clearly stemming from a political background, is also applied in the 
context of our research in sharing hardware and software resources across the borders 
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of individual administrative domains. This is important because federation enables 
combining infrastructural network resources and services of more than one independ-
ently controlled domain which enhances the utility of testbeds significantly. This is 
true for the following reasons: access can be given to more resources, increasing the 
scale of experiments. Furthermore, individual testbeds may include unique infrastruc-
tural resources or configuration properties that allow experimenters to execute new 
kinds of experiments. Finally, because testbeds act as gathering points for experi-
menters in a given field, combining testbed resources can promote collaboration be-
tween very different communities (e.g. Internet community and Telco community) 
and research groups [1]. 

Furthermore, with the speed of network convergence and technology evolution, to-
day’s ICT systems require sophisticated heterogeneous experimental network infra-
structures to design and test new solutions. The problem is that infrastructure 
lifetime  –  the  time  an  infrastructure  remains  at  technology’s  cutting  edge  –  has 
decreased dramatically, making investments in expensive isolated research infrastruc-
ture more risky than they were already. This is especially true for complex cross-layer 
and cross-technology testbeds. 

In this regard, federation can play a major role in the worldwide research activities 
that are currently under way to investigate alternative solutions and design the archi-
tecture of a so-called Future Internet (FI). The FI architecture discussion has 
been triggered by the fact the original Internet design and its protocols were devised 
in the Seventies and numerous fixes and extensions have been introduced since then 
to address a variety of problems such as scalability and security. This led to a highly 
heterogeneous landscape of different protocols and technologies combined with a 
significant increase in the overall system complexity. At the same time the Internet is 
still a best effort network and Quality of Service (QoS) guarantees are hard to realize. 
In addition to the development of innovative foundational Internet architectures, the 
setup and provisioning of large scale testbeds and experimental facilities is considered 
to be of major importance in international research in order to develop, test, and vali-
date FI research results. Therefore, large research programs have been launched to 
address both the development of new Internet architectures as well as suitable ex-
perimental facilities and test environments. Examples in this context are the United 
States NSF programs GENI (Global Environment for Network Innovations) [2] and 
FIND (Future Internet Design) [3] as well as the European FIRE (Future Internet 
Research & Experimentation) [4],[5] initiative. The focus of GENI is on the design of 
experimental platforms whereas FIND is mainly addressing foundational concepts 
and methods for the Future Internet. In the context of GENI, there are currently five 
competing testbed control frameworks (TIED [6],[1], PlanetLab [7], ProtoGENI [8], 
ORCA [9], ORBIT [10]) under development that are organized in clusters. In the 
FIRE context, several projects (e.g. Onelab2 [11], Federica [14], PII [12],[13]) are 
contributing to the experimental facility. In Asia similar programs have been launched 
such as AKARI [15] in Japan. Joint Asian activities are carried out under the APAN 
(Asia-Pacific  Advanced  Network) [16]  initiative,  the Asia  Future  Internet Fo-
rum (AsiaFI) [18] as well as PlanetLab CJK (China, Japan, Korea), a joint PlanetLab 
cooperation by China, Japan, and Korea. An in-depth discussion and comparison 
between the different control framework approaches for experimental facilities has 
been published earlier by the authors [19]. 
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This article proposes a generic model for federation and demonstrates an approach 
for federating resources between two of the above mentioned control frameworks, 
PlanetLab and Panlab. The implementation is partly based on the Slice Based Facil-
ity Architecture (SFA) outlined in [20]. SFA has been chosen, on the one hand 
because of its aim to support generic resource types and on the other hand because an 
implementation of it already exists for the PlanetLab federation. 

The paper is organized as follows: First, an introduction to the federation model is 
given as well as a short comparison of the scope and some architectural aspects of the 
PlanetLab and Panlab control frameworks, along with an introduction to SFA. Then, a 
use  case  scenario  and  an  implementation  that  satisfies  the  requirements  of  this 
scenario are described. Finally, we discuss the implementation along with the chal-
lenges faced and decisions taken and evaluate our findings. 

It is important to note that this article focuses on issues regarding the technical de-
sign and infrastructural layout of the respective control frameworks and a possible 
federation between them, leaving aside organizational, business, and legal aspects. 

2   Federation Model 

In the introduction we gave a definition of federation which has been motivated by a 
political background. Such definitions are based on the concept of surrendering indi-
vidual sovereignty to a central authority. This general understanding is extended in 
our problem field as resource federations “at eye level” are possible. 

  

Fig. 1. Federation model entities 

However, independent of the level of surrender there are similar functional entities 
that need to be provided to enable cross-domain and cross-technology federation 
concepts. The entities are shown in figure 1 and are listed below: 

 
• Resources (r) 
• Virtual grouping of resources (dotted rectangle) 
• Domain managers (m) 
• Registries (reg) 
• Creation / setup tools (set) 
• Administrative authorities (solid rectangle) 
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In the following we will apply different levels of “surrender” to depict several fed-
eration scenarios. The first scenario shown in figure 2 on the left hand side is what we 
call the “full surrender” scenario where the resources committed from domain B can 
be controlled via domain A. An example of the full surrender scenario is the Panlab 
Federation [12] where all Panlab domains allow TEAGLE, the central composition 
engine, to control resources inside their domain using a central registry wher  resource  
from all participating domains are registered. Also, earlier approaches such as [21] 
can be modeled in this way. 

 

 

Fig. 2. Left: full surrender scenario, right: federation at eye-level scenario  

The  scenario shown in  figure  2  on  the  right  hand  side  is  what  we  call  the 
“federation  at  eye  level”  scenario  as  the participating  domains  allow  the  mutual 
control of resources across the borders of the individual domains. This scenario has 
been  implemented  to  federate  Panlab  resources  and  resources  from  a  private 
PlanetLab installation and will be explained in detail in the following sections. 

Several other scenarios that are somewhere in between the both extreme scenarios 
explained above are possible and might be applied to satisfy various constraints and 
requirements  in  specific federation  contexts.  An  example  might be that only the 
registries of domains are shared allowing users to “roam” between domains and use 
resources from various domains without combining them across the borders of those 
domains. 

The  model  has  been  influenced  by  existing  federation  approaches  such  as 
PlanetLab, the SFA, and Panlab. 

3   PlanetLab, Panlab and SFA 

This section introduces the previously mentioned frameworks and highlights the ar-
chitectural concepts that are important for our further analysis and implementation of 
a federation scenario with mutual resource sharing between the top-level authorities. 

3.1   PlanetLab Control Framework 

PlanetLab is one of the platforms working under the umbrella of the GENI initiative 
and is being extended in this context to meet FI research infrastructure requirements. 
It is a global research network in the form of a distributed computing platform, 
 



 Interoperability in Heterogeneous Resource Federations 39 

 

designed to support the development of new network services. The actual control 
framework software used by PlanetLab is called PlanetLab Central (PLC). Its primary 
focus lies on multiplexing the computing resources of nodes (servers) through dis-
tributed virtualization. Nodes run a minimal version of a UNIX  operating system, 
currently the Linux flavor Fedora Core 8 (FC8) [22] and are divided into virtual con-
tainers.  At  present,  PlanetLab  is  employing  the  Vserver  [23]  technology  to 
perform this virtualization though other solutions could be used as well. The resources 
(reserved CPU percentage, memory and bandwidth allocations, etc.) bundled by 
such a virtual container are collectively called a sliver. PLC then groups these slivers 
into slices which are owned and subsequently administered by the party requesting 
the instantiation of a slice. Note that a sliver always belongs to exactly one distinct 
slice. Figure 3 shows this concept: 

 

Fig. 3. Logical schematic of the PlanetLab architecture  

Slices could also be described as virtual testbeds spanning parts or even the whole 
of the PlanetLab network of nodes. From the perspective of researchers, a slice is a 
substrate-wide  network  of  computing  and  communication  resources  capable  of 
running an experiment or a wide-area network service [24]. Slices also serve as the 
primary entity for accounting and accountability. The consuming of resources on 
individual nodes can be traced to a distinct slice as well as the possibly malicious 
behavior of experiments or other programs running within the network. 

Furthermore, PLC allows the party owning a slice to grant individual researchers 
(users) access to it. A user associated with a slice always has access to all the slivers it 
comprises. Researchers can use their slices to run experiments, either by directly 
administering the associated slivers through SSH or by using one of several overlay 
technologies developed by PlanetLab or third parties [25]. Additionally, PlanetLab 
offers  a  number  of  operations  on  slices  to  its  users,  for  example  centralized 
monitoring facilities or the ability to reboot or reset all slivers in a slice. 

3.2   Panlab Control Framework 

One important conceptual difference between PlanetLab and the Panlab approach is 
that while PlanetLab’s focus is centered on computing resources (nodes), Panlab aims 
at being a truly generic design which is able to deploy, manage, and subsequently 
offer arbitrary resources and services. These range from infrastructure devices like 
routers or VPN gateways to logical resources, for example user accounts or relations 
in a database. Panlab also includes computing resources as offered by PlanetLab. 
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The fundamental technical management authority of a Panlab domain is a Panlab 
Testbed Manager (PTM) which has been described in more detail in [26]. A PTM’s 
main functionality is the execution of generic provisioning operations on resources 
under  its  control. These  resources  are distinctly typed, uniquely named,  and  can 
expose further specific operations in addition to PTM’s generic operations. Resources 
follow a dynamic lifecycle; resource types can be instantiated, these instances can be 
worked  with,  (re-)configured,  and  finally  de-provisioned  and  removed  from  the 
system. A high level overview of a Panlab domain and its PTM is given in figure 4. 

PTM

RA RA RA

Front-end
module

Server Router ...

Client 
Frontend

  
Fig. 4. Structural overview of a PTM domain 

Given the high heterogeneity of resource types a PTM has to support, it cannot be 
directly aware of all resource specific semantics. Thus, an abstraction layer is neces-
sary to allow for common management operations. This abstraction layer is 
made up of so-called resource adapters (RA) to which the PTM delegates the task of 
addressing resource specific types of communication. These resource adapters can be 
viewed as device drivers in the sense that they possess detailed knowledge about 
semantics of the resources instances they are responsible for. At its core level, a PTM 
itself  is  completely  unaware  of  this  nature  and  acknowledges  resource  instances 
merely as fundamental entities. 

 

Fig. 5. Logical view of PTM’s containment hierarchy 

The entities are organized in a strictly hierarchical manner; a resource instance that 
is not at the root of the resource hierarchy has exactly one distinct parent instance and 
is thought of as being contained within its parent. An example of this structure is 
visualized in figure 5 where the arrows represent containment. The physical server at 
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the root of the hierarchy contains two virtual servers (Xen machines [27]) which in 
turn contain deployments of different software packages. In this example, these are 
the Fraunhofer FOKUS XML Document Management Server (XDMS) [28], an Open 
IMS Core (OIC) [29] and an instance of a MySQL database system [30]. The admin-
istrative issues of the MySQL instance are represented as further resources, namely 
individual database and database user (access credentials) instances. It must be 
noted, that a PTM does currently not support mechanisms for user management or 
access control. It assumes a trusted relationship with a client front-end to which it 
offers the entirety of its services through one or more front-end modules. Currently, 
this is the TEAGLE portal [31] which in turn provides a Virtual Customer Testbed 
(VCT) design tool to allow the design and provisioning of arbitrary testbed layouts. 
However, it is expected that additional mechanisms are needed to allow different 
domains to define specific access policies. This is currently under development. 

3.3   Slice Based Facility Architecture 

The Slice Based Facility Architecture is one of the key parts in the high level archi-
tecture of the GENI initiative. SFA defines a minimal set of interfaces and data-types 
to allow a federation of slice-based network substrates to interoperate. This specifica-
tion  was  designed  to  allow  federation  among  facilities  like  PlanetLab, Emulab 
[32], and other GENI frameworks. However, it is intended to support a much broader 
range of heterogeneous resources and services than those systems currently embody. 
SFA’s general layout and abstractions closely resemble those of PLC. In fact, the 
interfaces the SFA defines represent a subset of the operations PLC exposes. Thus, 
PlanetLab entities can usually be directly mapped to SFA entities and vice versa, 
as illustrated by figure 6: 

Fig. 6. Logical schematic of the SFA 

The fundamental building block of the SFA is a component (CM). Components 
could for example correspond to physical servers, customizable routers, or access 
points. Their direct counterparts in PLC are nodes, which would be viewed as com-
ponents in SFA. Components encapsulate a collection of resources which might in-
clude physical (for example CPU and memory allocation) as well as logical ones such 
as port numbers or access rights. The resources a component possesses are described 
in a resource specification (RSpec), the exact format of which has yet to be finalized. 
It is to be noted that resources don’t necessarily have to be contained in a single 
physical device but might also be distributed across a set of devices which would 
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however be viewed as a single component by the SFA. A given resource always 
belongs to exactly one component. 

The resources a component comprises can be multiplexed for use by multiple 
users. This can either happen via a form of virtualization, where a user is granted a 
virtual copy of the component’s resources or by partitioning the component into 
several distinct resource sets. Regardless of how it is acquired, such a set of resources 
is called a sliver. The slivers (Vservers) created by PLC on PlanetLab nodes directly 
correspond to slivers in the SFA. Just like PLC does, SFA then bundles these slivers 
into slices. Again, a sliver always belongs to exactly one slice. Slices in SFA perform 
the same functions as they do in PLC, which is being the basis for accounting and 
accountability. Researchers who are granted access to a slice likewise gain access to 
all the resources represented by the slivers the slice is composed of. 

Collections of components can be represented by a single aggregate. Such an ag-
gregate can be accessed via an aggregate manager (AM) which exposes the same 
interface as the respective components themselves and delegates requests towards 
them. In the current PlanetLab implementation, central functions like the creation of 
slices or user management are exposed to administrators and users via a slice manager 
(SM), though this is not strictly defined as part of the standardized SFA interfaces. 
The slice manager will use its local registry to perform look-ups and is furthermore 
configured to know all aggregate managers of foreign parties which it will contact in 
order to issue provisioning requests. 

4   Resource Management and Federation 

In this section we discuss the proposed federation scenario (“at eye-level”) and give 
insights into general decisions made. 

4.1   Federation Scenario 

The SFA describes a number of different usage scenarios, regarding different levels of 
federation between partners; ranging from simply providing a different user interface 
over shared registry services to full federation between two or more parties on equal 
terms. This relates to the general federation scenario shown in figure 2 on the right 
hand side. The scenario we are examining within the scope of this paper is that of a 
full federation between a private PlanetLab and a Panlab domain. Here, both parties 
maintain their own registry services and both parties also provide a domain manager 
to allow the other party to provision resources in their respective domain. 

Users and administrators interact with their local domain managers (PTM and slice 
manager) to create and manage slices which may span both federations. The slice 
managers delegate look-up requests to their local registry which will in turn query the 
foreign registry if necessary. Provisioning  requests are issued directly to the respec-
tive domain managers which forward these requests to their components. The Panlab 
federation mechanisms have been slightly adapted for this scenario (implementation 
of an aggregate manager module and lightweight SFA registry) to support the PLC 
and SFA mechanisms. Eventually, if the proposed federation model will be accepted 
and standardized APIs and interfaces will be present, this scenario will work with-
out one side adapting to the mechanisms of the other side. However, even today the 
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implementation of an adaptor module making the Panlab side “PlanetLab-compatible” 
was feasible in terms of time investments given the modular structure of both ap-
proaches and a certain overlap in the architecture design. 

4.2   Design Considerations 

Our solution for realizing the above scenario takes into consideration the envisioned 
federation benefit and utility for both sides. Please note, that for the full federation 
scenario to become true, such a federation must not simply provide any level of inte-
gration and interaction, but must rather enable both parties to fully incorporate the 
committed resources and services into their own schema without further adjustments. 

From the PlanetLab perspective, this means that PLC must be able to facilitate the 
same services and access rights for Panlab nodes as for PlanetLab nodes. Researchers 
accessing the federation via PlanetLab’s slice manager must be able to request slivers 
from Panlab components, add them to their slices and access them in just the same 
way they would interact with nodes provided solely by PlanetLab itself. That implies 
that a PTM, or rather the resource adapter providing virtual nodes for that matter, 
must have a certain awareness of the requirement to deploy a PlanetLab specific 
flavor of a virtual node. As not all resources from the Panlab framework and its part-
ners will be available to be shared under such circumstances, specific operational 
processes and agreements will be needed to manage resource access and allow for 
different levels of commitment for individual domains and resources. The Panlab 
operational framework, which is currently under development, is intended to deal 
with such issues by defining reference point governance processes and contracts. 

 

Fig. 7. PLC view on federated resources 

As shown in figure 7, the SFA and through it PLC acknowledges resources pro-
vided by PTM as mere slivers and has no regard for any PTM internal layout. In 
the example above, these slivers represent either virtual nodes on one of PTM’s 
physical servers or Vservers on one of PLC’s nodes, both of which can equally act as 
slivers in a PLC slice. The federation partner that has requested these resources as 
well as their users can utilize them transparently, as if they were their own 
while being completely agnostic to the fact that they are actually provided by a dif-
ferent organization. 

On the other hand, the PTM must also be enabled to make use of slivers provided 
by PlanetLab or other parties in the same way it would utilize resources under 
its direct control. Although SFA and PLC do not directly support PTM’s notion of a 
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resource hierarchy, this requires little efforts. Since PLC already provides sufficient 
facilities (in the form of unrestricted administrative access) to allow arbitrary opera-
tions on slivers, no adjustment is needed for the PlanetLab side of the federation. 
PTM merely has to deploy its own management back-ends on PLC slivers, in the 
form of appropriate resource adapters. This already happens for PTM’s own virtual 
nodes and the scheme can be easily adjusted to work on PLC’s Vservers. 

Figure 8 shows a PLC provided Vserver embedded into PTM’s resource hierarchy. 
Note, that the example shown introduces a purely virtual SFA resource instance at the 
root of the hierarchy that bundles all slivers acquired from the SFA as children under 
its own hierarchy. However, this is not a technical necessity and serves only an or-
ganizational purpose. 

Afterwards, the resources provided through SFA, in this example a PLC Vserver, 
integrate seamlessly into PTM’s resource hierarchy and can be further utilized 
just like any other PTM resource including the possibility of deploying further sub- 
resources. Likewise, resources provisioned this way could be included into a VCT 
booked via the TEAGLE portal website. 

 

Fig. 8. PTM view on federated resources 

In  a  further  iteration,  PTM’s  mentioned  capability  of  creating  further  child 
resources inside a sliver acquired from the SFA could also be exposed towards other 
federation partners. To do so, PTM would have to advertise the sliver it was given by 
the SFA as another component through its aggregate manager. This virtual component 
would contain resources that represent the resource types PTM can deploy into the 
sliver. These resources could again be grouped into a (sub-)sliver and added to a slice. 

However, this is not without side effects. For example one would have to define 
semantics for what is to happen with sub-slivers when the slivers they are contained 
in are being deleted. Apart from these considerations, this endeavor would currently 
be bound to fail for the profane reason that the current SFA implementation caches 
for a certain time the resources offered by an aggregate. Thus, it would be unpredict-
able when dynamically added resources would be picked up and made available. 

5   Use Case and Prototype Implementation 

This section defines a use case to be fulfilled by the implementation and gives a 
deeper insight into its internal architecture and layout. We will name the technologies 
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used  and  highlight  key  parts  of  the  design  to  explain  their  role  in  the  concept 
presented here. 

5.1   Use Case Description 

As a proof of concept, we have chosen to realize a simple two-way scenario that 
shows the implementations capabilities to provide services towards both sides of the 
federation: 
 

• A  researcher  affiliated  with  PlanetLab uses  his  PLC  credentials  to  access  
the PlanetLab slice manager. He creates (or already owns, this detail is irrele-
vant for this purpose) a slice and subsequently requests slivers from a PlanetLab 
and a Panlab node to be part of his slice. 

• A researcher uses her Panlab credentials to log into the TEAGLE portal and cre-
ates a new VCT (Virtual Customer Testbed, equivalent of a slice). Using the 
VCT tool she adds a PlanetLab node (sliver) to her testbed and addition-
ally chooses to deploy another software package (MySQL) onto it. 

5.2   Engineering Decisions and Implementation Details 

We have implemented a module, called SFAAdapter, which acts as a bridge between 
the internal semantics and protocols of a PTM and the SFA. In the context of PTM, 
this is a hybrid module in the sense that it acts as both a front-end module to PTM, 
serving provisioning requests issued by the SFA, and as a PTM resource adapter, 
making resources which federation partners offer through SFA available to other 
PTM internals. From the viewpoint of the SFA, this module appears just as any other 
federation partner, exposing the interfaces of a registry and aggregate manager.  

The module itself has been implemented in the python programming language. 
One reason for choosing Python was that PlanetLab’s implementation of the 
SFAexists in python. This made it possible to reuse many utility classes and 
functions from the existing module. 

Internally, SFAAdapter comprises three main parts, shown in figure 9 as squares 
inside the box labeled SFAWrapper. In detail, these elements and their duties are: 

 
• Aggregate manager (AM): As the name already implies, this entity acts as an 

aggregate manager as specified by the SFA. It will advertise the resources the 
PTM can   provide   when   queried   by   the   slice   managers   of   federation   
partners. Furthermore, it receives provisioning requests which it will translate 
towards the PTM core to acquire resources. 

• Resource Adapter (RA): The resource adapter part of SFAAdapter acts as the 
counterpart to the aggregate manager. Towards the PTM core, it poses as a  
native resource adapter module. It queries foreign aggregate managers about the 
resources they have to offer and relays the information to PTM. Subsequently, it 
issues provisioning requests received from the PTM side towards said aggregate 
managers to book resources from other parties. This module is also responsible 
for deploying further PTM resource adapters for the acquired resources so they 
can be managed by the PTM. 
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• Registry (Reg): This module provides a registry service as specified by the SFA. 
It can be queried by the PTM core as well as by remote registries and provides 
information  about  the SFA  objects which  this domain  is  responsible  for.  
The information is obtained from a database shared between the different parts 
of SFAAdapter. 

 

Fig. 9. Implementation layout; the arrows indicate the directions in which requests are issued 

It has to be noted, that the modules providing SFA interfaces (aggregate manager 
and SFA registry) are both based on the original Princeton SFA implementation. This 
in turn means that existing SFA front-end clients can interact with them without 
further adjustments. 

6   Proof of Concept 

This section shows a glimpse of how a researcher could access federated services 
from each side of the federation by walking through a number of steps to set up a 
rudimentary testing environment. Note that in the example shown, the output is occa-
sionally truncated for brevity and readability. 

6.1   PlanetLab Perspective 

A PlanetLab researcher wishes to use his PLC credentials to create a testbed environ-
ment via SFA. He has already been added to the SFA registry by a PlanetLab admin-
istrator and owns a slice (plc.fokus.s1) which, however, does not have any  
slivers associated yet: 

#sfi.py resources plc.fokus.s1 
<RSpec ...> 
<networks>

<NetSpec name="plc" .../> 
</networks>

</RSpec>  
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Therefore, he first procures an overview over all available resources while at the 
same time saving the output for later use:  

#sfi.py resources –o all.rspec  
<Rspec ...> 
 <networks> 
  <NetSpec name="ptm" ...>    

<nodes>
    <NodeSpec name=”pnode-0.ptm”> 
     <net_if> 
      <IfSpec addr="10.0.0.10" .../> 
     </net_if> 
    </NodeSpec> 
   </nodes> 
  </NetSpec> 
 </networks> 
 <networks> 
  <NetSpec name="plc" ...> 
   <nodes> 
    <NodeSpec name=”pln0.plc”> 
     <net_if> 
      <IfSpec addr="10.0.0.20" .../>  

     </net_if> 
    </NodeSpec> 
   </nodes> 
  </NetSpec> 
 </networks> 
</Rspec>  

From this information, he learns that he has two nodes at his disposal, pln0.plc 
from the domain plc and pnode-0.ptm from the domain ptm. He adds them to his slice: 

 
#sfi.py create plc.fokus.s1 all.rspec 
 
The PlanetLab slice manager will now contact the PTM’s aggregate manager and 

request it to instantiate a sliver on pnode-0.ptm. The PTM in turn contacts the appro-
priate resource adapter, orders it to set up a virtual node and to configure it to be PLC 
compatible. To give rudimentary access to researches, this especially means installing 
respective user credentials and configuring the sliver’s SSH server. The researcher 
can now access the sliver and gain privileges in the same way he would access a 
sliver acquired from PLC: 

#ssh –i .ssh/id_rsa focus_s1@pnode-0.ptm sudo su – 

6.2   Panlab Perspective 

The Panlab researcher mentioned in our use case opens the VCT tool via the TEAGLE 
portal. After entering her Panlab credentials, she starts assembling a new testbed com-
prising an installation of the MySQL software package on a node committed by 
PlanetLab (see figure 10). After carefully reviewing her setup, she issues the provision-
ing requests. Upon receiving these, the PTM contacts the SFA resource adapter which 
in turn will relay the request towards the aggregate manager of the PlanetLab side. 
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Fig. 10. VCT tool view 

Since a sliver must always be part of a slice, the latter must obviously exist for the 
provisioning to take place. However, PTM dynamically creates those internally and 
hides this detail from the user. After the sliver is created by PLC, PTM accesses it and 
installs a number of resource adapters; among them the so called SoftwareAdapter 
which it will subsequently be used to deploy the requested MySQL package. 

The researcher can now bring up the configuration page of the newly provisioned 
resource to learn some of its details. These are currently read-only values: 

 

Fig. 11. Configuration page for a PLC node in TEAGLE 

Note that in this example the researcher had to explicitly choose to deploy a 
plcnode in order to acquire a node from the PlanetLab network. In a real-life scenario 
a user would only choose to deploy any kind of virtual node and leave the details to 
the PTM internals. 

7   Conclusion 

It is technically possible and feasible to share resources and services between the 
PlanetLab and Panlab networks following the general model proposed by this paper. 
We had to apply an adaptor module to the Panlab Domain Manager and followed the 
basic SFA principles to achieve this. Both sides could benefit from the demonstrated 
scenario by offering a broader range of resources to their users. However, a number of 
things  remain  to  be  done  for  future  efforts.  As  noted,  the  process  of  selecting 
resources is not yet completely transparent for a TEAGLE user. In the future, the 
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placement of virtual nodes would have to be decided fully by the PTM itself. Also, 
slice management could be improved. As of now, slices are not yet associated with 
individual VCTs as would be desirable. 

Conceptually, our next steps will be to expand the implementation on the PTM 
side to  not  only  commit  virtual  nodes  but  resources  of  arbitrary  type  towards  
the federation. This is already possible for isolated domains, however, when feder-
ating additional constraints arise. Also, the possibility of deploying further sub-
resources, as already used in the TEAGLE demonstration above, could be exposed to 
other federation partners by dynamically advertising acquired slivers as new SFA 
components. Any non-technical aspects are yet completely untouched. Obviously, 
extensive operational agreements and procedures would have to be established before 
resources could be federated in the envisioned manner across several administrative 
domains. This includes the support for different resource access policies as well as 
federated identity management systems. 

With this paper we showed that is possible to federated resources not only across 
the boundaries of administrative (organizational) domains but even across the 
boundaries of federations. Those federations in themselves provide collections of 
resources offered by several administrative domains and use different control frame-
works to enable resource access and management. Although this is possible, many 
initiatives that are currently active in the field of resource federation would benefit 
from international standardization and agreed interfaces instead of bridging and 
adapting to each other via specific adaptor modules. 
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Abstract. Container-based virtualization is the most popular solu-
tion for isolating resources among users in a shared testbed. Container
achieves good performance but makes the code quite complicated and
hard to maintain, to debug and to deploy. We explore an alternative
philosophy to enable the isolation based on commodity OS, i.e., utiliz-
ing existing features in commodity OS as much as possible rather than
introducing complicated containers. Merely granting each user-id in the
OS a dedicated and isolated network address as well as specific routing
table, we enhance the commodity OS with the functionality of network
namespace isolation. We posit that an OS’s built-in features plus our
feather-weight enhancement meet basic requirements for separating ac-
tivities among different users of a shared testbed. Applying our proto-
type which has been implemented, we demonstrate the functionality of
our solution can support a VINI-like environment with marginal cost of
engineering and tiny overhead.

Keywords: slice computing, name space isolation, socket, networking.

1 Introduction

It is evident that large-scale testbeds in wide-area network such as PlanetLab
[13, 14] are viable for bringing innovations in computer networks. The proposal
for GENI (Global Environment for Network Innovations) also stresses the sig-
nificance of building such a testbed. Isolation of resources, i.e., enabling an en-
vironment where individual experiments will not be affected by the other ones,
is a mandatory feature of such platforms. PlanetLab calls such an isolated set
of resources as a “slice”.

Virtualization is an instrument to implement isolation. There is a wide spec-
trum of virtualization technologies. Hypervisor-based solutions, like VMware [6]
and Xen [7, 8], provide flexibility for running arbitrary operating systems, but
are sub-optimal in scalability due to their computational overhead. A large-scale
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slice-based network testbed emphasizes the requirement for little overhead in
virtualization. Container-based solutions, VServer [3] and FreeBSD Jail [1], sat-
isfy this requirement and have been successfully utilized in PlanetLab and Em-
ulab [12], respectively. OpenVZ [5] and its commercial counterpart, Virtuozzo,
also fall into the category of the container-base approaches. Container-based vir-
tualization is considered suitable for a planetary scale test-bed, since it is often
“light-weight” and enables over thousands of slices to run concurrently. However,
when it comes to “light-weightness”, we must consider not only the low overhead
in performance, but also for that in deployment, including implementation, in-
stallation, daily maintenance and continuous upgrading. The PlanetLab kernel
is based on VServer that requires a large amount of patches to the stock kernel
and the patches may not necessarily keep up with the kernel development. Miss-
ing the latest hardware support in the kernel sometimes means we cannot utilize
the cutting edge features of processors and devices in the testbed. The desire of
having an isolation approach light-weight in both performance and deployment
encourages new explorations on virtualization techniques.

We observe that most commodity operating systems already implement se-
curity isolation to some extent. It applies file/directory access permissions and
disk quotas towards user ids, and offers CPU and bandwidth scheduling re-
garding processes and communication sessions, respectively. In the light of this
observation, we pose a question: Can we support isolation only with standard
OS features? The term “standard features” means functionality built-in into the
current or a near-future native OS. Employing the standard features as much as
possible should save the cost for deployment and incur a marginal extra overhead
in performance. We elect to add a slight enhancement to the standard feature for
network namespace isolation, thus, call our solution “feather-weight” isolation.

The term “network namespace” refers to a set of named entities in the net-
work stack, including network interfaces, IP addresses, ports, forwarding and
routing tables, as well as the sockets. It is one of the most important resources
to be isolated but the isolation has not yet supported by any of current commod-
ity operating systems. Early PlanetLab once took the user id in the commodity
OS as the handle for a slice without network namespace isolated, and later the
emphasis on security, scalability and enabling dedicated root environment lead
to the choice of VServer as a virtual execution environment, where network
namespace is isolated within a VServer container.

In this paper, we re-visit this early idea of user-id-based isolation and try to
enhance it for network namespace isolation. The key of the solution is assigning
IP addresses and policy-based route tables to user ids and enforcing separated
usage in interface, address, port space, routing and bandwidth. A caveat is, for
this feather-weightness, we may have to tradeoff the rigorous and secure root
environment isolation. Fortunately, however, in most cases, root environment
may not be necessary.

A parallel work, the Linux network namespace (NetNS) [2], addresses the
same requirement for network namespace isolation. It clones the network stack
into a container that is identified by a process id of a shell, and thus the shell
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has an independent set of virtual interface, address, port space and socket space.
NetNS has to modify the whole network stack and also other parts of OS kernel,
such as filesystem. It is based on the container concept that is advantageous
in performance but not so in deployment. It makes the NetNS code hard to
maintain and to keep up with the evolution of the commodity OS.

This paper makes three contributions. First, unlike NetNS and any other
solutions, this paper suggests the philosophy of enhancing commodity OS with
isolation without over-engineering. Second, it puts this design philosophy into
practice for the network namespace isolation, realizing the mechanism for iso-
lating IP addresses and route tables within a user id. Finally, it demonstrates
that our prototype implementation enables a VINI-like environment where we
can experiment with new network architectures and services with marginal cost
of engineering.

The rest of the paper is organized as follows. Section 2 summarizes the prob-
lem in enabling network namespace isolation in commodity OS and motivates
our work from the observations on the drawbacks of the container-based NetNS.
Section 3 identifies what is required and what is obtained with the proposed so-
lution, especially for the separated routing tables. Section 4 demonstrates typical
routing experiments based on our solutions and Section 5 presents benchmark for
our prototype. Finally, Section 6 briefly concludes the paper with future work.

2 Related Work

We first identify what the current commodity OS supports for isolation and what
it falls short of.

2.1 Resource and Namespace Isolation in Native OS

Even without either full virtualization or containers, native OS, either UNIX or
modern Windows, facilitates resource and namespace isolation to some extent.

– Security Isolation: file systems protect file and directory access among user
ids. Currently the security isolation in native OS doesn’t hide one’s processes
and traffics from other users.

– Performance Isolation: disk quota in commodity OS controls storage usage
per user id. CPU scheduling is a basic function of any OS regarding process
management. Control Groups (cgroups) provides the aggregation for process
scheduling. User id can be used for the progress grouping definitely. For the
network bandwidth issue, traffic reshaping is applied for flows. In Linux op-
erating system, the tool “tc” coupled with the iptables controls the flow
according to its attributes like source or destination addresses, not related to
user id yet.

– Network Namespace Isolation: IP addresses and port space are currently
shared among user ids, without being isolated. Interfaces, routing tables are
the same. Policy-based Routing can support multiple routing tables, but the
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separation is not per user id. Therefore, the network namespace is what to-
day’s commodity OS does not support.

2.2 Linux Network Namespace (NetNS)

NetNS [2] is designed in response to the need of enabling network namespace
isolation in OS. It clones the network stack into private sets of network resources
to be assigned to one or several processes. The resource set includes device, IP
address, port space, route tables, sockets and so forth. Each set is assigned to a
shell process, which plays the role of the “container”. NetNS can be configured
with either Layer-3 router or the Ethernet bridging mode.

NetNS focuses only on network namespace isolation and thus it is much
simpler than OpenVZ or VServer. However, it is still a container-based solution
and accordingly suffers from the drawback of over-engineering. First, NetNS
conflicts with some existing components in the commodity OS. A well-known
case is sysfs, which must be patched until being able to co-exist with NetNS.
Second, NetNS takes a process-id of a shell as the handle for a container. It
implies a limitation that a “slice” implemented with such a container cannot run
multiple shells with the shared network namespace. Finally, the code complexity
causes a lot of troubles and bugs that hurt the stability in operation. For example,
our trial of NetNS in Fedora 8 Linux with kernel 2.6.26.8, compiled from natively
released source code, ends up with a hangup.

This observation on NetNS has motivated our exploration for a better and
lighter-weight solution for the network namespace isolation, which incurs less
cost not only in performance overhead but also in implementation and deploy-
ment than NetNS.

3 System Design

The objective of our system design is enabling network namespace isolation per
user-id in a commodity OS, treating the user-id as the handle for a slice. The
term “network namespace isolation” is defined as enabling following features
from the bottom of network stack to its top.

R1 A user-id is assigned by the system administrator to one (or more) net-
work interface(s), either physical or virtual, and not allowed to use the other
network interfaces.

R2 A user-id is assigned by the system administrator to one (or more) IP ad-
dress(es), either physical or virtual, and not allowed to use the other IP
addresses.

R3 A user-id is assigned by the system administrator to a forwarding table, and
not allowed to use the other forwarding table.

R4 A user-id is allowed to update the kernel forwarding table associated with
this user-id.
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We also have two constraints for the system design.

C1 Our solution must be transparent to applications. In other words, the exist-
ing applications must work without re-code and re-implementation. Binary-
compatibility must be held.

C2 Our solution must involve only the networking kernel of the OS, not to
conflict with other features or components, unlike NetNS.

C3 Our solution must enable new features, but leave the other existing features
as they are.

The last constraint may need clarification; for example, without our solution,
only the privileged user, root, can modify the route table in the kernel, while,
after our enhancement, regular users are allowed to change their own associated
route table but what the root can do is totally unchanged.

We design the system with three steps to meet the requirements of our design
objective. First, we enable the IP address isolation among user-ids. Then, we
apply PBR (Policy Based Routing) and traffic shaper with our modified OS
kernel to make forwarding tables and bandwidth isolated. Finally, we extend the
model through associating route table-id with the user-id, and separate the route
installation from RIB (routing information base) to FIB (forwarding information
base), from the user space to the kernel.

3.1 Isolating IP Addresses among Users

2 Isolation of IP addresses among users needs two components to be added to
the kernel: the data structure describing the assignment of addresses for user-ids
and the functions that ensure the separated address usage. The data structure
and the function are referred by socket system-calls transparently to the callers.

The data structure for address assignment to user-id is designed in the form
of an association of IP address and user-id. An entry (IP address, user id) means
the user-id is able to use the IP address. Considering the scalability, the data
structure should be designed accessible with a hash function.

Semantically the user-address association changes the meaning of the “un-
specified” (or wild-card) IP address, which is defined with the macro IN ADDR ANY
for IPv4 and IN6 ADDR ANY for IPv6, respectively. In a commodity OS, the
wild-card means any address configured with any interface of the host. In an
OS with user-specific address, however, a wild-card means any addresses among
those already assigned to the user-id of the process owner that raises the com-
munication.

The interpretation of wild-card complicates the port conflict detection. When
two sockets attempt to bind to the same port on the wild-card, the conflict hap-
pens when the process owners are associated with at least one common address.
Therefore, the port conflict detection routine should also check which addresses
2 The content of this part is covered by our previous work [11], which focuses on the

addressing architecture for slice computing but not other isolation issues for network
namespace.
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are used by each binding socket, i.e., finding out the user-address association for
the user-id of the owner of each socket.

Packet dispatch from a protocol stack to a socket is also affected by the
change of the semantics of wild-card. The protocol stack searches the socket
pool for a socket matching the destination (address, port)-pair of a packet. Pre-
viously, if a socket is bound to the wild-card, only port should be check for the
dispatching. Now the kernel must identify what the wild-card of a candidate
socket mean exactly and determine if this socket’s corresponding user-id really
owns the destination address in the packet to be dispatched.

Based on the above data structures, a variety of functions are added into the
socket system-calls and protocol stack.

– Sender address availability check: when a process tries to bind a specific ad-
dress for connection to send out packets directly with the specific source ad-
dress, the kernel checks if the process owner user-id is assigned with the
address.

– Listener address availability check: when a process tries to bind a specific
address for a daemon, the kernel checks if the listener process owner user-id
is assigned with the address.

– Address selection: when a process does not specify a source address but lets
the kernel choose one for itself in either of the above cases, the kernel filters
only those addresses assigned to the process owner user-id as the candidate
for the selection. More importantly, the commodity system also tries to select
the source address “closest” to the destination. Our modified kernel should
apply this algorithm with the addresses available for the process owner user-
id. The address selector also helps protocol stack to identify proper socket that
a connectionless datagram or a connection request is targeting.

Per-user address assignment directly results in the elimination of port conflict
among user-ids as in a commodity OS where users can share the use of a single
IP address, since the full port range of the dedicated IP address is available to
each user. We may change the minimum available port number for a regular
user-id from 1024 to 0. This is especially beneficial when each user wants to use
the well-known port number of the dedicated IP address, for example, to run
BGP speakers with a well-known port number such as 179.

Per-user address assignment is suitable for the circumstances where IP ad-
dresses are abundant, either in IPv4 or in IPv6, or in private IP addresses. Note
that our proposed system can assign even private IP addresses to each user-
id. Most virtual networks are using tunnels through private IPv4 addresses.
Considering this, our system is especially useful for network virtualization, as
demonstrated in Section 4.

3.2 Combining Address Separation with Other Features

Network namespace includes link interface, IP address, ports, routes and band-
width. After IP addresses have been isolated among user-ids, we can also isolate
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some of other resources among users by configuring those resources with the
user-specific addresses.

– Interface: interface is configured with one or more IP addresses. Therefore,
the use of each interface is isolated per user-id. However, only the use of the
interface is isolated, not its visibility—each user can see all the physical and
logical network interfaces on the host, knowing their addresses with commands
such as ifconfig and ip link.

– Routing: Policy-based Routing (PBR) can be used to define a separate route
(more precisely, forwarding) table for packets from a specific source address.
Therefore, we can let each user-id own and use a separate forwarding table
for packets originating from the address the user-id is assigned to, rather than
share the default table with others. RIB (routing information base) is managed
at the application layer. Therefore, it is naturally isolated when being run by
specific user-id. However, today’s commodity OS doesn’t allow unprivileged
user-id to run routing tools and to install RIB to the system FIB.

– Bandwidth: Traffic control tools in commodity OS (e.g., tc in Linux) support
shaping policies with respect to a source or a destination address. Configuring
tc with the rule specified by user-specific source or destination addresses, we
can schedule bandwidth utilization among user-ids.

– Raw socket: A commodity OS allows only processes running with the set-user-
id flag suid = 0 to open a raw socket. The purpose of this design is to prevent
users from applying raw socket to generate arbitrary malicious packets. A
program that needs a raw socket but to be run by a non-privileged user should
set the set-user-id flag correctly on its binary file. After IP addresses being
isolated among user-ids, we do not have to prevent a regular user from using
a raw socket any more. One who attempts to abuse a raw socket to forge a
packet can only stick one’s own IP address in the packet, since our system
prohibits the usage of the other IP addresses. Enabling a user’s program to
open a raw socket doesn’t need any further modification in the kernel. Once
a user writes such a program, the privileged user can set the set-user-id flag
of the executable correctly.

3.3 Routing Isolation

Isolating routing is extremely important for network experiments on virtual net-
works [9]. Although we mention in the discussed above that crafting PBR rules
with user-specific address can achieve routing isolation, running separate routing
protocols in different slices will not achieve this goal. The problem is that in a
commodity OS only the privileged user can install a route to the system FIB.
For this reason, we need to enable a regular user to update the FIB of the PBR
associated with his or her user-id in the following steps.

First, to enable the route installation from a regular user-id, it is necessary
to ask the kernel to accept the route update request from a the (non-privileged)
user-id through either ioctl commands or RTNETLINK socket messages.
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Second, once a regular user-id is allowed with route updates, it must be
ensured that a certain user may not interfere with the routes of the others. Note
that the privileged user can manipulate any tables.

When a table-id is specified in a route update request, the kernel must ensure
that the table-id is associated with the user-id. When the table-id is not specified,
then the kernel should find out which table is available for the request sender.

Therefore, to enable the comprehensive routing isolation, we have to add the
route table association into the kernel as well.

When any route table-id is not explicitly associated with a certain user-id,
it means this user wouldn’t like to change the route by itself and it doesn’t
need a separate route table at all. Accordingly it just shares (and only reads)
the default route table of the host, which is able to be update only by root. If
a non-privileged user, associated with the default table, sends a route update
request to the kernel, the kernel should reject the request and return the error,
“operation not permitted”.

As a summary of the system design, in Table 1, we list the features of isolation
enabled (marked with “

√
”) and not enabled (marked with “–”) by our solution,

compared with the container-based NetNS. We trade off only the privacy of slices
for gaining the simplicity in coding, maintenance and deployment.

Table 1. Network Namespace Isolation Supports

Isolation NetNS Our Solution
Interface

√ √
Address/port

√ √
Forwarding

√ √
(w/ PBR)

Routing
√ √

(w/ PBR)
Traffic Reshaping

√ √
(w/ tc)

Raw socket
√ √

(authorized by root)
Visibility/privacy

√
–

We have implemented the Linux kernel patches and tools for the user-id-based
network namespace isolation, with both IPv4 and IPv6. Readers are welcome to
try our code which is open-source and downloadable from online .3

The change involves three major parts: 1) new data structures associating
IP address, user-id and route table-id, and their manipulation functions, which
are used in new ioctl command as well as procfs parsers for the administrator
doing management over the user-address-table associations; 2) modifications in
socket system call instances, augmented with the user-id related behaviors; and
3) modifications in RTNETLINK message processing functions, enabling regu-
lar users to update route tables and dispatching the updates into proper table
corresponding to user-id.
3 See http://sourceforge.net/projects/uoa/ for details.

60 M. Chen and A. Nakao



4 Demonstration: A VINI Experiment

Our proposed user-id-based namespace isolation implemented in the Linux kernel
is minimal compared to the other container approach and can be easily apply
to any version of Linux kernel release. This is mainly because the modified
pieces are concentrated in the networking stack implementation of the Linux
kernel. In this section, we demonstrate that our proposed solution can serve as
a slice computing platform with network namespace isolated through achieving
a similar platform to VINI [9], which also aims to provide network namespace
isolation for a slice but using Linux VServer, a resource container virtualization
technique.

We arrange the demonstration with a simple configuration. As is shown in
Fig. 1, three computers running Linux with the modified kernel and physically
connected to the same network. In the implementation of VINI, nodes are con-
nected over the Internet, not necessarily within the same network. We separate
the virtual links via tunneling, to mimic the real environment.

Fig. 1. Nodes, networks and slices for the VINI experiment

Two users are running their own slices with user-ids, u00 and u11, respec-
tively 4 . Assigning proper addresses of tunnel interfaces to the users, we have
the topologies of the networks of the two slices separately defined. Fig. 1 depicts
that the networks on the two slices are configured with separated address blocks.
4 To be precise, user-ids of the same slice on different nodes could be vary. To simplify

the discussion, we specify the user names on all nodes identical to the name of the
slice and don’t discuss the detailed number of user-id in the operating system.
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4.1 Configurations

We suppose that address blocks 1.0.0.0/8 and 2.0.0.0/8 are assigned to u00
while blocks 10.0.0.0/8 and 12.0.0.0/8 to u11. The two users would run their
own networks with their own addresses, respectively. How do they arrange the
addressing and networking depends upon their needs.

Addresses and route tables: We assume that after a user has made the layout
of its in-slice network, the user informs the administrator of the platform to
configure the virtual interfaces, enabling virtual links. Here we apply the GRE
tunneling for this purpose and the ip tunnel/addr/link tools are utilized.

The administrative tool, uoamap, is used to configure the association of IP
address, user-id and route table-id. Table 2 presents the configurations that we
make for the nodes A, B and C, respectively.

Table 2. Address and route table associations

Config. Node u00 u11

A 1.254.1.2 (tun0) 10.254.1.2 (tun2)

10.1.3.1 (tun1)

IP addr. B 1.254.1.1 (tun0) 10.254.1.1 (tun2)

(iface) 1.254.3.1 (tun1) 10.254.3.1 (tun3)

C 1.254.3.2 (tun0) 10.254.3.2 (tun1)

10.1.3.2 (tun2)

table-id A B C 32800 32811

(rules)

0
@ from 1.0.0.0/8

from 2.0.0.0/8

1
A

0
@ from 10.0.0.0/8

from 12.0.0.0/8

1
A

Routing policies: data plane Rules for routing policies are configured directly
with the ip rule tool. According to the address block assignment, we apply
the policy that allow each slice’s network can transfer packets with the source
addresses within the blocks assigned to the slice. For our demonstration, we have
shown these rules in the Table 2.

Note that the VINI also supports interaction of real networks and in-slice
overlays. In such a case, source addresses of packets running over one’s slice may
not be restricted in the assigned address blocks. This can be supported with
applying rules regarding the incoming interface, e.g., ip rule add dev tun0
table 32800 on node A indicates that the packets coming through the device
tun0, which is configured with an address in u00’s slice, can traverse the node
A according to the route table with id 32800.

Links, addresses, tables and rules are all configured by the root on each
node. Afterwards, users have the freedom of manipulate their own route table
by either the manual configuration with ip route commands or the automatic
update with routing protocol daemons.
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Routing protocols: control plane In our demonstration, a routing protocol runs
as an application of regular user-id. Unlike the other container approaches, in
our solution, there are several minor limitations such as Quagga routing suite
has to be re-compiled by each user, because the installation path must be set to
the user’s home directory rather than the default /usr/local, and the daemons
must run with the context of the user-id itself rather than the default “zebra” or
“daemon”. In addition, we must disable Quagga’s check on the security capability.
All of these can be specified with the configure tool in the Quagga source.

After the Quagga suite is installed, a user has to edit the configuration files,
zebra.conf and bgpd.conf to define BGP peers. Finally, the user can start
both zebra and bgpd to start routing in its own slice. Since the BGP peering in
our demonstration is simple so for brevity’s sake, it is not shown here.

To meet the design goal of transparency to slice users, the table-id of a slice is
known only to the root while it is hidden to a regular user. The latter only sees
it as if it were the main table of the system and cannot see other users’ tables.
Therefore, it is not necessary to assign table-id in the zebra configuration.

4.2 RIB and FIB

BGP sessions are established between two application-layer peers, therefore their
RIB is naturally isolated. Our demonstration shows that the sessions are estab-
lished and not interfere each other. For example, for node A, we check both the
BGP session advertisement as well as the corresponding route table to verify our
design and implementation.

BGP tables: Each slice user applies telnet to the Quagga BGPd user interface
of any of its own sliver. On node A, u00’s BGP table can be accessed through
1.254.1.2 port 2605, while u11’s BGP session can be completely isolated of that
of u10.

Fig. 3 illustrates what we can achieve. The success of the BGP peer estab-
lishment verifies our PBR-based source address selection is working correctly.

Isolated FIB installation
PBR facility. Our design further realizes the isolation of route updates from RIB
to the user-specific FIB. We login as each user and run the ip route command
to check the installation of the routes.

In displaying the routes, we don’t specify the table-id and let the kernel
pick up the user-specific table-id automatically. Therefore, the separated route
display is also transparent to slices since it is not required that the slice user get
to know the detailed number of its table-id, which is not decided by itself but
decided by the local administrator (the root).

The successful establishment of BGP peers and the updates from BGP RIB to
kernel FIB validates that our solution has the ability to support comprehensive
routing isolation.

The data plane of in-slice routing is isolated through the
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bgpdA> show ip bgp

BGP table version is 0, local router ID is 1.254.1.2

Network Next Hop Metric LocPrf Weight Path

*> 1.0.0.0 1.254.1.1 0 0 2 i

*> 1.1.0.0/16 0.0.0.0 0 32768 i

*> 1.2.0.0/16 0.0.0.0 0 32768 i

*> 1.3.0.0/16 1.254.1.1 0 2 3 i

*> 2.2.0.0/16 1.254.1.1 0 0 2 i

*> 2.2.3.0/24 1.254.1.1 0 2 3 i

Total number of prefixes 6

(a) The RIB of u00’s slice at node A

bgpA> show ip bgp

BGP table version is 0, local router ID is 10.254.1.2

Network Next Hop Metric LocPrf Weight Path

* 10.0.0.0 10.1.3.2 0 30 20 i

*> 10.254.1.1 0 0 20 i

*> 10.1.0.0/16 0.0.0.0 0 32768 i

*> 10.2.0.0/16 0.0.0.0 0 32768 i

* 10.3.0.0/16 10.254.1.1 0 20 30 i

*> 10.1.3.2 0 0 30 i

* 12.2.0.0/16 10.1.3.2 0 30 20 i

*> 10.254.1.1 0 0 20 i

* 12.3.0.0/24 10.254.1.1 0 20 30 i

*> 10.1.3.2 0 0 30 i

Total number of prefixes 6

(b) The RIB of u11’s slice at node A

Fig. 2. Success of in-slice BGP peering

5 Performance Evaluation

This section describes our qualitative and quantitative evaluations on the the
proposed solution, showing it is light in both engineering and performance over-
head.

5.1 Qualitative Evaluation

The development needs only a small amount of coding for the kernel patch
and the management toolset. Totally, the kernel patch includes adding 10 and
modifying 3 header files in include/net, adding 8 and modifying 20 C source
files in net/ipv4 and net/ipv6 subdirectories. The kernel patch (diff result
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u00@uor: ~$ /sbin/ip route list

1.254.1.1 via 1.254.1.2 dev tun0

2.2.3.0/24 via 1.254.1.1 dev tun0 proto zebra

2.2.0.0/16 via 1.254.1.1 dev tun0 proto zebra

1.3.0.0/16 via 1.254.1.1 dev tun0 proto zebra

1.0.0.0/8 via 1.254.1.1 dev tun0 proto zebra

(a) The FIB of u00’s slice at node A

u11@uor: ~$ /sbin/ip route list

10.1.3.2 via 10.1.3.1 dev tun1

10.254.1.1 via 10.254.1.2 dev tun2

12.3.0.0/24 via 10.1.3.2 dev tun1 proto zebra

10.3.0.0/16 via 10.1.3.2 dev tun1 proto zebra

12.2.0.0/16 via 10.254.1.1 dev tun2 proto zebra

10.0.0.0/8 via 10.254.1.1 dev tun2 proto zebra

(b) The FIB of u11’s slice at node A

Fig. 3. Success of in-slice route installation from RIB to FIB

from stock to our kernel code) has only 3707 lines, 99KBytes, including inline
comments. The code involves only the networking kernel and is well decoupled
from other parts, and therefore it is easy to maintain and upgrade. In contrast,
either VServer or NetNS needs a big amount of coding, and the coding heaviness
is also the major reason causing the poor compatibility, resulting in troubles that
we have mentioned in Section 2.

In the deployment perspective, users of a node can directly use the proposed
solution as long as the root has configured its available address, virtual links (if
necessary) and routing table. Section 4 has demonstrated the simplicity of our
user-specific addressing and routing without any containers. In VServer solution,
it is necessary to establish containers and install frequently-used applications in
the containers one by one. In NetNS solution, the root needs to detach the default
namespace from a new shell process and then assign a virtual interface to it and
establish the new namespace. It is obvious that the workload to introduce our
user-specific addressing-routing approach is lower than them two.

Therefore, we are confident of the lightness of our solution in the terms of the
engineering for code maintenance and deployment. We need also verify the per-
formance scalability of the proposed solution. We conducted the following bench-
mark with our prototype implementation and compare it to the performance of
the stock kernel. In [10], one can find benchmark results for the container-based
solutions, where either VServer or NetNS is significantly poorer than the stock
kernel.
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5.2 Benchmarking

For the benchmark, two computers equipped with Intel Core2Quad CPU Q6700@
2.66GHz and 3.2GB memory are connected over a 1000 Mbps cross-wire Ethernet
link. One of them, (A), is installed the native Linux kernel 2.6.32 for Debian 5.0.3
and our patched kernel. It can be booted up with either. The other machine, (B), is
running with the native kernel. The benchmarking tool netperf [4] version 2.4.4
is used. netserver is running at (B) and (A) starts netperf.

Working with the kernel enabled with user-specific address and route table,
(A) is running with a certain number of IPv6 addresses, one-to-one associated to
the same number of user-ids. For a fair comparison, when the machine (A) runs
the stock kernel, i.e., users are not associated with specific addresses but share
them all, we also configure the same number of addresses to the interface, even
though processes always pick up the same one. Further, we run each test twice,
one round with source address unspecified while the other round with source
address specified. All the tests are conducted with source port unspecified at the
sender side, i.e., the kernel will perform port selection for connection or message
sending.

The netperf benchmarking is conducted with four types of test: TCP connec-
tion/close, UDP request/response, TCP streaming and UDP streaming. Tests
are run by one user among a group, every user of which is assigned with a ded-
icated IPv6 address. Performance impact of the user group size is depicted in
Fig. 4.

TCP streaming and UDP request/response are the most popular types of
applications applying TCP and UDP, respectively. Our benchmark shows that
the performance of TCP streaming and UDP request/response are not impacted
by the patch for the user-specific addressing and routing. Actually, for the TCP
streaming, either the address availability check or the port conflict detection is
done only once for a session at the connection establishment stage. The check
for the address availability must consume some CPU time but this could be
ignored in the macro observation for the end-to-end throughput. For UDP re-
quest/response, the check and detection is done for every request, and the ad-
dress availability check consumes also the ignorable amount of CPU time.

The TCP connection/close and UDP streaming benchmarking, however,
present an unexpected behavior, where the patched kernel performs even better
than the stock kernel when the user group is getting quite large. This can be ex-
plained with the principle of port selection. Because the user-specific addressing
decreases the probability of the port conflict, when the number of concurrent
sessions gets high, stock kernel suffers higher port conflict rate and it must take
more time to find an unoccupied port number for a new socket. TCP connec-
tion/close leaves a lot of sockets in the TCP TIME WAIT state and they hold
the use of their port for a quite long period in comparison to the action of
connection establishment, while UDP streaming also causes a lot of long-living
sockets occupying port numbers in use. Therefore, the affect of port conflict is
apparent in these two types of benchmark.
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Fig. 4. Performance comparison: user-specific addressing vs. stock kernel

To summarize the benchmark, we state that even the current full-fledged
prototype of our user-specific addressing and routing can achieve the end-to-end
performance not worse (but sometimes better) than the commodity OS, for most
cases of Internet applications.

The lightness in run-time overhead makes our user-specific addressing-routing
approach competing with a container based solution like VServer. Without con-
tainer, our solution can easily support up to 4K slices (actually, 4K is the max-
imum number of IP addresses that are able to be configured with a network
interface card in Linux) over a PC and have good performance. While a 102 GB-
capacity disk is hard to support more than hundreds of VServer guests because
each guest has to consume at least tens of MB for the basic container facility.

What we trade off for the scalability is the root environment for a slice. On
the other hand, in the privacy-sensitive circumstances, we cannot shield a slice’s
activity from being viewed by another.

6 Conclusions

This paper explores the feasibility of supporting isolation for slices in a com-
modity OS with as few modifications as possible and only within the networking
kernel. For this purpose, we design and implement the idea of isolating IP ad-
dresses and routing tables among user-ids on top of a commodity OS. Our min-
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imal modifications to the stock kernel together with the well-developed policy-
based routing (PBR) facility successfully validate that the philosophy of minimal
engineering can provide comprehensive isolation for network namespace. Mean-
while, the performance overhead is light enough to ensure the performance of
the modified kernel not worse than the commodity OS stock kernel. The num-
ber of slices supported by the user-specific addressing and routing can reach the
limit of the maximum IP addresses that a commodity OS can configure with a
network interface.
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Abstract. Peer-to-Peer (P2P) overlay networks have recently gained significant 
attention in the research community. P2P applications, especially the ones using 
BitTorrent protocol, often require  communication among a large number of 
peers and thus are  particularly challenging to test in a controlled manner, 
because of the volatility of overlay-network structure with peers going on and 
off. This paper addresses the issue by introducing a novel testbed that enables 
intuitive network QoS profile configuration, automated peer deployment and 
test case execution with keyword driven test  automation, as well as wireless 
network testing with real networks. We evaluate the fitness of the testbed by 
deploying a P2P video delivery application in the network and running trials 
while monitoring the application behaviour throughout them. Our results dem-
onstrate the capabilities of the testbed  in  three  test  cases  with different peer  
access network configurations. The  results  verify the  correct functioning of 
the testbed and are the first step on our analysis of the P2P video delivery ap-
plication This paper provides information  for  P2P application developers  
and  testers  and  enables them to setup  up similar environments for  advanced 
testing and research on their  applications and protocols. 

Keywords: peer-to-peer networks, network emulation, network testing, testbeds, 
wireless networks. 

1   Introduction 

Peer-to-Peer (P2P) paradigm has gained a significant amount of interest in research 
community due to the vast possibilities of the technology. With P2P technology it is 
possible to build scalable applications with high availability of content. BitTorrent [1] is 
one of the most popular file sharing protocols today and thus is on the focus of this 
work. 

BitTorrent uses a .torrent metadata file to describe a file to be transferred. The 
metadata contains the hash of the pieces of a file, and a list of trackers that keep a 
registry for the file. A central tracker keeps track of the peers that have the file  
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described in the metadata. A peer connects to the tracker and receives the list of peers 
that have the file. After getting the list, the peer connects to other peers via peer wire 
protocol to ask for pieces of the file. The downloading peer contacts the tracker again 
only if the current peers are not satisfactory. After downloading the whole file, the 
peer turns into a seeder, i.e. a peer with a complete copy of the file. The peers 
involved in data exchange around a specific file form a swarm [1, 2]. 

Due to the distributed nature of BitTorrent,  it has proven  difficult  to reliably 
perform reproducible experimentation during the development process. Most often 
the researchers and developers have to rely on simulations, which have only limited 
correspondence to the real world. On the other hand live trials with instrumented 
clients are often  laborious to set up and the results are usually not reproducible, 
although they correspond to real behaviour of users. Therefore our work targets the 
middle ground of these two by providing a fully controllable environment for early 
testing of new features of P2P applications. 

The major contribution of this work is the novel testbed with a keyword driven 
automation framework that enables testing distributed applications, especially P2P ap-
plications, with ease. It allows centralized control and configuration of the network 
Quality of Service (QoS) parameters with GUI, centralized control, and automatic test 
case execution and reporting. The GUI provides interactive diagrams for visualizing the 
complex network topology and queuing discipline structures. A centralized keyword 
driven test framework allows automation of installation, execution and reporting of the 
test cases. We found that the keyword driven automation framework is eminently suit-
able for testing P2P systems as it satisfies the need to be extremely flexible with its 
component based modular approach, at the same time it reduces the complexity of writ-
ing test cases by allowing test cases to be created using abstract keywords and simple 
logic. In our trials, we have used Nextshare P2P-application, developed by FP7 project 
P2P-Next consortium [3] as a System Under Test (SUT). Nextshare is a novel video 
broadcasting system that is based on BitTorrent and is still under heavy development. 
This makes it an ideal test subject in our testbed development work. To the best of our  
knowledge, a testbed with  such advanced features has not yet been presented in the 
literature. Especially, configurable network QoS coupled with wireless access networks 
is a novel contribution in controlled P2P testing. 

The measurements conducted with the testbed demonstrate with three test cases the 
possibilities the testbed creates for P2P research. The test cases are differentiated 
based on access network configuration of the peers and otherwise similar scenario is 
executed in all three cases. This gives us opportunity to observe how tuning a single 
property affects the whole system. The keyword driven test execution framework 
takes care of the scenario configuration  based  on  given  description. We use the 
reporting and measurement infrastructure to collect reports on the peers and in this 
specific case we use one wireless node and monitor network on its perspective.  

The rest of the paper is organised as follows. Section 2 discusses the special issues 
that P2P applications pose to test environments, Section 3 presents the developed 
testbed in detail. Section 4 gives the results from our experiments. Section 5 presents 
the related work on the area. Finally, Section 6 concludes the paper and outlines the 
items for future work. 
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2   Challenges in Testing P2P Applications 

P2P applications are challenging to test and experiment with due to their distributed 
and volatile nature. Main difficulties in producing a reliable test environment include 
the following: realistic scenario configuration, measurement and reporting, and net-
work configuration. 

P2P-applications, more specifically the ones that use BitTorrent protocol are par-
ticularly challenging in the testing point of view due to their distributed nature, hence 
they often require distributed monitoring system as well. The measurement results 
gathered  from  multiple  sources  must  be  synchronized  in  order  to  enable com-
parative analysis. Furthermore, if one requires the test results to be reproducible, the 
nodes of the system must be controlled with permissions to e.g. start and stop the 
execution of the application under test. 

Another issue that needs to be solved is the correspondence of the test environment 
with the real world. In real P2P networks, such as BitTorrent, the system consists of 
peers that join and leave the swarm arbitrarily. Again, this issue can be addressed by 
centralized control that enables launching predetermined patterns for the nodes to join 
and leave the swarm. Furthermore, depending on the content the users, and thus also 
the network, behave differently. For example, a very popular piece of content may 
attract almost instantly an audience of millions of users, which may exceed the whole 
capacity of initial seeder. However, after more than one peer has a whole copy of the 
content, high availability is ensured. On the other end of the rainbow is marginal 
content, which may or may not be available due to lack of interest from the general 
public. These two examples show the available spectrum of possible test scenarios for 
emulated P2P testbeds. 

Packet switched networks are dynamic by nature, making it difficult to produce 
simulated or emulated environment that accurately capture the whole of the dynamics. 
Therefore, simplifications and generalizations are needed to reduce the complexity of 
the system. It is an important design decision how a particular P2P system is built up 
and how it changes during a particular trial. We take the aforementioned challenges 
into account in the design of our system and present a detailed description in the  
following section. 

3   Our Approach 

Basically three different approaches to evaluate P2P-networks exist: analytical, simu-
lation-based, and experimental. Experimental approach can further be divided in live 
network experiments concerning real users and in trials in controlled environment (see 
the related work section and references therein). In this work we focus on the con-
trolled experimenting, because it provides a few advantages over the other  
approaches. First, real network equipment may be used. This is an advantage over 
analytical  and  simulation  approaches,  where  the network  behaviour  can  only  be 
approximated. Second, the results gathered are reproducible. For example, the trials 
with real users are hard, if not impossible to reproduce and the results may be difficult 
to interpret correctly. Third, the network connection characteristics of peers can be 
controlled. This enables us to conduct network related research on P2P-networks, i.e. 
how different network configurations affect the overall performance. 
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3.1   Testbed Architecture 

The general architecture of the testbed, as it is implemented using facilities of two 
VTT laboratories, is shown in Fig.1. The system uses a centralized control point 
(admin  computer  in  the figure),  where test  cases  are defined  and  executed.  The 
control point is used also to configure the network profile i.e. the network emulators 
in the router machines in the network. Finally, the Converging Networks Laboratory 
[4]  provides  multiple  wireless  access  networks  that  enable  research  with  real 
equipment and in this respect simplifications are not needed. 

 

Fig. 1. The network topology of the testbed with the essential nodes 

3.2   Testbed Components 

The laboratory test platform consists of nodes running the applications to be tested 
and of traffic manipulating routers between the nodes. To restrict the number of real 
machines needed in the test, and to make their control easier, some nodes are run in 
virtual machines, while others are in real wireless devices. A centralized monitoring 
and control of the testbed is provided in order to enable reproducible measurements. 

The traffic manipulators are routers or bridges equipped with network emulation func-
tionality, which change the characteristics of the IP packet traffic passing through them. 
It is possible to emulate e.g. network connection equivalent to a typical home computer 
with wired connection (a broadband access via DSL or cable modem) in an Ethernet 
node. Several kinds of network congestion or malfunctioning cases can be created. 

The testbed consists of three different types of nodes:  Ethernet nodes,  virtual 
nodes, and wireless nodes. The Ethernet nodes are machines with a wired Ethernet 
connection and virtual nodes  are virtual machines running on  the Ethernet node  
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machines. Following the example from the Onelab project [5], the Xen paravirtualisa-
tion system was used also in the testbed presented in this paper. The CNL laboratory 
provides following wireless interfaces: WLAN a/b/g/n, WiMAX d/e versions, 
UMTS/HSDPA cell. These are connected to the rest of the test network via 1 Gbps 
Ethernet. Emulation of wireless devices and networks is not needed in this case due to 
existing real infrastructure. These three types of nodes are used simultaneously to cre-
ate test cases that emulate the heterogeneousness of the real network environment. 

Central administration allows remote control of the traffic manipulating routers and 
nodes and is done from a central administration machine. It runs a web server, which 
provides a GUI for the traffic manipulator control. A tester can control the testbed 
with a web browser from any machine that has a network access to the web server. 

3.3   Traffic Manipulation 

From version 2.6.8 on, the standard Linux kernel includes a network  emulation mod-
ule, Netem [6], our choice for packet manipulation. Netem is one of the queuing dis-
ciplines  available in Linux (A queuing discipline  is a packet queue with an algorithm 
that decides when to send which packet [7]). Combining Netem with other disciplines, 
packet rate (i.e. bandwidth), delay, loss, corruption, duplication and re- ordering can 
be controlled [8]. In principle, these should be enough to emulate any kind of net-
work level QoS (see e.g. [9], pp 3-4). 

Possible open source alternatives for Netem would have been NIST Net [10] and 
Dummynet [11]. NIST Net runs in Linux but is no longer developed (Netem is partly 
based on NIST Net). Dummynet is part of FreeBSD and OS X firewall ipfw. It is 
older than Netem and has been perhaps the most popular network emulator. It is used 
e.g. in P2PLab (see [12] and Ch. 5). Its advantage over Netem (and NIST Net) has 
been, that it can manipulate both incoming and outgoing packets. By default Netem 
handles only egress queues. However, handling ingress queues can be achieved in 
Netem  too  by  using  the  Intermediate  Functional  Block  pseudo-device  (IFB)  or 
Ethernet bridging. On older Linux kernel versions, the timer accuracy of Netem was 
also inferior to Dummynet. In recent kernel versions, this has been corrected with 
High Resolution Timers subsystem. Also, the recent versions of Netem offer more 
features than Dummynet (e.g. packet duplication and corruption) [13]. 

With iproute2 [14] traffic control (tc) tool, the traffic can be classified with filters 
into several streams, each manipulated differently. Several types of filters exist. They 
may be based on routing rules, firewall marks or any value or combination of values 
in a packet (like source and destination IP addresses and the upper level protocol 
types). The two main usages of tc are to configure the queuing disciplines (qdiscs) 
and to configure packet classification into qdiscs [7]. 

A qdisc can be either classless or classful. Classful qdisc has a configurable internal 
subdivision, which allows packet classification, i.e. filtering into multiple streams. A 
qdisc tree can be built on a classful root qdisc. Since Netem is classless, it requires a 
separate root, when used with classification. 

We use the Hierarchy Token Bucket (HTB, [15]) as a root qdisc. Besides classifica-
tion, it is needed in packet rate control. It is a root qdisc choice also in [14], the other 
qdiscs being either classless or too complicated. 
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A drawback of tc is the relative complexity of its syntax of hierarchical structures, 
compared to e.g. Dummynet command-line interface. Our system overcomes this with 
a more intuitive graphical interface. 

3.4   A Graphical Front End for Traffic Manipulation Control 

To  ease  the  control  of  traffic  manipulation,  a  centralized  graphical  front  end  is 
provided for examination of the topology of the test network and for manipulation of 
the emulation models in the traffic manipulating routers. The GUI runs on a web 
server in the central administration machine. 

The control and information data are exchanged via SSH-sessions between the ad-
ministration machine and the manipulators and nodes (it is ensured by filtering, that 
the SSH-sessions are not manipulated). 

3.4.1   Usage 
The start page of the GUI shows a diagram of test network topology – the nodes, 
routers and  different  network  types  (Fig  2.). Choosing a router on the  diagram 
displays a dialogue to launch the information and the queuing discipline model pages 
of the router. 

The router information page provides functionality to fetch the link, routing and 
queuing discipline (qdiscs, classes, filters) information from the router via SSH. The 
queuing discipline model page enables examination of qdisc hierarchies created for 
the network interfaces of a router. A qdisc model is presented as a tree diagram 
(Fig.3.). Qdiscs, their classes and associated filters are shown as the tree leaves (the 
leaf parameters are shown as tooltips). The user can add or delete leaves or change 
their parameters. When the model is ready, the user can send it - i.e. the generated tc- 
commands - to the router. 

 

Fig. 2. The test network topology diagram on the start page of the GUI 
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Fig. 3. The queuing discipline model diagram 

3.4.2   Implementation 
The HTML-content of the GUI is generated dynamically by Python scripts running on 
the Apache web server module mod_python [16]. Python is also used for maintaining 
and manipulating the model data and communicating with the traffic manipulators 
through SSH-connections. 

Ajax (“Asynchronous JavaScript+CSS+DOM+XMLHttpRequest”, [17]) enables 
dynamic update of content on an HTML-page. The GUI Ajax functionality of ex-
changing XMLHttpRequest objects is based on Prototype JavaScript framework 
[18]. 

The  network  topology  and  qdisc  model  diagrams  are  drawn  with  JavaScript 
Diagram Builder library [19]. The data of one qdisc model resides in an instance of a 
Python class and it contains the parameters and inheritance info of qdiscs, classes and 
filters. The model diagram can be unambiguously drawn from the class contents, as 
illustrated in Fig 3. The data is updated according to user creation, change or delete of 
leaves of the tree diagram. Inheritance changes, which would lead to errors when 
submitting model to a router, are prevented by the class and return an error message 
to the user. The class generates the tc-commands to be previewed or to be sent to the 
router. The model data chosen to be saved by the user is permanently stored to a file 
in Python pickle format, usable in subsequent test sessions. 

3.5   Keyword Driven Test Execution Framework 

The Test Execution Framework has been developed to support both functional and 
non-functional system testing of P2P software. In such an environment, functional 
testing consists of API and protocol compliance testing, while non-functional testing 
includes performance and security testing. 
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3.5.1   Conceptual Architecture 
Fig. 4 presents the conceptual architecture of the test execution infrastructure. In the 
figure we have ignored physical nodes that do not directly take part in test execution 
process. It would be informative to compare this diagram with the actual physical 
topology as presented in Fig. 1. 

Components that are important to the behaviour of the framework are: Test Master, 
Test Agent, Test Peer and a Reporter. The Test master is the single point of control 
for all the peers that are being managed by it. Test cases are managed and executed in 
test master. It also takes care of collecting logs and reports from agents to be stored in 
the file-system or database. To be able to manage peers from a remote manager, test 
master installs a thin agent (Test Agent) on each peer node. The test agent on each 
target peer mediates between the test master and the core peer-to-peer component on 
the peer  node. An  agent maps instruction received from  the test master  to APIs 
exposed by targets. Test Peers are test script driven peers that are part of the testing 
ecosystem. These peer-nodes play different roles to interact  with  target  peers de-
pending on test scenarios. A reporter component is part of a P2P application that 
can  be  configured to report back logs  or  stats to  the test master  or  any  other 
monitoring node. 

The test framework helps automate testing by automating individual steps in the 
testing process including installation, execution  and report generation. Automated 
installation allows test master to check and install necessary test agents and other 
required libraries and packages on different peer nodes in an automated fashion. With 
the help of test framework, test cases can be organized in test suites, which can be 
automatically executed in  a  controlled  manner. Also  the  framework  helps  test 
designers and test case writers to share test data across multiple test suites. Logs and 
reports generated on peer nodes are collected from each node and presented to test 
master automatically. 

 

Fig. 4. Conceptual architecture of network with respect to test execution framework 
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3.5.2   Keyword Driven Test Automation 
With a keyword driven framework, test automation is made more useful and robust by 
creating  a  test  language  around  the  system  to  be  tested.  The  keyword  driven 
framework consists of two parts, a core engine and the libraries implementing the test 
language. The language is comprised of a vocabulary of keywords that can be used 
with a number of arguments [20]. The test language is independent and therefore 
creates an abstraction layer between the test description and low-level vocabulary. 
Also, test vocabulary can have a hierarchical organization where low-level keywords 
can be combined to create complex high level keywords. Fig 5 shows a simplified 
example of such a hierarchy. The core engine interprets and executes the test cases 
with the help of the keyword libraries. 

The keyword driven approach has several advantages over the more traditional 
methods. For example, writing test cases is simplified from a two step process of 
defining test cases and translating them to a programming language, to a one step 
process of writing test cases in test language pseudocode. This method decouples test 
case writing process from test automation [21]. Once the vocabulary is defined, it is 
possible to start developing testcases in parallel to test automation process. As the 
SUT behaviour is encapsulated within the test language, the core engine could be 
reused with other systems. With a well defined domain specific test language, test 
case developers are not required to have programming skills, while test automation 
engineers implementing the test language are not required to be system level subject 
matter experts. This system enhances reusability of test artifacts. The same set of test 
cases, data, reporting mechanism, comparison data and error handling can be used 
with different SUTs of the same type ensuring high reusability of the components as 
well as modularity [22]. Having a well defined vocabulary helps avoid inconsistency 
and  enhances  communication  among  different  groups  participating  in  system  or 
product development. 

The well defined division of ownership helps to improve the maintainability of 
automated test suites across configurations, versions and products. It is the responsi-
bility of automation engineers to modify the language implementation when inter-
faces of SUT are changed while it is the responsibility of test case designers to add 
new vocabulary to the language and create corresponding test cases as new require-
ments are added to SUT requirements specification. 

As P2P systems are being researched actively, multiple different implementations 
with   varied   interfaces   are   in   development   and   require   testing   to   compare 
functionalities and performance. With other types of frameworks a test case developer 
is obliged to understand each complex system and develop test cases for each system 
separately.  In  this  case  only  the  test  language  has  to  be  ported  by  automation 
engineers. 

For example some of the keywords we used in P2P media transport testing are: 
start_player, stop_player, start_injector, stop_injector, start_swarm, stop_swarm, 
send_data_file_to_injector, collect_download_from_peer etc. These are implemented 
with libraries that communicate with remote agents on peer nodes but the complexity 
of remote communication is completely hidden away from the testcase developers. So 
for instance to implement start_swarm test data is sent to the injector first, the injector 
is then instructed to start sharing content; metadata is collected from the injector 
which is then given to each peer, before it is instructed to join the swarm. 
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Fig. 5. Hierarchy of abstractions 

4   Experiments with the Testbed 

We evaluated the usefulness of our testbed by deploying a P2P video delivery appli-
cation  in the test network and running test cases.  The application used was 
Nextshare,  which  is a  video  streaming  application  being developed  in  P2P-Next 
project [3]. The application is based on transferring the video data with essentially 
unchanged BitTorrent. 

4.1   Trial Configuration 

Our test configuration included 19 peers. One of the peers was using a wireless (IEEE 
802.11g) connection to the test network and the rest of the peers were running on wired 
Ethernet or  virtual nodes. The main  BitTorrent parameters are as follows: maximum 
number of concurrent uploads 7, maximum number of connections not limited, maxi-
mum upload rate not limited. The traffic manipulation capabilities of our testbed were 
used to simulate realistic access network configurations for the wired nodes. According 
to [23], the average speed of an internet connection in Europe is 6.56 Mbps in the 
downlink and 1.43 Mbps in the uplink. We assume that these values are optimistic esti-
mates, since the people with fast connection are more likely to use the speed tests than 
the ones with slow connections. Thus, we selected to use three different asymmetric 
access network configurations in our tests as presented in Table 1. 

Table 1. Access network configurations 

 Pessimistic Conservative Optimistic 
Downlink speed (kbps) 1000 2000 6000 
Uplink speed (kbps) 500 1000 1500 

For all access network configuration scenarios, we run three test cases with differ-
ent access network configurations. The test scenario, which is used in all test cases, is 
presented in Table 2. In the scenario, wireless peer is launched next after the seeder 
peer that has the original data source (64 MB file). The time for preparing the seeder 
(Ts) may vary a bit between the test runs, but is around 30 seconds in all cases. 
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Table 2. Test scenario description 

Time (s) Event
0 Seeder is launched
Ts Seeder is ready and running 
Ts  + 10 Wireless peer is launched
Ts  + 20 Wired peer #2 is launched
… …
Ts  + 180 Wired peer #18 is launched 

4.2   The Experimental Results 

While our testbed is able to perform detailed logging of all peers used in the test, we 
considered  only the wireless  peer  in  our  evaluation. The statistics  logged  at  the 
wireless peer  were downlink data rate,  uplink data rate, and the number  of TCP 
connections to other Nextshare peers. 

The results for the different access network configurations are presented in Fig. 6 
for the pessimistic setup, in Fig. 7 for the conservative setup and in Fig. 8 for the 
optimistic setup. The effect of different access network configuration can be easily 
seen from the results. In the pessimistic case, the wireless peer does not get the file 
fully downloaded during the 1000 seconds measurement period. With the conservative 
settings, the download is finished after 775 seconds and with the optimistic settings 
after 655 seconds, as summarized in Table 3. 

Table 3. Summary of numerical results 

Testcase 1 Pessimistic Conservative Optimistic 
Downlink speed (max/average kbps) 748/402 1440/800 1890/765 
Uplink speed  (max/average kbps) 7720/3080 12900/5930 17900/5740 
Download complete time (s) > 1000 775 655 

The download speed is in all cases very limited because of the asymmetric limita-
tions  set  to  all  the  access  network  links  of  wired  peers.  In  all  cases  the maxi-
mum download speed is still higher than the upload limit of the wired peers. This is 
possible because the download can happen from several peers simultaneously. The 
upload speed of the wireless node is significantly higher than download speed since 
that is not limited artificially and the peer is able to serve the other peers better than 
the wired peers. In addition, it can be noted that in the optimistic case, the capacity of 
the wireless link is the limiting factor for the uplink. In conservative and pessimistic 
cases, the wireless link is not fully used, but the bottleneck is in the wired peers’ 
downlink limitation. The bottleneck could have been moved to the wireless link by 
increasing the maximum number of concurrent uploads of each peer (currently 7). 
This limitation also affects the rate of service that peers will receive: the one that 
arrives first can benefit from the upload slots of the ones that arrive later. On the other 
hand, the one arriving last will find that the upload slots of peers are already occupied, 
and it receives significantly lower data rates. 
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Fig. 6. Pessimistic setting 
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Fig. 7. Conservative setting 
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Fig. 8. Optimistic setting 



 A Novel Testbed for P2P Networks 81 

5   Related Work 

Basically three different approaches to evaluate P2P-networks exist: analytical, simu-
lation-based, and experimental. Experimental approach can further be divided into 
live network trials with real users or  experiments conducted in  a controlled 
environment. 

The analytical approach is utilized in [24], where traces are collected from real 
networks and then used to build an analytical model in order to study inter-torrent 
collaboration. Often the analytical model is developed to enable simulations, as is 
with  the  fluid  model  in  [25].  More  recent  simulations  have  been  presented  for 
example in [26], and in [27] an extensive study about the state of P2P simulations is 
provided. 

The experimental approach in live networks is taken e.g. in [2], where a BitTorrent 
network is studied over several months. Many interesting findings are presented, but 
the scope  of the deployments concerning real users differs significantly from the 
controlled environment, where more rapid testing is possible. Marciniak et al. [28], 
experiments in a real Internet environment provided by PlanetLab [29]. Number of 
nodes is around 40 and does not change during the test session (the measurements in 
this  case did not  require  it).  The most  important advantage of this  approach  is, 
naturally, the real-world environment, which is too complex to wholly reproduce by 
emulation. On the other end of the scale, P2PLab [12] uses network emulation and 
heavy virtualization of the nodes allowing tests with thousands of nodes. The authors 
of P2PLab consider a PlanetLab-like environment as difficult to control and modify. 
Also the test results may be difficult to reproduce in it. The TorrentLab [26] includes 
both network simulation and tools for conducting live experiments. It does not, how-
ever, permit the configuration of the network’s routers or to emulate network 
level phenomena. An automated BitTorrent testing framework is presented also in 
[30], where the download performances of different BitTorrent clients are compared. 
The framework lacks, however, the possibility to use network emulation, wireless 
access networks, and a keyword driven  test framework. LKDT [22] is a generic 
keyword driven distributed framework on linux that addresses limitations of other 
types of frameworks but does not satisfy peculiarities of a P2P system testing frame-
work with multiple types of remotely located components. Another large-scale test-
bed  is  called  OneLab [31] that  is built  on  the foundation  of  Planet  lab,  but 
connects to more cutting edge access networks. Thus it is suitable for Future internet 
research, such as P2P overlay networks, but to the best of our knowledge the P2P 
networks have not been studied in it so far. 

The presented framework can be seen as a phase in development flow that is after 
simulations, but before the experiments involving real users. The benefits of this 
approach are fast feedback on new developed features (e.g. protocol enhancements), 
reproducibility of the results, possibility to adjust network level features, and auto-
mated testing. 

The aforementioned experimental works leave a gap: they either lack full control 
over the nodes, wireless access networks, network emulation, or keyword driven test 
execution framework. Our work takes advantage of all these features and is thus, to 
the best of our knowledge, the most advanced fully controllable P2P testbed so far. 
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6   Conclusion 

This paper presented a novel testbed for P2P application testing with full control over 
the  network  and  the  peer  nodes.  The  testbed  enabled  wireless  network  testing, 
keyword driven test execution, easy access network configuration of the peers, and 
thus it is key enabler for testing complex scenarios that involve variable network 
conditions and rapid changes in the topology of the P2P network. 

In order to demonstrate the capabilities of the testbed, we executed three test cases 
with different access network configurations. From the results it can be seen that 
network conditions of peers have direct effect to the client. We performed also other 
scenarios and it was found out that the first peer joining the swarm had the best 
download rate, whereas the last one suffered a lot from the limited amount (7) of 
upload slots of the peers. 

The future work will consist of three main topics: the improvement of the testbed 
and its control functions, more complex trials with Nextshare platform including dy-
namic network configuration and more realistic arrival patterns for peers, and finally 
we aim to increase the amount of virtual peers to enable larger scale tests. These allow 
us to help improving Nextshare and enable research on BitTorrent enhancements. 

Acknowledgments.  This work was supported by EU FP7 P2P-Next project. 
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Abstract. Packet assembly at the network edge is one solution to reduce
high packet rates in core network switches. Literature discusses this topic
controversially because of three reasons: (1) potential negative impact of
packet assembly on the traffic characteristics, (2) disruptive integration
into existing networks and (3) lack of support of packet assembly in
existing control plane environment.

In this paper, we introduce our testbed with 10 Gbps packet assembly
nodes at the network edge and a GMPLS (Generalized Multi-Protocol
Label Switching) control plane for its management. Our testbed inte-
grates transparently in existing Ethernet based networks and allows
comprehensive studies on the impact of packet assembly on the traf-
fic characteristics by measurements. Beside feasibility, for early findings,
we setup a measurement scenario and quantified the impact of packet
assembly in terms of packet latency. For realistic traffic conditions, we
found that the additional delays and jitter introduced by the assembly
process are negligible.

1 Introduction

The popularity of the Internet causes growth of data volume and interface rates
in packet core networks, i. e., 100 Gbps interfaces are currently on the way to
standardization [11]. About half of the packets1 in these networks is smaller than
200 Byte. Reasons are the acknowledgement packets of upper layer transport
protocols, like the Transmission Control Protocol (TCP, [1]). With minimum size
Ethernet packets, the packet rate on a 100 Gbps link is as high as 149 Million
packets per second (preamble and inter-framing gap considered). A 100 Gbps
capable network node has to be able to accept and deliver a minimum size
packet every 6.72 ns. Current network processors operate at frequencies of several
hundred MHz which translates to clock periods of 1 to 5 ns. This means a network
processor has to accept and deliver a packet every few clock cycles. This puts
a high burden on the realization. Consequently, higher data rates dramatically
increase the processing and switching effort within core switches and raise their
complexity.
1 caida.org, the Cooperative Association for Internet Data Analysis, 2008.

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 84–99, 2011.
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Fig. 1. Frame Switching network architecture

One approach to alleviate this problem is to reduce the number of packets
in these networks, i. e., to reduce the packet rate. A prominent solution is the
assembly of client layer packets into server layer containers at the network edge.
The Frame Switching (FS) architecture relies on this principle [19]. FS is a
connection oriented packet switching (CO/PS) network technology for metro
and core networks. Fig. 1 depicts a FS network. It consists of edge nodes, namely
Assembly Edge Nodes (AEN) and core nodes, namely Frame Switches (FSW).
A path through the network includes two AENs – one at each end – and a
sequence of FSWs between them. The CO character of this technology is ensured
by a preceding connection setup phase. The signaling phase propagates traffic
engineering properties along the path, e. g., relative Quality of Service (QoS)
and required bandwidth.

At network edge, the AEN assembles in ingress direction multiple client pack-
ets of the same forward equivalent class (FEC) into containers and forwards
these containers to the next FSW according to the next hop of the signaled
path. Packets of one FEC belong together according to a superior order, e. g.,
belong to the same flow or need to traverse the same target AEN. The FSWs for-
ward these containers according to a forwarding table and maintain relative QoS
among different paths. The egress AEN disassembles the containers to individual
packets and forwards them individually towards their destination client.

FS avoids any cross layer interactions and operates on layer 2 transparently
to upper layer protocols. Because of the layering, we use the term frame for the
containers carrying assembled packets. The originally foreseen layer 2 technology
for FS networks was an extended Optical Transport Network (OTN, [12]). The
server layer frame then corresponds to a G.709 frame [13]. However, the con-
cept of packet assembly at the network edge is also applicable to other layer 2



86 A. Mutter et al.

technologies. The most prominent layer 2 technology for cheap and simple im-
plementation is Ethernet [8].

Packet assembly maps multiple smaller packets into larger frames. In case of
fixed size frames, packet segmentation is necessary to provide 100% fill ratio.
Additionally, in case of low load situations and fixed frame sizes, also padding is
required. Besides segmentation and padding, frame assembly at the network edge
changes the original traffic characteristic of assembled packets. Fig. 2 depicts this
property. Arriving packets show a certain inter-arrival time characteristic (left
side of Fig. 2). The AEN assembles these packets into one frame (middle). At
the egress side, the AEN disassembles the frame to packets and releases them
in a back-to-back manner without the original inter-arrival time characteristic
(right side of Fig. 2).

It is assumed that the additional latency or jitter introduced by the assem-
bly process leads to temporary buffer overflows at the network edge due to the
burstification of the traffic or affect the upper layer protocol performance nega-
tively. These assumptions are the major argument against any packet assembly
technology in packet based networks. On the other hand, these assumptions are
hard to quantify without a real network environment and real network condi-
tions. Another open point of packet assembly networks is their controllability as
packet assembly requires additional signaling because of the assembly process.
This missing support of packet assembly in present control plane protocols leads
to additional skepticism.

In this paper, we present, to the best of our knowledge, the first time a FS
testbed including both the data plane and the control plane (CP). Our FS testbed
enables studies on both topics, i. e., the packet assembly process and its impact
on the traffic characteristics as well as the controllability of these networks. Our
testbed relies on Ethernet technology and includes bidirectional AENs. Our AEN
prototype supports various packet assembly schemes, i. e., combined timer and
threshold based assembly. The resulting frames may be of fixed or variable size
supporting packet segmentation and padding. The testbed and the AEN operate
at 10 Gbps. Additionally, our testbed implements a CP for path management. Our
CP bases on the DRAGON Generalized Multi-Protocol Label Switching (GM-
PLS, [30]) implementation and shows extensions to support the packet assembly
functionality of FS networks. This especially includes the signaling protocols to
signal service classes and the parameters of the assembly scheme.

1.1 Related Work

Considering the data plane, literature presents several architectures and imple-
mentations of assembly nodes as well as testbeds within the context of Optical
Burst Switching (OBS) networks [21, 24, 32]. They focus in their studies mainly
on technological problems and less on the realization of packet assembly. Thereby
they support only variable length bursts and thus do not consider packet seg-
mentation or padding. Additionally to the optical layer, Kögel et al. implement
in [16] an assembly node on a network processor. However, on network proces-
sors, scalability and throughput are limited due to the software implementation.
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In our earlier publication [23], we present our assembly edge node, exclusively
focusing on the data plane part. We show its architecture and give detailed
information about its implementation and supported features.

Kornaros et al. propose in [15] an assembly node architecture based on G.709
frames. For a detailed comparison to our assembly edge node we refer to [23].
However, the authors in [15] do neither report on any control plane interface for
extensive path management support nor describe a testbed for validation and
testing.

Selected testbeds related to the control plane of FS networks apply the GM-
PLS protocol suite. This includes both, Optical Burst Switching networks, e. g.,
[26, 29] as well as transport networks, e. g., [22]. The focus on the control plane
studies in OBS lies on the interaction of both control planes: connection-oriented
GMPLS CP for lightpath reservation and CPs for connection-less OBS for tem-
porary lightpath occupancy. However, the frame switching network is connec-
tion oriented while OBS is connectionless and thus may apply any GMPLS CP
directly. Additionally, none of the proposals in literature realizes the parameter-
ization of the assembly edge node via the control plane. The focus on the control
plane studies for transport networks lies on the support of optical technologies,
inter-domain and multi-layer issues. These studies neither focus on the support
of assembly units nor its impact on the control plane.

Summarizing, literature intensively studies the field of packet assembly on
selected aspects. However, none of these studies provide a testbed, which (a)
transparently integrates in existing networks, (b) provides equivalent capabilities
for packet assembly strategies or (c) supports network operation by a standard
compliant decentralized control plane.

1.2 Organization of the Paper

In Section 2, we introduce the principles of our testbed architecture. In Section 3,
we introduce the prototype architecture and functionality of our frame assembly
unit. Section 4 presents the control plane architecture of the frame switching
network. Besides the functional validation of the testbed, we provide preliminary
measurements to quantify the impact of the assembly process on the traffic
characteristics in Section 5. Section 6 summarizes our work.

2 Introduction to Our Frame Switching Testbed

Our FS testbed uses Ethernet as the transport technology for the FS network
between two AENs, cf. Fig. 1. We use Ethernet jumbo of fixed size (9 KByte) as
container frames to transport the assembled packets. For easy and transparent
integration in existing networks, the AEN also provide Ethernet interfaces to the
client networks at the edge. The frame switches (FSW) along a path from one
AEN to the destination AEN are manageable Ethernet switches. The following
paragraphs detail the principles of the FS testbed architecture.



88 A. Mutter et al.

Fig. 2. Packet classification and assembly

The AEN shows two independent functions: switching and assembly. There-
fore, the realization of an AEN shows two options. (1) One monolithic device in-
corporating both functionalities or (2) a modular device separating the function-
alities. The advantage of (1) is the single device and potential resource savings
due to common usage of components, e. g., a common packet buffer. However,
the common components have to suffice a larger number of requirements and
are therefore more complex.

We follow the modular approach (2) and separate the functionalities. Fig. 3
depicts our modular AEN architecture. It shows one Ethernet switch and multi-
ple Frame Assembly Units (FAU). Both are interconnected to the control plane
via a Control Channel Interface (CCI). Our modular approach is highly flexible
as it allows adding FAU ports to an AEN incrementally.

The Ethernet switch serves two purposes. (a) Classification of packets on a
per port basis, i. e., packets on one port belong to one FEC. (b) Switching of
classified packets to the correct FAU.

The classification process at the AEN Ethernet switch assigns all packets on
certain ports to one Virtual LAN (VLAN, cf. Ethernet VLAN extension of [7]).
Packets that belong to the same VLAN have the same VLAN identifier (VLAN
ID). The specific VLAN ID is selected in the connection setup procedure (cf.
Section 4). The selected VLAN ID per port serves as a classification criteria for
the subsequent FAU. The FAU assembles packets per FEC (i. e., per VLAN ID)
and creates frames (cf. Section 3). The switch in the egress AEN will also use this
VLAN ID to switch the packets to the appropriate client network. Additionally,
the utilization of VLAN at this point enables to decouple the classification pro-
cess in the FAU from the Ethernet MAC addresses of the clients. This drastically
simplifies configuration.

Ethernet is a connectionless packet-switching technology with a separate con-
trol plane (Spanning Tree Protocol, [6]) for link management. This forbids any
traffic engineering in Ethernet based FS networks. The virtual LAN extension
of Ethernet (VLAN, [7]) alleviates this problem and provides connections to FS
networks. In the core one connection corresponds to one VLAN. The ports of the
FSW define the path of a connection, i. e., two ports per FSW along the path
belong to the same VLAN. Please note that the VLAN ID of the classification
process is not necessarily the same as the VLAN ID in the FS network. Ethernet
limits the number of VLAN to 212. This restricts the application of this con-
cept in large networks. However, the Provider Bridge (PB, [9]) and the Provider
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Fig. 3. Architecture of the assembly edge node (AEN)

Backbone Bridge (PBB, [10]) proposals alleviate this limitation by additional
Ethernet VLAN and frame headers, respectively. Consequently, this paper does
not elaborate on this problem.

Fig. 2 depicts from left to right the whole classification, encapsulation and
forwarding process from the connection A1 to A4 of Fig. 1. Additionally, it
distinguishes the different VLAN IDs. The Ethernet packets of the client network
A1 arrive at the AEN 1 switch. The AEN 1 switch classifies these packets per
port and assigns these packets the VLAN ID C. The VLAN tagged packets leave
the AEN 1 switch and face the FAU for packet assembly. The FAU assembles
packets of one FEC (i. e., same VLAN ID) to Ethernet jumbo frames of 9 KByte.
The FAU assigns these Ethernet jumbo frames a VLAN ID (here VLAN ID D),
which is used in the FS network to switch the jumbo frames. The FAU in the
destination AEN 4 disassembles the Ethernet jumbo frames. This FAU forwards
the original client packets including the classification VLAN ID (VLAN ID C) to
the AEN 4 switch. The switch removes the classification VLAN ID and forwards
the individual packets to the client network A4.

The big advantage of this MAC in MAC encapsulation is the transparency to
any upper layer protocol. For instance, ARP (Address Resolution Protocol, [27])
and IP (Internet Protocol, [28]) protocols are transparently switched without
interfering with the FS transport layer.

Additionally, each connection belongs to a selected class of service. The FS
testbed realizes service differentiation on a Differential Service basis (DiffServ,
[3]). The information on the service class is included in the header of the assem-
bled frame (3 Bit user priority of the VLAN header, [7]). The Ethernet switches
in the FS network (i. e., FSW) use these priority bits to relatively prioritize the
jumbo frames.

The next sections introduce the architecture and implementation of the FAU
as well as the implemented control plane instance to manage this testbed.

3 FAU Prototype Architecture

The FAU assembles packets to frames in ingress direction and disassembly frames
to packets in reverse direction. Fig. 4 depicts the ingress direction of the FAU
prototype architecture. The lower part shows the pipelined architecture of the
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packet processing. The upper part shows the interface to the control plane for
runtime configuration. The following two sections describe both parts in detail.

We realized the FAU on an evaluation board with two Xilinx Virtex-4 FX100
FPGAs, two optical 10 Gigabit Ethernet interfaces for data plane and a 1 Gigabit
Ethernet interface for CP connection. We designed the FAU prototype in VHDL
supporting simultaneously seven FECs per direction.

3.1 Data Plane Part

The description in this section introduces the data plane part of the ingress
direction of the FAU. For a more detailed introduction the reader is referred to
our earlier publication [23].

The description of Fig. 4 follows the assembly process from left to right, i. e.,
from an access to a core network. The first stage, the 10 G Ethernet interface,
receives packets, checks their frame checking sequence (FCS) and forwards them
without the FCS. The next stage converts the packets into an internal data
format (IDF) and therefore adds an IDF header.

The VLAN classifier classifies client packets according to their VLAN ID
(12 Bit field in the VLAN header). Packets belonging to one VLAN belong to
the same forwarding equivalent class (FEC). The VLAN classifier stage stores
the information to which FEC a packet belongs in the IDF header.

The next stage encodes packets with the ITU-T Generic Framing Procedure
(GFP, [14]). GFP encapsulates each packet by adding meta information (the
GFP core and payload headers) that allows delineation at the destination. GFP
supports packet segmentation as the delineation process relies only on the meta
information and is independent of container frame boarders. Additionally, GFP
operates stateful per FEC. Consequently, a new connection requires a clear state
of the GFP encoder before operating.

The assembly stage consists of many assembly components. Each component
serves one FEC. Packets not assigned to any FEC are dropped here. Each assem-
bly component supports combined timer and threshold based packet assembly.
The buffer of each assembly component collects packets of one FEC. In every
component a control block monitors the fill level of this buffer. When the size
threshold is exceeded or in case of timeout, the control block signals the scheduler
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that a frame is ready to be sent. Since frame switching uses constant size frames,
the assembly components segment packets to fill frames completely. Further, it
appends padding if the amount of collected packet data is below the frame size.

If more than one assembly component signals a ready frame, the scheduler
assigns the outgoing link in Round Robin manner. On request of the scheduler
the assembly component transmits the GFP encoded packets or segments of
a packet to the concatenator stage to build the frame. The concatenator stage
removes the IDF headers of the GFP encoded packets, aligns the data and creates
a continuous data block, which represents the frame’s payload.

The next stage finalizes the Ethernet jumbo frame by adding to the payload
an Ethernet and a VLAN header according to the frame’s FEC. The IDF decoder
stage removes the IDF header of the frame. The last stage, the 10 G Ethernet
interface, appends the jumbo frame a FCS and transmits it to the core.

The data plane part of the egress direction is similar. [23] shows it in detail.

3.2 Control Plane Part

At several stages of the data path, the FAU requires status information and
configuration data. For runtime configuration, the FAU foresees a management
interface for interactions with the control plane. We developed an FPGA Man-
agement System (FMS) as CP interface. Communication with the CP is realized
by utilizing an additional 1 Gigabit Ethernet interface (cf. Fig. 4). The FMS
enables online read and write access to register and memory values via our self-
developed low-level configuration protocol UMP (Universal Hardware Platform
Management Protocol). UMP resides on address value pairs.

After powering up the testbed, the CP configures the 10 Gigabit Ethernet
interfaces of each FAU to enable support for Ethernet VLAN header extension
as well as Ethernet jumbo frames. Additionally, it assigns to each Ethernet
interface a unique MAC address that is used as source address in the Eth./VLAN
header generator stage. The number of simultaneously supported connections
(i. e., FECs) is limited by the available hardware resources in the device. A new
connection requires the necessary configuration steps to be done in a fixed order.
The setup requires in the ingress FAU the following two steps to be done for the
specific FEC:

1. Configure individual stages in the FAU pipeline.
– Clear state of this FEC in GFP encoder stage (A in Fig. 4).
– Enable or disable timer-based assembly in the corresponding assembly

component. If enabled, then set the timeout value for the timer in units
of 10 ns (B in Fig. 4).

– Set VLAN ID, VLAN priority and Ethernet destination address in the
Eth./VLAN header generation stage for this FEC (C in Fig. 4).

2. Set the VLAN ID in the VLAN classifier stage for this FEC (D in Fig. 4).

The order of these two steps is mandatory as the last step acts like a gatekeeper
for the incoming packets. Before the first packet enters the FAU, the FAU has to
be configured properly. After this step, the classifier labels packets for a certain
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FEC. To tear down this connection the control plane has again to keep a fixed
order of the necessary two steps. The classifier step first stops incoming packets,
while the second step empties the assembly component of this FEC.

1. Remove the VLAN ID mapping of this FEC in the VLAN classifier (D in
Fig. 4).

2. Enable timeout based assembly in this FEC to transmit all remaining data
in case of only threshold based assembly (B in Fig. 4).

In the egress FAU similar configuration steps are required for connection setup
and tear down.

4 Control Plane for Frame Switching Networks

This section introduces the control plane for frame switching networks as well as
the control plane implementation of our testbed. The major requirements on any
control plane are traffic engineering capabilities and path management support.
The GMPLS CP architecture [30] is a promising candidate to control future
networks and new network technologies. The CP of the FS testbed resides on
the GMPLS framework of the US project DRAGON and has been extended to
support FS networks. Extensions include the signaling protocols as well as the
interfaces between the control plane and the data plane node. The first section
details the DRAGON GMPLS CP. The second section introduces both control
plane extensions.

4.1 The DRAGON GMPLS Control Plane

The FS CP resides on the GMPLS implementation of parts of the US project
DRAGON (Dynamic Resource Allocation via GMPLS Optical Networks, [18]).
This project targeted to support non-GMPLS capable network nodes like Ether-
net switches, optical and Time Division Multiplex (TDM) devices. Fig. 5 shows
our setup. In the upper part are the elements of the DRAGON CP: The Virtual
Label Switching Routers (VLSR), the DRAGON User Network Interface (UNI)
and the Network Aware Resource Broker (NARB, [34]).

The NARB enables constraint based path computation and interacts with
other NARB elements in inter-domain scenarios. For instance, constraint path
computation occurs if a connection request already includes the VLAN ID along
the path. For non-constraint path computation, NARB selects one VLAN ID
among the announced. The NARB partly fulfils the functionality of the IETF
Path Computation Element (PCE, [5]).

The DRAGON UNI provides the interface for rudimentary path management.
It enables setup and teardown of paths (VLAN connection). It triggers the path
computation and signaling steps, which configure the switch ports appropriately.
The DRAGON UNI implements the Optical Internet Forum interface (OIF 1.0,
[25]) and realizes an UNI for an overlay model with a GMPLS environment
as described in [33]. Additionally for manual operation, the UNI implements a
command line interface (CLI) to manage connections.
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Fig. 5. Frame Switching Testbed Architecture

The VLSRs represent the non GMPLS-capable AENs (Switch, FAU) and the
FSW in the CP and operate signaling and routing protocols, i. e., the Resource
Reservation Protocol (RSVP-TE, [33]) and the Open Shortest Path Protocol
(OSPF, [31]). On the control channel interface, VLSR and AEN/FSW exchange
configuration data, i. e., requesting or changing the device state. The communi-
cation protocol is the Simple Network Management Protocol (SNMP, [4]). The
manageable switches (in the AEN and FSW) support SNMP and implement the
manageable objects for Ethernet VLAN extensions according to [2]. In detail,
the VLSR performs the following actions on the CCI:

– Query of available or used VLANs per port.
– Assignment of ports to a VLAN.
– Removal of ports from a VLAN.
– Change of port state with respect to trunk and access ports.

While the manageable switches implement the corresponding MIB (Management
Information Base) and the SNMP application interface, the FAU does not. The
FAU implements the proprietary Ethernet based UMP protocol of Section 3.2.
For easy integration in the framework (i. e., without changing the interface to the
VLSR), Section 4.2 introduces our gateway, which translates SNMP messages
to the proprietary UMP protocol.

4.2 Extensions to the DRAGON GMPLS Control Plane

We extended the DRAGON GMPLS control plane to support the parameters
of the FAU, i. e., assembly scheme configuration and class of service (CoS). This
includes changes in the signaling protocol RSVP and requires an application layer
gateway at the CCI between VLSR and FAU. The following sections address
these two extensions in detail.
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Fig. 6. Extended ATM service class object, [20]

Additional signaling parameters. The path setup procedure in our testbed
requires signaling of the VLAN ID, CoS and the parameters of the assembly pro-
cess. The VLAN ID corresponds to the signaling of labels in a GMPLS framework
and the signaling protocol RSVP. The GMPLS control plane inherently supports
this without any modification. However, RSVP does not support directly any
CoS and the assembly parameters. To signal these parameters we implemented
a modified RSVP ATM service class object, [20]. The ATM Service Class object
extends the RSVP-TE Path message and includes 3 Bit to signal ATM service
classes for any label switched path, i. e., UBR (Unspecified Bit Rate), VBR-NRT
(Variable Bit Rate, Non-Real Time), VBR-RT (Variable Bit Rate, Real Time),
CBR (Constant Bit Rate). As the aim is exactly the same as for FS networks, we
reuse this object for the FS CoS. The 3 Bit for the ATM service classes perfectly
correspond to the 3 Bit VLAN priority of the VLAN header.

We add the information on the assembly timeout parameter to the ATM ser-
vice class object. Therefore, we extended the original ATM service class object
by another 32 Bit indicating the timeout parameter in units of 10 ns. A value of
0 indicates pure threshold based assembly. Fig. 6 depicts the new object. We in-
cluded this modified object in the RSVP protocol and were able to signal service
class and assembly parameterization along the path. The assembly parameter
of the size threshold is implicitly given by the constant frame size of Ethernet
jumbo frames, i. e., 9 KByte.

Besides the extension of the signaling protocol RSVP, we also extended the
UNI to include CoS information and the parameterization of the assembly time-
out. These extensions include mainly the modification of the command line in-
terface of the DRAGON UNI as well as the interface to the signaling protocol.
As both do not affect standardized protocols, this paper skips the details here.

Control channel interface. The DRAGON VLSR implements the SNMP
protocol at the interfaces to the switches and the FAU. Section 3 already intro-
duced that the FAU does not support the high level language SNMP. Instead, it
provides a lower level language to access registers and the memory of the FAU.
This discrepancy requires a protocol gateway, which translates high level SNMP
messages into low level UMP messages. Fig. 7 depicts schematically the gateway,
i. e., the Virtual Frame Assembly Unit (VFAU).
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Fig. 7. Virtual FAU (VFAU)

On the interface towards the VLSR, the VFAU emulates a simple two port
switch. For communication compatibility, the VFAU implements a SNMP dae-
mon. For VLAN application in Ethernet networks, the VFAU implements the
required Management Information Database (MIB, [2]) as the other switches in
this network, too. On the interface towards the FAU, the VFAU implements a
UMP Client. The UMP Client serves as a backend of the MIB. SNMP Messages,
which operate on MIB entries (cf. Section 4.1), automatically trigger the corre-
sponding UMP messages to put this in action on the FAU. The UMP messages
include the necessary configuration data on the FAU, cf. Section 3.

Besides these configuration messages, the gateway also manages the resource
state of the FAU. Each FAU is able to handle a limited number of FEC per
direction, i. e., in our implementation we support 7 per direction. If the number
of available resources is exhausted, the gateway signals this information to the
VLSR and prohibits additional path setups until paths terminate. The informa-
tion on the resource occupation state is configured in the FAU and stored and
updated in the gateway.

5 Measurement Results

Our testbed in Fig. 5 and its realization in Fig. 8 not only demonstrate the
feasibility of frame switching networks, but also enable studies on the impact
of packet assembly. For validation of the functionality of the testbed and for
preliminary results regarding packet assembly, we setup a measurement environ-
ment. Our testbed consists of three AENs (Fig. 5 shows only two AENs because
of space limitations) and one core switch representing the FS core network.

The inherent burstification of the transported traffic is one of the major
sources of skepticism by practitioners and network operators. The frame assem-
bly may delay packets until the end of the assembly process (time/size threshold
reached) at the assembly edge node. This waiting time follows a load dependent
distribution, which leads to an additional jitter. These changes in traffic char-
acteristics may cause problems on higher layers. Nonetheless, our preliminary
results indicate that the additional delay introduced by the frame assembly is
well controlled and remains small enough compared to other delay sources, e. g.,
queuing or propagation delay.

For our study, we used the setup of Fig. 5. We study the impact of frame
assembly on a test flow in the presence of a background flow. The background
flow represents the aggregated traffic of several users. It originates at B1 and
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Fig. 8. Frame Switching Testbed
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Fig. 9. Packet latency

terminates at B2. The test flow represents the traffic of one user or applica-
tion. It originates at T1 and terminates at T2. Both flows share the same FEC
and thus share the same resources in both FAUs. The target of our study is
the experienced latency of the test flow with respect to a changing background
flow.

The background traffic has an average rate of 0.5, 1, or 2 Gbps, respectively.
We compose the background traffic by an overlay of randomly arriving 10 Mbps
application streams and use the same traffic model as in [17]. The average rate of
the test flow is 10 Mbps. It is composed by 500 Byte packets showing a constant
inter-arrival time. At T2, we record the latency of the packets after traversal
of the testbed. We use only threshold-based assembly with fixed size (9 KByte)
jumbo frames. The timer-based assembly is switched off.

Fig. 9 shows the empirical probability distribution of the latency of the test
flow packets with respect to different background load levels. All three curves
show a constant offset of about 110 µsec propagation delay.

The maximum of each distribution shifts reciprocally with the traffic load, i. e.,
the distribution moves to the right with decreasing traffic load. These findings
correspond to a load dependent waiting time during frame assembly. In low load
situations, the latency shows a rather long tail, because only threshold based
assembly scheme is used. However, any timer-based assembly would limit the
maximum additional delay and cut the distribution.
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Finally, we point out the small absolute values of the measured jitter. With
our realistic traffic conditions, we observed jitter values far below 1 ms. As each
packet receives this jitter only once at the network ingress. So the jitter does not
accumulate with the network size. Consequently, we do not expect these jitter
values to significantly influence the higher layers.

6 Conclusion

The contribution of our paper is twofold. We show the feasibility of frame switch-
ing networks and provide a testbed, which enables comprehensive studies on the
impact of packet assembly on the traffic characteristics.

For transparent operation and easy integration in existing networks, our testbed
resides on connection-oriented Ethernet and operates on 10 Gbps. The two major
achievements of our testbed are the assembly edge nodes and a GMPLS control
plane. The assembly edge node consists of a switching device and the frame as-
sembly unit, which assembles packets to larger containers, named frames. The
GMPLS control plane is responsible for path management.

Our frame assembly unit supports timer and threshold based assembly, fixed
and variable size frames, packet segmentation for a 100% frame fill ratio and
the ITU-T Generic Framing Procedure for packet delineation. The architecture is
modular to ease design adaptation to any packet oriented transport technology.
We implemented the design in VHDL to show its feasibility and validated its
functionality within our testbed.

Our control plane for Frame Switching networks applies the GMPLS con-
trol plane implementation of the DRAGON project. We extended the signaling
protocols and the UNI interface to adapt to the special requirements of frame
assembly at the network edge, i. e., QoS classes and assembly scheme parameters.
The resulting control plane implementation is capable to setup and tear down
end-to-end connections of different service classes between access networks. Each
connection request includes the parameterization of the frame assembly units as
well as of the intermediate switches.

For preliminary results, we setup a network scenario with realistic traffic con-
ditions and measured the impact of the packet assembly scheme in terms of
packet latency. We found that the absolute delay and jitter introduced by thresh-
old based assembly is far below 1 ms. However, any timer-based assembly further
bounds this delay. Consequently, we do not expect these delays to significantly
influence the higher layers.

In our ongoing studies, we extend the measurement scenario towards addi-
tional traffic characteristics and load scenarios. Additionally, tests to measure
the impact on transport and application layer protocols are planed.
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Abstract. A scalable approach to building large scale experimenta-
tion testbeds involves multiplexing the system resources for better uti-
lization. Virtualization provides a convenient means of sharing testbed
resources among experimenters. The degree of programmability and iso-
lation achieved with such a setup is largely dependent on the type of
technology used for virtualization. We consider OpenVZ and User Mode
Linux (UML) for virtualization of the ORBIT wireless testbed and eval-
uate their relative merit. Our results show that OpenVZ, an operating
system level virtualization mechanism significantly outperforms UML in
terms of system overheads and performance isolation. We discuss both
qualitative and quantitative performance features which could serve as
guidelines for selection of a virtualization scheme for similar testbeds.

1 Introduction

Experimental validation of research ideas in a realistic environment forms an
important step in identifying many practical problems. This is specially true
for wireless networks since wireless communication environment is hard to accu-
rately model through simulations. Public access testbeds like ORBIT [12,17,23],
provide the research community with platforms to conduct experiments. OR-
BIT [12], typically uses a time shared experimentation model where each exper-
imenter can reserve the grid nodes for a fixed duration (slot - approximately two
hours) and has complete control of these nodes during the reservation period.
An ever increasing demand for grid slots can only be met through sharing of the
testbed whenever possible. Since spatial expansion is not an economically viable
solution due to the limited space, prohibitive cost of setup and maintenance, we
propose virtualization of ORBIT to support simultaneous experiments. Wired
testbeds like VINI [9] and Planet lab already use node and network virtualiza-
tion for the same reason. In our study, we will cater specifically to requirements
for sharing a wireless testbed through virtualization.

Another important motivation for ORBIT testbed virtualization is the in-
tegration with the GENI [1] framework. This requires ORBIT to be virtual-
ized for allowing integration with other shared testbeds such as PlanetLab and
� Research supported in part by the GENI initiative and NSF Grant#CNS−072505.

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 103–112, 2011.
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Fig. 1. Options for sharing radio resources on ORBIT and potential capacity of the
ORBIT grid with 800 interfaces(2/node), 12 channels(802.11a), 2VMs/Node

VINI [19,7]. GENI also requires combining of control and management across
wired and wireless networks, providing researchers with a single programming
interface and experimental methodology. Since the ORBIT testbed currently
supports only a single experimenter mode of operation, virtualization is essen-
tial for integration.

While wired network virtualization may be achieved by pre-allocating mem-
ory, CPU cycles and network bandwidth, to achieve perfect virtualization of
the wireless network, we need to perfectly isolate both the physical devices and
the wireless spectrum while providing flexibility for experimentation. This ad-
ditional requirement makes the problem of wireless virtualization much harder
compared to the wired counterpart [21]. Figure 1(a) shows different options for
sharing the radio spectrum. The authors in [21] attempt to solve the spectrum
sharing problem by separating experiments in time. As observed, time sharing
of a single channel can result in a less repeatable performance due to context
switching overheads even though it could possibly reduce the wait time for ex-
periments. Due to the availability of a large number of radio interfaces (800
- 2/node), we share the spectrum by allocating orthogonal channels to slices.
ORBIT nodes are equipped with two wireless interfaces each and therefore two
virtual machines may be run on each node thereby doubling the capacity of the
grid. Figure 1(b) shows the potential capacity of the ORBIT grid with such a
frequency division (FDM) based virtualization. We observe that the number of
simultaneous experiments supported on the grid are limited either by the number
of orthogonal channels1 or the number of nodes allocated per experiment.

In order to provide meaningful experimentation in the virtualized wireless
testbed, the choice of the vitualization platform is critical. In this work, we start
by identifying the requirements and qualitative issues to consider when selecting
a virtualization platform in Section 2. After discussing the relative merits of
OpenVZ for our application, we present a comparative experimental evaluation
of UML and OpenVZ in Section 4. Related work is discussed in Section 5. Finally,
conclusions and future directions are presented in Section 6.

1 Experiments that use other wireless technologies like zigbee and GNU radio may
be run simultaneously provided they use non-interfering frequencies.
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2 Background and Platform Selection

Production scale virtualization systems can be broadly classified as full, para
and OS virtualization. Full virtualization [8,2](e.g.,VMWare, KVM) refers to a
technique that emulates the underlying hardware and uses a software layer called
hypervisor that runs directly on top of the host hardware to trap and execute
privileged instructions on the fly2. Full virtualization is the least intrusive3 form
of system virtualization. In para virtualization [16,6](e.g., Xen, UML) the hy-
pervisor layer exists within the host operating system to intercept and execute
privileged instructions. Unlike full virtualization, para virtualization requires
changes to the guest operating system. The most intrusive form of virtualization
is operating system based [4](e.g.,OpenVZ) where the virtualized systems run
as isolated processes in the host operating system. The host OS is modified to
provide secure isolation of the guest OS. For the purpose of this study we lay out
the main qualitative criteria and select candidates for performance evaluation
based on their suitability for the ORBIT testbed.

Qualitative features of a virtualization scheme which are important from a
wireless testbed administrator’s perspective are as follows:

1. Ease of administration: Clean API to schedule node resources such as CPU,
disk and memory on a per slice basis should be possible.

2. Shared or exclusive interface mapping: The setup should allow flexible map-
ping of virtual interfaces within the slice to physical interfaces or one or more
virtual interfaces (on the hardware like virtual access points).

3. Control over network connectivity: Mechanisms should be available to band-
width limit slices and control interaction between slices.

All types of virtualization schemes allow for such functions. However, in our ex-
perience the most flexible and easy approach for controlling the VMs is through
operating system level virtualization such as OpenVZ. Such a setup also allows
for the reuse and extension of regular system administration tools (such as IPT-
ABLES, DHCP, SSH, LDAP) for controlling VMs.

From the perspective of an ORBIT experimenter we consider the following:

1. Support for standard and custom Linux distributions: Orbit nodes supports
a wide variety of Linux distributions and users are free to use their own
customized version. The virtualization platform running on ORBIT must
support similar flexibility for the experimenter.

2. Root access within container: This feature is useful for an experimenter for
providing complete freedom within the container.

2 Native virtualization is a virtualization approach where the processor has support
for virtualization e.g.,IBM System/370 and allows multiple unmodified operating
systems to run together. Full virtualization does not include these systems.

3 Intrusiveness refers to the degree of changes that need to be made to the guest OS
to get it working with virtualization.
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Table 1. Comparison of schemes from an ORBIT user perspective

Feature/Experiments Full - Para - OS -
Virtualization Virtualization Virtualization

Security Experiments Yes Yes Yes
Network Coding In Kernel Overlay* Overlay*

Mobility and Routing Yes Yes Yes
Rate And Power Control In Driver Radiotap** Radiotap**

Wireless Applications Yes Yes Yes
Phy Measurements Yes Yes Yes

MAC Parameter Control Yes Yes Yes***
Transport layer Modification In Kernel Emulation∇ Emulation∇

* Transport layer experiments can be implemented as a part of overlays.

** Radiotap headers allow for per frame rate and power control.

*** For Atheros devices MAC parameters (txop, CW, AIFS)are supported per interface.

∇ Use a click like mechanism on top of IP for custom flow or error control

Multiple Linux distributions with root access in VMs are inherently supported
in all three forms of virtualization. A more detailed comparison is shown in the
Table 1. It is observed that all wireless experiments scenarios can be either di-
rectly supported or emulated (using open source radiotap libraries and overlays)
with all the virtualization setups. Traffic control elements such as Click [13] can
also be run on hosts to allow for bandwidth shaping and interface mapping.
Appropriate API can also be exposed from the driver to allow experimenters
to have a controlled interaction with the driver. The only experiments not sup-
ported in operating-system level virtualization is the option of customizing the
host kernel itself to cater to individual VMs. Despite needing emulation to sup-
port experiments that would conventionally be done by direct changes in the host
kernel, the possibility of obtaining very tight slice isolation [22] make OS-level
virtualization a strong candidate for evaluation.

Based on these inferences, the choice of a virtualization mechanism for ORBIT
is not limited to any one type. However, full virtualization such as KVM requires
specific CPU virtualization extensions (E.g. Intel VT or AMD-V) which are
currently not available with our ORBIT boxes, and hence is not considered for
evaluation. We consider OpenVZ (OS level) and User Mode Linux (Para - level)
virtualization for quantitative comparison with testbed deployment. Since UML
based virtualization has been performed in a previous study [20], this study
focusses on the performance analysis of OpenVZ. We ruled out Xen in this
performance study due to incompatibility with the Via C3 processors used in
the ORBIT testbed.

3 Experiment Setup

The Orbit testbed is a two-dimensional grid of 400 small form factor PCs with
1GHz Via C3 CPU, 512 MB RAM, 20 GB hard disk, three ethernet ports
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(control, data and chasis management) and two WiFi interfaces4. We used Atheros
5212 chipset cards with the MadWiFi(0.9.4) [3] drivers for our experiments.

Figure 2 shows our experiment setup. OpenVZ uses the concept of a container
also called virtual private server (VPS), an entity that performs like a stand alone
server. It also provides a virtual network device named as venetX per VPS that
acts as a point to point link between the container and the host system. We
configure the venet devices from each of the two VPSs (on every node) to map to
a corresponding WiFi card on the host. Effective virtualized and non-virtualized
links are as shown in the figure. The UML virtualization setup is described in
detail in [20] and is quite identical to the OpenVZ setup.

Fig. 2. Experiment setup for OpenVZ evaluation

We run each experiment for 3 minutes using UML and OpenVZ setups as well
as with no virtualization. The operating mode of the WiFi cards was 802.11a
with bit rate of 36Mbps set at channel 36. The debian linux distribution (Woody)
was used for both guest and host operating systems.

4 Performance Evaluation

We measure overheads in throughput and delay, followed by measurement of
slice isolation achievable between slices. Quantitative evaluation presented in
this section takes into account the importance of different measurement criterion.
For instance, the isolation achieved between slices is far more important than
sustainable peak throughput as it directly determines experiment repeatability.

4.1 Throughput Measurements

We use the iperf [5] tool to generate saturation UDP traffic and average the
througphut over 3 min intervals. We plot the observed UDP throughput with
4 It should be noted that though the results presented in the following section are hard-

ware specific, performance trends will hold and scale with hardware capacity and load
on the system.
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Fig. 3. UDP throughput and variance in throughput as measured with different
schemes. Performance is measured as a function of offered load per flow with a fixed
packet size of 1024bytes. Variance in UDP bandwidth is measured over per second
observed throughput at the receiver.
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Fig. 4. Measurement of UDP throughput with varying packet sizes and file transfer
time with FTP. For the UDP throughput measurement, channel rate is constant at
36Mbps and packet size is varied. For the FTP experiment, packet size is constant at
1024 and channel rate is varied.

varying offered loads and fixed frame size of 1024bytes in Figure 3(a) and its vari-
ance in Figure 3(b). Throughput obtained in the virtualized case are averaged
over the two links. We observed that both below and above channel saturation
there is no distinct difference in throughput with or without virtualization. This
trend indicates that both virtualization platforms perform efficiently under sat-
uration conditions. However, the variance in throughput with UML increases
with offered load specially near and above saturation. Typically, this suggests
that the OpenVZ platform benefits from tighter scheduling and lower overheads
compared to UML.

To determine the effect of varying packet sizes, we fix the offered load to
40Mbps and transmission rate to 36Mbps, and vary packet sizes from 128bytes
- 1470bytes. Figure 4(a) shows that for packet sizes less than and equal to
1024 bytes, UML has a significantly higher packet processing overhead which
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leads to a degraded performance. We attribute this degradation in performance
with UML to the lack of support for virtualization in the host kernel.

Finally, we measure throughput performance of TCP by setting up a FTP
transfer of a 1GB file with varying channel rates. Resulting file transfer times
are as shown in Figure 4(b). For all channel rates, performance of UML is on par
with OpenVZ and no virtualization due to the use of larger IP frames resulting
in less performance overheads.

Thus for all three cases, we observe that OpenVZ has satisfactory perfor-
mance, while UML’s throughput performance suffers for small frame sizes.

4.2 Transmission Delay

Delay and jitter are typically important for experiments that measure perfor-
mance of real time systems or data. We measure delay and jitter performance
in terms of distribution of delay across slices and distribution of delay overhead
with varying packet sizes.

To measure the distribution of delay across slices we generate ICMP traffic
(ping) across both slices and measure the round trip times (RTT). In Figure 5(a)
we present the average RTT over an interval of 300 secs for varying packet
arrival rates using OpenVZ. We plot delay measurements without virtualization,
average delay across both slices, and delay across individual slices. The results
show that in all cases, OpenVZ adds a very small average overhead (of the
order of 0.05msec) in terms of absolute delay. The RTT delays for slices increase
slightly with smaller sending rates due to slight decrease in CPU time spent
on network tasks. Despite the overhead being negligible, we notice that the
performance across both slices is always comparable. Efficient buffer copying
mechanisms enable OpenVZ to operate with little or no delay overheads, and it
is safe for making temporal measurements across slices. A separate study [20]
has shown performance degradation in UML under similar experiment settings.

In order to evaluate the processing delay using OpenVZ, we measure the ar-
rival time differences consecutive packets at the receiver with a constant sending
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rate. This difference in arrival times is also directly proportional to the delay [10].
We present this result as an average over 10, 000 consecutive frames of UDP traf-
fic at 36Mbps in Figure 5(b). We repeat these experiments with various packet
sizes. We observe that the delay increases with packet sizes due to increasing
transmission times but there is little or no difference between the measurements
with and without virtualization. Therefore we conclude that OpenVZ adds little
overhead in packet processing and the overhead does not vary with packet size.

4.3 Slice Isolation

Isolation is an important requirement for a virtualized testbed since it directly
determines the degree of repeatability achievable in a virtualized setting. Since
OpenVZ has clearly outperformed UML in the previous experiments we will rule
out UML for further experiments. To measure isolation we coin two performance
measurement metrics: transient response and cross coupling between experiment.

We define transient response as the instantaneous change in throughput of an
experiment running on one slice caused due to time varying change in offered load
on another slice. To measure the transient response, we maintain the offered load
for the experiment running on slice 1 at a constant value of 20Mbps and vary the
offered load on slice 2 from 5 Mbps to 5 Gbps in steps. Results are presented in
Figure 6(a). We see that there is little or no correlation in the throughput of the
experiment running on slice 1 (over time) in response to the change in offered
load in slice 2. Therefore we may conclude that OpenVZ provides reasonable
isolation between slices.

We define cross coupling as the difference in throughput with virtualization as
a percentage of the throughput without virtualization. To measure cross coupling
we maintain the offered load of the experiment in slice 1 at constant values of
30Mbps and vary the offered load of the experiment on slice 2 from 5 Mbps to
10Gbps in steps. This experiment is then repeated with slice 1 fixed at 5Mbps.
The throughput of each experiment averaged over 180seconds are as shown in
Figure 6(b). We see that the results of the experiments in slice 1 are never
affected by the change in offered load on slice 2 and therefore we concur that
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there is negligible cross coupling of experiments. It is important to note that
these results are achieved without tweaking features of OpenVZ that allow the
user to set custom cpu usage per slice.

Finally we present test results that measure process space isolation between
the VPSs. As a part of these tests, each of the containers are triggered with fork
bombs, and the number of processes spawned in each of the VPSs are as shown
in Figure 6(c). We observe that the system quickly settles to an equilibrium
where each of the containers share equal number of processes. Thus we observe
that OpenVZ allows for successful containment of processes within each VM.

5 Related Work

There are several prior works that provide comparative analysis of virtual-
ization platforms [18,15,11]. However, most of this work is in the context of
server/machine virtualization. Authors in [18] study the scalability of four vir-
tual platforms: Vserver [22], UML [6], Xen [16] and VMWare [8]. They perform
a quantitative evaluation by measuring virtualization overhead, and isolation
between VMs. They also measure startup time and memory occupancy of each
virtualization platform. A similar study [11] has presented a comparative anal-
ysis of Xen, OpenVZ and VMWare Server using industry standard benchmarks
for evaluating filesystem, network, multiprocessing and parallel processing per-
formances. While these performance measures are important in our context as
well, we concentrate more on the networking aspect of virtualization and plat-
form suitability from a wireless testbed perspective.

The study in [20] discusses virtualization performance using UML by running
two instances on a single Orbit node and isolating slices based on orthogonal
channels. In our work, we extend this study by comparing the performance
of OpenVZ based virtualization with the UML based scheme. Other previous
wireless testbed [14] studies have more focus on the system architecture rather
than features exported by the technology itself.

6 Conclusion and Future Work

This study presents a comparison of qualitative features and performance which
are useful from the perspective of a virtualized wireless testbed deployment.
Our qualitative comparison shows that all forms of system virtualization could
be used for virtualization of a wireless testbed. Measurements presented in the
paper show that OpenVZ consistently outperforms UML in terms of system
overheads, slice isolation and its performance is closest to that of the native non-
virtualized system. This performance can be attributed to a tight virtualization
mechanism and efficient approach to packet handling. Having selected Open VZ
as the platform for Orbit virtualization, integration with the orbit framework and
measurement library are the most important next steps. From a measurement
standpoint comparison with Xen and Vservers on newer Intel chipset based
machines are important future research items.
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Abstract. Large-scale network testbeds raise the problem of the ex-
haustion of IPv4 address space. Before the IPv6 is widely deployed, mul-
tiplexing IPv4 address for guest slivers is necessary. NAT is one of the
typical ways for the multiplexing. Violating the end-to-end feature of the
Internet, the NAT approach has well-known drawbacks in performance
scalability and in supporting diverse services and applications. In this
paper, we propose a method to share the host’s global IP address for all
the guest slivers on a node and isolate their network usage in port-space.
The idea is successfully implemented with Open vSwitch and deployed
in the CoreLab platform. Benchmark result shows that the proposed
solution is superior to NAT technique significantly.

Keywords: Network virtualization, resource isolation, Open vSwitch,
testbed infrastructure.

1 Introduction

Large-scale network testbeds, such as PlanetLab [1], OneLab [2], EmuLab [3],
CoreLab [4,5], etc., are widely deployed over the world, enabling researchers to
run their experiments simultaneously without affecting each other’s. Different
requirements for resource isolation lead to different designs for testbed infras-
tructures. PlanetLab employs a resource container called Linux-VServer [6] for
offering an isolated execution environment, while EmuLab loads arbitrary oper-
ating systems on bare hardware on demand. Our CoreLab applies both kernel-
based virtual machine (KVM) [7] as a hosted virtual machine monitor (VMM)
and OpenVZ [8] as a resource container.

No matter what kind of virtualization is applied for the resource isolation,
testbeds are bound to face a common problem: it is necessary to isolate each
sliver 1 from the others. In today’s Internet, IP address is playing the role of
identifying a logical peer over the Internet, and therefore a testbed node needs

� This work has been partly supported by Ministry of Internal Affairs and Communi-
cations (MIC) of the Japanese Government.

1 Throughout this paper, we use the PlanetLab jargon such as slice and sliver. A slice
is a collection of slivers distributed across the Internet, and a sliver is a unit of
resources for enabling an execution environment.

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 113–122, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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a large number of IP addresses to accommodate hundreds of slivers. IPv6 is an
apparent solution; however, the current distribution of IPv6 is still sparse so
that using IPv6 is still a nuisance. Therefore, multiplexing a global IPv4 address
becomes a necessity in the deployment of a testbed.

Assigning private addresses to guest slivers and applying network address
translation (NAT) is one of the typical solution for the IPv4 address multiplexing.
It is well-known that the NAT violates the end-to-end context, although the
commercial use of NAT is already prevalent. For network research testbeds,
however, the violation of end-to-end brings obvious limitations. First, when a
new application layer protocol designed by the researchers carries an IP address,
the NAT fails to translate the address in application messages unless a new patch
for NAT is applied, making it an application-layer gateway. Second, when both
peers are located behind NAT boxes and using non-well-known port numbers for
their services, they cannot communicate with each other unless they inform the
NAT boxes to set up port mapping for them. Third, when there are problems
during experiments, the additional indirection and address translations increases
the time and coordination needed to debug and solve those problems. Fourth,
keeping states of address-port mapping also makes NAT solution not scalable
with heavy overhead.

In this paper, we propose an alternative way of IPv4 address multiplexing
among slivers without NAT, attempting to directly applying the host’s address
for all the guest slivers and isolating their network activities through static sepa-
ration of the port-space. We explore both the workaround with the ebtables [9]
and the full-fledged solution with programming the Open vSwitch (or, briefly,
OVS) [10]. We verify our solution in the practice of a real platform — the Core-
Lab, and compare the performance scalability with the previous NAT solution.
The idea of multiplexing global IP address without translation is also used in
PlanetLab but there the port-space is not statically isolated, which is not suitable
for the case other than containers that share the system calls of the host.

The rest of the paper is organized as follows. Section 2 summarizes the work of
NAT-based multiplexing and PlanetLab’s dynamic sharing. Section 3 discusses
our design challenges and proposes the workaround based on the ebtables tool
and the OVS-based solution. Section 4 presents the experimental results of our
proposal. Finally, Section 5 concludes our work.

2 Related Work

2.1 PlanetLab

PlanetLab applies Linux VServer [6], where each guest sharing the host kernel
and all network resources such as CPU, memory are maintained in the same way
as in ordinary OSes. Currently, all slivers on a PlanetLab node use the same IP
address [11]. Each time, when a sliver is launching a session, the host selects
an unused TCP/UDP port as its source port. Since all guests share the same
kernel, it is easy for kernel to detect and avoid port conflict.
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When there is port contention that more than two slivers want to bind the
same ports simultaneously, a solution could be scheduling or using a resource
allocator like SHARP [12] to arbitrate the port usage.

The shortcoming for above solutions is that current PlanetLab can only sup-
port short-term usage of a port. This is not sufficient if one would like to hold a
port for a relatively long period.

Applying Linux VServer for PlanetLab brings another limitation in flexibility.
Sharing the system calls of the host, slivers cannot run with a customized kernel,
while adding new kernel modules often happens in the research for networking.

2.2 CoreLab

CoreLab applies KVM to support the slivers, getting rid of the limitations in
flexibility. In the previous practice of CoreLab [5], each guest sliver is assigned
a private IPv4 address and a specific range of port numbers for either TCP or
UDP communications. Meanwhile the host OS is configured as a NAT gateway,
translating the public address to proper guest’s private address according to the
destination port in any packet. The structure of deployment is depicted in Fig. 1.
Therefore, the configuration includes a series of iptables DNAT (destination
NAT) rules. For example, on a host with IP address 133.69.37.10, a guest OS
has the private IP address 10.0.6.2 and runs an sshd service on the port 22,
while port range 10000 ˜ 10100 is assigned to this guest. The host maps the
address-port pair 10.0.6.2:22 to 133.69.37.10:10022, and a remote peer can access
the guest’s sshd service through the global address 133.69.37.10 and the port
number 10022.

CoreLab node

user
kernel

Sliver 1

iptables DNAT

eth0

sshd

1 65535
Port

dst: 133.69.37.10:22

dst: 133.69.37.10:10022

user
kernel

Port
1 65535

Sliver 2

1 65535

dst: 133.69.37.10:10122

10.0.6.2 10.0.6.3

VM VM

tap0 tap1

sshd

eth0

sshd

eth0

TUN/TAP

listening on 22listening on 22

listening on 22

Fig. 1. Sharing IP address through iptables with NAT on CoreLab node

3 System Design

As we have mentioned before, sharing IP address through NAT has two short-
comings: (1) NAT breaks the end-to-end connectivity so that many applications



116 P. Du, M. Chen, and A. Nakao

are unavailable; (2) NAT is a bottleneck of network performance since each ses-
sion requires a piece of state recorded in the translator.

Current Internet distinguishes end systems (either physical or virtual) with
IP address. One observation is that, though the 32-bit address defined by IPv4
is insufficient, the 16-bit port-space is inefficiently utilized. Based on this ob-
servation, we propose a solution that distinguishes slivers through port range
instead of IP address, where different guest slivers can have the same address
while using different ranges of ports.

3.1 Problem and Challenges

Because we don’t incline to use the NAT mode to manage the connectivity
between co-located virtual machines and the physical interface, the host should
be configured in the bridge mode. Sharing the same IP address among the host
itself and all its guests is equivalent to a case of IP anycast in the same connected
network. If we had nothing done, once a packet that contains the anycast IP
address as the destination comes, who (guest or host) would respond to the
packet depends upon who would earliest receive the packet and process it.

We attempt to deliver a packet to a proper guest according to the port range
that the packet’s destination port falls in. This problem is equivalent to op-
timizing the anycast response according to port number. Today a typical IP
anycast solution is announcing the anycast address via routing protocols and
who’s selected depends on the distance in routing. Such a solution is obviously
not suitable for our case. We need an anycast optimization solution for a group
of computers bridged together. Because the criteria for the optimization involve
the transportation layer — the port number, our goal is similar to design a
Layer-4 switch with anycast optimization. Xen [13] and Vmware [14] provides
standard Layer-2 switching or Layer-3 routing functionality for a virtual envi-
ronment. However, they are also lack of the Layer-4 switching functionality. This
is a generic, unsolved problem.

In details, we face the following challenges.

1. For the last hop towards one in the anycast group, the link-layer address
learned by the link layer peer decides the real destination. Unfortunately,
however, ARP is only a protocol mapping Layer-3 address to Layer-2 but
not a mapping considering port number. It is also a “slow” protocol whose
cache entries have quite long lifetime, not able to be frequently updated —
once a peer have learned the MAC address of one of the guests (or the MAC
address of the host) for the shared IP address, it has to take some time to
update to the MAC address of another.

2. There are some IP-supported protocols, like ICMP, that do not have “port”
number in the payload of the IP datagram. Semantically, it is reasonable
that one in the anycast group can receive all the non-port messages that are
actively sent from outside and the non-port responses that are replied to its
own requests.

3. Most TCP and UDP applications are designed so that a client randomly
chooses source port number for a session that is not locally conflicting with
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other existing sessions. Such a port number may not fall into the range of
ports assigned to the system.

4. Some applications use a separated channel for data transmission rather than
signaling. The port number for the data channel is often negotiated at the
application layer and it is hard to limit an application program selecting only
assigned ports for the negotiation without changing the program binary.

In order to resolve these challenges, we design two solutions, a bridge-based
solution and a dynamically programmable switch. Although they are tested on
the KVM-based CoreLab, we believe they are also suitable for any virtualization
approach with independent kernel for guests, such as Xen and VMware running
in a bridge mode.

3.2 Ebtables and Workaround

A straightforward idea is to redirect packets towards a guest according to the
port number. The redirection is similar to the behavior of iptables but it should
be done in the Layer-2. Therefore, the Ethernet filter ebtables [9] is considered.

Having the same IP address, each guest (as well as the host itself) can be
distinguished from others through the MAC address. Therefore it is needed to
establish a mapping from port range to a MAC address. The ebtables provides
MAC address translation that fits the requirement. People may concern the
scalability of the translation. Fortunately, the MAC address translation is fairly
simple and each guest system involves only a static set of states, which is much
lighter than IP NAT that stores per-session states.

Deploying the ebtables for the port-space isolation contains a couple of steps.
First, we hack the incoming frame with our rule in order a packet is able to

be received by the proper guest. This is done with the destination MAC address
translation of the ebtables.

Second, to avoid updating ARP entries for a peer, we disable any guest to
respond ARP requests from the peer, defining the host as the only agent for
itself and all its guests. For this purpose, we change the outgoing frame’s source
MAC address, and also let only the host itself reply ARP request.

ARP frame has the source hardware address twice, in both the frame header
and also the ARP message body. It is necessary to change not only the guest
MAC address in frame header but also that in the message body for any ARP
frame.

However, the second action also disables a guest to receive ARP replies from
an outside peer. Once an ARP reply from a peer arrives, we cannot recognize
if this is requested by any guest or by the host itself. What we have to do is
only delivering the reply to all of them by changing the ARP reply’s destination
address to the Ethernet broadcast address.

The above configurations haven’t overcome the ICMP challenge. A
workaround is forcing ICMP response to be broadcasted to all the guests, but
the privacy is hurt. Furthermore, they haven’t overcome the challenge of ran-
dom port selection or that of the application-layer port negotiation. If application
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chooses a port not available, now the system simply rejects the communication.
A possible workaround is occupying the unassigned ports with a special daemon,
similar to the inetd. Thus the application will automatically choose an available
port. However, this method brings extra overhead.

3.3 Open vSwitch Solution

Open vSwitch (OVS) [10] can work as a network switch for virtual environment
that hosts inside a physical machine and connects the various VMs. It provides
a flexible, a 10-tuple flow-table [15] based forwarding engine which can to used
to partition the forwarding plane. OpenFlow [16] can also provide a similar flow-
table forwarding model. We applied OVS since it is more compatible with Linux-
based virtual environment. With OVS, we can define flow entries to forward
packets based on its port number.

CoreLab node
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Openvswitch_kmod

eth0

sshd

1 65535
Port

dst: 133.69.37.10:22

dst: 133.69.37.10:10022
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Port
10000 10099

Sliver 2

10100 10199

dst: 133.69.37.10:10122

133.69.37.10 133.69.37.10

VM VM

tap0 tap1

sshd

eth0

sshd

eth0

TUN/TAP

listening on 10022 listening on 10122

listening on 22 NOX

Fig. 2. Port-space isolation with OVS on CoreLab node

We design and deploy OVS solution in the practice of a real platform — the
CoreLab. As shown in Fig. 2, all VMs and host are bridged to a datapath (a kind
of bridge) of OVS. Besides OVS, we also deploy deployed a NOX [18], which is
an open-source controller that speaks OpenFlow protocol on each CoreLab node.
The flow entries are installed from NOX to OVS. We address the challenges as
follows.

a. Port-space isolation
Since the virtual interface of each VM is written in software, all VMs can be
configured with the same IP and MAC addresses as the host so that any ethernet
frames from outside can be received by a VM or host without address translation.
This can reduce the overhead of NAT and etables that require maintaining state
of address translation. For the ARP packets, since all VMs share the same IP
and MAC addresses with the host, when an ARP packet is received by an host,
it will be flooded to all VMs.
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To isolate the packets of different VMs, each VM is assigned with a range
of port numbers. The port range of each VM can be got from the database of
PLC [17] node. As a result, the corresponding flow entries (forwarding rules) are
installed after a VM is launched. Each VM can only listen on the ports that
assigned to it. The OVS switches packet based on the destination port number.
For example, an ssh request packet with <dst: 133.69.37.10:10022> is delivered
to VM 1 while the one with <dst: 133.69.37.10:10122> is delivered to VM 2.

b. ICMP packets
ICMP packets that do not have “port” number in the payload of IP datagram.
When a host receives an ICMP request packet, it will respond it without redi-
recting it to VMs. When a VM sends out an ICMP request packet, it will install
a flow entry for the reverse incoming ICMP response packets. For example,
when VM 1 sends ICMP packets to remote host B, it will install a flow entry
<nw src=B,icmp echo response, actions: VM1>. The flow entry will expire after
it has been idle for a specified period (i.e., 10 secs). When VM 2 is sending
ICMP packets to a different remote host C, the ICMP response packets could
be separated.

One possible problem is that when two VMs are sending ICMP packets to
the same host B, the flow entry will be <nw src=B,icmp echo response, actions:
VM1|VM2>. In this case, all ICMP packets will be sent to both VM1 and VM2.
An ideal solution is to install flow entry based on icmp id. However, due to that
current OpenFlow protocol does not support user-defined flow-space, we can
redefine the unused vlan id field as icmp id. This is left for our future work.

c. Source port conflict
We can reduce the port conflict probability to zero by changing the VM con-
figuration file (i.e., /proc/sys/net/ipv4/ip local port range for Linux) to let the
TCP/UDP can only select source port in a specified range. We also apply a
simple patch to the VM kernel to prevent the VM from selecting a source port
out of the range.

d. Multi-homing
When a host has multiple physical interfaces (and therefor multiple IP ad-
dresses), we create the same number of OVS datapaths. Each datapath is bridged
to a physical interface. A guest VM boots with multiple virtual interfaces bridged
to different datapaths. As a result, each guest VMs can share one or multiple
global IP addresses with host. How to deliver packets through these multiple
virtual interfaces is decided by each guest separately, which is out of the scope
of this paper.

4 Performance Evaluation

In this section, we compare the performance of our implemented port-space
isolation with OVS against the previous practice with NAT on CoreLab.

Figure 3 shows the experimental environment, which is configured with two
CoreLab nodes. Each of them is with a 2.67GHz Intel CPU and 4GB memory.
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under NAT and OVS solutions

They connect with each other over 1Gbps Ethernet link. The host OS is Fedora
8 with kernel 2.6.31. Each VM is with 512M memory and its virtual interface
driver is ne1000. In the NAT case (Fig. 3(a)), the VM connects outside through
NAT while the host connects outside directly. In OVS case (Fig. 3(b)), Both VM
and host connect outside through OVS implementation in the Linux kernel.

We run iperf server and client on VM or host of different nodes and measure
the effective TCP throughput between them. Figure 4(a) compares the through-
put between two hosts. In the case of NAT, since the hosts are connected directly
so that the throughput are that of two nodes of native Linux. In the case of OVS,
the hosts are connected through OVS implementation in the Linux kernel. Both
of them can achieve around 940Mbps throughput. The results show that OVS
has very small performance cost comparable to that of native OS.
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Figure 4(b) compares the throughput between a host and a VM. In the case of
NAT, a packet of a VM will go through both NAT and KVM. As a comparison,
in the case of OVS, a packet of a VM will go through NAT and OVS. Under the
same cost of KVM, the throughput is around 650Mbps in the case of OVS while
the throughput is only 400Mbps in the case of NAT. The results show that OVS
has much smaller performance cost than NAT.

Figure 4(c) compares the throughput between two VMs at different Corelab
nodes. In the case of NAT, the throughput (250Mbps) between two VMs is much
smaller than the throughput (450Mbps) of Fig. 4(b) since the packets should go
through NAT gateway one more time. As a comparison, in the case of OVS, the
throughput (600Mbps) between two VMs is almost the same as the throughput
between a host and a VM.

In the case of OVS, although the performance of cost of OVS is very small, the
throughput (600Mbps) between two VMs is much lower than that (940Mbps)
between two hosts. This is due to the performance cost of KVM, which requires
improvements.

5 Conclusions

This study has identified the IP scarcity problem in a testbed environment.
Since conventional NAT solution has many limitations. We have sought to solve
the problem by port-space isolation. We have designed and implemented such a
port-space isolation system through Open vSwitch on CoreLab. The experiment
results show that it has better performance than conventional NAT technique.

In fact, the IP scarcity problem exists not only in a testbed environment,
but also in most stub network such in an office LAN. The techniques of private
IP address or IPv6 can make the Internet become heterogeneous. To make the
Internet remain flat, this paper proposes a new angle for identifying and routing
packets by ports instead of IP addresses in a local environment.

As a final note, we posit that this work can be immediately extended to
generic network-namespace isolation for slices. In other words, while this pa-
per shows how to isolate a port range for a slice, the other network-namespace
such as IP addresses, protocols, and the other fields as well as a tuple of them
can be allocated to a slice. OpenFlow [16] and Open vSwitch [10] allow us to
partition network by flows and to define simple actions per flow at the central
controller [18]. In CoreLab, we will combine network partitioning—not only in
terms of only port range, but also of a generic flow space—and computational
slicing together to enabling complex processing in a distributed fashion. Such
extension is our immediate future work.
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Abstract. The Europe wide infrastructure managed by the FEDER-
ICA project demonstrates how an infrastructure based on computers and
network physical resources, both capable of virtualization, is a flexible,
neutral and efficient facility for future and present Internet research. The
facility can create virtual resources sets, grouped in virtual infrastruc-
tures (slices) according to users’ specification. The user has full control
on the resources in the assigned slice which can be used for many types of
research, from Future Internet clean-slate architectures to security and
distributed protocols and applications. The infrastructure has European
size and it is capable of federating with other facilities worldwide.

Keywords: Virtualization, NRENs, Future Internet, polymorphic test
infrastructure, cloud infrastructures.

1 Introduction

FEDERICA [1] is a European project started in January 2008. It has been
engineered to provide support to the research on current and Future Internet
technologies and architectures. The project is linked to the European FIRE
initiative [4] and the European Future Internet Assembly [5]. Other similar ini-
tiatives exists worldwide, e.g. GENI [6] in the United Stated and AKARI [7] in
Japan.

Research and experimentation on novel technologies and architectures require
new experimental environments that combine flexibility, neutrality, a minimum
set of constraints for the researchers, reproducibility and allow full control of
the testing environment. The project has distinguishing characters from similar
projects, e.g. Onelab [3], in particular, it does not mandate a specific operating
system, and the user has full control of the physical networking layers down to
the data link layer,

The project is based on the constant developments of National Research and
Education Networks (NRENs) [8] in Europe and worldwide, which created a
strong multi-domain hybrid network infrastructures with advanced capabilities.
� On behalf of the FEDERICA consortium.
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The FEDERICA project uses the NRENs infrastructures and virtualization tech-
nologies to create a research facility available to the public and private sector.

In the following, section 2 describes the FEDERICA project framework and
architecture. Section 3 details the operational infrastructure. Section 4 lists sta-
tus challenges and new possibilities. Section 5 concludes the article.

2 The FEDERICA Project

The project is co-funded under the 7th European Community Framework Pro-
gram. It started 1st January 2008 and lasts 30 months. The project partners
include a wide range of stake-holders on network research, NRENs, DANTE,
TERENA, academic and industrial research groups and vendors.

2.1 Project Goals and Objectives

The main goal is to support research in present and Future Internet. To achieve
this goal, the project set its objectives to:

– Engineer and implement a Europe-wide Infrastructure to be used as a dis-
tributed testing facility

– Research in virtualization of e-Infrastructures integrating network and com-
puting resources

– Facilitate technical discussions amongst specialists, in particular arising from
experimental results and disseminating knowledge and NREN experience of
meeting users requirements

– Contribute with real test cases and results to standardization bodies, e.g.
IETF, ITU-T, OGF, TM Forum/IPsphere.

2.2 Requirements

According to its goals, the infrastructure has to support research on the widest
range of new technologies and protocols, in particular in networking. To achieve
such goals, the infrastructure must:

– Avoid to impose specific technological or architectural constraints to the re-
searchers, as an example avoid mandating the IP protocol. The facility has to
create environments that are technology agnostic and neutral (transparent)
to new protocols or technologies.

– Ensure reproducibility of the experiments. Given the same initial conditions,
the behaviour of a virtual resource should be the same, as a basic principle
to obtain the same experimental results. This requirement is considered of
particular importance.

– Provide to the user complete control and configuration capabilities within
the assigned resources, allowing disruptive testing.

– Open to interconnect or federate with other e-Infrastructures and Internet.
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2.3 Infrastructure Framework

The requirements point to two key framework principles for the infrastructure:

– The utilization of a combination of network and computing physical
resources.

– The use of virtualization technologies applied both to the computing and
network resources.

Virtualization is defined here as the capability to create a virtual version of
a physical resource, both in computing and network environments. The virtual
resources (e.g. a virtual network circuit, a disk partition, a virtual computer) are
typically created by segmenting a physical resource. Virtualization creates un-
configured (clean) virtual resources, e.g. an image of the hardware of a computing
element on which (almost) any operating system can be installed, a point-to-
point network circuit, a portion of disk space. Those resources can be then
tailored and configured to users needs and even moved from a virtualization-
aware platform to another.

The framework for such an infrastructure is based on two distinct layers (see
Fig. 1 for a pictorial representation):

1. The virtualization substrate. The physical environment which contains all
the hardware and software to instantiate the virtual resources.

2. The virtual infrastructures layer, containing all the virtual sets of resources
(or slices).

The virtualization substrate is managed and controlled as a single administrative
domain. The virtual infrastructures are in principle an unlimited, or very large

Fig. 1. Pictorial view of the FEDERICA infrastructure
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number, restricted by the physical resources available and the requested charac-
teristics. In case of federated facilities, the slices can comprise set of resources
provided by different infrastructures.

The architecture defines only two basic resource entities:

1. Data connectivity. In form of a point to point circuit with or without assured
capacity guarantees and with or without a data link protocol (a bit pipe).

2. A computing element, offering the equivalent of a computer hardware con-
taining at least RAM, CPU and one network interface and mass storage. The
computing element is capable of hosting various operating systems and also
perform functionalities (e.g. routing). The computing element is defined as
the basic entity. The RAM, NICs, storage are considered characteristics of
the entity. This differs from other proposal, in particular for cloud services,
where storage is considered a basic entity.

The figure represents the slice in vertical format for sake of clarity and to show
that there is no dependency or hierarchy between them. Each slice may contain
a virtual resource coming from any part of the substrate.

3 The Infrastructure Implementation

Following the framework outlined above, the FEDERICA infrastructure is im-
plemented in two layers. The substrate an its made of network and computing
physical resources. Each physical resource can produce virtual resources, slicing
itself. Resource grouped by a topology in sets, or slices, are handled to the the
user and compose the other layer.

As a design principle, the infrastructure favours testing of functionalities,
protocols and new ideas, rather than providing a laboratory suited to very high
performance studies.

The network resource in the wide area are provided by the participating
NRENs through the GÉANT [9] infrastructure. Each NREN hosts a point of
presence (PoP). A mesh of one Gigabit Ethernet circuits connects the PoPs.
The circuits are initially at one Gbps, the capacity has been chosen as a com-
promise between cost on the wide area network and total capacity. It has been
adequate for now to users’ requirements. This capacity can be sliced, still creat-
ing high-speed links, and although expensive is contributed by the participating
NRENs. Most of the circuits are created over the GÉANT SDH equipment using
generic framing procedure and virtual concatenation.

Each PoP hosts network and computing elements. The network equipment
in the four core PoPs is a programmable high-end router/switch from Juniper
Networks. The model is a MX480 with dual CPU and 1 line card with 32 ports at
1Gb Ethernet (8 optical and 24 copper). The MX functionalities include virtual
and logical routing, MPLS, VLANs, IPv4, IPv6. Two MX480 are equipped with
Ethernet linecards with hardware QoS capabilities to enforce precise QoS at the
packet level when requested. Smaller multi-protocol switche/routers (Juniper
EX series) are installed in non-core PoPs. The computing equipment (V-Node)
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is based on off the shelf PC hardware, running virtualization software. Each PC
contains 2 x Quad core AMD CPU running at 2 GHz, 32GB RAM, 8 network
interfaces, 2x500GB disks. All the interfaces of the V-Nodes are connected to
the Juniper routers.

The initial choice of the virtualization software for the V-nodes is the free
version of the VMware [10] client software (ESXi) . This choice has been done
after a review of other virtualization software (e.g. XEN). In particular it has
been evaluated the completeness and structure of the Application Programming
Interface, the availability of usage examples, available expertise, free tools to
import and convert node images. The capabilities and performance of the free
version have been adequate for the current requirements. The major drawback is
the more difficult management of the V-Nodes without the commercial software.
Such complexity is considered adequate for the initial phase of the project, but
will be reviewed as a function of the number of slices and requests for a possible
upgrade to the commercial versions of the software.

These building blocks of the substrate pose very few constraints to the user.
The virtualization software in the V-nodes can host a large variety of operating
systems and tools . It is possible to create an image from a fully configured system,
avoiding the need of configuration in the slice. In the current status of the infras-
tructure the most significant one is that the data link layer is fixed to Ethernet
framing. Future development of FEDERICA, according to users’ requirements,
will implement access to optical equipment to overcome this limitation.

3.1 Topology

The topology is composed of 13 distributed physical sites. Amongst these PoPs,
a full mesh of four is equipped with Juniper MX router/switches and it is con-
sidered the core. The 9 non-core nodes are equipped by EX switches. The core
nodes are equipped by 2 V-Nodes, the non-core PoPs host one node each. The
FEDERICA physical topology is depicted in Fig. 2. The design placed par-
ticular importance on the resiliency and load balancing of the network, based
on GÉANT infrastructure, and resources availability at partners locations. To
minimize the load on the physical network resources and hence the interference
between virtual resources, the network topology has a high level of meshing.

The FEDERICA substrate is a single administrative domain that contains all
the physical resources (point to point circuits, nodes) in all PoPs. The domain
does not contain the optical equipment of GÉANT used to transport the circuits
between PoPs. It is configured as an IPv4 and IPv6 Autonomous System with
both public and private addresses. The infrastructure is permanently connected
to Internet using the Border Gateway Protocol and receives full routing tables
in the four core PoPs.

The infrastructure is centrally managed and monitored by a Network Oper-
ation Centre. The NOC has also the task to create the slices. The monitoring
system uses mainly the simple network management protocol to retrieve informa-
tion for physical and virtual resources. In a PoP a packet flow based monitoring
is available
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Fig. 2. FEDERICA network topology (November 2009)

3.2 Reproducibiity

The reproducibility and the stability of the behaviour of the virtual resources
is a fundamental requirement for quantitative evaluations of new ideas. As an
example, a virtual circuit may not be capable of offering a constant, fixed amount
of bit per second, and a virtual computer image may not provide a constant CPU
usage.

The project has focused the engineering of the infrastructure to provide re-
producibility of a single virtual resource. The difference is due to two main
independent causes:

– The behaviour of the physical resource supporting the virtual resources, e.g.
due to its workload

– The virtualization technology itself, usually a layer placed between the phys-
ical resources and the virtual ones

Computing elements in FEDERICA have been chosen to provide specific func-
tionalities in hardware, like virtualization-aware CPUs. The added hardware
capabilities ensure a smoother sharing of the CPU by concurrent executing im-
ages. As additional measure, a virtual node is usually assigned to a idle core. As
network interface cards do not support virtualization of flows in hardware, the
V-node has been equipped with the maximum number of interfaces. A running
image received an idle interface if available. If a node requires a high level of
reproducibility, to such node can be fully dedicated a single core, a fixed amount
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of physical memory, a fraction of disk and a network interface. Not all the nodes
requires such guarantees. In addition to the packet based QoS technologies of the
switch/routers, some circuits are connected to packet Quality of Service capable
line cards in the Juniper MX. In the rest of the infrastructure, the resources have
been adequately increased, to avoid overbooking and minimize contention. It is
possible then to create a slice with a set of resources, which exhibits, singularly,
a known behaviour in all conditions.

Assuring the reproducibility of a set of connected resources is out of the scope
of the infrastructure and it is instead a user responsibility. The complexity in-
creases rapidly with the number of resources involved and it is strongly dipen-
dent on the technologies and architecture. The classic problem of guaranteeing
an end-to-end quality of service of an IP flow exemplifies the issue. In case of
virtual infrastructures, as in the case of Internet traffic, often the requirements
do not mandate strict guarantees, but rather a best effort behaviour. Virtual
resource performance measurements are ongoing in FEDERICA.

3.3 Access Policy

The infrastructure is available to public and private researchers on Future Inter-
net technologies. The access to the infrastructure is controlled by a User Policy
Board (UPB). The UPB receives all requests for access, analyzes their technical
feasibility (not the scientific content) and the current availability of resources
and then prioritize them. The motivation for mandating a controlled access is
mainly related to security (identification of the user, agreement on an acceptable
use policy) and reproducibility (quality of service) guarantees.

3.4 Resource Virtualization and Slice Creation

The process to create a virtual computing system is rather straightforward and
can also accept an image provided by the user or on available template of various
operating systems. The virtualization capabilities in the network are also evolv-
ing, as described in [2]. The article reviews the current research in a Network
Virtualization Environment (NVE) and the many challenges associated. The ini-
tial choice in FEDERICA is to use Virtual LANs and use QoS techniques for
circuit virtualization; multi protocol label switching (MPLS) may be applied
when needed.

The slice creation procedure definition is developing to incorporate the users’
feedback. The current implementation of the infrastructure is based on manual
or semi-automated provisioning of the virtual resources. The manual process is
a choice in the step that maps virtual to physical resource. Even if the infras-
tructure contains a small amount of resources, this step is fundamental to ensure
that the performance requirements of the virtual resources is respected and the
infrastructure is efficiently used.

The current slice creation process consists of the following steps. First, the
researcher that wants to perform an experiment over the FEDERICA infrastruc-
ture is required to provide the NOC with the desired topology, including require-
ments for the nodes and the network (each V-node RAM size, CPU power, mass
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storage space, topology and bandwidth between the V-Nodes, routing or switch-
ing functionalities, protocols). The request may be for un-configured resources,
that the user will configure directly, even substituting protocols, or resources
with an initial configuration, e.g. IP routing.

Once the NOC receives the slice description and resource requirements, the
NOC maps the logical topology requested on the physical topology of the sub-
strate and chooses the sites (PoPs) from which physical resources will be allo-
cated. Besides instantiating all the resources requested by the user, the NOC
needs to instantiate an extra virtual machine, that act as a gateway between
Internet and the slice: the Slice Management Server. Access control of the Slice
Management Server is performed by means of identity credentials managed by
a RADIUS server.

The next step for the NOC is to instantiate Ethernet VLANs to connect
the slice resources and create the topology required by the researcher. Finally,
the NOC needs to setup the Slice Management network for the user that will
connect the Slice Management Server to the management interface of each one of
the managed resources in the slice (V-Nodes, logical routers, software routers).
The connection is performed creating virtual interfaces in all resources and one
in the Management Server in the same IP subnet (usually private) and creating
an additional VLAN linking them. This subnet is initially the only IP path
for the user to connect to the slice resources when accessing from Internet the
Management server.

When the NOC has created the slice, it communicates to the researchers the
information to access it: the public IP address of the Virtual Slice Management
Server, the security credentials, the credentials to access in case of the Juniper
logical routers and/or the software routers, and finally the IP addressing scheme
of the Virtual Slice Management Network.

Fig. 3. Slice access example)
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In the example in Fig. 3 the user has requested a slice containing two virtual
servers connected through a router (created on a Juniper). The NOC created the
three resources, connected them through a VLAN (black line at the bottom of
the Figure), instantiated the Virtual Slice Management Server and created the
Slice Management Network. The slice management network (cloud at the centre
of the Figure) is needed to access the resources independently of user’s slice
topology and the virtual resource configuration. The researcher connects to the
Virtual Slice Management Server using the credentials provided by the NOC, and
is authenticated by the FEDERICA Authentication RADIUS Server. VMware
virtual machines may also be configured to be accessed through remote Virtual
Network Console (VNC) connections. By exploiting this mechanism users would
have access to the console of their virtual servers, but they would also be able to
interact with graphical user interfaces and to even access the BIOS of the server.

All the steps are performed either manually or using a heterogeneous set
of tools (web portal for users, VMware Infrastructures application, the remote
console of the devices, VNC clients, monitoring tools). A tool bench that provides
a unified environment to operate the FEDERICA infrastructure and configure
also the slices is being developed, and will be progressively deployed and used
by the NOC and the FEDERICA users.

4 Status and Challenges

The FEDERICA infrastructure is now supporting a variety of users, who exper-
iment on monitoring, new routing protocols, advanced control and management
of physical and virtual circuit based topologies, energy-aware routing. The cur-
rent feedback is positive and demonstrates the wide range of applicability of an
architecture based on virtualization.

The experience has also suggested a list of developments, which also represent
a set of research challenges:

– An increased level of control of each virtual resource behaviour. The perfor-
mance of the virtual resources is still a function of the hardware and software
used.

– Monitoring of the substrate and the resources in the slices and their relation-
ship. Monitoring is considered a fundamental resource for the management
of the substrate and for users’ analysis of their experiments.

– Automation of the procedures and virtual resource description. An increased
level of automation is needed to improve the management of the infrastruc-
ture and the efficiency in slice provisioning and management. The resource
description and the schema to describe the relation between them and with
the physical resource ia a fundamental element to achieve a greater automa-
tion and the creation of a FEDERICA service. The standardization of the
resource representation is fundamental also for the fast-developing ”cloud
computing” [11] [12] architecture and services, allowing a possible synergy.

– increase the federation capabilities with other facilities to offer a richer en-
vironment to the users.
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5 Conclusion

An infrastructure substrate based on virtualization both in computing and net-
work resources is a novel approach to provide an ideal environment for innovative
research and services on present and Future Internet. The virtual infrastructures
created can be tailored to a very large variety of testing scenarios and present a
simple interface to the user. The time needed to experimentally validate an idea
can be reduced as well as the debugging and analysis phases.

Such infrastructures demonstrate the capability of current technologies to
decouple the functionalities from their physical location, creating cloud infras-
tructures and granting new possibilities (e.g. the mobility of the routing function-
ality. The developments of the infrastructure require research on reproducibility
behaviour, resource mapping, monitoring and resource standardization.
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Abstract. While deploying a sensor network is necessary for proof-
of-concept experimentation, it is a time-consuming and tedious task
that dramatically slows innovation. Treating sensor networks as shared
testbeds and integrating them into a federated testbed infrastructure,
such as FIRE, GENI, AKARI, or CNGI, enables a broad user commu-
nity to benefit from time-consuming deployment exercises. In this paper,
we outline the challenges with integrating sensor networks into feder-
ated testbeds in the context of ViSE, a sensor network testbed we have
integrated with GENI, and describe our initial deployment experiences.
ViSE differs from typical embedded sensor networks in its focus on high-
bandwidth steerable sensors.

Keywords: Testbed, Sensor Network, Federation, Radar.

1 Introduction

Apart from the additional burden of developing, operating, and maintaining
an experimental shared testbed, researchers do not typically co-opt their field-
deployed sensor networks to serve as shared testbeds for at least three reasons.
First, the benefits of multiplexing node resources are unclear, since computa-
tional, bandwidth, and energy constraints restrict embedded platforms to oper-
ating a few passive sensors that collect similar data regardless of the application.
Thus, controlling the data gathering process at each sensor node has little value,
and end-user applications may simply “share” the collected data at the network’s
sink.
Second, embedded platforms generally do not support the hardware mecha-
nisms, e.g., MMU or TLB, or software abstractions, e.g., virtual memory or
processes, necessary for either basic control plane functions or efficient multiplex-
ing, making it undesirable or even impossible. Software platforms for embedded
nodes often do not provide the separation between kernel-space and user-space
that testbed’s use as the linchpin for safe execution of untrusted user software.
Third, the specialized nature of a sensor network deployment often lends itself
to only a single application rather than multiple diverse applications. For exam-
ple, the choice of sensors and node placement for a network designed specifically
for monitoring the vibrations of a volcano [3] are unlikely to be suitable for, say,
tracking the movements of nearby wildlife [4].

However, there are a range of “large” sensor types that exist today that do
not adhere to the extreme power and form factor constraints of embedded sensor
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nodes and, instead, (i) expose programmable sensor actuators to applications,
(ii) support the basic mechanisms/abstractions for safe software execution, and
(iii) incorporate multiple types of sensor supporting a range of applications.
Most notably, networks of steerable sensors are distinct from their embedded
counterparts by allowing applications to dictate the type, quality, and quantity
of data they collect by steering the sensor to different points in space.

Unlike passive sensors that collect the same data regardless of the applica-
tion, the data gathering process for each steerable sensor is highly application-
dependent. Further, the energy required to move a steerable sensor’s mechanical
motor necessitates the use of higher-power computing components that support
both the hardware mechanisms and software abstractions critical for a testbed
control plane. Finally, node platforms are generally powerful enough to operate
a range of sensors useful for different applications. Examples of steerable sensors
include both steerable weather radars and pan-tilt-zoom video cameras. Recent
work has proposed using networks of small steerable weather radars to fill cov-
erage gaps in the NEXRAD radar system [5], while the U.S. Border Patrol uses
networks of pan-tilt-zoom cameras to monitor both the northern and southern
border [6].

Thus, the basic characteristics of steerable sensor networks do not preclude
exposing them as shared testbeds for use by external researchers. As with their
embedded counterparts, steerable sensor networks are costly to deploy, operate,
and maintain, which magnifies the potential benefits of sharing them with ex-
ternal users. For instance, he hardware cost alone for CASA’s steerable radars
is $250,000 and does not include infrastructure, operational, or labor costs [5],
and the cost for the Border Patrol’s 20-mile “virtual fence” using pan-tilt-zoom
cameras is over $20 million [6]. In general, much like early mainframe computing
systems, the cost and expertise necessary to build and maintain sensing systems
significantly restricts the scope of users available to experiment with them.

We also believe that continuing advancements in low-power embedded sensor
nodes will eventually mitigate, or even eliminate, the characteristics that discour-
age testbeds using small form factor field-deployed sensor nodes. For instance, in
Section 4.1, we briefly discuss a prototype of a small form-factor sensor node we
have built capable of (i) separating control plane functions from user functions
using two distinct processors and (ii) supporting multiple types of “high-power”
sensors off harvested energy. Steerable sensor networks provide an early opportu-
nity to address challenges, such as control plane separation, multiplexing shared
sensor actuators, and dealing with unpredictable energy availability, that are, or
will be, relevant to all types of sensor network testbeds.

The focus of this paper is the design and implementation of the ViSE 1 testbed
and its integration with Orca [7,8], a candidate control framework for GENI [9].
ViSE focuses on virtualizing steerable sensors to benefit from the strong resource
and fault isolation of modern virtualization platforms. Virtual machines isolate
ViSE’s control plane from untrusted users, and untrusted users from each other.

1 See http://geni.cs.umass.edu/vise. ViSE stands for Virtualized Sensing
Environment.
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Each ViSE node includes a weather radar, a pan-tilt-zoom camera, and a weather
stations that applications programmatically control to sense aspects of their
surrounding environment. Thus, ViSE users request slices composed of virtual
machines bound to not only isolated slivers of each node’s CPU, memory, storage,
and bandwidth, as in other GENI testbeds [10,11], but also one or more attached
sensors.

ViSE reflects our view that new innovation in sensing systems is necessary
to take advantage of new innovation in the Internet and cloud computing, since
sensors must transmit their data over the Internet to the computers that ulti-
mately process the data to some end. Section 2 gives an overview of ViSE, while
Section 3 details ViSE’s current integration with Orca/GENI, using Orca’s
extensible slice controller implementation, as well as deployment issues we have
observed in practice. Section 3 then briefly outlines three specific challenges for
ViSE, and other sensor network testbeds, moving forward. Finally, Section 4
discusses concludes.

2 ViSE Testbed Overview

The ViSE testbed currently includes one Internet-accessible node that acts as
a gateway to three sensor nodes located on the roof of the UMass-Amherst
Computer Science Research Center at 140 Governors Drive in Amherst, MA (42
23’ 42.33” N, 72 31’ 50.96” W at elevation 62 meters), on the MA1 Radar Tower
on the UMass-Amherst campus (42 23’ 30.95” N, 72 31’ 2.53” W at elevation 120
meters), and on the Mount Toby firetower in Sunderland, MA (42 29’ 17.00” N,
72 32’ 14.96” W at elevation 385 meters). The distance between Mount Toby and
the UMass-Amherst Computer Science Research Center is 10.37 kilometers and
the distance between Mount Toby and the MA1 Tower is 10.83 kilometers. There
is no link between the MA1 Radar Tower and the Computer Science Research
Center since there is no line of sight.

(a) Prototype Node (b) Topology

Fig. 1. ViSE contains nodes (a) spread throughout the Amherst, MA area (b)
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Figure 1(a) shows the ViSE node on the roof of the UMass-Amherst Computer
Science building. The relative location of each node is depicted in Figure 1(b). We
are planning to add one additional node on the Pelham firetower, approximately
10km east of the MA1 tower, and other nodes on campus buildings in the near
future. Each node includes three distinct sensors, a Davis VantagePro2 Weather
Station, a Sony SNC-RZ50N Pan-Tilt-Zoom Camera, and a Raymarine RD424
Radome Radar Scanner. Testbed nodes use 802.11b over directional antenna for
communication. Importantly, programmatic control is available for each sensor,
allowing users to build sensor control into their experimental applications. The
ViSE testbed is part of the GENI prototype and integrates with GENI’s Orca
control framework, which we describe in the next section.

ViSE’s primary usage scenario is as a platform for experimenting with closed-
loop control of adaptive sensor networks using non-traditional steerable sensors.
Experiments actuate sensors to capture data at a specific time, location, spatial
region, etc., stream that data over a wireless network to compute clusters for
analysis, and use the new results to actuate and refocus sensors on important
regions as conditions change. For example, recent work [12] explores how shared
high-bandwidth sensor systems can intelligently prioritize and compress data
when not enough bandwidth exists to transmit all of the sensor data. ViSE also
targets the study of multi-sensor experiments, such as performing longitudinal
climate studies or studying the fidelity of the long-distance wireless link under
different atmospheric conditions including rain, snow, wind, or fog [13]. Finally,
ViSE is also useful for experimenting with long-distance wireless communication
using directional antennas—the testbed includes two links over 10 kilometers
long. Setting up long-distance links, like those in ViSE, is cumbersome since
they require line-of-sight from elevated vantage points.

3 GENI/Orca Integration

As with other GENI testbeds [7,10,11], ViSE uses virtualization to separate its
control plane from each user’s data plane. The control plane has mechanisms to
start and stop user VMs, create and destroy VM root disks, attach and detach
sensors to VMs, and configure network connections. Users currently request a
slice of the testbed by logging into ViSE’s web portal and issuing a slice request.
Each ViSE slice consists of a virtual machine on each node bound to an isolated
sliver of each node’s CPU, memory, storage capacity, network bandwidth, as
well as one or more attached sensors 2. Note that since, currently, ViSE has a
chain topology every slice must include a virtual machine on each ViSE node—
otherwise, users would have no means of accessing virtual machines at the end
of the chain. ViSE users may log into the gateway of their slice using a secure
shell session at vise-testbed.cs.umass.edu on a specified port. ViSE currently
uses ssh as the method for users to bootstrap their own services and/or inject
their own code into a slice, although we are working on integrating the Gush
experiment workflow tool [14]. Once inside the gateway, ViSE nodes operate
2 See [9] for complete description of terminology.
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within a private IP address space: the node on the roof of the Computer Science
Research Center has IP address 192.168.2.25, the node on the firetower at Mount
Toby has IP address 192.168.2.26, and the node on the MA1 Tower on the
UMass-Amherst campus has IP address 192.168.2.27.

3.1 Requesting Slices

To gain access to ViSE, each user sends a ssh public key to vise@cs.umass.edu
and receives in return a unique username and password to access ViSE’s web por-
tal. Slice requests made through the portal under each login account are tagged
by an Orca slice controller, discussed below, with the public key associated with
that account. As with other testbeds, on slice creation, each user’s ssh public
key is copied to the root disk image of each of its virtual machine, allowing it
to access the machine with its corresponding private key. ViSE currently uses
Linux VServers as its virtualization technology because it simplifies attaching
privileged sensing devices, such as cameras and radars, to virtual machines. We
initially used Xen as our virtualization technology. However, we were forced to
switch to VServers since the device driver for our radar’s analog-to-digital con-
vertor uses DMA operations that Xen does not currently support. Since ViSE
focuses on exposing sensors to users, the OS-level virtualization provided by
VServers is sufficient. Note that VServers and Xen exhibit similar resource and
fault isolation capabilities [15].

We implement ViSE’s web portal as a simple front-end to a customized Orca
slice controller. The portal uses PHP to log user slice requests to a backend
MySQL database, which the ViSE-Orca slice controller polls for new requests
every tick of its internal clock. By default, Orca’s internal clock ticks every
10 seconds, although, as with a conventional operating system, the tick rate is
configurable. Upon detecting a new request, the slice controller reads the request
from the database and issues it to Orca’s instantiation of the GENI Clearing-
house. GENI testbeds that use Orca are able to delegate the right to allocate
their resources to the Clearinghouse. As a result, GENI users—including ViSE’s
web portal and slice controller—request slices from the Clearinghouse, and not
from the testbed itself. Note that Orca does not require testbeds to delegate
their resources to the Clearinghouse. If necessary, testbed’s may retain control
of resource allocation. However, the Clearinghouse serves as a focal point for
a GENI facility to implement GENI-wide resource allocation and authorization
policies.

3.2 Clearinghouse Integration

If testbed’s retain control of resource allocation then GENI cannot implement
coordinated global policies, such as ensuring that slice requests spanning dif-
ferent testbeds and networks at multiple institutions are allocated atomically
with the same start time. One alternative to a Clearinghouse approach that im-
plements GENI-wide policy is to force the burden on individual end-users to
request resources from each individual testbed. Using this approach, if testbed’s
do not coordinate with each other, end-users will have no guarantee of being
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granted resources from each testbed at the same time. Orca currently operates
a GENI Clearinghouse for multiple institutions, including Ohio St. University,
Duke University, University of Massachusetts at Amherst, Northwestern Uni-
versity, and the University of Houston, at the Renaissance Computing Institute
in Chapel Hill, North Carolina. Once the Clearinghouse approves or declines a
ViSE slice request, it sends the response, in the form a signed ticket, to the ViSE
slice controller, which then logs a state change for the request to the web portal’s
database to notify the portal, and hence the user, of the request’s current status.

The Clearinghouse allocation policy for ViSE always approves requests from
the ViSE slice controller for the next available unallocated time slot. If the re-
quest is approved, the portal notifies the user of the start time of its slice. To
activate the slice, the ViSE slice controller redeems the ticket it received from
the Clearinghouse with ViSE’s aggregate manager. The slice controller also at-
taches important user-specific configuration properties to this redeemed ticket;
in ViSE, the most notable property is the public key the user initially registered,
described above. ViSE’s architecture in combination with GENI/Orca’s archi-
tecture, separates the slice controller, which accepts and issues slice requests,
from the aggregate manager, which uses ViSE’s control plane to allocate and
configure virtual machines, to accommodate slice controllers operated locally by
end-users. Thus, rather than ViSE operating a single monolithic web portal that
end-users leverage to issue slice requests, end-users may operate their own slice
controllers that programmatically issue slice requests for ViSE or other testbeds.

The underlying assumption of Orca’s architecture is that the only thread
common to all GENI testbeds is that they share resources and do not use them
forever. As a result, all delegations and requests in Orca are represented as
leases with well-defined start and end times. Since Orca does not make any as-
sumptions about the attributes of a resource, integrating ViSE’s non-traditional
sensing resources with its slice controller, Clearinghouse, and aggregate man-
ager implementations was straightforward. Orca includes extensible implemen-
tations of each server that exposes lease handler interfaces that execute, for each
request, at the start and end of its lease at both the slice controller and the
aggregate manager.

3.3 Slice Controller Integration

For ViSE’s slice controller, we implement lease handlers that update the web
portal’s database when leases start and end to notify users of the status of their
slice through the web portal. For ViSE’s aggregate manager, we implement lease
handlers that setup and teardown virtual machines on each ViSE node, attach
sensors to them, and write the user’s public key to each VM’s root disk. The
aggregate manager setup handler snapshots a copy-on-write template virtual
machine disk image using Linux’s logical volume manager to create the root
disk for each virtual machine in a slice. The template disk image includes simple
scripts and code segments that provide examples for how to control each sensor.
Once active, the aggregate manager notifies the slice controller, which logs the
notification to its database.
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Initially, we are limiting the degrees of freedom available to users through the
ViSE web portal, even if Orca’s default slice controller provides them. Exam-
ples of degrees of freedom include the ability to (i) request leases with variable
lengths and variable start times, (ii) extend leases with a variable duration, (iii)
lease virtual disks or sensors independently of virtual machines, (iv) cancel a lease
before its end time, (v) add or remove nodes from a slice on or before a lease ex-
tension, or (vi) increase or decrease the size of a node’s sliver, i.e., share of CPU,
bandwidth, memory, etc., attached to each virtual machine. Instead, ViSE’s por-
tal currently forces users to issue slice requests for four hour durations starting in
the next available slot. Users cannot extend leases beyond this four hour period
or submit additional requests before their current lease has finished to prevent
hoarding.

Some of the degrees of freedom above do not apply to ViSE, although they
may apply to other testbeds. In particular, as previously mentioned, we allocate
all ViSE nodes in each slice (v) rather than allocate partitions of the network.
Initially, we are only allocating dedicated nodes, so (vi) does not currently ap-
ply, although we are investigating multiplexing actuators, which we discuss in
Section 4.2. While (i), (ii), (iii), and (iv) may be useful, they burden the user
with formulating complex requests, and the Clearinghouse with implementing
sophisticated allocation policies that require mechanisms to prevent users from
hoarding resources. We plan on integrating these functions for users as necessary.
Our approach is to start simple as we attract users, and allow their experiences
to motivate the degrees of freedom we ultimately add and support.

4 Challenges

While Orca’s minimalist design based on leases, which only assumes that users
do not use resources forever, simplified our initial integration of ViSE with GENI,
we have identified at least three challenges moving forward. We outline current
challenges in ViSE related to control plane separation, fine-grained actuator
multiplexing, and unpredictable energy supplies below. Although ViSE focuses
predominantly on steerable sensors, we view these challenges as also being ap-
plicable to embedded sensors as well.

4.1 Control Plane Separation

As with other testbeds, sensor network testbeds must separate their control plane
from each user data plane. ViSE accomplishes this separation on each node using
virtual machines. However, since ViSE nodes connect wirelessly, it currently does
not separate control plane communication. The control plane operations occur
over the same wireless channel used by each testbed user. In related work, we
built a small form factor sensor platform that uses two distinct nodes and radios
for control plane and data plane communication [16]. The advantage of the dual
node/radio approach is that the properties of the control plane’s node/radio can
be well-matched to its needs. For example, in our work we matched a mote-
class control plane node/radio with a more powerful embedded node, capable of
running Linux, for the data plane.
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The control plane node could always remain on because its energy demands
were small compared with the demands of the data plane node, which required
an appropriately sized solar panel. Since the control plane only executes a small
number of operations, the more powerful computing platform of the embedded
node was not necessary. Further, the control plane radio had low bandwidth,
but long range, rather than the high bandwidth, but short range, radio of the
embedded node. The low bandwidth radio is appropriate for a control plane
that only sends short commands to nodes, while the long range is appropriate
for providing greater connectivity in the case of node failures. Finally, separating
the control plane onto a different processor decouples the control plane from the
software on the main embedded node, allowing faults to be tolerated on the
embedded node.

We are investigating using the same approach in ViSE. However, in the case
of ViSE, we have prototyped a solution using our embedded node from the work
above—the Linux Gumstix platform—as the control plane node, since for ViSE
the Gumstix draws significantly less power than our x86-class nodes. For our
radio, we have prototyped using a GPRS modem connected to AT&T’s cellular
network. Much like the mote-class control plane node in our prior work, the
GPRS modem exhibits low bandwidth but a wide range. An advantage in ViSE
of using a separate control plane radio is that it allows testbed applications
to control the main wireless radio’s operational settings, such as its operat-
ing frequency, bit rate, or MAC-layer protocol. Currently, ViSE does not allow
applications control of these settings because ViSE’s control plane uses them,
and, if they are changed ViSE’s control plane becomes disconnected. However,
long-distance wireless researchers may find the control useful. ViSE also uses
automated reboot switches, triggered by cell phone text messages, as a last re-
sort to rebooting a node that cannot be contacted, since physical access to the
nodes is time-consuming in good weather and nearly impossible in poor weather
or during winter.

4.2 Fine-Grained Actuator Multiplexing

ViSE currently allows testbed users dedicated control of each steerable sen-
sor. However, we are integrating support for fine-grained multiplexing of sensor
actuators, which we call MultiSense [17]. MultiSense enables multiple virtual
machines to each control and steer their own virtual sensor. The virtual ma-
chine hypervisor, or privileged management domain, then multiplexes steering
requests at a fine-grain to provide the illusion that each virtual machine controls
a dedicated, albeit, slower sensor. MultiSense optimizes a proportional-share
scheduler, which we call Actuator Fair Scheduing or AFQ, for steerable sensors
by adding support for judicious batching and merging of requests, anticipatory
scheduling, and state restoration. Our results from a MultiSense prototype show
that for ViSE’s pan-tilt-zoom camera it enables a tracking application to pho-
tograph an object moving at nearly 3 mph every 23 ft along its trajectory at a
distance of 300 ft, while supporting a security application that photographs a
fixed point every 3 seconds. Of course, MultiSense diverges from strict fairness
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between virtual machines by reordering steering requests, in part, by batching
together requests that are “near” each other. An in-depth description of Mul-
tiSense and a complete experimental evaluation is available in [17]. Once we
integrate MultiSense with ViSE, we will be able to allocate sensor “slivers” in
the same way that we allocate slivers of CPU, memory, or bandwidth.

4.3 Unpredictable Energy Supplies

Finally, while there is currently A/C power available for each ViSE node, we
have also connected nodes to both solar panels, wind turbines, and batteries.
We are studying how to operate nodes purely off harvested energy to enable us
to deploy nodes where external A/C power is not available. One consequence
of operating a testbed using unpredictable energy supplies is that both testbed
users and the GENI Clearinghouse expect predictable behavior. For example,
ViSE’s aggregate manager delegates the right to allocate its resources to a GENI
Clearinghouse for a fixed period of time. Recall that this delegation is important
for implementing GENI-wide policies, such as atomically allocating slices that
span multiple testbeds. However, determining the duration of this time period is
dependent on ViSE’s available energy supply, which is not entirely predictable.

One option is to choose the duration based on the current reserves in the
battery to ensure that the Clearinghouse will not allocate nodes to users when
there is no energy to run them. An alternative option, which we are exploring,
is to use weather forecasts to increase the duration that ViSE can delegate
to GENI. If weather forecasts are accurate, they should provide a means for
increasing the duration of possible requests ViSE can satisfy. Additionally, the
simple policies above allocate resources assuming that testbed users operate
nodes at their full utilization. If nodes are not operated at their full utilization,
then additional energy is available for subsequent experiments. With a GENI-
wide Clearinghouse, these updates must propagate to the Clearinghouse to allow
subsequent testbed users to take advantage of the additional resources. One
avenue for future exploration is the performance impact of these updates on a
federated Clearinghouse.

5 Conclusion

In this paper, we have described the motivation behind ViSE, a steerable sensor
network testbed we are building in Western Massachusetts, described ViSE’s
integration with Orca, a candidate GENI control framework, and outlined three
challenges ViSE presents moving forward. We are actively working on ViSE’s
integration with other substrates and testbeds, including other GENI testbed’s,
cloud computing environments, and networks, such as NLR and Internet2, to
allow cross-testbed slices.
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Abstract. In this paper, the W-iLab.t wireless testbed is presented.
The testbed consists of nearly 200 sensor nodes and an equal amount of
WiFi nodes, which are installed across three floors of an office building.
The testbed supports wireless sensor experiments, WiFi based mesh and
ad hoc experiments, and mixed sensor/WiFi experiments. It is explained
how changes in the environment of the sensor nodes can be emulated and
how experiments with heterogeneous wireless nodes are enabled. Addi-
tional features of the testbed are listed and lessons learned are presented
that will help researchers to construct their own testbed infrastructure
or add functionality to an existing testbed. Finally, it is argued that
deep analysis of unexpected testbed behavior is key to understanding
the dynamics of wireless network deployments.

Keywords: testbed, wireless sensor, wireless ad hoc, wireless mesh,
emulation.

1 Introduction

As a research group, frequently involved in interdisciplinary projects with indus-
trial partners, validation of developed algorithms and protocols for wireless ad
hoc, sensor and mesh networks on actual (prototype) hardware has been an im-
portant way of proving validity of theoretical and simulated novel concepts, and
demonstrating the feasibility of network architectures [1,2]. Very often, our wire-
less experiments revealed minor or major flaws in theoretical assumptions [3],
requiring time intensive debugging sessions and algorithm modifications that
would not have been required if simulation results were the final product of our
research.

Over the years, multiple different small scale wireless sensor and wireless mesh
testbeds were set up and torn down in the scope of various projects, master theses
and doctoral theses. While a lot of lessons were learned from these experiments
on diverse types of hardware, there are also several drawbacks associated with
the deployment of multiple individual testbeds. (i) Buying new hardware set-
ups for every project is costly, and therefore limits the deployment scale. (ii)
Different hardware architectures require different development approaches. As
an example, in the case of IEEE802.11 based mesh and ad hoc research, exper-
iments have been performed using off-the-shelf WiFi routers with custom built
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firmware, custom built multi-interface mesh nodes, PDAs, tablets, laptops and
desktop computers with various wireless NICs, and integrated system boards.
While experience with diverse network platforms is gained, there is a substantial
overhead associated with creating new development environments. (iii) Results
obtained from different test set-ups cannot easily be compared. (iv) Rebuilding
old test set-ups is time-consuming and has a negative impact on the reproducibil-
ity of test results.

In order to overcome the drawbacks of these individual test set-ups and to
enable wireless tests on a larger scale, the w-iLab.t testbed was designed and
installed at the buildings of the IBCN research group and IBBT research insti-
tute in Ghent, Belgium. The w-iLab.t inherited its name from the larger IBBT
iLab.t [4] test infrastructure, where the testbed is a part from. The w-iLab.t
testbed consists of nearly 200 sensor nodes and an equal amount of WiFi nodes,
which are mounted to the ceilings in the offices and hallways. Although the pri-
mary focus of the testbed is to support large scale wireless sensor and actuator
network deployments, the testbed architecture supports WiFi mesh and ad hoc
test, and mixed sensor/ad hoc experiments as well. In the remainder of this pa-
per, the w-iLab.t testbed is presented. The design choices are motivated and the
possibilities are demonstrated. Furthermore, we present lessons learned which
can help testbed designers to analyze behavior of their own testbed set-up, in-
spire testbed administrators to add time saving functional blocks to their set-up,
or act as a guideline during the initial design phase of a new testbed.

2 Goals and Requirements

One of the major drivers to perform real life experiments, is the fact that a
purely mathematical or simulation based approach for designing wireless net-
work solutions is not entirely representative for the real life performance of the
same solutions when deployed in realistic environments. The reason for this dis-
crepancy is a result of simplified traffic pattern and end user models, wrong
assumptions about signal propagation and interference, interactions with other
(wired or wireless) network devices and errors introduced by hardware and wire-
less drivers. While the latter errors should not be solved by upper layer network
designers in theory, the success and applicability of a developed algorithm de-
pends on the algorithm’s ability to cope with unpredictable behavior introduced
by any of the above elements.

Through careful simulations and well designed small scale testbeds, network-
ing algorithms and protocols can efficiently be debugged to a certain extent.
Multi-hop environments can be emulated on a desktop by interconnecting a
small number of wireless nodes through coaxial connections, RF splitters and
RF attenuators [5], without the need for a large test infrastructure. However,
even with the most advanced simulation models or desktop testbeds it is hard
to represent a real networking environment, especially when it comes to sim-
ulating interaction with user-level programs and operating systems, evaluat-
ing network scanning techniques and channel selection mechanisms, or when
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modeling dynamic network environments with moving users and external in-
terference. Additionally, measuring user satisfaction and quality of experience
is only possible with large scale testbeds deployed in a realistic environment.
Therefore, similar to [6] and [7], it was chosen to install the testbed in an office
environment across three 18m by 90m office floors and thus create a natural
network topology. On top of this default topology, additional topology control
measures (cf. Section 4.2) can be taken to vary the perceived node density in
the testbed.

In addition to allowing experiments in a realistic office setting, multiple tech-
nical and practical requirements were set before designing the testbed:

– Future network environments are expected to be increasingly heterogeneous.
Therefore, the testbed should support tests with wireless sensor and actuator
nodes, WiFi based mesh and ad hoc nodes, and mixed scenarios. Since sensor
nodes are continuously evolving, it should be possible to easily replace or
install additional sensor nodes at the test locations.

– It should be possible to install new software to any sensor or mesh/ad hoc
node from a remote location, and to reboot the nodes remotely in case of
node failure. The nodes are preferably powered by external power sources,
as to avoid the frequent replacement of batteries.

– Sensor nodes react to environmental changes. Testing protocols that depend
on environmental changes is not easily done with current testbeds, as, for
example, it is not very convenient to test the reaction of a protocol detecting
fire through a fast rise in temperature by holding a flame close to a tempera-
ture sensor. Therefore, the testbed infrastructure should be able to emulate
environmental changes instead of relying on manual interventions, without
necessarily requiring specific simulation protocols to be compiled with the
software under test.

– Researchers should be able to use the testbed from any location. Personalized
log in is needed to provide access control and to guarantee a fair share of
access to the testbed for each user.

– Advanced logging functionalities are needed, both for wireless sensor network
experiments and wireless mesh and ad hoc experiments.

– Deploying the network devices at the test locations must be as fast and sim-
ple as possible, requiring the least possible number of cables to be installed
in the offices, reducing the installation cost and minimizing damage to the
building.

In the next section, it is explained how the w-iLab.t architecture is able to
fulfill all of the above requirements.

3 Testbed Architecture

3.1 Node Location

The testbed node locations are distributed across thee similar floors of office
space. Figure 1 shows the location of the nodes on the third floor. Nodes are
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Fig. 1. Third floor of the testbed location. Office area is approximately 90m x 18m. S:
staircase. E: elevator. U: utility shaft.

mounted near the ceiling of both hallways and individual offices which are sepa-
rated by thermal insulated wooden walls causing little RF attenuation. Several
other interesting construction elements are indicated on the floor plan: the el-
evator and elevator shaft are indicated by E and cause severe RF attenuation.
Staircases enclosed in concrete walls (S) and concrete utility shafts (U) which
run across the different floors cause an increased RF loss as well. Since the of-
fice ceiling is made of metal rasters and the floors of aluminum tiles, there is a
large inter-floor signal attenuation inside the building. Therefore, it was chosen
to deploy nodes in the utility shafts at every floor, thus constructing inter-floor
paths with low signal attenuation.

3.2 Hardware Components and Initial Testbed Installation

The TMote Sky sensor mote, which is used as the primary type of sensor device
in our testbed, is programmed through a USB interface. Since USB technology
is not designed to support cable lengths longer than 3 to 5 meters without
intermediate USB hubs, a large sensor network cannot be deployed in an office
environment using USB cables only. In contrast, Ethernet technology allows
longer cable lengths, but is not commonly supported on sensor nodes.

The chosen solution for our testbed was to deploy cheap embedded Voyage
Linux operated Alix 3c3 system boards [8] at all node locations. These embedded
system boards, which we call iNodes, are equipped with an ethernet NIC, a serial
port, VGA output, compact flash storage, onboard audio, two mini PCI slots
and two USB ports. Using the iNodes as relay devices allows the sensor nodes
to be programmed remotely.

Two additional advantages are associated with the use of these iNodes: (i)
by installing two miniPCI 802.11a/b/g compatible atheros based wireless NICs
and adding dual band antennas, the control hardware for the sensor tests can be
used as test equipment for WiFi based mesh and ad hoc tests. (ii) The power
consumption of the iNodes is low: each iNode consumes only 6.5W in idle state,
rising to 7.8W if both WiFi interfaces are enabled and continuously transmitting
with a processor load of 100%. The low power consumption allows the iNodes
to be powered using only power over ethernet (PoE). As such, only a single
ethernet cable and a PoE converter per node are needed to power the iNodes
and connect them to a central administration server. This reduces installation
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Fig. 2. Logic overview of the w-iLab.t architecture

complexity and cost, and allows for remote power switching of the iNodes, and
by extension, sensor nodes.

In order to emulate changes to the physical environment of the node, an in-
house designed circuit board called environment emulator (EE) is added between
the USB port of the sensor device under test (DUT) and the iNode. The EE
is built around a micro controller, a three port USB hub, and a voltage reg-
ulator/measurement chip. It is plugged into a USB port of the iNode, and is
equipped with two additional USB ports. The most important goals of the EE
are the following: first, one port is used to connect the DUT, the other port
allows to connect additional EEs in cascade, thus allowing multiple (heteroge-
neous) sensor nodes to be tested using the same back-end testbed infrastructure.
Second, the EE can replace the USB power from the DUT with its own inter-
nal power source. Thus, the EE is able to emulate depleting batteries, energy
harvesting power sources and node failures. Third, the power that is consumed
by the DUT is measured with a sample frequency of 4kHz, allowing to measure
the exact power consumption of any sensor node while executing a certain pro-
tocol. Fourth, general purpose digital and analog IO pins are connected to the
DUT, allowing to emulate real time digital and/or analog sensor input via pro-
grammable events. Fifth, a seven segment LED display and status LEDs provide
additional feedback when e.g. flashing the sensor nodes, writing information to
the logs, or during events occurring during normal node operation.

The hardware components of the w-iLab.t testbed architecture are summa-
rized in Figure 2: the iNodes are powered and connected to a control server
through a gigabit PoE switch. Two WiFi cards are installed at the iNodes, al-
lowing to perform WiFi mesh and ad hoc experiments, and the USB ports of
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the iNodes are used to connect the sensor node via an environment emulator,
which allows advanced testbed manipulation and logging.

3.3 Using the Testbed

Wireless Sensor and Actuator Experiments. The w-iLab.t testbed is acces-
sible by authorized users via a web based interface, which allows users to monitor
the testbed status, to upload sensor firmware, to select which nodes will be running
what type of firmware during a specific experiment, to schedule an experiment at a
specific time for a specific duration, to get an overview of past, current and future
tests, and to retrieve results and additional information on completed tests.

The testbed is organized in several geographical zones and sub-zones such as
’third floor’, ’first half of the third floor’ or ’entire testbed’. The user can schedule
tests in one or multiple zones, or may deploy different code on each individual
node. Zone reservations are non blocking, meaning that if one user is running a
test on one zone, another user might run a simultaneous test in another, non-
overlapping zone. To avoid interference from other experiments, a single user
can reserve the whole testbed but only use part of it.

The W-iLab.t control server software is based on the MoteLab [6] software.
The software was modified and expanded to support the use of the EE and to
allow a more advanced collection and easy representation of test results. Modifi-
cations include (i) added support for EE scenarios. The user is able to configure
events to be triggered at (a selection of) EEs at a user specified time. For ex-
ample, the user might specify a scenario in which several buttons are pressed at
some sensor nodes, while other sensor nodes observe an emulated rise in temper-
ature or fail because of (emulated) battery depletion. The EEs are synchronized
and execute the scenario with a maximum error of 100µs. (ii) A result process-
ing toolbox, comprising a sniffer, visualizer and analyzer module. Events and
sensor node logging information are stored in an SQL database together with
the precise timestamps and other test data such as the individual power con-
sumption of the sensor nodes. If the sniffer is enabled, certain sensor nodes are
configured as promiscuous nodes and keep a log of all captured frames on a user
defined channel. The visualizer and analyzer are universal GUIs allowing both
real-time and post-experiment visualization of e.g. packet flows, sensor values or
other user measured data, either on a map of the sensor testbed, or by producing
a scatter diagram of measured values.

As such, a user is able to easily define tests and emulated scenarios, schedule
sensor experiments, and analyze and visualize test results in real-time or after
the experiment.

Wireless ad hoc and Wireless Mesh Experiments. As previously stated in
Section 3.2, two WiFi NICs are installed at every iNode. In order to enable mixed
WiFi node / sensor node experiments and to keep a uniform interface, it was
decided to integrate the support for the WiFi nodes into the same web interface
as used for the sensor nodes. Moreover, this fully integrated approach assures
that no scheduling conflicts can occur between wireless sensor and wireless mesh
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experiments. Additionally, when running WiFi experiments, the user should be
allowed to operate the devices using a custom Linux kernel, custom drivers and
custom application software.

Implementing the above flexibility for WiFi tests might endanger the oper-
ation of the sensor testbed: in the default testbed set-up, the iNodes execute
a daemon which interprets management information from the central control
server, controls the EE and installs the firmware to the DUT. Hence, there
could be a certain risk involved in allowing the iNodes to be used for experi-
ments: if a WiFi experiment goes wrong or a user deliberately or unwillingly
removes or corrupts crucial files needed for booting the iNode or controlling the
sensor nodes, the sensor testbed might become unstable or stop functioning.

These potential issues were avoided as follows. Three subcomponents are re-
quired to operate the WiFi testbed: the w.iLab-t central control server acting as
a Preboot Execution Environment (PXE) server, a user defined Network File Sys-
tem (NFS) share, and the iNodes themselves. Two partitions are installed on the
iNodes: a first partition holding the original iNode software for controlling sensor
experiments, and a second partition used for WiFi experiments only, possibly in
combination with a user specified kernel. Whenever an experiment is scheduled,
the iNodes reboot using the management functionalities of the PoE switch and
contact the PXE server to determine which partition to boot. In case of a WiFi
or mixed experiment, the iNode is instructed to load the second partition. The
user might specify the location of a custom image using specific kernel located on
the NFS share, and also specifies the location of the libraries, binaries and other
files or scripts needed to perform the experiment. As a new experiment starts, a
user defined start script is executed that e.g. might copy the required files from
the share to the iNodes, and/or execute a specific program. Not all nodes need to
run the same code, allowing experiments with different node roles.

After the WiFi experiment completes, the iNodes automatically reboot and
are instructed to load the first partition. As the first partition is booted again,
the second partition is restored to its default state, providing clean iNodes for
the next test using WiFi nodes.

Each time a scheduled experiment runs, a logging directory is created on the
user defined NFS share. For each iNode in the test, a subfolder is automati-
cally created that uniquely identifies the iNode by its hostname. The respective
directories are then mounted to a logging directory on the iNodes. All output
that is redirected to this directory on the iNodes is stored on the NFS share.
This results in a flexible, fully user specified logging system. Furthermore, as the
clocks on iNodes are synchronized through the Precision Time Protocol, logging
output can be correlated by adding timestamps to the log messages.

4 Additional Features and Lessons Learned

4.1 Defining New Experiments

The W-iLab.t infrastructure allows fast and easy deployment of newly developed
code on a large number of devices. Therefore, it is tempting to not only use
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the testbed for large scale deployment of stable algorithms, but also during
the development phase for testing incremental adjustments. This results in the
testbed not being available for the tests for which it is actually meant, and
causes the sensor nodes and/or flash cards of the WiFi node to undergo a large
amount of program/erase cycles during a single day, shortening the lifetime of
the flash chips in the testbed. Therefore, early development is still performed on
isolated small scale set-ups. Additionally, one zone in the testbed is reserved as a
sandbox area which is meant for functional testing of new code before switching
to another testbed zone. While the use of the ‘normal’ testbed zones is limited
by a user-based quota, the sandbox area is not, thus promoting its use.

As for WiFi experiments, it was learned that when no user specified kernel
is used, particular care should be taken in keeping the software on the personal
testbeds and large scale testbed synchronized. More specifically, different ver-
sions of wireless drivers have shown to cause significant changes to stability and
throughput, and result in syntax changes, leading to unexpected results. While
obvious, simple driver settings such as disabling antenna diversity when only a
single antenna is connected to the wireless NIC are often forgotten but result in
considerable stability increases.

Furthermore, it was found that when analyzing a protocol, a researcher often
has to create a lot of similar tests, where only a few parameters are changed. For
example, in a sensor experiment, one might want to re-run a test on a different
transmission power, or change the transmission interval of a certain protocol.
Therefore, the option to use parameters in test definitions was added to the
testbed: a user might schedule a single test, but with different parameters which
are determined at scheduling phase. The system will translate these parameters
to individual tests and schedule all of them. This way, a very large amount of
test data is collected through a single scheduling action.

4.2 Topology Control

As previously stated, the w-iLab.t testbed is not located in a separate room
but deployed in an office environment. This way, the use of noise injection [9]
topology control techniques or attenuators was hoped to be avoided. While this
assumption proved to be correct for the sensor network experiments, it was found
that it is hard to create topologies with a large number of hops using the WiFi
nodes, as their transmission power cannot be set to a value below 0dBm due to
driver restrictions. After determining the receive sensitivity of the WiFi cards
through a measurement campaign using a variable attenuator and modeling the
RF propagation characteristics of the office environment, it was decided to add
fixed attenuators to all WiFi interfaces of the testbed on the second and third
floor of the testbed, with attenuation values of 10dB and 20dB respectively. The
result of this attenuation is a variation of perceived node density at the different
floors. Note that the effect of the 10dB attenuators on sending and receiving
interfaces may be canceled by changing the output transmission power from
0dBm to 20dBm, and that variation of the transmission power of the attenuated
nodes allows to emulate environments ranging from sparsely connected (only the
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direct neighbors are within transmission range) to very densely connected (over
60 nodes in transmission range).

4.3 Cautionary Perspective on Testbed Experiments

While new testbed experiments are often characterized by unexpected issues
such as protocol failures, node failures or driver errors, it is important to realize
that every error happens for a reason. Although this is an obvious observation,
authors discussing testbed experiments all too often resort to educated guesses
on why a certain error was observed, such as “we believe that the errors are
introduced by the wireless driver”. There are two reasons for these often vague
descriptions: first, it takes a huge amount of time to debug all aspects of a
testbed deployment, while theoretic calculations and simulations might already
be available and are considered to provide adequate proof of an algorithm’s or
protocol’s functionality. Second, the tools to analyze the complex behavior of
the testbed might lack.

With respect to the above, some recommendations are the following. (i) Test
should preferably be run with some nodes acting as a sniffer, since the actual
transmitted data is often key to solving problems and better understand the
actions (not) taken by the protocol under test. (ii) Additionally, even when
analyzing upper layer protocols, (basic) knowledge of RF propagation and in-
terference is recommended. (iii) Finally, using open source software allows deep
analysis of observed behavior.

It should never be forgotten that one of the reasons of using testbeds is to be
able to study the behavior of a protocol in a realistic environment. If discovered
issues are put aside because the are “probably due to X or Y ”, then the effort
of implementing a fully working solution should probably not have been made
to begin with.

5 Conclusion

The w-iLab.t testbed supports large scale sensor deployments, WiFi based mesh
and ad hoc tests, and mixed sensor/WiFi experiments, and is therefore able to
analyze the behavior of future heterogeneous network deployments. Nearly 200
node locations are available, situated across three floors of an office building.
Through an easy-to-use web-based interface, researchers are able to control the
deployment of the software to be tested based on network zones or may address
individual nodes. Moreover, the environment emulator allows to emulate sensor
network scenarios, provides advanced logging and control, and allows the mod-
ular addition of other type of sensor nodes. Test results can be visualized on a
map or in graphs in real-time or after the test. The possibility to generate mul-
tiple tests based on the same code has proved to be a time-saving functionality,
and attenuating WiFi signals is a feasible technique to create a sparser topology
in the testbed.

The listed testbed experiences may inspire researchers to design a brand new
testbed, or modify or expand their existing testbeds. In order to get a better
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understanding of the dynamics involved in a real-life deployment, it is neces-
sary to try and explain all erratic behavior observed while conducting testbed
experiments. This will eventually lead to the development of robust wireless
deployments that are expected to be part of our lives tomorrow.
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Abstract. This paper deals with challenges in federating wireless sens-
ing fabrics. Federations of this sort are currently being developed in next
generation global end-to-end experimentation infrastructures, such as
GENI, to support rapid prototyping and hi-fidelity validation of proto-
cols and applications. On one hand, federation should support access to
diverse (and potentially provider-specific) wireless sensor resources and,
on the other, it should enable users to uniformly task these resources.
Instead of more simply basing federation upon a standard description
of resources, we propose an architecture where the ontology of resource
description can vary across providers, and a mapping of user needs to
resources is performed to achieve uniform tasking. We illustrate one real-
ization of this architecture, in terms of our refactoring the Kansei testbed
to become the KanseiGenie federated fabric manager, which has full sup-
port for programmability, sliceability and federated experimentation over
heterogeneous sensing fabrics.

Keywords: wireless sensor network, federation, fabrics, resource speci-
fication, ontology, experiment specification, GENI, KanseiGenie.

1 Introduction

Several edge networking testbeds have been realized during this decade, in part
due to the recognition within the networking community that testbeds enable
at-scale development and validation of next generation networks. The role of
edge networks —and edge networking testbeds— is likely to only increase, given
the growth of wireless networks of sensors, vehicles, mobile communicators, and
the like. In this paper, we focus our attention on an emergent architecture for
next generation Wireless Sensor Network (WSN) testbed federation.

WSN Testbeds. Many WSN testbeds are in use today, of which Kansei [3],
Orbit [7], NetEye [4], and PeopleNet [8] are but a few. Two recent experimenta-
tion trends are worth noting: One, experiments are being repeated in multiple
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testbeds, to learn about (potentially substantial) variability of performance in
different backgrounds, radio types, and size scales. And two, a number of ex-
periments involve long running deployments—they often yield long lived sensing
services—which in turn implies that testbeds are increasingly hosting concurrent
experiments. These trends motivate the emergent requirement that testbeds need
to be federations of programmable fabrics.

By programmable WSN fabrics, we mean that individual sensor arrays offer
not just resources on which programs can be executed, they also provide net-
work abstractions for simplifying WSN application development and operation.
Examples include APIs for scheduling tasks, monitoring system health, and in-
the-field programming and upgrade of applications, network components, and
sensing components. Fabrics can also support and manage the concurrent op-
eration of multiple applications. Figure 1 compares the traditional WSN model
with the emerging fabric model of WSNs. By federated WSN testbeds, we mean
multiple WSN testbeds that are loosely coordinated to support geographically
and logically distinct resource sharing. A federation provides users with a con-
venient, uniform way of discovering and tasking desired WSN resources.

Fig. 1. Traditional and Fabric model Fig. 2. Federated fabric/GENI model

GENI. The Global Environment for Network Innovation project [2] concretely
illustrates an architecture where WSN fabrics are a key component. GENI is
a next-generation experimental network research infrastructure currently in its
development phase. It includes support for control and programming of resources
that span facilities with next-generation fiber optics and switches, high-speed
routers, city-wide experimental urban radio networks, high-end computational
clusters, and sensor grids. It intends to support large numbers of users and
large and simultaneous experiments with extensive instrumentation designed to
make it easy to collect, analyze, and share real measurements and to test load
conditions that match those of current or projected internet usage.

Figure 2 depicts the GENI architecture from a usage perspective. In a nut-
shell, GENI consists of three entities: Researchers, Clearinghouses and Sites (aka
resource aggregates). The Clearinghouse keeps track of the authenticated users,
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resource aggregates, slices, and reservations in the federation. A Researcher (in-
teracting typically via a specially designed Portal) queries a Clearinghouse for
the set of available resources at one or more Sites and requests reservations
for those resources that she requires. To run an experiment, she configures the
resources allocated to her slice, which is a virtual container for the reserved
resource, and controls her slice through well-defined interfaces.

Overview of the paper. A federation of WSN fabric testbeds needs to address
two core issues: One, an efficient and flexible method for resource description,
discovery and reservation. And two, a convenient, uniform way of tasking and
utilizing federation resources. While standardizing resource descriptions would
simplify addressing these two issues, we find that the diversity of sensor char-
acteristics and the lack of a compelling standard model for describing wireless
networks complicate the federation of WSN fabrics.

In this paper, we propose a software architecture that we call KanseiGenie
for federating WSN fabrics that is compatible with GENI. KanseiGenie is based
on the position that, on one hand, different WSN fabric aggregates can adver-
tise resources based on different resource ontologies. On the other hand, users
can obtain uniform experimentation support from a portal supporting a given
federation. Central to the KanseiGenie architecture is a mapping between a uni-
form experiment specification and a non-uniform resource specification, which is
handled by the portal.

The rest of the paper is organized as follows: In Section 2, we detail the re-
quirements of each actor in a WSN federation. In Section 3, we discuss the need
for Resource and Experiment Specification in federations and their design chal-
lenges. Then, we present the KanseiGenie architecture and its implementation
in Section 4, and make concluding remarks in Section 5.

2 Requirements of Federated WSN Fabrics

As explained in Section 1, the federated WSN fabric model distinguishes three
actors: the Site that owns WSN aggregate resources, the Researcher who deploys
applications via a Portal, and the Clearinghouse (CH) that enables discovery,
management, and allocation of resource. In this section, we analyze actor-specific
requirements, to make user experimentation easy, repeatable, and verifiable.

2.1 Clearinghouse Requirements

Broadly speaking, a Clearinghouse has two functions: One, identification and
authentication of various actors in the system (the details of which are out
of the scope of this paper and hence will not be discussed here); And two,
resource discovery and allocation using a resource description language. The
resource description language should be feature rich and extensible to capture
the underlying heterogeneity of WSN fabrics and their constraints. A CH design
should be efficient and robust to manage multiple Site Resource Specifications,
large number of resources and their lease states. In a global infrastructure such
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as GENI, a CH might have work in both master-slave and peer-to-peer modes
with others CHs. A Portal/Researcher might request resources from multiple
CHs directly or a single one which in turn communicates with other CHs.

2.2 Site Requirements

To support federated experimentation, a Site needs to support sliceability, pro-
grammability, experimentation services for the resources it controls. In the GENI
model of experimentation, each Researcher owns a virtual container, aka a Slice,
to which resources can be added or removed, and experiments deployed. It follows
that a Researcher should have secure intra-slice communication that is isolated
from other slices. To enable multiple slices to co-exist on the same fabric, slice-
ability may require Sites to virtualize resources both at the node and network
level. For example, memory, processing time, or communication channels on the
same device/network may have to be shared between slices. The challenge in
virtualization is to provide as much control to the users (as low in the network
stack as is possible) while retaining the ability to share and safely recover the
resource. Virtualization in WSN fabrics is nontrivial, sometimes even impossi-
ble, given the limited resource on sensor nodes and the interference caused by
concurrent wireless communications. Sites are also expected to provide program-
ming services that reliably deploys applications composed by Researchers on the
WSN fabric, testbed status and experiment execution monitoring, logging, trace
data injection, and workflow control services.

2.3 Portal Requirements

A Portal in our architecture is a way to provide the user with a standard set
of tools that can be used to exploit the federated resources. We believe that
the Portal has an important role in networking sub-domains like WSN, where a
high level of domain knowledge is needed to exploit the resources efficiently. A
Portal needs to provide an uniform resource utilization framework. The frame-
work should also allow the Researcher to select one or more of the standard
User Services provided by the Site/Portal to be instrumented on the slice. This
is challenging since the federation may consist of fabrics with a great variety of
available platforms, sensors, radios, operating systems and libraries. For instance,
while some sensor platforms such as mica family and TelosB are programmed
on bare metal, others such as iMote2, Sunspots, and Stargates host their own
operating system. The execution environments in these platforms vary from a
simple file download and flash reprogramming, to command line interfaces and
virtual machines.

3 Specification Languages

To use WSN fabrics, a Researcher queries the CH to discover what resources are
available, selects a set of resources and obtains a lease for them, and configures
the resources and User Services needed for the experiment. Each of these steps
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needs a flexible, feature-rich, and extensible language to convey the goals of
the Researcher to the system. We refer to the language used to publish, query,
request, and allocate resources as the RSpec language, and the language used to
configure resources and script workflow as the ESpec language.

3.1 Resource Ontologies for Resource Description

Resources available at multiple Sites are usually different from each other. Al-
though describing resources in terms of a taxonomical flat-schema could hide mi-
nor differences by shoe-horning similar resources into the same category, building
an exhaustive schema for WSNs, which will be conformed to by every Site, Clear-
inghouse, and Portal, is both difficult and sometimes impossible. The current
GENI proposal [1] mitigates this problem somewhat with a partial standardiza-
tion approach, a uniform core RSpec and multiple domain-specific extensions.
Although this solution in principle is better than a single standardized RSpec,
agreement on the extensions is difficult in domains like WSNs. Roscoe in [13]
lays out the drawbacks of this approach. A key challenge in using a standardized
specification is anticipating in advance all of the possible things that must be
expressible. He argues that the resource request instead should be viewed as a
constraint satisfaction problem and not a simple database query. For example, in
a wireless network, while a node and channel might be two separate resources, it
is usually impossible to allocate just the node but not the associated channel, or
vice versa. It is better to explicitly capture such dependencies and relationships
in the RSpec which would lead to a better resource allocation.

Thus a RSpec language should be able to specify constraints and handle mul-
tiple decentralized specifications. One way of doing this is to represent resources
in terms of ontologies, using a resource description language such as NDL [5],
which could describe not just the resources but the also constraints. With this
approach, in order to communicate, two entities need only to agree on the lan-
guage in which resources are specified, but not on the ontology.

Using Multiple Resource Ontologies for WSN Resources. Our primary
motivation to support multiple ontologies in WSN federation is the difficulty in
specifying things uniquely. We offer two examples cases. The first pertains to
definitions, or rather the lack of it in the WSN space. There is no agreements
on even simple terms like nodes and sensors. More over, defining something as
either an allocatable entity or as its property could differ significant between
Sites, depending on what platforms they provide. For example, is a channel an
allocatable resource or simply a property of a radio?

Our second example deals with the difficulty of specifying wireless network
topologies. A network topology in a WSN can be specified either implicitly or
explicitly. An example of implicit specification would be specifying the transmit
power level of each node. An example of explicit specification would be specify-
ing the number and/or the list of neighbors for each node and letting the fabric
choose the transmit power level and other radio parameters. A Site provider
could choose one or other while defining the Site ontology, depending on the
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hardware platform. One cannot force a Site provider to adopt an ontology which
is not compatible with the hardware.

A question that directly follows from our argument for multiple ontologies
is, why not simply use a union of them? This approach could result in RSpecs
that cannot be instantiated by the Sites. For example, consider the two ways of
(as discussed above) specifying a network topology; Even if a hardware could
support both specifications, a single RSpec, which uses both implicit and explicit
specification cannot be instantiated by the Site. Thus the union approach could
lead to the risk of producing consistent RSpecs.

Given the intense debate in the WSN community, forcing Sites to use a single
ontology is likely to throttle innovation and will result in a needlessly bulky
ontology that is not easily extensible. Since most Researchers are expected to
interact only through a Portal (or two) of their choice, we envision that Portals
will serve as the unifying agent for resource specifications. Since all Sites will
use the same language for their descriptions, the Portal can map the different
ontologies used by the Sites to a single ontology to be used by Researchers.
We note that there are several extant techniques and tools to map and align
ontologies [9,12].

3.2 Experiment Specification and Work Flow Control

One of the roles of a Portal is to enable uniform experimentation across all
federation fabrics. One way of satisfying this requirement is by providing an Ex-
periment Specification (ESpec) language that enables Researchers to configure
slices in a generic manner. Intuitively, besides the resource that the experiment
is to be run on, an ESpec should also include the selection of User Services
that is required by the experiment. WSN applications typically run in multiple
well defined phases, with each phase involving a possibly different configuration.
In addition to declarative elements, the experiment specification language also
includes procedural descriptions (or workflow elements). This enables iterative
experimentation, where a researcher programs repeated experiments, and the
configuration of each experiment depends on the outcome of the previous ones.
ESpec thus provides Researchers with a flexible and feature-rich way of inter-
acting with resources, rather than just a GUI or a command line interface. They
become particularly relevant for future scenarios where applications will primar-
ily involve machine-to-machine, as opposed to human-to-machine, interaction.
The idea then is to standardize the Experiment Specification language and not
the format of interaction.

4 KanseiGenie

KanseiGenie is a refactoring of the Kansei testbed, to support a GENI compati-
ble federation of geographically separated Sites, each hosting one or more WSN
fabric arrays. Each sensor device is represented as a Component that defines a
uniform set of interfaces for managing that device. An Aggregate contains a set
of Components of the same type and provides control over the set. (In WSN
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experiments, Researchers normally interact with fabric arrays through the ag-
gregate interface rather than individual component interfaces). An Aggregate
also provides other internal APIs needed for inter-component interactions.

4.1 Architecture and Implementation

In keeping with the GENI architecture, KanseiGenie consists of actors for a
Site, a Clearinghouse, and a Portal. The current implementation of federation
consists of a Site at The Ohio State University, which has four different sensor
fabric arrays, and a Site at Wayne State University, which has two different
sensor fabric arrays. The Sites and the Portal (which is hosted at Ohio State)
run the KanseiGenie software developed at Ohio State. One of the Clearinghouse
functions, namely resource management, is implemented using ORCA [6].

KanseiGenie Site. A KanseiGenie Site has four components: Aggregate of Ag-
gregate Manager (AAM), the Web Service Layer (WSL), the individual Compo-
nent Managers (CM) for each device type, and the Orca Site Authority module.

Aggregate of Aggregate Manager. Given that each fabric array is an ag-
gregate, the KanseiGenie Site Authority (SA) is conceptually an Aggregate of
Aggregate Managers that provides access to all the arrays. AAM is responsible
for implementing the fabric APIs. AAM provides an AM interface for each sensor
array through parameterization. Externally, AAM (i) administers usage of the
resource provided by the Site according to local resource management policies,
(ii) provides the interface through which the SA advertises its shared resource
to one or more authenticated CHs and, (iii) provides a programming interface
through which Researcher (via the Portal) can schedule, configure, deploy, mon-
itor and analyze their experiments. Internally, the AAM provides mechanisms
for inter-aggregate communications and coordination. The fabric APIs provided
by an AM are organized into the four functional planes, namely, Resource/Slice
management APIs, Experimentation APIs, Operation & management APIs, and
Instrumentation & Measurement APIs.

Web Service Layer. WSL provides a wrapper for AAM and acts as a single-
point external interface for the KanseiGenie SA. The WSL layer provides a
programmatic, standards-based interface to the AAM. We utilize the Enterprise
Java Bean framework to wrap the four functional GENI planes.

Component Manager. Each sensor device in KanseiGenie has its own Man-
ager (although for some primitive devices such as motes the Manager is itself
implemented on other more capable devices). The Component Manager imple-
ments the same APIs as that of AAM and is responsible for executing the
APIs on the individual devices. Currently KanseiGenie supports Linux-based
PCs/Laptops (Redhat and Ubuntu), Stargates, TelosB, and XSMs. CMs for
Imote2 and SunSpots are under development.
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Fig. 3. KanseiGenie Architecture

KanseiGenie Portal. The Portal
contains a suite of tools for the life
cycle of an experiment. It provides
an easy interface for experiment spec-
ification; at present, this is a user-
friendly GUI; a user programmable
interface is under development. It
automates tasks for resource specifi-
cation creation, requesting, and sub-
sequent deploying of the experiment,
for all Sites in the federation. It uses
the Orca Slice Manager (explained be-
low), to reserve resources requested
by the Researcher. Once the reser-
vation is done, it interacts with the
AAM web services interface to config-
ure and run experiments. Of course,
a Researcher could directly program
against the AAM web interfaces to
gain more fine-grained control of ex-
periments, i.e., write his own portal as need be. The Portal is implemented
using the PHP programming language.

KanseiGenie Clearinghouse. CH has two main functions; (i) Resource man-
agement: CHs are responsible for managing the resources on behalf of Sites.
They keep track of resources and their leases. We use ORCA [6] (see below for
more details) Resource Broker to implement our CH. (ii) Identity, Authentica-
tion and Trust: CH is also responsible for maintaining the overall security of the
system. They authenticate/issue credentials for Sites, Portals and Researchers.
In a federation, CHs implement trust-chaining to authenticate Researchers and
Brokers from other domains. KanseiGenie, consistent with the GENI/ORCA
effort, plans to use Shibboleth [10] for this purpose.

ORCA-based Resource Management System. ORCA consists of 3 sub-
entities, each one correspondingly embedded into the three KanseiGenie actors
(Portal, Site and Clearinghouse) respectively, to implement the resource manage-
ment function. (i) The ORCA Slice Manager interacts with the Researcher and
gets the resource request, forwards it to the ORCA Broker and gets the lease for
the resources. Once a lease is received, the Slice Manager, forwards it to the Site
Authority to redeem the lease. (ii) The ORCA Site Authority keeps inventory
of all the resources that need to be managed. It delegates these resources to one
or more Brokers, which in turn lease the resources to Researchers through the
Slice Manager. (iii) The ORCA Broker keeps track of the resources delegated by
various Site Authorities. It leases resources (if free) to the ORCA Slice Manager
on request. A number of different allocation policies can be implemented using
a policy plug-in.
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4.2 Portal-Based Federation in KanseiGenie

Apart from being the single point of access for a Researcher, the Portal plays
an important role in KanseiGenie federation architecture. The Portal has three
important functions in federation, namely Resource Specification Mapping, Ex-
periment Specification Mapping, and Federated Slice Stitching. KanseiGenie has
thus far chosen the Portal as the main federating agent in the system. This de-
sign suits the view that a Portal realizes application domain specific support, and
that for different domains, different Portals may suit. In other words, we view the
KanseiGenie Portal as suitable for WSN experiments (and perhaps only some
classes of WSN experiments) as opposed to sufficing for all GENI-Researcher
needs.

In this view, Clearinghouses are treated as being generic rather than domain
specific. Roles which are less domain specific, e.g. embedding Resource Specifi-
cations or slice stitching, can be moved from Portals to CHs (or even to Sites)
assuming the method of stitching desired is communicated to them. Now, should
CHs evolve to become domain specific, they may import more roles from Por-
tals. Taken to the extreme, this would suggest that a top level CH be directly
or indirectly capable of unifying all resources in GENI.

Resource Specification Mapping. As explained in Section 3 our position
is that Sites may use their own Resource Specification dialects (ontologies). To
provide a unified experience to the Researchers, we put the onus of interpreting
multiple ontologies on the Portal. The Portal discovers resources from multiple
sites, understands the Resource Specification ontologies and remaps the different
ontologies into a unified ontology at the Portal. The current research [12,11]
suggest that this remapping of ontologies can be done automatically with very
high probabilities for related ontologies. However, we do the mapping manually
since it is an one-time operation per Site. After a resource request is created (in
the Portal ontology), it first gets translated into the individual Site’s ontology
and then sent to the CH to obtain the lease.

Fig. 4. Resource Specification mapping, translation and lease generation
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In the current implementation, the Portal is also responsible for RSpec em-
bedding), i.e. the embedding of an abstract RSpec into a concrete RSpec. It is
often convenient for a Researcher to request networked resources in an abstract
manner. For instance, requesting a 5-by-5 connected grid with 90% link deliv-
ery radio is much easier than pinpointing specific sensor devices that match the
required topology. Since the resources published at the CHs are specified con-
cretely, a Portal needs to convert or embed (many be with the help of the Site)
the abstract RSpec into an concrete RSpec. The RSpec generation, translation,
embedding, ticketing, and lease generation process is shown in Figure 4.

Experiment Specification Mapping. Researchers use the ESpec language
to script an ESpec which is fabric/platfrom neutral. The Portal maps the ESpec
created onto Site/fabric specific experiment manager APIs. Thus, a Researcher
may “stitch fabric1 slice and fabric2 slice”, “inject data on fabric1 slice from
file1”, etc., without worrying about the details of fabric1 slice and fabric2

slice; She may likewise repeat the same experiment on different fabric slices
easily. In KanseiGenie, we attempt to use the same APIs for different aggregates
whenever possible; nevertheless, whenever the notion of a service (say logging on
a Virtual Machine fabric versus a Mote fabric) is different between fabrics, the
complexity of mapping the configuration onto the corresponding APIs is handled
by the Portal.

Federated Slice Stitching. When conducting a federated experiment, a Re-
searcher expects seamless communication between the resources in the federated
slice, which means that sub-slices from different Sites needs to be stitched to-
gether to form a federated slice. While individual Sites provide the stitching
services as part of the AAM, the Portal possesses the knowledge for implement-
ing stitching (such as VLAN numbers, IP addresses, ports, web URLs, etc.).
Note that multiple types of stitching might be needed (and possible) depending
on the sensing fabrics involved and their capabilities, e.g., it is easy to stitch
a federated slice consisting exclusively of virtual machines connected by wired
virtual LANs, while it is much harder to stitch two wireless network slices to
create a single federated wireless slices.

5 Conclusion

In this paper, we described the KanseiGenie software architecture for federated
WSN fabrics. We argued for letting WSN fabrics choose their own Resource
Specification ontologies and resolve the diversity in resource specifications by
letting the Portal map the Site specific description to a local ontology with
which the Researchers can interact. We also illustrated the need for a Experiment
Specification language to enable Researchers to uniformly interact with multiple
WSN fabrics in the federation; Experiment Specifications further enable scripted
experimentation and complex staging between fabrics. As KanseiGenie grows to
accommodate other sites, it remains to be seen whether a need to develop other
Portals will emerge or some of the federation functionality in the Portal will
migrate to Clearinghouses/Sites.
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Finally, we share here a few of the lessons from our experience with federated
testbed design. (i) RSpec and ESpec design, their completeness and adaptabil-
ity is very important for the growth and research in testbed federations. (ii) A
powerful Portal, such as in our design, is not always a necessity, but definitely a
blessing in highly domain-specific federations such as WSN. The domain knowl-
edge needed to exploit WSNs is very high and a fully functional Portal is a very
useful tool for Researchers. (iii) The design and implementation of the Aggre-
gate and Component Managers is a non-trivial aspect of WSN fabric design. The
AMs needs to make the least assumptions about platform support, while simul-
taneously providing non-trivial guarantees to the Researcher. (iv) A significant
amount of work is involved in maintaining a healthy testbed. A systematic ap-
proach to fault-detection and correction, and an autonomous health monitoring
system are an essential part of any long living WSN infrastructure.
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Abstract. The   challenging   and   ever   increasing   requirements   of   future 
applications  demand  new  concepts  for  better  control  and  management  of 
network   resources.   The Third   Generation    Partnership   Project   (3GPP) 
introduced  in  their  latest   specifications  the  Evolved  Packet  Core  
(EPC) architecture for transparently unifying the parameters of different tech-
nologies, like the UMTS, WLAN, non-3GPP access technologies and a future 
Evolved Radio Access Network, called Long Term Evolution (LTE), with  
the use of multiple application platforms such as IP Multimedia Subsystem 
(IMS) and the Internet. This paper describes a testbed implementation of the 
Evolved Packet Core named OpenEPC which  provides a reference imple-
mentation of 3GPP’s EPC  developed  by  the  Fraunhofer  Institute  FOKUS.  
OpenEPC  is  a  set  of software components offering advanced IP mobility 
schemes, policy-based QoS control, and integration with different application 
platforms in  converging network environments. This initiative, in  addition  
to  fostering research  and development, enables academic and industry re-
searchers to rapidly realize state-of-the-art NGMN infrastructures and applica-
tion testbeds. 

Keywords: Open EPC, Testing, Testbeds, Next Generation Mobile  Network, 
Operator core network, EPC. 

1   Introduction 

The Evolved Packet Core (EPC) ([1], [2]), formally known as Service Architecture 
Evolution (SAE), was developed from the necessity to converge different types of 
networks for the different services which are provided on top, thus having as 
main goal the transparency of access technology features to the core network of the 
service provider. In the next years, not only the integration of these accesses and 
services networks is envisaged, but also the adoption of a new wireless access tech-
nology: the UMTS Long Term Evolution (LTE). LTE brings new requirements, and 
therefore enhancements to the current architectures should also take place in order to 
achieve better performance. Following these principles, EPC is designed to fully 
support and seamlessly integrate in the core network LTE and other future technolo-
gies. EPC is a converged network architecture that enables the efficient connection of 
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the mobile devices to the network and their communication with different service 
platforms like IMS or Internet. It guarantees the required resources are delivered 
with seamless service continuity among accesses. This functionality offers to the 
service platforms an independent management of the various wired and wireless 
networks following the indications for the Next Generation Mobile Networks 
(NGMN) Alliance [3].  

This paper describes the OpenEPC testbed that is being developed by the Fraun-
hofer Institute FOKUS. OpenEPC aims to facilitate research and development of 
EPC, such as new access network integration, handover optimizations, EPC func-
tional extensions, and new NGMN service prototyping. The implementation of the 
OpenEPC takes advantage of the previous successful implementation of the Open 
IMS Core ([11], [12]) as a prototypical open source implementation of the IMS core 
elements that started out as an internal project at the Fraunhofer Institute FOKUS in 
Berlin. Since the launch of that testbed, the solution has successfully worked as a 
reference implementation in the Open IMS Playground [7], a vendor and operator 
independent IMS test-bed providing coaching, consulting and proof of concept im-
plementations as well as performance and interoperability tests for major vendors and 
fixed and mobile network operators. 

2   OpenEPC 

In comparison with the above related initiatives on the EPC/LTE, the OpenEPC [6] 
initiative targets not only trials and research on this topic, but also offers the platform 
for an easy integration of various research use cases. One of the main advantages of 
the OpenEPC, derived directly from the goals of EPC standards, is that it represents a 
simplified flat-IP architecture, with a single core network, able to integrate multiple 
access networks, with a clear separation between the data and the control plane, 
which offers an easy interaction with various service platforms and network inde-
pendence to the services themselves. OpenEPC implements a set of standard compo-
nents permitting the cost-efficient creation of NGMN testbeds. These testbeds are 
then used to prototype, measure, monitor, test, and perform research and develop-
ment for NGMNs. It enables a quick start on the heart of emerging NGMNs, namely 
the EPC architecture, because of its standards conformance and of its configurability 
to match different needs for testing and extensibility. Open EPC aims to provide its 
users with a basic understanding and practical hands on experience with EPC, as well 
as conformance testing and proof-of-concept studies. With OpenEPC it is possible to 
develop functional extensions of individual and/or multiple EPC components and 
new NGMN showcases. In addition, OpenEPC supports research and development 
into challenging aspects of upcoming NGMN infrastructures and services, like the 
integration  of  new  fixed  and  wireless  access  technologies,  new  approaches  to 
mobility, QoS and security, optimizations of the architecture, design of new seamless 
wireless applications and the investigation of new business models in the NGMN 
world. 

Having as basis the standards of 3GPP and containing already different optimiza-
tions to the available standards which follow the NGMN requirements, OpenEPC 
addresses to: 
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• Operators are using OpenEPC to prepare for the upcoming all-IP 
NGN and NGMN world and have an open and vendor independent 
testbed infrastructure. 

• Manufacturers of individual EPC components are using 
OpenEPC to test their products in concert with a standards based 
NGMN environment. 

• Manufacturers  of  full  EPC  platforms  are  using  OpenEPC  for  
practical research on new concepts and protocols in an easier to 
maintain platform. 

• Application developers are using OpenEPC to certify that their 
applications work in NGMNs and take advantage of the functional 
capabilities offered by EPC to the applications domains. 

Research institutions and universities are using OpenEPC for practical NGMN re-
search, including usage of OpenEPC as black box for applications prototyping, or 
extending individual or multiple EPC components and/or developing new EPC com-
ponents and protocols to provide new capabilities for integrating new networks or 
enabling new applications. 

 

 

Fig. 1. OpenEPC Architecture 

The current version of the OpenEPC is based on the 3GPP Release 8 standards of-
fering the bases for research in the area of integrating different access technologies 
and different service platforms. Its features provide a policy based implementation 
for access  network discovery and  selection,  attachment  to  different access  net-
works, mobility and QoS management based on the network configuration and sub-
scriber profiles. OpenEPC has been successfully tested for IPv4 and IPv6; the re-
maining heterogeneous  IPv4/IPv6  scenarios  will  be  added  in  the  future.  All  the  
central software components of OpenEPC have been developed in C, based on a new 
high modular and configurable software framework, designed especially for the re-
quired EPC protocols and architectures (internal code-name Wharf). This allows the 
easy configuration and customization of components by selecting the functionality 
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required from  a  set  of  modules.  With  this  approach,  OpenEPC  supports  cus-
tomized components which can dynamically include/exclude or combine functional-
ity and interfaces.  For  instance,  a  deployment  could  include  an  S-Gw  which  
performs BBERF functionality of the Policy and Charging Control architecture or a 
PCRF which does not include S9 interface for roaming scenarios. Such customiza-
tions are supported by simply modifying the configuration file and enabling or dis-
abling such modules, each module being also capable of self-configuration by detect-
ing what additional functionality it can employ. The components that require dy-
namic configuration or provisioning of parameters (like PCRF, HSS or ANDSF) 
offer a web-based front-end, while the state information is stored in a database back-
end.  In complete  configurations a common front-end can be used   to   configure   
all components. 

2.1   OpenEPC Components 

The current first version contains the following entities, as depicted in Figure 1: HSS, 
ANDSF, PCRF, PDN-GW including PCEF and PMIP mobility, S-Gw and ePDG 
including BBERF functionality and PMIP functionality. 

OpenEPC HSS. It provides storage and provisioning enablers for the subscriber 
profile, as defined in the EPC specification, by extending the IMS subscriber profiles 
already supported. It also performs the non-standard Subscriber Profile Repository 
(SPR) functionality which sends upon request the subscriber profile to the PCRF, 
ANDSF or any other authorized EPC component which requires subscription data to 
function. For this part it offers the not yet standardized interface Sp, which per-
mits the support of personalization through subscriber profile of the policy and 
charging control functionality, included in the specifications, but still not developed. 
Added to that, through the same interface, the HSS is connected to the ANDSF to 
provide personalization for the mobility policies transmitted to the UE. The defini-
tion of the OpenEPC interface has been developed based on the Open IMS Core Sh 
interface, used between HSS and an IMS Application Server, with the addition of 
specific Data References and Attribute Value Pairs (AVPs). Concretely, the Data-
Reference AVP has been extended to include parameters which are fetched from HSS 
and are used for policy control and for access network discovery and selection. 

OpenEPC PCRF. It allows the application functions to request resources and prior-
ity treatment from the core network for one or more data flows which pertain to the 
application exchanged between the UE and the network. The Rx interface is used to 
convey the information received from the applications as part of the active profile of 
the UE. Also it connects to the HSS using the Sp interface, as to make the policy 
decisions according to the subscription profile of the users. These decisions are then 
pushed  to  be  enforced  on  the  gateways  of  the  specific  accesses  using  the  Gxx 
interface and to the PDN Gw using the Gx interface. In order to receive notifications 
for events, the PCRF subscribes to profile modifications to the HSS (over the Sp 
interface) and to bearer modifications to the PDN GW and the access network gate-
ways (using Gx and Gxx interfaces). The behavior of the OpenEPC PCRF is con-
trolled through policies which can be provided dynamically through the provisioning  
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front-end. The policy language used complies with OMA Policy Expression Lan-
guage extended with the specific PCRF tags. The interfaces of the OpenEPC PCRF 
are separated into different modules without a very tight interconnection, which 
makes them separately or all-together deployable depending on the specific require-
ments of an OpenEPC testbed. In practice, modules like the PCRF can detect which 
other modules are available and as such deploy a less or more complex set-up. 

OpenEPC PDN GW. It includes a Proxy Mobile IP (PMIP) stack, capable of acting 
on both IPv4 and IPv6 and configured as Local Mobility Anchor (LMA). It allocates 
the IP address of the UE at the initial attachment from the provisioned client 
IP address pools. For all the subsequent attachments, the same IP address is trans-
mitted. It also maintains the mobility tunnels and enforces the forwarding of the data 
packets to the access network specific gateway for download traffic and to the corre-
spondent addresses of the other entities involved in the data sessions for the upload 
traffic. It also supports the Policy and Charging Enforcement Function (PCEF) as a 
module. This enables the allocation of the default QoS values (upon attachment of a 
new subscriber to the packed data network) and service and subscriber specific QoS 
(when a UE accesses a service). The enforcement of these  rules is done through 
fully configurable and already established Linux network tools. 

OpenEPC Serving GW. It includes the PMIP Mobility Access Gateway (MAG) 
functionality. It is also integrated with a modified version of the ISC-DHCP server, 
which offers support for both IPv4 and IPv6. The attachment of the UE to the EPC is 
detected at network level through a request for an IP address received by the DHCP 
server. During the tunnel establishment  with the PDN GW the IP address to 
be allocated  to  the  UE  is  received  and  it  is  then  forwarded  as  the  address  to  
be transmitted by the DHCP server to the UE. The S-GW includes also a Bearer 
Binding and Event Reporting Function (BBERF) module for policy enforcement and 
event notifications related to the data traffic. It connects to the PCRF through the Gxx 
interface and receives QoS rules which are then enforced using standard Linux tools 
like iptables, traffic control etc. 

OpenEPC ePDG. It includes the same functionality as the OpenEPC Serving Gate-
way, but with a special interest into non-3GPP access. For further releases IPsec 
connection to the UE will be deployed together with the EAP-AKA authentication 
interfaces, as to completely discriminate between the trusted and the un-trusted 
non 3GPP accesses [9]. 

OpenEPC ANDSF. It is based on several not yet standardized functions necessary 
to provide the demonstrative role of this entity in the EPC: the interface to the HSS 
for subscription profile fetching and the enabler to make decisions not only based on 
the location of the UE, but also on its required parameters as well as on the network’s 
operational requirements. As standardized, it communicates to the UE to provide 
access networks available in the vicinity of the mobile device using the OMA DM 
communication mechanism and the Management Objects format of 3GPP [8]. 

Mobility Manager. For  the  UE, a minimal Mobility Manager  was imple-
mented which is able to retrieve data from the ANDSF in both PUSH and PULL 
modes, to make  decisions on  which access network to  select  for  an initial  and  
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subsequent attachment and to execute the afferent procedures, including handovers. 
The client platforms which are currently enjoying the largest deployments, like Win-
dows™ and Linux for laptops/netbooks, or Android, Maemo 5 and Windows Mobile 
for smart-phones, are supported, with support for more extensible based on require-
ments. For deeper  integration  and  more  advanced  demonstration  of  the  EPC  
features,  the Mobility Manager features an open interface, demonstrated for example 
by the integration with the MONSTER [10] client platform. 

VTU
N

 

Fig. 2. OpenEPC Testbed 

2.2   Interconnection with the Access Networks and Applications 

As depicted in Figure 2, for the interconnection with the access networks, the 
OpenEPC uses the functionality described for the S-GW and the ePDG. Currently, 
the communication is sustained over a public 3G access network. A direct link layer 
connection is simulated through a Layer 2 tunnel (VTUN) which encapsulates all the 
link and network layer packets (e.g. DHCP, IP etc.) in UDP over IP packets. This 
special setup gives the opportunity to test the EPC procedures on a realistic environ-
ment, without interacting with the real access network provider and as such practi-
cally circumventing the high-costs usually associated with such testbeds. A local 
WiFi access network can also be easily deployed and connected to the OpenEPC 
ePDG, making the scenarios that can be demonstrated as realistic as possible for the 
testbed. This brings the total cost and complexity of running an EPC testbed to the 
minimum, while, of course, more realistic setups can be employed in case  
direct access to the SGSN/GGSN or eNodeB components if feasible. 

OpenEPC provides inter-connection between the applications and services 
layer and the network layer. It provides IP connectivity far beyond the concept of 
an IP pipe by supporting extended features like QoS resource reservation, prioritiza-
tion and information on events happening at the link and network level (e.g. the UE 
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lost connectivity or a handover to another access network occurred) upon request 
of the applications. These features are realized through two interfaces. The SGi inter-
face is the IP interface from PDN-Gw to applications layer through which user data 
is sent. The Rx interface from PCRF to application layer is the signaling interface 
based on Diameter that allows the application layer to request special treatment to 
certain service flows and to get notifications upon events occurring in the access 
network. OpenEPC  provides  both  interfaces  and  example  functionality to  dem-
onstrate  the interconnection to both Internet and the 3GPP IMS. The OpenEPC can 
be also used in conjunction  with the IMS, providing for the IMS services QoS, 
IP mobility and security. The OpenIMSCore [11] provides the perfect extension to 
the OpenEPC in this area. IMS can be used for Voice over IP (VoIP) or other multi-
media services. Independent of the implemented services, the P-CSCF of OpenIM-
SCore supports the Rx interface towards the PCRF and requests service authorization 
and resource reservation from IP connectivity layer. Moreover the OpenEPC plat-
form can also be used to connect to plain Internet, in order to make use of the ad-
vantages of the communication between the applications and the EPC, providing a 
better control of network usage. 

3   Proof of Concept Implementation 

For showing the capabilities of the OpenEPC in the area of seamless mobility be-
tween heterogeneous access networks, advanced triggers for mobility, QoS decisions 
and enforcement, interconnection with the service delivery platforms and personal-
ization of services multiple testing scenarios were implemented, from which the 
following were selected as the most representative. These are presented here as vali-
dation proofs of the OpenEPC platform, as they can be demonstrated in the cur-
rent state. 

Mobility Scenarios. In EPC, a network provider is able to restrict the access of a UE 
to specific access networks by modifying the subscription profile. This scenario pre-
sents an initial connectivity case in which one subscriber attaches to one access  
network, as exemplified in Figure 3, to the 3G network. After the initial attachment, 
it connects to the ANDSF and requests the default attachment policy. For this pur-
pose, the  ANDSF  fetches  the  client’s  subscription  profile  from  the  HSS,  which  
was modified  during the  inactive  time  the  UE as  to  restrict  it to  connect  to  
the  3G networks. Then the ANDSF evaluates inter-system policy in conjunction with 
the subscriber profiles and makes a mobility policy decision in order to find another 
suitable access network to maintain the data traffic. It finds that a WiFi access is 
available in the vicinity of the mobile device and it sends as a response to the UE 
with a policy indicating that an immediate handover to the WiFi is required, which 
the UE executes. The modification of the subscription profile can happen also during 
the service of the mobile device. In that case, the ANDSF receives a notification 
from the HSS containing the modifications of the profile and upon this trigger it 
makes the decision  for  mobility. The ANDSF alerts the  UE in this case,  which 
practically triggers an immediate policy PULL between the UE and the ANDSF. 
Using the new policies, the UE executes the handover procedures. The mobility 
may be triggered also by the loss of signal to the access network to which the UE 
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is connected to. In this case the UE either uses the policies of handover as they were 
previously transmitted by the ANDSF or requires new policies. It is to be noted that 
in OpenEPC the policy transmission to the mobile device can be either synchronous 
with the handover trigger or asynchronous based on the location change of the UE. In 
the second case, when the network or the UE notices a change in location new 
policies are either pushed or pulled to the UE. 

 

Fig. 3. Subscription Based Mobility 

This scenario was tested with and without having a real-time video application es-
tablished between the UE and a server providing the service. As specified by the 
PMIP standard, the same IP address was allocated to the two interfaces of the mobile 
device which made the service to be seamless to the user. This opens the possibil-
ity for the operators to deploy seamless services across multiple access technologies 
without having to extend the functionality of neither the mobile devices nor of the 
service platforms. 

QoS Control Scenarios. In OpenEPC, the subscription profile can be used to pro-
vide different QoS levels for the same service For instance a list of prioritized ser-
vices is provisioned, or different QoS profiles can be provisioned for different users 
[4], [5]. This allows the OpenEPC  network provider to offer differentiated service 
levels according to subscriptions which may be bound with different charging 
schemes. An UE connected to one access network, for example to the 3G network as 
depicted in, initiates the establishment procedures with the Application Function 
(AF). After the session parameters are negotiated, the preferred QoS levels are 
indicated  by the application function to the PCRF which fetches the subscription 
profile from the HSS. Based on this subscription profile it makes the policy based 
decision whether the user is allowed to use the negotiated level of resources. Then 
the decision is enforced on the PDN GW and on the access network gateway. During 
the testing process, a SIP based video service was used as a stub for services. The 
PCRF offered the required level of resources for one subscriber, but a smaller level 
for another one. For the subscriber which received the required level of resources the 
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service was available at a good quality of experience while for the other it deterio-
rated fast. If other mechanisms of detecting the service are available, like Deep 
Packet Inspection ones, in which the EPC detects the service, then the network op-
erator may increase or decrease the quality depending on the service, the service 
provider and the momentary conditions in the access networks. 

Service Adaptation to Network Context. Different wireless access technolo-
gies offer different capabilities to which the services have to be adapted. OpenEPC 
provides the connection between the access networks and the service layer which 
allows to inform the  applications when the characteristics of the access net-
work through which a UE communicates change due to a vertical handover. This 
allows the services to adapt to the change and to transmit its data according to the 
requirements of the UE in the new access network. In this OpenEPC scenario, a UE 
is attached to one access network; as depicted in Figure 4, it may be the 3G network. 
A service is initiated with an Application Function (AF) having a negotiated level 
of resources. The AF in this case subscribes to an access network type event for the 
specific UE, as the service may be received with different qualities depending on the 
access technology. A handover is triggered by the ANDSF, in the case of the first 
version of the OpenEPC, manually by the operator of the testbed. A handover indica-
tion is transmitted to the UE, which requests a handover to a WiFi access network. 
The UE attaches to the WiFi access network and the event of the new attachment is 
received by the PCRF. The PCRF informs the subscribed application function that 
the UE has changed the access network and receives in return the new parameters 
which are to be enforced  for  the  target  access  network.  The  new  QoS  level  is  
enforced  on  the gateways and the AF changes its parameters too and continues to 
provide the service uninterrupted. 

 

Fig. 4. Service Adaptation to the Network Environment 

Internet Services over OpenEPC. OpenEPC is prepared to offer more than just 
best-effort IP pipes for any type of IP services. It can connect to any internet service 
delivery platform, exporting the same capabilities as given to IMS. As a testing sce-
nario for the OpenEPC, an HTTP Proxy based on the Squid project and enabled with 
the Rx interface was used. Two mobile devices were used. One which uses the HTTP 
Proxy and one that does not. As a service, a public third party TV broadcast from the 
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Internet was used. For the user which connected over the HTTP proxy the service 
received the required quality while for the user which did not use the proxy, as the 
service remained transparent to the EPC, the resources usually allocated for the de-
fault communication were used. Then the PCRF makes the decision on which level 
of resources are to be allocated, based on the type of service, the subscription infor-
mation  and  the  momentary available  resources in the  access networks. This 
allows operators to dynamically discriminate between the different services which 
the UE are allowed to use depending also on the location which gives the possibility 
of introducing new charging schemes. 

4   Conclusions and Further Work 

The OpenEPC platform, here presented conforms on one side to the standards of 
3GPP and it also provides different researched optimizations which enable the opera-
tors to easily test and to enhance their requirements for the device manufacturers. It 
offers also to the device manufacturers, the basis for further development of concepts 
and proof of concept demonstrations for a fast development of standards and new 
products. Continuing in these two directions, the OpenEPC will develop to further 
include more standards related to the Next Generation Mobile Network Core 
architecture with a high regard for new service platforms and access networks. It 
will also contain new concepts regarding Self Organizing Networks, more flat 
network architectures and Future Internet research activities. 
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Abstract. As an effort to devise and experiment diverse types of media-
oriented service compositions supported by Future Internet infrastruc-
ture, this paper introduces an attempt to build a service-oriented testbed
named as FIRST@PC (Future Internet Research on Sustainable Testbed
based on PC) MediaX (Media eXperiment). Following the SOA (service
oriented architecture) paradigm, FIRST@PC MediaX targets a flexible
and cost-effective testing environment where media-oriented service com-
positions are flexibly realized on top of virtualized computing/networking
resources. In this paper we will discuss on-going efforts on designing and
building this testbed with several PC-based devices for media acquisi-
tion, media processing, display (networked tiled display), and network-
ing. Specially, the preliminary implementation of agent-based software
toolkit called as OMX (Open Media eXperiment for service composi-
tion) is explained and verified by testing a HD-media service scenario
that combines multiple HD videos.

Keywords: Service-oriented testbed, service composition tool, media
services, service composition experiment, and Future Internet.

1 Introduction

Ever-increasing demand for immersive media contents has raised flexible multi-
media systems that understand widely dispersed media contents/tools and dy-
namically compose media-centric services with diverse computing/networking
environments [1]. To realize the vision, several work accommodated the fun-
damental basis of SOA (service oriented architecture) [2] in building large-
scale multimedia applications based on media-oriented service composition [3].
This paradigm made a broad impact to multimedia communities, which led to
move from monolithic multimedia applications to more flexible component-based
ones. Note that the service composition in SOA decomposes complex tasks into
smaller independent entities (e.g., Web services), and then supports a flexible
service composition in a variety of ways. Unlike the Web service composition, a

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 176–185, 2011.
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composed media service should handle the support challenge of networking con-
tinuous data flows (e.g., audio/video streams) that have strict restrictions on
timing and resources [3].

Testbeds are considered as a key tool to test semantical correctness and ba-
sic functioning of a new technological idea. These testbeds are running with a
control framework that controls and manages testbed resources for user experi-
ments. Testbeds additionally provide experimenters with tools and methods to
build and execute their own experiments. For example, GENI Future Internet
testbed effort [4] develops a suite of network research infrastructure with vir-
tualized resource substrate, which encourages experimenters to easily develop
new protocols and services using open, large-scale, and realistic experimental
facility. PlanetLab, ProtoGENI, ORCA, and OMF (cOntrol and Management
Framework) are current candidates of GENI control framework.

Hardware substrate

Testbed control framework

Media-oriented service composition experiment Scope of media-centric 
service-oriented testbed

Fig. 1. Technical focus of service-oriented testbed

To facilitate the diverse experimental needs for media-centric service compo-
sition, as shown in Fig. 1, in this paper, we focus on a media-centric service-
oriented testbed that carries out media-centric service composition experiments,
by leveraging the support of testbed control framework (e.g., from GENI) and
by specializing on tools and hardware for massive media processing and delivery.
Like this, in order to flexibly devise and build new media-centric services, we at-
tempt to build a service-oriented testbed named as FIRST@PC (Future Internet
Research on Sustainable Testbed based on PC) MediaX (Media eXperiment)1.
With this experimental testbed, we hope to incubate innovative and creative
ideas for futuristic media-centric services. Key challenges are in extending exist-
ing testbeds further to support complicated service composition and in stably
operating the developed testbed through new control and management tools for
media-centric service composition, albeit with following features:

• Flexible service composition: Experimenters should be able to flexibly com-
pose services based on the functional service dependency relationship among
component services;

• Dynamic service adaptation combined with monitoring: The composed ser-
vice should be able to adapt itself according to the monitored service status
and resource utilization.

1 In [5], a very early design for FIRST@PC testbed is presented by combining
hardware-accelerated programmable networking [6] and virtualization [7] to support
the experiments on media-oriented service composition.
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The rest of this paper is organized as follows. Section 2 introduces basic concept
of FIRST@PC testbed and key building blocks. Section 3 describes the build-
ing progress about FIRST@PC MediaX testbed with special attention to OMX
(Open Media eXperiment for service composition) toolkit. After explaining the
HD-media service composition experiment for verification in Sec. 4, we conclude
this paper in Sec. 5.

2 FIRST@PC: Media-Centric Service-Oriented Testbed

In this section, we explain the basic idea about FIRST@PC testbed from con-
ceptual illustration to key building blocks.

2.1 Testbed Conceptual Design

A conceptual illustration of FIRST@PC testbed (in short TB) is depicted in
Fig. 2. Administrators and experimenters are accessing the computing/
networking resource substrates in an aggregated form called resource aggrega-
tion (RA). The controlled access to resource substrates are managed by slice

MediaX RA manager NetOpen RA manager

Administrators

TB
Management

Server

TB
Experiment

Control Server

NetOpen RA & MediaX RA

. . .

Slice #1 Slice #2 Slice #3

Composite service #1 Composite service #2 Composite service #3

Tiled display service

Transcoding service

Video tiling service

Video composition serviceLive capturing service

Service Composition Experiment

Mobile display service

Display service

Live capturing service

Caching service

On-demand content service

Experimenters

Experiment 
Description #1

Experiment 
Description #2

...

Local area network

Fig. 2. A conceptual illustration of FIRST@PC testbed
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control, which is actually coordinated among the corresponding RA managers,
TB management server, and TB experiment control server. Two kinds of RAs
are assumed: MediaX (for computing and storage) RA represented by two small
CPU and storage icons and NetOpen (for networking) RA represented by com-
munication link icon. MediaX RA prepares high-performance computing and
GPU-based media processing acceleration capability with high-volume storage
for diverse media-centric service composition experiment. NetOpen RA supports
OpenFlow-compatible [8] hardware-accelerated (e.g., NetFPGA [6]) programable
and virtualized networking capability. To make a service composition, an end-
to-end slice is created where multiple nodes in both MediaX and NetOpen RAs
are connected in a service path. Note that, in Fig. 2, three slices #1, #2, and #3
are illustrated to depict three connected composite services in a Internet-based
broadcasting scenario.

2.2 Testbed Key Building Blocks

FIRST@PC testbed mainly comprises of two key building blocks: RAs, and
coordination servers (RA managers, TB management server, and TB experiment
control server).

Each RA (resource aggregation) represents a group of PC-based computing
and/or networking resource substrates. Typical resource substrates include com-
puting (e.g., CPU and GPU power), storage (e.g., memory and disk array), and
networking (e.g., NetFPGA and wireless network interfaces) resources. A node
should support virtual nodes that can take utilize selected portion of virtualized
(hopefully isolated) resources. Note that virtual nodes are can be associated ei-
ther with slice control for experiments or resource management for TB operation
& management.

Among the coordination server, first, each RA manager manages his RA by
allocating resources on behalf of individual nodes and helping the configuration
of RA nodes. It also supports open but authorized access for resources according
to the privilege of experimenters and administrators. The TB management server
is responsible for operating and managing TB by involving with slice control,
resource management, and resource monitoring. Finally, TB experiment control
server enables experimenters to describe service composition experiments and
supports service control and its status monitoring.

3 Preparing FIRST@PC MediaX Testbed for
Experiments

In this paper, we focus on running experiments on media-centric service com-
position only with MediaX RA, temporarily setting aside the programmable
and virtualized networking capability of NetOpen RA. After explaining how to
conduct the media-centric service composition experiments, we discuss on-going
realization of FIRST@PC MediaX testbed with special emphasis on the agent-
based OMX toolkit for service composition experiments.
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3.1 Target Service Composition Experiments

With the FIRST@PC MediaX testbed, we are currently working to realize the
experiment on service mapping coordination based on a template-matching ap-
proach, as investigated in SpiderNet [9] and SeSCo [10]. Generally, for the media-
centric service composition, the input media sources that end users want to
receive are going through composition processes to be displayed in various user-
defined presentation formats (e.g., layout including size and resolution, and vi-
sual effects). The service composition experiment matches component services
with available resources of appropriate QoS characteristics (e.g., delay, jitter,
loss, and playout continuity). This process is conducted by connecting compo-
nent services into a composite service according to the service dependency graph
and composition algorithm. The connection is actually made by binding the in-
terfaces of component services together, which is equal to making an end-to-end
slice for service composition.

As the first target experiment of FIRST@PC, we are considering a personal-
ized and interactive broadcasting scenario. As depicted in Fig. 2, we define two
underlying networks specialized for media production and distribution. Future
media production enables real-time and online distributed video editing, where
numerous media sources (e.g., live 4K video and panoramic multiple HD video)
are dynamically integrated together. These integrated media streams are con-
verted (with the aid of transcoding services and media upscaling/downscaling
services) and delivered (e.g., multicasting services) to match the target end sys-
tems. Our target experiment assume that such heterogenous display devices
receive common contents from live capturing service(s) and/or an on-demand
content service. Three composite services are defined for mobile display, TV,
and tiled display, respectively. Especially, for the composite service #3, the most
powerful tiled display can service multiple media contents by selectively binding
on-demand content service, live capturing service, video editing service, caching
service, video tiling (partitioning into several tiles) service, and networked tiled
display service.

These composite services, as a connected set of composable component ser-
vices, are represented by a directed acyclic service dependency graph to express
the functional dependencies. To run the service composition experiments, we first
need to describe the targeted service composition with the service dependency
graph. For this, it is required to clarify the relationship between the component
services and used resources. However, since this clarification is not an easy task,
the experimenter may rely on his interpretation and interactively guide the ser-
vice composition. To avoid the manual interactive composition, we can upgrade
the experiment to adopt a composition algorithm to automatically coordinate
the service mapping between the service dependency graphs and physical dis-
tributed component services. We may further extend to the dynamic composition
experiments, where the dynamic change in the connection path is automatically
negotiated to overcome the unexpected congestion of underlying network links.
We may also experiment the impact of load balancing method that evenly dis-
tributes total resources for dynamic composition of multiple media distribution.
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Fig. 3. FIRST@PC MediaX architecture (tentative)

3.2 FIRST@PC MediaX Architecture

Fig. 3 illustrates FIRST@PC MediaX architecture2. Experimenters formally
specify the targeted service composition with quantitative requirements such
as required component services and their configuration parameters (with nu-
merical permissible ranges). They also describe adaptation rules to dynamically
change composite services (e.g., service migration) according to events. The TB
experiment control server assists the experimenters by feeding registry informa-
tion about the capabilities of MediaX RA nodes to estimate the capabilities of
instantiated component services. Measurement reports collected from real-time
computing/networking performance data are used to configure component ser-
vices and later enforce adaptation rules. On the other side, the TB management
server enables administrators to register MediaX RA nodes and periodically
monitor their status. We currently use OMF [11] for TB management and man-
age resources (e.g., resetting nodes, retrieving node status information, and in-
stalling new OS images). We also use the companion OML (Orbit Measurement
Library) [12] to monitor TB resources (i.e., gather CPU/memory usage and the
IO traffic amount).

To efficiently support multiple concurrent experiments, MediaX RA nodes
need to provide virtualization of computing/networking resources. We are work-
ing on OpenVZ container-based virtualization that can virtualize resources of a
common operating system for multiple virtual nodes. In a node, the node man-
agement governs the allocation of resources to virtual nodes. In each virtual

2 Blocks in gray text in white background are not yet fully implemented. Also, blocks
tagged with OMX belong to OMX toolkit, explained in Section 3.3.
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node, an agent starts and stops component services and monitors its current
status (e.g., inactivated, activated, or defected). Utilizing the allocated (virtu-
alized) resources, component services provide elementary media functions and
they are connected by taking the order from the TB experiment control server.

3.3 OMX Toolkit for Service Composition

To assist the composition experiment, the OMX (Open Media eXperiment for
service composition) toolkit provides software agents (i.e., including experiment
control agent, node agent, and service agent) with experimenter interfaces. Cur-
rently, the OMX toolkit (version 0.1) manually connects component services
according to the service path3 drawn by experimenters. To implement OMX
toolkit, we use JADE (Java Agent DEvelopment framework), a FIPA-compliant
multi-agent middleware.

The service composition description, written in XML, includes <name> rep-
resenting the service identifier, <max instances> representing the permissible
number of the service instances to be executed, and <control interfaces> spec-
ifying control interfaces (e.g., shell command) and their input parameters. For
each virtual node, experimenters write Java code to describe their experiments
by linking with the OMX agent that implements callback methods such as start,
stop, serviceLinkAdded (when the service to be connected is determined), and
serviceLinkRemoved (when the service to be disconnected is determined). Also,
the OMX toolkit provide an experimenter UI (user interface) to facilitate the
service composition experiment. The experimenter UI shows all available nodes
and component services supported in each node. To draw a service dependency
graph, an experimenter selects nodes by drag-dropping it from the node list,
chooses a component service to be run, and connects a node with another.

4 Service Composition Experiment with FIRST@PC
MediaX Testbed

4.1 Testbed Setup

FIRST@PC MediaX testbed, depicted in Fig. 4, includes MediaX nodes cate-
gorized into three different purposes: media servers, adaptors, and a networked
tiled display. Media servers feed MPEG2-encoded live video. Adaptors do real-
time media processing with GPU-based computing assist. The networked tiled
display realizes ultra-high resolution by tiling multiple LCD displays. Most Me-
diaX nodes are connected via 1Gbps LAN while some are connected via 10Gbps
to handle multiple uncompressed HD videos.

4.2 Service Composition Experiment

A service composition experiment for sharing HD-media and desktop screen is
specified by a service dependency graph depicted in Fig. 5(a). Live capturing
3 The service path, a special case of a service dependency graph, shows how all com-

ponent services are connected into a single successive end-to-end chain.
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Fig. 4. Deployment diagram of FIRST@PC MediaX testbed

(a) Service graph drawn in the OMX toolkit interface.

(b) HD videos and shared desktop screen rendered.

Fig. 5. Experimental results of multiple HD video service composition

services acquire HD live videos and delivers the MPEG2-TS video stream to
corresponding decoding services (realized by a VLC media player). Decoded
uncompressed video are then sent to the networked tiled display. Also, an inter-
active graphics producer service captures desktop screen and transports graphic
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streams (using TightVNC). An interactive graphics consumer service receives
graphic streams and converts them for networked tiled display. All these com-
posite service results are depicted in Fig. 5(b).

Fig. 6 illustrates the communication messages exchanged between the agents
for involved component services. Composition is performed in backward sequen-
tial order from destination to source services along the service path. When a
component service is asked to start, it consumes time to initialize its function.
While the tiled display service prepares the service execution, the decoder ser-
vice periodically sends QUERY IF messages to inquire about the service status.
The tiled display returns INFORM message with its IP address and port number
when it is started. The decoder service prepares streaming to the IP address and
port number. Similar procedures are repeated between the live capturing service
and the decoder service.

5 Conclusion

An on-going effort to design media-centric service-oriented testbed called
FIRST@PC MediaX was described where media-oriented service compositions
are flexibly realized on top of virtualized computing/networking resources. Cur-
rent design and realization on top of several PC-based devices for media acqui-
sition, media processing, display (networked tiled display), and networking were
extensively explained with the preliminary experimental testing based on the
OMX toolkit.

Acknowledgments. This paper is one of results from the project (2009-F-
050-01), “Development of the core technology and virtualized programmable
platform for Future Internet” that is sponsored by MKE and KCC.
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Abstract. Testbeds have become standard tools for performance eval-
uation in wireless networks as they allow for evaluation with realistic
wireless propagation and interference conditions, hardware constraints
and timing requirements. However, in most testbeds, traffic and user
mobility is generated by either using synthetic load generation tools, or
replaying traffic traces. Evaluations using live traffic generated by real
users, possibly moving around the network, are typically not possible.
This is the main motivation of our research: building a wireless research
testbed that enables experimentation with live traffic. In this paper, we
present the design and architecture of a campus-wide wireless network
testbed towards this goal. Our testbed enables both transparent Inter-
net access and seamless mobility to the network users, and supports full
network reconfigurations in the presence of live traffic. The reliability
of user traffic is guaranteed by failure avoidance mechanisms that are
invoked whenever a disruption occurs in the network.

Keywords: Wireless testbeds, live traffic, online configurations.

1 Introduction

Wireless networking research has gained prominence over the years due to its
potential for realizing “anytime, anywhere networking”. However, the transi-
tion from research to production level deployment has been somewhat slow as
many wireless networking ideas do not typically move out of simulation environ-
ments. Therefore, despite the efforts for more realism and accuracy in wireless
simulation [1,2,3], evaluation with testbeds needs to become more prevalent to
understand the impact of realistic wireless propagation and interference condi-
tions, hardware constraints and timing requirements. However, evaluation with
testbeds is extremely tedious: research ideas are throttled by high implementa-
tion barrier, cumbersome and time-consuming experiment set-up and debugging,
and validation challenges. These difficulties preclude testing in real systems and
limit a broader adoption of testbed-based experimentation and evaluation.

To address these difficulties, wireless testbeds such as Orbit [4,5] and Emu-
lab [6] allow for automating network and topology configurations and provide

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 189–198, 2011.
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better experiment management and repeatability. Although these works ease
deployment (e.g., by providing remote access to nodes and operating system
distributions, tools to automatically script measurements), the implementation
of an idea still remains significantly difficult. For instance, even the reconfigu-
ration of network protocols and parameters need to go through invasive kernel
changes. Therefore, current testbeds need to facilitate both implementation and
deployment. Furthermore, current wireless testbeds do not typically serve live
user traffic. In addition to allowing realistic input for evaluations, serving real
users also urges researchers to build complete systems.

To the best of our knowledge, no testbed exists that provides both real-user
traffic and easy online reconfigurations for wireless networking experimentation.
We believe this limits full evaluation of research proposals; i.e., answering how a
system behaves under different conditions, and finding out the underlying rea-
sons for such behavior and the advantages of a system compared to others. To
this end, a research testbed should allow for reconfiguring the network and run-
ning experiments with live traffic, characterizing the current network, traffic and
mobility conditions, correlating system behavior to these conditions, and repro-
ducing past conditions and system behavior. Bringing all these together presents
a much challenging agenda. However, we assert that it is also much required to
be able to fully evaluate systems. In this paper, we present a first step - the
design, architecture and implementation of a testbed, the Berlin Open Wireless
Lab (BOWL) 1, which reliably supports live traffic in a research network.

The main challenges that we address in this work stem from the conflicts
between the expectations of network users and researchers. Real users expect
reliable network access and privacy. On the contrary, a research network is an
unstable environment with frequent outages due to experimental software and
reconfigurations. These two different viewpoints create the following trade-offs
in a research environment:

– Reliable Internet access for users vs. network programmability
for researchers: Researchers require network programmability to run con-
trolled experiments. In turn, any disruption to the user traffic in the presence
of experiment reconfigurations or an outage caused by experiment failures
should be avoided. Essentially, failure avoidance mechanisms should auto-
matically push the network to a safe state and gracefully recover affected
nodes.

– Privacy for users vs. providing a rich set of measurements for re-
searchers: Since user traffic is not controlled, all the parameters of the un-
derlying layers, e.g., TCP, routing and medium access control (MAC) layers
should be captured for any meaningful measurement study. Furthermore,
application level information might be necessary to reproduce an experi-
ment. However, the measurement and tracing of system information should
be performed without jeopardizing user privacy.

1 http://bowl.net.t-labs.tu-berlin.de/
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The main contribution of our research is providing two essential capabilities that
address these trade-offs:

– Automated and online reconfigurations: it includes turning on/off function-
ality of a specific protocol and changing protocols at different network layers
respecting inter-layer dependencies.

– Hosting real user traffic: this requires avoiding disruption to the user traf-
fic during reconfigurations. Failure avoidance mechanisms are triggered to
automatically push the network to a safe state during reconfigurations. The
network comes out of this state once a reconfiguration is complete.

To the best of our knowledge, this is the first wireless testbed of its kind.
The rest of the paper is outlined as follows. In Section 2, we present the im-

plementation of our outdoor wireless testbed, both its network and node design,
as well as the software components. In Section 3, we present an example config-
uration of our network: the mesh network configuration. Section 4 discusses the
related work and we conclude in Section 5 with a summary and future work.

2 The Berlin Open Wireless Lab Network

To create our testbed, we deployed 46 nodes outdoor, on the rooftop of several
buildings in the TU-Berlin campus, covering roughly 40 hectares. The maximum
link distance is one kilometer. In addition, we deployed 12 nodes indoor on two
floors of the Deutsche Telekom Laboratories. In the remainder of this section, we
walk through our network and node design, software architecture and the main
components for reconfigurations with live traffic.

2.1 Network Architecture and Node Design

Our network architecture and the node design are shaped mainly by our design
objectives: to be able to perform remote management as well as failure avoidance
and recovery in the presence of disruptions to the network (e.g., due to failures or
launching new experiments), and to provide a rich set of configuration options.
To achieve high topology configurability, our nodes are deployed densely in the
campus, allowing switching off a significant fraction without losing connectiv-
ity. This enables effective evaluation of power control and interference issues in
dense networks. Additionally, our nodes have several wireless interfaces. Also,
the antenna poles are extensible and can easily host additional hardware.

Our mesh nodes are built around an Avila Gateworks GW2348-4 motherboard
[7]. Each node has an Intel XScale 533 MHz CPU (ARM architecture), 64 Mbyte
of RAM and four wireless interfaces - Wistron CM9 with an Atheros 5213 chipset.
One wireless interface is always operated in the ISM band at 2.4 GHz, running
IEEE 802.11g, where either a 2.4 GHz 12 dBi omnidirectional antenna or a
17 dBi sector antenna is attached. This interface provides an access point (AP)
functionality for users to access the network and the Internet. The three other
wireless interfaces are operated in the UNII 5 GHz band, where a 5 GHz 12 dBi
omnidirectional antenna is attached.
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For most of the rooftop nodes, physical access is severely limited. Therefore,
each node is remotely accessible through a wired, 100 Mbit/s Ethernet, con-
nection. This Ethernet connection plays a critical role for remote management,
failure avoidance and reconfigurations. In practice, the outdoor nodes and the
indoor nodes are on two separate VLANs that connect to a central router. Two
other VLANs are also attached to this central router: one connects to the Inter-
net through the TU-Berlin network and the other one is used for management.
For failure avoidance, additionally, a hardware watchdog daemon automatically
triggers a reboot in case of malfunction or connectivity loss. Finally, a major-
ity of the nodes contain a second independent unit for managing the router in
case of a malfunction or as a passive measurement and monitoring device. This
second unit is built around an Asus WL-500GP router. A custom-built circuit
interfaces the two boards and allow us to remotely power on and off each board
from each other. The nodes are powered by Power over Ethernet (PoE). Hence,
for the rooftop nodes, only one cable per node is necessary. Both units run a cus-
tomized version of the OpenWrt operating system, a GNU/Linux distribution
for embedded devices [8].

2.2 Software Architecture

Building on its hardware and network architecture, BOWL brings together sev-
eral software components to achieve a reconfigurable live network:

– Online reconfigurations provide network, topology, parameter and pro-
tocol reconfigurations.

– Failure avoidance mechanisms switch nodes to a fail-safe state to main-
tain reliability during disruptions.

– Remote management and monitoring remotely and automatically man-
ages nodes as well as checks their status.

– Measurements and tracing provide user, system and network
information.

– Visualization and control interface provides both flow and connectivity
based views of the network in real-time.

In the rest of the section, we explain these components in further detail.

Online Reconfigurations
To run experiments in a wireless network, researchers need the capability to
perform automated and online reconfigurations. To this end, the BOWL testbed
can be run in different network configurations for each experiment. We currently
support three basic configurations: an infrastructure network (the default con-
figuration), a mesh network or a mixture of the two.

In each configuration, the 2.4 GHz wireless interface is used as the “client
interface” to provide an AP functionality for Internet access. However, it is up
to the experimenter to use the live traffic or to direct it straight to the Internet
over the wired interface. In the infrastructure configuration, the client interface is
transparent and bridged to the central router. Authentication and access control
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are handled on this central router, as well as DHCP. We provide transparent and
seamless mobility and roaming between the APs. This is achieved by mainly
running the “client interfaces” in promiscuous mode.

Additionally, the BOWL testbed supports configurations for changing the net-
work topology, exploring the parameter space of a given protocol, or comparing
different protocols under similar network conditions. To modify the topology, we
support connecting additional nodes to or disconnecting nodes from the network
remotely. The level of network connectivity can also be modified by changing
the per-node transmission power levels. Going a step further, we also support
modifications to protocol parameters. For instance, we can change a MAC layer
functionality: turn on and off RTS/CTS in IEEE 802.11. We also enable entire
protocol switches at a given layer of the network stack. As a proof of concept,
we currently support routing protocol switches in our mesh configuration. These
examples are explained in more detail in Section 3.

For efficient execution, all these reconfigurations rely on the “remote manage-
ment and monitoring” component, which will be described later in this section.
Furthermore, during all these reconfigurations, user traffic is expected to be
disrupted. How to protect user traffic from such disruptions is discussed next.

Failure Avoidance Mechanisms
The core of our software design consists of providing one stable and safe default
configuration, or “rescue” mode to fall back to during disruptions and a very
flexible “live” mode to facilitate research. This is implemented by installing a so-
called “rescue system” and possibly multiple so-called “guest systems”, each of
which are fully self-contained Linux systems. To this end, we extended OpenWrt
for our purposes. The rescue system is installed on the internal flash memory of
all the nodes and is started by the boot loader. Guest systems are installed on
additional flash memory storage.

The rescue mode boots the rescue system, runs the default infrastructure
configuration (i.e., the user traffic is bridged to the central router over the wired
interface) and provides the functionality to install and launch guest systems.
The live mode boots a guest system and runs a configuration corresponding to
an experiment. Both modes must always implement the AP functionality.

In addition to the rescue and live modes, BOWL supports a “transient” mode,
where the data flows by default through the Ethernet interface and can be repli-
cated over the wireless network for testing (i.e., the duplicate traffic is discarded
at the exit point of the network). Like the AP functionality, the transient mode
must be implemented by any guest system.

Failure avoidance makes nodes to fall back to either rescue or transient modes.
It can be triggered on-demand whenever we expect a major disruption or auto-
matically. If the watchdog triggers a reboot, a node reboots in the rescue system.
The expected delay is in terms of a few seconds. The management of these differ-
ent states are handled by the “remote management and monitoring” component,
which is explained next.

For the implementation of the online reconfiguration and failure avoidance
mechanisms, we make extensive use of the Click modular router [9,10].
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Remote Management and Monitoring
The management architecture was designed using a centralized approach that
contains two parts: (1) A central node manager keeps various pieces of node
state and information in a database and marshals commands and information to
the nodes. (2) A node controller runs on each node and executes commands
initiated by the central node manager, as well as collects state and information,
which, in turn, are sent back to the central node manager.

All software is written in Ruby [11], as it is readily available on several plat-
forms which cuts down development time in case we upgrade or change our hard-
ware. The second reason is the availability of Distributed Ruby (DRb), a remote
method invocation (RMI) implementation. The database uses Postgresql[12].

The central node manager is a process that uses a database back end to main-
tain information about each node controller. Communication is marshaled to the
nodes using DRb, which allows for both state and code distribution. In addi-
tion, the central node manager implements an event-based callback framework.
Finally, the node manager supports exporting data to other components (e.g., a
visualization component) out of the database. To support privacy, sensitive data
is mangled: for example, the MAC addresses are anonymized.

Each node runs an instance of the node controller to communicate with the
central node manager. The node controller implements two main concepts: so-
called adaptors and an event framework. An adaptor maintains a particular
functionality on the node (e.g., DHCP), control various daemons and relay infor-
mation to the node controller itself. Each adaptor runs in its own thread within
the controller process. In the default configuration, the default adaptor is the
association adaptor, which maintains information about the associated clients.
The central node manager learns about new clients through this adaptor.

The event framework allows the controller to react to changes in the envi-
ronment and the state of its adaptors. The typical communication flow between
a node controller and central node manager is as follows: (1) Changes in an
adaptor may result in an event. (2) This is relayed by the node controller to the
central node manager. (3) Next, this may lead to the execution of callbacks. (4)
The callbacks, in turn, may be dispatched back to the node in question.

Measurement and Tracing
Measurements typically consist of data points, collected by the nodes and trans-
ferred into the measurement database for further processing (e.g, for visualiza-
tion). Measurement and tracing processes currently run separately from the node
controllers. However, like any other program, these processes are also generally
configured and started through the node controllers. To collect measurements
from the nodes to a central location, we extensively use the Orbit measure-
ment framework and library (OML), which comprises a measurement library
and server developed in the context of the Orbit testbed [13]. We currently
support two ways of collecting data. Connectivity measurements collect signal
strength information by monitoring IEEE 802.11 beacons or other traffic, and
traffic measurements collect data regarding the existing flows in the network.
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Visualization and Control Interface. We implemented a live testbed map,
which displays the current situation in the network (e.g., existing real user con-
nections, current node configurations and protocol parameters). Using this map,
changes like new nodes or disruptions can be easily displayed. The data to the
network visualization component is acquired from two different interfaces: (1)
the database of central node manager, which maintains different node states
and (2) the measurement component, which, for instance, provides connectivity
strength among different nodes and flow information.

The network is also remotely configurable through either a command line in-
terface or a “Control” frame embedded in the map, which can interface to the
node manager. In the next section, we give examples of currently possible recon-
figurations and implemented controls based on the mesh network configuration.

3 A Configuration Example: The Mesh Experiment

In this section, we show how the BOWL testbed can be configured as a wireless
mesh network [14]. In the current implementation, any node can act as an AP
and one node acts as the gateway. Figure 1 depicts a snapshot of the network
in this configuration on 27 October, 2009. In the mesh configuration, the mesh
network is transparent to the clients and is seen as a regular layer 2 network. The
mesh interfaces use a different IP address range than the clients and the central
router. In the mesh, IP packets are encapsulated using IP in IP tunneling and
sent towards the mesh gateway. They are decapsulated at the gateway before
being delivered to the central router. The exterior IP addresses of the tunnel
belong to the mesh IP address range. The AP nodes use ARP spoofing to answer
ARP requests from the clients to obtain the hardware address of the first hop.
Also, the gateway uses the same technique to answer ARP requests from the
first central router for the hardware addresses of the clients.

This tunnel setup also enables seamless mobility. At an AP node, a so-called
location table indicates which node is the current gateway of the network2. The
destination IP address of the tunnel is then set to the mesh IP address of the
gateway. At the gateway, the location table indicates to which AP node is a client
currently attached. Hence, the destination IP address of the tunnel is set to the
mesh IP address of this AP node. These location tables need to be maintained
only on nodes that function as an AP or a gateway. The location tables are
currently updated centrally by using the Ethernet interface.

In this mesh configuration, we support several challenging reconfiguration
scenarios, e.g., a routing protocol switch from OLSR to DSR and vice versa.
In DSR, a route is discovered only when a new flow is initiated. Therefore,
additional steps need to be taken to first find routes for flows that exists in the
network during reconfiguration. In this case, the transient mode is a perfect fit
as it redirects the client traffic through the wired interface but also duplicates it
on the active wireless interfaces. When switching between DSR and OLSR, the
transient mode is activated right before starting the routing protocol switch. This
2 This setup is straightforward to extend to multiple gateways.
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Fig. 1. Snapshot of the network in the mesh network configuration. The green nodes
are online APs; the red nodes are unreachable as they are newly deployed, or not
configured. The red dots are the clients attached to the access points. The map depicts
the flow view, where each flow is is shown with a different color line. The control frame
on the left enables transmit power control, gateway change, and both wired-only and
wireless-only communication through “start and stop mesh routing”.

duplicated traffic bootstraps DSR and fills route caches on the nodes. Similarly,
transient mode is used when the gateway functionality is assigned to another
node, or when the transmission power is modified. In both cases, the connectivity
to the gateway might be impaired and hence, requires client traffic to be safely
delivered over the wired interface until connectivity to the gateway is restored.

4 Related Work

The existing work aiming at evaluating wireless research can be roughly cate-
gorized between simulators, emulation testbeds and testbed deployments. Sim-
ulators are typical tools of choice [3] in wireless research due to their relative
ease-of-use. However, a recent survey also shows that simulations may have sev-
eral pitfalls due to faulty practices, but more importantly, due to abstracting
details, especially at the physical layer.

Some of the limitations facing wireless scientific research and some sugges-
tions to overcome these are presented in [15]. The closest to our work in essence
are PlanetLab in the wired world and TFA [16], the Netbed/Emulab [6] and
Orbit [4,17,13,18,5] in the wireless world. PlanetLab [19] also tries to bring to-
gether researchers that develop and test services, and clients that want to use
these services. The TFA network [16] covers residential users with the goal of
providing reliable connectivity to low-income households, whereas our goal is
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to enable evaluation and comparison of real systems in an open experimental
environment. Netbed/Emulab provides a test-bed management framework with
a Web-based front end used to create and manage experiments. Note that Em-
ulab is an indoor network, which allows testing protocols with artificial traffic.
Despite these differences, Emulab provides a very mature service interface for
distributing code, controlling applications and gathering log files, which can be
extended to match our requirements.

To compensate for the lack of realistic network conditions in Emulab, FlexLab
[20] proposes to loosely couple Emulab with PlanetLab. This can only cap-
ture limited aspects of user behavior, namely traffic characteristics but not
mobility. Another effort is presented in [21]. However, the goal is limited to
re-introducing “laboratory notebooks” to the networking community and au-
tomating re-running recorded experiments or their variations.

The Orbit testbed [4,5] is an indoor two-dimensional grid of 400 IEEE 802.11
radios. Nodes can dynamically form specified topologies with reproducible wire-
less channel models. However, Orbit does not support real users. Similarly, the
Hydra testbed [22] is a purely research testbed with no support for real users. To
the best of our knowledge, no experimental research environment exists, which
can meet all three design goals (1) supporting real users, (2) enabling to build
real systems and (3) facilitating real system evaluation.

5 Conclusion and Future Work

This works presents the Berlin Open Wireless Lab (BOWL) network, a con-
figurable testbed with support for live traffic. The current network deployment
comprises 46 multi-radio IEEE 802.11 nodes deployed outdoor on the rooftops
of the TU-Berlin campus. The live traffic is generated by TU-Berlin students
and staff using the network for Internet access. Thanks to its unique software
architecture, the network allows researchers to reliably and remotely reconfigure
the network and run experiments with live traffic.

Currently the following reconfiguration scenarios that can be remotely acti-
vated in the BOWL network include a mesh network configuration with a single
gateway, gateway activation and gateway location update, and switching pro-
tocols and updating protocol parameters. This work is a first step towards an
experimental research environment with real user traffic. For future work, we
plan to extend the software architecture to better support the collection of mea-
surements, validation of configurations and experiment results.
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198 R. Merz, H. Schiöberg, and C. Sengul

References

1. The ns-3 network simulator, http://www.nsnam.org
2. Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.: Experimental

evaluation of wireless simulation assumptions. In: MSWiM 2004: 7th ACM Int.
Symp. on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp.
78–82. ACM, New York (2004)

3. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: The incred-
ibles. Mob. Comp. and Comm. Rev (MC2R) 9, 50–61 (2005)

4. Orbit, http://www.orbit-lab.org/
5. Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H.,

Siracusa, R., Liu, H., Singh, M.: Overview of the orbit radio grid testbed for evalu-
ation of next-generation wireless network protocols. In: IEEE WCNC 2005 (2005)

6. School of Computing, University of Utah: Emulab - total network testbed,
http://www.emulab.net/

7. Avila network platform gw 2348-4,
http://www.gateworks.com/products/avila/gw2348-4.php (retrieved November
2009)

8. Openwrt, http://openwrt.org/
9. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular

router. ACM Trans. Comput. Syst. 18, 263–297 (2000)
10. The click modular router, http://read.cs.ucla.edu/click/
11. The ruby programming language, http://www.ruby-lang.org/
12. Postgresql open source object-relational database system,

http://www.postgresql.org/

13. Singh, M., Ott, M., Seskar, I., Kamat, P.: Orbit measurements framework and
library (oml): Motivations, design, implementation, and features. In: TRIDENT-
COM, pp. 146–152 (2005)

14. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput.
Netw. ISDN Syst. 47, 445–487 (2005)

15. White, B., Lepreau, J., Guruprasad, S.: Lowering the barrier to wireless and mobile
experimentation. ACM SIGCOMM CCR 33, 47–52 (2003)

16. Camp, J., Knightly, E., Reed, W.: Developing and deploying multihop wireless
networks for low-income communities. In: Digital Communities (2005)

17. Ott, M., Seskar, I., Siraccusa, R., Singh, M.: Orbit testbed software architecture:
Supporting experiments as a service. In: TRIDENTCOM, pp. 136–145 (2005)

18. Ganu, S., Kremo, H., Howard, R., Seskar, I.: Addressing repeatability in wireless
experiments using orbit testbed. In: TRIDENTCOM, pp. 153–160 (2005)

19. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing
disruptive technology into the internet. In: Hotnets (2002)

20. Ricci, R., Duerig, J., Sanaga, P., Gebhardt, D., Hibler, M., Atkinson, K., Zhang, J.,
Kasera, S., Lepreau, J.: The flexlab approach to realistic evaluation of networked
systems. In: NSDI (2007)

21. Eide, E., Stroller, L., Lepreau, J.: An experimentation for replayable networking
research. In: NSDI (2007)

22. Mandke, K., Choi, S.H., Kim, G., Grant, R., Daniels, R.C., Kim, W., Heath, R.W.,
Nettles, S.M.: Early results on hydra: A flexible mac/phy multihop testbed. In:
IEEE VTC-Spring, pp. 1896–1900 (2007)



T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 199–208, 2011. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011 

Design, Implementation and Testing of a Real-Time 
Mobile WiMAX Testbed Featuring MIMO Technology* 

Oriol Font-Bach1, Nikolaos Bartzoudis1, Antonio Pascual-Iserte1,2,  
and David López Bueno1 

1 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Parc Mediterrani de la 
Tecnologia (PMT), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain 

2 Dept. of Signal Theory and Communications - Universitat Politècnica de Catalunya (UPC), 
Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain 

{ofont,nbartzoudis,dlopez}@cttc.cat, antonio.pascual@upc.edu 

Abstract. Multiple input multiple output (MIMO) is a technology that enhances 
wireless systems capacity, data rate, and coverage by utilizing the spatial diver-
sity provided by multiple antennas. However, these benefits come at the ex-
pense of increased computational complexity. Implementing a broadband 
MIMO wireless communication system in a real-time testbed is a challenging 
task, entailing numerous pitfalls. This paper presents several implementation 
aspects of a real-time MIMO testbed based on the mobile WiMAX standard. 
The focus is mainly laid on the bit-intensive baseband digital signal processing 
at the receiver. 

Keywords: MIMO, testbeds, IEEE 802.16e, real-time systems, FPGAs, DSP. 

1   Introduction 

Deploying a broadband wireless communication standard such as the IEEE 802.16e-
2005 [1] (i.e., mobile WiMAX) in a real-time testbed implies several design, imple-
mentation and testing challenges, especially considering the top-up computational 
complexity introduced by the MIMO technology. The massive parallelism required 
for the baseband signal processing in real-time testbeds, makes the FPGA devices the 
obvious candidate for implementing such systems. The inherent processing parallel-
ism of FPGA devices and the availability of a wide range of pre-verified IP-cores 
make them a preferable choice compared to DSP microprocessors. At the same time, 
the cell-processors though demonstrating a remarkable performance [2] are still con-
sidered to be an immature solution due to the C-coding parallelism limitations, the 
insufficient IP libraries and the lack of development boards. 

This paper presents the challenging and demanding task of implementing a point-to-
point mobile WiMAX system in a real-time testbed having a 2x2 MIMO configuration. 
                                                           
* This work was partially supported by the Catalan Government under grant 2009 SGR 891; by 

the Spanish Government under projects TEC2008-06327-C03 (MULTI-ADAPTIVE) and 
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“Torres Quevedo” grants PTQ-08-01-06441, PTQ06-02-0540, PTQ06-2-0553; and by the 
European Commission under projects NEWCOM++ (216715) and BuNGee (248267). 
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The system uses matrix A encoding in an open-loop configuration (i.e. without feed-
back), based on Alamouti's space-time block code [3] in a per carrier basis. The 20 
MHz channel bandwidth of this testbed exceeds the WiMAX Forum specifications for 
the IEEE 802.16e-2005 standard (i.e. wave-2) positioning the system presented herein 
on the forefront of applied research utilizing real-time MIMO testbeds. 

Setting up the whole testbed is a quite hard research and engineering task. The 
most critical part of the mentioned development is found in the design, simulation, 
implementation and real-time debugging of the receiver which, for this reason, is 
widely detailed in this paper. 

2   Short Review of MIMO Testbeds 

The great majority of the existing testbeds supports off-line signal processing, making 
use of Matlab or other signal processing software [4], [5]. Apparently, off-line test-
beds are not able to process in real-time the received signals. However, their flexibil-
ity makes them appealing to researchers since such testbeds allow them to explore 
various real-world signal processing concepts. Their offline operation renders these 
testbeds incapable to explore medium access control protocols and the reception of 
long data frames because of timing and memory constraints, respectively. Besides, 
offline testbeds are not able to realize closed-loop strategies. 

Although we have found in the literature low-bandwidth MIMO testbeds based on 
the IEEE 802.11n [6] and the 802.16d standard [7], [8] (i.e. no mobility), we have not 
encountered literature for real-time MIMO testbeds implementing the IEEE 802.16e 
standard using a 20 MHz bandwidth. A combination of mobile and fixed WiMAX 
testbed is presented in [9]; nevertheless the scope of the project is different since 
commercial equipment is used to assemble the entire physical layer of the testbed. 
Real-time MIMO testbeds implementing the IEEE 802.16e-2005 standard are mainly 
deployed by industrial initiatives (e.g. Alvarion), which are currently offering band-
widths up to 10 MHz (e.g. WiMAX wave-2 specifications [1]). 

3   Description of the Experimental Setup 

A point-to-point MIMO testbed typically comprises i) a transmitter with baseband 
signal processing units, digital-to-analog converters (DACs) and RF up-converters, ii) 
a multi channel emulator or sets of transmit and receive antennas (indoor channel), 
and iii) a receiver with a series of RF down-converters, analog-to-digital converters 
(ADCs) and baseband digital signal processing units. A graphic-overview of our real-
time mobile WiMAX testbed setup for a point-to-point 2x2 MIMO system is shown 
in figure 1. The parameters of the OFDM downlink (DL) frame, consisting of a single 
burst with a fixed predefined format (i.e, FCH and DL-MAP are not decoded), are 
shown in table 1 and depicted in figure 2. 

Taking into account the baseband sampling frequency (i.e. 22.4 MHz), the rate of 
Alamouti's space-time code (STC) coding (i.e. unity) and the total number of PUSC 
subcarriers (i.e. data+pilot+dc-carrier = 1681), the actual peak of un-coded useful data 
rate is 22.4 × 2 × 1 × 1681/2048 × 2048/2560 = 29.4175 Mbits/s and the spectrum 
efficiency for a 20 MHz channel bandwidth is 1.47 bits/Hz/s assuming the use of 
QPSK modulation at each data carrier. 
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Fig. 1. CTTC’s point-to-point real time 2x2 MIMO testbed featuring mobile WiMAX 

Table 1. A synopsis of system parameters 

Parameter Value 
Wireless telecommunication standard IEEE 802.16e-2005 

Tx antennas x Rx antennas 2x2 
RF frontend operating band  (GHz) 2.495 - 2.690 

IF frequency || Ch. Bandwidth (MHz) 156.8 || 20 
Channel models ITU Ped. B - Veh. A 

A/D sampling clock frequency (MHz) 89.6 
Sampling frequency Fs (MHz) 22.4 

Modulation type QPSK 
Duplex mode TDD 

FFT size 2048 
Supported permutation scheme DL PUSC only 
Data || pilot || null subcarriers 1440 || 240|| 368 

Sub-channels 60 
Subcarrier frequency spacing f (kHz) 10.94 
Useful symbol time || Guard time (μs) 91.4 || 22.85 
Frame duration (ms) || OFDM symbols 5 || 48 

Open loop configuration: STC type Matrix A Alamouti  
De-interleaving, Ch. coding, multiuser not supported 

 

Fig. 2. Frame format 

 
MIMO Signal Transmission: The baseband part of the transmitter was designed 
using Matlab. The separate I and Q baseband outputs of this model (corresponding to 
the two transmitter’s branches) are written to data-files, which are fed to two in-
stances of Agilent's Signal Studio Toolkit. The data-files are then uploaded to two 
Agilent vector signal generators (i.e. ESG4438C), which are appropriately connected 
for a MIMO signal transmission. This connection requires careful offline adjustments 
(e.g. time-alignment of the output signals). The two ESG4438C are utilizing their 
embedded arbitrary waveform generator to playback in real-time the baseband I and 
Q waveforms, up-convert the signal and finally provide the RF output centered at 
2.595 GHz. The accuracy of these instruments guarantees a very high performance 
(e.g. excellent Error Vector Magnitude (EVM) profile). To verify the transmitter's 
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compliance with the IEEE 802.16e standard, we have used Agilent's Vector Signal 
Analyzer (VSA) to demodulate the received RF signal. 

The Channel: The connection between the transmitter and receiver can be done via a 
direct cable, over the free radio channel using antennas, or through a channel emula-
tor. The two testing and measuring scenarios were: i) antenna transmission using an 
indoor radio channel, and ii) use of a channel emulator (i.e. EB Propsim C8) to gener-
ate an outdoor static or mobile channel. Measurements over the indoor radio channel 
were conducted only to prove functional conformity and thus they would not be ana-
lyzed herein. The channel emulator is configured with a 2x2 MIMO model, emulating 
the ITU Vehicular-A standard channel model (i.e. 6 tap tap-delay-line). The channel 
is assumed to be quasi static for the duration of an OFDM frame. 

The Receiver: A fully integrated, dual-band multi-channel WiFi RF transceiver [10] 
(i.e. designed in CTTC) was upgraded to match the WiMAX testing scenario. Certain 
critical building blocks were replaced (i.e. RF and IF filters, the local oscillator and 
the sampling frequency synthesizer). Both the WiFi operation at 2.4 GHz and the 
WiMAX one at 2.6 GHz performed satisfactory in a 2x2 MIMO configuration (i.e. 
proof of concept validation). The testbed specifications were expanded in terms of 
scalability and performance by acquiring high-end, multi-channel broadband RF 
downconverters (i.e. MCS Echotek Series RF 3000T). Table 2 summarizes the main 
specifications of the two available RF front-end solutions. 

Table 2. Performance-comparison of the RF front-end solutions 

Parameter Custom receiver COTS receiver 
RF input frequency range  2.4-2.7GHz & 5.15-5.35 GHz 20MHz-3GHz 

IF output frequency range (3dB BW) 135..173 MHz 107.5..172.5 MHz 
Frequency resolution <150Hz 1 Hz 

Internal reference accuracy <±1ppm adj. <±0.5ppm 
Phase Noise -83dBc/Hz@10KHz -112dBc/Hz@10KHz 
Noise Figure 9.5dB 8.25 dB 

Gain control range 72 dB 85 dB 
Image rejection 30 dB 95 dB 

Spurious output levels -30 dBc (LO not inc.) -85 dBc 
Input Third-Order Intercept Point (IIP3) -15 dBm 0 dBm 

 
The receiver also includes two noise signal generators (i.e. Applied Instruments 

NS-3) for testing purposes and a powerful baseband signal processing platform from 
Lyrtech Inc., which is assembled in a cPCI chassis. This includes an ADC board (i.e. 
8 channels, 105 MSPS, 14-bit resolution, Xilinx Virtex-4 LX160 FPGA device), a 
signal processing board with 4 Xilinx Virtex-4 devices (i.e. 2 LX160 and 2 SX35) and 
4 Texas Instruments TMS320C6416 DSPs. The platform also offers various I/O con-
nectivity options (e.g. 8 Gbps data transfer between boards). 

4   Signal Model and Impairments 

The WiMAX signal is frame-based, composed of data and silence periods. The  
receiver is continuously monitoring the signal during the silence periods through a 
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synchronization algorithm to detect the beginning of a data period. In real systems, on 
top of the noise, some system-wide signal-impairments appear during the silence due 
to the instrumentation used (e.g. signal generators, channel emulator). These “para-
sitic” signals impair the operation and performance of the system. Each one of these 
has been studied in order to remove its undesirable effects. The specifications of the 
signal generators, the channel emulator and RF downconverters, allow us to ignore 
the impact of the following signal-impairments: i) I/Q gain and phase imbalances due 
to variations in components between the analog I and Q processing branches, ii) inac-
curacy between the sampling clocks of the transmitter and receiver, iii) random phase 
noise due to oscillator instability. Thus, the resulting received signal model at the 
output of the RF downconverters at the ith antenna can be expressed as: 

{ } ( )2 ( )( )( ) Re ( )· cos 2 ( ) ( )IFj f f tR
i i i i IF i ir t x t e A B f f t w tπ π ϕ+Δ= + + + Δ + + , (1)

where xi
(R)(t) represents the useful part of the received baseband signal, fIF is the in-

termediate frequency (IF), Δf is the carrier frequency offset (CFO), Ai represents the 
DC level introduced by the baseband boards, Bicos(2π(fIF+Δf)t + ϕi) represents the 
carrier located at the center of the useful signal-spectrum as a result of the coupling of 
the local oscillators at the transmitter and/or the receiver, and wi(t) is the Gaussian 
noise. In our case, the IF is 156.8 MHz and the sampling frequency is 89.6 MHz 
(oversampling by a factor of 4). This means that after the ADCs, one of the aliases of 
the discrete signal will be located at 22.4 MHz. The xi

(R)(t) can be expressed as: 
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where xp
(T)(t) is the equivalent baseband signal transmitted from the pth transmit an-

tenna and hi,p(t) is the equivalent baseband of the time impulse response of the MIMO 
channel between the pth transmit and the ith receive antennas. The total number of 
transmit antennas is assumed to be nT. 

Several countermeasures were employed to compensate as much as possible the ef-
fects of the received noise and some undesired spurious signals introduced by the 
channel emulator (e.g. prototyping of additional IF SAW filters). 

5   The Mobile WiMAX Receiver 

The digital front-end is one of the most critical processing stages of the receiver with 
determinant contribution to system’s performance, highly susceptible to signal im-
pairments and thus error-prone. It comprises from the automatic gain control (AGC), 
the digital down converter (DDC) and the synchronization block (figure 3). Any de-
viation from the expected signal-specification may either render the system’s output 
invalid or seriously compromise its performance. 

The AGC block adjusts the gain of the programmable gain amplifier to fit the dy-
namic range of the signal to the operating range of the ADCs preventing their satura-
tion (excluding a back-off margin accounting for the OFDM signal crest factor)  
preventing their saturation and minimizing quantization errors. The DDC extracts the 
in-phase and quadrature components of the signal. This is achieved by a numerically 
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controlled oscillator (NCO), initially tuned at the nominal frequency of 22.4 MHz, a 
digital mixer and a low-pass filter with a decimation factor of 4 (i.e. output baseband 
sampling frequency of 22.4 MHz). The filter was specifically designed to reject the 
DC level introduced before the ADCs by the baseband board chassis. 

 

Fig. 3. Overview of the processing components of the receiver 

The synchronization block has two main functions. First, it detects the beginning of 
the data period and, accordingly, the position of the OFDM symbols to apply the FFT. 
Second, it has to estimate any residual CFO that will be used to finely tune on-the-fly 
the NCO of the DDC. Both functions can be implemented jointly by calculating the 
cross-correlation of the received samples. Each OFDM symbol is composed of a Cy-
cle Prefix (CP) of 512 samples and a useful part of 2048 samples. Since the CP sam-
ples copy that last samples of the useful part, it is expected that a peak in the modulus 
of the cross-correlation r[n] between both sets of samples will appear if the position 
of the correlation window is correct. An additional mechanism will also prevent the 
false peak detection due to the presence of the carrier from the coupling of the local 
oscillators during the silence periods. In addition, the phase of the cross-correlation at 
the peak will allow calculating the CFO. This can be mathematically expressed as 
follows (where nR denotes the number of receive antennas): 
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In the following processing stages, the OFDM demodulation takes place; this in-
cludes the CP removal, the FFT, and the removal of the guard band and the DC carri-
ers. The subsequent blocks are related with the organization, randomization and 
grouping of the carriers according to the IEEE 802.16e frame definition, and the pi-
lots’ extraction which are scattered along the signal bandwidth (where these pilots are 
used to estimate the channel response). When the system is configured as a MIMO 
one, each processing-chain at the receiver has to estimate the corresponding channels 
from all transmit antennas. This is carried out by extracting the channel frequency 
response at the pilots’ positions and then interpolating them by using a second order 
polynomial interpolation as indicated in formula (4). 
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One of the final blocks is related with the decoding of Alamouti’s code (matrix A), 
which is applied on a per-subcarrier basis in 2-transmit antenna systems. The two 
equations (5) show the operation to be applied for estimating the transmitted symbols 
at the kth subcarrier. Two consecutive OFDM symbols, 2l and 2l+1, have to be proc-
essed jointly, where the samples at each antenna of the receiver after the FFT are 
represented by Ri and the estimated channel frequency response is denoted by Hi,p: 
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(5)

The design has passed through numerous optimization stages in order to boost the 
performance and minimize the processing complexity (i.e. FPGA slices, RAMB16s 
utilization). The 2x2 MIMO receiver was fitted in two Virtex-4 LX160 devices, using 
the Xilinx ISE 9.2 design-suite (FPGA1: 81% slices, 93% RAMB16s, 100% DSP48 
and FPGA2: 49% slices, 71% RAMB16s, 57% DSP48). The compilation time of the 
MIMO configuration reached a peak aggregate of 40 hours in a dedicated 64-bit 
server. The dense device utilization resulted in a volatile implementation, since the 
place and routing process only manages to meet timing constraints in an arbitrary 
way. This limitation is posed by the ISE software and the only solution is to apply 
more stringent timing constraints and divide the design targeting 3 FPGA devices. 

6   Results and Conclusions 

The data at the end of the processing chain of the mobile WiMAX receiver is captured 
and visualized in real-time with the help of the Chipscope Pro software from Xilinx. 
This software generates monitoring cores which are attached to the target design run-
ning in the FPGAs of the testbed. The accuracy of the received constellation points is 
investigated at the receiver by calculating the EVM, which is a metric of their disper-
sion from the ideal positions [11]. To compare the performance of the implementation 
we have also captured and stored in a data file a real signal in the output of the ADCs 
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which we have then fed to the respective Matlab model of the receiver. Thus, by 
comparing both results, we can effectively measure which is the degradation in the 
system performance due to the numerical approximations (finite bit precision) per-
formed by the hardware implementation of the testbed. 

An indicative comparison of how the QPSK constellation of the received signal is 
visualized using Matlab on the one hand and on-board real-time data-capturing on the 
other, is shown in figures 4, 5 (i.e., SNR = 15.34dB) and figures 6, 7 (i.e. SNR = 
21.69dB) respectively. The SNR represents the function of the total signal power over 
the total noise power across the bandwidth of the received signal. 
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Fig. 4. Matlab-SNR=15.34dB 

 

Fig. 5. On-board-SNR=15.34dB 
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Fig. 6. Matlab-SNR=21.69dB 

 

Fig. 7. On-board-SNR=21.69dB 

 
 

The two previous figures show a capture of the received QPSK constellations at 
two indicative SNR values. In order to further evaluate the precision and performance 
of the implemented system, more detailed numerical results have been obtained.  
These correspond not only to the aforementioned EVM, but also to the raw BER (i.e., 
assuming no channel coding) for both the Matlab model (i.e., “ideal” receiver) and the 
actual hardware implementation of the receiver. Note that the EVM is approximately 
calculated since the deviations of the received constellation points are measured with 
respect to the taken QPSK de-mapping decisions, instead of the actual ideal error-free 
constellation points. In this sense, this approximate EVM will be more accurate at 
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high SNR, i.e., when less errors occur in the 
decisions. The results are obtained for a fixed 
channel and for different values of the received 
SNR by adjusting the attenuation of two noise 
generators. The EVM and BER curves, which 
are shown in figures 9 and 10, demonstrate the 
robustness and precision under implementation 
losses within an acceptable margin. 

The deviation observed in the raw BER curves 
is due to certain approximations made in the 
processing chain at the HW receiver, which 
ultimately affected the EVM calculation; the 
loss of precision due to the fixed-point imple-
mentation of critical building blocks of the sys-
tem (e.g. channel estimation) deteriorate the 
constellation on top of the impairment intro-
duced by the observed SNR. In high SNR sce-
narios, this fixed-point arithmetic-conversion 
deterioration will only affect few points in the 

constellation, thus, increasing the raw BER but not equally the approximate EVM, as 
the QPSK d-mapping decision could be wrong. 
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Fig. 9. Performance comparison between the 
Matlab model and the real-time testbed, 
through the approximate EVM-SNR curves  
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Fig. 10. Performance comparison between 
the Matlab model and the real-time testbed, 
through the raw BER-SNR curves  

 
This paper presented a real-time MIMO testbed featuring a mobile WiMAX sys-

tem. This is rightfully considered a challenging task requiring a resourceful budget, 
manpower, time and hands-on expertise on advanced signal processing aspects. The 
testbed comprises the necessary technology, equipment and specifications that allow 
the implementation of top performance systems. The experimental setup of the 2x2 
MIMO testbed operating in CTTC is shown in figure 8. The deployment of an IEEE 
802.16e-2005 2x2 MIMO real-time system operating beyond the typical WiMAX 
specifications (i.e. wave-2), with a 20 MHz channel bandwidth is giving us the oppor-
tunity to test and experiment state-of-the-art research concepts. 

Fig. 8. CTTC real-time testbed. 
Left: channel emulator, oscillo-
scope. Rack: (top to bottom) spec-
trum analyzer, signal generators, 
RF frontends, baseband boards. 
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The next development step will include the implementation of a real-time transmit-
ter replacing the signal generators with a custom FPGA development. This will open 
several new research and implementation possibilities, such as the inclusion of more 
advanced MIMO exploitation schemes based on real-time feedback. This feedback 
from the receiver to the transmitter could deliver information about the current chan-
nel conditions and would allow the transmitter to adapt its transmission scheme to 
such channel, thus, boosting the system performance and making it more efficient. 
Some schemes to be analyzed are based on antenna selection or adaptive beamform-
ing based on codebooks. Moreover, the feedback will enable us to explore more  
advanced configurations, such as multi-user networks based on opportunistic trans-
mission, e.g., allocating carriers to users in a dynamic way. 

References 

1. Mobile WiMAX air interface, P802.16Rev2/D9 (Revision of IEEE Std 802.16-2004 and 
consolidates material from IEEE Std 802.16e-2005, IEEE Std 802.16-2004/Cor1-2005 

2. Kuhling, D., Ibing, A., Jungnickel, V.: 12x12 MIMO-OFDM realtime implementation for 
3GPP LTE+ on a Cell Processor. In: 14th European Wireless Conference, Prague, Czech 
Republic, June 22-25, pp. 1–5 (2008) 

3. Alamouti, S.: A simple transmit diversity technique for wireless communications. IEEE 
Journal on Selected Areas in Communications 45(9), 1451–1458 (1998) 

4. Ramirez, D., Santamaria, I., Perez, J., Via, J., Tazon, A., Garcia-Naya, J.A., Fernandez-
Carames, T.M., Gonzalez Lopez, M., Perez-Iglesias, H., Castedo, L.: A Flexible Testbed 
for the Rapid Prototyping of MIMO Baseband Modules. In: 3rd International Symposium 
on Wireless Communication Systems, Valencia, Spain, September 6-8, pp. 776–780 
(2006) 

5. Hu, S., Wu, G., Guan, Y.L., Law, C.L., Yan, Y., Li, S.: Development and performance 
evaluation of mobile WiMAX testbed. In: IEEE Mobile WiMAX Symposium, Orlando, 
USA, March 25-29, pp. 104–107 (2007) 

6. Haene, S., Perels, D., Burg, A.: A Real-Time 4-Stream MIMO-OFDM Transceiver: Sys-
tem Design, FPGA Implementation, and Characterization. IEEE Journal on Selected Areas 
in Communications 26(6), 877–889 (2008) 

7. Ramirez, D., Santamaria, I., Perez, J., Via, J., Garcia, J.A., Fernandez, T., Perez, H.J., 
Gonzalez, M., Castedo, L., Torres, J.M.: A comparative sutdy of STBC transmissions at 
2.4 GHz over indoor channels using a 2x2 MIMO tested. Wireless Communications and 
Mobile Computing 8, 1149–1164 (2008) 

8. Jiménez, V.P.G., García, M.J.F.-G., Armada, A.G., et al.: A MIMO-OFDM Testbed, 
Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX. EURA-
SIP Journal on Wireless Communications and Networking 2010 , Article ID 871291, 13 
pages (2010) 

9. Mignanti, S., Castellano, M., Spada, M., Simoes, P., Tamea, G., et al.: WEIRD Testbeds 
with Fixed and Mobile WiMAX Technology for User Applications, Telemedicine and 
Monitoring of Impervious Areas. In: Proceedings of TridentCom 2008, Innsbruck, Austria, 
March 18-20 (2008) 

10. Nieto, X., Ventura, L., Mollfulleda, A.: GEDOMIS: A Broadband Wireless MIMO-OFDM 
Testbed. Design and Implementation. In: Proceedings of. TridentCom 2006, Barcelona, 
Spain, March 1-3, pp. 121–131 (2006) 

11. Shafik, R.A., Rahman, M.S., Islam, A.H.M.R.: On the Extended Relationships Among 
EVM, BER and SNR as Performance Metrics. In: 4th International Conference on Electri-
cal and Computer Engineering, Dhaka, Bangladesh, pp. 408–411 (December 2006) 



ASSERT: A Wireless Networking Testbed

Ehsan Nourbakhsh, Jeff Dix, Paul Johnson, Ryan Burchfield, S. Venkatesan,
Neeraj Mittal, and Ravi Prakash�

Distributed Systems Lab, Computer Science Department,

The University of Texas at Dallas 75080 USA

{ehsaan,jxd028100,paj041000,ryanb,venky,neerajm,ravip}@utdallas.edu

Abstract. As wireless networks become a critical part of home, busi-

ness and industrial infrastructure, researchers will meet these demands

by providing new networking technologies. However, these technologies

must be tested before they can be released for mainstream use. We iden-

tify the key design considerations for a wireless networking testbed as

a) accuracy b) controllability c) mobility d) repeatability e) cost effec-

tiveness f) data collection g) resource sharing h) multi-nodal capability

i) scalability. In this paper we portray how we have used coaxial cables

and our custom hardware of RF switches and programmable attenuators

to create Advanced wireleSS Environment Research Testbed (assert),

addressing the above requirements. assert supports various types of

wireless devices, providing researchers in academia and industry with

the necessary experimentation tools to validate their designed protocols

and devices.

Keywords: assert, Wireless, Sensor, Testbeds, Repeatability.

1 Introduction

As wireless networking is becoming more pervasive, there has been a greater
desire to develop communication hardware and protocol stacks that have a num-
ber of desirable properties like increased throughput, reduced latency, reduced
energy consumption, quality of service, security, etc. Consequently, several aca-
demic and industrial research groups are actively working towards improving
the performance of wireless networks. Due to their inherent complexity, accu-
rate theoretical analysis of the performance of large wireless networks is quite
challenging. Hence, several researchers have resorted to simulation experiments
to evaluate the performance of large wireless networks. Most simulators make a
set of simplifying assumptions about the communication medium and the com-
munication protocols [1, 2, 3, 4]. This enables them to run experiments within
a reasonable amount of time. However, sometimes these assumptions can bias
experiments in a significant way. It is no surprise that often the results of
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ulation experiments differ significantly from the actual performance of wireless
networks.

Over the last few years several research groups have initiated the develop-
ment and deployment of wireless networking testbeds such as Netbed [5], Kansei
[6], Trio [7], ExScal [8] and other testbeds at U.C. Berkeley [9]. The underlying
assumption of all these endeavors is that experiments conducted on a testbed
composed of actual wireless devices communicating over the air will yield results
representative of performance in field deployments. Several of these testbeds are
deployed in general-purpose laboratories in academic buildings. As these labo-
ratories are not shielded from external wireless interference, the experimenters
have little or no control over the environment in which experiments are con-
ducted. As a result, it is almost impossible for experimenters to independently
reproduce the results obtained by other research groups. Building a Faraday cage
large enough to house wireless networks of non-trivial diameter is prohibitively
expensive. Outdoor deployments, unless sufficiently ruggedized, can deteriorate
quickly due to variations in temperature and humidity. Moreover, it may not be
possible to conduct outdoor experiments during inclement weather. Also, inno-
vative ideas need to be employed to conduct mobile networking experiments if
one does not have a lot of manpower available.

Based on the above discussion, one can count some general requirements
for an ideal testbed, similar to considerations that De et al. in [10] proposed
for a multihop testbed. The ideal testbed shall: a) accurately reflect wireless
network behavior (accuracy) b) provide enough control to configure topology
and environment conditions (controllability) c) emulate mobility of the nodes
(mobility) d) conduct experiments that are reproducible and easily repeatable
(repeatability) e) be cost effective in terms of hardware, manpower, space and
time requirements to set up, run experiments on and maintain (cost effective-
ness) f) provide necessary tools to collect and analyze data (data collection)
g) be able to share the available resources to conduct multiple experiments with-
out interfering with each other (resource sharing) h) have multi-nodal ca-
pability (i.e., it will support many types of nodes) i) have the ability to scale
to a large number of nodes (scalability).

In the next sections, we will present some clear examples of challenges in de-
signing and building our large-scale testbed called assert (Advanced wireleSS
Environment Research Testbed). In Section 2 we show how other testbeds have
worked towards some of the above requirements. Section 3 will present some of
the main characteristics of our work and show how we are able to satisfy the
above requirements. Following this overview, we will describe the architectures
selected for both our hardware and software implementations of the assert in
Section 4. Some final conclusions and future work are discussed in Section 5.

2 Related Work

Creating an environment to test and validate new protocols and hardware de-
signs has been a challenge for wireless researchers. The desired environment
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should be precisely controllable and the possibility of repeating the same exper-
iment is vital. The first category of testbeds, such as MoteLab [11] and ORBIT
[12], attempted to create such environment by focusing on using the antenna
of unit under test (UUT), resulting in over-the-air transmissions. Researcher is
not able to control the exposure of the UUT to background noise and interfer-
ence from other nodes, so controllability requirement is not addressed . The
distance between nodes is limited to the physical placement of the devices, and
mobility is not provided by design. Although the size of the network they are
able to create is large, they are not able to partition them effectively, thus failing
to address resource sharing requirement. Noise injection and MAC filtering
can be used to create topologies, but as [13] pointed out repeatability and
reproducibility of results from noise injection is reduced if nodes with marginal
Signal-to-Noise Ratio (SNR) are involved. Using MAC filtering, as suggested by
some researchers to emulate mobility, will also fail to address mobility because
in this method either a packet is able to go through or is completely dropped,
unlike actual movement. Mint-m [14] and Mobile Emulab [15] address the mo-
bility and controllability requirements by using added attenuation between
UUTs and antenna and small robots to move the UUTs around the test area.
Pharos [16] uses a similar approach of using robots, but the environment is set
outdoors. These approaches still do not eliminate the problem of exposure to
background noise or interference from other testbed devices. This would fail to
address controllability requirement. Also, mobility is either limited to the
speed of the robots or is not supported as a design feature.

A second category of efforts such as work done in CMU [17] digitize the out-
going signal of the UUTs and use existing RF propagation models to emulate
effects such as distance and multipath on the signal. The resulting altered signal
is fed to the destination devices. This approach provides the required control-
lability requirement, but its accuracy is limited to the precision of the applied
RF propagation model. Furthermore, signal alternation requires sophisticated
calculations so higher number of nodes will make the processing power require-
ments harder to achieve, failing to address the cost effectiveness requirement.

The third category of testbeds focus on simply using coaxial cables to connect
different nodes. Attenuators and RF switches can be used to form topologies and
emulate distance between nodes. MeshTest [18] is one example of such set up
with a design close to our work. However, their method requires complex design
for higher number of nodes. High cost of the switch matrices used might be an-
other obstacle to building larger networks, failing to address cost effectiveness
requirement.

3 Design Overview

Our testbed currently consists of forty devices, known as “sites” in this con-
text. Each site consists of a microprocessor and its peripherals, also a Field
Programmable Gate Array (FPGA) as well as a set of 16 attenuators and corre-
sponding RF connectors. The site processor is running Linux and is connected
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Fig. 1. Block diagram of one site and the

related RF, data and command lines

Fig. 2. assert RF Grid and control

plane

to an Ethernet network for network storage and communication. Each connector
can be connected to another site using a coaxial RF cable. The main functional-
ity of the FPGA is to set the attenuators on each RF connector as instructed by
the microprocessor and poll the RSS meter on a millisecond basis. The attenu-
ators are set to values either calculated based on a theoretical model, or based
on real life recorded attenuation values such as work done by Lee et al. [19]
addressing the accuracy requirement. This real life readings can be gathered
once for some generic scenarios and then used multiple times to compose more
complex terrains.

Each UUT is connected to a site, and the site connects it to up to 16
other sites through its internal switches and attenuators. This 1-to-16 connection
means we are able to add more sites and enhance our testbed only by adding
sites, addressing the scalability requirement. We synchronize the clock on sites
through our clock distributors so that we are able to set the attenuations on
these 16 connectors, called ports, almost instantly on all sites. This will allow us
to control how the sites are “virtually” moving in reference to each other with
a high precision, addressing the mobility requirement. A block diagram of a
site is demonstrated in Figure 1. As shown in Figure 2, a front-end computer
called Control PC is connected to all sites through Ethernet and is responsi-
ble for getting experiment definition from user, sending control information and
gathering the results. Our design choices ensure we are able to scale to at least
one thousand nodes without unreasonable processing power requirements.

3.1 Reproducibility and Repeatability

As demonstrated in [20], reproducibility of experimentation can be difficult due
to inconsistency in environmental conditions. Many wireless networking testbeds
operate in schools and laboratory environments, where non-testbed devices can
interfere with an experiment. But for a testbed to provide reproducible experi-
ments, we need the ability to control the noise around the testbed, so that we can
compare different testbed experiments. As we have stated above, our solution
to this problem is to place all communication between devices on coaxial cables.
By properly shielding a wireless device, and connecting it to our coax network,
we have control over which devices can “see” each other in the network. We can
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also prevent outside leakage from other wireless networks operating on the same
band.

We would like to emulate effects the environment has on signal reception, such
as multipath. Each site processor will calculate the attenuation for each link due
to the selected pattern by the user and set the link’s attenuators accordingly on
both sites on a millisecond basis. All the parameters for the link’s attenuation
patterns, including random number generator seeds, are stored in a Control
PC’s database and can be retrieved again to rerun the experiment. Using the
same concept, we can also emulate mobility by changing each link’s attenuation
dynamically to emulate the changing environment, or neighbors.

3.2 Multi-nodal Capability and Data Collection

As evident in the previous sections, there are only some general expectations we
have from the unit under test. We consider the UUT a black box, a consideration
which is vital for the multi-nodal capability requirement. We expect the UUT
to transmit in the frequency range our RF equipment is designed to work. We
also expect it to have an antenna that can be replaced by a coaxial cable, so that
we can connect the RF transmitter to one of our testbed sites. The other optional
requirement is to have a RS-232 interface so that the UUT can receive commands,
such as reset or load image, from the site. This interface can be also used for
the data collection mechanisms we have provided. All logged data written by the
UUT to the RS-232 serial interface is kept on file along with RSS meter readings,
with timestamps of each log message, and is returned by the testbed software as
part of the experiment results. This combination of correlated data can be an
important tool for the researcher, addressing the data collection requirement.

3.3 Experiment Setup and Execution

We provide more details about creation and execution of an experiment through
a common use case of our testbed. We currently have twenty five Crossbow
MICA2 motes installed in our testbed. The first step a user has to take to create
a new experiment is to create the corresponding topology script. This script
specifies which sites are involved in this experiment, what are the attenuation
values and how these values change over time. As an example, user might select
ten motes and name them according to their own plan. Then use the attenuation
values gathered by Lee et al. [19], recorded specifically for MICA2 motes, to place
nodes realistically. The user might also decide that a node A slowly moves away
from its neighbors at time T . This movement can be realized in the script by
using a step function to increase attenuation of all its links at time T until it is
disconnected. Same can be done to add new nodes or adding background noise
to some links using a normal distribution attenuation pattern. The integrated
signal generator of the sites can be used to act as a constant noise source. By
changing quality of the links from these noise sources to each site we can control
amount of noise the UUT inside that site experiences.
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The other parameters that the testbed will ask from user are the number of
times the experiment has to run, and the image to be flashed on all UUTs. It is
worth mentioning that the user only compiles one generic image, and the testbed
adjusts it for each UUT based on experiment setup. Once all sites are flashed and
have received the experiment details formatted as an XML file, the experiment
starts. Each site will report to the Control PC when the end time of the last
attenuation indicated in the XML descriptor has passed. Once Control PC has
got the successful termination signals from all the sites in an experiment, the
user is notified and the log files created during the experiment are made available
to them. If any of the sites encounter a fatal error during an experiment, it will
notify the Control PC. The Control PC will then terminate the experiment early,
and notify the user that a problem has occurred.

The previous methods give the necessary support for the user to easily and
quickly set up one or multiple runs of an experiment, or repeat an existing one.
This is to address the controllability requirement mentioned earlier. It also is
addressing the cost effectiveness requirement. We are significantly reducing
the amount of time that the experimenter has to spend to create an experiment
on the testbed. As we reserve the required sites during the experiment and
also set the attenuation levels to maximum on unused links, we are able to
partition the testbed and run multiple experiments in different parts of it. This
will increase the utilization of the testbed, addressing the resource sharing
requirement.

4 System Architecture

4.1 Hardware Architecture

It is best to think of assert hardware as a graph (as in Figure 2), with nodes
representing sites in the testbed, and edges representing RF links between sites.
Each site consists of a custom digital board (Figure 3) and a custom RF board
(Figure 4). The digital board has a processor, memory, FPGA and serial inter-
faces where the UUT can be connected. The processes executing on the digital
board can control the operations of the UUT, monitor the experiment, and
gather results as described in Section 4.2. The RF board connects to the dig-
ital board and provides an interface through which the antenna port of the
UUT can connect to the RF board. The UUT interface leads to a 1 × 16 power
divider/combiner. Each output port of the power divider/combiner leads to a
programmable attenuator (controllable by the digital board) which can provide
signal attenuation between 0dB and 63.5dB, in steps of 0.25dB. The attenuators
from two different RF boards can be connected via a coaxial cable forming an
RF link between two sites. Thus the signal on this link can be attenuated in the
range 0dB to 127dB: a maximum of 63.5dB attenuation provided by each of the
two programmable attenuators on the path.
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Fig. 3. One Site Board. Each Site Board is paired with one RF board

Fig. 4. One RF Board

Continuing with the graph theoretic description, the digital and RF boards
together correspond to a node with a maximum of sixteen incident edges. The
components on the RF board can currently support all communication bands
between 720 MHz and 1125 MHz. In the near future we plan to extend the
support to the 2.4 GHz ISM band. The sites, each with a degree of sixteen, are
connected to form a mesh. The quality of links can be manipulated by changing
the level of signal attenuation as rapidly as one db every millisecond.

4.2 Software Architecture

The software is divided into slices, with each slice implementing a specific func-
tionality. We now describe the software architecture in the context of the creation
and execution of a user’s experiment.

The diagnostics slice runs both periodically and on demand to check the
integrity of RF links on the testbed. This involves selecting sites sequentially,
having them send signals along each incident link, and measuring the received
signal strength for different values of attenuation along the link. This slice regis-
ters a link in the database between two sites if both can hear the signal generated
by each other. The quality of this link can be determined as the strength of the
received signal compared with the strength of generated signal.

The user interface slice, running on the central controller provides a graphical
user interface to the users. The network topology can be selected from a library
of topologies (like mesh, star, ring, etc.) provided by the user interface. If the
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topology the user wishes to emulate is not present in the library, the user can
specify it as a graph with vertices and links between vertices. The user can also
specify the characteristics of the wireless links between vertices. Once again,
link characteristics can be specified either by selecting from a library of fading
patterns, or by providing the formula to define the link characteristics.

Once the user has specified the desired topology, the user interface slice in-
vokes the experiment control slice. The experiment control slice first gathers the
current state of the testbed by querying the system state slice. The system state
slice returns the state of all the sites as well as the set of reservations currently
running on the testbed. Then the experiment control slice invokes the topology
mapper slice. The topology mapper slice computes the topology based on user
input as a subgraph of the portion of the testbed that is not running any ex-
periment. If the topology mapper slice is successful, the experiment control slice
invokes the reservation slice. The reservation slice reserves the corresponding
testbed sites for the experiment. These reservations are implemented as leases
of finite duration. If the experiment needs to run longer than the lease duration,
the lease must be renewed prior to its expiration.

Then the experiment control slice invokes the attenuator control slice at all
the reserved sites. As part of this invocation, the experiment control slice in-
forms each reserved site about the properties of the links incident on it. To
implement the desired link characteristics the sites at either end of the emu-
lated wireless link work cooperatively. Consistent with the producer-consumer
model employed by operating systems, acting as a producer each site generates
a sequence of attenuation values along with the time offset from the beginning
of the experiment when these attenuation values are to be used on a link. Act-
ing as a consumer, the FPGA on the site hardware reads these values and sets
the attenuation values accordingly once it is informed that the experiment has
started. Concurrently, the experiment control slice informs the unit under test
to start executing the experiment through the UUT control slice. Thus, as the
unit under test is running the experiment and sending and receiving messages
along the emulated wireless links, the attenuator control slice is manipulating
the characteristics of these links.

For the entire duration of an experiment running on assert, the system state
slice monitors the state of the sites. The logging slice records all error and control
messages generated by all the participating sites. The UUT logging slice records
information that the UUT writes to serial port of the site as it is running.
This data can be used for debugging the UUT by the researcher. Finally, on
the completion of the experiment the experiment control slice invokes the data
retrieval slice to gather the results of the experiment from all the participating
sites. which are then conveyed to the user via the user interface.Experiment
control slice instructs the reservation slice to release all the sites reserved for the
experiment.

As a security measure, and to block access to a user’s code by other users, the
sites can be re-flashed to original configuration, wiping all user data and settings
from them. Similar measures are also designed in the Control PC stopping users
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from having access to data of others. Furthermore, all the data including exper-
iment details and results can be stored on one single portable hard drive. Also
physical and remote access to the facility can be restricted, effectively providing
a secure environment for performing experiments that require extra security. In
a nutshell, all the software slices together can be thought of as the operating
system for assert.

5 Conclusion

The Advanced wireleSS Enviroment Research Testbed (assert) has a small foot-
print, and emulates mobility and link deterioration inside a room in a repeatable
manner. All the experiments are controlled through front-end computers, and
network topology can be modified through a sequence of keystrokes and mouse
clicks. This takes significantly less time than physically changing the topology
in existing over-the-air wireless networking testbeds. assert is immune to in-
terference from other devices in the laboratory and the environment. It will be
possible for experimenters to inject noise or the desired interference into the
system, and observe their impact on the system being studied. Communication
between nodes in the testbed does not leak into the environment. We perform
all the signal manipulation purely in the RF domain. This allows us to scale to
higher number of nodes. Furthermore, while an RF emulator does all the cal-
culations in a central location for all nodes, our solution is decentralized as we
are able to break down the attenuation changes into tasks for each site. With
assert it is possible to conduct experiments in licensed bands like the cellular
service band without interfering with the services offered by the owners of these
licensed bands. Through sophisticated custom hardware and easy-to-use control
software assert has many valuable features that allow it to reduce the cost of
testing wireless networking protocols at scale.

Future Work: assert currently consists of forty nodes, it is designed to
scale to at least one thousand nodes without any design changes. We are con-
verting our user interface (UI) from current small Java program to a web based
application, so that the experiment set up and data gathering is done by the ex-
perimenter from their browser. The other goal is to add more preset topologies,
so that the experimenter has an extended database of already existing topologies,
while they are always able to define their own topology.
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Abstract. We describe a wireless testbed composed by 24 wireless nodes that 
can be used to perform a broad range of studies in the area of next genera-
tion networks. This paper addresses the difficulties and constrains faced by the 
authors throughout the deployment process of such testbed. Flexibility and con-
trollability were key concerns driving the testbed design. The testbed can be 
remotely managed through a series of remotely accessible web services  
performing low-level management. Validation results are presented, show-
ing the interference levels of the testbed as well as its maximum throughput  
capabilities. 

Keywords: testbeds, wireless network, outdoor systems. 

1   Introduction 

Wireless Networks, and especially mobile networks, have been a hot-topic in the 
research community during the past years. Most of the associated research work has 
been carried out through simulations due to difficulties associated with conducting 
real experiments. Such difficulties include (but are not limited to) cost of equipment, 
complexity of scenarios, availability of a lab with the required conditions, human 
resources required to conduct the experiment and reproducibility difficulties in wireless 
environments. 

Simulation tools have therefore been used to conduct such studies in a controlled 
manner with far less effort. However, with increasingly complex systems,  the research 
community has questioned in recent years the accuracy of such simulations, based on 
models of the wireless reality. This led to an increased interest in deploying testbeds 
were wireless studies could be conducted under more realistic – but still controlla-
ble - conditions. Such testbeds constitute an intermediate step between simula-
tions/emulations and a full-scale prototype. The objective of such testbeds is to provide 
the means for the research community to validate their concepts and theories in an 
environment that better matches a real scenario. 

Several testbeds exist around the world, with different strengths and  weaknesses. 
In this paper, we discuss a new testbed deployed for supporting research on  next 
generation networks (NGN), which intends to differentiate itself from the  existing 
ones by increased controllability (for the experimenter) and high reproducibility of the 
experiments. The AMazING testbed is an outdoor system, Operating System agnostic, 
which  the  authors  have  designed  and  deployed  in  the  rooftop  of  Instituto  de 
Telecomunicações in Aveiro, Portugal with a reasonably low deployment cost. 
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In section 2 we review previous work in wireless testbeds and identify some of the 
problems associated with such testbeds. In section 3 we establish the requirements we 
had for our testbed and describe the solutions developed both in  terms of Hardware 
and Management Platform. We present the results of a brief performance evaluation 
on the throughput of the deployed testbed in section 4  and conclude the paper in 
section 5 with an assessment of the most important features of the testbed and draw 
some guidelines for future work. 

2   Wireless Testbeds 

Much research effort was put and is increasingly being put into the development of 
wireless  solutions.  Over  the  time  this  created  optimized  solutions  for   multiple 
scenarios  such  as  metropolitan  area,  campus,  industry,  our  homes,  or  even  our 
personal space. Despite all the effort spent in developing new solutions and evaluating 
new scenarios, there are still doubts about the limits and applications that wireless can 
support. This is in part due to the fact that the wireless medium is much less reliable, 
unpredictable, and hard to evaluate than wired mediums. 

Typically, solutions  for  wireless  networks  are  first  validated  in  a   discrete 
simulation environment. After this initial validation by simulation, it is emulated with a 
real world prototype and then implemented in a final product (if useful). There are 
many  such  simulation  platforms,  with  NS-2  [1],  dominating  the  academia  world. 
These  simulation  tools  are  vital  to  the  advance  of  the  state-of-the-art  in  most 
networking  areas,  because  they  allow  protocol  evaluation  to  be  performed  in  a 
reasonably controlled platform, unaffected by  external variables and thus enabling 
some controlled repeatability. All simulators implement simplified representations of 
the  real  world  models,  which  need  to   be  validated  [2].  Due  to  their  inherent 
limitations, these simplified models constrain the quality of the results obtained. With 
current models and the complexity of existing systems, practice shows that simulation 
results should be increasingly taken with a grain of salt, in particular because minor 
(unseen)  details  may  result  in  misleading  or  incorrect  answers.  The  amount  of 
synthetic  validation  through  simulation  increased  in  many  cases  without  a  clear 
increase in the quality of the results presented [3]. 

Fast deployment in a more real environment can rapidly exclude unreal results. 
Thus, in recent years there has been a major interest around wireless testbeds. With 

decreasing equipment prices, it became easier to evaluate solutions in scenarios closer 
to the real world. Moreover, with testbeds appearing as a  reasonably efficient tool, 
increased  effort  in  testing,  stressing,  observing,   tuning   and  validating  solutions 
became normal.  For  high  profile  scientific  work,  simulations  alone  are  no  longer 
sufficient  to  support  the  results.   Several  research  institutions,  enterprises  and 
universities   have   built   testbeds   aiming   to   create   a   reproducible   evaluation 
environment.  These  initiatives   usually  have  in  their  core  either  multi-purpose 
experimental platforms or simply custom proof-of-concept platforms. The first aim to 
provide an environment able to evaluate a multitude of solutions and scenarios while 
proof-of-concept platforms target advancing a particular research objective and exist 
until the solution reaches market or is abandoned. 
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The recent history of multi-purpose experimental wireless testbeds starts in the late 
90s. Ad-hoc networks were on the rise and the MONARCH [3] project was created. It 
consisted of 2 fixed nodes at CMU premises, and 5 mobile nodes installed in  rented 
cars circulating in a nearby road. While a little crude and with low repeatability, this 
early effort had a major impact. in many networking areas  related to mobility and 
wireless  communications,  such  as  MobileIPv6  and  Dynamic  Source  Routing.  At 
UCLA the NRL [4], aimed at developing ad-hoc solutions, comprised 20 laptops and 
60 PDAs using 802.11b cards. It spans the entire campus and was integrated with a 
simulation platform able to evaluate hybrid scenarios. MIT Roofnet [5] consists of an 
experimental 802.11b/g network of 20 off-the-shelf nodes providing  connectivity to 
users  in  Cambridge.  As  another  example,  the  University  of  California  created  a 
wireless testbed aimed at low-level radio research, with  more  than 100 nodes, with 
very different capabilities and access technologies. ORBIT [6], that includes over 400 
nodes in a 20x20 meter area, is currently one of the most complex wireless testbeds. 
On a different scale, but also relevant there is OneLab [7]  add-ons to PlanetLab, that 
has extensions to support evaluation of  wireless solutions over its general-purpose 
network infrastructure. In most of the existing wireless testbeds nodes are placed very 
close to each other. In such  testbeds it is very difficult to create scenarios in which 
sets of nodes are hidden  from each other. Such scenarios are only possible in such 
testbed through the use of MAC filtering mechanisms that can severely interfere with 
the experiment results. 

There  are  many  other  examples  of  wireless  testbeds  around  the  world.  This 
diversity is now leading to efforts of federation of these testbeds, trying to reuse  as 
much as possible common tools and data representation. 

All the testbeds mentioned have inherent flaws and limitations. Most rely on MAC 
filtering techniques, which is unable to discard radio interference effects. Often they 
are only able to support static scenarios, and the few that have mobile nodes are not 
able to provide reasonable repeatability of the experiments,  impairing the study of 
mobile phenomena. NRT aims at supporting integration  with a simulator but it is 
unknown when this will be fully functional. 

3   The AMazING Testbed 

In the past the authors have experienced with custom purpose testbeds for  next 
generation  networks,  such  as  the  ones  used  for  project  IST-Daidalos  [8].  This 
experience provided valuable knowledge about the requirements for multiple purpose 
test  systems  able  to  evaluate  new  NGN  concepts  through  prototypes.  It  became 
apparent the need for a new testbed, that could be used  by multiple NGN research 
projects without ever limiting the complexity of the  experiments through artificial 
management rules and hardware constrains. 

In particular it was clear from our previous experience that a NGN wireless testbed 
should abide to two key requirements: 

Provide Administrative Privileges for Users: Most of the existing testbeds are either 
private, and therefore fully accessible by their owners, or  public  but  provide a 
limited set of functionalities to users. Ultimately meaning that only a limited set of 
experiments can be conducted, which is worrisome for NGN research. To restrict 
access to foreign users is usually an administrative decision, based on the need to 
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setup  a  monitoring  and  management  infrastructure,  capable  of  controlling  the 
testbed usage. We have made a requirement of our testbed to fully disclose access to 
the nodes, making it  possible to foreign users accessing all the functionalities made 
available by the hardware platform deployed. 

Provide  a  Reproducible  Environment:  –  A  NGN  testbed,  albeit  not  com-
pletely isolated, has to be very predictable, with small variance in the  tests. This 
could only be obtained in an open environment in which no objects would flow 
through the node and where radio interference would be set to a  very low level 
(bellow what   could   be   considered   interference).   Most   testbeds   exist   in   labo-
ratory environments,and  are affected by   normal  people  movement, regular electromag-
netic interference, and interference from multiple experiences. 
Besides   these   key   requirements,   several   other   issues   must   be   taken    in-
considerations: 

x86  Compatible  Nodes:  Of  the  several  existing  computer  architectures  the  most 
popular amongst developers is the x86 architecture. This fact is easily realized by the 
sheer amount of publicly available software implementations  in the area of net-
working, and most NGN research uses network nodes based on x86. By making it a 
requirement, we are guaranteeing that a broader set of testbed users can easily deploy 
existing software. 

Support for Multiple Radio Interfaces: The focus of the testbed is in creating a 
wireless testbed for NGN, thus potentially covering several wireless technologies, 
existing  and  future.  Each  node  must  therefore  be  flexible  enough  to  support 
different radios. Ultimately this must be translated into  mainboards with multiple 
hardware interfaces, in which the radios can be connected to. 

Access to Low-level Radio Interfaces: In addition to the existence of multiple radios, 
it is also required that each of the chosen radio interfaces provides programmatic 
access  to  low-level  aspects  such  as  the  MAC  (a  common   research  issue). 
Ultimately the desirable radio interface should be a fully  software-defined radio, but 
this is not simple to support currently. 

Extendable:  The  nodes  processing  capabilities  must  be  extendable,  and  easily 
linkable to current and  future core network  solutions. This  implies that a  smooth 
interface for the testbed nodes should exist, and that the wireless  interfaces of the 
nodes should be easily accessible from core machines. 

Reduced  Radio Interference:  An  obvious  corollary  for  the   reproducibility 
requirement. The amount of interference a wireless testbed is usually subject to, can 
lead to important variations in the results obtained. It is  necessary that the nodes 
receive as few interference as possible, and that they  cause as little interference on 
their neighbors as possible. 

Low Power and Cost: The amount of nodes immediately leads to concerns related to 
power consumption. It is a good practice for each node to consume as less power as 
possible. To this end, there is a strong concern on the amount of  power  supplies 
involved, as well as on the power requirements of the computers and radio interfaces 
used. Furthermore, it is expected that the testbed should be deployed with low cost 
CoTS (Commercial of-The-Shelf) devices. 

Based on these requirements several hardware-based solutions were evaluated, and a  
management  platform  was  specified.  In  the  next  sections  the  chosen  hardware 
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platform and management platform solutions are detailed, together with  the reasons 
behind each of the choices. 

3.1    Hardware and Deployment Aspects 

The  key  design  decision  is  related  with  the  need  to  have  a  clean,  predictable 
environment,  with  an  easy  access  location.  The  solution  found  was  to  place  the 
testbed outdoors  in  the rooftop  of  a  building,  reasonably  insulated  from  common 
interference sources, and isolated from human movement interference. This also had 
the advantage of providing a reasonable large area for the testbed deployment. 

3.2    Hardware Deployed 

This  key  decision  led  to  the  AMazING  (Advanced  Mobile  wIreless   Network 
playGround)  testbed,  which  consists  of  24  fixed  nodes  located  at  Instituto  de 
Telecomunicações (IT) - Aveiro rooftop, as depicted in Figure 1. The testbed spans 
over  1200m2,  and  nodes  are  distributed  across  the  area  forming  a  grid  with 
approximately 8m between each neighbor. 
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Fig. 1. Architecture of the AMazING testbed with detail over the  spatial deployment on 
the rooftop 

The  system  is  exposed  to  the  weather  conditions  of  a  south  European  coastal 
region (frequent sun, and humidity frequently higher than 85%), therefore  imposing 
the use of watertight, and UV resistant, enclosures (IP65). However,  Polycarbonate 
enclosures  have  a  very  low  heat  transfer  coefficient  (~0.21  W/(m2K)),  which  is 
insufficient for the heat produced by the systems. Solar heat gain was also  taken in 
consideration, especially because temperature in this region can easily  reach more 
than 40ºC during summer time. The solution we found (see Figure 2) was to use one  
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fan and two openings, protected with particle filters. In order to  reduce dangerous 
water condensation, the main board was placed in an inverted  position and near the 
top of the enclosure. Heat generated by the electronics (in particular the CPU) keeps 
the  board  always  above  dew  point.  The  final   solution  involved  developing  a 
protective cap made of waterproof maritime plywood, to reduce solar load, and allow 
air heat exchange with the environment. Figure 3 depicts the temperature differential 
between outside environment and the  interior of a node during three days of sunny 
weather. As it can be seen, the difference remains stable and inside temperature only 
varies by less than 10ºC. 

 

Fig. 2. Node structure with side cut and actual node in the testbed 

 

Fig. 3. Temperature variation over 3 days period 

At the core of the testbed, there are several support servers and a redundant storage 
that serves all files to the testbed. Servers provide processing power to analyze results 
and extend the testbed by integrating simulators such as NS3.  Also, they configure 
nodes according to the experiment trough the Control Module and provide a common 
time source [9]. Additionally they can be used to run Virtual Machines configured by  
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testbed users in order to support specific experiments. The redundant storage device 
provides a 4TB NAS in a RAID5 configuration, connected to the servers and nodes 
using Gigabit  Ethernet. This  device  provides  storage  support to store  OS  images, 
experiment configuration, the results obtained and the virtual machines. 

Nodes have at its core a Commell LE-365 board, with a VIA EDEN 1Ghz CPU 
and  1GB  of  RAM.  These  are  powered  by  a  single  120A,  8-16V  variable  power 
supply, which is shared by all nodes. Power is distributed point-to-point  from the 
power supply to each of the nodes. The LE-365 board provides a  high  number of 
expansion  possibilities  such  as  8  USB  ports,  a  RS-232  port,  a  2  ports  SATA 
controller, 2 miniPCI slots and 1 CF interface. This myriad  of interfaces makes it 
possible  to  easily  expand  the  node  interfaces,  which  is  perfect  for  a  multi-radio 
testbed. In particular because new network interfaces can in the future be added to the 
available interfaces. A Gigabit Ethernet NIC is also  available and is used solely for 
the purpose  of  managing  the nodes  and  collecting  statistics.  The  availability of  a 
Gigabit  Ethernet  control  network  is  important  due  to  several  aspects:  it  reduces 
command delay, it supports raw  packet collection from multiple node, and provides 
support for NFS with low latency. This interface can also be used for extending the 
testbed nodes capabilities. 

Currently the CF interface is occupied by a 4GB CF card while two 802.11 cards 
occupy  the  miniPCI  interfaces.  One  of  the  cards  is  a  Compex  WLM54SuperAG, 
which has an Atheros AR5414 processor at its core. This card can output 20dBm and 
supports channel bonding both in the 2.4Ghz (802.11bg) and 5Ghz (802.11a) ranges. 
The  additional  card  (Compex  WLM200NX)  is  also  Atheros  based  (AR9220)  but 
besides  supporting  802.11a,b,g,i,e,h,j,  high   sensitivity  (Extended  Range),  Power 
Control, and Channel Bonding (40Mhz) like the previous card, it also adds support for 
802.11n in a 2x2 MIMO spatial multiplexing configuration. The open-source ath5/9k 
drivers control both cards and provide high flexibility due to almost direct access to 
the networking ASIC. 

Electromagnetic  interference  is  reduced  due  to  the  high  insulation  of  the  roof 
pavement materials, location of the building (in the edge of the university  campus), 
and the characteristics of the external users wireless usage (there are no residential or 
industrial neighbors). 

3.3    Management 

Given the fact that the testbed nodes are enclosed inside the protecting cases in an 
outdoor environment, it was necessary to carefully plan how the nodes were  to be 
managed   without   the   need   to   direct   intervention.   Additionally,   one   of   the 
requirements we set for our testbed was the need to support full administrative (root) 
access to the nodes. 

Based on these two requirements, the management framework of our testbed was 
built with a mixture of hardware and software based management mechanisms. The 
former  provide  a  basic  control  of  the  nodes  that  is  independent  of  the  operating 
system, and can override users access, while the  later are required to be installed in 
the operating system currently active in the node. The two types of mechanisms are 
nonetheless undissociable, with the hardware based mechanism only taking action if 
the  software  based  mechanisms  have  failed,  based  on  a  centralized  management 
infrastructure that monitors all the testbed. 
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The operation concept of the testbed is a “leased-time” model. Experiments  take 
continuously hold  of  the testbed  for  a  given  period  of  time, deploying  their own 
operating system  and  tools. Access  to the testbed  is provided  to  registered  users, 
which have gone  through a screening process in order to  check  the purposes  and 
requirements  of  their  experiments.  After  registration,  users  are  provided  a  user 
account in the management platform in which they  can upload their custom build 
Operating  System  image  or  choose  from  one  of  the  existing  ones.  Access  to  the 
testbed is based on a timesharing scheduling  mechanism and in accordance to the 
requirements set by the users. 

The node operating system is remotely loaded using Pre Execution  Environment 
(PXE)  [10].  An  operating  system  image  is  loaded  to  the  node  using  PXE  and  a 
mixture  of  various  file-sharing  protocols  such  as  TFTP,  NFS,  iSCSI  and  SMB 
depending on the image being loaded. Testbed users are supposed to be able to setup 
their own operation images with any Linux distribution or even Microsoft Windows. 
A central Linux based server is made available for distribution of the images using the 
aforementioned protocols, and additionally core machines can be setup by the testbed 
user to host any additional tools required for the deployment of the Operating System 
Images and experiment tools, as well as any other type of core infrastructure required 
to support a NGN experiment. This approach intends to give testbed users maximum 
flexibility in terms of choice of Operating System and experiments. But it creates an 
important challenge for reducing the risks associated to this full access. The testbed 
hardware must be monitored in order to avoid damage such as CPU overheating, or 
for violations on the time used for conducting a given experiment. 

The most basic control mechanism we have setup is a power control web-service 
that  controls  several  relays  in  the  power  distribution  network.  Through  this  very 
simple mechanism it is possible to remotely power-cycle the machines regardless of 
their status (running, crashed, booting, etc). The web-service is available not only to 
the testbed administrator, but also to the testbed user. In this case it will only allow 
control over  the leased nodes  for the  experiment, during the experiment duration. 
Experiments that overdue their reservations periods can be shutdown selectively using 
this power control mechanisms. Since users are encouraged to run their tools and data 
collection mechanisms over the network, it is not expected serious loss of results from 
the  cold  power off solution. A remote power off command will only came as a last 
resort. 

A spectrum analyzer placed centrally on the testbed monitors the spectrum.  The 
information collected by such spectrum analyzer is used in the management platform 
to identify violations of spectrum usage that can be stopped by  shutting  down the 
offending nodes 

One of the requirements we placed for our nodes was the availability of hardware 
watchdogs in the mainboard. This is required in order to easily (and  automatically) 
recover from crashes and bad booting processes. Our objective is that once the system 
boots, a hardware watchdog will reboot the system after 4  minutes if no watchdog 
driver is meanwhile loaded. The mainboard we choose, the Commell LE-365 board, 
uses a Winbond W83697HF watchdog. This watchdog has drivers both for Linux and 
Windows operating systems that were set as our primary operating systems. 

In addition to providing these drivers to the testbed users, prebuilt images (Debian 
based) are  available  for  customization  or  for  direct  use  by  users.  These  prebuilt 
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images,  besides  having  support  for  the  hardware  watchdog,  have  several  other 
monitoring and management modules, and automatically  mount a NFS share where 
tools  and  data  can  be  placed  (accesses  through   the  Ethernet  interface).  Such 
functionality makes  it possible  for  non  computer  oriented  users  to  have  a  simple 
access to the testbed, through the use of the standard images provided by us, but still 
being able to use custom software deployed over the NFS share. In the future, we plan 
to extend the prebuilt image concept to the Windows operating system. 

Another  important  driver  (available  only  on  the  Linux  image)  is  the  so-called 
FlyingInterfaces, which allows direct access (from the core servers) to  the wireless 
interfaces. This driver enables hosts in the core servers to use the network interfaces 
of the wireless nodes as local devices. Because testbed nodes are multiradio, by using 
virtual machines, maximum testbed capacity is actually doubled (2x24). Each testbed 
node runs a low complexity daemon, which exports  network device IOCTL access 
over  the  network.  Remote  equipments  run  a  different  module  providing  a  virtual 
interface, which  mimics  all  functions  of  the testbed  equipment  wireless  interface. 
Tools like Linux’s iwconfig or iwpriv (used in Linux to control and monitor wireless 
devices) report exactly the same  results when  running both  in remote equipments 
(using virtual devices) and in testbed nodes (using the real device). 

The  AMazING  Control component (see Figure 4) is thus comprised by both  a 
server (running in the support servers) and a client (running at each node). Its  tasks 
include: monitor and management operations, node configuration, and  trigger  based 
execution of a given experiment. Its design is simple so that the impact on the node 
operation is minimal, thus not introducing artificial glitches in the experiment results. 

 

Fig. 4. Architecture of the AMazING Control component 

The  Monitoring  function  of  the  component  provides  basic  statistics  about  the 
operation of the node, such as CPU load, memory consumption, temperature, and fan 
speed. While  irrelevant  for  most  experiments,  operational  metrics  are  vital  to  the 
proper maintenance of the system, mostly to avoid and early detect hardware failures. 
Values for each of the monitored metrics are reported periodically while the node is 
operating, and independently of the testbed utilization. 

The  Scheduling  function  is  an  event  driven  processing  module,  which  triggers 
actions (command or script executions) at specific time events. Lists of events  are 
specified  upon  the  creation  of  the  experiment  and  distributed  to  all  nodes  upon 
initialization.  After  the  list  of  tasks  is  finished,  the  Scheduling   function  will 
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periodically try to get new event definitions. Nodes are synchronized with the support 
servers within  a few milliseconds using NTP  [9], allowing  for  coordinated quasi- 
simultaneous events across the entire testbed. 

4   Validation 

As  a  preliminary  validation  of  our  testbed  and  surrounding  environment,  we 
demonstrate some simple experiments obtained with the described setup. In the first 
case we deployed a WiSpy dongle near one of the nodes and  monitored the radio 
levels over the 2.4Ghz band. This dongle is an easy to use spectrum analyzer, which 
while not comparable with laboratory equipments (which are also tens of times more 
expensive), allows for some basic measurements in the range of -6.3 to -100dBm. The 
model we used has a resolution of 373KHz and sweeps the radio band in the range of 
2.400 to 2.483 GHz. Then we plot signal strength as a function of time and frequency 
and  assess  interference  level  at  a  particular  location.  Figure  5  depicts  the  signal 
strength near Node 1, when no node is active and when Node 1 is acting as an Access 
Point in channel 1. As it is depicted, average signal level on the testbed area is below - 
92dBm. Peak signal value measured when nodes are active, but idle, is a little higher, 
reaching -80dBm. If compared with the situation of nodes transmitting in channel 1 
(2.412  GHz)  it  can  seen  the  different  between  the  signal  power  of  the  nodes  (at 
20dBm) and the environment peak noise values. 

 

Fig. 5. Peak and average radio power measured with nodes active and idle 

While Node 1 is configured as an Access Point in channel 1, we conducted  an 
experiment to determine how radio signal and throughput varies along one  of  the 
sides of the testbed. For this, we sent TCP flows from Nodes 2, 3, 4 and 5 towards 
Node 1 during 1 minute and observed the throughput at intervals of  10s. All these 
nodes are located in the right side of the building, actually forming a line, each node 
distancing 8m from the previous. Node 5 is 32m from Node 1. As depicted in Figure 
6,  neighbor  nodes  are  able  to  sustain  a  throughput of  up  to  23Mbps  when  using 
802.11g. This value decreases, as expected, with the distance as the receiving power 
also decreases. The farthest node (Node 5) is able to reach Node 1 and exchange data 
at less than 4Mbits/s. Interestingly, when considering 802.11b, rates drop to less than 
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6Mbps, but values do not seem to decrease with distance. Node 5 is able to exchange 
data with Node 1 with 6Mbits when using 802.11b, which is higher than when using 
802.11g.  According  to  the  specification  of  the  Atheros  chip,  20dBm  of  SNR  are 
required for a link rate of 11Mbps, indicating that noise level at this node is indeed 
very low. 

 

Fig. 6. Throughput (green is 802.11b, red is 802.11g) and SNR (black) as a function of 
distance from the AP node 

SNR measured at the receiving node drops rapidly as the distance increases. At 
8m,  Node  2  indicates  a  receiving  power  of  -55dBm  while  at  32  meters,  Node  5 
indicates that the signal generated by Node 1 is received with -86dBm. Considering 
free space propagation [1] of an omnidirectional antenna, at 32 meters the receiving 
power should be higher than it is, which suggests additional attenuation. In this case 
attenuation is intentional and is mainly caused by the occlusion of the Fresnel zones, 
which we achieved by placing antennas very near the floor at about 25cm high. 

Considering the radius of the Fresnel zone as given by 

F =
nλd2

2d  

where n is number of the Fresnel zone, d is the distance between end-points and λ the 
wavelength of the signal. The maximum radius of the 1st Fresnel zone  has  the 
values present in Table 1. 

Table 1. 

8 m 16 m 24 m 32 m 
2.400 GHz 0.5 0.71 0.87 1.00 
5.000 GHz 0.35 0.49 0.60 0.69 

As depicted, even at close range (8m) and for the 5Ghz band, the 1st   Fresnel zone 
intercepts the rooftop at a large extent. The minimum occlusion will be of 29% for the 
node at 8m when using the 5Ghz band, while the maximum occlusion is of 85% for 
nodes at 32m when using the 2.4Ghz band. The resulting effect is  additional radio 
attenuation, which helps in creating custom topologies where nodes have no, or only 
minimized, direct radio connectivity. 
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5   Conclusions 

Testing NGN has led us to the development of a general-purpose testbed, which is 
characterized by its extreme flexibility, and large reproducibility. 

We  have  developed  a  usage  model  where  users  have  full  access  to  the  nodes 
devices, and can even expand its capabilities by locating in the core  functions that 
eventually  access  the  wireless  interfaces  of  the  nodes.  The  outside  nature  of  the 
testbed had posed specific deployment challenges, but the  advantages achieved in 
terms of reduced noise and interference are well worth  these added constrains. The 
management infrastructure  developed  allows  for  a  coarse  hardware  control  of  the 
testbed, while software modules can perform fine control. 

Confronting  with  previous  custom-built  NGN  testbeds,  this  testbed  seems  to-
provide  a  much  faster  deployment  and  evaluation  process,  thus  simplifying  the 
complex evaluation process of such research. 

In the future we intend to expand the testbed to other buildings in the campus and 
explore the use of robots as mobile nodes. 
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Abstract. Phased array antennas enable the use of real-time beam-forming and
null-steering to further increase control of signal strength and interference in
wireless networks. Understanding the potential of this platform for both mesh
and single-hop networks is becoming more important as smart antennas begin to
appear in emerging networking standards. Prior attempts to test non-standard an-
tenna platforms have typically focused around simulations, fixed (non-steerable)
directional antenna testbeds, and small scale temporary setups utilizing 1 or 2
phased array antenna nodes over the span of a few hundred meters. This pa-
per presents the challenges encountered – and solutions developed – in building
WART, a permanent, campus-wide testbed for wireless networking with beam-
forming antennas.

Keywords: Smart antennas, steerable, directional, phased array, antennas, out-
door, wireless, testbed, 2.4GHz.

1 Introduction

Directional antennas, both fixed and steerable, are proving to be important in the next
generation of wireless networking protocols. These antennas give nodes further con-
trol over both signal strength and interference, allowing optimization techniques which
can yield greater network throughput with fewer errors. While protocols incorporating
directional or “smart” antennas have been proposed, their evaluation has been limited.
Those researchers who have attempted real-world evaluation of their ideas have often
used one-off testbeds assembled to perform a small number of experiments [11,9,8].
Most proposals, however, rely solely on simulation or theoretical analysis (for instance,
[14,13]).

In this paper we introduce the University of Colorado Wide-Area Radio Testbed
(WART) as a platform for studying uses of directional, steerable, and smart antennas in
wireless networking1. Given the widely-recognized difficulty of accurately simulating
radio environments, real-world experiments are essential to evaluate wireless network-
ing protocols. In the case of directional applications, which are especially dependent on
the vagaries and environmental effects of radio propagation, this is even more important
[2,4].

1 An expanded version of this paper is available in a companion technical report at [3].

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 231–240, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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WART is currently the only permanent facility for studying smart antennas in a
large and diverse urban environment. The system consists of eight phased array an-
tenna nodes mounted to the rooftops of university buildings, spanning an area of 1.8
x 1.4 kilometers. The entire testbed is linked together via wired Ethernet and can be
controlled from a single administration point. This architecture ensures that WART can
not only offer the geographic scale and realism of large scale distributed testbeds [1],
but can also give its users the degree of control and ease of management only seen in
dense indoor testbeds such as ORBIT and Emulab [12,7].

The production and deployment of such a testbed, however, is itself an engineering
problem. In addition to the capabilities of WART, this paper describes some of the
logistical challenges encountered in planning, installing, and maintaining a centrally
controlled wide area rooftop network.

(a) Campus testbed (1.8
x 1.4 km)

6

4

5

7

8

2

3

(b) Connectivity of nodes 2
through 8 without beam steering

(c) Installed antenna
node

1.1 Design Goals

WART is intended to be a dedicated experimental testbed for studying the impact of
directionality and beam-forming throughout the network stack. Given this objective, we
chose three principle design goals for WART: (1) The testbed must be able to perform
outdoor omni-directional, fixed directional, and beam-forming experiments; (2) The
testbed must be able to test a diverse set of link distances of varying link qualities; (3)
WART nodes must be simple to reconfigure for varying experiments and provide an
easy recovery mechanism in case of failure. The node sites were chosen to provide a
variety of link lengths, with line-of-sight between many but not all pairs of nodes.

The remainder of this paper describes the hardware, software, and centralized
architecture of WART that helps fulfill the design goals of easy maintenance and
administration.

1.2 Smart Antenna System

In this section we describe the hardware and software that comprise WART. These
components give it the unique ability to perform smart antenna research at all network
stack levels and address challenges with its administration and experimental setup.

Each smart antenna node consists of a phased array antenna and an embedded com-
puter. The phased array antennas were designed and constructed by Fidelity Comtech.
The antenna operates in the 2.4GHz ISM band and uses an 8 element uniform circular
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array of dipole antennas that support a minimum 42◦ primary lobe. The ratio of the
lowest null to the highest peak is ≈ 40dB, which allows for selectively “nulling out”
interfering signals. The antenna arrays can be electronically switched between radiation
patterns in ≈ 100μseconds, allowing for precise dynamic reconfiguration. The wireless
interface card used is an IEEE 802.11 Senao 5345MP MiniPCI adapter, which uses an
(especially flexible) Atheros chipset.

The default Operating System (OS) image used by each WART node is a modified
OpenWRT Linux (Kamikaze) distribution. The wireless driver is based on the Multi-
band Atheros Driver (MADWiFi) version 0.9.4.5 and has been extended to support the
smart antennas’ ability to change antenna patterns, along with various measurement
and experimental Medium Access Control (MAC) features. Unix Network File System
(NFS) is used to transmit data from the smart antenna node to long-term storage.

2 Administration and Maintenance Infrastructure

Experimental hardware and software is almost inevitably flawed, and faults which es-
cape notice during testing regularly cause problems during live experiments. When
problems do occur, equipment needs to be rebooted, experiments need to be re-started,
scripts need to be edited, and sometimes new software needs to be installed. The (hu-
man) communication overhead of trying to identify and correct problems across all test
locations quickly becomes prohibitive, even when the necessary fixes are small. In early
tests we found that even when nothing went wrong, coordinating a four node experiment
required at least a half-hour of overhead for setup, configuration checks, synchroniza-
tion, starting the experiment, downloading the data afterwards, and running basic sanity
checks on the data. Overall, the ratio of time expended to successful experiment time
was very high.

Our primary requirement for the testbed infrastructure was that it enable centralized
management. At its core, this infrastructure consists of a control plane network, a “man-
agement box” connected to each experimental antenna unit, and a collection of software
tools. All of these will be described in upcoming sections.

2.1 Management System

Every experimental antenna unit is directly connected to a management box, as de-
picted in Figure 1. These boxes connect the experimental units to the control plane
network. Additionally, the management boxes also provide network booting and re-
mote power control to the antenna units. This approach greatly simplifies reconfigu-
ration: Any software change, from one configuration file to a new operating system,
can be made by uploading a new image to the management system and rebooting the
experimental equipment. The equipment could boot from a remote server, but only if
the intervening network had the configuration and performance to support it; such a
requirement which would limit options substantially.

Each management box contains a single-board Soekris computer running Linux and
can be installed indoors at a significant distance from the antenna unit. All of the current
deployments have Ethernet connections, but they can accommodate other data connec-
tions with minimal configuration changes.
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Fig. 1. Management box configuration

The organization of the control plane network relies heavily on the use of a virtual
private network (VPN). Management units establish and maintain connections to a cen-
tral VPN server, so that all the devices are accessible as a single IP network. Network
Address Translation (NAT) is used to map hard-wired local addresses to node-specific
VPN addresses. The practical effect of this configuration is that error-prone customiza-
tion and dynamic reconfiguration are largely avoided, yet every device is reachable by
a globally unique address, and most configuration information is stored at the central
server where changes are easy to make. As a final failsafe, each management unit con-
tains a remote power switch for each component allowing for a hard-reboot of any
device.

2.2 Interchangeable Parts

Each phased array antenna unit or network power switch has exactly the same hardware
and configuration as every other. Every management computer is the same as every
other except for the contents of a removable compact flash card. This makes it easier
to develop testing processes for each component and means that a faulty or suspect
component can be replaced with no thinking or configuration required. In fact, it is often
easiest to replace the entire management unit as a whole – except for the flash card – and
then diagnose faulty equipment in the comfort of the lab. Hardware and configuration
homogeneity make software management more practical. All of the files associated with
the testbed – source code, configuration files, and compiled operating system images –
are kept under version control. Because the antenna units are identically configured,
there is one generic OS image for all of them.
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2.3 Security

Since WART nodes are connected to untrusted networks, they are potentially suscepti-
ble to the same attacks that many other machines on the University of Colorado network
experience on a day-to-day basis. Several steps have been taken to ensure that only au-
thorized access is given to both the phased array antenna node and management board.
Communication to the WART management nodes is restricted to nodes that are part of
the same VPN. This requires having a certificate signed by the certificate authority, a
process which is performed off-line. Within this trusted domain, we use SSH keys to
allow remote logins directly to the antenna and management nodes.

Another possible attack vector is via the wireless interface. Should an attacker inject
traffic to a node, the node could potentially begin routing packets from unauthorized
users. To minimize this risk, nodes perform only the minimum forwarding required for
experiments.

3 Deployment Logistics

Deploying a physically large testbed, especially with outdoor equipment, involves a
number of challenges outside the traditional realm of computer science. There is a mod-
est inherent engineering component, which is significantly compounded by the need for
approval and cooperation from various outside parties. All of the WART nodes are lo-
cated on University of Colorado property, meaning that we only needed to interact with
a single (albeit large and bureaucratic) owner. We suspect that broadly similar issues
would be likely to arise in working with another large organization, and possibly with
multiple smaller ones.

Some of the more prominent logistical challenges encountered were:

– Architectural Approval: The aesthetic impact on campus buildings had to be ap-
proved by the campus architect.

– Antenna Siting and RF Interference Approval: A separate antenna committee had
to be convinced that the proposed sites would not interfere with existing radio
equipment.

– Electrical Design and Installation: The electrical requirements of the testbed equip-
ment are extremely low – each node uses less power than a desk lamp. However, all
construction projects involving new electrical connections are subject to the same
approval process, regardless of the actual load. This means that an electrical design
for each node had to be completed and signed off by a certified electrical engineer
and installation of the electrical components had to be performed by licensed elec-
tricians. Both tasks had to be done by outside contractors, requiring an additional
round of financial approvals before work could begin.

– Environmental Health and Safety: All construction projects must be audited for
safety risks to both the workers and the campus in general. The primary concern
was disturbing pre-existing asbestos building materials, although we also had to
vouch for the microwave radiation levels.

– Roof Integrity: Because the equipment was to be mounted on the outside of build-
ings, both the attachment methods and cable connections had to be evaluated for
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waterproofing, fire sealing, and structural impact. In the cases where new holes had
to be made through the roof, the penetration and waterproofing had to be installed
by campus roofing services.

– Antenna Structure: Local building codes and campus design rules establish stan-
dards for wind, snow, and ice tolerance. The university requirements were the more
stringent in this case, requiring that equipment be designed for 120 mile per hour
(53.6 m/s) wind load. Antenna mounting equipment, especially in the WiFi market,
seldom meets those requirements. While commercial options do exist, we found it
more cost-effective to design and construct our own.

– Financial Approvals: After our research group and department decided to allocate
funds for the testbed, there were still a significant number of delays waiting for
work orders and payments to be approved by other university entities. In partic-
ular, payments from the computer science department to facilities management,
and from facilities management to outside contractors all required administrative
approval before the payee could begin work.

3.1 Timeline

The testbed deployment process has required a total of two years. Most of that time
has consisted of waiting for some necessary action by parties outside our department.
Within that waiting, most of the time has been for administrative approvals, with actual
design and construction requiring relatively little. Figure 2 shows our actual timeline;
with more foresight it probably could have been compressed.

The architectural and RF approval steps are an unavoidable bottleneck, as they de-
termine whether and where equipment can be installed. In our case, it required approx-
imately nine months from the first informal proposals to a preliminary approval of the
sites chosen. Once those decisions had been made, several of the remaining steps could
likely have proceeded at once.

The obvious deployment tasks, namely physically installing the antenna node and
management box, and running conduit and Ethernet cable between them, required on
the order of one week per node.

3.2 Costs

Table 1 presents an approximate breakdown of the expense incurred per node in build-
ing this testbed. The dominant cost is not the research equipment itself but rather labor
required for regulatory and university policy compliance. This includes both the elec-
trical work mentioned earlier and the time spent by university employees on evaluation
and project oversight.

4 Proof-of-Concept Experiments

As a proof-of-concept experiment for WART, we performed a full pairwise link quality
test. In this test, each WART node takes a turn transmitting while the other nodes lis-
ten. During each turn, the transmitter and all receivers cycle through 17 pre-configured
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Fig. 2. Testbed deployment timeline: The entire process took 2 years, 16 months of which was de-
voted to planning and administrative approval while only 8 were required to install and configure
the hardware.

antenna patterns, so that every combination of transmitter and receiver antenna patterns
is tested. The patterns chosen point the main lobe in one of 16 directions about the az-
imuth plane (the 17th pattern is omnidirectional). Using the measured signal strength of
received packets, we are able to determine (a) which links are possible between which
nodes and (b) what the optimal “greedy” patterns are for each link. The results of this
experiment are provided visually in Figure 3, which we believe makes a compelling
case for the power of steerable directional antennas. When configured with omnidirec-
tional patterns, which are comparable to the antennas used in many single-radio mesh
networks, only a few links are even possible, and of those only a small number offer
decent signal quality. With steering, however, we see a vast improvement: not only are
all link-pairs able to pass traffic, but these links are typically of high quality (greater
than -70 dBm).

Our present and future research utilizes WART to evaluate directional medium access
control (MAC) protocols, with a particular emphasis on optimization for spatial re-use.
We believe that the unique opportunity that WART provides for real-world evaluation
of these protocols will lead to important results in this direction, and new insights into
methods for improving wireless systems in general.

Table 1. Cost of labor and parts per WART node. The labor of research group members is not
considered.

Description Cost
Phased Array Antenna Node $3,000
Management Box and Other Control Plane Equipment $1,200
Installment Materials $300
External Labor and Fees $5,780
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Fig. 3. Comparison of available links and link quality between seven testbed nodes using best-
steered directional patterns and omnidirectional patterns. Stronger links are indicated with a wider
arrow of a darker color. The best links are those with a link of greater than -60 dBm. The worst
links plotted are barely above the noise-floor with greater than -95 dBm achieved RSS.

5 Related Work

There are too many wireless testbeds to discuss individually in the available space.
For a more thorough treatment, please see our companion technical report [3]. Despite
the large number, we are not aware of any existing testbeds that address the particular
needs of WART. We observe that these testbeds fall into one of two categories: Wide
area testbeds, which cover a significant outdoor environment but offer limited control
over each node, and dense indoor testbeds with many nodes and excellent facilities for
re-programming and control, but with very artificial RF environments.

The existing outdoor testbeds generally have more operational emphasis and less ex-
perimental control and management support than WART or the indoor testbeds. Most
use stock 802.11 at the MAC and physical layers, although additional low-layer infor-
mation can be collected. This may in part reflect their designers’ research interests and
may also reflect limitations resulting from the lack of a stable separate control network.
Notable examples include Roofnet [5], the Rice/TFA mesh [6], and the Digital Gangetic
Plains project [10].

In general, the indoor testbeds are physically smaller than the outdoor ones and ben-
efit from a much more controlled environment. The problems of remote repair and
establishing and maintaining a reliable communication infrastructure, which have been
at the forefront of our design challenges, are largely non-issues. Many of the indoor
testbeds have at least an order of magnitude more nodes than any of the outdoor ones:
Both ORBIT and Emulab have over 400 nodes [12,15,7]. Much of the infrastructure
developed for the indoor testbeds is oriented toward automating the process of config-
uring, controlling, and aggregating data from such a large collection of devices.
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6 Conclusion

This paper has presented WART, a testbed that will facilitate future networking research
by providing unique physical layer capabilities not seen in any other outdoor network-
ing testbed. While the testbed covers an entire university campus, it is easy to manage
and administer due to its wired control plane, which is remotely accessible from any-
where on the Internet.

The research motivation for building WART was to study the use of directional, steer-
able, and adaptive antennas. The prominent issues encountered in creating the testbed
proved to be only indirectly related to that objective. The direct causes were using com-
modity equipment, supporting low-level experimentation, and spanning a large geo-
graphical area.

Commodity equipment: The research equipment (phased array antenna nodes) is
comparatively affordable at $3,000 per node, while specialized test and measurement
equipment could easily cost 10 to 20 times more. The consequences of using commod-
ity hardware have been the need for significant calibration and testing and extensive
software hacking to make the hardware operate in unintended ways.

Low-level experimentation: Many of the experiments we wish to conduct are low-
level both in the sense of being at the physical and MAC layers of the OSI hierarchy,
and in the sense of requiring “close to the metal” system implementation. This implies
the need for easy reprogramming and crash recovery, high-volume data collection, and
a flexible control interface. In practice, these in turn require a control connection that is
separate from the experimental wireless system.

Large geographical area: It has been amply demonstrated that radio propagation in
general, and directionality in particular, are very environmentally dependent [2]. Conse-
quently, it was important that WART encompass a range of node densities and environ-
mental features of interest. However, covering a large area implies physical distance and
often administrative diversity, each of which contribute significant design challenges.
Physical distance effectively precludes running dedicated cables from a central loca-
tion to all of the nodes, which implies that power and network connectivity (if needed)
must be supplied using resources available on site. It is this constraint which leads us
to the “management box” design, with network support, power conversion, and power
switching co-located with every measurement node.

Covering a larger area often implies involving more administrative domains. Our
sites are all owned by the same university, but building at a campus-wide scale requires
the involvement of many departments – administrative and academic – and the approval
of several levels of hierarchy. The practical impact of this cannot be overstated. The
approval processes – and the cascade of design decisions made in order to secure those
approvals – account for at least half of the total time and cost for this project.

This testbed was developed to study particular physical layer technologies, but the
design lessons are not specific to that objective. Most of the challenges encountered in
designing this testbed – and the solutions developed – are likely to apply to other out-
door and wide-area testbeds. We have developed an infrastructure for deploying nodes
at widely separate, minimally provisioned sites and connecting them into an easily-
managed unified research system.
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Abstract. ETOMIC is a network traffic measurement platform with
high precision GPS-synchronized monitoring nodes. The infrastructure
is publicly available to the network research community, supporting ad-
vanced experimental techniques by providing high precision hardware
equipments and a Central Management System. Researchers can de-
ploy their own active measurement codes to perform experiments on
the public Internet. Recently, the functionalities of the original system
were significantly extended and new generation measurement nodes were
deployed. The system now also includes well structured data reposito-
ries to archive and share raw and evaluated data. These features make
ETOMIC as one of the experimental facilities that support the design,
development and validation of novel experimental techniques for the fu-
ture Internet. In this paper we focus on the improved capabilities of the
management system, the recent extensions of the node architecture and
the accompanying database solutions.

Keywords: ETOMIC, network measurement infrastructure, active
measurements.

1 Introduction

Internet is existing since the late 60s and became a global network in the early
80s. By that time the general design and most of the basic protocols have been
laid down. Since then its scale and complexity has become orders of magnitudes
larger concerning both the number of nodes and the amount of traffic flowing
through. Although smaller modifications have happened and the hardware be-
hind the Internet has changed significantly, the basic structure has remained the
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same. Recently, several international efforts try to re-design the Internet from
clean slate. It is expected that a more optimal design will solve the most pressing
problems we currently face. To enable the design of a better system it is essential
to understand the details of the network and traffic dynamics. For this purpose
we need to create measurement tools and gather diverse measurement data.

The European Traffic Observatory Measurement InfrastruCture (ETOMIC)1

was launched in 2004 [1,2,3] with the need to supply the network research com-
munity with various experimental data. It is targeted to provide the scientific
community with an Internet measurement platform that is fully open and recon-
figurable, extremely accurate and GPS-synchronized. The ETOMIC system has
been designed to allow researchers to perform any kind of active network mea-
surement. The users are provided with a web-based graphical user interface for
the definition of the experiments to run. Researchers may either choose from a
number of built-in scripts that cover the most popular measurement techniques,
like traceroute or packet-pair experiments, or they can provide their own code for
the experiments. To avoid conflicts in resource utilization each measurement has
to be scheduled to exclusively reserve node resources for its execution. The node
reservations are performed through the web-based user interface. The ETOMIC
management kernel takes care of the software upload and experiment execution
in a fully automated fashion.

After the successful duty of the measurement nodes since 2004 the renewal
of the system components was necessary. In the OneLab project [4] we have
extended the capabilities of the measurement hardware to match the current
technologies and to incorporate the software evolution of the last years that are
important from the perspective of network measurements. The ETOMIC infras-
tructure now provides two ways of collecting experimental data. One possibility
is when the researcher reserves and configures the measurement nodes and sets
the parameters of the experiment through the Central Management System. In
this case, besides the original ETOMIC nodes, newly deployed enhanced mea-
surement boxes can also be used for experimentation. To meet the requirements
of high precision measurements the nodes are equipped with a DAG card (for
the original nodes) or an ARGOS card (for the new generation nodes) to provide
nanosecond-scale timestamping of network packets. Besides these nodes a third
type of hardware component was also introduced, which is called Advance Prob-
ing Equipment (APE). APE is a low cost hardware solution developed to serve as
a measurement agent for user applications: it provides a web service interface to
conduct experiments. This approach enables autonomic software components to
automatically collect relevant network data from the ETOMIC system they rely
on for their operation. As a consequence of a development in the system kernel
the nodes of the PlanetLab platform [5] can also be used as measurement nodes
by the ETOMIC system. The goal of this integration was to enable the federated
usage of the high precision ETOMIC nodes and the numerous PlanetLab nodes.

To make it easier to handle and archive the huge amount of data collected by
the ETOMIC platform we have created data repositories. There are two different

1 ETOMIC was awarded with the Best Testbed Award at TRIDENTCOM 2005.
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interfaces for these data archives. The periodic measurements web interface can
be used to poll automatically collected measurement data through pre-defined
queries. Currently this interface provides one-way delay measurements, NTP
and GPS measurements and several different types of traceroute experiments.
As another approach, the Network Measurement Virtual Observatory (nmVO)
[6] provides standard SQL database access to the user community. The nmVO
provides a graphical user interface and a web service interface for accessing raw
and evaluated measurement data.

The paper is organized in the following way: Section 2 explains the key fea-
tures of the system architecture. In Section 3 and in Section 4 we introduce
the management kernel that provides the central control of the system and the
hardware architecture of the measurement nodes. Section 5 discusses the differ-
ent data repositories and their interfaces. Finally, in Section 6 the conclusions
close the paper.

2 System Architecture

The ETOMIC infrastructure is constituted of high precision measurement equip-
ment modules hosted by European universities, research institutes and company
laboratories. The clocks of the measurement nodes are synchronized via GPS
signals, which allow not only packet round-trip time estimation, but also pre-
cise one-way delay measurements. The ETOMIC platform is very flexible, since
researchers can develop and run any kind of active experiments.

A Central Management System (CMS) is in charge of system control, com-
prising not only the scheduling and execution of measurements experiments, but
also system monitoring and configuration. The main software component of the
CMS is the management kernel which is running on a dedicated server computer.
The kernel is responsible for scheduling tasks, deployment of user software to the
measurement nodes, node configuration, experiment execution and the collection
of measurement results from the nodes. The CMS provides a web-based graph-
ical user interface where the researchers can configure the system and reserve
system resources for their measurements. An internal database is attached to the

Fig. 1. ETOMIC system architecture
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kernel where the system and user level management information are stored. The
results of a finished measurement are also collected and stored in this database
until the user downloads them. The system components are depicted in Figure 1.

As an important add-on for the original ETOMIC system the architecture has
been extended with large capacity data repositories that are publicly available.
The system provides several different interfaces for these repositories through
which the users can reach the collected datasets. The interfaces allow the users
to run intelligent queries in order to filter and process the raw data on the server
side. In these repositories the results of traceroute, one-way delay, queuing delay
tomography, available bandwidth, IP geolocalization, router interface clustering
and NTP-GPS measurements are stored.

3 Management Kernel

The ETOMIC management kernel constitutes the core of the Central Manage-
ment System (CMS). It is in charge of user management, experiment scheduling
and keeping the corresponding results in the temporary data storage. In the
following we briefly overview the tasks performed by the CMS.

Scheduling and calendar maintenance. In order to isolate the different
measurements and to schedule experiments and maintenance tasks a calendar is
used for each measurement node. The researcher is expected to book measure-
ment nodes for a certain time interval and to upload the applications necessary
for the measurement. The web interface is in charge of checking that the time
line for the experiment does not collide with any other previously registered
measurement. In case of successful resource reservation the CMS inserts the new
experiment information into its internal database. Previously, the only way to
create periodic experiments was to define their scheduling one-by-one. Due to
a recent development in the kernel scheduler the CMS allows the definition of
customized periodic experiments with an inter-experiment time interval and a
repetition count. This feature enables to program for example daily or hourly
experiments with the ease of defining only one experiment.

Experiment management. The management kernel is continuously checking
the internal database for new measurement requests. When there are no sched-
uled experiments the measurement nodes are totally stateless for failsafe reasons.
The communication is always initiated by the server via SSL based secure con-
nection to command the nodes. Once a new experiment has been defined and the
deadline for execution approaches, the management kernel performs the follow-
ing tasks (that are internal to the system and transparent to the researchers).

– Software upload and measurement node configuration. The mea-
surement applications and accompanying files are uploaded and the nodes
are configured right before the experiment starting time. The measurement
nodes are programmed with the starting and ending time and the parameter
sets for each of the executables that are going to be run for the experiment.
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– Experiment execution. During this task the management kernel is on
standby until the end of the experiment. It only has to ensure that no
multiple experiments are using the same measurement nodes in the same
time. The aim is to completely isolate the measurement nodes so that the
high-precision measurement hardware can be exclusively devoted to a single
experiment.

– Results download. Once the experiment is finished, the management ker-
nel downloads the resulting data files from each measurement node to the
temporary data storage. Since the download time is highly dependent on the
network connectivity and the size of the output data files we incorporated
resume capability into the file transfer. In this way the data transfer can be
pended and resumed according to other scheduled experiments in order to
avoid interference between data transfer and the experiment execution. With
these functionalities the CMS is able to manage even very large datasets. Af-
ter successful data download all the nodes are set back into the initial state
and the remaining user files are deleted.

Periodic measurements as maintenance tasks. Due to the upgrade of the
management kernel not only the users are able to define periodic experiments
but also the CMS itself can carry out periodic measurements. A new kind of
low priority task has been introduced into the kernel scheduler. These periodic
measurements are planned as management tasks into empty slots of the calendars
of the measurement nodes and executed only if the nodes are idle. If a node has
become reserved for that time slot by a user experiment then the management
task is canceled and automatically re-scheduled for a later time period and the
user’s experiment is executed. For the end-users these measurements are not
visible and they do not affect the availability of the nodes.

3.1 Web Interface to CMS

ETOMIC provides an interface for researchers and administrators which fulfills
the different requirements they may have. The former require capabilities to de-
fine new experiments, to reserve the measurement nodes and to download results
from the CMS. The latter require functionalities to manage users, measurement
nodes, software and experiments. An internal database is used to store all the
necessary information to run the experiments. The stored information includes
the applied softwares, external data files, the experiment results, the experiment
status and the measurement node status. The strong usability requirements im-
posed by the researchers and administrators represented a significant challenge
for the interface design. Solutions based on providing console access (ssh or
telnet) to the nodes during the experiment were not deemed adequate, in or-
der not to burden the researcher with launching the software at each node and
with scheduling the tasks during the experiment. Instead, users are provided
with a graphical interface for setting up the experiment beforehand. Then, the
management kernel is in charge of experiment execution. The interface is based
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on the ubiquitous web service. The aim is to facilitate the definition of the
experiments as much as possible. This targeted simplicity and ease of use posed
more stringent challenges on the researchers interface.

User interface. The main user interface used by the researchers is described in
depth in [2] and [3]. Users can find manuals, the programming API and example
codes here. Next we highlight the main functionalities and explain only the new
features developed since the release of the original ETOMIC infrastructure.

– Adding a new program, executable files or source code of the measure-
ment.

– Uploading data files if it is needed in addition to the executable files.
– Creating an experiment-bundle to define the experiment with schedul-

ing the start and end times of the measurement.
– Booking ETOMIC time to reserve the measurement nodes and the certain

time frame for the experiment.
– Obtaining results, downloading the resulting data files from the temporary

storage to the user’s own computer.
– Periodic experiments can be defined with a repetition period and the

system with automatically schedule as many experiments as requested and
allowed by the user privileges. Note that these periodic experiments run with
normal priority, their time and node reservation is ensured by the CMS in
contrast to system level periodic measurement described in Section 3.

– Sharing files: the users can share their executable files, data files or results
directly with other ETOMIC users. The users are also welcome to publish
their results in the open repository or to store their raw experimental data
in the Network Measurement Virtual Observatory (see Section 5.2).

– Web service interface: a REST web service allows to download experiment
results from scripts that the researchers may want to develop.

Administrator interface. Different administrator types are in charge of the
ETOMIC system. The CMS and the measurement nodes are centrally adminis-
trated, but there are local administrators per measurement node for the physical
maintenance. The central administrative tasks include the user management, to
open new accounts, change user privileges and maintain the internal databases.
Finally, the ETOMIC superuser has privileges to access and modify low-level
system information and to abort any experiment programmed or in progress.
All these features are provided through a user-friendly web interface.

3.2 Integration of Planetlab’s Nodes

PlanetLab [5] is a global platform for supporting the development of new net-
work services. This platform is also used for network experiments. The PlanetLab
nodes are accessed interactively via remote shell. This access method enables the
CMS to use the PlanetLab nodes as its own nodes. Although the main hard-
ware capabilities of the PlanetLab and ETOMIC nodes significantly differ, the
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large number of PlanetLab nodes makes them very attractive to the user com-
munity. The capabilities of PlanetLab are not described in this paper, here we
only note that the PlanetLab nodes are usually up-to-date server PCs without
any hardware components specialized for network measurements. The slice based
management of PlanetLab nodes allows multiple users to run experiments simul-
taneously in the same remote node at the same time, while the CMS takes care
of the unique resource allocation. In spite of the basic differences of PlanetLab
and ETOMIC the federated usage of the high precision ETOMIC nodes and the
numerous PlanetLab nodes could lead to new ways of experimentation.

The software installed on ETOMIC nodes has been adapted to make the joint
usage possible, using a slice of PlanetLab that is automatically renewed by the
CMS. This makes the whole range of ETOMIC and PlanetLab remote nodes
available through the ETOMIC web interface. The most important challenge
for the integration was the synchronization of the clocks in nodes from both
platforms as they use different reference signals with highly different precisions.
Using the ETOMIC interface, a software that is transparent to the end user takes
into account the time difference between the nodes in order to allow synchronized
launch of experiments at all the nodes.

4 The Measurement Nodes

In this section the hardware and software components of the ETOMIC measure-
ment nodes are presented. The nodes can be divided into two groups based on
their hardware architecture. The ones that are built on server PC architecture are
called ETOM. These nodes are accessible via the web-based graphical interface
presented in Section 3.1. The ones that are based on a lightweight programmable
board are called APE. The APE nodes are accessible via a web service interface.
GPS receivers are connected to all types of measurement hardware to provide
the precise time synchronization between the nodes and to provide the reference
clock for the measurement cards.

Each of ETOMIC’s hardware solutions is high-precision, due to the incor-
porated precision equipment that are specifically designed to transmit packet
trains with strict timing, in the range of nanoseconds. Each measurement node
is provided by two network interfaces: a standard network interface card for
management purposes (maintenance, software upload, data download) and an
additional precision card for the probe traffic.

4.1 ETOMs with DAG Card

The first version of the measurement nodes are based on Intel S875WP1E server
PC architecture with Debian Linux operating system with enhanced kernel ca-
pabilities for low level network access without root privileges. For the network
monitoring interface an Endace DAG 3.6GE is used, which is specifically de-
signed for active measurements. Such cards do not use interrupts to signal packet
arrivals to the kernel, and thus packets can be captured at gigabit speeds. Shared
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memory is used as means to relay packets to the analysis program running in
user space, in such a way that interrupts are avoided. Furthermore, the GPS
reference signal is used to timestamp the incoming packets with high resolution.
To program the DAG cards a C language API and some user space applications
are provided, e.g. a packet pattern sender and a packet capturer.

The GPS reference is based on a Garmin GPS 35 HVS. It is a water-resistant
GPS receiver that is used to synchronize the measurement nodes. Specifically, the
GPS provides a pulse per second signal directly to the DAG card. The resulting
accuracy is 60 nanoseconds in the packet timestamps and inter frame generation
intervals. A signal converter has been designed in order to bridge the mismatch
between GPS receiver and PC ports. The range of the transformed signal allows
large distances between the GPS receiver itself and the PC which enables good
sky visibility for the GPS receiver unit.

4.2 ETOMs with ARGOS Card

The new generation ETOMs are based on a HP ProLiant ML370 server PC ar-
chitecture with Ubuntu Linux. The quad-core server processor provides sufficient
computation power to carry out complex measurements and online data analysis.
Two heavy-duty disks are responsible for the safe and fast data storage during
the measurements. These nodes are equipped with ARGOS measurement cards
that are based on the netFGPA platform of Digilent Inc. ARGOS is capable
of timestamping IP packets with nanosecond precision. In contrast to the DAG
cards, it can act as a standard network interface card. Practically, this solution
improves the development of probing applications, since users can program the
cards through the standard socket interface and query the packet timestamps
with the libpcap library. A few libraries and kernel modules were modified to
support sk buf structures with nanosecond resolution, which in combination
with the ARGOS driver, makes it possible to read data directly from either the
socket interface or libpcap.

In order to provide precise time synchronization a U-Blox LEA-4T high per-
formance, high precision timing GPS is used. The LEA-4T features Time Mode
function that enables GPS timing with only one visible satellite and eliminates
timing errors which otherwise results from positioning errors. The precise geo-
graphic location of the GPS device should be provided once in advance.

4.3 APE Lightweight Measurement Nodes

Besides the development of the ETOMs a novel low-cost measurement equip-
ment was designed which is called Active Probing Equipment (APE). The main
feature of the APE nodes is that they provide measurement services which can
be remotely called by user applications in an online fashion, without time slot
reservation. The APE is built on a development board with Blackfin processor.
The board is manufactured by Analog Devices Inc. and has a number of differ-
ent interfaces for hosting auxiliary hardware components that are responsible
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Table 1. Available measurement nodes in the ETOMIC system

ETOM w DAG ETOM w ARGOS APE PlanetLab

platform Intel server PC HP server PC Blackfin board variable

timestamping
accuracy

60 ns 10 ns 100 ns ∼ 10µs

time synchro-
nization

yes yes yes no

GPS receiver Garmin 35HVS U-Blox LEA-4T U-Blox LEA-4T –

number of de-
ployed nodes

18 20 20 ∼ 300

user interface web GUI web GUI web services web GUI

for specific network measurements tasks. For instance, a flash memory card was
integrated onto the board to enable the temporary storage of measurement data.

The APE nodes are installed with uClinux, a special Linux operating system
developed for embedded systems. The devices can be instructed via a web service
interface, which opens simple ways for researchers to develop their applications
using the network measurement services of the APE nodes. The following APE
services are already implemented, and can be called (similarly to remote proce-
dure calls): ping, traceroute, an arbitrary packet pattern sender and a capture
tool.

5 Accessing Measurement Data

For network measurements the collected raw data is traditionally stored in files
in some standard (like traceroute dump, tcpdump) or custom formats. The files
are then processed according to the research questions to be answered. Detailed
analysis of complex networks requires large statistical samples. This require-
ment leads to substantial data size in case of measurements in high bandwidth
networks, even if just a few parameters of the packets are recorded (like IP
addresses, arrival time, protocol, size or delay). Practically, measurements can
produce dozens of megabytes at each monitoring node that sums up to hun-
dreds of megabytes or even terabytes in multi-node experiments. Keeping only
the results of the data analysis and discarding the raw data itself is not a good
way to solve the data handling issues. Since measurement data gathered today
cannot be reproduced in the future, it is preferable to store the original datasets
to allow further re-analysis (applying the various different statistical methods to
be developed in the coming years), and to support the study of the long-term
evolution of the network.

For these purposes we have created data repositories to store measurement data
collected by means of the ETOMIC system. There are two different interfaces to
reach raw and aggregated measurement data. The periodic measurements web in-
terface and a web service interface can be used to poll data collected from auto-
matic measurements in the system. The users can choose from pre-defined queries
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by selecting a given type of measurement, a set of nodes on which the measurement
was conducted and a time frame.

We also present another interface which is called Network Measurement Vir-
tual Observatory (nmVO). The nmVO approach aims at providing efficient and
flexible access to raw experimental data and server side analysis tools [6]. It
is also capable of integrating various databases in a common framework that
provides full SQL functionality. Researchers may reach the nmVO through a
web GUI or a web service interface, where the users can automatically poll data
through their own client programs.

5.1 Web Interface for Periodic Measurements

To collect long term traces we have created periodic measurement tasks in order
to run specific measurements when the nodes are idle. All the data from the
periodic measurements is publicly available through an easy-to-use web interface,
where the user can choose from pre-defined queries. For each measurement the
user can download filtered data specifying only some pairs of nodes and a period
of time. Once the selection is done the user can choose between downloading
the data in a compressed text format or viewing a plot for those data provided
by the server. In the following we list the types of periodic measurements for
which the collected data is available through the ETOMIC website’s Database
/ Open Repository menu [1].

NTP-GPS: NTP and GPS synchronization information is collected several times
a day from every node. These are measurements collect information from the
GPS devices connected to each monitoring node and from the NTP daemon
running on the nodes.

One-way delay: Every possible pair of ETOMIC node takes part in periodic one
way delay measurements. These measurements are done using the high precision
measurement cards and GPS synchronized timestamping.

Traceroute: Traceroute measurements between every pair of ETOMIC nodes
are collected. The measurements are done several times a day using standard
Ethernet cards.

Paris traceroute: Paris traceroute [7] measurements are also conducted be-
tween every pair of ETOMIC nodes. The probe packets are designed to always
use the same path even if load balancing is being applied in the network. Three
types of packets (ICMP, UDP and TCP) are used in order to evaluate different
behaviors of the network depending on the transport protocol. The measure-
ments are run several times a day using the Ethernet cards.

5.2 Network Measurement Virtual Observatory

The Network Measurement Virtual Observatory concept, presented in [6] is an
approach to efficiently store and share research data. Beyond the simple data
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collecting and archiving functions it aims at providing easy-to-use analysis tools
via both human and machine readable interfaces. One of the main features of
the nmVO is that it provides SQL access for the databases that are integrated
under its framework, thus the users can edit and run their customized queries
through either the web-based SQL interface or the web services interface. The
main advantage of this solution is that the researchers can filter out the relevant
information from the huge archives using server side processing. Hence, only the
necessary datasets and results have to be downloaded from the server.

To sketch the nmVO principle through a possible application, consider a sce-
nario in peer-to-peer overlay networks where management information is needed
to optimize the routing between the peers. It would be unthinkable to use gzipped
files for such real-time evaluation. On the contrary, the scenario is feasible if one
turns to the nmVO to get the typical loss rate, the average delay on certain
routes or the shortest path between the peers. This means that beyond the data
itself, analysis tools are also needed to perform such data filtering and trans-
formation queries efficiently. The recent efforts on enabling database engines to
run complex user code and define new data types (e.g. MS SQL Server CLR
integration) makes this task easier. Using these stored procedures we can move
the typical filtering and pre-processing tasks - like getting slices or aggregates of
data - to server side. Since end-users can call these functions remotely they can
reach the evaluated results with less code and they have to fetch much smaller
amount of data from the archive. The XML based web service technology allows
running either simple queries or more complicated functions that are stored on
the server side, where the data is.

The virtual observatory concept is adapted to the ETOMIC system. The
majority of the experimental data collected in the system are inserted into the
data repositories and can be reached through both the nmVO web graphical
user interface and the web service interface. For the data insertion tasks a C++
and a Python language API has been developed. This API is integrated into the
new APE nodes’ software, so that all measurement data from the APE boxes are
automatically copied into the nmVO data repository. In addition to the historical
raw data collections and the evaluated results of periodic measurements also non-
ETOMIC traceroute logs and topology data, one-way delay values, queuing delay
tomography data, available bandwidth results, router interface clustering and IP
geolocalization data can be found in the archive. The users can freely construct
SQL queries to intelligently filter the raw data for their purposes. In addition to
that, for some of the most common processing tasks the nmVO offers built-in
server side functions, e.g. for histogram calculation or fitting the parameters of
Weibull distributions.

The nmVO can be accessed through the ETOMIC website’s Database /
CasJobs Query Interface menu [1] and via web services (for which the WSDL
can be requested from the server) for client applications.

All the user information, the structure of the archive, the history, queue limi-
tation settings, etc. are stored in a separate management database. This makes
it possible to search among the queries in the history.
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6 Conclusion

In this paper we presented the enhanced ETOMIC network measurement in-
frastructure. We described the key components of the architecture and the new
features of the Central Management System. The improved system kernel in-
cludes support for periodic measurements and the federated usage of the high
precision ETOMIC nodes and the numerous PlanetLab nodes. Besides the ker-
nel development novel hardware components have been developed and deployed.
New lightweight measurement equipments have been installed that provide mea-
surement services which can be remotely called by user applications via web ser-
vices. The system now also includes well structured data repositories to archive
and share the experimental data. Periodic measurement data can be polled with
customizable pre-defined queries, while the nmVO framework gives full SQL
access to its archive. The recent developments make ETOMIC an easy to use
experimental facility with versatile features for network research.
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Abstract. Wireless mesh networks represent a promising paradigm to provide a 
scalable infrastructure for Internet access in metropolitan areas. In this paper, a 
large-scale wireless mesh testbed deployed in three cities in the Trentino region 
is described and experimentation results obtained from the public use of the 
testbed are reported and analyzed. The large-scale of the deployment and high 
number of users ensure to have proper traces which can capture the trends in 
user traffic based on the applications used and realistic mobility patterns.  

Keywords: mesh testbed, large-scale, wireless mesh networks. 

1   Introduction 

Wireless Mesh Networks (WMN) represent a hybrid solution between infrastructure 
and ad-hoc networking paradigms, where data forwarding is enabled by all the nodes 
in the network. Potentially, all the nodes act as hosts and as routers, forwarding pack-
ets generated by other nodes. Mesh networking offers several advantages: (i) it allows 
the combination of different wireless technologies, such as cellular networks, WiFi, 
WiMAX, etc.; (ii) WMNs can be incrementally deployed, in order to gradually extend 
connectivity and capacity, avoiding massive investments. Moreover, WMNs autono-
mously set up and maintain the connectivity: if a node fails, another route to the 
gateway is found through another path, improving robustness, resilience, preservation 
and providing self-healing properties.  

WMNs provide a technological bridge between mobile ad hoc networks 
(MANETs) and traditional wireless local area networks (WLANs), such as the ones 
based on the IEEE 802.11 family of standards. A typical WMN consist of several 
nodes (routers and gateways) which exploit multi-hopping in order to build and main-
tain a wireless backhaul. WMNs enhance traditional star-shaped network architec-
tures by providing increased robustness (e.g. no single points of failure are present 
and broken/congested links are encompassed), scalability and flexibility (without the 
need for deploying cables, connectivity may be provided only where and when 
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needed/economically attractive), and incremental deployment. Moreover, WMNs can 
support heterogeneous transmission technologies. WMN currently represent a promis-
ing paradigm for cost-effective deployments in several metropolitan area scenarios, 
including community networks, digital divide affected areas, mobile internet infra-
structure, etc. Such scenarios can fully capitalize on the scalability, incremental de-
ployment and robustness of WMNs. 

Nevertheless, as WMNs become a service infrastructure to deliver high end ser-
vices, effective design is needed to provide the required levels of service to the pleth-
ora of applications demanded by the users. To this aim, some theoretical or mostly 
simulation studies are available, but only a few works address realistic user behaviour 
characterization (both in terms of mobility and connection, but also application pref-
erences) and provide extended analyses of the network load on a WMN infrastructure. 

In this framework, performance evaluation and testing using results obtained from 
real testbed experiments become a vital requirement on the way of wide deployment 
and public offering. Most of the mesh testbed studies available in the literature are per-
formed in a small- or medium-scale testbeds deployed inside a single building or a cam-
pus and are mostly focused on data transfer performance of individual flows analyzing 
underlining protocol semantics. Examples of such testbeds include Roofnet [5], UCSB 
Meshnet [4], as well as mesh testbeds at Georgia Tech. [6] and Carleton University [7]. 

The main contribution of this paper is in the analysing of traffic traces derived 
from a large-scale wireless mesh network testbed deployed in three cities in the Tren-
tino region (Trento, Rovereto and Riva del Garda). Being used by citizen and tourists 
in those cities, such WMN is able to capture the trends in user traffic based on the 
applications used and realistic mobility patterns – and thus provide useful models for 
further development and optimization of WMNs. 

2   Wireless Mesh Testbed Setup and Components 

2.1   Network Setup 

Futur3 manages a wireless mesh testbed deployed in the province of Trento (Italy). It 
covers the main areas of the city of Trento, the city of Rovereto and the northern re-
gion of the lake Garda. At the core of each city, one internet connection point is de-
ployed which forms the basis for a 5 GHz network deployment using HYPERLAN 
and HYPERLAN2 protocols. Such Internet connection points create a so-called first 
layer network. A second layer of the mesh network is built on 2.4 GHz Access Points 
(APs) proving WiFi access to the end users. These APs form an extension of the first 
layer infrastructure and operate according to the IEEE 802.11b/g standard. 

The coverage of the second layer network APs overlap, thus creating redundancy 
for the multihop paths of the mesh network and guaranteeing improved connectivity.  

Network Access Servers (NAS) are installed in each region for assigning IP ad-
dresses configured via DHCP functionality. An IP address assigned to a user will 
remain the same for the entire session duration. Routing is handled at the MAC layer 
and the hand-over between neighbouring APs is supported. 

Furthermore, authentication to Futur3 network is provided according to the Italian 
anti-terrorism law: a user needs to register once by giving either his Italian valid  
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mobile phone number or a credit card as a unique identifier. Once a user is registered, 
he or she can use his account all over the network. In addition, users are able to select 
the preferred level of privacy by updating their personal profile, changing the visibil-
ity of personal data, position or deciding to be not visible at all. 

At the current state (February 2010), Futur3 network is composed by more than 
three hundred Access Points (APs) covering around 40 Km of streets continuously 
and around 16000 users are registered.  

2.2   Localization 

Futur3 localization is performed at three different levels of accuracy: 

1. Zone-based Localization: A user is associated, given his IP address, to the zone 
(i.e. the corresponding NAS) he is connected to. In such a way, it is possible to 
associate an approximate position to every user.  

2. WiFi server localization: From the user MAC address it is possible to know the 
AP a user is associated to. No particular software is installed on the user device. 

3. WiFi client localization: For those users who have installed a client-side soft-
ware, it is possible to acquire all the beacons sensed in the surrounding by the 
user and apply a triangulation technique to define a precise location.  

Client localization works in combination with a localization server. Each client sends 
his list of sensed beacons to the server which computes the corresponding position 
estimates and sends it back to the client. The localization algorithm works in two 
subsequent steps: the first one provides a coarse position estimation, while the second 
one adjusts it.  

Three different algorithms are evaluated for the first step: a simple centroid, a 
weighted centroid and a reduced weighted centroid. Centroid formula is an average of 
each APs’ coordinates, while weighted centroid formula computes a position by aver-
aging APs’ coordinates after weighting them with their sensed RSSI. In order to de-
fine the last algorithm, the weighted centroid algorithm was applied to a subset of 
beacons obtained by filtering the sensed beacons according to their RSSI and distance 
from the previous client's position. RSSI filtering avoids location error propagation 
caused by multipath losses on the wireless channel. In a similar way, the distance 
filtering is due to the testbed position: apparently, water presence amplifies lake-side 
APs coverage area, thus affecting the overall results. 

Location estimation is performed by both APs belonging to the Futur3 network as 
well as private APs. This requires an a-priori knowledge of the APs’ positions which 
can be found using multiple wardriving sessions and a subsequent data analysis made 
by wigle.net technology [8]. 

In order to validate performance and precision characteristics of the performed lo-
calization, the testbed area is logically divided into a number of regions selected by 
isolating border areas. In each area the average error metric is calculated between 
each position computed by the location algorithms and a real position recorded in the 
system. Location error per region is reported in Fig. 1. The reduced weighted centroid 
algorithm appears to be better than the others because it has the lowest average error. 
Despite a large error in region 2 which has been accepted, average errors are much 
lower in other regions such as 4, 6, 8 (where the other algorithms have large errors).  
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Fig. 1. Average error in meters computed in each region 

Once a position of the user is estimated, the second step begins: the final latitude-
longitude pair is selected from the set of available positions determined taking road 
topology of the area into account. At first, all positions within a range of 100 meters1 
from the coarse position are selected as candidate positions. Then, the final position is 
chosen by finding the position which minimizes both distances with the coarse posi-
tion and with the previous valid one. Furthermore the selected position must be on the 
same road of the previous one; this constraint is ignored (and the second step re-
peated), either when the previous position is in proximity of street cross or if the dis-
tance from the coarse position is higher than 30 meters2. 

This client-server localization architecture doesn't charge clients with high compu-
tational load, enabling easy update of the positioning algorithms. Moreover, it reduces 
network overhead because the client doesn't have to query the database to fetch the 
available positions and the list of APs position used in the centroid algorithm. 

3   The Measurements Campaign 

3.1   Futur3 Network as a Data Collection Test-Bed 

Futur3 network covers a wide area, with the purpose to offer both Internet connection 
and services to the largest number of people.  

Typical users are residents of the area and university students, who connect during 
week days. A consistent fraction belongs also to the tourists coming to the area. 
Roughly 5-6% of the area population has joined the network, contributing to a grow-
ing penetration rate. This enables to have a suitable user base for performing a mean-
ingful statistical analysis on the application and traffic traces.  
                                                           
1 It is a value used to reduce the computational load because it avoids the server to process 

positions which are too distant from the previous valid one and therefore can’t be selected. 
2 This represents the algorithm average error. When the distance between coarse position and 

position chosen accordingly to previous position is higher, it means that the user is in another 
street.   
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An additional advantage is that the network owner is Futur3; therefore it is possible 
to have simultaneous access to data about both users and network usage. On the user 
side, it is possible to perform accurate statistical analysis due to the knowledge of 
users’ personal information such as age, sex and job [3], while on the network side it 
is possible to aggregate and process server activity patterns as well as APs load and 
links status. In detail, personal information about users is registered, their connection 
data in form of session time and traffic and AP usage in term of connection time and 
traffic; such data are periodically collected and aggregated in a data warehouse. 
Proper anonymization processes are used to guarantee privacy of the network users. 

Moreover, Futur3 maintains a record of intranet activities related to its applica-
tions: users can interact with each other by exchanging messages and adding contacts. 
Analysing those data allows to study users behaviour and interaction in the social 
context. Furthermore, by using the provided positioning system, it is possible to study 
users’ movement patterns. 

The network covered area can be extended with on-the-fly installations, like in the 
case of the Blogfest event described in the following sub-section. 

3.2   A Scenario of Interest: The BlogFest Event 

Blogfest [9] is the second edition of an event hosted in Riva del Garda, a small city in 
northern Italy. The event is focused on the web community and its interaction within 
the Net; the aim is to allow people to speak about blog, social network and communi-
ties. It mainly consists of BarCamps organized and held by Italian bloggers all around 
the city. BarCamps are meetings held in different streets and squares within the old 
town, organized by bloggers on topics they usually write about, in which everyone 
can share his thoughts with the participants. BlogFest was held in October 2nd-4th, 
with more than 200 people attending 25 BarCamps. Moreover, there were a relax 
zone with radio entertainment and some stands of Internet companies and facilities 
such as food and kid areas.  

In this context, the Futur3 WMN offered several services: (i) free Internet access, 
by improving the coverage of every area involved in Blogfest activities and most of 
the city area, (ii) introducing three beta applications based on the wireless positioning 
system. Those applications made Blogfest an interesting testbed, since they added the 
possibility to study users intranet interaction as well as their location and moving 
patterns. The applications provide information about other connected users, events 
and points of interest such as bars and restaurants which are nearby the user location, 
highlighting them on a map. 

The data capture started the second day after the conference, when location ser-
vices were deployed, at 11am. In order to be able to get access to Futur3's network 
and to use its applications, each user had to register to the network. 140 registrations 
were performed during the event: 20 the first day, 96 the second and 24 the third. The 
launch of the applications also explains the registration growth on the second day.  

4   Experimental Data Analysis and Discussion  

In this section an analysis of the available data is presented, with focus on users' be-
havior and network performance. The first sub-section introduces network usage and 
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load history. Then, users’ behaviour is considered, focusing on their interaction with 
each other and with respect to Blogfest event. A relevant number of people were ob-
served (259 single users connected during Blogfest’s event). 

4.1   Network Usage History 

Futur3 network is a growing reality: starting from 1000 users of Jan.’09 there have 
been more than 3000 users joining the network with a constant trend in 10 months. 

Analyzing in more detail October, it is possible to observe an average of 875 
unique users, with a maximum of about 1000 along workdays and a minimum of 750 
during weekends. This difference is due to the fact that many users are university 
students who live in the cities only during workdays.  

The relevant number of people connecting every day allows performing a reason-
able statistical analysis on the users’ surfing behavior and habits. Traffic supported by 
the network is estimated in roughly 2500 GB per month and peer-to-peer traffic is not 
allowed. The average downloaded data in October is around 78250 MB, while the 
maximum is 92600 MB and the minimum is 51600. Lower loads are experienced 
nearby week ends, probably because of a lower number of people connecting.  

Figure 2 shows APs' positions in the Riva del Garda area, with different markers 
representing the number of connections which have been registered in October. There 
are clearly hot areas, which mainly correspond to the old town.  

However, such distribution is not directly correlated to the traffic load distribution, 
since there are some APs which had few connections but many downloaded data.  

 

Fig. 2. Number of connections per AP in Riva del Garda 

4.2   iPhone/iPod Application Usage 

One of the most versatile applications was developed for iPod Touch and iPhone, 
which allows users to get access to all services and to surf the internet while moving. 
The application is interesting as iPhone can represent the reference for future mobile 
devices.  
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Fig. 3. Session length in minutes 

Figure 3 describes the average session length in minutes. Several users had very 
short connections. Each user has had more than one session of different length; we 
measured around 5 sessions on average per user. 

As far as movement is concerned, a mobility index is defined which estimates the 
level of movement of a user within one session. The index is defined as the ratio 
(covered distance)/(session length) measured in [meters/minutes]. Fig. 4 shows the 
indexes measured for each session. Sessions with mobility index lower than 60 are 
classified as very slow walk, or a session in which user didn't move while using the 
application. 72% of the overall sessions are characterized by such mobility index. 
However, 28% of the total sessions have a mobility index larger than 60, which 
means that users have used the provided application while moving around the area. 
Table 1 underlines the interaction patterns among users, captured by the Futur3 appli-
cation enabled users to add contacts and to chat among the WMN users.  

 

Fig. 4. Mobility index histogram 

In the observation period, 35 new contacts were added by 14 over 31 overall users 
and 261 chat messages were registered. However, users didn’t have long chat conver-
sations. Most of the activities were done by users between 25 and 34 years old; those 
percentiles grow, by taking into account people younger than 24, to 80% for chat 
messages and to 78% for contact activities, as young people are keener to build social 
networks.  
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Table 1. Usage per age interval of features provided by the application 

 <18 18-24 25-34 35-44 44< 

Adding 
contacts 

0% 21% 58% 21% 0% 

Chatting 0% 13% 67% 20% 0% 

4.3   User Distribution vs. BlogFest Activities 

In this section, measurements are used to check the correlation between users' posi-
tions and Blogfest activities. Barcamps attendance is reported by highlighting on the 
map Barcamps' locations and indicating the users positioned there. 

Figure 5.a shows a summary of users’ participation at Barcamps held during satur-
day, Oct. 3rd in the afternoon. The purple area identifies both relaxing zone and a 
Barcamp. That area shows the largest number of people mainly due to the relaxing 
zone. The overall number of users do not match the number of Blogfest users because 
many of them have attended more than one event and have been in the relax zone. 

Figures 5.b and 5.c show Barcamps attendance between 2pm and 3pm and between 
5pm and 6pm, respectively. In those time intervals there were several active Bar-
camps. It is possible to observe a growing number of users connecting to the Internet 
while approaching evening. This is explained by taking into account the start of new 
Barcamps, which attracts more people. 

Figure 5.d is a summary of Barcamps participation on Sunday morning. There 
were a few Barcamps active in the city, which causes most of the people to be in the 
purple area – i.e. the relaxing zone plus a Barcamp. 

(a) October, 3rd, afternoon 

 

(b) October, 3rd, 2-3 pm 

 
(c) October, 3rd, 5-6 pm 

 

(d) October, 4th, morning 

 

Fig. 5. Users’ distribution at Barcamps and relax zone 
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4.4   Comment on the Results 

Three different aspects, i.e. network usage, social behaviour and users’ movement 
were analyzed, by taking advantage of a large WMN testbed and a special event, the 
Blogfest. The WMN has a sufficient dimension in term of connected users and traffic 
to allow conducting accurate statistical analyses. The possibility to estimate the posi-
tion of the users identified areas highly loaded in term of connections and network 
traffic. 

Basic social behaviour analysis is performed measuring the interaction among us-
ers allowed by intranet applications. Even tough most of the users were between 35 
and 45 years old, younger users had most interaction in term of new contacts and chat 
traffic.  

Moreover, a mobility index was defined, which allowed to discover that most of 
the users used the provided application while standing or for short movements, while 
28% had relevant mobility.  

During Blogfest events, it was possible to analyze the correlation between event 
and Internet connection (i.e. WMN resources usage). Knowledge of the users' location 
would be beneficial in the future for improving the coverage of the areas (in terms of 
transmission capacity, too). Based on the preliminary results obtained during the ex-
periments, it seems reasonable to study methods for self-organization or self-resource 
allocation of the WMN possibly jointly with additional external information.  

In addition, location-based traffic load information enabled to verify that some un-
derutilized APs during regular days can become more crowded during a special event, 
but also that a WMN can be employed as a distributed locationing service to provide 
interesting insights to the events’ organizers. 

5   Conclusions and Future Work 

The paper presented an analysis of measurements performed on a wireless mesh net-
work deployed in three cities in Trentino. The presented test-bed is composed by a 
350 APs network that provides access to around 16K users. Users can surf the web for 
free and receive also added-value applications to be used only as intranet services. 
Information and presented results are generated by analysing data gathered from us-
ers’ normal behavior. In order to enable data information sharing within the scientific 
community, Futur3 is currently designing a testbed, working with the local university, 
in order to create a network subset with a similar behaviour. 

The possibility of gathering data from a large testbed used by real users represents 
an important step in the investigation of large-scale access WMNs. 

Results presented in the paper underline that most often the network usage is 
highly dependant on the APs’ position and overall scenario (normal life or a special 
event). Moreover, the embedded locationing feature of the considered WMN enabled 
to check the percentage of moving users, which demonstrated to be relevant (28%). 

Future works are aimed at using the gathered information in order to derive useful 
design guidelines for optimization and extension of the considered WMN.  
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Abstract. Making observations is fundamental for experimental research.  
Experimental facilities have  to provide  sophisticated  and  flexible  tools  to sup-
port scientific experiments by logging  experiment  results and monitoring envi-
ronment conditions. Standardized measurements in experimental facilities can 
also provide consistent input for experiments with adaptive algorithms. In this  
paper we present  a packet  tracking  architecture  for  PlanetLab  Europe. Packet  
tracking correlates  information from  multiple  observation  points  to observe the 
packet’s path and experienced transmission quality. In our approach we use statis-
tical sampling to control the measurement resource consumption and show how 
data selection processes at multiple observation points can be synchronized. As an 
example  use  case  we  show  how the  packet  tracking architecture is used to 
support experiments on functional composition. 

Keywords: packet tracking, multipoint measurement, hash-based packet  
selection, IPFIX, PlanetLab Europe. 

1   Introduction 

The current patchwork of protocols and the increasing demands on performance, 
flexibility and security in the Internet have led to a variety of programs on Future 
Internet research worldwide. They encourage, besides incremental solutions, new 
networking paradigms that follow a “clean state” approach, i.e. disruptive approaches 
that reconsider the IP protocol stack and try to find new networking designs. Func-
tional Composition approaches revolve around the idea to functionally decompose the 
protocol stack and reorganize protocol functions in a composition framework in order 
to simplify the integration of new functionalities. Additional programs supplement 
theoretical research by large scale experimentation. Examples are the European 
Future Internet Research & Experimentation (FIRE) program and the US Global 
Environment for Network Innovations (GENI) program. 

Experimental research is an essential building block of scientific work in order 
to proof a theory, investigate effects, and test new methods under real conditions 
before applying them in infrastructure and production environments. 

One of the main enablers for thorough experimental research is measurements. As 
in other scientific disciplines, measurement and observation tools are needed to  
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capture experiment outcome and to log experiment conditions. In [1] scientists from 
other disciplines strongly advise network researchers to take more care about meas-
urements. They were shocked how limited the capabilities are to measure traffic in 
the Internet and how little effort is made in providing good observation tools. This 
advice comes from scientists from disciplines like biology, physics and astronomy 
who have a much harder time measuring their subjects of research hidden in human 
organisms, tiny atoms or far away in outer space. 

In this paper we present an architecture for packet tracking that we implemented in 
PlanetLab Europe. We describe its benefits for the Future Internet experimenters in an 
example of a functional composition approach on application layer. 

2   The Need for Measurements in Experimental Facilities 

Scientists who perform experiments usually want to prove a theory, investigate a 
phenomenon or compare their own approaches to others. Observation tools in an ex-
perimental facility should be flexible in the sense that experimenters are able to zoom 
in or out to investigate traffic with different granularities. Furthermore, the tools 
should provide information about the accuracy of result data to provide comparability 
with results from others. Measurements in experimental facilities for Internet research 
can serve three different purposes: 

• Experiment Supervision: Experiment supervision captures the results of 
the experiments, i.e. the input and output parameters under investigation, and 
provides them to the experimenter. 

• Environment Supervision: Environment supervision captures further pa-
rameters not directly under investigation that may or may not be relevant for 
the experiment outcome. Especially parameters that cannot be controlled 
during the experiment but may influence the results need to be monitored. 

• Measurement Service: Besides the capturing of results and conditions, the 
measurement tools can provide input to algorithms that require measure-
ments for operation (routing, adaptation, learning). Providing a general 
measurement service allows researchers to use a common basis and elimi-
nates the need to develop and  deploy  their own proprietary measurement so-
lutions. Common input formats also support the comparability of results 
from different algorithms. 

PlanetLab runs as an overlay over classical Internet connections where traffic from 
experiments interferes with many other flows. The underlying network, environmental 
conditions, physical effects, weather, etc. cannot be controlled by the experimenter. It 
is exactly such real unpredictable conditions, with potential undiscovered side effects, 
that make experimental research attractive. An ideal controllable environment would 
be unrealistic; simplified controllable settings would not differ much from a simula-
tion. In uncontrollable environments a good documentation of experiment conditions 
is crucial. We may not be able to repeat all experiment conditions, but a good docu-
mentation helps to investigate observed side effects and analyze potential correlations 
if results differ from theory. 
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Our packet tracking architecture can substantially provide such measurement  
information as we will show based on the use case in Section 5. Path and delay in-
formation is relevant for a variety of experiments in the area of routing, overlay con-
struction and optimization, congestion control and for any experiment with adaptive 
algorithms that require QoS values as input. 

For measurements in federated testbeds it is also desired to send measurement re-
sults between different administrative domains. For this it is important that result data 
transfer uses protocols that support congestion control and encryption. 

3   Related Work 

PlanetLab is a global experimental platform for large scale experimental research. 
Slices that allocate resources on Planetab nodes are assigned to researchers who can 
use  them  for  their  experiments.  The  status  of  PlanetLab  is  reported  by  several 
programs and tools that view different aspects of the nodes and their connectivity. 

Everstats [14] collects information from the slicestat [15] program running on 
each PlanetLab node which provides slice-level resource consumption information on 
each node. CoMon [16] provides the status of all PlanetLab nodes. It supports node-
centric view statistics and a slice-centric view to see how a slice is consuming  
resources. PlanetFlow [20] is a flow measurement tool that logs the outbound net-
work activity of all nodes. It is based on fprobe, which is a data collector using the 
Netflow format. For the ORBIT (wireless) testbed a framework is provided for con-
trol, measurement and resource management. For this the ORBIT Management 
Framework (OMF) uses the ORBIT Measurement Library (OML) to collect any 
type of measurement into a database. Everstat, CoMon and PlanetFlow trace activi-
ties and collect information  on  PlanetLab  nodes.  They  provide  user  defined  
views  but  not  user defined measurements. GIMS is still in the phase of specifica-
tion. OMF already proposes measurements defined by applications and may be a good 
candidate for integrating packet tracking functions in wireless networks. To support 
measurements in GENI it is planned to establish a GENI Instrumentation and 
Measurement Service (GIMS). The group has identified challenges with regard to 
data archiving, privacy issues, and the separation of measurement data from experi-
ment data. 

PlanetLab Europe is a European part of the worldwide experimental platform 
PlanetLab  administered  by  the  PlanetLab  Europe  Office  in  Paris.  The  European 
Project OneLab [2] works on the provisioning of highly sophisticated control and 
monitoring functions to support the needs of experimental-driven research in Planet-
Lab Europe. The project integrates further technologies like wireless testbeds and 
platforms for disruptive Future Internet research like autonomic communication, 
delay tolerant networks and pocket switched networks. The project is also working on 
solutions to federate with other experimental facilities. 

The OneLab project has developed a measurement solution that integrates passive 
and active measurements. The Advanced Network Monitoring Equipment 
(ANME) is specified  in  [10].  For  passive  measurements  it  uses  the  Continuous  
Monitoring (CoMo) platform [11], [12] which allows several experimenters simulta-
neously to perform arbitrary traffic queries on the data streams on their slices. CoMo 
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supports user defined modules and resource control for measurement tasks. The  
mapping between PlanetLab slices and their traffic, and access to their relevant 
measurement data is controlled via a proxy described in [13]. The proxy provides a 
clear separation of experiments and ensures that experimenters can only access results 
of their own experiments. The deployment of the ANME and CoMo software in 
PlanetLab Europe is currently in progress. The service can be accessed at 
www.packet-tracking.de. 

The presented packet tracking solution will be integrated as modules in the CoMo 
framework in order to use the CoMo and ANME control functions for experiment 
control, result data access and GPS-based time synchronization. 

4   PlanetLab Europe Packet Tracking Architecture 

4.1   Multipoint Packet Tracking Architecture 

Following packets on their path requires a passive multipoint measurement architec-
ture. This architecture consists of multiple measurement  probes  and  a collector that 
correlates the probes’ measurements. The measurement probes are located at observa-
tion points which can be any device that has a connection to the shared medium, such 
as router or network card. The probes export a packet ID and either the TTL or an 
arrival timestamp for each observed packet to the collector. Based on the packet 
ID the collector can correlate the observations and determine the packets’ direction by 
the TTL or timestamp. Packet tracking can also be used for calculating one-way delay 
between the observation points, but this imposes additional requirements such as a 
common time base on the architecture. Passive delay measurements will be made 
available when the architecture is integrated in CoMo in the GPS-enabled ANME 
boxes. 

In the following we present previous results on packet ID generation and hash-
based packet selection as these are critical for proper packet correlation and sampling 
synchronization between measurement points. 

4.2   Packet ID Correlation 

In order to follow a packet’s path through the network we need a unique identifier for 
each packet. The datagram identification field in the IP packet header was considered 
as ID in [3], [4] [5], but it is not sufficiently unique because of its limited 16bit 
size and different handling of the ID from OS (some OSs use an ID of 0). Another 
possibility is to generate a packet digest over packet header fields and part of the 
content. The packet ID generation should be done in a way that 1) the resulting ID is 
small to reduce measurement traffic; 2) the ID is fast to calculate to reduce resource 
consumption on the node; 3) the probability for collisions (getting the same packet ID 
for different packets) is low and 4) the digest is calculated over packet parts that do 
not change on the way. 

Fields that are mutable but predictable could also be used for packet ID generation. 
Furthermore, it is advantageous (but not required) to use an operation that always 
leads to an ID with the same fixed length. This eases the handling, transmission and 
the estimation of the overhead caused by measurement export. 
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The amount of content used for ID generation influences the number of collisions 
(different packets that map to the same ID) that can occur. It is advantageous to con-
sider fields that are highly variable between different successive packets; fields with 
low variability (e.g., version field) should only be included as long as there is no 
significant  performance  decrease.  Investigations  into  this  and  comparisons  of 
different packet ID generation methods can be found in [4], [5] and [6]. 

4.3   Coordinated Sampling by Hash-Based Packet Selection 

Network traffic is highly dynamic and hard to predict. General challenges of passive 
measurements  are  unforeseen  high  data  rates  that  can  lead  to  an  unexpected 
exhaustion of measurement resources. Data selection techniques, like sampling and 
filtering, aim at the reduction of measurement resources (processing, storage, transfer 
of data). This is achieved by selecting a finite subset of elements (the sample) and 
estimating the metric of interest from this subset. Especially random packet sampling 
techniques provide a solution to reduce the measurement traffic while still enabling 
an accuracy statement about the estimated characteristic. Nevertheless, if we apply 
random sampling, we randomly select a subset of the packets that traverse the obser-
vation point. This is a problem in multipoint measurements, because the random se-
lection processes at the involved observation points would select different packets, 
making packet matching impossible. So if we want to apply random packet sampling 
at multiple observation points we have to somehow ensure that the same packets are 
selected at the involved observation points. We therefore use hash-based packet selec-
tion as proposed in [5] and [7] to emulate a random selection and synchronize selec-
tion processes at different observation points. 

The packet selection is based on a hash function on invariant packet header fields 
and parts of the payload. If the same hash function and the same hash selection range 
is used at all involved observation points then packets selected at one observation 
point are also selected at the other observation points. 

A problem with hash-based packet selection is that it is a deterministic function on 
the packet content which can introduce bias into the selection. In [6] we investigated 
several hash functions with respect to the achievable random properties and their 
suitability for multipoint measurements. 

Due to the differing requirements for packet ID generation and packet selection 
[4], [5] and [6] recommend using two different functions for packet ID generation and 
packet selection. Nevertheless in [7] we could show that for small to medium sized 
measurement domains it is reasonable to use the same hash function. 

Since PlanetLab Europe is a large federated testbed with distributed measure-
ments, we decided to use a CRC32 function for packet ID generation and the BOB 
function as evaluated in [7] for hash-based packet selection. 

4.4   IPFIX and PSAMP 

In experimental research, measurement data provides the basis for the formulation of 
scientific results. It is crucial to agree on standard measurement methods and result 
data formats to be able to compare the outcome of experiments and to share data with 
others.  Standardized  formats  simplify  the  development  of  tools  (e.g.,  for  data 
analysis) and allows the provisioning of reference data. 
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In our approach we utilize and exploit approaches for data export and data selec-
tion, which are developed with our contribution within the IETF working groups 
on IP Flow Information Export (IPFIX) and Packet Sampling (PSAMP). IPFIX is a 
protocol to export flow measurement results. It supports encryption of the transferred 
data and congestion control. Those features  are essential  for transferring  results  
among different administrative domains e.g., in federated testbeds. IPFIX defines 
Information Elements (IE) [8] to report flow information. The PSAMP standard  
extends these Information Elements with additional fields for packet reporting and 
sampling. Our group in Fraunhofer FOKUS has developed an IPFIX Library which 
we used for exporting measurement results in our PlanetLab Europe packet tracking 
implementation. Since the PSAMP information model is required for the representa-
tion of packet IDs in multipoint packet tracking we extended our implementation to 
support PSAMP information elements. 

We expect that in future standard routers will provide IPFIX data. Cisco Systems 
is working on IPFIX as successor to Cisco NetFlow. As a result of this, data from 
PlanetLab Europe (PLE) experiments become comparable to data recorded in other 
networks. The IPFIX group is also working on a file format to store packet and flow 
data. We contributed to this standardization effort [9] because we believe that this 
is an important step towards sharing data from experimental research among re-
searchers and provides the right way towards re-usability of analysis tools. We plan to 
use the file format for storing packet tracking data in PlanetLab Europe. 

5   Use Case: Functional Composition on Application Layer 

Cooperative Service Provisioning (CSP) [18][19] is a  service composition architec-
ture that utilizes a decentralized approach for service path discovery in order to 
combine services at customer’s premises. CSP supports functional composition on the 
service layer, which we will present as a use for packet tracking. 

 

Fig. 1. Overlay Based Service Composition. A media server (MS) publishes a stream that 
the media client (MC) wants to receive. CSP dynamically creates a  service path which 
satisfies MC’s requirements by incorporating services offered by other peers. 
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In a collaborative P2P environment peers may offer services like caching and 
transcoding for other peers that do not have the resources to watch a media stream in 
the originally offered format, e.g., a mobile client peer that wants to watch a high 
definition video but only features QCIF. CSP organizes the peer nodes and their of-
fered services in a structured distributed hash table (DHT) CAN [18] address space 
which enables a service path composition that satisfies the clients’ requirements (see 
Figure 1). Because CSP is organized in a DHT it is also failure resilient. When a peer 
leaves the Overlay, another peer becomes responsible for its share in the CAN. 

The research challenge here is the establishment of the function chain. In an envi-
ronment where multiple nodes offer services that can be included (e.g., caching, 
transcoding,  encryption,  etc.)  the  algorithm  needs  to  find  the  required  functions 
(based on application demands) and combine them in a reasonable manner. 

Since service composition for realtime media services and also for functional com-
position is QoS sensitive, it has to be ensured that the QoS constrains are not violated 
by the service composition process. As a consequence service composition resembles 
a (Multi-) Constraint Routing problem [17] where the construction of the function 
chain already becomes NP complete. 

In previous work we investigated algorithms for the composition [18][19] and 
made a first simulation implementation on a few nodes. Since results are dependent 
on characteristics of the underlying network, we planned to test the algorithms in a 
realistic testbed. We decided to use PlanetLab Europe for the experiments because the 
traffic runs on real Internet connections and we are able to use nodes that are highly 
distributed around the globe. The ability to use many highly distributed machines is 
essential  for  the  investigation  of  the  composition  algorithm  that  depends  on  the 
number of available functions and the QoS parameters between nodes. 

In our experiments we investigate whether the function chain is correctly estab-
lished and the packets traverse the network on the expected paths. The packet 
tracking service here is required for experiment supervision and providing path infor-
mation. In future packet tracking can also be used to provide input data for overlay 
establishment and optimization (as a measurement service). It can also log environ-
mental settings because adjacent traffic from other applications in the network will 
also be measured. In this way one can also examine the influence of different flows 
within the network. 

6   Measurement Setup for Packet Tracking 

Basically Planetlab nodes are end hosts which can directly communicate over the 
Internet. This means that none of the PlantLab nodes serves as a router and will for-
ward packets. Therefore we created an overlay network on nodes in our slice in a way 
that at least one intermediate node does packet forwarding. We created virtual tap 
interfaces with their own addressing space upon the original (eth0) interfaces on 
nodes in our slice. These virtual tap interfaces are interconnected using socat tunnels. 
We are able to create multiple virtual tap interfaces, but forwarding between those  
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interfaces is not yet supported in PlanetLab, although planned. Until this feature is 
enabled we are using one intermediate machine in our facilities that connects with the 
tap interfaces on the PlanetLab machines, creating a star topology with our machine 
in the middle. Our machine is able to forward packets to the PlanetLab nodes and 
work as an intermediate router (cf. Figure 2). In addition, we deployed OpenIMP [21] 
measurement probes on all involved nodes (PlanetLab and our middle machine). 

 

Fig. 2. Each PlanetLab node has a probe that applies hash-based selection, generates a packet 
ID for each selected packet and sends IPFIX results to a common collector. The nodes are 
interconnected using socat and a central node that forwards packets. 

For performing accurate passive multipoint measurements it is necessary to sepa-
rate measurement traffic from the measured traffic, i.e., in a packet tracking archi-
tecture the IPFIX measurement result traffic should not be observed. Therefore we 
export our measurement traffic over the original eth0 interface while the probe listens 
on the virtual interface. This setup is not recommended for delay measurements be-
cause the measurement traffic and real traffic is actually exported over the same (real) 
interface which can distort delay measurement. In a first demo scenario we used iperf 
to generate traffic between 5 nodes (KTH Stockholm, ELTE Hungary, Quantavis 
Pisa, Porto and University of Athen) and our node in Berlin in the middle. 

7   Packet Tracking Visualization 

Packet Tracking is very graspable; everyone can intuitively imagine how a packet 
traverses its path. We implemented a Java Application which uses OpenStreetMap 
and an animation framework to visualize the measurement data. The observed packet 
tracks are aggregated in user-defined intervals and displayed as animated light dots 
where each dot represents multiple packets. For the path visualization we used cubic 
splines so that the path from Point A to B does not cover paths from Point A to B 
to C, i.e. one can follow the packets path from ingress to egress. An example screen-
shot is shown in Figure 3. 
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Fig. 3. Screenshot of Visualisation Tool for Packet Tracking in PlanetLab 

8   Conclusion and Acknowledgements 

We introduced a packet tracking architecture for PlanetLab Europe for experiment 
and environment supervision and as a general measurement service for algorithms 
that require such input. We showed how packet tracking with multiple observation 
points and coordinated data selection techniques can be realized. We presented a 
typical use case and showed how results can be visualized. We plan to integrate the 
service with the OneLab Advanced Network Monitoring Equipment (ANME) and to 
extend the architecture for passive delay measurements and result storage in IPFIX 
file format. We also plan  to integrate  packet tracking  functions  in  the recently 
federated wireless networks of PlanetLab Europe. 

This work was partly funded by the EU project OneLab2 under the FIRE pro-
gram. We thank Joachim Kaeber for the PlanetLab Europe setup and Tacio Santos for 
implementing  the  visualization.  Special  thanks  go  to  the  PlanetLab  Central  and 
Europe support team Guthemberg Da Silva Silvestre, Anil Kumar Vengalil, Benjamin 
Quétier, Sapan Bhatia and Thom Haddow for quick responses and technical support. 
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Abstract. Ethernet is becoming the dominant data transmission tech-
nology for service providers due to its simplicity and low cost. However,
the need for Quality of Service (QoS) provisioning for some time-sensitive
applications drives the definition of new functionalities in Ethernet. In
this work we address QoS in Ethernet by introducing a time synchroniza-
tion capability at MAC level while maintaining its asynchronous and dis-
tributed architecture. We present a reconfigurable logic platform based
on a Field Programmable Gate Array (FPGA) in which we embed our
custom timestamping unit (TSU). Leveraging the TSU, we have imple-
mented a synchronization mechanism with which we achieved a best-case
synchronization accuracy of zero nanoseconds. The effectiveness of the
method is confirmed through several experiments.

Keywords: Ethernet, Quality of Service, Time Synchronization, FPGA,
HW-timestamping.

1 Introduction

Ethernet technology is becoming the dominant access technology at local,
metropolitan, and wide area networks. The low cost, high data rates and low
complexity and maintenance offers an opportunity to service providers for using
Ethernet on a very large scale and replacing their expensive legacy networks to
more simple Layer 2 (of the OSI layered model) Ethernet networks. However,
low cost and simplicity are only part of Ethernet’s attraction. The challenge is
that Ethernet is a ’best-effort’ and asynchronous oriented technology, therefore
industry bodies and equipment manufacturers are making considerable efforts
to ensure Ethernet services become ’carrier-class’. High-precision time synchro-
nization is a key enabler for offering such carrier-class QoS, a functionality that
present native Ethernet lacks and that provides receivers with precise informa-
tion about end-to-end delays, and that would benefit e.g. effective playout of
time-sensitive data [1] or high-precision network analysis [2].

A few years ago the Ethernet Passive Optical Network (EPON) specifica-
tion [3] introduced a rough synchronization capability in Ethernet based on
timestamping for the purpose of coordinating the slotted access of the nodes.
Synchronization accuracy and precision using timestamps are affected by the
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time variability of inserting the time information inside the message [4]. With
a well-defined and characterized timestamp mechanism, we believe there is a
chance to define a synchronization mechanism for native Ethernet to better sup-
port time-sensitive applications with more control of the QoS provided. Our
objective is to improve Ethernet capabilities within an acceptable range while
respecting its architecture simplicity principle. Hence, we address QoS by intro-
ducing a time synchronization capability but maintaining its asynchronous and
distributed architecture.

With the former perspective in mind, we present a testbed for the design
extension of native Gigabit Ethernet to address the QoS through time syn-
chronization at Layer 2. The testbed is based on a FPGA which provides the
resources for designing a custom and flexible hardware (HW) Timestamping
Unit with the following improved key features from our previous work [5]: 1)
high-resolution and reliable HW timestamping, 2) precise timing of the execu-
tion/processing times of the internal platform key blocks, with which we can
optimally characterize the timestamping mechanism, and 3) high-resolution cal-
culation of message propagation times. Leveraging the three previous properties,
we reuse the synchronization mechanism specified in EPON to achieve a perfect
link synchronization between two nodes.

We start this work in Section 2 which pinpoints the actual solutions akin
to our work. Section 3 is devoted to clarify the requirements of our platform,
as well as to explain in detail its design and the different scenarios to obtain
reliable timing and synchronization performance. In Section 4 we present the
experimental results for characterizing the timestamping mechanism and the
achieved synchronization accuracy. We draw conclusions in Section 5.

2 Related Work

Considering the requirement of maintaining the actual native Ethernet structure,
i.e. without redefining the physical layer (PHY), other standards such as the
IEEE Std. 1588 Precision Time Protocol (PTP) [6] and the Network Time Pro-
tocol (NTP) [7] are being developed. Both protocols distribute timing via UDP
packets that carry timestamps generated by a master (server). PTP achieves up
to six orders of magnitude better synchronization accuracy than NTP by rely-
ing on HW support for generating the timestamps. The hundred-ns accuracy
target of PTP is consolidating it as THE standard for synchronization timing
distribution over Ethernet in many different areas.

Since the last revision of the PTP standard in 2008, a new normative for
transporting PTP over IEEE 802.3 Ethernet is considered (Annex F of [6]),
a feature that is akin to our work. This new specification prospects a fully
IEEE 1588 Layer 2 subsystem independent from upper layer services, and thus
also reinforcing our initial beliefs on the success of a pure Layer 2 solution for
Ethernet. This new PTP normative will benefit from the use of shorter messages
(64 bytes) and the possibility to build PTP with small memory footprint and
resources, even integrated in a single Ethernet chip. To our knowledge, we have
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proof of one work [8] implementing this new IEEE 1588 Layer 2 specification.
The authors are targeting synchronization accuracies of tenths of ns between
contiguous nodes.

3 Design

3.1 Platform Requirements

The major objective in the development of our platform is to provide a low-cost,
programmable and flexible framework for experimenting with new Ethernet de-
sign extensions at low level. FPGA-based embedded platforms are the best tools
for this purpose. However, one limitation of commercial Ethernet platforms is
that their compliant MACs are black boxes, avoiding researchers to integrate
and experiment with new MAC functionalities. Here we want to rapidly work
around this problem and avoid (the hard task) of designing a compliant MAC
from scratch. In this design we focus on the following high-level requirements:
1) fast re-usability with other platforms, 2) easy upgradeability with improved
or new functionalities, 3) compatibility with SW-based synchronization solu-
tions [7], thus providing Ethernet with autonomy and independence from up-
per layers to perform fully Layer 2 functions. 4) Keep the asynchronous and
distributed Ethernet philosophy, avoiding synchronization approaches based on
re-spinning the Layer 1 transceivers [9].

3.2 Embedded System

In Fig. 1 it is shown the reconfigurable platform, the Xilinx ML403 general
purpose board which is based on a Virtex-4 FPGA [10]. The board mounts a tri-
speed Ethernet PHY, several expansion headers (HDR) for external connectivity,
64MB of DDR SDRAM for massive storage and two XO’s for clocking the PHY
and the rest of the FPGA internal circuitry. The FPGA chip contains a Pow-
erPC microprocessor (μP), an Ethernet MAC block (MAC), a digital frequency
synthesizer (DFS) and reconfigurable logic with which we have implemented our
Timestamp Unit (TSU).

The TSU is divided into four major blocks. The first one is the transmission
block (tx block) which contains a finite state machine (tx FSM) that detects and
manages the replacement of some synchronization frame fields. tx block operation
is synchronous with the transmission clock signal (tx clk) coming from the MAC
(’- -’ line).

The second block is the reception block (rx block) which has the same func-
tionality as its transmission counterpart besides cyclic redundancy error check-
ing of the incoming frames. The operation of rx block is synchronous with the
reception clock signal coming from the on-board PHY chip (’· -’ line).

The third block is the control adjustment unit (CAU) which contains a 32-bit
counter (localtime) that is summing up clock ticks at the frequency of 269.96
MHz (’··’ line), thus providing a timestamp granularity of 3.704 ns. We will use
localtime counter to keep track of high-resolution time at MAC level and as the
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Fig. 1. Simplified block diagram of the reconfigurable platform

fine time measurement unit with which to compare the synchronization accuracy
between nodes. As seen in Fig. 1, localtime register is interfaced to/from four
regions:

1. to a capture register file within CAU, for storing different time freeze points
(see Section 3.3) of the outbound and inbound frames (tx capt regs and rx
capt regs, respectively). Each FSM triggers several timestamps when trans-
mitting/receiving frames that are stored in register stack. The main problem
of this approach is the interaction of the register stack with the three clock
sources (rx clk, tx clk and cau clk). This cross-clock domain scenario can
hamper the reliability of the timestamps due to metastability errors [11].
In order to prevent inconsistent timestamps, we have introduced handshake
operations (handshaker) between the capture registers and localtime. hand-
shakers consist on a FSM and a flancter circuit [12].

2. to a comparator-trigger block (comp-trig) within CAU, for comparing local-
time instantaneous values with a user-defined constant value (comparison
value). When localtime equals comparison value, a 50 ns-wide pulse is raised
on an external output (MATCH ). This resource will provide us means to
verify the synchronization accuracy between nodes (see Section 4.2).

3. to the transmission block (tx block) within the TSU, to provide the times-
tamps to be transmitted in the outbound synchronization protocol data unit
(syncPDU). The timestamps are triggered at the 25th byte of a current out-
bound frame, and inserted from 29th to 33rd fields (see Fig. 2).

4. from the reception block (rx block) within TSU, to read the incoming times-
tamps and syncPDUs. The time of arrival of a syncPDU is also taken at the
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25th incoming byte to keep the symmetry with the outbound path. rx block
contains a state machine (t prop FSM ) that performs the propagation time
correction with the content stored in t prop reg register.

The last block is the data register stack register file which contains all the in-
formation of the last sent/received syncPDU, internal timing measurements and
control/status registers.

As explained before, due to the MAC inaccessibility, we reuse the existent
flow control frames (i.e. Pause frames) to generate the syncPDUs. When the
TSU detects that an outbound frame is a Pause, it replaces on-the-fly 5 fields
(17 octets) (see Fig. 2).

Fig. 2. Pause control frame (top). Synchronization protocol data unit (syncPDU) (bot-
tom).

3.3 SyncPDU Timing

We aim at designing a timing model to measure with high resolution the pro-
cessing and propagation times of a syncPDU from one node to the other for the
purpose of characterizing the delay and jitter of the timestamping mechanism.
In Fig. 3 it is shown the timing of the synchronization flow (’· -’ line) at, and be-
low the MAC level, which starts and finishes at the master side. The time freeze
points of the synchronization flow are located at different strategic and sym-
metric physical points along the path. For a better follow up, we have assigned
logical time variables to the HW registers with the purpose of storing intermedi-
ate transmission (tB(ti)-tx req, tC(tJ )-st tx, tD(tK)-txed ts, tE(tL)-end tx)
and reception (tM (tF )-st rx, tN (tG)-toa, tO(tH)-end rx) times.

Fig. 3. Timing reference model for timestamping characterization
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3.4 Synchronization Mechanism

As mentioned before we extrapolate and enhance EPON synchronization ap-
proach to synchronize two nodes in a direct link configuration. The goal using
this synchronization mechanism is to measure and to adjust the clock offset
between each pair of clocks in order to synchronize them perfectly. In Fig. 4
it is shown the timeline of the synchronization protocol operation at different
block levels in each node. The inner columns show the instantaneous clock offset
between the master and the slave and viceversa. The mid and outer columns
denote which HW registers and logical variables are being written during the
process.

The whole process is divided into two recursive phases, the normal operation
phase and the discovery phase. In the former, the master is sending GATE type
messages which are replied by the slave under REPORT type messages. At the
normal phase the master is checking the progressive clock drift of the slave. If it
detects a specific maximum clock drift, it enters into the discovery mode. If the
clock drift keeps lower than a maximum threshold value, the master enters into
discovery mode after a fixed and periodic interval of time (∼ 14.3 sec).

The re-synchronization is performed in the discovery phase. As seen on the
left-side in Fig. 4, the master calculates the Round Trip Time (RTT) upon
the last received REG REQ message according to eq. 1. This phase finishes
after the master communicates the propagation delay (RTT/2) to the slave in
a REGISTER message. The propagation delay will be used by the slave in the
next normal operation phase to achieve the link-synchronization.

Fig. 4. Synchronization procedure adopted from EPON [3]
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RTT = tresponse − twait

= (tN − tD) − (tpause gen + ttx ts freeze)
= (tN − tD) − (tJ − ti) − (tK − tJ)
= (tN − tD) − (tC − tB) − (tD − tC) (1)

4 Evaluation

4.1 Timestamp Variability

To characterize the timestamp variability of the timing model of Fig. 3, we ob-
serve the relative time differences between the time freeze points. In table 1 it
is shown the statistics of the timing of the synchronization flow over 50k packet
and under different load scenarios. The theoretical values of each time differ-
ence can be expressed in number of TSU clock ticks taking into account the
CAU and the PHY interface frequencies, i.e. fcau clk[MHz]

ftx/rx clk[MHz]
= 269.96

125
= 2.15968.

For instance, a timestamp that is triggered at the 25th byte of an outbound
syncPDU is equivalent to tts tx freeze × 2.15968 ≈ 54 TSU clock ticks. The
small differences between the experimental and the theoretical values observed

Table 1. Histogram of synchronization flow timing (Fig. 3) over 50k packet run test
(expressed in number of TSU clock ticks (percentage over 50k samples))

.

.

transmission reception
tpause gen tts tx freeze ttx rem tts rx freeze trx rem

(tC -tB) (tD-tC ≈ 54) (tE-tD ≈ 104) (tN -tM ≈ 54) (tO-tN ≈ 104)
Master no load 36 (16.1%) 57 (51.3%) 113 (100%) 56 (85.0%) 110 (10.2%)

37 (10.6%) 58 (49.7%) 57 (15.0%) 112 (45.3%)
38 (49.7%) 113 (44.5%)
39 (25.6%)

w/64B data 37 (40.2%) 57 (55.3%) 109 (18.6%) 54 (30.8%) 112 (38.2%)
38 (39.1%) 58 (45.7%) 113 (81.4%) 56 (69.2%) 113 (61.8%)
39 (20.7%)

w/1500B data 36 (17.7%) 57 (55.5%) 109 (10.1%) 55 (23.5%) 112 (40.5%)
37 (25.9%) 58 (44.5%) 112 (20.7%) 56 (76.5%) 113 (59.5%)
38 (56.4%) 113 (69.2%)
tpause gen tts tx freeze ttx rem tts rx freeze trx rem

(tJ -ti) (tK-tJ ≈ 54) (tL-tK ≈ 104) (tG-tF ≈ 54) (tH -tG ≈ 104)
Slave no load 36 (19.9%) 57 (54.5%) 113 (100%) 55 (78.4%) 112 (19.6%)

37 (32.3%) 58 (45.5%) 56 (19.6%) 113 (75.4%)
38 (47.8%)

w/64B data 36 (17.1%) 57 (55.3%) 109 (18.6%) 55 (80.4%) 112 (21.1%)
37 (40.2%) 58 (45.7%) 113 (81.4%) 56 (19.6%) 113 (78.9%)
38 (23.8%)
39 (18.9%)

w/1500B data 36 (23.4%) 57 (52.1%) 112 (9.8%) 55 (28.2%) 112 (30.3%)
37 (35.8%) 58 (47.9%) 113 (90.2%) 56 (71.8%) 113 (69.7%)
38 (40.8%)
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in the table stem from the additional clock ticks needed by the handshakers
to perform reliable timestamp readings. We are interested on the timestamp
variability as we will use them in eq. 1. The experimental data is well dis-
cretized, precise and confined, thus proving the reliability of the timestamping
mechanism.

4.2 Link Synchronization Accuracy: Phase and Time

We have used two methods for the evaluation of the synchronization accuracy
and precision between the two nodes at link level. The first method consists
on comparing the phase error between TSUs just after a localtime adjustment.
To observe this, we configure the comparator-trigger blocks inside the TSUs to
raise a 50ns-wide pulse at periodic intervals of 225μs through MATCH output
pin (see right-side of the Fig. 5). On the left side of the Fig. 5 it is shown a zoom
in the time adjustment for the best and worst case synchronization accuracy.
To obtain this screenshot, we have forced the slave node to re-synchronize ev-
ery 5 milliseconds to better observe the variability of a re-synchronization event.
Over the ∼200 overlapped signal traces, we have achieved best-case link synchro-
nization accuracies of 0 ns between TSU’s localtime counters, and a worst-case
synchronization accuracy of 130 ns.

The second method consists on comparing the instantaneous localtime values
at each node during the normal operation phase of the synchronization procedure
(see Fig. 4) under three different load scenarios: no background data (no bg
data), with minimum-length data packets (w/64B pckts) and maximum-length
data packets (w/1500B pckts).

The plots in Figs. 6a,b,c refer to the synchronization accuracy at tN and tK
time freeze points. Fig. 6a zooms in a 150 sec window to show the ’sawtooth’
shape of the synchronization trace, which reveals the clock drift of the slave
relative to the master (∼3.26μs/s). The sawtooth is not uniform, which means
that the re-synchronization events are not executed exactly every 5 sec. This
behavior owes to the fact that the μP handles multiple interruption requests
from different HW blocks inside the platform and serve them undeterministically.
Fig. 6b shows that the achieved synchronization accuracy is mostly confined
within ±10 TSU clock ticks. The histograms in Fig. 6c better show the clock
offset distribution in such region. For the three load scenarios, mean (μ) and
standard deviation (σ) keep below 1 and 10 ns, respectively. The different σ
values might be caused by the extra clock ticks needed by the HW mechanisms
inside the MAC and the PHY to generate and process a packet.

The plots in Figs. 6d,e,f are equivalent to those of the first row but choosing
different time freeze points (tD and tG). We observe several differences in the
plot 6e compared with its top counterpart. Here the clock offset is bounded in
the [20, 30] TSU ticks region, denoting an asymmetry when compared to tN and
tK . The 20 cycles score is due to the round off error committed by the program
code of the master when calculating the RTT. The bulk of the data in Fig. 6e and
the zone with higher density of traces on the left plot of the Fig. 5 are equivalent
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Fig. 5. Phase error of the synchronized timing signal (right). Re-synchronization vari-
ability (left).
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Fig. 6. a,d) Accumulated clock offset. b,e) Synchronization accuracy. c,f) Synchroniza-
tion accuracy distribution.

([74, 111] ns). μ and σ statistics of histograms in Fig. 6f are well confined over
90 and 12 ns, respectively.

5 Conclusion

In this work we have presented an FPGA-based platform for developing and test-
ing new Ethernet functionalities. We envision Ethernet as a technology capable
to offer carrier-class QoS while maintaining its simplicity and low-cost if time
synchronization is addressed. For this reason, we have implemented within the
programmable resources of the FPGA an improved version of our custom hard-
ware Timestamping Unit with several key functionalities: high-resolution and
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error-free on-the-fly timestamping, high-resolution timing of inter-MAC events
and frame propagation times. Leveraging these features, we have characterized
the timestamping mechanism in terms of time variability and re-used the ac-
curate timings in the EPON synchronization exchange mechanism to achieve
best-case synchronization accuracies of zero nanoseconds at MAC level.
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5. Nicolau, C., Sala, D., Cantó, E.: Clock Duplicity for High-Precision Timestamp-
ing in Gigabit Ethernet. In: 19th Int. Conf. on Field Programmable Logic and
Applications (FPL), Czech Republic, August 31–September 2 (2009)

6. IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, IEC 61588:2009(E), pp. C1–274 (2009)

7. Mills, D.L.: Network Time Protocol (Version 3) Specification, Implementation and
Analysis, RFC-1305 (March 1992)

8. Kutschera, C., et al.: Background IEEE 1588 Clock Synchronization over IEEE
802.3/Ethernet. In: IEEE Symp. on Precision Clock Synchronization (ISPCS 2008),
September 22-26 , pp. 137–141 (2008)

9. Finn, N., Cisco Systems Inc.: Sync PDUs and the MAC Stack - Help needed from
802.3 to properly process IEEE 1588/P802.1AS sync PDUs. In: IEEE 802.3/IEEE
802.1 joint session, Denver, CO, USA (July 2008)

10. Xilinx, Inc.: ML40x Evaluation Platform User Guide, ug080 v2.5 (2006)
11. Stephenson, J., Altera Corp.: Don’t Let Metastability Cause Problems in Your

FPGA-Based Design (2009), http://www.pldesignline.com/220300400
12. Weinstein, R.: The “Flancter” (App. Note), Memec Design(2000),

http://www.floobydust.com/flancter/Flancter_App_Note.Pdf



 

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 285–295, 2011. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011 

The DORII Project e-Infrastructure:  
Deployment, Applications, and Measurements 

Davide Adami1, Alexey Chepstov2, Franco Davoli1, Bastian Koller2, Matteo Lanati3, 
Ioannis Liabotis4, Stefano Vignola1, Anastasios Zafeiropoulos4, and Sandro Zappatore1

 

1 CNIT, University of Pisa/University of Genoa Research Units, Italy 
2 High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany 

3 EUCENTRE Pavia, Italy  
4 GRNET, Athens, Greece 

Abstract. Remote Instrumentation Services go far beyond offering networked 
access to remote instrument resources. They are establishing as a way of 
fully integrating instruments (including laboratory equipment, large-scale ex-
perimental facilities, and sensor networks) in a Service Oriented Architecture, 
where users can view and operate them in the same fashion with computing 
and storage resources. The deployment of test beds for a large basis of scien-
tific instrumentation and e-Science applications is mandatory to develop new 
functionalities to be embedded in the existing middleware to enable such  
integration, to test them on the field, and  to promote their usage in scien-
tific communities. The DORII (Deployment of Remote Instrumentation  
Infrastructure) project is a major effort in this direction. The paper presents the 
performance monitoring infrastructure that has been built in DORII  and 
the results concerning a selected application in seismic engineering. 

Keywords: Remote Instrumentation Services, SOA, e-Science. 

1   Introduction 

Almost all scientific areas and a good deal of technological developments use spe-
cialized instrumentation – laboratory equipment, measurement devices, large- and 
small-scale experimental facilities, sensor networks for data acquisition – other than 
computational and storage resources. The complex of activities that allow automated 
data processing and analysis, by exploiting distributed computational service like 
those offered by Grid architectures and cloud computing, and that can be referred to 
as e-Science (or, with a more precise term, Service-Oriented Science [1]) would 
greatly benefit from the full integration of such experimental instrumentation with the 
computational infrastructure into one powerful pool of resources that can be searched, 
selected, composed and configured, accessed, and controlled by their users. 

The extension of the e-Infrastructure with this complex of activities, which can be 
termed  Remote  Instrumentation Services (RIS) [2],  is  not  straightforward, and  it 
requires addressing a  number  of  issues in  middleware  and  network  architectural 
design, middleware development, and instrumentation and measurement related as-
pects. Recently, a number of European research projects, among others, have been 
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dedicated to it, and a community of researchers in the field has been forming and 
actively investigating aspects in this field (see, e.g., [3], [4]). 

At the same time, efforts have been dedicated to the deployment of the infrastruc-
ture and of test beds that allow user communities to become acquainted with the 
related technology, to perform experiments on-line, and to be involved in the devel-
opment of new applications and in the extension of existing ones. This is one of 
the main objectives  of  the  DORII  (Deployment  Of  Remote  Instrumentation 
Infrastructure) project [5], [6], funded by the European Commission in the 7th  

Framework Program.  
The general architecture, the deployed applications and the test bed organization of 

DORII were described in [6]. In the present paper, we describe the currently deployed 
DORII e-Infrastructure, the performance monitoring tools’ customization and de-
ployment, and present the results of a selected application in earthquake engineering. 
The paper is organized as follows. Sections 2 and 3 describe the e-Infrastructure and 
the monitoring tools, respectively. Section 4 presents the deployment of the selected 
application, and Section 5 reports related experimental results. Section 6 contains the 
conclusions. 

2   Deployment of the e-Infrastructure 

One of the main requirements posed by applications of many strategic areas in science 
and  technology (as the ones specified by ESFRI - European Strategy Forum on 
Research Infrastructure [7]) is to design a service-oriented IT architecture which 
should allow users manage, maintain and exploit diverse instrumentation and acquisi-
tion devices together with heterogeneous computation and storage facilities granted 
by the traditional Grid, as those set up by EGEE (Enabling Grids for E-sciencE) [8], 
DEISA (Distributed European Infrastructure for Supercomputing Applications) [9] 
and many other Grid projects. Unlike the traditional Grid, the e-Infrastructure should 
practically enable access to remote instrumentation in high-performance computing 
and storage environments, and allow users and their applications  to  get  an  easy  
and  secure access to  various remote  instrumentation resources, supported by 
high-performance Grid computation and storage facilities. The e-Infrastructure 
does that by providing standardized services to access integrated instrumentation 
resources (including expensive experimental equipment, but also smaller network-
connected sensors and mobile devices), in a unified way with the traditional Grid 
services (as provided, e.g., by gLite [10]). 

The DORII e-Infrastructure is based both on the EGEE infrastructure and its mid-
dleware of choice gLite, and on specific middleware services built within the DORII 
project. The interaction of the users with the instruments is effected via the Instru-
ment Element (IE), originally conceived in the GRIDCC [11] project, and then re-
designed  within  DORII.  The  IE  includes specific Instrument Managers  (IMs). 
Information about the resources and services of the infrastructure is provided by the 
Berkeley Database Information Index (BDII). The Workload Management System 
(WMS) is the service responsible for the distribution and management of tasks across 
Grid  resources, in such a way that applications are conveniently, efficiently and 
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effectively executed. The LCG Computing Element (LCG-CE) is responsible for 
submitting jobs to the underlying local cluster of Worker Nodes (WNs). Storage 
Elements (SEs) are responsible for data storage and management, while the LCG File 
catalogue (LFC) offers a hierarchical view of files to users, with a UNIX-like client 
interface.  From  the  security  perspective,  the  Virtual  Organization  Management 
Service  (VOMS)  is  a  full-fledged  Attribute  Authority,  whose  job  is  to  assign 
attributes like group membership and role ownership to members of a Virtual  
Organization (VO). 

At the time of writing of this paper the DORII e-Infrastructure consists of 9 sites 
offering computational and storage resources distributed among the partners of the 
project. Table 1 shows the sites that support the catch all DORII VO, where most of 
the DORII applications have been deployed: 

Table 1. vo.dorii.eu Computational and Storage Resources 

Country Partner Name Site Name CPU 
Cores 

Storage 
(TB) 

Poland PSNC PSNC 1068 16 
IFCA-CSIC 372 107 Spain CSIC 
IFCA-I2G* 372* 107* 

Italy ELETTRA ELETTRA 80 0.1 
HG-01-GRNET 64 4.78 
HG-02-IASA 118 3.14 
HG-03-AUTH 120 3.13 
HG-04-CTI-CEID 114 2.87 
HG-05-FORTH 120 2.33 

Greece GRNET 

HG-06-EKT 228 7.76 
Totals 2284 147.11 

Three scientific communities have deployed their instruments and the correspond-
ing applications using them in the DORII infrastructure: i) environmental observation 
and monitoring; ii) earthquake engineering; iii) experimental science. 

The e-Infrastructure addressed by DORII encompasses the following main envi-
ronments: 

•   Application environment 

This layer comprises a diverse set of applications, from those providing Remote 
Instrumentation Services to parallel applications performing simulation and modelling 
on the acquired data. 

•   Middleware framework 

The framework consolidates traditional middleware solutions for Grid, enhancing and 
adapting to the requirements of the remote instrumentation. In the context of DORII, 
the middleware framework is comprised of the tools that are best practices for remote 
instrumentation (like the Instrument Element – IE [12]) and management of Grid 
resources (the  Virtual  Control  Room  –  VCR  [13]),  application development   
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(g- Eclipse [14]) and workflow management (VLab [15]), interactivity and visualiza-
tion (GLogin and GVid [16]), as well as parallel application support (Open MPI and 
PACX-MPI [17]). 

•   Fabric layer 

This layer, comprising network-connected Grid resources, is extended by scientific 
instrumentation and remotely controlled devices. 

•   Networking technologies 

This layer includes the networking solutions for connecting all the upper layers of the 
Grid architecture. TCP/IP is the common networking technology, along with specific 
access network protocols. 

3   Monitoring the Network and the Infrastructure 

The network monitoring infrastructure deployed for the DORII project consists of the 
following tools: 

• Smokeping, for network latency measurement; 
• Pathload, for the estimation of the available bandwidth along a network path; 
• SNMP-based Web applications, for monitoring network interface utilization. 

3.1   Smokeping 

Smokeping [18] is a software tool that can be used to measure the network latency. 
More specifically, a Smokeping probe sends test packets out to the network and 
measures the amount of time they need to travel to a target host node and back. The 
RRDtool [19] is used to maintain a long-term data-store with latency measurement, 
and the presentation of the data on the web is done by means of a CGI with some 
AJAX capabilities for interactive graph exploration. 

In the framework of the DORII project, Smokeping is used in master/slave mode: 
this way, Smokeping probes (slaves) are allowed to run remotely and to perform 
latency measurements from multiple locations to the target hosts. 

As shown in Fig. 1, Smokeping has been deployed as follows: 

• the Smokeping master is located at CNIT [20]; it maintains a configuration 
file with a specific section for each slave, and it stores and presents all moni-
toring data collected by the slaves. 

• Remote probes (Smokeping slaves) have been installed at DORII partners’ 
sites EUCENTRE, ELETTRA, GRNET, CSIC-IFCA, OGS and PSNC. 
Based on settings contained in the configuration file retrieved from the mas-
ter (e.g., measurement utility, target host address, measurement length and 
period, etc.), each slave performs latency measurements and sends back the 
results to the Master server  by using the HTTP protocol. In the DORII 
network infrastructure, the following targets have been identified: Comput-
ing Elements (CEs), Storage Elements (SEs), Instrument Elements (IEs), re-
mote sites’ Access Gateways (AGs). 
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Fig. 1. Smokeping and Pathload deployment for the DORII project infrastructure 

3.2   Pathload 

Pathload [21] is a monitoring tool that estimates the available bandwidth of a network 
path. The basic idea behind Pathload is that the one-way delays of a periodic packet 
stream show an increasing trend when the stream rate is larger than the available 
bandwidth. 

Pathload is based on a client-server architecture and consists of two main  
components: 

• pathload_snd that listens on TCP port 55002 and acts as a traffic generator; 
• pathload_rcv that starts a Pathload session and acts as a traffic receiver. 

Pathload has been customized for the DORII project. In addition to the previous 
components, some scripts have been introduced to monitor the status of the sender 
and receiver processes and to automatically export the measurement data collected by 
the receiver to the management station located at CNIT via HTTP. The tool has been 
installed as follows (see Fig. 1): 

• Pathload_sender:  at  each  site  where  CEs  and/or  SEs  of  the  DORII  
e-Infrastrcture are located (GRNET, PSNC, CSIC-IFCA); 

• Pathload_receiver: at each site where IEs are deployed (EUCENTRE, 
OGS, ELETTRA, UC, etc.) and, therefore, DORII applications are running. 

This way, the bandwidth available from the sites hosting CEs and SEs to the sites 
with applications (IEs and VCR) can be estimated. 
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3.3   SNMP-Based Network Monitoring 

Various applications exist to collect and consolidate network usage information. At a 
basic level, such applications (also called managers) use the Simple Network Man-
agement Protocol (SNMP) to read statistics from each monitored device (router or 
host) where an SNMP agent is configured and running. A standard Management 
Information Base (MIB) collects counters of the number of datagrams and bytes sent 
and received on each interface of a device, and it also gives the number of packets 
discarded because of congestion. An SNMP application can periodically poll each 
device and convert the returned information into a view of usage across the whole 
network. SNMP can also help identify network interface failures or outage conditions. 
In the framework of the DORII, SNMP is required to be enabled on IEs, CEs, SEs 
and routers. Data are collected by an SNMP manager and interfaced with a Web 
server by using ad-hoc CGI programs. 

3.4   Nagios 

Nagios  [22]  is  an  open  source  monitoring  system  providing comprehensive  and 
scalable monitoring of all mission-critical infrastructure components, including ap-
plications, services, operating system and system metrics or network protocols and 
infrastructure. Nagios is integrated in the monitoring framework of the DORII e- 
Infrastructure providing information on problems and failures related to the computa-
tional, storage and instrument resources of this infrastructure, and monitoring services 
such as the CE, SE, BDII, WMS, and IE. 

4   Deployment of a Selected Application 

4.1   The Application 

The EEWS (Earthquake Early Warning System) aims at recording seismic data from 
sensors, possibly in real time, and at processing them in order to extract time history 
for ground velocity, ground acceleration and displacements. This is the starting point 
to calculate some interesting parameters widely adopted in the seismic community, 
such as the acceleration Fourier amplitude spectrum and the acceleration response 
spectrum (useful to evaluate a building's response to the force imposed by the earth-
quake). The rationale of this application is to provide scientists a unified environment 
mixing access to instruments and computational tools, speeding up the analysis car-
ried out after a seismic event. 

All the operations are performed remotely and on the grid, employing the DORII 
infrastructure. The VCR plays the role of the user interface: all the actions are carried 
out and all the resources are accessed through this web portal. 

The IE is located at EUCENTRE (Pavia, Italy) and it hosts the IM devoted to ac-
cess the server collecting data from sensors. This node is in Genoa, Italy, while the 
seismic sensors are spread over the Liguria Region. Measurements from each 
channel are time-stamped and saved locally on the IE in a separate file, then moved 
to a SE. Finally, a CE retrieves each file from the SE and performs the computation. 
Since the same computation is repeated for each input file, the job is parametric, 
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where the parameters   are   the   file   names.   The   JDL   (Job   Description   Lan-
guage)   file characterizing the job is created using a VCR application, which is a 
Jython script that customizes a given template. The user is asked only to select the 
input folder on the right SE. The output is downloaded to the home folder on the 
VCR. An alternative approach is represented by the Workflow Manager, a graphical 
and friendly interface to specify the parameters. 

4.2   The Instruments 

A set of seismic sensors is connected to a central point over the UDP protocol, by 
means of wired or wireless links. Each device measures the ground velocity along the 
three Cartesian directions, so each station broadcasts at least three channels, plus state 
of health information. All the data are gathered by a central server, which manages 
replicated and out of order packets. The reconstructed stream is stored and made 
available as DAT service: the user can access the historical data series, specifying the 
starting point of information flow and the time window of interest. On the contrary, if 
a user or an application is focused on near-real-time access, the NAQ service is more 
suitable. Given that some parameters are tuned properly, it is possible to configure the 
service  to  forward  the  original  packets  from  instruments  to  the  application, 
minimising  the  delay.  In  fact  this  is  the  meaning  of  near-real-time  acquisition. 
Seismic sensors send measurements to the central server as soon as possible, but the 
server has to store them, organizing in data structures called “bundles” and “packets”. 
These operations take some time, however limited to few seconds, depending on the 
distance between the server and the client. 

Packets are uniquely identified by a sequence number and a time stamp; they  
include an odd number, from 1 to 255, of 17-byte bundles. This solution allows 
adapting the packet size to the network. Moreover, it is worth noting that data 
contained in a packet are homogeneous, for example the measurements of a particu-
lar channel or the status information of a station. The first bundle in a packet always 
acts as header, specifying some useful details such as station’s unique ID, time 
stamp, sampling frequency and sequence number. The following groups of bytes 
carry only data. State of health messages are obviously strings, while measurements 
are integer values, in compressed or uncompressed format. 

4.3   The Instrument Manager 

The information flow is provided to the IM by means of a TCP connection as a time 
series or a transparent serial stream. A transparent serial stream handles only uncom-
pressed format and all packets have the same length, employing padding where nec-
essary. On the contrary, a time series stream can deal with compressed data, too, and 
the packet size may vary. Both streams exist also in the buffered version, so it is 
possible to retrieve additional packets prior to the beginning of subscription, moving 
the starting point slightly to the past. Finally, one of the most important parameters is 
the Short Term Completion (STC) time. It represents the time interval, from 0 to 300 
seconds, the server waits to fill the gaps in the stream in case of retransmitted packets. 
Our goal consists in reading seismic data in near-real-time, so we chose to subscribe a 
time series compressed stream (as it is more efficient) in its unbuffered version, 
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disabling STC. This means that measurements are not guaranteed to be in order 
because of errors and losses, so the gaps are filled using interpolation and delayed 
packets  are  discarded. The  approach  guarantees a  continuous flow,  fundamental 
feature for the subsequent computation, complying with the strict time constraint. All 
the operations are performed by a Java client library developed for the VCR architec-
ture on the basis of the user’s manual provided by the server manufacturer. 

5   Experimental Results 

The user task list previously described represents the starting point for the test bed 
set-up employed in this work. Moreover, network performance over the grid infra-
structure is monitored during the entire life cycle of the application execution. In our 
experiments, we skipped the acquisition phase, since the server gathering sensors’ 
data is not part of the infrastructure, unlike the IE sending the query. Moreover, the 
required network resources are very limited: as a matter of fact, a single station 
channel only needs few kbps. The size of the file containing the initial data set for the 
computation is about 115 MB and corresponds to measurement data coming from two 
channels and collected for a whole day. The archive is stored on a server at EUCEN-
TRE that acts as IE and VCR; then, it is transferred to a SE at GRNET 
(se01.isabella.grnet.gr). The average throughput is about 7.5 Mb/s. The analysis is 
carried out by a parametric job, where the parameters correspond to different settings 
for the two seismic stations being monitored, so a single execution of the application 
produces two children nodes. The job is launched three times, and the target CEs are 
located at different sites: GRNET (ce01.athena.hellasgrid.gr), PSNC 
(ce.reef.man.poznan.pl) and IFCA-CSIC (egeece01.ifca.es). 

Table 2. Upload time from se01.isabella.grnet.gr to each CE and processing time 

 
CE Upload 

Start Time 
Upload 
Time [s]

Throughput 
[Mb/s] 

Average
Latency 

[ms] 
Computation 

Start Time 
Processing 

Time [s] 
ce01.athena.hellasgrid.gr 27/11/2009, 

12.59 
2.0 478.4 - 27/11/2009, 

12.59 
26 

ce01.athena.hellasgrid.gr 27/11/2009, 
12.59 

2.1 460.2 - 27/11/2009, 
13.18 

65 

ce.reef.man.poznan.pl 27/11/2009, 
13.07 

351 2.6 59.2 27/11/2009, 
13.07 

16 

ce.reef.man.poznan.pl 27/11/2009, 
13.04 

241 3.9 59.2 27/11/2009, 
13.04 

47 

egeece01.ifca.es 27/11/2009, 
13.46 

95 9.8 94.3 27/11/2009, 
13.48 

22 

egeece01.ifca.es 27/11/2009, 
13.46 

82 11.7 94.3 27/11/2009, 
13.48 

45 

Table 2 reports the time necessary to upload the file from the SE to each CE, 
along with the processing time. The last column of the table reports the latency meas-
ured by using  Smokeping. If the user chooses a local CE (ce01.athena.hellasgrid.gr) 
the latency is in the order of a few ms, and therefore it is not reported in the table, but 
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also in the other two cases the latency is very low, since it is less than 100 ms. 
The job output consists of files whose size is comparable with the size of the 

input file. Finally, the output files are retrieved, by using the VCR at EUCENTRE. 
Table 3 reports the time necessary to download the output files stored by each CE 
from EUCENTRE. 

Table 3. Download Time from each CE to EUCENTRE VCR 

 
CE Getting Output 

Start Time 
Download 

Time 
[s] 

Throughput 
[Mb/s] 

Available 
Bandwidth 

[Mb/s] 

Average 
Latency 

[ms] 
ce01.athena.hellasgrid.gr 27/11/2009, 13.18 36 26.8 92 49.2
ce01.athena.hellasgrid.gr 27/11/2009, 13.19 32 30.2 92 49.2
.2ce.reef.man.poznan.pl 27/11/2009, 13.22 33 29.3 102 29.9
ce.reef.man.poznan.pl 27/11/2009, 13.23 89 10.9 102 29.9
egeece01.ifca.es 27/11/2009, 14.16 32 30.2 96 46.1
egeece01.ifca.es 27/11/2009, 14.17 32 30.2 96 46.1

Table 4. Total Time 

CE Total Time 
[s] 

Elaboration 
Time [s] 

Communication 
Time [s] 

ce01.athena.hellasgrid.gr 64 26 38 
ce01.athena.hellasgrid.gr 99 65 34 
ce.reef.man.poznan.pl 400 16 384 
ce.reef.man.poznan.pl 377 47 330 
egeece01.ifca.es 149 22 127 
egeece01.ifca.es 159 45 114 

The last two columns contain the available bandwidth (estimated by Pathload) and 
the average latency (measured by Smokeping) from each CE to EUCENTRE VCR. 
It is relevant to highlight that the throughput is significantly less than the available 
bandwidth: this means that the communication protocols are not efficient enough to 
utilize the available bandwidth of the communication channel. 

Finally, Table 4 reports the overall time for the execution of the application. 
As clearly shown in the table, the amount of time necessary for exchanging the data 
may significantly affect the performance of the application and represents (except in 
the second case) the major component of the overall execution time. 

6   Conclusions 

The  DORII  project has  created  and  is  managing  a  Virtual  Organization  for  the 
deployment of applications in a number of different scientific fields. Applications that 
were traditionally executed locally have been ported to a Grid environment, where 
they can find and ask for computational and storage resources, and carry out the data 
processing operations they require efficiently and timely. More importantly, DORII 
middleware enables scientists to expose and access their instrumental resources on the 
Grid, by means of universal abstractions that apply to diverse e-Science domains. At 
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the  same time, a ubiquitous monitoring service has been deployed, allowing the 
continuous evaluation of the distributed system performance and the discovery of 
possible problems and bottlenecks. 

The architecture and the main features of the deployed test bed have been presented 
in the paper, together with an example in performance monitoring of a selected ap-
plication. Scientists in the different disciplines involved are actively participating in 
DORII  applications’  deployment  and  experimental  activity,  with  the  goal  of 
evaluating the new middleware functionalities and suggesting improvements. Future 
work will be aimed towards the development of additional functionalities and to 
providing input to standardization activities in Remote Instrumentation Services. 
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Abstract. As experimentation becomes one of the de-facto approaches
for benchmarking, researchers are turning to testbeds to test, review and
verify their work. As a result, several research laboratories build wireless
testbeds, in order to offer their researchers a real environment to test
their algorithms. As testbeds become more and more popular, the need
for a managerial tool that will not only provide a unified way for defining
and executing an experiment and collecting experimental results, but
that will also serve as many users as possible maximizing the utilization
of its resources, is growing. In this spirit, we propose a scheme that
exploits wireless testbeds functionality by introducing spectrum slicing
of the testbed resources. This scheme can be incorporated inside OMF,
an already existing wireless testbeds managerial framework, which is
widely used by many researchers.

1 Introduction

The theoretical analysis and the simulation of a new wireless protocol or tech-
nique can give us important information about its performance in terms of
throughput, delay, power consumption, etc. However, in order to have analyti-
cally tractable models, several simplifications of the real world have to be made.
While the simulations have the ability to incorporate more general models, we are
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still limited by the complexity of the simulation software and our limited knowl-
edge of the wireless environment. Some specific limitations of the simulation
approach in depicting a real wireless network include inaccurate respresentation
of the wireless medium, simplification of synchronization issues that occur in
wireless terminals and ignorance of several aspects such as the computational
overhead.

Due to the above limitations, researchers have focused in the last few years
on the studying of wireless schemes through implementing them on real plat-
forms. Most of the implementation is done on open source platforms, such as
software defined radios or open source wireless drivers. This new trend in wire-
less networks has triggered the birth and evolution of several wireless testbeds
around the globe. Researchers may reserve a testbed for a specified time and
execute their experiments there. But, how is that reservation made? Until now,
the experimenter reserved the whole testbed (or a very large part of it if we are
talking for a really big testbed such as ORBIT) even if he actually needed only a
few nodes and frequency channels. This reservation policy prohibits other users
from using the testbed at the same time, since the experiments may interfere
with each other. Moreover, most of the times the reservation is made after an
oral agreement between the potential users.

An answer to these issues would be the dynamic, on-demand partition of the
testbed to smaller parts, based on the available resources and the experimenters
demands. So, we need to build a managerial mechanism that will be able to
both handle multiple requests from the testbed users and partition the testbed
efficiently by creating virtual slices and assigning them to the respective users.
We intend to build such a mechanism using spectrum slicing techniques.

Currently, one of the most used testbeds is ORBIT [11] in WINLAB [6].
ORBIT consists of 400 nodes, available to the registered users. It has a very
well organized management system which allows users to book the testbed at
available time slots. Although ORBIT’s reservation framework is very useful
since it allows a large amount of users to remotely access the testbed, it has a
significant drawback: It does not allow for efficient use of the testbed resources.
In most of the experiments, only a small amount of nodes are being used, while
the rest are staying idle. Usually, a researcher reserves the whole testbed (400
nodes) for a couple of hours and he only uses no more than 10 nodes, leaving
the rest 390 nodes idle. With slicing, these nodes could serve the needs of other
users.

ORBIT’s example shows the need to develop a tool that will maximize the
utility of a wireless testbed. In this paper, we are proposing a scheme based on
spectrum slicing, which takes advantage of the large availability of a particu-
lar resource -that is spectrum- and, through that, increases the whole testbed’s
availability to experimenters. Of course slicing can refer to other resources too,
such as power (adjust the power that each slice will transmit to create a “safe”
area for each user), network cards (a node that has many network cards could as-
sign subgroups of them to different experimenters) and nodes (many users could
use the same node using virtualization techniques), however in this paper we
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focus on spectrum slicing. This scheme is developed as a part of a more generic
managerial framework that is being designed in the concept of OneLab2 [4].
OneLab2 intends to federate heterogeneous testbeds located in different places
under a unified system. As we are illustrating in later sections, our new man-
agerial mechanism allocates a particular group of channels to a group of nodes
that is assigned to one user. In this way, we optimize the resources usage of
the testbed by allowing multiple users to operate on the testbed simultaneously,
without interfeering with each other.

The challenge in wireless testbeds slicing is the isolation of experiments, as
there are inter-dependencies among the resources. In contrast to a wired interface
where all we need to do is to manage the sharing of a specified resource on a
single node, sharing a wireless interface may also affect the sharing of interfaces
on other nodes. What correlates them are things like spectrum, location and
power which are also correlated. Power and location for instance, are two factors
that could affect each other.

The remainder of the paper is structured as follows: In Section 2 we give
related and previous work made in the domain of wireless testbeds resource al-
location. In Section 3 we give a short description of the OMF framework that
we used for developping our scheme. In Section 4 we present our spectrum slic-
ing scheme from a top-down approach. In Section 5 we present our testbed, an
example usage scenario for our scheme and statistics which give us useful feed-
back on the improvement of testbed utilization. Finally, in Section 6 we give the
conclusions that he have reached through our work in this field and in Section 7
our future plans.

2 Related Work

Several work has been made on efficient resource allocation on wireless testbeds.
However, most of this work is focused on virtualization techniques, which implies
more complex implementation and operating system dependence. Next, we are
giving two representative examples of such systems:

Emulab. Emulab is a network testbed, giving researchers a wide range of en-
vironments in which to develop, debug, and evaluate their systems. In Emulab,
there has been developed a system which virtualizes hosts, routers and net-
works, while retaining near total application transparency. This system is based
on FreeBSD Jails, which provides filesystem and network namespace isolation
and some degree of superuser privilege restriction.[13]

Mirage. Mirage is a resource allocation system, which was designed for sensor
networks testbeds and it is based on an auction scheme. The experimenters are
bidders, who argue for resources, using a virtual currency issued by the central
system. So, if a user uses the testbed in a way that matches the system’s criteria,
then he has more credits to claim resources for a next experiment.[10]

NITLab. In NITLab [5], we have implemented a spectrum slicing scheme, which
however had some significant drawbacks and we decided to change it to this one
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we are describing here. Specifically, we had focused on the new framework of
Linux wireless drivers, provided by cfg80211 [1]. This packet, which is meant
to replace Wireless Extensions [7,15], can support Central Regulatory Domain
Agent (CRDA) [2] which controls the channels to be set on the system, based on
the regulations of each country. By making some changes on this, we managed
to succeed spectrum slicing on our testbed. However, this scheme limited us in
terms of the available drivers that could be used with it and the Linux kernel
versions that could enhance CRDA. Moreover, this scheme’s implementation was
tricky and very much system dependable. [8,9]

Our work here is independent from the related works described above and
can be used in cooperation to them, as it schedules resource utilization from
a higher level. Furthermore, we are moving our implementation on to a more
abstract level, that is the one of the management framework, in order to set it
platform independent, since OMF is intended to cover more platforms that just
Linux. An analysis on virtualization schemes can be also found in [14], however
in this paper, we are actually implementing the spectrum slicing scheme, which
as shown in Section 5 has a very good performance on our testbed, while with
its extensions that we are planning (see Section 7), we are expecting to scale for
even more large and complex testbeds.

3 Wireless Testbed Managerial Framework

We are using cOntrol and Management Framework (OMF) [3] for managerial
framework. Currently OMF is deployed on several testbeds around the globe,
including ORBIT. Using a ruby-like experiment definition language, the exper-
imenter writes an abstract description of the experiment, stating which nodes
to use and what for, uses traffic generators, sinkers and other utilities which
are being constantly updated and integrated inside OMF. Providing full trans-
parency to users, OMF is responsible for loading their images to the testbed
nodes that they have asked for, for configuring the nodes based on the experi-
ment description and for gathering the results. Currently OMF consists of three
basic components: Gridservices, Nodehandler and Nodeagent. Next, we give a
short description of each one of them:

Gridservices. Gridservices consist of a set of web services, which are responsi-
ble for both executing system actions, such as turning a node on or off, rebooting
nodes, loading images, etc. and getting information about the testbed as they
have access to two databases: one for the testbed and its configuration and one
for the scheduler where we keep information critical for slicing. Gridservices are
residing on the testbed server.

Nodehandler. Nodehandler does the actual testbed management using Grid-
services and other operating system applications. The user interacts with the
Nodehandler to load an image to the nodes and to execute an experiment. Based
on the experiment definition, which Nodehandler is responsible to interpret, this
component is sending the respective commands to the nodes in order to configure
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them and trigger the applications needed for the experiment. Like Gridservices,
Nodehandler runs on the testbed server too.

Nodeagent. Contrarily to Gridservices and Nodehandler, Nodeagent runs on
the client-side of the testbed; that is the nodes. Previously we said that Nodehan-
dler is responsible for sending commands to the nodes, based on the experiment
definition. Here comes Nodeagent, which is responsible for receiving these com-
mands them, understanding them and then trigger the respective applications.
These applications could refer to the node configuration, a traffic generator, a
traffic sink, etc.

We had to extend all the three components above to integrate spectrum slic-
ing support inside OMF. In the next section, we will show our basic idea for
achieving spectrum slicing, the dilemmas and the decisions we had to make
when implementing our scheme in OMF.

4 Scheduling Experiments on Wireless Testbeds

Currently OMF does not include any scheduling algorithms that would syn-
chronize the experiments execution. Its implementation does not include any
permissions checking for access to the testbed resources. However, in a public,
multiuser environment, we need a system that will be able to assign resources
only to the users that have the right to use them, while offering the experi-
menters a way to declare the resources that they need for their experiments.
In our work, resources are divided in two categories: nodes and spectrum. So,
we are providing a tool which is used by the experimenters to reserve nodes
and spectrum for some time (which should not exceed some limit). Using spec-
trum slicing, our tool makes the testbed available to users who would like to use
different resources at the same time.

4.1 Spectrum Slicing

By slicing, we mean the partitioning of the testbed based on some criteria. With
spectrum slicing, we aim to partition the testbed into smaller, virtual, testbeds
which are using different spectrum and, hence, they do not interfere with each
other. The spectrum that each virtual testbed will use could be either defined
by the experimenter at scheduling or dynamically assigned, if the experimenter
does not care about the channel that he uses (for example he could ask for any
channel of 802.11g modulation).

Spectrum slicing can be combined with any other resource allocation scheme,
since it does not require any “negotiations” with other system resources. Fur-
thermore, spectrum is always associated with a wireless testbed experiment and,
hence, there will always be a chance to slice the testbed based on the wireless
channels each experiment needs.
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(a) Testbed deployment overview. (b) Selection of particular testbed node.

Fig. 1. NITOS Scheduler Node Selection

4.2 Allocating Resources - Slices

Slices are created dynamically, upon the user reservation procedure. As we have
already mentioned, we discriminate resources in two categories: nodes and spec-
trum. Resource allocation can be made statically or dynamically. Currently, we
have developed a static scheme, but we working on extending it based on Topol-
ogy and Link Quality Assessment Protocol (TLQAP) [12]. In this scheme, the
experimenter selects the nodes and the channels he would like to use during
reservation, while at the same time, he also declares the time slots that he will
be using those resources. Next, we are illustrating the basic idea of our resource
allocation scheme, based on spectrum slicing. Finally, we are making a brief re-
port on how dynamic resource allocation would be succeeded by extending our
already existing tools.

Let us consider a testbed with OMF as its management system. As we have
already mentioned, OMF does not include a scheduler, hence we need to develop
one as a separate component of our system. In NITLab, we have developed a
scheduler, whose User Interface is available to public, through our web site. This
User Interface is responsible for guiding the user through the reservation process
and is designed in such a manner that the experimenter may have a very specific
view of the testbed topology. Providing outside and inside view of our six-floor
building, we aim to give the experimenters the best perspective of the nodes that
they are reserving for their experiments.

Now consider an experimenter who would like to use the testbed. Assuming
that he has already registered, he may log in to the scheduler’s web site and gain
access to its User Interface. From there, he first chooses the date that he would
like to run his experiments. Then, the actual scheduling process begins, with the
experimenter seeing our testbed building with an indication beside each floor on
the number of each node type that reside on that floor, as shown in Figure 1(a).
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Based on these data, the user can choose a floor and guide around it from both
an outside and inside view. Having an exact view of the position of each node, he
makes his choice by selecting to reserve one, as shown in Figure 1(b). The clock
that appears on this frame can be clicked by the user on the time he would like
to check the nodes status. By clicking there, the frame is automatically refreshed
and the nodes are colored according to their status, while at the same time, the
new user loses permission to request a new reservation on that node at that time.
So, at this phase, the demand for reservation overlap prevention is satisfied; the
experimenter chooses a node available at the time he needs it and proceeds to
the next step.

At this point, the user has selected his node and he is about to reserve it for
some time. For this end, we give him two clocks, one for choosing the start time
for his experiment and one for the end time (see Figure 2(a)). Giving the user
another clock here may seem to have a security gap since the user may try (either
willingly or not) to “trick” the scheduler. However, this cannot happen. First of
all, the clock of the previous step is used for checking and not for reserving, as
such a thing would not be very practical for the user. Then we need to perform
the same check for availability of the current node here too. So, when the time
duration that the experimenter chooses at this step, includes time of another
user on this node, the scheduler does not allow him to move on to the next step
and, hence, reserve the node.

Guided by the scheduler, the experimenter has successfully chosen a node and
some time to use it. The last thing he has to do is to choose the spectrum he
would like to use; that is a group of channels that will be reserved for him during
his time (see Figure 2(b)). Again, the scheduler does not allow the experimenter
to choose a channel that is reserved by another one during that time. This is
the final step; the experimenter submits his choice and the system reserves the
node and the spectrum for him. After that, he goes to the first step, getting the
picture of the whole bulding to continue with his reservations.

(a) Time reservation of particular node. (b) Spectrum Selection.

Fig. 2. NITOS Scheduler Resource Reservation
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The scheduler identifies the user and lets him edit or delete his reservations at
any time. It also keeps track of the last choices that he made on reservation time
and spectrum, providing them to him as default choices for the current session.
Finally, the scheduler provides the experimenter with the option to check out all
his reservations, grouped by the reservation time. So, at any time, he may login
and checkout the nodes and the channels he has reserved for some time.

4.3 Implementation

The implementation of our spectrum slicing scheme is done on two levels: (a) the
user interface which guides the user through the reservation process and does not
allow him to reserve an already reserved resource and (b) the OMF components,
where we have added new and extended old ones to succeed the monitoring and
control of the slices that are created at reservation. Next, we are examining in
more depth the implementation details of each one of these two levels.

4.3.1 User Interface
The scheduler’s user interface is designed to be available through a web site,
so that any users may have access to it. Its goal is to allow the experimenters
reserve the resources they need (in terms of nodes and spectrum) in an efficient
way for the testbed usage. So, we need to reassure two things: on the first hand
an easy to use environment and, on the other hand, an application that does
not allow their choices to mess with other experimenters ones. Next, we are
giving the reservation procedure procedure giving all the details of what happens
underneath.

First the user has to log in and choose a date for his experiment. After that,
we create session for that user where we hold the details of his account. From this
point on, the scheduler knows who that user is and, based on that and the date,
it manages permissions to resources that the user might need to access on the
next steps. The main scheduling application is now deployed. This application
consists of a flash animation which uses multiple PHP scripts and XML files to
give the experimenter the information he needs, as we explain next.

The scheduler gives the user a perspective of the testbed topology. On our
testbed, NITOS, which is located on a six floor building, the scheduler shows the
number of each node type, residing on each floor. The topology view is loaded
dynamically by using XML files. The scheduler application reads the respective
configuration file and loads the topology that the experimenter will be able to use
during his session. We have reached the choice of XML files because we are aiming
to develop a tool that would easily support any other similar wireless testbed,
without having to do any major changes on the code. Moreover, the testbeds
themselves are not static and it would not be convenient for the administrators
to change the code each time a node falls down, or a new one is added to the
testbed.

The user clicks on a floor and gets its perspective. Our user interface provides
full inside and outside view of the floor. Along with this view, scheduler provides
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the user a clock where he clicks on the time he would like to check for reservations.
Each click triggers a PHP script, which checks a database that resides on the
testbed web server (for greater speed) and colors the nodes respectively. So, if
the node is free at that time, it is colored with its native color and the user can
make a new reservation. If the node is reserved by another user, it is colored red
and the current user cannot do anything on it. Finally, if the node is reserved
by this user, it is colored purple and the user can edit his reservation. What we
actually do here is to grant permissions on each node (resource) based on the
user that claims it.

The next step, is using similar tools with the experimenter clicking on start
and end time for his experiment and the scheduler checking if those are available.
At each step, the scheduler does not allow the user to move on without making
a right choice. When this step has finished, the experimenter has selected a node
and a time duration for his experiment.

Moving on to the final step, the experimenter has to declare the set of channels
that he needs to perform his experiments. Again, using an XML file, scheduler
loads all channels available, based on the laws of each country. After that, it
checks the database to see which of these channels are reserved by other users
and which ones are reserved by this user at a previous step. Keeping the same
template as before, we mark with red the frequencies that cannot be chosen, with
purple the user’s previous choices on this node (in case the user had selected to
edit his reservation) and with blue the previous user’s choices on this session, so
that he does not have to select the same channels again and again for each node
he reserves.

After that step, the user’s choices are committed to the scheduler’s database.
This database contains information about the testbed topology, the available
spectrum and, of course, all users reservations. Using PHP scripts and XML
configuration files, this database can be automatically updated through the web
site by the scheduler’s administrators. Furthermore, the scheduler’s web site can
provide information to each user of the reservations he has made until now, so
that he may see older preferences which fitted, check the exact reservation details
when the time has come to execute the experiment, or anything else.

Finally, since the scheduler’s user interface resides on the web server, while the
testbed has another server, we have setup a secure communication channel, which
is used by the scheduler to inform the testbed server’s cron daemon to schedule
necessary tasks for each experiment. Such tasks are unlocking the users accounts
when the reservation starts and locking them when it ends and setting up firewall
rules that prevent the users from trying to access nodes that are not assigned to
them, by using applications others than OMF (for example secure shell).

4.3.2 OMF Components
Until now we have described the part of the scheduler which is focused to the
experimenter and his choices at reservation. This, however, is not always enough.
Mistakes can be made some times willingly, some times not; in any case, we need
to ensure that the experimenters will stick on their choices and, even if they try,
the system will not allow them to use any resources that they have not reserved.
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In order to do that, we have chosen to extend OMF, which is a very popular
managerial framework for wireless tesbeds. In Section 3, we gave a short descrip-
tion on OMF, how it is structured and the role of its components. Here, we give
a detailed description of the additions and the extensions we had to make inside
this framework to integrate spectrum slicing support in it.

Before anything else, we need a way for OMF and the scheduler’s database to
communicate. For this purpose, we have added one more service group to Grid-
services named scheduler and we have added one more service to the inventory
service group. Next, we are showing what these services are responsible for. First
of all, the inventory service group is developed inside OMF and provides a set
of webservices that provide general information about the testbed (such as node
names, IP addresses, etc). This information is stored in a database residing on
the testbed server and the inventory service group reads this database to return
the proper response. Our addition here is a service which gets a node location
(that is its coordinates) based on its IP address. Note here that the node loca-
tion is a piece of information that is the same on both the scheduler’s and the
testbed’s database and, thus, we can use it to do the matching. We have added
this service, because when an experiment is executed, OMF does not know a
node’s location; only its IP address.

Now that scheduler knows the exact location of the node, it can use the sched-
uler service group to get any information needed from the scheduler’s database.
Namely, the services provided by this group provide functionality to get a node
reservations based on its coordinates, the spectrum that this reservation con-
tains and the user that owns it. Furthermore, it provides services that can do
the matching between a channel or a frequency number and the respective spec-
trum identification number as it is stored in the database. All this information
will be used by Nodeagent, which decides whether to allow the user use the
channel or not.

So, Nodeagent is responsible for deciding whether the resources declared in
the experiment should be allocated to the experimenter. In order to decide, the
Nodeagent has to ask the scheduler’s database if the specified resources have
been reserved by the experimenter. So, when the experiment sets the wireless
card channel, this information is passed to the Nodeagent, which now knows the
channel along with its own IP address. All he needs is the user identification to
check with the scheduler’s database if this channel (and, of course, node) should
be allocated to that user.

However, this is not straightforward, since the user usually logs into the node
as root (keep in mind that the experiment loads his own image to the nodes,
so he has full privileges on them). So, we need to track where did he use the
username that he also used for registering. The scheduler is designed in such a
manner that, when a user registers to the system, then an account with the same
username and password is automatically created to the testbed’s server. The user
uses this account to both access the user interface and the testbed server (using
secure shell connection). This can solve our problem, since we can say for sure
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that the user that is running the experiment is logged into the console with the
same username that he has made his reservation.

This information, though, relies on the testbed server, while the Nodeagent
runs on the client side; that is the nodes. We need to pass that information from
the server to the clients. This is done by the Nodehandler, the OMF service that
is running on the server side and is responsible for controlling the experiment
execution. Using its built-in message passing mechanism, Nodehandler tells the
Nodeagent the username of the experimenter and now the last one has almost
everything he needs to do the matching, except the date. The system should not
rely on the experimenter to keep the clock of his clients coordinated with the
testbed. This is why, Nodehandler sends, along with the username, the date at
that time and the Nodeagent adjusts its clock to match the server’s.

At this point, Nodeagent has all the information needed to check with the
scheduler if the requested resources should be allocated to the experimenter.
Using the web services we described above, the Nodeagent checks if there is
a reservation at that time for that user and if the spectrum reserved at this
reservation matches the channel that the experimenter has requested to assign
to the network card through his experiment.

If all data match, then the Nodeagent lets the experiment execution move on.
Otherwise, it notifies the Nodehandler that a resource violation has taken place
and stops its execution (without assigning the channel to the node’s network
card). When the Nodehandler receives that message, the execution is termi-
nated immediately and an ERROR message is thrown back to the experimenter
describing the resource violation.

5 Slicing in Action - Usage Statistics

5.1 Testbed Description

The testbed that we used for design and deployment of our scheme is consisted of
10 ORBIT-like nodes, as depicted in Figure 3(a) and 5 Diskless nodes, as shown
in Figure 3(b). An ORBIT-line node consists of a 1GHz VIA C3 processor,
512MB of RAM, 40GB of hard disk, two ethernet ports and two miniPCI slots
which are used to host two Atheros WiFi cards. Our diskless nodes consist of
a 500 MHz AMD Geode LX800 CPU, 256MB of RAM, a 1GB Flash Memory
Card, two ethernet LAN ports and two Atheros wireless cards.

All the nodes are connected through wired Ethernet with the testbed’s server
- console. In console we have all the required testbed services running. These
services are both network services, such as Dynamic Host Configuration Protocol
(DHCP) server which gives IP address to the nodes, Domain Name System
(DNS) server which gives names to the nodes, Network File System (NFS) server
for experiment results and slicing support as we are going to see next, and testbed
services which are combined to the functionality of OMF.

We also maintain a web server where we keep the web interface of our system’s
scheduler. On this server, we also keep some scripts mandatory for remotely
booking the nodes and a MySQL server for keeping records of the testbed status
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(a) ORBIT Node (b) Diskless Node

Fig. 3. NITOS Nodes

at each slot. Finally, we have set up a secure communication line, using Secure
Shell (SSH) and a RSA key between the web server and console so that the
scripts on the web server trigger the respective scripts on console.

After the user books some nodes at a specific time on the testbed, he logs into
console at that time and from there, he can start using the testbed. The image
is loaded on each node from console through the wired Ethernet interface. More
information about our testbed’s architecture can be found at our web site.

Although we have built this scheme on our testbed, it could also be applied
to any wireless testbed which is using OMF as its management framework.

5.2 Experiment Execution Scenario

Here, we give an experiment execution scenario on our testbed, in order to
illustrate the scheduler’s usage and importance. In this scenario, we have Bob
and Alice to be our experimenters, who have made their reservations and want
to use our testbed, NITOS.

In Figure 4 we are showing a snapshot of NITOS execution on October 10,
2010 at 11:05 AM. At that time, there are two users whose experiments are
about to be loaded: Bob and Alice. As we can see, both our users have reserved
resources through NITOS Web Server and these reservations are kept into the
Scheduler DB. Bob’s reservation begins at 10:00:00 AM, ends at 12:00:00 AM
and includes channels 7 and 8. Similarly, Alice’s reservation begins at 10:30:00
AM, ends at 11:30:00 AM and includes channels 2 and 3.

Now, based on these reservations, Bob and Alice are trying to execute an
experiment, so they log into NITOS server. At this point, we should mention,
that since we allow experimenters to log into our testbed server, we need to be
very careful with security. This is why, we alter our firewall rules, which are tailor
made on each user, so that he would not be able to access any of the testbed
resources he has not already reserved (e.g. in our case, Bob cannot use a node
that belongs to Alice or to neither of two).

After they have logged into the server, Bob and Alice ask OMF to execute
their experiments. In his experiment description, Bob is setting the channel



Towards Maximizing Wireless Testbed Utilization Using Spectrum Slicing 311

Fig. 4. Bob and Alice Experiments Execution

of his nodes to 7 and Alice to 8. Based on each experiment, the Nodehandler
notifies accordingly the Nodeagent that is running on the nodes, which rely on
a University building. When the Nodeagent is asked to set the channel of Bob’s
nodes, it checks Bob’s reservation on Scheduler DB to see if channel 7 is included.
Indeed, channel 7 is included in his reservation and the experiment execution
continues normally. Now, when the Nodeagent is asked to set the channel of
Alice’s nodes, it checks Alice’s reservation on Scheduler DB and sees that Alice
has reserved channels 2 and 3 and not channel 8. In this case, the Nodeagent
does not set the channel, terminates this session and sends an ERROR code back
to the Nodehandler which indicates that there has been a channel allocation
problem with Alice’s experiment. The Nodehandler terminates the experiment
execution and notifies Alice of the problem.

5.3 Usage Statistics

To outline slicing benefits, we have monitored testbed usage for a period of 5
months. We have added logging support to our scheduler as follows: The user
is firstly prompted to enter the number of nodes that are needed by his/her
experiment without being able to see which testbed nodes are occupied. If the
system has enough resources to satisfy the request, the user may continue with
the standard allocation procedure. Otherwise, the scheduler informs the user
that the required amount of nodes cannot be allocated. With this approach
we were able to log the allocation requests which were denied. Note that in the
standard scheduler interface, the user is provided with enough visual information
to determine whether the required number of nodes is available or not and avoids
issuing requests which would be denied.

During these 5 months, the testbed use was approximately 500 hours. During
these hours a total of 1008 requests were issued. To determine overall testbed
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Fig. 5. Slicing performance for a 5-month period, compared to the simple allocation
policy simulator results for exactly the same workload

utilization, we logged for each hour during which the testbed was in use and
allocation requests were denied, the number of nodes that were not occupied.
More specifically, we regard as the testbed idle time unit the idle hour of a
single node. If for example 5 nodes are idle during a testbed usage hour this
amounts to 5 idle hours. Since we have 15 nodes, the available usage time units
of the logging period were 7500 (TestbedUsageHours ∗ NumberOfNodes). To
compare slicing with the simple allocation scheme that cannot allocate wireless
frequencies, we developed a simulator. We should note here, that our testbed
topology, in terms of physical wireless range, forms 2 independent neighborhoods.
The first neighborhood has 7 nodes and the second 8. Therefore,the simple node
allocation scheme can assign each node neighborhood independently and host
up to two testbed users concurrently. Our simulator implements this policy,
replays the allocation requests that have been logged for the 5-month period,
determines the number of denied requests and testbed utilization time of the
simple allocation scheme. In Figure 5 we depict the number of denied requests
along with the testbed total idle time that we logged for slicing and simulated
for simple allocation scheme.

6 Conclusions

As wireless networking research emerges, the respective testbed infrastructures
and management systems should employ more sophisticated approaches to dis-
tribute available resources. While many of the management concepts that have
been introduced for wired testbeds, have been extended and reused by wireless
testbed management frameworks, the latter face an additional important chal-
lenge: the distribution and management of the wireless bandwidth in terms of
frequency channels, which along with the node topology and connectivity range
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can become a very complicated task. In this work we attempted to address this
issues.

7 Future Work

In the domain of scheduling experiments on wireless testbeds, there still is much
work that has to be done. Since we are expecting a growth to the testbeds usage
by the researchers in the near future, we should put our efforts in developing
a scheduling scheme, which will be able to allocate resources to experimenters
efficiently, while, in the same time, it will be providing a transparent mechanism
for executing the experiments.

First of all, we are working on integrating TLQAP in our scheduler. The
scheduler can use TLQAP to extract information about the status of the testbed
resources at any time needed. With this information, it is in place to match the
experimenters demands on power, spectrum, location, etc. with the resources
and schedule the experiment whenever they are available, without having the
experimenter himself to check for their availability at each slot.

Furthermore, we are working on implementing other slicing schemes, which
will depend on the transmission power control, the sharing of wireless network
cards and the sharing of nodes themselves. For instance, we may adjust the
power that a node will transmit based on the experiment characteristics and,
thus, create a smaller neighborhood where the experiment will take place, while
the rest of the testbed will stay available to other users. With network cards
sharing, we plan to let two users make use of a node which has two wireless
cards on, by assigning one card to each user. Finally, nodes sharing will give
us the power to run multiple experiments on different images on the same for
multiple users. We are expecting that this last scheme, in combination with
spectrum and power slicing and wireless cards sharing, will give us a large scale
improvement to the testbed utilization.

Wireless testbeds federation is another step that we are planning to take. The
additions made for spectrum slicing in OMF services, provide us a very good
tool for this end. We are thinking federation in two aspects: that of experiment
execution and of experiment scheduling. Our work focuses on satisfying both
these aspects using web services, which can be used as the tool to remotely
invoke resource, get information, etc. However, with federation, we have other
issues arising too, such as security, since we are dealing with resource allocation
through a public network (Internet).
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Abstract. Networking researchers using testbeds containing mobile
nodes face the problem of measurement collection from partially dis-
connected nodes. We solve this problem efficiently by adding a proxy
server to the Orbit Measurement Library (OML) to transparently buffer
measurements on disconnected nodes, and we give results showing our
solution in action. We then add a flexible filtering and feedback mech-
anism on the server that enables a tailored hierarchy of measurement
collection servers throughout the network, live context-based steering of
experiment behaviour, and live context-based control of the measurement
collection process itself.
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1 Introduction

Distributed networking experiments require distributed measurement collection
systems. Approaches to remote network measurement collection range from ad-
hoc methods used in academia through to large, commercial systems deployed by
network operators. Ad-hoc methods are typically sub-optimal, error-prone, and
time consuming, but available measurement and monitoring frameworks [11,12]
tend to be prohibitively complex for use in many research projects. A measure-
ment framework for network research should be simple to use and administer,
but must be flexible enough to match the heterogeneous, dynamic needs and
environments that usually characterize it.

Mobile networking research is a good example. Indeed, for static testbeds, a
simple client/server measurement collection architecture is adequate [5], as long
as the rate of measurement output does not influence the studied phenomena,
and does not overload the collection server. If a testbed network includes mo-
bile nodes, some nodes may not always be connected to the network. In that
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case, what should happen to the measurements that the disconnected nodes are
generating?

On the other hand, in an experiment where all nodes are always connected,
the rate of generation of measurement data by even a single node may congest
either the network, the measurement collection server, or the client applications
generating the measurements. This can result in lost measurements; worse still,
it can lead to the measurement collection activity influencing the behaviour of
the network under observation, and with it, the results of the experiment.

These two different problems can both be solved by making a single but im-
portant change to the architecture: namely, the addition of a proxy server on
the experiment node, effectively a queue, to act as an intermediary between
the client applications and the measurement collection server. Once the mea-
surement architecture contains such proxy servers on the experimental nodes
themselves, a further innovation of the architecture becomes apparent, that to
our knowledge has not been attempted before. We extend the proxy server to
implement a measurement database instead of just a queue, which allows us to
perform measurement-based feedback to the experiment applications themselves
in what we term distributed, context-based experiment steering. This leads to a
flexible hierarchy of measurement servers for future advanced testbed networks.

In this paper, we consider the architecture of measurement collection frame-
works in detail:

– We describe the two problems of mobility (Section 3.1) and measurement
bandwidth constraints (Section 3.2).

– We show how both of these problems can be solved by introducing a proxy
server to buffer measurements on the local node before sending them to the
central measurement server (Section 3.3).

– We give some quantitative measurements to demonstrate the benefits of this
approach (Section 3.4).

– We discuss extensions to the proxy server to allow measurement-based ex-
periment steering (Section 4).

– We compare and contrast our architecture to existing measurement frame-
works (Section 5).

The measurement architectures described in this paper are embodied in OML2,
the second generation Orbit Measurement Library, which we have developed and
made freely available at [3]. OML is a generic measurement framework capable
of instrumenting the entire software stack, and is not just limited to network-
specific measurements.

2 Background

To set the scene for this paper, we begin with a description of the testbed
network environments that we are considering, and a simple, näıve client/server
architecture for measurements that we use as our starting point.
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2.1 Testbed Architectures

Fig. 1 shows a general testbed architecture. The experiment nodes participating
in the experiment use one or more Experiment Networks (EN) to perform the
networking tasks that comprise the experiment itself. Meanwhile, the control
nodes communicate with the experiment nodes using a separate Control Network
(CN) to perform tasks such as imaging the nodes with an operating system
at the start of the experiment, bringing the experiment nodes up, starting the
applications that participate in the experiment on the experiment nodes, logging
status and error information, and ensuring orderly shutdown of the experiment
once it is complete.1

. . .

. . .

Control
Network

Experiment
Networks. .

 .

Control
Node 1

Control
Node K

Experiment
Node 1

Experiment
Node 2

Experiment
Node N

Fig. 1. Generic testbed network architecture

The architecture in Fig. 1 can contain heterogeneous experiment nodes, each
node connected to different experiment networks. In practice, there will be vari-
ations in the hardware capabilities and available interfaces on each experiment
node. With mobile nodes, the connectivity may even change mid-experiment.

The separate control network minimizes the impact of control tasks on the
behaviour of the experiment tasks, so that the underlying protocols, algorithms,
and applications can be studied in as much isolation as possible. This improves
quality of results and repeatability. However, sometimes we do not have the
luxury of a separate control network. The node hardware might not support
enough interfaces of the right type, or the separate infrastructure required for a
control network might not be available for some nodes. Mobile nodes often have
these properties.

We have drawn the control and experiment networks as single network seg-
ments, but this is just for simplicity: the actual network topology of each network
could be more complex. Also note that infrastructure nodes such as routers could
also be participating in the experiment and generating measurements.

2.2 Experiment Node Architecture

Each experiment node runs a number of applications and services (i.e., daemons)
that execute the tasks required to run the experiment itself, as shown in Fig. 2.
1 We use OMF, a control framework that we have developed, to perform these tasks

on our own testbed networks [16].
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Fig. 2. Architecture of an experiment node, showing some applications, a system mon-
itor daemon generating measurements from information provided by the operating
system, and a sensor daemon generating measurements from an input sensor device

These applications and services can communicate with other experiment nodes
using the interfaces e1–eN . They can also access and monitor operating system
information and local devices, such as GPS receivers, temperature sensors, and
pressure sensors.

The applications and services perform measurements of the system under
study, measuring quantities such as:
– network characteristics and impairments (e.g., bandwidth, packet loss rate);
– local context information (e.g., RAM or CPU usage); and
– device-generated data (e.g., GPS coordinates, temperature, pressure),

for example. They use functions provided by the OML measurement library to
send their measurements either to a file on the local filesystem, or to a mea-
surement server on the control network via c1. OML is flexible enough that the
applications can send measurement data to multiple measurement servers if de-
sired. Fig. 2 shows the general case. The node may have only one experiment
network interface (N = 1) and it may have to send and receive control and
measurement data over the experiment interface if no separate control interface
is available.

The experiment nodes may have a wide variety of hardware, operating sys-
tems, attached peripheral devices, and networking interfaces. Thus, the mea-
surement architecture must be portable, flexible, and efficient enough to cope
with such a wide range of platforms.

2.3 Client/Server Measurement Architecture

The simplest distributed measurement architecture, which is our starting point,
is a client/server architecture. OML operates in this fashion in its most basic
configuration. Fig. 3 depicts the data path from a single experiment application
to the server in OML.
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Fig. 3. Measurement data path in OML. The application illustrated defines three mea-
surement points, and the user has configured the library to generate five measurement
streams.

The application defines a number of measurement points (MP) into which
it injects a stream of typed measurement tuples. Each MP is an interface to
the client library, liboml2. The client library creates a number of measurement
streams (MS), based on the run-time configuration specified by the user in an
XML file, to match the needs of the experiment. Each MS filters the MP inputs
in a configuration defined by the XML file. OML supports built-in and user-
defined filters. Fig. 3 shows that an MP can be a source of data for multiple
MS’s (MP1 participates in streams MS1, MS2, and MS3), and that filter outputs
can be combined to form new streams (filters F1 and F2 are inputs to F3, which
generates stream MS2). Measurement streams can be sent to an OML server or a
local file (also configurable via the XML file) and different measurement streams
can be sent to different destinations, including potentially multiple OML servers.
The filter outputs are also typed tuples.

Currently OML supports integer, floating point, and string data, and we have
plans to add support for more data types such as blobs. OML uses a one-way
protocol initiated by the client. Both text and binary versions of the protocol
are available, and we are currently evaluating adopting IPFIX [6].

The server collects data from each experiment and sends it to a storage back-
end. Because the measurement streams consist of sequences of typed tuples, they
are well suited to be stored in tables in a relational database; currently the con-
crete backends supported by OML are SQL databases. OML imposes very little
structure on the measurements collected to remain as flexible as possible and
support an evolving research context. The SQL database allows us to offload
the problem of devising our own measurement storage format, and provides easy
and efficient result querying. OML currently supports SQLite directly, but some
OML users have added support for PostgreSQL. We plan to extend OML to
directly support multiple database backends in the future.

There is a table in the database for each measurement stream in each client
application; the same application can be running as part of the same experiment
on multiple nodes, in which case all of their measurement outputs will be stored
in the same table.
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3 Measurement in Dynamic Networks

We now describe two scenarios where the assumptions underlying the
client/server architecture are broken, and we further show how our proxy-based
architectural enhancement addresses these problems. These examples are in-
formed by the previous experiments of users evaluating their own research pro-
totypes on wireless testbeds, such as the ORBIT or NICTA testbeds [17]. Thus,
they represent real problems that users had to overcome to advance their re-
search agendas.

3.1 Mobile Nodes

Sometimes when users perform experiments involving mobile nodes, they are
explicitly interested in studying the behaviour of networking technologies and
algorithms when the mobile nodes move outside the testbed network’s normal
wireless coverage. For example, smart phones typically have multiple radio in-
terfaces, such as WiFi, 3G, and WiMAX. We may be interested in the behaviour
of a distributed algorithm that preferentially favours a low-cost radio inter-
face (WiFi) when available, but falls back on a more expensive interface (3G,
WiMAX) if no other networks are available in the mobile handset’s vicinity [14].
They may even go out of range of all wireless networks for a period.

Such experiments could be done with real mobile handsets, or they could be
done with mid-range hardware emulating the mobile handsets. In either case,
this configuration causes two problems for measurement collection.

The first problem is that if measurements are sent during the experiment, then
the measurement traffic must often be sent over one of the experiment network
interfaces, which may interfere with the experiment itself and taint subsequent
measurements. Depending on the testbed configuration, the measurement server
may not even be reachable from any of the experiment networks, and this situa-
tion could even extend beyond the duration of the experiment. This leads to the
second problem: what should the mobile node do with the measurements that it
generates while it is out of range of the control network?

We have two options: either drop measurements while the control network is
not reachable, or buffer them until the mobile node reconnects to the control
network. Discounting the first option as undesirable, we must buffer.

3.2 Throughput-Constrained Measurement

Even in networks with a static topology, we still sometimes need to buffer mea-
surement data on the local node. If the experiment involves high traffic rates
on high bandwidth interfaces, then the rate of generation of measurements can
also be very large, and the datapath to the measurement server can become
congested, risking either loss of measurement data or changes in the behaviour
of the experiment applications due to delays in the measurement datapath.

One of the primary aims of the filtering facility of liboml2 is to allow re-
duction of the measurement data that needs to be transmitted to the server,
for instance, using averaging. However, in some circumstances the experimenter
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might want to observe effects that the filtering would discard. In that case an-
other solution is required: buffering measurements on the experiment node.

3.3 Proxy Servers

Recalling that we want our measurement framework to be as convenient as
possible for researchers to use, we want to ensure that buffering measurements
does not force complicated modifications to the client applications. Our solution
is to create a separate proxy server on the experiment node. The proxy server
acts as a FIFO queue, but allows the experimenter to gate the FIFO output.
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Fig. 4. Measurement architecture with proxy servers

Figure 4 shows the proxy server architecture. The proxy server presents an
interface to the client applications that is identical to the regular OML server: it
supports TCP or UDP socket connections using the same protocol as the server.
It is thus transparent to the client applications, which do not need to be mod-
ified or re-compiled. The measurement server protocol (TCP/UDP), address,
and port number are run-time configuration parameters, specified on the client
application’s command line or through an XML configuration file.

In Fig. 4, the proxy server is shown running on the same node as the ex-
periment applications, but it can be hosted on a separate node if the situation
requires. However, for the two use-cases we presented in the preceding sections,
running the proxy server on the experiment node is exactly what we want, be-
cause it makes the measurement collection independent of the network. In both
of those cases, the proxy server is configured to buffer all measurement data
in memory until the end of the experiment. At the end of the experiment, the
experimenter instructs the proxy server to turn ‘ON’ the output stream, where-
upon the proxy server connects to the upstream full OML server and transmits
the stored measurements to it.

The proxy server implementation is simple, as it does not have to process
any data on its input stream. Furthermore, since it is a one-way stream, the
proxy server can simply store the raw octets from the experiment applications
in memory, and then replay them out to the OML server verbatim. It also has
the option to write the measurement data to file to provide a backup and limit
its memory usage.
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3.4 Results

We now provide some experimental data that demonstrate the management
of the disconnection. This experiment was originally presented at the 4th GENI
Engineering Conference [4]. In this experiment, two mobile nodes exchange UDP
traffic over a WiFi ad-hoc network. One node is stationary, and the other moves
along a short circuit as illustrated in Fig. 5. Both nodes run an OML-enhanced
version of iperf [2]. In addition, the roaming node also runs a GPS application
collecting location information. The UDP traffic and GPS measurements are
collected using the OML framework.

Fig. 5. Path of the roaming node from GPS data (aerial photo from Google Maps [8])

To demonstrate the proposed proxy scheme, the UDP traffic measurements
are collected via OML over the WiFi network, which will become unavailable as
the roaming node moves away from the static one. However, to allow real-time
visualization during a live demonstration, a second permanent WiMax network
is used to continuously collect GPS information. The duplication of the GPS
measurement stream is completely transparent to the application.

We have run this experiment numerous times, with a typical result shown in
Fig. 7. In this figure, the x-axis represents time; the OML server automatically
time stamps all samples received throughout the experiment. The distance was
computed based on the GPS localisation, and the bandwidth was computed
using fixed windows of one second on the receiver side.

In Fig. 7, we can observe the correlation between the distance and the achieved
bandwidth. This can be explained by the fact that during this time the two nodes
are disconnected. During this disconnection period, all the measurements are
stored by the proxy. Once the roaming node gets closer to the static node and to
the OML server, the proxy is set to resume sending the buffered measurements to
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the OML server. Another advantage of OML in this experiment is the automatic
time stamping, which allows the time evolution of different quantities to be put
in perspective.

4 Further Extensions

Once the measurement architecture contains a processing element beyond the
client applications on the experiment node, it is natural to ask what further sorts
of processing could be done on the node itself. This line of thought takes the
measurement architecture away from a basic client/server architecture. In the
following sections, we describe two architectural enhancements we have devel-
oped as a result of discussions with users of OML whose needs were not met by
the standard existing OML facilities.

4.1 Hierarchical Measurement Collection

In a measurement application that generates large volumes of data, it may be
either too expensive or impracticable to store every sample collected. This may
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Fig. 8. Server architecture for hierarchical measurement collection

not be a problem if the utility of the collected samples decreases over time. For
instance, in a server load-monitoring application, high resolution measurements
for the last hour might be interesting and useful, but the same for a period six
months ago might be useless. An average over a coarser timescale might suffice
for historical records of that age or older, so that full-rate, high resolution data
does not need to be stored in its entirety.

The basic architecture described in the previous section does not permit this
type of volume-thinning. To support it, we augment the server architecture as
shown in Fig. 8. The server includes a query mechanism that periodically ex-
ecutes an SQL query on any measurement table. The results of the query are
appended to another table. The query can, e.g., compute an average of numeric
quantities stored in the table, then cull the rows that were averaged, to prevent
the table size from increasing beyond a set bound. This gives a compromise be-
tween the storage requirements and availability of high resolution data, and is
similar to stream databases [7] and round-robin databases [18].

We can extend this idea in three ways. First, we can compose a hierarchy of
measurement timescales to suit the requirements of various different users of the
collected data. For instance, we could store high resolution measurements for
the last ten minutes, medium resolution for the last hour, and low resolution for
the last six months.

Secondly, the destination table for the periodic query results does not have
to be hosted on the same machine. We can instead transmit the aggregate mea-
surements to another OML server, using the same measurement protocol that
the client applications use. The hierarchy of timescales is then reflected in the
hierarchy of collection servers. This flexibility can be put to several uses, such
as server load management or multi-site redundant storage, but we will describe
what we think are some of the most interesting ones in the following subsection.

Thirdly, if SQL does not provide enough expressive power to compute the
desired summary metric for a particular measurement table, we can augment
the server with a configurable filtering mechanism, identical to the one available
to the client applications in OML. This is the filter block shown in Fig. 8.

We can use the measurement stream architecture in the client application to
implement very flexible measurement collection configurations. For instance, we
can create two streams from the same MP and send one stream to a local high-
resolution server on the experiment node and the other to a lower-resolution
server elsewhere on the network.
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4.2 Context-Driven Experiment Steering

We now have an architecture with an OML server that can do periodic computa-
tions on the received data, and send results of the queries to an upstream server.
The local OML server can be running on the experiment node itself. We could
also use this mechanism to periodically check for particular events that might
be reflected in the measurement data. If we add a feedback mechanism, then we
can use this event detection facility to modify the course of an experiment while
it is running. We call this capability context-driven experiment steering.

Measurements in current 
period

Raw Measurements Table

Filter

Periodic
SQL query

Optional

Measurement
streams

from clients

Application 1 Application 2 Application N. . .

PubSub Network

Detected
event
signal

Event
notifications

(Applications can 
be local or remote)

Fig. 9. Context-driven experiment steering. Measurements are used to detect con-
ditions that trigger pre-defined behaviour in the client applications, using a pub-
lisher/subscriber notification mechanism.

Fig. 9 illustrates this architecture. The feedback loop can be contained en-
tirely within one node if the OML server is running on the same node as the
applications. More generally, the feedback mechanism is distributed, so that a
remote OML server in the measurement hierarchy can give steering feedback to
one or many nodes participating in the experiment.

One example of such an application would be to detect when the quality of ser-
vice to a node becomes too degraded, and remove the node from the experiment.
Another approach might be to only start some of the experiment applications
after a condition has been met, for example, in a peer-to-peer download experi-
ment, only starting the peers once the seeder has downloaded enough of the file
from a central server. The idea of trip lines, where a mobile node crossing from
one geographic region to another causes some action to be performed, is a third
example of experiment context that can be implemented using our measurement
architecture [9].

We are considering a publisher-subscriber framework to implement the feed-
back mechanism, such as Dbus or XMPP. The client applications must subscribe
to and listen for particular events, and the server must have a mechanism for
specifying what events are published and how they are detected. This could use
a combination of SQL queries and filtering, with the final stage of the filter being
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a predicate function. The management framework can also play a part in the
feedback mechanism, e.g., for starting and stopping experiment applications.

This extension opens up a range of new possibilities for experiment design
and measurement applications.

4.3 Context-Driven Measurement

If we have a feedback mechanism that detects events in the measured environ-
ment, why not then allow detected events to influence the measurement process
itself? This is the third extension. We reflect the feedback mechanism back onto
the OML server, so that we can tailor the measurement strategy to the current
conditions. For instance, suppose we are only interested in low-resolution mea-
surements of a particular quantity most of the time, but when an alarm occurs,
we want to start recording high-resolution measurements. In this case we can
add a second query/filter path to Fig. 8, and switch between them based on a
feedback signal, as in Fig. 10.
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Filter
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SQL
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HI/LO

Detected
event
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Measurement
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Fig. 10. Context-driven measurement. A measured event feedback signal is used to
influence the measurement capture process itself.

With this third extension, we have outlined our architecture for distributed
measurement collection. We now go on to compare our architecture against other
work in the field.

5 Related Work

There are various existing measurement frameworks, some of them open source
and some of them proprietary. Some of them are geared towards network mon-
itoring for system administration, whereas others are more useful in research
contexts.

CoMo (Continuous Monitoring) [11,12] is a network measurement system
based around measurement of packet flows. It has core processes that are linked
in stages, namely packet capture, export, storage, and query. These processes
capture, filter, measure, and store properties of packets and packet traces. The
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core processes are linked by user-defined modules that are used to customize
the measurement system and implement filtering functions. The query process
provides an interface for distributed users to run queries on the captured packet
traces.

The core processes are designed for speed and efficiency and are in charge
of data movement operations. One of the overriding goals in CoMo is to make
querying as efficient as possible[11], because CoMo can operate on very large data
sets (∼ 1 TB). CoMo modules essentially pre-compute the answers to queries,
speculatively. Queries identify traffic with specific properties, such as finding
flows that match certain criteria. As the CoMo system itself, including captured
packet storage, can be distributed across the network, CoMo introduces the
notion of “distributed indices” to speed up the process of finding the locations
of packet traces of interest to a query.

CoMo is a highly tailored tool designed for efficient packet trace capture and
analysis. OML, by contrast, is a generic framework that can instrument the whole
software stack, and take input from any sensor with a software interface. One of
CoMo’s great strengths is its query architecture, and OML does not include a
comparable mechanism, relying instead on its SQL database storage substrate
to provide the experimenter with a query interface to her data.

One could also compare OML to network adminstration monitoring tools such
as SNMP (covered by numerous IETF RFC’s, starting with RFC 1155, 1157,
for instance). SNMP has a high overhead compared to OML. Monitoring in
SNMP is based around OID’s—object identifiers—that identify measurement
items of interest and are essentially numeric and not human-readable. A cen-
tral management information base (MIB) must be maintained to map OID’s to
human-readable strings. This is at odds with the needs of research, which is by
nature dynamic and often not centralized enough to permit the maintenance of
an MIB, which also adds unnecessary cost. In OML, a user wanting to measure
a new quantity simply defines a new measurement point in the relevant client
application and configures the filters for his experiment run to filter it into the
database. There is no central organization needed. From our survey, there do not
appear to be suitable open source implementations that could be easily adapted
to the needs of research.

Of all the measurement architectures we surveyed, MINER [1,5] appears to
be the closest to our architecture. MINER is not available as open source soft-
ware, but [5] describes its architecture. MINER is Java-based and comprises a
measurement architecture as well as elements of what we refer to as the man-
agement framework. A client library provides an API for defining and running
experiments, which consist of invocations of tools. A core component is the server
component of the infrastructure and the mediator between the client library and
the measured network. A tool proxy component acts as a mediator between the
core component and the MINER tools. A tool proxy executes a scenario request
on a network node, starts the requested MINER tools, and then grooms the
measurement results back to the core.
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The MINER tools are Java components that may provide measurement results
directly, or may be wrappers around external libraries or applications that do
the actual measurements. MINER tools can be defined by the user.

Our management framework (OMF [16]) is decoupled from the measurement
aspect of experimentation. This makes each component more generic and flexible.
The MINER approach of providing a wrapper interface for existing tools is a
great idea. The main method to instrument existing applications with OML is
to directly modify their source code (e.g., iperf in Section 3.4). When these
sources are not available, it is easy to develop a short program to process the
application’s outputs and collect the resulting measurements using OML.

Emulab [19] is a large network emulator based on a set of computers that
can be configured into various topologies through emulated network links. Many
experimenters currently use Emulab testbeds to evaluate their research schemes.
It allows them to monitor and capture network traffic (packet headers or full
payload) on links and LANs within their experimental topologies. The capture
points, equivalent to OML measurement points, are either on the resource that
emulates a link, or on end-point resources. In both cases, the captured data
are stored as a local file on that resource. To analyse the experimental results,
the user has to retrieve the resulting file from all the used resources at the
end of an experiment. This simple scheme is limited to the measurement of
only network traffic, and does not allow the monitoring of any experiment’s
contextual variables (e.g., node location) or application integrated data (e.g.,
download/upload statistics for a peer-to-peer application).

PlanetLab [15] is a global research platform based on more than 1000 dis-
tributed computers, which are hosted by independent organisations. It is the
primary large-scale testbed used for experimental overlay and service oriented
systems (e.g., distributed storage, peer-to-peer content distribution). Multiple
services are currently deployed on Planetlab, which provide users with measure-
ments of their experimental slices and the whole testbed, such as CoMon [13],
or PlanetFlow [10]. CoMon provides different statistics (e.g., memory, disk us-
age) at a node or a slice granularity. However, it does not support collection of
application or experiment generated measurements. CoMon uses a client/server
design like the basic OML architecture. The processed measurements are made
available to the entire experimenter community via a distributed content deliv-
ery system. PlanetFlow also uses a client/server scheme. On each node, a client
entity captures all outgoing packet headers, then aggregates and classifies them
into flows. This process is akin to the OML client filtering. However PlanetFlow
does not provide any other client-side flow processing. These flow measurements
are centrally collected in a MySQL database accessible via a Web interface.

6 Conclusions

In this article we presented extensions to the versatile measurement library OML.
The new features that we presented allow the experimenter to extend the range
of possible measurements. In particular, we detailed the transparent integration
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of a proxy server on the experiment node allowing measurements in a discon-
nected environment. This solution has been made possible by the addition of a
measurement proxy server on the mobile node within the existing measurement
framework. The first goal of this proxy is to buffer the measurement stream
without losing any information. We identified two main fields of application for
this measurement feature, a disconnected experiment and a shared control and
experiment network. We demonstrate the benefit of this new feature in the con-
text of a simple disconnected experiment during the 4th GEC and presented the
results in this article. Finally we extended this architecture with hierarchical
measurement collection and server-side filtering, which allows us greater control
over the measurement collection process, and with a feedback mechanism that
allows us to steer both experiments and the measurement process itself while
the experiment is running, based on the current measured context.
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AiroLAB: Leveraging on Virtualization to

Introduce Controlled Experimentation in
Operational Multi-hop Wireless Networks
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Abstract. Network Virtualization represents one of the most promising
approach to unlock innovation in current network technologies. This pa-
per presents AiroLAB, a wireless network virtualization solution aimed
at providing Wireless Internet Service Providers with an effective tool
to support experimental testing of novel network–level solutions on pro-
duction networks. In the paper, the design choices which lie at the basis
of AiroLAB are presented and discussed together with a prototype im-
plementation. The outcomes of measurement activities performed on a
small–scale testbed demonstrate the strength of the proposed framework
in preserving guaranteed performance for production traffic while allow-
ing several experimental instances to run on a network in operation.

Keywords: network virtualization, multi–hop wireless networks, em-
bedded devices, resource constrained environment.

1 Introduction

One of the most promising approaches to enable innovation in today’s network
is Network Virtualization (NV) [1,2]. In general terms, NV refers to the possi-
bility of pooling together low–level hardware and software resources belonging
to a networked system into a single administrative entity. In such a way net-
work resources could be effectively shared in a transparent way among different
logical network instances. NV differs from ”conventional” virtualization tech-
niques (aimed mostly at virtualizing computing and storage resources) in that
it explicitly addresses low–level resources (e.g., bandwidth), well below the IP
waist. From an academic standpoint, NV can be seen as a tool for evaluating
novel Internet architectures (“clean–slate approaches”) in large–scale realistic
environments. Similarly, from a business perspective, NV can change the func-
tional role of Internet Service Providers (ISPs) by decoupling the provisioning of
the physical infrastructure from the provisioning of communication/computing
resources. This could set the basis for the introduction of new business mod-
els and stakeholders in the Internet ecosystems (i.e. Infrastructure Providers,
Virtual Network Providers and Service Providers). Finally, NV can enable a
smooth and controlled introduction of novel services in an operational network
by providing means to isolate them from already deployed applications, thereby
unlocking innovation in telecommunication networks.

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 331–344, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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While several NV architectures and solutions have been proposed in recent
years, most (if not all) of them were designed and developed for wired net-
works, characterized by virtually unlimited processing/storage power and link
bandwidth (PlanetLab [3], VINI [4], etc). On the other hand, a particularly
challenging, yet interesting, domain for NV is that of wireless multi–hop net-
works [5,6] with a particular emphasis on Wireless Mesh Networks (WMNs).
WMNs are a cost–effective access networking paradigm, which represents an in-
teresting solution in scenarios where a fixed wired infrastructure is either not fea-
sible (e.g., in the case of mobile nodes such as vehicular ad hoc networks) or not
economically attractive (e.g., access to Internet in developing countries). How-
ever, despite these expectations, very few studies have been performed, so far,
on virtualization in resource–constrained environments in general, and multi–
hop wireless networks in particular. Furthermore, the available literature on the
theme focuses mainly on comparing how different wireless medium virtualization
techniques affect the overall network slices performance in term of isolation and
stability [7,8].

The aim of this paper is to introduce AiroLAB, a novel network virtualization
framework specifically tailored to multi–hop wireless networks [9]. AiroLAB was
designed to provide Wireless Internet service providers (WISPs) with an effective
virtualization solution. In AiroLAB, an innovative mechanism to assess wireless
link capacity and realize soft–performance isolation among virtual networks in-
stances allows production traffic to share part of the available network resources
with a variable number of network slices, where novel solutions, such as new
routing protocols, services or network operation tools, can be experimentally
tested in a severely controlled yet realistic environment with no impact on the
operational traffic. Compared to [9], which is mainly focused on the description
of the objectives and constraints that have driven the design of our Network
Virtualization framework, in this paper we provide a more accurate analysis of
the experimental results obtained in a small–scale wireless testbed.

The paper is organized as follows: Sec. 2 provides an overview of the main chal-
lenges behind Network Virtualization, emphasizing how AiroLAB differentiates
from solutions proposed in literature. Section 3 describes the AiroLAB architec-
ture and protocols. Section 4 presents the results of experimental tests carried
out with a prototypical implementation of AiroLAB while Sec. 5 concludes the
paper.

2 Network Virtualization: An Overview

Network Virtualization research main challenge refers to the definition of appro-
priate and efficient algorithms, architectures and protocols to effectively share
a common physical network infrastructure, splitting it into several logical in-
stances (generally referred to as “slices”) composed of virtual links and virtual
network nodes [10]. Network nodes should be fully programmable to allow the
instantiation of several network instances, each one potentially based on a differ-
ent architecture. Several projects worldwide are working on the various aspects
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underpinning NV: GENI in USA [11], 4WARD [12], FEDERICA [13] in Europe
and AKARI in Japan [14].

An effective NV solution shall satisfy several requirements [15]: scalability
(performance should not depend on the number of slices), isolation (among
slices), flexibility (fully programmable network elements), efficiency (limited
overhead due to virtualization), manageability (it should work in multi-domain
scenarios) and heterogeneity (in term of underlying technologies, end-users,...).
When network virtualization solutions are used for running concurrent research
experiments in dedicated testbeds, two further requirements are lack of inter–
experiments interference and experiments repeatability.

Most of the research groups proposing NV mechanisms in wireless networks
have been focusing in large–scale testbed scenarios, i.e. ORBIT [16] or GENI [11],
where several experiments could run concurrently on the same physical infras-
tructure. Due to their strong focus on creating a stable testing environment
where experiments should be repeatable and should not affect each other when
running on concurrent slices, most of the works have focused on evaluating wire-
less virtualization techniques to realize performance isolation. This has been ob-
tained by exploring both dimensions of (i) virtualization of the wireless medium
(through multiplexing techniques like SDM, FDM, CDM or TDM [17]) and (ii)
virtualization of the network node. Studies regarding the feasibility of each of
these approaches have been already provided in literature with an analysis of
their pros and cons [7,8,18,19].

Compared to those works, the scenario addressed in this paper is a sort of
intermediate one between such purely research approaches applied to dedicated
testbed network infrastructures, and a conservative approach (pursued so far
by most of the operators) where novel services or recent protocols are tested
on a small-scale testbed separated from the main production network. In fact,
AiroLAB investigates techniques and architectures to provide a NV framework
specifically tailored for production networks, where operational traffic is fully
guaranteed over a “privileged” slice, while all novel (experimental) services and
protocols under test are run on “background” (lower–priority) slices. Our aim
is somehow similar to the ones pursued by solutions such as Cabernet [20,21]
and generalized in [22] on carrier-class networking equipment; however, given the
specific technological domain under consideration, we are providing an empha-
sis toward the possibility for a Wireless ISP (WISP) to perform experimental
activities in a controlled fashion directly on its production network.

3 The Architectural Framework of AiroLAB

Multi–hop wireless networks are usually built using commodity components and
are characterized by rather limited computing capabilities. Such a scenario calls
for a radically new approach to network virtualization, where the trade–off be-
tween flexibility and scalability shall, due to pragmatical consideration, drift
towards the latter. Before analyzing the intricacies behind the proposed NV ar-
chitecture, a simplified network scenario is described in this Section to emphasize
objectives and constraints that have driven the AiroLAB’s design.



334 R. Doriguzzi Corin et al.

Fig. 1. Simplified deployment scenario

Fig. 1 sketches a simplified setup where a network, composed of three nodes
organized in a string topology, is running three distinct slices : one production
slice (A), and two experimental slices (B and C ). In this scenario, links are
symmetric and their capacity is assumed to be time–invariant. Moreover, mesh
routers are equipped with a single radio interface.

In this simplified scenario, the production slice A is assigned 80% of the re-
sources in the network, while the two experimental slices equally share the re-
maining 20% of resources. It is worth noticing that, with our architecture, we
do not aim at supporting hundreds or even tens of concurrent slices, instead we
foresee a scenario where 5 to 10 slices share the overall network resources. Such
limitation is mandated by the computing and storage constraints that charac-
terized currently used wireless multi–hop networking devices.

Traffic shaping is performed at each node in order to limit the amount of
network resources used by each sliver. In this simplified setup the resources that
each sliver can exploit are upper bounded by a fixed threshold derived from
the relative performance goal given during the planning phase. As a result, slice
A “sees” an 800 Kb/s bidirectional link between node 1 and node 2, while the
available bandwidth between node 2 and node 3 is 1600 Kb/s. In this setup some
bandwidth is voluntary left unused. However scenarios where a sliver can have
full access to all the available bandwidth are also supported.

3.1 Assessing Wireless Link Capacity

Estimating the capacity of a wireless link is not trivial due to the use of a
shared medium; in fact interference coming from external sources, changes in
the propagation characteristics or interference from the same signal traveling
along different paths make the link’s total capacity fluctuate over time. Even
if we limit our attention on communications realized using the IEEE 802.11
facility of standards, an ideal estimator of the link capacity from an Access
Point toward a generic Station should take into account both the the data frame
SNR (measured at the receiving station) and the ACK frame SNR (measured
at the access point). Such a level of precision is difficult to achieve without
introducing additional signaling and/or modifying the standard IEEE 802.11
MAC operations.

In this work we decided to use an indirect way of assessing a link’s total
capacity based on the rate adaption functionalities already available in current
IEEE 802.11 devices. Rate adaptation algorithm aims at dynamically selecting
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the transmission rate in order to achieve optimal performance under varying
operating conditions. Rate adaptation is left unspecified by the IEEE 802.11
standard, as a result of the years a considerable number of solutions have been
proposed by both the academic and the industrial worlds.

Our work builds on top of currently available rate–control algorithms for IEEE
802.11–based wireless networks. In particular we exploit the Minstrel [23] algo-
rithm. The minstrel rate–control algorithm aims at selecting the transmission
rate that maximizes the throughput. In order to so, the algorithm collects statis-
tics of all the packets that have been transmitted. This data is then exploited
to compute the probability of a successful transmission Pab between a pair of
nodes, a and b, for each available data–rate. In order to cope with environmen-
tal changes, minstrel uses an Exponential Weighted Moving Average (EWMA)
based approach. EWMA has a smoothing effect, so that new results have a larger
influence on the selected rate. Finally, if Dtx is the time spent for a single trans-
mission, and B is the packet length, the empirical throughput Tab that is used by
AiroLAB as an estimation of the wireless link capacity is computed as follows:

Tab =
PabB

Dtx
, (1)

3.2 Providing Soft–Performance Isolation

AiroLAB provides soft–performance isolation between slivers by leveraging on
the Hierarchical Token Bucket (HTB) traffic shaping facilities provided by the
Linux kernels 2.6.x. HTB organizes traffic classes in a tree structure; each class
is assigned an average rate (rate) and a maximum rate (ceil). Three class types
exist: root, inner and leaf. A root class corresponds to a physical link; its band-
width is the one currently available for transmission. Leaf classes, placed at
the bottom of the hierarchy, correspond to a given type of traffic (e.g., TCP-
controlled or VoIP etc.). Two internal token buckets are maintained for each
class. Classes which have not exceeded their rate can unconditionally transmit;
classes which have exceeded their allowed rate but not their upper limit (ceil)
can transmit only borrowing unused bandwidth, if available, from other classes.
In order to borrow bandwidth, a request is propagated upwards in the tree. A
request that would exceed the ceil limit is terminated. A request that would
satisfy the allowed rate is accepted. A request that would not satisfy the allowed

Fig. 2. AiroLAB wireless channel monitor architecture
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rate constraint but the ceil one is propagated upwards until the procedure is
completed.

Due to the stochastic nature of the wireless links capacity, an HTB scheduler
alone is not able to deliver performance fairness among competing traffic flows in
wireless networks. In order to address such an issues we devised and implemented
a wireless channel monitor which exploits the channel statistics computed by the
wireless driver in order to properly distribute the available bandwidth among the
slivers running in a node. Figure 2, sketches the the architecture of the AiroLAB
wireless channel monitor. The overall link capacity Tab is assigned to the HTB’s
root class, while each sliver is associated to a leaf class in the HTB hierarchy.
Available bandwidth is distributed among the slivers according to a set of input
policies. The wireless channel monitor is implemented in the form of a software
process running within each wireless router and periodically updates the HTB’s
configuration in order to reflect the actual channel capacity. HTB’s configuration
is also updated if either a new slice is deployed over the network or if the policies
have changed.

3.3 A Description of the Node–Level Architecture

The AiroLAB framework design, whose architecture is sketched in Fig. 3, has
been centered around two open source tools based on GNU/Linux operating

Fig. 3. AiroLAB node–level architecture
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system: OpenVZ [24] and Click [25]. OpenVZ consists of a modified Linux ker-
nel tree that supports virtualization, isolation and resource management and a
set of user–level tools that allows the installation, configuration and maintenance
of the virtual environments (also known as containers). Container–based virtual-
ization solutions are typically characterized by reduced overhead and thus better
performance. They also provide good performance isolation (in terms of CPU
cycles, memory consumption, and storage), because processes running within a
container do not significantly differ from processes running in the hosting system.
Thus, it is possible to apply existing resources sharing techniques, such as HTB
for traffic scheduling. The major drawback of container-based virtualization so-
lutions is that, since a single kernel is used for every sliver, kernel modifications
are not allowed.

Within OpenVZ, each Virtual Environment (VE) performs and executes ex-
actly like a stand–alone host; a container can be rebooted independently and
can have root access, users, IP addresses, memory, processes, files, applications,
system libraries and configuration files. Moreover, OpenVZ provides a resource
management system that controls the amount of resources available for the en-
vironments. The controlled resources include parameters such as CPU power,
disk space, and set of memory-related parameters. Furthermore, unlike alterna-
tive container-based solutions such as Linux-VServer [26], OpenVZ provides full
virtualization of the networking subsystem allowing each virtual environment to
create its own internal routing or firewall setups.

Due to the limitations imposed by the use of OpenVZ, namely the impossibil-
ity to run customized kernel images in different slivers, we decided to implement
our virtualization stack in user–space using the Click modular router [25]. Our
approach is not meant to replace OpenVZ, but rather to extend it in order to
support flexible virtualization of the wireless resources. In fact, albeit character-
ized by an higher overhead in comparison to pure kernel–level implementation,
Click–based solutions are highly customizable allowing us to circumvent the flex-
ibility limitations of typical container based solutions [27]. Table 1 summarizes
the trade–offs involved in the most relevant virtualization techniques currently
available, namely containers, hypervisor, and hosted VMM. AiroLAB belongs to
the second columns (Containers w/ Click) in that on the one hand container–
based virtualization is used to achieve performances and scalability, and, on the

Table 1. Taxonomy of network virtualization techniques and relevant features [27]

Containers Containers
w/ Click

Hypervisors Hosted
VMM

Scalability Good Good n.a. n.a.

Fault/Security Isolation n.a. n.a. Good Good

Performance Isolation Good Good Good Good

Flexibility Poor Good Good Good

Code Re–Usability n.a. Poor Poor Good

Efficiency Good Good Good n.a.
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other hand, user–space wireless network virtualization delivers high flexibility in
terms of packet processing capabilities.

Click is used both within each sliver (guest click) and at the host operating
system level (host click). More specifically, the Click instance running within a
sliver provides the guest environment with a set of virtual interfaces (ath0, ath1,
. . . , athN ) implemented as Linux TAP devices. A TAP device operates at layer
2 of the traditional ISO/OSI networking stack and simulates an Ethernet device.
User-space process, running within a sliver, can exploit the virtual interfaces to
implement their routing strategy. Communication over the virtual interfaces can
be done using three different frame formats:

– 802.3 headers (Ethernet). Used to expose a standard Ethernet interface.
– 802.11 headers (WiFi). Used to expose a wireless interface complaint with

the IEEE 802.11 protocol. In this case the user–space applications must
properly encapsulate their traffic in 802.11 frames.

– Radiotap. Used to expose a raw wireless interface. In this case the user–space
applications must properly encapsulate their traffic using the radiotap [28]
header format. The radiotap header format is a mechanism to supply addi-
tional information about 802.11 frames, from the driver to user–space appli-
cations, and from a user–space application to the driver for transmission.

In either situation, outgoing traffic is encapsulated by the guest click process
and sent to the host click process through the virtual interface eth0 provided
by the OpenVZ Container. Please note that, if the user-space application is
already using the radiotap header, no additional encapsulation is performed by
the guest click process and the frame is delivered unchanged to the host operating
system. The host click process receives the incoming frame and dispatches it to
the suitable device according to a set of policies maintained by the Link Broker.

The Link Broker is a software module that can expose different connectivity
graphs to the various slivers without requiring that the nodes must be physi-
cally separated (i.e., out of radio range). Connectivity graphs are defined on a
per-slice basis allowing us to define a different topology for each slice. This is
particularly useful to test novel routing strategies on a subset of the nodes. More-
over, if wireless routers are equipped with multiple radio interfaces, it is possible
to create multiple slices (whose cardinality equals the number of radio interfaces)
operating on orthogonal frequency bands, implementing therefore an FDM wire-
less network virtualization solution. Hybrid solutions where only a subset of the
slivers operates on orthogonal frequencies are also supported. Albeit network
connectivity graphs are defined at deployment time, they can change during
the network operations in order to create connectivity scenarios that simulates
different operating conditions (i.e. link failures/outages).

3.4 An Example of Network–Level Configuration

A possible use case of AiroLAB is sketched in Figure 4, where a production
slice exploiting a legacy version of a routing protocol is running in parallel with
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Fig. 4. Network–level configuration: an example with one production slice and one
experimental slice sharing a common physical substrate

an experimental slice where novel routing strategies are being tested. In this
scenario the Link Broker is used to expose two different connectivity graphs to
the production and the experimental slices. On the other hand, the Wireless
Channel Monitor is used to redistribute the available link bandwidth among
the competing slices, 80% to the production slices and 20% to the experimental
slices in this cases. Please note that, a minimum bandwidth, e.g. 1 Mb/s, can
also be allocated to the production slice.

4 Results of the Experimental Activities

The main objective of the experimental measurements described in this Section
is to prove the effectiveness of the AiroLAB framework in preventing traffic on a
privileged slice being affected by traffic from other (lower–priority) slices, there-
fore guaranteeing a peaceful coexistence between operational and experimental
traffic in a production network.

The wireless routers employed in the experimental set-up are built exploit-
ing the PCEngines ALIX 2C2 (500MHz x86 CPU, 256MB of RAM) processor
board. Operating system and application are stored on a 1 GB Compact Flash.
Connectivity is provided by 2 Ethernet channels, 2 miniPCI slots and one se-
rial port. PCEngines ALIX boards are equipped with two Mikrotik R52 WiFi
IEEE 802.11a/b/g cards based on the Atheros AR2412 chipset. OpenWRT [29]
has been selected as Operating system for our testbed, even though its origi-
nal kernel has been replaced with a kernel provided by OpenVZ. The software
configuration of the wireless routers is summarized in Table 2.

Table 2. AiroLAB wireless routers setup

Operating System OpenWRT trunk (release 14748)

Linux kernel OpenVZ 2.6.18-028stab056

Wireless drivers MadWiFi trunk (release 2568)

Virtualization tools vzctl-3.0.23, vzquota-3.0.12
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Fig. 5. Representation of the packet scheduling process for the case with two slivers

Several experimental scenarios have been set up to demonstrate AiroLAB
performance isolation capabilities. The HTB configuration exploited during the
measurements campaigns creates a traffic class for each sliver. For each traf-
fic class, we specify the minimum (rate) and the maximum (ceil) throughput.
Figure 5 shows the node setup for the case of two slivers. The performance
metrics considered in each experimental scenario are throughput and delay. The
results have been obtained by averaging the samples obtained as nuttcp bench-
marks over 300 seconds with an averaging interval of 10 seconds.

In the first scenario, we use two wireless nodes, each one running two con-
current slivers sharing the same wireless interface. The privileged slice (#1) has
higher transmission priority and a minimum guaranteed outbound bandwidth
set to 10 Mb/s, and it provides an offered load of 10 Mb/s. The second slice
(#2) has no minimum guaranteed outbound bandwidth, and it generates traffic
off and on periodically with varying loads. The graph plotted in Fig. 6 shows
the throughput and delay distribution per slice. As expected, when the wireless
link is not saturated (from 0 to 140 secs), AiroLAB correctly limits the impact
of slice (#2) on the privileged slice, by guaranteeing a stable throughput and
averaged delays always below 10 msec. Of course, as soon as the offered load on
Slice #2 leads to link saturation (from 140 to 160 secs), the throughput of Slice
#1 is slightly affected as well as its averaged delay which increases up to 20 msec.
However, compared to a similar test presented in [18], AiroLAB doesn’t show
any “drop to zero” effect when the second slice starts to carry some traffic, thus
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Fig. 6. Analysis of the cross–coupling effect among a privileged slice (#1) and an
experimental one (#2) in term of throughput and delay
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Fig. 7. The testing setup involved 2 nodes deployed in a typical office environment

showing a more stable environment. It is worth noticing that no CPU reserva-
tion policies provided by OpenVZ have been used on the “priviliged” slice: such
operation would have further limited the impact on the average delay for this
slice, mainly due to some buffer processing delay on each physical node.

In the second scenario, we want to test the ability of the proposed architec-
ture to effectively preserve production traffic in challenging conditions. To this
purpose, the experimental setting sketched in Fig. 7 has been set up. We consid-
ered two wireless nodes, each one running three slivers sharing the same wireless
interface. The experimental setup includes a wireless node connected to a PC
lying on a desk in Office 1. Changes in link quality are emulated by moving the
second node from Office 1 to another room. A continuous UDP flow is generated
among the two nodes; its rate is such that the wireless link is always saturated.

In this scenario, there are two privileged slices (#1 and #2) with higher trans-
mission priority and a minimum guaranteed outbound bandwidth set to 5 and
3 Mb/s respectively, while the remaining slice (#3) has no guaranteed band-
width (one can suppose a WISP having slice #1 for production traffic and the
remaining slices #2 and #3 for, respectively, testing a novel video–streaming
service and for network management and monitoring).Moreover, Slice #1 and
#2 provide an offered load of 5 and 3 Mb/s, while Slice #3 has no upper bounds
on the maximum throughput it can inject in the wireless link. The results plot-
ted in Fig. 8 show the throughput and delay distribution per–slice in different
conditions of available wireless link capacity. As expected, AiroLAB guarantees
that the throughputs of Slice #1 and #2 are only slightly affected by wireless
link conditions to detriment of Slice #3. Results related to throughput mea-
surements are summarized in Tab. 3. The impact on the average delay per slice
is higher mainly due to the saturation conditions of the experimental scenario.
However, it is worth noticing that an average delay lower than 150 msec is toler-
able for video–streaming–based services; while network-management traffic can
tolerate even higher delays [30]. As per the previous test scenario, the impact
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Fig. 8. Relative performance for the three slices in the second scenario

Table 3. Throughput statistics

Slice #1 Slice #2 Slice #3

Average 5 3 8,85

Minimum 3,85 2,42 0,54

Maximum 6,27 3,46 14,6

Std Deviation 0,47 0,14 5,1

Confidence interval (95%) ±0,08 ±0,02 ±0,82

on the average delay for the slice running the production traffic could have been
further minimized through an appropriate configuration of the CPU reservation
via OpenVZ.

5 Conclusions

In this paper, we have presented AiroLAB, a novel virtualization framework
specifically tailored to multi–hop wireless networks. AiroLAB has been designed
with the explicit goal to empower WISP with an effective tool to allow pro-
duction traffic to safely share part of the available network resources with a
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variable number of network slices where novel solutions, such as new routing
protocols, services or network operation tools, can be experimentally tested in a
severely controlled yet realistic environment. The architecture and protocols at
the hearth of AiroLAB have been presented, discussed and compared with ex-
isting solutions. A first prototypical implementation of AiroLAB capable of sup-
porting performance isolation between concurrent slices is described, together
with experimental measurements obtained in a small–scale wireless testbed.

Despite the encouraging results presented in the paper, the proposed frame-
work requires further development before reaching the stability level needed to
enable its wide adoption. Among the possible research directions to enhance the
current architecture, we believe that the ability of leveraging, by means of appro-
priate FDM approaches, the presence of multiple wireless interfaces (such that,
for example, different slices could associate to dedicated radio channels), could
definitely improve the efficiency and scalability of AiroLAB in realistic scenar-
ios. Moreover, integration with currently available frameworks for automatic NV
resources allocations, such as OMF [31], shall be cosidered for future evolution
of the framework.
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Abstract. Within the framework of the BONE European Network of
Excellence, we setup a multi-domain multi-layer testbed covering three
different networks at two distinct locations in Europe. The testbed in-
cludes two Ethernet switched client networks, which are interconnected
by a wavelength switched server network. Each of these networks is op-
erated by a GMPLS control plane and implements a path computation
entity, following either the IETF PCE proposal or the DRAGON NARB.
Since the communication protocols of IETF PCE and DRAGON NARB
are incompatible, we propose and develop an application layer gateway,
enabling inter-domain path calculation.
In this paper, our contributions are three-fold: First, we provide a com-
parison of both communication protocols. Second, we present the archi-
tecture and working principles of the designed NARB/PCE Gateway,
specifying the available features and constraints of our implementation.
Third, we validate, for the first time, the PCE/NARB connectivity while
evaluating the performance of a path computation request in terms of
request response time in the multi-domain and multi-layer testbed.

Keywords: multi-domain, multi-layer, PCE, path computation.

1 Introduction

The ITU-T defined the term next generation network (NGN) in [9]. One of
their major objectives is the separation of the transport network (transport
stratum) and the service platform (service stratum). The transport stratum en-
ables a variety of transport network technologies, e. g., connection (wavelength)
or packet switched networks (Ethernet [7], Internet Protocol). Networks oper-
ating and controlling multiple technologies in parallel refer to multi-layer net-
works. Therein, the underlying transport technology is in general abstracted by
a virtual topology. Any layer operating on top of this virtual topology may re-
quest additional connectivity from the transport technology. In general, these
transport networks with different underlying connection-oriented technologies
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c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010



required separate controlling entities. The GMPLS control plane framework [13]
is one proposal for a unified integrated control plane, i. e., operating various tech-
nologies on different layers. It is responsible for the establishment, management
and release of end-to-end connections, such as optical connections or lightpaths,
commonly referred to as lambda switched capable Label Switched Paths (LSP).
Such a control plane includes the functionalities of: a) routing and topology in-
formation dissemination, b) path computation and c) LSP signalling. Including
several layers within one single control plane instance increases the number of
traffic engineering links (TE-links) within one routing domain. Any path compu-
tation, which operates on these TE-links, becomes complex and requires powerful
processing engines.

Additionally, as the ITU-T proclaims the NGN as the implementation of
a global information infrastructure [9, 8], it demands inter-operable networks
throughout different network operators and network technologies. Consequently,
paths traversing multiple domains refer to a multi-domain scenario, and any path
computation involves the controlling entities within each of these domains. These
computation tasks may add additional constraints to the path computation,
which further increase the complexity.

Summarizing, the path computation task becomes complex and extensive in
multi-domain and multi-layer networks. Consequently, the IETF proposed the
Path Computation Element (PCE, [5]), i. e., an explicit entity to perform path
computation within these transport networks. They defined the requirements,
the architecture [5] and a communication protocol [14] for the path computation
function. In parallel to the IETF, the US DRAGON project [11] also proposed a
Network Aware Resource Broker (NARB, [15]), which serves the same purpose,
but provides a different communication protocol.

In this paper, we present the experiences of interoperating PCE and NARB
devices within a multi-domain, multi-layer network infrastructure. For the first
time, we present a successful path computation covering three different domains
(located in Spain and Germany) and two different transport layers (an Ether-
net switched network and a Wavelength Switched Optical Network, WSON).
Our contribution is three-fold. For the interoperation of PCE and NARB, we
first provide a comparison of both communication protocols; second, we present
the architecture and working principles of the designed NARB/PCE Gateway,
specifying the available features and constraints of our implementation. Third,
we evaluate the performance of a path computation request in terms of request
response time in the multi-domain and multi-layer testbed.

The next section introduces and classifies the related work in the field of
multi-layer, multi-domain path computaion. Section 3 introduces the implemen-
tations of the two path computation elements used in our scenario. Section 4
presents the architecture and functionality of our PCE/NARB Gateway and
compares the PCE and the corresponding NARB protocol. Section 5 introduces
our testbed with three different domains on two locations in Europe. We eval-
uate the performance of the whole system in the result section 6. Section 7
summarizes our contribution.
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2 Related Work

We classify the related work in multi-layer and multi-domain studies and focus on
the applied methods. Multi-layer path computation strategies were the subject
of numerical simulation studies of Cugini et al. in [4] and Gunreben/Rambach
in [6]. Multi-domain path computation was subject of the prototypical imple-
mentations of Bianzino et al. [2] and Casellas et al. in [3]. This paper provides
both, prototypical implementation in a multi-layer and multi-domain testbed.

3 Path Computation Elements

This section introduces the architecture and functional details of both path com-
putation elements applied in our testbed. Firstly, we describe the IETF PCE
implementation of CTTC. Next, we present the proprietary PCE solution from
the DRAGON project. Thereby, both sub-sections include a general introduc-
tion, a description of the architecture and a brief summary of the application
program interface (API). Finally, we compare that part of the APIs, which is
relevant for our scenario.

3.1 IETF PCE Implementation

The IETF proposes in [5] and [14] the architecture and the API/communication
protocol for path computation elements. This section gives an introduction and
a brief summary of both. A working implementation of a PCE in CTTC’s
ADRENALINE R© testbed shows the applicability of this IETF solution.

Introduction. In general, the IETF PCE proposal covers generic PCE-based
implementation building blocks, such as composite, external, and multiple PCE
path computation approaches. The retained architecture in this work involves
an external PCE, available for multiple PCE path computation tasks.

Further, the aforementioned normative documents discuss architectural con-
siderations including centralized and distributed computation, synchronization,
PCE discovery and load balancing. The PCE provides the following additional
functions: detection of PCE aliveness; communication between Path Computa-
tion Clients (PCC) and the PCE; PCE-PCE communication; Traffic Engineering
Database (TED) synchronization; monitoring; policy and confidentiality enforce-
ment.

Architecture. CTTC implemented the PCE according to the IETF standard.
Fig. 1 shows the architecture of the implementation. It consists of three ma-
jor blocks, (a) the management and processing of Path Computation Element
Communication Protocol (PCEP) messages from PCC and PCE peers, (b) the
management and update processing of the traffic-engineering database (TED)
and (c) the path calculation itself. Multiple asynchronous processes (threads)
realize the functionality of these blocks.
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Fig. 1. Functional Architecture for CTTC PCE

The PCE main thread is responsible for managing PCEP connections. It
queues incoming path computation requests in a priority-based queue. A pool
of threads (with a configurable number of worker threads) serves these requests
from the queue. In case of a multi-domain scenario, the PCE requires, besides
the local topology, a downstream response from a peer PCE. This dependence
blocks this thread until it receives the computation answer from the downstream
PCE, controlled by a timeout mechanism. Thereby, a timeout mechanism avoids
infinite blocking. In case of timeout, the PCE replies with a NO PATH object.

The PCE implementation provides an interface to allow different algorithms
for path computation as plug-ins. This leverages granular, per-request algorithm
selection (using Objective Function - OF - codes to identify specific algorithms),
based on client preference and pre-defined policies. The common interface of
these path computation algorithms involves: a) access to the abstracted TED
in form of a directed graph; b) the possibility of requesting path computations
from an external (e. g., downstream) PCE and c) access to dynamic / static in-
formation covering network reachability and pre-configured PCE domain chains.

In our scenario, the TED includes the optical network topology including link
and node GMPLS TE attributes along with specific optical networks extensions
such as the number of available optical signal regenerators and optical signal to
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noise ratio (OSNR) figures. One or more dedicated threads update this TED.
Thereby, the TED synchronization mechanism is non-intrusive. The PCE mon-
itors the OSPF-TE [10] traffic and constructs the database by means of stateful
inspection of the OSPF-TE link state updates. This approach passively reuses
the OSPF-TE dissemination mechanism and does not require the creation of an
additional listener adjacency.

PCEP API. The main interface to access path computation services from a
PCE is the PCEP protocol [14]. PCEP allows PCCs to request path computa-
tions by means of a message oriented protocol over a TCP connection [12]. The
PCEP protocol defines seven basic messages, which we classify in three different
categories: session management, path computation and exception handling. The
evaluation in section 3.3 studies the detailed messages and compares them to
the NARB equivalents.

A special feature of PCEP is the session management. After an initial session
setup, the lifetime of this session follows one of two different modes. In the per-

sistent mode, the lifetime can span several requests. In the non-persistent mode

the session ends after a single request. Additionally, the path request message
(PCReq) may include one or several requests, allowing for synchronized and
dependent path computation.

3.2 DRAGON NARB

Besides the IETF initiative, the US project DRAGON (Dynamic Resource Allo-
cation via GMPLS Optical Networks, [11]) proposed and implemented a device
with similar functionality than that of a PCE. The project designed and imple-
mented a Network Aware Resource Broker (NARB, [15]), which performs path
computation in multi-layer and multi-domain networks. Comparable to PCEP,
NARB also provides an API for remote path computation requests. The next
two sections introduce the NARB architecture as well as the API protocol.

Introduction. The NARB represents a path computation element within an
Autonomous System (AS). It consists of two entities, the NARB itself and the
Resource Computation Element (RCE). NARB provides higher-level functions
like topology abstraction for an inter-domain scenario or inter-domain path com-
putation. In an inter-domain scenario, the NARB elements of each domain in-
terconnect and exchange static reachability information. For security and com-
petitive reasons, the exchanged topology information may only provide a subset
or abstracted view of the real topology. A RCE enables path computation and
provides a raw database of the topology.

Architecture. The NARB provides inter-domain as well as intra-domain path
computation functionality. It obtains the intra-domain topology information
from listening to the local OSPF-TE routing instance and the inter-domain
topology information from listening to the inter-domain OSPF instance. Besides,
the NARB software provides the following interfaces:
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– Internal interface to RCE for path calculation
– API interface for path computation requests
– External interface to peer NARB of other domains

For a detailed view on the NARB architecture, we refer the reader to the doc-
uments published by the DRAGON consortium [11, 15]. The next section in-
troduces the application programmable interface for inter-active usage of the
NARB functionality.

NARB API
section covers the major functions exploited within this study. The NARB API
clients connect to the NARB API server on a dedicated port. Thereby, it allows
several simultaneous connections. The NARB API message structure shows a
header and a message body. The header includes, among others, the message
type and options. The body includes type-length-value (TLV) encoded data.

The message type distinguishes seven different messages, which belong to two
different categories. The first class includes messages related to path request and
reply. Resource reservation related messages make up the second class. While [15]
provides details on all these messages, we do not use all types of messages in our
scenario. Especially the reservation messages are out of scope of this paper. The
following four message types are relevant for our study.

– Client LSP Query Request indicates a path computation request from a client.
– Peer LSP Query Request indicates a recursive path computation request from

NARB to its peer NARB in a multi-domain environment.
– LSP Query Reply with an Explicit Route Object (ERO) indicates a success-

ful path computation task, and the reply includes the explicit route object
required for the signalling process.

– LSP Query Reply with ERROR indicates an unsuccessful path computation
task. The message includes the reason for this error, e. g., no source, destina-
tion, no route or internal errors.

3.3 Comparison of PCEP and NARB API

In this section, we compare NARB API and PCEP. However, our comparison is
neither exhaustive nor complete as we restrict ourselves to the basic function-
ality for path computation in a multi-domain and multi-layer scenario. Table 1
compares both protocols with respect to the path computation scenario. The ta-
ble classifies the protocol features in three different classes: session management,
path computation and exceptions. The left column gives the functionality. The
second and the third column depict the realization of this functionality in PCEP
and NARB API, respectively.

Both, PCEP as well as the NARB API rely on TCP. On top of TCP, PCEP
implements a session management including Open, Close and KeepAlive mes-
sages. The Open messages enable the negotiation on different parameters (dead-
time, keepalive timer) during the session initiation phase. The KeepAlive mes-
sages provide mechanisms to check if the PCE is still alive and operable. Besides

. We refer to [15] for a complete feature list of the NARB API. This
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Functionality PCEP NARB API

Session management
Open Message Session negotiation -
KeepAlive Message Session liveness monitoring -
Close Message Session termination -
Identifier Session identifier Universal client id, se-

quence number

Path computation
Computation request May include several re-

quests per message
One request per message

Constraint request support of end-points constraint
support of bandwidth constraint

- Requires technology con-
straints (encoding, switch-
ing type)

Can exclude objects (XRO) -
Computation reply successful reply includes ERO

NO PATH object to indi-
cate no path

Error message indicating no
path found

May include several replies
per message

One reply per message

Multiple alternative paths
per reply

One reply per message

Exceptions
Error messages several error classes one error class
Notification exceptional signalling for

unforeseen events
-

Table 1. Comparison of PCEP and NARB API

this, they acknowledge the Open message during session establishment. The
Close message terminates a session. The NARB API does not provide any ses-
sion management at all. After the TCP session is established, the client may
pass the NARB API message directly to the NARB server. With respect to
the response time of the initial request, the reduced session overhead leads to a
reduced response time.

Path requests also provide similarities as well as differences. PCEP allows
adding multiple path requests within a single path request message. In contrast
to this, the NARB API expects only one request per message. Both protocols
allow specifying constraints for path computation. While PCEP allows indicating
optional or mandatory constraints, the NARB API requires certain parameters in
any case, i. e., encoding type, switching type, and bandwidth. The only exception
in the NARB API is the quality of the hops. The client may specify if hops may
be strict or loose and if this constraint is mandatory.

The path computation reply messages are very similar. In case of successful
path computation, the reply messages of both protocols contain standard com-
pliant explicit route objects (ERO, [1]). The difference is again the number of
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Fig. 2. NARB/PCE Gateway architecture

possible paths per reply message. While PCEP allows multiple responses, each
containing one or more paths and attributes, the NARB API only allows one.

In addition, the error handling is different in case that no path is found. While
PCEP replies with a NO PATH object in a message with optional TLVs, the
NARB API message only indicates the reason for the unavailability of a path.
Both protocols implement the errors unknown path source/destination and no
path could be computed.

At any time an error may occur. PCEP as well as the NARB API provide
mechanisms to indicate such errors. The classification of the NARB API errors
includes mainly two error classes: unavailable paths and NARB internal errors.
Additionally, PCEP includes classes for policy violations, malformed messages
and non-conforming PCEP requests. Summarizing, the error classes of both pro-
tocols are incompatible, the commonality may be a most generic error.

4 PCE/NARB Gateway

The previous section highlighted the major differences of both protocols. IETF
PCEP and the DRAGON NARB API are in general incompatible as they show
different message formats and protocol states. Nevertheless, on a functional level
they are compatible. Any interoperation requires an application layer gateway,
which implements both interfaces and performs a translation of messages. It
implements at the interface to the NARB the NARB API while on the interface
to the PCE it implements the corresponding PCEP interface. On both sides,
server instances of both protocols reside. As a path computation request from a
NARB translates to a path computation request to the PCE, the gateway also
implements the client functionality for NARB API and PCEP.

We implemented the NARB/PCE Gateway using the Java programming lan-
guage for platform independence. The next three sections introduce the archi-
tecture and working principle of the gateway and specify the available features
and constraints of our implementation.
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4.1 Architecture

Fig. 2 depicts the gateway architecture with the according building blocks. The
following paragraphs introduce the functionality of each block.

The PCEP and NARB API server are responsible for the TCP connection
management on both sides, i. e., they accept connections and create sockets. On a
successful connection, they forward the socket information to the corresponding
broker instance.

The broker represents the instance, which associates a NARB connection with
a PCE session. It reads messages from the socket and interprets these messages.
It finally forwards these messages to the translator block.

The translator block is responsible to convert a PCEP message to an equiv-
alent NARB API message and vice versa. Thereby, it translates the common
feature-set of a message with respect to the other protocol. The translator is
able to translate messages required for a path computation request including
session and error handling. Besides, the translator employs the functionality of
the session manager.

NARB API and PCEP apply different identifiers for a session (cf. Tab. 1).
However, an entity needs to associate replies from one protocol to the requests of
the other protocol and vice versa. The session manager implements this function-
ality. It maintains a list of identifiers for both, NARB API and PCEP requests.
Besides, the list contains the information on the corresponding broker instance.

The client instances of each protocol forward the translated messages to the
peer NARB/PCE, after necessary connection setup. The next section introduces
the working principle in detail.

4.2 Working Principle

Fig. 3 illustrates the working principle of the gateway. The starting point is a
path computation request using PCEP. Therefore, the PCEP client connects to
the PCEP server instance at the gateway and establishes a TCP connection.
After successful connection establishment, the PCEP server passes the informa-
tion on the socket to the PCEP broker. The PCEP client and the PCEP broker
perform the handshake mechanism using the PCEP open sequence (two times
Open and KeepAlive, [14]).

After a successful handshake, the PCEP client sends a request to the gateway.
The PCEP broker receives the request and translates the request in an internal
data structure. It passes the internal data structure to the translator entity. The
translator maps the internal data representation into an equivalent representa-
tion of a NARB API message. Thereby, it applies the session manager to record
the identifiers used in both protocols and PCEP broker instances. The PCEP
broker receives back the translated message from the translator. It forwards the
NARB request to the NARB client instance, which connects to the peer NARB
server and forwards the request to it.

After processing the request on NARB side, the NARB client may receive a
response message. It parses the response message and checks with the Session
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Fig. 3. NARB/PCE Gateway working principle

Manager for the corresponding PCEP broker. With this information, the NARB
client forwards the message to the PCEP broker. The latter one uses again
the translator to receive a PCEP response message. The Translator performs
the translation from NARB API response to PCEP response and requests the
session manager for the corresponding sequence number on PCEP side. The
PCEP broker passes the complete NARB API message to the requesting PCE
client.

The same procedure applies for NARB API requests, which the gateway
translates to PCEP messages. The message sequence chart is the same, except
the open sequence, which occurs after translating, when forwarding to the peer
PCE server.

4.3 Evaluation

This section presents a brief evaluation of the gateway implementation. On a
system perspective, the gateway is a multi-threaded program. It operates one
main thread for network input/output and maintains for each peer an additional
thread. Within this thread, the gateway receives and sends messages and per-
forms the translation tasks as described before. This thread is non-blocking, i. e.,
the thread does not require to wait for an answer from a downstream peer for
further processing. Incoming messages are processed in a first-come first-service
discipline per peer NARB/PCE.

This single thread per peer NARB/PCE remains open until a dedicated
request tears down this session, i. e., the gateway implements the persistent mode
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Fig. 4. Multi-domain, multi-layer testbed

of PCEP. For simplicity, the gateway announces a value of 0 for both keepalive
and deadtimer, i. e., it keeps the connection open until arrival of a close request.

For multi-domain path computation, the PCE requires a METRIC object [14]
in the path computation reply message. This object includes the value of a metric
classifying the replied path, e. g., length in number of hops. As the NARB does
not support such METRIC Object, the gateway adds this object to the reply
from the NARB and forwards it to the PCE.

5 Multi-layer Multi-domain Testbed

This section presents our multi-layer and multi-domain testbed to evaluate both,
the inter-PCE connectivity using the PCE/NARB gateway and the performance
of a path computation request. The first section introduces the testbed setup
while the second section evaluates a sample for a path computation request.

5.1 Introduction

The testbed setup (cf. Fig. 4) interconnects three domains, the IKR 1 and IKR 2
and the CTTC domain. The testbeds of IKR 1 and IKR 2 reside at the University
of Stuttgart, Germany. Both testbeds implement an Ethernet based data plane
and the DRAGON/GMPLS based control plane [11]. Thereby, the data plane is
connection-orientated using Ethernet VLAN tagging [7]. Each domain represents
an individual OSPF-TE area and realizes the path computation task with a
NARB element in each network.

The ADRENALINE R© testbed resides at the premises of CTTC in Castellde-
fels (Barcelona) in Spain and implements a Wavelength Switched Optical Net-
work (WSON). The optical layer is GMPLS-controlled and shows 14 network
nodes with an emulated optical hardware. The path computation function has
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Fig. 5. Path computation request in our inter-domain testbed

been centralized in a single Path Computation Element within the domain, which
spans a single OSPF-TE area.

Both, NARB and PCE receive intra-domain topology information through
passive listening to the OSPF-TE [10] protocol. Between these networks, they
exchange inter-domain topology information, which corresponds to the ab-
stract/summarized topology as introduced in section 3.2. The abstract topology
information includes only the border nodes of each network hiding the nodes and
TE attributes within the network. For simplicity, we emulate the OSPF adja-
cency to the ADRENALINE R© instance to the CTTC domain by a third OSPF
instance at the IKR testbed. This additional OSPF adjacency announces the
abstract topology of the CTTC domain deployed using the ADRENALINE R©

testbed (nodes C and D) to the OSPF instances of networks IKR 1 and 2.
As both show non-compatible protocols, a PCE/NARB gateway resides be-

tween both (Gateway 1 and 2). An IPsec tunnel via the public Internet real-
izes the interconnection between the NARB/PCE gateway and the PCE of the
ADRENALINE R© testbed. For NARB 1 and NARB 2, the gateway acts like a
peer NARB. For the PCE, the gateways act like peer PCEs.

5.2 Multi-domain Multi-layer Request

This section presents a sample path computation request for inter-domain path
computation. Fig. 5 depicts the message sequence chart of a typical request
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covering all three domains and the intermediate devices. The message sequence
chart assumes unestablished TCP and PCEP connections between all entities.
The request asks for a suitable path from node A to node F of Fig. 4. The request
does not include any other constraints than the endpoints.

The NARB client from the DRAGON suite performs the path computation
request. After the initial TCP handshake, the NARB client sends the request to
NARB 1 using the NARB API. NARB 1 receives the request and splits it in two
parts. While NARB 1 handles itself the local part, i. e., the path computation
from node A to node B, it forwards the remote part to the downstream NARB,
i. e., Gateway 1. Therefore, NARB 1 establishes a TCP connection first. The
gateway performs a translation of the NARB message, which results in a PCEP
request for the downstream PCE. Besides, the gateway records the identifiers of
the received NARB message and the PCEP message to later identify the response
to the correct request. Before forwarding the request to the remote PCE, the
gateway performs the TCP and the PCEP handshake. The PCE receives the
request and splits the request in a local part (path from C to D) and a remote
part. After the TCP and PCEP handshake, it forwards the remote part to the
peer PCE, i. e., Gateway 2. Again the gateway translates the request in a NARB
conform way, records the identifiers and forwards the request after the TCP
handshake to NARB 2. Now, the request of NARB 2 only includes local nodes
E and F.

After computation, NARB 2 responds with a suitable path to the peer NARB,
i. e., Gateway 2. After passing the gateway, the PCE receives the response and
joins the results from the local path computation and the results from the down-
stream PCE, i. e., NARB 2, and forwards the result to the requesting entity, i. e.,
Gateway 1. After passing the gateway, NARB 1 receives the responses of PCE
and NARB 2, joins them and forwards the outcome to the requesting NARB
client. After reception of the response, the NARB client terminates the TCP
connection, as there is no further request. The other TCP and PCEP connec-
tions remain open, as there is no indication to close them.

If there is any error on this path, the response in upstream direction includes
an error message, which is translated in an appropriate format. As the error
reasons do not overlap, in most cases a general error of no path found occurs in
the response.

6 Performance Evaluation

For a quantitative performance analysis, we evaluated the time from sending
a request until receiving the response. For this evaluation, we analyzed two
different scenarios, the PCEP non-persistent and persistent mode.

In PCEP non-persistent node, for every request, the PCE establishes a new
TCP and PCEP connection to NARB 2. The PCE closes this PCEP connection
after receiving the response from NARB 2. For a new request, the whole setup
procedure is performed anew. The connection from NARB 1 to the PCE remains
persistent.
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Fig. 6. Trace of PCEP setup and response/request messages at PCE

In PCEP persistent mode, the PCE also keeps the PCEP connection to
NARB 2 open and reuses this connection for further requests. Only the first re-
quest performs the setup procedure, while the PCE forwards subsequent requests
immediately. The mechanism to keep the PCEP connection open corresponds to
the KeepAlive messages and deadtimer agreed in the open sequence.

6.1 Non-persistent Mode

In non-persistent mode, the PCE requires a TCP/PCEP setup between PCE
and NARB 2 for each request (cf. Fig. 5). Thereby, the round trip time (RTT)
between the two instances is the main driver for duration of the setup. In our
scenario, we measure a RTT of about 52ms between the IPsec router at IKR
and the IPsec router at CTTC. We also observe some jitter as the IPsec tunnels
pass several thousands of kilometres through the Internet.

Fig. 6 illustrates the PCEP messages at the PCE including the setup and re-
quest/response messages. The current implementation of the PCE (IP: 10.0.50.5)
sends as direct consequence of the TCP connection establishment a PCEP Open
message to Gateway 1 (IP: 10.2.0.99) (line 1). Gateway 1 also sends a PCEP
Open message after successful TCP connection establishment. Due to the three-
way handshake of TCP and the different times of connection establishment, the
PCE receives this message from Gateway 1 more or less immediately after send-
ing its own OPEN (line 2). At the beginning, the TCP window size allows only
one outstanding unacknowledged packet. Therefore, both entities need to wait
on the TCP acknowledgment before being able to send a further PCEP mes-
sage. After reception of the TCP ACK which takes one RTT, the PCE sends a
KeepAlive (line 3) to Gateway 1 and receives one (line 4). On reception of the
KeepAlive by the PCE, Gateway 1 sends the path computation request. The
PCE receives this one RTT after sending the KeepAlive (line 5). Subsequently,
it triggers the establishment of a TCP and PCEP connection to Gateway 2
(10.4.0.99). In principle, the messages of the open sequence are exchanged asyn-
chronously, i. e., there is no predefined order of messages. However, in our case,
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messages of the PCE trigger the according actions at Gateway 2 (lines 6-9).
After sending the path computation request (line 10) and receiving the reply
message (line 11), the PCE closes the PCEP connection to Gateway 2 (line 12).
Finally, the PCE sends the reply to Gateway 1 (line 13).

For a subsequent request, the TCP as well as the PCEP connection between
Gateway 1 and PCE is already established. When measuring the response time
of such a subsequent multi-domain path request, the above mentioned jitter in-
troduces some slight variations. On average, we obtain a response time of 273ms.
This overall response time includes 3RTTs for TCP and PCEP connection setup
between PCE and Gateway 2 and 2RTTs for exchange of path requests and
replies between Gateway 1, PCE and Gateway 2. The round trip times sum up
to a value of about 260ms. Thus the accumulated processing of all entities is in
the order of 13ms or even below.

6.2 Persistent Mode

The persistent operation only requires the TCP/PCEP handshakes for the very
first request. All subsequent requests use established TCP and PCEP connec-
tions. Consequently, a trace analogue to Fig. 6 would not show lines 1-4, 6-9 and
12. Thus, we save 3 RTTs in contrast to the overall response time of the non-
persistent mode. The measured average response time of about 117ms reflects
this consideration very well.

7 Conclusion

The contribution of this paper was three-fold. First, we studied both PCEP
and DRAGON NARB architectures and provided a comprehensive comparison
on their functionality and communication protocols. For the interconnection of
both, we introduced an application layer gateway, which is able to translate one
protocol to the other and vice versa. Second, we setup a multi-domain multi-
layer testbed, which includes connection-oriented Ethernet as well as optical
networks at two distant locations in Europe. For path computation, the domains
exchange reachability information. We showed that multi-layer multi-domain
path computation is feasible together with IETF PCE, DRAGON NARB and
gateway implementations. Third, we evaluated the scenario and sampled the
response time for the path computation for two different operations: persistent
and non-persistent.

Our next steps are the improvement of the PCE implementation to serve
requests in parallel as well as the enhancement of the gateway to support a larger
number of IETF PCE functions, e. g., multiple requests per PCEP message.
Besides, we are currently working towards a queuing theoretical model of the
whole system.
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Abstract. In this paper, we present a new platform for experimenting with net-
worked systems and distributed applications called Virtualized Application Net-
working Infrastructure (VANI). This infrastructure is designed as a converged
communications and computing infrastructure that would facilitate operation of
an open applications marketplace. VANI enables introduction of new network ar-
chitectures that require in-network (hardware-accelerated) content processing and
storage. We describe the VANI architecture and the resources it provides. VANI
has two main planes; control and management plane, and applications plane.
VANI resources are virtualized and made available to the researchers and appli-
cation providers through a service-oriented control and management plane. The
current VANI resources are processing, storage, networking and various software-
based resources. VANI also includes a new reprogrammable hardware resource
that enables experimenting with hardware-based or hardware-accelerated net-
working algorithms and protocols. We present performance evaluations of this
reprogrammable hardware resource, and the VANI virtual networking mecha-
nism. The results show that by using the reprogrammable hardware resource,
researchers can evaluate high performance and high throughput networking algo-
rithms as easily as evaluating software-based networking algorithms.

Keywords: Networking Testbed, Network Architecture, Service-Oriented
Architecture.

1 Introduction

In the past few years, the idea of clean slate network design has been circulated in the
networking community and there have been several proposals for introducing new net-
work architectures and protocols [1,2,3]. One of the major obstacles in introducing new
network architectures was and still is experimentation with proposed network architec-
tures in a large scale environment and possibly with massive numbers of end users. To
address this problem, there have been several initiatives to build large scale testbeds for
networking research.

GENI [4] is one of these initiatives that tries to create a testbed by federating different
testbeds such as PlanetLab [5,6] and Emulab [7] on top of a research dedicated network.
GENI is still in the design and development phase, but currently it follows a slice-based
architecture [8], and different testbeds would be able to connect to each other through

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 363–382, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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GENI wrappers. The exact communication protocol between the GENI wrapper and the
testbed is left to each testbed’s control plane and currently there are a few major control
planes that are trying to federate using the wrappers.

Probably among these testbeds PlanetLab [5] is the most developed. PlanetLab pro-
vides edge hosts on Internet and implements a slice-based architecture using the Linux
vServer [9] technology. PlanetLab, however, does not have a clear solution for exper-
imentation with new layer three protocols, and it’s not clear how it would facilitate
building high scale new routers that would need hardware-based acceleration.

In Canada, there is a research dedicated optical network called CANARIE [10] that
provides light paths connecting universities and research centers across Canada. CA-
NARIE has sponsored design and development of a User Controlled Light Path [11]
(UCLP) software that enables researchers to configure CANARIE network elements
through Web Services (WS) interfaces on-demand.

Another major initiative is FEDERICA [12] in Europe that is under development
through federation of several research network platforms in Europe such as i2CAT in
Spain and HEAnet in Ireland. FEDERICA uses WS-based UCLP software for creating
on-demand virtual networks atop of involving test platforms.

Another project for experimentation with lower layer protocols and networking al-
gorithms is NetFPGA [13]. NetFPGA is a PCI card with a Field Programmable Gate
Array (FPGA), and four Gigabit Ethernet interfaces that could be used for developing
networking components such as a layer three router or a hardware accelerator.

In this paper, we present a new testbed for networking experiments and networked
systems. This testbed is different than the above mentioned projects in several aspects.
It benefits from a novel architecture for control and management functions capable of
managing various hardware-based and software-based resources. It also allows experi-
menting with new network architectures that require in-network content processing and
storage capabilities. Moreover, it includes a new high performance and high through-
put hardware resource that makes experimentation with hardware-based or hardware-
accelerated networking algorithms and protocols as easy as experimentation with
software-based protocols.

Our vision in designing this testbed was to develop a converged computing and com-
munications infrastructure to support an open applications marketplace. We investigated
architectural aspects of this application-oriented network and presented a proposal in
[14]. We also investigated autonomic management issues and proposed an approach
using virtual networks in [15].

The essential aspects to enabling the above application-oriented environment are:
1. Service-oriented application creation; 2. Infrastructure as a Services methods for
configuring and scaling resources to support applications; 3. Virtualization of physical
resources.

Based on this view of an application-oriented network, we began the development
of a testbed that would allow university researchers and application providers to de-
velop new networked systems and networking architectures. This testbed, Virtualized
Application Networking Infrastructure (VANI), allows the creation of virtual networks
of computing and communications resources. A VANI node consists of resources such
as processing, storage, networking, and programmable hardware. A service-oriented
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control and management plane allows VANI nodes to be interconnected into virtual
networks to support applications operating in the applications plane.

In the rest of this paper, we describe the main requirements in VANI design, and
its architecture and main components. Also, we explain how our design would sat-
isfy the requirements. Moreover, we present the performance evaluations on the devel-
oped resources for this infrastructure including a virtualized reprogrammable hardware
resource that enables hardware-based experimentation of networking algorithms and
protocols.

2 VANI Design Requirements

Virtualized Application Networking Infrastructure (VANI) is a testbed that allows uni-
versity researchers and application providers to utilize its internal resources to rapidly
create and deploy networked systems, and to even experiment with new layer three pro-
tocols. Although the underlying concepts of the VANI testbed comes from our view on
Application-Oriented Network [14], but networked systems running in VANI environ-
ment could follow any architecture in any networking layer. The only limitation that the
researchers are facing in VANI is that their experiments should run on top of Ethernet
as their layer two. Next, we describe the main requirements in designing VANI.

The VANI design follows some basic requirements (figure 1) The first requirement
for VANI testbed is that it should allow experimentation for future network architec-
tures that might not fit into the traditional layer three definitions. Currently networks
are primarily responsible for delivering raw data but in future it would be possible for
future network architectures to shift-up the network tasks to new functionalities that
might be required by emerging applications. Among these functionalities could be the
task of content-delivery in addition to data-delivery (such as the network architecture
discussed in [14]) that would imply having content processing and storage functions in
the infrastructure.

The second main requirement was to allow researchers to experiment with new layer
three protocols (as in the traditional definition of L3) instead of the current Internet

Testing new
L3 protocols

Monitoring/
Testing

Rapid exp setup/
app creation

Future
network arch

VANI
Isolation/
Security

Fig. 1. VANI design requirements
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Protocol. To do so, we designed the testbed assuming that everything above layer two
could be redesigned and experimented with, and we chose Ethernet protocol as the basis
of our layer two design.

Another main requirement in the testbed is to be able to setup experiments or create
new applications rapidly using already developed and ready to use components that
could be accessed through open interfaces. These components could be the virtualized
resources such as processing, low-latency hardware processing, and accelerator nodes,
or software components such as event processors that are used in many experiments for
data gathering and analysis. This requirement could be satisfied through the use of the
SOA technologies and standards that could allow flexible and dynamic composition of
reusable service components.

The fourth main requirement was to provide an isolated and secure environment for
researchers to carry on their experiments and develop their networked applications. This
requirement has to be satisfied at different levels such as traffic separation, bandwidth
allocations, storage access, secure access to the physical resources, and isolation be-
tween different physical resources. The fifth main requirement was the monitoring and
debugging mechanisms. In our design, we envisioned powerful complex event process-
ing components that could be customized to gather and analyze test and debugging data
for each experiment separately as well as for the testbed itself.

2.1 VANI Architecture

Based on these main requirements, we designed a two plane architecture for our plat-
form: control and management plane (VANI-CMP) and applications plane (VANI-AP).

VANI-CMP is responsible for virtualizing physical resources and allocating them to
the researchers and application providers. On the other hand, researchers deploy their
applications and experiments in the VANI applications plane (VANI-AP). Applications
operating in the applications plane can have their own architecture inside an applica-
tions plane slice that is created by VANI-CMP.

For example, an experiment/application could be a new layer three protocol that
covers OSI layer three and four functions, could replace TCP/IP layer, or could be

C
ontrol&
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anagem
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P
lane

A
pplication
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lane

• Two main planes
– Control and Management

Plane
– Application Plane

• All resources needed for
experiment setup are in app
plane

• Control/Management used
for allocating a slice of
resources to a
researcher/application
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• Applications can have their
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instead of IP network with a
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Content Delivery Network

Fig. 2. VANI architecture
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a new content delivery network. Figure 2 shows this architecture including its two
planes.

All virtualized resources and service components that can be used by researchers for
creating an application reside in the applications plane. Researchers can ask for these
resources through the testbed control and management plane and then they can directly
connect to the virtualized resource in the applications plane through any resource spe-
cific protocol such as HTTP, UDP/IP, or ssh.

For example, a user can ask for uploading or downloading of a file to the storage
service through the control plane, and then if permitted by the control plane, it has to
directly contact the storage file service using HTTP/TLS connection and download or
upload its files.

VANI control and management plane (VANI-CMP) is responsible for allocating
testbeds resources to the researchers. Researchers ask VANI-CMP for a resource using
VANI-CMP’s Web Service interface. WS interface is chosen due its universal accep-
tance for SOA, and the abundance of available tools for orchestrating and creating new
applications using independent Web Services.

After receiving the requests for resources from a researcher, VANI-CMP authen-
ticates the researcher and authorizes its request and then sends the request to the re-
source virtualization layer. The resource virtualization layer is the layer which abstracts
a physical resource and offers it as a service to the control and management layer. If
the allocation is successful, VANI-CMP records the allocation, and replies back to the
researcher with a successful return result.

VANI-CMP also programs and releases the resource whenever an authorized re-
searcher wants to do so. Figure 3 depicts the logical view of the VANI testbed and
how a researcher interacts with VANI planes.
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2.2 Current Physical Resources in VANI (VANIv1 Resources)

Currently, several physical resources have been virtualized and made available to VANI
users. In [16], the design and development details of these resources have been pre-
sented, and here, we briefly overview these resources and type of functionalities that
they can offer to researchers.

In VANI all physical resources are virtualized. Through virtualization, we separate
applications from their underlying physical resources. To do so, we developed a virtu-
alization layer and virtualization agents for each physical resource as shown in figure 4.
The task of the virtualization layer is to coordinate the system wide virtualization of a
resource and to expose the resource as a service component with Web Service interface
to the rest of the system, and the agents task is to launch or destroy the virtual resources
on top of each physical resource.

The first physical resource that we have virtualized is the reprogrammable hardware
resource. To develop this resource we have used BEE2 boards [17]. Each BEE2 board
has four high-end Xilinx Field Programmable Gate Arrays (FPGA) each connected to
four 10GE interfaces. We have virtualized all four FPGAs in a BEE2 board so that a
researcher could ask for one or more FPGAs and program it as s/he likes.

Researchers can ask for an FPGA through the control plane and then program it,
configure it, or release it. They also have access to the libraries for controlling the 10
GE interfaces and some other commonly used hardware blocks such as DDR2 mem-
ory modules. After programming an FPGA, a researcher can directly connect to the
FPGA through the 10GE interfaces according to whatever protocol designed for that
FPGA. For example, a researcher can use one FPGA or all four FPGAs to develop a
layer three router with 4x10GE ports or 16x10GE ports, or a content-based routers that
routes packets based on the packets payload rather than their headers. We present the
performance evaluation results for this hardware resource in the performance evaluation
section of this paper.

Interconnection Fabric Processors

FPGAs

Storage

Virtualization
Layer

Web Service interfaces

Virtualization
Layer

Virtualization
Layer

Virtualization Sub Agents

Fig. 4. Virtualizing physical resources in VANI
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Another physical resource in the VANI testbed is the processing resource. The pro-
cessing service is developed based on Linux vServer [9] technology. Linux vServer is
an OS-level virtualization software that creates a virtual processing node on top of a
Linux kernel. Researchers are able to get a processing resource through VANI-CMP,
and release it whenever they wish to do so. Once a virtual processing node is allocated,
the researcher can directly ssh to the node. Researchers are also able to program the
virtual processing node with a specific image, create an image of their own, and save it
on the storage service, and share it with others or program other virtual nodes with that
image.

We have also virtualized the internal fabric of the testbed for creating virtual net-
works. The internal fabric consists of a set of high capacity Ethernet switches that are
able to isolate traffic between different applications and experiments by creating sep-
arate virtual LANs. Moreover, it allows different experiments to intercommunicate by
creating shared virtual LANs that all have access to. This resource, together with the
processing resource, enable VANI to guarantee the bandwidth for an experiment. Later
in the bandwidth guarantee section, we will discuss this feature in more detail.

The gateway and bridge resource is another developed resource that enables com-
munication between different VANI nodes. If one of the resources in VANI needs to be
accessible from the Internet or from a resource in another VANI node, it can ask for
a public address through the gateway service and get an address for duration that the
external access is needed. The researcher can release the public address when it is no
longer needed.

Th bridge service is used for experiment involving new layer three protocols on top
of Ethernet network. Using the bridge service, a researcher can send and receive layer
two Ethernet frames to any other VANI node, and hence, would be able to develop and
test new layer three protocols over a wide area network. This functionality would only
be available if the VANI nodes are connected using a wide area Ethernet network. We
will discuss this case later in more detail.

Another physical resource developed for VANI is the storage resource. Storage re-
source is implemented on a set of distributed file servers that emulates one big storage
server. Researchers are able to connect to the storage service through VANI-CMP and
then directly connect to a file server for uploading and downloading files. All the direct
communications to the file servers for uploading and downloading files are done over a
secure HTTP/TLS connection. Researchers can use this service to store images for pro-
gramming other resources such as processing resource, and reprogrammable hardware
resource, and they can also share file with other researchers through this service.

2.3 Example: Requesting a Resource in VANI

Figure 5 shows a sample message exchange scenario between a researcher, the VANI
control and management plane and physical resources inside a VANI node. A researcher
starts requesting for a resource by invoking the getResource operation of the VANI-
CMP WS interfaces. In that request, the researcher includes the type of resource, the
duration and number of required resources.

VANI-CMP authenticates and authorizes the request and forwards the request to the
resource. All resources in the testbed expose their operations to VANI-CMP through a
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Fig. 5. A sample interaction between a researcher and VANI

generic WSDL interface. This makes it possible to easily extend the types of resources
and services in the testbed without changing the control and management software.

The resource responds back to the control plane request with a success result, and
a Universally Unique IDentifier (UUID) for the resource. The control plane stores this
returned UUID and passes it to the researcher. The researcher can program the resource
identified by returned UUID, and release it at a later time.

In the next section, we delve into the control and management design and we describe
its main functionalities in detail.

3 VANI Control and Management Plane (VANI-CMP)

VANI-CMP is responsible for performing Authentication Authorization Accounting
(AAA) operations and allocates resources to the researchers and application providers.
In addition, it performs user management functions, and stores and manages the testbed
configuration data. It also has a registry for all services and resources that can be used
by researchers for creating a new application or experiment setup. Researchers can reg-
ister new types of resources in this registry, and make them available for use by other
researchers.

VANI-CMP is designed based on service-oriented design concepts and developed
using SOA technologies. VANI-CMP is developed in Business Processes Execution
Language (BPEL) [18] and deployed on an Enterprise Service Bus (ESB) [19]. Similar
to other virtualized resources and services in the testbed, all internal components and
functions of VANI-CMP have also been developed as independent service components,
and are accessed through Web Services interfaces.

The use of ESB and Web Services enables VANI-CMP to be easily extended in func-
tionality and accessed through other types of interfaces in the future. This design choice
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also enables independent development, testing, and redeployment of internal functions
of VANI-CMP such as AAA operation, configuration management, etc. Moreover, the
use of BPEL language for VANI-CMP enables a high level description of the VANI
control and management operations. This enables rapid and easy modifications of the
control and management logic.

In the next subsections, we examine each of the functionalities of the control and
management plane and we describe the design steps and interfaces of each of the
modules.

3.1 User Management

Three concepts are used to manage users in VANI: application plans, service levels, and
plan administrator levels. Application plans are used to show different experiments and
to organize resources and resource usage in each experiment. When booking a resource,
the researcher must specify which plan (experiment) the resource is being booked on.
Any researcher belongs to a service level which governs what control operations s/he
is allowed to call and also how much of each resource s/he is allowed to book. Cus-
tom service levels may be designed for specific users in order to maintain flexibility.
Lastly, plan administrator levels are used to govern access to certain resources. Resource
users will be granted specific levels of access defining their ability to release, program,
save, etc.

3.2 Authentication Authorization Accounting

The control software is responsible for handling authentication of users. All operations
in the control plane require users to provide credentials. Currently, credentials are in the
form of a user name and password combination however the implementation allows this
to be easily changed. On every call to the control software, the user is authenticated and
a check is made to ensure that the user has the rights to execute the requested operation.
In addition to authentication, the control software is responsible for authorizing access
to resources. Every access to a resource consists of two checks, ensuring the resource
belongs to the user, and the user has the rights to manipulate the resource as requested.

In order to prevent outsiders from directly accessing resources and bypassing the
control plane, all requests to resources require credentials known only to the control
plane. This credential is generated when resources are initialized.

The control software keeps a record every time a resource is booked or released. This
keeps an account of which resource was used by which user (on which plan) and for
how long as well as all resources currently in use. Resources are identified by a UUID
generated by the resource and passed back through the control plane.

3.3 Resource Allocation

Resources are booked through the control plane whether the user is a researcher or an
application provider building a resource on top of another. Users provide their creden-
tials and specify which resource they wish to book (on which VANI node) and the plan
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<xsd:element name="getRequestGenericContents">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="internalIP" type="xsd:string"></xsd:element>
<xsd:element name="uuid" type="xsd:string"></xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Fig. 6. A sample schema for generic XML content in a getRequest response message

to which the resource will belong. The control plane ensures the user is allowed to book
the resource and determines the location (WSDL address) of the resource in the net-
work. A getResource request is then made to the resource. The resource does not know
who is requesting the resource as this information is hidden by the control software. If
successful, the resource will return a UUID identifying the resource as well as any other
relevant data which is then passed back to the user. The UUID is used by the control
plane for accounting purposes.

3.4 Generic Resources/Registration

New resources can be made available dynamically in the control plane through a reg-
istration operation. The new resource must consist of a unique name, a service name,
a port name, one or more WSDL addresses, and optionally a JNLP address for the re-
sources GUI. The service and port name are used to create an end point reference which
is assigned to the partner link when the resource is to be accessed. The resource may
have multiple WSDL addresses if there are different instances of the resource on differ-
ent VANI nodes. The control software will select the appropriate address depending on
which node the user is attempting to access. Lastly, a JNLP address may be included
which allows resource creators to design and deploy their own GUI using Java web start
technology [20].

In order for resource creators to dynamically add new resources to the control plane,
it is necessary to use a generic WSDL interface for all resources. The main objective
with the generic interface is to provide a template that makes creating resources easy
while providing flexibility. This is accomplished by providing a number of operations,
messages that are common between many resources such as get, release, and program.
To maintain flexibility, each operation contains an optional XML string which can be
used to customize data that is passed in and out (figure 6). Furthermore a generic op-
eration is included in the WSDL which can be used to include operations not already
included in the template.

4 Security in VANI

One of the basic requirements in VANI design was to make sure the experiments are
done in a secure and isolated environment from the other applications and experiments.
To create this secure environment we have to consider security issues in various parts
of the system architecture.
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The first part is to secure the communications between the researchers and VANI-
CMP. In VANI all communications between these two entities are encrypted using se-
cure SSL connections and WS-security specification. To do so, each researcher has
to share his/her public key with VANI (and vice versa). On top of that VANI-CMP
authenticates the researchers and application providers using the credentials provided
in all transactions, and then, authorizes the researcher’s access level to the resource.

The second part is the communications between the resources and VANI-CMP. These
communications have also been encrypted. Moreover, credentials only known to the re-
source and VANI-CMP are included in all communications from VANI-CMP to the
resources.

All internal traffic within one experiment is separated from other experiments using
tagged Ethernet VLANs. By proper configuration of the testbed internal fabric resource,
we are able to isolate these tagged VLANs from each other. This case is discussed in
more detail in the bandwidth guarantee section.

Communications inside the applications plane, internal to one experiment, or coming
to and from that experiment could be encrypted or not depending on the experiment,
and therefore it is outside of the scope of the VANI design. This allows researchers to
freely design and develop new encryption and decryption algorithms in different layers
inside their application plane slice.

5 Bandwidth Guarantee in VANI

In order to make sure that one experiment cannot undermine another experiment’s ca-
pability to send and receive traffic, we need to have a bandwidth guarantee mechanism
in place. Likewise, for communications between different VANI nodes, there should be
a rate guarantee in place so that a distributed experiment could have a guaranteed access
to the available bandwidth.

Since all communication in VANI is carried over the VLAN tagged Ethernet frames,
an Ethernet rate limiting mechanism in processing nodes has been developed. By doing
so, we limit the rate in which each virtual processing node sends and receives traffic
from/to another virtual processing nodes inside a VANI node.

Also the gateway and bridge service controls the rate in which an experiment
sends/receives traffic to/from the VANI wide area network. The wide area network
that is used to connect the VANI nodes would be a research-dedicated network like
CANARIE [10] that can guarantee the aggregated traffic to/from the VANI nodes. If
the wide are network was able to provide dynamic and on-demand bandwidth alloca-
tion, VANI would be able to use this functionality whenever an experiment asks for
sending/receiving traffic to/from the wide area network. VANI nodes could also be con-
nected to the public Internet network, however, bandwidth could not be guaranteed for
the experiments in this case.

To request a bandwidth guarantee in VANI, a researcher can specify the bandwidth
requirements of a virtual processing node in the resource get request. Likewise, a band-
width requirement can be specified when access to the VANI wide are network is re-
quested. The virtualization layer in VANI control and management plane makes sure
that the specified requirements are met when allocating virtual resources to the
experiment.
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5.1 Interconnecting VANI Nodes in IP Layer

Figure 7 shows how we can set up an experiment or create a distributed application
across a wide area IP network. In this setting, all resources inside an experiment in a
VANI node get a local IP address in the range of 10.X.X.X. All resource could send
traffic to the wide are network using the NAT functionality implemented in the gateway
service (shown as GW in figure 7). It is possible to put multiple gateways in place and
direct outgoing traffic to different gateways to avoid bottlenecks in the system.

On the other hand, if a resource needs to be accessible from the wide area network,
the researcher can ask the gateway service for a public address/name, and the gate-
way service redirects all traffic to that public address to the resource’s internal IP ad-
dress/VLAN.

5.2 Interconnecting VANI Nodes in Ethernet Layer

Figure 8 shows an Ethernet connected VANI. Ethernet connected VANIs use the bridge
service instead of the gateway service to interconnect. Inside a VANI node, all resources
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Fig. 8. Connecting VANI nodes in Ethernet layer
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in an experiment communicate using a specific VLAN which is unique to the VANI
node. If an experiment needs to operate across multiple VANI nodes (for instance, to
test a new layer three protocol), the VANI wide area network has to be able to transfer
Ethernet frames. In this case, a unique Q-in-Q tag [21] would be assigned to the experi-
ment. The bridge service would be used to re-frame the internal tagged Ethernet frames
to the wide are Q-in-Q frames and the destination bridge would do the reverse opera-
tion, and deliver the Ethernet frames to the destination MAC/VLAN in the destination
VANI node.

Since Q-in-Q tagged Ethernet frames might not be available in a wide area network,
we are able to define public MACs that can be used for redirecting traffic to an internal
MAC/VLAN by the bridge service. This functionality would enable any other Ethernet-
based experiment to send Ethernet frames to a resource in another experiment through
the bridge service.

5.3 Experimentation with L3 Protocols

Figure 9 shows how the testbed could be used to test a new layer three protocol in a a
large scale and distributed environment using proxy nodes. In this setting, the new L3
protocol is tunneled within IP payload to a resource inside a VANI node, and then that
resource strips off the IP header and feed the new L3 packet over the VANI wide are
Ethernet network.

Testbed Network

Access through IP tunnels

Example:
“Red” network
protocol stack
deployed in slices
of VANI nodes &
tested to scale

Fig. 9. Large scale experimentation with new L3 protocols

6 SW-Based Resources in VANI

One of the main contributions in our testbed control and management plane is that we
could encapsulate any software or hardware resource in our testbed as a service. To do
so, the resource can be virtualized, and abstracted as a service component that follows
a generic resource WSDL template. Then it can be registered into the control plane and
made available to other researchers. Details on how this task can be accomplished have
been discussed in the control and management plane section in this paper.

Examples of such resources as a service are any hardware function or resource that
could be reused in different applications and experiments such as hardware accelerators
for encryption, decryption, content conversion, and content compression/decompression.
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Also other reconfigurable hardware modules such as NetFPGA could be virtualized and
offered to the researchers on an on-demand basis.

Other types of processing nodes could also be offered to the researchers as a re-
source. For example, Amazon Elastic Computing Cloud (EC2) nodes [22], GENI vir-
tual processing nodes, VMWare-based virtualized processing nodes [23], or Graphics
Processing Units (GPUs) could be controlled and managed by VANI-CMP.

Moreover, software services such as database service, BPEL orchestrator engine and
Complex Event Processing (CEP) engine, could be developed and/or deployed on top
of current virtual resources and made available to the researchers through VANI-CMP.
Currently, we have developed and deployed several software-based resources as service
components in VANI including a database service, BPEL orchestrator engine, and a
sensor service.

7 Federation with GENI

GENI is an initiative to create a large scale experiment through federation between
different testbeds. Federation in GENI is done using GENI wrappers. A GENI wrapper
is developed for each testbed and testbeds could connect to each other through them.
In VANI, we developed a wrapper for control and management plane, and through that
we invoke GENI wrapper operations to get a node on any GENI testbed. We tested our
wrapper with PlanetLab GENI wrapper and managed to obtain a PlanetLab processing
node through our VANI-CMP.

In VANI, researchers are able to get a PlanetLab processing resources using VANI
generic resource template. Since PlanetLab does not support storage service, and also
does not support other VANI requirements such as processing and bandwidth require-
ments, access to PlanetLab processing resources would not support these functionali-
ties. Figure 10, shows the structure of interconnection between VANI and PlanetLab
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through the GENI wrappers. Currently, we are in the development phase of offering
VANI resources to GENI researchers through the VANI wrapper.

8 A VANI Node

A VANI node is composed of the resources described in this paper, their corresponding
virtualization software, control and management software, and the storage service. A
VANI node can be totally deployed on a computer cluster composed of normal com-
puting blades, and manageable Ethernet networking elements. The basic resources in a
VANI node are the processing resource, the storage service, and the fabric service for
the network virtualization that are deployed on a computer cluster.

All other resources and the control and management software are deployed on these
basic services. In addition, all other software-based resources, and the virtualization
layer for resources like reconfigurable hardware resource, and the VANI wrapper for
connecting to GENI testbeds are also deployed on these basic resources.

The only elements that cannot be found in a normal computer cluster are the re-
configurable hardware resources, the gateway and bridge services, and required 10GE
Ethernet switches. These resources are also co-located with the computing cluster to
provide the WAN connectivity and to enable running experimentation with the recon-
figurable hardware resource.

9 Performance Evaluations

Up to now, we presented the VANI architecture and we discussed different aspects of
its design. To find if the currently developed resources can meet VANI design require-
ments, we performed several experiments on those resources. In this section, we present
performance measurements on two key physical resources that have been virtualized
and offered to the researchers in VANI. The first one is the reprogrammable hardware
resource, and the next one is the processing resource. Our main focus in this part would
be to see if we could guarantee the promised quality of service to the researchers that
use these resources in their experiment.

9.1 Reprogrammable Hardware Resource

By introducing a virtualized and reprogrammable hardware resource in VANI, we en-
able researchers to test new networking algorithms and protocols using high perfor-
mance and high throughput hardware resources. To do so, we virtualized BEE2 boards
developed in the University of California at Berkeley. A BEE2 board consists of one
controlling FPGA, and four high capacity Xilinx Vertex-II FPGAs (figure 11) that can
be programmed by users. Each FPGA has four 10GE interfaces, and 4 GB of memory.

In VANI, a researcher can get a set of FPGAs on a BEE2 board, and can ask for
on-board inter-chip communication channels which can carry up to 5 GigaBytes per
second (GBps). The detailed design of BEE2 virtualization system and introducing it
as a resource in VANI can be found in [16]. Here, we present the performance mea-
surements on this resource. The parameters of interest are the programming time of the
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FPGAs through the virtualization software as well as the speed with FPGAs can send
and receive data.

The first parameter is the time in which a researcher can program an FPGA through
the testbed control plane. Also, we would like to know how this time would change if
four researchers want to program all four FPGAs concurrently. To do so, we developed
a bitstream that initializes all 10GE interfaces on the FPGAs and starts sending a burst
of UDP/IP packets on one of its 10GE interfaces, and we programmed FPGAs through
VAN-CMP using the generated bistream for several times. Table 1 shows the average
maximum programming time that programming one, two, three, and four FPGAs take.
As can be seen, it only takes 30 seconds on average to program an FPGA in the case
where all four FPGAs are programmed concurrently, and this time is around 11 seconds
if only one FPGA is programmed at a time.

This fast programming time allows a researcher to get an FPGA with four 10GE
interfaces in less than a minute, and to run an experiment and return the FPGA back to
the VANI resource pool as soon as it’s not required.

The next experiment that we performed is to measure the speed with which the FP-
GAs can send and receive traffic. To do so, we developed a traffic generator using
Verilog hardware description language, and we started sending traffic from one 10GE
interface to another 10GE interface on the same FPGA, and we recorded the maximum
bandwidth that we could receive in the hardware resource. We also compared this with
the traffic statistics gathered by the Ethernet switch connected to the FPGA. We re-
peated this experiment several times and were able to send and receive Ethernet frames
to the rate of 1GBps, which is equal to 8Gbps. The reason that we could not send more
traffic is the 8/10 bit encoding mechanism for 10GE-CX4 interfaces, and 8Gbps is the

Table 1. Average maximum FPGA programming time

FPGAs 1 2 3 4
Programming Time (s) 11 17 24 30
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maximum achievable traffic rate per port on a BEE2 board. In our measurements, this
rate did not change if all ports started sending and receiving traffic at the same time
since separate internal modules are controlling each port. This experiment shows that
one FPGA alone can send and receive 32Gbps traffic. If a researcher get all four FPGAs
on a BEE2 Board it is possible to send/receive traffic in the rate of 4x32=128Gbps.

We have used this reprogrammable resource in developing the high capacity gateway
and bridge service for VANI, and we have developed a bandwidth control mechanism on
this resource that controls and guarantees the rate at which one experiment could send
and receive traffic to/from a wide are network. In the future, we will present our design
for the gateway and bridge service, and we will present our performance measurements
for this service as well.

9.2 Processing Service and Network Virtualization

Another main physical resource that we have virtualized is the processing service that
uses Linux vServer software. There have been studies on processing virtualization tech-
niques [24], and also specifically on Linux vServer [9]. Linux vServer performance
evaluations show that this virtualization module has a very low overhead on overall
system performance.
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However, since we are also doing network virtualization in addition to the processing
virtualization, we conducted two more experiments that were necessary to show that
virtual processing nodes can have guaranteed access to the VANI network.

In our experiment, we virtualized cluster blades with dual Xen 1530 CPUs and 2GB
of RAM and one 1GE interface. The Linux kernel version that we used was 2.6.16, and
we used vServer 2.3.2. patch. The developed virtualization layer allows up to ten virtual
nodes on a physical node. For this experiment, we initialized and launched 5 virtual
nodes on a node named node01. We also launched 5 other virtual processing nodes
on five separate servers with same capabilities described for node01. These nodes are
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Table 2. UDP/TCP traffic measurements in MBytes per second (MBps)

node01 from/to UDP UDP (rl) TCP TCP(rl)
node02 (12.50MBps) 24.5/24.3 12.4/12.4 15∼35/24.7 12.3/12.3
node03 (18.75MBps) 24.5/24.3 18.8/18.8 15∼35/24.3 18.4/18.4
node04 (25.00MBps) 24.5/24.3 25.3/25.3 15∼35/24.1 24.8/24.6
node05 (31.25Mbps) 24.5/24.3 31.7/31.6 15∼35/22.1 31.3/31.1
node06 (31.25Mbps) 24.5/24.3 31.7/31.6 15∼35/23.2 31.3/31.1

named node02 to node06. Each of the virtual nodes in node01 belongs to an experiment
that includes one other virtual node running on one of the other nodes. The topology
and VLAN tags for experiments are shown in figure 12.

In this experiment, we measured the UDP and TCP traffic rate that each virtual node
in an experiment could send and receive in different cases. The first case is to find out
the maximum achievable rate when no limit is placed on the traffic rate and only one
experiment is active. This rate is 122MB per second (MBps) for both UDP and TCP
traffic which is equal to 976Mbit per second (Mbps). Table 2 show the achievable rate
in different cases when all experiments are active and send as fast as they can. Since
all experiments running on node01 try to send and receive on one 1Gbps Ethernet link
concurrently, they get a different share of this available traffic in different cases.

In table 2, we show the maximum traffic rate in MBps between a virtual node on
node01 and its corresponding virtual node on node02 to node06. The UDP and TCP
columns show the maximum rate when all virtual nodes in all experiments send and
receive UDP or TCP traffic, concurrently, without any rate limit mechanism in place.
As it can be seen, because of the massive packet loss in this case, TCP cannot achieve
a stable rate, and its rate changes from 15 to 35 MBps. These measurements prove the
need for a rate limiting mechanism when different experiments want to run on a shared
virtualized infrastructure.

The columns with (rl) show measurements when we limit the send and receive rate
in experiments to (12.5), (18.75), (25), (31.25), and (31.25) MBps respectively, totaling
to 118.75 MBps (950 Mbps). As can be seen, using the rate limit functionality we could
achieve the bandwidth guarantee requirements (with maximum 1% deviation from the
target rate) in a VANI node. Another case that we have studied is the case where all
virtual nodes in one experiment start sending traffic to one virtual node concurrently.
This would result in congestion on the shared link that is serving the destination virtual
node. To solve this problem, we have developed a novel traffic control mechanism that
we will present in a separate paper in future.

10 Conclusion and Future Work

Virtualized Application Networking Infrastructure (VANI) is a converged communi-
cations and computing network that facilitates the realization of an open applications
marketplace using a service-oriented control and management plane capable of manag-
ing hardware-based and software-based resources.
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The architecture of VANI is designed to allow rapid application creation and exper-
iment setup using service-oriented approaches. VANI utilizes virtualized commodity
physical resources such as processing, storage, and networking resources. It also in-
cludes reprogrammable hardware resources used for development and deployment of
high scale and high throughput networking algorithms and protocols.

VANI is designed to enable experimentation with architectures and applications
that provide responsiveness and quality of service by having processing, storage, and
hardware acceleration resources in all its nodes. Example applications that are video
streaming applications, new content delivery networks, as well as power-aware and
green networking architectures. In addition, applications that require high performance
computing and networking can benefit from VANI’s reprogrammable hardware re-
source. This resource can be reprogrammed in a short time to run hardware-based net-
working algorithms and protocols, and can send and receive traffic rates up to 128Gbps.
Currently, we are working on development of a novel green networked system on VANI.
We are also in the process of designing novel functionalities into the VANI control and
management plane to automate application creation and deployment.
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1 Introduction

The Network Testbed Mapping Problem is the fundamental combinatiorial prob-
lem faced by network test environments such as Emulab [10] and DETER [1].
This is the problem of embedding instances of an emulated or virtual test net-
work, which consist of a collection of nodes, links, and LANs, onto a physical
cluster using virtual LANS so that the inter-node bandwidth requirements of
the test network is satisfied. This problem is thought to be difficult, since inter-
node bandwidth in a typical cluster often depends on the relative placement
of the nodes within the cluster. Nodes which are placed on the same switch
have sufficient bandwidth with adequately provisioned switches; however, since
switch-switch bandwidth is typically much less than the aggregate bandwidth
each switch allocates to its attached nodes, nodes attached to different switches
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For this reason, network testbed mapping is typically solved by heuristic meth-
ods. For example, Emulab and DETER use simulated annealing, a probabilistic
hill-climbing algorithm originally used for VLSI placement in the 1980’s. Sim-
ulated annealing, described below, works by starting from some solution and
attempting to find a better, lower cost, solution. In this, it is similar to a large
number of perturbative or progressive-improvement solutions. It differs from
many in that it permits “hill-climbing” perturbations which temporarily lead to
a worse solution but ultimately yield a superior solution. The intuition is that
pure improvement perturbative methods such as the Greedy method find only
local optima; permitting occasional “upward” moves which find a poorer solu-
tion offers the prospect of finding a better global solution than one can find from
pure improvement methods.

The attraction of perturbative methods in general is that a perturbative al-
gorithm works on any combinatiorial optimization problem. All one needs is a
metric to measure the quality of a solution, an initial solution, and an ablity to
move from one solution to another; given these three elements, the algorithm
iterates repeatedly and eventually produces a better solution.

For example, in the case of the network testbed mapping problem, the initial
solution is an assignment of nodes to switches; the metric is the deficit in actual
vs. desired inter-node bandwidth; and a move is the exchange of pairs of nodes
or the reassignment of a single node to a switch.

Given how simple perturbative methods are to use, one might wonder why
they are not universally used. The answer is that the generality of perturbative
methods means that they can only give fairly weak guarantees of solution qual-
ity. Despite the best efforts of many theorists, simulated annealing only gives
stochastic assurances of quality, and the characteristics of the solution space
on which simulated annealing works well is largely conjectural. Sorkin [14] per-
suasively argued that simulated annealing was likely to do well on self-similar
solution spaces, but one cannot a priori determine which problems or instances
have self-similar solution spaces.

Furthermore, it is easy to demonstrate hard problems for which simulated
annealing will not do well. Consider, for example, an instance of SAT[6] with
relatively few satisfying assignments. Starting from a random assignment, the
odds that simulated annealing’s random exploration of the solution space will
find a satisfying assignment in reasonable time is vanishing; and in the case of
an unsatisfiable instance, simulated annealing will prove nothing until it has
explored the entire space.

Simulated annealing has proven to be succesful in testbeds at the scale of
Emulab and DETER[12]. However, recent data suggests that it may not scale
well in significantly larger settings [8][3]. Other interesting approaches have been
proposed in the recent literature, notably [11], who exploited the fact that in
many network graphs isomorphic subgraphs are detected. [16] broke the ground
of observing that modification of the underlying substrate network can make the
problem more tractable. In this paper, we show that some classes of underlying
network substrate make this problem easy.
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Given that the next generation of testbeds is projected to handle emulated
test networks more than an order of magnitude larger than Emulab or DETER,
this problem is worth revisiting. In particular, we would like to investigate the
following questions:

1. When is Network Testbed Mapping NP-hard? It is widely believed to be
hard, but to date the reductions appearing the literature have been sketches
in papers devoted to heuristic development. While this is quite common, it
doesn’t tell us precisely why NTM is hard, which often illustrates where and
when it can be solved.

2. Though Network Testbed Mapping is NP-hard, are there any circumstances
under which it is easy? Can we design and engineer our range cluster net-
works to make it easy?

3. Though Network Testbed Mapping is NP-hard, is it amenable to non-
perturbative methods which can give stronger guarantees of the relative qual-
ity of solutions as compared to simulated annealing? For example, some vari-
ants of VLSI placement can be solved by the Linear Programming with Ran-
domized Rounding[15] technique, which can give strong probabilistic guar-
antees. While approximation and probabilistic techniques typically are not
conserved across polynmial reductions (or else every problem in NP would
be easy to approximate, a strong and manifestly false result), often the na-
ture of a reduction may provide a heuristic guide to good approximation and
probabilistic techniques.

In this paper we consider these questions.

2 The Network Testbed Mapping Problem

The formal network testbed mapping problem is a simplification of the actual
mapping problems solved within real testbeds. We assume, e.g., that all nodes
are homogenous which means we can freely assign nodes to any switch. We ignore
details of the interconnect fabric between the physical switches, assuming that
each switch has a dedicated connection of some bandwidth to every other switch.
These two assumptions simplify the problem to enable us to prove theorems
about it, without assuming the problem away.

For example, one can easily capture heterogeneity of nodes by making the
capacity (maximum port count) of each switch a vector, as opposed to scalar,
quantity. The independence of inter-switch bandwidth is certainly a simplifying
assumption, but for the purposes of complexity results it is unnecessary to intro-
duce a more sophisticated model in the problem description – if this formulation
of the problem is hard, then the general problem will be as well. Furthermore,
the simplified problem generalizes very naturally to the general problem, as will
be seen below.

Problem 1. The Network Testbed Mapping Problem. Given: A network
of switches, s1, ..., sn with (port) capacities C1, ..., Cn and interswitch bandwidth
capacities B11, ...B1n, B21, ..., Bnn, and a test network of nodes N1, ..., Nm with
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internode bandwidth requirements b11...bmm. Question: is there an injective as-
signment A : N → s such that:

|A(u) = i| ≤ Ci ∀i, 1 ≤ i ≤ n (1)

and: ∑

A(u)=i,A(v)=j

buv ≤ Bij ∀i, j (2)

(Where the summation is taken over all A(u),A(v) satisfying the equalities.) We
say any mapping that satisfies (1) and (2) is feasible.

The capacity of a switch is the number of edge nodes to which it can connect; the
bandwidth capacity of a pair of switches is the total bandwidth between them.
The two conditions on the problem are therefore that the assignment function
not assign too many nodes to any switch, and the total assigned bandwidth
between any pair of switches doesn’t exceed the available bandwidth between
that pair of switches. (We note that this formulation of the problem identifies
only one edge link per edge node. In practice, a real test cluster would support
n edge links per edge node. If we assume that the physical test cluster wiring
connects all links from an edge node to a single switch, then the problem is
unchanged. The formulation generalizes easily by permitting A(u) to be a fixed
sized set for each u, where |A(u)| is the number of outgoing connections from
u. The bandwidth constraint 2 becomes slightly messier, since there are now
multiple paths between u and v. In practice, one cannot discuss this sensibly
without some knowledge of the routing discipline used in the multiple path case.
If routing between terminals is deterministic, as it usually is, then one can treat
each NIC of each node as a separate node).

Remark 1. The definition of network testbed mapping can extend to the con-
ventional tree-of-switches network in a data center. Each switch in a tree-of-
switches network has an upward bandwidth capacity Ui, a downward bandwidth
capacity Di, a set of descendant switches ci, and a set of switches ri for which
it is the least common ancestor. The second constraint equation (2) in NTM is
replaced by a pair of constraints, where the upward capacity must exceed the total
bandwidth exiting the tree rooted at this switch. Formally, let

ui =
∑

A(u)∈ci,A(v) �∈ci

buv

Then: Ui ≥ ui. Similarly, the downward capacity must exceed the total bandwidth
exiting the sub-tree + the total bandwidth passing through this switch as the root
switch. Formally, let

di =
∑

A(u)∈ri,A(v)∈ri

buv

then
Di ≥ ui + di

where ui is defined as above.
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Observation 1. NTM is in NP
Proof. Given an assignment A, conditions (1) and (2) are checked in linear time
straightforwardly.

We will now demonstrate that NTM is NP-hard, by reducing the known NP-
hard problem Minimum Graph Bisection.

Problem 2. Minimum Graph Bisection. Given: an unweighted, directed graph
G(V, E), integer K. Question: is there a partition of V into sets V1, V2, ||V1| −
|V2|| ≤ 1, such that:

|(v1, v2) ∈ E|s.t.v1 ∈ V1, v2 ∈ V2 ≤ K

See, for example, http://tracer.lcc.uma.es/problems/bisect/bisect.htm.

Theorem 1. Network Testbed Mapping is NP-complete.

Proof. We reduce Mimimum Graph Bisection. Given an instance G(V, E), in-
teger K of Minimum Graph Bisection, derive an instance of Network Testbed
Mapping as follows. We define two switches, s1 and s2, with capacities C1 =
�(|V |/2)�, C2 = 	(|V |/2)
, and interswitch bandwidth capacities B12 = B21 =
K. Our test network of nodes is N1, ..., N|V | (one node per graph node), with
buv = 1 if (u, v) is an edge in E, buv = 0 otherwise.

Plainly, the derivation of an instance of Network Testbed Mapping is linear.
Let A be the assignment which solves the Network Testbed Mapping instance.
Let V1 = {u|A(u) = 1}, V2 = {v|A(v) = 2}. V1 and V2 are a bisection of V , and
V1 and V2 are derived in linear time from A. Further,

∑

A(u)=1,A(v)=2

buv ≤ K

since A is a solution to the Network Testbed Assignment problem, we have:

|(u, v)|u ∈ V1, v ∈ V2 ≤ K

so (V1, V2) is a solution to the Minimum Graph Bisection instance

This suffices to show that the Network Testbed Mapping is NP-complete. In
the next section, we will consider special cases where the problem is easy, and
following that we will consider approximation and heuristic algorithms for the
general case.

3 Polynomial-Time Special Cases

The reduction in the previous section permitted switches of arbitrary capacity
and outgoing bandwidth. In practice, of course, switches have finite capacity and
interswitch bandwidth is largely a function of the network topology. Further,
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for many network topologies, such as the common tree-of-switches fabric we
discussed earlier, interswitch bandwidth is not independent but competitive.

Some network topologies, however, permit easy solution of the Network
Testbed Assignment problem. We characterize this set here.

In this discussion, we will assume network fabrics constructed from homoge-
neous switches with a specific bandwidth capacity per port, and the same port
bandwidth is used on the network interface cards (NICs) of the various nodes.
This simplification, and appropriate choice of units permits us to take Bij as
a non-negative integer and 0 ≤ buv ≤ 1, and to take a node as equivalent to a
unit of bandwidth. This has no substantive effect on the results below, but does
permit us to state the results clearly and without introducing spurious constants.

Definition 1. A network fabric is said to be bandwidth-unconstrained if and
only if:

1. Inter-switch bandwidth capacities are independent; assigning bandwidth be-
tween one pair of switches doesn’t affect available bandwidth between a dif-
ferent pair

2. For each pair of switches i, j:

Bij ≥ max(Ci, Cj)

where Bij and Ci are taken from the definition of the Network Testbed Mapping
problem.

Several scalable network fabrics have been proposed in the literature recently,
notably the data center networks proposed by Al-Fares et al. [2] and by Scott et
al. [13]. These conditions make network testbed mapping trivial.

Theorem 2. Consider any Network Testbed Mapping problem where the fabric
is bandwidth unconstrained, in particular Bij ≥ max(Ci, Cj) for all i, j. Every
assignment A : N → S such that |A(u) = i| ≤ Ci ∀i is feasible.

Proof. The constraint |A(u) = i| ≤ Ci merely says that we can’t assign more
nodes to a switch than it can take, so consider any assignment A that meets this
constraint. We must show for any pair of switches i, j, that:

∑

A(u)=i,A(v)=j

buv ≤ Bij

But this is trivial. Under our notational convention, 0 ≤ buv ≤ 1 for all u, v, so:
∑

A(u)=i,A(v)=j

buv ≤ |A(u)= i,A(v) = j|

and the constraint |A(u) = i| ≤ Ci ∀i implies |A(u)= i,A(v)=j| ≤ max(Ci, Cj),
so:

∑

A(u)=i,A(v)=j

buv ≤ |A(u) = i,A(v) = j| ≤ max(Ci, Cj)
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and the fact that the bandwidth is unconstrained ensures:

max(Ci, Cj) ≤ Bij

This theorem strongly motivates the use of scalable network architect ures as
building blocks for network testbeds.

4 Heuristic Approaches

The premise of Theorem 2 is in fact stronger than necessary. It is simply a
premise that can be stated entirely in terms of cluster topology, independent
of the details of the test network to be embedded. One can achieve the same
objective by significantly underpromising bandwidth to embedded nodes. In
particular, if

max
u,v

buv ≤ min
i,j

Bij

max(Ci, Cj)
(3)

then any assignment is feasible.
The proof is quite similar to the proof of Theorem 2. In fact Theorem 2 is the

special case of (3) where:

max
u,v

buv ≤ 1 ≤ min
i,j

Bij

max(Ci, Cj)

Since by convention
max
u,v

buv ≤ 1

and the premise of Theorem 2 is

1 ≤ min
i,j

Bij

max(Ci, Cj)

These two inequalities are sufficient to maintain the general inequality needed for
the theorem, but not necessary. Indeed, one can ensure the general invariant by a
variety of means. The general invariant is a restriction of bandwidth demands of
the test network relative to the bandwidth capacity of the cluster. For example,
the DieCast system of Gupta et al.[7] articially enhances the relative capacity
of a switch infrastructure to a test network by slowing down the test network’s
system clocks.

5 Network Testbed Mapping on a Leaf DAG

An interesting topology for network testbed mapping is a variant of a tree called
a leaf Directed Acyclic Graph, or leaf DAG. A leaf DAG is a multi-rooted directed
acyclic graph where internal nodes have a single parent, but leaves are permitted
to have multiple parents. This specific class of topologies is often chosen for
data center networks, because it permits alternate paths from the leaves while
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Fig. 1. Emulab Topology

retaining the autoconfiguration properties of standard Ethernet networks. The
Emulab topology, for example, is a leaf DAG [4]. It is reproduced in Figure 1.
The switches in this figure form a tree of depth three; Cisco8 is the root switch,
with Cisco3 and Cisco5 as its (switch) children. Cisco1 and Cisco4 are children
of Cisco3. Each switch has leaves attached. The network is a leaf DAG because
pc201-210 and pc241-360 are multihomed, attached to both Cisco8 and Cisco5.

The reduction given above suggests a strong similarity between the network
testbed mapping problem and the graph partitioning problem. The latter prob-
lem has been studied extensively, particularly in the field of VLSI placement.
The first procedure to be suggested was the Kernighan-Lin procedure [9]. This
procedure bipartitioned a graph to minimize the weight of the edges crossing
between the two partitions. It is shown in Figure 2. This procedure requires the
computation of the gain to be obtained by interchanging a pair of nodes v1, v2

where v1 ∈ V1 and v2 ∈ V2. The gain is simply the change in the sum of the
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weights of the edges crossing the partition. An invariant of this procedure is that
each node can be moved at most once, and hence we must differentiate between
those nodes that have been moved and those that have not. Hence there are
four sets of nodes in this procedure; V1, the set of unmoved nodes on the left
side of the partition, U , the nodes on the left side of the partition that were
moved from the right, and the corresponding sets V2 and V on the right side of
the partition. So the gain from exchanging v1 and v2 is the weight of the edges
that crossed the partition before the exchange minus the edges that crossed the
partition after the exchange. The sum before exchange is just:

∑

v∈V2
⋃

V

w(v1, v) +
∑

u∈V1
⋃

U

w(v2, u) − w(v1, v2)

with the subtraction of w(v1, v2) to eliminate double-counting. Similarly, the
sum after exchange is just:

∑

v∈V2
⋃

V

w(v2, v) +
∑

u∈V1
⋃

U

w(v1, u) − w(v1, v2)

The total gain, Gv1,v2 , is just the difference:

Gv1,v2 =
∑

v∈V2
⋃

V

(w(v1, v) − w(v2, v)) +
∑

u∈V1
⋃

U

(w(v2, u) − w(v1, u)) (4)

The Kernighan-Lin procedure has been well-studied. Its cost is dominated
by the need to recompute the potential gain at each step. Assuming fixed, low
degree for each node in the graph, computing the gain for each pair is a constant-
time operation. Since there are O(n2) pairs, where n is the number of nodes in
the graph, each iteration takes time O(n2). Each iteration reduces the size of V1

and V2 by one node each; there are O(n/2) nodes initially in each partition, the
algorithm is O(n3).

The algorithm in Figure 2 may be iterated so long as cost improves; in this
case the global runtime is O(cn3), where c is the initial partition cost.

In 1982, Fidducia and Mattheyses improved the performance of the
Kernighan-Lin procedure to linear time[5]. Fidducia and Mattheyses made two
key innovations to improve the performance of Kernighan-Lin. First, Fiduccia-
Mattheyses does not exchange nodes as Kernighan-Lin does, but simply moves
individual nodes from one side to another. The sides alternated to keep the
partition balanced. Second, the gain for moving each node is precomputed, and
nodes are stored in an array indexed by the gain for moving the node. This per-
mits efficient selection of the best node to move. The valid indexes of the array
are −dw, ..., dw, where d is the maximum degree of a node and w is the max-
imum edge weight. In the case of VLSI design (specifically, VLSI placement),
which inspired the Fiduccia-Mattheyses procedure, typically w = 1 and d was
guaranteed small due to physical considerations.

When nodes are moved, only the gain of neighbors need to be updated, and
the neighbors themselves need to be moved to the appropriate list. Assuming
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KernighanLin(G, V1, V2):

U = V = ∅
foreach pair v1, v2, v1 ∈ V1, v2 ∈ V2

gain(v1, v2) = Gv1,v2

bestCost =
∑

v1∈V1,v2∈V2
w(v1, v2)

bestPartition = V1, V 2
currentCost = bestCost

while V1 �= ∅ and V2 �= ∅
choose v1 ∈ V1, v2 ∈ V2 such that gain(v1, v2) is maximized

V1 = V1 − v1, V2 = V2 − v2

U = U + {v2}, V = V + {v1}
currentCost = currentCost - gain(v1, v2)

if currentCost < bestCost

bestPartition = (V1

⋃
U, V2

⋃
V )

bestCost = currentCost

foreach pair v1, v2, v1 ∈ V1, v2 ∈ V2

gain(v1, v2) = Gv1,v2

return bestPartition

Fig. 2. Kernighan-Lin Algorithm

bounded degree, gain updates can be computed in constant time. Careful atten-
tion to data structures permits the move operation to be done in constant time.
The procedure is shown in Figure 3.

As with Kernighan-Lin, the Fiduccia-Mattheyses procedure can be iterated
while it continues to improve cost. The total complexity for the original proce-
dure is bilinear in the graph size and the initial cost.

We can adapt the Fidducia-Mattheyses procedure to the network testbed
mapping problem. Two significant modifications must be made to the algorithm:

1. The original procedure assumed that both the degree of each node and the
weight of each edge were bounded by small constants. The former assumption
holds in the network testbed mapping problem (if we treat a LAN as a single
large node); the latter does not. In most network testbed mapping instances,
internode bandwidth can be specified to any value up to one gigabit a second.
Even if we make the simplifying assumption that bandwidth is only specified
in units of a megabit a second, that still gives us a gain array on the order of
several thousand entries, almost all empty, and this size cannot be neglected
in considering the complexity of the algorithm

2. The Fidducia-Mattheyses procedure assumed that each node must reside on
only one side of the partition. For leaf-DAGs, this isn’t the case; in particular,
referring to Figure 1, we see that we can assign up to 130 nodes to both sides
of the root partition (represented by the switch Cisco8).

In order to cope with these two changes to the underlying use case of the pro-
cedure, we offer two modifications to the Fidducia-Mattheyses procedure.
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FidduciaMattheyses(G, V1, V2):

U = V = ∅
foreach node v ∈ G:

g = gain from moving v across the partition

add v to gain[g]
currentCost =

∑
u∈V1,v∈V2

w(u, v)

bestCost = currentCost

bestPartition = (V1, V2)

while V2 �= ∅ and V1 �= ∅:
choose the highest gain node u from V1 and move it into V
update the gains of each neighbor v of u
choose the highest gain node s from V2 and move it into U
update the gains of each neighbor t of s
currentCost = currentCost - (gain(u) + gain(s))
if currentCost < bestCost:

bestCost = currentCost

bestPartition = (V1

⋃
U, V2

⋃
V )

return bestCost, bestPartition

Fig. 3. Fidducia-Mattheyses Procedure

1. We replace the array of gain by an exponential trie. This data structure,
fundamentally a tree indexed by each digit of the magnitude of the gain, gives
a guarantee of O(log dw) to find the node of maximal gain and O(log dw)
for trie updates, giving an algorithm with a total complexity of O(n log dw)
and space O(n + log dw). The conventional Fidducia-Mattheyses procedure
has a time complexity of O(ndw) and a space complexity of O(n + dw).
This suffices to make the Fidducia-Mattheyses procedure efficient when dw
is large.

2. In addition to moving nodes, we permit a further operation: clone. The clone
operation assigns a node to both sides of the partition, exactly as required
for a leaf DAG. When a node is assigned to both sides of a partition, none of
its edges cross the partition; essentially, for purposes of subsequent partition
calculations, the node has been deleted from the graph. This is done in a
preprocessing step, by deleting the cloned nodes from the initial partitions
V1, V2. A further parameter, C, gives the total number of cloned nodes.

Cloning is incorporated directly into the Fidducia-Mattheyses algorithm.
The clone gain of a node is set equal to its weighted degree. Nodes of highest
weighted degree are eliminated successively from the partition V1, V2, and the
clone gain recomputed after each deletion. Further, other nodes are moved
from side to side during this process to ensure that the invariant – |V1

⋃
U | =

|V2

⋃
V | is maintained. At each deletion, C is decremented. When it reaches

zero, the preprocessing step halts, and the conventional Fidducia-Mattheyses
procedure resumes.

The revised Fidducia-Mattheyses procedure is shown in Figure 4. The first
revision, to accomodate a large range of gain values, is left opaque here for
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FidduciaMattheysesWithCloning(G, V1, V2, C):

U = V = ∅
sortedNodes = v ∈ G sorted in decreasing order by total connections

place top C nodes in sortedNodes into both U and V and delete from V1, V2, G

foreach node v ∈ G:

g = gain from moving v across the partition

add v to gain[g]

while |V1| > |V2| − 1:
choose node v from V1 with highest gain, move to V

recompute gains of neighbors

while |V2| > |V1| − 1:
choose node u from V2 with highest gain, move to U

recompute gains of neighbors

(S, T ) = FidduciaMattheyases(G, V1, V2)

return (S
⋃

U, T
⋃

V )

Fig. 4. Fidducia-Mattheyses Procedure with Cloning

reasons of brevity and clarity. The cloning operation appears as a preprocessor
step.

Given the partitioning procedure, the assignment problem on a leaf DAG is
straightforward; one simply partitions at the root, and recursively partitions at
each subsequent level.

6 Experiments

A number of preliminary experiments were run using the revised Fidducia-
Mattheyses procedure, without cloning, in Python 2.6. Great care should be
taken in interpreting these results. Runtimes are quite short, especially in com-
parison to the Simulated Annealing procedures in the literature. However, it
should be noted that the revised Fidducia-Mattheyses procedure does only a
subset of the actions of the standard mapping procedures. In particular, it does
not consider heterogeneity, nor multihoming. We view this procedure less as a
replacement for the standard SA procedures, than as a preprocessor to help the
SA procedure start from a known, fairly good solution.

In the first set of experiments, a set of structured graphs were constructed,
with known partition properties. For these graphs, the weight of each node was
set to one, and edges were assigned as follows for nodes v0, ..., vn

w(vi, vi+1) = 10, i = 1 mod 2, i < n/2
w(vi, vi+2) = 50, i = 1 mod 2, i < n/2 − 1
w(vi, vi+3) = 50, i = 1 mod 2, i < n/2 − 2
w(vi, vi+1) = 50, i = 1 mod 2, n > i ≥ n/2

w(vi, vi+2) = 10, i = 1 mod 2, n − 1 > i ≥ n/2
w(vi, vi+3) = 10, i = 1 mod 2, n − 2 > i ≥ n/2
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The intent in this case was to construct a set of nodes with a known best par-
tition. In particular, the outdegree of each node in this graph is four, and the
best partition is 120.

We obtained the following results on the structured graph experiment, for a
single partition. In all experiments, the maximum capacity of each side of the
partition was set to 60% of the total graph weight.

The implementation was done in Python 2.6 under Windows Vista. All times
for all experiments were measured on an HP Elitebook 2530p laptop. Times re-
ported are user time, measured with the builtin os.times() function in Python.
In all experiments, we report the number of nodes in the graph (the column
MaxNum), the number of iterations of the Fidducia-Mattheyses procedure re-
quired for convergence, the total time, the initial partition weight, the final (post
F-M procedure weight), and the total improvement.

MaxNum Iterations Time (ms) Initial Weight Final Weight % Improvement

100 4 0 1480 60 95.95
200 4 0 2670 120 95.51
300 6 0 4080 110 97.30
400 5 0 5870 110 98.13
500 6 15.6 6050 170 97.19
600 5 0 8220 150 98.18
700 7 0 10260 170 98.34
800 7 0 11390 150 98.68
900 6 15.6 13490 470 96.52

1000 7 15.6 15820 160 98.99

Fig. 5. Results for the Structured Graph Experiment

These results are somewhat promising, but the graphs involved are highly
structured and artificial. To see how the procedure performs on less structured
graphs, we ran two more sets of experiments. For a second set of experiments,
we ran on a sequence of random graphs, where each node was given a random
number of connections, exponentially distributed with a mean of five connections
per node. Weights were randomly given, again with an exponential distribution
with a mean of 50. Results are given in figure 6.

These results still show improvement over a random distribution, but they
are not nearly as dramatic as the structured graph results.

For a third set of experiments, we constructed random graphs using a nor-
mal distribution of connections (mean 5, standard deviation 1) with connection
weights normally distributed (mean 50, standard deviation 10). The results are
shown in Figure 7.
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MaxNum Iterations Time (ms) Initial Weight Final Weight % Improvement

100 3 0 10495 3282 68.73
200 5 15.600 23290 8934 61.64
300 3 0 32534 13959 57.09
400 6 15.600 45520 19429 57.32
500 4 31.200 55782 23103 58.58
600 14 78.001 70979 30760 56.66
700 6 15.600 76513 32958 56.92
800 5 0 87914 36076 58.96
900 4 46.8 105298 44836 57.42

1000 5 62.4 116133 50541 56.48

Fig. 6. Results for the Exponential Random Graph Experiment

MaxNum Iterations Time (ms) Initial Weight Final Weight % Improvement

100 7 31.2 11243 5579 50.38
200 11 15.6 22190 10830 51.19
300 5 15.6 32758 16833 48.61
400 6 0 44414 22254 49.89
500 4 15.6 55008 28793 47.66
600 6 15.6 69878 34143 51.14
700 5 15.6 76520 39243 48.72
800 6 62.4 86433 44697 48.29
900 7 31.2 101490 52529 48.24

1000 8 31.2 111873 55381 50.50

Fig. 7. Results for the Normal Random Graph Experiment

Results are somewhat promising, and the relatively low runtimes even for large
graphs indicates that this technique has some promise, perhaps as a preprocessor
to the standard simulated annealing technique.

Structured Graph Random Exponential Random Normal

MaxNum Random Fidducia Imprvmnt Random Fidducia Imprvmnt Random Fidducia Imprvmnt

100 24100 3840 84.07 104752 85942 17.96 112117 95622 14.71
200 67390 7560 88.78 295521 259936 12.04 306664 281520 8.20
300 112620 13560 87.96 540842 400591 25.93 533112 408881 23.30
400 166990 20600 87.66 879114 783680 10.86 804577 753200 6.39
500 225380 38200 83.05 1152150 845132 26.65 1129426 906998 19.69
600 271800 30960 88.61 1312668 1061238 19.15 1311184 1083681 17.35
700 318740 60200 81.11 1573438 1359245 13.61 1536886 1388424 9.66
800 409090 43720 89.31 2096036 1928859 7.98 1933719 1832996 5.21
900 495840 142360 71.29 2617836 2082327 20.46 2439612 2024681 17.01

1000 556160 77210 86.12 2693960 2032458 24.56 2669548 2251410 15.66

Fig. 8. Total Bandwidth Experiments for All Graph Classes
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As a final experiment, we continued a full partition recursively of the network,
until we reached 12 nodes in a partition – a number arbitrarily set as the notional
capacity of a switch. We then summed the total edge weight of connections which
crossed a partition, effectively the total interswitch bandwidth of the fabric. We
measured this for both a random assignment of nodes to switches in the tree,
and then a partition using Fidducia-Mattheyses. The results are presented in
Figure 8.

The results are reflective of the individual partition experiments: the Fidducia-
Mattheyses procedure is effective on structured graphs, and less so on random
graphs.

7 Future Work

While a formal proof of the complexity of the network testbed mapping prob-
lem is important, future work remains in characterizing variants of the problem.
In particular, the complexity bounds on solving generalizations of this problem
for federations of testbed clusters will ultimately be relevant to the scalability
of algorithms or heuristics for automatically mapping test networks onto large,
constrained federations.
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Managing Distributed Applications Using Gush

Jeannie Albrecht and Danny Yuxing Huang

Williams College, Williamstown, MA

Abstract. Deploying and controlling experiments running on a distributed set
of resources is a challenging task. Software developers often spend a significant
amount of time dealing with the complexities associated with resource configu-
ration and management in these environments. Experiment control systems are
designed to automate the process, and to ultimately help developers cope with
the common problems that arise during the design, implementation, and evalua-
tion of distributed systems. However, many of the existing control systems were
designed with specific computing environments in mind, and thus do not provide
support for heterogeneous resources in different testbeds. In this paper, we ex-
plore the functionality of Gush, an experiment control system, and discuss how it
supports execution on three of the four GENI control frameworks.

1 Introduction

As network technologies continue to evolve, the need for computing testbeds that allow
for experimentation in a variety of environments also continues to rise. In recent years,
there has been significant growth in the number of experimental facilities dedicated to
this purpose around the world, including GENI in the U.S. [1], FIRE in Europe [2],
AKARI in Japan [3], and CNGI in China [4]. These testbeds play a crucial role in the
development of the next generation Internet architecture by giving researchers a way to
test the performance of new protocols and services in realistic network settings using
diverse resources.

While these new testbeds offer many benefits to developers with respect to experi-
mentation capabilities, they also introduce new complexities associated with managing
computations running on hundreds of computing devices worldwide. For example, con-
sider the task of running an experiment on one of these testbeds, which involves first
installing the required software and then starting the computation on a distributed set
of resources. When running a computation on a single resource, it is trivial to down-
load any needed software and start an execution. However, ensuring that hundreds of
devices are configured correctly with the required software is a cumbersome task that is
further complicated by the heterogeneity—in terms of both hardware and software—of
the resources hosting the experiment. Similarly, starting a computation requires syn-
chronizing the beginning of the execution across a distributed set of resources, which
is especially difficult in wide-area settings due to the unpredictable changes in network
connectivity among the resources involved in the experiment [5].

In addition to configuration and deployment, there are many other challenges in-
volved with keeping an experiment running in distributed environments, such as failure
detection and recovery. In experiments that only involve a single resource, monitoring
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an execution and reacting to failures typically consists of watching a small set of pro-
cesses and addressing any problems that arise. In experiments involving distributed ap-
plications, monitoring an execution consists of watching hundreds of processes running
on resources around the world. If an error or failure is detected among these processes,
recovering from the problem may require stopping all processes and restarting them
again. The difficulties associated with these tasks are frustrating to developers, who end
up spending the majority of their time managing executions and coping with failures,
rather than developing new optimizations for increased application performance.

Experiment control frameworks are often used to alleviate the burdens associated
with installing and executing software in distributed environments. They are designed
to simplify the tasks associated with software configuration, resource management, fail-
ure detection, and failure recovery. However, many of these frameworks are designed
with a single execution environment in mind, and thus are not adaptable to other envi-
ronments with different resources. This limitation reduces the overall usefulness of the
framework, and restricts its use to a single deployment platform. Further, as computers
become more ubiquitous and the diversity of network-capable computing devices con-
tinues to grow, there is an increasing need for extensible management frameworks that
support execution and experimentation in a variety of environments.

In response to the limitations of other application management frameworks, we de-
veloped Gush [6], an experiment control system that aims to support software config-
uration and execution on many different types of resources. Gush leverages prior work
with Plush [7,8], and is being developed as part of the GENI project. Gush accom-
plishes experiment control through an easily-adapted application specification language
and resource management system. The resource management system abstracts away the
resource-specific details and exports a simple, generic API for adding and removing re-
sources from an application’s resource pool. The Gush resource matcher then uses the
resources in the resource pool and the application’s requirements as defined in the ap-
plication specification to create a resource matching.

In this paper, we summarize the basic operation of Gush, with an emphasis on Plan-
etLab [9] resource management and experiment configuration in Section 2. In Section 3,
we examine how the Gush resource matcher interacts with different types of resources
in GENI (in addition to PlanetLab) to construct valid matchings and run experiments in
two other GENI control frameworks: ORCA [10] and ProtoGENI [11]. We then discuss
related work in Section 4. The fourth GENI control framework, ORBIT [12], focuses on
wireless resources, which are currently not supported by Gush. In Section 5 we discuss
how Gush can be extended to support execution in this environment and other wireless
environments as well, and make general conclusions.

2 PlanetLab Application Management with Gush

Before discussing how Gush provides support for various types of resources, we first
summarize the basic operation of Gush. The purpose of this section is to provide a
high-level overview of how Gush works in a typical usage scenario. The design and
implementation of Gush greatly leverages our previous work with Plush; however, this
paper focuses on GENI-specific extensions to Gush. A detailed discussion of the design
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and implementation of Plush can be found in [7]. It is important to note that Gush
and Plush were both initially designed for the PlanetLab control framework, and the
performance and operation of both systems on PlanetLab is largely the same. Thus, this
section uses experimentation on PlanetLab as a motivating example. In the next section
we discuss how Gush also supports other GENI control frameworks.

Gush is an experiment control framework that aims to simplify the tasks associ-
ated with the development, deployment, and maintenance of software running on a
distributed set of resources. The two main components in the Gush architecture are the
controller and the clients. The Gush controller process is responsible for managing the
Gush client processes running on the distributed resources. The controller process is
often run on the desktop computer of the Gush user (i.e., the software developer).

The main role of the controller is to receive and respond to input provided by the user
and guide the flow of execution on the clients. The clients are lightweight processes
that run on specified ports on each resource involved in an experiment. When starting
an execution, the controller initiates a separate TCP connection to each client process
creating a communication fabric. For the remainder of the execution, the controller
sends messages to the clients via the fabric instructing them to run commands and start
processes on behalf of the user. The clients also periodically send the controller updates
regarding their individual status or in response to failures. Using these status updates,
the Gush controller can construct a single, global view of the progress of an experiment.

To manage an experiment using Gush, the user must provide the Gush controller
with two pieces of information: an application specification and a resource directory.
We discuss each of these components in detail in the following subsections.

2.1 Describing an Experiment in Gush

The application specification is an XML file that describes the flow of control for the ex-
periment. In Gush, these are described using a set of “building block” abstractions that
describe the required software packages, processes, and desired resources. The blocks
can be arbitrarily combined to support a range of experiments in different environments.

Figure 1 shows a sample application specification for a very basic experiment. Start-
ing at the top of the XML, we define the software required for our experiment. The soft-
ware definitions specify where to obtain the required software, the file transfer method
as indicated by the “type” attribute for the package element, and the installation method
as indicated by the “type” attribute of the software element. In this particular example,
the file transfer method is “web” which means that a web fetching utility such as wget
or curl is used by the Gush clients to retrieve the software package from the specified
URL. The installation method is “tar.” This implies that the software.tar package has
been bundled using the tar utility, and installing the package involves running tar with
the appropriate extraction arguments.

Moving to the next main section in the XML, we define our experiment’s component.
This is essentially a high-level description of our desired resources. Each component is
given a unique name, which is used by the component blocks later to identify which set
of resources should be used. Next, the “rspec” element defines “num hosts,” which is
the number of resources required in the component. The “software” element within the
component specification refers to the “SimpleSoftwareTarball” software package that
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<?xml version="1.0" encoding="utf-8"?>
<gush>

<project name="simple">
<software name="SimpleSoftwareTarball" type="tar">

<package name="Package" type="web">
<path>http://sysnet.cs.williams.edu/˜jeannie/software.tar</path>

</package>
</software>
<component name="GENIMachines">

<rspec><num hosts>20</num hosts></rspec>
<software name="SimpleSoftwareTarball" />
<resources>

<resource type="planetlab" group="williams_gush"/>
<resource type="gpeni" group="gpeni_gush"/>
<resource type="max" group="maxpl_gush"/>

</resources>
</component>
<experiment name="simple">

<execution>
<component block name="compBlock1">

<component name="GENIMachines" />
<process block name="procBlock1">

<process name="catProc">
<path>cat</path>
<cmdline><arg>software.txt</arg></cmdline>

</process>
</process block>

</component block>
</execution>

</experiment>
</project>

</gush>

Fig. 1. Gush application specification that is used to manage an experiment on 20 GENI resources.
This trivial example simply runs “cat software.txt” on each resource.

was previously defined. Lastly, the “resources” element specifies which resource group
the Gush controller will use to create a resource matching. In this case we are interested
in 20 hosts from one of three GENI resource aggregates (all part of the PlanetLab con-
trol framework): PlanetLab [9], GpENI [13], and MANFRED (or MAX) [14]. Specif-
ically, we want to use hosts assigned to the williams gush, gpeni gush, or maxpl gush
slices.

Finally, we define the experiment’s execution using XML, and specify which com-
ponent we want to use. Our simple example contains one component block that maps
to our previously defined component comprised of 20 PlanetLab, GpENI, and MAX
machines, and one process block consisting of a single process. This process runs the
Unix command “cat software.txt” on each of our machines and then exits. (Note that
software.txt is contained in software.tar.) More complicated executions are described in
a similar fashion. Examples can be found on the Gush website [6].

2.2 Constructing a Resource Pool

In addition to the application specification, the user must also provide Gush with a
resource directory. The resource directory is used to define resource pools in Gush,
which are simply groupings of resources that are available to the user and are capable
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of hosting an experiment. The simplest way to define a resource directory in Gush is by
creating another XML file (typically called directory.xml) that lists available resources.
This file is read by the Gush controller at startup, and internally Gush creates a Node
object for each specified resource. A Node in Gush contains a username for logging
into the resource, a fully qualified hostname, the port on which the Gush client will
run, and a group name. The purpose of the group name is to give users the ability to
classify resources into different categories based on application-specific requirements.
We discuss how this name is used when creating a matching in the next subsection.

The resource file also contains a special section for defining hosts in the PlanetLab
control framework. Rather than specifically defining which PlanetLab hosts a user has
access to, the directory file instead lists which slices are available to the user. In addition
to slice names, the user specifies their login to all available aggregate managers (which
internally run their own version of the PlanetLab Central server) as well as a mapping
(“port map”) from slice names to port numbers. At startup, the Gush controller uses this
login information to contact each manager (PLC) directly via XML-RPC using the API
specified by the Slice-based Facility Architecture (also called SFA or geniwrapper [15]).
Each PLC server returns a list of hostnames that have been assigned to each available
slice. The Gush controller uses this information to create a Node object for each host
available to the user. The username for these hosts is the associated slice name, and the
port is determined by the port map. The group name is set as the slice name.

Note that for all PlanetLab aggregate managers, Gush assumes that the experimenter
has a slice a priori. Since the current SFA does not provide APIs for creating slices,
Gush also does not have the ability to create slices. The experimenter must register with
the aggregate managers and upload their public key before using Gush. Once a slice
has been created, Gush does have the ability to add and remove nodes from the slice.
When a node is added to a PlanetLab slice, a Linux vserver [16] is created on the node,
and the experimenter’s key is eventually copied out to the vserver. However, the SFA
does not provide the ability for Gush to receive any notification as to when the vserver
is available for use.

Figure 2 shows a resource directory file that could be used in conjunction with the
application specification in Figure 1. The first group of resources are identified as stan-
dard SSH resources, which means that they can be accessed using the standard SSH
protocol with the username specified in the “user” attribute. The port specified indicates
the port on which the Gush client process will run. The “group” attribute is optionally
used to categorize resources. In our example, we only have two resources in the local
group. Note that these resources have nothing to do with GENI. The next three groups
of resources are all GENI resources. Gush uses XML-RPC to contact each aggregate
manager’s PLC database using the email addresses provided in the “user” tags to ob-
tain information about the resources assigned to the williams gush, gpeni gush, and
maxpl gush slices respectively. The ports specified in the “port map” tags indicate the
ports on which the Gush clients will run for these slices. (Note that this syntax is likely
to change, since the SFA APIs are changing rapidly.)

To gain an appreciation for the flexibility of the resource management abstractions
in Gush, consider our example experiment from before as shown in Figure 1. Recall
that in this example we are running “cat software.txt” on 20 PlanetLab, GpENI, and
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<?xml version="1.0" encoding="UTF-8"?>
<gush>

<resource manager type="ssh">
<node hostname="sysnet1.williams.edu:15400" user="jeannie" group="local" />
<node hostname="sysnet2.williams.edu:15410" user="jeannie" group="local" />

</resource manager>
<resource manager type="planetlab">

<user>jeannie@cs.williams.edu</user>
<port map slice="williams_gush" port="15415"/>

</resource manager>
<resource manager type="gpeni">

<user>jeannie@cs.williams.edu</user>
<port map slice="gpeni_gush" port="15416"/>

</resource manager>
<resource manager type="max">

<user>jeannie@cs.williams.edu</user>
<port map slice="maxpl_gush" port="15417"/>

</resource manager>

</gush>

Fig. 2. Gush resource directory file specifying different types of resources.

MAX hosts. Now suppose we want to change our application to instead run on the 2
cluster resources defined in the “local” group in our resource directory. To change our
target resources, the only modification required to the application specification is in
the component definition. Thus, if we change the value of num hosts in the component
definition in Figure 1 to 2 instead of 20, and also change the resource element to

<resource type="ssh" group="local"/>,

our experiment will run on our local cluster instead.
In addition to the resources defined in a Gush resource directory file, resources can

also be added and removed by aggregate managers at any point during an experiment’s
execution. This is typically accomplished using an XML-RPC interface provided by
the Gush controller. Managers that create virtual resources dynamically based on an
experiment’s needs, for example, contact the Gush controller with information about
new available resources, and Gush adds these resources to the user’s resource pool. If
these resources become unavailable, the external service calls Gush again, and Gush
subsequently removes the resources from the resource pool. This is especially useful
for lease-based control frameworks, such as ORCA.

2.3 Creating a Matching

After the Gush controller parses the user’s application specification and resource direc-
tory file, the controller’s resource matcher is responsible for finding a valid matching—
a subset of resources that satisfy the application’s demands—for the experiment being
managed. The matcher starts with the user’s global resource pool consisting of all avail-
able resources, and then filters out the resources that are not in the group specified in the
component definition. In our initial example, this includes all hosts not assigned to our
three slices. Using the remaining resources in the resource pool, the matcher randomly
picks 20 (as specified by num hosts in our example) Node objects and inserts them into
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a resource matching. The Gush controller then connects to the Gush clients running on
the resources, and begins installing and configuring the required software.

If any failures occur during configuration or execution, the controller may choose
to requery the resource matcher to find replacement resources. In the case of failure,
the matcher sets the “failed” flag in the Node that caused the failure, removes it from
the matching, and inserts another randomly chosen resource from the resource pool.
This process is repeated for each failure throughout the duration of the experiment’s
execution. Note that resources that are marked as failed are never chosen to be part of a
matching unless they are explicitly un-failed by the user.

3 Supporting ORCA and ProtoGENI

The preceding section discusses how Gush resources are internally maintained and or-
ganized into resource pools. It also describes how the Gush resource matcher uses these
resource pools and the component definition section of the application specification to
create matchings for the experiments being run. These basic abstractions for manag-
ing resources, in addition to our extensible XML-based specification language, are the
keys to providing an adaptable framework that supports execution in a variety of envi-
ronments and across multiple control frameworks. The previous section describes how
Gush interacts with resources in the PlanetLab control framework. In this section, we
take a closer look at how Gush interacts with slice controllers and aggregate managers
in two other GENI control frameworks to select and use sets of resources for hosting
experiments on different testbeds.

3.1 ORCA Control Framework

In addition to resources in the PlanetLab control framework, Gush also supports exe-
cution on virtual machines (VMs) that are dynamically created by the ORCA control
framework [10]. A thorough description of the Gush XML-RPC interface and imple-
mentation details are described in [7]; we provide a brief summary here only to help the
reader appreciate the flexibility of the Gush resource management framework. ORCA
provides users with the ability to create clusters of Xen virtual machines [17] or Linux
vservers [16] on demand. It is important to note that the VMs do not exist before Gush
starts the experiment. Instead, the VMs are created dynamically at startup, and the Gush
XML-RPC interface is used to add the new VMs to the Gush resource pool. The XML-
RPC interface is also used to remove VMs from the Gush resource pool when the ex-
periment ends or when a resource lease expires.

Suppose we want to run our sample application (Figure 1) on a cluster of VMs cre-
ated by ORCA instead of 20 PlanetLab machines. Using Gush, we do not have to mod-
ify our application and execution elements in any way. We only have to add an <orca>
element into the component’s rspec definition. The Gush resource management frame-
work abstracts away the low-level details associated with contacting ORCA and con-
figuring the new VMs with the Gush client process. Figure 3 shows the resulting XML.
The XML tags that are required in the new <orca> component correspond to supported
VM attributes in ORCA, including OS type, memory, bandwidth, CPU share, and re-
quested lease length.
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<component name="VMGroup1">
<rspec>

<num hosts>20</num hosts>
<orca>

<num hosts>20</num hosts>
<type>1</type>
<memory>784</memory>
<bandwidth>300</bandwidth>
<cpu>75</cpu>
<lease length>12000</lease length>
<server>http://geni.renci.org/orca:8080</server>

</orca>
</rspec>
<resources>

<resource type="ssh" group="orca"/>
</resources>

</component>

Fig. 3. Gush component definition that includes an ORCA VM cluster description

3.2 ProtoGENI Control Framework

In the spectrum of architectural design choices between PlanetLab and ORCA, Proto-
GENI [11] lies somewhere in the middle. Like PlanetLab, ProtoGENI requires users to
register in advance and upload a public key. Unlike PlanetLab, ProtoGENI also requires
experimenters to specify a network topology for the nodes involved in the experiment.
Gush currently does not provide any support for creating these files, so when using Pro-
toGENI, any necessary topology files must be created before using Gush. In addition,
Gush contacts the ProtoGENI XML-RPC server using SSL; thus, experimenters should
download an SSL certificate from the ProtoGENI website and save it locally before
starting Gush.

After creating an account on the ProtoGENI website, specifying a network topology,
and downloading an SSL certificate, experimenters may begin using Gush to deploy
experiments on ProtoGENI. The first step involves configuring the resource directory
with the information necessary to communicate with the ProtoGENI XML-RPC server.
An example is shown in Figure 4. (Note that Gush currently uses the Emulab API [18]
in ProtoGENI, which is why the resource manager’s type is “emulab.” We are in the
process of upgrading Gush to use the new ProtoGENI API.) The pertinent information
in this case includes our login name, port number, project ID, experiment ID, and net-
work topology (NS) file. This information is sent to the ProtoGENI server to create
and swap in an experiment (if it does not already exist) using the specified topology.
Like ORCA, ProtoGENI creates virtual machines dynamically when an experiment is
created. Unlike ORCA, the ProtoGENI server has not yet been extended to provide any
callbacks to Gush to indicate when the resources are actually ready for use (although
the API does provide a blocking RPC call that does not return until all resources are
ready). Thus, if a researcher uses Gush to create an ProtoGENI experiment, they must
wait some small period of time (less than 5 minutes on average) for the virtual machines
to be created and the topology to be instantiated before running any experiments.

At this point, the execution of Gush proceeds in the same way as before: Gush con-
tacts the ProtoGENI server to obtain a list of available resources, and then uses SSH
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<?xml version="1.0" encoding="UTF-8"?>
<gush>

<resource manager type="emulab">
<user>jeannie</user>
<port>15420</port>
<EmulabProjectID>Gush</EmulabProjectID>
<EmulabExperimentID>gush</EmulabExperimentID>
<EmulabNSFile>nsfile.ns</EmulabNSFile>

</resource manager>

</gush>

Fig. 4. Gush directory file that includes ProtoGENI (Emulab) resources

to login to these resources and configure them accordingly. Upon the completion of an
experiment, Gush uses the ProtoGENI XML-RPC interface to swap the experiment out,
which shuts down all virtual machines associated with the experiment.

4 Related Work

With respect to related work, it is worthwhile to point out the key differences between
this paper and [7]. The goal of this paper is to highlight how Gush manages resources
in a variety of environments, while the focus of [7] is on the design and implementa-
tion of the experiment controller architecture. In addition, this paper discusses several
extensions that were added to Gush specifically for GENI that are not part of Plush.

In the context of application management, Gush has similar goals as PlanetLab’s
appmanager [19] and HP’s SmartFrog framework [20]. appmanager is designed exclu-
sively for long-running services on PlanetLab, and thus cannot easily be extended to
support different types of resources or control frameworks. SmartFrog is a Java toolkit
that can be used to manage a variety of applications on resources that run Java. Unlike
Gush, SmartFrog is not process-oriented, however, and thus only supports execution via
Java classes and remote method invocation.

In GENI, every project has a set of testbed-specific tools for resource configuration
and experiment management. The majority of these tools are not designed for extensi-
bility, and thus do not support execution across testbeds or control frameworks.

5 Future Work and Conclusion

Gush is an application management framework that helps developers deploy and main-
tain software running on distributed sets of resources. Through a generic resource man-
agement interface and an extensible application specification, Gush supports execution
on several different types of resources, including PlanetLab machines, ORCA virtual
machines, and ProtoGENI hosts. However, some of the fundamental assumptions that
Gush makes about resources—such as unlimited energy, always-on network connectiv-
ity, and process-oriented execution—do not support an emerging class of wireless and
sensor-based resources. Moving forward, we hope to relax these assumptions to allow
Gush to perform experiments on a wider variety of resources. For example, to sup-
port sensors or configurable routers, Gush may not connect directly to the resources,
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but instead connect to a client proxy connected to the resource that can interpret Gush
commands and perform the corresponding action on the sensor or router. Maintaining
persistent TCP connections may also prove to be futile in wireless sensor networks
comprised of mobile devices. The overall challenge in these environments is to provide
environment-specific support from a common experiment controller framework. We are
currently in the process of exploring ways to use Gush in some of these environments,
including the ViSE [21] and DOME [22] testbeds. In doing so, our goal is to ultimately
provide an adaptive experiment control framework for all GENI users.
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Abstract. On-demand services are a key feature of Future Internet architec-
tures. Already today research networks around the world provide dedicated  
optical circuits (lightpaths) to scientists, to offer a higher quality of network ser-
vice.  Tools to request and instantiate these lightpaths within a single domain 
exist, but interoperability of the various provisioning systems in a multi-domain 
scenario is still in its infancy. We present here our work for end-to-end multi-
domain circuits reservation and setup. We worked in a large-scale research test-
bed composed by different provisioning systems, spanning multiple network 
domains. We developed translation modules at the provisioning system bounda-
ries that allow for seamless path reservation and setup. We conclude identifying 
the main elements for interoperability and provide some guidelines for future 
integration of research network provisioning systems. 

Keywords: network provisioning systems, service and control planes, federated 
testbeds. 

1   Introduction 

Future Internet architectures will certainly provide on-demand network services, away 
from the one-size-fits-all feature of the current Internet, and toward a tailored ap-
proach to users and applications requirements.  

Network researchers are focusing on this issue, backed up by several funding ef-
forts. The European Commission promotes the Future Internet Research and  
Experimentation (FIRE) initiative [1]. The National Science Foundation in the 
USA does the same with the Global Environment for Network Innovation (GENI) 
project [2].  

Research and Education Networks (NRENs) around the world have tackled the 
problem in the last years. Their answer has been to offer separated network circuits to 
users, called lightpaths. They have built hybrid network architectures, with coexisting 
IP and lightpath services in the same physical infrastructure. The SURFnet6 network 
in the Netherlands is an example: it has offered use of lightpaths since 2006 to the 
Dutch research community and academic centers. 
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e-Science and Grid applications are the driving force behind this network model. 
These applications rely on guaranteed bandwidths and fixed latencies; concurrent 
traffic disturbs or, worse, completely disrupts their functioning. Traditional routed IP 
services are not sufficient, and scientists clearly profit from having a dedicated net-
work path. For example, the high-energy physics experiments at the Large Hadron 
Collider at CERN [3] distribute their data to the computing centers via lightpaths; in 
very long interferometry radio astronomy experiments [4], telescopes also send the 
recorded signals to a correlation center via lightpaths.  

We foresee that many of the solutions that satisfy scientists in the somehow closed 
world of research networks will be adopted in other communities, for large and small 
businesses and ultimately single users. 

Requests for circuits within a single NREN are nowadays relatively easy to satisfy; 
each domain provides a reservation system to its end users, while ad-hoc software 
tools instantiate and configure the paths. The challenges arise whenever the circuits 
need to span multiple network domains, for the lack of interoperability between the 
various systems.  

We present in this article the software tools we develop to facilitate interoperability 
along a multi-domain lightpath chain; we present the results obtained in several ex-
periments; based on these we outline necessary future work to further ease the use of 
multi-domain lightpaths. 

2   Provisioning Systems 

Dedicated circuits in hybrid networks can be implemented at various network lay-
ers.  Layer1 circuits are carried over a DWDM infrastructure, where different ser-
vices run on different wavelengths [5]. Layer2 circuits are Ethernet paths extending 
into the WAN. A multi-domain circuit may comprise several segments at different 
layers, where (de)adaptation functions (de)encapsulate the data between layers 
[6][7].  

Lightpaths can be static and persist for very long periods of time, to form an optical 
private network. They can also be dynamic and short-lived, being automatically un-
configured once the reservation time has expired. 

A lightpath provisioning system always performs two major tasks, independently 
from the characteristics of a circuit:  

• It provides the interfaces for path reservations to the end users. The user can 
make requests without being aware of the underlying technologies used e.g. 
SONET or Ethernet. This component constitutes the Network Service Plane 
(NSP); 

• It configures the network equipment. These are the internal components that are 
vendor and equipment specific.  We refer to them as the Control Plane (CP). 
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2.1   Network Service Planes 

We identify four main components in a NSP, as shown in Fig. 1. 

 

Fig. 1. The four components of the Network Service Plane. From top to bottom: the Topology 
Exchange Component, the Reservation Request Interface, the Path Computation Element and 
the Reservation Management System. 

This model is based on observations of the design of existing provisioning systems. 
The User-Controlled LightPath (UCLP) provisioning system was one of the first tools 
that provided on-demand dynamic lightpaths.  Later versions of UCLP [8] and other 
independent efforts rendered designs with common functionalities though with 
slightly different characteristics.  

We distinguish between components that operate at reservation request time and 
components that operate at reservation activation time.  

At reservation request time we have: 

• A Topology Exchange Component. This exposes the local topology and facilitates 
topology exchange with other domains, a step necessary to setup multi-domain 
paths; 

• A Reservation Request Interface. This allows users and neighboring domains to 
make reservation requests for paths in the local domain, and for the local domain 
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torequest reservations in other domains. In the most common scenario, a multi-
domain path request originates from a user that utilizes a Web-GUI (Web-GUI 
User Request Interface). A user can also use a Web-Service client to do this (Web-
Service Request Interface). If a domain receives a request that involves another 
domain, the NSP has to forward it to that domain and check its status using an In-
ter-Domain Request Messaging component; 

• A Path Computation Element. This calculates a path between two endpoints speci-
fied in the request given the topologies of the domains involved; 

• A Reservation Management System. This checks the availability of resources when 
it receives a request, schedule resources when a request can be accommodated and 
stores it in its local database. 

The component that bridges the NSP and CP is the Path-Setup Subcomponent (PSS). 
It operates at reservation activation time. The PSS translates path-setup requests that 
carry the general request parameters, e.g., bandwidth, duration, VLANs, etc., to CP 
specific messages, e.g., path-refresh (RSVP-TE) messages that it then sends at regular 
intervals to the CP until the reservation ends. 

3   The Combined Harmony-IDC Testbed 

NRENs have developed independently their provisioning systems. These efforts re-
sulted in software suites that cannot immediately interoperate. Although the purpose 
of each NREN NSP is the same, the functionalities it offers to the user differ;  
the communication between the NSP and the CP, for example the way to specify time 
and bandwidth parameters, or the way the communication is secured, vary in all  
implementations. 

Several initiatives are underway to specify how different NREN NSPs should in-
teract to successfully create inter-domain connections. One example is the Network 
Service Interface (NSI) workgroup in OGF [9]; one of its goals is to provide the inter-
face between network domains for interoperability in a heterogeneous multi-domain 
environment. However, these initiatives attempt to formulate specifications from a 
top-down perspective, while the NSP designs of the various NRENs are often idio-
syncratic and it is therefore challenging to unify their functions.  

We have opted instead for a bottom-up approach and choose a specific usecase to 
determine what it takes to create multi-domain NSP interoperability and data-path 
setup.  

We performed our research and development in a large-scale testbed, consisting of 
network resources from several Phosphorus [10] partners, UvA, SURFnet, i2CAT and 
VIOLA, and of a DICE partner [11], Internet2. Fig.2 depicts the testbed.  

Our goal was to create a working lightpath starting in the Internet2 network and 
ending up in one of the Phosphorus domains, and vice versa.  

In our testbed the i2CAT and VIOLA domains are controlled by the Harmony pro-
visioning system. The UvA/SURFnet and the Internet2 domain are under control of 
the IDC provisioning system. 
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Fig. 2. The combined Phosphorus-DCN testbed where we conducted our work. We show a high 
level overview of  the interconnected domains. Concerning the Network Service Plane, Inter-
net2, SURFnet and UvA are under control of an IDC whereas i2CAT and VIOLA are under 
control of Harmony. SURFnet runs DRAC, i2CAT runs ARGIA and VIOLA runs ARGON. 

3.1   Harmony 

We participated in the development of Harmony, the NSP of the EU-funded project 
Phosphorus. The project has ended, but the network infrastructure is still available for 
experimentation. 

The Phosphorus project aimed to make applications aware of the available com-
putational and networking resources, and to provide dynamic, adaptive and opti-
mized use of heterogeneous network infrastructures connecting these resources. In 
the project network domains connected to each other via inter-domain lightpaths, 
and each one ran its own NSP. Three NSPs are in use within the Phosphorus  
community: 

• ARGIA, a commercial system used in the i2CAT network in Spain. It provides 
time slices or lightpaths to users or organizations, by virtualization of the network 
resources. An end user can create circuits on-demand based on the applications 
needs; 

• ARGON, an MPLS/GMPLS enabled system used in the VIOLA testbed in Ger-
many. ARGON stands for Allocation and Reservations in Grid-enabled Optical 
Networks; it provides interfaces for lightpath reservations;  

• DRAC, a Nortel commercial product used in the SURFnet network in the Nether-
lands. DRAC is the Dynamic Resource Allocation Controller that also fulfills the 
purpose of lightpath reservation. 

Harmony provides the APIs to control these three different NSPs. 

3.2   IDC 

We also contributed to the Inter-Domain Controller (IDC), the provisioning system of 
the DICE partners. The IDC is an architecture that  facilitates both intra-domain path 
provisioning as well as the creation of circuits across domains. The IDC protocol de-
fines formats and exchanges for:  

• Network resource reservation requests messages;  
• Intra-domain topology descriptions;  
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• Inter-domain topology exchange messages;  
• Intra-domain network-element signaling and inter-domain request forwarding.  

All functional components processing these requests and descriptions can be accessed 
through Web-Service (WS) interfaces. The WS interfaces can be categorized into: 

• User to Network Interface (UNI) that provides users means to interact with the 
reservation system OSCARS; 

• Internal Network to Network Interface (INNI) through which the IDC interacts 
with local resources, such as network elements; 

• External Network to Network Interface (ENNI) that allows other IDCs to interact 
with the local IDC facilitating multi-domain path reservation and provisioning 
[12]. The possibility to interact with non-DCN Interdomain Brokers (IDBs) was 
not present when we started our work. We developed the ENNIs for this purpose as 
we will describe in the upcoming section. 

Furthermore, IDC interfaces to the DRAGON CP [13], that configures the net-
work equipment to create paths. 

4   Service-Plane to Service-Plane Translation Modules 

In general, NSPs interpret advance reservation requests for lightpaths in such a way 
that they are stored in the reservation database unambiguously and consistently. Un-
ambiguity regards the meaning of the parameters pertaining to the reservation, such as 
endpoint designations, reservation duration and bandwidth specification; consistency 
avoids conflicts such as overlapping reservations and requests exceeding the available 
bandwidth.  

This also holds for reservation modification and reservation status inquiry requests, 
albeit in a somewhat lesser degree because while accommodating new reservation 
requests the NSPs already interpreted, disambiguated and consistently stored them in 
the reservation database.  

When combining heterogeneous networks and NSPs to facilitate multi-domain 
lightpath reservation and provisioning, the syntax and semantics of the requests may 
have to be translated in order for the parameters in the requests to conform to the re-
quired format of the receiver, and for the requests to have the same operational se-
mantics. For instance, endpoint-designations in the topologies of two domains may be 
different and have to be translated into the proper format of the receiving domains. In 
the case of a reservation modification, one domain may allow modifications of a res-
ervation that has already been activated, while in another domain this may not be al-
lowed: this causes differences in the effect of the same operation in different domains. 
For instance, in one domain a reservation may be cancelled while it is active, whereas 
in another domain this is not allowed.  

We identified two general types of translations necessary at the boundaries be-
tween two heterogeneous NSPs, i.e., 1) Web-Service operation translations, and 2) 
Endpoint translations. For both types we produced code to perform the translations. 
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4.1   Web-Service Operation Translations 

Operation translation requires that input used in a Web Services call in a certain NSP 
is mapped onto the correct input components in another. 

Our first effort was to create translation modules to interface Harmony to IDC.  
Table 1 shows the operations we implemented.  

Table 1. List of supported Web-Service operations. The first column indicates the name of the 
Web-Service operation. The second column shows if the operation is supported by IDC; the 
third column indicates support from Harmony. The last and fourth column shows whether we 
have implemented a translator service for the specific operation. 

Operations IDC Harmony Request translator

createReservation    
cancelReservation    
queryReservation (IDC)

getStatus (NSP) 

 
 

 
 

 
 

isAvailable (NSP)    

modifyReservation    

listReservation (IDC) 

getReservations (NSP) 

 
  

 
       

 
 

createPath (IDC) 

activate (NSP) 

 
 

 
 

 

refreshPath (IDC)    

tearDownPath (IDC)    

The translation may be: 

• A parameter conversion whenever the two NSPs use different data formats to de-
scribe the same parameter. For example, start and end time of reservations are ex-
presses in seconds from Epoch in one system and as time-day-month-year in the 
other; 

• Be required to overcome that the results of a Web Service operation produce in-
consistent or different results when invoked in the two systems.  

• Necessary due to different security mechanisms deployed in the two systems. The 
IDC requires Web Services operation to be authenticated. IDC identifies requestors 
with X.509 certificates. Harmony on the other hand allows all users in its network 
domain to make requests. Our translation module will use a single X.509 certificate 
for all IDC requests coming from Harmony users. 
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Fig. 3. The NSP components involved in multi-domain reservation requests. In the Harmony 
NSP (on the left) we insert our translator module; it translates a user request from Harmony 
format to the IDC format. Conversely, the responses sent to Harmony-NSP are translated from 
the IDC format to the format required by the Harmony NSP. 

Fig.3 shows the insertion of our Harmony-IDC Request Translator among the 
components present in the Harmony NSP (on the left).  The GUI User Request Inter-
face couples to the Request Translator and the Request Translator interfaces internally 
to the Inter-Domain Request Messaging component. 

4.2   Endpoint Translations 

To provide interoperability between the NSPs in our testbed we also needed to iden-
tify the network endpoints in the proper format. Harmony and IDC express topologies 
in different manners.  

Harmony identifies endpoints with Transport Network Addresses (TNAs). It uses 
for this a dotted decimal notation. IDC uses instead a URN identifiers for endpoint 
based on the topology schema developed by the OGF Network-Monitoring Working 
Group (NM-WG) [14], with specification of domain:node:port:link. Listing 1 shows 
an example of endpoint described according the IDC format. 

We manually created topology descriptions for all the endpoints in the testbed in 
the proper formats. Listing 1 shows the XML structure used by IDC for the identifica-
tion of endpoints.  Using this schema an IDC endpoint would be described as:  

link-id = urn:ogf:network:domain=uvalight.net:node=SURFnetOME4T_I2:port=s
1p1:link10.9.2.10 

Listing 1 – The XML schema representing a port in the IDC syntax. 

<domain id="domain-id"> 

  <node id="node-id"> 

     <port id = “port-id”> 

        <link id=”link-id”> 

            <remoteLinkId>remoteId</remoteLinkID> 

        </link> 

      </port> 

   </node> 

</domain> 
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Fig. 4 is a detailed representation of our topology. The goal is to connect a Phos-
phorus endpoint to an Internet2 endpoint. The Phosphorus endpoint is at the top left of 
the figure; the Internet2 endpoint is at the bottom left. In this use case both Web Ser-
vices operation and endpoint translations take place. 

 

Fig. 4. Path setup scenario between a Phosphorus and an Internet2 host. Different line-patterns 
represent different VLAN tagging of the traffic running over the data-connections. The OME 
4T is a Nortel OME 6500 and provisions Layer1 cross-connects between its ports.  The Nether-
light and MANLAN HDXc-s provide carrier services over TDM.    

Harmony identifies the Phosphorus endpoint with TNA 10.9.2.1 and the Internet2 
node with TNA 10.9.2.3. So the reservation request in Harmony contains TNA pair 
(10.9.2.1, 10.9.2.3) as the (src_TNA, dst_TNA) parameters for the createReservation 
Web Service operation. But the devices along the path between the source and the 
destination are under control of IDC and not Harmony. Harmony makes use of our 
Request Translator and performs: 

 

• An endpoint translation, from the (src_TNA, dst_TNA) to an IDC (src_URN, 
dst_URN); 

• A Web Service request translation, where Harmony uses our request translator to 
create a corresponding IDC Web Service createReservation request.  

• A createReservation Web Service call to the IDC NSP. 
 

Harmony in this manner delegates the actual setup to the IDC provisioning system, 
while offering to the user a single interface.  

5   Service-Plane to Control-Plane Translation Module 

The biggest challenge for Harmony/IDC interoperability stems from a fundamental 
incongruence in their respective designs.  
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The Harmony NSP is designed to interoperate with other single-domain NSPs that 
are built on top of CPs tailored to their individual domains, e.g., ARGON in the VI-
OLA domain. For this reason, CP functionalities such as path-setup and path-
teardown components are absent in the Harmony NSP.  

Conversely, the IDC design does not facilitate interoperability with any other NSP 
than another IDC. Moreover, CP functionality is an integral part of the IDC design 
and is tailored to interface with the DRAGON CP. The only possibility the IDC offers 
to interface with CPs other than DRAGON is to modify the Path-Setup Subcompo-
nent (PSS) that signals path-setup, path-refresh and path-teardown events to the un-
derlying CP. 

The SURFnet/UvA network depicted on the right of Fig.4 is under control of IDC. 
Still IDC cannot configure paths because the DRAGON control plane cannot configure 
the OME testbed and Layer2 switches present in this portion of the network.  The OME 
devices, a Layer1 switch from Nortel, can only be configured with DRAC; the Layer2 
Dell switches can be controlled by using SNMP. In the following section we describe 
the high-level design of the PSS modifications we made to allow configuration. 

5.1   Path-Setup Subcomponent  

Fig. 5 depicts the components participating in the path setup through the two domains 
controlled by the IDC, the Internet2 domain and the UvA/SURFnet domains we saw 
in Fig.4.  

 

Fig. 5. The Internet2 domain and the UvA/SURFnet domain communicate in our testbed. At 
reservation activation time the Path Setup Subcomponent (PSS) communicate with the control 
plane to configure the network. In the Internet2 domain the PSS communicates with 
DRAGON; in the UvA/SURFnet domain the PSS triggers DRAC and SNMP calls to our 
equipment. 
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At reservation-activation time the IDC signals the CPs through the PSS. In the 
UvA/SURFnet domain we modified the PSS to signal the Layer1 network elements 
(OME 6500s) through interfacing with DRAC, and the Layer2 network elements 
(Dell Powerconnect 5324s) by interfacing with the SNMP agents running on these 
switches. 

The parameters that are passed to the PSS are a Global Reservation ID (GRI), the 
requested bandwidth, a VLAN number, and a path consisting of a list of intra-domain 
hops calculated by the Path Calculation Element at reservation-request time.  

The PSS has two main tasks:  1) to analyze the path and discover if there are in-
gress/egress hops (e.g., from/to the Internet2 domain) linked to intra-domain hops; 
these hop-pairs will be translated into DRAC request to set up a cross-connects on the 
OME 4T, and 2) to set up the Layer2 switches in order to retag traffic running be-
tween the Harmony and Internet2 domains, in case of VLAN mismatches. 

The path contains an ingress/egress hop from the Internet2 domain to an internal 
UvA/SURFnet node, the PSS would perform the following translation: 

• IDC hop  urn:ogf:network:domain=uvalight.net:node=SURFnet-
OME4T_I2:port=s10p1:link=10.9.2.3  translates into DRAC endpoint Internet2-
OME4T-1-10-1; 

• IDC hop urn:ogf:network:domain=uvalight.net:node=SURFnet-
OME4T_I2:port=s1p1:link=10.9.2.10  translates into DRAC endpoint: SURFnet-
OME4T-1-1-1 

After mapping the ingress/egress hop to intra-domain hop pairs, the PSS calls DRAC 
with the corresponding DRAC-endpoint pairs to set up the Layer1 cross-connects on the 
OME 4T. In the case of the scenario depicted in Fig. 5 the only necessary cross-connect 
to be provisioned on the OME 4T is between  Internet2-OME4T-1-10-1 and SURFnet-
OME4T-1-1-1. Subsequently, the port of the switch connected to the OME 4T will be 
configured by the PSS to accept traffic with the VLAN number included in the argu-
ments of the PSS call, and to tag outgoing traffic with that VLAN number as well. 

6   Workflow 

Once the translation modules were ready we could prove the feasibility of an inter-
domain path in our IDC-Harmony combined testbed. In this section we use an example 
end-to-end path to illustrate all the steps in the provisioning workflow.  We use an exam-
ple request for a circuit starting in the VIOLA domain and ending in the IDC domain. 

6.1   Reservation Time 

The user interacts with the NSP through the Reservation Request Interface. The UNI 
has two variants: a WS-UNI or a web-browser based UNI (WBUI). In both cases the 
user provides the reservation system with the parameters of the request: the source 
and destination IP addresses or transport-network addresses (TNAs), bandwidth, start 
time and duration. In the case of the IDC it’s also possible to provide a VLAN num-
ber that will be used for the end-to-end Layer2 path. 
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Submitting requests is restricted to authorized users, however, the user authentica-
tion and authorization methods between Harmony and IDC differs considerably as we 
described before. In Harmony, requests from both the WBUI as well as from the WS-
UNI are allowed from machines within the Harmony VPN. Both the IDC and DRAC 
WBUI require username/password authentication. The IDC WS-UNI requires mes-
sages to be signed by the user's private key, and DRAC authenticates WS requests 
through an included username/password token. 

In Fig.6 we show the workflow associated to the setup of a path from the VIOLA 
domain to the Internet2 domain. 

 

Fig. 6. Schematics of the workflow for a lightpath request starting in the VIOLA domain and 
ending in the Internet2 domain. The NSP operate at reservation time and the control planes 
operate at activation time. 

At reservation time the user sends a requests for a path from VIOLA to Internet2 
through the Harmony Web-GUI reservation form (step #1).  The Harmony request is 
translated into an IDC request that is subsequently sent to the UvA IDC (step#2).  
This makes use of our Web Services and end-point translation modules. 

The UvA IDC determines that the request comprises a multi-domain hop to the 
Internet2 domain, which causes the request to be forwarded to the Internet2 IDC 
(step#3). If this request can be accommodated a reservation is subsequently made in 
the Internet2 IDC and the UvA IDC. 

6.2   Activation Time 

At the start time of the reservation, both Harmony and the IDC signal the underlying 
control planes to set up the respective paths. The signaling consists of several distinct 
and heterogeneous processes: 

• DRAC-OME signaling (step #4). The UvA IDC signals DRAC through its Path 
Setup Subsystem (PSS). DRAC processes this request as an immediate reservation 
and sets up the requested path through a Nortel OME testbed. This process sets up 
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the data-paths in the OME testbed and uses Nortel/SURFnet proprietary code and 
algorithms. 

• UvA-IDC-SNMP signaling (step #5). The VLANs used in the Internet2 and Phos-
phorus domains differ. The switches in the UvA domain have to be configured to 
convert VLAN tags between the ones used by Phosphorus and Internet2. The sig-
naling consists of sending SNMP commands through control connections from the 
IDC to the Dell switches.  Here we use our PSS translation code. 

• Harmony NSP-ARGIA signaling (step #6). This step is optional, because the reser-
vation Harmony creates in ARGIA can both be of type automatic or signal-on-
activation. Harmony-ARGIA (and other CPs in the Phosphorus testbed) signaling 
happens through modules dubbed 'adapters' that enable ARGIA and the Harmony 
NSP to exchange information about e.g., reservations and topology. 

• IDC-DRAGON signaling (step #7). As in the case of IDC-DRAC signaling, the 
PSS signals the DRAGON CP to set up the reserved path at activation time. This 
happens through RSVP-TE messages. 

7   Demonstrations and Results 

We demonstrated path setup as described in the previous section between Internet2, 
i2CAT and VIOLA at Supercomputing 2008 (SC08; held in Austin Texas, USA) and 
the Internet2 Spring Member Meeting in April  2009 (Washington DC, USA). The 
latest demonstration has been at  the  Oct. 2009 GLIF workshop in Korea.  

At SC08 and at the Internet2 Member meeting the focus was on the NSP-to-NSP 
translator (section 4).  The demonstration in Korea focused on the service-plane to 
control-plane translation module (section 5.1). Fig.7 is the graphical representation of 
a path created with our software: one endpoint is in Amsterdam and the other is in 
Los Angeles. 

 

Fig. 7. The graphical overview of an end to end path realized with our software. In the specific 
case we created a dedicated circuit between Amsterdam and Los Angeles. This makes use of 
our service-plane to control-plane software. 
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8   Challenges and Future Work 

Currently in our testbed the request translation only flows from the Harmony NSP to 
the IDC and not the other way around (see Fig.3). To achieve full interoperability, we 
intend to develop a translator for the IDC that will be plugged in among the standard 
IDC components.  

We also intend to enhance the IDC-DRAC integration. Currently, the IDC is designed 
to completely control the domain it resides in, and acts as both an SP as well as a CP. 
This means that the IDC is the only authoritative entity in one single domain and disre-
gards the SP/CP that may already exists in the domain. In case of the IDC-DRAC inter-
action this means the IDC only sends path setup and path teardown requests to DRAC, 
while DRAC itself has a very sophisticated reservation system. Possible inconsistencies 
can arise because of this when the IDC tries to set up paths in the domain DRAC controls 
and there is alreday an existing reservation made by a DRAC user in the local domain. 

A more general question concerning integration of provisioning system is whether 
interoperability will be achieved by following a centralized model or a federated 
model. Fig.8 exemplifies the two architectures.  

 

Fig. 8. Two possible architecture models for interoperability: a centralized model (left) and a 
federated model (right) 

Centralized architectures see a vertical communication pattern (called north-south 
communication), where different domains relinquish control to a central management 
plane. This is the model implemented in Harmony. Federated architectures maintain a 
horizontal communication pattern  (often called east-west communication). This chain 
model is the one realized by IDC.  

We cannot predict which model will prevail. Our work provides tools to bridge one 
to the other by allowing a centralized model (Harmony) to co-exist and communicate 
with a federated model (IDC). 

Furthermore, our work lead us to identify four components necessary for interop-
erability of provisioning systems that will need to be addressed in future work:  

• Terminology consistency. Lightpaths is an all-encompassing term: at time light-
paths are configured purely at Layer1, at times they are Layer2 Ethernet paths. 
Consistent naming, clear technology information is a prerequisite for configuration 
across domains; 

• Topology descriptions consistency. Network domains require some knowledge of 
the connected domain topology to set up on-demand paths beyond network borders. 
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For this reason domains must exchange network topologies. But what constitutes 
the essential and necessary information is matter of study. We expect standard to-
pologies will come from efforts in the Open Grid Forum community, such as the 
one in the Network Markup Language working group [15]; 

• Consistency of information on the status of resources. Currently Harmony and IDC 
operate independently from each other at activation time: this means, a path that 
had been guaranteed during reservation might fail to be provisioned in one of the 
domains. Harmony or IDC will not be notified of this by the other NSP. As a  
result, the user will not have an end-to-end path available, while the NSP has guar-
anteed the existence of one. Notifications of resource availability and status in do-
mains along a path can be a way to maintain consistency.  

• AAA features consistency. This implies that higher or lower control on the re-
sources must be harmonized across domains. As we mentioned in Sec. 4.1 Har-
mony and IDC have very different authentication models: with IDC authentication 
requiring X.509 certificates individually assigned to users. User authentication is a 
necessary condition to assign different permission levels and control of resources 
[16]. All NSPs should in the future implement this model. 

9   Conclusions 

Several challenges are present when trying to perform inter-domain circuit provision-
ing. Systems that work perfectly in one domain need to be interfaced to interoperate. 
We showed our solution to this problem in the case of a combined Harmony-IDC 
testbed. We developed translation modules at the service-plane-to-service-plane level, 
and at the service-plane-to-control-plane level. With these modules we could show 
the setup of intercontinental multi-domain lightpaths. 

We identified many fundamental inconsistencies when providing tools for interop-
erability between Harmony and IDC. The creation of standardized interfaces between 
network domains, as pursued for instance in the NSI group at OGF, will provide the 
answer. Our work helps in that effort as it contributes to the identification of the nec-
essary interoperability components.  
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1 Introduction and Motivation

The Great Plains Environment for Network Innovation – GpENI (pronounced
with accent on the middle syllable and rhyming with GENI) is an international
programmable network testbed centered on a regional optical network between
The University of Kansas (KU) in Lawrence, Kansas State University (KSU) in
Manhattan, University of Nebraska – Lincoln (UNL), and University of Missouri
– Kansas City (UMKC) within the Great Plains Network, supported with optical
switches from Ciena interconnected by Qwest fiber infrastructure, in collabora-
tion with the Kansas Research and Education Network (KanREN) and Missouri
Research and Education Network (MOREnet). GpENI is undergoing significant
expansion to Europe and Asia. The goals of GpENI are to:

– Build a collaborative research infrastructure in the Great Plains region among
GPN and other institutions

– Construct an international programmable network infrastructure enabling
GpENI member institutions to conduct experiments in Future Internet ar-
chitecture, supporting projects such as PoMo: PostModern Internetwork Ar-
chitecture [1] and ResumeNet [2]

– Provide programmable optical infrastructure to the GpENI Midwest optical
backbone, and expand optical connectivity to selected international sites

– Provide flexible infrastructure to support the GENI program as part of the
PlanetLab control framework cluster B

– Deploy tools developed by GpENI and the GENI community such as Gush
for experiment control and Raven for code deployment

– Provide an open environment for networking research community experiments

1.1 Previous Testbeds

It is important to remember that the idea of large-scale testbeds on which to
conduct networking research is not new with GENI and FIRE. This section
summarises a few of the most relevant previous efforts.

Gigabit testbeds. A set of testbeds was constructed in the early 1990s to
further the state of high-speed networking research, funded by the US NSF
and DARPA (Defense Advanced Research Projects Agency), managed by CNRI
(Corporation for National Research Initiatives). Five separate testbeds were con-
structed: Aurora, Blanca, Casa, Nectar, and Vistanet [3], later supplemented by
MAGIC [4].1 The Gigabit Testbeds were a platform for research in high-speed
networking, new bandwidth-enabled applications [5], and networked supercom-
puting (before the term grid was coined).

Active network testbeds. In the late 1990s, testbeds were constructed in
the US and Europe to support active networks research. Active networks are
programmable networks in which one of the programming modalities includes

1 GpENI is currently using the research fiber originally installed for MAGIC at the
University of Kansas.
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capsules of mobile code that can dynamically program network nodes. In the US,
the ABone [6] was constructed as part of the DARPA-funded Active Networks
Program2[7], to permit experimentation on programmable network languages,
management and control [8], node operating systems [9], and security mecha-
nisms [10]. The ABone had the goal of open access to the research community,
with a separation into core nodes provided by program fundees, and edge nodes
attached by the larger community. In Europe, the EU FP5 FAIN (Future Active
IP Networks) [11] and related projects (e.g. LARA++ [12]) also investigated
active and programmable networks, with testbeds constructed for experimen-
tation. These active network architectures and testbeds permitted sharing of
infrastructure by the simultaneous execution of active applications (AAs) in ex-
ecution environments (EEs) on a network node operating system (NodeOS).
While not generally recognised in this manner, the active network testbeds had
many goals similar to that of GENI, and should be considered a conceptual
precursor.3

Modern large-scale testbeds. More recently, two large scale testbed infras-
tructures have been constructed with the explicit goal of permitting open access
for networking research. PlanetLab [13] is a large-scale worldwide infrastructure
that permits users to run networked experiments at large scale. The infras-
tructure is shared using the slice paradigm. It is important to note that while
PlanetLab permits experimentation in networked applications and end-to-end
protocols, the network itself is not programmable, and experiments in lower-
layer protocols can only be performed on overlays. VINI [14] is a version of
PlanetLab that allows control over the network topology.

Emulab [15] is a network testbed consisting of a cluster of computing nodes
interconnected by flexible network infrastructure, which permits researchers to
experiment with network protocols and applications with complete root access
to the systems. A number of Emulab facilities are located throughout the world,
some of which provide access to external researchers in addition to the main
facility at the University of Utah. Both PlanetLab and Emulab are the basis for
GENI control frameworks; GpENI uses the PlanetLab GENI control framework.

1.2 Current Future Internet Initiatives

While a number of researchers were proposing alternatives to the Internet ar-
chitecture as early as the 1980s (including research programs such as DARPA
Next Generation Internet – NGI), there is now a general consensus in the re-
search community that the current architecture is limiting in scale and support
for emerging application paradigms such as mobile and nomadic computing and
communications. Recent research initiatives include NSF FIND (Future Internet
Design) [16] in the US, EU FP6 SAC (Situated and Autonomic Communica-
tions) [17], and the research component of FP7 FIRE (Future Internet Research
2 Program managers were Gary Minden, Hilarie Orman, and Doug Maughan.
3 Three of the GpENI PIs (Sterbenz, Plattner, Hutchison) performed research in these

programs.
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and Experimentation) [18]. These research initiatives aim to investigate clean
slate (greenfield) as well as incremental (brownfield) architectures to evolve the
Future Global Internet architecture.

A key problem remains how to experiment with Future Internet architec-
tures at reasonable scale. For this reason, the NSF GENI (Global Environments
for Network Innovation) program [20], experimental component of the EU FP7
FIRE programme [18] , and Japanese JGN2plus [19] testbed plan to deploy
large-scale programmable testbeds for experimentation of the Future Internet
research. GpENI is a large-scale international programmable testbed currently
under construction as part of the GENI, FIRE, and FIND programs.

1.3 GpENI Programmability and Flexibility

The defining characteristic of GpENI is programmability of all layers, as shown in
Figure 1, implemented on a node cluster of general- and special-purpose proces-
sors, described in detail in Section 3. At the top layer Gush provides experiment
control and Raven distributes code; both are software developed as part of the
GENI program. Layer 7 and 4 programmability are provided by the GENIwrap-
per version of PlanetLab. At layer 3, programmable routers are implemented
in Quagga, XORP, and Click, supplemented by any other technology for which
GpENI institutions should choose to deploy.4 Flexible network-layer topologies
are provided by VINI. At layer 2, dynamic VLAN configurations are provided by
DCN-enabled managed Gigabit-Ethernet switches at the center of each GpENI
node cluster. GpENI institutions directly connected to the optical backbone
use DCN-enabled Ciena switches to provide dynamic lightpath and wavelength
configuration. At layer 1, the architecture even permits programmability at the
photonic layer for switches that provide such support. Furthermore, each GpENI
institution can connect site specific networking testbeds; plans include wireless,
sensor, and cognitive radio testbeds (e.g. KUAR [22]). External users in the
broader research community may request GpENI accounts with which to run
network experiments.

4 We are investigating including OpenFlow [21] as a core GpENI technology.
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2 Topology and Network Infrastructure

The core of GpENI is the regional optical backbone centered around Kansas
City. This is extended by KanREN (Kansas Research and Education Network)
to various GPN (Great Plains Network) institutions in the Midwest US. Con-
nectivity in Kansas City to Internet2 provides tunneling access to the Canadian,
European, and Asian GpENI infrastructure. Optical connectivity is currently
in place in the UK between Lancaster and Cambridge, and will replace other
GpENI L2TPv3 and IP tunnels as available. GpENI is growing, currently with
about 200 nodes at 40 institutions in 20 nations. Institutions may connect to
GpENI if they are interested in becoming part of the GpENI community, and
have the resources to install, connect, and manage a node cluster.

2.1 Midwest US GpENI Core and Optical Backbone

GpENI is built around the core GpENI optical backbone centered in the Mid-
west, shown in Figure 2, among the principal institutions of KU, KSU, UMKC,
and UNL, currently under extension to additional institutions, including the
GMOC (GENI Meta-Operations Center). The optical backbone consist of a fiber
optic run from KSU to KU to the Internet2 PoP in Kansas City, interconnected
with dedicated wavelengths to UMKC and UNL, as shown in Figure 5.

Each of the four core institutions will have a node cluster that includes optical
switching capabilities provided by a Ciena CoreDirector or CN4200, permitting
flexible spectrum, wavelength, and lightpath configurations.5

2.2 GpENI European Topology

GpENI is extended to Europe across Internet2 to GÉANT2 and NORDUnet
and then to regional or national networks, as shown in Figure 3. Currently,
5 GpENI optical infrastructure is currently undergoing phased deployment; the UNL

switch is installed and the KU switch is under procurement.
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connectivity is achieved using L2TPv3 and IP tunnels. A direct fiber link over
JANET is deployed between Lancaster and Cambridge Universities.6 The princi-
pal European GpENI institutions are Lancaster University in the UK and ETH
Zürich in Switzerland.

2.3 GpENI Asian Topology

Similarly, GpENI is extended to Asia across Internet2 to APAN, then to national
research network infrastructure including ERNET. as shown in Figure 4.

21 January 2009 KU EECS 780 –Comm Nets – Administrivia NET-AE-22
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3 Node Cluster Architecture

Each GpENI node cluster consists of several components, physically intercon-
nected by a managed Netgear Gigabit-Ethernet switch to allow arbitrary and
flexible experiments. GpENI uses a KanREN 198.248.240.0/21 IP address block
within the gpeni.net domain; management access to the facility is via dual-
homing of the Node Management and Experiment Control Processor. The node
6 GpENI is currently working with research network providers to increase direct optical

connectivity.
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cluster is designed to be as flexible as possible at every layer of the protocol
stack, and consists of the following components, as shown in Figure 6:

– GpENI management and control processor: general-purpose Linux machine
– PlanetLab control framework consisting of aggregate managers: MyPLC with

GENIwrapper SFA (at KSU), myVINI (at UMKC), and DCN (at UNL)
– PlanetLab programmable nodes (enabling layer 4 and 7 experimentation)
– VINI-based programmable routers (providing flexible network topologies),

with Quagga and other extensions such as XORP and Click (enabling layer
3 experimentation), as well as the ability for GpENI partners to install their
own programmable routers

– Site-specific experimental nodes and testbeds, including software defined ra-
dios (e.g. KUAR), optical communication laboratories, and sensor testbeds

– Managed Gigabit Ethernet switch, providing L2 VLAN programmability and
connectivity to the rest of GENI

– Ciena optical switch running DCN providing L1 interconnection among
GpENI node clusters on the Midwest US optical backbone
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Fig. 6. GpENI Node Cluster

3.1 GpENI Management and Control

The GpENI management and control services are distributed across the Linux
machines dedicated for the purpose at each of the node clusters. Open-source
tools are used wherever possible to minimise the amount of GpENI-specific soft-
ware development and maintenance required. Some of these services are installed
at every node cluster, for example the Cacti monitoring tool [23] is used to moni-
tor the per-port network usage on each of the Netgear Gigabit-Ethernet switches.
Nagios [24] is used to monitor the status of individual nodes and services across
all the clusters. Zenoss Core [25] is also being evaluated as an alternative to
Nagios. On the other hand, some functions are specific to one site, such as the
GpENI-Planetlab demo [27], running on Apache and hosted only on the man-
agement node at the KSU node cluster.



436 J.P.G. Sterbenz et al.

The control node for each cluster also provides firewall and NAT services using
Firestarter [28] for that cluster’s private subnet, thereby protecting insecure
devices, such as the Netgear switch telnet and SNMP management interfaces,
from direct exposure to the Internet.

3.2 Experiment Control

To ease experimenters role in resource discovery and preparation of experiments,
the GENI User Shell (Gush) [29], provides a robust experiment control and
management framework. Gush extends the PlanetLab control framework to im-
plement an API that interacts with the GENI Clearinghouse. With Gush deploy-
ment on the GpENI aggregate, a user can reserve both PlanetLab and GpENI
resources by downloading agents on the selected nodes and deploy their experi-
ments subsequently with the help of the controller that communicates with the
agent about node status. The Raven [30] provisioning service provides services
such as the proper execution environment, software packages, configuration in-
formation and computational resources.

3.3 PlanetLab Control Framework Sub-aggregate

The PlanetLab Control Framework provides the control software to implement
control plane, data plane, management plane, and operations plane functional-
ities in GENI Cluster B.7 Cluster B contains a number of distinct aggregates:
PlanetLab nodes, VINI nodes, Supercharged PlanetLab Platform (SPP) back-
bone nodes [31], OpenFlow switches [21], and GpENI node clusters. The GpENI
aggregate consists of three sub-aggregates: the PlanetLab control framework (de-
scribed in this section), the routing and topology sub-aggregate, and the DCN
sub-aggregate (discussed in the following sections). A slice is a fraction of re-
sources allocated to a particular experiment throughout an aggragate. GpENI
has deployed the PlanetLab GENIwrapper slice facility architecture (SFA) [32]
to export three interfaces: registry, slice manager (SM), and aggregate manager
(AM). These GENI interfaces are accessible via the slice facility interface (SFI)
implementing functions to get slice details, node details, and user accounts. Us-
ing the SFA, GpENI has federated with the public PlanetLab, which means that
GpENI resources are available for authorised PlanetLab researchers using the
public PlanetLab interface. In the long term, there are plans for federations
among GENI, as well as to other Future Internet testbeds, such as OneLab [33].

3.4 Routing and Topology Sub-aggregate

For layer 3 programmability, GpENI provides programmable topologies using
VINI and an arbitrary number of programmable routers in each node cluster.

Virtual Topology Control using VINI. VINI enables arbitrary virtual
topology creation on top of physical networking infrastructure. VINI is

7 GENI is divided into several clusters, each of which uses a distinct control framework.
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essentially a flavor of PlanetLab with a set of enhancements to the PlanetLab
kernel and tools called Trellis. Trellis allows users to create their own topology,
either automatically using the IIAS (Internet in a slice) toolkit or manually
designating links between slivers. MyVINI is the private VINI implementation
within the GpENI nodes, permitting full control of virtual topology.

Programmable Routers. Trellis can host existing routing software such as
Quagga [34], XORP [35], and Click [36]. Therefore, MyVINI with programmable
routing software installed enables the implementations of layer 3 programmable
routers for GpENI nodes. The routing softwares support a wide range of existing
routing protocols. For example, Quagga supports RIPv1, RIPv2, OSPFv2, BGP-
4, RIPng, OSPFv3. However, these programmable routers have very limited
processing power and can only handle moderate size forwarding tables compared
with realistic routers in backbone networks since they are running in commodity
PCs. GpENI is initially running Quagga, with planned modifications to run
XORP and Click.

The ultimate goal is to design a toolkit with a GUI permitting users to plug-in
arbitrary research protocols. This will permit new routing protocols to be tested
on the arbitrary layer-3 topologies provided by VINI, and on arbitrary layer-2
topologies provided by the DCN sub-aggregate described in the next section.
Two areas of emphasis will be to study network resilience (in the context of the
EU-FIRE ResumeNet project) and routing among heterogeneous realms (in the
context of the NSF-FIND Postmodern Internet Architecture project).

3.5 DCN Sub-aggregate

GpENI uses DCN for control of VLAN interconnection among L2TPv3 tunneled
node clusters as well as optical switches connected directly to the core backbone.

Internet2 ION Service and DCN Optical Control Plane Framework.
In recent years, the Internet2 network has evolved from a pure IP-based packet-
switching network into an advanced hybrid optical and packet network. Cur-
rently, the Internet2 network consists of three different, but related physical
networks: Advanced IP network (provided by Juniper routers), Virtual Circuit
network (provided by the multiservice switching capabilities of the Ciena CoreDi-
rectors), and the core optical network (provided by the Infinera platform). Apart
from the traditional IP service, the new Internet2 network offers a virtual circuit
service to provision dedicated bandwidth across the network, called the Inter-
net2 Interoperable On-demand Network (ION) [37]. The ION service can be
used to set up on-demand, dedicated optical paths between endpoints in stan-
dard SONET bandwidth increments up to 10 Gbps. The ION service is dynamic
and can thus be used to set up short term connections by a requestor or an
application through a Web interface. The control plane software that automates
the set up and tear down of the circuits was developed for the Internet2 Dynamic
Circuit Network (DCN) research prototype and leverages technology developed
by DRAGON (USC/ISI East, MAX, and George Mason University), GÉANT2,
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and the DOE ESnet (OSCARS project). The DCN software suite is used to
control the Internet2 ION service and is also available as open source to other
institutions to use in creating their own DCN.

DCN in GpENI. GpENI has modified the DCN software suite to support
the Netgear GSM7224 Ethernet Switch [38] used at the center of each GpENI
node cluster. This will enable the creation of on-demand circuits at the required
bandwidth for specified durations using the DCN software suite. There are two
options to deploy DCN across the GpENI testbed [39]. The first option involves
setting up static VLANs and Q-in-Q at the GPN switch in the Kansas City In-
ternet2 PoP. The second option involves setting up a dedicated switch for DCN
in the GpENI testbed. Deploying DCN across GpENI will also facilitate setting
up VLAN circuits across the Ciena CoreDirectors located at various locations
in Internet2. The CoreDirector Component Manager Interface [40] describes the
use of the CoreDirector in the GpENI testbed. As additional GpENI optical
switches are deployed, a common GpENI-wide DCN testbed will emerge over a
multidomain network with CoreDirectors forming the optical domain and Net-
gear switches forming the Ethernet VLAN domain at each GpENI institution.

4 Early Demonstrations and Experiments

GpENI is currently operational at the core Midwest US nodes, principal Eu-
ropean nodes, and several other institutions.8 We have just begun experiments
with GpENI, and are permitting limited accounts to researchers in the GENI,
FIRE, and larger community.

The first public demonstration9 creates a GpENI PlanetLab slice that gen-
erates an overlay loop among GpENI nodes; a screenshot example is shown in
Figure 7. The next public demo will use the routing sub-aggregate to create a
VINI topology slice giving control to the underlay in addition to the PlanetLab
overlay.

Very preliminary performance experiments have begun using the current over-
lay capabilities, measuring throughput and delay for various topologies among
the KU, KSU, UMKC, UNL, Bern, and Cambridge node clusters.

Table 1 shows the average delay between a set of 5 GpENI node clusters,
measured on 23 Nov. 2009, beginning at 09:00. For each cluster pair, a ping
command was issued 6 times at 2 hour intervals. Each command used 64KB
packets, with a repeat count of 1000 and an interval of 1 sec. Thus the averages
for each pair are computed for 6000 values over an 11 hour period. This table
clearly indicates that the PlanetLab overlay topology is not representative of
the layer-2 underlay, since traffic between Cambridge and Bern is backhauled
to Kansas in the current tunnel confuguration. With the further deployment of
L2TPv3 tunnels within Europe and DCN control of the L2 topology, we will be
able to control both logical and physical topologies.
8 As of this writing, KU, KSU, UMKC, UNL, Lancaster, Cambridge, ETH Zürich,

and Bern nodes are operational, with many others under installation.
9 Available at http://control-1.ksu.gpeni.net/demo/#sites.
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Fig. 7. GpENI-Planetlab Overlay Path Demonstration

Table 1. Average ping times in msec. between GpENI sites

Location KSU KU UNL Bern Camb.

KSU – 2 9 145 155

KU 2 – 6 143 153

UNL 9 6 – 152 158

Bern 145 143 152 – 295

Camb. 155 153 158 295 –

5 Future Outlook

GpENI is a testbed programable at every layer, intended to enable research in
Future Internet architectures. The first GpENI nodes are operational, and we
believe that it is the first such international testbed spanning the US GENI and
EU FIRE programs, with plans to connect to JGN2plus in Japan, as well as
Korean and Chinese testbeds. GpENI is currently under expansion to over 200
nodes at 40 institutions in 20 nations. We will use GpENI for experiments in the
NSF-FIND Postmodern Internet Project at the University of Kansas, and the
EU-FIRE ResumeNet project among KU, Lancaster University, ETH Zürich,
TU München, Universität Passau, and Uppsala Universitet. GpENI has direct
interconnection to ProtoGENI [41] linking GENI clusters B and C. Furthermore,
efforts are underway to connect the GpENI to the MAX (Mid-Atlantic Cross-
roads) regional optical network at Layer 2 through the ProtoGENI network. The
MANFRED project is in GENI cluster B with GpENI. In the longer term, we
are under discussion with regional and national research networks to extend the
optical substrate domestically and internationally.
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Abstract. Prototyping future Internet technologies is an important but
complicated task, mainly caused by incompatibilities to existing systems
and high implementation complexity. To reduce these problems, we have
developed the Future Internet Toolbox (FIT), consisting of four frame-
works that cover data transport, information-centric networking, nam-
ing, and name resolution. These frameworks can be used separately or
can be combined to a large testbed, covering many aspects at once. Ex-
perience has shown that FIT not only simplifies our own prototyping
activities but is also useful for other projects due to its generality.

Keywords: Future Internet; network; testbed; framework; prototype;
information-centric; data-centric; transport; naming; name resolution.

1 Introduction

Currently, a lot of research is done in the area of future Internet technologies.
Hot topics include information-centric networking, data transport techniques
and protocols, routing schemes, resource allocation, mobility, and cooperation/
coding techniques. After developing new concepts and protocols in these areas,
they have to be evaluated. Often, it is desirable to do this via prototyping and
testing under real-world assumptions in real networks. This procedure, however,
is very difficult today and is often avoided because (1) the new concepts are
incompatible with existing systems or (2) it is too costly to implement a whole
prototype from scratch to evaluate a small component of an overall architecture.

To overcome these difficulties, we developed FIT – the Future Internet Tool-
box. FIT simplifies developing future Internet prototypes and testbeds by pro-
viding a set of frameworks, covering the following aspects of networking:

– Data transport, including related aspects like routing, resource management,
mobility, and cooperation techniques

– Naming and name resolution
– Information-centric networking, including search, publish/subscribe, caching/

storage, and information modeling
� The research leading to these results has been conducted in the 4WARD project and

received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 216041.
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These frameworks solve both problems mentioned above as they (1) provide
generic testbeds that integrate into today’s network/system architectures and (2)
provide a lot of ready-to-use building blocks that support and ease development.
The downside of such high reusability is that frameworks always introduce a
trade-off between reusability and flexibility. Having this in mind, the main goal
was to mitigate this trade-off by designing the frameworks as generic as possible
to allow implementing as many different concepts and protocols as possible.

The following sections introduce the frameworks that constitute FIT. Sec. 2
covers information-centric networking, Sec. 3 our naming framework. Data trans-
port is addressed in Sec. 4 and Sec. 5 discusses generic name resolution.

An extended version of this paper, containing additional use cases and exam-
ples, is available in [1].

2 Information-Centric Networking Framework

This section describes the Information-Centric Network (ICN) framework. We
will describe the framework itself and will illustrate how the framework can be
used in specific information-centric architectures using the example of NetInf
(and Content-Centric Networking (CCN) [2], see technical report [1]).

2.1 Overview

Several information/content/data-centric network architectures have been pro-
posed lately [3,2,4]. To support the prototyping of ICN concepts, a framework
providing the following aspects is desirable:

– A generic, adaptable node structure implementation
– A flexible, reusable implementation of various architecture components
– Support for defining new services and protocols, incl. especially communication

We are not aware of a framework that focuses on prototyping ICN architectures
(see our technical report [1] for a discussion of related work). Therefore, we
developed the ICN framework for rapidly and easily implementing and testing
ICN designs as well as specific services and protocols.

The ICN framework solves the apparent conflict betweenflexibility and reusabil-
ity by recursively addressing this conflict on four different levels: the network archi-
tecture level including communication between network nodes, the architecture of
eachnetworknode that is composed of components, the architecture of each compo-
nent containing multiple component services that implement architecture-specific
services and protocols, and the design of those component services. On each level,
we provide reusable structure and building blocks to accelerate the prototyping
process while at the same time providing flexibility and extensibility based on a
consistent plugin concept.

Fig. 1a gives an example of a node structure for a generic ICN node, consisting
of components. Each component can contain a single (e.g., Naming, Informa-
tion Model component) or multiple different implementations of its component
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(b) NetInf-specific node configuration

Fig. 1. Example testbed node configurations, consisting of adaptable components that
each contain several service incarnations like Resolution Services (RS), Transport Ser-
vices (TS), and Event Services (ES )

functionality (e.g., Resolution component). The API of the information-centric
node as well as inter-node communication is combined in the same adaptable
interface. To provide a broad and flexible mechanism to access the interface, we
have implemented a layer of indirection on top of the interface (Fig. 1b) that
provides access in different ways (e.g., via an HTTP proxy interface to connect
legacy applications) and can easily be extended with new mechanisms.

Based on our NetInf prototype [5] and evaluation of related concepts like
CCN [2], Content-Based Networking [6], and DONA [4], we identified the fol-
lowing main components of an ICN architecture: Search, Naming, Name Resolu-
tion, Data Transport, Storage, Event Service, and Information Model. The ICN
framework provides ready-to-use implementations for those components.

Each component can be adapted with architecture-specific services and proto-
cols based on a flexible plugin concept. Services and protocols are encapsulated
in component services. To enhance flexibility, a component can contain multi-
ple component services while each service fulfills the same interface but may
implement and fulfill this service in a different way. A component controller is
responsible for choosing between component services, and managing the order of
execution. For example, the Resolution Controller manages several Resolution
Services that implement specific name resolution mechanisms, e.g., via DHT
or via DNS, that can be chosen depending on the type of namespace (flat/
hierarchical) to resolve. Adding a new service to a component is done via the
simple plugin concept and reconfiguring the controller to include the new service.

Besides the architecture of a network node, the communication between nodes
is the second main aspect of an ICN architecture. The ICN framework offers two
distinct components for implementing and testing various communication proto-
cols. First, the Transport component is used to implement and test communication
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protocols in general. Implementations for legacy protocols are already provided by
the ICN framework and new protocols can be implemented using the data trans-
port framework (Sec. 4). Second, as the publish/subscribe paradigm often plays
an important role in ICN [6,3], we provide a dedicated Event component to sim-
plify the integration of different publish/subscribe mechanisms.

In summary, the ICN framework provides a testbed for building custom nodes
and for interconnecting those nodes to implement and test different ICN archi-
tectures. It has a flexible and adaptable structure, and offers ready-to-use im-
plementations for the main components of many ICN architectures as well as
component services to accelerate the prototyping process.

2.2 Implementation

The ICN framework is consistently based on the interface design pattern for
flexibility. It is implemented in Java for platform independence and a flexible
choice of devices. The code runs on FreeBSD, Linux, Windows, and Android.

2.3 NetInf Use Case

Fig. 1b shows the configuration of a NetInf node created with the ICN framework.
Each component contains several specific service implementations that represent
the main services and protocols of the NetInf architecture. For example, the
NetInf architecture contains multiple name resolution services in parallel that
are each represented as a Resolution Service (RS ) in the Resolution component.

Resolution Service Event ServiceResolution Service

Publish(a)

Search ServicesSubscribe(a)

Publish(a)

Fulltext
Search

Get(ID)

NetInf Node

Search(y)Get(ID) / Search(x)

Nodes running Client Apps
GPS
Search

Fig. 2. Network of information-centric nodes
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The NetInf prototype also illustrates the generality of the ICN framework by
integrating the NetInf architecture with another content-based network architec-
ture, SIENA [6]. SIENA is used to realize the publish/subscribe communication,
integrated with the NetInf information model.

Our NetInf prototype extends the information-centric node interface with
three different mechanisms to access the node interface (Fig. 1b): Java appli-
cations can simply use the provided Java interface. For applications that talk
HTTP (e.g., a Web browser plugin), we provide an HTTP proxy interface. For
inter-node communication, we provide access to the node interface via Google
Protocol Buffers (Protobuf) [7]. Google Protobuf enables the simple and fast
definition of custom protocol messages and provides efficient data transfer.

Fig. 2 shows an example of several NetInf nodes that form an ICN. Some are
running client applications while others provide services like global name reso-
lution and search services. Communication between those nodes is based on the
information-centric node interface (implemented with NetInf-specific primitives
like Get(ID), Publish(a)) and Google Protobuf.

3 Naming Framework

A naming framework should provide mechanisms that support a wide variety of
different naming schemes while at the same time minimizing the implementation
overhead. As a result of those considerations, our naming framework [8] is based
on a simple, yet flexible and powerful mechanism: names are composed of a
sequence of labels, each of which is a ’labelName=labelValue’ pair. There are
two ways to handle the ordering of labels: labelNames are either themselves part
of the name, e.g., ’label1=value1 & label2=value2 & label3=value3’, thereby
explicitly assigning labelValues to labelNames. Alternatively, labelNames are not
part of the name, e.g., ’value1 & value2 & value3’, which then requires to define
the ordering of labels in advance.

Including the labelNames in each name allows for flexibility. This makes it
possible to define naming schemes with a flexible set of labels as well as a flex-
ible ordering of labels. On the other hand, namespaces with compact names
can be achieved by excluding labelNames from the names and predefining an
explicit label ordering. Via those two mechanisms, our naming framework sup-
ports common naming schemes like IP addresses and URIs as well as complex
naming schemes like the NetInf naming scheme [3].

Some more complex naming schemes, especially in the area of information-
centric networking [3,2], involve features like information-centric security that go
far beyond common naming schemes. To support such features, we optionally com-
bine names with a flexible set of metadata that can, e.g., contain security-related
data like a hash value of the content. In addition, our framework integrates imple-
mentations for security-related algorithms like symmetric and asymmetric
encryption, (self-)certification, and public/private-key-based authentication to
simplify the implementation of complex naming schemes which include such se-
curity features.
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4 Data Transport Framework

4.1 Overview

The main observation that triggered our work to develop a data transport frame-
work was the difficulty to introduce new functionality/protocols into today’s
network stacks. One reason for this is that there is no coherent way to identify
entities and to manipulate them as today’s network architecture is based on a
mainly statically layered stack and functionality is located in end systems.

To design a more flexible, powerful, and reusable data transport architecture,
we need an approach to model, design, identify, and use data flows. This ap-
proach, however, needs to be generic enough to stretch over a wide range of
technology levels and should encompass a wide range of data processing and
forwarding functions in end systems as well as in intermediate nodes.

With such a set of requirements, it is impossible to come up with the, single
solution for a one-size-fits-all flow type. Therefore, we decided to choose a design
process that combines (1) a uniform appearance and interface for all different
flow types and (2) flexibility in supporting a wide range of flow types, in as
many different environments as possible. A network architecture that fulfills
these requirements is the Generic Path (GP) architecture [9]. We use its concepts
as basic building blocks for our data transport framework.

We chose an object-oriented approach to design network components while
keeping them coherent in their interfaces and basic structures. This allows to
incorporate new networking techniques more flexibly than in today’s network ar-
chitectures as networks can be arbitrarily composed of the components.
Furthermore, networks can easily be adapted according to any cross-layer in-
formation during runtime, thanks to the unified interfaces. Examples for data
transport aspects that have been modified/integrated into our framework are
routing, mobility [10], cooperation and coding techniques [11], and resource
allocation.

A discussion on related work in this area can be found in [1, Sec. 4.5].

4.2 Framework Components

This section introduces the components that constitute the data transport frame-
work: Generic Paths (GPs), Entities, Compartments (CTs), Endpoints (EPs),
and Hooks. An example of their interactions is given in Fig. 3. The scenario
consists of six Entities (E1-E4, two Cores), four CTs (C1, C2, N1, N2), four EPs
(EP1-EP4) forming two GPs, and two Hooks. The GP between EP1 and EP2 in
C1 (e.g., IP) is realized by the GP between EP3 and EP4 in C2 (e.g., Ethernet).

Entity. An Entity is the generalization of an application that takes part in any
kind of communication. Depending on the implementation, this can be a process,
a set of processes, a thread. Communication between Entities is realized via GPs.

Furthermore, an Entity keeps state information that is shared among multiple
GPs and runs processes or threads that manage this state. Examples for such
state information are routing tables, resolution tables, and access control tables.



448 T. Biermann, C. Dannewitz, and H. Karl

Fig. 3. Overview and interaction of GP architecture components. Entities are drawn as
rectangles, CTs as rectangles with rounded corners, EPs as squares, GPs as horizontal
lines, and Hooks as vertical lines.

Generic Path. A Generic Path (GP) is an abstraction of data transfer between
communicating Entities located in the same or in remote nodes. The actual data
transfer, including forwarding and manipulation of data, is executed by EPs.

Endpoint. An Endpoint (EP) keeps the local state information of a specific GP
instance, i.e, it is a thread or process executing a data transfer protocol machine
and doing any kind of traffic transformation. EPs are created by an Entity and
may access shared information of that Entity.

Usually, GPs require other GPs to provide their service. E.g., a TCP/IP GP
requires another GP that provides unreliable unicast, like an Ethernet GP, to
provide a reliable unicast service at the end. Therefore, EPs are bound via Hooks
to other EPs within the same node. Besides exchanging data, Hooks also hide
names from other CTs to permit changing a GP’s realization later on.

Compartment. A Compartment (CT) is a set of Entities that fulfill the fol-
lowing requirements:

– Each entity carries a name from a CT-specific name space (e.g., MAC ad-
dresses in the Ethernet CT). These names can be “empty” and do not need
to be unique. Rules how names are assigned to entities are specific to each
CT.

– All entities in a CT can communicate, i.e., they support a minimum set of
communication primitives/protocols for information exchange. These pro-
tocols are implemented as different GP types. Hence, for joining a CT, an
Entity must be able to instantiate the EP types required by the CT.

– All entities in a CT may communicate, i.e., there are no physical boundaries
or control rules that prohibit their communication.

A special CT is the Node CT (N1 and N2 in Fig. 3). It corresponds to a pro-
cessing system, i.e., typically an operating system that permits communication
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between different processes (e.g., by using Unix domain sockets). By means of
virtualization, multiple Node CTs can be created on one physical node.

An Entity is typically member of at least two CTs, the “vertical” Node CT
and a “horizontal” CT. Furthermore, the Entity has a (possibly empty) set of
names from each of the respective CT name spaces.

Note that GPs cannot cross CT boundaries due to the possibly different name
spaces, protocols, etc. GPs always reside within a single CT.

Core. The Core is a special Entity. It exists once per Node CT, is only member of
the Node CT, and is responsible for node-wide management. The Core’s mainly
supports other Entities in cross-CT (i.e., cross-layer) issues, like, name resolution,
mobility, managing/controlling Hooks, and service discovery. E.g., in the example
in Fig. 3, when setting up the GP between EP1 and EP2, it is the Core that
tells E1 that E3 is able to provide the service required to realize its GP.

Note that the Core is also able to reconfigure the realization of existing, i.e.,
already established, GPs during runtime. This is done transparently to the in-
volved Entities by moving a Hook from one EP to another, possibly in another
CT. This feature is required, e.g., to realize mobility or to switch between dif-
ferent transmission modes, like cooperative and direct transmission.

4.3 Testbed Implementation

To be able to use Entity, EP, and Core implementations in various environments,
like Linux, Windows, and embedded systems, we used C++ for efficiency and
strictly separated the implementation of the logic parts from the environment-
specific parts. In detail, this separation means that our testbed abstracts execu-
tion environment functions, e.g., by mapping Hooks to available IPC mechanisms.
Entities, EPs, and Cores just use these abstractions, which enables to use their
content (transport protocols, routing strategies, mobility schemes, data encoding,
etc.) in different environments without changing code.

We realized this separation by inheritance, provided by the object-oriented
programming paradigm. For this, we implemented all abstractions, like Hook,
timeout, and callback handling, in a root class, called AbstractEntity (and
analogously for EPs and Cores). From this root class, wrapper classes like
PosixEntity and OmnetEntity inherit to map the abstractions to the appropri-
ate execution environment APIs. Thereafter, an Entity class is derived from one
of these wrappers (chosen during compile time). Own, environment-independent
Entity classes inherit from this class. Environment-specific entities directly in-
herit from a wrapper class. Fig. 4 illustrates this.

Currently, we have ready-to-use wrappers for POSIX-compliant systems, like
Linux, BSD, and Darwin (Mac OS X) and for OMNeT++ [12], an open-source
discrete event simulator. The wrapper for OMNeT++ is especially useful during
the development phase and for demonstrating scalability while at the same time
using the implementation in real-world scenarios via the POSIX wrapper. Addi-
tionally, we are currently working on wrappers for Windows and OpenFlow [13].
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AbstractEntity OmnetEntity

PosixEntity

EntityXOR

OmnetLANEntity

PosixLANEntity

TCPIPEntity

Fig. 4. Inheritance graph for Entity implementations. Entity is usually the base class
from which user-specific Entities (gray) are derived.

5 Name Resolution Framework

Resolving “names” into “addresses” is used in everyday networking at various
layers and abstraction levels. It is realized by a patchwork of individual tech-
niques and concepts. In current networking practice, there is no clear consensus
on what a “name” or an “address” really is and how they should be mapped to
each other between different layers of a system. Closely linked to this confusion is
a lack of a clear concept how the entities inside the individual layers in a system
refer to each other and what is necessary to identify the mapping between such
two entities; only patchwork solutions for typical combinations of layers (e.g.,
ARP, DNS) exist. These issues make it difficult to introduce a new protocol or
a new layer, as this likely to break existing name resolution schemes.

We propose a flexible yet unified name resolution framework that has two
advantages: (1) With a very small set of primitives, a vast range of resolution
mechanisms, like ARP or DNS, can be captured. (2) Introducing new layers is
much easier. We will discuss information-centric networking as an example.

In the following, we use the framework component definitions introduced in
Sec. 4.2 to describe our name resolution framework.

5.1 Resolution Process

When resolving a name, an Entity knows the name of its desired peer Entity and
the CT to which itself and this name belongs. The objective of name resolution
is to find the following additional information for such a name:

– The name of a CT via which the peer Entity can be reached (e.g., “WLAN”).
– An Entity inside this “lower CT”, which can handle the communication on

behalf of the originator Entity (typically, by means of sharing a Node CT).
– The name of a remote Entity in the lower CT that can pass on data to the

actual peer Entity (typically, by means of sharing a Node CT).

The core point in designing a unified name resolution system is to avoid spreading
knowledge of how to interpret a name outside of its CT. Neither does the upper
CT understand names of the lower CT nor vice versa. Hence, the only thing
an Entity can do to resolve a name (in absence of further knowledge) is to
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contact all other Entities in its own CT and ask which Entity has this name (for
optimizations, see [1]) – a WhoHas message is sent inside its own CT.

Horizontal CTs usually do not have direct communication means, i.e., spread-
ing a WhoHas message requires assistance of suitable lower CTs (which CTs are
suitable depends on the required communication service). A lower CT Entity,
however, needs to be told where to send this message; it needs a remote address,
which has to be provided by the higher CT Entity that initiates the resolution.
Note that this lower CT remote address is, from the perspective of the higher
CT Entity, a configuration parameter (opaque string) which it needs to provide
but not to understand. Hence, the resolving Entity sends its WhoHas message to
all local Entities in all suitable CTs, with the remote address (in the lower CT)
being looked up, e.g., from a configuration file. This address could be a unicast,
broadcast, or even anycast address inside the lower CT.

In the lower CT, the WhoHas message is distributed to its remote address,
possibly to many Entities in this CT. The receiving lower-level Entity will re-
ceive the WhoHas message and will distribute this message to all entities in the
original CT. It does not have to process names of the original CT.

Inside the original CT, Entities understand names contained in the WhoHas
message. Each Entity checks whether it matches the desired name (it does not
have to be the named Entity, cp. ARP). If no, it can silently discard the message.
If yes, it answers with an IHave message, containing (1) the original CT name,
(2) the name to be resolved in the original CT, (3) the lower CT name, and (4)
the lower CT address over which the name in the original CT can be reached.

5.2 Testbed Implementation

We implemented the name resolution framework directly in conjunction with the
data transport framework (Sec. 4.3). In consequence, the transport testbed is
able to deal with any naming scheme and any name resolution implementation.

Our name resolution framework implementation spans the Core and Entities.
When an Entity wants to resolve a name, it creates a WhoHas message, contain-
ing the following information: (1) its own name, (2) the name to be resolved,
and (3) the CT name to which these two names belong. Thereafter, this message
is passed to the Core, along with a descriptor that specifies which service will be

Table 1. Example ResolvConf. SrcCT is the CT from which a name is resolved, DstCT
the CT to which the resulting address belongs, ResolverCT the CT in which resolution
takes place, and Resolver the name of the resolver Entity.

SrcCT DstCT ResolverCT Resolver

TCP IP LAN A LAN A 00:00:00:00:00:00

TCP IP LAN B LAN B 00:00:00:00:00:00

NetInf NetInfTransport NetInfRes 12345
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Table 2. Example ResolutionTable. SrcEntity is the Entity that starts the resolution,
DstEntity the name to be resolved (both within CT). LowerSrcEntity/LowerDstEntity
are the Entity names in LowerCT that were found during resolution.

CT SrcEntity DstEntity LowerCT LowerSrcEntity LowerDstEntity

TCP IP 1.2.3.4 5.6.7.8 LAN B 45:67:89 89:AB:CD

TCP IP 1.2.3.4 2.3.4.5 LAN A 45:67:AB 23:45:67

required for data transfer later on (after a successful name resolution). The Core
uses this descriptor to determine for which of the available (horizontal) CTs a
resolution is performed. For each of these suitable CTs, the Core checks if an
entry exists in the ResolvConf. An example is illustrated in Tab. 1; it contains
two entries for configuring name resolution within the CTs TCP IP and NetInf.
Resolving a TCP IP name in the LAN B CT also takes place in the LAN B CT;
resolving from NetInf to NetInfTransport is done in the NetInfRes CT.

The Core extends the WhoHas message with the information from the Re-
solvConf and sends it to all Entities in the own Node CT that are member of
the CT defined by ResolverCT. These Entities send the WhoHas message to the
resolver Entity (ResolverName) where it is processed and answered.

When the resulting IHave message arrives back at the originating Entity that
sent the WhoHas in the CT defined by ResolverCT, it is passed to the Core.
The Core adds the contained information to its ResolutionTable. An example
is shown in Tab. 2. It holds two results; one for 5.6.7.8 in the TCP IP CT that
succeeded in the LAN B CT and one resolution that was answered in LAN A.

The Core now informs the Entity that requested the resolution (1.2.3.4 in
the example) about the success and returns a reference to the ResolutionTable
entry. The Entity cannot read the ResolutionTable content. It uses the pointer
to reference the name resolution result when sending data to the resolved des-
tination name. This strictly keeps names in their own CTs and makes common
misuse impossible (e.g., to put “lower addresses” like IP into the payload).

To our knowledge, this is the first approach towards a unified name resolution
framework that captures a wide range of existing and future resolution services
and spans over all technological levels, i.e., network layers.

6 Conclusion

We presented four frameworks for prototyping future Internet techniques related
to data transport, information-centric networking, naming, and name resolution.
These frameworks can be used on their own to prototype individual concepts or
can be combined to complex testbed implementations, like we did it for the
integrated NetInf prototype.

Experience during our work confirmed that the frameworks simplify proto-
typing a lot. Due to their generality, they will also be useful for other projects
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as they reduce redundant implementation of basic testbed functions and provide
ready-to-use building blocks to rapidly complement new, small components with
an overall network architecture. We will publish our code as open-source project.

Acknowledgments

We gratefully thank the project groups AugNet I and II for valuable discussions
and their excellent implementation support. Furthermore, we would like to thank
our colleagues in the 4WARD project for their input and fruitful discussions.

References

1. Biermann, T., Dannewitz, C., Karl, H.: FIT: Future Internet Toolbox — extended
report. Technical Report TR-RI-10-311, University of Paderborn (February 2010)

2. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M., Briggs, N., Braynard,
R.L.: Networking named content. In: Proc. ACM CoNEXT (December 2009)

3. Ahlgren, B., D’Ambrosio, M., Dannewitz, C., Marchisio, M., Marsh, I., Ohlman, B.,
Pentikousis, K., Rembarz, R., Strandberg, O., Vercellone, V.: Design considerations
for a network of information. In: Proc. ReArch 2008 (December 2008)

4. Koponen, T., Chawla, M., Chun, B.G., Ermolinskiy, A., Kim, K.H., Shenker, S.,
Stoica, I.: A data-oriented (and beyond) network architecture. In: Proc. ACM
SIGCOMM 2007, pp. 181–192. ACM Press, New York (2007)

5. Dannewitz, C., Biermann, T.: Prototyping a network of information. Prototype
demonstration at the IEEE LCN (October 2009)

6. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: Proc. ACM
SIGCOMM 2003, pp. 163–174. ACM Press, New York (2003)

7. Google: Google protocol buffers – Protobuf, Open source project (July 2008)
8. Dannewitz, C., Golic, J., Ohlman, B., Ahlgren, B.: Secure naming for a network of

information. In: Proc. 13th IEEE Global Internet Symposium 2010 (March 2010)
9. Biermann, T., et al.: D-5.2.0: Description of Generic Path mechanism, Project

deliverable (January 2009)
10. Bertin, P., Aguiar, R.L., Folke, M., Schefczik, P., Zhang, X.: Paths to mobility

support in the future Internet. In: Proc. IST Mobile Comm. Summit. (June 2009)
11. Biermann, T., Polgar, Z.A., Karl, H.: Cooperation and coding framework. In: Proc.

IEEE Future-Net (June 2009)
12. Varga, A., et al.: OMNeT++ discrete event simulation system Open source project
13. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., Turner, J.: Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

TridentCom 2010  
 

Practices Papers Session 6: 
Experimentally Driven Research and 

User Experience Testbeds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 457–468, 2011. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011 

Open Urban Computing Testbed 

Timo Ojala, Hannu Kukka, Tommi Heikkinen, Tomas Lindén, Marko Jurmu,  
Fabio Kruger, Szymon Sasin, Simo Hosio, and Pauli Närhi 

MediaTeam Oulu, University of Oulu 
P.O. Box 4500, 90014 University of Oulu, Finland 

firstname.lastname@ee.oulu.fi 

Abstract.  We  present  a  unique  urban  computing  testbed  for  studying  the 
utilization of ubiquitous computing technology in the public urban space of a 
city center. The testbed comprises of a wide  range of pervasive comput-
ing infrastructure and different middleware resources. We demonstrate the ap-
plicability and benefits of the testbed in evaluating technology pilots and 
prototyping new ubiquitous services in real-world urban setting. We conclude 
with a discussion on the challenges in deploying this kind of a large-
scale testbed in a public urban space. 

Keywords: urban computing, ubiquitous computing, public private partnership. 

1   Introduction 

We introduce a unique urban computing testbed in the City of Oulu in northern 
Finland, just 200 km south of the Arctic Circle. With 140000 citizens Oulu is the 
sixth largest city in Finland. The Oulu region has strong ICT competence in 
14000 ICT jobs and the largest regional R&D expenditure per capita in Finland. 
In the late 1990’s the Wired Magazine ranked Oulu as the number three ‘silicon 
valley’ in the world. The long-term goal of our testbed is to provide open horizontal 
resources for building  incremental  functional prototypes of  a future  ubiquitous  
city.  There networked computing devices are seamlessly embedded into the urban 
space, turning it into a smart space providing different interaction modalities 
with the physical, virtual and social spaces. The utilization of ubiquitous com-
puting technologies in urban space is studied by the multidisciplinary field of urban 
computing. It is driven by two important and related trends, urbanization and increas-
ing deployment of pervasive computing infrastructure in the urban areas. 

The mainstream research on ubiquitous computing suffers from a distinct lack of 
longitudinal, real-world case studies of system usage. The vast majority of research 
consists of studies that typically last a few days or weeks at best. Further, from 
the viewpoint of urban computing the studies are often executed in artificial settings 
such as labs and university campuses. While the immense research effort has  
produced numerous publications laying the theoretical foundation, few visible and 
lasting contributions to the urban digital fabric have emerged. This lack of coherent 
progress motivated the 2005 UbiApps workshop at Pervasive 2005, where 25  



458 T. Ojala et al. 

researchers were invited based on their position papers. In their workshop summary 
Sharp and Rehman [10] identified several reasons underlying the crisis in the interna-
tional ubiquitous computing  research.  One  of  them  was  the  well-known  fact  that  
the  research community values novelty over high-quality implementations and good 
engineering practices. This leads to ‘reinventing the wheel’ in tiny increments, 
which may be worth yet another publication, but very little else to the community, as 
the increments are not shareable due to their poor engineering. The consensus was 
that the scientific community should reward good engineering and encourage research 
that constructs open, reusable infrastructure for the wider community’s benefit.  

We argue that the lack of visible and lasting results (in terms of applications) in 
ubiquitous  computing  is  partially  due  to  the  lack  of  open  pervasive  computing 
infrastructure in the public spaces. Successful public spaces are mixtures of activities 
and applications, which purposefully combine physical, virtual and social spaces. 
They link places and context, consciously avoiding the ‘anything, anytime, anywhere’ 
paradigm. Doing this in practice requires permanent local infrastructure, which for 
business reasons is often deployed as closed verticals. Further, dedicated pervasive 
computing infrastructure would facilitate long-term large-scale real-world studies. 
Such  studies are  important because  real-world ubiquitous computing  systems  are 
culturally situated, which cannot be reliably assessed with lab studies detached from 
the real-world context. Infrastructure and time are needed to establish the required 
technical and cultural readiness and the critical mass of users, before a pervasive 
computing system can be evaluated ‘(un)successful’ [12]. Interestingly, while some 
research communities have made long-term large-scale investments in shared infra-
structure to support joint and transparent research, such as radio telescopes and  
networking testbeds, no such attempt has been made by the ubiquitous computing 
research community. 

We have set out to deploy a novel city-wide ubiquitous computing testbed, which 
is provided as an open horizontal resource to the whole community. The infrastructure 
layer of the testbed comprises of three types of wireless networks (IEEE 802.11 
WLAN, Bluetooth, IEEE 802.15.4 WSN), large public displays and various server 
machines connected via an aerially large  layer  2  network.  These heterogeneous 
computing resources constitute a large distributed system which is organized with 
a middleware layer. It provides various resources for supporting technology experi-
ments, developing ubiquitous computing applications, and managing and monitoring 
the applications and the testbed. We demonstrate the applicability and benefits of our 
testbed with several case studies on deploying and evaluating technology pilots and 
prototype services in authentic urban setting. 

To our best knowledge, a similar urban computing testbed with a matching range 
of  computing  resources  deployed  in  a  city  center  has  not  been  reported  in  the 
literature  before.  In  a  historical  context  the  PARCTAB  ubiquitous  comput-
ing experiment at the Xerox Palo Alto Research Center is probably the most similar 
deployment [15]. Related recent efforts such as the iDisplays at the University of 
Münster [13] and the e-Campus at the Lancaster University [14] are deployed at uni-
versity campuses. This is understandable as it is much easier and often more practical 
to deploy research infrastructure on your own campus than at a city center. However, 
a campus environment cannot provide the authentic experimental setting pursued in 
urban computing. 
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2   Testbed Resources 

Fig. 1 shows the simplified architecture and the building blocks of our urban comput-
ing testbed. The key infrastructure installed at downtown Oulu comprises of three 
different types of wireless networks and large public displays. The server machines 
are placed in several server farms located both at downtown and at the University of 
Oulu campus. In terms of network topology these nodes are aggregated into an aeri-
ally large VLAN, whose traffic goes via the main switch (corresponds to switch #1 
in Fig. 2). The Recorder captures complete packet history with a set of high-
speed probes attached to the main switch [2]. 
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Fig. 1. The building blocks of our urban computing testbed 

2.1   Wireless Networks 

panOULU  WLAN  is  a  large  multi-provider  wireless  network  (IEEE  802.11) 
provided by a public-private partnership [7]. The network comprises of two parts, 
‘CITY’ and ‘REGION’, as illustrated in Fig. 2. The ‘CITY’ comprises of two types of 
WLAN zones, the campus networks of five public organizations (City of Oulu, Uni-
versity of Oulu, Oulu University of Applied Sciences, VTT Technical Research Cen-
tre of Finland, and Pulmonary Association Heli) and the panOULU subscriptions sold 
by four ISPs (DNA, Elisa, LAN&WAN, Netplaza). panOULU subscription is an ISP 
product, which allows any organization to acquire panOULU WLAN hotspot into its 
premises to enhance image and customer service. The topology also includes a simple 
approach for integrating mobile APs (e.g. in buses) into the same IP subnet. 

The WLAN zones are aggregated at the central layer 2 switch #1 into a single IP 
subnet, which effectively simplifies the multi-provider network into a single-provider 
network. The design comes with a rudimentary built-in session mobility support 
for the WLAN clients using the network, without any additional client software. 
The need for session mobility is motivated by the fact that the WLAN zones of  
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different providers overlap in terms of radio coverage, particularly in the city 
center. If the zones would reside in different IP subnets, a station’s roaming from one 
zone to another would result in the change of IP address which would interrupt 
ongoing socket connections and application sessions. The session mobility is based 
on the self- learning property of the layer 2 switches used to connect the APs (access 
points) into the backbone (not necessarily switches #1 and #2 shown in Fig. 2). When 
a mobile node roams between APs in two different BSSs (Basic Service Sets), 
the layer 2 switch connecting the two BSSs will eventually receive a frame from 
the mobile node, thus automatically learning the new location of the mobile node 
and updating its forwarding table accordingly. 
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Fig. 2. Simplified topology of the panOULU WLAN network 

The  ‘REGION’  subnet  comprises  of  the  WLAN  zones  covering  key  public 
locations in eight nearby townships, which are connected to the core via a layer 3 
router. The WLAN zones total currently ~1200 access points, of which ~500 reside 
within a 1 km radius of the city center of Oulu. From the user’s point of view the APs 
appear as one large uniform network with SSID ‘panoulu’. The APs provide both 
indoor and outdoor coverage in places deemed relevant for public access. The city 
center and its immediate surroundings are blanketed with a WLAN mesh network, but 
otherwise the coverage is provided in a hotspot manner. 

In its coverage area the panOULU network provides open (no authentication or 
registration) and free (no payment) wireless Internet access to the general public 
equipped with a WLAN device. Excluding the blocking of outgoing port 25 (SMTP), 
which is required by the Finnish legislation, there are no limitations or restrictions on 
the use of the network. Currently, about 20000 WLAN devices use the network every 
month so that 25-40% of them are visitors and about 30% are WLAN phones. 

The large coverage combined with the open and free access make the panOULU 
WLAN network a valuable R&D resource, as well. The network has been employed 
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by numerous R&D pilots and research projects. Further, the panOULU WLAN net-
work provides backhaul connectivity to some panOULU BT and panOULU WSN 
AP’s, as well. The panOULU WLAN is also used by the municipality for streaming 
feeds from video surveillance cameras and controlling digital parking guidance signs. 

In a historical note, the panOULU WLAN fulfills Weiser’s vision on ubiquitous 
infrastructure from the late 1980’s: public access points provide short-range wireless 
connectivity on license-free spectrum, which allows the user’s wireless devices to 
communicate with the surrounding smart space. A promo video of the panOULU 
WLAN is available at http://www.strixsystems.com/video/Strix_PanOULU.html. 

panOULU BT network is a cluster of Bluetooth APs around downtown Oulu. A BT 
AP provides open and free connectivity to Bluetooth devices. It effectively establishes 
a WPAN (Wireless Personal Area Network) hotspot for providing services within the 
wireless coverage of few tens of meters in range. Since we know the location of the 
AP, we can also reliably estimate the location of the user to provide context-aware 
services. We currently have a network of 12 BT AP’s co-located with the UBI- dis-
plays (see Section 2.2). The APs are equipped with three Bluetooth radios, which can 
establish their own piconets of seven clients, thus 21 clients can communicate within 
a single AP simultaneously. We are in the process of expanding the network with 
additional AP’s, which will be using the panOULU WLAN for their backhaul con-
nectivity. 

panOULU WSN network will be a cluster of WSN AP’s around downtown Oulu. 
The AP’s conform to the IEEE 802.15.4 specification and have dual radios (868 
MHz, 2.4 GHz). An AP provides open and free multi-hop half-duplex connectivity 
with the 6LoWPAN protocol stack, the light-weight version of the IPv6 protocol stack 
intended for low-power devices. The multi-hop connectivity means that sensors form 
multi-hop paths, where a sensor can forward the packets of other sensors towards an 
AP. The half-duplex connectivity means that we can also send packets to individual 
sensors if needed. The upcoming installation on the 868 MHz band in spring 
2010 was preceded with a small trial on the 2.4 GHz band in 2009. However, 
given the large amount of interference on the 2.4 GHz band and the much better 
range and penetration of the sub GHz band the APs will only use the 868 Mhz radios. 

2.2   Large Public Displays 

We are deploying two different types of large public displays, UBI-displays and UBI- 
projectors. They provide large visual capacity for representing information and realiz-
ing visual interfaces to the ubiquitous city. Thus, they play a very important role in 
creating visible artifacts of the new pervasive infrastructure – ‘seeing is believing’. 
The UBI-displays are large interactive public displays (Fig. 3) installed on street 
level. The first phase installation deployed in summer 2009 comprises of six indoor 
displays in public buildings and six outdoor displays in the city center. The indoor 
displays are movable and have one 57” Full HD LCD panel in landscape orientation. 
The outdoor displays are installed permanently on streets and they have two adjacent 
LCD panels. The displays are equipped with various accessories such as Internet 
connection, quad core control PC, 500 MB RAID1 disk, two overhead video cameras,  
 



462 T. Ojala et al. 

NFC/RFID reader, and loudspeakers. They also contain panOULU WLAN, BT and 
WSN access points. The UBI-projectors are implemented with data projectors on 
large surfaces. First two UBI-projectors will be deployed at the City Theatre in spring 
2010.  

panOULU WLAN AP

panOULU BT AP
panOULU WSN AP

Loudspeaker

NFC/RFID
reader

Control PC

500 GB
RAID 1 disk

Cameras

57" Full HD LCD panel

6 mm safety glass with
capacitive touch screen foil

 

Fig. 3. (a) Outdoor UBI-display at downtown Oulu; (b) Components of an indoor UBI-display 

2.3   Middleware Layer 

The middleware layer comprises of a number of components that provide various 
services to the application layer. We have aimed at a cost efficient implementation, 
utilizing ready-made open source and commercial components when available. We 
provide just a brief description of each component, while the details can be found in 
related original publications when applicable. 

Fuego server. Open source Fuego architecture provides distributed event-based 
communication overlay based on the publish-subscribe paradigm. A process publishes 
an event, which is routed based on its content to those processes that have subscribed 
to that type of events. This corresponds to so-called degenerative communication, 
where communicating processes are temporally and referentially uncoupled. This is 
very practical in a large distributed system, where processes can join and leave dy-
namically, particularly those executing in mobile clients. A process who wishes to 
publish and/or subscribe to Fuego events has to execute the Fuego client process. [11] 

BlueInfo is an in-house architecture for deploying web services in the panOULU BT 
WPAN hotspots for cost-free context-aware mobile access. A BlueInfo hotspot either 
pushes subscribed services at desired intervals to registered devices (BlueInfo Push) 
or alternatively the user invokes a particular service by sending a simple keyword 
query to the hotspot (BlueInfo Pull). The BlueInfo hotspot requests the service 
from the origin server in the Internet and relays the response to the mobile device, 
possibly after adaptation for mobile viewing. [3] 
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GSN server. The deployment of WSN applications is supported by the open source 
GSN (Global Sensor Network) architecture. It comprises of several parts: a data ac-
quisition module, a database module, a web-based query module and an external 
web services module. [9] 

Positioning server keeps track of the current location of mobile nodes. The location 
is updated when a node establishes a connection with a panOULU WLAN AP or a 
turned-on Bluetooth radio bypasses a panOULU BT AP. 

MobileIP server. A commercial MobileIPv4 solution is provided with a limited 
number  of  client  licenses.  This  allows  utilizing  MobileIP  in  the  management  of 
vertical handovers between different access networks. 

SMSC/MMSC. Message (SMS, MMS) delivery to mobile clients is supported by 
access to commercial SMSC/MMSC hosted by an ISP. 

Control server is an in-house component that is responsible for runtime service dis-
covery, user authentication and hosting of application metadata. 

Nagios server. Nagios is a popular open source computer and network monitoring 
software.  It  allows  remote  monitoring  of  multiple  computers  simultaneously, 
reporting important metrics such as CPU load, memory usage, and network services. 
It can be extended to monitor custom metrics from various components. It supports 
also automatic notifications of service or host problems. 

Resource manager is an in-house component that controls temporal access to the 
resources placed under its administrative domain (the UBI-hotspot) according to pre-
defined  policies.  Temporal  access  is  enforced  with  different  types  of  leases, 
ranging from open multi-user leases to private single-user leases. Users are also 
able to  place  leases  in  queue,  thus  allowing  future  reservation  of  a  resource  
that  is currently unavailable or busy. [1] 

Layout manager is another in-house component that controls the spatial access to the 
screen real estate of an UBI-display included in an UBI-hotspot. The Layout manager 
provides a SOAP interface for triggering state changes and assigning virtual screens 
with URL’s of arbitrary web applications. [16] 

2.4   Application Layer 

We provide some general purpose resources for application development and for 
monitoring the testbed and the applications executed atop it. 

UBI-MIDlet is a lightweight J2ME software layer (aka stub) that provides native 
service support for mobile applications by inheriting them from the standard J2ME 
MIDlet   application   framework.   The   UBI-MIDlet   implements   session   control, 
authentication and transparent integration with the Resource manager. 

UBI-key  is  effectively  an  RFID  tag  that  serves  as  the  electronic  identity  of  
an ‘ubiquitous ouluensis’. By showing his/her UBI-key to the RFID reader of an UBI- 
hotspot, a user can obtain control of the hotspot for further interaction. 

 



464 T. Ojala et al. 

UBI-display monitor is provided for monitoring the visual state of the UBI-displays 
for maintenance purposes. The tool periodically fetches the screenshots from each 
UBI-display and renders them as a collage on a web page. 

Analyzer summarizes the packet data collected by the Recorder with various visual 
presentations representing different entities, for example individual events, identities, 
flows between identities, or causal relationships of flows. The available of complete 
packet  data  and  the  visualizations  facilitate  visual  drilling  down  from  high-
level visual abstractions to the level of individual packets and back. This in turn 
allows high-level visual analysis of complicated events without tedious and time 
consuming detailed study of large amounts of packet data. [2] 

3   Usage Examples 

We demonstrate the practical applicability of our testbed with six case studies repre-
senting two different types of R&D, technology pilots and service prototypes. Details 
of the case studies can be found in the related publications, when available. 

3.1   Technology Pilots 

Three technology pilots illustrate the utilization of the testbed and especially the 
panOULU WLAN in the deployment and empirical assessment of a particular tech-
nology in real-world setting 

UMA pilot. Nokia’s first public UMA (Unlicensed Mobile Access) pilot was conducted 
atop our testbed in June-September 2006 in collaboration with DNA (local ISP) and the 
City of Oulu [6]. An UMA-enabled dual-mode handset is configured to access GSM 
core services over unlicensed wireless network (panOULU WLAN in our case) if it is 
available, otherwise licensed cellular network is used. The purpose of the pilot was to 
evaluate the functionality of the UMA technology in authentic setting. About 60 UMA-
phones were distributed to the City of Oulu personnel, who used the phones  for  three 
months, totaling 1.03 million online seconds  in  the  panOULU WLAN. 

Mobile IP technology pilot. Mobile IP is a mobility management protocol standard-
ized by the IETF. A Mobile IP pilot was conducted atop our testbed by the City of 
Oulu, Fujitsu Services and Secgo Software (later acquired by Birdstep). The City’s  
mobile workers were equipped with laptops that provided transparent and seam-
less connectivity in a multi-access network. The laptops were furnished with various 
network interfaces and Mobile IPv4 client for mobility management. The successful 
pilot started in September 2006 and eventually led to the purchase of a production 
system a year later. 

HIP  technology  pilot.  HIP  (Host  Identity  Protocol)  is  a  security  and  mobility 
protocol standardized by the IETF. HIP-based distributed user authentication archi-
tecture was empirically evaluated in the panOULU WLAN network by the WISEciti 
project in 2008. A HIP proxy was installed in the network for establishing connec-
tions with HIP mobile clients. The proxy authenticated clients, provided terminal 
mobility and encryption of user data over unprotected wireless links. [5] 
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3.2   Service Prototypes 

The following three cases demonstrate the exploitation of the testbed in deploying a 
novel service prototype to the general public. The usage of the service is then moni-
tored, providing feedback on the usefulness and user experience of the service. 

UBI-hotspot provides rich interaction between the physical, virtual and social spaces. 
The first version of the UBI-hotspot is effectively an UBI-display embedded 
with other co-located computing resources such as panOULU WLAN, WSN and BT 
APs. UBI-hotspot offers a wide range of services via different interaction modalities 
including mobile. In the current interaction model the UBI-hotspot alternates between 
a passive broadcast mode and an interactive mode. The transition to the interactive 
mode is triggered when a user touches the touch screen or presents an UBI-key to the 
RFID reader, or a face is detected from the video feed of the two overhead cameras. 
In the broadcast mode the whole screen is allocated to a digital signage service called 
UBI-channel. In the transition to the interactive mode the UBI-channel is smoothly 
squeezed into the upper left hand part of the screen and two additional virtual screens 
are created, one assigned for a touch screen portal called UBI-portal and another as-
signed for mobile services. The UBI-portal is effectively a web portal of various 
information and leisure services (web pages), which can reside on any web server in 
the public Internet. The default view of the UBI-portal can be configured on per hot-
spot basis. A video illustrating the services of the UBI-hotspot version 1.0 is available 
at  http://www.ubioulu.fi/node/133. We have deployed a network of 12 UBI- hotspots 
in pivotal indoor and outdoor locations around downtown Oulu. The UBI- hotspots 
have been in everyday use by the general public since June 2009, attracting on aver-
age about 50 interactive sessions per panel each day. [8] 

UBI-AMI prototype for advanced metering demonstrates the capabilities of the 
panOULU WSN network. The UBI-AMI socket sensors measure the power consump-
tion of the devices attached to it together with temperature and illumination in that 
location. The UBI-AMI mains sensor measures the power consumption from the 
main electricity meter. The sensors packetize the measurement data and transmit the 
packets to a panOULU WSN AP. It forwards the packets to the UBI-AMI server 
(based on the GSN server), which filters and stores the data. The user can explore the 
data via a web interface, for example study how expensive is the electricity consump-
tion of particular devices. Further, the user can configure to receive a SMS or email 
alert if a particular device (e.g. a freezer) is accidentally turned off. Thanks to the 
half-duplex connectivity provided by the 6LoWPAN protocol stack, the user can also 
remotely turn off the devices (e.g. a coffee machine) connected to a particular sensor. 
An UBI-AMI pilot with ten households as test users commenced in January 2010. 

panOULU Luotsi was a location-based information mash-up for the users of the 
panOULU WLAN. XML content in various forms, such as RSS/ATOM feeds from 
several content providers were automatically merged into the Luotsi database using a 
flexible XML aggregator. It allowed mapping different heterogeneous information 
feeds into the Luotsi database without any changes to the application source 
code. The location of the user was provided by the Positioning server, estimated by 
identifying the WLAN AP to which the user’s wireless device was connected. The 
information relevant to the user’s current location is imposed on a map for a location- 
based browsing. [4] 
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4   Discussion 

This type of large-scale testbed deployment comes with many challenges, first and 
foremost financial and technological viability and sustainability. The public sector has 
made a considerable capital investment in our testbed, thus we wish to offer it as 
open horizontal resource to the whole community. Many (academic) infrastructure 
deployments have fallen apart, because they did not have any long-term financial 
basis for covering operational and renewal expenses. The panOULU WLAN has 
survived seven years with its PPP model, where the owners of the WLAN zones are 
responsible for all the expenses incurred by their zones, and the City of Oulu sponsors 
the core services outsourced to subcontractors. In 2010 the City of Oulu uses about 
75000 €€  to the panOULU WLAN, which corresponds to 0.04 €€  per citizen in a month 
– a very smart investment in an open and free public service used by 20000 people 
every month. The panOULU WLAN is due a major renewal of APs in a few years, if 
a city-wide WLAN network is still deemed a worthwhile resource amidst improving 
mobile data networks. To cover the operational expenses of the UBI-hotspots we are 
selling a portion of their capacity for commercial use. However, as of now we do not 
have such business model for the panOULU BT and panOULU WSN networks. 

Shared urban spaces can be very dynamic, diverse and dense with complex owner-
ship and decision making mechanisms. While you may have full control and com-
mand of your own research lab, the public city space falls under the authority of the 
city administration. We are very fortunate to have the unwavering support of the City 
of Oulu’s administration, which is mandatory for the implementation and sustainabil-
ity of this kind of testbed deployment. At the same time you have to comply 
with the municipal decision making procedure, which can introduce delays at times. 
For example, the installation of the panOULU WLAN APs and UBI-hotspots was 
subject to the formal urban planning process of the city. Further, you may need favor-
able cooperation with private parties such as property management companies and 
housing cooperatives, for example to acquire cost-free sites for APs. 

Another major challenge is the operational execution of maintenance, where re-
search  organizations  are  typically  not  good  at.  Outsourcing  maintenance  or 
allocating  designated  maintenance  personnel  is  highly  recommended,  if  you  can 
afford it. If researchers have to take care of maintenance, then you need to specify 
clear roles to avoid confrontations between research and maintenance tasks. Further, 
maintenance expenses and the availability of the testbed can be greatly optimized by 
automating maintenance. 

Research on a real-world testbed in a city center differs from lab research in few 
important aspects. First is the demand for high quality engineering. For example, 
the engineering of the UBI-hotspots the user community expects to be available 24/7 
is a totally different ball game than presenting a one-shot demo to your sponsors in 
your own lab. Second, you have to comply with the many ramifications of the real-
world setting. A research prototype may depend on particular infrastructure which 
will not be available in the real-world in the foreseeable future. No matter how fasci-
nating a novel mobile application developed for a particular exotic mobile device may 
be, it is rather pointless to bring the application to the real-world setting, if the market 
penetration of the mobile device is negligible. Further, while most lab studies happily 
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ignore value networks, business models and economic sustainability, we are trying to 
build a sustainable ecosystem around our infrastructure, for example by selling a 
portion of the capacity of the UBI-hotspots for commercial use to cover their opera-
tional expenses. This commercial dimension limits the research use of the UBI- hot-
spots, which may be difficult for researchers to accept. Another important difference 
is the public scrutiny in the real-world setting. While nobody cares about the mis-
takes you do in your own lab, a deployment in a city center is subject to daily scrutiny 
by the general public and media, which in our case has been rather ill-tempered at 
times. Finally, while usability evaluation has established itself as the de facto yard-
stick in lab studies, there is no such universally accepted methodology for evaluating 
real-world deployments. This is probably one of the reasons why the mainstream 
research community values lab studies over real-world studies. 

We have a number of ongoing activities to make our testbed available to the whole 
community and to stimulate open innovation. For example, students build new ser-
vices to the UBI-hotspots as their course works. We currently have a public tender 
for businesses to purchase rights to offer commercial services in the UBI-hotspots. 
We are executing a national ‘UBI-challenge’ where both individuals and businesses 
are challenged to innovate and implement novel services to the UBI-hotspots so that 
best proposals are supported with grants. An international ‘UBI-challenge’ prepared 
with a number of leading international researchers will be launched in 2010, inviting 
the international research community to show what they are able to do atop our urban 
computing testbed. 
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Abstract. Testing and evaluating new architectural propositions is a challenge. 
Given the usual variety of technologies and scales involved in the necessary 
evaluation, a one-size-fits-all approach does hardly suffice. Instead, a collection 
of evaluation and experimentation methods must be chosen for a comprehen-
sive testing of the proposed solutions. This paper outlines some of the  
approaches chosen for an architectural proposition that establishes a pub-
lish/subscribe-based internetworking layer for the Future Internet. For that, we 
outline challenges we identified when turning to experimentation as a means of 
evaluation. We then present the variety of emulation as well as experimental 
test bed efforts that attempt to address these challenges. While this is not to be 
seen as a conclusive summary of experimental research in this space, it is an  
attempt to summarize our efforts as a work-of-progress for others working the 
architectural field.  

Keywords: publish-subscribe, experimental research, NetFPGA, testbed. 

1   Introduction 

Future Internet research requires at least three key ingredients to have chances of  
success. First, a clear vision that outlines the direction and sets the goals and require-
ments of the envisioned global communication infrastructure. Second, experimen-
tally-driven research to validate the architectural proposals at scale and under realistic 
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scenarios. Third, understanding the business incentives for adoption, which requires 
socio-economic market evaluations and industry engagement early in the feedback 
and re-design loops. 

The PSIRP (Publish-Subscribe Internetworking Routing Paradigm) project [1] is 
an EU FP7 funded project that started in January 2008 and aims at covering all three 
research fronts of a clean-slate design approach that departs from the current host-
centric IP inter-networking to an information-centric future Internet. The PSIRP  
vision is inspired by the observation that information/content – what a user wants – 
should have a more central role in future network architectures than it does in today's 
Internet host-to-host conversation model [2,3,4,5,6]. To this end, architectures based 
on data-oriented primitives like publish/subscribe [7] and the similar (e.g., 
get/response, find/register) [8] are well-suited for the unwieldy amounts of named 
linked data retrieved from the Web and exchanged via overlay networks like P2P and 
content delivery networks.  

The project has already outlined the direction to realize this vision by defining de-
sign principles [9] and proposing several design choices towards a novel pub/sub-
based Internet-scale architecture [10, 11]. Time has come to accomplish the second 
key component of clean slate future Internet research: experimental validation and 
evaluation at scale. From the design phase of the project, prototyping work is one 
major component in the development of the architecture to provide fast feedback from 
the practical experiences enabling a fruitful top-down and bottom-up dialogue. 

Most researchers have at some point faced questions such as “what is the performance 
of my new protocol”, “how does my new technology perform in a highly distributed 
environment” or “how does my pre-commercial code perform under more realistic net-
working conditions”. When developing clean slate technologies this is no different but 
arguably more challenging. In the most part, these questions are solved either experi-
mentally or using models, and it is the former of the two which this paper focuses on; 
“How do I experimentally test and evaluate in a realistic setting?” It is important to note 
the inclusion of the “in a realistic setting” clause, as testing any multi-domain protocol 
designed to be run over a potential future Internet architecture over the current Internet 
will rarely provide irrefutable evidence for its performance.  

In order to enable large-scale experimental research with the required levels of flexi-
bility of future Internet architectural proposals, big efforts are undergoing on both sides 
of the Atlantic in projects such as GENI, FIRE, FEDERICA and OneLab2. Their 
common denominator is their goal of providing a playground for researchers to vali-
date their visions under "realistic" scenarios. Typical experimental evaluation methods 
such as emulation, simulation and (experimental and usually local) testbeds, have par-
ticular strengths and weaknesses, so an evaluation architecture which combines all 
three should provide the greatest flexibility while retaining the best features of each. 
Such a rich evaluation playground is the ultimate goal of our validation efforts.  

In this paper, we describe the experimental approach taken by the PSIRP project 
and the components of the underlying research infrastructure. We account for the ex-
periences gained when working with the selected evaluation tools and implemented 
prototypes. First, we introduce the background fundamentals of the conceptual archi-
tecture and the evaluation challenges (Section 2). Then, we dissect the experimen-
tally-driven visionary research divided by implementation work (Section 3) and the 
experimental verification efforts (Section 4). Finally, we describe the lessons learned 
and the ongoing work towards a unified evaluation approach (Section 5). 
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2   Background 

The current Internet architecture focuses on communicating entities, largely leaving 
aside the information to be exchanged among them. However, trends in communica-
tion scenarios show that what is being exchanged is becoming more important than 
the who is exchanging information. Van Jacobson describes this as moving from in-
terconnecting machines to interconnecting information [6]. The ambition of the 
PSIRP project is to investigate major changes to the current IP layer, up to the point 
of replacing this layer with a new form of inter-networking. To this end, PSIRP un-
dergoes all phases of a clean-slate design project, from state-of-the-art survey over 
outlining basic design principles and understanding design choices through the defini-
tion of conceptual and actual architectures and their implementation. Architectural 
and technological choices are evaluated from the angles of security, socio-economic 
and quantitative design constraints. In the following, we briefly outline the underlying 
conceptual architecture of PSIRP, appreciating that we cannot present the full breadth 
of the architectural concepts in the given space. Hence, the interested reader is re-
ferred to [1] for more information. 

2.1   Conceptual Architecture  

Based on the design principles outlined in [9], the following information-based archi-
tecture relies on basic labeling (cf. Everything is information) and grouping of infor-
mation (cf.  Information is scoped), while providing a publish-subscribe service 
model (cf.  Equal control). The main objective of the architecture is to provide the 
required mapping of these concepts onto concrete forwarding relations between end-
points, producing and consuming information. This keeps the network architecture 
simple, while enabling more complex application-level naming structures, as sug-
gested in [6] and similar work [2,3,4,8]. 

 

Fig. 1. Conceptual Architecture 
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Figure 1 presents the main architectural components implementing these design 
concepts. The pub and sub components at the application level implement applica-
tions based on basic publish/subscribe network services, enabling publications and 
subscriptions towards information items labeled by RId (Rendezvous ID) within par-
ticular scopes, identified by SId (Scope ID) – see more below.  

Transactional services, operating in request-reply mode, can easily be supported 
through a publish/subscribe model [7], with the server subscribing to receive requests. 
From this basic mode of communication, we can bootstrap internal network opera-
tions as well as offer a new information-centric service API, similar to [8]. Such a 
new communication API replaces in many ways the role of traditional middleware 
layers since it conflates low-level information discovery as well as location determi-
nation of publishers and subscribers into a single network service, therefore largely 
eliminating the need for such mapping functions to exist on application level. How-
ever, there is still a need for mapping application-level information concepts onto the 
basic concepts provided by our architecture – something being left outside the scope 
of the network architecture considered here.  

The architecture itself consists of three main functions: rendezvous, topology and 
forwarding. Generally, the rendezvous function implements the matching between 
publishers and subscribers of information items, each identified via a RId. Informa-
tion items logically reside within at least one scope. Each scope is identified via a SId, 
which is in turn provided by dedicated rendezvous points (RP). Hence, rendezvous 
points match the semantic-free information items within the scope they are serving. 
There is at least one rendezvous point per scope, each of which subscribes to the SId 
through a global rendezvous system. Upon subscription to an information item in the 
scope, the request can be routed either to all or to the 'best' rendezvous point, using 
anycast-like functionality. Furthermore, rendezvous points implement policies associ-
ated with the matching, such as access control.  

Once the rendezvous point has matched a publication and one or more subscrip-
tions, the forwarding topology is created in negotiation with the inter-domain topology 
formation (ITF) function. This is based on the publisher and subscriber “locations” on 
the level of autonomous systems (ASes), the applicable policies and the ITF informa-
tion that includes peering and transit relationships among ASes. This is similar to BGP 
or (G)MPLS PCE, but the underlying networks forward information, not (opaque data) 
packets, i.e., there exists a rich set of policies attached to potentially every information 
item.  

In addition to building inter-domain paths between the forwarding networks to 
which the publisher and subscribers are attached to, appropriate intra-domain paths 
need to be constructed. This is done in collaboration with the topology management 
function that resides in every AS. This function is responsible for instructing its 
local forwarding nodes (FNs) to establish paths to local publishers and/or subscrib-
ers or to serve as transfer links between ASes. As in the current Internet architec-
ture, this approach does not prescribe any particular intra-domain forwarding 
mechanism, with the one constraint that the local mechanisms should support ITF 
compliant policies. 
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2.2   Challenges 

The architecture presented in Figure 1 aims at providing an internetworking architec-
ture made for the foreseen scale of a future (information-centric) Internet. Evaluating 
the concepts for such architecture therefore face particular challenges that comes with 
that ambition: 

• Scale: inter-domain functions, such as for rendezvous and forwarding, are built 
for large scale. This requires experimental methods that can scale to appropriate 
sizes. Experimentation alone is unlikely to suffice for scaling experiments. 

• Technology Variety: inter-domain functions such as forwarding are designed to 
work over a variety of technologies, similar to today’s Internet. This, however, 
requires the availability of such wide variety of technologies when evaluating 
crucial parameters, such as delay or efficiency. 

• Usage Variety: it is hard to predict potential usages for any network architecture 
– the current Internet is the best example for this. Hence, potential user  
involvement is crucial but also a variety of different usage models for isolated 
experiments. 

• Economic Variety: inter-domain functions, such as rendezvous and forwarding, 
heavily depend on the underlying business relations of ASes in their overall per-
formance. Hence, a proper understanding of various business relations, possibly 
vastly different from today’s peering relations in the Internet, is required to pro-
vide insight in the effectiveness of novel inter-domain functions. 

• Platform Variety: it is obvious that a single platform for testing is hardly achiev-
able given different operation systems, virtualization approaches and simula-
tion/emulation platforms available. The experimental approach must cater to this 
variety. 

In the following, we outline the project’s approach to cope with these challenges. It is 
the ambition of this paper to outline a coherent testing and experimentation approach 
although its creation is driven by bottom-up testing and evaluation activities and a 
post-rationalization of these activities in a coherent framework that might aid similar 
activities in the future that need to address the challenges outlined above. Before do-
ing so, however, we present a brief summary of the implementation work done in 
order to better understand the chosen evaluation methods.  

3   Implementation Work 

The PSIRP project works towards a publish/subscribe solution, where even IP for-
warding is re-considered. This creates a need for a prototype with a different structure 
than existing systems. The prototype development [12] is divided into two separate 
areas, namely the Lower Layer implementation (LoLI) and the Upper Layer imple-
mentation (UpLI). The LoLI is motivated by the need for a new kind of data handling 
at the end-host (i.e., internal publication management) as well as for forwarding data 
packets due to the pub/sub architectural approach. The requirements on locating pub-
lications and managing the network topology are considered to be “upper layer” tasks. 
This section goes first through the LoLI, including the FreeBSD-based blackboard 
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implementation (Blackhawk), the security and PLA-related implementation, and the 
NetFPGA implementation of zFilter forwarding. Finally, we describe the Rendezvous 
and Topology functions in the UpLI developments. 

3.1   Blackhawk: FreeBSD Node Implementation  

The current node architecture [12] implements parts of the PSIRP service model and 
API [9]. It consists of the following pieces: 

− A blackboard that implements a simple memory object model inside a node. 
Conceptually, the blackboard is the place where data items are stored as publica-
tions that can be subscribed to. 

− An API for publishing data items to the blackboard, subscribing to them, and 
getting notifications when new versions of them are published. 

− Applications that can communicate with each other via the blackboard. This in-
cludes helper applications that implement different network-level functions.  

In the Blackhawk prototype for FreeBSD, the blackboard is implemented as a kernel 
module, as shown in Figure 2. It is integrated with the operating system's virtual 
memory system, i.e., publications in the blackboard correspond to virtual memory 
objects and pages. The API is implemented as a library that communicates with the 
kernel module using system calls. It provides functions for creating, publishing, and 
subscribing to publications. Notifications about publish operations on the blackboard 
can be acquired via the kevent system of FreeBSD. In addition, a file system view to 
the blackboard is provided as a hierarchy of scopes, publications, publication ver-
sions, and memory pages (which all have their own RIds). 

 

Fig. 2. Node Architecture 
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As mentioned above, user space applications can use pub/sub-based inter-process 
communication by publishing data to the blackboard, from where other processes can 
retrieve the publications by subscribing to them. The component wheel functions 
(e.g., rendezvous and topology management) are also implemented as applications. 
However, some parts of the component wheel (e.g., forwarding) may also be imple-
mented in the kernel space to achieve better performance. As an example of helpers, 
the current version of the Blackhawk prototype features three helpers: 

− A scope helper (scoped) takes care of instantiating, updating, and re-publishing 
scope publications, i.e. data items that contain collections of RIds. 

− A local-area rendezvous helper (laird) extends the blackboard model into the 
network. It provides local monitoring for publish/subscribe operations, and it ad-
vertises the locally published publications to the local-area rendezvous node. 

− A network I/O helper (netiod) implements packet fragmentation/assembly in ad-
dition to forwarding, using sockets for sending and receiving packets over links 
in the network. 

The rendezvous helper communicates with the network I/O module when publication 
metadata or data needs to be sent into the network. In the reverse direction, the net-
work I/O helper dispatches received metadata to the rendezvous helper. 

3.2   Security and PLA Implementation  

Packet Level Authentication (PLA) [13] is a novel method for providing availability 
at the network layer by using per packet cryptographic signatures. PLA was originally 
implemented for IP networks; however it does not depend on IP and therefore can 
also be used with other network layer solutions such as PSIRP. PLA's main aim is to 
allow nodes on the path to independently verify packets without having separate secu-
rity associations with the sender, or previous nodes that have handled packets. Any 
node can verify whether packets has been modified, duplicated or delayed, therefore 
invalid packets can be dropped immediately, before they reach the destination. 

PLA works by adding a security header including the sender’s cryptographic iden-
tity, certificate from a trusted third party, timestamp, sequence number and the cryp-
tographic signature. The timestamp and sequence number offer protection against 
replay attacks, while the signature protects the packet's integrity and offers account-
ability. PLA uses elliptic curve cryptography (ECC) since it offers a good security 
with compact key sizes. While public key signatures are computationally intensive, 
they can scale to high speed networks and low power devices as long as dedicated 
hardware is used for accelerating signature calculations [14]. Preliminary simulation 
results have shown that a 90nm dedicated ASIC would be able to perform almost one 
million signature verifications per second, such performance would be enough verify 
5Gbps of average traffic. 

In PSIRP, PLA is used mostly used to secure control messages (pub-
lish/subscribe), and can be optionally be used for securing all traffic. In our system, 
the most important security properties of control messages are integrity protection 
and authentication. For example, has the packet been modified?  Does the publisher 
have a permission from the scope to publish in certain SId:RId? PLA functionality 
has been implemented as a separate library [15], which is used by the PSIRP net-
working daemon to add and verify PLA headers.  
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3.3   NetFPGA Forwarding Implementation 

Forwarding nodes implement the multicast source-routing mechanism described in 
[15] based on an in-packet Bloom filter referred to as zFilter. The mechanism allows 
for compactly representing a delivery tree within the limited header space of a packet. 
Basically, a routable Bloom filter is formed by ORing the Bloom masks of the net-
work links of a delivery tree. Forwarding decisions are based on simple logical AND 
operations between the zFilter and the forwarding node Link ID table. As with all 
Bloom filter based approaches, false positives of such AND operations can occur, 
leading to false deliveries along the AS links. Hence, determining a rate for such false 
positives is a typical performance evaluation objective. Mechanisms to minimize such 
false positives have been proposed in [16], such as the introduction of virtual link 
identifiers, which combine certain paths/trees into a virtual (single) link, ‘thinning’ 
out the Bloom filter space and therefore reducing the potential for false positives.  

The zFilter forwarding algorithm has been implemented on NetFPGA [17], a flexi-
ble and open hardware platform for research and classroom experimentation in terms 
of networking and traffic processing. The implementation [18] was based on the Stan-
ford reference switch implementation, which was modified to create a simple zFilter 
switch. According to early measurements, the efficiency of the NetFGPA-based zFil-
ter forwarding is very good and requires about 3-5μs per hop, which represents a 
lower latency than the reference IP router implementation.  

Our experiences with NetFPGA as the prototyping platform are overall positive. It 
is a solid development platform that is available in a complete package and it is suit-
able for clean-slate developments requiring line-speed operations. 

3.4   Rendezvous 

The PSIRP rendezvous architecture, defined in [9, 27], is a composition of modular 
rendezvous networks that are interconnected to form a globally reachable inter-
domain rendezvous system. The rendezvous networks are formed by rendezvous 
nodes (RNs) that are organized as a policy controlled inter-domain hierarchy. Each 
RN may host multiple rendezvous points (RPs) that are logical meeting places in the 
pub/sub system for a certain <SId, RId> pair i.e. for each pair there exists at least one 
RP in the rendezvous system. In many cases the same RP is shared by the publica-
tions in the same scope. In the event of rendezvous, RP initiates creation of the  
forwarding path creation in the topology function that, when finished, enables trans-
mission of data between the publisher and the subscriber.  

The rendezvous function is implemented in two separate instances; the local  
rendezvous helper, described in the Blackhawk prototype, that handles rendezvous in 
local node and in small-scale local area networks, and the rendezvous node, which 
implements the rendezvous network. Large and geographically dispersed Autono-
mous systems (ASes) may be covered by multiple rendezvous networks, but in the 
typical case a rendezvous network would be a collection of rendezvous nodes from 
cooperating ASes. Therefore, in the same way as peering between two rendezvous 
nodes is supported, the current rendezvous network implementation can be seen also 
as a simple version inter-domain rendezvous system. 
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Figure 3 illustrates the architecture for the existing two versions of the rendezvous 
node implementation: the UDP forwarding based standalone version and the new 
Blackhawk integrated version. The architecture includes a stub version of the topol-
ogy function that cooperates with the rendezvous function in the pub/sub system. 
Both versions implement the same functions to establish and operate pub/sub rendez-
vous networks.  

 

Fig. 3. Rendezvous node implementation architecture 

3.5   Topology 

Following the administrative division of the current Internet, we distinguish between 
intra-domain and inter-domain topology management mechanisms as two functionally 
separated units retaining a strong interconnection between their structural pieces. The 
main role of intra-domain topology management is the discovery of topology infor-
mation, using it as an input for computing necessary network states, and sending  
updated forwarding information to the relevant nodes. The inter-domain topology 
formation functions on the domain level, in addition to discovery, is responsible for 
configuring and maintaining inter-domain topology states for creating forwarding 
paths based on various policy compliance requirements.  

Our current Python based implementation of topology management is divided into 
two modules: client and server, which can simultaneously coexist on each node. The 
client module runs on each forwarding node and is mainly responsible for discovering 
local connectivity information, whereas the server module collects these local infor-
mation pieces and structures them together to form a picture of the overall network 
topology within the domain of operation. The server module is also responsible for 
computing the optimal forwarding paths and publishing that information towards for-
warding nodes. Additionally, each forwarding node runs a link state helper module 
which maintains the table of “known” links along with link related available informa-
tion, e.g., throughput, and delay. Information about relevant link properties can be 
provided by low level helper functions, which collect physical data about the link.  

In order to facilitate the exchange of required data different scopes are defined for 
exchanging particular information, e.g., a scope for exchanging the existence of in-
formation coming from each particular node, a scope for distributing and collecting 
information representing the set of neighboring nodes, a scope for dissemination and 
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collection of link data messages. Using the publish/subscribe paradigm, forwarding 
nodes and topology servers receive and update the required information (“Hello”, 
“LSA” messages). The topology manager implementation also performs simple for-
warding tree and zFilter creation using shortest path tree calculation. 

4   Addressing the Evaluation Challenges 

With the understanding of how we implemented the architectural foundations that we 
outlined in Section 2 in a component architecture that we presented in Section 3, we 
can now move on with addressing the evaluation challenges presented in Section 2.2. 
For this, we give specific examples from evaluation tasks within PSIRP targeting the 
identified challenges. 

4.1   Simulation and Emulation: Addressing Scale and Variety of Technologies  

For rapid evaluation of different networking solutions in terms of packet-level per-
formance, simulations are the standard approach. In particular, inter-domain solutions, 
such as the outlined rendezvous and inter-domain topology formation (see Section 
2.1), are targeted in simulative evaluations. But also our developed forwarding solu-
tions are candidates for simulations, in particular when coupled with emulation meth-
ods. In the following, we outline the used technologies for these tasks. 

4.1.1   NS-3 
Simulation is a common means to achieve scale of evaluation, not requiring direct 
equipment to be handy for evaluation. Given our scale challenge, it is natural to resort 
to simulations as a central method to address this challenge. Examples of architectural 
solutions that are simulatively evaluated are the rendezvous and forwarding solutions. 
Our natural choice for performance analysis of parts of the PSIRP architecture is ns-3 
[18], as it offers a clean simulator architecture, easy extendibility, and features for 
network emulation. Evaluation work with ns-3 included network coding solutions, as 
well as the performance of the multicast forwarding mechanisms based on zFilters. 
On-going work includes exploitation of network emulation functions and integration 
with the prototype implementation (Blackhawk). 

Ns-3's easy extendibility is very attractive for projects designing clean-slate archi-
tectures, as new protocols can be installed into any desired level of the networking 
stack. Following this design philosophy, we extended the simulator to support the 
zFilter-based forwarding. Primarily written in C++, in ns-3 new mechanisms can be 
added intuitively via the techniques of class inheritance and new class creation.  The 
implemented forwarding layer supports the major design elements presented in [15], 
including the optimization of using multiple parallel forwarding tables, various loop 
prevention techniques, fast reroute mechanisms and virtual links. With the usage of 
the simulator, we showed that zFilter forwarding is feasible, and supports unicast 
comfortably, as well as sparse mode multicast communication up to topologies of the 
size of metropolitan area networks.  

The integration of ns-3 simulations with real world traffic is possible via two 
modes. Virtualization allows real hosts to communicate via simulated networks, while 



 Experimentally-Driven Research  479 

 

network emulation allows simulated nodes to exchange information through real links, 
i.e. a networking testbed. So far, an early inter-operation test has been carried out be-
tween a simplified forwarding simulator and the first iteration of the BSD prototype, 
while future work includes further integration into a PSIRP testbed (cf. Section 5). 

4.1.2   Network Emulation 
Emulation allows for inserting a “sense of reality” into a simulative framework by 
emulating part of the real-world in combination with developed solutions, e.g., run-
ning our real-world forwarding implementation (see Section 3.3) in an emulated 
Ethernet network of a larger size than we achieve with a testbed setup. 

For tests and evaluation activities involving a larger number of nodes in a con-
trolled environment we use the network emulation testbed at RWTH. The testbed 
consists of powerful servers equipped with multi-core CPUs and four Gigabit 
Ethernet network interfaces each. All the servers are connected to a high-performance 
switch allowing for different network topologies to be set up for the experiments. 
Control traffic is sent over a dedicated network interface, over a different switch, so 
as not to interfere with measurements. Each of the servers is capable of hosting a 
large number of virtual machines functioning either as communication endpoints, or 
nodes normally associated with the network infrastructure such as forwarding nodes, 
rendezvous servers or topology management nodes.  

Experiments with even larger number of nodes can be realized by combining the 
use of VMs with network emulation and tap techniques provided by ns-3 network 
simulator. In such a setup individual VM instances can emulate complete forwarding 
infrastructures within individual domains, while other VMs connected to those emu-
lated forwarding domains can act as traffic sources or as nodes offering rendezvous or 
topology management services. On the other hand, each VM can be connected with 
simulated networks via ns-3 tap device, acting as a regular PSIRP node. Therefore we 
can implement the case of PSIRP traffic originating on VM instances running the de-
veloped prototype implementations and traversing over large scale simulated net-
works. 

4.1.3   OMNet++  and OverSim 
A medium term alternative to a native implementation of PSIRP, operating directly on 
top of the network hardware, is an overlay implementation on top of IP. The overlay 
work has so far focused on network support for scalable multicast, the main enabler 
for providing the entire PSIRP functionality as an overlay solution. In particular, a 
solution has been designed to operate on top of the Pastry DHT based content routing 
scheme [19] and the Scribe overlay multicast scheme [20].  Special attention is paid to 
the incremental deployment process of the overlay architecture as well as to the po-
tential benefits of in-network caching. In addition, the concept of hierarchical DHTs 
has been explored with the purpose of making routing conform to the policy-
compliant interconnection of networks on the Internet. For the work on DHT based 
overlays, the OverSim [21] platform has been used, which is an overlay network 
simulation framework for the OMNeT++ simulation environment. The OverSim 
framework provides implementations of several overlay schemes and applications, 
including Chord and Pastry, as well as overlay multicast schemes, such as Scribe. 
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Due to the popularity of P2P content distribution applications, BitTorrent was cho-
sen as the main application model for benchmarking. In order to be able to perform a 
comparison study between our overlay multicast based BitTorrent alternative [22] and 
the regular BitTorrent of today’s Internet, the BitTorrent suite of protocols for OM-
NeT++ and a churn generator module for OverSim based on an analysis of real Bit-
Torrent traces was created [23]. 

4.2   Application Innovation Process: Addressing Usage Variety 

Running component and architectural evaluation according to identified performance 
parameters is crucial. But the real test for any solution is that of being applicable to a 
certain (often large) set of real-life applications. It was recognized early in the plan-
ning phase that our efforts would not be able to address the potential usage variety for 
a Future Internet. Hence, an application innovation process was established that 
would attract developers to the new platform for trying out novel usages of the plat-
form. This process is facilitated by the open source release of major node and network 
components, allowing for developing applications on an open platform with existing 
network technology like Ethernet. 

One straightforward example of such usage is the development of a plug-in for 
Firefox, which provides mechanisms for users to subscribe to publications using the 
PSIRP protocol through their web-browser. The plug-in intercepts all PSIRP protocol 
calls in the address bar or in a link embedded in a webpage (e.g. psirp://), passing the 
PSIRP parameters (SId:RId) to the XPCOM component. This component interacts 
with the PSIRP library by subscribing to the publication identified by the SId and RId 
pair and, after retrieving it, the component saves it as a local file. Finally, the plug-in 
opens the fetched publication and displays it in the web-browser. Currently, the re-
trieved publication is saved as a local file, which is later opened by the web browser. 
As a future improvement, publications will be displayed directly in the web browser 
without requiring copies to be saved locally. 

Other applications are currently explored in collaboration with external partners. 
But it is obvious that this challenge is a difficult and time-consuming one to be  
addressed. 

4.3   Testbed Infrastructures: Addressing Scale and Variety of Technologies  

Experimental testing of the technology solutions developed in PSIRP is crucial for 
evaluating the viability of the overall proposition of the project, namely to develop a 
viable alternative to the current IP paradigm. For this to happen, the implementation 
work is integrated into a single coherent prototype (see Section 3) [24]. As a result, 
not only is the architecture work converging, but also the various implementation ef-
forts on these architectural components are starting to converge into a coherent and 
running system. In particular, core components like the node architecture, forwarding 
and rendezvous node (see Section 2.1 and 3.2) are coming together, enabling the pro-
gression towards a first networked setup of a PSIRP network. Although crucial com-
ponents, such as the ITF function (see Section 2.1) are still missing from this coherent 
prototype, the foundation has been set to perform experimental testing in testbed  
infrastructures. A crucial step in this testing is the extension of a limited laboratory 
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prototype towards a fully networked test network that operates based on the central 
components of the architecture.  

A first step in this direction is the establishment of localized test network at the BT 
and University of Essex facilities in the UK. These facilities are based on a heteroge-
neous network infrastructure that was built under the recently finished UK TSB 
(Technology Strategy Board) funded project HIPnet. It provides a variety of access 
technologies in the wireless and wireline domain, e.g., WiMax, WiFi, and all-optical 
fixed infrastructure. The infrastructure spans the local campus at Essex University, 
located at the edge of Colchester (UK). The university's facilities hold about 2500 
students in their dorms, with access to their infrastructure. The wireless coverage has 
recently, in June 2009, been extended to full campus coverage with a single SSID. 
The WiMax coverage spans most of the campus, using a rotating antenna. The physi-
cal connectivity on the optical level extends to Cambridge University as well as to the 
BT facilities at Adastral Park (UK). This variety of access technologies is currently 
utilized for a fully networked PSIRP testbed. Given the largely Ethernet basis of the 
infrastructure, this is relatively easy for the wired part. Specifically, there are cur-
rently three types of machines being installed for a simple PSIRP network setup. The 
two end nodes are publisher and subscriber, respectively, currently running the latest 
release of the PSIRP node architecture (Blackhawk). These will be available at BT 
premises, at Essex as well as Cambridge University, enabling a variety of test cases 
through dedicated test applications running on these nodes. The third type is a for-
warding node, utilizing the current NetFPGA implementation [16] as well as the 
FreeBSD-based forwarding engine.  

Such setup will not only enable demonstrations but also provide a testing ground for 
the implementation itself. For instance, real network load performance experiments can 
be conducted for evaluating (a) end node architecture performance and (b) forwarding 
node performance. In addition, the setup will be utilized for extensions at the techno-
logical level. One such extension is the development of a topology management mod-
ule, which will demonstrate the applicability of the PSIRP information concepts for 
optimizing resource utilization on the optical level. For this, we will utilize the existing 
optical infrastructure in the testbed in partnership with Essex University. Furthermore, 
the integrative demonstrator will be used as the basis for a UK-funded project between 
Essex University and Cambridge University in the area of lifestyle management [25]. 
This project targets novel services in the user-centric health area through self-
monitoring and information processing. This is an area where we expect novel input 
from an underlying information-centric architecture like PSIRP. 

While the localized experimental facilities allow for testing components and parts 
of the architecture under a variety of access and network technologies as well as in 
possibly diverse application settings, the issue of required scale still remains for cru-
cial, in particular inter-domain, functions. For this reason, PSIRP is collaborating with 
the European Onelab2 efforts to establish a direct experimental platform support for 
architectural propositions as pursued by PSIRP. The immediate result of this collabo-
ration is the connection of the localized testbed to the Planetlab Europe facilities, ena-
bling the ability of experimentally testing technologies over the current Internet. In 
addition, direct connections to the experimental FEDERICA platform are currently 
explored to enable large-scale testing of PSIRP technologies that directly operate on 
Ethernet level, such as the forwarding solution [15]. 
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5   Lessons Learned: The Attempt of a Coherent Approach 

Section 4 highlighted the approaches being taken [26] for evaluating the variety of 
technologies and solutions being developed in PSIRP, according to the presented con-
cept architecture. It is not surprising that the mix of simulations, emulations and test-
beds of various kinds have been explored, given the variety of challenges to be  
addressed by the evaluation. But when looking closer at the variety of evaluation 
techniques, as presented in Section 4, one can recognize certain patterns that help 
formulating principles for a coherent approach that enables evaluating large-scale 
architectures like the one envisioned in Section 2.1. These principles for a coherent 
approach, directly addressing our challenges laid out in Section 2.2, are as follows: 

• Enable scale: The scale challenge is most prominent in an evaluation of this 
kind and any approach must achieve this. While this is seemingly obvious, 
given our challenges, the approach must achieve this scale while preserving 
aspects like locality and component integration. We implement this princi-
ple by combining simulative and emulative elements.    

• Enable component-level testing: Any solution development goes hand in 
hand with component development of the envisioned architecture. A com-
prehensive evaluation approach must enable component-level testing while 
being integrated into a scalable testing environment. This is achieved in our 
approach through the usage of emulation methods. 

• Enable locality: Large-scale architectures do not live off inter-domain com-
ponents and technologies only. Intra-domain solutions, such as for high-
speed forwarding are part of this larger picture and need to be evaluated. 
Such testing requires often localized availability of components for the abil-
ity to quickly reconfigure and manipulate the test environment, while still 
being integrated into a large-scale framework of evaluation. Furthermore, 
locality enables a certain set of user experiments that are often not possible 
in global environments, such as sensing or local content scenarios. Hence, 
local test networks are crucial in a coherent approach.  

• Enable inter-domain operation: The workings of protocols and technologies 
across multiple technological and administrative domains, lead to an often 
very different set of problems than a mere intra-domain operation. Hence, 
enabling such inter-domain operation, directly addressing the variety chal-
lenges of Section 2.2, is crucial in a coherent approach. 

Taking into account these principles and our lessons learned from the evaluation, as 
presented in Section 4,  we can formulate our attempt for a unified approach in Figure 4. 
This approach combines all evaluation environments: simulation (ns-3), emulation (in 
isolated environments) as well as testbeds like global solutions (PlanetLab) and a small 
general purpose testbed (at Essex University) to provide the best of all worlds while 
enabling a larger evaluation environment to be built than using just one environment 
alone. As a consequence, the localized testbed would enable the creation of large, high 
bandwidth tier-one equivalent ASes, with a direct connection to the raw Ethernet net-
work provided by FEDERICA through the UK NREN. 
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Fig. 4. Proposed environment for testing the PSIRP prototype 

The ns-3 simulator(s), connected either directly to FEDERICA or to the Internet 
would allow the creation of a large number of smaller ASes, which could then be used 
to generate traffic to be injected into the PlanetLab and Essex University testbed. The 
PlanetLab environment, connected over the Internet, could be used to evaluate the 
performance of technologies over the current internet and its associated protocols, and 
would also be a prime candidate for creating a number of smaller ASes (depending on 
the available node bandwidth) with real world traffic properties (e.g., delays, link 
failures. etc). Combinations of tests, such as real-world experiments conducted at the 
local network, e.g., through applications that students would use, and background 
Internet-type traffic from PlanetLab, can be conducted with this approach. 

The integration of an all-Ethernet testbed through FEDERICA and the localized 
testbed would provide the ability for evaluating native inter-domain technologies 
which would not run over IP. It also gives the experimenter the flexibility to choose 
the network environment with the most appropriate underlying physical topology to 
partially (or fully) match the overlay topology. The integration of the Planetlab envi-
ronment, however, allows for amending the experiments with overlaid solutions, e.g., 
global rendezvous alternatives, in which an overlay execution suffices. 

The above solution would also provide a large amount of flexibility for creating 
network topologies, as all three environments provide tools for this purpose. Ns-3 by 
design allows any network topology. PlanetLab has now been federated with VINI to 
enable layer 2 overlay creation and work is underway for a pure PlanetLab topology 
manager [27]. FEDERICA provides researchers the ability to specify a topology map 
containing V-nodes, virtual IP routers and virtual links. Early consultations with 
FEDERICA have determined that, for instance, forwarding techniques of PSIRP 
could easily be experimented with within FEDERICA without (logical) topology con-
straint. This eventually targets the last remaining challenge of Section 2.2, namely the 
economic variety. Testing inter-domain technologies, like global rendezvous or topol-
ogy formation (see Section 2.1) over a platform like Planetlab forces the current busi-
ness relations of ASes, represented through their underlying peering relations, on the 
tests. Approaches like VINI federation or FEDERICA integration would allow for 
creating inter-domain topologies that are significantly different from today’s peering 
relations. The structure of such peering relations, however, is left for socio-economic 
considerations rather than experimental verification. But it is the proposed combined 
approach in Figure 4 that would facilitate the latter. 



484 A. Zahemszky et al. 

 

6   Conclusion 

Experimental verification of new architectural approaches for the Future Internet is a 
difficult and challenging undertaking. Scale and variety on levels of technology, us-
age and economics places a burden on any evaluation task within an architectural  
effort. In this paper, we outlined the challenges that were faced by an exemplary ar-
chitecture effort in the area of information-centric networking. While our approaches 
to implementation and experimentation are based on the particular efforts, many of 
the lessons learned easily apply to other, similarly ambitious, efforts currently being 
undertaken. Our combined approach of simulation, emulation and localized as well as 
global testbeds allows for addressing the various challenges. However, it is well rec-
ognized that more work is required for a coherent testing and experimentation ap-
proach for Future Internet solutions.   
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Abstract. Quality of Experience (QoE) is the subjective judgment of the satis-
faction an end user perceives from an application running over a given network 
topology and configuration. The information provided by end users regarding 
their QoE preferences, experience and feedback is invaluable in providing a 
service that meets with their mobile activity needs within various access net-
works. The PERIMETER project progresses the QoE thematic research area by 
taking end user-related QoE factors for end user-centric mobility experimenta-
tion, thus empowering them to always have a service in which their QoE is 
high. This paper will detail the components  of the  PERIMETER framework  
and  the  user  centric  scenario  based process adopted to implement and  
develop such a framework. This paper provides an insight into the federated 
testbed infrastructure, testing methodology and tools, operating system and ap-
plications used in the project, thus demonstrating PERIMETER’s innovative 
advances within the QoE end user domain. 

Keywords: Quality of Experience, testbeds, federation, PERIMETER,  
Future Internet, Always Best Connected. 

1   Introduction 

Quality of Experience (QoE) is a  measure of the end-to-end performance at the service 
level from the end user perspective and an indication of how well the system meets the 
end user’s needs [1]. Consideration of QoE parameters and preferences allows a more 
user-centric, rather than network-centric, approach to be adhered to in areas of seamless 
mobility. Enabling the end user to control the way their identity, preferences and cre-
dentials are used empowers them to be Always Best Connected (ABC) [2] in multiple 
access and multiple operator networks of the Future Internet.  

The PERIMETER project [3] progresses the QoE thematic research area by taking 
user-related and non-technical QoE factors into account in order to provide a solid 
baseline for future user-centric mobility experimentation. This is achieved by study-
ing the parameters that define the “user-centric seamless mobility”, resulting in new 
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network selection algorithms for achieving QoE based ABC paradigms and the de-
velopment of a QoE framework that supports generic QoE definition, QoE signalling 
and QoE based content adaptation. To demonstrate such a QoE specific PERIMETER 
framework, a scenario based approach was adopted and a suitable federated testbed 
infrastructure was created to provide a valuable environment to verify the innovative 
QoE aspects of the PERIMETER project. 

This paper gives an account of the PERIMETER middleware, before elaborat-
ing on  the  scenario  based  process  used  to  derive the  functional  requirements of 
the system. Next, the underlying testbed infrastructure used to demonstrate and vali-
date the middleware and its required applications is provided, in conjunction with 
details of the operating system used and the testing methodology employed. The 
results from the first round of testing are then presented. The paper concludes with a 
summary of the work of the PERIMETER consortium to date, before detailing its 
future trials in the QoE testbed infrastructure and services area. 

2   PERIMETER Middleware 

The PERIMETER middleware is composed of a QoE  management system,  
QoE delivery system and PPA3R (Privacy Preserving Authentication, Authorisation, 
Accounting and Reputation) system. These systems are supported by a Storage Layer 
for storing and retrieving information using a distributed peer-to-peer approach 
[4] and an Application Layer (which contains an Application Manager and a Graphi-
cal User Interface (GUI) that provides the end user with control over their QoE pa-
rameters,  preferences and  settings).  The PERIMETER middleware, depicted  in 
Figure 1, is hosted on PERIMETER aware mobile device terminals and on support 
nodes in the testbeds involved. Both terminals and support nodes can be directly 
connected to the Internet or to Virtual Private Networks (VPN) behind a Network 
Address Translation (NAT)/Firewall. 

The central goal of PERIMETER is to devise a framework where end users 
are always in an ABC state. To achieve this goal, PERIMETER must gather relevant 
information, and make decisions on whether to generate a network switch based 
on the analysis of this information. The ABC state is measured using QoE metrics. 
PERIMETER makes its decisions using information from the end user’s preferences, 
the end user’s context (application under use, location and conclusions inferred 
from this),   network   performance   parameters,   other   PERIMETER   end   users’   
QoE information and PERIMETER end users’ feedback, which are collected in a 
QoE Descriptor (QoED) [5]. The Data Network Processor is responsible for comput-
ing these QoEDs. Dedicated Trust and PPA3R components are employed to handle 
trust and security issues related to the sharing of QoEDs between the end users. The 
Decision Maker (DM) uses local and a selected subset of remote QoEDs to decide on 
the most suitable available network. The QoE delivery system performs the actual 
vertical handover based on the DM’s analysis [6]. The QoE delivery system also 
conducts network measurements to aid the DM in making this decision. 
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Fig. 1. PERIMETER Support Node and Terminal 

3   User Centric Scenario Process 

Adopting an end user scenario based process allowed the definition of a suitable 
federated testbed infrastructure that will be capable of supporting an end user QoE 
PERIMETER demonstrator. Through a scenario sub-step breakdown and component 
mapping activities, the PERIMETER consortium detailed the relevant component 
functionalities,  interfaces  and  network  technologies,  therefore  kick  starting  the 
process of identifying the testbed initial requirements. PERIMETER Scenario 1, 
entitled ‘user-centric agnostic ubiquitous communication’, follows the daily activ-
ity of an end user as they seamlessly roam between different technologies, connect-
ing to services using various access technologies and devices. 

A summary of the PERIMETER Scenario 1 is as follows: 

Yvette is waiting for a taxi in the same room as her colleague Bob. Both have the 
PERIMETER system installed on their devices and are connected to the building’s 
Ethernet network. A phone conference starts. Bob participates with his laptop and 
Yvette with her handheld device. The taxi arrives and Yvette gets in. As the 
taxi leaves, Yvette’s handheld begins to face network problems so the PERIMETER 
system begins searching for a suitable network to  handover to Yvette's handheld has 
already detected a pair of Universal Mobile Telecommunications System (UMTS) 
networks; the PERIMETER system chooses the cheaper network. It has, in fact, ana-
lyzed a few statistics, previously cached from the PERIMETER overlay infrastruc-
ture, reporting that the majority of the end users had satisfactory experience with the 
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cheaper UMTS network in that location. While in the taxi, Yvette receives an 
important video call from her boss. Given its nature, the call requires high quality 
video parameters and a stronger confidentiality. PERIMETER scans for a network 
that will meet these requirements and analyses the QoE descriptors of the end users 
on various networks to find a suitable network. It chooses a different UMTS network 
and seamlessly connects to this to guarantee exceptional video call performance. 

The following work flow shows the step by step flow of actions taking into ac-
count the testbed infrastructure and the PERIMETER middleware: 

• Scan for connection options and discover the nearby WLAN device. Join the 
phone conference. 

• Monitor the active network interfaces for acceptable QoE. 
• Detect changes in the location and degrading channel quality. Scan for other 

connection options. 
• Collect QoS (Quality Of Service) data and interact with the PERIMETER 

Support 
• Node to update QoS information of thecurrent geographic location. Collect 

QoE data over the PERIMETER overlay. 
• Process collected data using the Decision Maker component of the system. 

Switch from WLAN to UMTS based on Decision Maker’s decision. 
• Receive  the  incoming  call  and  detect  QoE  requirements  (high  quality  

and confidentiality). 
• Probe the QoE descriptors of other users on this network. 
• Select the more expensive and reliable UMTS network and switch between 

them. 

Figure 2 conveys a high level overview of the mapping of this scenario in the  
PERIMETER federated testbed. 

 

Fig. 2. Mapping Scenario to Testbed Requirements 
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4   PERIMETER Testbed Infrastructure and Testing 

To effectively validate the results of the PERIMETER project, two main testbeds 
were  setup  to  co-exist  within  the  PERIMETER  project,  the  first  is  housed  at 
Waterford Institute of Technology (WIT) Ireland and the second main testbed is 
housed at Technische Universität Berlin (TUB) in Germany. The mapping of the 
scenario helped identify the main testbed requirements such as terminal devices (mo-
bile  and  fixed),  network  support  technology  hardware  and  equipment  and soft-
ware requirements. WIT’s testbed focused on the application services, while TUB’s 
testbed focused on the network access infrastructure required to demonstrate the 
scenario, as illustrated in Figure 3 and Figure 4. The PERIMETER middleware re-
quires both terminal and support nodes to be deployed in the QoE testbed infrastruc-
ture. There are four category actors in the PERIMETER system that will be part of 
the testbed design, User terminals, Support nodes, Network service providers and 
Application service providers. 

 
WIT testbed hardware elements TUB testbed hardware elements 
• Hudson build server.  
• Asterisk SIP server  
• G1&G2 Mobile devices.  
• Gateway machine.  
• VMware server (perimeter 

support nodes) 
• Advent netbook x 2 
• Wireless router, accesspoints 

 

• Xen virtualization servers 
• (perimeter support nodes). 
• End terminal devices (laptops, 

netbooks, mobile devices 
G1/G2). 

• Semantic IPTV server and 
webcam. 

• gateway machine, routers, 
accesspoints 

• UMTS Femto Cells. 

Fig. 3. PERIMETER Testbed Hardware 

Between the two official test sites layer 3 Internet Protocol security (IPsec) intercon-
nectivity  was  adopted  to  allow interconnection  in  a  secure  manner.  The PE-
RIMETER  testbed  used  IPsec  tools  [7]  such  as  M0n0wall  [8],  a  complete 
embedded firewall package, Racoon [7] for Internet key exchange and Setkey [7] to 
manipulate security associations and policies within the implemented IPsec tunnel on 
the hosts from both testbeds. 

The testbed interconnection has been designed with the following functional-
ities in mind: 

- Service environment component integration. 

- Testbed adaptation. 

- Exposure, composition and redeployment of services and components. 

- Horizontal Interconnection: to achieve greater scale. 

- Vertical Interconnection: to support system-level testing of new Internet net-
working and services paradigms across layers. 
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The purpose of the PERIMETER testbed federation is to deliver the scenario test-
ing, architecture validation testing, end user evaluation testing and final project dem-
onstration for PERIMETER by interconnecting the diverse wireless network access 
systems and terminals and application environments which can provide a multi-
faceted mobile communications environment. 

 

Fig. 4. PERIMETER Testbed Infrastructure 

4.1   Operating System and Applications Used in the QoE Testbed 

Adopting a user-centric scenario based approach incurs the need to address and have 
available certain applications in order to support the final end user demonstrator. In 
the PERIMETER scenario the two main applications required included a phone con-
ference and a video conference application. It was agreed upon in the project to in-
corporate the use of the Google Android [9] operating system. This is a mobile oper-
ating system that runs on top of a Linux kernel [10]. 
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The use of the  Google  Android  operating system has allowed  the  PERIME-
TER consortium to invest in Android compatible mobile devices in addition to allow-
ing the project avail of applications distributed by the Android Market. The following 
Google applications were initially assessed on the G1 mobile device containing 
firmware version 1.5, to determine their compatibility with the PERIMETER project: 

1. For   the   phone   conferencing  application  PERIMETER  are   examining 
Sipdroid [11]. Sipdroid is an open source SIP client implemented in Java 
which is capable of running on the Google Android platform. 

2. For  the  video  call  application  PERIMETER  are  investigating  Semantic 
IPTV [12] provided by TUB. Semantic IPTV permits video streaming on the 
Android phone. 

All applications used within the project must be made PERIMETER aware. 
This involved  interfacing  the  PERIMETER  specific  Application  Manager  (AM).  
The AM’s main functionality is to provide the end user with the ability to control the 
running applications, edit their preferences and set the network selection manually if 
needed. 

4.2   GUI Testing Results 

To validate the usability of the AM’s GUI, usability tests were performed with 
a group of actual users from the PERIMETER consortium [13], taking into account 
the Living lab [13][24] methodology concepts. This step yielded important clues 
about the end users’ acceptance of the system and their ability to grasp and utilize the 
functionality represented by the GUI. 

As a  first step for the  GUI testing, a  usability pre-test was initiated to 
evaluate statistical data of end users with different demographical (Ireland, Germany, 
Austria and Turkey) and technical background, with a set of interview questions. 
After the pre-test, the end users were provided with the Android G1 mobile phones 
with the PERIMETER GUI installed, shown here in Figure 5 and Figure 6. If the end 
user was not familiar with using an Android device, a tutorial was provided, which 
explained the basic tasks the end user needed to know for the tests. The end users 
were allowed to familiarize themselves with the phone and the operating system. 

  

Fig. 5. Browser Preferences Fig. 6. QoE Rating 
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The main feedback points were in the following areas: 

• The application launcher needed to be redesigned. Functionality such as the 
play/pause/stop metaphor for the applications was not deemed intuitive.  

• Recommendation that the privacy and security preferences, shown in Figure 5, 
should be merged 

• The dynamic feedback, involving the ‘smileys’ (Figure 6) was well received.  
• The meaning of the cost preference (Figure 5) was not transparent. 

4.3   PERIMETER Testing and Test Tools 

In order to ensure that the PERIMETER system was brought to a level where it 
achieved its functional and end user objectives, a development and testing methodol-
ogy was applied. The Agile software methodology [14][15][16] was deemed suitable 
for this project as it generally promotes a project management process that encour-
ages frequent inspection and adaptation, a set of engineering best practices, such 
as Test Driven Development (TDD) [17] that allow for rapid delivery of high-  
quality software, and a business approach that aligns development with customer and 
end user needs. In conjunction with these Agile and TDD processes, the testing 
process also took into account test management ‘best practises’ in testing cycles [18], 
to include a testing cycle of five phases, as shown in Figure 7, These phases con-
sisted of Definition (of the functionality to be tested), Commissioning (setting up the 
test environment), Execution (of the tests), Reporting (of the test results) and Evaluat-
ing (of the results achieved). These steps were mapped to the PERIMETER testing 
procedures for unit, functional, integration and scenario testing of the code base to 
ensure the testing cycle was robust, scalable, interoperable and secure. 

 

Fig. 7. PERIMETER Testing Cycle 

Testing Tools are essential for team collaboration, continuous testing and struc-
tured software development. In PERIMETER, a number of supporting tools, 
such as Hudson [19], Trac [20] and Subversion [21] (SVN), were used to facili-
tate and structure the integration, validation and verification processes. 
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Subversion [21] was used for the code and document repository version control. Trac 
[20] was used for project management tasks and especially for bug tracking. Hudson 
[19] a continuous integration engine was used because of its flexibility and seamless 
integration with Subversion. In conjunction with Apache Ant [22], Hudson was con-
figured to constantly execute builds as new or modified source code was checked in 
to the PERIMETER SVN. 

5   Conclusions and Future Work 

This paper introduced PERIMETER’s approach for user-centric seamless mobility in 
Future Internet. The PERIMETER middleware, which manages the QoE and PPA3R 
system  and  pictured  the  PERIMETER  architecture,  consisting  of  terminals  and 
support nodes was described. A typical scenario for ubiquitous networking is shown that  
utilizes  PERIMETER’s  overlay  infrastructure   with  QoE  based  handover decisions 
to achieve an ABC networking environment. Within the PERIMETER project, a feder-
ated testbed was built with main sites at TUB and WIT, interconnected over  the  GÉ-
ANT2  research  network. The testbed  offers  large-scale experimental facilities, sharing 
specialized networking infrastructure and services and enables integration and validation 
of the PERIMETER system in a heterogeneous and realistic environment. 

On the terminal side, PERIMETER is based on the Android operating system. An 
Application Manager and GUI is being implemented, which allows the user to start 
PERIMETER aware applications, set preferences, returns QoE feedback to the user 
and enables the user to evaluate his QoE. The usability of the projected terminal 
software was evaluated in a field test, with primary focus on the GUI and the overall 
acceptance of the PERIMETER approach. 

The PERIMETER consortium will mature the testbed activities, by progressing 
towards collaboration with and applying for a ‘slice’ of the FEDERICA [23] network 
infrastructure. This would enable the WIT and TUB federated testbeds to have core 
connectivity (layer 2) and also provide additional virtual hardware resources that can 
be used by the  PERIMETER consortium for PERIMETER specific  experimen-
tal research. Currently the PERIMETER system is being further developed in 
order to provide a complete system which can be used by an end user. This is being 
done in a user co- creation process, for which further usability and Living Labs [24] 
testing needs to be performed. 
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Abstract. This papers presents an e-learning platform that improves
the current state of the art by successfully integrating four features.

Firstly, it provides a web interface incorporating lecture notes, labs
instruction and results. This remote interface also allows the teacher
to easily implement new experiments using a high level description lan-
guage. Secondly, the proposed architecture will provide a low deployment
cost without limiting the experimental scope. Thirdly, the new platform
can take advantage of many existing and emerging testbeds. Finally, we
introduce a new framework for teaching and learning network concepts.
Thus a student using this new tool during an introductory course will
embrace a less difficult path to perform more advanced studies on cur-
rently widely deployed testbed.

1 Introduction

Knowledge of networking concepts and technologies has become essential to most
computer, software, and information technology engineers. Indeed, an ever in-
creasing number of devices are now network-enabled, e.g. fridges emailing grocery
lists, cars pulling information from highways, TV pre-fetching favourite shows.
Thus many educational institutions have included networking subjects in the
syllabus of most of their computer or electrical engineering courses.

When teaching introductory or advanced networking subjects, lecturers face
the difficulty of illustrating both the concepts and technologies, and assessing
students with various knowledge backgrounds. This illustration phase is usually
implemented in the form of laboratory classes, where students use some software
tools to experiment on various networking scenarios. While different solutions
may be used for different course levels, it would be desirable that such tools
allow the experimentations of both basic and advanced networking scenarios.

The use of simulation software (e.g. ns-3, OPNET [1,4]) is a possible approach
to address both these illustration and assessment challenges. This solution offers
the benefit of an easy installation, maintenance, and access to many different
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.
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type of simulated resources, but may involve a steep learning curve, e.g. under-
standing the scripting interface to the simulator and unrealistic and simplified
models.

Another possible approach is to use deployed experimental platforms (e.g.
testbed) to both illustrate and assess the learning of networking knowledge.
The main advantage of this approach is that it allows students to interact with
real protocol implementations in realistic environments, thus potentially enhanc-
ing their learning experience. On the other hand, deploying and maintaining a
testbed often involves significant financial costs and engineering overheads, which
in turn limit the number and type of available experimental resources with which
to experiment. A solution to these limits is to use existing open research testbeds
such as ORBIT, PlanetLab, or Emulab [11,9,13]. However, similar to the simu-
lation approach, the use of testbeds may also involve steep learning curves for
students.

This paper presents a new alternate testbed-based approach, which combines
the features of a previously introduced e-learning platform (Internet Remote
Emulation Experiment Laboratory, IREEL [6]) with the experiment control and
resource management services of a widely used testbed framework (cOntrol and
Management Framework, OMF [10]). From a student perspective, this integrated
tool addresses the learning curve issue associated with using testbeds. Indeed,
it allows both beginner and advanced students to experiment with networking
concepts through an intuitive web-based interface, or with their own protocols
through detailed experiment descriptions and automated executions.

The remainder of this paper is organised as follows. Section 2 presents our
e-learning platform vision that motivates the presented work. Section 3 reviews
some of the related works.Section 4 presents the design of the proposed IREEL-
OMF integration, and describes some of the key implementation decisions and
their benefits. Section 5 discusses the contributions of the proposed IREEL-
OMF integration in terms of new and enhanced learning methods and tools for
networking students and future young researchers. Finally, Section 6 concludes
this paper and presents some potential future works.

2 Motivation

We envision the future of network-course e-learning platform as depicted in
Fig. 1. We believe this architecture provides four improvements compare to the
state of the art.

Firstly, we think that lecture note and labs instruction must be accessible
directly on the web interface that pilots the possible configurable experiments.
This feature is necessary to allow student to work efficiently. Furthermore, the
configuration of these experiments must be available in a high-level interface
to allows student with no programming language skills to participate in these
lectures and the teacher to add easily new experiments.

Secondly, the architecture should have a low-deployment cost and a large
range of network configurations. This requirement leads us to consider emulation
solution for the basic platform.
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Fig. 1. General Architecture of the Future e-learning Environment

Thirdly, with the recent advancement in the worldwide deployment of net-
work testbed, the future e-learning platform must facilitate the reproducibility
of simple experiments over multiple testbed. In Fig. 1, this is illustrated by
OMF’s capability and current deployment over multiple testbed.

Finally, this new e-learning architecture should facilitate the shift from a be-
ginner to advanced user of testbed as it is illustrated by the left arrow in Fig. 1.

3 Related Work

Few initiatives currently provide software services and tools to control experi-
ment executions, access, and manage resources on networking platforms. Some
examples of such software suites are the Emulab [13], the PlanetLab [9], and
the OMF frameworks. These frameworks were primarily designed to address
the experimental needs of the networking research community. Although, some
of them could be used in a educational context, their usage requires a learning
curve which is not suitable nor necessarily relevant to a semester-based academic
course focusing on networking concepts and technologies.

Emulab [13] is a large network emulator. It provides experimenters with a set
of computers, which can be configured into various topologies through emulated
network links. The Emulab control framework supports three different experi-
mental environments: simulated, emulated, and wide area networks. It unifies
all three environments under a common user interface. Emulab provides tools to
describe a required experiment topology and map it to actual resources. Some
control tools are also provided, but with minimal features. Emulab and OMF
share many design principles with the differences primarily shaped by a focus
on different hardware and a different user community.

PlanetLab [9] is a global research platform based on more than 1000 dis-
tributed computers, which are hosted by independent organisations. It is the
primary large-scale testbed used for experimental overlay and service oriented
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systems (e.g. distributed storage, peer-to-peer contend distribution). PlanetLab
provides a suite of software, which uses virtualisation tools to efficiently share the
global resources among simultaneous short or long-lived experiments. Similar to
Emulab, these tools are essentially focused on resource allocation and access, and
only provide minimal supports in describing, controlling and measuring experi-
ments. PlanetLab is also limited by its default offered layer-3 abstraction, i.e. it
could not be used to illustrate layer-2 schemes (e.g. wireless MAC mechanisms)
to networking students.

The Open Network Laboratory (ONL) [7] is a testbed-based educational re-
source, which has been used in the teaching of several academic networking
courses. It consists of several computers interconnected by multiple extensible
routers, which can be linked in various network topologies through a central vir-
tual network switch. ONL allows the users to extend the routing functionalities
through software plugins insertion. A user (e.g. a student) remotely access the
platform through a stand-alone graphical interface, which easily allows the con-
struction of various topologies, their configurations (e.g. route, bandwidth), and
their monitoring. Similar to PlanetLab, the current ONL platform is limited to
the illustration of layer-3 and above networking concepts.

Academic and industry research communities have developed many network-
ing simulators, which provide inexpensive alternatives to testbed platforms as
educational tools. Some of these simulators (e.g. OPNET [4]) have been success-
fully used in academic courses as the base of complementary laboratory activities
[5]. Others (e.g. the ns-3 network simulator [1]) requires similar learning curves as
the frameworks mentioned earlier, which may impede the learning of networking
concepts. In any case, the inherent model assumptions within simulators limit
the illustration of some networking aspects, e.g. there is no accurate simulation
model for losses on wireless channels.

4 IREEL and OMF Integration: Design and
Implementations

Facing the integration of an e-learning platform and a testbed management
framework we have identified several challenges including the need to identify: a
new communication scheme between the platform controller and the two com-
puters that constitute the platform, a new measurement scheme based the a
generic measurement library, and a new script generation for the experiment
and the student.

4.1 New Architecture Overview

In the first version of the IREEL platform, communication between the platform
controller and the two end-systems was done using remote calls with CORBA.
This way of communication allows us to deploy the platform regardless of the
operating system. On the counterpart, this scheme forced the teacher to follow
strict rules for the deployment of new features.
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Fig. 2. New Architecture of the e-learning platform

In this new architecture, there is no longer a need for an intermediate com-
puter thanks to the integration of a new emulation module inside OMF, as it
will be detailed in the following of this section. Furthermore, as it is depicted in
Fig. 2 we have added a new measurement channel using OML [12]. In the fol-
lowing of this section, we present the new communication channel using OMF,
the measurement capability and finally the new emulation module in OMF.

4.2 New Communication and Measurement Scheme

In order to build the new architecture, we had to completely change the end-
systems. This has been made easy thanks to the OMF application description.
Then we had to decide how to start an application on these new end-systems. For
that we changed all the application and the controller that was waiting for an
XML file to decide which application to start. Therefore, we built ruby wrappers
around all the legacy applications and remove the end-system controller to put
instead the management framework.

The second challenge we had to resolve was the collection of measurement
on the new end-system. Indeed, the management framework allows us to use
a modular measurement library [12] that dynamically stores the results into a
database on the platform controller. Previously, three kind of measurements were
available on IREEL: network, application specific and application output such
as a video over a network with impairments. For the moment we decided to use
the measurement library to collect both network and application specific result
and by-pass this library for the output of the video streaming. The answer to
this challenge remains open for the moment.
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4.3 Integration of an Emulation Module in OMF

Finally, in order to make this integration possible we had to develop a new mod-
ule for OMF. As explained in Section 2, one of the main goal of this e-learning
platform is to be easily deployable and therefore we need to maintain a low de-
ployment cost. Thus, in order to provide a large scope of network configurations
we decided to use an emulation solution. However, in the current state of OMF it
was not yet possible to manage emulation tools but skeletons to implement such
controls were available. Therefore we developed a new emulation module that
allows us to firstly maintain a low deployment cost of the e-learning and sec-
ondly provide networking community an emulation enhancement to all testbeds
that use OMF. As a side effect, this makes OMF even more suitable for wired
networks and allows testing on more complex topology using existing testbed.

This emulation module has been make possible by the integration of a man-
agement procedure of Netem [8] on the end-systems. This integration has been
possible through the enhancement of the topology description inside OMF and
the interfacing of netem specific API. In OMF Experiment Description Language
OEDL [3], it was possible to easily integrate this feature.

The addition of this emulation module inside OMF brings us two main ben-
efits, an extension the topological abstraction and capacities of OMF and the
student is given a theoretical graph representation of the configured network.
Indeed, in addition to the configuration of the network, OMF’s topology builder
gives the experimenter a graph that represents the network. In this model, the
network is represented as a directed graph G(V, E), where V represents the set
of vertices and E the set of edges.

This feature allows the student to verify if (s)he configured the network as
(s)he was asked to do to finish his assignment. On the teacher side, this feature
provides the opportunity to introduce the graph theory as a representation of
the network. Furthermore, as we demonstrate in the following section, it also
allows the teacher to point out the need of real experiments compare to pure
theoretical approach to networking.

4.4 Integration Procedure: A More Flexible Approach

As explained in the previous section, we changed the way to initialise the ap-
plication on the end-systems. This modification also facilitates the integration
of new applications on both the end-system and the platform controller. In the
first version of the platform developers have to follow a Java skeleton.

In the new architecture, the developer must simply install the new application
on the end-systems and then write a ruby script that will be called by the man-
agement framework. This script is presented through an example in Listing 1.
Starting the new application is therefore transparent for the developer. Further-
more, we plan to extend this application description to automatically generate
the front end for the student. Thus, the teacher writes a script describing both
the application to use and the different network impairments required for this
experiment. This new feature can be illustrated in the second part of Listing 1.
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defProperty(’delay1’, ’10ms’, ’ between 1 and 2’)
defProperty(’bandwidth1’, ’1000kbit’, ’ between 1 and 2’)
# Create an application representation from scratch
defApplication(’ ireel : app:newApp’, ’newApp’) {|app|

app.version(1, 1, 2)
app.shortDescription = ”Illustration of the CS course”
app.path = ”/usr/bin/newApp”
app.defProperty(’numPackets’, ’number of packets’)
app.defProperty(’timeout’, ’ ping timeout in second’)
app.defProperty(’size ’, ’ user data size ’)
app.defProperty(’output’, ’ Output type binary or text’)

}
#Specify the link characteristics from node 1 to 2
defLink(’ireel : link : newLink’, ’newLink12’){|link|

link . shortDescription = ”Configuration of the link characteristics ”
link . setProperty(’bandwidth’, prop.bandwidth1)
link . setProperty(’PLR’, 0.0)
link . setProperty(’delay’, prop.delay1)

}

Listing 1. Example of a new application

The teacher then submitted this experiment description using a wiki-like in-
terface. It is afterward processed by the system in order to generate an IREEL ex-
periment interface with the desired network impairments and application
configuration.

5 From Learning to Researching: Benefits of a Unified
Solution

5.1 Introducing a New Learning Plane

As illustrated on Figure 3, the integration of IREEL with OMF provides a new
learning plane, which serves as an interface between students/lecturers and the
bare resources of a testbed platform. This plane provides a seamless access from
a user-friendly graphical front-end to the full visualisation/edition of an OMF
Experiment Description. This caters both for undergraduate basic courses and
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postgraduate advanced ones. Indeed, students of the former courses use graphical
menus to develop, run, and analyse experiments, thus focusing on the networking
concepts without the difficulty of a steep usage learning curve, nor the need for
any programming skills.

Through the use of OMF’s systematic descriptions and automatic executions
of experiments, this learning plane further introduces new students to scientific
concepts, such as reproducibility, statistical significance, or peer-verification. For
example, students can easily cross verify their results, or run multiple trials of
the same experiment with/without parameter modifications, and observe the
effects on their result statistics. This feature also benefits advanced and research
students, as they have now an uncomplicated tool to produce more accurate
scientific results.

Another major benefit of this learning plane is that through the use of OMF
as the interface with the underlying testbed, it potentially gives students and
lecturers access to large number of heterogeneous resources within many differ-
ent testbed platforms. Indeed, OMF is currently used to control experiments
and managed various resources at many institutions. For example, the particu-
larities of an existing protocol (e.g. TCP) can be illustrated on real PC-based
resources connected via links with Internet-like characteristics, and then seam-
lessly evaluated on real mobile wireless resources connected via ad-hoc 802.11
links. Comparison between results from both environments would give students
valuable insights into the studied protocol. An example of such a case is devel-
oped in the next section.

5.2 Demonstration of the Portability

In this section, we demonstrate through a simple example the benefit of the
combined use of the new platform and a wireless testbed. In this scenario the
student is first asked to configure the simple IREEL’s network and then starts
a traffic generator. Once this experiment is finished the student can now take
the experiment script provided by the platform and execute it with the same
topology on the wireless testbed. The aim of this simple scenario is to put in
relief the physical characteristics between wireless and wired network even if the
theoretical topology remains the same.

Execution on IREEL. In order to execute this experiment on IREEL, the
student must first log on the IREEL portal. Once the student on his or her
personal page, they may configure a simple scenario using iperf in its UDP
mode and a topology with a bottleneck of 1 Mbit/s and an RTT of 200 ms.

The student must then waits for the experiment to finish and analyzes the
results provided by the platform. These results comprise: the output of iperf;
a graph of the throughput perceived by both the sender and receiver; the file
generated by TCPdump [2]; the newly introduced measurement database; and
can be summarised by the Table 1.

Execution on a Wireless Testbed. Once the results have been analysed,
the student will be in possession of an OMF Experiment Description. Advanced
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Table 1. UDP Results on a Wired Network

Average Throughput 1010 kbit/s

Average Jitter 2.21ms

Packet Loss Rate 59.56%

student can now use this script to better understand the importance of the access
medium.

We performed this simple experiment on the NICTA wireless testbed and
able to observe results displayed in Table 2. In these results, slight differences
are evident even if the exact same theoretical network has been configured. Based
on these differences, the teacher can open the discussion on the importance of
the access network and start a deeper explanation on this technology and its
limitations.

Table 2. UDP Results on a Wireless Network

Average Throughput 987 kbit/s

Jitter (min/avg/max) 5.43ms

Packet Loss Rate 60.51%

6 Conclusion and Future Work

Based on feedbacks from students and teachers, we have presented a new e-
learning platform that improves the state of the art on several aspects. Firstly,
the proposed architecture provides both students and teachers with a rich web
interface incorporating lecture notes, labs instructions and results of the exper-
iments. Furthermore, this interface allows an easier integration of new experi-
ments for the teacher through the use of a high level description language.

Our solution also provides a low deployment and maintenance cost in its
basic architecture and facilitates the use of already deployed testbed. Finally,
we introduces a new teaching plane for network course that ease the shift from
beginners to advanced students.

On a technical aspect, we plan to extend this platform to support directly
wireless experiments. Thus the new platform will be one of the first e-learning
platform integrating a wireless component.

On the teaching counterpart aspect of this platform, we plan to provide it to
Universities and follow its use. We also plan to evaluate the final product based
on students and teachers evaluation.
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Abstract. Testbeds as a means to evaluate protocol and software de-
velopment are gaining importance, not least because of the oftentimes
unpredictable influence of environmental behaviour. IBBT, the Interdis-
ciplinary Institute for Broadband Technology, recognizes the importance
of such testbeds and has therefore invested in WiLab.t, a wireless sen-
sor and mesh testbed. It contains over 200 wireless and programmable
nodes. The monitoring and management of such a testbed is very im-
portant so as to guarantee a proper functioning and stable environment
to be used by researchers. This is however not a trivial task, even more
so when in the future, the testbed is expanded with new devices and
as such becomes a heterogeneous environment. Therefore, we have de-
veloped an ontology-based monitoring approach, which allows hiding the
heterogeneity from the monitoring application and enables to process the
data in a formal manner. Additionally, it allows adaptation according to
characteristics of the local deployment, without the need to re-engineer
the entire monitoring application every time alterations are made to the
testbed.

Keywords: wsn, wmn, ontology, semantics, monitoring, reasoning.

1 Introduction

Whereas network simulators can be used to evaluate the performance of appli-
cations in general and for wireless sensor networks in particular, these do not
have the capabilities to simulate all effects of real-life deployments, leading to a
considerable discrepancy between experiments and simulations. Therefore, both
wireless and other testbeds are a valuable tool for evaluating the performance
of such applications.

IBBT, the Interdisciplinary Institute for Broadband Technology has recog-
nized the importance of such testbeds. IBBT is an independent research insti-
tute founded by the Flemish government to stimulate ICT innovation. The IBBT
team offers companies and organizations active support in research and develop-
ment. It brings together companies, authorities, and non-profit organizations to
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join forces on research projects. Both technical and non-technical issues are ad-
dressed within each of these projects. Because of its belief in testbeds to enhance
research and development, it has therefore invested heavily in the installation of
a number of testbeds, to support a variety of research topics.

To enable intelligent monitoring and management of this testbed, an ontology-
based monitoring framework has been developed. This framework has been de-
ployed on the WiLab.t wireless sensor and mesh network testbed, but because
of the adoption of a generic ontology approach, the framework could be used on
other testbeds as well. Apart from offering monitoring information, the ontology-
based approach also allows classification and inference to be performed on the
monitored information. As such, only pre-processed and important information
is exposed to the administrative team, avoiding the need to constantly manually
analyze the data being produced by the monitoring application.

Although the monitoring use-case presented in this paper is very important
on itself, it has supported and demonstrated the research and development of
an ontology-based collaboration and data-aggregation platform, which can also
be used in a wider context. Originally, the development of such a distributed
ontology-based collaboration platform in a constrained environment was the
main research task, but the monitoring use-case has proven very important and
worthwhile to further exploit.

The remainder of this paper is structured as follows. The next section intro-
duces related work on similar research topics. Section 3 describes in more detail
the nodes and topology of the WiLab.t testbed. In Section 4 the complete ar-
chitecture is introduced, starting from the software components on the sensor
devices, through the mesh and back-end modules, concluding with the monitor-
ing application. The platform has been thoroughly evaluated and the results are
presented in Section 7. Finally, in Section 8 we present our main conclusions and
introduce aspects for future research.

2 Related Work

The first generation of experimental set-ups’ main purpose was the evaluation
of nature monitoring applications. These set-ups did not have any advanced
benchmarking facilities or have any flexibility regarding the reconfiguration of
test set-ups [1]. To increase the reuse of existing testbed set-ups, newly devel-
oped testbeds offer more advanced management functions, such as automatic
code deployment and scheduling mechanisms. These testbeds are deployed in a
wide range of scenarios, from city monitoring [2] to office monitoring [3,4]. The
number of active nodes in a single testbed ranges from a few nodes to more than
150 nodes. As of recently, efforts are being made to merge the different testing
facilities into a single, world-wide testing environment [5].

However, many innovations are still missing in regards to the flexibility of
wireless sensor testbeds. (i) Even though energy efficiency is very important for
wireless sensor networks, very few testbeds have fine-grained and detailed power
management and measurement capabilities. Similarly, the ability to emulate dif-
ferent battery types is still missing in most current testbeds. (ii) The topology
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of current deployments is fixed, resulting in inaccurate results when testing dif-
ferent sensor deployment scenarios. (iii) Accurate timestamp logging and time
synchronization is frequently missing from the management platform. (iv) Sen-
sor testbeds consist of at most a few hundred nodes, which is far less than the
thousands of nodes which are foreseen in the vision of “the future internet of
things” for office buildings. (v) Finally, the types of nodes deployed in a single
testbed are very similar, whereas future sensor networks are foreseen to contain
heterogeneous nodes with very diverse capabilities.

In this paper, we propose an ontology-based approach towards the monitoring
of the WiLab.t testbed. A brief, but all-embracing definition of an ontology, can
be found in [6]: “An ontology is a specification of a conceptualisation in the
context of knowledge sharing.” Accordingly, an ontology describes in a formal
manner the concepts and relationships, existing in a particular system and using
a machine-processable common vocabulary within a computerised system.

OWL, a modelling language for ontologies, consists of three sublanguages,
each of them varying in their trade-off between expressiveness and inferential
complexity. They are, in order of increasing expressiveness: (i) OWL Lite: sup-
ports classification hierarchies and simple constraint features, (ii) OWL DL:
OWL Description Logics, a subset providing great expressiveness without los-
ing computational completeness and decidability and (iii) OWL Full: supports
maximum expressiveness and syntactic freedom, however without computational
guarantees.

Using one of the three sublanguage flavours of OWL, one can easily adapt to
the required expressiveness. Arguably the most interesting sublanguage for many
application domains is OWL DL, balancing great expressiveness with inferential
efficiency. The efficiency is guaranteed by the underlying Description Logics.
Due to its foundation in Description Logics, OWL DL is also very flexible and
computationally complete.

A number of initiatives were investigated previously to incorporate web se-
mantic technology in wireless sensor environments. [7] presents a proposal that
combines the benefits of autonomic and semantic sensor networks to build a
semantic middleware for autonomic wireless sensor networks. Ontology-based
data provisioning mechanisms for wireless sensor networks, in order to deal with
varying applications, are presented in [8], while [9] defines a set of ontologies and
accompanying architecture for knowledge sharing.

To conclude, even as there are currently a wide variety of testbeds available,
many of these could be improvedby providingmore flexibility in regards to the con-
figuration, power management, scale and topology of the testbeds. Also the adop-
tion of ontologies and more specifically distributed reasoning mechanisms within
the specific nature of wireless sensor and mesh networks to support reasoning in
constrained environments is an additional feature presented in this research.

3 WiLab.t Infrastructure

The WiLab.t test infrastructure is located at the IBBT office building of Ghent
University, Belgium. This testbed consists of 200 TMoteSky [10] sensor nodes,



512 S. Verstichel et al.

spread over 3 floors. Wireless communication between the different floors is pos-
sible through 2 air shafts, in which several sensor nodes are installed.

Each sensor node is connected with an ‘Environment Emulator’ (EE) (see Fig-
ure 1(b)). This device can be used to control the physical properties of connected
sensor nodes, i.e. sensor values can be emulated, the battery voltage can be reg-
ulated, general purpose pins can be connected with the sensor node and energy
harvesting or battery models can be programmed. Finally, the EE also enables
very accurate power measurements, in the order of microsecond intervals.

Finally, for ease of programming and debugging as well as to experiment with
software in constrained environments, the wireless sensor nodes are connected
with intermediate nodes, called iNodes, which are Alix 3C3 devices [11] running
Linux Voyage [12]. Management of the testbed is performed using a modified
version of the motelab [4] management software. This software is expanded with
additional features such as a visualizer tool, a tool for graphical analysis of
measured data and a customizable SQL database. A picture of a node in the
WiLab.t testbed can be seen in Figure 1(a).

(a) A tesbed node consist-
ing out of an Alix device, a
TMoteSky sensor board and
an Environment Emulator

(b) Component break-down diagram of the
testbed nodes

Fig. 1. The nodes in the WiLab.t testbed infrastructure

4 Monitoring Architecture

This section introduces the architecture of the software components developed to
monitor the behaviour of the WiLab.t infrastructure. The TinyOS NesC com-
ponents to be run on the TMoteSky devices are described. Additionally, the
more heavy-weight reasoning components, deployed on the iNodes, are presented.
These components reason on the raw data being produced by the sensors. Fi-
nally, the overall workflow to trigger a monitoring task from the client, through
the back-end and iNodes, finishing at the TMoteSky sensors is detailed.

Our general ontology-based monitoring approach has already been thoroughly
evaluated in a back-end heavy-duty environment. This was published in [13].
Here, the ontology processing modules and mechanisms for query partitioning
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and execution have been detailed. However, because of the constrained envi-
ronments taken into account in this scenario, we have had to define a number
of additional modules and enhance certain mechanisms, in order to facilitate
the deployment of the platform in this constrained environment. The extended
platform architecture is given in Figure 2.
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Fig. 2. Extended ontology-based agent collaboration platform

The main building blocks of the architecture are the Reasoning Distribu-
tion Module and Reasoning Engine Module. Additionally, to improve the trans-
parency for the outside world, an extra indirection layer has been included at the
interface level, namely the Interface Module. This layer is introduced to facilitate
multiple reasoning technologies without the need for the clients to be aware of
this. As such, only generic interface operations should be defined, avoiding the
usage of reasoning technology dependent query and invocation mechanisms, e.g.
SPARQL [14]. Additionally, to decouple the reasoning from the data storage,
which was not the case in the original architecture presented in [13], two extra
modules are introduced, namely the Data Provider/Resource Module and the
Aggregator Module. The Data Provider/Resource Module will collect the data
from the resources on which it has been deployed or for which it is responsible
and feed it to the Aggregator Module. Upon request of the Reasoning Engine
Module, the Aggregator Module will feed this collected data to the reasoning
process. This way of working allows including sensor devices in the workflow
and thus facilitates the monitoring of the sensor network, by means of sensor
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information generated from the Data Provider/Resource Modules deployed on
the sensor devices.

4.1 The Data Components

Each node that contains an Aggregator Module needs to collect the appropriate
data. To this end, each sensor node regularly gathers system statistics, such
as internal voltage, node ID, total queue occupation, network statistics, such as
number of bytes and packets sent, number of bytes and packets received, number
of packet drops, number of failed transmissions and number of faulty packets
received and measurement data, e.g. external temperature, internal temperature
and humidity.

The information is sent at-runtime and wirelessly over an IEEE 802.15.4 wire-
less interface to the sensor node connected to the Alix board responsible for the
reasoning on the data from that sensor node. This particular node is called the
aggregator. It forwards the incoming data immediately to the back-end database.
Since we want to include information about the networking layer in the reason-
ing, we need to set up a wireless sensor cloud with sufficient network traffic.
Therefore we do not use every local iNode with its WiFi connection to transmit
its information, but use the senor nodes for this matter. However, due to the large
scale of typical sensor networks, measured information cannot be sent directly
to the aggregator node. Instead, sensor nodes use a multi-hop approach whereby
measured information is sent over intermediate nodes to reach the Aggregator
Module. Each Aggregator Module contains a software component responsible for
notifying nearby sensor nodes. Therefore, a software component is installed that
regularly broadcasts “sink” notification messages [15]. Each sensor node that
receives a sink message checks if the hop count is lower than any previously
received sink message. If it is, the notification is further forwarded by the node,
and the address of the neighbour from which the sink message was received is
used as the default next hop address when forwarding measured data. This way,
each sensor node sends its information from neighbour to neighbour until the in-
formation reaches the nearest aggregator node. Thus, to collect the appropriate
data, the following software components are installed on each sensor node:

SensorMeasurement. This component regularly gathers system, network and
measures sensor data from the appropriate data components. All information
is encapsulated in a packet and is sent to the DataDistribution component.

DataDistribution. This component is responsible for selecting the next hop
neighbour to which packets are forwarded. As part of this component, the
sink with lowest distance is selected, and unreliable routes are regularly
purged.

4.2 The Reasoning Components

As indicated earlier in Section 3, every node in the WiLab.t infrastructure, con-
sists out of two devices. One of the devices is a TMoteSky [10] sensor, the other is
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an Alix [11] board. This allows for a hybrid approach concerning the deployment
of software components. More specifically for components having different func-
tionalities, requiring different specifications. The software components on the
sensors producing the data in a non-intrusive manner, were detailed in Subsec-
tion 4.1. However, as detailed in Section 1, an intelligent monitoring framework,
based on distributed formal first-order logic reasoning using ontologies, is pur-
sued. This goal resulted in a number of reasoning components being developed
and deployed in the WiLab.t testbed. The reasoning modules impose more strin-
gent requirements on the hardware running these components. Using the iNodes,
reasoning components can be deployed to process the data in a more intelligent
way. These reasoning modules, using standard reasoning software, such as Pel-
let [17], analyze the data using the ontology model to draw conclusions about
the status of the nodes in the testbed.

4.3 Ontology Used for WiLab.t Monitoring

Starting from the Sensor Node Ontology [16], which describes various states of
a sensor node depending upon states of its constituent modules, additions and
enhancements were modelled to take the specific situation of the WiLab.t into
account. An important addition to the ontology is the location information. In
this way, we can model the physical location of the nodes in the ontology. Ad-
ditionally, a further component breakdown of the sensor nodes was modelled.
To facilitate this, the concepts SensorBoard and SensorPart have been intro-
duced. The general goal of the ontology is to classify the sensor nodes based on
the values of the monitored metrics. Therefore, we used a typical observation
pattern.

The two most important concepts in the ontology in terms of reasoning are
Fault and Solution. A Fault subconcept is defined based on a logical statement

Room ObservationSystem Symptom Fault Solution
has has has defines defines

Fig. 3. Main property chain

Table 1. Additional properties and their characteristics in the WiLab.t Monitoring
Ontology

Object Property Name Characteristics Domain Range Inverse Property

hasObservation System Observation isObservationOf
hasSolution Fault Solution isSolutionForFault
hasSensorPart System System isSensorPartOf
hasSymptom Observation Symptom isSymptomOf
hasNextObservation Functional Observation Observation hasPrevObservation
requiresAction Solution Action isActionFor
hasFault Symptom Fault isFaultOf
hasSystem Inv. Functional Room System isLocatedIn
hasRoom Inv. Functional Floor Room isOn
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mainly combining Symptoms. In turn a Solution is defined mainly using a combi-
nation of Faults. Example definitions of two Fault concepts can be found below.

Detected TMoteSkyFault definition

[hasSensorPart some
(hasObservation some
(hasSymptom some HumidityZeroSymptom)) and

hasSensorPart some
(hasObservation some
(hasSymptom some LightIntensityZeroSymptom)) and

hasSensorPart some
(hasObservation some
(hasSymptom some TemperatureZeroSymptom))] or

[hasObservation some
(hasSymptom some MissingReportsSymptom)]

This definition specifies that a TMoteSky sensor node which has a sensor part
that outputs at the same time zero as value for temperature, humidity and light
intensity or which does not produce anything is to be classified as faulty.

Incipient HVACFault definition

hasSystem some
(hasSensorPart some
(hasObservation some

((hasSymptom some
(TemperatureBelow15Symptom or

TemperatureAbove25Symptom))
and
(hasSymptom some
TemperatureNotZeroSymptom))))

In this definition, a room which has a system - i.e. a TMoteSky - which in its
turn has a sensor part that outputs a non-zero temperature value below 15 ◦C
or above 25 ◦C, probably has a faulty HVAC system.

4.4 The Coordinating Back-End Component

In the context of the WiLab.t infrastructure monitoring application, two typical
queries are used. The first type queries for the inferred Fault individuals, while
the second type triggers the reasoner to infer the possible Solution individuals
for a given nodeID. The information contained in an ontology is modelled in a
triple type format. This means that a subject is linked to an object by means of
a predicate. This mechanism is used by the SPARQL query language to specify
queries. By inserting unbound variables in the triple patterns, the reasoner will
search the model and its data to find the individuals satisfying the triple. For
more information we refer to [14].
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Incipient fault query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX wsn: <http://users.atlantis.ugent.be/svrstich/deus/wsn#>
SELECT ?x0 WHERE {

?x0 rdf:type wsn:IncipientFault .
?x0 rdf:type wsn:System

}

This first query searches for all individuals which belong at the same time to
the IncipientFault and System concept. As described in the previous section, the
IncipientFault concept is modelled by means of a description logic statement.
As such the reasoner will check at-runtime which of the System individuals, i.e.
the sensors, satisfies this logic statement and will only return those sensors that
do match this description.

HVAC query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX wsn: <http://users.atlantis.ugent.be/svrstich/deus/wsn#>
SELECT ?x0 WHERE {

?x0 rdf:type wsn:PossibleHeatingFault .
}

Dually to the previous query, this query triggers the reasoner to search through
the entire set of data to find those objects which satisfy the logic description of
a PossibleHeatingFault. Its definition is presented in Section 4.3.

Solution query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX wsn: <http://users.atlantis.ugent.be/svrstich/deus/wsn#>
SELECT ?x0 ?x1 WHERE {
(1) ?x0 rdf:type wsn:DetectedFault .
(2) ?x0 wsn:hasID \"24\"^^xsd:integer .
(3) ?x0 rdf:type ?x1 .
(4) ?x1 rdfs:subClassOf wsn:Solution
}

The line indicated with (1) in this last query can be replaced with an appropriate
Fault concept from the ontology. The nodeID mentioned as object in pattern (2)
might obviously be replaced with the id of the node concerned in the query.
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Additionally, for that sensor node, the reasoner is asked to infer which other
types can be linked to the individual representing the faulty sensor node. This
is defined by line (3). However, by also including line (4) in the query, we limit
the search for other types, to those types that are modelled in the ontology as a
subclass of Solution. After all, the goal of this query is to find the solution for a
given node with a certain fault.

5 Deployment Overview

This section demonstrates that the architecture defined in the previous sections
can be deployed on the different nodes of heterogeneous networks, such as the
WiLab.t infrastructure, facilitating a distributed monitoring platform which can
be tuned to the needs of each individual deployment. Although only a single
type of sensors is currently deployed on the testbed, future extensions with dif-
ferent types of hardware are planned. After the integration of this new hardware,
the addition of new ontology models and data providers will suffice to include
them in the monitoring workflow. After all, the specific definitions of the con-
cepts against which the observations are checked to realise the correct Fault and
Solution classification, can be changed independently from the end monitoring
application.

An example of this claim is the detection of faulty HVAC (Heating, Ventila-
tion and AirConditioning). In a normal office environment, an upper threshold
of 25 ◦C can already indicate an HVAC problem, while in a lab environment this
threshold could easily be 35 ◦C or 40 ◦C. To support this kind of adaptation, the
ontology T-Box which is deployed on the reasoning agent can be altered accord-
ing to the needs of this particular situation. The other parts of the platform do
not need to know about this, because the communication will only involve the
request for rooms in which the HVAC system might be corrupted. The reasoner
will use the locally deployed definition to check the local data. Figure 4 presents
this deployment in a graphical manner.

The monitoring of the sensor network within the WiLab.t infrastructure has
been defined in an office environment. In this setting, every office has a number
of deployed sensors, working together in a wireless sensor network. Each of the
offices is networked together by means of a light-weight dedicated access point,
establishing a mesh network for communication between the offices. This mesh
network in its turn is supported by a back-end network to facilitate more services,
e.g. an uplink to the internet. Starting from the data generated at the source
of a sensor node, we deployed the Data Provider/Resources Modules on the
TMoteSky sensor nodes in the sensor network. As described, these modules
provide the data to be included in the reasoner for the monitoring process. It
makes this information available to the Aggregator Module, which stores it in a
MySQL database. We envisage deploying such a database either in the backend
network, or ideally on a mesh node. In this situation, the mesh node can handle
locally the data coming from the sensor nodes attached to it. Therefore we
included the Aggregator Module on the mesh node as well. Additionally, the
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Fig. 4. Deployment view of the platform modules on the devices of a DEUS network

Reasoning Engine Module was deployed on the same mesh node. After all, since
there is a mesh node for every office in which a number of sensors have been
deployed, this mesh node is the ideal place to locally process and reason on the
information coming from the locally deployed sensor nodes. As indicated, the
description of the local situation in the ontology T-Box, the model, included
in the reasoning process on this mesh node, can be tuned to the particular
needs. Using D2R [18], an automatic conversion between raw data in the MySQL
database and the ontology A-Box, the data, is supported. An example mapping
for a certain Symptom concept, namely the observation that no information
is being generated by the nodes, can be found below. By using a left-join SQL
statement, even the absence of observations can be represented in specific A-Box
individuals. For a detailed description of the constructs used in this mapping
language, we refer to [18].

map:TMoteNoObservationSymptoms a d2rq:ClassMap;
d2rq:uriPattern "NoObservationSymptoms/@@coordinates.id@@";
d2rq:class vocab:MissingReportsSymptom;
d2rq:classDefinitionLabel "MissingReportsSymptom";
d2rq:condition "coordinates.id NOT IN

(SELECT DISTINCT sensorinfo.moteid FROM sensorinfo)";

All other remaining modules are deployed on a back-end server, which can be
used by monitoring clients to trigger the monitoring process.

The adoption of ontologies has not only been driven by the logical formalisms
defining the constructs in such models, but also by their ability to be used
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for communication. After all, an ontology can easily by serialized in a number
of specific and well-defined languages, such as RDF/XML, n-triple, etc. Their
communication nature has always been considered as one of the main strongholds
of ontologies. Not surprisingly so, given their origin in the Semantic Web. This
means that not only the data is serialized and/or transmitted, but also the
meaning of this data. This turns it into machine-processable information. The
architecture described earlier takes full advantage of this.

All high-level communication is performed using the SPARQL [14] query lan-
guage. As such, only certain parts and certain views of the ontology are trans-
ferred. Additionally, only one interface operation is necessary, no matter what
the content of the ontology T-Boxes is. The argument of this operation is a
SPARQL query, and according to the T-Box of the ontology deployed, other
SPARQL queries can be used. However, by making use of logically defined con-
cepts, even these queries themselves won’t have to change all that drastically.
Of course, if a complete new ontology is used in a given deployment, serving
a completely different use case, this argument does not hold. But for similar
use cases, a specific alteration of the definition of the logically defined concept
should be sufficient to handle the different scenarios. Additionally, by introduc-
ing the Interface Module, even the usage of SPARQL as implementation within
the reasoning platform is transparent to the monitoring client. The interfaces
and protocols used in the low-level part of the platform, namely the sensors, are
specifically implemented to be used on those devices and for the information to
be exchanged.

6 The Front-End Monitoring Application

In addition to the monitoring framework as detailed in the previous sections,
a front-end application to visualise the reasoned and inferred information was
developed as well. The goal of this application is to demonstrate the transparency
of the approach, as well as its ability to be used as monitoring application as such.
The Data Provider/Resource modules are only deployed and actively collecting
information about the environment when no other jobs are scheduled on the
WiLab.t testbed. This ensures that the monitoring framework does not interfere
with the experiments scheduled by other users. A screenshot of this monitoring
application can be seen in Figure 5.

Three queries were predefined in this application, one for Incipient Faults,
Detected Faults and HVAC Faults. The exact implementation of the queries has
been detailed in Section 4.4.

The complete workflow results in a list of nodes with their IDs in the case
of node classification, and a list of room numbers in the case of Heating, Ven-
tilation and AirConditioning monitoring. These logical IDs are captured in a
tree-based view, which the administrative staff can expand to check the results
of the reasoned monitoring process. This process is initiated iteratively by the
monitoring application. This results in continuous monitoring and reasoning on
the information available in the MySQL database. However, by doing this on
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Fig. 5. WiLab.t ontology-based monitoring application front-end

historical data, superseded information is sometimes taken into account even
after the fault has been rectified. This is a result of the design of the database
and the Data Provider/Resource Modules ’ implementation. We plan to enhance
this mechanism into an online deployment in future versions of the monitoring
framework, where the information is to be fetched at-runtime during the reason-
ing process, thus also eliminating the need for maintaining a MySQL database
with all raw data.

7 Performance Evaluation

Having presented the developed architecture and components supporting an
ontology-based monitoring framework using distributed reasoning mechanisms
for the IBBT WiLab.t infrastructure in the previous sections, this section de-
tails the evaluation of the platform. Apart from checking whether the conclusions
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drawn automatically by the distributed reasoning process are really correct, we
evaluated the overall round trip time starting from the triggering of the reasoning
process until the reception of the conclusions.

We constructed a WiLab.t test setup, using 5 offices. Each of the offices has on
average 6 nodes, producing in total between 500 and 700 measurement reports
per office. The scenario measured is as follows:

1. The request is initiated in the back-end, by the monitoring application,
2. The query is analysed by the back-end engine [splitting],
3. The correct iNodes are located by the back-end engine [locating],
4. The reasoning tasks are scheduled on the iNodes,
5. The 5 iNodes collect the local data and convert it into ontology A-Box data

[populating],
6. The 5 iNodes execute the reasoning on the local data and return the results

to the back-end [reasoning],
7. The back-end merges the results and returns it to the monitoring application.

Of the 7 tasks enumerated here, only task 2, 3, 5 and 6 significantly contribute to
the overall round-trip time. The others can be neglected. After all, Task 1 only
triggers the action. Secondly, since there is only a single concurrent reasoning
task being executed, the scheduling has no effect. Task 7 marks the end of the
process, by returning the list of merged results.

The results can be seen in the graph in Figure 6. The reasoning process was
triggered 30 times. The average was recorded in the graph for each of the offices.
A number of important conclusions can be drawn from this graph. First of all, it
is clear that two main contributing phases in the workflow are the “populating”
and “reasoning” tasks. The time the reasoning takes for even a limited number
of sensor nodes per iNode clearly underlines the need for a distributed approach
in constrained environments. Secondly, the influence of the amount of reports
to be included in a single iNode is also of great influence. Office 1 contains the
most sensor nodes, namely 13, while office 2 contains the least nodes, namely 3.
Thirdly, the populating phase of the reasoning process has a significant contri-
bution to the overall processing times. However, by implementing the intended
transition towards an online approach, the need for this population approach can
be avoided. We expect this to result in a lower overall round-trip time. Finally,
the distribution mechanism implemented in this platform penalises the quicker
offices, by not returning the results to the monitoring client until all contribut-
ing reasoning tasks have completed. Therefore, the iNode in the office taking the
most time to complete will define the overall round-trip time. However, because
a post-processing merger phase is included to eliminate potential duplicates, this
would otherwise have to be handled by the invoking client.

On the iNodes, Java 1.6.0 update 13 was used to run an Apache Tomcat 6.0
Webserver. The reasoning and populating modules deployed in this container
were implemented using Pellet 2.0.0rc4 [17] as reasoner and d2rq6 [18] as popu-
lator to convert the raw data from the MySQL database into an ontology A-Box.
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Office 1 Office 2 Office 3 Office 4 Office 5

reasoning 87181,2 10041,07 27419,53 55282,4 47328,27

populating 123099,97 2628,53 34768,4 6897,93 6670,3

locating 443,9 443,9 443,9 443,9 443,9

splitting 6,23 6,23 6,23 6,23 6,23
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Fig. 6. Total round-trip time including a component break-down for the 4 major con-
tributing phases

8 Conclusions and Future Work

In this paper, we have presented how an ontology-based monitoring framework
was developed for IBBT’s WiLab.t infrastructure. The adoption of the ontol-
ogy technology supported by distributed reasoning mechanisms facilitates the
transparent monitoring in a heterogeneous environment, where the rules ac-
cording to which nodes and the environment variables need to classified can be
changed according to the locally deployed hardware, specifications and environ-
ment. We have detailed the implementation of the contributing components on
sensors, iNodes, back-end and front-end. The platform has been evaluated on
the testbed through analysis of the processing times of the different contributing
components. Moreover, the presented platform is currently in daily use for the
monitoring of the WiLab.t testbed. It demonstrates that by introducing intelli-
gent and advanced technologies in a cross-domain manner, great improvements
can be achieved both in extendibility and maintainability. As can be concluded
from the presentation of the monitoring platform in this paper, changes over
time of classification rules are easily implemented through adaptation of the on-
tology deployed on the iNodes. New hardware can also be included with minimal
effort if new ontology models are created modelling the new hardware. The in-
clusion of this new information, or the adaptation of local rules based on the
local environment is achieved transparently from the monitoring application.

We plan to further exploit the developed platform to introduce a permanent
monitoring application, by migrating from an offline database backed deployment
towards an online fully distributed and autonomous platform. This will not only
result in faster response times, but will also avoid the inclusion of potentially
superseded information which might still be present in the database, even after
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a given detected fault has been rectified. Finally, we plan to develop mechanisms
to take changing network topologies and deployments into account in an online
manner and optimise the deployment based on certain networking metrics.
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Abstract. We propose a platform for the rapid prototyping of active
measurement tools to collect network characteristics. The proposed
platform provides its users with basic active measurement primitives
upon which sophisticated active measurement tools can be prototyped
quickly, practically, and efficiently through scripts in the Lua scripting
language. We validate the platform as well as show its flexibility and
accuracy through experiments on a local testbed and also on Planet-lab.

Keywords: Network measurements, Rapid prototyping.

1 Introduction

Network measurements [1,2] aim at characterizing the performance, behavior,
dynamics, and structure of different kinds of networks. From an implementation
viewpoint, the currently available measurement tools (see [3] for a survey) are
typically coded in low-level programming languages (usually C) to avoid the im-
pact of high-level programming language features—e.g. garbage collection and
exception handling mechanisms—on the accuracy of measurement results. As a
consequence, most of such tools present a potentially high development time. Be-
sides, such tools are based on very low-level network APIs (usually BSD socket-
like APIs), which hinders higher levels of code reuse across tool projects—this
is easily observable in the open-source codes of several publicly available mea-
surement tools. Further, the absence of standards in these tools with respect to
the collection and storage of measurement data brings inconveniences to their
integrated use in the existing measurement platforms.

In this paper, we propose a platform for the rapid prototyping of active mea-
surement tools, i.e. tools based on the sending of probes (packets with the single
purpose of performing measurements) between network nodes, thus allowing
the measurement of network properties along the path linking such nodes. Our
proposal, named FLAME (Flexible Lightweight Active Measurement Environ-
ment),1,2 allows the rapid prototyping of active measurement tools even if the
1 The source code is available at http://martin.lncc.br/main-software-flame/
2 Disambiguation: We recently became aware of a set of tools also called FLAME [4]

to facilitate the manipulation of flow traces, a totally different purpose than ours.

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 526–541, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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targeted network metric depends on a cooperative destination node, i.e. a desti-
nation node that hosts (part of) the measurement tool.

The FLAME platform is based on the distribution of measurement agents
among some network nodes. Such agents send and receive probe packets in re-
sponse to commands from a central manager. These agents publish the collected
measurement data in a standardized way on a central repository, simplifying the
management and further analysis of such data.

The FLAME platform offers its users active measurement primitives to be
executed in the agents. Users can prototype active measurement tools upon
such primitives in a rapid, practical, and efficient manner. The central manager
is responsible for deploying such tools and starting their execution in the agents.

Tool prototyping in the FLAME platform is based on the Lua scripting lan-
guage [5]. Lua is adopted in FLAME as an extension language: its interpreter is
embedded as a library into the measurement agents. On the one hand, the Lua
interpreter gives to the scripts running in the agents access to active measure-
ment primitives through a high-level, minimalist API [6]. On the other hand,
the measurement agents and the measurement API are implemented in C, pre-
venting significant overheads in the measurement results due to the execution of
Lua scripts. We validate the platform as well as show its flexibility and accuracy
through experiments on a local testbed and also on the Planet-lab platform.

The remainder of the paper is organized as follows. Section 2 briefly reviews
related work. The FLAME architecture is presented in Section 3. Section 4 de-
scribes the The minimalist, high-level measurement API offered by the FLAME
platform. In Section 5 we give examples of tool prototypes in the FLAME plat-
form and present experimental results conducted using such tools to validate
the platform. Finally, in Section 6 we conclude the paper, also indicating some
possible future work.

2 Related Work

Related work on network measurements generally targets two different kinds
of results: (i) the development or improvement of measurement tools special-
ized in measuring a specific subset of network environment properties—Michaut
and Lepage [3] provide a survey of several existing network measurement tools;
(ii) the deployment of large scale measurement platforms that employ measure-
ment tools (usually developed independently by other projects) to analyze net-
work metrics in a more comprehensive way. Such tools and platforms are de-
scribed in the following subsections.

2.1 Tools for Active Network Measurement

Each active measurement tool typically aims at evaluating network performance
according to a limited set of metrics. The most used metrics and some of the
tools proposed to measure them are pointed out in Table 1, adapted from [3].
This table also indicates which tools depend on the presence of cooperative
destination nodes to work correctly.
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Table 1. Examples of typical active measurement metrics and tools

Tools COP OWD OWV RTT PLR PRO ROT PHC ECP ABW

Iperf [7] � � �
owping [8] � � � �
pchar [9] � �
pathload [10] � �
pathrate [11] � �
ping � �
QoSMet [12] � � � � �
sprobe [13] �
sting [14] � �
traceroute �
traceroute-paris[15] �
Legend:
COP: tools that depend on cooperative destination nodes.

OWD: one-way delay; OWV: OWD variation; RTT: round-trip time;
PLR: packet loss rate; PRO: packet reordering; ROT: route tracing;
PHC: per-hop capactity; ECP: end-to-end link capacity;
ABW: available bandwidth.

An important point to highlight in the active measurement tools such as
those in Table 1 is the low (if none) code reuse, even for those tools devel-
oped in the same research group (e.g. pathrate and pathload) or with very
similar functionalities and purposes (e.g. traceroute and traceroute-paris).
Another key point to remark is that generated results are provided in an ad hoc
format (e.g. consider the extreme case of popular tools as ping and traceroute,
which provide different outputs in different operating systems), making it dif-
ficult to manage this data and eventually analyze measurement results in an
integrated way. As an example, although there exists some proposals to stan-
dardize log formats [16,17], few active measurement tools (e.g. pathrate and
pathload) do use these standards to present the results of their measurements.

2.2 Platforms for Active Network Measurement

NIMI [18] and ETOMIC [19] are large-scale active measurement platforms that
apply restrictive, domain-based trust models among measurement managers and
agents. Both platforms use third-party active measurement tools as plug-ins
in the measurement agents, which hinders code reuse across tools, making it
harder the implementation of innovative measurement techniques. Besides, nei-
ther NIMI nor ETOMIC provides a central result repository, making it more
difficult to analyze measurement results in an integrated way.

DIMES [20] goes in a different direction by employing an approach similar
in concept to projects on voluntary computing (such as SETI@home [21]), ren-
dering a potentially high coverage of the platform. The main goal of DIMES is
to make available a detailed connectivity graph of the Internet. DIMES offers
a XML-based language, called PENny, for the specification of the experiments.
This language is rather limited in its expressiveness, however, only offering prim-
itives for measurement of bidirectional delay and route tracing, which constrains
the flexibility of the DIMES platform.
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ANEMOS [22] and Flexmon [23] focus on the provisioning of central result
repositories. ANEMOS allows the definition of rule-based alarms according to
the measured network performance, whereas Flexmon is able to constrain probes
according to the resources available at the measurement agents. Like NIMI and
ETOMIC, ANEMOS and Flexmon employ third-party active measurement tools.

ATMEN [24] and NetQuest [25] aim at reducing the overhead of active
network measurements. ATMEN avoids wasted measurements by judiciously
reusing measurement results. NetQuest employ inference algorithms that se-
lect data collected in a measurement experiment to maximize the amount of
information gathered about the properties of certain network paths, given the
set of constraints about the experiments (e.g. the maximum allowed amount of
issued probes). Like most of the aforementioned platforms, ATMEN uses third-
party active measurement tools. The way such tools are implemented/used in
NetQuest is not presented in [25].

Scriptroute [26] is the approach we regard as closest to ours. In this platform
active measurement tools are specified in Ruby, a fully object-oriented script-
ing language, whereas measurement agents, which interpret the Ruby scripts,
are implemented in C. Like Flexmon, Scriptroute is able to constrain probes
according to the resources available at the measurement agents. Nevertheless,
the flexibility of Scriptroute is limited by the impossibility of implementing tools
that depend on cooperative destination nodes. Furthermore, Scriptroute does not
have a centralized repository in which the measurement results are stored. Thus,
the gathering and output of results must be explicitly coded in the Ruby scripts
that implement the tools. This approach renders scripts that tangle probing and
data output functionality, hindering higher levels of reuse.

3 FLAME Architecture

The FLAME architecture is presented in Figure 1. The communication between
the components of the architecture—namely the user console, the measurement
manager, and the measurement agents—is performed through the XMPP pro-
tocol [27]. An XMPP service (comprising one or more XMPP servers, either
dedicated or public ones) acts as a message bus among FLAME components.
We describe the role of each FLAME component in the following.

Users issue measurement sessions to the measurement manager using a text-
based console application. The measurement manager is responsible for initi-
ating the issued measurement sessions—called experiments in FLAME—in the
measurement agents and for storing the results obtained in these sessions in a
central repository (a relational database in the current version of platform). The
measurement agents are responsible for executing the experiments, caching the
collected measurement results and sending them to the manager at the end of
these experiments—such delay is to avoid remote repository updates to interfere
with the experiments.

An experiment is specified as a script that describes the prototyped tools to
be adopted in the experiment and the commands that invoke such tools. Such a
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Fig. 1. FLAME architecture

script has access to the basic primitives of the measurement API implemented
by the agent (see Section 4 for further details about such primitives). Both the
script and the corresponding collected measurement results from an experiment
are published in the central repository. This allows for better data provenance,
since the prototyped tools and the commands that invoke them can be later
analyzed (for instance, concerning their correctness and accuracy) based on the
collected results.

It is worth noting that measurements may be performed between sets of mea-
surement agents, or between measurement agents and ordinary hosts (i.e. hosts
that do not have a measurement agent but may reply to probes, for instance
a host answering ICMP requests), as depicted in Figure 1. In the case of mea-
surements between sets of agents, besides two way (TW) measurements such as
those performed between agents and ordinary hosts, it is also possible to have
one-way (OW) measurements.

The use of XMPP presence controls permits the measurement manager to ask
agents to perform an specific experiment in exclusive mode, meaning that the
XMPP service will make such agents temporarily unavailable for other experi-
ments. This functionality allows carrying out experiments that would otherwise
be disturbed by concurrent experiments in the same set of agents.

4 The Minimalist, High-Level Measurement API

In the FLAME platform, experiments are specified in the Lua scripting lan-
guage [5]. We chose Lua to prototype active measurement tools due to the fol-
lowing convenient characteristics it presents:

– Lua has a simple (procedural) syntax and a high abstraction level, thus hav-
ing a great potential to reduce software development time. In the FLAME
platform, the combination of Lua and a central repository allows the devel-
oper of measurement tools to focus more on the probing techniques than on
the particularities of lower-level languages (e.g. memory management) and
data output functionality;
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– Lua presents extensible semantics (e.g. allowing the use of threads in differ-
ent collaboration levels [28]) and a reduced memory footprint,3 thus mak-
ing measurement agents deployable on nodes with diverse levels of resource
availability.

Each measurement agent in the platform hosts an adapted Lua interpreter that
provides a sandboxing environment (like the Scriptroute platform) for the con-
trolled execution of Lua scripts. The agents make the measurement primitives
available to the Lua scripts through an API in C that is exported to the Lua
interpreter with the name lamp (Lua Active Measurements Primitives).

The names of the probing operations offered by the lamp API follow the
send[protocol][type](. . .) structure, where protocol indicates the protocol
used for sending probes (in the current implementation, UDP, TCP, and ICMP
are available), and type indicates if the probes are bidirectional (TW – Two
Way), unidirectional (OW – One Way), or sent in a burst (PT – Packet Train).
The TW operations do not depend on cooperative destination nodes and the
results obtained with these operations are collected in the source of the experi-
ment. In this case, the source node is responsible for sending the results to the
measurement manager. The OW and PT operations depend on cooperative des-
tination nodes. In this case, a destination node is responsible for collecting the
results and sending them to the measurement manager. Such operations, how-
ever, also instruct the destination nodes to send the collected results back to the
source node after the operation execution. This is important when the developer
needs to implement active measurement tools that rely on successive iterations
based on the feedback from the cooperative destination nodes to properly mea-
sure certain network characteristics (as in the case of pathload, for instance).

All probing operations of the lamp API return a Lua table4 containing the
collected results, in case of success. Such probing operations are extensibly
parametrized, but without impacting significantly on the usability gained with a
minimalist API, given that several parameters are optional and, when omitted,
receive default values.

Besides probing operations, the lamp API also offers other operations, such
as sleep(...) (to suspend the execution of a script for a certain amount of
time), and a set of operations for querying the central repository, allowing the
reuse of previously implemented tools—and collected results, like the ATMEN
platform—in the context of other experiments (due to space restrictions we omit-
ted in this paper a detailed explanation of such operations).

3 A comparative benchmark study, available at
http://shootout.alioth.debian.org, points out an average memory consumption
530%, 260%, and 190% larger than Lua for Ruby, Python, and Perl, respectively.

4 Lua offers a single type of data structure, called table, that implements associative
arrangements of the kind {k1 = v1, . . . , kn = vn}, i.e. each value vi stored in the
structure is associated to a key ki. Keys and values can assume any type, even
though numbers and strings are the most common types of keys. Values are indexed
by numeric keys in the form table[key] and by alphanumeric keys in the form
table[‘‘key’’], or simply table.key.
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5 Experimental Validation

To validate the FLAME platform as well as to illustrate its flexibility and ac-
curacy, we conducted a set of measurements on two experimental scenarios: the
Planet-lab platform and a local testbed. We stress that these experiments are
intended to validate the FLAME platform and not to provide a performance
evaluation of FLAME.

The following subsections describe these experimental scenarios and compare
a set of measurements collected in such scenarios with publicly available tools and
equivalent tools prototyped on the FLAME platform. In the case of the publicly
available tools, the measurement results were obtained by post-processing the
textual output of such tools. In the case of our prototyped tools, the measurement
results were obtained by querying the central repository of FLAME directly
and post-processing the returned data. It is important to emphasize here that
this approach to data collection encourages the untangling of probing and data
output functionality, which can be observed from the compactness and neatness
of the prototype sources presented in the following subsections.

5.1 Experimental Scenarios

The Planet-lab platform was used for RTT and route tracing experiments. For
such experiments, we employed six nodes spread throughout the globe, one node
(S1) working as the source and the other five nodes (T1, ..., T5) as targets. Such
nodes are presented in Table 2.

Table 2. Source and target nodes of the Planet-lab experiments

IP address Domain name

Source
S1 200.19.159.34 planetlab1.pop-mg.rnp.br

Targets
T1 130.83.166.198 host1.planetlab.informatik.tu-darmstadt.de

T2 128.112.139.80 alice.cs.princeton.edu

T3 132.65.240.100 planet1.cs.huji.ac.il

T4 130.216.1.22 planetlab-1.cs.auckland.ac.nz

T5 131.112.243.102 node2.planet-lab.titech.ac.jp

Our local testbed was used for one-way delay and link capacity experiments. It
comprises four Linux nodes (Ubuntu distribution) connected in a row topology;
the two nodes at the edges of the row working as the source and destination
nodes and the other two nodes as intermediate routers. For this scenario we
adopted two link configurations. In the first configuration, the three links worked
at 10 Mbps (referred to in this section as the “10-10-10 topology”). In the second
configuration, the link in the middle of the row topology worked at 100 Mbps
(the “10-100-10 topology”).
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5.2 RTT Measurements

For our RTT experiments in Planet-lab, we used the ping tool available in node
S1 and prototyped an equivalent tool (flamePing) using the lamp API, deploying
it in the FLAME measurement agent running on node S1. The code in Listing 1
illustrates our flamePing prototype.

1 function flamePing(params)
2 -- Ping params (and corresponding defaults)
3 local _target = params.target or " 127.0.0.1"
4 local _size = params .size or 56
5 local _interval = params.interval or 250000 -- microsecond resolution
6 local _npackets = params.npackets or 10
7 local _protocol = params.protocol or "icmp"
8 local _timeout = params.timeout or 5000000 -- microsecond resolution
9 local _ttl = params.ttl or 30

10

11 for i = 1,_npackets do
12 local _response
13

14 -- Choose probing protocol (for UDP and TCP primitives ,
15 -- since port is not indicated it is randomly chosen above 1024)
16 if _protocol == "icmp" then
17 _response=lamp.sendICMPTW{ip=_target , size=_size ,
18 timeout =_timeout , ttl=_ttl}
19 elseif _protocol == "udp" then
20 _response=lamp.sendUDPTW{ip=_target , size=_size ,
21 timeout =_timeout , ttl=_ttl}
22 elseif _protocol == "tcp" then
23 _response=lamp.sendTCPTW{ip=_target , size=_size ,
24 timeout =_timeout , ttl=_ttl}
25 else
26 print("INVALID PROTOCOL :", _protocol)
27 return
28 end
29

30 -- Check host/net unreachability
31 if _response and _response.loss == ICMP_HOST_UNREACH then
32 print("DESTINATION UNREACHABLE: ", _target )
33 return
34 end
35

36 -- Wait time between probes
37 if type(_interval) == "number" then
38 lamp.sleep(_interval)
39 elseif type( _interval) == "table" then
40 lamp.sleep(_interval.func(_interval.params))
41 end
42 end --for i

43 end

Listing 1. FLAME ping prototype

It is worth noting in Listing 1 that our flamePing prototype is pretty sim-
ple, yet provides functionality for sending UDP and TCP probes besides ICMP
probes (lines 14-28), and for spacing probes according to arbitrary functions
(lines 36-41). In Table 5.2 we illustrate two different sets of commands that issue
the execution of flamePing on node S1 in Planet-lab, the first one with probes
uniformly spaced (as the original ping tool does) and the second one with probes
exponentially spaced.
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Table 3. Commands to execute flamePing over Planet-lab nodes

Probes uniformly spaced Probes exponentially spaced

local targets = {
"130.83.166.198",
"128.112.139.80",
"132.65.240.100",
"130.216.1.22",
"131.112.243.102"

}

for k,v in ipairs(targets ) do
flamePing{target=v}

end

local function expdist (lambda )
local r = 0
repeat r = math.random () until(r ~= 0)
return math.floor(-math.log(r)/lambda)

end

local targets = ... -- same as left

for k,v in ipairs(targets ) do
flamePing{
target =v,
interval ={ func=expdist , params =1/10000000 }

}
end

Figure 2 illustrates some RTT measurement statistics collected in Planet-lab
with ping and flamePing (both uniform and exponential distributions). Such
statistics comprise, for each target in Table 2, 36 interleaved executions of each
tool spaced by 10 minutes, to minimize the effect of traffic synchronization. For
each tool, one execution sent out 10 probes of 56 bytes for a total of 360 samples
per tool and a total of 18 hours of measurement collections. The error bars in
the figure show for each tool the 05- and 95-percentiles among the 360 samples,
and the data points show the corresponding averages. It is important to note
how similar the ping and flamePing tools characterized the network behavior
with regard to RTTs among the used Planet-lab nodes.
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Fig. 2. RTT measurement statistics in Planet-lab

5.3 Route Tracing

For our route tracing experiments in Planet-lab, we used the traceroute tool
available in node S1 and prototyped an equivalent tool (flameTrace) using the
lamp API, deploying it in the FLAME measurement agent running on node S1.
The code in Listing 2 illustrates our flameTrace prototype.

It is worth noting the similarity between Listing 1 and Listing 2, which be-
comes more apparent as the FLAME design encourages the separation between
packet probing and data output/processing functionality. For triggering route



FLAME: Flexible Lightweight Active Measurement Environment 535

1 function flameTrace(params)
2 local _target = params.target or " 127.0.0.1"
3 local _size = params .size or 60
4 local _interval = params.interval or 250000
5 local _npackets = params.npackets or 3
6 local _protocol = params.protocol or "udp"
7 local _timeout = params.timeout or 5
8 local _maxhops = params.maxhops or 30
9

10 for h = 1, _maxhops do
11 local _response
12

13 for i = 1,_npackets do
14 -- Choose probing protocol (for UDP and TCP primitives ,
15 -- since port is not indicated it is randomly chosen above 1024)
16 if _protocol == "icmp" then
17 _response=lamp.sendICMPTW{ip=_target , size=_size ,
18 timeout =_timeout , ttl=h}
19 elseif _protocol == "udp" then
20 _response=lamp.sendUDPTW{ip=_target , size=_size ,
21 timeout =_timeout , ttl=h}
22 elseif _protocol == "tcp" then
23 _response=lamp.sendTCPTW{ip=_target , size=_size ,
24 timeout =_timeout , ttl=h}
25 else
26 print("INVALID PROTOCOL :", _protocol)
27 return
28 end
29

30 ... -- same as lines 30 -41 in flamePing

31 end --for i
32

33 -- Is current node the target?
34 if (_response.remIP == _target ) then break end
35 end --for h
36 end

Listing 2. FLAME route tracing prototype

tracing experiments in Planet-lab using FLAME, we issued the commands below
on node S1:

local targets = {" 130.83.166.198", "128.112.139.80",
"132.65.240.100", "130.216.1.22", "131.112.243.102"}

for k,v in ipairs(targets ) do flameTrace{target=v} end

Like the RTT experiments, the route tracing experiments were conducted using
the traceroute and flameTrace tools in an interleaved way for a total of 18
hours. Figure 3 shows a graph representation of the paths linking the Planet-
lab nodes used in the experiments, as identified by both the traceroute and
flameTrace tools. The results of both tools were again quite similar, showing no
changes on such routes during the experiments. The only perceived difference was
on the process of route tracing between S1 and T1 nodes. In Figure 3, the dashed
loop arrow on T1 indicates that in most of our experiments the traceroute tool
couldn’t realize it had arrived at the destination node, continuing to increment
the TTL field of probing packets until its maximum value (30 hops). This sit-
uation didn’t happen with the flameTrace tool in any of the experiments. We
attribute this phenomenon to an unexpected situation that traceroute couldn’t
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Fig. 3. Graph representation of traceroute and flameTrace results. The numbered
edges indicate the number of omitted hops between the corresponding nodes.

sort out. With the rapid prototyping facilities offered by FLAME we expect such
kind of situation to be easily identified and corrected by the tool developer.

5.4 One-Way Delay Measurements

Unlike the tools used for the RTT and route tracing experiments, the tools we
used for one-way delay measurements depend on cooperative destination nodes.
To minimize clock synchronization errors, these experiments were conducted in
our local testbed with the source and destination nodes synchronizing on a local
NTP server. For these experiments, we installed the owping tool in the source
and destination nodes and prototyped an equivalent tool (flameOWD) using the
lamp API, deploying it in the FLAME measurement agent running on the source
node (in these experiments we also ran a management agent on the cooperative
destination node). The code in Listing 3 illustrates our flameOWD prototype.

The single command flameOWD{target=‘‘10.0.2.2’’, npackets=200} was
used for issuing the execution of flameOWD on the source node in our testbed.

Table 4 illustrates some one-way delay measurement statistics collected in
our local testbed using the 10-10-10 and 10-100-10 topologies with owping and
flameOWD. Such statistics comprise, for each topology, 200 probes of 56 bytes.
The table shows for each tool and topology the median, 05- and 95-percentiles
among the 200 samples. It is important to note that in both topologies the
flameOWD prototype provided lower one-way delays, but the NTP estimated
synchronization error (the same for both tools) rendered statistically equivalent
results between the two tools.
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1 function flameOWD (params)
2 local _target = params.target or "127.0.0.1"
3 local _size = params.size or 56
4 local _interval = params.interval or 750000
5 local _npackets = params.npackets or 5
6 local _protocol = params.protocol or "udp"
7 local _timeout = params.timeout or 5000000
8 local _port = params.port or nil
9

10 for i = 1,_npackets do
11 local _response
12

13 -- Choose probing protocol (if port is not indicated the destination node
14 -- chooses a port above 1024. In any case , for OW operations ,

15 -- the source and destination nodes agree on the used port
16 -- through XMPP messages)

17 if _protocol == "udp" then
18 _response=lamp.sendUDPOW{ip=_target , size=_size ,
19 timeout =_timeout , port=_port}
20 elseif _protocol == "tcp" then
21 _response=lamp.sendTCPOW{ip=_target , size=_size ,
22 timeout =_timeout , port=_port}
23 else
24 print("INVALID PROTOCOL :", _protocol)
25 return
26 end
27

28 -- Check port unavailability and host/net unreachability

29 if _response then
30 if _response.loss == ICMP_HOST_UNREACH then
31 print("DESTINATION UNREACHABLE: ", _target )
32 return
33 elseif _response.loss == PORT_ALREADY_IN_USE then
34 print("DESTINATION PORT ALREADY IN USE: ", _target , _port)
35 return
36 end
37 end
38

39 ... -- same as lines 36 -41 in flamePing
40 end --for i

41 end

Listing 3. FLAME one-way delay measurement prototype.

Table 4. Measured one-way delay in ms. NTP estimated synch error is ± 0.41 ms

10-10-10 Topology 10-100-10 Topology
P05 Median P95 P05 Median P95

owping 1.28 1.39 1.50 1.10 1.21 1.32
flameOWD 0.87 0.91 0.98 0.46 0.51 0.58

5.5 Link Capacity Estimation

For the link capacity experiments, we employed our local testbed so that we
could have more precise information about the actual link capacities we were
interested in estimating. For these experiments, we installed the pchar tool in
the source node and prototyped an equivalent tool (flameChar) using the lamp
API, deploying it in the FLAME measurement agent running on the source node.
The code in Listing 4 illustrates our flameChar prototype.
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1 function flameChar(params)
2 local _mtu = params.mtu or 1500 -- probe size limit
3 local _increment = params.increment or 32 -- difference between probe sizes
4 local _npackets = math.floor(_mtu/_increment)
5 local _maxhops = params.maxhops or 30 -- maximum number of allowed hops
6 local _repetitions = params .repetitions or 32 -- number of tests per hop
7 local _target = params.target or "127.0.0.1"
8 local _timeout = params.timeout or 3
9 local _interval = param_table.interval or 500000 -- time between probes

10

11 local _sizelist = generateProbeSizeList(_npackets , _increment)
12

13 for h = 1, _maxhops do
14 local _response
15 for t = 1,_repetitions do
16 for i = 1,_npackets do
17 local _response
18

19 -- Choose probing protocol (for UDP and TCP primitives ,
20 -- since port is not indicated it is randomly chosen above 1024)
21 if _protocol == "icmp" then
22 _response = lamp.sendICMPTW{ip=_target , size=_sizelist[i],
23 ttl=h, timeout =_timeout }
24 elseif _protocol == "udp" then
25 _response = lamp.sendUDPTW{ip=_target , size=_sizelist[i],
26 ttl=h, timeout =_timeout }
27 elseif _protocol == "udp" then
28 _response = lamp.sendTCPTW{ip=_target , size=_sizelist[i],
29 ttl=h, timeout =_timeout }
30 else
31 print("INVALID PROTOCOL :", _protocol)
32 return
33 end
34

35 ... -- same as lines 30 -41 in flamePing
36 end --for i
37 end --for t
38

39 -- Is current node the target?
40 if (_response.remIP == _target ) then break end
41 end --for h
42 end
43

44 -- Function to create a shuffled package size list
45 function generateProbeSizeList(npackets , increment)
46 ... -- implementation omitted due to space limitations
47 end

Listing 4. FLAME link capacity estimation prototype.

The single command flameChar{target=‘‘10.0.2.2’’}was used for issuing
the execution of flameChar on the source node in our local testbed.

Figure 4 illustrates some link capacity measurements and related statistics
collected in our local testbed using the 10-10-10 and 10-100-10 topologies with
pchar and flameChar. Such measurements and statistics comprise, for each
topology, a single execution of each tool. For each tool, the execution sent out
32 probes of varying sizes (from 32 to 1472 bytes in increments of 32 bytes) in a
particular topology. The figure shows for each tool and topology the minimum
RTTs per probe size and the “best-fit” lines obtained through the linear least
squares fitting technique. As shown in [9], the slope of such lines is used for
estimating the capacity of each link in both topologies. Figure 4 also shows the
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Fig. 4. Link capacity measurements

capacity estimation per link obtained with both tools (Cpchar and CflameChar).
As can be seen from Figure 4, both tools returned quite similar results.

6 Conclusions

We proposed the FLAME platform for the rapid prototyping of active measure-
ment tools and the execution of experiments using them. Overall, compared with
the main characteristics of previous work, FLAME provides the following con-
tributions: (i) an environment for the rapid prototyping of active measurement
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tools based on a small but comprehensive set of probing primitives, allowing the
implementation of tools that depend or not on cooperative destination nodes;
(ii) a centralized repository for implicitly gathering measurement results in a
common data format, encouraging the untangling of probing and data output
functionality and easing the process of further analysis and comparison among
different result datasets. It is also interesting to highlight the declared future
goal of CAIDA’s newest Ark active measurement infrastructure [29] to provide
a high-level API that eases the challenges of writing measurement tools. Inline
with this trend, we believe our FLAME platform achieves this goal.

As future work, we plan to implement other well-known active measurement
tools to further validate the comprehensiveness of our measurement API. More-
over, we intend to evaluate the performance of the FLAME platform and its
prototypes in face of other platforms such as scriptroute and low-level developed
tools for active measurements. We also intend to port our FLAME platform to
resource-constrained devices such as PDAs and sensors, taking profit from the
low footprint of the Lua interpreter, so that we can collect measurement data
on networks such as cellular, ad-hoc, disruption-tolerant, and sensor networks.
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TopHat: Supporting Experiments through

Measurement Infrastructure Federation
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Abstract. Researchers use the PlanetLab testbed for its ability to host
experimental applications in realistic conditions over the public best-
effort internet. Such applications form overlays whose performance is
affected by the underlying topology and its evolution. While several
topology information services have been proposed for PlanetLab, the
TopHat system that we describe here fills a special niche. It is designed
to support the entire lifecycle of an experiment: from setup, through
run time, to retrospective analysis. TopHat does so in a new way, by
drawing upon excellent, proven third party services, notably the Dimes
and Etomic measurement infrastructures, for specialized measurements.
TopHat has been developed as the active measurement component of
PlanetLab Europe, the flagship testbed of the OneLab experimental fa-
cility. It is part of OneLab’s larger effort to pioneer the federation of
previously independent testbeds and measurement systems in order to
provide a diverse global scale environment for Future Internet research.

1 Introduction

PlanetLab nodes are fully open to the internet, and this allows experimenters to
deploy applications such as novel overlays, peer-to-peer systems, content distri-
bution networks, and the like. The collection of topology information is of par-
ticular interest to experimenters because the testbed consists only of the nodes
at the edges of the network, not the underlying network. The ability to expose
these applications to real-world network conditions is one of the prime motivat-
ing factors that leads experimenters to use PlanetLab, rather than a simulation
or emulation environment. However, it also means that experimenters require
information about the network topology in order to guide their experiments and
make sense of their results.

There are many tools to measure the interesting properties of network paths.
These properties range from the IP topology, which can be obtained thanks
to the popular traceroute tool, to the available bandwidth between two nodes,
for which there exists several possible tools. A review by the MOME project
provides more details on available tools [1].

TopHat proposes an alternative to the deployment and use of such tools inde-
pendently by each user by providing a topology monitoring service for applica-
tions running on the PlanetLab testbed. TopHat’s originality in this regard lies
in its support of the entire lifecycle of an experiment. During the setup phase,

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 542–557, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011



TopHat 543

it assists PlanetLab users in choosing the nodes on which the experiment will
be deployed, allowing them to base decisions on measured characteristics of the
network as seen from each node. At run time, it provides live information to
support adaptive applications and experiment control, providing measurements
via a simple query interface and through the use of callbacks. The measurement
data collected by the system are archived, and are thus available for retrospec-
tive analysis of an experiment, as well as being available for the community at
large. Sec. 3 of this paper gives further insight into how TopHat supports users.

Following this description of the service that TopHat provides, Sec. 4 gives
an overview of the system’s architecture. In particular, it presents the user in-
terfaces, focusing on the web services API.

Another specificity of TopHat is that it draws upon third party services – no-
tably the Dimes and Etomic measurement infrastructures – that have a proven
track record of excellence in providing specialized measurements to the research
community. TopHat tunnels information from these systems to its users trans-
parently. This interconnection is an instance of the larger effort, pioneered by
the OneLab experimental facility [2], to federate previously independent testbeds
and measurement systems in order to provide a diverse global scale environment
for Future Internet research. Sec. 5 presents the details.

TopHat gets its inspiration from a number of proposed and existing systems,
which are described in Sec. 2, the related work section of this paper.

2 Related Work

Network measurement systems draw on two principal sources of information
to learn about the network topology: BGP feeds, which describe how the IP
address space is divided into routable prefixes and which provide coarse-grained
routes, at the autonomous system (AS) level, to reach those prefixes; and active
measurements, starting with the well-known traceroute tool, which learns about
routes at the IP interface level.

Infrastructures making BGP information publicly available include Route-
Views [3], Team Cymru [4], and pWhoIs [5]. The Route Views project, head-
quartered at the University of Oregon, provides much of the data that researchers
use to study BGP routing tables and their dynamics. Route Views servers get
their information by peering directly with BGP routers, typically at large ISPs.
Team Cymru is a not-for-profit network security firm that provides an IP to AS
number mapping service based on information collected from a large number
of BGP feeds (including Route Views). The corporately-run pWhoIs service is
similar to that offered by Team Cymru, with the specificity that it offers geo-
graphical information about ASes and IPs. TopHat currently sources its IP to
AS translations from Team Cymru.

Two notable active measurement infrastructures offered as a public service are
Scriptroute and perfSonar. Scriptroute [6], from the Universities of Maryland
and Washington, consists of a set of ready-to-use tools deployed on PlanetLab
nodes that a user can access through a simple scripting language. It supports
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queries for traceroute information and measurements of delay and available
bandwidth. As Scriptroute is accessible to any internet user, it places an empha-
sis on measurement safety. TopHat support a similar set of measurement types,
but sources them from third party services if those services can offer superior
measurements. Measurement safety in TopHat is achieved with the PlanetLab
model [7] of restricting users to those whose institutions have committed to an
acceptable use policy, and by ensuring traceability of each measurement back
to its originator; in exchange, there are no hard-coded limits on what can be
measured.

perfSonar [8], a product of the national research and education network
(NRen) community, is deployed in the NRen networks and provides uniform
access to measurements to users in multiple administrative entities. It serves
as an example to TopHat of a system that interconnects measurement systems.
Whereas perfSonar offers a uniform set of tools from a set of peer entities,
TopHat federates heterogeneous systems. The focus of perfSonar is on trou-
bleshooting across network boundaries; TopHat’s is on experiment support. In
addition to performing standard active measurements, perfSonar has direct ac-
cess to router information such as queue lengths and packet drop rates. Because
of this unique source of measurements, we consider it a prime candidate for
future TopHat interconnection.

TopHat draws upon the Dimes [9] infrastructure for its large number of mea-
surement vantage points. Dimes consists of thousands of software agents hosted
by volunteers under the coordination of researchers at Tel-Aviv University. There
are also agents on PlanetLab. The Dimes web service interface provides access
to IP level traces and AS information. The Ono project [10] marshals a much
larger number of agents: there have been more than 650,000 downloads of its
plugin for the popular Vuze BitTorrent client. These agents conduct traceroutes
between clients in order to support better peer selection. However, the sensitive
nature of measurements conducted by individuals’ peer-to-peer clients means
that the Ono data would not be freely available to TopHat users.

Whenever possible, TopHat conducts delay and available bandwidth mea-
surements from Etomic boxes. Etomic [11] is an infrastructure consisting of
GPS-synchronized servers equipped with measurement cards that are capable of
measuring delays to a precision of tens of nanoseconds. There are a few dozen
Etomic boxes, many of them collocated with PlanetLab nodes. Since these
boxes must be reserved, another platform has been deployed alongside Etomic
to allow on-demand measurements. This platform is called Sonoma [12], and it
offers medium-precision resolution (tens of microseconds) measurements through
a webservice interface. TopHat interconnects with Sonoma as well. The Ripe
TTM infrastructure [13] also provides GPS-synchronized measurement boxes.
Interconnection with TTM would be of interest to TopHat because there are
a few hundred of these, located primarily with network operators (including
commercial operators), and providing regular measurements in a full mesh be-
tween boxes. As opposed to Etomic, though, TTM does not provide on-demand
measurements or the same degree of precision.
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In designing TopHat, we have been inspired by the Nakao et al. paper [14] that
argues for the deployment of a topology information service within a testbed,
aimed at providing users with a variety of measurements through a common
API. The basic service can then be used to offer higher-level functionalities. One
interest of such a service is that aggregation of requests allows for measurement
reuse, thus reducing the strain on the network. Also, the user can benefit from
best-of-breed tools and measurements, leaving him to focus on developing his
overlay application. iPlane [15] is an infrastructure that implement this sort of
service. Run by researchers at the University of Washington, iPlane provides
overlays with predictions of network path characteristics such as delays, loss
rates, and available bandwidth. The focus is on making predictions concern-
ing paths between endpoints for which direct measurements are not possible or
would be costly to obtain. It follows in the line of other predictive services such as
IDMaps and Vivaldi (see the iPlane paper for further references). iPlane makes
use of its own agents on PlanetLab nodes and within BitTorrent clients, as well as
connecting to public traceroute servers. TopHat’s federation with external mea-
surement infrastructures can be seen as an extension of iPlane’s drawing upon
external traceroute servers. As a service for PlanetLab users, TopHat does not
face the same necessity for measurement prediction as does a universal measure-
ment service such as iPlane; in most cases, there are TopHat dedicated agents
available to directly perform measurements from the PlanetLab nodes. TopHat
could benefit, though, by adding predictions in circumstances where on-demand
measurements are not possible.

TopHat also shares characteristics with Atmen [16]. Atmen reduces measure-
ment overhead through reuse of measurements taken from similar vantage points
or at points in time close to those that have been requested. The system supports
a mechanism to trigger alarms (which in turn can start up active measurements)
when it detects topological changes. TopHat’s callback mechanism operates on
a similar principle. Atmen is not available to the research community at large.

TopHat provides historical measurement data through the Network Measure-
ment Virtual Observatory [17]. The best-used source of historical data comes
from the CAIDA center. CAIDA’s Archipelago, or Ark, measurement infras-
tructure [18] (the successor of the well-known Skitter), consists of a few dozen
monitors worldwide. Ark aims for regular, comprehensive measurements to all
/24 network prefixes, whereas TopHat provides measurements focused on testbed
users’ demands.

3 An Infrastructure in Support of Testbed Applications

This section presents the topology information services that TopHat offers to
support PlanetLab applications, from setup through completion. It also discusses
how usage monitoring in TopHat might help us gain a better understanding of
users’ needs and how this could provide insight into how the platform should
evolve.
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3.1 Supporting Experiments from Setup through Completion

TopHat offers its users four broad services that follow the experiment lifecycle:

Setup. A large part of the interest of deploying an application on PlanetLab is
to expose it to a diversity of network locations and conditions. Examples of char-
acteristics that a researcher might seek include: locations in Europe, Asia, and
North America; nodes that are far from each other in terms of traceroute hops,
AS path, or delay; nodes that are collocated with high-precision measurement
boxes; particularly stable routes between nodes; paths that have load balancing
routers; or a range of available bandwidths. The core PlanetLab services do not
aid researchers in choosing their nodes on such bases, leaving it to a service such
as TopHat.

Live. The underlying topology between PlanetLab nodes, and characteristics
of that topology, will typically evolve during an experiment, due to network
anomalies, such as path failures, the emergence of bottlenecks, and other sources
of network dynamism. These changes are of interest for experiment control: for
instance, a researcher might want to restart an experiment if certain paths have
changed. They are also of interest for the applications themselves. A peer-to-
peer application might adapt its overlay as a function of changing delays and
available bandwidth in the underlay. TopHat offers measurements on demand.
Also, to avoid the need for polling, TopHat offers a callback service. Sec. 3.2
provides more details.

Rewind. The service we brand “rewind” offers a researcher access to measure-
ments related to an experiment once it is finished. He can use these data to
understand application performance. A user will typically repeat the same ex-
periment several times while varying some control parameters. The retrospective
data can help him tease apart the effects that are due to changes in the param-
eters from those that are due to evolutions of the network topology. The data
could also serve as inputs to a simulation, allowing the changes to be replayed
while further parametric variations are explored.

Viz. This service consists of a collection of visualization tools that a researcher
can use to obtain graphical representations of his experimental data.

3.2 User and Application Interfaces

To promote ease of use, TopHat presents the user with a simple measurement
query interface. The user need not concern himself with cumbersome details
if he does not wish to do so. For instance: he can simply ask for an available
bandwidth measurement without specifying which tool TopHat should use; he
can request a one-way delay measurement without himself synchronizing the
measurement agents on two hosts; he does not need to parse the output of
diverse tools, or handle the various error conditions that might arise. TopHat
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provides an opportunity for the user to benefit from best-of-breed tools while
only focusing on the core of his experiment.

The user can specify a class of measurement, such as traceroute, latency,
available bandwidth, or topological distance at the IP or AS level, and TopHat
itself will select the specific tool for that class. For example, when asked for
a traceroute, TopHat would normally select our own team’s Paris Traceroute
tool [19] because of its ability to avoid many of the measurement artifacts that
the standard traceroute tool encounters in the presence of load-balancing routers.
The user does not need to know this, but he can learn it if he so wishes: by
requesting the information, the user can obtain the name and the version of the
tool that TopHat has selected. Furthermore, if the user does wish to request a
particular tool, among the tools that are available, he is free to do so.

In addition to providing direct responses to user requests, TopHat allows re-
quests to be registered for later reply. These can be either requests that require
some time to fulfill, and therefore are more adapted to an asynchronous reply;
requests for periodic updates; or requests for callbacks to be triggered by mea-
surements and other events. These latter two forms of reply allow the user or
his experiment to take actions in response to change. Such actions might in-
clude starting or stopping an experiment, readjusting an overlay topology, or
triggering a set of measurements.

Examples of events that can trigger a callback are: a routing change as mea-
sured by traceroute, a delay increase of more than 20% along a given path, or
the availability of a new available bandwidth measurement from the background
measurement service. The callback information consists of the change that has
occurred, a reference to the callback conditions that the change triggered, and
a timestamp. Channels to inform the user of changes include: the XML-RPC
interface, updates to in the user’s space on the TopHat website, e-mail alerts,
and RSS feeds. A user can browse the event history on the TopHat website.

3.3 Leveraging Historical Data

TopHat regularly conducts its own background measurements, compiling a gen-
eral use archive. It can provide data to those interested in the long term evolution
of network topology, or to those who want to look back to a specific point in
time, for example to see what happened during a network failure or an attack.
These measurements are also available to serve users’ requests.

A user may specify a time frame when requesting a measurement, indicating
the period over which he considers the measurement to be valid. He might be
interested in a very recent measurement (no older than one minute, for instance)
or be more flexible (if, say, a measurement from any time during the past day
would do). If TopHat has an archived measurement that corresponds to the
requested time frame, it can serve the user with that measurement, avoiding the
need to launch additional probe traffic. In cases where measurements require
significant time to carry out, serving the result from the archive provides the
user with a faster response.
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In addition to being able to specify a time frame for measurement validity,
the user can specify a time interval for measurement aggregation. For instance,
a user might be interested in collecting a set of traceroutes between a source
and a destination. If the motivation is to understand the current state of the
network, he might want the past few hours’ traceroutes. On the other hand,
if the motivation is to uncover rarely seen alternate links between routers, he
might want information from several weeks of measurements.

Similarly, a user can request summary information from aggregated data.
Requests might include: an average value, its variance, or the most frequently
seen values. Such information can be used for node selection in the setup phase
of an experiment: is some path characteristic between two nodes, such as delay
or available bandwidth, stable or not? If the experiment is to be a short one,
perhaps only the current state of the network is of interest. If, on the other hand,
a user plans to deploy a long term service then he might wish to select nodes
based upon measurements that indicate historic stability.

3.4 Understanding User Requirements

Although TopHat’s main objective is to provide a service for users and the ap-
plications that they run on PlanetLab, we currently have no direct information
about how people use the testbed. Our understanding comes to us through ex-
periment descriptions in the literature and from what hints we can extract from
traffic that originates from testbed nodes (the proportion of traceroute traffic,
etc.) We therefore instrument TopHat to give us a better picture of users’ mea-
surement needs.

Logging of TopHat usage helps us to determine which features users exploit
regularly and which ones either do not interest them or are too complicated or
inaccessible to be much used. We can shape our future design of the system
accordingly. The logs are also important for us to report to our sponsors, to
indicate the extent to which the system that they paid for is in fact being used,
and to what ends. And the usage logs are of interest to those who study testbed
usage in general. Finally, usage logs help us to monitor the service and debug
any problems, as well as engineer the system over the long term.

Beyond automated usage monitoring, we plan to work closely with application
developers to understand their needs and to integrate the features that they find
most useful.1

4 Description of the TopHat Measurement Infrastructure

4.1 Architecture Overview

Fig. 1 presents a global overview of the TopHat architecture, divided into func-
tional blocks. The black boxes represent tasks run by the system, and the arrows
indicate the flow of data through the system. Users and applications are at the
1 We welcome inquiries.
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Fig. 1. TopHat architecture

top left. Users access TopHat either through the web interface or, via the XML-
RPC API, at the command line. Applications use the XML-RPC API. The
measurement infrastructures that conduct the measurements are at the bottom.
On the bottom left are TopHat’s own measurement agents, which are deployed
within a slice on PlanetLab nodes. This is the TopHat Dedicated Measurement
Infrastructure (TDMI), supplying measurements when no other system can do
so. Other measurement infrastructures are on the bottom right. These are inter-
connected to TopHat via gateways. Mediating between the user and application
requests and the measurement infrastructures is the core system, at center left.
The core system dispatches requests and measurements to the task manager,
top center. Data are stored in the storage subsystem, top right.

Origin of Measurements. The measurements originate either from TDMI
or, via gateways, from the interconnected measurement systems. TopHat’s ded-
icated agents are modular daemons that consist of wrappers around common
measurement tools and basic services, like file upload and packet forging. The
tools are invoked by dynamically loadable modules that perform tasks ranging
from periodically starting a set of measurements to providing an XML-RPC
interface to the agents. TDMI agents incorporate some improved measurement
mechanisms that authors of this paper have helped develop, including Paris
Traceroute [19], which more accurately measures internet paths that contain
load balancing routers, and Doubletree [20], an algorithm to enhance the effi-
ciency of a distributed probing infrastructure.

Gateways are specialized versions of the agents just described. They authenti-
cate themselves to the external measurement infrastructures and ensure the ex-
change of data with TopHat. Gateways translate the requests originating from
TopHat into platform-specific requests and wrap the results in a format that
TopHat can understand, appending metadata to the measurements.
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The Flow of Data through the System. Data files are uploaded to a buffer
in the core system which, upon reception, associates each one with a task for
further processing. The tasks are modular entities that can dynamically be added
to the task manager to add new functionalities. Two classes of task are scheduled
according to two levels of priority, depending on whether they are part of the
live flow of information or whether they can be delayed to some extent. High
priority tasks are those that are mandatory to ensure interactive communication
with the user: measurement requests, updates from an agent that might trigger
a callback, etc. Low priority tasks are generally those regularly created by the
server as part of background activities such as ongoing IP and AS-level mapping,
updates to the dataset that informs the probing strategy, cache purges, etc.

Both the core system and the agents maintain caches adequate to avoid the
transmission and processing of redundant information, and to support high rates
of measurement data transfer. Thus, the task manager only asks the agents for
a new on-demand measurement when it is unable to fulfill the request from its
own cache. Similarly, a traceroute measurement that has not changed since the
previous measurement won’t trigger a new database entry, but simply an update
(first in the cache, then when the information is synchronized to the database).
This extends the notion of measurement reuse by accounting for user needs. A
user can obtain a measurement more quickly if his request specifies a time inter-
val tolerance sufficient to serve the response out of the cache. The mechanism
could be adapted in the future to serve predictions, such as those proposed by
iPlane [15] and Atmen [16]. While the system does not limit measurements to
avoid abuse, as Scriptroute [6] does (in TopHat, this is handled by the acceptable
use policy and the ability to trace measurements back to users), policies are im-
plemented to protect the system itself from being overwhelmed by measurement
demands.

Data Storage The TopHat database records measurements as well as metadata
such as agent system logs. Certain types of measurements, such as traceroutes,
typically don’t change much, if at all, from one measurement to the next. TopHat
reduces the load on its database in such circumstances by avoiding rewrite of
the entire measurement and only writing the differences and new timestamps.
TopHat also employs caches at the agents, for robustness, and along the paths
from agent to database. Caching is important in our architecture as it allows
quick responses to the most frequent requests, the storage of snapshots repre-
senting the state of measurements over a given time interval, and, when a set of
data is going to be subject to calculation, ready access to that set. TopHat also
stores information such as its own system logs, the dataset of IPs it is currently
probing, and policy-related information such as blacklists, rate limits, etc.

Scalability Considerations TopHat uses a centralized server architecture
much like other monitoring systems, such as CoMon [21], that are currently
deployed on PlanetLab. It does so for the same reason: the architecture is sim-
pler and therefore more robust. System logs allow us to uncover bottlenecks, and
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none have been insurmountable so far. We will continue to study the system’s
scalability as it grows. TDMI agents conduct measurements in a full mesh, which
increases server load as the square of the number of agents. As the number of
agents increases, we will look to improved algorithms for avoiding measurement
redundancy, along the lines of Doubletree [20], to improve the system’s scaling
characteristics.

4.2 User Interface and API

TopHat provides two main interfaces: an XML-RPC API that allows an ap-
plication, or a sophisticated experimenter (using a command-line interface) to
interrogate the system, and a web interface that provides greater ergonomy for
many of an experimenter’s tasks. Typically, the web interface is more convenient
during experiment setup for such tasks as node selection, while the API will be
used by the application to perform measurements when it is running, or to react
to changes in the underlying network.

The core API is the set of functions made available to the user, and that allow
him to benefit from the functionalities presented in Sec. 3. The most important
functions are:

Get allows the user to request information and measurements about nodes and
paths in the monitored topology. A Get can be a standard request, an asyn-
chronous request, or a request for periodic updates, as described in Sec. 3.2.
In the latter two cases, the system responds via a callback.

Filter is a convenience function that filters a set of nodes or paths according
to specified criteria. For instance, suppose the experiment requires twenty
nodes that are each at least ten IP hops away from all of the others. The
user can request a long list of nodes via the Get function and then pass that
list to the Filter function along with the conditions on path length and
number of nodes.

SetCallback is used to configure conditions on which the system will react by
triggering a callback function, as described in Sec. 3.2. The API also features
a set of related functions to help the user manage his list of callbacks (list,
deletion, etc.)

An full description of the up-to-date API is available on TopHat’s website.2 This
paper restricts itself to illustrating the Get function.

4.3 Requesting a Measurement

The prototype of the Get function is as follows:

RET = Get(Auth, Method, Timestamp, Input, Output, Callback)

2 http://www.top-hat.info/
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The Parameters of the Request. The first parameter, Auth, is an authen-
tication token similar to the one used to authenticate with PlanetLab [22]. Au-
thentication can be password based or key based. We are currently working on
a common authentication mechanism for all OneLab platforms, and the use of
this parameter will be updated accordingly.

Method describes the type of information or measurement we are request-
ing. A simple request is generic, using a keyword from a high level taxonomy
(e.g., traceroute or nodeinfo). A more sophisticated request asks for a specific
measurement tool.

The Timestamp parameter specifies the time that the request refers to. This
can be a simple textual description (e.g., now, latest, or today), a Unix times-
tamp (to get the closest measurement), or an interval. In the case of an interval,
the user can ask for a variety of information, such as the first or last measurement
in the interval, a list of measurements, or an average value.

Input specifies the object or objects to be measured, such as a path, or a set
of paths, a node, or a set of nodes. The allowed values depend upon Method.
The standard way to specify a node is to give its hostname or its IP address.

Each method returns a set of fields that are particular to that method. For
example, the traceroute method returns the source and destination IP addresses
(src ip and dst ip); a list of entries for each hop, consisting of the hop number
(hops.ttl), the IP address (hops.ip), and the DNS name (hops.hostname) of the
node; as well as additional information such as the presence of load balancing
on the path, a timestamp, the platform the measurement originates from, etc.
The nodeinfo method returns the IP address and hostname of a node (ip and
hostname); the autonomous system that it is part of (asn and as name); the
city in which it is located (city); a precision field indicating the type, if any, of
high-precision measurement equipment at that location (thanks to collocation
with an Etomic node, for example); etc. The user specifies which fields he wants
to receive by providing a set of their names to the Output parameter.

Finally, the Callback parameter is used for asynchronous requests, which typ-
ically take some time to answer, or requests for periodic updates. The Timestamp
specifies the desired frequency update. For the simplest requests, this parameter
will go unused, as in the sample query below.

Sample Query. Fig. 2 illustrates a Python query. The request calls for tracer-
outes from two nodes. One of the nodes belongs to the TDMI platform, the other
to Sonoma.

This sample query returns a list of associative arrays that each describe a
traceroute with the requested fields: source and destination IP, then, for each
hop, the TTL, the IP address, and the corresponding hostname, and finally the
platform that performed the measurement. Additional fields such as tool, version
and timestamp can be added to obtain further information about the measure-
ments; for the first traceroute this would have given for instance: tool=‘Paris
Traceroute’ and version=‘0.92b’.

Note how supplementary information can communicate the provenance of the
measurements, which is an important feature for an interconnected measurement
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Fig. 2. Sample traceroute request dispatched to two platforms

system: a point elaborated upon in Sec. 5. This issue of provenance also arises
when supplying inferred data to the user. For instance, when a set of IP aliases to
a router has been inferred, the user might want a pointer to the technique and/or
data source that was used. (This inferred information is also distinguished from
raw measurements in the database.)

5 Interconnection

The example in the previous section shows how TopHat makes use of its connec-
tions with other platforms to satisfy measurement requests. This section elabo-
rates on the systems with which TopHat is currently connected, Dimes, Etomic,
Sonoma, and Team Cymru, which were briefly described in Sec. 2, explaining
the motivations for this interconnection. It also sets forth the case for a future
connection with perfSonar. The section wraps up by describing ways in which
we can generalize our approach to interconnection.

5.1 Infrastructures Connected to TopHat

Dimes [9] is notable for the large number of vantage points that it offers (1700
measurement agents were active on a recent day), and the fact that many of these
vantage points are on people’s home computers, providing diversity compared
to the Nren environment in which most PlanetLab nodes are located. Dimes
is able to freely share its data with other measurement infrastructures, which
is not the case for other systems of this type, such as Ono [10]. The interest
of having access to measurement agents located outside of the testbed stems
from PlanetLab’s openness to the internet as a whole. Experimental applications
on PlanetLab make use of this openness. For instance, a content distribution
network (CDN) deployed on PlanetLab might be designed to serve content to
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a user via its nearest PlanetLab node, with distance calculated at the AS or
IP level. Outside measurements can help determine these distances. Similarly, a
network coordinate system can benefit from measurements taken from a large
number of vantage points.

The Etomic [11] and Sonoma [12] systems are notable for the higher than
ordinary precision that they bring to measurements. They are GPS-synchronized
dedicated measurement boxes. Etomic boxes, which must be reserved, provide
delay measurements with a precision of tens of nanoseconds. Sonoma boxes
can run measurements concurrently with a precision of tens of microseconds.
A couple of dozen PlanetLab sites currently house both Etomic and Sonoma
boxes, which clearly makes them of interest to TopHat. The precision of these
boxes is useful for calculating one-way delays and available bandwidth, and for
geolocalization.

The Team Cymru IP to AS mapping service [4] is notable for offering infor-
mation drawn from a large number of BGP feeds and making it easily accessible
to be queried over the internet. By connecting with the Team Cymru service,
TopHat avoids the need to receive and process these BGP feeds itself.

We are currently exploring the possibility of interconnecting TopHat with
perfSonar [8], which is notable for offering extensive measurements from priv-
ileged vantage points within the network. perfSonar obtains measurements
directly from routers and from agents located at network points of presence
(Pops). Some of the information that it provides, such as router queue lengths
and packet drop rates, is not normally available to outside researchers and can
at best be inferred. The perfSonar information is of particular interest to re-
searchers on PlanetLab because communication between most PlanetLab nodes
crosses NRen infrastructure that is instrumented by perfSonar.

5.2 Generalizing Our Approach to Interconnection

Our work on TopHat takes place in the context of the larger effort to feder-
ate computer networking testbeds. Initiatives such as FIRE [23] in Europe and
GENI [24] in the United States are pursuing the vision of a worldwide federation
of testbeds that will allow experimentation with new networking technologies at
a global scale. OneLab [2] pioneered this vision, starting its work on federation
in September 2006. An effort to develop measurement infrastructures for these
testbeds has been a part of OneLab since the beginning, and TopHat is one of
the results.

Our approach with TopHat has been to build on the interconnection mech-
anisms that emerge from the work on testbeds, as TopHat exists to be at the
service of these testbeds. We see a first example of this in the TopHat authenti-
cation mechanism. TopHat operates on PlanetLab, which as a result of OneLab
is now a federation of testbeds, PlanetLab Europe having joined the original
PlanetLab in the United States. The same mechanisms that allow users to au-
thenticate themselves to the global PlanetLab system serve to authenticate them
with TopHat.
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We plan to extend this authentication mechanism to encompass the infras-
tructures with which TopHat interconnects. At present, each interconnection
has its own particular authentication mechanism, encapsulated in our gateway
architecture. However, some of these platforms, such as Etomic, are testbeds in
their own right, with users who can log in and run experiments. The potential
exists, with a common authentication mechanism, to allow users of these sys-
tems access to TopHat and the OneLab facility, just as TopHat now has access to
these systems. Rakotoarivelo et al. [25] have underlined how researchers are ever
more inclined to deploy their experiments across different testbeds on different
administrative entities, or to repeat the same experiment on different testbeds.

Other aspects of interconnection can also be standardized. For instance, the
language that a system uses to describe the resources that one system requires
from another. Here too, we can borrow from work currently being done on
testbed interconnection. Various proposals for generic resource specifications
(RSpecs) are currently emerging from PlanetLab [26] and OMF [25], among
others, and efforts are taking place, notably within GENI [27], to harmonize
them.

Another area that can benefit from standardization is the way in which mea-
surements are described. Work in the IP Performance Metrics Working Group
at the IETF has led to an XML specification for traceroute information [28], for
instance.

Finally, we believe it is important to standardize a system for usage accounting
across systems. Since active network measurements are potentially disruptive,
these systems can only function if there is accountability, meaning the ability
to trace a measurement back to the user who requested it. Accounting is also
valuable to system operators, to enable them to better understand who is using
their systems and for what purposes, and plan system development accordingly.

6 Conclusion

This paper has presented TopHat, a topology information service for the Planet-
Lab testbed. TopHat is oriented specifically towards the support of experiments
running on the testbed, from setup through completion. The service provides
data about the underlying network that help a PlanetLab user to choose the
nodes that will be part of his experimental overlay. In so doing, it enables users to
exploit the geographical and topological and diversity that PlanetLab uniquely
offers. The service also assists a running experiment by offering live measure-
ments through a simple query language, and by allowing the user to define
callbacks that will keep him informed of significant changes, such as a change
in the topology, or increased delays along a path. Other aspects of the service
include measurement archiving and data visualization.

TopHat aggregates measurements coming from several infrastructures, includ-
ing Dimes, which has measurement agents at a large number of vantage points,
and Etomic and Sonoma, which offer high precision measurements. The user
benefits transparently from this range of capabilities, accessing them through a
simple common interface with PlanetLab based authentication.
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This interconnection of measurement systems is an instance of the more gen-
eral issue of testbed federation. TopHat provides one model for handling common
authentication of users, description of resources, and the exchange of control
messages.

As new features emerge for TopHat, they are being deployed in PlanetLab
Europe, the European arm of the global PlanetLab testbed, in preparation for
roll-out worldwide. This is part of a larger development effort: PlanetLab Eu-
rope is the flagship testbed of the OneLab experimental facility, and TopHat
is a component in MySlice, a more general experiment management facility for
OneLab.
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Abstract. In this paper, we present an architecture to emulate multi-
hop wireless networks on StarBED, a wired-network testbed at Hokuriku
Research Center of NICT, Japan. The architecture uses a distributed
approach, and it can effectively emulate in real time the properties of
WLAN contention-based media access mechanism.

Keywords: emulation, real-time, testbed, routing, wireless.

1 Introduction

Network emulation is an experimental technique that intends to bridge the gap
between simulation and real-world experiments, and thus, it delivers a signif-
icant impact on the wireless research community. There are two approaches
for emulation, one is the centralized approach, and the other is the distributed
approach.

In the centralized approach, all the nodes connect to a central server and direct
their traffic to the server. Then, the sever forwards the traffic to the destination
according to the parameters which characterize the current state of the emulated
network, i.e. reachability, link quality, collision etc.

Opposed to the centralized approach, in the distributed approach, all the
nodes are mutually connected via wired or wireless media. The nodes them-
selves are responsible for directing and forwarding traffic. Since all the nodes
are mutually connected, network topology is created by using logical connectiv-
ities which are computed from geographical information, radio parameters, and
medium information in a distributed fashion.

Due to the bottleneck that can occur at the central server in the centralized
approach, only distributed emulators are able to support real-time evaluation
of topology-related protocols. In the following sections, we will focus on the
design and implementation of a distributed architecture, named AEROMAN
(Architecture to Evaluate Routing PrOtocols for Multi-hop Ad-hoc Networks)
which allows us to emulate multi-hop wireless networks on a wired network
testbed, StarBED [2].
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2 AEROMAN

2.1 How to Emulate a Wireless Link

In order to emulate wireless links, we use Dummynet [3], a link emulation tool
designed for FreeBSD. It works by intercepting packets on their way in the
protocol stack, and passing them through its pipes, which simulate the effects
of bandwidth limitation, propagation delay, and packet loss. These pipes can be
either at the sending side or the receiving side.

In AEROMAN, pipes for unicast traffic are located at the sending side, while
pipes for broadcast traffic are located at the receiving side. The reason for this is
that dummynet classifies packets based on their IP addresses, and thus, in order
to emulate multi-hop wireless networks, the incoming/outgoing link of a packet
has to be determined from the addresses in its IP header. For unicast traffic, a
sending node can easily find the link it will send a packet on by looking at routing
table for the next-hop node. For broadcast traffic, it is impossible to locate pipes
at sending side since links cannot be identified by using broadcast IP address.
However, at the receiving side, a node can find out the source node of a broadcast
packet by looking at the source IP address, and hence it knows the link through
which the packet has passed. Being aware of the links used to forward packets,
a node can direct a packet to the appropriate pipe configured with parameters
(bandwidth, delay, packet loss rate) equivalent to parameters of the link through
which the packet has traveled (broadcast) or will travel (unicast).

2.2 Design of AEROMAN

AEROMAN uses a two-stage approach to emulate multi-hop wireless networks.
In the first stage, parameters of all wireless links are computed in contention-
free conditions by using deltaQ library of QOMET [1]. This information is dis-
tributed to all the experimental nodes before the experiment. In the second stage,
AEROMAN use the Adaptive Traffic (AT) model to adjust these parameters in
a contention-aware fashion. Figure 1 shows AEROMAN node internals which
includes six modules:

- Pipes Controller : Applying appropriate links parameters, which are generated
by Adaptive Real-time Parameter Generator, to dummynet pipes.
-MulticastingModule:Exchanging traffic informationbetweenexperimental nodes.
- Local Node Real-time Traffic Collector : Collecting traffic information of the
current node.
- Remote Nodes Real-time Traffic Collector : Collecting traffic information of
other experimental nodes.
- Routing Support Module: Identifying the link which will be used to forward a
given IP packet that goes through the current node. Parameters of this link will
be used for configuring the pipe which handles the packet.
- Adaptive Real-time Parameters Generator : Using Adaptive Traffic Model to
adjust contention-free links parameters based on real-time traffic information of
the wireless channel.



Multi-hop Wireless Network Emulation on StarBED 563

Interface driver

L3 and above

Management 
Network

Interface driver

L3 and above

Link emulation
(Dummynet)

Experiment 
Network

Dest Next

… …

D N

… …

Routing Table

Links parameters
computed by QOMET

do_wireconf

S: Source Address

D: Destination Address

M: This node address

N: Next hop Address

Routing 
daemon 
(OLSR)

Src Dest Para
ms

… … …

S D P2

Real-time
traffic

information

Pipes 
controller

Layer-2 Parameters

Contention 
Window

Channel 
utilizations

Link operating 
rates

Routing 
support 
module 
(OLSR)

Local node 
real-time 

traffic  
collector

Remote 
nodes real-
time traffic 
collector

Effective links 
parameters

Multicasting Module

Adaptive 
Real-time 

Parameters  
Generator

………

P2NM

………

P1
DS

ParamsDestSrc

Local node 
traffic info.

Remote nodes 
traffic info.

Topology info.
from other nodes

Fig. 1. AEROMAN Node Internals

2.3 Adaptive Traffic Model

This model is used by the Adaptive Real-time Traffic Generator module to com-
pute link parameters on the fly from both Effective Link Parameters and Real-
time Traffic Information. Firstly, Frame Error Rate (FER) is recomputed based
on current channel utilization. Secondly, both packet delay and bandwidth lim-
itations are adjusted based on the value of FER computed in the previous step.

3 Conclusions

In this paper, we present the design and implementation of AEROMAN as an
architecture for evaluating routing protocols for multi-hop wireless networks.
AEROMAN follows a distributed approach, while still effectively emulating prop-
erties of the wireless environment, such as bandwidth limitation and shared me-
dia. Due to the lack of space, no experiment results are shown in this paper;
however, such results will be displayed in the poster.
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Abstract. This paper describes the LambdaCat experimental infrastructure, 
which provides an open facility to test and validate research, experimental, and 
pre-production equiment and sevices aligned with Future Internet technologies. 
The LambdaCat validation platform is composed by three transparent and 
colourless ROADM-based nodes, which are deployed in the Barcelona 
metropolitan area. The experimental infrastructure is virtualized in order to 
offer logical isolated substrates to enable simultaneous disruptive research 
experiments in productive environments without interfering to parallel research 
users. An IaaS (Infrastructure as a Service) model is adopted to be aligned with 
the user infrastructure needs. The implemented services allow end users to test 
new telecommunications equipment and services. The experimental services are 
accessible at different network layers (L1, L2 & L3) to test new technologies 
and protocols, from core to access networks. 

Keywords: Future Internet Testbed, Optical Open Infraestructure. 

1   Introduction 

Internet traffic is constantly growing and network applications require more 
restrictive connection parameters to transmit properly their data. Thus, to allow an 
optimized way to test new devices and applications aligned with the Future Internet, 
open collaborative environments should be deployed, driving R&D&i to a Public and 
Private Partnerships (PPP) model. 

Moreover, many organizations can not afford the deployment of their own 
testbeds. Therefore, most devices, applications and services are tested in 
environments far of a real production context. These impacts negatively on the 
robustness of novel network devices and sevices. Thus, offering an open testbed to 
the R+D+i sector in Catalonia increases the developments quality, which also 
impacts positively on the emergence of future technologies. 
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In this paper, we present the architecture and topology of LambdaCat 
experimental infrastructure, describing the devices that compose the experimental 
facility. 

Secondly, the different services offered within LambdaCat optical open testbed are 
described. This section contextualizes the experimental services at the different 
network layers. 

Thirdly, three research and innovation projects experiences that have been 
developed using LambdaCat experimental services are listed. 

Finally, the paper describes the main goals and innovation keys of the 
LambdaCat open testbed facility. The section tries to contextualize R+D+i impact 
into public and private organizations, focusing on the benefits of collaborative 
environments. 

2   Architecture and Topology 

The LambdaCat open testbed is composed by three optical reconfigurable 2.5/10G 
ROADM-based nodes, with add and drop capabilities. The three nodes are deployed 
in the Barcelona metropolitan area establishing a multi-wavelength fibre ring. The 
points of presence (PoP) of the optical testbed are strategically placed on industrial 
and academic locations. The main research centres, technical universities and 
industrial clusters in Catalonia are connected to LambdaCat facility to use, test and 
offer their experimental services. Additionally, to demonstrate services and 
applications, the LamdaCat testbed offers a pool of distributed virtual machines. 
Thus, the platform can be configured to perform ad hoc multivendor tests at different 
network layers.  

To complement the experimental connectivity services, LambdaCat facility offers 
monitoring services to analyze the performance of the devices and services under test. 
Moreover, HD media content 10G services are offered, as well as an extension to 
access to a 4k demonstration laboratory to test advanced media services. Finally, 
LambdaCat open testbed has two more interesting research extensions: a FTTH 
industrial extension and a GRID/cloud computing extension. 

2.1   Network Structure  

The network structure is composed by three open optical nodes, which are 
accessible at different OSI layers. It means that the network devices, services and 
protocols can be tested at different layers depending on the user needs and devices 
under test. 

The three ROADMs have 2.5/10G connections on bidirectional fibres to 
implement redundancy and resiliency. The following illustration shows the 
LambadaCat testbed structure. 
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Fig. 1. LambdaCat extensions 

Also, in each Point of Presence, a L2 switch, a L3 switch and a virtual machine 
server is located. These devices allow to the users to test devices, protocols and 
services. 

The LambdaCat open testbed provides extensions to test technologies on more 
heterogeneous environments. These experimental extensions are described below. 

2.2   Network Nodes 

Each LambdaCat Point of Presence is composed by heterogeneous network 
equipment. Each node hosts multiple network equipment, from the optical to the 
service and application layer. 

First, a ROADM is used to offer 2.5 and 10G connectivity at optical layer between 
LambdaCat PoPs. The ROADMs allow to the users to add and drop lambdas at each 
node. Second, each ROADM is connected to a layer 2 with the aim of offering 
different ports to access  and test layer 1 and layer 2 services. Third, layer 2 switches 
are connected to a layer 3 switch to offer IP connectivity to test devices, protocols 
and services. 

Finally, each layer-3 switch is connected to virtual machines servers to offer 
parallel instances to testing applications and services at higher OSI layers. 
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Fig. 2. PoP Topology 

2.3   Network Extensions 

Currently, LambdaCat open testbed has two FTTH extensions. The facility has 
connectivity to a FTHH laboratory placed in the Technical University of Catalonia in 
Castelldefels. This laboratory is aimed to provision experimental FTTH services to 
the university research community to research and develop new technologies and 
protocols. 

Also, the LambdaCat open testbed provides another FTTH extension to test 
industrial and residential solutions in production environments. This FTTH extension 
offers two different platforms to test FTTH active and passive technologies, having 
connected a GPON OLT and an EPON one. 

One of the LambdaCat PoPs is connected to a very high definition demo laboratory 
to offer 4k experimental media transmission services. 

The LambdaCat facility has two international 10G connections, to offer 
international experimental services. These international connections will allow to 
connect the LanmbdaCat facility at other research locations and testbeds. 

3   Experimental Services 

In this section are described the different services offered for the different OSI layers. 
Each PoP has enough empty rack space to host simultaneous testing equipment. All 
the equipment that composes each PoP is virtualized to offer logical instances to the 
users and support parallel disruptive testings and experiments between them. 
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Applying IaaS techniques, the users are allowed to configure themselves their 
dedicated network resources without the intervention of a network manager.  

Also, the LambadaCat experimental facility is connected to MediaCAT platform, 
where multiple media experimental services are offered. Currently, the MediaCAT 
media services are working in production environments, transmitting 2.5G and 10G 
streams with high definition media content between Barcelona and Castelldefels. 

Over the LambdaCat testbed there are also monitoring and performance services to 
allow the users to analyze the behaviour of the technology that they are testing. 

3.1   Layer 1 (L1) Services 

LambdaCat experimental layer 1 services offer connections of 2.5 and 10G with add 
and drop capabilities on each optical reconfigurable ROADM node. The three 
ROADMs nodes are the outcomes from the Spanish R+D+i project DREAMS 
(PROFIT/CIDEM 2007) and an e-Infrastructure Catalan research project PAIS 
(InfoRegió 2009). 

L1 experimental services are capable of establishing lightpaths between two or 
more network edges. This is done by using a network management tool, ARGIA [1]. 
ARGIA applies virtualization techniques to implement intelligency, flexibility and 
dynamic connections to the physical network. To test L1 equipment, the users will 
locate physically their devices on one of the PoP. 

3.2   Layer 2 (L2) Services 

To test L2 devices, the LambdaCat facility offers experimental connectivity services 
and empty port space in each PoP of the metropolitan ring. Thus, the experimental 
services allow to the users to manage their own connection. 

3.3   Layer 3 (L3) Services 

L3 services are characterized by offering IP connectivity streams between two or 
more network destinations. the  LambdaCat experimental facility is capable of 
deliverying an IP network to the final users. This service allows configuring their own 
IP networks to the end users so they can configure their own IP network according to 
their test requirements. 

3.4   Grid and Cloud Computing Services 

The LambdaCat experimental grid computing services are mainly the outcome of 
PHOSPHORUS FP6-Project [2]. 

To offer cloud computing experimental services, the hosted servers on each node 
have eyeOS (Cloud computing operative service) installed and have access to the 
experimental cloud computing services. 

End users can access these services through a remote connection to the  
LambadaCat experimental facility or by connecting or installing directly their 
developments on the experimental infrastructure. 
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3.5   Media Services 

The LambdaCat open testbed is connected to the MediaCAT media platform, where 
users can access experimental media services through a connection to the facility. The 
platform is connected to a 4k visualization room to experiment with very high 
definition 4k media content services. 

4   First Experimental Activities 

LambdaCat open testbed facility has been used to test several R&D&i projects. In this 
section, four interesting research experiences are explained. 

First, LambdaCat L1 connectivity services have been used to develop, deploy and 
debug the ARGIA management network tool. At present, ARGIA is used to manage 
the LambdaCat testbed, virtualizing L1 devices to offer dedicated experimental 
networks to the users. 

The DREAMS project has used LambdaCat to develop and deploy the three 
ROADMs that nowadays compose the LambdaCat testbed. 

Finally, the LamdaCat facility was used to deploy a GPON and an EPON OLT on 
UPC Castelldefels to test FTTH high-quality voice and novel business services. 

5   Conclusions 

LambdaCat experimental facility is aimed to offer an open experimental platform to 
improve the quality of network developments in Catalonia. This open experimental 
environment should promote and enhance public-private partnership of organizaions 
inside and outside Catalonia. 

The LambadaCat experimental facility presents an ideal environment to researh on 
Future Internet technologies, architectures, protocols and services. One of the main 
innovation keys of LambdaCat is the capability of the end users to reconfigure their 
assigned resources according to their testing and research needs. 
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Abstract. In this paper we present RUBIQ, a polymorphic ubiquitous
network testbed. RUBIQ works on StarBED, which is a network testbed
consisting of hundreds of PCs connected to each other. RUBIQ consists
of a set of subcomponents such as RUNE and QOMET that make it
possible to simulate ubiquitous network systems in huge scale that can
hardly ever be experimented in the real world. We illustrate the structure
of the testbed, how it functions, and the results of some of ubiquitous
network system simulations. We show some results demonstrating that
the testbed achieved an accurate simulation of a pedestrian tracking sys-
tem by using appropriate modules, such as a wireless communication
emulator and processor emulator.

Keywords: ubiquitous networks; wireless network; distributed testbed;
supporting software; simulation; emulation.

1 RUBIQ

In this paper we present RUBIQ, a polymorphic ubiquitous network testbed
implemented on StarBED, and a couple of its subcomponents such as RUNE and
QOMET. RUBIQ enables to perform various kinds of simulation environments
with the available simulation modules.

StarBED [1] is a network testbed which consists of over 1,000 PCs connected
to each other. StarBED provides a simulation supporting software, SpringOS,
to implement an easy-to-use simulation environment with which the users can
write simulation scenarios that can be executed automatically.

In order to be able to use StarBED for simulation we developed a set of
subcomponents, called RUBIQ. The major components of RUBIQ are the simu-
lation support software RUNE (Real-time Ubiquitous Network Emulation envi-
ronment) [2] and the wireless network emulator QOMET (Quality Observation
and Mobility Experiment Tools) [3] described in the following part.

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 570–572, 2011.
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Fig. 1. Space and Conduit Fig. 2. RUBIQ based simulation

The simulation-support software RUNE is used to effectively run and manage
the simulation. The basic elements of the logical structure of a RUNE-driven
simulation are the space and conduit shown in Fig. 1. A space is an entity that
behaves as one of the simulated elements. Spaces can simulate: (i) nodes, i.e.,
physical devices, (ii) environments, such as the thermal field; (iii) networks.
Spaces are connected with each other by elements called conduits. Their role is
to create an abstract error-free communication channel between two spaces.

One of the most important elements when using simulation for studying ubiq-
uitous network systems is to be able to recreate with sufficient realism the com-
munication. QOMET emulates several wireless communication technologies such
as WLAN, ZigBee, Active tag by using a scenario-driven architecture. QOMET
calculates a network quality degradation (ΔQ) description from a scenario rep-
resentation. The ΔQ description represents the varying effects of the network.

RUBIQ also provides other supporting software modules belonging to different
layers of emulation, such as processor emulation and middleware emulation. The
major processor and middleware emulation modules provided by RUBIQ can
emulate PIC 16F series processor, OpenRISC OR1200 processor, and ZigBee
protocol stack. The users can choose those modules accordingly and combine
them to implement the simulation they want to carry out as shown in Fig. 2.

2 Simulations Carried Out on RUBIQ

So far we took advantage of RUBIQ to evaluate a number of ubiquitous network
systems such as an in-home sensing system, a motion planning robot system
and an active tag based pedestrian tracking system [4] by leveraging hundreds
of StarBED nodes.

As a representative example, we describe the simulation of the active tag
based pedestrian tracking system shown in Fig 3. In the simulation, we started
by reproducing a real-world 16 pedestrian experiment carried out with the pro-
totype and eventually simulated the system with over one hundred pedestrians.
In order to simulate the system, we utilized QOMET, a PIC 16F processor emu-
lator and the firmware for the real system. The results showed a good agreement
between the real-world experiment and the simulation. Moreover, we obtained
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Fig. 3. Pedestrian tracking system Fig. 4. Firmware issues

a significant achievement by finding some implementation issues. These issues,
the quality of the random number generator and accuracy of the time synchro-
nization protocol shown in Fig. 4, were fixed in the next version.

3 Conclusion

In this paper we presented RUBIQ, a polymorphic ubiquitous network testbed,
and showed some results obtained by executing simulations. RUBIQ allows the
accurate simulations of ubiquitous network systems by using its subcomponents.

So far we simulated a number of ubiquitous network systems with up to a few
hundred entities, and the scale of simulations could be extended up to thousands
by fully using the abilities of StarBED.
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Abstract. IMS has been widely recognized as the control and signaling frame-
work for delivering of the rich communication & multimedia services to broad-
band users. Amongst others, it’s deploying as the service (middleware) platform 
for interactive and personalized IPTV services. The goal of this paper is to pro-
vide a short description and analysis of the (IPTV) use cases that have been se-
lected for design and implementation at Hanoi University of Technology (HUT) 
in scope of its initiatives for NGN researching program. Major use cases, or we 
called intelligent features, are the advanced electronic service guide, video on 
demand (VoD), (IPTV) session continuity, and parental control. Development 
results for each of the use case are depicted. 

Keywords: IMS; IMS IPTV; enhanced EPG; Parental Control; Blending Ser-
vice, Intelligent Features. 

1   Introduction to the IMS Based IPTV Testbed 

In the scope of a joint-research program between Hanoi University of Technology 
and Fraunhofer Institute of FOKUS, we was setting up a next generation Test-bed in 
our lab for purpose of prototyping of new multimedia and rich-feature communica-
tion services using IMS framework. The test-bed consists of all three layers: media 
layer for transportation of media traffic in the modes of unicast, multicast and broad-
cast. The core layer of signaling and session/service control, that uses the FOKUS’ 
open source IMS Core [3][4][5], consisting of CSCF servers and a light user profile 
database (HSS). Our project main focus is on the application layer in which we 
specified and developed prototypes for value added services to IP Telephony and IP 
Television using the open source platform (Sailfin). A Media Server was also devel-
oped at our lab using VLC (VideoLAN) media stack. Besides that we had developed 
a comprehensive framework and prototype of IMS IPTV Client that based on the 
open source IMS Communicator. Finally, several IMS interfaces, namely, Sh, Mw, 
etc are implemented on our own effort. Figure 2 depicts high level view of our Test-
bed setup. 
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Fig. 1. The HUT’s Next Generation Test-bed 

2   IMS IPTV Use Cases 

In our research, we focus on design and implementation of special use cases for IPTV 
services that utilize the strength of IMS framework, like User Interaction, Service 
Authorization and Authentication and Session Blending. In particular, we considered 
and implemented following use cases (we call Intelligent Features): Standard Video 
on Demand, Parental Control, Enhanced EPG and Session Continuity.   

Standard Video on Demand 
We considered a scenario in which an IMS user initiates a call to a specific content (a 
movie, a song or other resources) at the content provider through an IMS domain. The 
request would be routing through different SIP servers (CSCFs) and at S-CSCF a suit-
able Trigger(s) would be invoked to forward the request to IPTV AS, the AS will then 
proxy the request to MRF (Media Server). Media Server, after accepting the request, 
will send back the successful responses (via AS) as well as the RTP streams directly 
to Emulated STB.  

Parental Control 
A special feature, called Parental Control, had been designed and implemented which 
allows the parent to control their child from requesting and viewing classified con-
tents. The control could be provided based on the registered (IMS) identity or the time 
slot of requesting.    

Enhanced EPG 
Personalization is a key feature in the IMS IPTV solution. In this sense, we have 
complemented the user profile with a new XML-formatted [9] service profile for each 
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IMS identity to contain the personalized information. That leads to another intelligent 
feature for IMS-based IPTV, we called Enhanced EPG. With this feature viewer will 
be classified in to different groups (via subscription) with different service levels and 
will receive the different channel list from the portal. The user also will receive the 
different channel list when requests at different time slots. 

Session Continuity 
The issue of session continuity is also studied in our test-bed, in which we investi-
gated a new approach [10] that allows handing over of an on-going IPTV session be-
tween different access heterogeneous environments. We propose a new component in 
the IMS domain, namely an proxy based on mSCTP (mobile Stream Control Trans-
mission Protocol) that acts as an anchor point for soft vertical handover of mobile 
nodes, which have multiple physical interfaces (e.g., WLAN/UMTS). The mSCTP-
based proxy also supports QoS provisioning and adaptation for the mobile nodes 
when moving in a heterogeneous wireless environment. Our simulation results show 
that the signaling cost for handover in our approach can be up to 23 times smaller 
than that in the conventional approach. 

Example Result 

Figure 2 illustrates a personalized user portal that provides a different content meta-
data (channel list) to registered user from different groups.  

 

Fig. 2. Channel List for different User Categories of Enhanced EPG feature 

3   Conclusions and Further Discussions 

This paper presents our investigation, in experimental perspective, of using IMS frame-
work to provide intelligent features for IPTV services. In particular, it focuses on the 
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video on demand, remote parental control, blending services, session handover without 
interruption and other interactive features which some of the use cases were discussed 
and presented here above. It shows how SIP [2][7] signaling and IMS can be used to 
provide the Interactive and Blending features for the entertainment video services.  

The initial results promise the great potential of those IMS-based TV interactive 
and differentiated features, which offer attractive and rich multimedia experiences to 
the end user. We are currently investigating and developing several other intelligent 
features of IMS-based TV, namely, the context-based session continuity that allows to 
seamlessly handover the IPTV sessions across different screens/terminals on different 
access networks. 
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Kay Römer4, and Torsten Teubler3

1 Institute of Telematics, University of Lübeck
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1 Introduction

Based on technologies and algorithms that were developed about 30 years ago,
today’s Internet is approaching the limits of its legacy architecture. This has
spawned a wide range of intensive studies on the future internet, including the
German-Lab (G-Lab) initiative.

One of the promising emerging technologies of more recent years are wire-
less sensor networks (WSNs). The idea is to use sensor-equipped devices such
as cellphones and other embedded systems that sense and interact with their
environment for obtaining valuable information about the real world. Only a
few mature techniques exist to integrate heterogeneous WSNs with the Inter-
net; it is clear that upcoming massive amounts of data widely exceed the ca-
pabilities of classical approaches. The goal of Real-World G-Lab is to overcome
these obstacles by working on the different levels of protocols, services and ap-
plications. We will enable developers to write applications that rely on sensor
data input, without knowledge of the underlying hardware platform and the
network communication algorithms. This implies that sensors are able to par-
ticipate in the future internet as peer hosts. This enables new fields of appli-
cations but likewise opens a set of new challenges in the context of efficient
request processing by WSNs. We will verify our concepts and applications in-
side the controllable environment of the G-LAB research network, by adding
several outdoor WSN deployments to the experimental facility of the G-LAB
project.

In summary, Real-World G-LAB will contribute to the integration of resource-
constrained (wireless) sensor devices into the future internet by investigating
several key challenges, ranging from low-level energy efficiency to improved high-
level application development.
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2 Integration of Testbeds

Real-World G-Lab will deploy three outdoor and one indoor WSN testbed, as
well as one indoor wireless mesh network testbed. To the best of our knowledge,
this will be the first federation of sensor and backbone networks that will be
permanently available to run experiments on all network layers. By integration of
outdoor networks it offers evaluation of realistic applications, e.g. in the fields of
environmental and area monitoring including a small mobile network of wireless
sensor nodes that is available on demand. A major contribution of the Real-
World G-Lab is the extension of the G-Lab experimental facility by a federation
of sensor network testbeds as shown in Figure 1.

Fig. 1. Integrating WSNs into the G-Lab-Infrastructure

The realization benefits from previous experience and re-usage of components
already developed in previous research projects like the WISEBED project that
allows for reservation-based utilization of the infrastructure. By that, research
results can be evaluated in a large scale on a real world deployment in a fast way.
The several testbeds are the base for the experimental real-world evaluation of
the research goals described in the next sections.

3 Protocols, Services, and Applications

Protocols: Integrating resource-constrained sensor networks with the Future
Internet raises a number of fundamental questions that need to be addressed.
One of these deals with the basic communication paradigms, which are cur-
rently not sufficiently interoperable. First steps to let sensor nodes participate
in Internet communication have already been taken by the research community.
Most prominently these are the 6LoWPAN [2] standard and its implementations.
However it does not sufficiently address all issues, and there is still a substantial
amount of groundwork necessary. We are investigating mechanisms to connect a
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sensor network to the Future Internet without compromising some crucial mech-
anisms of the heavily limited nodes, such as keeping energy consumption at the
minimum possible level. This is done by allowing nodes to do duty cycling and
energy-aware communication. Furthermore we extend the schemes to support
dynamic and mobile WSNs. Another approach is the reduction and avoidance of
communication wherever possible. This includes work not limited to the low-level
communication level (e.g., compression techniques), but includes very high-level
algorithmic mechanisms.

Services: Building upon the protocol layer, we will study two key services for a
future Real-World Internet: monitoring and management, as well as service dis-
covery. Although these services have already been investigated in other contexts,
the specific properties of the Real-World Internet need careful reconsideration.

With respect to monitoring and management we envision a service that allows
users to tradeoff the degree of visibility and control of the system state with
resource consumption. In particular, the user will be able to specify a resources
budget in terms of network bandwidth, memory, CPU cycles, and energy such
that our service will offer best possible visibility and control while not exceeding
the given budget.

Integrating embedded sensors into the Internet will allow online and real-time
access to the state of the real world. We envision a discovery service that allows
finding people, places, and objects that exhibit a certain state at a given point in
time, utilizing the information gathered by embedded sensors. We will address
this problem by using prediction models, by exploiting correlations between sen-
sors, and by applying peer-to-peer strategies [1]. These services will be the base
for the application development.

Applications: Real-World G-Lab will contribute to the application de-
velopment by the simplified evaluation on large scaled, permanently available
sensor network. The consortium encourages all other G-Lab partners to con-
tribute their applications or develop further applications. The sensor networks
integrated into the testbed are a piece of a larger federation of extensions which
will be contributed by the new G-Lab projects. The applications as illustrated
in Figure 1 include environmental monitoring, animal observation. The setup
will be extended by audio and video signal processing as well as further event
detection.
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Abstract. In this paper, we introduce a monitoring tool which measures
application-specific parameters. These parameters are used to predict the
QoE and to perform resource management based on QoE thresholds. We
demonstrate the tool for YouTube traffic in an IEEE 802.11 mesh net-
work. Thereby, the QoE is based on the player video buffer size and
the resource management can include rerouting, throttling of best effort
traffic, or a gateway handover.
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1 Introduction

Today’s Internet traffic is transmitted on a best effort basis without supporting
quality of service (QoS). Normally, there are no service guarantees for the pre-
dominant consumer Internet traffic which is composed of applications like P2P
or client-server file sharing, web browsing, or video streaming which make up
for more than 80% of today’s traffic [1]. Technical solutions enforcing quality
guarantees exist, but in general the network does neither know which Internet
applications it is carrying nor which quality requirements have to be met.

The prerequisite for QoS support for Internet applications is hence to de-
tect the flows/packets belonging to the application in the packet stream which
is currently done using deep packet inspection (DPI). However, DPI is rather
challenging as it is not very reliable and does not work if the payload is en-
crypted. In addition, DIP is very resource intensive and hence not suitable for
real-time traffic classification. For guaranteeing application-specific QoS parame-
ters, it is moreover necessary that the network knows about appropriate quality
parameters. Deriving and monitoring the appropriate QoS parameters for an
application on the network layer is also a very complex task. Both the flow clas-
sification problem and the difficulties finding the appropriate QoS parameters
can be overcome by information exchange between the application and the net-
work. An application can announce its presence to the network and provide a
feedback about its current QoS level.
� This work was funded by the Federal Ministry of Education and Research of the
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Even if application demands are known, static resource assignments in
IEEE 802.11 wireless mesh networks (WMNs) can cause problems, as the link ca-
pacity between two nodes typically changes over time. This can be overcome by
using a dynamic resource management. Resource management in WMNs covers
routing including gateway selection, channel and interface allocation in multi-
radio multi-channel mesh networks, prioritization of medium access through con-
tention parameters, and finally traffic shaping. The user’s quality of experience
(QoE) can be used to toggle these different measures [2].

QoE is a measure for the subjective quality that a user experiences. Today,
a large number of QoE models exist, e.g. for VoIP traffic [3,4] or video stream-
ing [5,6] but these models only allow to quantify the user satisfaction after the
application has been carried out. Our goal is however to use QoE as an input for
a network management tool. Therefore, we need to know the user satisfaction
during the execution of the application. To avoid a QoE degradation, a network
management tool has moreover to be notified if a QoE degradation has not yet
happened, but is only about to occur. We therefore propose to install a generic
tool at the client that monitors and predicts the QoE and communicates this
information to the network.

2 Prediction of YouTube QoE

In [7] we introduce a YouTube Monitoring tool (YoMo) which is able to predict
the QoE of a YouTube video and uses this QoE information for radio resource
management. YouTube videos are distributed via TCP streaming which, unlike
UDP streaming approaches, always assures a constant video quality. However,
the QoE of a YouTube user is affected by video stallings. For our proof of concept
we use a very simple QoE metric assuming the QoE of a user is good as long as
the video does not stall and degrades as soon as the video stalls. The length and
the frequency of the stallings are not taken into consideration.

The main issue of this approach is to exactly predict the stalling time of the
video. The YouTube player offers a programming API which is able to monitor
the player state. Monitoring the player state is suitable for detecting a video
stalling, but not for predicting a future stalling. Therefore, we focus on the

β

Fig. 1. YouTube player video buffer



582 M. Hirth et al.

filling of the player’s video buffer β depicted in Fig. 1. This buffer fills with the
beginning of the video download. As soon as a certain threshold γ is reached, the
playback begins. β depends on the download rate and the video rate. As long
as the download rate is larger or equal to the video rate, β rises respectively
remains constant. If the download rate is smaller than the video rate, β shrinks
and the video stalls as soon as β=0.

YoMo is able to calculate β by monitoring the client’s network traffic and by
using information gained from the YouTube player. Fig. 2 shows YoMo’s user
interface. The upper display shows the current value of β, the display in the
middle the progress of β over time, and the bar at the bottom the download
progress of the whole file. β is always displayed in seconds and the displays
are divided into three areas colored in green, yellow and red. As long as β is

Fig. 2. YoMo GUI

within the green range, there is no need to change
the resource allocation of the flow. The yellow range
indicates that the video might stall in the near fu-
ture if no actions are taken. As soon as β drops below
5 s, which means only 5 s of video time remain in the
buffer, the video is likely to stall if the resource al-
location is not changed. A stalling would result in a
degradation of the users QoE. With this knowledge of
β, YoMo can not only monitor the current QoE of the
user, but it can also predict when the video will stall
if the current network state is not changing. This en-
ables us to adapt the available resources in the mesh
network to avoid stalling. Theses adaptations might
include rerouting, throttling of best effort traffic, or
selecting a new mesh gateway to forward the traffic to
the Internet.

YoMo is a proof of concept which can predict the
QoE of a YouTube user and we showed that QoE pre-
diction can be used for radio resource management.
Although YoMo is a rather simple QoE prediction
tool, the idea can be generalized. QoE prediction can

be natively implemented into QoE sensitive applications like streaming players,
VoIP, or IPTV software.
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Abstract. In the Future Internet, a multitude of networks will coex-
ist and complement each other. These networks allow specialization but
require isolation of functionalities in order to provide dependable and
predictable networks. This allows different networks to run in parallel
but isolated from each other. Additionally, network resource scalability
is supported to reduce the time and overhead required to introduce new
services. The objective of the COMCON (COntrol and Management of
COexisting Networks) project is to design novel control and manage-
ment mechanisms that support the coexistence of networks in a future
networking scenario and to illustrate the economic advantages. In this
contribution we present three use cases defined in COMCON, which serve
as a guideline for our virtual network architecture.

Keywords: Future Internet, Use Case, Virtual Network.

1 Introduction

In the Future Internet, a multitude of networks will coexist and complement
each other. These coexisting networks allow specialization but require isolation of
functionalities in order (a) to provide dependable and predictable networks (e.g.,
a banking network), (b) to allow different network technologies to run in parallel,
but isolated from each other (e.g., coexistence of 3G and different beyond 3G
mobile networks on the same physical infrastructure), and (c) to support network
resource scalability to reduce the time and overhead required to introduce new
services (e.g., to support the seamless transition from a limited liability beta
service to a fully operational resilient high-demand service). Each network should
be able to run its own specialized protocols that may fundamentally differ from
� This work was funded by the Federal Ministry of Education and Research of the
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today’s Internet Protocol (IP) stack. Network virtualization is considered to be
a key technology to realize coexisting networks.

The objective of the COMCON project (COntrol and Management of COex-
isting Networks) is to design novel control and management mechanisms that
support the coexistence of networks in a future networking scenario and to il-
lustrate the economic advantages. Virtualization technology is a key component
that not only acts as an abstraction layer between services and infrastructure to
facilitate innovation, but also is an integral part of the overall design to support
the evolution and coexistence of different network architectures. Towards that
goal, interfaces between functional roles in coexisting networks, realized by net-
work virtualization, are specified. A provider- and operator-grade management
and control function of coexisting virtual networks is built. It comprises of iso-
lation, dynamic reassignment of resources, and efficient and effective monitoring
of virtual networks. The requirements for the network reference architecture in
the COMCON project is derived from a set of unique use cases. These use cases
help to design, evaluate and verify the reference architecture during the design
process in an iterative way.

2 Use Cases to Evaluate the Reference Architecture

Among others, we have defined the following use cases: Service Component Mo-
bility, Service Broker, and Beta Slice.

The Service Component Mobility use case considers dynamic migration of ser-
vice components in a virtual network. Moving or reproducing virtualized compo-
nents geographically closer to the user enables two kinds of improvement. On the
one hand, the relocation of resources might improve the delay, jitter, and other
quality of service parameters. The QoE of the user increases accordingly. On the
other hand, the relocation can optimize the utilization of network components. If
the network is monitored and it is reported that the number of customers using
the service from a distant location exceed a certain threshold, the relocation may
free capacity on long distant links. This relocation may make sense also from a
economic perspective.

The Service Broker is realized as a network component, which knows about
the user’s needs and selects and bundles services from different providers. Thus,
it is the ‘single face‘ of the virtualized networks to the customer and chooses the
virtual network costs according to the user’s needs in terms of costs and network
quality. In this use case we consider a scenario, where the network virtualization
is extended to the end-customer. Different virtual network operators (VNOs)
compete with their services and the end-customer is free to select a different VNO
for each network service he wants to use. For example he might want to watch
IPTV using a premium video transfer service provided by one specific VNO. His
VoIP and gaming services are delivered by another VNO, which has specialized
on low-delay-connections with small bandwidth requirements. However, the peer-
to-peer traffic is handled by a VNO that provides only best-effort data transfers
with 90% availability, but charges on a cheap flat rate basis.
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The Beta Slice enables the creation and testing of new services without the
additional cost of setting up a specialized test bed. Often the evaluation of
new services in a specialized test bed environment is too expensive. Hence, the
new service is never implemented. The Beta Slice is a special purpose virtual
network to solve this problem. A new service is launched within a small dedicated
virtual network, which restricts the access to a small group of initial users. After
the service has been tested successfully, the virtual network can be extended
progressively to a full operational network. This way, roll out costs are decreased
and expenditures for test bed evaluation are saved. Another aspect is that the
time-to-market of the new service may be significantly decreased.
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Fig. 1. Clustering of Use Cases

Figure 1 depicts how the use cases differ according to service mobility and
network dynamics. The Beta Slice is a good example for a use case, which changes
the network size rapidly but does not vary in terms of the service delivery. In
contrast, the Service Component Mobility use case is very dynamic in terms of
service delivery. The numbers of users is expected to vary over time, but the
mean value is considered to be only changing slightly. The Service Broker use
case is somewhere in-between. The number of networks attached to the user as
well as the the service delivery will change from time to time but not completely.

3 Conclusion and Outlook

Based on these and other defined use cases, the COMCON project will design
novel control and management mechanisms for coexisting virtualized networks.
We show initial project results derived from the evaluation of the use cases.
Moreover, potential business impact will be illustrated.
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Abstract. Our current Future Internet research in the G-Lab project [1]
comprises clean slate network architectures and services. In this vast
topic, we focus on two different aspects: (1) Composition as well as
adaptation of application and network tailored protocols and (2) novel
addressing and routing schemes based on locator/identifier-split. In the
following, we describe these aspects including their benefit and usage
of the G-Lab testbed. Then we detail our ongoing cooperation and the
development of a joint prototype.

1 Composition and Adaptation

In our composition approach, we envision the following development cycle for
application and network optimized communication protocols in future networks:
First, new protocols are composed by (re-) using units called Building Blocks in a
design tool. Second, the newly created protocols—called Netlets—are evaluated
in the G-Lab testbed. Finally after successful evaluation, the newly implemented
Netlets can be deployed easily in real networks. The testbed with its real hard-
ware and operating system APIs enables us to use the same Netlet execution
framework for the evaluation and the deployment in real networks.

As Netlet framework we use the Node Architecture [2] outlined in Figure 1
(left): A requirements-based application interface allows exchanging Netlets with-
out modifying applications since protocol selection and name to address resolu-
tion is completely handled by the Netlet framework. A selection algorithm within
the Netlet Selection component chooses a suitable Netlet based on the require-
ments given by the application. A generic Naming and Addressing component
delegates name to address resolution to a component responsible for the cur-
rent network. This could be, for instance, the mapping service described in the
following section. The streams of the respective Netlets are (de-)multiplexed
by the Netlet Multiplexer. The Management and Adaptation Component con-
stantly monitors the conditions of the Netlets, the network, and the applications.
If changes are detected, it tunes configuration parameters to adapt Netlets as
good as possible to the new conditions. As an abstraction for network connec-
tivity the Network Access (NA) is used. Although it can be compared to today’s
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Fig. 1. Separated experiments and their interaction (left: Netlet framework, right:
Locator/Identifier-Split Mapping Service)

network interface, it is a more flexible abstraction of any type of network (e. g.,
physical as well as virtual networks). Especially in virtual networks, we expect
more detailed information about the current network condition due to a more
sophisticated virtual network management infrastructure.

The combination of the G-Lab testbed and our Netlet framework provides
us with an appropriate test environment for our experiments. In a first stage,
we want to experiment with various Netlets including transport, routing, and
management/monitoring protocols. Thus, we expect to gain better insights on
the interaction of Netlets, their possible deployment strategies, signaling mecha-
nisms, and monitoring concepts. In a second stage, we plan to emulate different
dynamic network properties (e.g., packet loss, reordering, latency, and data rates)
in the G-Lab testbed. Then we will evaluate Netlet adaptation concepts which
aim to compensate such network properties and optimize communication.

2 Locator/Identifier-Split

By using the idea of the locator/identifier-split (loc/id-split) for a next generation
Internet addressing scheme, we can overcome several problems of today’s IP
based architecture. The two semantic meanings of today’s IP address—who do
we want to contact and where can we find him?—are split into two different
addresses, the identifier and the locator. The loc/id-split, however, requires a
system which is able to map these two addresses before any connection can be
established. The so called mapping service [3] depicted in Figure 1 (right) can be
queried to retrieve the current valid locator for an identifier in order to contact
the corresponding node. The mapping service needs to store the identifier/locator
tuple for any assigned identifier and has to cope with the burden of frequent
locator updates as mobile nodes roam and change their point of attachment
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towards the network. Because of the expected high load a centralized approach
for the mapping system is not feasible. We therefore suggest the usage of a
decentralized system like DHTs. Instead of one large decentralized database, the
mapping system is split up in different regions. Each region stores the loc/id-
mapping of nodes registered in this region. A region for example is a country or
a continent. If the mapping region for a specific identifier is not known, the so
called global authority is queried, which maps identifiers to the corresponding
regions. The global authority also serves as a single point of trust for a PKI-
based security infrastructure. In order to avoid long lookup times in the DHT
we use a protocol which resolves a query in only one hop.

To validate our approach, we implemented a prototype of the mapping service
and deployed it to the G-Lab experimental facility. As the mapping is based on
structured peer-to-peer principles, many nodes are required to instantiate a solid
mapping infrastructure. Additionally, measurements only become significant if
performed on a large scale.

3 Conclusion and Future Work

The G-Lab experimental platform enables us to connect our prototypes of the
two independent research aspects mentioned above. Unlike with two experiments
running within separate simulation frameworks, the two prototypes are able to
communicate with each other. Therefore, they can utilize the functionality pro-
vided by the respective counterpart. In our current setup, the Netlet framework is
accessing the information provided by the mapping service to address end-nodes
and services by identifiers (cf. Figure 1). In that way, it doesn’t have to deal with
mobility issues—addressing wise—and end-nodes are able to roam freely. On the
other hand, we have the possibility to construct a hybrid mapping service that
utilizes peers implemented as Netlets. This is a next step towards a migration
of the mapping service to a Netlet based solution. All this wouldn’t be pos-
sible with separated simulations. The G-Lab experimental platform, therefore,
plays a major role in validating theoretical results of the proposals, enables us
to gain real-world measurements from our prototypes, and supports our ongoing
cooperation.
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Abstract. This paper introduces the China National testbed and experimental 
environment and its characteristics. The paper especially presents reconfigur-
able, service and NGB testbed aspect of their function and value for research 
and demonstration of China next generation network and service. Furthermore 
it summarizes research and experimental achievements and resources available 
for experimentation and formulates suggestions for the future network construc-
tion and international cooperation. 
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1   Introduction 

Next generation network and Service National Testbed are funded by Ministry of 
Science and Technology of the People’s Republic of China (MOST) and implemented 
by National Engineering Research Center for Broadband Networks and Applications 
of China. The objective of this project is to provide innovative technologies and a 
demonstration environment of new services for National High Technology Research 
and Development Program of China (863 program) and National Key Special Funds. 

China national testbed supports network institutional reformation, tests new net-
working technologies verifies new network equipments and demonstrates emerging 
services. Through the above approaches, it provides indoor and outdoor experimental 
environments, experimental networks in designated areas and a basic environment for 
large scale experimental demonstration networks. It is able to meet the requirements 
of experiments and tests of equipments for various types of networks and nodes on 
different developing stages. 

2   Architecture of National Testbed Network 

Next generation Network and Service National Testbed of China are classified into 
three catalogues, namely reconfigurable testbed, service testbed and NGB testbed, 
according to their functions.  China national testbed covers Yangtze River Delta re-
gion, Pearl River Delta region, across Shanghai, Zhejiang province, Jiangsu province, 
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Anhui province, Guangdong province and Hainan province. The total length of the 
backbone network is more than 4000 km. It serves for more than 1 million users, 
including residents, enterprises, governments, schools and other subscriber groups. It 
also has international portals.  

The overall architecture of next generation network and service national testbed of 
China is shown in Figure 1. 

 

Fig. 1. The overall architecture of next generation network and service national testbed 

(1) Reconfigurable Testbed 
863 program teams in China have put much effort into exploring the solutions for 
these problems by constructing reconfigurable testbed, proposing service-oriented 
technical frameworks, and developing and experimenting reconfigurable equipments. 

The basic idea of the technical framework of a service-oriented network is ad-
dressed in the following. First of all, network service consists of resource sharing 
layer, reconfigurable edge layer and logical carrier layer. Secondly, resource sharing 
layer can provide reconfigurable network services. Logical carrier layer aims to offer 
bearer services generated from the logical carrier network, according to the individual 
requirement of different classes of services. While reconfigurable edge layer makes 
use of the reconfigurable network services provided by the resource sharing layer, 
which will facilitate the construction of the logical carrier network in the logical car-
rier layer [1]. 

The basis of open-reconfigurable routing and switching platform is component-
based process technique [2]. There are three aspects of its characters. First of all, a 
component is the basic process module. The platform provides reconfigurable running 
support environment for various module, while module provides reconfigurable envi-
ronment to various components. Secondly, platform, module and component all com-
ply with a serial of common standardized specifications. The standardized module 
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provided by any third party are able to participate and implement a given task on the 
same platform and the standardized components provided by any third party are able 
to participate and implement a particular function on the same platform. Last but not 
least, the platform level and module level both have the ability to upgrade and recon-
figure functions, distribute codes and configure management layer. The component 
has good maintainability (e.g, install, uninstall, upgrade and update) [3].  

The reconfigurable testbed consists of five reconfigurable routers which are con-
nected by optical mesh links which have constructed in Shanghai. Large scale ex-
periment is carried out on it.  

(2) Service Testbed 
The main function of the service testbed is to carry out new services and set an exam-
ple. It can implement functions such as replay, VOD, record, search and recommen-
dation etc. The development of the service platform will facilitate new services like 
interactive program and value-added services. Currently, 3D technique is employed in 
live broadcasting on this testbed at Shanghai Expo 2010 [4]. 

One of the challenges with the service testbed is to setup an effective rule for ser-
vice evaluation in the experiments which can be achieved by embedding evaluation 
plug-in at the terminals, compiling statistics of Business Operations Support System 
(BOSS) service behavior and service income and behavior perception of the network 
devices.  

(3) NGB Testbed 
NGB is based on the achievements of China Multimedia Mobile Broadcasting 
(CMMB) and digital cable television. It uses key technologies in “High performance 
broadband information network -3TNet” to construct the next generation broadcast-
ing (NGB) network which is featured with “Triple-play”, wired or wireless and con-
trollable. Compared with traditional Internet, NGB has more advantages such as safe, 
controllable and reliable. As infomationization promotes industrialization, the public 
service will be safer and securer in NGB. 

The goals of NGB construction are: Transmission bandwidth of 1Gbps� access 
bandwidth of 40Mbps. The digital interactive information consumption on broadband 
network will become as popular as other utilities services.  

3   Conclusion 

This paper presents the overall design and network architecture of the ongoing next 
generation network and service national testbed in China. We illustrate respectively 
the functions and characters of three types of testbeds, namely reconfigurable test-
bed, service testbed and NGB testbed. The development and the demonstration of the 
testbeds are innovative for network system reformation and the planning of next 
generation network testbed. It will provide a good platform for testing and verifying 
various techniques and devices. It is the basis in designing and verifying for future 
networks in China. We welcome oversea visitors and look forward to international 
collaborations. 
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Abstract. The Internet provides a global communication basis for businesses 
and communities. But in today’s Internet new demands collide with old design 
principles, resulting in a complex agglomerate of protocols and patches. These 
makeshift solutions are hard to manage, protect, and extend. The G-Lab DEEP 
project aims at these challenges with an innovative composition approach with 
a special emphasis on security. One goal is the dynamic composition of 
functions from network and service layer based on the requirements of 
applications. The composition is done by a mediation process that selects 
suitable function modules and can negotiate whether functions should be 
positioned on network or service layer. In G-Lab DEEP a prototype for such 
architecture will be developed.  

Keywords: Security, Functional Composition, Cross-Layer, Future Internet, 
Service Composition. 

1   G-Lab Deep Project Description 

In the current IP network design, applications and networks are inherently 
independent. Based on the separation of layers in the current network architecture 
applications are not able to instruct the network how to handle the applications’ traffic 
(e.g. cannot request QoS or custom routing). The network only offers best-effort 
packet transport to the overlying applications. Additionally there is no standard way 
to tell applications the state of the network, so that applications could react and read 
the network status. Therefore one goal of a future Internet infrastructure is to support 
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specific demands of applications plus the ability to inform them about the network 
status. The current paradigm of a layered model for networking is already partially 
broken up by some cross-layer techniques and a kludge of ad hoc solutions.  

Besides incremental solutions for a future Internet new networking paradigms have 
been considered that follow a "clean slate" approach, i.e. disruptive technologies that 
develop the future Internet from scratch. One of these approaches is functional 
composition, which decomposes the network stack in functional building blocks and 
reorganizes the functionalities in a compositional framework. Functional composition 
focuses on the flexibility of the network and therefore targets two improvements to 
the current Internet  

1) Ease of management and integration of new functionality 
2) Application specific network composition and adaptation based on 

application requirements instead of using "one-size-fits-all" TCP/IP best 
effort service 

The G-Lab DEEP project takes on the challenges of the current architecture with a 
modularized functional composition approach that 1) passes application specific 
requirements to the network layer and 2) uses a cross layer composition technique to 
allow composition of independent service and network functional blocks in one 
integrated framework based on the requirements and the network status.  A modular 
solution with loose coupling is desirable to (a) achieve a clean separation of the 
needed functional blocks without strong entanglement of message passing 
functionalities, and (b) allow loose binding of functional blocks which are needed for 
a specific service or application request. Further this breaking down into atomic 
functional blocks allows for the most flexible combination of functions. This is 
desirable as each combination of services on the application level may require a 
different combination of network modules to support it. 

In the application layer as well as on the network layer the same derived questions 
and problems arise for the composition of functions, for example the semantics, 
description, the management, discovering and the construction of the optimal function 
chain for the given conditions. 

This concept can be visualized well using the example of voice communication in 
the Internet. The role of voice communication in the future Internet will grow, 
especially with mobile voice applications, while in parallel new functions are 
developed and new application requirements, many of them security-related, are 
evolving. 

Consider for example the situation of an emergency call via a mobile voice 
terminal.  Based on the specific user intent to make an emergency call a workflow of 
services within the service and network layer must be triggered which together form 
the emergency call. This workflow may invoke auxiliary services like “get location”, 
“make a call” and “reserve line” to support the nature of the emergency call. Maybe 
even a voice recording should be added automatically. Such auxiliary or partial 
services can be provided by service-enablers within the provider network.  

While the emergency call is established functional blocks are invoked, but these 
must also react on requirements specific to this invocation (e.g. prioritization). 
Therefore the services as well as the network connecting them must treat the call 
accordingly. Within next generation networks (NGN) such requirements can be 
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passed along as policies. On the network layer we want to supply such features by 
functional composition of network blocks. 

To secure a reliable provisioning of all of these network and service components, a 
management solution spanning those layers is needed, which must also include 
service monitoring as an integral part. This requires having the monitoring itself 
available on the service and on the network layer, with configuration and data export 
using standardized interfaces. The overall solution shall also work in an inter-domain 
environment. Monitoring can then be effectively used to detect anomalies and to 
trigger corresponding actions based on policies. 

Through the introduction of a cross-layer monitoring system the network status is 
continuously monitored and made available to other network and application services. 
Based on this cross-layer monitoring service the composition engine becomes 
situation aware and can automatically compose services based on the network status. 
In the current IP world network attacks have become a tremendous threat. Besides 
threats to network elements and end-hosts (e.g. through virus and worms) there also 
emerged new threats with the development of new applications and services. Voice 
over IP has been exploited by adversaries for anonymous mass voice calls for 
commercial purposes (SPIT) and for passing the bill to other users or companies (toll 
fraud). Therefore the cross-layer composition and monitoring system needs to 
incorporate these experiences from the current Internet and address these challenges 
for future application to enable suitable detection and countermeasures in a secure 
way. 

The project G-Lab Deep is funded by the Federal Ministry of Education and 
Research (BMBF). 
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The G-Mesh-Lab is a Wireless Multi-hop Network research project of the Freie
Universität Berlin. As part of the Real World G-Lab Project, the focus of
G-Mesh-Lab is to research and develop next-generation multi-hop network algo-
rithms and protocols. It utilizes the DES-Testbed [1][2][3], which offers a sophis-
ticated testing and evaluation framework, making it possible to define, schedule,
run, monitor and evaluate multi-hop wireless network and wireless sensor
network experiments.

The DES-testbed consists of 60 DES-Nodes spread over two buildings. An
extension to 120 nodes, including 13 outdoor nodes, is in the process of be-
ing installed. Each DES-Node consists of a wireless router equipped with three
IEEE 802.11a/b/g transceivers and a sensor node. While the wireless LAN part
forms the wireless mesh network DES-Mesh, the sensor nodes establish a wireless
sensor network called DES-WSN. Thus a wireless mesh and wireless sensor net-
work are operated in parallel, making the Testbed one of the largest hybrid net-
works world-wide. The DES-Nodes are deployed in an irregular topology across
several buildings on the campus.

The testbed management system DES-TBMS supports the definition, schedul-
ing, execution, and evaluation of experiments. As shown in 1, the architecture of
DES-TBMS consists of five components and four databases. DES-Cript is a cus-
tom domain specific language based on XML to define experiments either in a
textual way or with the help of the web-frontend DES-Web. DES-Exp is the ex-
periment manager which maintains all experiments stored in the Experiment De-
scription database and is responsible for scheduling and executing experiments

Fig. 1. Architecture of DES-Testbed Management System (DES-TBMS)
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and collecting their log files. All raw results of experiments are stored in the Result
Data database. DES-Mesh is pre- and post-configured by the DES-Mon compo-
nent, which also monitors the testbed during experimentation. The Monitoring
Data database stores all data required by DES-Vis to visualize the network state.
Data measured in experiments can be displayed in DES-Vis to get a better in-
sight in the behavior of an algorithm. In a video player like interface any network
state during the experiment can be inspected. The Result Data and Monitoring
Data are used by DES-Eval for automated evaluation as defined in the experiment
description.

In summary, the G-Mesh-Lab provides an easy-to-use wireless multi-hop
testbed that enables researchers to evaluate algorithms and protocols, developed
only theoretically or by using simulations, on real hardware.

Visit http://www.des-testbed.net for more information.
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1 Introduction

The most commonly used technique to evaluate novel solutions is to leverage on
simulation studies which are largely based on a simplified model of the system
behavior. Such an approach provides an approximate evaluation of the system’s
performances, which can be potentially far away from the behavior on a real
deployment. Another solution is to exploit real world prototypes and testbeds.
Such testbeds are generally based on a limited number of nodes and, due to their
experimental purposes, they only partially present the challenges of a real oper-
ational environment with hundred or thousand users. Furthermore, the limited
number of nodes limits the possibility to study scalability issues.

In this paper a novel architectural framework and its implementation are
proposed in order to provide a realistic environment where innovative techniques
for multi–hop wireless networks can be tested in a controlled environment. The
objective of the proposed solution is to depart from the limitations of simulated
or real world testbed, while providing a testing environment which facilitates
performing experimental studies of real network nodes firmware at large scale. To
this purpose VINI (VIrtual Network Infrastructure) [1], an extension of Planet-
Lab – a planetary distributed testbed composed of thousand of nodes, has been
selected as the basis for the proposed framework.

2 Architecture and Preliminary Results

Figure 1 illustrates the framework that has been set up in order to provide an
effective emulation platform on top of VINI. The contribution of this paper is
twofold: on the one hand we extend VINI with a wireless link emulator, which
mimics wireless link conditions in a “wired” environment, and with a virtual
� This work was partially supported by the Seventh Framework Programme

(FP7/2007-2013) of the European Commission, within the SMART-Net project
(grant number 223937) and by the Italian Ministry of Scientific Research (MIUR)
within the framework of the Wireless multiplatfOrm mimo active access net-
woRks for QoS-demanding muLtimedia Delivery (WORLD) project (grant number
2007R989S).
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Fig. 1. A VINI “private instance” extended with our modules providing wireless link
emulation and with virtual bridging functionalities

bridge which allows for L2 bridging among virtual interfaces in a slice. On the
other hand we assess the viability of our approach by running WING [2], a real–
world wireless mesh networking solution [3], on top of a VINI slice. The rationale
behind such a choice lies behind the cross–layer techniques exploited by WING in
order to perform link–quality routing. Such techniques require access to several
MAC-level parameter and are thus very demanding for a network emulator. Even
though the results reported in this poster refer to a slice composed by a limited
number of nodes, the proposed approach can potentially scale up to thousand
of nodes by leveraging on the intrinsic properties of PlanetLab.

The preliminary experimental activity presented in this poster aimed primar-
ily at assessing the correct behavior of the extension to the standard VINI ar-
chitecture. Results obtained in both single–hop and multi–hop conditions show
that the proposed tool provides an approximated, yet realistic, model for the
wireless link conditions; furthermore, it provides researchers with an effective
tool to introduce controlled events such as link degradation or disruption. More
specifically, Fig. 2a shows the performance of the 2–hops path depicted in Fig. 2b
when the available bandwidth at link number 4 is dynamically modified. Link
bandwidth and packet loss for link 1 through 3 are respectively 800 kb/s and
2%. The picture shows the currently available bandwidth at link number 4
and the path throughput measured using the nuttcp [4] synthetic traffic
generator.

Finally, a fully functional Wireless Mesh Network composed of three nodes has
been setup using the WING toolkit [2]. It is worth noting that the WING routing
protocol that is currently exploited in commercially available platforms has been
ran over a PlanetLab slice composed of 4 nodes without any modification to its
source code. Figure 3a demonstrate the routing protocol self–healing capability
by simulating a link failure in a single–hop scenario in a triangular network
topology. The network outage is relative to the time need by the routing protocol
in order to switch from a single hop path to a two hops path.
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Fig. 2. Controlling a 2-hops path throughput by dynamically reconfiguring a wireless
link’s parameter (bandwidth)
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Fig. 3. Testing path reconfiguration delay by simulating a link failure

3 Conclusions

In this work a novel wireless network emulation framework built on top of VINI
and enabling testing and development of innovative solutions has been presented
together with an early assessment of its performance and capabilities. A number
of future activities are envisioned, among them one of the most promising is
the improvement of the wireless link emulator in order to take into account the
broadcast nature of the communication medium, including carrier sensing.

References

1. Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: In vini veritas:
realistic and controlled network experimentation. In: Proc. of ACM SIGCOMM
(2006)

2. Granelli, F., Riggio, R., Rasheed, T., Miorandi, D.: WING/WORLD: An Open Ex-
perimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless
Mesh Networks Testbeds. Eurasip Journal on Wireless Communications and Net-
working 24 (2010)

3. Riggio, R., Scalabrino, N., Miorandi, D., Granelli, F., Fang, Y., Gregori, E., Chlam-
tac, I.: Hardware and software solutions for wireless mesh network testbeds. IEEE
Communication Magazine 46(6), 156–162 (2008)

4. nuttcp, http://www.lcp.nrl.navy.mil/nuttcp/



Berlin: The Berlin Experimental Router

Laboratory for Innovative Networking

Dan Levin, Andreas Wundsam, Amir Mehmood, and Anja Feldmann

Deutsche Telekom Laboratories, TU Berlin, Berlin, Germany
{dan,andi,amir,anja}@net.t-labs.tu-berlin.de

Abstract. Today’s disruptive approaches to rearchitecting the Internet,
e.g., Clean Slate Networking initiatives require testbeds that present un-
precedented flexibility to the experimenter. This poster presents Berlin,
a flexible testbed platform designed towards the requirements of Future
Internet research. Berlin combines a diverse landscape of network el-
ements, both software-defined and legacy hardware, and unifies them
under a common management interface, presenting them as pluggable
services to the experimenter.

Keywords: future internet, testbed support, experiment services.

1 Introduction

The Internet’s core architecture, including its routing and addressing scheme
currently aches under the pressure of the continuing rapid expansion of the net,
as well as new applications and usage patterns. Useful incremental improvements
have not seen wide adoption in recent years (e.g., IPv6, DiffServ, DNSSec). This
has sparked renewed interest in disruptive approaches for re-architecting the
Internet core, for instance in a multitude of Clean Slate Networking initiatives
around the globe.

Due to the diversity of these approaches, Future Internet experimentation
requires a flexible testbed that caters to a wide range of requirements. Such ex-
periments may require programmable, virtualized and non-virtualized hardware
(e.g., PC servers), software-configurable hardware (e.g., NetFPGAs), and flexi-
bly configurable logical and physical topologies. Experimentation also requires
a sound infrastructure of support, including the generation of realistic traffic
patterns and proper modeling of user expectations and experiences.

This proposed poster introduces Berlin, an experiment platform tailored to
the requirements of Future Internet research. Berlin combines a diverse land-
scape of network elements, both software-defined and legacy hardware, unifies
them under a common management interface, and presents them as pluggable
services to the experimenter. We first present its architecture and the core ser-
vices provided, then examine some use-cases of successful Future Internet experi-
mentation in the lab. We believe that our poster can contribute valuable insights
to the discussion about the primitives, components, and services required to suc-
cessfully enable Future Internet experiments.
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2 Architecture

Berlin uses a three-layered architecture with a multitude of different experimen-
tal devices managed by a unified management platform. On this foundation rests
the pluggable service infrastructure, offering combinations of hardware, software,
and configurations as pre-built and customizable services to the user.

Berlin contains a highly diverse collection of experimental devices includ-
ing routers, switches, and traffic-generating servers. These devices differ widely
in their feature set, performance, and control interfaces. Terminal servers and
SNMP controllable power interfaces provide additional out-of-band management.

This varied landscape of devices is managed by our custom software manage-
ment system, the Labtool. Labtool presents a unified, vendor-agnostic interface to
the experimenter for device reservation, configuration, interaction (e.g., console
access, power management), and topology management. The Labtool also main-
tains a complete and historically versioned picture of the physical and logical
network testbed topology. Labtool integrates with an automated system config-
uration and disk imaging tool which allows disk images and router and switch
configurations to be deployed quickly onto arbitrary experimentation devices.

This unified management allows Berlin to offer pre-configured combina-
tions of hardware and software as higher-level pluggable services as depicted in
Figure 1. These fulfill many common requirements, e.g., traffic generation, mon-
itoring and capturing, network emulation, NetFPGA packet processing, and
virtualization services. These pluggable services allow researchers to quickly
establish an experimental setup with most of the required services from pre-
built components. For instance, an experimenter may want to evaluate a new
router primitive implemented as a NetFPGA program, then require self similar
background traffic to be generated and routed through the NetFPGA, apply em-
ulated WAN line delay characteristics, and finally capture packet level traces at
several points in the experiment.

Fig. 1. BERLIN Testbed Architecture
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3 Case Studies

We next present cases where Berlin supports Future Internet experimentation.
HAIR, the Hierarchical Architecture for Internet Routing addresses the lim-

its of current Internet routing table growth. It better supports mobility, traffic
engineering, and multipath routing by separating the locator and identifier ele-
ments of the addressing scheme. HAIR places routing elements into hierarchical
name-spaces to localize the effects of routing changes and improve routing table
scalability. Berlin enables us to devise an experiment to evaluate the HAIR
software-based routing elements, all of which utilize special network packet for-
mats. Virtualized hosts with the the Click modular software router as provided
by Berlin can support these special packets. The Berlin topology management
enables simple reconfiguration of the underlying IP network onto which HAIR
elements are overlaid. Results from the prototype evaluation show the feasibility
of hierarchical routing with mobility utilizing this model of split locator and
identifier [1].

QoE/Virt Providing good Quality of Experience(QoE) for end users remains
a challenging problem on the Internet. Especially virtualized networks pose novel
challenges, as multiple virtual networks may compete for the same physical re-
sources and the quality of the isolation provided by virtualization platforms
varies. Accordingly, we devise a combined experiment on our testbed, confronting
multimedia VOIP traffic with bursty, self-similar background traffic as found on
the Internet, and routing both over a virtualized substrate based on XEN and
OpenFlow with advanced debugging and flow management capabilities. Our re-
sults indicate that the advanced troubleshooting and management capabilities in
the virtualized setup result in improved QoE, even though the level of isolation
provided by the virtualization is limited [2].

4 Summary and Outlook

We have presented the architecture of Berlin and some case studies underlining
its potential as an experimentation platform. In the future, we plan to further ex-
tend Berlin’s flexibility, specifically to automatically integrate OpenFlow net-
works into experiments. To support experiments beyond the size of a single
physical testbed we will investigate extending the Berlin testbed architecture to
other sites, as well as federating Berlin with other Future Internet testbeds,
while maintaining the architecture of pluggable services that is paramount to its
flexibility.
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1. Feldmann, A., Cittadini, L., Mühlbauer, W., Bush, R., Maennel, O.: Hair: hierar-
chical architecture for internet routing. In: ACM ReArch Workshop (2009)

2. Wundsam, A., Mehmood, A., Feldmann, A., Maennel, O.: Network troubleshooting
with shadow vnets. In: Proc. ACM SIGCOMM Demo Session (2009)



T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 605–608, 2011. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011 

Multiaccess NetInf: A Prototype and Simulations 

Teemu Rautio, Olli Mämmelä, and Jukka Mäkelä 

VTT Technical Research Center of Finland,  
Kaitoväylä 1, 90571 Oulu, Finland 

firstname.lastname@vtt.fi 

Abstract. This work presents operation and the results obtained in an 
information-centric multiaccess content distribution prototype using both real 
laboratory environment tests and simulation experiments with OMNeT++. We 
present the basic objectives and mechanisms of our solution and evaluate it 
against a standard BitTorrent. The results show that our prototype based on an 
information-centric approach can reach high performance gains in both static 
and mobile scenarios, is scalable and can reduce the amount of inter-network 
traffic. 

Keywords: multiaccess, network of information, content distribution, 
BitTorrent, information-centric. 

1   Introduction 

Network of Information (NetInf) [1][2] is an information-centric networking approach 
being developed by the FP7 4WARD project (see www.4wardproject.eu). The aim of 
the NetInf project is to provide a communication infrastructure that is more suitable to 
content distribution applications than the current client-server model. In an 
information-centric approach the users generally do not care where the information is 
located, as long as the information is valid. The information should not be tied to 
specific locations but it could reside anywhere in the network. It is also anticipated 
that the Future Internet supports mobility and multiaccess. 

We implemented and evaluated a new BitTorrent [3] based content distribution 
system, namely Multiaccess NetInf [4], for showing the benefits of using several 
network accesses simultaneously (multiaccess). Our prototype provides also a method 
for downloading content locally from own network. These characteristics should be 
supported even while moving across several overlapping wireless networks, such as 
Wi-Fi, 3G or WiMAX. The prototype is evaluated both in a static and mobile scenario 
and simulation experiments are used to show the scalability of the solution. The 
content is distributed using the BitTorrent protocol, as a reference, and in the mobile 
scenario multiaccess NetInf is compared against BitTorrent over Mobile IPv6 [5]. The 
results show that a multiaccess NetInf solution can reach high performance gains, 
reduce the amount of cross-network traffic and is also scalable. 

2   Operation and Evaluation 

Basic scenario of Multiaccess NetInf is illustrated in Fig. 1. The scenario involves 
three different networks: Core Network and two access networks, which both have 
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wireless access points (Wi-Fi). In the scenario, Global NetInf name resolution point 
takes care of local name resolution points, whereas local resolution point maintains a 
list of local content sources. A NetInf node represents our content downloader and it 
can be connected to one or more wireless networks. Employment of NetInf 
Notification Service (NNS) enables indication of new access networks, while NetInf 
node is moving across different wireless networks. In this prototype implementation 
NNS was realized by using the trigger management framework [6]. 

The system operates as follows. NetInf node requests global name resolution from 
a global resolution point, which responds with the location of local name resolution 
point(s). When the node makes a content request to local resolution point(s), they 
report the location of the local sources and the NetInf node can ask content locally 
from them. After the node detects a new network where it is connected to, it asks for 
the existence of a local copy of the content from the Global resolution point through 
NNS. The global resolution point responds with the location of the local resolution 
point. Node can now request sources from it and also start the content retrieval from 
the sources located also in the new network. 

 

Fig. 1. Basic scenario of Multiaccess NetInf content distribution  

We compared single access standard BitTorrent and Multiaccess NetInf in a real 
laboratory environment and also with simulations. The NetInf node was connected, in 
this static scenario, to two networks over two interfaces simultaneously. In laboratory 
experiments, the setup was exactly the same as in Fig. 1, but in simulations the 
number of access networks and NetInf nodes was larger, as is certain. Simulations 
were made with OMNeT++, INET framework [7], OverSim [8], and a BitTorrent 
module [9]. 

Table 1 shows outperformance of multiaccess NetInf. In laboratory experiments 
reduction in download durations was 41 %, when comparing multiaccess NetInf to 
single access BitTorrent. Respectively in simulations, the portion was 32 %. 
Moreover, we reduced inter-network traffic very drastically: decrease of inter-network 
traffic was almost 100 % in prototype measurements and 98 % in simulations. 
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Table 1. Outperformance in download durations and in Cross-Network traffic  

Reduction in median (ten runs): Prototype: Simulations:
Download Durations 41 % 32 % 
Inter-Network traffic /  100 %    
Packets in Backbone routers  98 % 

 
In addition, we evaluated the performance of our prototype implementation in low 

mobility scenario with laboratory experiments. Comparison was made between 
Multiaccess NetInf and BitTorrent over Mobile IPv6. The scenario was the same as in 
Fig. 1, but the user movement affects to the availability of different access points in 
the following way. NetInf node is connected the first 15 s only to network 1. From 15 
s to 25 s it is connected to both networks and during the rest of the download only to 
network 2. 
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Fig. 2. Throughput in mobile and multiaccess scenario  

Again, our system was faster than standard BitTorrent (29 % reduction in median 
download duration). Also inter-network traffic was decreased almost to none; total 
reduction was almost 100 %. Evolution of median throughput in both experiments 
(with BitTorrent and Multiaccess NetInf), represented in Fig. 2, provides an 
explanation for the superiority of the prototype; it can use two interfaces 
simultaneously in the middle of the download (from 15 s to 25 s). 

Conclusion 

This short paper described briefly the results and the testbed of the laboratory 
experiments and simulations. Results and evaluation showed clearly the 
outperformance of multiaccess NetInf comparing to single access BitTorrent. In static 
scenario, reduction of median download duration was 41 % with prototype and 32 % 
in simulations. Also we reduced inter-network traffic almost by 100 % in both  
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evaluations. Respectively, our prototype implementation outperformed BitTorrent 
over MIPv6 in mobility scenario; reduction in median download duration was 29 % 
and inter-network traffic was reduced almost by 100 %.  
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Abstract. Prototyping future Internet technologies is an important but
complicated task. To ease this process, we have developed the Future
Internet Toolbox (FIT). In this paper, we demonstrate how it facilitates
prototyping in practice by presenting three scenarios that have been
implemented using FIT.

1 Introduction

Currently, a lot of research focuses on future Internet technologies. To simplify
the process of prototyping and evaluating new concepts and protocols, we devel-
oped the Future Internet Toolbox (FIT) – a collection of 4 frameworks covering
information-centric networking, data transport, naming, and name resolution.

We have introduced FIT in detail in [1,2]. This paper now focuses on three spe-
cific use cases where FIT helped us prototyping new networking features: efficient
and secure information-centric data dissemination (Sec. 3.1), rapid information-
centric application development (Sec. 3.2), and session mobility for video stream-
ing (Sec. 3.3). We shortly revisit the FIT frameworks in Sec. 2.

2 FIT Frameworks

2.1 Information-Centric Networking and Secure Naming

Several Information-Centric Network (ICN) architectures have been proposed
lately (see [2] for details) to overcome the inefficiencies of today’s Internet archi-
tecture with respect to information dissemination and information handling. The
ICN framework supports and accelerates the design and evaluation of ICN archi-
tectures. It provides three main aspects: (1) a generic, adaptable node structure
for building custom information-centric nodes, (2) implementations of various
components that can be used to compose such a node, and (3) a testbed for
interconnecting those nodes into an overall ICN architecture.

The ICN framework is closely connected to the naming framework. The nam-
ing framework supports a wide variety of naming schemes, including complex
ones involving security-related features like data integrity checking. At the same
time, it minimizes the implementation overhead of new naming schemes.
� The research leading to these results has been conducted in the 4WARD project and
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2.2 Data Transport and Name Resolution

The data transport framework bases on the Generic Path (GP) architecture
that has been developed in the European research project 4WARD. This archi-
tecture’s goal is to overcome limitations of the ISO/OSI architecture, which is
mainly the difficulty to introduce new functionality into today’s networks.

This has been achieved by designing the framework for flexibility and exten-
sibility from the beginning. It is service-oriented, i.e., Entities (“layers”) can
be arbitrarily composed based on their required and provided services (no static
stack determined by the technologies anymore). Another key issue are the unified
structures. Entities and Endpoints (the termination of a communication path)
all have the same interfaces to ease cross-layer networking. Additionally, reusable
components like Entities and Endpoints, or mechanisms like name resolution are
made explicit to speed up developing new features. As a result, name resolution
uses the same mechanisms on all different levels of networking.

3 Use Cases

3.1 Efficient and Secure Information-Centric Data Dissemination

In this scenario, we demonstrate efficient and secure data dissemination mech-
anisms for the future Internet, based on the FIT-based Network of Information
(NetInf) prototype [1]. We used the ICN framework to build information-centric
NetInf nodes, both infrastructure and client nodes. Each NetInf node can cache
and provide data to other NetInf nodes. In addition, they provide a name reso-
lution service to resolve flat NetInf names into download locations.

A Web browser, extended via a NetInf plugin to allow communicating with
the NetInf infrastructure, handles links to flat names instead of URLs by trig-
gering a name resolution. During resolution, an appropriate download location is
selected by the NetInf nodes; the browser downloads and displays the requested
information. In addition, the client NetInf node checks the data’s integrity using
the FIT naming framework and caches the data locally. This enables to provide
the data to other nodes to increase availability in case of network disruption and
to reduce Internet traffic. The whole process is transparent to the user.

3.2 Rapid Information-Centric Application Development

Building information-centric applications involves many similar components like
information model, distributed storage, efficient and secure data dissemination,
and notification services. Building such applications and the required infrastruc-
ture on a global scale based on today’s Internet architecture is often cumbersome
as most components have to be rebuilt and/or reintegrated for each project.

This scenario illustrates how even complex information-centric applications
and the corresponding infrastructure can easily be developed using building
blocks (Information Model, Naming Scheme, Event/Storage/Search Service) of
the FIT-based NetInf prototype. These blocks enabled us to rapidly develop a
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globally scalable collaborative editing and context-awareness application. Specif-
ically, we developed a shopping application that informs the user about available
products in near by shops from his shopping list. The shopping list can be edited
collaboratively by multiple users. This is implemented by storing the data in a
NetInf-specific data structure and utilizes the Event Service to subscribe the
applications and a specialized Search Service to any changes performed on the
shopping lists, inventory lists, and the user’s geo-locations.

3.3 Session Mobility for Video Streaming

In this scenario we focus on FIT’s data transport part and show how session
mobility can be implemented for a live video stream, i.e., client and server are
moved to different machines during runtime.

For this, we first added support for session mobility to the AbstractEntity.
This covers functions to serialize the Endpoint of an existing GP and to transfer
this serialization to another Entity. The GP management functions have been
extended to relocate the GP alongside the Endpoint transfer to the new Entity.
All these mechanisms are generic, i.e., they can be used for any GP type.

Second, we created a VideoEndpoint that is instantiated by a VideoEntity.
This Endpoint uses the VLC media player to generate and display video streams.
In particular, the VideoEndpoint contains the current state of VLC (playback
position and source video file), which is eventually contained in the Endpoint
serialization. This permits session mobility by relocating the video Endpoints on
both client and server side. The server-side session mobility is especially useful
for dynamic resource allocation for single video streams; a problem that cannot
be solved by server migration using virtualization.

4 Conclusion

Experience from implementing the three scenarios with the FIT frameworks
shows that FIT simplifies prototyping significantly. Due to its generality, it is
useful for many different projects as it reduces redundant implementation of
basic testbed functions and provides ready-to-use building blocks. This way, new,
small components can be complemented with an overall network architecture.
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Abstract. General purpose testbeds for Wireless Sensor Network (WSN)
systems are often deployed in lab environments. This means that the
testbed environment may differ considerably from the target environ-
ment of a system with respect to e.g. radio interference and sensory
input. Furthermore, many WSN scenarios include mobile nodes, such as
mobile sensors and mobile sinks, whose movements can affect the ex-
perimental results considerably. Both these features pose a challenge to
achieving consistent and reliable experimental results during the evalu-
ation and testing of a WSN system.

To attack this challenge, we are developing the Sensei-UU WSN testbed.
It follows a light-weight, distributed design, so that instances of the
testbed can be easily relocated; this enables experimenters to evaluate a
system in different environments. To support scenarios including mobile
nodes, Sensei-UU uses robots which carry out mobility patterns defined
by the experimenter.

Our evaluation shows that our design supports repeatable experi-
ments in various environments, even when the experiments involve mo-
bile nodes.

1 Introduction

WSN systems are deployed in a variety of environments, ranging from e.g. forests,
over hospitals, to industrial facilities, whereas many general purpose testbeds
for WSNs are deployed in lab environments. In consequence, the behavior of a
system in a testbed may be different from its behavior in situ, because of the
different radio environments and sensory inputs. From this we conclude that it
is desirable to be able to relocate a testbed. The presence of mobile sensor nodes
in a WSN scenario further complicates the testing process, as the testbed needs
to support node mobility, keep track of mobile nodes, and ensure repeatability of
movements of mobile nodes. The latter is necessary to be able to draw conclusive
results from repetitions of similar experiments.

We are developing the Sensei-UU Wireless Sensor Network testbed to attack
these challenges. Our testbed differs from existing WSN testbeds in two impor-
tant aspects. First, Sensei-UU may use a wireless control channel. This makes
the testbed independent of existing network infrastructure and makes it easy to
relocate an instance of the testbed into the intended target environment of the

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 612–614, 2011.
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Fig. 1. A mobile node
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Fig. 2. Received signal strength from sta-
tionary nodes to a mobile node, averaged
over multiple runs of one experiment

system under test. This flexibility distinguishes Sensei-UU from static testbeds,
such as TWIST [2]. Second, Sensei-UU supports experiments involving mobile
sensor nodes. Robots carry sensor nodes and follow pre-defined mobility pat-
terns. In contrast to existing WSN testbeds with mobility support, Sensei-UU
does not rely on existing infrastructure for node localization and robot naviga-
tion, but instead uses a simple line-following approach.

2 Design

Our testbed follows a light-weight, distributed design to make it largely indepen-
dent of existing infrastructure. Every sensor node – we currently use TelosB [1]
nodes – in the testbed is attached to one sensor host. A sensor host is responsible
for managing the attached sensor nodes; it provides a means to reprogram at-
tached nodes or collect log data from them. We are using WLAN access points as
stationary sensor hosts, and OpenMoko FreeRunner [5] mobile phones as sensor
hosts for mobile nodes. The FreeRunner’s USB host capabilities make it possi-
ble to attach one or more sensor nodes to it. Our design is based completely on
off-the-shelf components to make our testbed reproducible for other researchers.

Robots in the testbed are based on Lego NXT kits [4]. Robots navigate by
following a tape that is laid out on the floor by the experimenter prior to the ex-
periment (Fig. 1). While this approach constrains robot mobility, it increases the
independence of the testbed of existing infrastructure such as ceiling-mounted
cameras as they are used in, e.g., Mobile Emulab [3]. Each robot carries one
mobile phone acting as a sensor host and one or more sensor nodes.

Sensor hosts forward log data from the sensor nodes to a site manager over
a wireless IEEE 802.11b/g control channel. The site manager in turn delivers
the data to an experimenter running a monitor software. The monitor also pro-
vides the experimenter with an interface to reprogram sensor nodes and control
experiment parameters. The use of the site manager as an indirection point
facilitates remote access to the testbed.
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3 Evaluation

A wireless control channel may potentially interfere with the sensor nodes’ radio
if both operate in the same frequency band. To ensure that this is not the case in
our testbed design, we have measured the interference between IEEE 802.11b/g
and IEEE 802.15.4, the radio technology used by TelosB nodes. We have found
that if both technologies use different frequencies, and if any two 802.11b/g and
802.15.4 transceivers are separated by at least 1 m, interference is negligible [6].

We further assessed the repeatability of experiments involving mobile nodes.
We set up an experiment in which one mobile sensor node constantly measures
the quality (in terms of RSSI) of its radio links to three stationary sensor nodes.
Figure 2 shows the quality of the respective links to the stationary nodes averaged
over multiple runs. For each link, the upper and lower line represent one standard
deviation. The standard deviation characterizes the differences in link quality
between different runs. From the fact that the standard deviation is reasonably
low, we conclude that our testbed allows for repeatable experiments. We have
repeated the described experiment in different environments, one of which was
an anechoic chamber. There we also found the variance between runs to be low,
from which we derive that our testbed itself does not have a substantial impact
on the system being tested.

4 Conclusion and Future Work

We have presented our WSN testbed, called Sensei-UU, that is designed to be
easily relocatable and to support mobile nodes.

We are currently considering to extend our testbed to incorporate mobile
phones as part of the system to be tested. This would allow us to evaluate
hybrid networks of sensor nodes and mobile phones. We will release the software
components in Sensei-UU under an open source license soon.
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Abstract. The gradually growing need for testbed use so as networking
algorithms to be validated in real environment, has given rise to optimal
utilization of testbed resources. Towards this direction, we present a new
management tool that is used for assessing channel quality information
in wireless testbed deployments. NITOS Connectivity Tool retrieves data
concerning link quality measurements, for providing testbed users with
useful information about choosing nodes that occasionally satisfy the
requirements (link quality, connectivity) needed, for their experiments.
NITOS connectivity tool is a full-fledged managerial tool that exploits
testbed utilization by letting testbed users have a complete view about
testbed’s nodes. This tool allows a more sophisticated way to optimally
choose network resources of a testbed.

Lab’s website: “http://nitlab.inf.uth.gr”[2]
This demo paper is related to the paper entitled “Towards Maximizing

Wireless Testbed Utilization using Spectrum Slicing” accepted for publi-
cation on TridentCom 2010.

Keywords: Testbed, Management, Link Quality.

1 Introduction

A testbed experiment deployment needs node allocation that should satisfy cer-
tain topology and link quality requirements. Moreover, the erewhile link quality
information gives a testbed user the advantage of properly evaluate the observed
experiment/algorithm performance. Since NITOS testbed deployment is not RF
isolated, the link quality between any pair of nodes may unexpectedly vary at
any point in time due to external interference. For this reason the static distribu-
tion approach, that is used in RF isolated wireless testbeds[1][4], is not efficient

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no224263.
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for these deployments. Therefore, there is a growing need for updated informa-
tion in terms of densely measurements of link quality, that will bring in a long
term, a more accurate channel quality estimation.

2 NITOS Connectivity Tool

In this demo, we will present a management tool for assessing channel quality
information. The tool was developed for NITOS testbed and measures channel
connectivity among wifi interfaces. NITOS is a wireless testbed, located in Volos,
Greece with 15 nodes, each node equipped with two wifi interfaces. It is deployed
on Computer & Communication Dept. University of Thessaly building. NITOS
testbed topology is depicted on the left part of Fig. 1. Although the NITOS
connectivity tool was developed on NITOS testbed, it can be adapted for use
on any wireless testbed, with minor modifications. NITOS connectivity tool is a
NITOS scheduler[3] part, which is used for resource allocation on NITOS testbed.

We have implemented NITOS connectivity tool, based on TLQAP [5], which
is a protocol, that is used to assess interconnection topology and link quality
by estimating packet delivery ratio (PDR) in downlink communication at each
node’s wifi interface for all requested channel, rate and transmission power com-
binations. Specifically, TLQAP builds a measurement history log and creates a
channel utilization profile, and stores that information in a database that is used
for link quality information retrieval by NITOS connectivity tool.

NITOS Connectivity Tool is comprised of three entities: a web interface, a
database and a set of .dot scripts. The web interface is the interactive tool that
an experimenter uses to choose testbed nodes for some time and it is depicted
on the right side of Fig. 1. A user enters the NITOS Connectivity tool through
NITLAB’s wiki http://nitlab.inf.uth.gr. Now, the user has the ability to navigate
through testbed’s site and select “Scheduler → Topology-Connectivity” menu.

Fig. 1. NITOS Connectivity Tool



A Demonstration of a Management Tool 617

Fig. 2. Link Quality for node 4

Specifically, at first the user selects through web interface, by using a drop-
down menu, a sender node that he/she wants to check and might want to use in
testbed. Then the user is prompted to select an operating frequency among IEEE
802.11 communication standards 802.11a/b/g and selects the operating rate.
Then, he/she goes to the final step where he submits his/her query concerning
the link quality of a certain node. In sequence, the tool seeks to a database
where the channel quality results are stored and retrieves the information that
corresponds to the particular query. This information with the use of .dot files
that are used to depict graphs are presented to the users. On Fig. 2, the downlink
communication link quality for node 4 among its neighboor nodes is illustrated.
Each node is indicated by a circle and the PDR of each link is reported upon
edges that indicate link connectivity to certain node’s wifi interfaces. Those
interfaces are reported with their MAC addresses, with an arrow showing to the
node where they belong.

3 Conclusion

In this demo paper we present a wireless connectivity tool that enables better
utilization of testbed under effective resource exploitation. In particular, users
can select nodes and observe link quality by navigating through a web interface
that is built as an extension tool of NITOS scheduler and retrieves information
from TLQAP. Thus, users can choose those nodes that satisfy their experiment
requirements.
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Abstract. In this paper we present the design of our wireless mesh net-
work testbed (CentMesh), which facilitates experimentation as a service.
CentMesh differs from other testbeds in terms of its modular, flexible and
extensible design. The CentMesh software suite provides a modular pro-
gramming library that can be modified and/or extended by the users
of the testbed, allowing them to implement their own modules (e.g.,
routing, scheduling etc.). The basic services such as transport of con-
trol messages, broadcast, etc., are provided to experimenters by a set of
system modules. Modularity allows the experimenters to implement only
the part of network stack that they are interested in experimenting with,
while reusing the other readily available CentMesh modules.

1 Introduction and Motivation

Even though wireless multi-hop networks have been the focus of considerable
research efforts in last few years, conducting real-world experiments with wire-
less devices continues to be difficult. Most of the early efforts [1, 2, 3, 4, 5] in
testbed design have focused on simplifying the process of experimentation and
facilitating a certain amount of repeatability.

In this paper, we present the design and development of our wireless mesh
network testbed CentMesh. The fundamental design principle of CentMesh is a
clear separation between data transport, signaling and control and management
algorithms. The modular structure of CentMesh software allows users to plug-
and-play existing modules and add new modules. The advantage of such a design
is two-fold. First, it allows the researchers to implement only the modules of the
stack that they are interested in experimenting with. Second, newer modules
needed for various experiments can be developed rapidly and integrated in the
testbed independently of all the other testbed modules.

∗ This work is supported by the U.S. Army Research Office (ARO) under grant
W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative (SOSI). The
contents of this paper do not necessarily reflect the position or the policies of the
U.S. Government.
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(a) CentMesh node
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Fig. 1. CentMesh software and hardware

2 CentMesh: Hardware and Software

2.1 Hardware Components

CentMesh uses commodity hardware, each mesh node being a standard desktop
computer. The CentMesh software is designed to run on any other hardware
platform since we do not use any customized devices. Currently, the testbed
consists of 10 mesh nodes deployed inside our department building. Each mesh
node contains four Atheros cards, each connected on 4-to-1 miniPCI-to-PCI
adapter. While performing the outdoor experiments, we place the mesh nodes
on pushcarts (Fig. 1a).

2.2 Software Architecture

The CentMesh testbed uses a centralized control system where one of the mesh
node is assigned the role of the controller. Different from other current state-of-
art testbeds, we do not deploy any wired backhaul using Ethernet to connect
and control the nodes. Instead control messages flow between nodes using one of
the radios operating on a fixed channel. The design of CentMesh is modular and
clearly separates functionality in control, management, and data planes. The
modules are divided into system modules, core modules, and extension modules.

System Modules. System modules are implemented an indispensable part
of the CentMesh software that is always present and running on mesh nodes
irrespective of the experiment.

The testbed is managed cooperatively by several processes. Control and sig-
naling traffic between processes either local or remote is channeled through a
single process called the Communicator. Instead of the client/server model, the
Communicator uses a publish/subscribe mechanism, which allows processes to
send and receive messages based on the topic they are interested in, while hiding
the details of the underlying message processing. Topic-based message filtering
in the publish/subscribe model creates logical channels in the network-wide con-
trol path, which provides greater flexibility and scalability compared to a typical
client-server model. Fig. 1b shows the Communicator as an entry/exit point be-
tween various processes running on different mesh nodes. The Communicator
supports common multihop operations such as unicast reporting and flooding.
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The neighbor discovery process on a mesh node periodically probes its neigh-
bors and collects local neighborhood information. All nodes report the neighbor
information to the controller.

For ease of recovery, in case of system crash, every CentMesh node contains
three separate Linux installations in three separate disk partitions. The first
partition (referred as fail-safe) contains a minimal set of functionality that allows
users to remotely access the node and manually recover the node. The second
and the third partitions are open to the researchers to perform their experiments.

Core Modules. Core modules are developed by the researchers as part of the
experiment. Using the APIs from the CentMesh software, software modules are
implemented in general as paired managers and agents; managers contain central
intelligence/algorithm of the protocol, and agents perform actuating tasks based
on the manager’s decision.

We developed two sample core modules: a channel assignment module that
uses a greedy edge coloring algorithm and a routing protocol with ETT (Ex-
pected Transmission Time) as the routing metric. Both modules can be replaced
by experimenters with their own channel assignment and routing modules; how-
ever, a channel assignment and a routing module must always be present. An
experimenter who is not focused on routing research can reuse the available rout-
ing module for the experiments. Similarly, experimenters can swap any other core
modules.

Extension Modules. A separate network monitoring module (designed simi-
lar to core modules) collects network status information (e.g., installed routes,
interface information, data rates, etc.) and reports it to the controller. The vi-
sualization program extracts the information provided by monitoring manager
and graphically displays the network status using Google Earth.

3 Research Studies and Ongoing Extensions

CentMesh is designed to support many different types of of research projects.
Some of the ongoing research projects include coarse-grain TDM scheduling
and joint channel assignment-routing protocols. Furthermore, CentMesh also
supports security research at various layers as well as mobility management and
modeling. In the next phase of deployment, we plan to install the mesh nodes
outdoors in our university campus. We soon plan to release the software suite
under open source license to make it available to other researchers for their use.
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Abstract. National Telecommunication Commission of Thailand has  initiated 
the  pilot  project  which  involved  the  trial  and  testbed  of  Next  Generation 
Networks (NGNs) technology in Phuket, Thailand.  This project consists 
of many new technologies implementation in  the real environment. In 
order to implement the NGN technology successfully, we need to be able to 
summarize the outcomes of these deployment and prepare for improvement 
in the future. This project  also extends the test to the communities in 
Phuket such as E- Learning applications. 

Keyword: Next Generation Networks, NGN, Testbed, E-Learning. 

1   Introduction 

National Telecommunication Commission (NTC) has long been committed to  
perform  its  duty  as  Thailand’s  Telecommunication  Regulator. Apart  from 
regulating the telecommunication industry in Thailand, NTC has also contributed to 
various activities involving academics, society and people to tighten the digital divide 
in Thailand. One of the projects initiated by the NTC is the Next Generation Network 
Migration Study project which is commissioned to UniSearch of Chulalongkorn 
University to study the approach and feasibility of deploying NGN in Thailand. After 
the project has been completed, The commissioner Prasit Prapinmongkolkarn who has 
overseen this project since the beginning has a vision that this would be a big stepping 
stone of Thailand Telecommunication. He, then initiated the idea of the NGN 
Trial and Testbed Project in Thailand. 

The NTC has contracted Chula UniSearch, a consulting arm of Chulalongkorn 
University (CU), led by Dr. Supavadee Aramvith and Dr. Chaodit Aswakul, to 
operate the project which is participated by CAT Telecom, Samart Telecom, AIS, 
NEC, Rohde&Schwarz, FORTH and ADC Communications. NGN technologies 
such as 3G, Wi-Max, VoIP, SIP server/Soft switch, VoD and FTTH are evaluated in 
the project along with many applications like Tele-Health, Tele- Medicine,  
Tele-Education, e-Government, NGN Classroom, Mobile TV and Mobile Banking.  
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NTC  On  Feb  3rd
 2009,  the  NTC  officially  opened  the  Next  Generation 

Network ( NGN ) trial use and test site in Phuket. The main objective of this project 
is to study and evaluate the impact and benefits of the migration from legacy 
networks to NGN which can accommodate a variety of new services.  Over 130 
distinguished guests from the local administration, academics, healthcare services, as 
well as executives of telecom operators attended the opening ceremony of the NGN 
test site presided by General Choochart Promphrasid, the Chairman of NTC. 

2   Telecommunications over Next Generation Networks 

NGN is a packet switched IP-network that is capable of providing many new 
converged QoS  (quality of service ) assured services that users can have access to 
whether they are stationary or on the move. Convergence is at the core of NGN which 
delivers data, voice and multimedia applications on the same core network. 

The test involved the following technologies and services. 

1.   High Speed Internet over WiMAX 
2.   Video Conference over FTTx 
3.   Voice over Internet Protocols (VoIP) 
4.   E-Learning 

The tests were also concerned with compatibility and interoperability issues in 
this project between different versions of WiMAX and also between WiMAX and 
3G CDMA 1X EVDO or 3G WCDMA 1800 MHz In-band Migration from GSM.  In 
addition, the users’ opinions and acceptance of NGN based applications such as 
VOIP, video streaming and e-learning at two middle schools etc. are also evaluated. 
Evaluations as well as technical data from this project will be beneficial and valuable 
to a telecom regulatory agency like NTC for its decision on regulatory policy and 
framework for NGN and NGN converged services. The NTC would be most happy to 
share this valuable experience as part of the implementation of the World Summit of 
the Information Society (WSIS). 

3   Test Results 

NEC brought their NGN IMS CORE to participate in the project. The Video on 
Demand (VoD) and Voice over IP (VoIP) on NGN IMS Core were tested. Users’ 
satisfaction level data were then collected. For comparison, the VoD in both standard 
definition (SD) and high definition (HD) was tested with and without QoS 
control. The users were very satisfied with VoD with QoS control and VoIP 
however they evaluated that the quality of VoD without QoS control was quite poor.  

FORTH and ADC Communications participated in the project with FTTH, one of 
the NGN wired access technologies. The throughput and link budget of GEPON 
technology was evaluated. Interoperability and compatibility were tested using 
equipments such as optical fiber, splitter module, optical line terminal (OLT) and 
optical network unit (ONU) from different manufacturers. 
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Fig. 1. IMS/NGN Testbed overview in the Project 

The equipments from different manufacturers worked together very well and there 
were no compatibility issues whatsoever. With the OLT and ONU used, the power 
budget was about 30 dB and this should translate to a maximum distance of 80 km of 
the G.652D fiber without using any splitter. However the actual tests revealed that the 
maximum distance was limited to about 20 km due to the dispersion of G.652D fiber 
at a wavelength of 1,490 nm. 

Compatibility tests were conducted between other NGN access technologies as 
well such as between WiMAX and 3G CDMA IX EVDO. Applications like VoIP, 
web browsing, FTP and video chat were tested on a notebook equipped with both 
WiMAX CPE (customer premise equipment) and CDMA 1X EVDO CPE. Users 
would drive- test these applications as they roamed in and out between WiMAX and 
CDMA 1X EVDO served areas. The results indicate that a notebook can switch 
services automatically from WiMAX to CDMA 1X EVDO and vice versa depending 
on the availability of the signal at the moment. However, all applications tested were 
disrupted  and  would  not  continue  the  operation.  The  least  affected  is  the  web 
browsing application because users can click the refresh button on the web page and 
continue on. 

WiMAX, with three base stations operating at a frequency of 2.5 – 2.6 GHz, was 
also drive-tested to find out the distance that a base station could cover and the 
download/upload speed. Within the Phuket area, the distance on average from the 
base  station  to  the  CPE  is  about  2  km  maximum but  the  distance  covered  was 
measured at almost 4 km for a line of sight operation or no obstructions in between. 
However, without having to adjust CPE’s antenna orientation every time for optimal 
reception, the effective distance on average is about 500m in Phuket. 

E-learning classrooms and workshops was conducted with ADSL and will be 
conducted again using NGN access technologies such as WiMAX and FTTH 
(GEPON). The results will be a comparison of quality of picture and students’ 
satisfaction level data between a base-line case (with old access technologies) and an 
NGN case. 
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Fig. 2. E-Learning Classroom. 

4   Conclusion 

At the end of the project, several conclusions have been put together and proposed to 
the NTC. These suggestions from the study have lead to several urgent issues 
that need commitment from the NTC, for example, the format and standards of NGN 
technology to be deployed in Thailand. This requires attention from the regulation 
body; NTC and operators alike. The migration process requires high investment in 
terms of people, knowledge, technology and capital. The NTC has to take its role as a 
regulator as well as an influencer to create a momentum for changes. Furthermore, 
universal service obligation is one of the issues that could very much be enhanced 
from the deployment of NGN. Many services could be enabled with the technology. 
Eventually, the technology and services will be expanded to cover the underprivileged 
part of Thailand for the benefit all of our citizen. 
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Abstract. In this paper, we propose a simulation environment for home
network systems. The simulation environment consists of real houses,
large-scale simulation testbeds and many simulation components such as
environment, home appliances, electric power and human activity. These
home simulations can install simulation components with different com-
plexities. It enables the simulation to scale up the number of home on
testbeds with limited nodes. As one of the results of the physical en-
vironment simulation, we compare the temperature measured in a real
environment against that of a simulated. By being executed on large-
scale testbeds and cooperating with real houses, the simulation achieves
large-scale, realistic and real-time simulation of home network services,
such as evaluating effects of an energy consumption service for a city of
ten thousands households.

Keywords: simulation, emulation, home network, ubiquitous network,
real-time, modeling, CFD.

1 Introduction

In this paper, we propose an ongoing research about realistic simulation environ-
ment for home network system, ubiquitous network system and context aware-
ness system. The simulation environment consists of real houses, testbeds and
home simulator based on simulation components. Figure 1 describes an overview
of the simulation environment. The concept of the simulation environment is an
emulation, which enables various home network applications to be executed with
a native binary in real-time. The components of the simulation environment can
be replaced with other simulation components or real objects.

The experimental environment is assumed to be StarBED[1] which is a large-
scale networked testbed and on Home Network testbed. These testbeds provides
functionalities to set up experimental configurations with supporting software
(SpringOS[2], QOMET[3], RUNE[4]).
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Fig. 1. Simulation Environment Overview Fig. 2. Home Simulation

2 Home Simulator

The home simulator is a simulation of one house, which includes simulation
components such as an environment, home appliances, electric power and human
activity.The components are exchangeable for other simulation components. A
combination of simulation components affects the complexity of the simulation,
the speed of the simulation and the accuracy.

Figure 2 describes a simulation using a real house and home simulators. The
home simulator provides common interfaces to access the home network. When
an event occurs on the home, the home simulator changes the inner state of
simulation components and sends appropriate control messages of home network
if necessary.

3 Environment Simulation Component

The environment simulation component provides us for information related to
physical space such as location, physical quantities (temperature, humidity, il-
lumination), weather, disaster and so on. This information is measured as raw
data by various sensors or is recognized as events by context awareness system.

One of the simulation components is the simulator of the physical environ-
ment properties, shown in figure 3. It calculates physical quantities using CFD
(computational fluid dynamics). The calculated results can be accessed by the
environment API to generate simulated sensor data in real-time.

As an evaluation of the simulation, we compared the simulation results of
temperature with real experimental results. Figure 4 describes the comparison
of the temperature of one room when air conditioner is cooling the room.

4 Future Works

In this paper, we proposed a simulation environment, which consists of real
houses, testbeds and simulation components such as environment, home sim-
ulator, electric power and human activity. The simulation system executes in
real-time to evaluate large-scale home network services.
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In future, we keep on developing more simulation components and enhancing
the existing one. Currently, we are researching human simulation that models the
behavior of residents using three statistical models. The first model is based on
a statistical analysis of time schedules of human activities. These time schedules
are generated by a profile and user preferences. The second model is a one-human
activity model without contradicting behavior patterns. The third model is based
on specific activities, which can be defined by the user. These three models can be
used to simulate in order to human activity to evaluate home network services.

Finally we accumulate the simulation results to produce knowledge about
various home network services.
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Abstract. There are two types of network traffic in experimental en-
vironments. One is traffic which is derived from target elements and
the other one is background traffic which is derived from surrounding
elements. There is very little knowledge on the relationships between
new elements and existing elements; therefore, surrounding elements that
seem to have no apparent relationship with the target elements should
also introduced into the environmental environments. Therefore emulat-
ing background traffic is important to take realistic experimental results.

We propose XBurner—a platform that can be used to generate mass
background traffic using a number of actual and native application soft-
ware on virtual PCs. Driving actual application software is important to
introduce real behavior of elements on real environment into experimen-
tal environments. The environment in this platform is developed using
AnyBed and XENebula and is controlled by SpringOS.

1 Motivations

Background traffic has different characteristics from traffic for target elements. In
most cases, one background connection doesn’t share wide bandwidth, but many
tiny connections totally occupy much bandwidth. Therefore, application software
which send out background traffic don’t require high performance machines and
many of these connections with different source-destination pairs are required to
make experimental environment more realistic.

Our approach is to build virtual network consists of many nodes for running
many actual network software. Each virtual nodes with its own IP addresses can
make many source-destination IP address pairs by their communication using
actual network software. By using actual software, experimenters can introduce
their own traffic pattern, their own implementations, and several implementa-
tions for one specification which have different behaviors.

2 Design and Implementation of XBurner

We use some existing proposals to generate native traffic from remotely-managed
actual application software.
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Fig. 1. Traffic Generation with XBurner

Fig. 2. Experimental Environment

XENebula[1] is a Xen-based platform for building large-scale network exper-
imental environment. It has capability to setup several hundred of virtual ma-
chines on a dozen of physical nodes.

AnyBed[2] is a tool that create configurations for the quagga-routing daemon
according to topology databases such as CAIDA AS Relationships[3] dataset.

SpringOS[4] is a software suite for controlling experimental nodes to imple-
ment user requirements on network testbeds.

Using AnyBed and XENebula, users can run many virtual nodes and emu-
late a large-scale L3 network that is actually routed by dynamic-routing proto-
cols. SpringOS can trigger application software on the environment to generate
native traffic. Its experimental scenarios can be used as templates for other
experimenters.

Figure 1 shows the overall schematic representation of XBurner. Common
services such as DNS and SMTP which are implicitly used by many applications,
may be implemented on the environment.

To evaluate our proposal, we implemented XBurner for simple traffic genera-
tion. We built a large dumbbell topology using 238 virtual nodes on 8 physical
nodes which consist of Pentium E2200 2.2 GHz CPU, 4 GByte Memory, and
2 NICs; this topology is illustrated in Figure 2. The nodes are connected to a
intelligent switch. We emulate two Inter-AS networks on 4 nodes and they were
connected via a physical PC router.
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Fig. 3. Measured traffic on the beside of the physical router

To build this environment, we extend XENebula and AnyBed because current
implementations of them are focused only to generate one BGP networks. Our
extensions cover to run much more application software on virtual nodes and
specifying IP address range of emulated network, and so on.

On the building the topology, we generate traffic using our SpringOS scenarios.
The server nodes generate “apache” configuration and startup it then clients
run “wget” HTTP clients to get 1M-size file to its servers. After getting the file,
clients sleep 1 second and get the file again.

There are many source and destination IP address pairs and the throughput
observed beside of the physical router by “sflow” is shown in figure 3. This
experiment shows that XBurner can run as a platform for traffic generation.

3 Future Works

XBurner is merely a platform for generating traffic using native application soft-
ware, and the most important point in future is consideration of traffic patterns
and packet forms composing them for evaluating typical services and imple-
mentations. We’ll generate many kinds of traffic and provide them to users as
SpringOS scenarios to generate the same traffic patterns. There are still sev-
eral open issues about XBurner; accuracy of triggering actual software, coverage
investigation, preparing kinds of template, and so on.
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Abstract. In recent years Wireless Sensor Networks (WSNs) have en-
joyed a growing amount of attention. One particularly promising prospect
is to employ WSNs as an extension of the future internet into the real
world; this motivates experimentally driven research to evaluate and
benchmark new concepts on WSNs. With our poster we will show our
approach to virtualizing Wireless Sensor Network testbeds. With this
technique we are able to reconfigure the topology of a WSN testbed
without changing the physical location of nodes; it even allows building
virtual topologies on top of federated testbeds.

1 Introduction

Testbeds are the natural way for evaluating new algorithms, approaches, or ap-
plications after simulations. On the one hand, a testbed with real hardware
allows evaluating a system with the hardware restrictions of a WSN, like limited
buffer size and battery capacity, variable transmission characteristics, environ-
mental interference, variable time drift, and real-world sensor data. On the other
hand, a testbed is expensive to set up and to maintain, hard to reconfigure for
a different experiment, and usually features a fixed number of nodes. A possible
approach to deal with these disadvantages is to virtualize parts of the testbed.
First steps towards virtualization are introduced in [4], where the radio com-
munication in a WSN is virtualized, and in [1], which describes how to run
concurrent experiments in one testbed.

In this paper, we present the approach taken by WISEBED, an FP7 EU
project, which comprises 9 partners from 6 different countries. Each partner
provides a local testbed (i.e., the one presented in [3]) consisting of heterogeneous
sensor nodes (such as TelosB, Mica2, iSense or Sun Spot equipped with different
sensors) arranged in different topologies with a total of up to 2000 nodes. A user
may use the complete WISEBED testbed or only use a subset and can control
the experiment via a web-based interface or a piece of software. In the following,
we introduce our technique for virtualization (so-called virtual links) and their
application to create (virtualized) federated testbeds.
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2 Virtual Links

Virtual links allow sensor nodes—located in the same or in different testbeds—
to communicate with each other even if they are not in communication range
or have incompatible radio interfaces. Virtual links are created using a piece
of software on each sensor node (a so-called virtual radio), which contains a
routing table of the form (SensorNodeID, interface). Upon sending a message to
a specific node, the radio knows via which interface a message has to be sent.
This interface could be the node’s hardware radio or the virtual interface, which
forwards the message to a testbed server (as shown in Figure 1(b)), which in
turn delivers it to the destination node. In addition to adding links to a node, it
is also possible to drop messages from certain senders to prohibit communication
between neighboring nodes.

Fig. 1. Architecture of a virtualized testbed (a) and a virtual link (b)

Nodes that are arranged in a grid can be rearranged using this technique, e.g.,
in a line or using a random topology. This feature allows the specific definition
of the desired testbed topology needed for an experiment, similar to simulations,
but the experiment is run on real hardware. Furthermore, one can add simulated
nodes to a physical testbed and define communication parameters like RSSI,
LQI, and message loss. These functions pave the way for building any virtual
topology, as it is needed for an experiment. For more details on virtual links, we
refer the reader to [2].

3 Federating Testbeds

As shown in Figure 1(a), a physical or simulated testbed is exposed to the inter-
net by a testbed server. Each testbed server provides the functionality to allocate
parts of a testbed for a specific period and to manage and control experiments,
e.g., flashing and resetting sensor nodes, monitoring the experiment, managing
virtual links, etc. The testbed server exposes this functionality through a set
of Web Service APIs. In addition to physical and simulated testbeds, we de-
veloped a federating testbed server that is able to control different testbeds.
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The federator implements the same set of Web Service APIs mentioned above,
thereby providing transparent access to the underlying testbeds. Furthermore,
the server can control both physical and simulated testbeds, as well as other
federated testbeds, allowing for arbitrary hierarchical composition of testbeds.

This means that a user can reserve a local testbed, configure an experiment,
log the runtime, and compare the results with experiments on other local testbeds
or even federated testbeds, just by changing the connection to the specific testbed
server. In a federated testbed, virtual links are used to tunnel messages from one
node to nodes in a different testbed, making them virtual neighbors. This allows
defining virtual topologies in a federated testbed and hiding boundaries between
different testbeds from the application.

4 Poster

We ran a number of experiments, comparing non-virtualized with virtualized
testbeds (including flooding of sensor data or time synchronization) to evaluate
the impact of virtualization. First results show that our approach is realistic and
provides a good performance for experiments. Furthermore, applications cannot
distinguish between a real testbed and a partially virtualized one. On our poster
we introduce the architecture of virtualized testbeds and the API used to define
and establish the virtual topologies, present first results, and give an outlook on
future work within WISEBED.
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Abstract. The Internet revolution introduced a single, adaptive ab-
straction layer for global communication. Today, IP interconnects mil-
lions of applications, which themselves are bound to the present IP layer
via the socket API. After almost 30 years, the time has come to aban-
don this focus on a single, homogeneously established Internet protocol
and thereby release the accumulated needs for innovation on the net-
work layer. H∀Mcast addresses this goal by following the evolutionary
approach of a hybrid multiservice network layer that decouples service
and application development from infrastructure deployment. The ob-
jective of this work is a universal, robust service access that allows group
applications to run everywhere, no matter what the status of regional
technological deployment will be.

Keywords: Internet service architecture, hybrid multicast, multicast
mobility management, multicast security.

1 Introduction

Emerging mass applications like IPTV and Massive Multiplayer Online Role
Games (MMORGs), but also traditional communication systems such as video-
conferencing or newscasts, distribute content to large receiver groups. The most
efficient way for group dissemination follows (optimal) distribution trees and is
executed on the lowest possible layer [1] available in the network. IP Layer Multi-
cast [2] achieves this goal by providing a corresponding extension of the network
socket API and by a dynamic mapping onto the MAC layer. However, a trans-
parent employment of group communication requires a global deployment of IP
multicast. Despite of its long-term availability in protocols and implementations,
this has not been seen over the years.

The H∀Mcast approach selects the example of group communication to demon-
strate how a future multiservice Internet can immediately enable new services,

� This work is supported by the German Federal Ministry of Education and Research.
H∀Mcast (http://hamcast.realmv6.org) is part of G-Lab (http://www.german-
lab.de).

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 635–639, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011



636 T.C. Schmidt and M. Wählisch
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Fig. 1. Reference scenario for hybrid multicast, interconnecting group members from
isolated homogeneous and heterogeneous domains

even at a stage of gradual, incomplete deployment. Multicast is to be realized
in a concept of multiple, simultaneously operating layers. This will give rise to
a continuous Service Availability, at first. At second, an adaptive selection will
ensure that only the lowest available layer comes into operation and thereby op-
timize Service Efficiency. These functions, combined with further capabilities at
end systems, will be hidden behind a uniform programming interface, such that
any requirement on network-specific choices or arrangements is taken away from
application programmers. A straight forward way to implementing universally
deployable products is thus regained.

This paper presents a brief overview of the ongoing project work. In the fol-
lowing section 2, we discuss the core problems and give a conceptual overview of
the H∀Mcast system-centric service model. Section 3 introduces the implemen-
tation and a new programming interface for group services. A conclusion and an
outlook complete this writing.

2 Approaching the Internet Service Problem

During the last decade, the Internet has showed resistance towards deploying
new services or technologies, and multicast serves as an excellent example for
the underlying deadlock: As group communication is a complex, composite ser-
vice that can be realized in many flavors and various technologies, individual
stakeholders of the Internet community make choices of service design and tech-
nological deployment. Since there is no common interface to access these various
techniques, applications drive individually implemented solutions that minimize
interaction with the network infrastructure and thus act as disincentive towards
a universal deployment. Users, programmers and operators not only pay for this
with higher efforts, lower efficiency and lack of innovation, but new service re-
quirements such as mobility [3], multi-homing, and security challenge original
design parts of the Internet and put additional stress on any rag-type service
architecture.
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The many flavours and pluralistic technologies of group communication – in-
cluding IPv4 and IPv6 – require hybrid solutions. As displayed in Figure 1, such
approaches need to integrate (1) Multicast domains running the same multicast
technology but remaining isolated, possibly only connected by network layer
unicast; and (2) Multicast domains running different multicast technologies, but
hosting nodes that are members of the same multicast group. Hybrid multi-
cast may be realized with limited efforts and acceptable performance [4,5], but
requires enhanced intelligence when accessing the network layer.

Following the end-to-end design principle [1] and inspired by current over-
provisioning at end nodes, H∀Mcast allocates this service intelligence at edge
systems. The system-centric group communication stack is located in an adap-
tive, modular middleware that represents an abstraction layer between applica-
tions and transport technologies. The middleware is a unique daemon process
instantiated once per host at start-up, and includes modules for service discovery,
name-to-address mapping, and technology-specific service interfaces. It provides
efficient multicast access for any group application without reimplementation
and redundancy, and offers a path to replace current proprietary workarounds
deployed in manifold ways. Encapsulated by a high-level API, application-driven
service establishment may thus proceed by installing a system service, indepen-
dent of ISP awareness and without the need of globally upgrading the network.

3 API and Implementation

Multicast application development should be decoupled of technological deploy-
ment throughout the infrastructure. It requires a common multicast API that
offers calls to transmit and receive multicast data independent of the supporting
layer and the underlying technological details. For inter-technology transmis-
sions, a consistent view on multicast states is needed, as well. In contrast to
the standard multicast socket interface, the H∀Mcast API abstracts naming and
addressing [6]. Using a multicast address in the common socket API predefines
the corresponding routing layer. In this approach, the multicast address used
for joining a group denotes an application layer data stream that is identified
by a multicast URI and without an association to the underlying distribution
technology. In addition, a system layer at each device accounts for a late binding
of names to addresses (i.e., during run-time and not compile-time).

Multicast group names are based on an URI scheme that is defined as follows:

scheme "://" group "@" instantiation ":"
port "/" sec-credentials

The scheme refers to the namespace of the assigned identifier (e.g., ip, or sip),
group denotes the group ID, instantiation identifies the entity that generates the
instance of the group, port identifies a specific application, and sec-credentials
are optional to implement security. Valid group IDs will be ipv://224.0.1.1:4000
or sip://snoopy@peanuts.com, for example. This identifiers are passed to directly
to a socket, using high-level group calls.
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not visible to the developer/application

HAMcast
Socket

Overlay APIs

Native Socket APIs
(IPv4/IPv6)

HAMcast Middleware

HAMcast API

Fig. 2. The H∀Mcast service architecture composed of an abstract socket that grants
service access as a facade to one or several network service interfaces via an intelligent
middleware

The H∀Mcast socket describes a group communication channel composed of
one or multiple interfaces. A socket may be created without explicit interface
association by the application, which leaves the choice of the underlying for-
warding technology to the group communication stack. However, an application
may also bind the socket to one or multiple dedicated interfaces, which prede-
fines the forwarding technology and the namespace(s) of the Group Address(es).
All of this happens at a system-layer as visualized in Figure 2 that concentrates
hybrid multicast complexity and simplifies application and network duties.

4 Conclusions and Outlook

In this paper, we argued that a system-centric deployment in parts is a promising
way to overcome the current Internet feature freeze. For the example of hybrid
adaptive multicast, we presented an architecture and prototypic realization of
a group communication service that met the requirements by two core contri-
butions. First the various service instantiations and deployments are subsumed
below an abstract service entry point implemented as a middleware at end sys-
tems. More importantly, a universal service access is granted to applications
following a refined general multicast concept and a technology-agnostic API.
Thereby and for the first time, group applications can be written once, but run
everywhere.

In future work, we will extend implementations and large-scale testing. In
particular, support for different programming languages waits to be added. We
further plan to intensify standardization work of the API to make these achieve-
ments valuable for a wider public.
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Abstract. There is an increasing demand of multimedia and location aware ser-
vices when an accurate and immediate response is needed, for example in the 
case of emergency services. In parallel, the technology has evolved from Circuit 
Switch (CS) to Packet Switch (PS) networks requiring backwards compatibility. 
As a result the emergency services support for NGNs, in particular for IMS, is 
being standardized by 3GPP, NENA, ETSI. In this paper we present architec-
ture for Emergency Services support in IMS, starting from the one from 3GPP. 
We have implemented this architecture as the Emergency Branch of the open-
source project Open IMS Core. The available methods for personalizing the 
testbed and validation scenarios are described here. More important, the man-
agement of resource allocation and prioritization of emergency calls is also dis-
cussed in the context of the emerging EPC. 

Keywords: IMS, emergency services, location aware, LOCSIP, LoST, SIPp. 

1   Introduction 

Telecommunications play a major role in speeding response and minimizing loss of 
life and property. Communications systems can help, for instance, when making a 
daily emergency call to police, ambulance and fire brigade. For example, if the loca-
tion of the caller is determined the call can be forwarded by the network to the nearest 
Public Safety Answering Point (PSAP), including mobile rescue teams, eliminating 
the delay for a central call center to transfer the call. At the same time the PSAP can 
be instantly informed about the accurate location of the caller leading to reduced nec-
essary call duration and problems related to pronunciation or human error. When the 
caller is moving, the PSAP can monitor the current caller location.  

IP Multimedia Subsystem (IMS) [0] is the result of the standardization effort of 
3GPP for a platform offering Voice over IP (VoIP) and other multimedia services 
supporting multiple access network technologies from Public Switched Telephone 
Network (PSTN) to 3G mobile. Other standardization bodies, like ETSI, are also 
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defining interfaces towards IMS. Next Generation Networks (NGNs), in particular 
IMS, are certainly the future replacement of the current telecommunication networks; 
therefore the current emergency systems need to be upgraded in order to fulfill the 
NGNs requirements.  

The need for Emergency Services support in the emerging platforms has been  
recognized also by 3GPP that initiated the standardization of context aware emer-
gency services architecture in IMS. In order to validate the specifications and to find 
the possible breaches, there is a need for a testbed. This is the reason we have devel-
oped one that enables not only the industry to have a testbed for emergency services, 
a standardization starting point or an evaluation testbed for potential commercial 
solutions, but also the academia in the path for future research. 

The open-source Open IMS Core project [3] was released in 2006 by the Fraun-
hofer FOKUS Institute and has been recognized as a reference implementation and 
testbed for IMS. The emergency branch of the project [2] can be used as emergency 
services in IMS testbed. It has been developed during the collaboration with Telefo-
nica Research and Development (TID) under the umbrella of the project IP-based 
Emergency Application and serviCes for nExt generation networks (PEACE) [4] 
partly financed by the European Commission. 

The central functionality of the testbed, dispatching a call to the nearest required 
service center, has a more general appliance in the field of context aware services: it 
can be used for other services than emergency ones like taxis, pharmacies, restaurants 
or gas and electric stations. 

In this paper we present the implemented testbed. The document is divided as fol-
lows: section 2 for the state of the art in the emergency services support for IMS and 
some of the protocols related to location information defined by IETF, section 3 for 
the design and implementation of the testbed as well as the general functionality and 
methods for personalizing it, section 4 for the most representative validation scenarios 
are presented and section 5 for the roadmap of the solution and conclutions. 

2   State of the Art 

In this section we describe the architecture for emergency services support, as speci-
fied by 3GPP and the IETF standardization effort for emergency services, including: 
the emergency URNs that a caller can use when generating an emergency call and 
some of the current formats and protocols related to location information. 

2.1   3GPP Architecture of the IMS 

The IMS framework [Fig. 1] is the result of the 3GPP standardization group and in-
cludes three layers: the Access Layer, the Control Layer and the Service Layer.  

The access layer consists of IP routers and legacy PSTN switches that provide ac-
cess to the IMS network both from contemporary IP telephony devices and older 
circuit switched devices respectively. IP devices compatible with IMS incorporate a 
SIP user agent that can be used, for example, to place voice or video calls toward the 
network.  
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The control layer of the IMS network manages (amongst others): the subscriber 
authentication and call establishment and release using components with Call Session 
Control Function (CSCF): Proxy (P-CSCF), Interrogating (I-CSCF) and Serving (S-
CSCF) and the subscriber profile and the interface to the service layer at the Home 
Subscriber Server (HSS). 

The applications are hosted in the service layer. This layer provides the end user 
service logic and consists of SIP Application Servers (AS). An AS executes IMS 
applications and services by manipulating SIP signaling and interfacing with other 
systems.  

 

Fig. 1. IMS Architecture 

The 3GPP architecture for the Emergency Services support in IMS is defined in TS 
23.167 [5]. For routing the emergency call (E-Call) to the nearest PSAP, e.g. Police 
station new components have been added in the Control layer.  

The Emergency-CSCF (E-CSCF) – retrieves the PSAP URI for the E-Call from the 
LRF and forwards the call accordingly. If the PSAP URI is a TEL URI [6] the call 
will be sent to the gateway towards the PSTN. In the case that the URI is an Internet 
protocol URI, .e.g. SIP [7], the call will be routed using the interface to the Internet.  

The Location Retrieval Function (LRF) – receives the caller location from the E-
CSCF if this information is present in the initial request of the E-Call. Otherwise it 
will query the network about the caller location. It maps an E-Call to the nearest 
PSAP of the required service by having an interface with or including the Routing 
Decision Function (RDF).  

The emergency registration (E-Reg) was introduced in TS 23.167 [5]. It can be 
used by the user when roaming or not yet registered to its home network; otherwise 
the existing non-emergency registration to its home network is enough for making an 
E-Call. The E-Reg is used to allocate the network resources to the subscriber, inde-
pendently of its home network by ignoring the roaming restrictions (see TS 29.228 
[8]). At the SIP level, the E-Reg is a registration where the REGISTER request con-
tains a “sos” URI parameter in the Contact header as defined in [9]. 
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The P-CSCF recognizes emergency calls (E-Call) as the calls of which the initial 
INVITE request contains a request URI that matches one of the emergency numbers 
or an emergency services URN (see subsection 2.2). When the caller does not have 
enough credentials to authenticate, e.g. no available SIM, based on local policies the 
caller can still make emergency calls, known as “anonymous” E-Calls. 

2.2   IETF Standardization Effort for Emergency Services 

Currently the operator recognizes as emergency calls the calls addressed to emer-
gency numbers from the country the caller is located or emergency numbers from 
networks that have roaming agreements with the operator. 

Some of the countries even have a unified emergency number, e.g. 112, for multi-
ple emergency services. One advantage of using a single emergency number is that it 
is easier for the citizens to remember it. The disadvantage is that a call taker has to 
identify which services (e.g. Police or Ambulance) are required in every case and 
forward the call accordingly. This operation implies a delay which can be critical in 
most of the situations, especially when there is congestion at the call center. 

In order to unify the emergency number based on the type of service and independ-
ently of the country, emergency URNs were defined in [9], e.g. 
“urn:service:sos.police” for referring to the Police Department. They enable the 
caller to make E-Calls independent of its roaming state. For example, emergency 
URNs would be the solution for a roaming caller that does not know the emergency 
number from the attached network and the emergency number from its country/home 
network is not recognized by the attached one or, even worse, it has a different mean-
ing leading to the call being redirected to a different service. 

Location information can be conveyed directly, in a “location-by-value” format or 
indirectly, in a “location-by-reference” one. The recipient of a location by reference 
has to “dereference” it by interrogating a location server using the data from the refer-
ence thus obtaining a location by value [11]. 

Presence Information Data Format (PIDF) objects [12] consist of XML encapsu-
lated information that can be carried in the payload of the protocols meeting the re-
quirements from [12]. SIP is one of these protocols and at the same time can be used 
to establish a multimedia session. Based on the requirements regarding location ob-
jects [13], the PIDF-Location Objects (PIDF-LO) were defined as an extension of 
PIDF objects for “location-by-value” in [15]. SIP messages convey PIDF-LOs as 
body parts with the Content-Type “application/pdf+xml”. A PIDF-LO can encode 
geodetic as well as civic location information, timestamps, and privacy requirements 
[16, 17] and can be used for routing the call to an appropriate service instance by 
context aware systems. 

Following the same principle of presence services using SIP, Open Mobile Alli-
ance (OMA) [18] has defined the protocol Location in SIP/IP Core (LOCSIP) [19] 
that can be used for retrieving the location of a certain target identified by the SIP 
URI, IP, IMSI or other characteristics. The protocol consists of a SIP subscription 
[20] to the new introduced event package “location”. If the information is available, 
the notifications will include the location information for the corresponding target in 
the PIDF-LO format. This protocol also supports subscription filters [21] to request 
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automatic generated notifications when a parameter of the subscription’s target has 
changed, in our case when the user’s location is modified, useful for monitoring a 
moving target. 

The Location to Service Translation protocol (LoST) [22] is an XML-based proto-
col which can be used for mapping a tuple (location, service URN) to a service URI 
responsible for that type of service in an area that includes the given location. The 
LoST payload can use protocols such as HTTP or HTTPS as carriers. In particular, it 
can be used to decide which PSAP is the one in charge of a specific emergency ser-
vice in an area.  

3   Open IMS Core Emergency Services Testbed 

Open IMS Core Emergency Testbed implements a set of standard compliant compo-
nents, easily adapted to further evolution of the standards and other research topics. 
Following the emergency services architecture from TS 23.167 also described in the 
section 2.1 of this paper, the components E-CSCF and LRF have been added to the 
original Open IMS Core project. The architecture can be seen in Fig. 2. 

The P-CSCF is the first node in the SIP signaling path from the IMS network. It 
recognizes E-Calls and forwards them to the E-CSCF. The latter will query the LRF 
for the PSAP URI. In the query the E-CSCF will insert the requested service URN 
and, if present, the location information of the caller from the SIP INVITE request.  

When the query includes location information, the LRF can proceed immediately 
with mapping the pair (location, type of service) to a PSAP URI using the interface to 
the RDF. We have designed the RDF as a LoST server, because the LoST protocol 
suites the role of the RDF. Another reason was that both SIP and LoST use the PIDF-
LO format for encoding location information eliminating the delay introduced by a 
format translation when creating a LoST request.  

In order to support E-Call without location information we have designed the inter-
face between the LRF and the network based on the LOCSIP protocol. The reason for 
choosing this protocol was that it is SIP-based and is using the same location informa-
tion format as the initial INVITE request of the E-Call. This means that LRF will 
process the location information received from both the E-CSCF and the LOCSIP 
server without any format translation. The LRF has to inform the E-CSCF about the 
acquired location data. The E-CSCF includes the location information received from 
the LRF in the initial request and forwards it to the PSAP URI, without any transla-
tion of the location format. 

The specification of the interface between E-CSCF and LRF is still an open issue 
as Release 9 of IMS [24] does not state which protocol, type of messages and how 
their content should be encoded. The design has to support callback and location 
update, which have an impact on the information stored in the E-CSCF and LRF 
components and depend on: the registration state of the caller and the type of PSAP to 
which the call was forwarded: VoIP-based or legacy one (PSTN telephones).  

We have identified two types of messages that the interface between the E-CSCF 
and LRF should support:  
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1. Mapping Request. when a new E-Call is about to be established, sent from 
the E-CSCF to the LRF for mapping a location, if available, and service type to a 
PSAP URI. The reply contains the PSAP URI and the retrieved location 
information, if not included in the initial INVITE request. 
2. Release Request. when an E-Call is released: the E-CSCF alerts the LRF 
that it should free any resource allocated to the emergency call. This is important 
as it keeps the LRF clean and able to better use its resources. 

 
Fig. 2. Architecture of the Emergency Services Support of the Open IMS Core 

We have designed this interface based on SIP, as this protocol can be used to carry 
the location information of the caller, is easily extensible and, according to our de-
sign, a SIP stack is already included in the implementation of the two involved com-
ponents: E-CSCF and LRF.  

The next step was defining which SIP messages to use between the E-CSCF and 
the LRF. We have considered using the OPTIONS request to for the mapping request 
and its response to transport the PSAP SIP URI and the caller location information if 
returned from the LOCSIP server. An OPTIONS request with a marker for terminat-
ing the processing of the emergency call would also cover the release request.  

The implementation of our testbed is based on TS 23.167 [5], TS 29.228 [8] and 
TS 24.229 [22]. Open IMS Core has a module dedicated for each component. 

The support for emergency registrations was added by enhancing the modules 
pcscf, icscf and scscf. 

Then the engine for routing the emergency calls was implemented. The pcscf 
module was enhanced to recognize E-Calls. For an easily personalization of the list of 
the supported emergency numbers an XML file with (emergency numbers, emergency 
URNs) associations is loaded when the pcscf module starts.  

The ecscf module and the lrf module were added as instances of SIP Express 
Router (SER) [25] written in the C language, just like the other CSCFs. 
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The interface between the P-CSCF and E-CSCF has been secured using the Path 
header to eliminate one of the possible methods for a third party to impersonate the 
PSAP. More details about the possible attack and the solution can be found in [26]. 

When processing the E-Call, the location information included by the caller or ac-
quired by the LRF is considered to be "Location-by-value" as defined in [16, 17]. 
Both E-CSCF and LRF expect the PIDF-LO in the civic or geodetic formats men-
tioned in subsection 2.2. Otherwise the E-CSCF will reply with a 424 (Bad Location 
Information) error message as defined in [11]. The support for the PIDF-LO formats 
was implemented in a pidflo library based on the library libxml [28], shared by both 
modules. 

When no caller location information was provided by the E-CSCF but the caller 
contact address is known, the lrf module will try to retrieve acting as a LOCSIP client. 
The LOCSIP server acts as a Global Location Enabler that can access several loca-
tion databases, based on the type of the access network technology and the received 
information about the caller, e.g. PSTN number, IP. For mapping the emergency call 
to an appropriate PSAP, the module can also act as a LoST client using HTTP as 
transport for the LoST payload. For this purpose a lost library was developed based 
on libcurl library [27] for HTTP messages handling. 

4   Validation Scenarios 

For confirming the capabilities of our emergency services testbed support for multiple 
scenarios was added, from which the following were selected as the most representa-
tive. All the scenarios describe the case when the user makes a call to the Police De-
partment, but the method or status of the caller location retrieval is different. The first 
one covers the case of Location acquired by the user or caller device and the second 
one Location acquired by the LRF. These are presented here as validation scenarios in 
order to prove the practical importance of the current implementation. 

To generate the scenarios an enhanced Monster the IMS client [31] able to store 
location information and recognize and generate emergency calls. It has dedicated 
buttons for calling the Police Department, the Fire Brigade and Ambulance. For 
backwards compatibility the user can also dial emergency numbers, e.g.112. For test-
ing GPS location, a GPS-enabled Location Agent was developed that connects to the 
IMS client using the NMEA0183 protocol. Two modes of operation exist: stand-alone 
GPS or Assisted-GPS (to speed up position acquisition) over OMA Secure User Plane 
Protocol (SUPL) [32].  

Location acquired by the user or caller device. The first scenario represents the case 
when the calling IMS client is capable of determining the current location (geodetic or 
civic) (Fig. 3). Alice is registered to her home network using the SIP URI 
sip:alice@open-ims.test. She sets the IP and port of the of the NMEA server running 
on the GPS-Location Agent terminal. The location Germany, Berlin is acquired and 
the user is alerted about it. Then Alice calls the Police Department. The LRF has data 
for the area that includes Alice’s location and type of service and maps it to the PSAP 
URI sip:police_berlin@open-ims.test. The call is forwarded by the E-CSCF accord-
ingly. The PSAP can extract the location of the caller from the received INVITE  
request and show it on a map. 
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Fig. 3. Emergency call when the caller or caller's devide is  able to acquire the lcoation 
information  

 

Fig. 4. Emergency call when the caller or caller's devide is not able to acquire the lcoation 
information and the LRF succsessfully retrieves it from the GLE 

Location acquired by the LRF. The second scenario represents the case when the 
caller device is not able to acquire the current location and Alice make a call to the 
Police Department and this time no location information is included in the INVITE 
request (see Fig. 4).  If the GLE is aware of the caller location, geodetic or civic, the 
LRF will be able to retrieve it. We consider also that the LoST server has data about 
the Police Department in an area that includes the caller location. The LRF maps the 
call to PSAP SIP URI “sip:area1_police@open-ims.test”. As a result the E-CSCF will 
forward the call to the designated PSAP after including the location information in the 
body of the INVITE request. In this case, the PSAP can extract and show the caller 
location on a map. 

The scenarios have been presented as validation scenarios to the European Com-
mission during the First Year Review of the PEACE project. 

We have also created SIPp [33] scripts as a lightweight and public method for 
emulating: the caller, the PSAP and optionally the LOCSIP server.  
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5   Conclusions and Further Work 

In the present paper we have presented an emergency services testbed implemented 
following the standards from 3GPP and developed as an extension of the Open IMS 
Core project.  

One of the features not exploited yet in our implementation is a cross-layer prioritiza-
tion of the emergency calls over the non-emergency ones. We mean by cross-layer 
prioritization a mechanism for prioritizing both the signaling and the data flow. The 
prioritization can be very important especially if we have a real situation where the 
network resources are limited or the network is congested. We intend to develop an 
algorithm for the P-CSCF to prioritize the signaling flow of emergency services over the 
one of non-emergency services. With the emerging Evolved Packet System (EPS) [34], 
which is being standardized by 3GPP as a policy based framework between multiple 
access network technologies and managed multimedia services, we intend to interface 
our emergency services IMS testbed with an EPC testbed as can be seen in [35].  

Another useful feature is to enable the PSAP to update the caller location informa-
tion, optionally using time and boundary filters. This can be achieved using the Le 
interface between the PSAP and the LRF, which needs further specification. The 
privacy and security issues related to this field are also an important research topic for 
our team. Following this goal, the testbed will be enhanced with a security framework 
for validating the location of the user and as well one for protecting the privacy of the 
user. 
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Abstract.  Novel mobile cellular access network technologies like Long 
Term Evolution (LTE) promise capacities exceeding the ones of existing 3G 
networks by at least one order of magnitude. This evolution will enable the 
deployment of services which, due to their capacity requirements, are currently 
restricted to fixed access  networks. On the other hand, packet-switched-only 
architectures raise  the need for a reliable and accurate management of 
these high  access capacities, particularly service-specific Quality of Service 
(QoS) enforcement, in order to prioritize real-time (voice) services  and 
safeguard a satisfactory Quality of Experience (QoE) to the user. 

In  this paper we present the concept and architecture of a  flow-based 
QoS enforcement  architecture  called  BIQINI  which  has  been  developed  
at  the Telecommunications Research Center Vienna (FTW). It consists of a 
standard-compliant Policy and Charging Rules Function (PCRF) which is 
supported by an emulated Policy Enforcement Function (PCEF). Extending  the 
FOKUS OpenSource IMS testbed as well as other session-based signaling 
frameworks, BIQINI’s emulated enforcement component enables inexpensive 
but highly realistic tests on real-time voice and -video traffic, supporting im-
pairments like delay, jitter, loss, and link capacity limitation out-of-the-box. In 
addition, BIQINI can interface with external policy repositories, thus providing 
a versatile playground for testing rules and policies in an emulated, realistic en-
vironment for real media streams. 

Keywords: QoS, IP Multimedia Subsystem, Policy, Policy Enforcement. 

1   Introduction 

Driven mainly by the high capacities available in fixed access networks, the imminent 
end-of-life of circuit-switched equipment, and the huge expectations concerning OPEX 
(operational expenses) reduction when operating one single IP- based platform, the 
replacement of circuit-switched voice networks by packet- switched data networks is 
currently experiencing a strong progress. However, the architectural requirements of 
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such large-scale carrier-grade IP-based telecommunication systems exceed the complex-
ity of plain IETF SIP networks by orders of magnitude in order to enable satisfactory 
user experience already for the most important basic service, which is still voice. In this 
context, the IP Multimedia Subsystem (IMS), standardized by the 3rd  Generation Part-
nership Project (3GPP), has become an important candidate architecture for the access-
agnostic covering of all relevant aspects from signaling to media, from QoS reservation 
to security, charging and billing. Recently, several standardization bodies, namely 
3GPP, 3GPP2, ETSI TISPAN  and  PacketCable,  have  joined their forces to define an 
interoperable Common  IMS  platform,  agreeing  to maintain one single set of 3GPP 
standards starting with 3GPP Release 9. Moreover, recognizing the need for interopera-
bility and lower IMS complexity, main IMS vendors and operators have engaged in 
initiatives like One Voice[11] and Rich Communication Suite Initiative (RCSI)[12], 
defining minimum mandatory sets for IMS system- and service-level capabilities and 
features. 

Released under the GNU Public License in 2006, the Fraunhofer FOKUS Open 
Source  IP  Multimedia  Subsystem  Core  (OpenSource  IMS)  implementation  has 
become a cornerstone of the scientific and industrial IMS research community. 
OpenSource IMS offers a generic, extensible 3GPP Release 7 IMS core network 
reference  implementation,  including  signaling  and  security  features  as  well  as 
modules supporting the extension by means of additional interfaces (reference points). 
However, today’s fixed and upcoming Next Generation Mobile Network (NGMN) 
access technologies and –services, which require network capacities exceeding the 
ones of existing 3G networks by an order of magnitude, mandate the use of adequate 
service-specific QoS enforcement mechanisms to maintain a Quality of Experience 
(QoE) similar to the one guaranteed by circuit-switched voice services. Despite of this 
urgent need, this function is not implemented by OpenSource IMS. 

Therefore, this apparent gap has been addressed within the application-oriented pro-
ject BACCARDI (Beyond Architectural Convergence: Charging, SeCurity, Applica-
tions,  Realization  and  Demonstration  of  IMS  over  fixed  and  wireless networks) 
which has been conducted at the Telecommunications Research Center Vienna (FTW) 
during the years 2008 and 2009. As a result, the BACCARDI IMS QoS Implementa-
tion Initiative (BIQINI) has designed and implemented a QoS enforcement function 
which extends the OpenSource IMS by means of a generic, extensible, 3GPP Release 7 
conforming Policy and Charging implementation and the corresponding interfaces. 
Main parts of the BIQINI concept and implementation have been contributed by the 
Institute of Broadband Communications (IBK), Vienna University of Technology, with 
support of FTW and the associated industry project partners Alcatel-Lucent Austria, 
Kapsch CarrierCom, mobilkom austria, and Telekom Austria. 

The main aim of BIQINI is to provide a highly flexible QoS playground and multi- 
purpose plug-in for policy repositories, implementing a complex, stateful rules func-
tion, supporting active network capacity management as well as the PCC push model. 
With respect to this feature, BIQINI’s Policy Enforcement component extends Open-
Source IMS to become a reliable testing platform for Quality of Experience (QoE) for 
real-time multimedia streams. Note, however, that BIQINI does not depend on 
OpenSource IMS, and instead supports integration with other SIP or non-SIP 
session-based signaling protocols as well. 
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In this paper we argue that BIQINI provides a clear advancement compared to the 
current state of the art, most notably the open source Policy and Charging Control 
Framework (PCC) published by a group of the University of Capetown (UCT) [9][10] 
in 2007. In contrast to BIQINI, the UCT PCC operation relies on stateless gate 
opening and closing, moreover its architectural framework is relatively limited with 
respect to scalability, extensibility and active link capacity management. 

Within the open source community, in November 2009 the NGN working group of 
Fraunhofer FOKUS has announced an Evolved Packet Core (EPC) implementation 
which is supposed to include a PCC. However neither the detailed concept nor the 
implementation of OpenEPC has been released so far. Likewise, Fraunhofer FOKUS’ 
Policy and Charging Control Architecture (PoCCA) is maintained as closed source, 
being presented briefly in [3] which focuses mainly on rule processing. 

To  the best of  our knowledge, these three  contributions  already conclude our ac-
count of current related work. In contrast, commercial PCC solutions are offered by 
various IMS vendors. However, two factors are prohibitive in deploying these imple-
mentations in applied IMS research at universities or other non-profit institutions: from 
a technical point of view, these implementations are closed source, which hinders addi-
tions and modifications at source code level, whereas the cost factor of PCRFs and 
particularly of PCEFs provides a huge barrier for IMS-related research activities. 

The remainder of this paper is structured as follows: in Section 2, a brief survey of 
related architectures and open source routing and traffic control tools is provided. 
Section 3 describes the fundamental concepts and the architecture of the BIQINI 
implementation, whereas in Section 4 we present some results for selected traffic 
scenarios. Section 5 concludes the paper with a brief summary and outlook. 

2   QoS Enforcement Architectures and Tools 

Having recognized that the promotion of three diverging IMS standards for mobile, 
fixed and cable networks, respectively, entails the severe danger of an overall IMS 
failure,   3GPP   has   agreed   in   2007   together   with   other   involved   standards 
organizations, notably ETSI TISPAN for fixed networks and PacketCable for cable 
networks, to harmonize their corresponding standardization activities. Starting 
with 3GPP Release 8, the 3GPP therefore develops and promotes a Common IMS 
architecture which conforms to the requirements of all three standardization bodies, 
whereas in 3GPP Release 7, main QoS-related interfaces (reference points), particu-
larly Rx/Gx for 3GPP and Gq’/Re for the Resource and Admission Control Subsys-
tem (RACS), are not yet harmonized. 

As a consequence, the 3GPP Release 7 PCC compliant BIQINI architecture aims at 
merging  the  commonalities  of  the  3GPP  and  TISPAN  architectures  towards  
the framework for policy based admission control [4], which has been defined by 
the IETF as shown in Figure 1. Here, the Application Function (AF) is positioned 
within the SIP signaling path, having access to all requests for certain services along 
with their detailed media descriptions. The AF is responsible to query the Policy  
Decision Point (PDP), which decides if a specific request is granted or rejected, de-
pending on policies, rules, request information and user profile(s). In case the service 
request is granted, a request with rules that should be activated is sent to the Policy 
Enforcement Point (PEP). The PEP enables the requested service flow according to 
the specifications sent by the PDP. 
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Fig. 1. IETF Architecture of Policy-based Admission Control 

As far as NGN QoS enforcement is concerned, the standardization bodies 3GPP, 
(targeting mobile networks) and ETSI TISPAN (focusing on fixed NGN networks) 
have designed their own architectures, depending on the particular access network 
requirements. In the case of 3GPP, this architecture is called Policy and Charging 
Control (PCC) [6]. Figure 2 depicts main functions in this architecture which can be 
easily mapped to layers and functions in the previously presented IETF architecture. 

 

Fig. 2. 3GPP PCC Architecture 
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On the other hand, as mentioned earlier, ETSI TISPAN has developed its own ar-
chitecture for QoS enforcement which is called Resource and Admission Control 
Subsystem (RACS) [7] and illustrated in Figure 3. 

Fig. 3. ETSI TISPAN RACS Architecture 

In order to merge these two architectural approaches into a common open source 
framework and considering the focus on access networks, BIQINI does currently not 
include an Interconnection Border Control Function (IBCF), nor a Core or Interconnect 
Border Gateway Function (C-BGF or I-BGF). Charging functionality has been included 
but interfaces have not been implemented yet. Furthermore we have decided to integrate 
and harmonize PCRF, Service Policy Decision Function (S- PDF) and Access Resource 
and Admission Control Function (A-RACF) into one component, namely the Policy 
Decision Point (PDP). ETSI-defined Resource Control Enforcement Function (RCEF) 
and 3GPP-specific PCEF functionalities have been merged into a Policy Enforcement 
Point (PEP) component. The resulting architecture is aligned to the IETF recommenda-
tion [4] based on three components: AF, PDP and PEP. 

BIQINI is heavily relying on advanced routing and traffic control tools provided by 
the open source operating system Linux, most notably several system tools which 
support IP traffic queuing configuration. A detailed description of routing, switching, 
bandwidth management, queuing and IP security functions in Linux systems can be 
found in [5], in the rest of this section we will only provide an in-depth view on the 
default Linux command-line application for queuing configuration which is called 
traffic control (tc) and supports the modification of the queuing strategies to be used 
for outgoing and incoming IP packets on specific network interfaces. 

In tc, the different queuing types and –strategies are denoted as queuing disciplines. 
After setting up new queuing disciplines, IP packets must be assigned to certain queues 
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using so-called filters which match the IP packets against specific patterns, correspond-
ing to certain fields or byte sequences in the packet. Examples of these patterns include, 
e.g., source IP address, ports or any other field in the IP header. Upon successful match, 
the specific IP packet will be assigned to the corresponding queue. Note that a queuing 
discipline can, for instance, realize bandwidth management, reorder packets, delay 
packets, modify packets, etc., depending on the selected queuing discipline. A list of 
supported and implemented queuing algorithms can be found in [5]. 

The BIQINI implementation combines several queuing disciplines to realize QoS 
enforcement. The classful Hierarchical Token Bucket (HTB) algorithm manages the 
reserved bandwidth by allocating requested bandwidth to microflows. The queuing 
discipline dsmark manipulates the DSCP field of IP packets, marking all IP packets 
queued in a specific dsmark queue using a specified DSCP value. 

BIQINI uses  the  queuing  discipline  netem  for  implementing  realistic  access 
network emulation. The netem algorithm can delay, reorder, drop, and duplicate IP 
packets. By setting up several netem queuing disciplines, with different delay and loss 
values for distinct DSCP marking emulates a DiffServ[2] network. 

Finally, selective rejection or dropping of IP packets can be configured using the 
ipTables utility. A rule in ipTables describes traffic patterns and defines correspond-
ing actions for this traffic, e.g., drop, reject, or accept. The traffic can be categorized 
by means of ports, addresses, protocol numbers, flags, etc. Similar to common fire-
walls, ipTables supports default rules for packets that cannot be matched to a rule. In 
most cases it is preferable to drop or reject all traffic that is not explicitly accepted 
by a rule. 

3   BIQINI – Architecture and Basic Concepts 

Based on the survey of related architectures provided in the previous section, we will 
now present the key concepts and the resulting architecture adopted for the BIQINI 
QoS enforcement framework in detail. 

3.1   Architecture 

The basic architecture of the BIQINI implementation is sketched in Figure 4. In the 
depicted scenario, the QoS enforcement is applied on an access link which on both 
ends is protected by respective PEPs. Whereas PEP 1 on the user side ensures that the 
micro-flow from the user agent to the core is scheduled correctly such that the service 
requirements (e.g. bandwidth) are fulfilled, PEP 2 on the core side is performing the 
same task for the opposite traffic direction. Note that, if PEP 1 were not installed, the 
user could use the access link excessively with other services, for instance sending 
extremely large emails or uploading huge amounts of data. Such bandwidth consum-
ing services could then severely reduce the quality of real time services like voice 
communication. Thus, PEP 1(included in e.g., Customer Premises Equipment (CPE)) 
ensures proper bandwidth usage in the uplink direction. The finding that a layer-3-
QoS enforced access links must be  protected  on  both  ends  (therefore extending  
the 3GPP and TISPAN architectures) is an essential outcome of the BIQINI project. 
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Otherwise QoS enforcement cannot protect uplink and downlink simultaneously, 
bearing the risk of QoS degradation. This architecture is similar to [1], which covers a 
study of enforcing QoS on Customer Premise Networks (CPN) and supports the real-
istic asymmetrical modeling of impairments on access links. 

 

Fig. 4. Architecture of BIQINI QoS Enforcement for Access Links 

When no GGSN or DSLAM is available, the characteristics of a specific access 
network (e.g., ADSL or 3G) can be accurately emulated from the point of view of a 
layer 3 protocol with the NetEm instance depicted in Figure 4 [14]. This is done by 
means of the Linux netem queuing discipline. 

In order to differentiate between different service classes, we also have installed a 
netem instance on the PEPs. To be more specific, a microflow of the class “realtime 
conversational” needs low delay values and loss rates. In this case, our PEPs have to 
guarantee that the service receives the correct QoS on the access link. To realize this, 
the PEPs have to mark the IP packets with the correct DSCP value corresponding to 
this service class and handle it correspondingly. When the packets traverse the core 
network, DiffServ enabled router can determine which service class is to be used for a 
specific packet. As an example, we suggest to use the DSCP class 0x03 for realtime 
conversations. Thus, both PEPs have to mark packets of this class with the 
DSCP value 0x03, and at the same time the netem at the access link has to assign 
packets with DSCP value 0x03 to the queuing system handling realtime conversation, 
which, on its part, must realize low delay values and loss rates. On the other hand, 
best effort traffic could receive for instance the DSCP marking 0x00, which 
causes netem to treat such IP packets with a delay of several hundreds of msec and 
loss rates of 2% and beyond. 

In our overall QoS architecture, the PEPs are responsible for realizing bandwidth 
management. To this end, each incoming flow is shaped according to the installed 
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rules. Flows that utilize too much bandwidth are queued at the PEP, thus increasing 
the corresponding delay value. In the worst case, this may lead to dropping the pack-
ets as soon as the queue is filled. 

Our PEPs can be configured with or without ipTables (see section 2). In the case of 
a configuration without ipTables, any traffic is admitted but marked at the PEP as best 
effort traffic. Therefore, netem treats this traffic with lowest quality. However, if 
services are enforced through the PDP, they are marked at the PEP with a different 
(“better”) DSCP value and are treated with higher priority. Additionally, the PEP also 
ensures that the enforced services can utilize their required bandwidth. 

The communication between AF, PDP and PEP is realized using the Diameter [8] 
protocol. More specifically, the AF utilizes AA-Requests (AAR) and AA Answer 
(AAA) messages over the Rx interface to transport authorization requests to the PDP, 
whereas a Session Termination Request (STR) terminates a session. The communica-
tion between PDP and PEP is realized over the Gx interface and uses Re- AuthRequests 
(RAR) and Re-Auth Answer (RAA) messages. Figure 5 illustrates the Diameter mes-
sages employed. 

 

Fig. 5. Message Flow between AF, PDP and PEP 

3.2   PDP – Policy Decision Point 

As already mentioned previously, the PDP is the specific component that is responsi-
ble for translating the media-specific data of a service request (like codec and media 
type) to QoS-specific parameters (like bandwidth and delay requirements). In order to 
realize this task, the PDP uses rules from an external rules repository, which allows  
deriving  the  appropriate  QoS  parameters  from  service  specific  and  user specific 
data. 
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Our implementations of the Rx and Gx interfaces are based on the jDiameterPeer 
due to the Fraunhofer FOKUS group. On top of it we have built a basic logic, 
which is able to handle incoming messages, to keep pointers to the corresponding 
state machines and to forward messages to the Rx and Gx interfaces. We have im-
plemented the resulting state machine (depicted in Fig. 6) as well as “dummy” inter-
faces to a Subscription Policy Repository (SPR), which handles user and domain 
policies. Additionally, our implementation provides references to the PEP instances 
which have to be used for each subscriber. 

One of the main tasks of the PDP consists of mapping all requests to sessions, thus 
enabling the storage of a consistent state for each session. In this context, messages 
received by the Policy Decision Point (PDP) can be subdivided into preliminary ser-
vice information messages and final service information messages. Whereas final 
service information messages install rules at the PEP, preliminary information mes-
sages only check if a requested service meets the corresponding policies and if there 
are enough resources available. 

The resulting state machine includes therefore the following set of states: 

• Receiving: waiting for incoming AAR message 
• Accepted PRE: received a AAR with Service-Type AVP set to PRELIMI-

NARY_SERVICE_INFORMATION 
• Rejected: Service information received with not acceptable content (either due 

to policy or insufficient resources) 
• Accepted Final: received AAR with Service-Type AVP set to FI-

NAL_SERVICE_INFORMATION 
• Committed: enforcing the rules at the PEP successful 

 

Fig. 6. PDP State Machine 
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• Closing: received STR from the AF, trying to terminate session at the PEP 
• Failed: enforcing the rules at the PEP failed 
• Terminated: Session successfully terminated 

Note that in Fig. 6, a sequence of black (dashed) arrows depicts the traversal through 
the states, if the initial request already contains the final service information and if the 
installing of the rules at the PEP works properly. Blue arrows (dash-dotted) indicate 
that the initial request contains only preliminary service information, and a second 
request is sent to install the rules at the PEP. Red arrows (dotted) are used if either the 
request coming from the AF is not acceptable or the installation of rules at the PEP 
has failed. In order to maintain the clarity of presentation, the three states necessary 
for a session update are not shown in the diagram. Note that for each session han-
dled at the PDP, a new state machine is created in order to deal with the correspond-
ing messages. 

3.3   PEP – Policy Enforcement Point 

The Policy Enforcement Point (PEP) is responsible for detecting microflows and 
processing them according to the configured QoS parameters. Both processes (detec-
tion  and  processing)  are  defined  by  rules  which  are  received  via  the  Gx inter-
face from the PDP. 

 

Fig. 7. Interface Cards and Queuing at the PEP 

Our implementation is realized with Java, reusing the jDiameter stack already in-
troduced. The detection and enforcement process is realized by Linux tools like tc and 
ipTables. The PEP stores the current state and configuration of each rule and 
tracks  the  bandwidth  consumption  in  the  PEP  Rules  Management  module  for 
charging. For a comprehensive illustration of the main PEP components we refer to 
Figure 7. 

The PEP works an intermediate component between the communicating hosts. In 
order to be fully transparent for IP traffic, it is essential to configure the PEP as a 
bridge. With Linux, this requires two interface cards at the host, one towards the user 
agent  and  one towards  the  core  network. The  queuing  is  always  realized  at  the 
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sending interface, whereas QoS enforcement for traffic directed to the user agent can 
only be realized on the interface card towards the user agent (i.e. downlink). Similarly 
traffic directed to the core network can only be treated at the interface card towards 
the core network (i.e. uplink). In our implementation, we use the Linux system tool 
brctl to configure a Linux host with two interface cards as a bridge. 

Additionally, we have decided to reuse the concepts for installing, modifying and 
removing  of  rules  by  means  of  the  Diameter  protocol  from  the  3GPP  PCC 
architecture, where these rules are called “charging rules” and include four main as-
pects: 

• Each rule has a unique identifier (Charging Rule Name), which is mainly neces-
sary to be able to remove a certain rule. 

• Each rule is responsible for a certain microflow characterized by a flow de-
scription using the following parameters: source IP address, destination port, des-
tination IP address and protocol number. In the case of a bidirectional flow, two 
such flow descriptions are required. 

• The third part of a rule contains QoS information which is described in terms 
of the guaranteed bit rate, the maximally requested bandwidth and the traffic 
class (like streaming, realtime conversational, etc.). The traffic class is used to set 
the DSCP value properly. 

• The last part in the charging rule concerns charging information. As our im-
plementation currently is prepared for charging but does not implement charging 
interfaces, any information contained in this part is ignored. 

Altogether, these four parts are encoded as so-called Charging Rule Definition AVPs, 
see Figure 8. 

[Charging-Rule-Install]
 [Charging-Rule-Definition] 
  [Charging-Rule-Name] Video-Rule;12345 
  [Flow-Description] 
   permit out 17 from 10.0.0.1 to 10.0.0.6 10001 
  [Flow-Description]  
   permit in 17 from 10.0.0.6 to 10.0.0.1 3400 
  [Flow-Status] ENABLED (3) 
  [QoS-Information]
   [QoS-Class-Identifier] 1
   [Max-Requested-Bandwidth-UL] 175000
   [Max-Requested-Bandwidth-DL] 175000
   [Guaranteed-Bitrate-UL] 150000
   [Guaranteed-Bitrate-DL] 150000
  [Online] DISABLE_ONLINE (0) 
  [Offline] ENABLE_OFFLINE (1) 
  [Metering-Method] DURATION (0) 
  [AF-Charging-Identifier] chargingid987654321  

Fig. 8. Example of a Charging Rule Definition 

After starting the PEP, some generic rules have to be installed first (for example 
signaling traffic should be able to pass under all circumstances). Such predefined 
rules are stored in the configuration file of the PEP and are activated automatically. 
As an alternative option, a Charging Rule Command triggered by the PDP can also 
install these rules. 
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After  receiving  an  installation  request  via  the  Gx  interface,  the  PEP  has  to 
configure the bandwidth management (realized with the HTB queuing discipline, see 
section 2) and activate the firewall for the respective microflow. The rate and ceil 
parameters of the tc command are configured by the guaranteed bit rate and Max- 
Requested Bandwidth value of the QoS Information AVP, which has to be completed 
both for the uplink and downlink direction in the case of a bidirectional microflow. To 
realize DiffServ marking, we add a dsmark queuing discipline and configure a DSCP 
value that fits to the traffic class. In the next step, the firewall is informed by the ipT-
ables command that this microflow has to be allowed to pass through. As mentioned 
before, it is also possible to run the PEP without gate blocking. By using the tc queu-
ing system HTB, it is guaranteed that a certain microflow cannot exceed the reserved 
maximum requested bandwidth. If too much traffic should be injected into the net-
work, the PEP will shape the traffic according to the installed rules. Additionally, the 
currently used bandwidth and the total amount of sent bytes are observed for each 
microflow. These data could be used in later releases to realize flow-based charging. 
Note that we do not use these data to infer a bearer loss, as individual services could 
generate traffic patterns with no data sent over a long period of time that would 
wrongly be detected as bearer loss. 

4   Results 

We have tested the BIQINI QoS enforcement framework for various typical scenarios 
including voice and triple play applications in combination with an Open Source  
IMS  testbed.  For  background  load  generation,  we  have  used  the  Jperf frontend, 
which relies on the functionality of the Iperf traffic generator [13]. The chosen sce-
narios illustrate the reduction of best effort Constant Bit Rate (CBR) Jperf UDP  
traffic  due  to  a  realtime  session,  which  has  been  signaled  using  IMS  and en-
forced using BIQINI. Figures 9, 10 and 11 depict the goodput and jitter of a Jperf best 
effort stream for three typical cases: 

• Scenario 1: 400 kbps best effort traffic is sent over the bridge, while after 15 
sec the PEP is activated and consequently throttles down the traffic to 200 kbps, 
see Fig. 9 top. 

• Scenario 2: The 200 kbps traffic is running in the background, while after 60 sec a 
CBR G.711 call starts for a limited duration of 12 sec, which needs about 82 kbps 
(excluding IP headers), see Fig. 9 middle. Note that the maximal bandwidth has 
been chosen in order to illustrate the impact of the G.711 call, which needs nearly 
half of the bandwidth available at Jperf. 

• Scenario 3: A Variable Bit Rate (VBR) HD video stream consumes varying 
bandwidth depending e.g. on the amount of motion within subsequent frames and 
thus reduces the Jperf best effort traffic accordingly. In contrast to constant bit 
rate (CBR) voice streams, allocation of the maximum required bandwidth for 
VBR video streams leads to a significant waste of resources. This demonstrates 
one important BIQINI feature: due to the use of tc’s HTB queuing discipline, the 
PEP does not reserve the maximum bandwidth required for the video stream. 
However, it adapts dynamically and automatically to the video stream’s effective 
bandwidth consumption up to a specified maximum limit of the prioritized traffic. 
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Fig. 9. Three Typical JPerf Scenarios: Reserved Bandwidth (Sc. 1, top), CBR voice call (Sc. 2, 
mid), VBR HD video call (Sc. 3, bottom) 

5   Conclusions and Future Work 

This paper presents the fundamental concepts and the architecture of the BIQINI QoS 
framework. Intended to serve as an add-on to the FOKUS Open Source IMS testbed, 
it is well suited for use also with other session-based signaling protocols like plain 
IETF SIP. The implementation comprises a Policy Decision Point (PDP) as well as an 
emulated Policy Enforcement Point (PEP) enabling transparent, realistic and auto-
mated QoS and QoE trials. BIQINI realizes the reference points Rx and Gx specified 
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by 3GPP and provides a policy interface which can be used to experiment with vari-
ous policy repositories. 

One important limitation of the emulated PEP concerns the delay between activa-
tion and reaction (i.e. QoS enforcement). In our experience, this delay can amount up 
to one second which we, however, consider to be acceptable for a prototype imple-
mentation. 

As future work we plan to publish the BIQINI source code under the GNU Public 
License as a relevant enhancement of the current functionality of the Open Source 
IMS testbed. Moreover, recent projects at the FTW Vienna with specific focus on 
policies and services in IMS and non-IMS environments have started to extend 
BIQINI’s policy repository by interfacing with semantic policy engine implementa-
tions. 
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Abstract. This article focus on IPTV security and IPTV service personalization 
by the introduction of an Identity Provider as new participant in IPTV service 
provision that deals  with  authentication, user profile  and device profile 
management. The Identity Provider, integrated as part of the Telco operator, 
would provider user profiles with a wider scope than application  specific 
profiles, enabling high personalization of services and improvement of user 
experience. Paper gives overview about existing IPTV security technologies but 
also describe novel architecture for secure  personalized  NGN based  IPTV 
services. 

Keywords: IPTV security, IdM, NGN based IPTV. 

1   Introduction 

IPTV is envisioned as the next step in user’s TV experience with a provision of highly 
personalized services ranging from linear television, video on demand (VoD), near 
video on demand (n-VoD), personal video record (PVR) to advance blended services 
as messaging, chatting, presence and web 2.0 mashups. 

Traditional broadcast-only content protection, as DVB Conditional Access [1], can 
not authorize users before they acquire the signal so contents are protected before 
delivered over the air. In this scenario, user authentication and content protection are 
performed entirely by the customer’s hardware. DVB’s major drawback is the absence 
of the concept of “user” that is substituted by the concept of customer (subscription). 
Customers are associated with hardware and their profiles are handled by the provider. 
Every user under a subscription receives the same service, thus personalization, if 
exists, is often poor. 

IPTV provides a return channel that enables interaction as well as the separation of 
users and subscriptions can be provided. IPTV must be able to maintain protected 
contents within the boundaries of the subscription (contract) during the entire content 
lifecycle regardless the user equipment. In some cases, IPTV can prevent 
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unauthorized users to acquire protected contents on demand since it can authorize 
them beforehand. However, some scheduled contents as linear television or n-VoD, 
which are broadcasted over IP using DVB-CA technology for efficiency, still require 
strong hardware protection. 

In the article we summarize how the most relevant IPTV standardization bodies 
approach service and content protection, user identification and user profiling. The 
most innovative IPTV platforms allow users to consume IPTV services from several 
Content  Providers;  through  managed  and  unmanaged  networks;  using  different 
devices. The summary signs the fragmentation concerning IPTV content protection 
and user management. So, in order to achieve the provision of highly-personalized 
IPTV services while maintaining security it would be necessary to have a separate 
profile for every principal involved in the service provision. For instance, a content 
profile,  which  describes  every  detail  about  the  content  lifecycle;  a  subscription 
profile, managed by the IPTV provider, that express the rights a customer pays for 
and how he delegates them to users; a user profile for personalization; and a device 
profile containing protection capabilities, identifiers and cryptographic information. 

It will be shown that IPTV user profiles are usually application specific, covering 
only IPTV related information, since IPTV users profiles are highly related to Telco- 
originated identities. These Telco-originated identities are based on identifiers and 
authentication mechanisms where the original scope is much narrower than in the 
case of Internet-originated Identity. We expect a user profile to be a user’s Digital 
Identity available to many services, so rich in personal information, whose disclosure 
to the different services is handled by the user. In this way the user obtains the desired 
personalization from any service while respecting its privacy. 

The article proposes the introduction of a Identity Provider (IdP) as new participant 
in IPTV service provision. The IdP deals with authentication and user profiles on behalf  
of  different  services  including  IPTV. Thus, IPTV services can be highly personalized 
by the use of an enriched user profile. Moreover, users are expected to store the profiles 
of their preferred devices under their user profile. In this way, the user can access IPTV 
services through several devices selecting the preferred one in every interaction. Device 
profiles would be used by IPTV service providers to check if a device is adequate for 
accessing a given content, to adapt the content protection to the selected hardware or to 
suggest any other user device as an alternative. 

2   IPTV Security 

Security topics in IPTV are: service protection, content protection,   key distribution,  
rights  expressions,  user  management,  device protection  and network protection. 
This section we will define the objectives of these security topics, how they are 
traditionally grouped together and how IPTV security technologies handle them. A 
service is a collection of video/audio contents bundle together in a package. Service 
protection ensures that subscribers are only able to gain access to services that are 
part of their subscription thus it governs the acquisition process. Once acquired, 
contents must remain under the agreement the user maintains with the content 
provider. Content protection techniques protect contents against unauthorized copy, 
distribution or manipulation. 
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Security solutions for IPTV must respect user privacy. Information about users as 
personal information, payment data or addresses must be protected by encryption and 
policy enforcement; also traceable information, as identifiers that might reveal service 
type preferences or habits, must be obfuscated. The user equipment as visualization 
devices,  set  top  boxes,  home  gateways  are  part  of  the  security  infrastructure 
protecting contents. Device protection aims on avoiding attempts to hack devices, 
distribute virus or perform Denial of Service attacks (targeting the user or the provider 
network). Devices rely on cryptographic material stored in tamper proof hardware to 
perform some security tasks. In DVB the majority of security functions are delegated 
to devices. Devices are also highly related to Content export technologies that allows 
to move a content from one device to another preventing piracy. 

The aforementioned security topics are grouped together in three major functional 
groups with some overlap among them: Conditional Access Systems, Digital Rights 
Management  and  Copy  Protection.  However,  the  practical  realization  of  those 
security  functions  leads  to  two  different  scenarios,  ruled  by  different  content 
protection technologies, known as acquisition and post-acquisition. 

DVB Conditional Access (CA) Systems [1-3], Marlin [4] and OMA BCAST [5] 
are  security  technologies  governing  acquisition.  Content  protection  technologies 
might require dedicated hardware. In DVB it is necessary a combination of a 
descrambler, a Conditional Access Module and a smart card in every visualization 
device. OMA BCAST supports a smart card or DRM (smartcard less) profile. ETSI 
TISPAN has utilized NGN security mechanisms also for NGN based IPTV and trying 
to  reuse  the  existing  service  protection  and  content  protection  standards.  Once 
contents  have  been  acquired,  the  post-acquisition  scenario  starts.  Contents  must 
remain within the bounds of the contract until the content lifecycle ends. 
Contracts can be enforced using Digital Rights Management and Copy Protection 
techniques as CSS (used in DVDs) or Advanced Access Content System (AACS). 
These specifications dictate how a legally acquired content may be converted to other 
Codec or format, edited, redistributed, or stored in other devices. The foundations for 
any copy  protection  system  are  rights  expression  languages.  These  languages  
have evolved from the simplest expression, as copy control indicator (CCI) field, to 
the complexity of MPEG21 Rights Expression Language (REL) [6], Usage State 
Information (USI) described in DVB-CPCM [7], Octopus DRM [8] used in Marlin 
(Open IPTV forum) or OMA DRM. 

2.1   DVB IPTV Security 

DVB specifications have been adopted by the majority of broadcasting systems 
during the last decades to distribute contents over satellite (DVB-S), terrestrial (DVB- 
T) and  mobile networks (DVB-H). IPTV is expected to  reuse DVB Conditional 
Access  (DVB-CA)  seizing  already  deployed  head  ends  and  consumer  hardware. 
DVB-CA  defines  a  holistic  approach  standardizing  content format,  metadata  
and protection procedures from the head end to the user equipment involving content 
providers, network operators and consumer electronics manufacturers. Fig. 1 shows 
the structure. 
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Fig. 1. Distribution networks. IPTV provides bidirectional communication and access control 
to the network whereas traditional broadcast networks cannot. 

DVB Conditional Access (CA) Systems are defined across several specifications as 
DVB-CA (Conditional Access), DVB-CSA (Common Scrambling Algorithm) [1] and 
DVB-CI (Common Interface and CI+) [3][9]. 

DVB uses MPEG-2 Transport Streams (TS) as the preferred content format. DVB 
IPTV encapsulates MPEG-2 Transport Streams in IP packets, reusing thus the 
traditional  Conditional  Access  infrastructure  and  hardware.  MPEG-2  TS  is  very 
useful for broadcasting over networks where errors might occur since it combines 
data streams with audio and video. MPEG-2 defines a Program as a set of Packetized 
Elementary Streams (PES) containing audio, video and clock references. It includes 
also data tables describing the relationships between the streams and data called 
Program Specific Information (PSI). There are three PSI tables related with 
Conditional Access: the Program Association Table (PAT), the Program Map Table 
(PMT), and the Conditional Access Table (CAT). The last points to entitlement 
management messages (EMMs) and entitlement control messages (ECMs). 

Content acquisition in DVB broadcasting only networks is entirely managed by 
the  end  user  hardware. DVB relies  on  SimultCrypt  [2]  which  separates  content 
encryption, content delivery and key distribution. Audio and video is scrambled with 
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a hardware-generated unpredictable session key called Control Word (CW) that 
changes frequently. DVB traditionally used Common Scrambling Algorithm (CSA) 
[1] for  scrambling but new algorithms,  based  on  Advanced  Encryption  Standard 
(AES), are under development, as ATIS CSA, DVB-CSAv3 or DVB-CPCM Local 
Scrambler Algorithm. These algorithms are inefficient in software implementations to 
prevent the development of software cracks. 

The key distribution system is not standardized except for the messages used to 
convey that information to customers and the interface between hardware. CWs are 
encrypted with a Service key (SK) and distributed using ECMs. Providers send EMMs 
contain the SK and DRM information, encrypted with a customer key CK, to update 
SK. In broadcasting only networks ECMs and EMM are broadcasted together with the 
content in MPEG-2 CAT tables and repeated frequently to deal with transmission 
errors.   Nevertheless,   in   IPTV   the   reception   of   ECMs   and   EMMs   can   be 
acknowledged thus can be sent directly to users. 

DVB manages identification, authentication and authorization in user equipment in 
cooperation with CA hardware. DVB Common Interface (CI/CI+) [3][9] defines the 
communication interface that every Conditional Access Module (subscriber module) 
must fulfil to communicate with a standard descrambler (decryption system). A CAM 
implements the key distribution protocol (EMM/ECM) for a given CA system 
provider. The most advanced version of the Common Interface specification, CI+, 
defines how to use the descrambler’s public key to open a Secure Authenticated 
Channel between the CAM and the descrambler for CW delivery. As the user might 
infer, the CAM must be collocated with the descrambler so in order to use a different 
visualization device it is necessary to move the CAM from one device to another. 
Fortunately, some works propose to place the CAM in a gateway in order to share it 
with several descramblers through IP [10] or DLNA [11]. 

Post-acquisition process starts after the content is descrambled. During the 
acquisition process, decrypted contents never go out of tamper proof hardware so the 
final destination of the content (a digital video record or a TV) must satisfy several 
requirements. To protect descrambled contents from being accessed once acquired, the 
decryption hardware, if not integrated in the visualization device, should export contents 
through a High-Bandwidth Digital Content Protection [12] (HDCP, HDMI, GVIF) or a 
similar secure interface. Moreover, DVB defines also some specifications, as DVB-
CPCM [7], to allow contents to moved, copied or exported. To identify authorized 
devices, DVB-CPCM supports the definition of authorized domain: the set of DVB-
CPCM compliant devices within a household among which contents can be moved. 

The reader must note that DVB lacks of user management so there is neither user 
authentication nor profile. Identification, authentication and authorization are 
performed by the user hardware thus the customer is identified by its equipment. In 
broadcast only networks, to demand authorization for accessing new contents, a 
customer uses a modem, integrated in the user equipment, or calls to the customer 
service. In DVB IPTV this can be handled by the return channel. 

2.2   Open IPTV Forum Security 

Open IPTV Forum (OITF) has developed an end-to-end solution to access enriched 
and personalized  IPTV  services  that  can be  accessed  through  either managed or 
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unmanaged networks [13]. It aims on standardizing the user-to-network interface 
(UNI).The architecture of the system is depicted in Fig. 2. 

The OITF content protection supports three media formats:   OMA DCF, Marlin 
IPMP and MPEG2-TS. Regarding content protection, OITF describes its architecture 
in [14] with two different approaches: the terminal centric approach (CSP-T) and the 
gateway-centric approach. OITF defines three different keys for content encryption 
that are provided by the Content and Service Key Management Function. The Content 
Key is used for Marlin Content encryption and both Service Key and Program Key 
are used as described in section 2.1 to generate the ECMs and EMMs to cope with 
MPEG-2 TS content delivery. In OITF, MPEG-2 TS contents can be delivered 
protected as stated in DVB specifications with either a Marlin CA protection 
(identified with the appropriate CA descriptors) or with any other DVB CA. 

 

Fig. 2. Open IPTV forum functional architecture of content protection 

CSP-T is based on Marlin Broadband [13] defined by the Marlin Developer 
Community. The CSP-T client in the OITF interacts directly with the CSP-T server 
function  in  the  network  to  acquire  protected  content.  The  OITF  function  (OITF 
device) requests contents through the IPTV application located it the IPTV provider 
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network. A protected content acquisition involves the IPTV application and IPTV 
Service Profile function. The acquisition starts when the OITF detects the protection 
by  the  execution  of  Node  acquisition,  Link  acquisition  and  License  Acquisition 
Marlin protocols [14].   Marlin uses an Octopus-based DRM system such that uses 
Nodes and Links objects to express relationships among principals within the system 
(e.g., users, devices, and subscriptions). Once the OITF device obtains a Node and 
Link represented by a Business Token it requests a license from the IPTV application. 
The IPTV application requests the user profile and the business token from the IPTV 
Service Profile and issues a license bound to the Node that represents the user. If the 
user is allowed to access the requested content, it will be able to request the 
corresponding Content Key to the CSP-T Server so the CSP-T server can request the 
key in behalf of the user to the Content and Service key Management function. 

The gateway-centric approach is optional in OITF. The gateway acts as a bridge 
between the network and the OITF device. The content protection is terminated in the 
gateway and a local protection system is used between the gateway and the OITF 
device. The OITF, upon the reception of content protected with a CA descriptor that it 
can not handle, performs discovery to find a CI+ gateway to decrypt the content. If 
the OITF device finds an appropriate gateway it authenticates to the gateway and 
redirects  the  content  for  decryption.  The  gateway  is  equipped  with  a  DVB 
descrambler that opens a Secure Authenticated Channel with the CAM to receive key 
material.  The  descrambler  outputs  the  descrambled  content  to  a  scrambler  that 
encrypts the content into a compatible format. Finally, the gateway sources the 
protected content to the OITF device. 

Regarding  user  management,  traditional DRM  systems,  as  DVB,  licenses  are 
directly bound to the device that is used to obtain the rights and also to a customer 
identity. In Marlin, a License is typically bound to a user (more precisely, to 
an Octopus Node representing the user), and relationships between users and devices, 
or users and subscriptions, are maintained separately [14]. User management is 
handled differently for managed and unmanaged networks. In unmanaged networks 
OITF proposes, in [16], the use of HTTP Digest Authentication. The user must 
authenticate with the Service Access Authentication located in the IPTV provider 
network in order to be identified and authorized to access IPTV services. In managed 
networks, user identification and authorization is based on either 3GPP IMS AKA or 
SIP Digest. The authentication in this case is triggered when either the Internet 
Gateway is switched on or the user demands personalized services.  Moreover, in 
some scenarios, Generic Bootstrapping Architecture (GBA) [17] and SAML [18] 
Web-based Single Sing on techniques can be also used. 

The user profile is handled by the IPTV Service Profile. OITF specifications 
separate Subscription Profiles from User Profiles. Moreover, it manages the links 
between the principals as subscriptions, users and devices in a comprehensive way. 
Nevertheless, the user profile is still an application specific profile limited to 
the IPTV context; thus, it is hard to achieve a high degree of service personalization. 

2.3   ETSI TISPAN IPTV Security 

ETSI TISPAN works on NGN based IPTV as part of TISPAN NGN release 2/3 
[18] on two IPTV architecture: NGN dedicated/integrated IPTV subsystem (non-IMS) 
[19]  and NGN IMS based IPTV [20]. 
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Fig. 3. TISPAN IMS based IPTV functional architecture with service and content protection 

IPTV security has been part of NGN Security architecture specification [21] and 
TISPAN also provides deeper analyses in technical report for IPTV security for NGN 
release 3 [22]. 

TISPAN focus on two aspects of IPTV security service protection and content 
protection (SPCP): Content Protection, that assures a protection of content or content 
assets during its entire lifetime and Service Protection, that have to provide the 
protection of content (e.g. files or streams) and IPTV related service information 
during delivery which may include content already protected and meta data that the 
service provider adds to the content. 

The generic model for service protection of IPTV as identified in [22] is based on 
well defined key hierarchies (3 or 4 layer hierarchies) uses a set of keys that provide 
cryptographic  isolation  of  services  and  content  for  both  unicast  and  multicast 
distribution of IPTV content: 
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User Root Key (URK) - A symmetric key used for the protected transfer of SEK in 
multicast service, or for protection of TEK in unicast service. This key is known only 
to the IPTV user and the SKMF (Service Key Management Function) and should be 
derived as part of an authentication and authorisation service (e.g. bootstrapping by 
GBA and/or IMS-AKA). 

Session Encryption Key (SEK) - A symmetric key used for the transfer of traffic 
encryption keys on a multicast service. This key is known to the session members and 
to the the SKMF. 

Traffic Encryption Key (TEK) - A short lifetime symmetric key used to encrypt 
the IPTV media within the NGN. This key is shared with all IPTV users for a specific 
channel or programme and with the MDF containing the CEF (Content Encryption 
Function).  

ETSI TISPAN is re-used existing NGN security architecture and security 
mechanisms like NASS bunded authenification on transport layer and IMS AKA on 
service leayer and also bootstrapping mechanisms like GAA/GBA. 

There are analyzed several candidate solutions for service protection and content 
protection (SPCP) for TISPAN NGN based IPTV [22]. Generally there are identified 
several  candidates:  OMA  BCAST  [5][23],  DVB  CSA/  SimultCrypt  [24],  3GPP 
MBMS [25], OIPF Marlin [4]. 

TISPAN IPTV service protection model for both multicast and unicast 
services may be based on the 4-Layers or 3-Layers Key Hierarchy. Figure 4 shows 
IPTV service protection  model based  on 4-Layers  Key Hierarchy and  IPTV 
functional entities that are tightly related to service protection [22]. 

OMA BCAST solution addresses service protection and/or content protection and 
can take into account already deployed service protections can support DVB 
SimultCrypt and also MBMS. OMA BCAST DRM Profile provides solution for 
equipments  without  presence of  a  smart  card. OMA  BCAST  Smartcard  Profile 
supports using IMS UICC.  

2.4   Other IPTV Solutions 

A large number of IPTV providers have created and deliver own services through 
commercial  proprietary-based  vertical  solutions  such  as  Microsoft  IPTV  Edition 
(MSN  TV  2  set-top  box  and  Xbox  console),  Apple  TV,  Intel,  Real  player,  etc. 

Although Apple TV platform is not quite IPTV yet, it is just a link from the PC to 
the television1 for content transfer. These solutions focus on the content protection 
using fully proprietary DRM solutions; for instance, Windows Media DRM [26] from 
Microsoft TV, or DRM Plus from Verimatrix VACS (Video Content Authority 
System) software for Intel. 

They use DRM and PKI keys (i.e. X.509 certificates) for access and authentication 
stored in a dedicated chip (i.e. smart cards). The authentication required for VoD and 
PVR is based on network identifiers (i.e. through regional clusters) or serial numbers 
in the deco without tamper proof hardware. So, authorization can follow two 
approaches. Firstly, server-side using unicast connections through Access Control 

                                                           
1 http://www.iptv-watch.co.uk/2007/06/10/apple-tv-could-add-iptv-capability-in-2008/ 
  http://www.iptv-watch.co.uk/2009/08/25/zte-and-apple-get-into-iptv/ 
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Lists (ACLs), the subscriber record is looking up in a database before granting a given 
connection (i.e. VoD, PVR). Secondly, using broadcast or multicast applications by 
providing  a  subscriber’s  device(s)  with  cryptographic  keys  necessary  to  access 
through IGMP protocol to join or leave an IP multicast (e.g. Pay TV channels). The 
distribution of these keys is not specified, it can be performed as part of setting up a 
unicast connection for SSL, or alternatively, keys can be sent to the receiver in 
advance. Thus the user profile is not managed adequately. 

On the other hand, ‘over the top’ services such as Youtube, Megavideo, Joost are 
using the Internet as a bidirectional channel to provide global reach. These solutions 
do not offer security neither services nor QoS. The access is usually anonymous. 

3   Improvements for Secure Personalized IPTV Services 

3.1   Motivation 

The majority of user management functions as authentication attribute exchange and 
user profile management have been already addressed by the Internet community and 
standardized by relevant organizations. Identity Management technologies support 
the concept of a user-centric Digital ID as a set of attributes. The criteria for selecting 
attributes for an identity matches, among others, technical needs, roles intended to be 
played by the user, privacy concerns and legal constraints. Thus, an Identity 
Management System can be used for many purposes as authentication, authorization, 
verification, uniqueness, linkage, preferences/attribute exchange, and reputation [27] 
by using a set of protocols, languages and processing rules. 

The integration of traditional content distribution networks with Internet 
Identity Management systems was inconceivable due to the lack of a return channel. 
Nevertheless,   Next   Generation   Networks   break   this   tendency   allowing   this 
integration. It can be considered one hot topic in current security and NGN research; 
in fact, there are several works that proposes such integration. In [28], the authors 
establish the requirements for the integration of Identity Management technologies in 
Next Generation Networks. Moreover, describes how the central notions in NGN 
(Telco-originated) identity management solutions are identifiers and authentication 
where the original scope is much narrower than in the case of Internet-originated 
Identity hampering the access to services when they are provided outside Telco 
domain. Regarding workgroups, for instance, the Focus Group on Identity 
Management (FG IdM) [29] or Kantara Initiative, with a broaden objective, are 
contributing to this integration. 

For the purposes of IPTV security we concentrate in what is known as Identity 
Federated model. In a Telco federated model, users’ data are in an Identity Provider 
(IdP) located in the operator domain with interfaces to Internet so the information can be 
easily accessed by Relying Parties (or external services). Authentication is handled by 
the operator or a third party depending on where the source of authentication is. This is 
known as a meta Identity Provider since implements many different interfaces for 
Relying Parties, as SAMLv2.0 [18], ID-WSF (Identity Web Services Framework) and 
WS-Federation; and also several authentication mechanisms around a user profile. 
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In section 2, we described IPTV security architectures where the concept of user is 
either missing or associated with a subscription or dedicated hardware. Nevertheless, 
user profiles are still managed by the IPTV provider. 

Our meta-IdP aims on providing services for user authentication, user profile 
management and device profile selection. User authentication can be performed by 
either third parties (PKI, user/password, OpenId) or the Telco provider (GBA, IMS 
AKA). The user profile (Digital ID) links IPTV identifiers under a subscription to 
user preferences. Thus, IPTV providers can deliver highly personalized services to the 
user relying not only on IPTV user preferences but also on information collected by 
user profiling during IPTV service consumption or provided by third party Internet 
services through the user profile. Device profiles are stored in a list of preferred 
devices under the user profile. A device can be explicitly selected by the user or 
automatically according to the context. The subscription, user and device profile are 
associated under an IPTV session with specific user (user identity) and should be 
used for accomplish service personalization, content casting and content protection 
casting. The following sections describe the relation among principals, the 
architecture, interface and services of the proposed IPTV security infrastructure. 

3.2   Relation among Principals 

The Fig. 4 shows the relation among principals. The subscription profile is managed 
by the IPTV provider. The subscription profile stores customer’s information as: 
payment, contract details, rights, delegation policies and authorized users. The 
delegation  policies  express  how  subscription  rights  are  delegated  to  users  (e.g. 
parental control, content types, playback time window…). Users are managed by the 
Telco  meta-IdP  system.  The  meta-IdP  provides  user  authentication  and  profiles. 
A user profile is a collection of attributes or claims about service preferences, relation 
with Internet services (as social networks or communities) and preferred devices. 

 

Fig. 4. Relations among principals in our Telco meta Identity Provider 
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A user  might have more than one profile in  its  identity portfolio  in order to 
separate duties or roles. The device profile contains a detailed description of the 
supported formats, content protection technologies, identifiers and credentials (i.e. 
descrambler public key). 

As shown in Fig. 5, an IPTV session is characterized by a subscription profile, a 
user profile and a device profile. Under the scope a session a user will be able to 
access personalized contents if his subscription rights are enough and the device 
meets the requirements of the content provider. The session information will be used 
for adapting the content to the device (content casting) and/or to deliver the content 
using the most appropriate content protection technology (content protection casting). 

 

Fig. 5. IPTV Session characterization for content and protection casting 

3.3   Architecture and Interfaces 

In this section we describe the functional architecture of the proposed IPTV security 
infrastructure.  Our  proposal  does  not  substitute  but  complements  existing  
IPTV security solutions.  The core element of our architecture is the meta-IdP located 
in the Telco operator domain. This element is not part of the IPTV security 
infrastructure itself since handles user authentication and profiles on behalf of any 
service including IPTV. Fig. 6 shows the architecture. 

The meta-IdP exposes the Authentication Service and the Attribute Exchange and 
Assertion function. The Authentication function is intended to serve as the 
authentication endpoint for the majority of the services used by an average user 
(including Internet services). It must support multiple authentication mechanisms 
(and credentials) including Telco (GBA, IMS-AKA) and Internet (i.e. PKI, username 
and password or OpenId) authentication. The security assertions and attribute 
exchange interface conveys authentication decisions, profiles and attributes to third 
party services, Internet  or  Telco services.  This  interface  must  support  many  
security assertion languages and protocols (SAML, WS-Federation, WS-Security, 
Oauth...). The idea is to facilitate authentication and user management to users and 
services improving user experience while reducing management costs. 

The IPTV provider can take profit from the Identity Provider by using several 
functions as session management, service personalization, content casting and content 
protection casting. These functions might be implemented by IPTV platforms as DVB 
IPTV that lacks from an appropriate user management or mapped to existing IPTV 
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functions,  for  instance,  TISPAN  SPCP  or  Open  IPTV  Forum  node  and  link 
acquisition. The Session Management function is in charge of retrieving the 
subscription profile, the user profile and the device profile. The Session Management 
function binds those profiles to a session identifier and may check the profiles against 
the license of the requested content determining the most appropriate content format 
(include encoding, resizing or aspect ratio modification.) and content protection . 

 

Fig. 6. Security infrastructure for service personalization, content and protection casting 

The Service Personalization function receives the user profile from entities like 
UPSF/HSS, Session Management function IPTV application and uses it for retrieving 
information from service/user data and other services to personalize the IPTV service. 
Generally,  in IPTV  architecture  can  exist the hierarchical  model  of relations  
(as shown in Fig.7) between the internal service states of functional elements, the 
IPTV Service State information and Presence information and all these information 
could be used for user profiling and flexible IPTV service personalization [30]; 

•  the internal service state information can be aggregated in IPTV Service 
State, and IPTV Service State data can be used to update Presence. 

•  IPTV presence may be related also to User Action Data (e.g. bookmarks) as 
well as used for updating user’s Service Access History (for user profiling). 
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Fig. 7. Using service state and user profile and presence for IPTV service personalization 

•  User profile (presence state) could be updated from/to external application 
(including Internet social communities statuses and profiles). 

The degree of personalization depends on the information disclosed by the user in 
his profile. Advanced IPTV services require mechanisms to personalized content and 
user interaction in all phases of IPTV service (service attachment, service discovery 
and selection, services initiation/modification/teardown and last but not least for any 
service interaction). 

3.4   Content Acquisition 

A content acquisition in the proposed architecture starts with an IPTV service 
request through a managed or unmanaged network. The user requests a service to 
the IPTV application providing his user and subscription identifier. The IPTV 
application sends this information to the Session Management function (e.g. core 
IMS). If the user has no valid session the Session Management function resolves the 
user identifier and finds the Identity Provider authentication function. The Session 
Management sends this information to the IPTV application, which redirects the user 
to the Identity Provider  authentication  function  using,  for  instance,  an  HTTP  
redirection  to  an Identity Provider HTML or CE-HTML (for consumer electronics 
hardware) page. 

Then, the user authenticates, selects the attributes to disclose in his profile 
(or a predefined user profile) and selects the device (or leaves it to the default). 
The Identity Provider asserts the user’s identity to the Session Manager through the 
appropriate attribute exchange and assertion protocol. After that, the Session Manager 
requests the user profile and the device profile to the Identity Provider and matches 
user identity with the subscription profile delegation policy. If the user is entitled to 
access this content, the Session Manager checks the device profile with the content 
license to find out if the device fulfils content provider’s requirements. 

If the device is able to cope with the acquisition and post acquisition content 
protection requirements, the Session Manager selects the most appropriate content 
format and protection. Then the Session Manager sends the user profile to the Service 
Personalization function. The Service Personalization function might rely on user 
profile,  service  policies,  presence/service  state  and  aggregated  user  data  from 
different sources as NGN Telco, third party and Internet services. The degree of 
personalization depends on the information disclosed in the user profile. 
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Finally, according to the session, the Session Manager starts the content adaptation. 
It triggers the Content Casting function to adapt the content to device‘s 
requirements as format, size, quality, bitrates... Moreover, it also triggers the Content 
Protection Casting function to protect the content with the appropriate technology. 

4   Conclusions 

This article goes through  the most important efforts on  IPTV content protection 
showing the fragmentation of the market.  Every standardization organization has 
chosen its own content protection leaving user management and device management 
under  a  non  interoperable  silo  that  hampers  personalization  and  scalability.  This 
article proposes the introduction of an Identity Provider as new participant in IPTV 
service provision that deals with authentication, user profile and device profile 
management. The Identity Provider, integrated as part of the Telco operator, would 
provider user profiles with a wider scope than application specific profiles, enabling 
high personalization of services and improvement of user experience. Moreover, it 
can  be  also  critical  for  content  protection  assurance  since  it  can  manage  device 
profiles; thus helping IPTV providers to adapt the content to the device’s specific 
hardware. In that way, users can be able to select the device to be used, breaking the 
traditional tendency of binding users to devices; and content providers can be sure 
that their contents are under control during the entire content life cycle. 

References 

1. Support for use of scrambling and Conditional Access (CA) within digital broadcasting 
systems, ETR 281 V1. Technical Report, Digital Video Broadcasting (1996) 

2. Implementation Guidelines, of the DVB Simulcrypt Standard, TR 102 035 V1.1.1. Digital 
Video Broadcasting (2004) 

3. Common Interface Specification for Conditional Access and other Digital Video 
Broadcasting Decoder Applications, EN 50221. Technical Report, CENELEC (1997) 

4. Marlin Broadband Architecture Overview for Marlin Adopters. Intertrust (2007) 
5. Mobile Broadcast Services Architecture, Candidate Version 1.1, OMA-AD-BCAST-

V1_1-20091013-C. Technical Report, Open Mobile Alliance (2009) 
6. Wang, X.: MPEG-21 Rights Expression Language: enabling interoperable digital rights 

management. IEEE Multimedia 11(4), 84–87 (2004) 
7. Digital Video Broadcasting Content Protection & Copy Management (DVB-CPCM), DVB 

Project Bluebook Document A094R2 (2008) 
8. The Role of Octopus in Marlin. Technical Report, Marlin Developer Community (2006) 
9. CI Plus Specification, Content Security Extensions to the Common Interface V1.2. 

Technical Report, CI Plus LLP (2009) 
10. Díaz-Sánchez, D., Marín, A., Almenárez, F., Cortés, A.: Sharing conditional access 

modules through the home network for Pay TV Access. Transactions on Consumer 
Electronics 55(1), 88–96 (2009) 

11. Díaz-Sánchez, D., Sanvido, F., Proserpio, D., Marín, A.: Extended DLNA protocol for 
sharing protected Pay TV contents. In: IEEE International Conference on Consumer 
Electronics, Las Vegas, USA (2010) 



 An Identity Management Infrastructure for Secure Personalized IPTV Services 683 

 

12. High-Bandwidth Digital Content Protection System Revision 1.3, Technical Report (2006) 
13. OITF Release 1: Vol.1 Overview. Technical Report, Open IPTV Forum (2009) 
14. OITF Release 1: Vol.7 Authentication, Content Protection and Service Protection. 

Technical Report, Open IPTV Forum (2009) 
15. Open IPTV Forum, Functional Architecture V1.2. Technical Report, Open IPTV Forum 

(2008) 
16. Generic Authentication Architecture (GAA), Generic bootstrapping architecture, TS 

33.220 V8.7.0. Technical Report 3GPP, ETSI (2009) 
17. Mishra, P.: SAML v2.0. OASIS Standard. Technical Report SAML v2.0, OASIS Security 

Services TC (2005) 
18. ETSI ES 282 001, TISPAN; NGN Functional Architecture (2009) 
19. ETSI TS 182 027, TISPAN; IPTV functions supported by the IMS subsystem (2009) 
20. ETSI TS 182 028, TISPAN; NGN Integrated IPTV Subsystem in NGN (2009) 
21. ETSI TS 187 003,TISPAN; NGN Security; Security Architecture (2009) 
22. ETSI TR 187 013, TISPAN; Feasibility study on IPTV Security Architecture (2009) 
23. OMA-TS-BCAST_SvcCntProtection – v1_0: Service and Content Protection for Mobile 

Broadcast Services”, version 1.0, Open Mobile Alliance 
24. ETSI TS 103 197,DVB; Head-end implementation of DVB SimulCrypt 
25. 3GPP TS 26.237, IP Multimedia Subsystem (IMS) based Packet Switch Streaming (PSS) 

and Multimedia Broadcast/Multicast Service (MBMS) User Service. Release 8 
26. Leung, Y., Peinado, M., Strom, C.: Binding Digital Content to a Portable Storage Device 

or the like in a Digital Rights Management (DRM) System, U.S. Patent 7010808. 
Microsoft Corporation (2006) 

27. Palfrey, J., Gasser, U.: Digital Identity Interoperability and eInnovation. Retrieved from 
Case Study (2007),  
http://cyber.law.harvard.edu/interop/pdfs/ 
interop-digital-id.pdf 

28. Subenthiran, S., Sandrasegaran, K., Shalak, R.: Requirements for identity management in 
next generation networks. In: 6th International Conference on Advanced Communication 
Technology, pp. 138–142. IEEE, Los Alamitos (2004) 

29. ITU-T Focus Group on Identity Management. Report on Identity Management Use Cases 
and Gap Analysis. ITU-T (2008) 

30. Schumann, S., Mikoczy, E., Podhradsky, P., Muruchi, F., Maruschke, M.: Presence 
management and merging presence information for NGN services” on “Wireless and 
Mobile Networking”, WMNC 2009, Gdansk, Poland, September 9-11. Springer, 
Heidelberg (2009) ISBN: 978- 3-642-03840-2 



 

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 684–702, 2011. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011 

Framework for IMS Service Scenario Implementation 

Andrey Krendzel1, Jawad Hussain2,*, 
Josep Mangues-Bafalluy1, and Marc Portoles-Comeras1 

1 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), IP Technologies Area 
PMT, Av. Carl Friedrich Gauss 7, B4, 08860 Castelldefels – Barcelona – Spain 
{andrey.krendzel,josep.mangues,marc.portoles}@cttc.cat 

2 Royal Institute of Technology (KTH), 
Kungl Tekniska Högskolan, SE-100 44 Stockholm-Sweden 

jawad.kth@gmail.com 

Abstract. This paper presents an experimental framework for implementation 
of an IMS/NGN reference service scenario by means of open source soft-
ware. Multiple  service  enablers  are  deployed  to build this service scenario. 
Interoperability tests between the deployed IMS entities and user equipment 
are carried out, as well as performance measurements of signaling overhead 
and delay of different IMS procedures involved to support the service sce-
nario. Then, some preliminary results are obtained. After that, the IMS proto-
type is integrated with in-lab UMTS/HSDPA and WLAN networks to test IMS 
procedures in more close-to-real environment. Additionally, practical experi-
ences with the IMS testbed deployment are discussed. 

Keywords: IMS, testbed, open source, service scenario, service enablers, inter-
operability, performance evaluation, decomposition. 

1   Introduction 

The  IP  multimedia  subsystem  (IMS)  represents  a  uniform  open  architecture 
platform for a managed IP-based infrastructure that will enable the deployment of 
both basic calling services and an unlimited number of wireless-enhanced rich multi-
media services that mix telecom and data services. In this context, rich means  
bundling multiple service enablers (e.g., voice/video connectivity, presence, instant 
messaging, conferencing, gaming, TV broadcasting) [1]. 

By itself, IMS does not specify any new service. Instead, it provides flexible tools 
and a unified platform for network operators and service providers to build and create 
their access-agnostic service scenarios by means of reusable service enablers [2]. 

To identify the problems related with the deployment of an IMS platform as well 
as to evaluate the performance of IMS-related components and different IMS/NGN 
services, there is the need for an IMS testing infrastructure [3]. One of ways to build 
an IMS testbed is to use open and vendor-independent source code that is available 
for free. 
                                                           
* This work was developed during an internship of Jawad Hussain at the CTTC.  
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There have been some publications concerning IMS testbed deployment based on 
open source tools and technologies. For instance, references [4] and [5] describe the 
experience of the authors when implementing IMS core components consisting of 
control functions and a subscriber database. On the other hand, references [6] and [7] 
deployed prototypes for interoperability testing and critical performance evaluation of 
a presence service, respectively. Additionally, reference [8] focuses on the implemen-
tation of a location service enabler on top of an open source IMS core. Thus, 
most of the above papers are focused on studying a certain IMS enabler (e.g., pres-
ence, XDMS, or location) or on studying the IMS core. 

In this paper, we present an open IMS testbed deployment in the context of the im-
plementation  of  a  reference  service  scenario  that  integrates  multiple  service 
enablers. The main contributions of the paper may be summarized as follows: 

• We  develop  a  framework  for  reference  service  scenario  implementation  by 
previously decomposing the whole implementation process into four steps 
(planes). In the first plane, we describe the service scenario itself. In the second 
plane, we define the service enablers that the implementation of such a scenario 
requires. In the third plane, we consider the functional entities that these service 
enablers involve. In the fourth plane, we map all these functionalities into some 
IMS physical entities. 

• We deploy  these  IMS  entities  using different open  source packages and  we 
discuss about our practical experience when development the IMS testbed. 

• We carry out interoperability tests between the IMS entities and a client in our 
testbed. We also evaluate the performance of the IMS procedures of the tested 
service scenario by characterizing their delay and signaling overhead. 

• We integrate the IMS prototype with the EXTREME Testbed® [32] to validate it 
in close-to-real environment. In particular, we test IMS procedures through 
UMTS/HSDPA and WLAN access technologies. 

The rest of the paper is organized as follows. In Section II, a brief description of 
the IMS concept from the viewpoint of service provisioning principles is given. In 
Section  III,  an  approach  to  an  IMS  service  scenario  implementation  based  
ondecomposition is considered. In Section IV, the testbed architecture to support this 
service scenario is presented and practical issues concerning the testbed deployment 
are discussed. Section V focuses on test cases with regard to interoperability issues. 
Section VI presents the preliminary results of the measured performance metrics. In 
Section   VII,   aspects   concerning   integration   of   IMS   testbed   with   in-lab 
UMTS/HSDPA   and   WLAN   networks   are   considered   and   delay   that   these 
technologies bring in IMS procedures is discussed. Section VIII concludes the paper. 

2   Main Principles of the IMS Concept 

The  IP  multimedia  subsystem  (IMS)  concept  has  been  developed  for  the provi-
sion of IP multimedia services by means of IP multimedia sessions to users. While 
the IETF has standardized Internet protocols (e.g., SIP, Diameter, etc.), the 3GPP 
has defined the IP Multimedia Overlay platform (the IMS specification began in 
3GPP Rel’5 in 2002) over different underlying technologies (e.g., GPRS/UMTS,  
 



686 A. Krendzel et al. 

 

CSCF

ASHSS

I-CSCF

P-CSCF

BGCF

MGCF
SGW

A-RACS (S) PDFNASS

RACS

MRF

MRFC

MRFP

DSLAM
BAS/

UE

UE

WAG

RAN

PDG

SGSN

GGSN

IMS-MGW

3GPP R7/

3GPP R6 – Wi Fi 

3GPP R5 – GPRS/UMTS

PSTN/

PLMN

Session 
control
plane

Service 
control
plane

UE

Access UNI NNI 

SIP ALGA

I-BCF/

A-BGF

IMS basis – policy control, policy of 
limitations when interacting with users

Routing SIP messages for users, 
Topology hiding GW

Authentication of IMS service users; service failure prevention, in particular, limitations on bandwidth and 
signalling rate, monitoring, user privacy, security and so on.  

Authentication of Access 
Networks; Management of 
resource allocation in ANs 

IMS Session Signaling

IMS User Plane Data

SIP AS
IM SSF

OSA SCS
CGF

SLF
HLR/AUC

IMS DB

TISPAN R1… 

S-CSCF

Transport/ 
Access 

I-BCF/
TrGW

BB

(IPv4/IPv6)

IPv6
Network

IPv4
Network

 

Fig. 1. IMS functional architecture overview 

WLAN, DSL) for session control  based on Internet protocols as well as the procedures  
to support generalized mobility across these technologies. IMS also inherits the tradi-
tional telecommunications experience concerning guaranteed QoS, flexible  charging 
mechanisms, etc. [9]. An overview  of  the  IMS  functional architecture based on 
3GPP, ETSI TISPAN, and ITU specifications is presented in Figure 1. 

By analyzing Figure 1, one may observe that IMS integrates and develops some ideas 
from the Intelligent Network (IN) concept. For instance, in the IN concept, the logic of 
the service (e.g., a toll free or 800 number) was separated from the core switching sys-
tem (TDM switches) by means of an external node called the service control point 
(SCP). There is also a triggering point, called the service switching point (SSP), that 
was added to TDM switches to forward a call related to an IN service towards the SCP 
by means of the Intelligent Network Application Part (INAP) protocol. The INAP pro-
tocol allows the SCP to control and monitor the switch [1]. Since services are no longer 
developed in the TDM switch, service providers enable developing different value-
added services (VAS) for their networks without submitting a request to the core switch 
manufacturers and waiting for the long development process [10]. 

In the same manner, in IMS, service-related functions are independent of the un-
derlying transport-related technologies [11]. Roughly speaking, the Call State Control 
Functions (CSCF) of IMS correspond to the functionality of the TDM switch/SSP in 
the IN concept, and a SIP Application Server (AS) in IMS corresponds to SCP in IN. 
Both concepts have triggering criteria to invoke a service, but the respective triggering 
mechanisms are completely different. 

Besides, the IN offered an idea of service independent building blocks (SIBs) for 
reusable service functions. In accordance with this idea, a service is built as a composi-
tion of various SIBs. 

In the same manner, in accordance with the IMS concept, a service itself is not 
standardized, but service building blocks that are reusable by various services. These 
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building blocks are called service capabilities by 3GPP, service support capabilities by 
ITU-T, and service enablers by OMA [1]. 

The objectives of IN were not fully reached because of the lack of independence 
from the INAP protocol, the lack of software reusability, and the lack of openness by 
manufacturers and operators [1]. The approaches developed within the IN concept 
cannot be directly applied to IMS because of the service, signaling, and architectural 
differences between IN and IMS. 

However, some principles of the IN concept can be useful in the context of IMS 
service provisioning. In particular, in IN there is a conceptual model defined in ITU-T 
recommendations (Q.1211, Q1213-Q.1215, Q.1218, Q.1219). In accordance with these 
recommendations, a service implementation process includes several planes. In the 
first plane, the service and its features are described; the second plane is the global 
functional plane, where SIBs and the global service logic are defined; the distributed 
functional plane defines functional entities that are involved in the implementation of a 
service and the relationship between them; the last plane deals with physical entities 
and protocols. 

It is worthwhile to consider in a similar way the issues concerning the implementa-
tion of IMS services. It will help to provide a detailed view of service modeling in 
IMS. One such approach in the context of the deployment of an IMS reference service 
scenario is introduced in the next section. In this case, and based on decomposition, the 
whole implementation process is divided into some steps (planes). 

3   Decomposition of the IMS Service Scenario Implementation 
Process 

Similar to the IN conceptual model, our approach to the deployment of an IMS refer-
ence service scenario includes four planes, namely, service description plane, service 
enablers plane, functional plane, and implementation plane. The proposed decomposi-
tion into planes is illustrated in Figure 2. Each of these planes in the context of 
a service scenario is described below. 
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Fig. 2. Decomposition of the IMS service scenario implementation process 
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3.1   Service Description Plane 

The service description plane (see Figure 2) deals with the description of a service 
scenario to be realized by means of the IMS platform. Any network issues needed for 
the service implementation are not considered in this plane. 

As a case study we consider an abstract simple service scenario that describes a 
real life situation. Several similar scenarios can be developed and implemented by 
means of IMS to satisfy the different needs of subscribers. 

The prose description of the reference service scenario used throughout this paper 
follows. There are three close friends from childhood time: Mark, Bob, and Nicholas 
living in one neighborhood. Now they are businessmen working at different places 
during the day. They are quite busy, but when all of them are free, they like to occa-
sionally go to a night party together by previously discussing where it is better to go. 
Thus, they are interested in being subscribed to a service that from a user (a “friend”) 
perspective may be described as follows. Mark creates his contact list by adding the 
contacts of Bob and Nicholas in it. He is able to see in the contact list whether his 
friends are available and willing to communicate or not. Mark also allows spreading 
information about his availability to Bob and Nicholas. When all his friends have as 
status “available for a party”, Mark sends them in parallel a short message like 
“we have a conference call in 10 minutes to discuss where to go”. In 10 minutes, 
Mark initiates a conference (e.g., audio) with his friends. 

This service scenario includes some procedures that must be supported to eventu-
ally deploy this service scenario. The procedures and service enablers that are needed 
to implement it are considered in the next plane, called service enablers plane. 

3.2   Service Enablers Plane 

Since it is assumed that the scenario is deployed by means of IMS, there is the 
need for a registration procedure in the IMS platform. Additionally, the following 
procedures  must also be supported: the procedure to  maintain  a contact  list,  the 
procedure to handle information to be aware of contact availability and willingness to 
communicate (presence information), the procedure to send short messages, and the 
procedure to arrange a conference call between multiple participants. Note that some 
other procedures (e.g., those concerning policy and charging issues) should also be 
involved to support this service scenario, but they are out of the scope of the paper. 

Thus, the service scenario requires some service enablers that perform the above 
procedures.   In   particular,   the   user   registration   procedure   deals   with   mutual 
authentication between the user equipment (UE) and the IMS platform by using the 
3GPP Authentication and Key Agreement (3GPP-AKA) mechanism. This process is 
carried out by means of the IMS core infrastructure (IMS enabler) including control 
functions and the subscriber database. 

The procedure to  maintain a contact list (buddy-list) including friends, family 
members, colleagues, or other groups with whom an individual may want to commu-
nicate is carried out by the XDM (XML document management) enabler. This en-
abler is in charge of making user-specific service-related data available to other 
services and service enablers within the IMS network [12]. The buddy-list is the type 
of data that is mainly associated with the XDM enabler. 
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The  procedure  to  handle  presence  information  is  supported  by  the  Presence 
enabler, which spreads user-related presence updates (i.e., current status of a user) 
throughout the network to other users who register to receive notification of changes 
of a user’s presence and availability state [13]. 

The  procedure  to  send  short  messages  is  fulfilled  by  means  of  the  Instant 
Messaging (IM) enabler, which allows engaging two or more users in a real-time text 
messaging. 

Finally, the procedure to arrange a conference call between two or more users is 
carried out by the Conferencing enabler, which supports communication between 
multiple  participants.  It  allows  a  user  to  initiate,  modify,  and  terminate  media 
sessions. Conferencing applies to any kind of media stream by which users may want 
to communicate [14]. 

The above enablers belong to the plane of service enablers shown in Figure 2. 

3.3   Functional Plane 

Each service enabler is characterized by a set of functional entities (FEs) and relation-
ships between them, as specified in the IMS standards. These functional relationships 
between FEs are usually illustrated by information flow diagrams [15]. 

The IMS enabler involved in carrying out the IMS registration procedure includes 
Call State Control Functions (CSCFs), namely, Proxy-CSCF (P-CSCF), Interrogating- 
CSCF (I-CSCF), Serving-CSCF (S-CSCF), and Home Subscriber Server (HSS). The 
CSCFs are responsible for routing signaling and managing sessions [33]. The HSS is 
a database including user identities (both public and private) and service-related in-
formation.  It  is  responsible  for  Authentication,  Authorization  and  Accounting 
(AAA) [33]. 

The Presence enabler deals with the widespread publication and subscription of 
presence information [15]. A user can subscribe to presence information for his/her 
contacts. If the contact accepts his request, the subscriber (watcher) will be registered 
for   presence   notification.   Whenever   a   friend   (presentity)   publishes   presence 
information,  the  IMS  presence  framework  will  notify  the  subscribed  users.  This 
enabler involves the IMS core functional entities (CSCFs) and the Presence server, 
which manages presence information uploaded by a presentity UE and handles pres-
ence subscription requests. 

The XDM enabler deals with documents that are stored in (logical) repositories in 
the  network,  generically  referred  to  as  XML  Document  Management  Servers 
(XDMS). Each repository is associated with a functional entity that uses the data in its 
associated repository to fulfill its functions [17]. Thus, the XDMS has a service- inde-
pendent functionality that can be used in a variety of person-to-person or group com-
munications [17]. 

The Conferencing enabler involves the CSCFs, the HSS, the Multimedia Resource 
Function (MRF) (consisting of Media Resource Function Controller (MRFC) and 
Media Resource Function Processor (MRFP)), and the Application Server (AS). The 
MRF  provides  media  related  functions,  such  as  media  manipulation  (e.g.,  voice 
stream mixing) and playing of tones and announcements [16]. A user initiates a con-
ference by means of the MRFC/AS entity of the user’s home network that assigns a 
conference URI (Uniform Resource Indicator) to the conference and configures the 
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MRFP. The conference call is established and the RTP data begin flowing between 
the UE initiating the conference and the MRFP [15]. The conference initiator then 
uses the refer procedure to add more users to the conference. The new users establish 
a call to the conference URI included in the refer message. When the conference is in 
progress, RTP media streams are mixed and propagated to all participants [15]. 

The Instant Messaging (IM) enabler is the well-known instant messaging paradigm 
adopted in the IMS framework [18]. It involves the CSCFs, the HSS, and the IM 
server. An instant message (IM) is transferred by using a SIP MESSAGE, which is a 
SIP extension defined in IETF RFC 3428 [14]. Messages are directly sent out to the 
destinations through the IM server. Upon receipt of a MESSAGE request, a SIP UA 
(user agent) will reply with a 200 OK or a 202 Accepted response, which indicates 
that the SIP UA has received the SIP request message [14]. 

By focusing on the functional plane represented in Figure 2, one may notice that 
the CSCFs and the HSS functional entities are common to several enablers. Note that 
the “servers” (i.e., Presence, XDM, IM, and AS) in context of the plane are functional 
entities. 

3.4   Implementation Plane 

In this plane, all functional entities defined in the previous plane are mapped into 
the corresponding physical entities that have to be deployed in the IMS prototype. In 
fact, one or more functional entities may be mapped into the same physical entity. In 
particular, P-CSCF and I-CSCF are SIP proxy servers [7]. S-CSCF plays the role of 
SIP proxy and SIP registrar [7]. All these components together with the common 
database (HSS) are mapped into one physical block called the IMS core. 

The presence functionality defined by the Presence enabler requires a SIP Presence 
server. The instant messaging functionality is supported by means of the SIP IM 
server. The conferencing enabler functionality requires a SIP media server to support 
the media resource function and a SIP AS to support the end-user service logic. An 
XCAP server is needed to provide the ability to query, modify, or delete data stored in 
XML. 

Thus, all these physical entities (the IMS core, the Presence server, the XCAP 
server, the IM server, the Media Server, the SIP AS) must be deployed to support the 
above service scenario (see the implementation plane in Figure 2). Practical issues 
concerning the deployment of the testbed, including the above entities, are considered 
in next session. 

4   Testbed Architecture and Deployment 

The architecture of our IMS prototype to implement the reference service scenario is 
presented in Figure 3. In accordance with the service scenario, all friends live in 
one neighborhood and it is assumed that they belong to the same IMS network. Thus, 
we  initially  develop  the  testbed  for  intra-domain  test  cases.  For  other  service 
scenarios, the testbed can be extended to inter-domain test cases. 
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We have analyzed available open source packages to build this testbed since they 
are free, they are not identified with a particular vendor, and they supply codes. We 
have  installed  and  configured  the  above-defined  IMS  entities  slightly  modifying 
codes to support interoperability between them. 

For  the  testbed  deployment,  we  use  a  Linux  desktop  machine,  Genuine  Intel 
Pentium (R) Dual–Core CPU 2.50 GHZ with 4GB RAM, and Ubuntu 9.04 OS. 

 

Fig. 3. The IMS testbed architecture 

We have started with the development of the IMS Core. The four components 
(P/S/I-CSCFs and a lightweight HSS) are deployed by using open source code devel-
oped by FOKUS [19] as extensions to the SIP Express Router (SER) [26]. It is avail-
able through svn repositories at [19]. The lightweight HSS supports the diameter 
protocol and uses the Cx interface for diameter signaling with the S/I-CSCF [19]. 
User data is kept inside a MySQL database. We installed this open source (revision 
778) and we found that it presents a very efficient and reliable implementation from 
the viewpoint of operations, administration, and maintenance (OA&M). All IMS core 
components run on one IP (on loopback), but using different ports. 

The  simplified  flow  sequence  diagram  captured  in  the  testbed  for  the  UE 
registration procedure is presented in Figure 4. 

Our Presence server implementation is based on Open SIP Server (OpenSIPS) 
[20], which is a mature open source implementation of a SIP server. OpenSIPS (pre-
viously called OpenSER) is more than a SIP proxy/router, as it includes many appli-
cation functionalities. It unifies voice, video, IM, and presence services. We have 
tested OpenSIPS as a Presence server and we have integrated it in our IMS core. For 
this purpose, we used OpenSIPS v.1.5, which is the last available version in svn 
repositories. The presence service based on the open source of this version demon-
strates good interaction with the implemented IMS core entity in our testbed. It han-
dles SIP SUBSCRIBE, PUBLISH, and NOTIFY methods. Presence data from sub-
scribers and publishers are saved in a MySQL OpenSIPS database (see Figure 3) in 
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the corresponding presentity and watcher tables. The simplified sequence diagrams 
for IMS presence subscription/notification and publication procedures based on the 
collected traces are shown in Figures 5 and 6, respectively. 

 

Fig. 4. Testbed registration procedure 

 

Fig. 5. Testbed presence subscription/notification sequence diagram 

 

Fig. 6. Testbed presence publication sequence diagram 
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For the XCAP server implementation, the OpenXCAP source (v.1.1.2) has been 
used [21]. It is an open source package supporting a full-featured XCAP server. An 
XCAP server is used by SIP SIMPLE clients and servers to manage buddy-lists and 
policy for subscriptions to the presence service and it can support other types of pub-
lished events by using SIP. 

We have tested the interaction between the UE and the OpenXCAP server to man-
age buddy-list by means of the XCAP protocol (see Figure 7). Moreover, we 
made  some  configuration  changes  in  OpenSIPS  to  support  intercommunication 
between the Presence server and the OpenXCAP server. The OpenXCAP server uses 
the XML-RPC interface to interwork with the presence server, as it is illustrated in 
Figure 7. For this purpose, the xmlrpc_url port must match the OpenSIPS mi_xmlrpc 
port. The OpenXCAP backend is used for storage and authentication purposes, and 
data may be saved either in its own database or in the OpenSIPS database. We 
configured OpenXCAP to use the OpenSIPS database for service subscribers and 
XCAP resources. 

 

Fig. 7. Interaction diagram between the UE, Presence server, and XCAP server 

As media server, we used SIP express media server (SEMS) v.1.1.1 developed by 
IPTEL [22]. It provides audio centric MRF core functionalities. We have tested its 
basic applications, like announcement and conferencing. SEMS runs on loopback, 
having the open-ims.test domain name. We used the SEMS implementation with 
unixctrl interface and configured it to handle the announcement and conferencing 
module support. 

To support end user service logic, we deployed a SIP AS. There are many SIP 
application servers available, like Sailfin [23] or Mobicents [24] based on SIP servlet 
technology. However, we preferred to deploy a SIP AS based on the SIP express 
router (SER) [25], since the IMS core is also based on SER. In our IMS prototype, the 
server  is  located  between  the  IMS  core  and  SEMS  entities.  SER  is  a  high- 
performance and configurable SIP server that can act as SIP registrar, proxy, or 
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redirect server [25]. We used the SER 0.96 version [26] available at svn repositories 
that is able to interact with SEMS. We used SER in re-direct server mode to forward 
SIP INVITE, ACK, BYE, and CANCEL methods to SEMS. We configured SER on 
loopback and it has the same domain name (open-ims.test). SER writes the received 
SIP messages and forwards them to SEMS by using the unix socket server. The 
testbed conference call initiation diagram is shown in Figure 8. 

Our IMS user agent is based on an open environment developed by FOKUS and 
called MONSTER (The Multimedia Open InterNet Services and Telecommunication 
EnviRonment) [27]. We used the most recent release, i.e., version 0.9.8. It consists of 
a suite of integrated applications, such as voice, video, photo sharing, contacts, etc. 
[27]. However, the MONSTER public version has limited functional features that can 
be extended by the use of the MONSTER API. In particular, we observed that it does 
not support video conference. 

Calling UE Initiating PCSCF Initiating SCSCF MRFC -AS

INVITE

INVITE

INVITE

200 OK
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200 OK

MRFP

100 Trying

100 Trying
100 Trying

Allocate Conference
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RTP

ACK
ACK

ACK

BYE
BYE

BYE

200 OK
200 OK

200 OK  

Fig. 8. Testbed conference call initiation sequence diagram 

Besides, we also tried to deploy an Instant Messaging (IM) server. OpenSIPS used 
before to deploy the presence server can be also configured to support end-to-end IM. 
We installed and integrated an external e-jabbered IM server v.2.1.0 [28] by using the 
XMPP OpenSIPS module. However, later, we found that interoperability between the 
UE and the IMS server is not supported, since the current public MONSTER version 
does not provide IM functionality, though it can be developed and added by means of 
the MONSTER API. At the same time, the MONSTER client allows supporting the 
SIP MESSAGE method, and in the service scenario this feature can be used by 
friends instead of instant messaging. For this reason, currently, we do not use the IM 
server in our testbed. 

Thus, we have deployed the following IMS components in our IMS testbed: the 
IMS core, the Presence server, the XCAP server, the Media server, the SIP AS, and 
the UE. The results of some relevant interoperability tests between the components 
for our reference scenario are considered in the next section. 
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5   Interoperability Tests 

To check interworking between the UE and the Presence, XCAP, and Media servers, 
interoperability tests have been carried out. Table 1 presents all test cases run. Test 
cases 1-5 are related to the Presence server, test cases 6-8 are related to the 
XCAP server, and test cases 9-10 are related to the Media server, respectively. 

Table 1. List of interoperability tests carried out over the testbed 

 

TEST 
CASE # 

TEST TITLE TEST CASE DESCRIPTION 

1 Publication of presence 
information 

Presence information initially published by IMS UE 
must be correctly received by IMS subscribers 

that are eligible for receiving it 
2 Publish modification Published information modified by the UE must be 

correctly received by the presence subscribers 
3 Subscription removal If a watcher removes its presence subscription, a 

presentity must update presence information 
4 Subscription refresh Presence server must continue to send presence  

information to a watcher in case presence subscription 
is refreshed 

5 Notification of presence 
information from multiple 

presentities 

This case is similar to test case 1, but it is extended to 
multiple presentities 

6 Group-list XDMS 
document creation 

UE must be able to successfully create its buddy-list in 
the XCAP server by using http PUT/DELETE 

methods
7 Group-list XDMS 

document retrieval
By means of the http GET method, an IMS user can 
successfully download its buddy-list from the XCAP 

8 Group-list XDMS 
document validation and 

deletion 

The UE must be able to manipulate its buddy-list 

9 Playing media 
announcements 

The Media server must be able to play an audio 
announcement

10 Supporting conferencing 
application 

The media server must support conferencing with two 
or more UEs 

 
We have repeated each of the above test cases 15 times. Test results are presented 

in Table 2.  

Table 2. Results of the interoperability tests 

 

# OF TEST 
CASES

# OF TRIALS # OF PASSES # OF FAILS 

10 15 134 16 
 
As one can observe in Table 2, 134 out of 150 trials have been successful. All  

16 failures have arisen in test cases related to the Presence server, when the UE of a 
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presentity is being switched off. In this situation, the MONSTER UE is not always able 
to send a publish message to the Presence server. As a result, watchers can see the status 
of the presentity as “on-line” instead of “not available”. The same observation has been 
obtained in [6], when testing the SIMPLE presence protocol implemented by the UCT 
client [29] and the IMS Communicator [30], which were developed before MONSTER. 
Both clients display the last presence information published by the UE [6]. Thus, this 
problem still exists in the public available version of the MONSTER client as well. 

We also verified that all testbed sequence diagrams (see Figures 4-6 and Figure 8) 
are in conformance with the message sequence charts provided by the IMS standards. 

6   Preliminary Results 

Some preliminary results were obtained in our IMS testbed. In particular, we evalu-
ated two performance metrics that characterize the delay and overhead of the IMS 
signaling procedures deployed to support the reference service scenario. In particular, 
the first metric accounts for the time elapsed since the UE sends a signaling message 
to the IMS server until it receives a response message back from the server according 
 

Table 3. Test cases for evaluating the round trip signaling time of various procedures 

 

TEST 
CASE # 

IMS PROCEDURE TEST CASE DESCRIPTION 

1 IMS REGISTER RTST between sending the initial REGISTER 
request to the IMS core and reception of the 200 OK 

message (total delay for registration 
and de-registration procedures) 

2 IMS INVITE 
(IMS to IMS call) 

RTST between sending the initial INVITE message 
to the IMS core and reception of the 200 OK 

3 IMS watcher 
REGISTER/SUBSCRIBE 

RTST that a watcher spends sending REGISTER 
request to the IMS core, SUBSCRIBE-ing to  

presence information about presentity and receiving 
NOTIFY message from presence server (PS) 

4 IMS presentity 
REGISTER/PUBLISH 

RTST that a presentity spends sending the 
  REGISTER request to the IMS core, PUBLISH-ing 

to PS and reception of the 200 OK 
5 IMS presentity PUBLISH RTST that a presentity spends when Presence state 

changes (PUBLISH) for the Watched User and  
reception of the 200 OK message from the PS 

6 IMS INVITE 
for Media server 

RTST between sending the initial INVITE message 
to Media server and reception of the 200 OK 

message from the server 
7 IMS HTTP PUT 

for XCAP server 
RTST between the UE PUT-ting its buddy-list in the 

XCAP server and reception of the HTTP 200 OK 
message from the server

8 IMS HTTP DELETE 
for XCAP server 

RTST between the UE DELETE-ing its buddy-list 
from the XCAP server and reception of the HTTP 

200 OK message from the server 
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to a certain IMS procedure. We call it the round trip signaling time (RTST) below. 
The second performance metric is the signaling overhead (which accounts for the 
application layer payload) generated by SIP messages for a certain IMS procedure. 
We performed each test case for these metrics ten times and captured the associated 
traces by using Wireshark [31]. 

The description of test cases to evaluate the RTST for different IMS procedures is 
presented in Table 3. 

The  box-plot  presented  in  Figure  9  shows  the  results  of  the  signaling  time 
evaluation of the different IMS procedures. 

 
Fig. 9. RTST evaluation of different IMS procedures 

The results of the signaling overhead generated by SIP messages in the above IMS 
procedures are presented in Table 4. 

Table 4. Overhead (application layer payload) associated to each of the deployed procedures 

 

TEST 
CASE # 

IMS PROCEDURE AV. NUMBER OF 
BYTES

ST. DEVIATION 

1 IMS REGISTER 21.320 89.77 
2 IMS INVITE (IMS to IMS call) 19487 12.98 
3 IMS watcher 

REGISTER/SUBSCRIBE 
23141 79.96 

4 IMS presentity 
REGISTER/PUBLISH 

15990 82.41 

5 IMS presentity PUBLISH 4724 20.69 
6 IMS INVITE for Media server 13130 5.61 

 
The analysis of the results presented in Figure 9 (RTST) and Table 4 (overhead) 

brings the following observations. The total time that both registration and de-
registration procedures take is quite high (the first test case). SIP messages between 
CSCFs are transmitted and processed in a small amount of time. On the other hand, 
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the main component of the delay comes from the communication with the HSS when 
it is needed to retrieve information (e.g., when the S-CSCF downloads the authentica-
tion vector) from the MySQL database that stores user-related data. This observation 
is further confirmed by the second test case, in which just CSCFs are involved in 
routing and processing all signaling messages to establish an IMS to IMS call. As it 
may be observed, this procedure takes much less time, although it generates almost 
the same signaling overhead. 

Test cases 3 and 4 do not contain the de-registration procedure, but the subscription 
and publication procedures initiated after the registration are considered, respectively. 
The procedures are also time-consuming. Especially, average RTST and dispersion 
are significant for the publication procedure. This is because of the authorization 
process of the watcher (subscriber) or publisher (presence entity) with the Presence 
server, which requests user presence data stored in the MySQL openSIPS database. 
Test case 5 further confirms this observation, as it considers a case for which presence 
state changes, hence sending PUBLISH messages to the Presence server, but without 
requiring the publisher to run an authorization process. As a result, the delay in this 
case is very low compared to the previous one. Note that in test case 3, more signaling 
overhead is generated than in test case 4 due to the additional payload bytes devoted 
to the NOTIFY message (see Figure 5 and 6). 

The delay in test case 6 is caused by the interaction with the media server to assign 
a conference URI to the conference, to determine media capabilities, etc. The INVITE 
procedure for media server (test case 6) contains less message exchanges between 
IMS entities than the INVITE procedure for IMS to IMS call establishment (test case 
2). As a result, the first one generates less overhead, as seen in Table 4. 

Additionally, the RTST values obtained for test cases 7 and 8 (PUT/DELETE 
procedures of the HTTP protocol) show that the average time required to put/delete a 
buddy-list in/from the XCAP server is approximately of 25 ms, hence much lower 
than other more complex procedures. 

Finally, if we consider the obtained results for our reference service scenario then 
from a user (a “friend”) perspective it generates an average of 40 Kbytes of signaling 
overhead  and  lasts  for  280  ms,  in  our  IMS  prototype.  The  sequence  of  actions 
included in this calculation are: Mark’s registration to IMS core, subscription to the 
presence service to get notifications on the presence status of his friends, publication 
of his presence information so that it is available to his friends, and initiation of the 
conference call with them. 

7   Integration of the IMS Prototype with the EXTREME 
Testbed® 

To better validate IMS operation in close-to-real environment, we have started the 
integration of the IMS prototype with the EXTREME Testbed® [32]. In particular, 
we connected the UE to the deployed IMS platform through two transport technolo-
gies,  namely  UMTS/HSDPA  and  WLAN  IEEE  802.11, as illustrated in Figure 10. 
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Fig. 10. Integration of the IMS prototype with EXTREME testbed ® 

The in-lab real-time UMTS network consists of a real Node B (Siemens NB8860) 
with WCDMA and HSDPA functionalities, a protocol emulator (Tektronix K1297- 
G35) of the RNC and the PS core network (including SGSN, GGSN, and a subset of 
the functionalities of the HLR), and a PC acting as IP gateway to external networks 
[33]. An ATM optical interface connects the Node B to the G35 emulator (featuring a 
real Iub interface). The G35 communicates to the EXTREME platform via a Gigabit 
Ethernet interface (through the Gi interface) allowing interworking between UEs and 
nodes in the Internet. 

The WLAN access point (AP) is based on IEEE 802.11g, configured in “Infra-
structure BSS” mode, and connected to the IP Gateway. UMTS/HSDPA and WLAN 
wireless cards are used to connect to the UMTS and WLAN networks, respectively. 

We integrated our IMS prototype through the IP gateway with the UMTS and 
WLAN networks. To check conformance, the IMS registration/de-registration proce-
dures have been run (10 times) through both transport technologies. The results of 
the registration/de-registration delay for these procedures obtained in the IMS EX-
TREME testbed are presented in Table 5. It is interesting to compare them with the 
values of delay for the same procedures with the same transport technologies meas-
ured in the “IMS experience centre” [3] for a real-life test network using real 
UMTS/HSDPA equipment. The results got in the IMS experience centre testbed are 
also presented in Table 5. 

Table 5. Comparison of IMS registration/de-registration delay in different testbeds 

Testbed name Network Registration delay, 
ms (min/max/avg) 

De-registration delay, ms 
(min/max/avg) 

WLAN (802.11g) 100/137/120 80/114/99 IMS EXTREME 
tes UMTS/HSDPA 288/332/309 242/290/263 

WLAN (802.11g) 9/89/22 12/28/16 IMS experience 
centre testbed UMTS/HSDPA 460/840/520 470/750/520 
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By analyzing the results obtained in the IMS EXTREME testbed we have observed 
that  registration  and  de-registration  delay  over  the WLAN  network  is  composed 
mainly of the above-mentioned delay when retrieving data from the MySQL database 
(twice for each procedure, each time taking around 40-60 ms). The total registration 
and de-registration delay over WLAN almost coincides (difference is a few ms) with 
values obtained for both procedures in the IMS testbed (see test case 1 in Figure 9). 
Thus, the delay that the WLAN network itself brings is negligible. 

On the other hand, the delay that the UMTS/HSDPA network brings is higher. It is 
almost three times more than in the IMS testbed (~570 ms vs. 210 ms). The results 
got in [33] in the UMTS/HSDPA EXTREME infrastructure observed an average 
downlink delay of 40 ms and uplink delay of 60 ms. For two message exchanges in 
both directions (see Figure 4) the delay takes around 200 ms plus the delay (ranging 
from 80 to 120 ms) caused by twice as much requests to the MySQL database. Thus, 
the total delay is around 300 ms for the registration and around 260 ms for de- regis-
tration, which is coherent with the results that we obtained (see Table 5). 

By analyzing the results obtained in the IMS experience centre testbed one may 
observe that the delay measured in that case through a WLAN network is very small 
compared with our results. A potential hypothesis is that they use caching to minimize 
the delay caused by the MySQL database, since maximal registration delay is 89 ms 
(probably when retrieving data from the MySQL) which is close to our values, but the 
average registration/de-registration delay is 22 ms and 16 ms respectively (caching 
might be used). 

On the other hand, the delay experienced through their UMTS/HSDPA network 
substantially exceeds that obtained in our testbed. A potential explanation may come 
from the differences in delay (around 90/100 ms downlink/uplink) observed in [33] 
between a commercial UMTS/HSDPA network and the UMTS/HSDPA EXTREME 
infrastructure,  in  which  the  UMTS  core  network  (SGSN/GGSN)  is  emulated  by 
means of the G35 test equipment. Given that some IMS procedures require messages 
to traverse this UMTS/HSDPA infrastructure multiple times, the difference in terms 
of total signaling delay is substantial increased. 

Conclusions 

A framework for deployment of an IMS prototype to implement a reference service 
scenario that involves multiple service enablers has been considered in the paper. The 
whole service implementation process has been decomposed into four planes, namely, 
service description, service enablers, functional, and implementation. As a result of 
the decomposition, we found that for the service scenario, one must deploy the IMS 
core, the presence server, the XCAP server, the Media Server, and the SIP application 
server. We installed various available open source packages featuring these IMS enti-
ties and we modified and configured them so that they can interact. 

To evaluate the interworking between the IMS client [27] and the deployed IMS 
components, interoperability tests have been conducted. The UE was not always able 
to send a publish message to the Presence server when the equipment was being 
switched off. All the rest tests were successful. Besides, we found that the current 
public version of the client does not support instant messaging and video conference. 
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We verified that the IMS procedures (registration, subscription, etc.) in our testbed 
are in conformance with the message sequence charts provided by the IMS standards. 

Then, preliminary results concerning the signaling overhead and delay of the differ-
ent IMS procedures of the service scenario have been obtained. The reference service 
scenario generates an average of 40 Kbytes of signaling overhead and lasts for 280 ms. 
We observed that the main delay is caused by retrieving data from the MySQL data-
base. We suppose that caching may reduce essentially the delay. To get access to the 
deployed IMS platform through in-lab UMTS/HSDPA and WLAN access technologies 
we integrated our prototype with the EXTREME Testbed® [32]. We observed that the 
additional delay caused by the WLAN network in IMS registration/de-registration 
procedures is very low. On the other hand, the delay that UMTS/HSDPA network 
infrastructure brings in the IMS procedures is essential. It may be several times more 
then the delay in the IMS platform itself for the procedures. 

In future work, we are going to extend our IMS prototype by adding more func-
tionality in the deployed framework as well as in the IMS client to support more  
complex service scenarios over heterogeneous access technologies. Besides, we are 
planning to conduct a more exhaustive performance evaluation of different IMS com-
ponents by using a signaling traffic load generator. 
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Abstract. The Traffic Engineering in IMS network is a hot topic as operators 
require extensive QoS management in their network. A combination of IP SLA 
with the Object Tracking and MPLS Traffic Engineering can create automatic 
solution for applying new rules to the ISP carrier topology. IP SLA provides an 
opportunity to track specified parameters of the links and devices. In this arti-
cle, we optimize convergence and load distribution among existing links in 
the network in automated way. Nowadays, similar solutions work mainly 
manually. Innovative solution, which finds suboptimal  bandwidth utiliza-
tion automatically, without requirement of the network administrator in-
volvement, is described also. 

Keywords: MPLS, Traffic Engineering, Object Tracking, Redundancy. 

1   Introduction 

IMS (IP Multimedia Subsystem) architecture is creating momentum in the research 
of telecommunication technologies and data networks. As these two previously sepa-
rate worlds are fusing into the one converged environment, there are more than 
enough issues that operators would like to resolve for smooth incorporation of the 
IMS into their core networks. In our research, we have focused on a fundamental 
operation of the underlying data routing around the IMS core. In the last generations 
of telco networks, the quality of service and load-balancing could be native to the 
whole network. In IP networks, such things are hardly native as data networks and 
particularly the IP networks are routed in the shortest path first manner. This ap-
proach creates limitations on the ability of these networks to utilize the bandwidth of 
routes other than those declared as shortest paths to the destination. This limitation is 
currently being focus of world-wide research from which a new concept called the 
Traffic Engineering is rising as an old solution for new environments, particularly 
MPLS (MultiProtocol Label Switching). Put together, Traffic Engineering is the 
manipulation of traffic to fit our network [1]. 
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This article focuses on MPLS Traffic Engineering (TE) technology and its usabil-
ity in the IMS environment. In our approach, we combine Cisco solutions IP SLA 
with the Object Tracking and MPLS TE to create unique automatic solution for ap-
plying new rules to a changing topology (e.g. in cases of link failures or over utiliza-
tions). IP SLA gives us an opportunity to track specified parameters of the links and 
devices. Consequently, these results can be applied to the Object Tracking for creat-
ing entries that will be applied to the routing table upon specified event. The aim is to 
optimize convergence and load distribution among existing links in the network. Our 
approach increases availability of services, overall quality of services and tries to 
easily satisfy SLA (Service Level Agreement – in terms of an actual agreement for 
quality of service) demands between service provider and customers [2]. 

The article is organized as follows: Section 2 describes the problem in details and 
provides existing solutions. Section 3 presents our approach of applying IP SLA 
to the network. Section 4 describes our lab environment. Section 5 contains obtained 
results. Concluding results and ideas for future are given in Section 6. 

2   State of Art 

Traffic Engineering is used to solve a fundamental problem as displayed in Fig 1. For 
this example of the IP network, all links are OC-3 links with the bandwidth 
roughly 150 Mbit/s. Now, let us assume that we know that the router R1 sends 90 
Mbit/s of data to the router R6 and router R7 sends another 80 Mbit/s to router R6. In 
the classical shortest path first manner, R2 has link to R5 as next hop towards R6. 
This will simply result in congestion on the link between routers R2 and R5 and 
obviously, alternative link through the path R2-R3-R4-R6 remains under full 
utilization. The possibility of using Traffic Engineering is by manipulating costs. 
This results in costs equilibrating of all alternative paths and then load-balance be-
tween these paths. This solution is usable in small networks, but large scale deploy-
ment can be problematic. More  sophisticated  approach  is  the  Load  Sharing,  
which  can  better  reflect  the available resources (e.g. bandwidth) along paths. An 
alternative is Asynchronous Transfer Mode (ATM) networks, where Permanent Vir-
tual Circuits (PVCs) can be constructed between the end-points and load can be 
shared between these PVCs and no detrimental manipulation to the link costs is  
necessary.  

IP SLA is Cisco specific function for supporting monitoring of specific parame-
ters. IP SLA can monitor different constraints of the node, link or path from the 
routers and taking appropriate actions and informing administrator through SNMP 
protocol (Simple Network Management Protocol). IP SLA currently monitors vari-
ous types of delay, jitter, RTT, number of dropped packets, latency, etc. IP SLA is a 
tool to satisfy the defined constraints in SLA [3]. 

Object Tracking  is  another  Cisco  specific  feature.  In Object Tracking  we 
are monitoring an object, which is i.e. IP SLA object, status of an interface, status of 
IP address, presence of the destination network in the forwarding table, metric of 
the path, etc. Composite objects can be created, where other objects are put together 
through boolean logic or threshold system [4]. 
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Fig. 1. Example of the IP network with the potential for Traffic Engineering use 

Currently, a combination of ATM facilitates management through PVCs and scal-
ability of the IP infrastructure resulted in the MPLS networks as MPLS TE. 
MPLS enables chaining of the labels in Protocol Data Unit (PDU) and thus the abil-
ity of non-bottom labels to have other than routing purposes. The two most common 
uses for these labels in one PDU are VPN (Virtual Private Networks) and TE tunnels 
identifications. However, tunnels are still created mostly manually as a part of the 
network design. Adding new TE tunnels to the network can be accomplished either 
by the strategic approach by creating full mesh of TE tunnels in parts of the net-
work or by the tactical approach  by the monitoring link utilizations and by adding 
TE tunnels when they are required [5, 6]. 

There is also an approach based on enabling the premium service classes in the 
DiffServ  over  MPLS-enabled  network [7].  The advantage  of  this solution is  
the implementation as framework. However, DiffServ is mandatory in this case and 
only chosen parameters are measured. Contrary to DiffServ over MPLS, we would 
like to track  the  tens  of  different  parameters  [8].  Furthermore,  the  dependence  
on  the DiffServ is not suitable and we would not like to be limited to some QoS 
model. 

There is also work based on the delivering QoS in the Next Generation Network 
(NGN) [9]. This paper presents usage of the QoS for NGN end-user applications. 
Several concepts for allowing the control of QoS levels are discussed. We would like 
to present the automatic approach without fixed QoS classification and marking. 

There is also work based on the modeling and simulating of traffic aggrega-
tion over MPLS networks [10]. This work is focused on SIP call setup and SIP opera-
tion. We focus not only on SIP signaling, but also on media delivery. 

3   Proposed Solution 

Basically, monitoring the links and the devices is done by specialized applications. 
Monitoring is done mostly by the Simple Network Monitoring Protocol (SNMP). 
There is also possibility of using IP SLA to track some parameters of the links, which 
are informing the administrator via SNMP. There is a huge variety of parame-
ters, which can be actively monitored from the routes and many ways of how to and 
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when to inform the administrator. However, time between sending the trap message, 
receiving and reading it by the administrator and taking the appropriate action is too 
long. If there is no backup plan created, minutes can pass. Automation of this SNMP 
based process is part of our future efforts. 

Our current solution, described in Fig. 2 combines IP SLA with Object Track-
ing [7, 8] and Object Tracking with the static routes defined in the routing table. We 
are focusing on the MPLS TE tunnels. The only prerequisite is that the TE tunnels 
are defined statically in the routing table. In our solution, monitored parameter with 
IP SLA is mapped one to one with Object Tracking. We are also creating composite 
tracked object, which changes its state after several conditions are met in the other 
tracked objects. This composite object is mapped with the static route. After some 
critical values are detected by the IP SLA, the tracked objects change their state 
automatically. So when the composite object will change its state, the static route will 
change its state as well. When the static route goes down, the other static routes with 
worse preference will take place or the dynamic routes. This is a unique automatic 
solution. Backup plan takes place automatically. Problems are that increasing number 
of the IP SLA objects increase also bandwidth and CPU utilization. Even more, also 
the backup plan must be prepared as a part of the network design. If needed, SNMP 
messages  can  be  still  sent  to  the  administrator  and  administrators  can  manu-
ally change the policy if necessary. 

 

Fig. 2. Proposed approach: combination of IP SLA, Object Tracking, MPLS TE and routing 

4   Test-Bed Setup 

In Fig. 3, the test-bed of our IMS core with the surrounding redundant carrier net-
work is presented. The carrier network is composed of eight routers with multiple 
redundancies. We have two exit points in our network to simulate transit ISP net-
work. One exit point is on the far left side, and one on the far right side. IMS core is 
situated in the network center. 
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Fig. 3. Testbed scheme 

Two MPLS TE tunnels are present on routers R1, R2, R7 and R8. These 
TE tunnels are created across the whole network, from the one exit point to the other 
exit point. One TE tunnel on the router R1 is placed across routers R3, R5 and R7 
and the second TE tunnel from R1 through R4, R6 to the R8. On the other routers, 
TE tunnels are placed similarly to this. The first TE tunnel is called primary and the 
second is called secondary TE tunnel. Primary tunnels are placed among “upper” 
routers (R1, R3,  R5,  R7).  We  assume  that  on  the  exit  points,  the  External  
Border  Gateway Protocol (eBGP) will be configured. 

The  primary  TE  tunnel is placed in the routing  table  statically  with  some pref-
erence. The primary and the secondary TE tunnel are learned via dynamic routing 
protocol, in our case via Integrated Intermediate System to Intermediate System (IS- 
IS) protocol with worse preference. The static primary TE tunnel is tracked by an 
object. All the traffic destined for the networks behind the other exit point is going 
through this static TE tunnel. After some conditions are met, tracked object 
goes down,  which  leads  to  removing  this  static  route  from  the  routing  table.  
After removing this static route, the same dynamically learned primary TE tunnel and 
also the secondary TE tunnel are placed into forwarding table. The traffic is now 
load balanced. 

For our measurements, the network traffic will enter only the router R1 and is des-
tined to the exit point behind the routers R7 and R8 (c.f. Fig. 3). We assume that 
customers are already registered and they are initiating voice or video calls. One 
of the customers is located behind the left exit point and one behind the right exit 
point. After initiating calls, the bandwidth utilization is rising, which leads to 
increased Round Trip Time (RTT). Because of 128 kbit/s link between routers, 
only one call can be established with no quality penalty. After initiating the second 
call, increased RTT, jitter and also packet loss is observed. Both calls have equally 
penalized quality. 

For our second measurement we will configure IP SLA objects. We have chosen 
RTT and average jitter for IP SLA tracking. In the IP SLA object 1 we configure the 
icmp-echo type of packet with the Type Of Service (TOS) decimal value of 
184, which is the decimal representation of EF class. Threshold is configured to the 
20 ms for our test purpose. Frequency of sending these packets and controlling the 
quality of the link is 1 second. The second IP SLA object is configured in the same 
way as the IP SLA object 1. The threshold value is set to 4 ms, again, only for test 



710 F. Burda et al. 

 

purposes. The reaction is configured for an average jitter with the upper threshold of 
4 ms and lower threshold of 3 ms. If threshold limits are exceeded, immediate 
action is taken. Each and every IP SLA object is mapped to its own unique object 
in Object Tracking (1 and 2). One composite tracked object is created with the boo-
lean logic, designated as object 3. If any object is down, the whole composite object 
is down. This composite object is used for the static route configuration. Tracked 
objects 1 and 2 are delayed. If they are not delayed and if one of the IP SLA object 
fail their test, immediate action is taken. We are delaying the “down” and the “up” 
state three times the frequency of IP SLA object, which is 3 seconds. If three times in 
a row the test fails, tracked object is considered to be down. The same rule applies for 
the “up” state. 

5   Performance Results 

During measurement, we established the first call. The TE tunnel bandwidth was 
sufficient for exactly this one call as indicated by acceptable RTT and Jitter charac-
teristics for 128 kbit/s A/S interfaces in Table 1. Next we have established second 
call. After the second call was established, the RTT measurements started to con-
stantly  rise  (c.f.  Fig.  4).  After  4  seconds  of  both  calls in  place,  call  quality 
deteriorated beyond acceptable threshold (c.f. Table 1). However with our optimiza-
tion,  network  was able  to  detect degrading call quality and  dynamically switch 
traffic patterns in Traffic Engineering manner to accommodate rising demands for 
network throughput. In optimized environment, after the second call was placed and 
call characteristics worsened beyond specified threshold, corresponding IP SLA 
measurement bound to object 1 failed immediately within the next testing period. For 
the next 3 seconds object 1 was forced to be delayed before changing its state, as a 
protection against premature backup TE tunnel activation. After this timer expired, 
object 1 has changed to the down state, also forcing object 3 to go down. This has led 
to deletion of the corresponding static route in the routing table. The dynamic routes 
took place immediately, resulting in the creation of the same primary TE tunnel and 
additional secondary TE tunnel. In this setup, the routers could begin to load balance 
between these two TE tunnels. In the next half second, given the load balanced envi-
ronment capable of sustaining two concurrent calls, the quality for the both calls 
returned to acceptable levels. IP SLA object still hold two TE tunnels up, be-
cause with load-balanced solution, jitter characteristics remained above normal in 
node (c.f. Table 1). After termination of one call, jitter characteristics returned to 
acceptable values. Therefore IP SLA realized that it is possible to return to a single 
TE tunnel solution. All the objects changed their state to up and static route was 
placed back to the routing table. There were no negative effects observed during our  
experiments. 

In Fig. 4, graph of the RTT measurement in time is depicted. Recording of values 
began when second call was established. It is obvious that our optimization system 
needed roughly 4 seconds, to detect, propagate, compute, and update routing for-
warding information base for rising throughput demands via load sharing TE tunnels.  
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Table 1. RTP behavior with and without pro-active backup MPLS TE tunnel utilization 

 RTT [ms] Jitter [ms] 

 Without IP 
SLA 

With IP 
SLA 

Without IP 
SLA 

With IP 
SLA 

1 call 51,4 51,4 1 1 

2 calls (0-4 s) ~305 ~305 1 1 

2 calls (after 4 s) >2000 51,4 4-6 4-6 
 

Consequently, after roughly 4 seconds, our system was able to dynamically achieve 
sustained acceptable call quality. In comparison to static TE tunnel, that simply be-
came congested. Note that for half a second interval after 4th  second, RTT is in a 
great variation after applying our configuration. During this time, out of sequence 
packets are arriving, causing these values “jumping” from the upper to the nor-
mal RTT level. These packets were discarded by the VoIP clients. Clients were able 
to communicate after the 4.5 seconds with its expected quality. Without IP SLA, 
RTT was constantly rising up to the 2000 ms (c.f. Table 1). 

 

Fig. 4. Comparison of the RTT evolution in time for system with and without IP SLA  

6   Conclusion 

Nowadays, there are some approaches for optimizing the cooperation of the network 
IMS core. These approaches work manually, no automatic solution is available. We 
have proposed innovative solution, which finds suboptimal bandwidth utilization 
automatically, without requirement of the network administrator involvement. How-
ever in this stage, some backup plans are required for immediate response. 
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We have demonstrated that the IP SLA with the Object Tracking can be effec-
tively combined with the other technologies like MPLS TE. Especially, after link 
failure or link overload, it can reroute traffic in fully automated way to alternative 
routes. Even that this approach eliminates need for administrator action, it is still 
rather slow. Therefore, the open problems for the next research are the optimization 
of TE tunnel creation and the strategies for their deployment. 
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Abstract. This paper describes an approach for combining Session Ini-
tiation Protocol (SIP) based voice communication with Extensible Mes-
saging and Presence Protocol (XMPP) based presence enhancements.
The actual role of SIP and XMPP in the Internet Protocol (IP) based
communication was analyzed, especially from the telecommunication
carrier (Telco) point of view.

The proposed infrastructure extends a typical SIP infrastructure with
XMPP for presence status integration. XMPP will be used as instant
messaging and presence (IM/P) service infrastructure, the presence in-
formation will be extended with SIP phone status information of telecom-
munication endpoints. A first prototype has been developed and tested
successfully.

Keywords: SIP, XMPP, Presence, Federation, Collaboration, Telco, Web
2.0, NGN.

1 Introduction

This paper discusses various approaches to overcome the current lack of sophisti-
cated and field-tested presence-enabled communication infrastructures in Telco
environments. The target is to provide a service environment for both multime-
dia sessions and IM/P.

The use of instant messaging has recently become popular not only in pri-
vate, but also in the business segment. When people communicate through in-
stant messaging systems, one major service enabler must be included: Presence.
Without knowing the current state of the other endpoint (i.e., its presence infor-
mation), the instant message would be nothing more than an ordinary E-mail.
Knowing that the other party is actually online enables small ad-hoc text-based
dialogs and other instant services.

So far, instant messaging and presence infrastructures are usually provided by
Internet Service Providers (ISP). Presence states are exchanged between clients

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 713–726, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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that users have running on their computers or notebooks. If a Telco would like
to implement the presence service in its role as a service provider, its first major
function would be enabling instant messaging. In order to not just be yet another
IM/P provider, Telco’s have to think of ways to provide a unique presence service.
They can do this by enriching the presence states of their users with telephone
state information. This makes their presence system unique amongst providers
of the current ISP world1.

2 Status Quo

Within this paper, the “telecommunication world” will be used as a summary
of Telco’s and smaller providers that have specialized in offering their customers
VoIP based telephony, almost entirely using SIP for session signaling. To date, this
telecommunication world itself has not been pushing forward instant messaging
and presence.

In contrast to facts mentioned above, the internet community has been using
instant messaging and presence for many years. Together, they became part of
many Web 2.0 web sites to offer real-time communication to their users.

The “internet world” will be used as a synonym for companies that host web
pages or web services and offer communication services – mainly through instant
messages.

Some instant messaging clients may already provide some form of voice com-
munication. The protocols used for those clients are either proprietary or they
use another important protocol specified by the Internet Engineering Task Force
(IETF) exactly for this purpose: XMPP. The use of instant messages and pres-
ence is very mature and well implemented already. However, the voice transmis-
sion has so far either been proprietary, or is not at a highly developed stage for
voice service providers.

This paper summarizes both service protocols mentioned above – SIP and
XMPP – and proposes a federated architecture for current Telco’s to extend
their multimedia infrastructure with mature instant messaging and presence.

While some existing research approaches (e.g., [1], [2]) address the interwork-
ing function for converged IP messaging services such as E-mail, Short Messaging
Service (SMS) or XMPP instant messaging, the primarily focus of this paper is
the integration of SIP telephony states in an XMPP framework and building a
converged SIP/XMPP based communication infrastructure. It is not desired to
have users from the SIP domain communicating with users from the XMPP do-
main through gateways. Those gateways have already been realized (e.g., [3]) and
they are working fine already. In the context of this paper however, it is assumed
instead that a single user is present in both domains (i.e., in the SIP domain
for voice communication and in the XMPP domain for messaging and presence
1 It is well known that Skype is an ISP client/system that combines presence and

telephony. In this paper, the term “Telco” refers to fixed-line telecommunication
providers with a Voice over IP (VoIP) infrastructure. Customers use the Telco service
in the classic way through hardphones.
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exchange). The target of our research is a mature communication infrastructure
that can be implemented today in the telecommunication world.

3 Protocols and Their Context

3.1 SIP and Presence

SIP is a well-established protocol for the telephony over IP based networks, which
has been standardized by the IETF. Many Telco’s have already implemented it in
their network in order to provide VoIP telephony. The market knows a variety of
mature server implementations (proprietary and open-source) end devices and
many softphones. [4] defines SIP as “an application-layer control protocol for
creating, modifying, and terminating sessions with one or more participants”.

The basic SIP methods only enable registration and session establishment.
Several extensions exist, which enable the protocol to handle presence. The
following possibilities are required for using SIP as presence protocol:

– Means for subscribing to presence information of users
– Means for being notified with presence information of users
– Means for publishing own presence information
– Means for managing watcher authorization

With the CPP (Common Profile for Presence) specified in [5], an abstract model
for delivering presence information is available. This model describes the mes-
sages between the client presence application and the presence management
server. SIP based presence uses the general event notification framework from
[6], which defines SUBSCRIBE and NOTIFY. The particular SIP presence functions
for subscriptions and notifications are defined in [7]. This extension of the event
notification framework describes basic means to retrieve presence information.

[7] mentions three possible methods showing how the presence service can
obtain presence states:

– Analyzing the SIP REGISTER messages2

– Co-location of the Presence User Agent (PUA) with the presence server
– The client uploads the presence information to the presence server

For the third method, [8] extends SIP with another method: SIP PUBLISH.
This completes the SIP methods necessary for both sending and retrieving
presence information.

An event template package for management of watchers (acc. [9]), and even
more importantly for the handling of authorization with the Extensible Markup
Language (XML) Configuration Access Protocol (XCAP) (acc. [10,11]), complete
the complex framework for SIP based presence.
2 Here the gathering of advanced important information is already mentioned: The

indication of instant messaging support by the client (e.g., SIP Allow header for
MESSAGE). As in our concept, instant messaging as a very important service to be
enabled by presence and should be available at the endpoint.
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For quite some time, SIP servers have implemented SIP extensions mentioned
to handle the exchange of presence information between users. A few of these
have even started to integrate or offer interfaces for some XML Document Man-
agement Servers (XDMS). However, currently there are only a few – if any –
SIP clients that support SIP and XCAP at a satisfactory level. Interoperability
between clients is usually not provided yet. One reason for this is that the IETF
has defined SIP and XCAP, but does not consider an overall view regarding a
presence architecture with all its functions and tasks.

An integrated SIP/XCAP based infrastructure that provides a framework to
deliver the presence service with major required functionalities as mentioned
within this paper has been standardized by the Open Mobile Alliance (OMA) in
[12]. The approach will also be used in the IP Multimedia Subsystem (IMS). For
the extensions of a currently SIP based architecture, the extension with presence
requires far more than only adding a presence server and an XDMS. The internal
interfaces (some of which are even out of scope of the current standard) have
to be implemented, services such as resource lists require a tight integration
of resource list server, presence server and XDMS and finally clients have to
fully support the standards to guarantee a proper handling and satisfying all
expectations the users have on privacy.

In summary, Telco’s that want to implement the presence services now, and
also remain end device vendor independent and close to standard compliant
in their implementations, will immediately be confronted with many tasks, if
they decide building the service on SIP. Both the scope and complexity of the
problems have been shown in this section.

3.2 XMPP and Presence with Messaging

XMPP is standardized by the IETF and mainly designed “for the purpose of
building instant messaging and presence applications” (from [13], [14]). While
SIP is similar to the Hypertext Transport Protocol (HTTP)3, XMPP is based
on XML.

Knowing that SIP was extended with IM/P, it is not surprising that XMPP
has been extended towards session establishment. The extension is called Jin-
gle, standardized in [15], [16]. It is currently implemented in some clients, but
not considerable for any larger Telco environment4. Despite this fact, all IM/P
related advanced functions like

– Authorization handling
– Group chat/multi-user chat
– Server-side storage of the buddy list
– Remote control of clients

are really well implemented in XMPP.
3 It has for example header/body or header fields on single lines with value and

attribute separated by colon.
4 No hardware endpoints exist, SIP is already well established within the Telco

network.
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The server as well as client software is very mature and many large companies5

are successfully using XMPP as their choice for offering IM/P based services or
products. Implementing XMPP would leave many customers the free choice in
their client and the ability to re-use their currently installed application.

For a Telco operators network, XMPP would be the number one choice at
this time to

– provide instant messaging and presence service
– offer a variety of existing clients (the users do not have to get used to yet

another client)
– go for standardized protocols, also to decrease the internal implementation

efforts necessary.

As discussed within this section, there is no first choice in only one protocol for
telephony and presence management. At the moment, the best option would be
to keep SIP for session signaling and extend the network with XMPP for instant
messaging. Users could use multi-protocol clients to access both services and use
the benefits from both. This would however not be without problems.

From the user point of view, multi-protocol clients are currently used because
their contacts use different instant messaging systems that do not share a com-
mon standard. The multi-protocol clients help the users to unite their contacts
in one program. From the operator point of view, this merging at the client-side
cannot be controlled. If the operator provides SIP based presence for telephony
status information and an XMPP network for their customers to immediately
start to chat6, it is up to the customer and their software to merge the states of
their contacts.

An alternative approach is to provide a single infrastructure and to feder-
ate the presence states server-side. By federating the existing SIP infrastructure
(that exists and inherits all mentioned benefits for multimedia communication)
with an XMPP environment (to take advantage of the mature XMPP implemen-
tations and large internet community using it), the operator can easily extend
its current infrastructure with IM/P. The customers would only need an XMPP
client for desktop messaging in addition to the SIP softphones or hardphones
already in use. The XMPP states would include the presence states of their
VoIP communication devices, hence providing extended presence information
that would help the Telco to separate from the current ISP presence.

4 Consolidated SIP and XMPP Architecture

4.1 Focus

The main concept that this paper proposes can be derived by taking all consid-
erations and observations from the previous sections into account. The proposal
5 Cisco, Google, HP or Sun.
6 Providing an XMPP access allows the customers also to use their account for

integration with the large XMPP clouds in the existing internet world.
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assumes that a Telco wants to extend its SIP based telephony infrastructure
with presence. The Telco wants to offer a mature infrastructure to its customers
and allow them an easy and fast use of its new service. The customers should
not necessarily require any new software. They should, however, benefit from
call state information the Telco can provide.

The operator has generally two choices, if standardized protocols7 are
mandatory:

– SIP based IM/P
– XMPP based IM/P

The main advantage of SIP based IM/P is that only one protocol will be
used within the Telco’s signaling network. In the end, it follows existing next-
generation network (OMA/IMS) approaches using only SIP for all parts of
communication. As mentioned in section 3.1, the OMA concept provides
further concepts of inter-domain and inter-service communication. The SIP based
concept is however still considered immature (regarding exact specifications
that cover all required parts for presence) and not yet sufficiently interoperable
(regarding available clients). It still takes time for vendors to catch up.

As the target presence service should be mature as well as a solution for offer-
ing the service immediately, the paper proposes to base it on XMPP. A positive
side-effect is that the solution is at this very moment already interoperable with
existing IM/P infrastructures and well established in client desktop messaging.

4.2 Concept

The typical user that is discussed within this paper uses primarily a SIP hardware
phone for voice communication. A small number of users is also using software
based SIP phones. The user is most likely using XMPP instant messaging clients
to connect to an IM/P service infrastructure.

The concept will be based on a typical communications set-up as depicted in
Fig. 1. The existing SIP communication infrastructure contains all components
in a simplified way required to provide the customer the basic telephony service
(e.g., proxy, registrar, media resources, gateway). The existing IM/P service
infrastructure consists of XMPP clients and servers. Both infrastructures are
currently isolated.

To extend this SIP infrastructure depicted in Fig. 1, a transparent proxy has
been placed between the signaling endpoints (User Equipment (UE), SIP server).
This proxy is aware of all signaling traffic of the UE. From the session related
exchanged SIP messages, a co-located PUA can generate SIP PUBLISH messages.
The generation of publications makes general sense for the following events:

– A SIP UE is registering (i.e., the user can be reached for voice communica-
tion)

7 Both the SIP extensions for presence and XMPP, follow the general model for
presence and instant messaging standardized by the IETF (acc. [17], [18]).
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Fig. 1. Current SIP and XMPP isolated communication infrastructures

– A SIP UE is establishing a dialog (in-bound or out-bound call, i.e., the user
is busy)

– Further events accessible8

In order to represent the SIP UE state in a user’s XMPP presence state, it does
not make too much sense to show that it is registered. In a typical environment,
hardphones are registered all the time. This presence information is not helpful,
as it is not conductive to a potential improvement in communication. The most
relevant event is call state information. The off-hook event (knowing that a user
is in a telephone call) is a typical busy state. The user is busy and does not want
to instantly respond to messages.

The generated SIP PUBLISH events for a UE with an open dialog will be trans-
ferred into the XMPP world as presence state. This process will be explained
in detail in the following subsections. For integrating the published information
into XMPP, a gateway is required. This gateway will be referred to as XMPP
Publisher in the following.

The tasks of this XMPP Publisher are:

– Creating XMPP <presence> stanzas from received SIP PUBLISH messages
– Map the SIP user identification to an XMPP user identification
– Provide authentication for that user towards his XMPP server and publish

his presence state

8 There are no means in SIP to signal certain changes like setting Do Not Disturb
(DND) at a hardware endpoint. However, if the user is performing those changes
with telephony call “star codes”, they are signalled to the SIP system and the proxy
could evaluate this to generate events. As this is usually not the only way to perform
those settings, generating presence events from them is not considered within this
paper.
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Fig. 2. Implemented federated SIP/XMPP communications infrastructure

This paper will focus on an XMPP based presence system as discussed. The
proposed design can be either simplified (e.g., by co-locating the XMPP Pub-
lisher with the SIP proxy and skipping the PUA) or made more complex (e.g.,
in forwarding SIP PUBLISH messages from clients to the XMPP Publisher).

Fig. 2 shows the implemented extension of the previously shown isolated SIP
and XMPP infrastructures as a prototype. It contains all components that have
been introduced within this subsection. The proposal of this paper is based on
the assumption that the SIP and XMPP server infrastructures are both managed
by the Telco.

At this point, all SIP related presence information (call state information
transformed to presence events and user generated presence events) is available
within the XMPP network. The XMPP clients, which are used by the user for the
exchange of messages in the “internet world”, are enhanced with the information
from the “telecommunication world” and change their states accordingly.

4.3 XMPP Publishing

Publishing the state for XMPP only makes sense, if a user has an account in this
system. The presented concept can be used for both users that have accounts
in the Telco’s own XMPP network as well as users with an existing account in
another domain.

For the publication of the presence state and merging it with the existing
XMPP resources of the user, two basic use cases have been elaborated:

a) Publish a separate resource (e.g., “sip-phone”) with the telephony state of
the user

b) Modify the presence state of an existing resource
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Case a) has been the most obvious case in the beginning of the research. The
SIP presence state is presented as a separate, additional resource of the user.
This resource can be either online (i.e., the user is registered), busy (i.e., the user
is in a SIP dialog) or offline (i.e., user not registered). Publishing this resource
can generally happen independent of whether the user is logged in with another
resource or not. The technical realization is rather obvious: The XMPP Publisher
must open an instance with a certain resource (e.g., “sip-phone”) on behalf of
the user to change the state accordingly.

Case b) is not so obvious in the beginning, but has several advantages in
comparison with a). Although this case makes only sense when the user is already
online with one or more resources, the approach supports the concept more
than approach a). The primary instant messaging happens within the XMPP
world; the SIP state is only supporting and refining. Hence, a single SIP state
of a hardware endpoint is not necessarily required, as no IM conversation can
happen with this endpoint anyway. On the other hand, when an XMPP resource
is online, it makes perfect sense of refining its state and letting potential contacts
know that the user is in a SIP conversation.

The second case has another advantage: XMPP users can only reach resources
they can actually communicate with. In case a), the resource “sip-phone” is ad-
dressable; hence, users might send messages to it – only receiving an error mes-
sage as response. By modifying the state of an existing resource as b) indicates,
the user keeps control over it and has this resource available for messaging as
well. The realization of case b) requires the used client to support [19]. During
SIP registration, the XMPP Publisher will log on with a resource that has a
negative priority on behalf of the user. This online resource will know the other
resources. If the user makes a phone call, it will change the presence state of the
client and set it to something pre-defined (e.g., “do-not-disturb” with the status
“I am currently on the phone”).

For both cases, resources are very important. Either a new resource or an
existing resource will represent the users SIP state. Another not less important
point to make the concept work is the priority that is assigned to a certain
resource9. XMPP handles priorities as follows:

Resources with positive priority can receive messages. XMPP servers send
messages to the resource with the highest priority. Some clients only show
the state of the resource with the highest priority as user state, some show
all.

Resources with negative priority must not receive messages. If only one re-
source is online, and this resource has a negative priority, XMPP servers
handle the message as if the user was offline.

Case a) would conceptually work fine, if a resource would get a negative priority:
The XMPP server would never deliver messages to it. If the user would not be
online with another client, no messages would be lost. The major drawback here

9 Although this concept would work regardless of the priorities, many clients will only
present the overall state from the resource with the highest priority.
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is that now client would indicate at first sight, that the user is in an actual
conversation. All other states would have a higher priority and not be reflected
in almost any client at all. Case b) on the opposite would perfectly work. The
XMPP Publisher would modify the state of an existing resource with the highest
priority and the state would be reflected immediately. A positive side effect is
that the user could immediately change the state back, if desired10.

4.4 Addressing

Several drafts (e.g., [20], [21]) discuss the general possibility to signal the XMPP
Address of Record (AoR) in SIP (or vice versa), so the servers can make a correct
assignment. The purpose of those drafts however differs from the approaches of
this paper. While those drafts focus on an SIP/XMPP gateway for users from
one world communicating with users from the other (as in [20]) or on converged
SIP/XMPP clients and the signaling of the AoR for mappings between SIP and
XMPP “communication streams” (as in [21]), this paper focusses on a single
user in both worlds that wants to use solely XMPP for instant messaging and
presence information exchange.

In the presented concept, an actual XMPP client instance is running on the
XMPP Publisher on behalf of each user. This concept requires the provisioning
of the Jabber ID (JID) and the password; hence, this additional signaling for
assigning publications is not required. For each SIP user that has assigned an
identity in the XMPP Publisher, the XMPP JID and password are provisioned
separately. This allows the system to work with the Telco’s XMPP infrastructure
(pre-provisioned system), but also with separate XMPP servers.

In a provider pre-provisioned system, the SIP provider has also complete
supervision over the XMPP server. The XMPP user account is provisioned at
the same time as the SIP account. The XMPP Publisher has access to the XMPP
user database to successfully authenticate against the XMPP system to modify
the resource as a user.

For a separate XMPP server, the user has to provide his credentials to the
XMPP Publisher. In both cases, the signaling of the XMPP AoR is not required
as the assignment between SIP user and XMPP user AoR cannot be automatized.

4.5 Implemented Prototype

The currently implemented prototype uses several simplifications:

– The proxy is not using a PUA. The open-source SIP application server Open-
SIPS [22] has been configured to recognize events in SIP that signal off-hook
and on-hook. For both cases, the server calls the XMPP Publisher directly.

– The prototype is not using [19] yet, but a separate resource (as in case a) sec.
4.3). The resource increases its priority if the user is off-hook to be sure it is sig-
naled in the client. The mentioned problems appear, but the concept is visible.

10 If the XMPP resource that represents the SIP state in case a) supports [19], a client
could change its state back as well. It could also increase the priority of its active
resource. The authors are aware of this but consider it as too complex for a “quick
change-back”.
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– The XMPP Publisher knows certain events (online, still online, on the phone,
still on the phone, offline):
• Online if the user first registers
• Still online if the user re-registers
• On the phone if the user initiates or receives a call
• Still on the phone for re-INVITE messages
• Offline if the user de-registers or the registration expires.

– The publishing towards XMPP is done using Bidirectional-streams over Syn-
chronous HTTP (BOSH). The persistent Transport Control Protocol (TCP)
connections (each published user towards the server) were not implemented,
BOSH has rather been chosen with a certain timer (450 seconds). This al-
lows the sending of “events” over non-persistent HTTP connections. The
registrations and SIP session timer are forced to 300 seconds. This is the
reason for the “still”-events (to allow a “refreshing” the timer).

A prototype according to the concept presented within this paper is currently
being implemented and will be tested in practical scenarios.

5 Future Scope and Use Cases

The presented XMPP Publisher can even be of use when the Telco decides in the
future to migrate to IMS or centralized SIP based presence management (IMS
includes this). While the customer might be able to use sophisticated hardware
or software for connecting his co-located SIP PUA, he will still most likely use the
XMPP infrastructure. Fig. 3 shows that the XMPP Publisher can still be used
to bring the centralized SIP presence information (that is stored in the presence
server) easily into the XMPP network, by simply relaying the SIP publications
to the XMPP Publisher.

The IMS user that might be using an IMS SIP compliant hardware endpoint
still benefits from the proxy and connected PUA (to generate presence events
from the SIP communication). Those events might be stored in the presence
server of the IMS in the future. SIP/XCAP compliant IMS clients publish their
presence states directly to the presence server. The presence server collects all
those events and the co-located XDMS infrastructure (omitted in Fig. 3) handles
privacy and XCAP documents the client provides. As clients in this IMS-Telco
infrastructure will still have and actively use XMPP clients and their existing
infrastructure, the XMPP Publisher will enrich all of these with IMS presence
information.

The previously described scenario can further be improved by developing the
XMPP Publisher into an “SIP/XMPP Publisher”. The integrated XMPP client
side, which is connected on behalf of the SIP user, is active as one of its resources.
This also means that it is aware of the presence states of all its XMPP contacts.
If some mapping can be implemented in the future (e.g., if SIP and XMPP
belong to one operator, the username-part of SIP and XMPP AoR is unique
and belongs to a single customer) this XMPP presence states can be “back-
published” towards the SIP system as well. Both systems would then be aware
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Fig. 3. Future integration of the XMPP Publisher

of the presence states of all users – at least where a proper mapping could be
made. Converged messaging would furthermore even allow the communication
throughout the “protocol borders”.

Another future target is to improve the identity mapping and the related
authorization (pre-provisioned user names and passwords). The authors are cur-
rently analyzing whether XMPP provides means and can be extended with a
useful mechanism respectively to connect the XMPP Publisher similar to compo-
nents with the XMPP server. A “trusted component” could then modify presence
states of the served users. Moreover, the provisioning efforts would be minimized
and the simplicity of the concept improved.

Additional use cases have been identified by the authors for the proposed
federation of SIP and XMPP architectures. The interworking can be extended
from presence-based services also to messaging/notification or location-based
services. The information just needs to be mapped in a meaningful way. The
near future may include also the initiation of voice/video communication or
content streaming initiation. Some drafts are working on that as well.

The main advantage of both protocols is their extensibility and capability
to transport XML encapsulated information in the protocol body. Finally, the
same XML body should be used in the same manner and enable convergence
of both worlds and easier interworking. The most relevant scenario is using this
convergence to integrate some of the Web 2.0 technologies based on XML or
XMPP for extension of integrated concepts with SIP based architecture. The
goal is not replace SIP protocol technology with XMPP protocols but used each
of their strengths and benefit from their interworking for Telco and Internet
convergence. This wider scope of proposed federation should also extend the ap-
plicability and Web 2.0 service accessibility in the future. This is also valid for
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NGN/IMS based architectures, as it would make them more attractive for ap-
plication developers and internet users. In these cases the same services will
be available on NGN networks, but also on the internet and most importantly
providing the same user experience and large user community.

6 Conclusion

The presented concept is a good compromise between immediately starting to
introduce presence in the telecommunication world. XMPP as widely used and
adapted concept has been chosen.

The authors are aware and support the moves from the standardization com-
mittees to push SIP based presence management forward. IMS is from the au-
thor’s perspective clearly the future; its presence management concepts included.
The Telco’s are however reminded that integration with the existing Web 2.0 in-
frastructure is important and the presented concept can highly increase the user
experience. Customers will choose the Telco that does not only offer new con-
verged services on their platform, but also respect the existing communication
infrastructure of the clients and integrate it as good as possible.
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Abstract. The IP Multimedia Subsystem (IMS) is the Third Generation Part-
nership Project’s (3GPP) standardized service platform that enables the de-
ployment of rich and personalized services over fixed and mobile networks 
whilst allowing end-users ubiquitous access to services such as voice, 
video, presence and online gaming anytime and anywhere. However, the 
delivery of these services to the end-users is highly dependent on the available 
or preferred access network which could range from fixed broadband access 
to mobile 4G connections. Although the IMS was initially developed as the 
core network for Third Generation (3G) systems, it has now been adopted as 
the service platform for the Long Term Evolution (LTE) and System Archi-
tecture Evolution (SAE). As this transition of 3G to 4G and beyond evolves, 
there is an immediate need for a research testbed that facilitates the research, 
development and early trials of the integration of these technologies. This 
has motivated us to integrate the IMS based Advanced Next Generation  
Network (ANGN) testbed at the University of Surrey (UniS), U.K. with the 
4G Access Network Testbed at IIT Madras, India via an academic transna-
tional network link to form a fully functional telecommunications mobile net-
work. In this paper, we discuss the rationales, motivations and objectives be-
hind the integrated testbed whilst also investigating how it can be extended to 
support 4G and future technologies such as LTE/SAE and WiMAX. The 
testbed as a whole plays a key as role in the future of IMS development 
as it provides a fully functional platform similar to commercial networks for re-
searchers to investigate and demonstrate the feasibility of their proposal in a 
realistic environment. 

Keywords: IMS, LTE, SAE, NGN, 4G, 3G, WiMAX. 
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1   Introduction 

Next Generation Networks (NGN) provides the long awaited convergence of the 
Internet and the cellular worlds, providing ubiquitous cellular access to all the ser-
vices that the Internet offers and vice-versa [1]. Examples of these services are Voice 
over IP (VoIP), Instant Messaging, online gaming, video conferencing and presence 
services. This is achieved by a combination of state-of-the-art access and core tech-
nologies providing an access-independent all-IP platform that enables the intercon-
nectivity and interoperability of mobile networks to other heterogeneous networks via 
packet switched technologies. The development of such an end-to-end all-IP platform 
for research purposes will facilitate the early trials and development of various new 
and emerging technologies aimed at NGN platforms. Although various IP Multimedia 
Subsystem (IMS) testbeds already exist [2-7], our aim in Theme-10 of the IU-ATC 
UK-India  project,  is  the  development  of  an  international  research  testbed inter-
connecting key NGN elements in order to emulate an operational and production- 
level NGN platform. This includes the access, core-network and service platforms. 

Such an integrated testbed will help researchers to investigate and demonstrate fea-
sibility of their proposals in a realistic  environment. The test-bed will also comple-
ment the other analytical and simulation based studies that may be performed in any 
individual study. In other words, the test-bed will not be considered as a replacement 
to analytical or simulation based studies but rather to aid the researchers in investigat-
ing the practical challenges. Our work in the Theme 10 of the IU-ATC UK-India 
project will use the existing testbed developed by IITM and UniS as launching pads. 
This includes the ongoing project in IITM to develop a testbed for research in radio 
access techniques by deploying a small radio access network with three SDR- based 
Base Stations (BS) supporting MIMO/OFDM based physical layers [8]. In addition, 
UniS  has an all-IP Advanced NGN (ANGN) testbed [9] that can be configured to 
provide core service and network infrastructures using both carrier grade IMS plat-
form and the OpenIMS [10] core. Thus, combining these two testbeds, we aim to 
build a complete platform that can contain different type of virtual mobile networks 
on a shared physical platform. For example, the physical infrastructure may contain 
two concurrent virtual WiMAX and LTE mobile networks. A unique feature of the 
test-bed will be its distributed processing property. While the radio part of the net-
work will be developed and deployed by IITM, the service platform and core network 
will be hosted by UniS. The two parts of the network will be connected by various 
academic networks as shown in Fig. 1.  

There will be sufficient flexibility in the topology of the network by means of using 
configurable switches in both the radio and core sections of the network. In addition, 
some flexibility will be possible by allowing remote researchers to upload their physi-
cal layer and Radio Resource Management (RRM) schemes to the IITM radio network. 
The core component will be deployed according to the experiment. For instance, an 
experiment may require LTE network  components, whilst another experiment may 
need a WiMAX network. These experiments can concurrently co-exist on the same 
physical infrastructures. Both core and radio networks will provide appropriate inter-
faces for remote researchers and network administrators. Thus, the other partner will 
be able to remotely deploy their experiment and get back the measurements that they 
need. As an example, some partners may only need to do experiments on physical and 
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radio parts. Such partners will be able to access the corresponding APIs at the IITM 
side. Some other partners may be interested in studying some application performance; 
thus, they could access the application server in UniS to deploy their applications. 

 

Fig. 1. An Overview of the IU-ATC Integrated Testbed 

The rest of this paper is organised as follows: In Section 2, we provide the ration-
ale, motivations and research objectives for the testbed looking at the roles that the 
testbed can play in the development of the integration of IMS and the advanced ac-
cess networks. In Section 3, we describe the integrated testbed while pointing out 
some key features in the respective UniS and IITM the testbed. Finally, conclusions 
and future work are presented in Section 4. 

2   Background 

The IMS has been developing rapidly over the years, offering a solution to the all- IP 
vision of rich, multi-access multimedia services accessible anywhere, at any anytime, 
with the required quality, and at the right price [11,12]. The IMS is now widely con-
sidered as the future service-centric platform of reference, although several research-
ers are still arguing that the benefits of IMS come with a high cost linked to its  
layered approach (complexity). Only a large-scale deployment of the IMS and a wide 
adoption by operators and service providers, will allow a full assessment of its bene-
fits and shortcomings. The enormous interest surrounding the IMS indicates that this 
may really become the standard framework for deploying advanced, ubiquitous ser-
vices over converged, all-IP networks, i.e the “Domain of Services”. However, not all 



730 A. Oredope et al. 

 

the research areas have been fully explored. One of the areas is the deployment of 
IMS over next generation 4G networks, which explores access technologies such as 
the LTE and WiMAX. There have been various concerns on the integration of the 
LTE core, known as the System Architecture Evolution (SAE) with the IMS [13]. 
Although the functionalities that are proposed in the IMS can be achieved in the SAE, 
the integration of IMS with SAE provides the major advantage of being a domain of 
services in which operators can easily bring new services to the market quickly while 
also exposing various functionalities to third party developers and also charging ap-
propriately for these services. The integration of both the IMS and SAE however 
currently raises various concerns and it posses as an area worth investigating. 

This has been one of the key motivations to combine the existing test-beds of IITM 
and UniS into an integrated test-bed that can be used to prototype and test advanced 
protocols developed within the framework of the IU-ATC project. This will help 
researchers and the IMS community as a whole to investigate/demonstrates feasibility 
of their proposals in a realistic environment.  The test-bed will complement the other 
analytical and simulation based studies that will be performed in individual areas. In 
other words, the test-bed will be one of the many tools for IMS based analytical or 
simulation studies. It will also  help  the researcher to investigate  the practical chal-
lenges as we have outlined in the following objectives. 

First, a fully operable end-to-end system and corresponding performance- monitor-
ing tools will be developed. In order to achieve this, the Indian portion of the test-bed 
will be dedicated to the radio-related technology aspects of the next generation of 
mobile networks, from the air interface, physical, Multiple Access scheme. For re-
search on higher level networking features at the network level and above, e.g., Mo-
bility support for IP networks, Multicast support, Service platform for future mobile 
networks, and IP Multimedia Subsystem, the UniS segment of the testbed will be 
used. The most powerful capability of the integrated test-bed will come into play 
when research is carried out employing both segments simultaneously, interconnected 
across the continents, using the transnational academic network, which provides 
higher bandwidth and fewer routes as compared to the public Internet. As an example, 
a scenario for establishment of an end-to-end multimedia service session between two 
User Equipments (UE), one in the UniS and other in IITM segments of the testbed. 
The IMS core and required CSCF (Call Session Control Functions) are provided and 
maintained within the UniS ANGN, and radio part research scenarios are tested 
within IITM testbed. This will allow possible interoperability issues to be identified 
and solutions developed. Key performance indicators (KPI) encompassing applica-
tion, radio and network protocols will also be identified. Software modules for captur-
ing of KPIs and their post-processing will also be developed. 

Another key objective that would be facilitated by the testbed will be the ability to 
develop, analyse and optimise novel mobility management protocols enabling fast and 
reliable horizontal and vertical handover. In order to achieve this the UniS ANGN will 
be enhanced with development and evaluation of new advanced mobility management 
and network/user security protocols. The advanced mobility management will be based 
on multi-layered mobility management protocol concepts which require cooperation 
between application layer, network layer and handover at layer 2 using respectively 
SIP, MIPv4/6 and layer 2 handover  algorithms respectively. The multi-layered mobil-
ity management protocol will be optimized with a fully integrated context transfer 



 Deploying IP Multimedia Subsystem (IMS) Services 731 

 

protocol for fast and reliable and secure handover involving AAA for user authentica-
tion. We will also be developing and analyzing various sets of cross-layer link  
adaption, resource management, admission control, packet scheduling and routing 
algorithms to provide QoS guarantees for a variety of services and application. We also 
aim to investigate 

Other research objectives that can be investigated on the testbed include Advanced 
MIMO Schemes including various BS co-operation techniques and establishing their 
respective performance parameters, NGN charging mechanisms and inter-domain 
presence management to mention a few. 

3   The Integrated Testbed 

The “End-to-End Transnational Wireless Network Testbed” is based on Software 
Defined Radio (SDR) network elements, a High Performance Computing (HPC) 
cluster, and an IP-based network nodes with IP Multimedia Subsystem (IMS) service 
development platform. In this section we provide a brief overview of the existing 
facilities and their current status, at both IITM and UniS, an interworked architecture 
together with selected advanced research ideas to be tested and optimized utilizing the 
testbed. The testbed will provide real-time and non real-time (depending on algorithm 
complexity) emulation of a 4G network, providing researchers with an insight into 
how their ideas perform and how different techniques interact. Part of the testbed is 
proposed to be located on the campus of Indian Institute of Technology, Madras in 
order to leverage the significant physical resources  already  available  and intercon-
nected through various academic networks with niversity of Surrey (UniS) existing 
Advanced Next Generation Network (ANGN) testbed. The capabilities of the UniS 
platform will be significantly augmented with all-IP based mobility management 
protocols with context-transfer techniques for fast and reliable handover employing a 
novel multi-layered mobility management technique. It will also be enhanced with 
new integrated Resource Management, MAC and routing protocol as well as a new 
cross- layer control plane functionality enabling cross-layer operation. The capability 
of the IITM platform will be significantly enhanced with proposed advanced MIMO 
and Air- interface techniques enabling full cross-layer operation between Physical 
layer and the higher layers in the protocol stack, resulting in power and bandwidth 
efficient air- interface solutions for the future 4G systems. This cooperative experi-
mental based research project aims at leveraging on existing testbeds in the UK and 
India and enhance them with advanced Physical layer techniques, MAC, RM, MM 
and Network layer and SIP protocols together with cross-layer control plane tech-
niques for efficient 4G all-IP network. 

The testbed at IITM will have four BS radio-nodes and 12 UE radio-nodes in the 
coverage area of the BS nodes. Each BS node will have four antennas while a UE 
node will have two antennas. BS and UE nodes will have transmit power of 5 W and 
250 mW respectively. Testbed is designed for a transmission bandwidth of 20 MHz. 
All the protocols of MAC and PHY (as well as applications, in other layers) will be 
run in the cluster and the digitized samples of the signal that has to be transmit-
ted/received on air will be communicated to/from BS nodes as Ethernet packets over 
optical fibre links. Cluster has 16 nodes and each node has 8 processors. Applications 
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could be run in real-time or near real-time depending on the degree of parallelisation 
achieved. BS as well as UE nodes will be synchronised to the GPS clock to enable co-
ordinated transmission. Ethernet packets will be time stamped to ensure transmission 
in the intended frame. 

The test bed at the University of Surrey provides an end-to-end all-IP platform for 
the delivery of NGN services using the standardised IP Multimedia Subsystem (IMS) 
service framework. These services include Voice over IP, video  streaming and mul-
timedia conferencing to mention a few. The testbed is also made up of state-of-the- art 
network and service elements that allow various forms of research to be carried out on 
both fixed and wireless network domains. The service domain is made up of an open 
source IMS core and also an industry standard IMS platform harnessing the advan-
tages of IMS SIP profiles that are  used in live environments by various telecommuni-
cations providers. The  UniS  testbed  is developed using a layered approach allowing 
for either each layer to be individually extended or allowing for cross layer research 
and extensions to be achieved. The layers are mainly divided into the access tech-
nologies, the IP core and the service domain. 

At the access level, the testbed provides a platform to study concepts such as mo-
bility  management,  vertical  and  horizontal  handovers,  new  communication tech-
nologies, signalling effects on the integration of mobility and security and secured 
communications over public infrastructures to mention a few. Although converged 
networks already have some mechanisms in place to enhance the deployment of  
mobile services [2,11,14], the test bed provides the opportunity to research these tech-
nologies in real environments using standardized protocols and applications. Further-
more, based on the technologies available on the testbed, significant attention has 
been devoted to individual studies of mobility at the access network level in con-
verged networks investigating specifically the integration of mobility and security. 
This is has led to the development of a wide range of access technologies and proto-
cols such as RMA controlled Soft Radios, Mobile IP and Mobile IPv6. Other research 
areas that a closely related with the access layer include AAA Context Transfer, Dy-
namic Configuration of Access Networks and Sensor Environments. 

The IP core network provides a flexible, re-configurable network platform, capable 
of supporting an extensive range of networking and service provisioning scenarios. It 
can also be used to set up protocol stack functionalities in a flexible manner in order 
to support adaptive quality of service for multi-media  communications in mobile 
environments. The IP core also contains almost all the essential constituents of the 
public Internet. It can be configured to support both IPv4/IPv6 and has the ability to 
undertake research in every area of fixed and mobile communication such as Mobility 
support for IP networks, Service Discovery, Location and Routing in 
MANETs/PANs, Terminal and network reconfigurability, Quality of Service (QoS), 
Network and data security and Multicast support. 

The Service domain on the test bed is made up of a back-end infrastructure ena-
bling a converged architecture which can provides personalized services to end users 
and devices. It uses the service framework known as the IP Multimedia Subsystem  
(IMS),  which  is  the  Third  Generation  Partnership  Project  (3GPP) standardised 
core network for the all-IP convergence of fixed and mobile networks. The core sig-
nalling protocol in the IMS is the Session Initiation Protocol (SIP), a lightweight 
standardised protocol for creating, modifying and terminating multimedia sessions 
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over the Internet and also in converged networks. The UniS testbed is made up an 
open source IMS core known as the FOKUS OpenIMS platform and also a carrier-
grade  IMS  core  developed  by  InterVoice,  which  is  used  in  live telecommunica-
tion networks. Based on the two IMS core, services such as Voice over IP (VoIP), 
Video on Demand (VoD), Presences Services and a combination of these services can 
be provided to both fixed and mobile end users using the testbed. The service domain 
has motivated various research in the field of Sensor Networks, Charging and Billing 
in converged networks, Service Management and Quality of Experience (QoE) to 
mention a few. 

4   Future Work and Conclusions 

The IMS as a whole has great potential and has been developing rapidly over the 
years, offering a solution to the all-IP vision of rich, multi-access multimedia services 
accessible anywhere, at any anytime, with the required quality, and at the right price. 
The IMS is now widely considered as the future service-centric platform of reference, 
although several researchers are still arguing that the benefits of IMS come with a 
high cost linked to its layered approach (complexity). Only a large-scale deployment 
of the IMS and a wide adoption by operators and service providers, will allow a full 
assessment of its benefits and shortcomings. These will hopefully be unveiled in the 
next few years. The enormous interest surrounding the IMS indicates that this may 
really become the standard framework for deploying advanced, ubiquitous services 
over converged, all-IP networks, i.e the “Domain of Services”. However, not all the 
research areas have been fully explored as yet especially in the area of distributed 
session management. Many approaches have been developed to eliminate (or reduce) 
the number of centralized servers from the IMS, aiming at a better level of scalability.  

Furthermore, as the IMS is paving way for the introduction of the next generation 
4G networks, which explores access technologies such as the LTE and the WiMAX. 
There have been various concerns on the integration of the LTE core, know as the 
System Architecture Evolution (SAE) with the IMS. As most of the functionalities 
that are proposed in the IMS can be achieved in the SAE, the IMS still provides the 
major advantage of being a domain of services in which operators can easily bring 
new services to the market quickly while also exposing various functionalities to third 
party developers while also charging appropriately for these services. The integration 
of both the IMS and SAE at the moment raises various concerns and it posses as an 
area worth investigating. 

Another promising area of research is that of the deployment of peer-to-peer ser-
vices in the IMS. This requires coming up with solutions as to how SIP sessions can 
be managed via distributed signalling protocols. Before this vision can become a 
reality, a number of issues still need to be tackled. P2P overlays do not map well onto 
physical networks, since P2P systems optimize IT resources but neglect the network. 
There is a fundamental clash between current P2P and network architectures. P2P 
architectures were designed to bypass the network operator, limiting its ability to 
control and influence the P2P application overlay. On the other hand, fundamental 
operations such as charging, security, quality control, and location management are 
hard to realize without the operator’s collaboration. P2P services in the IMS, bring 
them into the operator’s realm, creating the preconditions for a richer P2P service. If 
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placed in perspective, P2P services in the IMS have the potential to address problems 
that have so far remained unresolved. Current P2P systems are increasingly faced 
with the problem that they do not offer a sound digital rights management solution. 
Privacy and data retention legislation is also bound to curb the further development of 
current P2P systems. There is also the major issue of how to cater for national secu-
rity requirements, given that it is not currently possible to perform legal intercepts on 
P2P communications and data flows. P2P is now a service in high demand which 
requires an immediate, fundamental redesign. The IMS may be the next P2P provi-
sioning platform,  provided  that  the  IMS  itself  evolves towards a more decentral-
ized architecture. All in all, facilitating P2P services in the IMS will enable the  
deployment of new and exciting services, achieving what the IMS was initially de-
signed for i.e. a platform of services. 

Finally, the UK-India transnational testbed is just one many steps in the various 
approaches in the IU-ATC to continually contribute the development of the digital 
economies of both countries specifically focussing on the rural and remote areas. As 
the testbed evolves, various technologies and concepts will be developed and added to 
it in order to continually support the research aims and challenges faced by the IU- 
ATC research Themes and applications as well as a facility for industry to showcase 
and test future products. 
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Abstract. This paper illustrates both the detailed theoretical setup of
the Interconnection Border Gateway Function (IBGF) and its technical
implementation using Open Source Software components. Moreover, a
model is proposed to handle different traffic classes according to their
corresponding Quality of Service (QoS) requirements while also forward-
ing ”best effort” data traffic. The functionality is verified by evaluating
data streams with varying QoS parameters, which are identified by an
adequate packet marking method.

Keywords: Next Generation Network (NGN), Interconnection Border
Gateway Function (IBGF), IP-Multimedia Network, Resource and Ad-
mission Control Subsystem (RACS), IP-Multimedia Subsystem (IMS),
Quality of Service (QoS).

1 Introduction

In Next Generation Networks (NGNs), IBGFs are used to connect IP-Multimedia
Subsystem (IMS) networks and IP Multimedia networks on the transport layer,
utilizing transport functionality at network borders. Its tasks are specified in stan-
dards by the European Telecommunications Standards Institute - Telecoms & In-
ternet converged Services & Protocols for Advanced Network (ETSI-TISPAN)
[1][2][3]. These may vary in descriptions by the 3rd Generation Partnership
Project (3GPP). The IBGF has a horizontal interface (Ds) to the transport
layer below the IMS network, and another to the transport layer of other IP-
Multimedia networks (Iz). Between both transport layers the IBGF manages
media streams to meet given QoS parameters of forwarded data. Utilizing the
vertical interface (Ia), the IBGF is managed by transport control functionalities,
like the Service Policy Decision Function (SPDF) located in the Resource and
Admission Control Subsystem (RACS).

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 739–752, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011
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2 General IBGF Description

2.1 IBGF Tasks

The standardized[3] tasks an IBGF fulfills are:

– opening/closing gates
– allocating/translating IP addresses/port numbers
– IPv4/IPv6 interworking
– hosted NAT traversal
– packet marking
– resource allocation/bandwidth reservation
– policing
– QoS/usage metering
– transcoding
– detection of inactive bearer connections
– specific call-independent procedures
– BGF overload control

With its functionality, the IBGF represents a domain with integrated service
classes, due to the fact that QoS resources have to be provided for transmitted
data streams (See Figure 1). The control of these QoS resources is managed
by functionalities on the Transport Control Sublayer, in this case the SPDF[1].
It sends information to the IBGF about the allocation of QoS resources, data
stream handling (classification, Topology Hiding, marking, policies,...), and rules
about traffic classes. The IBGF on the other hand informs the SPDF about cur-
rently used, reserved, and free resources (QoS/usage), based on individual or
bundled streams. Furthermore, it provides information about currently config-
ured as well as policies used.
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Fig. 1. IBGF located in the Transport Layer
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The IBGF is located between domains with differentiated service classes, be-
cause it handles data streams according to their classification, identified by their
individual marking. The latter is also edited by the IBGF according to guidelines.

2.2 IBGF Interfaces

Vertical Interface to the Transport Control Sublayer (Ia). The connec-
tion to the RACS[2] can basically be divided into two different types. In the first
case, a direct connection can exist between the SPDF and the IBGF[4]. In the
second case, multiple SPDFs and IBGFs can communicate with each other. The
latter requires a reporting framework as specified in ETSI TR 182 022[5].
If a point to point connection exists between the SPDF and the Transport Con-
trol Sublayer (first case), information to be exchanged can generally be catego-
rized into:

– Policy Push, Audit Request (SPDF to IBGF) and
– Usage Metering, QoS-Reporting (IBGF to SPDF)

However, in the second case, this data transfer is realized by introducing a
sublayer and thus changing the topology. A functional division into Report-
ing Source, Reporting Collector, and Reporting Sink is necessary, as illustrated
in Figure 2. Thereby, entities appear both as transport sources and sinks in the
Transport Control Sublayer and Transport Process Sublayer, depending on the
flow of information. The entity inside the sublayer acts as a reporting controller,
which aggregates, filters, and delivers received data to the destination. Moreover,
it can introduce modifications, if this meets the destination’s requirements.
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Horizontal Interface to the Transport Process Sublayer (Ds and Iz).
Both interfaces terminate traffic from IPv4 and/or IPv6 networks (See Figure
3). Here, data streams from different traffic classes are received and sent. Upon
receiving, data packets are sorted into traffic classes, which are distinguished
by QoS characteristics (roughly: QoS, non-QoS). Packets, for example, can be
classified in the following way:

– non-QoS: ”best effort” - e.g.: Hypertext Transfer Protocol (HTTP), BitTor-
rent, ...

– QoS: ”QoS-mandatory” - e.g.: Real-Time Transport Protocol (RTP), Real-
Time Streaming Protocol (RTSP), ...

– ”QoS-optional” - e.g.: x File Transfer Protocol (xFTP), blizwow, ...

QoS characteristics for classifications can be structured into single criteria (pa-
rameters) like jitter, delay, bandwidth, packet loss or any combination of the
above. Moreover, a dynamic division of different classes into subclasses is per-
formed, depending on respective parameter values as deciding criteria. Therefore
it is possible to allocate resources dynamically, which affect a respective stream
dedicated to a QoS class. Policing is applied depending on each QoS class and
is not further divided into subclasses (e.g.: Stochastic Fairness Queuing (SFQ),
Class Based Queuing (CBQ) with / without Token Bucket Filter (TBF), etc.).
QoS marking is also executed according to corresponding QoS classes, which is
identical for respective subclasses.

2.3 Detailed Description of IBGF Function Blocks

The IBGF functional blocks (see Figure 4) are divided into:

➀ IPv4/IPv6 termination of the inbound data stream, including the termi-
nation of layers 1-3.

➁ Gate for the inbound stream and its examination according to filter criteria
like origin (source address : source port) and destination (inbound interface;
destination address : destination port). For ”best effort” data streams, ded-
icated port ranges can be reserved (e.g. HTTP) which are not managed
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separately by the Transport Control Sublayer, but instead follow common
rules. Thus, ”best effort” traffic is treated with network neutrality principles.
Both the process of blocking and releasing the corresponding gate is subject
to policy guidelines (bandwidth limitation etc.) set by the SPDF.

➂ Queueing, i.e. classification of inbound data streams into corresponding
QoS classes and their respective subclasses according to QoS requirements.

➃ Reporting and measurement of current QoS values, including jitter,
packet loss, used bandwidth, current delay, packet counting (data volume)
for accounting purposes, and determining the current duration of an existing
connection. Moreover, measurement results and connection information can
be divided into general and QoS connection data.

➄ Topology Hiding (part A) includes both transcoding (5.1) and proto-
col transformation (5.2). For optional transcoding, the IBGF acts as a
media gateway, whereas it translates e.g. the media codec G.711 to G.723,
or H.323 to H.261. Optional protocol transformations include the conversion
from RTP to Secure Real-Time Transport Protocol (SRTP) or Real-Time
Transport Control Protocol (RTCP) to Secure Real-Time Transport Control
Protocol (SRTCP).

➅ Policing and marking is applied by the IBGF by first reading all queues of
the corresponding QoS classes and subclasses with their respective adjusted
algorithms. These different algorithms can be applied in a parallel and/or se-
rial, as well as interdependent and/or independent fashion. Markings applied
to fields like the Differentiated Service Code Point (DSCP)[6], the Type of
Service (TOS)[7] etc. depend on their corresponding classes.

➆ Topology Hiding (part B) covers procedures for Destination Network Ad-
dress (and Port) Translation (DNA(P)T) and/or Source Network Address
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(and Port) Translation (SNA(P)T), to hide data stream origins and set the
next route as the destination accordingly.

➇ Data carrying mechanism describes the grouping of similar streams, for
example with similar destinations and QoS parameters, into data stream
bundles. These can then be transmitted through Multi Protocol Label Switch-
ing (MPLS), Virtual LAN (VLAN), Virtual Private Network (VPN) or with
Virtual Private LAN Service (VPLS).

➈ IPv4/IPv6 termination of the outgoing data stream, including layer 1-3
termination.

3 Prototyping and Implementation

The IBGF implementation (see Figure 5) covers the following function blocks:

➊ The position of interfaces, whether considering the Ds- or Iz-interface, is
irrelevant to this case. Here, the IPv4/IPv6 termination is applied to an
inbound unidirectional data stream of any arbitrary session, consisting of a
RTP and RTCP data stream.

➋ Thereafter, individual data packets are checked by examining the origin
(source IP : source port), destination (destination IP: destination port), re-
ceiving interface, and the protocol used. In case the determined data matches
the filter rules, the specified data packet is allowed to pass the gate. This is
realized by utilizing the netfilter framework[8].

➌ For further processing, data packets are sorted into their corresponding QoS
classes. In this case, a higher prioritized class (Subclass A2) is used for the
RTCP data stream and a lower prioritized class (Subclass n1) is used for the
RTP stream. The RTCP stream’s packet loss should be close to ”0” at the
expense of the RTP data stream. This was realized by using functionalities
already integrated inside the Linux Kernel.

➍ The measurement of bitrate, delay, jitter, and packet loss of both data
streams is executed separately and independently for each subclass utiliz-
ing functionalities from the netfilter framework. If a substantial bitrate ex-
ceedance is detected, by overstepping a predetermined bitrate level, foremost
the RTP data stream will be limited.

➎ Topology Hiding (Part A) is implemented separately. For this purpose, the
RTP data stream is transcoded first (part 5.1), by converting the media
codec type from G.711 to G.723. This requires the termination of the received
RTCP data stream and subsequent generation of a new RTP data stream
(outgoing termination). Moreover, the RTCP data stream has to be modified.
The protocol transformation of the RTP and RTCP which follows (part 5.2)
includes embedding in Secure Shell (SSH).

➏ Policy enforcement for data streams of different traffic classes is carried out
with different algorithms, which are adjusted to their corresponding QoS.
The subclass of a certain traffic class and the ”best effort” class are treated
with SFQ. Traffic classes amongst each other are processed by CBQ, whereas
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a TBF is implemented for quantity management of outgoing QoS data traf-
fic. A final utilization of CBQ considers the division of 20% of all resources
for ’best effort’, and 80% for QoS data. The marking of data streams of
a traffic class is accomplished after combining subclasses by manipulating
the Differentiated Service (DS) and TOS fields respectively. Therefore, data
packets can be treated according to their QoS in the subsequent differen-
tiated service classes domain. Also, the implementation is carried out with
functionalities of the netfilter framework.

➐ At this point, masquerading of both data streams is realized, using the net-
filter framework. For this purpose, source and destination descriptions are
translated.

➑ In a separate implementation, traffic grouping is carried out for the mu-
tual transport over a MPLS network. To accomplish this, data streams with
similar QoS and a common destination are combined.

➒ Finally, the outgoing IPv4/IPv6 termination is executed for the unidirec-
tional data stream.
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4 QoS-Measurements

4.1 Standardization

Several parameters have been defined by the International Telecommunication
Union - Telecommunication Standardization Sector (ITU-T) describing bound-
aries acceptable by real time media transport in IP networks. Definitions mainly
focussed on are:

– IPPR IP Packet Rate (proportional to Bandwidth): IPPR (Packet · s-1),
specifies the total number of IP packets during a specified time interval
divided by the time interval duration[9].

– IPTD IP packet Transfer Delay: IPTD (s), specifies the time between two
events at time t1 (ingress event) and t2 (egress event), where both events
corresponds to one IP packet. Two conditions have to be fulfilled, where Tmax

defines the maximum Transfer Delay Time[9]: (t2 > t1) and (t2 − t1) ≤ Tmax.
– IPDV IP packet Delay Variation (Jitter): IPDV (s), specifies the variation of

the IPTD. Different methods of calculating IPDV are known and described
in[9][10][11]. It is irrelevant which method will be choosen, because the range
given by absolute values between min. and max. IPTD is independent.

– IPER IP packet Error Ratio: IPER (1), specifies the number of total errored
IP packets divided by the sum of total successful transfered IP packets and
the errored IP packets. Both numbers must refer to the same time interval[9].

– IPLR IP packet Loss Ratio: IPLR (1), specifies the number of total lost IP
packets divided by the total transmitted IP packets. Both ratios must refer
to the same time interval[9] [12].

4.2 Measurement

The measurement of achievable QoS parameter demands on an arrangement in
several parts providing a set of functions needed by described measuerement
methods (see Figure 6). In the following, all measured QoS parameters of the
described prototypical IBGF are named and exemplified:

– IPPR: Throughput using an increasing bitrate and Type of Service (TOS)
marked IP packets

– IPTD: Delay between each incoming and outgoing IP packet, using an iden-
tifier contained in the payload

– IPDV: Delay variation between each measured delay of incoming and out-
going IP packets

– IPER: Comparision of header and payload of sent and received IP packets
including the same content

– IPLR: Counting dropped IP packets by checking if sent unified identicable
IP packet was received during the measure time or not

As described in IPPR measurement, an increasing bitrate IP flow was used to
test several conditions: underload, limit load and overload. Achieved values have
been selected to these operating states and evaluated as limited to underload and
limit load condition. These different operating states can be defined as follows:
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Fig. 6. IBGF - Test Setup for QoS Measurements

– Underload: Incoming IP traffic (λ) is lower than max. outgoing IP traffic
(μ); λ < μ

– Limit Load: Incoming IP traffic (λ) is equal to max. outgoing IP traffic (μ);
λ = μ

– Overload: Incoming IP traffic (λ) is higher than max. outgoing IP traffic (μ);
λ > μ

Each particular measurement point has been calculated using five measurement
points preventing random errors. The results for these five related test series
were obtained from similar test executions. Furthermore all tests have been done
under the condition that impacts based on processing power, memory, operating
system etc. have no bearing on IP packet processing. Based on five specified
traffic classes in ITU-T standard a combination into three traffic classes has
been done on condition that lower QoS classes are included in next upper QoS
class, that means:

– class 0 contains class 0 and class 1 (Upper bound on the mean IPTD delay
of class 0 is 100ms; class 1: 400ms),

– class 2 contains class 2 and class 3 (Upper bound on the mean IPTD delay
of class 2 is 100ms; class 3: 400ms),

– class 4 contains class 4 and class 5 (Upper bound on the mean IPTD delay
of class 4 is 1s and upper bound on the packet loss probability of class 4
is 1 ∗ 10 exp−3; class 5 has not specification for IPTD, IPDV, IPLR adn
IPER).

4.3 Measurement Results

All named parameters like IPPR, IPTD, IPDV, IPLR and IPER have been
measured. Due to the fact that all tests resulted in an IPER of zero, no further
diagrams containing the error ratio are figured out. In terms of comparision dif-
ferent tests related to various physical links, i.e. 10/100/1000MBit/s bandwidth



748 S. Massner and M. Maruschke

Fig. 7. IPPR and IPLR Measurements (overload condition in gray highlighted parts)
Note: IPLR results are cumulated

and diverse logical links from 1MBit/s to 250MBit/s bandwidth no dependencies
have been identified. Seeing that a detailed diagram for each test does not offer
more information, all IPPRs have been normalized. All QoS classes named class
0, 2 or 4 are exactly the same as described in ITU-T standard[13]. Based on used
IP traffic flows, test results are drawn seperatly and combined, distinguishable
in line types. In addition all sent IP traffic flows (IPPRsend) are shown above in
Figure 7. For all diagrams, time intervals are the same and overload conditions
are marked by gray highlighted areas.

Using the normalized view of incoming and outgoing IP traffic limit load and
subsequently overload conditions are readily identifiable using IPLR by evalu-
ating too (see Figure 7). While operating condition is below overload status,
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Fig. 8. IPTD and IPDV Measurements (overload condition in gray highlighted parts)
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Table 1. QoS Class 0 - Measurement results (underload and limit load)

Parameter Maximum Value from Standard Measured Value Evaluation

IPTD 3ms < 3.5ms (underload)

< 6.9ms (limit load)

(pass)

IPDV 3ms < 2.1ms pass

IPER 1 ∗ 10 exp−4 0 pass

IPLR 1 ∗ 10 exp−3 0 ∗ 10 exp−3 pass

Table 2. QoS Class 2 - Measurement results (underload and limit load)

Parameter Maximum Value from Standard Measured Value Evaluation

IPTD 3ms < 4.0ms (underload)

< 6.8ms (limit load)

(pass)

IPDV unspecified < 2.1ms pass

IPER 1 ∗ 10 exp−4 0 pass

IPLR 1 ∗ 10 exp−3 7.3 ∗ 10 exp−4 pass

Table 3. QoS Class 4 - Measurement results (underload and limit load)

Parameter Maximum Value from Standard Measured Value Evaluation

IPTD 64ms < 12ms pass

IPDV unspecified < 3.2ms pass

IPER 1 ∗ 10 exp−4 0 pass

IPLR 1 ∗ 10 exp−3 9.2 ∗ 10 exp−4 pass

all IP traffic flows will be scheduled as given by traffic policing rules related to
each IP traffic class. In doing so, no packet loss has been detected exceeding
maximum values from ITU-T standardisation[13]. In case an overload condition
occurs, packets have been lost. On the basis of recorded IPLR, it is evident that
class based queueing and sceduling algorithms have been implemented as well
as configured policing rules in terms of traffic class hierarchy.

Commonly obtained results about IPTDs shows the IP packet processing time
does not exceed considerable given maximum values in underload condition.
Other operating states cause in significant exceedings of IPTD maximum values
compared with underload condition (see Figure 8)[13]. Minor deviations about
0.5ms to 1.0ms have to be evaluated with reference to IPDV results. Based on
the worst case both values, maximum IPTD (3ms) and maximum IPDV (3ms)
results in an interval of 3ms + 3ms = 6ms, a differentiated evaluation should
be done. So an under-usage of IPDV enables an exceeding of IPTD in theory
provided that in doing so the sum of IPTD and IPDV does not exceed 6ms.
Regarding measured results this theoretical fact can be applied here. All results
marked by brackets in table 1, 2 and 3 are evaluated involving the limitation
described above. Further collected data about IPDV results have been anal-
ysed. Thereby an under-usage for all traffic classes has been found evidently (see
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Figure 8). Summarized for all measured traffic classes as defined in ITU-T table
1, 2 and 3 contains maximum values and measured values added by an evalu-
ation. Contained maximum values related to given QoS class are assigned to a
Border Gateway Function equates to the presented IBGF prototyp. Partially,
table elements are splitted to seperate different operating states like underload
and limit load condition. Only underload operation state has been evaluated
expecting work load states were been lower than limit load state.

5 Summary

By evaluating different processed data streams, the prototypical correctness was
proven by using a range of Open Source Software tools (NetFilter, TrafficCon-
trol). Therefore, basic functions required by the standard are realized. Moreover,
by implementing points 5.1 and 5.2, special functions of the IBGF for converting
transported data were successfully demonstrated. Further studies and research
are still necessary for the data carrying mechanism illustrated in point 8. The
communication over the Ia-Interface was realized by means of an Extensible
Markup Language Remote Procedure Call (XML-RPC) on a functional level,
and terminated by a custom replication (protocol generator and receiver) in-
stead of the SPDF. Achieved measurement results shows detailed that the pre-
sented IBGF prototyp meet the requirements given by ITU-T standardisation
related to the Border Gateway Function. Minor changes in results of IPTD are
acceptable due to under-usage of IPDV because the interval sum does not exceed
theoretical maximum value.

6 Future Prospects

The implementation for the illustrated structure of the IBGF was carried out us-
ing Open Source Software components. However, implementing the Ia-interface
according to standards[3] for the communication with the SPDF is still out-
standing. A focus for further studies is benchmarking the IBGF with respect to
the expected data throughput of each corresponding operation and subsequent
optimization of function blocks, which were illustrated here. Moreover studies
related to optimizing control parameters of traffic control should be aimed from
the viewpoint of existing media codecs capsulated in IP packets. With the proto-
typical implementation of the IBGF it is possible, in principle, to realize a carrier
grade conform interconnection of IMS networks and IP Multimedia networks on
the transport layer.
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Abstract. The IMS as core for operators’ network is imminent. However, the 
interconnection is still an issue on basic call layer, but also on services layer. In 
this article, we present the NetLab project approach, which has the aim to create 
a  testing  environment  for  research  and  development  of  new  services  and 
applications  based  on  the  IP  Multimedia  Subsystem  (IMS).  The  results  of 
interconnection tests between several IMS platforms are also provided here. 

Keywords: IMS, IPTV, NGN, IM. 

1   Introduction 

NetLab project aims to sustain research and experimentations that will ascertain the 
convergence and interoperability of different test beds, protocol variants and services 
based on IP Multimedia Subsystem (IMS). The choice of IMS is considered a key factor 
by the project for obtaining a sustainable and generic interconnection proof testbed 
where the user can discover and select the network and services used to perform his 
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tests. Particular emphasis is placed on interoperability of the test beds, the interconnec-
tion and sharing of software tools, the experimentation and validation of protocols and 
services, and in providing trusted access to services. 

IMS was originally designed by the standardization body “3rd Generation Partner-
ship Project”  (3GPP).  However  standards may slightly differ in their implemen-
tation, causing some interoperability issues among different manufactures. 

In order to be able to accomplish these objectives, various IMS cores have been 
used for testing. The tests have been done from different locations at different coun-
tries. Each partner has set up a lab environment to connect to the Netlab net-
work. Two technologies have been used in order to deploy this network: 

• A virtual private network (VPN) which does not need any special infrastruc-
ture but a simple connection to the Internet 

• GEANT. This is a high bandwidth network for research and education pur-
poses. 

As long as Netlab project pretends to create a testing environment for research and 
development of new services and applications based on the IMS the first set of tests 
have  been  oriented  towards the interoperability of  different  IMS  cores and  
IMS clients. 

Netlab test bed is composed of three vendor-different IMS cores from:  

• Nokia IMS core 
• Ericsson SDS 
• Fokus OpenIMS core 

Netlab consortium has dedicated their efforts to study these multimedia platforms 
and their interoperability. Every partner has been able to connect to all the available 
IMS cores and test different services from them. 

The article is organized as follows: Section 2 describes interconnection of IMS 
cores and provides further details. Section 3 deals with test detailed description 
and also with their evaluation. This is the core section of whole article. Conclud-
ing remarks and open question for future work are given in Section 4. 

2   Network Interconnection 

The GÉANT project was a collaboration project between 26 National Research and 
Education Networks representing 30 countries across Europe, the European Commis-
sion, and DANTE. Its principal purpose was to develop the GÉANT network - a 
multi-gigabit pan-European data communications network, reserved specifically for 
research and education use. The project also covered a number of other activities 
relating to research networking. These included network testing, development of new 
technologies and support for some research projects with specific networking re-
quirements. This European Network is continuously being increased on size and 
bandwidth features. 
 



 Interoperability among Different IMS Cores 755 

 

The VPN is a network that is constructed using the Internet as the medium for 
transporting data. This system uses encryption and other security mechanisms to 
ensure that only authorized users can access the network and that the data cannot be 
intercepted.  The  technology  we  are  using  for  implementing  this  virtual  private 
network is called “transport layer security (TLS)” an application layer technology 
which allows tunneling an entire network's traffic over the Internet. In particular we 
are using “openVPN” which is an open source solution available for general usage. 

 

Fig. 1. Netlab interconnection 

2.1   Netlab IMS Cores 

Netlab project includes international partners participating in testing IMS cores inter-
connection in all network layers. IMS networks cores are deployed by different  
vendors (OpenIMS, Ericsson and Nokia). 

OpenIMS. The Open IMS Core is an Open Source implementation of IMS core 
functions. It has been developed by the Fraunhofer institute and it is composed 
of IMS Call Session Control Functions (CSCFs) and a lightweight Home Sub-
scriber Server (HSS), which together form the core elements of all IMS/NGN archi-
tectures as specified today within 3GPP, 3GPP2, ETSI TISPAN and the PacketCable 
intiative. The four components are all based upon Open Source software (e.g. the SIP 
Express Router (SER) or MySQL). This core is deployed at UC3M and STUBA 
cores. Slovak partners provide their NGN lab for Netlab tests.   OpenIMS core is 
installed in a virtual machine (Sun Virtual Box environment). It has 512 MB of RAM 
memory reserved for the virtual machine and a Pentium IV at 2.4 Ghz. The operating 
system is Ubuntu Jaunty. 
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Ericsson SDS (Service Development Studio). This is a emulation for the Erics-
son IMS core. SDS is a tool for development and end-to-end testing of both the client 
and server side of new convergent all-IP (IMS) applications. SDS contains a stan-
dards- based IMS network simulator with communication services (CoSe) emulators. 
SDS supports clients and devices for Mobile, Fixed Broadband, and WLAN access. 
It uses Java community common practices and de-facto standards and provides high-
level APIs to hide the network and terminal device complexity from the designer. 
This core is provided by Ericsson.   This IMS core is installed in a virtual machine 
(VMware environment). It has 512 MB of RAM memory reserved for the virtual 
machine and a Pentium IV at 2.4 Ghz. The operating system is Windows XP. 

Nokia IMS CORE. Nokia release 2.0 is based on Nokia FlexiServer Platform. The 
platform supports high availability and load balancing for applications and services 
running on the platform. Nokia IMS has a static subscriber capacity of 500 000 and 
is able to process dynamically 10  000  SIP messages per second.  The  Nokia  IMS 
solution  is implemented according to 3GPP/3GPP2 Rel.6 IMS  specifications 
and ETSI TISPAN architecture. Software used: Nokia release 2.0 IMS consists of 
Connection Processing Server (CPS) and Nokia IP Multimedia Register (IMR). 
Nokia CPS provides the Call State Control Function (P/I/S-CSCF) functionalities and 
IMR provides HSS functionality. Hardware used: Both CPS and IMR have been 
built on top of fault tolerant FelxiServer 3 platform. FlexiServer 3 platform uses 
FlexiServer Blade hardware which provides flexible and scalable platform for achiev-
ing carrier grade availability. Each server blade has two 1.6 GHz Intel Pentium 4 
Xeon processors, memory and back panel interfaces like Ethernet and FC-AL (Fiber 
Channel Arbitrated Loop). The PMC card has two 1 Gbps Ethernet ports for commu-
nication to the outside. 

3   Tests 

Tests described in this article have been completed in environment of interconnected 
IMS cores using VPN technology. However, involved universities have been inter-
connected through GEANT network. OpenIMScore was located at Leganes, Madrid 
and in Bratislava, Slovakia. SDS (Ericsson IMS core) was located at Fuenlabrada, 
Madrid. Nokia IMS core was located at Oulu, Finland. 

The tester has remote access to all of the IMS cores in order to be able to retrieve 
log information. The remote access is provided by Remote Desktop connection for 
Windows XP operating systems and VNC technology in case of Linux based cores. 

The proof of correct interconnection of IMS cores has been done using following 
scenarios: 

• Registration of client in different labs 
• Voice session establishment 
• Instant messaging service provisioning 
• Presence service provisioning 
• Roaming scenario. 
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Fig. 2. Netlab laboratory 

3.1   IMS Registration 

3.1.1   Test Objective 
IMS-level registration is the procedure where the IMS user requests authorization to 
use the IMS services in the IMS network. The IMS network authenticates and author-
izes the user to access the IMS network. 

IMS-level registration is accomplished by a SIP REGISTER request. A SIP reg-
istration is the procedure whereby a user binds his public URI to a URI that 
contains the host name or IP address of the terminal where the user is logged in. 
Unlike regular SIP procedures, registration with the IMS is mandatory before the 
IMS user’s terminal can establish a session. 

The IMS registration procedure uses a SIP REGISTER request. However, this 
procedure is heavily overloaded in the IMS, in contrast to SIP registration, and this 
overload is for the sake of fulfilling the 3GPP requirement of a minimum number of 
round trips. 

Two algorithms have been used  for  registering:  AKAv1-MD5 and basic 
username/password. 

3.1.2   Test Procedure 
To test registering process in Netlab we propose to register a user in IMS cores in-
cluded in Netlab project – NGNLAB (SK), Octopus (FI), Ericsson (ES), UC3M 
(ES) and SQS. 

User  registers from different locations (from different labs of  Netlab partners) using 
different IMS User Agent applications: UCT IMS client, X-lite, Monster and Mercuro. 

3.1.3   Test Results 
Following table shows the fact that most of the registration tests have been success-
ful. We can see the different IMS clients and the different cores tested. 
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Table 1. IMS registration results 

Client/Core OpenIMS SDS Nokia Remarks 

X-lite 

Ok (basic 

user/pwd 

algorithm) 

Ok (basic 

user/pwd 

algorithm) 

Ok (basic 

user/pwd 

algorithm) 

Registration 

without two 

round-trip 

authentication. 

UCT 
Ok (both 

algorithms) 

Ok (basic 

user/pwd 

algorithm) 

Ok (both 

algorithms) 

Monster 
Ok (both 

algorithms) 

Ok (basic 

user/pwd 

algorithm) 

Ok (both 

algorithms) 

Mercuro 
Ok (both 

algorithms) 

Ok (both 

algorithms) 

Ok (both 

algorithms) 

 

X-lite application is pure SIP client. It supports only registration without two round- 
trip authentication while it does not support MD5 authentication. X-lite  is  not prepared 
for two round trip authentication which can be accomplished only by an IMS client. 

UCT and Monster do not support MD5 authentication in Ericsson SDS core. The 
reason is that the UCT and Monster do not include cnonce in the authenticated request 
for the qop reply. qop support is optional and should not be forced by the core, as UCT 
and Monster simply ignore it and this backward compatibility is aspired by RFC 2617. 

In case that we want to use different IMS/SIP clients for registration tests, we 
should use simple authentication method without two round-trip algorithm as some 
clients do not support complex algorithms. 

3.2   Voice Call 

3.2.1   Test Objective 
The objective for this test is an establishment of a voice call between two IMS clients 
registered IMS cores deployed at different labs in different countries. We use the 
infrastructure being given by the VPN and the GEANT networks. 

Test prerequisites 
The clients need to be registered at IMS cores before starting the voice call. 

3.2.2   Test Procedures 
The main idea for this test is setup of a voice call through IMS cores included 
in Netlab project. At this testing stage a call is established always only through one 
of involved IMS cores (to involve several cores for voice calls we propose dif-
ferent test). An objective of this scenario is to repeat the voice call establishment 
process from different locations (different labs of different partners) using different 
IMS/SIP clients (UCT ims client, X-lite, Monster or Mercuro). 
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3.2.3   Test Results 
The process of the voice call establishment through one core has been successful 
for all Netlab project partners’ cores. The tests were successful for all chosen 
IMS/SIP clients.  There were no problems while we tried to setup a voice call be-
tween X-lite client on both communicating sides.. Same result was achieved while 
using UCT IMS client, Monster and also Mercuro. 

However some problems came up when we tried to establish a voice call using 
two different IMS clients. We could successfully test a voice call between X- lite 
and Monster client and vice versa. Also calls from X-lite to Mercuro and vice 
versa were successful. 

3.3   Instant Messaging 

3.3.1  Test Objective 
There are two modes of operation of the instant messaging (IM) service - stand-
alone instant messages or messages which are part of a session of instant messages. 

Pager mode instant messaging is IM mode where message is sent as a stand-alone 
message not having any relation with previous or future instant messages. The name 
of the mode comes from the way a two-way pager works. The model is also similar 
to the SMS (Short Message Service) in cellular networks. 

Session-based instant message is IM mode where message is sent as part of an 
existing session, typically established with a SIP INVITE request. 

Both models have different requirements and constraints; hence their implementa-
tion is different. 

We focus on pager mode instant messaging. 

3.3.2   Test Procedure 
At this testing stage we send and receive instant messages through each one of 
the IMS cores included in Netlab project. The messages are sent from one IMS 
core to another one. 

 
Fig. 3. IM flow diagram 
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Instant messages are are sent from different locations (different labs from different 
partners) using different IMS clients. 

Test prerequisites 
The clients must be registered to the IMS core before starting the session. 

3.3.3   Test Results 
The following table of tests results shows that all of IM tests have been success-
fully passed. We can see the different IMS clients and the different cores tested: 

Table 2. IM results 

Client/Core OpenIMS SDS Nokia Remarks 

X-lite Ok Ok Ok 

UCT Ok Ok Ok 

Monster Ok Ok Ok 

Mercuro Ok Ok Ok 

 

Some problems were raised when trying to execute instant messaging with differ-
ent IMS clients at the end of the communication. Probably because of internal im-
plementations on the IM service within the IMS clients. 

UCT  crashed  occasionally  when  messaging  with  Monster  or  Mercuro. 
UC3M modified the UCT IMS client code in order to avoid this kind of crashes. 

3.4   Presence Service 

3.4.1   Test Objective 
The presence service enables any user to subscribe to the presence information of 
his friends, publish his own presence information or decide if he wants to provide 
others with his presence information. The presence interconnection assures that the 
presence information is exchanged through different operators’ networks, assuring 
rich communication between end users. The objective of this test is to demonstrate 
how presence service works through different IMS cores. 

3.4.2   Test Procedure 
For this test we use the following functional entities: 

• PGM (Presence and group management) - presence application server pro-
vided by Ericsson. 

• Two different IMS cores - Ericsson SDS and OpenIMS.  
• Two different IMS clients 
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• X-lite which subscribes to Ericsson SDS  
• Monster which is registered at OpenIMS core 

Both cores are configured to point to the same presence server. 

3.4.3   Test Results 
We proved that presence service worked between chosen IMS cores and clients. Fol-
lowing figure shows the flow of SIP messages exchanged. 

 

Fig. 4. Presence test flow of SIP messages 

In Figure 4 we can see how a client (Alice) registered into SDS core, published 
her status and subscribed to the presence status of Bob (which was registered into the 
OpenIMS core) . At that moment Bob  notified Alice about his status. 
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3.5   Voice Call among Different Cores 

3.5.1   Test Objective 
The aim of this test is to demonstrate the interconnection among different IMS 
cores. In order to accomplish this test we have to configure the IMS cores to be able 
to reach each another. We also had to configure the DNS servers from every IMS 
core so that they were able to reach the I-CSCF of other cores. 

3.5.2   Test Procedure 
In this test we use following infrastructure: 

• Two different IMS cores - Ericsson SDS and OpenIMS.  
• Two different IMS clients 

• X-lite which is registered at Ericsson SDS  
• Monster which is registered at OpenIMS core. 

The purpose of this test is to test a voice call in both directions, from OpenIMS 
to SDS and from SDS to OpenIMS. 

3.5.3   Test Results 
The voice call was successfully established in both directions. 

3.6   Roaming 

3.6.1   Test Objective 
The purpose of this test is to allow a user to register at visited network. This 
means that the subscriber could travel and connect to a different access network but 
he still would be able to access his home network although the operator which 
provides access network to him is not the one which he has contract with. We had to 
enable roaming  and  configure  allowed  visited  networks  to  allow  registration  
from  a particular visited network. 

3.6.2   Test Procedure 
We use the Ericsson SDS core and the OpenIMS. We try to register at OpenIMS 
core configuring the Ericsson SDS as our P-CSCF. In this architecture the Ericsson 
SDS is the visited network and OpenIMS is customers’ home network. 

At the same time we register at Ericsson SDS using OpenIMS as P-CSCF. In this 
case we have the opposite configuration - Ericsson SDS is customers’ home network 
and OpenIMS is the visited network. 

3.6.3   Test Results 
The  test  successfully  proved  that  roaming scenario works  in Netlab  testing 
environment. Following figure shows the flow of SIP messages from the point 
of view of the visited network (the server is the SDS IMS core and the visited net-
work). In the opposite direction (SDS as the home network and OpenIMScore as 
visited network) the test was also successful. 
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Fig. 5. Roaming flow of SIP messages 

4   Conclusions 

Within this paper, the Netlab consortium has established a distributed test bed 
for IMS interconnection tests. During the tests, we have executed several basic test 
cases and have addressed the difficulties.  We were able to register at different IMS 
cores with several IMS clients, we were also able to establish voice sessions through 
different IMS cores, send instant messages, test presence through OpenIMS and SDS 
cores and prove that roaming scenario works in mentioned cores. 

We have proved  interoperability among different  IMS  cores although  in 
some occasions specific configuration had to be done. We have achieved positive 
results however more work will be done before the project ends.   The future work 
consits in more sophisticated scenario and also on sustainability of the NetLab pro-
ject results. 
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Gómez, Francisco 243

Gonzalez, Ivan 243

Gouveia, Fabricio 166

Granelli, Fabrizio 255, 599

Grant, Frances Cleary 486

Grosso, Paola 412

Gruenbacher, Don 428

Grunwald, Dirk 231
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