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Supervisor’s Foreword

In the past few decades there has been an explosion in satellite and mobile
telecommunications technology. It is estimated that there are now more mobile
phones than there are people on the planet. Microwave communications for voice,
images, data and music are also closely correlated with the gross domestic product
of a nation so the importance of the technology cannot be overstated. Microwave
dielectrics play a key role in the development of the technology. Dielectric res-
onators are able to act as tuning forks; when an electromagnetic wave interacts with
a dielectric the material resonates. Furthermore the wavelength of the electro-
magnetic waves can be “compressed” to be much shorter than the free space
wavelength, permitting miniaturisation that is proportional to the reciprocal of the
material’s relative permittivity. The length of time that the resonator can “ring”
once it has been struck with the electromagnetic wave is known as the quality factor
or ‘Q’. The Q is a measure of the material’s dielectric loss and it is crucial that the
loss be as low as possible. Finally the temperature coefficient of the dielectric
constant (sometimes expressed as the temperature coefficient of frequency) is the
third important parameter. Here, these three parameters are explored from the
viewpoint of both theory and experiment.

Historically, the dielectric loss in particular has proven exceptionally difficult to
describe, and the best theories so far have unfortunately been physically correct but
practically unsatisfactory as they have been unable to predict the microwave
dielectric loss in real materials that contain defects—all materials contain defects.

The thesis explores metal oxide based microwave dielectric ceramics, important
materials in radio, microwave and terahertz applications. The performance of
devices using these materials are often limited by absorption of electromagnetic
energy or dielectric loss, which has been described theoretically as due to anhar-
monic coupling between lattice vibrations (phonons). Quantum field theory had
been applied successfully to develop a theory of loss, yet absolute values of
predicted losses were often orders of magnitude different to measurements.
Historically, this was due to a lack of accurate data on the lattice dynamical
properties of metal oxides and needing to resort to empirical models of
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anharmonicity. This thesis shows for the first time that a theory of anharmonic
phonon coupling using results from density function perturbation theory can predict
from first principles the complex permittivity of metal oxides as a function of
temperature and frequency. Here, the temperature and frequency dependence of
relative permittivity and loss for MgO were calculated and found to be in excellent
agreement with microwave measurements and terahertz spectroscopy. These results
provide insight into the mechanisms of dielectric loss in oxides and offer the
opportunity of engineering better dielectrics, especially for the rapidly developing
terahertz field where losses are important.

The work was supported by the Engineering and Physical Sciences Research
Council.

London, UK Prof. Neil McN. Alford
June 2016

vi Supervisor’s Foreword



Abstract

This thesis investigates the dielectric properties of metal oxide ceramics at micro-
wave frequencies. Dielectric ceramics are an important class of material for radio
frequency, microwave and emergent terahertz technologies. Their key property is
the complex permittivity, its real part permits miniaturisation of devices and its
imaginary part is responsible for absorption of electromagnetic energy. Absorption
limits the practical performance of many microwave devices such as filters, oscil-
lators, passive circuits and antennas. The complex permittivity as a function of
temperature for low-loss dielectrics is determined by measuring the resonant fre-
quency of dielectric resonators and using the radial mode-matching technique to
extract the dielectric properties.

There have been only a handful of publications on the theory of dielectric loss
whose predictions have often been unfortunately unsatisfactory when compared to
the measurements of real crystals, sometimes differing by orders of magnitude. The
main reason for this is the lack of accurate data for anharmonic coupling coefficients
and phonon eigenfrequencies at arbitrary q vectors in the Brillouin zone.

Here, a quantum field theory of losses in dielectrics shall be applied using results
from density functional perturbation theory, to predict from first principles the
complex permittivity of metal oxides as functions of frequency and temperature.
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Chapter 1
Introduction

1.1 The Radio Revolution

On12December, 1901 the age ofwireless telecommunications began in earnestwhen
Guglielmo Marconi transmitted the first transatlantic radio message from Poldhu in
Cornwall, England to St. John’s in Newfoundland, Canada. This pioneering form of
communication has had a profound impact onmany aspects of our way of life. A cen-
tury later, radio and microwave communications have undergone a transformation
that has resulted in them becoming ubiquitous. In recent decades, our use of the radio
andmicrowave frequency bands of the electromagnetic spectrum has increased enor-
mously. From 1kHz to 100GHz, the spectrum has been allocated and exploited by
applications in radar, metrology, astronomy, telecommunications, radiometry, medi-
cine and security (Fig. 1.1). In the late 1980s, mobile personal telephones became
available to the public and satellite television made it possible to watch hundreds
of channels broadcast all over the world. Almost everyone in reasonably devel-
oped countries now own a mobile telephone and in developing countries, mobile and
satellite telecommunications have improved quality of life in areas where land-based
networks required infeasibly large financial investment in infrastructure.

Radio and microwave communications have had a dramatic effect on consumer
lifestyle especially regarding mobile devices. Each new generation of device brings
greater use of frequency bandwidth, faster data rates and higher degrees of minia-
turisation. Full integration of video, audio and Internet into compact hand-held ter-
minals such as smartphones, tablets and laptop computers places ever-increasing
demands on the electronic components used in their manufacture and has changed
the way people work, organise and communicate in a fundamental way. The cur-
rent 4th generation of mobile broadband communication technology offers data rates
up to 100 Mbs−1, directly competing with fast fibre-optic and cable-based Internet
provision. The number of satellites launched each year increases steadily as new
advanced systems (constellations) with greater capacity, bandwidth and connectiv-
ity are developed and launched. Hundreds of satellite television channels, transmitted
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2 1 Introduction

Fig. 1.1 The electromagnetic spectrum

from communications satellites in geostationary orbit can be viewed by a receiver on
any continent on the planet, even Antarctica. It has been suggested that the fall of the
iron curtain in Eastern Europe was accelerated by the fact that people had access to
satellite transmitted television news services. The Iridium satellite system consisting
of more than sixty low-earth orbit satellites launched in the late 1990s was one of the
first examples of a satellite constellation that offered truly global mobile telecom-
munications to anyone in possession of a dedicated handset. Since then, people have
been able to make telephone calls and access the Internet from the most remote loca-
tions on our planet. The fairly recent explosion in Internet and information-based
communications demand has further resulted in a huge new frequency band between
20 and 30GHz being allocated to broadband multimedia satellite communications.
Additionally, hand-held devices such as smart-phones and specialised receivers can
pinpoint their exact position on the surface of the planet using the Global Positioning
System (GPS). This network of satellites, initially developed by the United States
military, provides timing signals that allow receivers to accurately triangulate their
position. The next generation of navigation via satellite, being developed by the
European Space Agency is the Global Navigation Satellite System (GNSS). It marks
the beginning of large-scale commercial exploitation of this kind of service allowing
amultitude of applications for satellite-guided and tracked transport vehicles thatwill
have a major impact on the logistics of agriculture, transportation and navigation.
Satellites and interplanetary probes use orbiting radar systems to map the surface
of Earth and other planets in the solar system. Radar has been used by commercial
and military aircraft for the past sixty years to navigate and avoid mid-air collisions.
Soon, radar use will be much more widespread and utilised on an everyday basis
by road vehicles, cyclists and even pedestrians to warn of and prevent imminent
collisions. Until recently the terahertz region of the electromagnetic spectrum had
been relatively unexploited in comparison to the microwave and optical frequency
ranges. New semiconductor devices and technologies have opened up this exciting
frequency band with promise of novel applications in medicine, imaging, security
and telecommunications.Allmodern embodiments of radio,microwave and terahertz
technologies have one particular thing in common, they exploit dielectric ceramics.
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1.2 Metal Oxide Microwave Dielectric Ceramics

The discovery of superconductivity at a record high temperature of 90 K (−180 ◦C)
in a lanthanum cuprate ceramic by Bednorz and Muller in 1981 heralded a flurry of
activity in the ceramics processing, experimental physics and theoretical condensed
matter physics of metal oxides. This new class of materials, now known as high-
temperature superconductors (HTS) are superconducting at temperatures as high
as 125 K. Compared with the previous record in low temperature superconductors
of 23K this was an incredible surprise. However, it still remains for a satisfactory
theoretical explanation of this effect to be developed after 30 years of intense activity
in thefield.Nevertheless, there is no doubt that this discovery provided a huge impetus
in metal oxide ceramics spanning an enormous range of functional properties such as
piezoelectrics, pyroelectrics, ferroelectrics, superconductors, semiconductors, ionic
conductors and dielectrics.

Microwave dielectric ceramics are crucially important materials in microwave
and radio frequency technology. In planar form they comprise substrates onto which
electronic circuits can be printed. In bulk form they are used in resonators, filters,
oscillators and antennas. Their main advantage is miniaturisation by virtue of their
relative electric permittivity εr , allowing reductions in size by a factor of

√
εr . For

example, a satellite cavity filter multiplexer manufactured from silver plated Invar
alloy and weighing 1.5Kg can be replaced by dielectric resonators and lightweight
alloys for a fraction of the weight and volume as shown in Fig. 1.2. Considering
that satellite launch costs are $10,000 per Kg this offers a significant advantage. The
properties to consider when utilising dielectrics are

• Relative permittivity εr : allows device miniaturisation.
• Loss tangent tan δ: a measure of how much a material absorbs electromagnetic
radiation. Its reciprocal is the dielectric quality factor Qd .

• Temperature coefficients of permittivity τε and thermal expansion α: dictates how
resonant frequencies change with temperature.

Fig. 1.2 Size comparison of
conventional and dielectric
resonator C-Band output
multiplexer filters. Image
courtesy of Alcatel Espace



4 1 Introduction

Fig. 1.3 The Perovskite unit
cell

Often, the last two properties concerning temperature coefficients are lumped
together, forming the temperature coefficient of resonant frequency τ f . Richtmyer
[1] first proposed using unmetallised dielectrics as resonators in 1939, but it was not
until the 1960s that the first practical resonators were constructed byO’Bryan [2] and
Negas. In 1981, Plourde and Ren [3] noted that of the best available dielectrics at that
time, the highest εr was ∼ 40, the highest dielectric Q was 9,000 (at 4GHz) and the
τ f were typically in the region of 2-20 ppmK−1. Today, most commercially available
dielectrics have εr in the range 20–90 and Q values above 100,000 at 1GHz. Many
crystal structures are exhibited by microwave dielectrics, but one of the most com-
mon for temperature stable materials is the perovskite structure shown in Fig. 1.3.
Perovskites have chemical formula ABO3 and are named after the mineral CaTiO3.

The first technique used to measure the properties of microwave dielectrics was
the Hakki–Coleman technique [4], which involved placing a sample between two
conducting plates and measuring the resonant frequency and quality factor of an
excited mode using a network analyser. These measurements were then used to cal-
culate the relative permittivity εr and loss tangent tan δ of thematerial. Unfortunately,
the Hakki–Coleman apparatus suffered from large measurement errors attributable
to the structure being open at the sides, permitting electromagnetic energy to escape
via radiation. A much improved method utilises a closed cylindrical cavity to house
the dielectric. This arrangement is known as a shielded dielectric resonator and is
one of the most accurate and practical methods of measuring dielectric properties.
Accurate modelling of the fields within the dielectric resonators using Maxwell’s
equations allows the dielectric properties to be measured as functions of temperature
and frequency. This will be investigated in Chaps. 2 and 3.

1.3 Review of Dielectric Loss

The focus of this thesis is the experimental characterisation and theoretical predic-
tion of microwave dielectric losses in single-crystal ceramics. The phenomenon of
microwave dielectric loss is a process whereby electromagnetic energy stored within
amaterial is converted into vibrational energy. In classical terms, a time varying elec-
tric field couples to optically active polarised vibrations within the dielectric. These

http://dx.doi.org/10.1007/978-3-319-44547-2_2
http://dx.doi.org/10.1007/978-3-319-44547-2_3
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polarised lattice vibrations couple to other vibrational modes through anharmonicity
and irreversibly transfer energy to them. The observable macroscopic effect is an
increase in the temperature of the material and decay of the energy stored within
dielectric medium.

Maxwell’s equations in a general medium (in SI units) are

∇ · D = ρ,

∇ · B = 0,

∇ × E = −∂B
∂t

,

∇ × H = J + ∂D
∂t

,

where D, B, E, H and J are the electric displacement, magnetic field, electric field,
magnetic field strength and current density vectors, defined by the constitutive rela-
tions

D = εE,

B = μH,

J = σE,

where the quantities ε, μ and σ are the electric permittivity, magnetic permeability
and electrical conductivity respectively. In the following treatment, for the sake of
simplicity, the following will be assumed:

• The magnetic permeability μ is equal to that of free-space, i.e. μ = μ0.
• The electric permittivity ε will be taken to be isotropic, hence ε = ε0εr .
• The current density is zero J = 0 in an ideal insulator.

The relative permittivity εr is generally a complex quantity

εr = ε′ + iε′′,

where the imaginary part, ε′′ accounts for the dissipation of the electric field within
the dielectric. The rate of change of energy per unit volume in a body can be calculated
from the Poynting vector S, also known as the energy flux vector:

S = E × H.

By taking its divergence and using the continuity condition we can calculate the rate
of change of energy per unit volume [5]:

−∇ · S =
(
E

∂D
∂t

+ H
∂B
∂t

)
.
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Since the magnetic field does not do work on charged particles we shall assume that
it has no role in dielectric loss, and so

−∇ · S = E
∂D
∂t

= iωε|E|2,

whereD = εE and a time dependence of eiωt for the electric fieldE and displacement
D is assumed. Since the rate of energy loss (power dissipation)∇ · S, is a real quantity,
it must depend on the imaginary part of the complex permittivity,

∇ · S = ωε′′|E|2.

The energy dissipated per oscillatory cycle of the field, W is therefore

W = 2π

ω
∇ · S = 2πε′′|E|2.

At resonance the electric energy density and magnetic energy density are equal, so
the time-averaged stored energy in the dielectric is twice the time-averaged electric
energy

U = ε′|E|2.

The dielectric quality factor Qd
1 is defined as the 2π times the ratio of the time-

averaged energy stored in the resonator to the energy dissipated per cycle of the
field,

Qd = 2π
U

W
= ε′

ε′′ . (1.3.1)

The reciprocal of the dielectric quality factor Qd is known as the loss factor or tangent
delta,

tan δ = 1

Qd
= ε′′

ε′ . (1.3.2)

It is the fraction of electrical energy dissipated in a medium per field cycle period.
As shown above, by conservation of energy, the power dissipated in the resonator is
the negative of the rate of change of stored energy U . The definition of Q allows an
equation for the time evolution of U to be written

dU

dt
= −ω0

Q
U

which has solution
U (t) = U0e−ω0t/Q,

where U0 is the initial energy stored in the resonator and ω0/Q is the decay constant.

1The quality factor Q of a resonator is not the reciprocal of the tan δ but depends on other sources
of loss such as metallic wall losses and coupling/radiative losses.
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The theory of microwave dielectric loss is a subject that has not been studied
extensively and the number of relevant publications in the literature reflects that. It is
a phenomenon associatedwith the interaction of vibrational collective excitations that
propagate in insulating crystal lattices. These vibrational collective excitations are
synonymous with sound waves and exhibit quasi-particle-like behaviour as phonons.
Phonons can be classified as either acoustic or optical. Acoustic phonons are much
like compressive and shear sound waves for long wavelengths and do not couple to
macroscopic electric fields. Optical phonons normally occur at higher frequencies,
usually in the terahertz to infrared, and behave quite differently at long wavelengths
and couple strongly to macroscopic electric fields. Unlike acoustic phonons whose
frequencies vanish at long wavelengths, optical phonon frequencies have limiting
values. Both types of phonon attenuate via two main types of scattering mechanism:
interaction with other phonons (intrinsic) and scattering from defects such as grain
boundaries, dislocations and point defects (extrinsic). The intrinsicmechanism is due
to anharmonicity of the inter-ionic potential and will be the subject of the theoretical
part of this thesis.

Early investigations into dielectric loss were conducted at the turn of the 20th

century by Debye [6–10] who studied the dipole relaxation of liquids from a classi-
cal perspective. This work was built upon later by Fröhlich [11]. Quantum mechan-
ical theories were developed describing anharmonic phonon–phonon absorption
processes in the far infrared for alkali halides by Woods and Cochran in 1960, fol-
lowed by Stolen and Dransfield (1965) and Eldridge and Kembry (1973) [12–14].
A study on microwave absorption was also reported by Silverman in 1961, who
investigated losses in cubic strontium titanate [15]. A few years later in 1973, Sham,
who had been developing a quantum field theory of second sound in solids, instigated
researchwith Sparks intomulti-phonon absorption culminating in 1981with the pop-
ular Sparks–King–Mills model [16–18]. It proposed that phonon transitions occurred
across the frequency gap between acoustic and optical phonons at the Brillouin zone
boundary. The theory was then improved upon by Subbaswamy and Mills by tak-
ing into account the finite lifetime of the thermal phonons involved in the process
[19]. Significant work on the anharmonic optical properties of insulators was also
published in the 1960 and 1970s by Cowley and Coombs [20, 21].

The most thorough and prominent work on microwave dielectric loss from a the-
oretical point of view was conducted by Gurevich [22–25]. He developed a rigorous
and analytical quantum theory that predicted the temperature and frequency depen-
dence of losses. Gurevich’s theory took crystal symmetry into account and incor-
porated ideas proposed by Herring regarding phonon–phonon collisions between
accidentally degenerate low-energy acoustic phonons [26–28]. The validity of Gure-
vich’s theory has been confirmed in measurements of the temperature and frequency
dependence of high-quality single crystals of sapphire by Braginsky and Ilchenko
[29] and also in polycrystalline analogues of single crystals by Alford et al. [30].
Gurevich’s theoretical foundationondielectric losswas further built uponbyTagantsev
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to better describe losses in non-centrosymmetric crystals such as
ferroelectrics [31–34]. However, the main drawback of these theories was the lack of
accurate data for phonon dispersion and the anharmonicity of crystal lattices. This
meant that although frequency and temperature dependencies of loss were correctly
described, the absolute magnitude of the predicted loss was sometimes orders of
magnitude different to that measured. Astonishing advances in computing power,
molecular dynamical simulations and quantum mechanical codes have now enabled
predictions of the lattice dynamical properties of insulators. A molecular dynamics
study by Deppe in 1992, predicted the frequency response of the transverse optic
phonon in Lithium Iodide by taking the autocorrelation of the time-domain dipole
moment [35]. Inter-ionic potentials in molecular dynamics were empirically derived
byfitting calculated lattice dynamical properties tomeasured physical properties such
as the bulk modulus. The advent of density functional theory (DFT) had the greatest
impact on the field and for first time it became possible to predict the lattice dynamical
properties of materials ab-initio from first principles. DFT uses pseudopotentials to
approximate the electronic structure of atoms without any empirical requirements at
all. Another important milestone in the first-principles study of anharmonic phonon
processes was established by Debernardi in 1995 who developed the ‘2n + 1’ theo-
rem based upon density functional perturbation theory [36–39]. It enabled the calcu-
lation of the anharmonicity of crystal lattices, allowed the lifetime ofRamanmodes to
be calculated with good accuracy and precipitated much further work into the anhar-
monic properties of semiconductors [40–44].Most of this work however has concen-
trated on properties at infrared and optical frequencies. Recently, for the microwave
frequency range, Wu and Shtin separately computed the microwave dielectric losses
in binary oxides using quantum theories of anharmonic phonon interactions [45,
46]. However, both models used empirically derived inter-ionic potentials. Aupi and
Shimada have also applied the Sparks–King–Mills model with estimates of the lat-
tice anharmonicity and thermal phonon lifetimes measured by Raman spectroscopy
to Sapphire and Lanthanum Aluminate with some success [47, 48]. However, there
is doubt about the validity of using the lifetimes measured by Raman spectroscopy
to describe infrared active phonons in these models. Dunne et al. also reported a
novel approach to dielectric loss based on the fluctuation-dissipation theory without
implicit recourse to phonon–phonon interactions.

To date, there have been no reports of microwave dielectric losses calculated
from first principles. This thesis aims to address this omission and also go further
by attempting to fully describe the complex permittivity frequency and temperature
dependence for a simple microwave dielectric (in this case MgO) using density
functional perturbation theory and a general theory of microwave absorption by
anharmonic phonons.
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1.4 Structure of Thesis

After the introductory chapter the thesis will be loosely structured into three parts of
two chapters. Part 1: Chaps. 2 and 3 is on the modelling of dielectric resonators and
the measurement of dielectric properties. Part 2: Chaps. 4 and 5 concerns the theory,
modelling and prediction of the harmonic properties of the metal oxide dielectrics
MgO, LaAlO3, TiO2 and Al2O3. Finally, Part 3: Chaps. 6 and 7 discusses the theory
of anharmonic interactions and provides predictions of the complex permittivity of
MgO as a function of temperature and frequency.

Chapter2: Modelling Dielectric Resonators

Maxwell’s equations are applied to the problem of modelling a shielded uniaxially
anisotropic dielectric resonator using the radial mode matching method.

Chapter3: Measurement of Dielectric Properties

The experimental apparatus for measuring the dielectric properties of samples as
functions of temperature from room temperature down to temperatures of 10K.

Chapter4: Lattice Dynamics and Density Functional Perturbation Theory

The lattice dynamics of insulating crystals are reviewed, followed by a brief trea-
tise on density functional methods. The calculation of phonon modes, dynamical
matrices, Born effective charges and LO-TO splitting are discussed.

Chapter5: Harmonic Properties of Metal Oxide Dielectrics

The harmonic properties of MgO, LaAlO3, TiO2 and Al2O3, such as phonon fre-
quency dispersion relations and relative permittivities are calculated using DFPT
and compared to the experimentally measured values.

Chapter6: Theory of Anharmonic Phonons

The theory of anharmonic crystal lattices is discussed within the framework of lattice
dynamics. A quantum field theory of anharmonic phonons is introduced and lowest
order anharmonic phonon interactions are investigated and expressions derived for
the self-energy of phonons.

Chapter7: Anharmonic Properties of MgO

Results from DFPT and quantum field theory are used to calculate the self-energy
for transverse optic phonons as a function of frequency and temperature. An
in-depth investigation into the frequency and temperature dependence of the individ-
ual phonon–phonon interactions that contribute to the inverse lifetime is conducted
and comparison with experiment is made.

Chapter8: Summary and Conclusions

A short review of the thesis with conclusions and a summary of future work that
could be carried out.

http://dx.doi.org/10.1007/978-3-319-44547-2_2
http://dx.doi.org/10.1007/978-3-319-44547-2_3
http://dx.doi.org/10.1007/978-3-319-44547-2_4
http://dx.doi.org/10.1007/978-3-319-44547-2_5
http://dx.doi.org/10.1007/978-3-319-44547-2_6
http://dx.doi.org/10.1007/978-3-319-44547-2_7
http://dx.doi.org/10.1007/978-3-319-44547-2_2
http://dx.doi.org/10.1007/978-3-319-44547-2_3
http://dx.doi.org/10.1007/978-3-319-44547-2_4
http://dx.doi.org/10.1007/978-3-319-44547-2_5
http://dx.doi.org/10.1007/978-3-319-44547-2_6
http://dx.doi.org/10.1007/978-3-319-44547-2_7
http://dx.doi.org/10.1007/978-3-319-44547-2_8
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1.5 Publications by the Author

The author has published the following journal papers with some relevance to the
topic discussed.

‘Room-temperature solid-state maser’
M. Oxborrow, J.D. Breeze and N.McN. Alford, Nature 488, 353 (2012).

‘Better than Bragg: Optimizing the quality factor of resonators with aperiodic
dielectric reflectors’

J. Breeze,M. Oxborrow and N.McN. Alford, Applied Physics Letters, 99, 113515
(2011).

‘Intrinsic microwave dielectric loss of lanthanum aluminate’
T. Shimada, K. Ichikawa, T. Minemura, H. Yamauchi, W. Utsumi, Y. Ishii, J.

Breeze and N.M. Alford, IEEE Transactions on Ultrasonics, Ferroelectrics and Fre-
quency Control, 57, 2243 (2010).

‘Temperature-stable and high Q-factor TiO2 Bragg reflector resonator’
J. Breeze, J. Krupka, A. Centeno and N.M. Alford, Applied Physics Letters 94,

082906 (2009).

‘Do grain boundaries affect microwave dielectric loss in oxides?’
J.D. Breeze and J.M. Perkins, D.W. McComb and N.M. Alford, Journal of the

American Ceramic Society, 92, 671 (2009).

‘Enhanced quality factors in aperiodic reflector resonators’
J. Breeze, J. Krupka andN.M.Alford,Applied Physics Letters, 91, 152902 (2007).

‘Measurements of permittivity, dielectric loss tangent and resistivity of float-zone
silicon at microwave frequencies’

J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen and L. Jensen, IEEE
Transactions on Microwave Theory and Techniques, 54, 3995 (2006).

‘Quasi-classical fluctuation-dissipation description of dielectric loss in oxides
with implications for quantum information processing’

L.J. Dunne, A.-K. Axelsson, N.M. Alford, J. Breeze, X. Aupi, E.J. Brändas,
International Journal of Quantum Chemistry, 106, 986 (2006).

‘Microwave dielectric loss in oxides: Theory and experiment’
X. Aupi, J. Breeze, N. Ljepojevic, L.J. Dunne, N. Malde, A.-K. Axelsson and

N.M. Alford, Journal of Applied Physics, 95, 2639 (2004).
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Chapter 2
Modelling Dielectric Resonators

There are many techniques available for characterising the complex permittivity of
microwave dielectric ceramics as functions of temperature and frequency. For mate-
rials with modest dielectric loss (tan δ > 10−3) broadband transmission line mea-
surements can yield the complex permittivity with reasonable accuracy over a wide
frequency range. However, for very low loss dielectrics (tan δ < 10−4) such as the
ones studied here, a dielectric resonator technique is required. A dielectric resonator
consists of a cylindrical dielectric sample mounted upon a low-loss, low-permittivity
support such as quartz or polystyrene, housed within a conducting metallic cylin-
drical cavity. Microwaves are coupled into the resonator via ports, small loops or
probe antennas protruding through the walls of the cavity. The coupling strength is
set very low to prevent the resonant frequency of the mode from being perturbed.
The resonant frequency and quality factor of a suitable resonant mode can then be
measured using a network analyser, either in reflection (one-port) or transmission
(two-port). To extract the relative permittivity and loss tangent of a dielectric sample
from a microwave measurement or to be able to predict the resonant frequency and
quality factor of a resonator, it is necessary to accurately model the electromagnetic
fields of resonant modes within dielectric resonator structures. This chapter will
apply Maxwell’s equations to model the resonant modes supported by cylindrical
dielectric resonators using the rigorous analytical technique known as radial mode
matching.

2.1 Introduction to Microwave Dielectrics

The dielectric properties of interest to engineers and scientists are the relative permit-
tivity, loss tangent and temperature coefficient of permittivity. They are all, strictly
speaking, temperature and frequency dependent, although the relative permittivity is
fairly constant over microwave frequencies and can therefore be considered constant
to all intensive purposes.

© Springer International Publishing AG 2016
J. Breeze, Temperature and Frequency Dependence of Complex
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Springer Theses, DOI 10.1007/978-3-319-44547-2_2

13



14 2 Modelling Dielectric Resonators

Relative Permittivity, εr

The real part of the complex permittivity εr allows device dimensions to be reduced
by a factor of

√
εr and varies greatly in microwave ceramics, from εr ≈ 4 for quartz

(SiO2) to εr > 4000 for ferroelectrics such as BaTiO3. Almost all single crystal
microwave dielectrics with non-cubic crystal structure have anisotropic relative per-
mittivities. For example, a biaxial dielectric would have permittivity tensor:

ε =
⎡
⎣ εx 0 0

0 εy 0
0 0 εz

⎤
⎦ .

For instance, single crystal rutile TiO2 is uniaxially anisotropic and has permittiv-
ities εr,⊥ = 86 and εr,‖ = 163, perpendicular and parallel to the crystal c-axis [1].
Most polycrystalline microwave ceramics have isotropic relative permittivity due
to the random orientation of their crystallites, although processing conditions such
as temperature gradients can sometimes result in slight anisotropy in the relative
permittivity.

Loss Tangent, tan δ

The ratio of the imaginary and real parts of the complex permittivity, tan δ = ε′′/ε′,
limits the performance of microwave devices due to absorption of microwave electric
field energy. The dielectric quality factor Qd , an often quoted figure of merit is the
reciprocal of the loss tangent,Qd = 1/ tan δ. The loss tangent is sometimes assumed
to vary linearly with frequency, leading to the often quoted Qf factor where the
dielectric quality factor Qd is multiplied by the frequency at which it was measured.
Typically, higher permittivity dielectrics have higher dielectric losses. Anisotropic
dielectrics such as single crystals will also have tensorial loss tangents with identical
symmetry to their relative permittivity tensors. For example, rutile TiO2 has tan δ⊥ =
1.5 × 10−4 and tan δ‖ = 1.8 × 10−4 for loss tangents perpendicular and parallel to
the c-axis at 10GHz and room temperature.

Temperature Coefficient of Permittivity, τ ε

This property governs how the centre frequency of a filter or resonant frequency of
a dielectric resonator varies with temperature. It is given by the fractional change in
the relative permittivity as the temperature varies:

τε = 1

εr

∂εr

∂T
.

The temperature coefficient of permittivity (sometimes abbreviated as TCεr) is often
not the property quoted by ceramic manufacturers and engineers. Instead the τf or
temperature coefficient of frequency (TCf ) is reported. This is erroneous since the
τf is also dependent on the thermal expansion coefficients of the ceramic and the
metallic shield, the resonator geometry and resonant mode’s electric and magnetic
field distributions. Temperature coefficients can be tuned in ceramics by careful
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Table 2.1 Typical dielectric properties of some polycrystalline microwave dielectric materials at
room temperature [2]

Material εr τε(ppmK−1) Qd = 1/ tan δ f (GHz)

Ba(Mg1/3Ta2/3)O3 24 0 26,000 10

Ba(Zn1/3Ta2/3)O3 30 −6, . . . ,+6 12,000 6

(Zr0.8Sn0.2)TiO4 38 −6, . . . ,+6 8,000 7

0.7CaTiO3-0.3NdAlO3 43 0 7,000 6.7

Al2O3 10 +120 100,000 10

TiO2 100 −900 17,000 3

Table 2.2 Typical dielectric properties of the some single crystal microwave dielectric materials at
room temperature [2]. The perpendicular (⊥) and parallel (‖) subscripts refer to components with
respect to the crystal c-axis

Material ε⊥ ε‖ τε,⊥(ppmK−1) τε,‖(ppmK−1) Qf⊥ Qf‖
SiO2 4.443 4.644 9 28.7 1,400,000 2,100,000

MgF2 5.48 4.765 210 – 490,000 220,000

SrLaAlO4 16.85 19.8 50 – 628,000 181,000

Al2O3 9.935 11.59 85 121 1,170,000 1,890,000

TiO2 85.7 163.2 −760 −1200 64,600 56,300

attention to processing, doping and solid solution stoichiometry. For anisotropic
dielectrics, the τε also has the same symmetry as the relative permittivity and loss
tangent tensors. Again, for rutile TiO2, values are τε,⊥ = 760 ppmK−1 and τε,‖ =
−1200 ppmK−1 at room temperature. Tables2.1 and 2.2 show dielectric properties
for some common polycrystalline and single crystal microwave dielectric materials.

2.2 Measuring Microwave Dielectric Properties

The measurement of the resonant frequency and quality factor of dielectric res-
onators as functions of temperature and frequency allows the complex permittivity
of a dielectric material to be determined. To transform these measurements into
values for the relative permittivity εr , loss tangent tan δ and temperature coeffi-
cient of permittivity τε accurate electromagnetic modelling is required. Further-
more, accurate modelling allows for the optimisation of resonator geometries with
respect to losses and spurious modes. The simplest type of apparatus which can be
used to measure the dielectric properties of microwave ceramics is the Courtney
holder. This device consists of a parallel pair of circular plates which sandwich a
small cylindrical ceramic sample. The open sides allow probes or antennae to be
inserted in order to excite the resonant mode. The technique was first proposed by
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Hakki and Coleman [3] and later analysis of errors and temperature effects were
reported by Courtney [4]. Providing that the distance between the plates (the height
of the sample) is less than half the free-space wavelength then the electric field of
the TE011 mode should decay evanescently away from the sample along the radial
direction and therefore should not radiate significantly. Kobayashi [5, 6] studied a
resonator consisting of a dielectric rod short-circuited at both ends by metal plates
and found that the finite diameter of the plates meant that microwave energy could
escape by radiation. Furthermore, the transverse magnetic modes (TM) were found
to be unsuitable for accurate measurement of the permittivity. The absence of a radial
cut-off frequency for TM modes means they have low quality factor due to radiation
losses. Small air gaps between the resonator and the plates have considerable effect
on the resonant frequency and can lead to large uncertainties in the computed relative
permittivity. Ohmic losses induced in the metal plates, due to their proximity to the
dielectric sample, limit the measurable tan δ since they become the dominant loss
mechanism when the dielectric sample has low losses. An obvious loss mitigating
step is to separate the dielectric sample from the plates and to use a low-permittivity
low-loss dielectric such as quartz or PTFE for support if required. Closing the sides
of the resonator will also eliminate radiation losses. DelaBalle et al. [7] numeri-
cally studied the case of a dielectric puck within a cavity separated from the cavity
walls and Hong [8] studied shielded resonators consisting of pucks placed upon a
substrate. Zaki et al. [9] reported highly accurate mode matching results for dielec-
tric samples placed upon low-permittivity supports within cylindrical cavities. Later,
Krupka [10], Tobar [11] and Kobayashi [12] reported theoretical and experimen-
tal findings for anisotropic dielectrics (mostly single crystals) using highly accurate
Rayleigh–Ritz and mode matching methods. They later extended these models to
include higher order whispering gallery modes (WGM) which allowed components
of the complex permittivity tensor both perpendicular and parallel to the cylindri-
cal axis to be measured [1, 13]. The natural evolution of devices for measuring the
complex permittivity of low-loss dielectrics has led to shielded dielectric resonators
being the most widely employed structures today for measuring the properties of
microwave dielectric ceramics.

2.3 Modelling Shielded Dielectric Resonators

Most electromagnetic modelling techniques (and all commercially available soft-
ware packages), whether they are rigorous or not, take as input the geometry of a
structure and the electromagnetic properties of the materials that define it. Typically,
the output is the frequency response, or in the case of resonators, the resonant modes
of the system. This is important from an engineering point of view when designing
devices with an intended frequency response using materials with known properties.
From a meteorological point of view this is a hindrance since it is often the electri-
cal properties that are sought given a resonator geometry and measured frequency
response. This presents what is known as an inverse problem that can be tackled in
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various ways. For example, the permittivity of a sample could be found by successive
iteration, varying the permittivity in the model until the resonant frequency agrees
with measurement. Alternatively, generating a lookup table of values for resonant
frequency versus permittivity and interpolating between them could provide reason-
ably accurate estimates of the permittivity given the resonant frequency. However,
both these methods are inherently inefficient since they both require many compu-
tation steps. It is desirable to be able to directly calculate the permittivity and loss
tangent of a material given a resonant frequency and geometrical description. This
is accomplished by modifying existing techniques to solve for permittivity instead
of resonant frequency. For the finite-difference time-domain (FDTD) method, the
eigenmodes are extracted by spectral analysis of the time-domain response and so
this technique cannot be modified. Frequency domain methods such as finite differ-
ences or finite elements could be used effectively, but both these techniques have
high computational cost if very accurate results are required. The quasi-analytical
mode matching technique is probably the most accurate method of modelling dielec-
tric resonators, whose accuracy is governed by the number of terms in the truncated
series expansion of eigenmode basis functions. The advantage of this technique is
that it has very low computational overhead and is very amenable to quickly process-
ing large numbers of data points, which is the case for temperature measurements or
optimisation algorithms.

The shielded dielectric resonator as shown in Fig. 2.1, is the most common type of
dielectric resonator geometry due to its ease of construction, elimination of radiative
losses and reduction of ohmic losses in the conducting shield. It is also the most
extensively studied due to its practical application inmicrowave filters and oscillators
as resonant elements. The structure consists of a metal cylindrical cavity, constructed
from a high electrical conductivity material such as copper or a silver-plated metal
such as brass or aluminium. Inside the cavity is a support structurewhich is commonly
a disk, cylinder or substrate of low-permittivity, low-loss dielectric such as quartz or
alumina. The purpose of the support structure is to move the dielectric sample away
from the conducting shield to reduce ohmic losses. The dielectric resonator itself is
usually a ceramic disk or ring placed on top of the support structure.

Fig. 2.1 Shielded dielectric
resonator
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Fig. 2.2 Cross section of
dielectric resonator geometry
showing how the regions
form a 3 × 3 problem space
where each piecewise
element has an assigned
relative permittivity tensor

The structure is symmetrical about the cylindrical axis and so can be considered
as a body of revolution with the cross section shown in Fig. 2.2. In the r − z plane, the
resonator system can be split up into piecewise regular regions in which the permit-
tivity tensor is homogeneous. The permittivity tensor in each of the nine cells can be
represented by a matrix εijk where i and j index the layer and radial region of the cell,
respectively, and k indexes the component of the permittivity tensor. The electromag-
netic fields in each region can be expanded as an infinite series of linear combinations
of eigenmodes (basis functions). When the tangential electric and magnetic fields
are matched at the interfaces between regions and the boundary conditions on the
metallic shield are satisfied, an infinite homogeneous system of linear equations is
obtained. The solutions are non-trivial only when the determinant of a characteristic
matrix vanishes. Hence, the resonant frequencies or the permittivity can be found
by searching for the zeros of the determinant. In practice it is necessary to truncate
the series expansion to include a finite number of basis functions. The number of
basis functions is increased until an acceptable level of convergence is achieved.
For cylindrical symmetric resonators the mode matching method can be approached
in two different ways. The axial mode matching method proposed by Zaki [9] first
solves a set of eigenvalue problems in the radial direction to obtain eigenvalues which
are then used to generate an eigenproblem by matching the fields across layers in
the axial direction. Conversely, the radial mode matching method [14] first obtains
the eigenvalues for an array of multilayered parallel plate waveguides in the axial
direction. Following this step, the fields are matched across region boundaries in
the radial direction. Although both radial and axial mode matching techniques have
similar accuracy and performance, the radial modematching technique has an advan-
tage because the first step of the process solves transcendental equations containing
only trigonometric functions, whereas the axial technique involves transcendental
equations containing Bessel functions.
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2.4 Maxwell Equations in Cylindrical Coordinates

To solve the shielded dielectric resonator problem using either the radial or axial
mode matching method, one begins with Maxwell’s equations in cylindrical coor-
dinates (Fig. 2.3). Maxwell’s equations for time harmonic electric E and magnetic
H fields of frequency ω in a linear, homogeneous and source-free medium with
anisotropic relative electric permittivity ε̃r and magnetic permeability of free-space,
μ = μ0 are:

∇ × E = −iωμ0 H,

∇ × H = +iωε0ε̃r E,

∇ · (ε̃rE) = 0,

∇ · H = 0. (2.4.1)

The relative permittivity tensor, constrained by the coordinate system to be uniaxial
is given by

ε̃r =
⎡
⎣ εt 0 0
0 εt 0
0 0 εz

⎤
⎦ ,

where εt and εz are the transverse and longitudinal components with respect to the
z-axis. The relative permittivity tensor will be assumed to be purely real, since for
useful microwave dielectrics the imaginary part is much smaller than the real part,
ε′′ � ε′. Equations (2.4.1) can be rearranged in terms of E and H:

E = − i

ωε0
ε̃−1
r ∇ × H,

H = + i

ωμ0
∇ × E. (2.4.2)

Fig. 2.3 Cylindrical
coordinate system
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Since the relative permittivity tensor ε̃r is diagonal it is easily inverted and so evaluat-
ing the curl operators in cylindrical coordinates provides expressions for the electric
and magnetic field components:

Eρ = − i

ωε0εt

{
1

ρ

∂Hz

∂φ
− ∂Hφ

∂z

}

Eφ = − i

ωε0εt

{
∂Hρ

∂z
− ∂Hz

∂ρ

}

Ez = − i

ωε0εzρ

{
∂

∂ρ

(
ρHφ

) − ∂Hρ

∂φ

}

Hρ = + i

ωμ0

{
1

ρ

∂Ez

∂φ
− ∂Eφ

∂z

}

Hφ = + i

ωμ0

{
∂Eρ

∂z
− ∂Ez

∂ρ

}

Hz = + i

ωρμ0

{
∂

∂ρ

(
ρEφ

) − ∂Eρ

∂φ

}
. (2.4.3)

The equations in ρ and φ can be reformulated entirely in terms of the axial field
components Ez and Hz by substitution,

(
∂2

∂z2
+ k20εt

)
Eρ = ∂2Ez

∂ρ∂z
− iωμ

ρ

∂Hz

∂φ(
∂2

∂z2
+ k20εt

)
Eφ = 1

ρ

∂2Ez

∂φ∂z
+ iωμ

∂Hz

∂ρ(
∂2

∂z2
+ k20εt

)
Hρ = ∂2Hz

∂ρ∂z
+ iωε0εt

ρ

∂Ez

∂φ(
∂2

∂z2
+ k20εt

)
Hφ = 1

ρ

∂2Hz

∂φ∂z
− iωε0εt

∂Ez

∂ρ
, (2.4.4)

where k0 is the free-space wavenumber. Modes that propagate in the axial z direction
can be classified as follows:

• Transverse electric (TE)
These modes have no axial electric field component (Ez = 0) and so the electric
field is purely transverse (TE). They are designated as h-modes in the literature
due to the axial magnetic field component, Hz.

• Transverse magnetic (TM)
Thesemodes have no axialmagnetic field component (Hz = 0) and so themagnetic
field is purely transverse (TM). They are designated as e-modes in the literature
due to the axial electric field component, Ez.

• Hybrid modes (HE/HM)
These modes have both electric and magnetic axial field components (Ez 	=
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0,Hz 	= 0). ThedesignationHE (hybrid electric) orHM(hybridmagnetic) depends
on which field is dominant in the axial direction.

The next step is to solve Maxwell’s equations for the axial field components Ez and
Hz. Application of the curl vector operator to both sides of Maxwell’s equations
(2.4.1) yields

∇ × ∇ × E = −iωμ0∇ × H = k20 ε̃r E (2.4.5)

∇ × ∇ × H = +iωε0∇ × ε̃rE. (2.4.6)

Applying the double curl vector identity,∇ × ∇ × A = ∇ (∇ · A) − ∇2A, to (2.4.5)
gives

∇2E − ∇ (∇ · E) + k20 ε̃rE = 0. (2.4.7)

The divergence of the electric displacement D is zero, ∇ · D = 0, due to the absence
of free charges. For an isotropic dielectric the divergence of the electric field is also
zero, because ∇ · (εrE) = εr∇ · E = 0. However, for an anisotropic dielectric the
divergence of the electric field is not zero since

∇ · (ε̃rE) = εt∇ · E − εt

(
1 − εz

εt

)
∂Ez

∂z
= 0,

resulting in

∇ · E =
(
1 − εz

εt

)
∂Ez

∂z
. (2.4.8)

Substituting (2.4.8) into (2.4.7) yields

∇2E −
(
1 − εz

εt

)
∇ ∂Ez

∂z
+ k20 ε̃rE = 0. (2.4.9)

Taking the z component yields the Helmholtz wave equation in Ez:

∇2Ez −
(
1 − εz

εt

)
∂2Ez

∂z2
+ k20εzEz = 0. (2.4.10)

The Laplacian operator ∇2, in cylindrical coordinates (see Fig. 2.3) is given by

∇2 = 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2
∂2

∂φ2
+ ∂2

∂z2
. (2.4.11)

A solution for Ez of the form

Ez(ρ,φ, z) = R(ρ)�(φ)Z(z),
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can be sought by the method of separation of variables. Substituting this in the scalar
wave equation (2.4.10) and dividing throughout by Ez = R(ρ)�(φ)Z(z) produces

1

ρR(ρ)

∂

∂ρ

[
ρ
∂R(ρ)

∂ρ

]
+ 1

ρ2�(φ)

∂2�(φ)

∂φ2
+ 1

Z(z)

εz

εt

∂2Z(z)

∂z2
+ k20εz = 0. (2.4.12)

The third term is independent of both ρ and φ and further inspection shows that this
term must also be independent of z since the other terms are independent of z and
the whole expression sums to zero. The third term must therefore be a coefficient,

1

Z(z)

εz

εt

∂2Z(z)

∂z2
= −εz

εt
β2. (2.4.13)

The −β2 coefficient is chosen since Z(z) is expected to have an axial variation of the
form eiβz where β is the propagation constant. Substitution of (2.4.13) into (2.4.12)
and multiplying throughout by ρ2 yields

ρ

R(ρ)

∂

∂ρ

[
ρ
∂R(ρ)

∂ρ

]
+ 1

�(φ)

∂2�(φ)

∂φ2
+ ρ2

(
k20εz − εz

εt
β2

)
= 0. (2.4.14)

The second term is a function only of φ and so the same term independence argument
also applies in this case, withm being the azimuthal dependence assuming a variation
of the form eimφ, resulting in

1

�(φ)

∂2�(φ)

∂φ2
= −m2. (2.4.15)

Substitution of (2.4.15) into (2.4.14) and multiplying throughout by R(ρ) gives

ρ
∂

∂ρ

[
ρ

∂

∂ρ
R(ρ)

]
+ [

λeρ2 − m2
]
R(ρ) = 0, (2.4.16)

where λe = k20εz − εz
εt

β2. Notice that (2.4.16) is a partial differential equation in
ρ only. We have now separated (2.4.12) into three partial differential equations in
R(ρ), �(φ) and Z(z) (2.4.16), (2.4.15) and (2.4.13). The two equations in z and
φ are harmonic and therefore have trigonometric solutions. Equation (2.4.16) is a
Bessel differential equation of order m and argument

√
λeρ. A general solution for

Ez(ρ,φ, z) is therefore given by

Ez = [
AeJm(ξeρ) + BeYm(ξeρ)

] [
ae sin βez + be cosβez

] { cosmφ
sinmφ

}
, (2.4.17)

where ξe = √
λe and Ae, Be, ae and be are coefficients. The e superscript identifies

this as an e-mode. Jm and Ym are Bessel functions of the first and second kinds of
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orderm [15]. If the Bessel function argument ξe is imaginary, then the radial solution
will consists of the modified Bessel functions of the first and second kind:

Im(x) = (−i)mJm(ix)

and
Km(x) = π

2
im+1 [Jm(ix) + iYm(ix)] .

The radial solution in this case would be

Re(ρ) = AeIm(|ξe|ρ) + BeKm(|ξe|ρ).

Similarly if the propagation constant is imaginary, the trigonometric functions in the
axial eigenfunction are replaced by hyperbolic functions and take the form

Ze(z) = ae sinh |βe|z + be cosh |βe|z.

Applying the vector identity to the double curl of H, (2.4.6) and noting that the
divergence of the magnetic field is zero, ∇ · H = 0, due to the absence of magnetic
monopoles, yields:

∇2H + iωε0∇ × ε̃rE = 0, (2.4.18)

and again taking the z component results in the Helmholtz wave equation for Hz:

∇2Hz + k20εt Hz = 0. (2.4.19)

Similar derivation as above for Ez leads to the general solution for Hz:

Hz = [
AhJm(ξhρ) + BhYm(ξhρ)

] [
ah sin βhz + bh cosβhz

] { cosmφ
sinmφ

}
, (2.4.20)

where ξh = √
λh and Ah, Bh, ah and bh are coefficients. The separation constant in

this case is given by λh = k20εt − (βh)2. Remembering that the axial electric and
magnetic fields are a superposition of an infinite number of eigenmodes, for any
eigenmode p, the radial functions in ρ can be represented by

Re,h
p (ρ) = Ae,h

p Pe,h
p (ρ) + Be,h

p Qe,h
p (ρ), (2.4.21)

where

Pe,h
p (ρ) =

{
Jm(ξe,hp ρ), λe,h

p > 0
Im(ξe,hp ρ), λe,h

p < 0
(2.4.22)

Qe,h
p (ρ) =

{
Ym(ξe,hp ρ), λe,h

p > 0
Km(ξe,hp ρ), λe,h

p < 0
(2.4.23)
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and ξe,hp =
√

|λe,h
p |. The axial eigenfunctions can be represented by

Ze,h
p (z) =

{
ae,hp sin βe,h

p z + be,hp cosβe,h
p z, (βe,h

p )2 > 0
ae,hp sinh |βe,h

p |z + be,hp cosh |βe,h
p |z, (βe,h

p )2 < 0
(2.4.24)

and the azimuthal variation by

�e
m(φ) =

{
cosmφ
sinmφ

}
(2.4.25)

and

�h
m(φ) =

{− sinmφ
cosmφ

}
. (2.4.26)

Note that �e′(φ) = m�h
m(φ) and �h′(φ) = −m�e

m(φ), where the prime indicates
the derivative with respect to φ. General solutions can therefore be expressed in the
form:

Ez =
∑
p

Re
p(ρ)Ze

p(z)�
e
m(φ)

Hz =
∑
p

Rh
p(ρ)Zh

p (z)�
h
m(φ),

where the summation is over an infinite number of eigenmodes p. The transverse
field components are obtained from the axial components using Eqs. (2.4.4),

Eρ = εz

εtλe

∂2Ez

∂ρ∂z
− iωμ

ρλh

∂Hz

∂φ

Eφ = εz

εtλeρ

∂2Ez

∂φ∂z
+ iωμ

λh

∂Hz

∂ρ

Hρ = 1

λh

∂2Hz

∂ρ∂z
+ iωε0εz

ρλe

∂Ez

∂φ

Hφ = 1

ρλh

∂2Hz

∂φ∂z
− iωε0εz

λe

∂Ez

∂ρ
(2.4.27)

yielding a complete set of field components for each eigenmode p. The field com-
ponents in cylindrical coordinates can then be written as infinite sums over p:
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Eρ = εz

εt

∑
p

Re′
p (ρ)Ze′

p (z)�e
m(φ) + imωμ

ρ

∑
p

Rh
p(ρ)Zh

p (z)�
e
m(φ)

Eφ = mεz

ρεt

∑
p

Re
p(ρ)Ze′

p (z)�h
m(φ) + iωμ

∑
p

Rh′
p (ρ)Zh

p (z)�
h
m(φ)

Ez =
∑
p

λe
pR

e
p(ρ)Ze

p(z)�
e
m(φ)

Hρ = imωε0εz

ρ

∑
p

Re
p(ρ)Ze

p(z)�
h
m(φ) +

∑
p

Rh′
p (ρ)Zh′

p (z)�h
m(φ)

Hφ = −iωε0εz
∑
p

Re′
p (ρ)Ze

p(z)�
e
m(φ) − m

ρ

∑
p

Rh
p(ρ)Zh′

p (z)�e
m(φ)

Hz =
∑
p

λh
pR

h
p(ρ)Zh

p (z)�
h
m(φ), (2.4.28)

where the factors λe,h
p have been incorporated into Ez and Hz and primed radial and

axial functions represent derivativeswith respect toρ or z. This set of equations allows
the field components in any region to be conveniently defined as series expansions
of basis functions.

2.5 Multilayer Waveguide Eigenvalues

The multilayer waveguide geometry consists of a parallel plate waveguide partially
filled with different layers of dielectric. The eigenvalues λe and λh can be found
for any partial radial region by solving the multilayer waveguide problem shown
in Fig. 2.4. Since the axial fields are a superposition of TE and TM modes, the
eigenvalues can be found for them independently.

The sinmφ and cosmφ azimuthal terms can be omitted since they are the same
for all layers and radial regions for a given m. Hence, the eigenvalues λe

p and λh
p

are independent of the azimuthal index m. This fact can be used for computational
efficiency when searching for solutions for different m indices since the eigenvalues
only need to be calculated once for all m. The radial functions can also be omitted
since they are layer independent for any partial radial region. For TM modes, where
Hz = 0, the system of equations for an eigenmode in layer i for a particular partial
region is
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Fig. 2.4 The anisotropic
dielectric-loaded parallel
plate waveguide. There are N
layers of dielectric each with
thickness ti, where
i = 1, 2, . . . ,N . The
multilayer is sandwiched by
perfect electric conductors
(PEC)

Ee
ρ,i = εz,i

εt,i
βe
i

[
aei cosβe

i (z − hi) − bei sin βe
i (z − hi)

]

Ee
φ,i = εz,i

εt,i

m

ρ
βe
i

[
aei cosβe

i (z − hi) − bei sin βe
i (z − hi)

]

Ee
z,i = λe

[
aei sin βe

i (z − hi) + bei cosβe
i (z − hi)

]
He

ρ,i = imωε0εz,i

ρ

[
aei sin βe

i (z − hi) + bei cosβe
i (z − hi)

]
He

φ,i = −iωε0εz,i
[
aei sin βe

i (z − hi) + be cosβe
i (z − hi)

]
He

z,i = 0. (2.5.1)

Similarly, For TE modes, where Ez = 0,

Eh
ρ,i = imωμ

ρ

[
ahi sin βh

i (z − hi) + bhi cosβh
i (z − hi)

]

Eh
φ,i = iωμ

[
ahi sin βh

i (z − hi) + bhi cosβh
i (z − hi)

]
Eh
z,i = 0

Hh
ρ,i = βh

i

[
ahi cosβh

i (z − hi) − bhi sin βh
i (z − hi)

]
Hh

φ,i = −m

ρ
βh
i

[
ahi cosβh

i (z − hi) − bhi sin βh
i (z − hi)

]

Hh
z,i = λh

[
ahi sin βh

i (z − hi) + bhi cosβh
i (z − hi)

]
,

where hi is the height where layer i with thickness ti begins. The eigenvalues λe
p and

λh
p can be obtained for the multilayer problem by matching the tangential field com-

ponents at the interfaces between layers and enforcing the boundary conditions on
the perfect electric conductors (PEC) at the top and bottom. Matching the tangential
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TM and TE fields at the interfaces between layers i and i + 1 at z = hi+1:

Ee
ρ,i = Ee

ρ,i+1 Eh
ρ,i = Eh

ρ,i+1

Ee
φ,i = Ee

φ,i+1 Eh
φ,i = Eh

φ,i+1

He
ρ,i = He

ρ,i+1 Hh
ρ,i = Hh

ρ,i+1

He
φ,i = He

φ,i+1 Hh
φ,i = Hh

φ,i+1,

results in four equations,

εz,i

εt,i
βe
i

(
aei cosβe

i ti − bei sin βe
i ti

) = εz,i+1

εt,i+1
βe
i+1a

e
i+1

εz,i
(
aei sin βe

i ti + be cosβe
i ti

) = εz,i+1b
e
i+1(

ahi sin βh
i ti + bhi cosβh

i ti
) = bhi+1

βh
i

(
ahi cosβh

i ti − bhi sin βh
i ti

) = βh
i+1a

h
i+1.

These four equations can be written as a pair of transfer matrix equations relating
the coefficients in layer i + 1 to those in layer i,

[
aei+1

bei+1

]
= Ze

i,i+1

[
aei
bei

]
,

[
ahi+1

bhi+1

]
= Zh

i,i+1

[
ahi
bhi

]
.

The axial transfer matrices Ze
i,i+1 and Zh

i,i+1 are

Ze
i,i+1 =

[ εz,iεt,i+1

εt,iεz,i+1

βe
i

βe
i+1

cosβe
i ti − εz,iεt,i+1

εt,iεz,i+1

βe
i

βe
i+1

sin βe
i ti

εz,i
εz,i+1

sin βe
i ti + εz,i

εz,i+1
cosβe

i ti

]

Zh
i,i+1 =

[
βh
i

βh
i+1

cosβh
i ti − βh

i

βh
i+1

sin βh
i ti

sin βh
i ti + cosβh

i ti

]
,

where the propagation coefficients β(e,h)
i in each layer are calculated from the eigen-

values λ(e,h):

βe
i =

√
εt,ik20 − εt,i

εz,i
λe

βh
i =

√
εt,ik20 − λh.

The PEC boundary condition at the bottom of the multilayer forces the tangential
electric field components to be zero,
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ae1 = 0

bh1 = 0.

The coefficients be1 and ah1 can be initially set to unity, then once the eigenvalues
have been found, the coefficients aei , b

e
i , a

h
i and bhi in all layers are normalised by

taking inner products. The coefficients in subsequent layers, i > 1, are obtained
by applying the transfer matrices to the set of coefficients in the previous layer.
Successive multiplication propagates the coefficients for the bottommost layer to the
final topmost layer, i = N : [

aeN
beN

]
=

N−1∏
i=1

Ze
i,i+1

[
ae1
be1

]

[
ahN
bhN

]
=

N−1∏
i=1

Zh
i,i+1

[
ah1
bh1

]
.

The eigenvalues are found by searching for solutions which satisfy the boundary
conditions on the upper PEC boundary at z = h, that the transverse electric field
components are zero:

Ee
ρ,N (h) = 0

Ee
φ,N (h) = 0

Eh
ρ,N (h) = 0

Eh
φ,N (h) = 0.

These conditions are given by

aeN cosβe
N tN − beN sin βe

N tN = 0,

ahN sin βh
N tN + bhN cosβh

N tN = 0. (2.5.2)

It can be shown that although there are an infinite number of solutions for the eigen-
values λe

p and λh
p, there are only a finite number of positive solutions due to the cut-off

condition [14]:
λe,h
p < k20ε

max
z,t ,

where the superscript ‘max’ denotes the highest value of permittivity throughout
all the regions in the entire structure. This cut-off condition is used as an upper
bound for all eigenvalues. The eigenvalue search is conducted by setting λe,h to a
value slightly smaller than k20ε

max
z,t (setting to exactly this value would mean that

βe,h would be zero). λe,h is then decreased by small steps until a sign change in
Eqs. (2.5.2) is observed. Once a zero has been bracketed in this way, the solution
can be refined using a root-finding algorithm such as the bisection method [16],
Ridders’ method [17] or the Brent method [18]. When using the transfer matrix
technique, care must be taken to avoid cases where the propagation coefficient βe,h
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Fig. 2.5 Searching for the
h-mode (TE) eigenvalues for
a 3-layer problem at 10 GHz.
The thicknesses of the layers
were t1 = 4.0 mm, t2 = 5.0
mm and t3 = 6.0 mm and the
transverse permittivities εt,1
= 4.3, εt,2 = 10.0 and εt,3 =
1.0. The circles locate the
positions of the eigenvalues
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Fig. 2.6 Searching for the
e-mode (TM) eigenvalues for
a 3-layer problem at 10 GHz.
The thicknesses of the layers
were t1 = 4.0 mm, t2 = 5.0
mm and t3 = 6.0 mm and the
transverse permittivities εt,1
= 4.3, εt,2 = 10.0 and εt,3 =
1.0. The circles locate the
positions of the eigenvalues
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is zero for any layer since this might result in false zeroes. Figures2.5 and 2.6 show
plots of the transverse electric field at the upper PEC for an example three-layer
multilayer eigenvalue problem at a frequency of 10 GHz. The first four axial TE and
TM eigenmodes are shown in Figs. 2.7 and 2.8. The shaded region shows where the
permittivity is highest. Note that Eφ is continuous across the dielectric interfaces for
the TE case whereas Hφ is discontinuous. The derivatives of both are, however, both
continuous across the dielectric interfaces.

To be able to use these eigenmodes as basis function for a series expansion of
the fields, they are required to be orthogonal and normalised. To investigate this, the
previous derivation of the wave equations for the axial fields Ez and Hz, is applied
but taking the permittivity tensor to be a function of z. The zero divergence of the
displacement, ∇ · D = 0 leads to the following expression for the divergence of the
electric field:

∇ · E = − 1

εt

∂

∂z
(εzEz) + ∂Ez

∂z
,
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Fig. 2.7 First four axial TE
eigenmodes for 3-layer
problem at 10 GHz. The
thicknesses of the layers
were t1 = 4.0 mm, t2 = 5.0
mm and t3 = 6.0 mm and the
transverse permittivities
εt,1 = 4.3, εt,2 = 10.0 and εt,3
= 1.0
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Fig. 2.8 First four axial TM
eigenmodes for 3-layer
problem at 10 GHz. The
thicknesses of the layers
were t1 = 4.0 mm, t2 = 5.0
mm and t3 = 6.0 mm and the
transverse permittivities
εt,1 = 4.3, εt,2 = 10.0 and εt,3
= 1.0
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and so the partial differential equation for Ez is modified slightly:

∇2Ez + ∂

∂z

[
1

εt

∂

∂z
(εzEz)

]
− ∂2Ez

∂z2
+ k20 ε̃rE = 0.

Substituting Ez = R(ρ)�(φ)Z(z), dividing throughout by Ez and equating the term
in z to the same coefficient in Eq. (2.4.13), namely −β2εt/εt , produces a Sturm–
Liouville [15] partial differential equation:

∂

∂z

{
1

εt

∂

∂z

[
εzZ(z)

]} +
(
k20 − λe

εz

) [
εzZ(z)

] = 0.

The weighted inner product of two axial TM eigenmodes spanning the height h of a
resonator is then: ∫ h

0
εzZ

e
p(z)Z

e
q(z)dz = δpq
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where δpq is the Kronecker delta. The inner product for TE eigenmodes can be found
similarly, yet is not weighted:

∫ h

0
Zh
p (z)Z

h
q (z)dz = δpq.

The orthonormality of the axial eigenmodes whilst not entirely crucial for a field
expansion to be possible, nevertheless make the matching of field at the radial inter-
faces easier, since the field series can be tested by appropriate eigenmodes resulting
in diagonal matrices which are easier to invert.

2.6 The Radial Mode Matching Method

Once a prescribed number of eigenvalues λ
ej
p andλ

hj
p and their associated eigenmodes

have been found for the multilayer parallel waveguide for each radial region j, it is
necessary to execute the next step which is matching the transverse fields at the
interfaces between radial regions. The equations for the transverse fields Eφ, Hφ, Ez

and Hz, (omitting φ dependence) (Eq.2.4.28) are:

Eφ(ρ, z) = mεz

ρεt

∑
p

Re
p(ρ)Ze′

p (z) + iωμ
∑
p

Rh′
p (ρ)Zh

p (z)

Ez(ρ, z) =
∑
p

λe
pR

e
p(ρ)Ze

p(z)

Hφ(ρ, z) = −iωε0εz
∑
p

Re′
p (ρ)Ze

p(z) − m

ρ

∑
p

Rh
p(ρ)Zh′

p (z)

Hz(ρ, z) =
∑
p

λh
pR

h
p(ρ)Zh

p (z). (2.6.1)

Recalling that the radial functions are given by

Re,h
p (ρ) = Ae,h

p Pe,h
p (ρ) + Be,h

p Qe,h
p (ρ), (2.6.2)

and matching the tangential fields on the boundaries between regions j + 1 and j at
radius ρ:

Ej+1
φ (ρ) = Ej

φ(ρ)

Ej+1
z (ρ) = Ej

z(ρ)

Hj+1
φ (ρ) = Hj

φ(ρ)

Hj+1
z (ρ) = Hj

z(ρ),
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results in the following set of four equations (where the ρ and z dependence of the
radial and axial eigenfunctions is assumed):

mεz

ρεt

∑
p

Pep,j+1Z
e′
p,j+1A

e
p,j+1 + mεz

ρεt

∑
p

Qe
p,j+1Z

e′
p,j+1B

e
p,j+1

+ iωμ
∑
p

Ph′p,j+1Z
h
p,j+1A

h
p,j+1 + iωμ

∑
p

Qh′
p,j+1Z

h
p,j+1B

h
p,j+1 =

mεz

ρεt

∑
p

Pep,jZ
e′
p,jA

e
p,j + mεz

ρεt

∑
p

Qe
p,jZ

e′
p,jB

e
p,j + iωμ

∑
p

Ph′p,jZhp,jAhp,j + iωμ
∑
p

Qh′
p,jZ

h
p,jB

h
p,j

∑
p

λep,j+1P
e
p,j+1Z

e
p,j+1A

e
p,j+1 +

∑
p

λep,j+1Q
e
p,j+1Z

e
p,j+1B

e
p,j+1 =

∑
p

λep,jP
e
p,jZ

e
p,jA

e
p,j +

∑
p

λep,jQ
e
p,jZ

e
p,jB

e
p,j

iωε0εz
∑
p

Pe′p,j+1Z
e
p,j+1A

e
p,j+1 + iωε0εz

∑
p

Qe′
p,j+1Z

e
p,j+1B

e
p,j+1

+ m

ρ

∑
p

Php,j+1Z
h′
p,j+1A

h
p,j+1 + m

ρ

∑
p

Qh
p,j+1Z

h′
p,j+1B

h
p,j+1 =

iωε0εz
∑
p

Pe′p,jZep,jAep,j + iωε0εz
∑
p

Qe′
p,jZ

e
p,jB

e
p,j

+ m

ρ

∑
p

Php,jZ
h′
p,jA

h
p,j + m

ρ

∑
p

Qh
p,jZ

h′
p,jB

h
p,j

∑
p

λhp,j+1P
h
p,j+1Z

h
p,j+1A

h
p,j+1 +

∑
p

λhp,j+1Q
h
p,j+1Z

h
p,j+1B

h
p,j+1 =

∑
p

λhp,jP
h
p,jZ

h
p,jA

h
p,j +

∑
p

λhp,jQ
h
p,jZ

h
p,jB

h
p,j .

Multiplying each equation with appropriate axial eigenmodes (labelled q) as testing
functions, integrating from z = 0 to z = h and rearranging produces the following
block matrix equation relating the coefficients in region j + 1 with those in region j,

⎡
⎢⎢⎢⎣
Ae
j+1

Be
j+1

Ah
j+1

Bh
j+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
C D 0 0
G H I J
O P Q R
0 0 W X

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
E F 0 0
K L M N
S T U V
0 0 Y Z

⎤
⎥⎥⎦

︸ ︷︷ ︸
Rj,j+1(ρ)

⎡
⎢⎢⎢⎣
Ae
j

Be
j

Ah
j

Bh
j

⎤
⎥⎥⎥⎦ . (2.6.3)

Analogous to the axial eigenproblem, this introduces the radial transfer matrix
Rj,j+1(ρ) which relates the coefficients Ae

j , B
e
j , A

h
j and Bh

j in region j to those in
region j + 1. The matrices represented by capital letters (with rows p and columns
q) are
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C = λe
p,j+1P

e
p,j+1δpq

D = λe
p,j+1Q

e
p.j+1δpq

E = λe
p,jP

e
p,j

〈
εzZ

e
q,j+1,Z

e
p,j

〉
F = λe

p,jQ
e
p,j

〈
εzZ

e
q,j+1,Z

e
p,j

〉
G = iωε0P

e′
p,j+1δpq

H = iωε0Q
e′
p,j+1δpq

I = m

ρ
Ph
p,j+1

〈
Ze
q,j+1,Z

h′
p,j+1

〉

J = m

ρ
Qh

p,j+1

〈
Ze
q,j+1,Z

h′
p,j+1

〉
K = iωε0P

e′
p,j

〈
Ze
q,j+1, εzZ

e
p,j

〉
L = iωε0Q

e′
p,j

〈
Ze
q,j+1, εzZ

e
p,j

〉
M = m

ρ
Ph
p,j

〈
Ze
q,j+1,Z

h′
p,j

〉

N = m

ρ
Qh

p,j

〈
Ze
q,j+1,Z

h′
p,j

〉

O = m

ρ
Pe
p,j+1

〈
Zh
q,j+1,

εz

εt
Ze′
p,j+1

〉

P = m

ρ
Qe

p,j+1

〈
Zh
q,j+1,

εz

εt
Ze′
p,j+1

〉

Q = iωμPh′
p,j+1δpq

R = iωμQh′
p,j+1δpq

S = m

ρ
Pe
p,j

〈
Ze
q,j+1,

εz

εt
Ze′
p,j

〉

T = m

ρ
Qe

p,j

〈
Ze
q,j+1,

εz

εt
Ze′
p,j

〉

U = iωμPh′
p,j

〈
Zh
q,j+1,Z

h
p,j

〉
V = iωμQh′

p,j

〈
Zh
q,j+1,Z

h
p,j

〉
W = λh

p,j+1P
h
p,j+1δpq

X = λh
p,j+1Q

h
p,j+1δpq

Y = λh
p,jP

h
p,j

〈
Zh
q,j+1,Z

h
p,j

〉
Z = λh

p,jQ
h
p,j

〈
Zh
q,j+1,Z

h
p,j

〉
.
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where the terms inside angular brackets are coupling integrals between axial eigen-
functions in regions j and j + 1, for example.

∫ h

0
Zh
p,j(z)Z

h
q,j+1(z)dz = 〈

Zh
q,j+1,Z

h
p,j

〉
.

If the azimuthal index is zero, m = 0, then the transverse TE0 and TM0 modes
become axisymmetric and decoupled, having only electric or magnetic azimuthal
field components. The matrices I , J ,M, N , O, P, S and T containing terms in m then
become zero and the radial transfer matrix Rm=0 assumes a much simpler form:

Rm=0
j,j+1(ρ) =

⎡
⎢⎢⎣
C D 0 0
G H 0 0
0 0 Q R
0 0 W X

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
E F 0 0
K L 0 0
0 0 U V
0 0 Y Z

⎤
⎥⎥⎦ . (2.6.4)

The TE and TMmode coefficients Ah
j , B

h
j and A

e
j , B

e
j are become independent of one

another and can be solved independently. The radial transfer matrix Rm=0
j,j+1(ρ) then

splits into two smaller transfer matrices for the axisymmetric (m = 0) TE and TM
modes:

Re,m=0
j,j+1 (ρ) =

[
C D
G H

]−1 [
E F
K L

]
, (2.6.5)

Rh,m=0
j,j+1 (ρ) =

[
Q R
W X

]−1 [
U V
Y Z

]
. (2.6.6)

In a similar way to how the axial eigenproblem was solved earlier by cascading
transfer matrices, the modal coefficients Ae

j , B
e
j , A

h
j and Bh

j of the outer region
j = Nρ, can be calculated by successive application of radial transfer matrices to
the coefficients in the innermost region j = 1:

⎡
⎢⎢⎢⎢⎣

Ae
Nρ

Be
Nρ

Ah
Nρ

Bh
Nρ

⎤
⎥⎥⎥⎥⎦ =

Nρ−1∏
j=1

Rj,j+1(ρj+1)

⎡
⎢⎢⎢⎣
Ae
1

Be
1

Ah
1

Bh
1

⎤
⎥⎥⎥⎦ . (2.6.7)

Due to singularities at the origin ρ = 0 being unphysical, the set of coefficients Be
1

and Bh
1 of the Bessel functions of the second kind in the first radial partial region

can be set to zero. Similarly to the axial eigenproblem, since the eigenmodes are
orthonormal, the set of coefficients Ae

1 and A
h
1 can be initially be set to unity and then

renormalised once a solution has been found. The modal coefficients Ae
j , B

e
j , A

h
j and

Bh
j for the outer region are used to enforce the boundary condition on the outer radial

cavity wall (ρ = a), namely that the tangential electric field is zero:
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Eφ(a) = mεz

aεt

∑
p

Ae
pP

e
p(a)Z

e′
p (z) + iωμ

∑
p

Ah
pP

h′
p (a)Zh

p (z)

+ mεz

aεt

∑
p

BeQe
p(a)Z

e′
p (z) + iωμ

∑
p

Bh
pQ

h′
p (a)Zh

p (z) = 0

Ez(a) =
∑
p

λe
pA

e
pP

e
p(a)Z

e
p(z) +

∑
p

λe
pB

e
pQ

e
p(a)Z

e
p(z) = 0 (2.6.8)

Similar to the previously applied method of using testing functions, multiplying
Eq. (2.6.8) by the appropriate testing function εzZe

q(z) and integrating from z = 0 to
z = h, results in the following matrix equation for e-modes:

⎡
⎢⎣
Pe
1(a) Qe

1(a)
. . .

. . .

Pe
N (a) Qe

N (a)

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ae
1
...

Ae
N

Be
1
...

Be
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (2.6.9)

where for each row i = 1 . . .N , corresponds to each eigenmode in the expansion

Ae
i P

e
i (a) + Be

i Q
e
i (a) = 0.

Substituting these into Eq. (2.6.8) and simplifying yields

Eφ(a) =
∑
p

Ah
pP

h′
p (a)Zh

p (z) +
∑
p

Bh
pQ

h′
p (a)Zh

p (z) = 0, (2.6.10)

which upon multiplication by testing functions Zh
q (z) and integrating from z = 0 to

z = h yields another matrix equation for the coefficients of h-modes, Ah and Bh:

⎡
⎢⎣
Ph′
1 (a) Qh′

1 (a)
. . .

. . .

Ph′
N (a) Qh′

N (a)

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ah
1
...

Ah
N

Bh
1
...

Bh
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (2.6.11)

where for each row i = 1 . . .N , corresponds to each eigenmode in the expansion,

Ah
i P

h′
i (a) + Bh

i Q
h′
i (a) = 0.
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These two sets of boundary conditions together form amatrix which whenmultiplied
by the transfer matrixR1,Nρ

, relates the coefficients in the last outer radial region Nρ

to those in the first inner radial region:

R1,Nρ
=

Nρ−1∏
j=1

Rj,j+1(ρj+1). (2.6.12)

Recalling that the Be
1 and Bh

1 coefficients in the innermost region are zero, allows a
characteristic matrix equation to be formed:

T
[
Ae
Nρ

Ah
Nρ

]
= 0. (2.6.13)

Non-trivial solutions occur when the determinants of the characteristic matrix T
are zero. The zeros of the determinant, det(T ) are found in the same way as the
eigenvalues for the multilayer waveguide, bracketing followed by Ridders’ method.
Once a solution is found the radial coefficients Ae, Be, Ah and Bh are normalised
using the orthonormal properties of Bessel functions.

2.7 Calculating Resonator Losses

Once a solution for a particular mode has been found, the losses in the resonator
can be calculated by volume integration of the electric and magnetic field energy
densities for all regions and surface integration of the tangential magnetic field on
conducting surfaces. The unloaded quality factor Q for a resonator is the ratio of
total stored energy to the power dissipated per oscillatory cycle with period T = 2π

ω
,

Q = ωU

Wd + Wc

where U is the total stored energy in the resonator and Wd and Wc are dielectric and
conductor losses. The reciprocal of this, which can be thought of as total loss, is the
sum of the dielectric and conductor losses:

1

Q
= 1

Qd
+ 1

Qc
= Wd

ωU
+ Wc

ωU
.

Representing the total loss as a sum of individual losses from either dielectric or con-
ductive sources allows these parts to be calculated separately and is also informative
when designing resonators, allowing the largest contributors to the total loss to be
identified and reduced by attention to geometry or material properties.
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Dielectric Losses

The total internal electromagnetic energy in an anisotropic dielectric can be found
by integrating the modulus of the electric energy density over the volume of the
resonator,

U =
∑
p

Up = 1

2

∑
p

∫
Vp

ε′
pE · E∗ dV,

where the summation is over all partial regions p comprising the resonator and Up

is the total internal electromagnetic energy in partial region p. The complex electric
permittivity tensor for region p is εp = ε′

p + iε′′
p or

εp = ε0

⎡
⎢⎣

εt,p 0 0

0 εt,p 0

0 0 εz,p

⎤
⎥⎦ .

Similarly, the dielectric dissipation for a regionp is foundby integrating the imaginary
part of the electric energy density over the volume Vp

Wd,p = ω

2

∑
p

∫
Vp

ε′′
pE · E∗ dV .

The loss tangent, tan δ = ε′′/ε′, the ratio of imaginary and real parts of the complex
permittivity, allows the dielectric loss for region p to be written

1

Qd,p
= Wd,p

ωU
= tan δpUp

U
= Pd,p tan δp,

which introduces the electric filling factor for a region p, defined

Pd,p = Up

U
.

The electric filling factor Pd,p is the fraction of the total electric energy in a resonator
residing within region p. Due to the scale invariance of Maxwell’s equations, the
electric filling factors are also frequency invariant. To calculate the integrals, the
expressions developed earlier for the electric fields can be used:

Eρ =
∑
n

Re′
n (ρ)Ze′

n (z)�e
m(φ) + imωμ

ρ

∑
n

Rh
n(ρ)Zh

n (z)�
e
m(φ)

Eφ = m

ρ

∑
n

Re
n(ρ)Ze′

n (z)�h
m(φ) + iωμ

∑
n

Rh′
n (ρ)Zh

n (z)�
h
m(φ)

Ez =
∑
n

λe
tnR

e
n(ρ)Ze

n(z)�
e
m(φ).
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Numerical integration using the QUADPACK [19] quadrature algorithm was chosen
for speed and efficiency, since the analytic integrals can become cumbersome, espe-
cially for higher order Bessel functions. For axisymmetric modes, the electric filling
factors can also be calculated using the incremental rule [14], which is based on
first order perturbation theory, taking the derivative of the resonant frequency f with
respect to the permittivity of a region:

Pd,p = 2

∣∣∣∣ ∂f

∂εp

∣∣∣∣ εp

f
.

Conductor Losses

In resonator structures, conductor losses occur on metallic surfaces that have finite
electrical conductivity. The losses for a particular metallic surface (labelled i) within
a resonator are calculated by taking the ratio of the conductive dissipation Wc,i per
field cycle and the total stored energy U,

1

Qc,i
= Wc,i

ωU
.

The dissipation Wc,i is found by integrating the tangential magnetic field over the
conductive surface i

Wc,i = 1

2
RSi

∫
Si

|Ht|2dS.

The surface resistance RSi is given by

RSi = (fμ0πρi)
1
2 ,

where f is the resonant frequency and ρi is the resistivity of the metallic surface. The
total stored magnetic energy can be calculated similarly to the previously calculated
electric energy. The magnetic energy at resonance

U = 1

2
μ0

∫
V
H · H∗dV,

is equal to the electric energy, hence the loss is then:

1

Qc,i
= Wc,i

ωU
= RSi

∫
Si

|Ht|2dS
ωμ0

∫
V H · H∗dV

= RSi

G
,

which introduces the geometric factor G, for a surface i

Gi = ωμ0

∫
V H · H∗dV∫
Si

|Ht|2dS .
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The geometric factor G can be computed in a similar way to the incremental rule by
perturbing the dimensions of the cavity:

Gi = ω2μ0

2

∣∣∣∣ �x

�ω

∣∣∣∣
where �x is a change in one of the cavity dimensions, such as diameter or height.

2.8 Example Resonator

A computer programme was written in the C++ programming language, imple-
menting the radial mode matching technique for uniaxially anisotropic dielectric
resonators. An example resonator was modelled to test the radial mode matching
method and confirm its accuracy and efficiency. The resonator consisted of a εr = 10
dielectric puck with diameter 8.0mm and height 4.0mm placed upon a single crys-
tal quartz support of εt = 4.43, having diameter 4.0mm and height 4.0mm within
a silver-plated conducting cavity with diameter 20.0mm and height 12.0 mm. The
number of eigenmodes in thefield expansionwas increased until a convergence of less
than 0.001MHz was achieved. Figure2.9 shows the resonant frequency convergence
as the number of eigenmodes is increased. Above fifteen modes, the convergence is
less than 0.01MHz and the TE01δ mode resonance had a frequency of 12.0101 GHz.

Electric filling factors for the dielectric puck and support were calculated to be
0.8929 and 0.0075, meaning 89.3% of the electric energy resided in the puck and
0.75% in the support. Geometric factors for the conducting cavity side, bottom and
top walls were 6337, 7584 and 8171 � respectively, yielding an overall geometric
factor of 2427 �. Modal field patterns for this resonance are shown in Fig. 2.10.

Fig. 2.9 Convergence of
TE01δ mode resonant
frequency as a function of
number of eigenmodes.
Fifteen or more eigenmodes
provides convergence of the
resonant frequency of less
than 0.01 MHz. The resonant
frequency is 12.0101 GHz
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(a) Hρ, Hz in (ρ − z) plane (b) Eφ in (ρ − z) plane

(c) Eφ in (ρ − φ) plane

Fig. 2.10 Vector field and magnitude plots of magnetic and electric fields for a TE01δ mode res-
onator consisting of a εr = 10 dielectric resonator of diameter 8.0mm and height 4.0mm placed
upon a single crystal quartz support (εt = 4.43, diameter 4.0mm and height 4.0 mm). The con-
ducting cavity has diameter 20.0mm and height 12.0 mm. Fifteen eigenmodes were used in the
expansion of the fields resulting in a solution at 12.0101GHz with less than 0.01MHz convergence

2.9 Summary and Conclusions

The various types of resonator for measuring the dielectric properties of microwave
ceramics were reviewed. The shielded dielectric resonator was discussed in more
detail and then modelled analytically using Maxwell’s equations. The radial mode
matching method was implemented successfully and then used to model an example
dielectric resonator, which demonstrated the efficiency and accuracy of the method.
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Chapter 3
Measurement of Dielectric Properties

This chapter reports on the apparatus used to measure the dielectric properties of
microwave dielectrics as a function of temperature, consisting of a shielded dielec-
tric resonator mounted upon the cold head of a cryogenic closed-cycle refrigerator.
Resonant frequencies and quality factors of the resonator are measured at discrete
temperature intervals using a vector network analyser and computer. The dielectric
properties are then extracted using the radial mode matching technique discussed in
the previous chapter. Low-temperature values for relative permittivity are compared
against theoretical predictions in the subsequent chapters. The loss tangent as a func-
tion of temperature provides insight into the prevalence of defects within a sample
and also allows for confirmation of theory.

3.1 Dielectric Resonator Measurements

Single-crystal samples of MgO, Al2O3, TiO2 and LaAlO3 in cylindrical form, with
approximate diameters Dd ≈ 10mm and heights Ld ≈ 5mm, were obtained from
ESCETE Single Crystal Technology BV (Netherlands) and Crystal Systems (USA).

The samples were placed in a silver-plated brass cavity with diameter
Dc = 24.00mm and height Lc = 16.12mm, to form a shielded dielectric resonator
as shown in Fig. 3.1. Samples were supported by a small single-crystal quartz hollow
cylindrical support (outer diameterODs = 4.92mm, inner diameter IDs = 1.40mm,
height Ls = 4.26mm) and held in place by a PTFE piston and stainless steel spring.
Coupling of microwave energy into the dielectric resonator was achieved by small
adjustable antennae loops introduced into the sides of the cavity. The orientation of
the loops is normal to the cylindrical cavity axis to excite the Hz field component of
the TE0nm modes or rotated 90◦ to excite the TM0nm modes. To extract the relative
permittivity and loss tangent of the sample, the three fundamental measurements of
a dielectric resonator are the resonant frequency ω = 2πf0, coupling coefficients β1,
β2 and loaded quality factorQL. Measurements of these quantities were performed in

© Springer International Publishing AG 2016
J. Breeze, Temperature and Frequency Dependence of Complex
Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement,
Springer Theses, DOI 10.1007/978-3-319-44547-2_3
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Fig. 3.1 Internal configuration of experimental shielded dielectric resonator. IDs, ODs and Ls
are respectively the inner diameter, outer diameter and height of the quartz support cylinder. The
diameter and height of the dielectric sample are Dd and Ld , and the diameter and height of the
cavity are Dc and Lc. The diameter of the PTFE rod is the same as the internal diameter of the
quartz spacer IDs

the frequency domain using an Agilent HP8720C Vector Network Analyser (VNA)
with 1-Hz resolution and a frequency range of 50MHz–40GHz. Resonances can be
probed in either reflection or transmission mode where one or two ports are used to
couple the dielectric resonator to transmission lines leading to the VNA. Transmis-
sion mode is preferable due to it being an inherently simpler measurement, allowing
the coupling to the resonator to be very small. For a two-port device, the transmission
and reflection of power is described by scattering or S-parameters.

The relationship between the reflected, transmitted and incident power waves
shown in Fig. 3.2 and the S-parameter matrix is given by

(
b1
b2

)
=

(
S11 S12
S21 S22

)(
a1
a2

)

Fig. 3.2 Incident,
transmitted and reflected
power waves upon and from
a two-port device
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If the second port is terminated by a load equal to the system impedance Z0, then the
power incident on port two is zero, a2 = 0. If there is power incident upon port one,
a1 �= 0, then the forward scattering parameter S21 can be written as the ratio of the
outgoing power to the incoming power

S21 = b2
a1

.

The loaded quality factor QL is defined as the ratio of the resonant frequency ω0 and
the bandwidth �ω at half of the peak power as shown in Fig. 3.3

QL = ω0

�ω
.

The unloaded quality factor, Q0 is then given by

Q0 = (1 + β1 + β2) QL

where β1 and β2 are the coupling coefficients of the dielectric resonator to the
input and output ports. The coupling coefficients can be calculated from the four
S-parameters measured at the resonant frequency ω0 = 2πf0

β1 = 1 − S11
S11 + S22

,

β2 = 1 − S22
S11 + S22

,

S21 = S12 = 2
√

β1β2

1 + β1 + β2
.

Fig. 3.3 Lorentzian
line-shape of a resonance in
transmission showing how
the quality factor QL is
defined
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If the input and output couplings β1 β2 are both equal andweak, then the transmission
response should be symmetric and the resonant frequency ω0 occurs at the peak
maximum and the coupling coefficient can be evaluated as

β = β1 = β2 = 1

2
· S21
1 − S21

,

which if S21 � 1 then

β = 1

2
S21.

The unloaded quality factor Q0 can then be calculated from the measured Q-factor
and the coupling coefficient

Q0 = QL

1 − |S21| .

The transmission at the resonant frequency is known as the insertion loss.

3.2 Calculating Dielectric Properties

The relative permittivity εr of a dielectric sample is calculated by taking the resonator
dimensions, permittivity of support structure and measured resonant frequency as
input to the radial mode matching method discussed in the previous chapter. The loss
tangent tan δ is derived from the unloaded quality factor Q0, which is the reciprocal
of the total loss within the dielectric resonator. The total loss is equal to the sum of
losses within the dielectric sample, support and on the conductive surfaces [1]:

1

Q0
= Pe,d tan δd + Pe,s tan δs + RS

G
,

where RS is the surface resistance of the metallic cavity and G is its geometric
factor. The parameters Pe,d and Pe,s are the electric energy filling factors of the
dielectric sample and support structure, respectively, with tan δd and tan δs being their
associated loss tangents. This relation can be rearranged to provide an expression for
the loss tangent within the dielectric sample

tan δd = 1

Pe,d

(
1

Q0
− Pe,s tan δs − Rs

G

)
. (3.2.1)

Upon inspection, it can be seen that to calculate tan δd for a dielectric sample, it is
necessary to have previously characterised the surface resistance RS of the cavity
and the loss tangent tan δs (and relative permittivity) of the support material. These
measurements, adjusted for frequency dependence are then combined with the geo-
metric factorG and electric energy filling factors of the dielectric sample and support
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using results from the radial mode matching method. To investigate the sensitivity
of Eq.3.2.1 to errors, it is necessary to calculate its partial derivatives with respect
to the terms on the right-hand side

∂(tan δd)

∂Pe,d
= − 1

Pe,d
tan δd

∂(tan δd)

∂Q0
= − 1

Pe,dQ2
0

∂(tan δd)

∂Pe,s
= − tan δs

Pe,d

∂(tan δd)

∂(tan δs)
= −Pe,s

Pe,d

∂(tan δd)

∂Rs
= − 1

Pe,dG
∂(tan δd)

∂G
= Rs

Pe,dG2
,

then apply the chain rule to give an estimate of the error in tan δd

�(tan δd) = −�Pe,d

Pe,d
tan δd− �Q0

Pe,dQ2
0

−�Pe,s

Pe,d
tan δs−Pe,s�(tan δs)

Pe,d
− �Rs

Pe,dG
+ �GRs

Pe,dG2 .

Since the electric filling factor of the sample is of the order of unity, Pe,d ≈ 1 and the
electric energy filling factor of the support very low, Pe,s ≈ 0, simplification leads to

�(tan δd) ≈ −�Pe,d tan δd − �Q0

Q2
0

− �Pe,s tan δs − �Rs

G
+ �GRs

G2
.

Terms containing Q2
0 and G2 in the denominators can also be neglected since both

Q0 and G should be greater than 104 and 103 � respectively, leading to an estimate
of the error

�(tan δd) ≈ −�Pe,d tan δd − �Pe,s tan δs − �Rs

G
.

Assuming relative measurement errors of 10−3 and tan δ ≈ 10−5 for both sample and
support, a geometric factor G of a few thousand � and errors in the electric energy
filling factors of the order of 10−3, then an estimate of the error is

�(tan δd) ≈ −�Pe,d10
−5 − �Pe,s10

−5 − 10−8 ≈ 10−8
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The absolute error in the tan δd is of the order of 10−8 which yields an acceptable
relative error of 10−3, demonstrating that the TE01δ mode is a suitable method for
measuring the loss tangent.

3.3 Cryogenic Measurements

The ability to characterise the relative permittivity and loss tangent of microwave
dielectrics as a function of temperature and particularly down to cryogenic tempera-
tures is a valuable tool, not only for practical purposes such as designing devices but
also to test theoretical predictions and study the effects of extrinsic loss mechanisms
such as defects and grain boundaries [2]. The temperature dependence of the intrin-
sic losses in microwave dielectric single crystals has been the subject of much work
by Gurevich and Tagantsev [3–10]. These predictions have been validated for high-

Fig. 3.4 Cryocooler apparatus: The cavity is mounted on the cold head of a Gifford–McMahon
closed-cycle cooler. The base temperature of the system in 10 ◦K
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quality single crystals of sapphire by Braginsky [11] and also in their polycrystalline
analogues [12].

The apparatus for measuring the properties of dielectric samples as a function
of temperature consists of a dielectric resonator mounted on the cold head of a
Gifford–McMahon closed-cycle cooler as shown in Figs. 3.4 and 3.5. An indium foil
is placed between the base of the resonator and the cold head to ensure good thermal
contact. Thermocouples are placed on the cold head and also on the resonator and
a thick-film heater is situated just beneath the cold head. Adjustable mechanisms
were developed for the coupling loops so that the coupling level could be adjusted
to a suitable level. Flexible microwave, thermocouple sensor and heater cables were
wrapped around the cold head column and connected to feedthrough bulk heads in
the base. The microwave cables terminated in SMA connectors to which a vector
network analyzer (VNA) was connected.

The temperature sensor and heater cables were connected to a Lakeshore 330
Temperature Controller. An internal radiation shield was placed around the resonator
assembly, followedby an external radiation shieldwith ‘O’-ringgasket to ensure good
vacuum. The entire assembly was evacuated using a turbomolecular pump system
(Varian Mini-TASK AG81 with FRG-700 Full-Range Gauge). Once a satisfactory

Fig. 3.5 Photograph of cryogenic dielectric resonator apparatus without radiation shields. The
transmission frequency trace of a TE01δ mode can be seen on the VNA monitor
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vacuum was achieved (∼10−5 mBar) and the resonator had outgassed sufficiently (if
necessary the cavity can be baked out), the closed-cycle cooler helium compressors
were switched on and cooling began by virtue of a Gifford–McMahon closed-cycle
engine. As the temperature decreased, the centre frequency of the mode of interest
shifted depending on the temperature coefficient of permittivity of the dielectric
as well as the thermal expansion coefficients of the components of the dielectric
resonator.

The temperature controller and VNA connected via a GPIB interface (General
Purpose Interface Bus) to a workstation. A C++ computer program was developed
to automate the process of tracking modes from room temperature down to 10K.
Once the system achieved a base temperature of 10K and stabilised, the program
instructed the temperature controller to take the system to thefirst temperature point to
be measured, using its built-in PID (proportional-integrator-differentiator) algorithm
and the thick-film heater. The program monitored the shift in the centre frequency of
the resonance until it stabilised over time and then interrogated the VNA to acquire
measurements of the centre frequency, loaded Q-factor and coupling level of the
resonance. This process was repeated for small prescribed increments of temperature

Fig. 3.6 Screenshot of software developed in-house to automatically track and measure the centre
frequency and Q-factor of a mode
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until the system was again at room temperature. The program repeated the process
for decreasing temperature steps saving all data to computer disk. The file containing
the centre frequencies, loaded Q-factors and coupling levels was processed by the
radial mode matching program to produce the relative permittivity and loss tangent
of the sample as a function of temperature. A screenshot of the software is shown
in Fig. 3.6. To extract the properties of a dielectric sample from measurements of a
dielectric resonator, it is necessary to characterise the temperature dependence of the
thermal expansion coefficient and surface resistance of the Ag-plated brass cavity
and also the relative permittivity and loss tangent of the single-crystal quartz support.

3.4 Characterisation of Ag-Plated Cavity

The temperature dependence of the coefficient of thermal expansionα(T) and surface
resistance Rs(T) of the Ag-plated brass cavity was measured using the TE011 mode
(empty cavity) over the temperature range 10–300K. The resonant frequency of this
mode is given by

f = c

2

[(
2χ01

πD

)2

+
(
1

L

)2
] 1

2

, (3.4.1)

where c0 is the speed of light in vacuum, D is the cavity diameter, L is the cavity
height and χ01 is the first zero of the derivative of the Bessel function of the first
kind, J ′

0. The cavity in the experimental apparatus had a nominal diameter D of
24.00mm and a height L of 16.10mm. The resonant frequency predicted by (3.4.1)
was 17.854896GHz. The TE011 mode in the evacuated cavity was measured at room
temperature using an Agilent 8720D vector network analyser in transmission mode
(S21) with a very small coupling of –58.0dB. The measured resonant frequency was
17.858433GHz, which is less 4MHz from the predicted value. As the temperature
varies, the dimensions of the cavity will change according to the linear coefficient
of thermal expansion α(T). Since the diameter to length ratio, D/L is invariant with
respect to temperature changes since the thermal expansion coefficient of metal is
isotropic, it is useful to rearrange (3.4.1) to obtain an expression for the diameter
D(T) in terms of the aspect ratio η = D/L and the frequency f (T),

D(T) = c0
2πf (T)

(
4χ2

01 + π2η2) 1
2 . (3.4.2)

The resonant frequency of the TE011 mode was measured over the 10–300K temper-
ature range, from which the diameter of cavity was calculated from (3.4.2) as shown
in Fig. 3.7.

The linear coefficient of thermal expansion at a particular temperature, α(T), was
then calculated from the diameter using
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Fig. 3.7 Diameter of
Ag-plated brass cavity as a
function of temperature over
range 10–300K. The
diameter was calculated
from the measured resonant
frequency of the TE011 mode
using Eq.3.4.2

Fig. 3.8 Coefficient of
thermal expansion α(T) of
24.00mm diameter
Ag-plated brass cavity

α(T) = 1

D(T)

∂D(T)

∂T
.

Figure3.8 shows how the linear coefficient of thermal expansion for the cavity varies
as a function of temperature in the range 10–300K. Finally, the surface resistance RS

of the cavity can be characterised by measuring the unloaded Q-factor of the TE011

mode as a function of temperature and using the expression

Q = Z0
2RS

(
4χ2

01
D2 + π2

L2

)3/2

8χ2
01

D3 + 2π2

L3

where Z0 is the wave impedance of free-space. The surface resistance RS is related
to the conductivity σ by

RS =
(

μ0πf

σ

)1/2
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Fig. 3.9 Surface resistance
RS (normalised to 10GHz)
of Ag-plated cavity as a
function of temperature. The
thick line shows a quadratic
fit RS(T) =
7.8300 + 3.7079 × 10−2T +
1.0517 × 10−4T2(m�) to
the measured data

where μ0 is the permeability of free-space and f is the frequency. Since RS scales
as the square root of the frequency, the change in resonant frequency due to thermal
coefficients should be taken into account. For this reason, the surface resistivity is
normalised to 10GHz and shown in Fig. 3.9 where the line shows a quadratic fit for
RS(T).

3.5 Characterisation of Single-Crystal Quartz Support

It now remains to characterise the quartz single crystal used to support the dielectric
sample in the cavity. Quartz is a uniaxially anisotropic dielectric with low permit-
tivity and low loss tangent, making it ideal for use as a support material. At room
temperature it has anisotropic coefficients of thermal expansion: 7.5 × 10−6 K−1

parallel and 13.7 × 10−6 K−1 perpendicular to the c-axis. The quartz support in
this case was a cylinder of c-axis aligned single-crystal quartz with outer diameter
4.92mm, inner diameter 1.40mm and height 4.26mm. The complex permittivity
data of quartz were taken from measurements by Krupka [1] at 16.9 and 17.2GHz.
At room temperature, the permittivities parallel and perpendicular to the c-axis, ε‖
and ε⊥, were 4.644 and 4.443, respectively. The temperature dependencies of ε‖ and
ε⊥ and the loss tangents are shown in Fig. 3.10. The loss tangent perpendicular to
the c-axis is fairly constant above 1.0 × 10−5 except in the range 100–150K where
quasi-Debye defect dipole losses are expected to be active [13]. In a TE0nm mode
dielectric resonator the electric field only has components in the azimuthal plane,
hence the perpendicular component of loss tangent tan δ⊥ is the relevant one. The
frequency dependence of tan δ⊥ has been evaluated up to 35GHz [14]. Below 16GHz
the loss tangent follows a linear relationship with frequency (tan δ⊥ ∼ 2.0× 10−5 at
10GHz), however above 20GHz the losses have been observed to saturate at around
tan δ⊥ ≈ 3.5 × 10−5.
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Fig. 3.10 Properties of
single-crystal SiO2 as a
function of temperature [1]
at 17GHz. Relative
permittivity parallel to the
c-axis (a), perpendicular to
the c-axis (b) and the loss
tangent components (c)

(a)

(b)

(c)

3.6 Magnesium Oxide —MgO

High-quality magnesium oxide single crystals are popular choices of substrate on
which to grow high-temperature superconductor (HTS) and ferroelectric (FE) thin
films due to its cubic structure, low microwave loss, isotropic permittivity and low-
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Fig. 3.11 Properties of
single-crystal MgO as a
function of temperature. a
Relative permittivity, b
temperature coefficient of
permittivity and c loss
tangent. Measurement
frequency of 10.3GHz at
room temperature

ε r
τ ε

Measured
Mage

ta
n

δ

(a)

(b)

(c)
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lattice parameter mismatch (a ≈ 4.21 Å) with a variety of perovskites. Due to the
interest inMgO as a substrate, the relative permittivity and loss tangent at microwave
frequencies down to cryogenic temperatures have been reported by several authors
[15–17].

A single-crystal MgO sample of diameter 10.0mm and height 4.0mmwas placed
within the cavity measurement system. The TE01δ fundamental mode at room tem-
perature was measured and found to have a resonant frequency of 10.3125GHz and
unloaded Q of 61,515. A relative permittivity εr of 9.877 was calculated by solving
the characteristic equation provided by the radial mode matching method using 13
modes to ensure a well-converged result. Integration of the electric fields within the
dielectric regions yielded dielectric filling factors of Pd = 0.8702 and Ps = 0.0089
for the sample and support, respectively. The amount of electric energy stored in
the support is less than 1% of that in the dielectric sample. Integration of the mag-
netic fields over the cavity surface yielded a geometric factor of G = 2331 �. A
surface resistance RS of 30.94 m� was calculated from the fit in Fig. 3.9 and appro-
priately scaled (f 1/2) to 10.3125GHz, resulting in a calculated conductor Q-factor
of Qc = 75, 322. Taking a loss tangent of 2.0× 10−5 for the quartz spacer and using
the equation

tan δ = 1

Pd

(
1

Q0
− Ps tan δs − Rs

G

)
(3.6.1)

resulted in a loss tangent for MgO of tan δ = 3.219× 10−6 at room temperature and
10.3GHz. TheMgOdielectric resonatorwas then characterised over temperature and
processed using themodematching technique and values for the surface resistanceRS

and loss tangent of quartz spacer discussed earlier. The results presented in Fig. 3.11a
show that the relative permittivity εr decreasedmonotonically as the temperature was
reduced. This is demonstrated by the positive temperature coefficient of permittivity
τεr as shown in Fig. 3.11b.

3.7 Lanthanum Aluminate — LaAlO3

Lanthanum Aluminate is another popular choice of substrate for the growth of func-
tional oxide thin films due its high permittivity (εr ≈ 24), low-loss tangent and
suitable crystallographic parameters. Above a temperature of 500 ◦C, it has the ideal
cubic (O1

h) perovskite structure. Below 500 ◦C, it has a slightly rhombohedral struc-
ture (D6

3d ≡ R3̄c) with a small distortion (α = 90.1◦). Since the distortion is so
small, the low-temperature phase is usually regarded as pseudocubic and isotropic.
The measured sample had diameter 10.0mm and height 4.95mm. At room temper-
ature the sample was placed in the measurement cavity and produced a TE01δ mode
resonating at a frequency of 6.356 GHz with an unloaded Q-factor of 52,132. The
relative permittivity was determined (usingmodematching) to be εr = 24.07 and the
loss tangent tan δ = 1.39×10−5. The temperature measurements shown in Fig. 3.12



3.7 Lanthanum Aluminate — LaAlO3 57

Fig. 3.12 Properties of
single-crystal LaAlO3 as a
function of temperature. a
Relative permittivity, b
temperature coefficient of
permittivity and c loss
tangent. Measurement
frequency of 6.4GHz
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Fig. 3.13 Relative
permittivity (a) and loss
tangent (b) of single-crystal
LaAlO3 at low temperature.
Near 30K there is a
minimum in the permittivity
which coincides with an
extremum in loss tangent
attributable to quasi-Debye
dipole relaxation of oxygen
defects. The resonant
frequency of the TE01δ mode
was 6.2GHz

ε r
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δ
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show some interesting features. The relative permittivity shows similar behaviour to
MgO, monotonically decreasing as the temperature is reduced, with a temperature
coefficient of permittivity τεr of similar magnitude. The loss tangent shows a series
of prominent humps at temperatures of 30, 80 and 220K. This has been explained
in the literature as a result of quasi-Debye dipole relaxation caused by ions hopping
between defect sites under the influence of the microwave field [13, 18]. The defect
sites exist due to the twinning behaviour that has been observed for this oxide. Also
at around T ∼ 30K, the relative permittivity exhibits a minimum where the τεr is
zero as shown in Fig. 3.13. This coincides with a small peak in the loss tangent and
can be attributed to a very small contribution to the relative permittivity from the
dielectric susceptibility of the quasi-Debye dipole relaxation.
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3.8 Titanium Dioxide (Rutile) — TiO2

Single-crystal rutile was the first dielectric material to be used as a dielectric res-
onator. In 1953 Schlicke [19] investigated the possibility of high permittivity dielec-
tric resonators but it was not until the early 1960s that Okaya [20, 21] first observed
microwave resonances in a dielectric resonator of single-crystal rutile TiO2, and
found that they had very poor temperature stability. In 1968, Cohn [22] measured the
microwave dielectric properties of polycrystalline rutile using a dielectric resonator
and again found the temperature stability to be far too high for practical purposes.
Single-crystal rutile at room temperature has highly anisotropic dielectric properties
[23]. Perpendicular to the c-axis, the relative permittivity ε⊥ = 86, the loss tangent
tan δ⊥ = 1.5 × 10−4 and the temperature coefficient of permittivity τε⊥ = –760
ppmK−1. Parallel to the c-axis, the relative permittivity ε‖ = 163, the loss tangent
tan δ‖ = 1.8 × 10−4 and the temperature coefficient of permittivity τε‖ = –1200
ppmK−1. These loss tangents were normalised to 10GHz. Recently, Templeton et al.
[24] found by careful attention to defect chemistry that losses were due to Ti3+
formation and this could be prevented by doping with Al3+ ions. The result was
polycrystalline rutile with a tan δ of 5 × 10−4 at 3GHz which is comparable to a
single crystal. The discovery of titanate-based materials [25, 26] with high relative
permittivity εr , low loss tangent tan δ and near zero (and adjustable) temperature
coefficient of permittivity a few years later meant that rutile was generally disre-
garded as a useful dielectric material until fairly recently. Use of small amounts of
rutile which has a highly negative τε to compensate sapphire and alumina resonators
which have positive τε in the region of +60 ppmK−1 has been reported to provide
temperature stability to resonators [27–29] and more recently a high-Q spherical
Bragg reflector resonator made entirely from polycrystalline rutile with zero τf was
reported [30].

Because monocrystalline rutile is highly uniaxially anisotropic with ε‖/ε⊥ ≈ 2,
the extraction of the relative permittivity and loss tangents, parallel and perpen-
dicular to the crystallographic axis is slightly more involved than for an isotropic
material. The first step is to extract the relative permittivity perpendicular to the c-
axis by analysing the transverse TE01δ mode which only has an azimuthal electric
field component, Eφ. For a given structure and a measured resonant frequency, the
characteristic system of equations resultant from mode matching is first solved for
εr,⊥. For the second step, the relative permittivity parallel to the c-axis is found by
measuring the TM01δ mode and solving the mode matching problem again using
the value of εr,⊥ resultant from the first step. A cylindrical puck of c-axis aligned
single-crystal rutile TiO2, with diameter 9.97mm and height 4.95mm was placed in
the measurement cavity. The crystal axis of the sample was commensurate with the
cavity axis. Coupling loops were oriented horizontally to excite the axial component
Hz of the magnetic field for the TE01δ mode with a coupling level of –50dB. The
room-temperature resonant frequency for this mode was found at 3.4459GHz with
an unloaded Q-factor of 15,450. Subsequent mode matching analysis provided a
value for the relative permittivity perpendicular to the c-axis of εr,⊥ = 85.62. The
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electric filling factors (azimuthal components) of the rutile sample and the quartz
spacer for this mode were calculated to be 0.990 and 6.58× 10−4, respectively, and
the geometric factor was found to be G = 1556 �. Calculation of the electric filling
factors and geometric factor yield the loss tangent tan δ⊥ from the unloadedQ-factor
measurement and the equation:

tan δ⊥ = 1

Pd,φ

(
1

Q0
− Ps,φ tan δs,⊥ − RS

G

)
, (3.8.1)

where Pd,φ and Ps,φ are the azimuthal electric energy filling factors for the dielectric
and support, respectively, and RS is the surface resistance scaled to the resonant fre-
quency, RS = 15.2m�. The calculated loss tangent for the perpendicular component
was found to be tan δ⊥ = 5.55 × 10−5. The second step analyses the TM01δ mode,
which has both radialEρ and axialEz electric field components and therefore samples
both the perpendicular and parallel components of the permittivity tensor. The rela-
tive permittivity parallel to the c-axis can then be found from the measured resonant
frequency, given the perpendicular permittivity component found from the first step,
εr,⊥ = 85.62. It must be noted, that due to the two-step process of determining the
parallel relative permittivity component and the singular electric field components
of the TM01δ mode (which are known to be susceptible to uncertainties in the height
of resonator components and air gaps at the sample/spacer interface) this technique
is more prone to errors. In addition, because the TM01δ mode will have a different
resonant frequency to the TE01δ mode, the assumption of linear scaling of the loss
tangent, tan δ⊥, is necessary. Coupling loops were rotated 90◦ in order to excite the
azimuthal magnetic field component of the TM01δ mode. The resonant frequency of
this mode was found to be 4.2333GHz from which the relative permittivity parallel
to the c-axis, εr,‖ = 163.2, was found from mode matching. Electric energy filling
factors and geometric factors were then calculated to be Pd,ρ = 0.528, Pd,z = 0.415,
Ps,ρ = 0.0024, Ps,z = 0.016 and G = 31, 753 �. The loss tangent perpendicular to
the c-axis was linearly scaled to tan δ‖ = 6.82 × 10−5 and the surface resistance at
4.233GHz taken to be RS = 16.9 m�. The unloaded Q-factor was measured to be
14,620 from which the parallel loss tangent tan δ‖ is then found from

tan δ‖ = 1

Pd,z

(
1

Q0
− Pd,ρ tan δ⊥ − Ps,ρ tan δs,⊥ − Ps,z tan δs,‖ − Rs

G

)
. (3.8.2)

The calculated loss tangent for the perpendicular componentwas found to be tan δ⊥ =
7.64 × 10−5. Temperature measurements of the TiO2 single crystal are shown in
Fig. 3.14. The high anisotropy of the relative permittivity can clearly be observed.
Unlike MgO and LaAlO3, both the perpendicular εr,⊥ and parallel εr,‖ components
of the permittivity increase as the temperature is reduced. This is due to rutile being
an incipient ferroelectric, exhibiting Curie–Weiss behaviour with a slightly negative
Curie temperature. The temperature coefficients of permittivity for both components
are an order of magnitude higher than MgO or LaAlO3 and are also anisotropic. The
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Fig. 3.14 Properties of
single-crystal TiO2 as a
function of temperature. a
Relative permittivity, b
temperature coefficient of
permittivity and c loss
tangent. The measurement
frequency of the TE01δ mode
at room temperature was
3.447GHz
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loss tangent, tan δ‖ exhibits a pronounced hump around 100K. This can be attributed
to oxygen defects and has been reported widely in the literature [12, 24].
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3.9 Aluminium Oxide (Sapphire) — Al2O3

Single-crystal aluminium oxide (sapphire) is an interesting microwave dielectric
material and has been extensively studied due to it having the lowest loss of any
material at room temperature, especially at cryogenic temperatures (tan δ < 10−8

at 4K) and its superior mechanical properties. Braginsky et al. [11] reported on the
temperature dependence of the loss tangent of high-quality single-crystal sapphire. In
the temperature range 50–200K, they found tan δ ∼ ω1.7T 4.8 at 9 and 36GHz, which
confirmed theωT 5 andω2T 4 temperature dependence of the loss tangent predicted by
Gurevich’s phonon transport theory for rhombohedral andhexagonal crystals, respec-
tively. Although sapphire’s crystal lattice belongs to the rhombohedralD3d symmetry
class, its long-wavelength acoustic phonons have hexagonal symmetry [5]. Below
50K, Braginsky found that the tan δ had only a very weak temperature dependence,
tan δ ∼ ωT 0 and was greatly affected by the level of crystal imperfection, correlat-
ing with the crystal growth rate. More accurate low-temperature measurements of
sapphire using whispering gallery mode resonators were later reported by Krupka
and Tobar [1, 16, 27, 28] demonstrating incredibly low losses (tan δ < 10−9) at
helium temperatures (4.2K). Sapphire grown by different techniques such as the
Heat Exchange Method (HEMEX from Crystal Systems) and Czochralski method
(Union Carbide) also exhibit different levels of paramagnetic impurity ions (Cr3+,
Fe3+) at the part per billion level which can also affect the loss tangent at helium
temperatures due to paramagnetic resonances at 11.45GHz (Cr3+) and 12.05GHz
(Fe3+).

Due to the excellent electromagnetic and mechanical properties of sapphire, it has
found many applications in microwave-based technologies. It has found application
as a substrate for HTS films in single-crystal form and more widely for microwave
integrated circuits in its polycrystalline form (alumina). In bulk form it is employed
as the basis for dielectric resonators with very high Q-factors (>100,000 at room
temperature) which are used in very low phase-noise microwave oscillators and sec-
ondary frequency standards. It was recently found by Bourgeois et al. [31] that trace
amounts of Fe3+ impurities in high-quality HEMEX sapphire on the level of a few
parts per billion allowed for a solid-statemaser to be realised operating at helium tem-
perature (4.2K). Judicious design of a whispering gallery mode (WGM) resonator
allowed above-threshold maser oscillation by pumping a high-Qmode coincident in
frequency with the electron spin resonance energy levels of the Fe3+ spin population.
More recently, a room-temperature solid-state maser was demonstrated for the first
time by Oxborrow and Breeze [32] which consisted of a cylinder of single-crystal
sapphire housing an organic paramagnetic crystal of pentacene-doped p-terphenyl.
Above-threshold maser oscillation was achieved by optically pumping the paramag-
netic medium into a long-lived spin triplet state whose population inverted energy-
level transition coincided with the resonant frequency of the resonator at 1.45GHz.
A dramatic enhancement in the Q-factor of resonators was proposed by Maggiore
[33] and Flory et al. [34, 35] who employed monocrystalline sapphire quarter-wave
Bragg reflectors to confine the TE011 mode. The low-loss tangent allowed resonators
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to be produced with Q-factors almost an order of magnitude higher than an opti-
mised TE01δ or WGM resonator at the same frequency. Breeze [36] then went on
to show that the Q-factor of Bragg reflectors were limited by the periodicity and
that further enhancements could be made by departing from periodicity. This was
demonstrated experimentally for a cylindrical aperiodic Bragg resonator, built from
plates and rings of sapphire. The aperiodic reflector resonator had Q = 600, 000
at 30GHz and room temperature [37], a threefold improvement compared with a
conventional Bragg reflector, and is currently the highest Q-factor in a room tem-
perature resonator reported in the literature. Alford et al. [38, 39] found that careful
attention to processing conditions and light doping with Ti4+ allowed polycrystalline
alumina to be produced with very low microwave loss, approaching that of a single
crystal. They measured a record tan δ of 7.5×10−6 at 9GHz (8.3×10−6 normalised
to 10GHz) for this material. The temperature coefficient of permittivity of such an
alumina puck was reduced to zero by depositing a thick film of titania (TiO2) on its
surface [29].

A cylindrical puck of c-axis aligned sapphire (Crystal Systems HEMEX) with
diameter 9.98mm and height 4.92mm was measured. Coupling loops were oriented
horizontally to excite the Hz magnetic field component of the TE01δ mode. The
resonance was found at a frequency of 9.9520GHz with an unloaded Q-factor of
65,200 at a coupling level of –48dB. The relative permittivity perpendicular to the
sapphire axis was calculated using the mode matching technique and found to be
εr,⊥ = 9.395. Electric filling factors (azimuthal components) of the sample and the
quartz spacer were calculated to be 0.886 and 6.79 × 10−3, respectively, and the
geometric factor of the cavity was found to be G = 2366 �. The perpendicular
component of the loss tangent tensor, tan δ⊥ was calculated from the measured Q-
factor and calculated parameters using the equation

tan δ⊥ = 1

Pd,φ

(
1

Q0
− Ps,φ tan δs,⊥ − RS

G

)
(3.9.1)

and found to be tan δ⊥ = 5.35 × 10−6. Coupling loops were then rotated 90◦ in
order to excite the azimuthal magnetic field component of the TM01δ mode. The
resonant frequency of this mode was found to be 13.824GHz fromwhich the relative
permittivity parallel to the c-axis was found by mode matching to be εr,‖ = 11.592.
The electric energy filling factors and geometric factors were then calculated to be
Pd,ρ = 0.300, Pd,z = 0.453, Ps,ρ = 0.0069, Ps,z = 0.0056 and G = 1557 �. The
loss tangent perpendicular to the c-axis was linearly scaled to tan δ‖ = 7.40 × 10−6

and the surface resistance at 13.824GHz taken to be RS = 30.6 m�. The unloaded
Q-factor was measured to be 43,540 from which the parallel loss tangent tan δ‖ is
then found from

tan δ‖ = 1

Pd,z

(
1

Q0
− Pd,ρ tan δ⊥ − Ps,ρ tan δs,⊥ − Ps,z tan δs,‖ − Rs

G

)
. (3.9.2)
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Fig. 3.15 Properties of
single-crystal Al2O3
(sapphire) as a function of
temperature. a Relative
permittivity, b temperature
coefficient of permittivity
and c loss tangent ε r
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Fig. 3.16 Loss tangent of
Al2O3 (log scale) as a
function of temperature
showing T4.5 dependence
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The calculated loss tangent for the perpendicular component was found to be
tan δ⊥ = 3.91 × 10−6. Temperature measurements are shown in Fig. 3.15. The
anisotropy in the complex permittivity tensor is evident, with both relative permit-
tivity components decreasing as temperature is reduced with positive temperature
coefficients of a similar magnitude to MgO and LaAlO3. The loss tangents are also
anisotropic and show a steep T 4.5 temperature dependence as shown for logarithmic
scale in Fig. 3.16, in agreement with Braginsky and confirming the predictions of
Gurevich and Tagantsev.

3.10 Summary and Conclusions

The apparatus and procedure for measuring the relative permittivity and loss tangent
of microwave dielectric samples as functions of temperature were discussed and used
to measure the properties of MgO, LaAlO3, TiO2 and Al2O3 from room temperature
to around 10K. The historical background of the single-crystal MgO, LaAlO3, TiO2

and Al2O3 were introduced and their properties as a function of temperature were
presented.
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Chapter 4
Lattice Dynamics and Density Functional
Perturbation Theory

The focus of this thesis now shifts towards the physics that describes the proper-
ties of microwave dielectrics and the means of computationally predicting them.
Lattice dynamics describes the vibrational collective excitations in solids known as
phonons and is a cornerstone of solid-state physics. Infrared, Raman and neutron-
diffraction spectra, specific heat capacity, thermal expansion, heat conduction and
electron–phonon interaction-related phenomena such as resistivity of metals and
superconductivity are a few examples of where lattice dynamics has been applied
with great success. The theory of lattice dynamics dates back to the 30s and the trea-
tise by Born and Huang [1], which is still regarded today as a reference textbook in
the field. Early formulations established the general properties of dynamical matri-
ces without much consideration for the electronic properties that determine them.
In the 1970s, a systematic study of these connections was performed by De Cicco
and Johnson [2] and Pick, Cohen, and Martin [3]. The establishment of the rela-
tionship between the electronic and the lattice-dynamical properties allowed linear
response theorems to be formulated which made it possible to calculate the lattice-
dynamical properties ofmaterials fromfirst-principles using their electronic structure
and without using empirical data. Many ab-initio calculations based on the linear
response theory of lattice vibrations have been made possible over the past couple
of decades due the development of density functional theory (DFT) by Hohenberg
and Kohn [4] and Kohn and Sham [5] and its linear response embodiment of density
functional perturbation theory (DFPT) [6]. These developments allowed the compu-
tationally challenging multi-body problem of interacting electrons to be formulated
instead in terms of the electron density. Whereas classical methods rely on fitting
potentials to experimentally measured parameters, DFT uses pseudopotentials based
on solutions to Schrödinger’s equation. Thanks to these theoretical and algorithmic
advances, it is now possible to obtain accurate phonon dispersion relations on fine
grids of wave-vectors spanning an entire Brillouin zone, which compare favourably
with neutron-diffraction data and from which several physical properties of the sys-
tem such as heat capacities and thermal expansion can be calculated. Furthermore,
the ability of DFT to accurately describe anharmonic phenomena such as thermal
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expansion, optical phonon linewidth broadening and structural phase transitions has
added to its appeal as a valuable tool in the study of anharmonic processes.

4.1 Lattice Dynamics

Here we follow the basic theory of lattice dynamics developed by Born and Huang
[1]. Consider a crystal consisting of N unit cells with n atoms per unit cell. The
position of the κth atom in the lth unit cell can be written as

Rl
κ = Rl + τ κ, κ = 1, 2, . . . , n

where the lattice vector Rl can be written in terms of the unit cell basis vectors
{a1, a2, a3 };

Rl = l1a1 + l2a2 + l3a3, l = {l1, l2, l3}.

The position vector of the κth atom in the unit cell is then

τ κ = xκ
1 a1 + xκ

2 a2 + xκ
3 a3 0 ≤ xκ

i ≤ 1, i = 1, 2, 3.

If the atoms are permitted to vibrate about their equilibrium positions their position
vectors become modulated

Rl → Rl + uκ(Rl),

by the displacement vector uκ(Rl) of atom κ in unit cell l. The ionic coordinate of
any atom i can then be expressed as

Ri = Rli
κi

+ uli
κi

where li and κi label the unit cell and species for atom i . In the harmonic approxima-
tion, the total energy is expanded as a Taylor series about the equilibrium positions
up to second order in the atomic displacements

E = E0 + 1

2

∑
α1α2
κ1κ2
R1R2

�κ1κ2
α1α2

(R1R2)u
κ1
α1

(R1)u
κ2
α2

(R2) + O(u3) + . . . .

where �κ1κ2
α1α2

(R1R2), the second-order derivative of the total energy

�κ1κ2
α1α2

(R1R2) = ∂2E
∂uκ1

α1(R1)∂uκ2
α2(R2),

is related to the interatomic force constants (IFC) and the dynamical matrix which
will be discussed later.
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4.2 Hamiltonian of a System of Ions and Electrons

The Hamiltonian of a system of interacting ions and electrons can be written as the
sum of kinetic energies and the potential energy of their interactions

H = Tion(Ṙ) + Tel(ṙ) + Vion-ion(R) + Vel-el(r) + Vel-ion(r,R). (4.2.1)

Here,R denotes the set of ionic coordinatesRI and r the set of electronic coordinates
and spins {ri ,σi }. Labels on ions and electrons will be upper and lower-case to avoid
confusion. The kinetic energy terms are

Tion(Ṙ) = 1

2

∑
I

MI (ṘI )
2

Tel(ṙ) = 1

2

∑
i

mi (ṙi )
2,

and the interactions between them

Vion-ion(R) = e2

2

∑
I �=J

Z I Z J

|RI − RJ |

Vel-el(r) = e2

2

∑
i �= j

1

|ri − r j |

Vel-ion(r,R) = −e2

2

∑
i,I

Z I

|ri − RI | .

4.3 The Born–Oppenheimer Approximation

The Born–Oppenheimer adiabatic approximation [7] allows the electronic and ionic
degrees of freedom to be effectively decoupled. This is due to the large mass dif-
ference between electrons and ions resulting in separate dynamics occurring on
vastly different timescales. Electrons can follow the nuclear motion at much smaller
timescales so that the positions of the nuclei can be considered fixed or clamped.
The interaction of the electrons with the nuclei can then be considered to be via an
external potential. Ionic motion and hence lattice-dynamical properties of a system
is then determined by the eigenvalues E and eigenfunctions � of the Schrödinger
equation (

−
∑

i

�
2

2Mi

∂2

∂R2
i

+ E(R)

)
�(R) = E�(R), (4.3.1)
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where Ri is the position of the i th nucleus, Mi its mass and R = {Ri } is the set
of all nuclear positions. E(R) is the clamped-ion energy, also referred to as the
Born–Oppenheimer energy surface, which is the ground-state energy of a system of
interacting electronsmovingwithin a field of essentially fixed nucleiwith coordinates
R. The Hamiltonian for such a system of electrons is

H(R) = − �
2

2m

∑
i

∂2

∂r2i
+ e2

2

∑
i �= j

1

|ri − r j | −
∑

i I

Z I e2

|ri − RI | + EN (R) (4.3.2)

where Z I is the charge on the I th nucleus, −e is the electron charge and EN (R) is
the nuclear electrostatic energy

EN (R) = e2

2

∑
I �=J

Z I Z J

|RI − RJ | .

4.4 Hellmann–Feynman Theorem

The equilibrium geometry for the positions of the nuclei will occur when the forces
acting upon them vanish. The forces are the partial derivative of the clamped-ion
Born–Oppenheimer energy surface term with respect to the positions of the nuclei

FI = −∂E(R)

∂RI
= 0.

The Hellmann–Feynman theorem allows one to calculate derivatives of the Born–
Oppenheimer energy surface with respect to any perturbation. The theory states that
the derivative of the eigenvalue of a Hamiltonian Hλ which depends on a parameter
λ is the expectation value of the derivative of the Hamiltonian

∂Eλ

∂λ
=

〈
�λ

∣∣∣∣∂Hλ

∂λ

∣∣∣∣�λ

〉
, (4.4.1)

where �λ is the eigenfunction of Hλ corresponding to the eigenvalue Eλ

Hλ�λ = Eλ�λ. (4.4.2)

The force acting on the I th nucleus in the electronic ground state is therefore

FI = −∂E(R)

∂RI
= −

〈
�(R)

∣∣∣∣∂H(R)

∂RI

∣∣∣∣�(R)

〉
, (4.4.3)
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where �(R) ≡ �(r,R) is the electronic ground-state wave function corresponding
to nuclear configurationR in the Born–Oppenheimer Hamiltonian H(R) (4.3.2). The
electron–ion interaction Vel-ion(r) couples the ionic and electronic degrees of freedom
through the electronic charge density and can be regarded as an external potential
seen by the electrons in the ground state. The ions are regarded as being stationary
with respect to the motion of the electrons. In this case the Hellmann–Feynman
theory gives

FI = −
∫

nR(r)
∂Vel-ion(r)

∂RI
dr − ∂EN (R)

∂RI
. (4.4.4)

where nR(r) is the ground-state electron charge density for nuclear arrangement R,

nR(r) = N
∫

|�R(r, r2, . . . , rN )|2 dr2dr3 · · · drN

and

Vel-ion(r) =
∑

i I

Z I e2

|ri − RI |

is the electron–ion interaction potential. Differentiating the force on the nuclei again
with respect to the nuclear coordinates yields

∂2E(R)

∂Ri∂R j
= − ∂Fi

∂R j

=
∫

∂nR(r)
∂Ri

∂Vel-ion(r)
∂R j

dr +
∫

nR(r)
∂2Vel-ion(r)
∂Ri∂R j

dr + ∂2EN (R)

∂RI ∂RJ
.

(4.4.5)

The second-order derivative of the total energy therefore requires calculation of the
ground-state electron charge density nR(r) and its first derivative with respect to the
ionic arrangements ∂nR(r)/∂Ri . This was reported by De Cicco and Johnson [2]
and Pick, Cohen, andMartin [3]. The terms on the left of (4.4.5) form a matrix called
the interatomic force constants (IFC) from which the phonon dispersion relations
can be derived

Cαβ
I J ≡ ∂2E(R)

∂Rα
I ∂R

β
J

= − ∂Fα
I

∂Rβ
J

,

where α and β label Cartesian coordinates. In the harmonic approximation, the
Hamiltonian describing the ionic motion is equivalent to that of a system of inde-
pendent harmonic oscillators or normal modes, with frequencies ω and displacement
patterns uα

I for the I th atom, determined by the secular equation

∑
Jβ

(
Cαβ

I J − MI ω
2δI J δαβ

)
uβ

J = 0.
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4.5 Hohenberg–Kohn Theorem

In 1964 Hohenberg and Kohn [4] showed that any property of the ground state of
a non-degenerate system of interacting electrons is determined only by its electron
density n(r), defined by

n(r) =
∑

i

ψ∗
i (r)ψi (r).

Furthermore, their theorem states that two different external potentials acting on the
electrons cannot be associated with the same ground-state of electronic charge den-
sity. This important concept of invertibility establishes one-to-one mapping between
an external potential and associated ground-state electron density and gives rise to
another important concept in DFT, that of the universal functional. A functional
F[n(r)] of the electron charge density exists such that the functional

E[n] = F[n] +
∫

n(r)Vext(r)dr

is minimized by the ground-state of the electron charge density subject to external
potential Vext(r) and constrained by the condition that the total number of electrons
is fixed

N =
∫

n(r)dr.

This theorem is the foundation on which density functional theory is built. It replaces
the quantum-mechanical problem of finding the ground-state of a system of N elec-
trons with 3N degrees of freedom, with a simpler problem, that of minimizing a
function of three variables, the components of the position vector r. The question
of the form of the functional F[n] is an interesting one since its form is in general
unknown.

4.6 Kohn–Sham Orbitals

Kohn and Sham used the fact that F[n] defines the physical properties of a sys-
tem regardless of the electron–electron interaction. In the case of no electron–
electron interactions, F[n] defines the ground-state kinetic energy of a system of
non-interacting electrons as a functional of the ground-state charge density distrib-
ution T0[n] [5]. The generally unknown functional F[n] can take the form

F[n] = T0[n] + e2

2

∫
n(r)n(r′)
|r − r′| drdr′ + Exc[n] (4.6.1)
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which introduces the exchange-correlation energy Exc[n], which allows the problem
of a system of interacting electrons to be mapped onto a system of non-interacting
electrons subject to an effective potential called the self-consistent field (SCF). A set
of self-consistent Schrödinger equations known as the Kohn–Sham equations can be
created for single electrons,

[
− �

2

2m
∇2 + Vscf(r)

]
ψi (r) = εiψi (r) (4.6.2)

under the influence of a self-consistent potential given by

Vscf(r) = Vel-ion(r) + e2
∫

n(r′)
|r − r′|dr′ + vxc(r) (4.6.3)

where

vxc(r) = δExc[n]
δn(r)

is the exchange-correlation potential. The ground-state energy and non-interacting
kinetic energy are then expressed in terms of the auxiliary Kohn-Sham orbitals,ψn(r)

n(r) = 2
N/2∑
n=1

|ψn(r)|2

T0[n] = −2
�
2

2m

N/2∑
n=1

∫
ψ∗

n(r)
∂2ψn(r)

∂r2
. (4.6.4)

4.7 The Local Density Approximation

The exchange-correlation energy Exc[n] is most commonly approximated using the
Local Density Approximation (LDA), in which the exchange and correlation energy
per particle is taken to be equal to that of a uniform homogeneous electron gas with
the density of the local density n(r),

Exc[n] =
∫

εxc(n)n(r)dr

where εxc(n) is the exchange-correlation energy for a particle within an electron gas
with density n = n(r). The exchange-correlation potential is given by

vxc(r) = εxc(n) + n
dεxc(n)

dn
.
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where n = n(r). Values of εxc(n) were calculated by Ceperley and Alder [8] using
Monte Carlo simulations of a homogeneous electron gas and were later parametrized
by Perdew and Zunger [9] into simple analytical form. The LDA is exact in the limit
of high charge density or for a charge density distribution which varies very slowly
in space. The LDA has been immensely successful, much more than expected given
its crude approximation, at accurately describing the structural and vibrational prop-
erties of metals, semiconductors and insulators. However, it has some drawbacks: an
overestimation of cohesive and molecular binding energies, an inability to describe
strongly correlated systems such as transition-metal oxides and an underestimation
of the valence-conduction band-gap energy.

4.8 Linear Response DFT

Aswasmentioned earlier, the second-order derivatives of the total energywith respect
to displacement of the nuclei can beobtained from the linear response of the electronic
charge density distribution to displacement of the positions of nuclei. The following
procedure is referred to as density functional perturbation theory (DFPT) [10–12].
If we take λ to be the set of parameters {λi } where λi ≡ RI , the positions of the
nuclei in the case of lattice dynamics, then the first and second derivatives of the
ground-state energy, by virtue of the Hellmann–Feynman theorem are

∂E

∂λi
=

∫
∂Vλ(r)

∂λi
nλ(r)dr,

∂2E

∂λi∂λ j
=

∫
∂2Vλ(r)
∂λi∂λ j

nλ(r)dr +
∫

∂Vλ(r)
∂λi

∂nλ(r)
∂λ j

dr.

The electron energy response, ∂nλ(r)/∂λi , can be evaluated by linearising the one-
electronKohn–Shamauxiliary Schrödinger equation and ground-state charge density
with respect towave function, density and potential variations. Linearising the charge
density (4.6.4) with respect to a perturbation λi leads to

∂n(r)
∂λ

= 4 Re
N/2∑
n=1

ψ∗
n(r)

∂ψn(r)
∂λ

. (4.8.1)

The variation of the Kohn–Sham orbitals (4.6.2) can be derived using standard first-
order perturbation theory [13]

(Hscf − εn)

∣∣∣∣∂ψn

∂λ

〉
= −

(
∂Vscf

∂λ
− ∂εn

∂λ

)
|ψn〉 (4.8.2)
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where Hscf is the unperturbed Kohn–Sham Hamiltonian

Hscf = − �
2

2m

∂2

∂r2
+ Vscf(r), (4.8.3)

∂Vscf/∂λ is the first-order correction to the self-consistent potential

∂Vscf

∂λ
= ∂Vel-ion(r)

∂λ
+ e2

∫
1

|r − r′|
∂n(r′)

∂λ
dr′ + dvxc(n)

dn

∣∣∣∣
n=n(r)

∂n(r)
∂λ

(4.8.4)

and ∂εn/∂λ is the first-order variation in the Kohn–Sham eigenvalue εn

∂εn

∂λ
=

〈
ψn

∣∣∣∣∂Vscf

∂λ

∣∣∣∣ψn

〉
.

Equation4.8.2 is often referred to as a Sternheimer equation and can be solved
self-consistently using (4.8.1–4.8.4) in a similar way to the Kohn–Sham eigenvalue
equation, with (4.6.2) being replaced by the Sternheimer equation (4.8.2) for the
perturbed system. Since the variation of the self-consistent potential, ∂Vscf/∂λ is
a linear functional of ∂n(r)/∂λ, which itself depends linearly on all ∂ψ/∂λ, the
whole self-consistent calculation can be generalized to a linear problem, where the
N equations for (4.8.2) are linearly coupled to each other. The set of all �ψ is then
the solution of a linear problem with dimension N M/2 × N M/2, where M is the
size of the basis set used to describe each ψn . Such a large system can be solved
directly by iterative methods.

The first-order correction to a given eigenfunction of the Schrödinger equation is
usually given by

∂ψn(r)
∂λ

=
∑
m �=n

ψm(r)
1

εn − εm

〈
ψm

∣∣∣∣∂Vscf

∂λ

∣∣∣∣ ψn

〉

where the sum extends over all states in the system, occupied or not, except the state
n. The electron charge density linear response can be derived from (4.8.1)

∂n(r)
∂λ

= 4
N/2∑
n=1

∑
m �=n

ψ∗
n(r)ψm(r)

1

εn − εm

〈
ψm

∣∣∣∣∂Vscf

∂λ

∣∣∣∣ψn

〉
. (4.8.5)

Since the terms containing products of occupied states cancel each other, the elec-
tron density can be considered not to respond to a perturbation which acts only on
the occupied state manifold or to the component of any perturbation which cou-
ples occupied states to each other. Evaluation of ∂ψn(r)/∂λ would require knowing
the full spectrum of Kohn–Sham states and summations over conduction bands.
But the derivatives ∂ψn(r)∂λ in the linearised Kohn–Sham Hamiltonian (4.8.2) are
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orthogonal to all states of the occupied manifold. Alternatively, insertion of (4.8.1)
into (4.8.4) and then into the linearised Kohn–Sham Hamiltonian (4.8.2) yields

(Hscf − εn)
∂ψn(r)

∂λ
+

N/2∑
m=1

(
Knm

∂ψm

∂λ

)
(r) = −∂Vel-ion(r)

∂λ
ψn(r) (4.8.6)

where the nonlocal operator Knm is defined

(
Knm

∂ψm

∂λ

)
(r) = 4

∫
ψn(r)

(
e2

|r − r′| + δvsc(r)
δn(r′)

)
ψ∗

m(r′)
∂ψm

∂λ
(r′)dr′ (4.8.7)

This large linear system can be solved with iterative methods yielding a solution
that is equivalent to the self-consistent solution of the smaller linear system of the
linearised Kohn–Sham Hamiltonian (4.8.2). This approach forms the basis of DFPT,
in which for example, the interatomic force constant matrices (IFCs) are calculated
at the minima of suitable functionals.

4.9 Phonon Modes in Crystals

In a crystalline solid, the position of the I th atom is

RI = Rl + τ κ = l1a1 + l2a2 + l3a3 + τ κ

where Rl is the position of the l th unit cell and τ κ is the equilibrium position of
the κth atom in the unit cell. The unit cell can be written as the sum of three prim-
itive translation vectors a1, a2 and a3 with integer coefficients l ≡ {l1, l2, l3}. The
electronic states can be classified by their wave-vector k and band index ν

ψn(r) ≡ ψν,k(r)

ψν,k(r + Rl) = eik·Rl ψν,k(r)

Normal modes (phonons) can also be classified by a wave-vector q and mode index
j . Phonon frequencies ω(q) and displacement patterns Uα

κ (q) are determined by the
secular equation

∑
α2,κ2

(
C̃α1α2

κ1κ2
(q) − Mκ1ω

2(q)δα1α2δκ1κ2

)
Uα2

κ2
(q) = 0

The dynamical matrix C̃α1α2
κ1κ2

(q) is the Fourier transform of the real-space interatomic
force constants (IFCs)
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C̃α1α2
κ1κ2

(q) =
∑

l

e−iq·Rl Cα1α2
κ1κ2

(Rl)

where the latter were defined as

Cα1α2
κ1κ2

(Rl − Rm) = ∂2E

∂uα1
κ1 (l)∂uα2

κ2 (m)

and uκ(l) is the displacement from the equilibrium position for atom κ in the l th unit
cell

uκ(l) = RI − Rl − τ κ.

Due to translational invariance the IFCsdependon l andm only through the difference
Rl −Rm . The derivatives of the total energy with respect to atomic displacements are
evaluated at the equilibrium positions, uκ(l) for all atoms. The dynamical matrix can
be written as the second derivative of the energy with respect to lattice distortions
with wave-vector q

C̃α1α2
κ1κ2

(q) = 1

N

∂2E

∂uα1
κ1 (q)∗∂uα2

κ2 (q)

where N is the number of unit cells in the crystal and uκ(q) is the amplitude of the
lattice distortion

uκ(l) = uκ(q)eiq·Rl

In the frozen-phonon method, the calculation of the dynamical matrix at arbitrary q-
points in theBrillouin zone requires the use ofmultiple unit cells or super-cells so that
a wave-vector q is one of the reciprocal-lattice vectors. This limits the practicability
of the method since the computational cost increases as the cube of the number of
atoms.

The dynamical matrix can be split into electronic and ionic contributions

C̃α1α2
κ1κ2

(q) =el C̃α1α2
κ1κ2

(q) +ion C̃α1α2
κ1κ2

(q)

The electronic contribution is

elC̃α1α2
κ1κ2

(q) = 1

N

[∫ (
∂n(r)

∂uα1
κ1 (q)

)∗ ∂Vel-ion(r)
∂uα2

κ2 (q)
dr

+ δκ1κ2

∫
n(r)

∂2Vel-ion(r)
∂uα1

κ1 (q = 0)∗∂uα2
κ2 (q = 0)

dr
]

. (4.9.1)

The ionic contribution is the second derivative of the ionic electrostatic energy

ionC̃α1α2
κ1κ2

(q) = ∂2EN (R)

∂RI ∂RJ
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and does not depend on the electronic configuration. The first term in (4.9.1) depends
on the linear response of the charge density to a lattice distortion and a perturbing
potential characterized by a wave-vector q

∂Vel-ion(r)
∂uκ(q)

= −
∑

l

∂vκ(r − Rl − τ κ)

∂r
eiq·Rl .

The advantage of DFPT is that the response to a monochromatic perturbation is
also monochromatic with the same wave-vector q due to the linearity of the DFPT
equations with respect to a perturbing potential. Thus, the dynamical matrices can be
calculated for any arbitrary q-vector without needing to use super-cells. Real-space
IFCs can be obtained by Fourier transforming the dynamical matrices, calculated on
a uniform grid of q-points in the Brillouin zone. Once the IFCs have been calculated,
the dynamical matrices can be calculated at any q-point by inverse Fourier trans-
forms. This technique ofFourier interpolationwill be used extensively in subsequent
chapters to calculate the phonon eigenfrequencies on very fine grids of q-points.

4.10 Long-Wavelength Phonons and Electric Fields

Phonons in the long-wavelength limit (q → 0) are associated with macroscopic
polarization and electric fields due to long-range Coulomb forces. The observed
splitting of the longitudinal optic (LO) and transverse optic (TO) phonons at the
zone-centre (q = 0) in polar insulators is a classic example of this. Many properties
of an infinite periodic solid are ill-defined in the long-wavelength limit such as the
response of the electron density to a macroscopic electric field, since an electrostatic
potential describing an electric field VR = eE · r is incompatible with periodic
boundary conditions. Recently, the modern theory of electric polarization [14, 15]
has revolutionized the field, however a more traditional approach using perturbation
theory is still valid because the problems of macroscopic electric fields are absent
in the linear regime and so the polarization response to an electric field or a lattice
distortion is still well defined.

In the long-wavelength limit the energy as a function of atomic displacements
and macroscopic electric field E is [16]

E({u},E) = 1

2

∑
κ1κ2

∑
α1α2

uκ1 ·an C̃κ1κ2 ·uκ2 −
�

2
E ·ε∞ ·E−e

∑
κ1

uκ1 ·Z∗
κ1

·E (4.10.1)

where � is the volume of the unit cell, ε∞ is the electronic dielectric tensor, Z∗
κ is

the Born effective charge tensor for atom κ and anC̃ is the dynamical matrix at q = 0
for vanishing electric field. The polarization induced by a longitudinal phonon in the
long-wavelength limit produces a macroscopic electric field which applied a force
on the ions and changes the phonon frequency. This is the cause of LO-TO splitting
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in polar materials. The expression for the total energy including an electric field,
(4.10.1) can be minimized to produce another expression that only depends on the
atomic displacements and defines a dynamical matrixwith an additional non-analytic
contribution

C̃α1α2
κ1κ2

(q) =an C̃α1α2
κ1κ2

(q) +na C̃α1α2
κ1κ2

(q)

where
naC̃α1α2

κ1κ2
(q) = e2

�

(q · Z∗
κ1

)α1(q · Z∗
κ2

)α2

q · ε∞ · q .

The non-analytic part of the dynamical matrix exhibits non-analytic behaviour in
the limit q → 0, resulting in IFCs with a long-range interatomic dependence due
to dipole–dipole interactions. Due to this non-analytic behaviour, the Fourier inter-
polation method is modified by subtracting a function of q with the same q → 0
limit as the non-analytic part from the dynamical matrices in q-space. This removes
the long-range dependence from the IFCs and makes them more suitable for Fourier
transformation, restoring the previously subtracted non-analytical term to the real-
space IFCs.

Themicroscopic description of the Born effective charges Z∗ and ε∞ are provided
from (4.10.1). The electric induction is

D = − 1

�

∂E
∂E

= e

�

∑
κ

Z∗
κ · uκ + ε∞E.

The macroscopic polarization P, defined by D = E+ 4πP leads to a description for
the Born effective charge at zero electric field

Z∗,αβ
κ = �

e

∂Pα

∂uβ
κ(q = 0)

∣∣∣∣∣
E=0

.

The electronic dielectric tensor ε∞ can be derived by taking the derivative of the
polarization with respect to the electric field an equilibrium ionic geometry

εαβ
∞ = δαβ + ∂Pα

∂Eβ

∣∣∣∣
uκ(q=0)=0

.

Using DFPT, Z∗ and ε∞ can be calculated without too much difficulty, for example

∂Pα

∂uβ
κ(q = 0)

= − e

N�

∫
r

∂n(r)
∂uκ(q = 0)

dr + e

�
Zκδαβ .

Unfortunately this expression is ill-defined for an infinite crystalwith periodic bound-
ary conditions because r is not lattice periodic. However, the response of the electron
charge density to a perturbation is only dependent on off-diagonal matrix elements,
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as touched upon earlier in the discussion about the self-cancellation of occupied
Kohn–Sham states. These matrix elements are well defined even for macroscopic
electric fields, which can be seen if they are written in terms of the commutator
between the unperturbed Hamiltonian, a lattice-periodic operator, and rwhich is not

〈ψm |r| ψn〉 = 〈ψm |[Hscf, r]| ψn〉
εm − εn

The quantity
∣∣ψ̄α

n

〉 = rα |ψn〉 can be introduced, resulting in

(Hscf − εn)
∣∣ψ̄α

n

〉 = Pc[Hscf, rα] |ψn〉

where

Pc = 1 −
N/2∑
n=1

|ψn〉 〈ψn|

is the projector onto the manifold of occupied states. The commutator is related to
the momentum operator

[Hscf, r] = −�
2

m

∂

∂r
,

if the self-consistent potential is local. The final result for the effective charges is
now

Z∗αβ
κ = Zκ + 4

N

N/2∑
n=1

〈
ψ̄α

n

∣∣∣∣ ∂ψn

∂uβ(q = 0)

〉
.

Calculation of ε∞ considers the response of an insulating crystal to an electric field
E described by the non-lattice-periodic potential V (r) = eE · r. The same method
as the effective charges can be applied, by replacing all occurrences of r |ψn〉 with∣∣ψ̄α

n

〉
. The simplest way of calculating ε∞ is to keep the electric field E fixed and to

iterate on the potential

∂Vscf(r)
∂E

= ∂V (r)
∂E

+
∫ (

e2

|r − r′| + δvxc(r)
δn(r′)

)
∂n(r′)
∂E

dr′.

Finally, one obtains

εαβ
∞ = δαβ − 4e

N�

N/2∑
n=1

〈
ψ̄α

n

∣∣∣∣ ∂ψn

∂Eβ

〉
.

Effective charges can also be calculated from the response to an electric field, since
they are proportional to the force acting on an ion under an applied electric field.
Alternative approaches to the calculation of effective charges and dielectric tensors
that do not use perturbation theory have recently been developed in the modern
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theory of polarization. Effective charges are calculated by taking finite differences
of the macroscopic polarization with respect to atomic displacements. Macroscopic
polarization is expressed in terms of a topological quantity known as Berry’s phase
[14, 15]. The dielectric tensor can also be calculated using thismethod by performing
finite electric field calculations. The linear response DFPTmethod and Berry’s phase
approach yield similar results with the same level of accuracy.

4.11 Implementation

The original and most prevalent implementations of DFT and DFPT are based on the
plane-wave pseudopotential (PW-PP) method [17]. Plane-waves have many features
that make them attractive: simplicity, orthonormality and the availability of the fast
Fourier transform (FFT) algorithm to quickly transformbetween reciprocal space and
real space. An important feature is the absence of Pulay forces [18] that localized
basis-set implementations suffer from if their basis set is incomplete. Forces calcu-
lated from the Hellmann–Feynman expressions in the PW-PP method do not require
any correction. Plane-waves are used with pseudopotentials, a fictitious ion–electric
interaction potential which only acts on valence band electrons and mimics the inter-
action with core electrons. Norm-conserving pseudopotentials (Hamann, Schlüter,
Chiang) [19] are uniquely determined by the properties of an isolated atom,whilst the
requirement of norm conservation ensures that the pseudopotentials are transferable.
That is, the ability of the pseudopotentials to describe a system that is independent
of the local chemical environment of the atoms. The pseudopotential approximation
assumes that the energy functional is linear with respect to the partitioning of charge
into the core and valence states, which works well for most systems. However, in
some cases such as alkali atoms, a non-linear core correction [20] can be applied
and has proven to be very successful. For computations, the angular momentum part
of a pseudopotential can be recast into a separable Kleinman and Bylander form
[21], consisting of a sum over a few projectors. Norm-conserving pseudopotentials
incorporate angular momentum and are thus nonlocal operators, so special care must
be taken to ensure that atomic valence band wave functions are sufficiently smooth
in the atomic core so that they can be used effectively in a plane-wave basis. The
nonlocal term

V NL
el-ion(r, r

′) =
∑
κ,l

∑
n,m

Dnmβ∗
n (r − Rl − τκ)βm(r′ − Rl − τκ).

requires some straightforward modifications to the DFT/DPFT equations. Further
modifications are necessary for non-linear core corrections and ultrasoft pseudopo-
tentials. Together, the use of plane-waves, separable pseudopotentials, FFT algo-
rithms and iterative diagonalization or minimization techniques allows for efficient
and quick solution of the Kohn–Sham equations for systems up to a few hundred
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atoms. The technical implementations of solving the Kohn–Sham equations in the
PW-PPmethod have been described extensively in the literature by Picket [17], Payne
et al. [22] and Giannozzi [23] amongst others.

4.12 The Lydanne-Sachs-Teller Relation

In polarmaterials the long-rangeCoulomb forces producemacroscopic electric fields
in the long-wavelength limit that affect longitudinal optic (LO) modes. Born and
Huang [1] developed a phenomenological model describing how zone-centre optical
phonons couple with macroscopic electric fields. The most general expression of the
energy as a function of optical phonon coordinates and electric field is

E(u,E) = 1

2
Mω2

0u2 − �

2
ε∞E2 − eZ∗u · E

where u is the atomic displacement, E is the electric field, M is the reduced mass, �
is the unit cell volume, ε∞ is the electronic permittivity and Z∗ is the Born effective
charge of the ions, which describes the coupling between the displacements and the
electric field.

The conjugates to the displacement u and electric field E are the force acting on
the ions, F and the electric induction D:

F = −∂E
∂u

= −Mω2
0u + eZ∗E

D = − 1

�

∂E
∂E

= e

�
Z∗u + ε∞E.

For a medium with no free charges and a static electric field, Maxwell’s equations
yield ∇ · D = 0 and ∇ × D = 0, and since atomic displacement have a spatial
dependence eiq·r become

iq · D = 0,

iq × D = 0.

Transverse optic (TO) modes have atomic displacements perpendicular to the wave-
vector q, so that iq · uT = 0 and E = 0. The force on the atoms for the TO
mode is therefore F = −Mω2

0u and so the transverse optic phonon frequency is
ωTO = ω0. Longitudinal optic (LO) modes have atomic displacements parallel to the
wave-vector q, so that iq × uL = 0 and the electric field is

E = − e

�ε∞
Z∗u.
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The force on the atoms for the LO mode is therefore

F = −M

(
ω2
0 + e2Z∗2

�ε∞M

)
u,

with the atoms vibrating with frequency ωLO

ωLO =
√

ω2
0 + e2Z∗2

�ε∞M
.

The LO phonons clearly have a higher frequency than the TO phonons due to the
macroscopic electric field and since the static permittivity ε0 can be expressed as [1]

ε0 = ε∞ + e2Z∗2

�Mω2
TO

,

leads to a very simple relationship between the static and electronic permittivity and
the frequencies of the transverse and longitudinal optic phonons

ε0

ε∞
= ω2

LO

ω2
TO

.

This is known as the Lyddane–Sachs–Teller relation [24] and is exact for isotropic
cubic and tetrahedral systems. It can be generalized to any crystal symmetry [25]
with numerous optic modes as a function of field frequency

ε(ω)

ε∞
=

∏L O
k (ω2

k − ω2)∏T O
j (ω2

j − ω2)
,

where ωk are the longitudinal optic (LO) modes and ω j are the transverse optic
modes.

4.13 Summary and Conclusions

This chapter has reviewed the basic theory of density functional perturbation theory
with regards to calculating dynamical matrices and phonon frequencies in the har-
monic approximation and taking long-wavelength macroscopic electric fields into
account. Furnished with values for the Born effective charges Z∗

κ and dielectric ten-
sors ε∞, the frequencies of the long-wavelength zone-centre optic phonons can be
calculated, thus enabling the static low-frequency relative permittivity to be evaluated
using the Lyddane–Sachs–Teller relation. Being able to also calculate the dynamical
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matrices, phonon eigenmodes and eigenfrequencies at any arbitrary q-point in the
Brillouin zone provides valuable information for a theory of dielectric loss on where
transitions between phonon branches can occur.
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Chapter 5
Harmonic Properties of Metal Oxide
Dielectrics

The advent of quantum mechanical codes implementing density functional theory
within the local density approximation for periodic systems has made it possible to
predict their properties ab-initio, without the use of empirical data. This chapter will
use these invaluable tools to calculate some of the properties of microwave dielectric
ceramics. Calculation of the complex permittivity of amaterial atmicrowave frequen-
cies requires knowledge of harmonic properties such as phonon eigenfrequencies,
Born effective charges and electronic permittivity. This chapter will report detailed
modelling of the crystal structure and harmonic lattice dynamical properties ofMgO,
LaAlO3, TiO2 and Al2O3 using density functional perturbation theory (DFPT). For
each material the convergence of the ground-state energy with respect to plane-wave
cut-off energy and electronic k-point sampling will be investigated. The equilib-
rium crystal structure and lattice parameters will then be found by minimization of
the total energy with respect to lattice parameter and the ionic positions. Phonon
dispersion relations and the response to electric fields will be used to calculate the
low-frequency permittivity of each material and then compared to low-temperature
experimental data. The calculations were performed using freely available quantum
mechanical codes within the quantum espresso suite of packages [1].

5.1 Magnesium Oxide —MgO

Magnesium oxide (MgO) commonly occurs in the earth’s mantle and is therefore a
well-studied material, both experimentally and theoretically, where most work has
focused upon its high-pressure properties. It is stabled-up to pressures of 500 GPa
whereupon it undergoes a phase transition from the rock salt structure to the CsCl
structure. The face-centred cubic (FCC) rock-salt crystal structure and its primitive
unit cell are shown in Fig. 5.1. It has space group Fm3̄m (225) and point group Oh

(Pm3m). The primitive unit cell contains a single MgO formula (two atoms) with
lattice vectors

© Springer International Publishing AG 2016
J. Breeze, Temperature and Frequency Dependence of Complex
Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement,
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Fig. 5.1 Crystal structure (left) and primitive unit cell (right) of MgO

Table 5.1 Naturally occurring isotopes of Magnesium and Oxygen

Isotope Abundance [%] Atomic weight [amu]
12Mg 78.990 23.985
13Mg 10.000 24.986
14Mg 11.010 25.983
8O 99.756 15.9949
9O 0.039 16.9991
10O 0.205 17.9992

a1 = 1
2a0

⎛
⎝ 0
1
1

⎞
⎠ , a2 = 1

2a0

⎛
⎝ 1
0
1

⎞
⎠ , a3 = 1

2a0

⎛
⎝ 1
1
0

⎞
⎠ .

The basis vectors τ i of theMg andO atoms, labelled by i = 1 and i = 2, respectively,
are τ 1 = (0, 0, 0) and τ 2 = ( 12 ,

1
2 ,

1
2 ). Due to its simplicity and practical use, MgO

is a natural choice for the application of a general theory of dielectric loss since
the computational time for plane-wave DFPT calculations scale cubically with the
number of atoms per unit cell. Both magnesium and oxygen atoms are isotopic
occurring in nature with the abundances as shown in Table5.1. The mean atomic
masses of Mg and O are 24.3051 and 15.9994 amu, with variances of 0.437 and
0.009 amu. Whilst the isotopic variance of O is small, that of Mg is appreciable.

Electronic Structure

The pseudopotentials for Mg and O used the Perdew–Zunger exchange-correlation
functional [2] within the local density approximation (LDA) (Table5.2). They were
constructed using the norm-conserving Martins–Troullier method [3] with a nonlin-
ear core correction added to the Mg pseudopotential. The plane-wave cut-off energy
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Fig. 5.2 Energy
convergence as a function of
plane-wave cut-off energy
Ec for MgO. Convergence of
the total energy occurs for
Ec > 75 Ry
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Table 5.2 Pseudopotentials for Mg and O. The coordinate of maximum for wave functions, cut-off
radius rc and reference configurations

rmax (a.u.) rc (a.u.) Reference
configuration

Magnesium

l = 0 2.52 3.40 3s2

l = 1 3.10 3.00 3s1.253p0.25

Oxygen

l = 0 0.87 1.60 2s22p4

l = 1 0.81 1.60 3s22p4

Ec

determines the number of plane waves per unit volume and the convergence of
the total energy for MgO with respect to the cut-off energy Ec was determined in
a straightforward manner by plotting the total energy as a function of Ec. The total
energy as shown in Fig. 5.2 is seen to converge as Ec is increased.

The convergence criterion was a change in total energy per unit increase in cut-off
energy Ec of less than 10−3 Ry. This occurred for a plane-wave cut-off energy, Ec of
75 Ry. An electronic k-space sampling of 8× 8× 8 was found to give no discernible
improvement over a k-space sampling of 4 × 4 × 4 which was selected for further
calculations.

Equilibrium Structure

The equilibrium lattice parameter a0 for MgO was determined by minimising the
total energy with respect to a0. For a fixed electron cut-off energy Ec of 75 Ry, the
plane-wave basis set depends on the volume but the real-space resolution remains
the same for arbitrary lattice parameters, causing discontinuities in the total energy.
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Fig. 5.3 Total energy as a
function of lattice parameter
a0 for MgO. Plane-wave
cut-off energy Ec = 75 Ry.
A fit to Murnaghan’s
equation of state yields a
minimum total energy for
a0 = 7.934 au (4.197 Å)
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Table 5.3 Equilibrium lattice parameter a0 and bulk modulus B0 of MgO for plane-wave cut-off
energy 75 Ry derived from fit to Muraghan’s equation of state

a0 [au] B0 [Mbar] B ′
0

Theory [4] 7.87 1.62 4.2

Experiment [5] 7.97 1.64

this work 7.934 1.694 4.21

The equilibrium lattice parameter a0 was found by calculating the ground-state total
energy for various values of a0 (see Fig. 5.3) and subsequent fitting to Murnaghan’s
equation of state

P = B0

B ′
0

[(
�0

�

)B ′
0

− 1

]

where P is the pressure, B0 is the bulk modulus, B ′
0 its derivative with respect to

P and � is the unit cell volume. The results of the fit are shown in Table5.3 where
the fitted lattice parameter a0 = 7.934 au is underestimated by 0.45% compared to
experiment, which is quite low for the discrepancy expected for the Local Density
Approximation.

Lattice Dynamics and Phonons

TheBrillouin zone for the reciprocal space of phonons inMgO is a body-centred trun-
cated octahedron as shown in Fig. 5.4. Some of the special high-symmetry points are
labelled � = (0, 0, 0), X = (0, 1, 0), K = ( 34 ,

3
4 , 0) and L = ( 12 ,

1
2 ,

1
2 ). By virtue of

the Hellman–Feynman theorem, first-order perturbation of the electronic wave func-
tions yields the dynamical matrices which can be diagonalized to yield the phonon
eigenfrequencies and eigenvectors. To calculate the eigenfrequencies and eigenvec-
tors at arbitraryq-points within theBrillouin zone a Fourier interpolation technique is
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Fig. 5.4 Brillouin zone for a
face-centred cubic crystal
such as MgO

Table 5.4 8 special q-points from Monkhorst–Pack set for 4 × 4 × 4 grid

qx qy qz Weight

1 0 0 0 1

2 − 1
4 − 1

4
1
4 8

3 − 1
2 − 1

2
1
2 4

4 0 0 1
2 6

5 − 1
4 − 1

4
3
4 24

6 − 1
2 − 1

2 1 12

7 0 0 1 3

8 − 1
2 0 1 6

employed. The dynamicalmatrices are calculated for the eight specialq-points shown
in Table5.4, corresponding to the Monkhorst–Pack set [6] for the irreducible wedge
of a 4×4×4 grid. Three-dimensional complex Fourier transformation of the dynam-
ical matrices results in the interatomic force constant (IFC) matrix. To calculate the
dynamical matrices for an arbitrary q-point, an inverse three-dimensional complex
Fourier transform of the interatomic force constantmatrix is performed, the diagonal-
ization of which (taking LO-TO splitting into account as q → 0) yields the phonon
eigenfrequencies and eigenvectors. Calculated eigenfrequencies for phonons at q-
points of high symmetry within the Brillouin zone presented in Table5.5 appear to
be in good agreement with experiment [5]. Modes are labelled by the high-symmetry
point in the Brillouin zone (�, X, L) with subscripts denoting the type and polariza-
tion of the mode: transverse optic (TO), longitudinal optic (LO), transverse acoustic
(TA) and longitudinal acoustic (LA). The frequency gap between the XLA and XTO
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Table 5.5 Phonon frequencies (THz) at high-symmetry points �, X and L for MgO

Theory [4] (THz) Expt. [5] (THz) this work (THz)

�TO 11.72 12.23 12.31

�LO 21.25 21.52 21.06

XTA 8.62 8.96 8.63

XLA 12.59 12.65 12.93

XTO 13.37 13.29 13.70

XLO 16.55 16.61 16.46

LTA 8.20 8.64 8.55

LLA 16.40 16.42

LTO 10.71 11.05 10.83

LLO 17.07 16.94

Fig. 5.5 Phonon dispersion curves for MgO. Filled circles are neutron diffraction data [5]

phonons of 0.77 THz (26cm−1) at the edge of the Brillouin zone is known to be due
to the difference in effective mass of the sublattices. The frequency gap is relevant
to the type of dielectric loss theory, such as the one proposed by Sparks, King and
Mills [7] and others [8], involving the annihilation of a LA phonon and the creation
of a TO phonon through the absorption of a microwave photon.

Phonon dispersion curves were generated using dynamical matrix Fourier inter-
polation along the � − � − X − X − � − L path across the Brillouin zone and as
Fig. 5.5 shows, they are in very good agreement with neutron diffraction data [5].
Sound velocities in the crystal directions [001], [011] and [111] were calculated for
small q-vectors by taking the limit, v = ∂ω

∂q as q → 0. Results and comparison with

other reported values are shown in Table5.6.
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Table 5.6 Sound velocities (105 ms−1) for MgO along high-symmetry directions. vL and vT
denote longitudinal and transverse velocities respectively. Experimental values are calculated from
experimentally determined elastic constants and theoretical values are at a temperature of 0 ◦K

[100] [110] [111]

vL vT vL vT vL vT

Expt. Bogardus [9]
(25 ◦C)

9.10 6.60 9.91 5.30 9.91 5.30

Expt. [5] 8.99 6.58 9.80 5.30 10.06 5.76

Theory [4] 9.22 6.47 9.81 5.52 10.01 5.85

this work 9.46 6.22 9.85 5.59 9.98 5.80

Phonon Density of States

The phonon density of states (DOS) ρ(ω) is defined such that there are ρ(ω)dω
modes in the frequency range between ω and ω + dω

ρ(ω) =
3N∑
j

∫
F(q j)δ

(
ω − ωq j

)
dq

where F(q j) is aweighting functionwhich is set to unity for this case. It is normalized
so that its integral over the frequency domain is equal to the number of degrees of
freedom ∫ ∞

0
ρ(ω)dω = 3N ,

where N is the number of atoms in the unit cell and 3N is therefore the number of
normal modes in the crystal. The phonon DOS provides information on regions in
the frequency domain where the density of phonon modes is highest and is inversely
proportional to the group velocity for a particular mode.

Figure5.6 shows the phonon density of states for MgO. It was calculated using
Blöchl’s improved tetrahedron method of Brillouin zone integration [10] upon a
48 × 48 × 48 grid covering the Brillouin zone (110,592 q-points with weighting
factor F(q j) = 1). Near 8.6 THz there is a peak corresponding to zone-boundary
transverse acoustic (TA) phonons at the L , X and K -points. From 10.8 to 13.7 THz
there is a band where the density of states for transverse optic (TO) modes is high,
followed by a lower band from 16.4 to 21.1 THz occupied by longitudinal optic
(LO) modes. Setting the weighting factor to F(q j) = |eκ(q j)|2, where eκ(q j) is the
eigenvector for atom κ on phonon branch j with momentum q, allows the phonon
DOS to be projected onto individual phonon branches as shown in Fig. 5.7.

This demonstrates the degree of overlap in the DOS of different phonon branches,
TA-TA and LA-TO for instance and also reveals the frequencies at which the critical
points (where the DOS is discontinuous) exist.
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Fig. 5.6 Phonon density of
states ρ(ω) for MgO,
calculated over a
48 × 48 × 48 q-point grid
covering the Brillouin zone
using Bröchl’s improved
tetrahedron method [10]
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Fig. 5.7 Phonon density of
states ρ(ω) of MgO for
different polarization
branches, calculated over a
48 × 48 × 48 q-point grid
covering the Brillouin zone
using Bröchl’s improved
tetrahedron method [10]
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The Born effective charges for Mg and O are Z∗
Mg = 1.922 and Z∗

O = −2.027
which shows that the bonding inMgO is highly ionicwith very little dynamical charge
transfer. The high frequency permittivity calculated by DFPT is ε∞ = 3.30 which
is slightly higher than the experimentally determined value of 2.93. The Lyddane–
Sachs–Teller (LTS) relation [11] allows the low-frequency electric relative permit-
tivity ε0 to be calculated for MgO from the optical phonon frequencies

ε0 = ε∞
ω2
LO

ω2
TO

, (5.1.1)
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where the longitudinal and transverse optical eigenfrequencies at the� point (q = 0)
have the values calculated in Table5.5: ωLO = 21.06 THz and ωTO = 12.3 THz. The
LTS relation yields a value for the static permittivity (at absolute zero temperature) of
ε0 = 9.674 which compares very favourably with the low-temperature measurement
of ε0 = 9.651 at a temperature of 15K reported in Chap.3.

5.2 Lanthanum Aluminate — LaAlO3

Lanthanum aluminate is a popular choice of substrate for the growth of functional
oxide thin-films due its high permittivity (εr ∼ 24), low loss-tangent and suitable
crystallographic parameters for the growth of perovskite oxides. Above a tempera-
ture of 500 ◦C, it has the ideal cubic (O1

h) perovskite structure as shown in Fig. 5.8.
Below 500 ◦C, it has a slightly rhombohedral structure (D6

3d ≡ R3̄c), with a small
distortion (α = 90.1◦). Since the distortion is so small, the low-temperature phase is
usually regarded as pseudocubic and isotropic. However, the distortion does lead to
twinning defects and accompanying oxygen vacancies in single crystals [12]. The
cubic perovskite structure will be considered here.

Structure

The primitive unit cell contains five atoms: one lanthanum, one aluminium and three
oxygens with position vectors τAl = (

1
2 ,

1
2 ,

1
2

)
, τ La = (0, 0, 0), τO1 = (

0, 1
2 ,

1
2

)
,

τO2 = (
1
2 ,

1
2 , 0

)
and τO3 = (

1
2 , 0,

1
2

)
.

Ultrasoft Vanderbilt pseudopotentials were used in this study using the Perdew–
Zunger exchange-correlation energy functional within the local density approxima-
tion (LDA). A plane-wave cut-off energy of Ec = 40 Ry was found to provide

Fig. 5.8 Unit cell of
lanthanum aluminate
(LaAlO3). It has a
pseudocubic perovskite
structure with a slight
rhombohedral distortion
(α = 90.1 ◦)

http://dx.doi.org/10.1007/978-3-319-44547-2_3
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Fig. 5.9 Brillouin zone for
simple cubic crystal such as
LaAlO3

adequate convergence of the total self-consistent energy. The ground-state lattice
parameter a0 was found by fitting Murnaghan’s equation to be a0 = 7.090 a.u.

Lattice Dynamical Properties

TheBrillouin zone for the simple cubic phase ofLaAlO3 is shown inFig. 5.9. Phonons
at the special points�, X andM and along the path�−X−M−� were calculated by
diagonalizing the dynamical matrices and taking TO-LO splitting into account (see
Table5.7). They were found to be in good agreement with neutron diffraction data
[13]. Phonon dispersion curves were calculated using Fourier interpolation of the
interatomic force constants and are shown in Fig. 5.10 with experimental data deter-
mined from neutron diffraction [13]. LaAlO3 has four degenerate optical phonon

Table 5.7 Phonon frequencies (cm−1) at high-symmetry points �, X and M for LaAlO3. Experi-
mental values were from neutron diffraction data [13]

Expt. [13] [cm−1] this work [cm−1]

�TO 186.0 184.3

�LO 277.0

�silent 309.8

�TO 421.7

�LO 587.3

�TO 641.0

�LO 707.6

MLA 101.8 106.9

MTA 139.3 140.5

MLO 210.2 170.6

MTO 322.3

XTA 110.4 111.0

XLA 209.2 212.1

XTO 250.5 258.4

XLO 351.3
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Fig. 5.10 Phonon dispersion
diagram for Lanthanum
Aluminate (LaAlO3). Solid
lines are from DFTP
calculations and filled circles
are neutron diffraction data
[13]
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modes, three of which are infrared active and contribute to the low-frequency rela-
tive permittivity. At the � point, the TO/LO frequencies of the modes are 184/277,
421/589 and 638/712cm−1. The low-frequency (static) relative permittivity can be
readily calculated using the generalised Lyddane–Sachs–Teller relation

εr = ε∞
∏LO

k ω2
k∏TO

j ω2
j

, (5.2.1)

where the electronic permittivity was calculated to be ε∞ = 4.48. The relative
permittivity was calculated to be εr = 24.12, which compares favourably with the
experimental value of ε = 23.62 measured using the dielectric resonator technique
at a temperature of 10 K.

5.3 Titanium Dioxide (Rutile) — TiO2

In its Rutile phase, titanium dioxide is an interesting material due to it having very
high permittivity and a very high degree of anisotropy. It is often called paraelectric
or an incipient ferroelectric due to the temperature dependence of its high relative
permittivity. The �-point optical modes largely responsible for its high permittivity
soften (reduce in frequency) considerably as the temperature is decreased but do
not become imaginary, which signal a ferroelectric phase transition. The frequen-
cies of the zone-centre optical phonons are highly sensitive to unit cell volume and
pressure and would indeed become unstable (leading to ferroelectricity) if the lattice
parameters were changed by a small amount [14].
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Fig. 5.11 Unit cell of Rutile
TiO2

a

c

Structure

Rutile has a tetragonal unit cell with D4h
14 symmetry and lattice parameters a

and c. It contains six atoms (2 Ti, 4 O) as shown in Fig. 5.11. Ti atoms are situated at
position vectorsτ Ti1 = (0, 0, 0) andτ Ti2 = (

1
2 ,

1
2 ,

1
2

)
andOatoms atτO1 = (u, u, 0),

τO2 = (1 − u, 1 − u, 0), τO3 = (
1
2 − u, 1

2 + u, 1
2

)
and τO4 = (

1
2 + u, 1

2 − u, 1
2

)
where u ≈ 0.305 is an internal coordinate. In this study, both ultrasoft Vanderbilt
and norm-conserving pseudopotentials were used with Ceperley–Alder exchange-
correlation energy functional within the local density approximation (LDA). Gener-
alised gradient approximations were not used since they are known to predict phonon
mode eigenfrequencies which are too soft and in some cases imaginary, leading to
structural instability [14]. A plane-wave cut-off energy of 40Rywas found to provide
sufficient convergence of the ground-state energy. Electronic k-points were calcu-
lated on a (4, 4, 6) Monkhorst–Pack set shifted by (1, 1, 1) corresponding to nine
points in the irreducible wedge of the Brillouin-zone. The lattice parameters a, c, unit
cell volume v0 and internal coordinate u were found by minimising the ground-state
energy using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method of nonlinear
optimization [15]. The results shown in Table5.8 are in excellent agreement with
experimentally determined data.

Born Effective Charges, Electronic Permittivity and Phonons

The dynamical matrices and phonon eigenmode frequencies and displacements were
calculated at the Brillouin zone centre (q = 0) and 23 other special q-points (4×4×6
Monkhorst–Pack set) using the Hellman–Feynmann approach of density functional
perturbation theory (DFPT). The Born effective charges and electronic permittivity
were used to generated the LO-TO mode splitting when the mode frequencies were
calculated from the dynamical matrices. Table5.9 shows the calculated Born effec-
tive charges for titanium and oxygen to be in excellent agreement with the theoretical
results of Lee et al. [18]. The Born effective charges are in some cases much higher
than the nominal charges of Ti and O ions of +4 and −2 respectively, as high as
+7.581 for Ti ions and −3.800 for O ions in the z direction. This is known to be
caused by dynamical charge transfer due to atomic displacement where changes in
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Table 5.8 Structural parameters of Rutile. Lattice constants a and c in Å and unit cell volume v0
in Å3

a c v0 c/a u

This Work 4.585 2.935 61.69 0.640 0.305

Experiment

Abrahams and
Bernstein [16]

4.594 2.959 62.43 0.644 0.305

Burdett et al.
[17]

4.587 2.954 62.15 0.644 0.305

Theory

Lee et al. [18] 4.536 2.915 59.98 0.643 0.304

Ramamoorthy
et al. [19]

4.567 2.932 61.16 0.642 0.305

Glassford et
al. [20–22]

4.653 2.965 64.84 0.637 0.305

Allan and
Teter [23]

4.584 2.961 62.22 0.646 0.304

Montanari and
Harrison [14]

4.545 2.919 60.30 0.642 0.304

Table 5.9 Born effective charges for Ti andO inRutile.Note that Z∗
yy,τ = Z∗

xx,τ and Z
∗
yx,τ = Z∗

xy,τ

Z∗
xx,Ti Z∗

xy,Ti Z∗
zz,Ti Z∗

xx,O Z∗
xy,O Z∗

zz,O

Theory [18] 6.338 0.995 7.541 −3.169 −1.809 −3.771

this work 6.332 0.994 7.581 −3.187 −1.802 −3.800

Table 5.10 Electronic dielectric permittivity along the a and c directions. Discrepancies between
DFT and experiment [24] are due to the well-known underestimation of the core-valence band
gap when using the LDA. The LDA band gap is approximately 1.9 eV whilst the experimentally
observed band gap is 3.0 eV

ε∞,a ε∞,c

Experiment [24] 6.843 8.426

Theory [18] 7.535 8.665

- scissor corrected 6.366 7.290

this work 7.510 8.682

covalent hybridized bonds cause electrons to transfer between oppositely charged
ions. The electronic permittivities along the a and c crystal axeswere calculated using
DFPT and Table5.10 shows, they are in agreement with the theoretical predictions of
Lee et al. [18] but differ from experimentally determined values [24]. Discrepancies
between DFPT and experiment can be explained as due to the well-known underes-
timation of the core-valence band gap when using the local density approximation
(LDA). The LDA predicted a band gap of 1.9 eV whilst the experimentally observed
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Table 5.11 Phonon frequencies for Rutile at the � point in cm−1. Experimental data are taken at
room temperature and 5K for values within parenthesis

Mode Activity Theory [18] Neutrons IR/Raman this work

B1u �+
1 Silent 116.7 113 - 106.3

B1g �+
2 Raman 125.2 142 143 (143) 132.0

A2u (TO) �−
3 Infrared 176.1 173 (142) 167 (144) 140.4

Eu (TO) �−
5 Infrared 164.8 189 183 163.9

Eu (LO) �−
5 Infrared 351.5 375 373 355.4

Eu (TO) �−
5 Infrared 391.3 - 388 388.7

B1u �−
2 Silent 407.5 406 - 397.5

A2g �+
3 Silent 415.5 - - 420.4

Eu (LO) �−
5 Infrared 441.7 429 458 444.7

Eg �+
5 Raman 471.5 445 447 (455) 467.2

Eu (TO) �−
5 Infrared 492.8 494 500 493.9

A1g �+
1 Raman 622.5 610 612 (611) 615.9

A2u (LO) �−
3 Infrared 769.3 - 812 765.0

Eu (LO) �−
5 Infrared 808.4 842 807 801.5

B2g �+
4 Raman 828.0 825 827 823.8

Lee et al. [18] use LDA and Perdew–Zunger parametrization of Ceperley–Alder data. Montanari
[14] also use the LDA and PZ exchange-correlation functional. Neutron diffraction, Infrared and
Raman data are taken at room temperature unless displayed within parenthesis which are at 5K

band gap is 3.0 eV. A scissor correction was applied by Lee et al. bringing the ε∞,a

value in line with that of experiment, but making the discrepancy in ε∞,c greater.
The frequencies of the optical phonons at the Brillouin zone centre (q = 0) were
calculated and are presented in Table5.11 showing excellent agreement with exper-
imental data (neutron diffraction, IR and Raman spectroscopy) and theoretical pre-
dictions in the literature. The atomic displacement patterns for these optical phonons
are shown in Figs. 5.12 and 5.13. The modes can be classified as silent (having no
dipole moment), infrared and Raman active. The Rutile phase of TiO2 has fifteen
optical phonon modes, eight of which are infrared active with symmetry representa-
tions A2u and Eu . The A2u mode and the three doubly degenerate Eu modes exhibit
LO-TO splitting and can be classified into modes with atomic motion along the c-
axis or within the ab-plane, respectively. From symmetry considerations and taking
into account the LO-TO splitting, the mode that contributes to the static permittivity
along the c-axis is the A2u modewith TO/LO frequency 140.4/765.0cm−1 andwithin
the ab-plane, the Eu mode with TO/LO frequencies 163.9/355.3, 388.7/444.7 and
493.9/801.5cm−1. The low-frequency relative permittivity, calculated using the gen-
eralised Lyddane–Sachs–Teller relation for the ab-plane and c-axis, using the above
LO-TO mode frequencies and the electronic permittivity tensor calculated earlier
yields ε⊥ = 110.9 (ab-plane) and ε‖ = 250.2 (c-axis). Values measured using the
dielectric resonator technique were ε⊥ = 112.6 and ε‖ = 250.5 at a temperature of
15.9 K. This analysis shows that the very high permittivity in the c-axis is solely due
to the giant LO-TO splitting of the A2u mode. The permittivity in the ab-plane is also
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(a) B1u – silent mode at 106.3 cm−1. (b) B1g – Raman mode at 132.0 cm−1.

(c) A2u – infrared mode at 140.4 cm−1 (TO)
and 765.0 cm−1(LO).

(d) Eu – Infrared mode at 163.9 cm−1 (TO)
and 355.4 cm−1 (LO).

(e) Eu - Infrared mode at 388.7 cm−1 (TO)
and 444.7 cm−1 (LO).

(f) B1u – Silent mode at 397.5 cm−1.

Fig. 5.12 Atomic displacement patterns for lowest eight optical phonon modes at �-point in TiO2.
Infrared modes Eu are doubly degenerate and undergo LO-TO frequency splitting

high, with contributions from all three Eu modes albeit with smaller LO-TO splitting
than the A2u mode, with the greatest from the lowest frequency Eu mode. Figure5.14
shows the atomic displacement patterns of the two modes A2u (140.4cm−1) and Eu
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(a) A2g – Silent mode at 420.4 cm−1 (b) Eg – Raman mode at 467.2 cm−1

(c) Eu – Infrared mode at 493.9 cm−1 (TO)
and 801.5 cm−1 (LO)

(d) A1g – Raman mode at 615.9 cm−1

(e) B2g – Raman mode at 823.8 cm−1

Fig. 5.13 Atomic displacement patterns for highest seven optical phononmodes at�-point in TiO2.
Modes Eu and Eg are doubly degenerate

(163.9cm−1), which are responsible for the high static dielectric constant in TiO2

along the c-axis and within the ab-plane.
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Fig. 5.14 Modes
responsible for large
dielectric response at low
frequencies in TiO2 where
the Ti and O sublattices are
displaced in along the c–axis
for A2u modes or the
ab-plane for Eu modes

(a) A2u mode

(b) Eu mode

Phonon Dispersion Relations

Dynamical matrices were calculated at nine q-points corresponding to the
Monkhorst–Pack set for a shifted 4 × 4 × 6 mesh. Fourier interpolation of the
interatomic force constant matrices, taking LO-TO splitting into account allowed
the phonon dispersion relations to be calculated along high-symmetry directions in
the Brillouin zone as shown in Fig. 5.15.
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Fig. 5.15 Phonon dispersion for Rutile

5.4 Aluminium Oxide (Sapphire) — α-Al2O3

Aluminium oxide in its corundum form, also known as sapphire, is a material with
several attractive properties. It is an excellent insulator with high-thermal conductiv-
ity and very low dielectric losses. At cryogenic temperatures andmicrowave frequen-
cies, sapphire dielectric resonators exhibit the lowest dielectric loss of any material
[25–28]. A wide electronic band gap means it is transparent from the far infrared
up to the deep ultraviolet. Coupled with its outstanding mechanical strength and
hardness, this makes it an ideal material for high performance dielectric resonators,
substrates and optical windows.

Structure

Sapphire (α-Al2O3) crystallizes in the trigonal system with point group 3̄m (D3d ).
It has a rhombohedral unit cell with space group R3̄c and contains two formula
units with ten atoms (four Al and six O) as displayed in Fig. 5.16. The positions
of atoms in units of lattice parameter a are shown in Table5.12, where x and z are
internal structural parameters. Norm-conserving pseudopotentialswere usedwith the
Ceperley and Alder exchange-correlation energy functional within the local density
approximation (LDA). A plane-wave cut-off energy of 80 Ry and electronic k-point
sampling from a (4,4,4) Monkhorst–Pack mesh shifted by (1,1,1) provided sufficient
convergence of the total energy. The lattice parametera and internal coordinates x and
z were found by minimising the ground-state energy using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method of nonlinear optimization. The optimized values
(Table5.13) were found to be in excellent agreement with experimental [29] and
theoretical [30, 31] data reported in the literature.
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Fig. 5.16 Rhombohedral
unit cell of Sapphire Al2O3

Table 5.12 Positions of atoms in Sapphire in units of the lattice constant a, where x and z are
internal coordinates

Atom

Al x x x

Al −x −x −x

Al 1
2 − x 1

2 − x 1
2 − x

Al x − 1
2 x − 1

2 x − 1
2

O z −z + 1
2

1
4

O 1
4 z −z + 1

2

O −z + 1
2

1
4 z

O −z z − 1
2 − 1

4

O − 1
4 −z z − 1

2

O z − 1
2 − 1

4 −z

Lattice Dynamics

A �-point (q = 0) phonon calculation produced Born effective charges (see
Table5.14) and electronic permittivity (Table5.15) inagreement with experiment
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Table 5.13 Structural parameters of Sapphire. Lattice constant a in Å and angle α in degrees. x
and z are internal coordinates

a α x z

Experiment

Lee and Lagerlof [29] 5.128 55.28 0.352 0.556

Theory

Wolverton and Hass [30] 5.161 55.27 0.352 0.556

Łodziana and Parliński [31] 5.153 55.279 0.353 0.556

This work 5.1533 55.286 0.352 0.556

Table 5.14 Born effective charges for Al and O in sapphire. Note that Z∗
yy,τ = Z∗

xx,τ and Z∗
yx,τ =

Z∗
xy,τ

Z∗
xx,Al Z∗

xy,Al Z∗
zz,Al Z∗

xx,O Z∗
xy,O Z∗

zz,O

Theory [32] 2.905 0.000 2.870 −1.919 −0.246 −1.920

this work 2.953 0.027 2.923 −1.921 −0.218 −1.950

Table 5.15 Electronic dielectric permittivity tensor for Al2O3 along principle axes

ε∞
x,y ε∞

z

Theory [32] 3.2 3.1

Expt. [33] 3.2 3.1

this work 3.204 3.107

and theory. The Born effective charges were close to the nominal charge for the Al3+
and O−2 ions implying that the bonds in α-Al2O3 are strongly ionic. The dynamical
matrix at � (q = 0) was diagonalised, taking LO-TO splitting into account. The
eigenfrequencies of the phonon modes in sapphire at the � point are presented in
Table5.16. Sapphire supports twenty-seven optical phonon modes, of which twelve
are infrared active. There are four degenerate modes with designation Eu , that have
atomic displacement patterns in the xy-plane. TheTO/LO frequencies of thesemodes
are 381.3/383.6, 438.3/478.7, 566.0/625.8 and 635.1/894.3cm−1. These modes are
responsible for the transverse permittivity. There are then two modes with designa-
tion A2u , whose atomic displacement patterns are in the z-direction and have TO/LO
frequencies 392.3/502.3 and 581.7/868.2cm−1. Application of the Lyddane–Sachs–
Teller relation once again reveals the predicted static relative permittivity at absolute
zero in directions parallel and perpendicular to the crystal c-axis

ε‖ = 11.321
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Table 5.16 Phonon frequencies for sapphire at the � point in cm−1. Theory values are from Heid
et al. [32] and experimental values are from Ref. [13] therein [33]

Mode Activity Theory Expt. this work

Eu (TO) Infrared 381.6 386.9 381.3

Eu (LO) Infrared 383.6 386.9 383.6

A2u (TO) Infrared 390.9 400.3 392.3

Eu (TO) Infrared 435.4 443.6 438.3

Eu (LO) Infrared 480.7 480.3 478.7

A2u (LO) Infrared 499.7 513.7 502.3

Eu (TO) Infrared 565.4 570.4 566.0

A2u (TO) Infrared 571.7 583.7 581.7

Eu (LO) Infrared 625.1 627.1 625.8

Eu (TO) Infrared 628.1 637.1 635.1

A2u (LO) Infrared 860.2 870.6 868.2

Eu (LO) Infrared 887.3 900.6 894.3

Eg Raman 379.6 376.9 375.6

A1g Raman 411.6 416.9 416.3

Eg Raman 429.0 433.6 428.6

Eg Raman 442.6 450.3 445.6

Eg Raman 567.7 577.1 574.0

A1g Raman 636.1 647.1 637.8

Eg Raman 746.5 750.5 748.2

A2g Silent 301.5 302.2

A2g Silent 536.4 533.0

A1u Silent 594.4 596.4

A1u Silent 687.8 692.5

A2g Silent 747.5 744.8

and
ε⊥ = 9.363.

The permittivity of sapphire measured in Chap.3 was ε‖ = 11.344 and ε⊥ = 9.260
at 29 K, once again being in excellent agreement.

5.5 Summary and Conclusions

The low-frequency relative permittivities of MgO, LaAlO3, TiO2 and Al2O3 have
been calculated ab-initio using density functional perturbation theory (DFPT) and
appear to be in excellent agreement with experimental data (see Table5.17). This
may be judicious in some cases, since the electronic permittivity is often slightly

http://dx.doi.org/10.1007/978-3-319-44547-2_3
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Table 5.17 Summary of predicted permittivities at 0 ◦Kcompared to low-temperature experimental
values

Material Theory Expt.

MgO εr 9.674 9.651

LaAlO3 εr 24.12 23.62

TiO2 εr,⊥ 110.9 112.6

εr,‖ 250.2 250.5

Al2O3 εr,⊥ 9.363 9.260

εr,‖ 11.321 11.344

overestimated in some cases, yet compensated by an underestimate of the LO-
TO splitting of the optical phonons. Although the calculated harmonic properties
are for a temperature of absolute zero and the measurement are at approximately
15 ◦K, the results are very promising and the dispersion data for phonon eigenmodes
(frequency and eigenvectors) will allow for more complex temperature-dependent
calculations to be performed such as thermal expansion and anharmonic phonon–
phonon interactions.
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Chapter 6
Theory of Anharmonic Phonons

The harmonic approximation truncates the expansion of the total energy in
powers of atomic displacements to second-order and so the collective excitations of
the lattice known as phonons are independent and non-interacting. The frequencies of
harmonic phonons are well-defined and as a result have infinite lifetimes, they never
decay and propagate freely through perfect infinite crystals without impingement or
attenuation. Since intrinsic dielectric absorption is known to be a phenomenon asso-
ciated with interacting phonons, the harmonic approximation will clearly be unable
to describe it and that the inclusion of higher order anharmonic terms in the energy
expansion will be required. Anharmonic phonons couple and exchange energy with
each other, allowing non-equilibrium phonon populations and their associated relax-
ation phenomena to exist. In going from a harmonic description to an anharmonic
one, the real-valued eigenfrequency of the harmonic mode is perturbed and suffers a
complex frequency shift shown as the self-energy. This manifests as a real frequency
shift and a broadening in the linewidth of the phonon which is measurable using
neutron diffraction spectroscopy.

Dielectric loss is a result of absorption of electromagnetic energy by transverse
optical phonons and is therefore an anharmonic process. In this chapter, the the-
oretical framework of anharmonic lattice vibrations within crystals will be devel-
oped followed by a quantum field approach to describe the anharmonic processes
which contribute to the phonon self-energy. The quantum field theory of phonons
is well established, having been developed in the 1960s by Cowley [1], Alekseev
[2], Kadanoff and Baym [3] amongst others. They used the interaction representa-
tion to derive temperature-dependent Green functions for phonon propagators and
the evolution operator to expand the Green functions into infinite series of terms
corresponding to various phonon interactions. These terms can be interpreted using
Feynman diagrams and indeed this powerful approach can be used to classify and
group diagrams so that the self energy of the phonons can be calculated. This quan-
tum field framework can be readily applied to the problem of calculating the complex
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permittivity in microwave dielectrics as functions of temperature and frequency for
field frequencies far below the transverse optical phonon modes.

6.1 Beyond the Harmonic Approximation

Consider a crystal consisting of N unit cells each containing n atoms per unit cell,
where the atoms are in their equilibrium position. The position of the κth atom in the
l th unit cell can be written as

Rκ
l = Rl + τ κ,

where the lattice vectorRl is the position vector of the lth unit cell and τ κ the position
vector of atom κ with respect to the origin of the unit cell. If the atoms are permitted
to vibrate about their equilibrium positions by a displacement vector uκ(R), then the
kinetic energy of the lattice is

T = 1

2

∑
καR

Mκu̇
κ
α(R)

where α is a Cartesian component and Mκ is the mass of atom κ. The equations of
motion for atom κ in unit cell Rl can be set up:

Mκü
κ
α(Rl) = − ∂E

∂uκ
α(Rl)

,

where � is the lattice potential energy. The lattice potential energy can then be
expanded into a Taylor series in powers of the displacement vectors uκ(Rl) for the
κth atom within the l th unit cell, about their equilibrium positions

� = �0 +
∑
καR

�κ
α(R)uκ

α(R)

+ 1

2

∑
κ1α1R1
κ2α2R2

�κ1κ2
α1α2

(R1R2)u
κ1
α1

(R1)u
κ2
α2

(R2)

+ 1

3!
∑

κ1α1R1
κ2α2R2
κ3α3R3

�κ1κ2κ3
α1α2α3

(R1R2R3)u
κ1
α1

(R1)u
κ2
α2

(R2)u
κ3
α3

(R3)

+ 1

4!
∑

κ1α1R1
κ2α2R2
κ3α3R3
κ4α4R4

�κ1κ2κ3κ4
α1α2α3α4

(R1R2R3R4)u
κ1
α1

(R1)u
κ2
α2

(R2)u
κ3
α3

(R3)u
κ4
α4

(R4)

+ · · ·
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+ 1

n!
∑

κ1α1R1

...
κnαnRn

�κ1...κn
α1...αn

(R1 . . .Rn)u
κ1
α1

(R1) . . . uκn
αn

(Rn)

+ · · · (6.1.1)

where

�κ1...κn
α1...αn

(R1 . . .Rn) = ∂nE
∂uκ1

α1(R1) . . . ∂uκn
αn (Rn)

.

The first term �0 is the equilibrium value of the lattice potential energy, the second
term vanishes since the atoms are in equilibrium and have no forces acting upon
them and the third term is the harmonic lattice potential energy. In the harmonic
approximation, the series expansion is truncated at this point so as not to include the
higher order terms. The harmonic equations of motion then read

Mκü
κ
α(R) = −

∑
κ′R′

∂2E
∂uκ

α(R)∂uκ′
α′(R′)

uκ′
α′(R′).

If we safely assume the displacement vectors u to have a time dependency of the
form e−iωt , the time derivatives in the equations of motion can be evaluated

Mκω
2uκ

α(R) =
∑
κ′R′

�κκ′
αα′(R,R′)uκ′

α′(R′).

This eigenvalue problem can be diagonalized to yield the phonon frequencies, atomic
displacement patterns and dynamical matrices.

6.2 Anharmonic Hamiltonian

The Hamiltonian for a system that includes anharmonicity is [4, 5]:

H = H0 + HA

where H0 is the harmonic part of the Hamiltonian and HA are the additional anhar-
monic terms from the expansion of the energy above second

HA =
∑
n≥3

1

n!
∑

κ1...κn
α1...αn
R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)u
κ1
α1

(R1) . . . uκn
αn

(Rn).
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The atomic displacement can bewritten in terms of the phonon field operator A(λ) =
a(λ) + a†(λ)

uκ
α(R) =

∑
λ

(
�

2NMκωλ

) 1
2

εκ
α(λ)eiq·RA(λ), (6.2.1)

where λ ≡ {q, j} labels the phonon q-point branch j , and a(λ) and a†(λ) are the
phonon annihilation and creation operators, respectively. Substitution into theHamil-
tonian for the nth anharmonic term yields:

H (n)
A = 1

n!
∑

κ1...κn
α1...αn
R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)u
κ1
α1

(R1) . . . uκn
αn

(Rn)

= 1

n!
(

�

2N

)n/2 ∑
λ1...λn

∑
κ1...κn
α1...αn
R1...Rn

εκ1
α1

(λ1) . . . εκn
αn

(λn)(
Mκ1ωλ1 . . . Mκnωλn

)1/2 �κ1...κn
α1...αn

(R1 . . .Rn)

× ei(q1·R1+···+qn ·Rn)A(λ1) . . . A(λn).

The anharmonic Hamiltonian HA can in fact be expanded as a power series in any
chosen coordinate [6]. For example, HA expanded in powers of the Fourier compo-
nents of the ionic displacements in reciprocal space;

HA =
∑
n≥3

1

n!
∑

κ1...κn
α1...αn
q1...qn

�κ1...κn
α1...αn

(q1, . . . ,qn)u
κ1
α1

(q1) . . . uκn
αn

(qn)

where the α-component of the Fourier-transformed displacement vector of atom κ
of wavevector q is

uκ
α(q) = 1√

N

∑
R

e−iq·Ruκ
α(R)

and similarly, the Fourier-transformed interatomic force constant matrix:

�κ1...κn
α1...αn

(q1, . . . ,qn) = ∂nE
∂uκ1

α1(q1) . . . ∂uκn
αn (qn)

is given by

�κ1...κn
α1...αn

(q1, . . . ,qn) = 1

N

∑
R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)e
i(q1·R1+···+qn ·Rn).
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HA can also be expanded in powers of phonon field operators A(λ), which yields

HA =
∑

λ1...λn

Vn(λ1, . . . ,λn)A(λ1) . . . A(λn)

where a phonon field operator is the sum of an annihilation and creator operator,
given by

A(λ) = A(q j) = a(q j) + a†(−q j)

and

Vn(λ1, . . . ,λn) = 1

n!
∂nE

∂A(λ1) . . . ∂A(λn)

is the nth derivative of the total energy with respect to the phonon field operators also
known as the anharmonic phonon coupling tensor. Inspection of the terms in the
Taylor expansion of the energy in powers of phonon field operators A(λ) and atomic
displacements uκ

α(R) in terms of A(λ) (6.2.1):

∑
λ1...λn

Vn(λ1, . . . ,λn)A(λ1) . . . A(λn) = 1

n!
∑

κ1...κn
α1...αn
R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)u
κ1
α1

(R1) . . . uκn
αn

(Rn)

=
(

�

2N

) n
2 ∑

κ1...κn
α1...αn
R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)e
i(q1·R1+···+qn ·Rn)

×
∑

λ1···λn

εκ1
α1

(λ1)√
Mκ1ωλ1

· · · εκn
αn (λn)√
Mκnωλn

A(λ1) . . . A(λn),

yields a general expression for Vn(λ1, . . . ,λn):

Vn(λ1, . . . ,λn) = 1

n!
(

�

2N

) n
2 1√

ωλ1 . . . ωλn

∑
κ1...κn
α1...αn
R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)

× ei(q1·R1+···+qn ·Rn)
εκ1
α1

(λ1)√
Mκ1

. . .
εκn
αn

(λn)√
Mκn

. (6.2.2)

If we write

�̃κ1...κn
α1...αn

(q1, . . . ,qn) =
∑

R1...Rn

�κ1...κn
α1...αn

(R1, . . . ,Rn)ei(q1·R1+···+qn ·Rn)√
Mκ1 . . . Mκn

(6.2.3)
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then

Vn(λ1, . . . , λn) =
(

�

2N

) n
2 1√

ωλ1 . . . ωλn

∑
κ1...κn
α1...αn

�̃
κ1...κn
α1...αn (q1, . . . ,qn)ε

κ1
α1

(λ1) . . . ε
κn
αn (λn),

(6.2.4)

and �̃κ1...κn
α1...αn

(q1, . . . ,qn) is recognisable as a n
th order dynamical tensor:

�̃κ1...κn
α1...αn

(q1, . . . ,qn) = 1√
Mκ1 . . . Mκn

∂nE
∂uκ1

α1(q1) . . . ∂uκn
αn (qn)

.

Taking the derivative with respect to atomic displacement with wavevector q of the
harmonic dynamical matrix given by:

�̃κ1κ2
α1α2

(q1,q2) = 1√
Mκ1Mκ2

∂2E
∂uκ1

α1(q1)∂u
κ2
α2(q2)

and dividing by the square root of the atomic mass, leads to an expression for the
third-order dynamical tensor

�̃κ1κ2κ3
α1α2α3

(q1,q2,q3) = 1√
Mκ1Mκ2Mκ3

∂3E
∂uκ1

α1(q1)∂u
κ2
α2(q2)∂u

κ3
α3(q3)

.

Hence, higher order dynamical tensors are derivatives of the harmonic dynamical
matrix with respect to atomic displacements with wavevector q in the Brillouin zone

�̃κ1κ2κ3
α1α2α3

(q1,q2,q3) = 1√
Mκ3

∂

∂uκ3
α3(q3)

�̃κ1κ2
α1α2

(q1,q2),

where

uκ
α(q) =

∑
j

(
�

2NMκωλ

) 1
2

εκ
α(λ)A(λ)

A(λ) =
∑
κα

(
2NMκωλ

�

) 1
2

εκ
α(λ)∗uκ

α(q),

and εκ
α(λ) is the displacement pattern for mode λ ≡ {q, j}, where q is wavevector

and j is the phonon branch index. For the third-order anharmonic coupling tensor,
we now have

V3(λ1,λ2,λ3) =
(

�

8N 3ωλ1ωλ2ωλ3

) 1
2 ∑

κ1κ2κ3
α1α2α3

∂�κ1κ2
α1α2

(q1,q2)

∂uκ3
α3(q3)

εκ1
α1

(λ1)√
Mκ1

εκ2
α2

(λ2)√
Mκ2

εκ3
α3

(λ3)√
Mκ3

,
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and similarly for the fourth-order anharmonic coupling tensor

V4(λ1,λ2,λ3,λ4) =
(

�
2

16N 4ωλ1ωλ2ωλ3ωλ4

) 1
2 ∑

κ1κ2κ3κ4
α1α2α3α4

∂2�κ1κ2
α1α2

(q1,q2)

∂uκ3
α3(q3)u

κ4
α4(q4)

× εκ1
α1

(λ1)√
Mκ1

εκ2
α2

(λ2)√
Mκ2

εκ3
α3

(λ3)√
Mκ3

.
εκ4
α4

(λ4)√
Mκ4

.

6.3 Quantum Field Theory of Anharmonic Phonons

Much of the quantum field theory of phonons was developed in the 1960s with
seminal works by Cowley [1], Thouless [7], Alekseev [2], Kadanoff and Baym [3]
and later by Wallis, Maradudin and Fein [5]. This powerful technique permitted the
self-energy of phonons to be calculated rigorously and led to theoretical predictions
for the imaginary part of the relative permittivity at frequencies below the transverse
optic phonon. In Dirac notation, the one-phonon Green function for an eigenstate |i〉
is defined

G(q j,q′ j ′; t) = 〈i |T [A(q j; t)A†(q′ j ′; 0)]|i〉,

where A(q j; t) is the time-dependent normal-mode field operator for a phonon with
wavevector q on branch j in the Heisenberg representation,

A(q j; t) = eiHt/�A(q j; 0)e−i Ht/�

and T is the Dyson chronological operator, which orders operators with earlier times
to the right:

TO1(t1)O2(t2) =
{
O1(t1)O2(t2) (t1 > t2),
O2(t2)O1(t1) (t2 > t1).

The one-phononGreen functionG is zero unlessq − q′ = Q, whereQ is a reciprocal
lattice vector. In what follows, Q = 0 and q = q′, unless otherwise stated. We now
take the thermal average of the Green function:

G(q j j ′; t) = 1

Z

∑
i

e−βH 〈i |T [A(q j; t)A†(q j ′; 0)]|i〉

= 1

Z

∑
i

〈i |e−βHT [A(q j; t)A†(q j ′; 0)]|i〉

= 〈T [A(q j; t)A†(q j ′; 0)]〉
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where the partition function Z , in the absence of a chemical potential is defined as

Z =
∑
i

〈i |e−βH |i〉

= Tr
{
e−βH

}

and β = 1/kBT . Introducing the Matsubara imaginary time change of variable
τ = i t , the Green functions cease to be time-dependent and become dependent on
the ‘temperature’ τ .

G(q j j ′; τ ) =
⎧⎨
⎩

Z−1Tr
{
e−(β−τ/�)H A(q j)e−τH/�A†(q j ′)

}
, τ > 0

Z−1Tr
{
e−βH A†(q j ′)eτH/�A(q j)e−τH/�

}
. τ < 0

The trace is defined for a general operator A, as

Tr{A} =
∑
i

〈i |A|i〉

where the states i span the complete set of orthonormal functions. The trace has some
very interesting and important properties [8, 9]. The completeness relation states that

∑
f

| f 〉〈 f | = 1

and it can be shown that it has the same value whichever complete set is chosen to
perform the summation. This is easily shown as follows:

∑
i

〈i |A|i〉 =
∑
i f

〈i | f 〉〈 f |A|i〉 =
∑
i f

〈 f |A|i〉〈i | f 〉 =
∑
f

〈 f |A| f 〉.

If the operator A is taken as the product of a number of operators A1, A2, . . . , AN ,
the cyclic property of the trace follows from the completeness relation:

Tr{A1 . . . AN−1AN } = Tr{AN A1 . . . AN−1}.

If we suppose that the imaginary time τ lies in the range −β� < τ < 0, then it
follows that τ + β� > 0 and using the cyclic property of the trace:

G(q j j ′; τ + β�) = Z−1Tr{eτH/�A(q j)e−τH/�e−βH A†(q j ′)}
= Z−1Tr{e−βH A†(q j ′)eτH/�A(q j)e−τH/�}
= G(q j j ′; τ ). (6.3.1)
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This remarkable feature demonstrates the β� periodicity of theMatsubara imaginary
time, suggesting that theGreen function can be expanded into a discrete Fourier series

G(q j j ′; τ ) =
∞∑

n=−∞
G(q j j ′; iωn)e

iωnτ

where ωn = 2πn/β�, provided that −β� < τ < 0. The Fourier coefficients

G(q j j ′; iωn) = 1

β�

∫ β�

0
G(q j j ′; τ )e−iωnτ dτ

= 1

β�

∫ β�

0
〈T [A(q j; τ )A†(q j ′; 0)]〉e−iωnτ dτ

are onlydefined at the infinite set of points iωn , but are connected to the retardedGreen
function by analytical continuation of the imaginary axis into the upper complex
frequency half-plane by the relation:

GR(q j j ′;ω) = −β lim
γ→0+

G(q j j ′;ω + iγ).

A spectral representation of the Green function, ρ(q j j ′,ω) can be formulated by
introducing the spectral density function

G(q j j ′; iωn) = 1

β�

∫ ∞

−∞
ρ(q j j ′;ω)

ω + iωn
dω.

In the harmonic approximation the bare Green function propagator can be shown to
be

G0(q j; τ ) = e−τω(q j)

1 − e−�βω(q j)
+ eτω(q j)

1 − e�βω(q j)

where j = j ′ and its transform:

G0(q j; iωn) = 1

�β

[
1

ω(q j) + iωn
+ 1

ω(q j) − iωn

]

= δ j j ′

�β

2ω(q j)
ω(q j)2 + ω2

n

.

The spectral density function for the harmonic case is

ρ0(q j;ω) = δ(ω − ω(q j)) − δ(ω + ω(q j))

which consists of two delta functions at the poles iωn = ±ω(q j)whereω(q j) are the
phonon frequencies. Phonon–phonon interactions alter the formof theGreen function
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by shifting the poles off the imaginary axis by an amount corresponding to the
complex self-energy� = � + i�. The delta functions then broaden into Lorentzian
functions with spectral densities of the form:

ρ(q j;w) = 2�(q j)[
ω − �(q j)

]2 + �(q j)2
− 2�(q j)[

ω + �(q j)
]2 + �(q j)2

.

6.4 The Evolution Operator

Introducing the perturbation development or evolution operator S(τ1, τ2):

S(τ1, τ2) = 1 +
∞∑
n=1

(−1)n

n!
∫ τ2

τ1

dτ1

∫ τ2

τ1

dτ2 . . .

∫ τ2

τ1

dτn T {HA(τ1) . . . HA(τn)} ,

which operates on a harmonic system using the anharmonic Hamiltonian as a per-
turbation, generates many correlation functions of phonon field operators. Applying
the evolution operator

S(β�; 0) = 1 +
∞∑
n=1

(−1)n

n!
∫ β

0
dτ1

∫ β

0
dτ2 . . .

∫ β

0
dτn T {HA(τ1) . . . HA(τn)} ,

to the Green function:

G(q j j ′; τ ) = 〈S(β�; 0)〉−1
0 〈T [A(q j; τ )A†(q j ′)S(β�; 0)]〉0 (6.4.1)

where the thermal average is that of the harmonic system, results in a series expansion
for the Green function of the form:

G(q j j ′; τ ) = G(0)(q j j ′; τ ) + G(1)(q j j ′; τ ) + · · · + G(n)(q j j ′; τ ) + · · ·

where the terms follow the order of the expansion in n and the first term is the
harmonic phonon propagator G0. Higher order terms involve pairs of phonon field
operators which can be visualised using Feynman diagrams and classified into con-
nected diagrams, those with a pair of external phonons entering and leaving the
diagram and disconnected diagrams, those that do not. The disconnected diagrams
are cancelled exactly by terms in the denominator of the Green function expansion
and hence do not contribute to the self-energy. Of the connected diagrams, if it is
possible to separate the external phonon lines by severing a single internal line, then
the diagram is said to be reducible and can be broken into a series of irreducible
diagrams. An elegant way of generating the Feynman diagrams up to a prescribed
order using a double-time Green function approach was proposed by Della Valle
[10] and the results up to and including fourth-order are shown in Figs. 6.1 and
6.2 for frequency-independent and frequency-dependent cases. This approach lends
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Fig. 6.1 Frequency-independent reducible Feynman diagrams up to fourth order. In order of expan-
sion from top-left to bottom-right calculated usingDella Valle’s double-timeGreen functionmethod
[10]

Fig. 6.2 Frequency-dependent reducible Feynman diagrams up to fourth-order. In order of expan-
sion from top-left to bottom-right calculated usingDella Valle’s double-timeGreen functionmethod
[10]

itself well to an algorithmic or computational method of automatically generating
all reducible diagrams up to a prescribed order.
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6.5 Graphical Representation of Green Functions

To graphically represent the series for the Green function, G(q j j ′; τ ) a vertex exists
for each time τ and anharmonic coupling coefficient Vm (m = 3, 4, . . .) from the
anharmonic Hamiltonian. Lines are drawn between the vertices from τi to τ j and
associated with a phonon Green function G0(q j j ′; τi − τ j ). Every line is labelled
by a wavevector q and branch j . Momentum q and energy ω must be conserved at
each vertex. The following method can be used to derive expressions for the self-
energy of connected Feynman diagrams containing independent phonons with Green
functions of the form G0(q j j ′; iωn) and n vertices.

1. Draw all topologically distinct and different connected diagrams containing n
vertices.

2. Associate momenta qi , frequencies ωi
n and branch ji with each line such that

external lines are labelled by q, ωn , j and crystal momentum and energy is con-
served at every vertex.

3. Start with a (−1/β�) pre-factor.
4. Multiply by (−β)n .
5. Multiply by the number of ways of pairing the phonon modes in the diagram,

which comes from the symmetry of the vertex Vm in (q jω) and is essentially a
combinatorial factor (a) × (b) × (c) where

(a) The number of topologically equivalent diagrams for a fixed arrangement
of vertices.

(b) The number of different labellings qi , ji at each vertex for each pairing
scheme.

(c) The number of ways of permuting the m-phonon vertices.

6. Multiply by the appropriate anharmonic coupling coefficients Vm for each vertex.
7. For each internal line labelled λi , multiply by the phonon propagator G0(qi ji ;

iωi
n).

8. Sum over all momenta and branches λi ≡ {qi , ji } and frequencies ωi
n .

6.6 Evaluating Matsubara Sums

The sums over n can be evaluated using contour integration [1, 3]. For instance, for
the contour integral ∫

C
f (iω)n̄(iω)d(iω) (6.6.1)

the contour C is taken around all singularities of the functions f (iω) and n̄(iω) in
the complex plane. If the function f (iω) is well behaved and vanishes at infinity
then the integral is equal to zero. The summation can then be evaluated in terms of
the residues at the p poles of f (iω) and n poles of n̄(iω);
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0 =
∑
n

R [n̄(iωn)] f (iωn) +
∑
p

R
[
f (iωp)

]
n̄(iωp) (6.6.2)

The function n̄(ω) is the Bose–Einstein phonon population function:

n̄(ω) = 1

exp(β�ω) − 1
, (6.6.3)

which in the case of an imaginary frequency is

n̄(iω) = 1

exp(iβ�ω) − 1
. (6.6.4)

This function has singularities at

ωn = 2πn

β�
(6.6.5)

where n ∈ Z . The residues at these points are identical and equal to (−i/β�). We
can therefore simplify

∑
n

f (iωn) = β�

i

∑
p

R
[
f (iωp)

]
n̄(iωp) (6.6.6)

where the sum on the right is over the p poles of f (iω).

6.7 The Self Energy, �

The sum of all irreducible connected diagrams (ones that cannot be split into two
diagrams by severing a single propagator line) as shown in Fig6.3 is known as the
self-energy, �. It is obviously impossible to calculate the diagram series to infinite
order and indeed it is also very difficult to calculate the diagrams above a few orders
and so it is necessary to truncate the expansion at a point that is computationally
convenient. We will now calculate some of the lowest order diagrams using the
diagrammatic method and the Matsubara sum technique.

Fig. 6.3 Self-energy summation of irreducible diagrams. The shaded circle on the left represents
the sum of all irreducible diagrams to infinite order
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6.7.1 Loop Interaction

The lowest order anharmonic interaction is the ‘loop’ process shown in Fig. 6.4 and
consists of a single fourth-order vertex connecting an internal phononλ1 with external
phonons λ and λ′. An expression for the self-energy �loop can be derived by using
the rules for interpreting diagrams. There are twelve ways of pairing the phonon
propagators with the single fourth-order vertex and one internal phonon propagator
labelled λ1, so the self-energy �loop is given by

�loop = 12

�

∑
λ1

∑
n1

V4(λ,−λ′,λ1,−λ1)G0(λ1; iωn1), (6.7.1)

where the bare Green function propagator is given by

G0(λ; iωn) = 1

β�

{
1

ω(λ) + iωn
+ 1

ω(λ) − iωn

}
.

To evaluate this using Matsubara sums, first note that f (iωn1) = G0(λ1; iωn1) has
two poles at iωn1 = ±ω1 with residues R[ f (iωn1)] = ±i/β�, where ωi ≡ ω(λi ) for
brevity. This leads to

∑
n1

G0(λ1; iωn1) = β�

i

∑
p

R[ f (iωp)]n̄(iωp)

= 1

exp(β�ω1) − 1
− 1

exp(−β�ω1) − 1

= 2

exp(β�ω1) − 1
+ 1

= 2n̄(ω1) + 1

where n̄(ω1) is theBose–Einstein phononpopulation. Substituting theMatsubara sum
into Eq.6.7.1 results in a final expression for �loop, the loop diagram self-energy:

Fig. 6.4 Feynman diagram
of ‘Loop’ interaction
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�loop = 12

�

∑
λ1

V4(λ,−λ′,λ1,−λ1) [2n̄(ω1) + 1] . (6.7.2)

Note that this self-energy is frequency-independent because the frequency of the
λ ≡ λ′ phonon modes does not enter the expression. This manifests as the self-
energy being a purely real shift in the frequency of the phonon, �loop = �loop. The
fourth-order vertex is given by

V4(λ, −λ′, λ1, −λ1) = V4(q j1, −q j2, 0 j, 0 j)

×
(

�2

16N 4ωq j1ω−q j2ω0 jω0 j

) 1
2 ∑

κ1κ2κ3κ4
α1α2α3α4

∂2

∂uκ3
α3 (0)u

κ4
α4 (0)

�κ1κ2
α1α2

(q, −q)

× εκ1
α1

(q j1)√
Mκ1

εκ2
α2

(−q j2)√
Mκ2

εκ3
α3

(0 j)√
Mκ3

.
εκ4
α4

(0 j)√
Mκ4

. (6.7.3)

where momentum and energy is conserved.

6.7.2 Bubble Interaction

The next anharmonic phonon interaction is the ‘bubble’ process shown in Fig. 6.5,
which consists of two third-order anharmonic vertices which couple the external
phonons to two internal phonons λ1 and λ2. To derive the self-energy �bubble, again
the rules can be followed, first noting that there are two vertices and eighteen ways
of pairing the phonons, so the pre-factor is (−18β/�). The self-energy �bubble can
then be written:

�bubble = −18β

�

∑
λ1,λ2

∑
n1

V3(λ, −λ1, −λ2)V3(−λ′, λ1, λ2)G0(λ1; iωn1 )G0(λ2; iωn − iωn1 ).

(6.7.4)
To evaluate the Matsubara sum, the poles and residues of

f (iωn) = G0(λ1; iωn1)G0(λ2; iωn − iωn1)

Fig. 6.5 Feynman diagram
of ‘bubble’ interaction
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must be found where the bare phonon propagator is given by

G0(λ; iωn) = 1

β�

{
1

ω(λ) + iωn
+ 1

ω(λ) − iωn

}
.

In the following treatment, ω(λi ) will be abbreviated by ωi . Substituting the bare
phonon propagator yields:

f (iωn) = 1

(β�)2

{
1

ω1 + iωn1
+ 1

ω1 − iωn1

} {
1

ω2 + i(ωn − ωn1 )
+ 1

ω2 − i(ωn − ωn1 )

}
.

(6.7.5)

The poles of f (iωn) occur for iωn1 = ±ω1 and iωn − iωn1 = ±ω2. For the pole at
iωn1 = +ω1, the residue is

+i

(β�)2

{
1

ω2 + iωn − ω1
+ 1

ω2 − iωn + ω1

}
.

For the pole at iωn1 = −ω1, the residue is

−i

(β�)2

{
1

ω2 + iωn + ω1
+ 1

ω2 − iωn − ω1

}
.

For the pole at iωn1 = +ω2 + iωn , the residue is

+i

(β�)2

{
1

ω1 + ω2 + iωn
+ 1

ω1 − ω2 − iωn

}
.

and finally for the pole at iωn1 = −ω2 + iωn , the residue is

−i

(β�)2

{
1

ω1 − ω2 + iωn
+ 1

ω1 + ω2 − iωn

}
.

Using the identity −n̄(−ω) = n̄(ω) + 1 and the fact that n̄(ω + iωn) = n̄(ω) due
to ωn = 2πn/β�, then after some algebra the summation over n̄(ω1) is found to be
equal to

1

β�

{
n̄(ω2) − n̄(ω1)

ω1 − ω2 − iωn
+ n̄(ω1) + n̄(ω2) + 1

ω1 + ω2 − iωn
+ n̄(ω1) + n̄(ω2) + 1

ω1 + ω2 + iωn
+ n̄(ω1) − n̄(ω1)

ω1 − ω2 + iωn

}
.

The self-energy for the bubble diagram, �bubble is then

�bubble = − 18

�2

∑
λ1,λ2

V3(λ,−λ1,−λ2)V3(−λ′,λ1,λ2)
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×
{
[n̄(ω2) − n̄(ω1)]

(
1

ω1 − ω2 − iωn
+ 1

ω1 − ω2 + iωn

)

+ [n̄(ω1) + n̄(ω2) + 1]

(
1

ω1 + ω2 − iωn
+ 1

ω1 + ω2 + iωn

)}
.

(6.7.6)

This expression is frequency-dependent due to the presence of terms containing iωn .
To obtain the real (phonon) frequency dependence of the self-energy we perform an
analytic continuation of the point iωn from the imaginary axis and into the complex
upper-plane by performing the change of variable:

iωn → � + iη. (6.7.7)

The denominators in the expression for �bubble become;

1

ω + iωn
→ 1

ω + � + iη
(6.7.8)

The imaginary part η is an infinitesimal quantity introduced so that a Fourier trans-
form remains consistent despite the singularity at ω = −�. Applying Sokhotskii’s
formula [11] in the limit η → 0, yields:

lim
η→0+

(
1

ω + � ± iη

)
= ℘

(
1

ω + �

)
∓ iπδ(ω + �) (6.7.9)

where ℘ indicates the Cauchy principal part of the expression inside the brackets.
The self-energy is now a complex quantity given by � = � + i� where � and �

are given by

�bubble(�) = 18

�2

∑
λ1,λ2

V3(λ,−λ1, −λ2)V3(−λ′, λ1, λ2)

×
{
[n̄(ω2) − n̄(ω1)]

[
℘

(
1

ω1 − ω2 − �

)
+ ℘

(
1

ω1 − ω2 + �

)]

+ [n̄(ω1) + n̄(ω2) + 1]

[
℘

(
1

ω1 + ω2 − �

)
+ ℘

(
1

ω1 + ω2 + �

)]}

and

�bubble(�) =18

�2

∑
λ1,λ2

V3(λ,−λ1,−λ2)V3(−λ′,λ1,λ2)

× {[n̄(ω2) − n̄(ω1)] [δ(ω1 − ω2 − �) + δ(ω1 − ω2 + �)]

+ [n̄(ω1) + n̄(ω2) + 1] [δ(ω1 + ω2 − �) + δ(ω1 + ω2 + �)]} .
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The real part, � is a temperature and frequency-dependent shift in the phonon fre-
quency whereas the imaginary part, � is responsible for giving the phonon a finite
lifetime. The real and imaginary parts of the self-energy are related by Kramers–
Kronig transformations. Inspection of the above expression reveals that the argument
of the delta function δ(ω1 + ω2 + �) only vanishes when ω1 = ω2 = � = 0 which
obviously does not contribute to � at zero frequency and can therefore be neglected.
The anharmonic coupling coefficients are also symmetrical in λ1 and λ2, leading to
further simplification:

�bubble(�) = 18

�2

∑
λ1,λ2

|V3(λ,λ1,λ2)|2×

{[n̄(ω2) − n̄(ω1)] + [δ(ω1 − ω2 − �) + δ(ω1 − ω2 + �)]
+ [n̄(ω1) + n̄(ω2) + 1] δ(ω1 + ω2 − �)} .

For a zone centre transverse optic (TO) phonon mode with λ,λ′ = {q = 0, j},
momentum conservation at the vertices dictates that the internal modes λ1 and λ2,
whilst residing on different branches, have equal yet opposite wavevectors q. The
third-order dynamical tensor in this case is given by the derivative of the dynamical
matrix

V3(λ,λ1,λ2) = V3(0 j,q j1,−q j2)

=
(

�

8N 3ω0 jωq j1ω−q j2

) 1
2 ∑

κ1κ2κ3
α1α2α3

∂

∂uκ3
α3(0)

�κ1κ2
α1α2

(q,−q)

× εκ3
α3

(0 j)√
Mκ3

εκ1
α1

(q j1)√
Mκ1

εκ2
α2

(−q j2)√
Mκ2

. (6.7.10)

6.7.3 Higher Order Interactions

It is worthwhile considering higher order interactions such as the one shown below
in Fig. 6.6, with self-energy

Fig. 6.6 Feynman diagram
of higher order interaction
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�tri = −96

�2

∑
n1,n2

∑
λ1,λ2,λ3

V4(λ,−λ1,−λ2,−λ3)V4(−λ′,λ1,λ2,λ3)

×G0(λ1; iωn1)G0(λ2; iωn2)G0(λ3; iωn − iωn1 − iωn2).

(6.7.11)

The above Green function product is

f (iωn1) = 1

(β�)3

{
1

ω1 + iωn1
+ 1

ω1 − iωn1

} {
1

ω2 + iωn2
+ 1

ω2 − iωn2

}

×
{

1

ω3 + i(ωn − ωn1 − ωn2)
+ 1

ω3 − i(ωn − ωn1 − ωn2)

}

Poles occur for iωn1 = ±ω1, iωn2 ± ω2, iωn = ±ω3 − (iωn1 + iωn2). For the pole at
iωn1 = +ω1, the residue is

+i

(β�)3

{
1

ω2 + iωn2
+ 1

ω2 − iωn2

} {
1

ω3 − ω1 + i(ωn − ωn2 )
+ 1

ω3 + ω1 − i(ωn − ωn2

}
.

For the pole at iωn1 = −ω1, the residue is

+i

(β�)3

{
1

ω2 + iωn2
+ 1

ω2 − iωn2

}{
1

ω3 + ω1 + i(ωn − ωn2 )
+ 1

ω3 − ω1 − i(ωn − ωn2

}
.

For the pole at iωn2 = +ω2, the residue is

+i

(β�)3

{
1

ω1 + iωn1
+ 1

ω1 − iωn1

} {
1

ω3 − ω2 + i(ωn − ωn1 )
+ 1

ω3 + ω2 − i(ωn − ωn1

}
.

For the pole at iωn2 = −ω2, the residue is

+i

(β�)3

{
1

ω1 + iωn1
+ 1

ω1 − iωn1

} {
1

ω3 + ω2 + i(ωn − ωn1 )
+ 1

ω3 − ω2 − i(ωn − ωn1

}
.

For the pole at iωn = +ω3 − (iωn1 + iωn2), the residue is

−i

(β�)3

{
1

ω1 + ω3 − (iωn + iωn2)
+ 1

ω1 − ω3 + (iωn + iωn2)

}

×
{

1

ω2 + ω3 − (iωn1 + iωn)
+ 1

ω2 − ω3 + (iωn1 + iωn)

}
.
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For the pole at iωn = −ω3 − (iωn1 + iωn2), the residue is

−i

(β�)3

{
1

ω1 − ω3 − (iωn + iωn2)
+ 1

ω1 + ω3 + (iωn + iωn2)

}

×
{

1

ω2 − ω3 − (iωn1 + iωn)
+ 1

ω2 + ω3 + (iωn1 + iωn)

}
.

After some algebra we obtain the real part of the self energy:

�(ω) = 96

�2

∑
λ1λ2λ3

|V4(λ,λ1,λ2,λ3)|2

× ℘

{
[(n̄1 + 1)(n̄2 + 1)(n̄3 + 1) − n̄1n̄2n̄3]

(
1

ω − ω1 − ω2 − ω3
− 1

ω + ω1 + ω2 + ω3

)

+ 3 [n̄1(n̄2 + 1)(n̄3 + 1) − (n̄1 + 1)n̄2n̄3]

(
1

ω + ω1 − ω2 − ω3
− 1

ω − ω1 + ω2 + ω3

)}

and the imaginary part:

�(ω) = 96

�2

∑
λ1λ2λ3

|V4(λ, λ1, λ2, λ3)|2

× {[(n̄1 + 1)(n̄2 + 1)(n̄3 + 1) − n̄1n̄2n̄3] [δ(ω − ω1 − ω2 − ω3) − δ(ω + ω1 + ω2 + ω3)]

+ 3 [n̄1(n̄2 + 1)(n̄3 + 1) − (n̄1 + 1)n̄2n̄3] [δ(ω + ω1 − ω2 − ω3) − δ(ω − ω1 + ω2 + ω3)]} ,

where n̄(ωi ) has been abbreviated by n̄i .

6.8 Dyson’s Equation and Dressed Phonons

The diagram calculations so far have used the bare non-interacting phonon Green
function propagator G0. A more accurate representation takes the actual self-energy
of the interacting phonon into account. The self-energy� is the sum of all irreducible
connected Feynman diagrams, yet theGreen function still consists of an infinite chain
of self-energy diagrams as shown in Fig. 6.7. This can be represented as the series:

G = G0 + G0 � G0 + G0 � G0� G0 + G0 � G0 � G0 � G0 + · · ·

Fig. 6.7 Dyson’s equation for the Green function. The shaded circles are the self-energy (summed
reducible series of diagrams)
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which can be factored to yield a much simplified and more elegant relation:

G = G0(1 + � G0 + � G0 � G0 + � G0 � G0 � G0 + · · · )
= G0

1 − � G0
.

This is known as Dyson’s equation and the resulting phonon propagator is described
as dressed since it interacts with other phonons and acquires self-energy in doing so.
If we take the Green function representing the free phonon propagator and assume
λ ≡ {q j} for brevity, then

G0(λ; iωn) = 1

β�

{
1

ω(λ) + iωn
+ 1

ω(λ) − iωn

}
= 1

β�

2ω(λ)

ω(λ)2 + ω2
n

.

The dressed phonon propagator can be written using Dyson’s equation

G(λ; iωn) = G0(λ; iωn)

1 − �(λ; iωn)G0(λ; iωn)
,

which upon substitution of the free phonon propagator G0(λ; iωn) yields

G(λ; iωn) = 1

β�

2ω(λ)

ω(λ)2 + ω2
n − 2ω(λ)�(λ; iωn)

.

The poles of G(λ; iωn) occur when

(iωn)
2 = ω(λ)2 − 2ω(λ)�(λ; iωn),

which, if �(λ; iωn) 
 ω(λ), can be approximated as

(iωn) = ω(λ) − �(λ; iωn).

To see how this affects the previous diagram calculations we can replace the bare
phonon propagator in the bubble diagramwith a dressed phonon propagator as shown
in Fig. 6.8. The calculations using Matsubara sums are similar, although the algebra

Fig. 6.8 Feynman diagram
of ‘bubble’ interaction with
dressed phonons
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is slightly more tedious because the poles are complex. The imaginary part of the
self energy, � is then

�bubble(�) = 18
∑
1,2

|V3(0, T O; 1; 2)|2×

�̄

(� − ω1 + ω2)2 + �̄2
[n(ω1) − n(ω1 − �) + n(ω2 + �) − n(ω2)] ,

where the inverse lifetimes �1(ω1) and �2(ω2) of phonons λ1 and λ2 are assumed
to be of similar order of magnitude and therefore replaced by an average value �̄.
Note that the delta functions become Lorentzians which provide a larger contribution
when the inverse lifetime �̄ is of similarmagnitude to the frequency�. To include the
effects of dressed phonon propagators in calculations of this kind therefore requires a
self-consistent approach, where self-energies are calculated for all phonons on a grid
spanning the Brillouin zone and the process repeated until convergence is achieved.

6.9 Summary and Conclusions

The lattice dynamics of anharmonic crystals were investigated, leading to a quantum
field theory-based definition of the self-energy of phonons in the interaction represen-
tation. The graphical technique for evaluating Feynman diagrams of phonon–phonon
interactions was reviewed and used to derive expressions for the lowest order con-
tributions to the self-energy.
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Chapter 7
Anharmonic Properties of MgO

7.1 Introduction

In this chapter, the anharmonic properties of Magnesium Oxide (MgO) will be
investigated. The harmonic properties calculated using density functional pertur-
bation theory (DFPT) in Chap. 5 and the quantum field theory (QFT) of anharmonic
phonons developed in Chap. 6 will be combined to predict the temperature depen-
dence of thermal expansion, dielectric loss and relative permittivity. MgO is studied
here due to its simple crystal structure and phonon dispersion relations. Having only
two atoms per unit cell makes calculations more manageable and computationally
affordable whilst still retaining the generality of the theoretical framework and pro-
viding proof of principle.

7.2 Self-energy of Phonons

The self-energy for a phonon λ as a function of frequency � is

�λ(�) = �λ(�) + i�λ(�), (7.2.1)

where �λ(�) is a real-valued frequency shift and �λ(�) is the linewidth. The lowest
order anharmonic processes that contribute to the self-energy are shown in Fig. 7.1.
The ‘tadpole’ diagram (a) is associated with thermal strain and is frequency inde-
pendent. This means that it does not contribute to the imaginary part of the phonon
self-energy �, only providing a shift in the real part �T

λ. The ‘loop’ diagram (c)
is also frequency independent like the ‘tadpole’ diagram and contributes a shift in
the phonon frequency of �L

λ. The ‘bubble’ diagram (b) is frequency dependent and
therefore contributes to both the real and imaginary parts of the phonon self-energy,
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λ ; iωn

ηαβ

λ1; iωn1

λ; iωn

λ; iωn

λ1; iωn1

λ2; i(ωn − ωn1)

λ ; iωn

λ; iωn

λ1; iωn1

λ ; iωn

(a) Tadpole diagram. (b) Bubble diagram. (c) Loop diagram.

Fig. 7.1 Feynman diagrams for self-energy of transverse optical phonons

�B
λ (�) = �B

λ(�) + i�B
λ (�). The diagrams in Fig. 7.1 can be summed to give an

approximation for the self-energy;

�λ(�) ≈ �T
λ + �B

λ (�) + �L
λ . (7.2.2)

Since the ‘tadpole’ and ‘loop’ diagrams only contribute to the real part of the self-
energy, we can write

�λ(�) = �T
λ + �B

λ(�) + �L
λ

�λ(�) = �B
λ (�). (7.2.3)

The Hamiltonian of a crystal can be written in terms of phonon creation and anni-
hilation operators, a†(λ) and a(λ), phonon eigenfrequencies ωλ and phonon field
operators A(λ) = a(λ) + a†(λ̄),

H = �

∑
λ

ωλ

[
a†(λ) a(λ) + 1

2

]
+ HA, (7.2.4)

where the anharmonic Hamiltonian HA is given by

HA =
∑
αβ
λλ′

Vαβ(λλ′)ηαβ A(λ)A(λ′)

+
∑

λ1λ2λ3

V (λ1λ2λ3)A(λ1)A(λ2)A(λ3)

+
∑

λ1λ2λ3λ4

V (λ1λ2λ3λ4)A(λ1)A(λ2)A(λ3)A(λ4) + . . . (7.2.5)

The first term in HA is the strain Hamiltonian represented by the ‘tadpole’ diagram
in Fig. 7.1a is associated with thermal strain ηαβ of the unit cell. The real frequency
shift �T as a function of temperature is then representative of the change in phonon
eigenfrequency due to thermal expansion. The contribution to � is
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Fig. 7.2 Bubble diagram

λ; iωn

λ1; iωn1

λ2; i(ωn − ωn1)

λ ; iωn

�T = 2

�

∑
αβ

Vαβ(λλ′)ηαβ . (7.2.6)

The ‘bubble’ diagram, Fig. 7.2, is the lowest order contribution to the frequency
dependent imaginary part of the self-energy �(�), where a zone-centre transverse
optical phonon λ = {0, jT O} interacts with phonons λ1 = {q, j1} and λ2 = {−q, j2}.

The expression for �(�) is

�(�) = 18

�2

∑
q j1,−q j2

|V3(0 j,q j1,−q j2)|2× (7.2.7)

{(n1 − n2) δ(ω2 − ω1 − �) + (n2 − n1) δ(ω1 − ω2 − �) + (n1 + n2 + 1) δ(ω1 + ω2 − �)} .

which involves a summation over a regular mesh of q points spanning the whole
Brillouin zone. At each point the following quantities are required:

• Anharmonic coefficient V3(0 j,q j1,−q j2).
• Eigenfrequencies ωi = ω(q ji ).
• The Bose–Einstein phonon occupation numbers ni for phonons of frequency ωi

at temperature T .
• The delta functions δ(ω1 ± ω2 ± �).

Previous attempts to calculate �(�) for silicon and germanium using Density
Functional Perturbation Theory (DFPT) have been reported in the literature by
Debernardi [1–4], Lang [5] and Deinzer [6] who found predictions to be in good
agreement with Raman linewidth measurements although these calculations only
took two-phonon summation processes into account. These are easier to calcu-
late than difference processes since the decay channel only involves phonons at
specific q-points in the Brillouin zone where the energy conservation condition
�ωTO = �ω1 + �ω2 is satisfied. This fact has allowed workers in the field to fit sim-
plified equations such as

�TO = �0(n1 + n2 + 1)

to the linewidth �TO measured by Raman spectroscopy as a function of temperature.
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7.3 The Effect of Isotopes on Self-energy

Both magnesium and oxygen are isotopic, occurring in nature with abundances shown
in Table 7.1. The mean masses of Mg and O are 24.3051 and 15.9994 with variances
of 0.437 and 0.009. It is well known that isotopic disorder within insulating crystals
can cause phonon scattering [7]. In fact for crystals with high atomic mass variances
such as TiO2 and Ge which have mass variances of σ2

T i = 0.659 and σ2
Ge = 3.019,

the isotopic scattering is comparable with ordinary thermal scattering. At low tem-
peratures, phonon scattering by isotopes can be the dominant scattering mechanism.
This has been observed experimentally for thermal conductivity measurements as
functions of temperature [8]. Recently, isotopically pure samples of Ge single crys-
tals have become available allowing a comparison between the naturally occurring
Ge and various isotopes. Measurements of the thermal conductivity, κ of isotopically
pure Ge at 2 ◦K have shown that κ is up to 8 times higher than in naturally occurring
Ge [9]. Similarly, measurements of the linewidths of optic phonons in various isotopic
Ge samples using Raman spectroscopy have been reported [10, 11]. The self-energy
due to isotopic disorder has been studied extensively, especially in recent years since
the availability of isotopically pure elements. The bulk of the work has been on
germanium since it has very dispersive acoustic phonons. Serrano et al. [12] found
that the linewidth of the E2 phonon in ZnO at 439 cm−1 varied by as much as a factor
of 12 at 7◦ K by changing the isotopic composition. Tamura [13] applied perturba-
tion theory to Green functions accompanied by mass fluctuations and more recently
Widulle [14] calculated the phonon scattering rate in a mono-atomic crystal due to
isotopic disorder using second-order perturbation theory and found the self-energy
due to isotopic scattering to be

�iso = τ−1
iso = g

π

6
ω2ρ(1)(ω), (7.3.1)

where ρ(1)(ω) is the one-phonon density of states and g is the mass variance parameter
representing the level of isotopic disorder in the crystal given by

Table 7.1 Isotopes of Mg and O

Isotope Abundance (%) Atomic weight (amu)
12Mg 78.990 23.985
13Mg 10.000 24.986
14Mg 11.010 25.983
8O 99.756 15.9949
9O 0.039 16.9991
10O 0.205 17.9992
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Fig. 7.3 Estimate of
isotopic contribution to
one-phonon self-energy in
naturally occuring MgO
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The effect in a binary crystal such as MgO can be estimated as follows: for the
case of the zone-centre transverse optic (TO) phonon at approximately 400 cm−1 for
MgO, with gMg = 7.4 × 10−4, ρ(1)(ω) ≈ 0.07 states/cm−1, �iso ≈ 3 cm−1 which is
of the order of the measured linewidth of 6 cm−1. Since �iso varies as ω2, its value
at microwave frequencies up to say 120 GHz (ω ≈ 4 cm−1 and ρ(1)(ω) ≈ 10−7) is
ten orders of magnitude smaller. This suggests that one-phonon processes do not
contribute directly to the phonon self-energy at microwave frequencies. However,
for two-phonon anharmonic processes between high-frequency phonons near the
Brillouin zone boundary, the self-energy due to isotopic disorder may be significant.
Figure 7.3 shows that the imaginary part of the phonon self-energy due to isotopic
disorder in MgO has a similar shape to the one-phonon DOS as expected and is sur-
prisingly significant above 300 cm−1. Unfortunately, without access to isotopically
pure or purified MgO samples, it is impossible to draw any conclusions regarding
the isotopic effect. Nevertheless, the possibility of such samples raises interesting
questions which will be discussed further in the subsequent sections.

7.4 Linear Coefficient of Thermal Expansion

In the previous chapter, it was demonstrated that the harmonic properties of
dielectrics, such as permittivity and phonon mode frequencies can be predicted accu-
rately and efficiently from first principles using density functional perturbation theory
(DFPT). However, real crystals are not harmonic and many important phenomena
such as thermal conductivity, thermal expansion and sound absorption are due to the
effect of anharmonic phonon interactions. The temperature dependence of the crystal
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unit-cell volume is an example of a phenomenon due entirely to the anharmonicity
of phonons and is therefore a good test of the ability to predict anharmonic effects
from first principles using DFPT.

At absolute zero temperature (T = 0) and in the absence of external forces, the
equilibrium atomic positions in a crystal occur at the minimum of the Helmholtz free
energy:

F(T, V ) = U (T, V ) − T S(T, V ),

whereU (T, V ) is the potential energy and S(T, V ) is the entropy of the crystal. In the
harmonic approximation the crystal can be considered as a collection of independent
harmonic oscillators, so that the Helmholtz free energy can be expressed in vibrational
terms:

F(V, T ) = F0(V ) + Fv(T, V ),

where the F0(V ) term corresponds to the free energy at T = 0, which can be written
as

F0(V ) = �0(V ) + F0
v (V ),

where �0(V ) is the total energy and F0
v (V ) is. F0

v (V ) is the zero-point vibrational
energy:

F0
v (V ) = 1

2

∑
q j

�ω(q j, V ),

where ω(q j) are the phonon eigenfrequencies at wave vector q on branch j at T = 0.
The vibrational contribution to the Helmholtz free energy as a function of temperature
is given by

Fv(T ) = 1

β

∑
q j

ln {1 − exp (−β�ω(q j))} . (7.4.1)

A consequence of neglecting phonon–phonon interactions in the harmonic approxi-
mation is that the equilibrium volume does not depend on temperature and the phonon
eigenfrequencies do not depend on volume. Hence, in the harmonic approximation
the linear coefficient of thermal expansion, defined by

α(T ) = 1

3V

∂V

∂T

∣∣∣∣
P

= − 1

3V

∂P

∂T

∣∣∣∣
V

· ∂V

∂P

∣∣∣∣
T

,

vanishes. Allowing the phonon eigenfrequencies ω(q j) to be volume dependent leads
to a modification of the vibrational part of the free energy

Fv(T, V ) = 1

β

∑
q j

ln
{
1 − exp

[−β�ωq j (V )
]}

. (7.4.2)
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This approximation is known as the Quasi-Harmonic Approximation (QHA).
Expanding the free energy as a Taylor series about the equilibrium volume V0 at
T = 0:

F(T, V ) = F(T, V0) + (V − V0)
∂F(T, V )

∂V

∣∣∣∣
V0

+ 1

2
(V − V0)2 ∂2F(T, V )

∂V 2

∣∣∣∣∣
V0

+ . . .

yields the expansion coefficients:

∂F(T, V )

∂V

∣∣∣∣
V0

= ∂F0(V )

∂V

∣∣∣∣
V0

+ ∂Fvib(T, V )

∂V

∣∣∣∣
V0

and
∂2F(T, V )

∂V 2

∣∣∣∣
V0

= ∂2F0(V )

∂V 2

∣∣∣∣
V0

+ ∂2Fvib(T, V )

∂V 2

∣∣∣∣
V0

.

At absolute zero temperature, the equilibrium volume V0 is found by definition from

∂F0(V )

∂V

∣∣∣∣
V0

= 0,

and since the zero-point energy is only defined for V0, the first-order coefficient is

∂F(T, V )

∂V

∣∣∣∣
T,V0

= ∂Fvib(T, V )

∂V

∣∣∣∣
T,V0

.

In the QHA, only first-order derivatives of the eigenfrequencies with respect to vol-
ume are considered, hence the second-order coefficient can be written as

∂2F(T, V )

∂V 2

∣∣∣∣
T,V0

≈ ∂2F0(V )

∂V 2

∣∣∣∣
V0

≈ B0

V0
,

where B0 is the bulk modulus of the crystal at equilibrium:

B0 = −V0
∂P

∂V

∣∣∣∣
V0

.

The equation of state
∂F(T, V )

∂V

∣∣∣∣
T

= 0

then leads directly to an expression for the crystal volume as a function of temperature

V (T ) = V0 − V0

B0

∂Fvib(T, V )

∂V

∣∣∣∣
T,V0

.
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Introducing the mode Grüneisen parameter,

γ(q j) = − V0

ω(q j, V0)

∂ω(q j, V )

∂V

∣∣∣∣
V=V0

,

a measure of the fractional change in a phonon mode eigenfrequency with respect to
changes to the volume, leads to a simplified form

V (T ) = V0 + 1

B0

∑
q j

�ω(q j, V0)

exp (β�ω(q j, V0)) − 1
γ(q j)

= V0 + 1

B0

∑
q j

�ω(q j)n[ω(q j, T ]γ(q j), ,

where n[ω(q j, T )] is the Bose–Einstein phonon population. The linear coefficient
of thermal expansion can then be derived straightforwardly as

α(T ) = 1

3V

∂V

∂T

= − 1

3βV

V0

B0

∂2

∂T∂V

∑
q j

ln
[
1 − exp (−�βω(q j, V ))

]

= − �

3V

V0

B0

∂

∂T

∑
q j

[
exp (�βω(q j, V )) − 1

]−1 ∂ω(q j, V )

∂V

∣∣∣∣
V0

.

This expression can be further simplified by introducing the modal contribution to
the specific heat at constant volume for a single phonon, cv(q j, T ):

cv(q j, T ) = �ω(q j, V0)

V0

∂

∂T

[
exp (�βω(q j, V0)) − 1

]−1
.

The resulting compact form for the linear coefficient of thermal expansion is then

α(T ) = 1

3B0

∑
q j

γ(q j)cv(q j, T ). (7.4.3)

Figure 7.4 shows the excellent agreement between the calculated and experimentally
determined linear coefficients of thermal expansion for single-crystal MgO.
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Fig. 7.4 Linear coefficient
of thermal expansion α for
MgO, calculated using the
quasi-harmonic
approximation (solid line).
Solid circles are measured
points by White and
Anderson [15]
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7.5 Thermal Strain Contribution to Phonon Self-energy

The real frequency shift of a phonon ω(q j) with wave vector q on branch j due to
thermal expansion, �T(q j) can be calculated within the Quasi-Harmonic Approxi-
mation using the mode Grüneisen parameters and the expression for the volume as a
function of temperature. Looking at the definition of the mode Grüneisen parameter,

γ(q j) = − V0

ω(q j)
∂ω(q j)

∂V

∣∣∣∣
V=V0

one can derive an expression for the change in the frequency �ω(q j) due to a change
in volume �V :

�ω(q j) = −γ(q j)ω(q j)
�V

V0
.

and since
�V = �B−1

0

∑
q j

ω(q j)n(q j)γ(q j),

an expression for the real frequency shift, �T (q j) = �ω(q j), due to thermal strain
can be found as

�T (q j) = �ω(q j) = −γ(q j)ω(q j)�
V0B0

∑
q′ j ′

ω(q′ j ′)n(q′ j ′)γ(q′ j ′), (7.5.1)

where V0 is the crystal unit-cell volume and B0 is the Bulk modulus at absolute
zero temperature. The mode Grüneisen parameters for the zone-centre TO and
LO phonons in MgO were calculated to be γT = 2.308 and γL = 1.148. The real
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Fig. 7.5 Real frequency
shift of zone-centre (q = 0)
transverse optical (TO) and
longitudinal (LO) phonons
due to thermal strain,
calculated using the mode
Grüneisen parameters,
γT = 2.308 and γL = 1.148,
within the quasi-harmonic
approximation
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frequency shifts for the TO and LO phonons of MgO were calculated using Eq. 7.5.1
and are shown in Fig. 7.5.

7.6 Temperature Coefficient of Permittivity

The static permittivity εr , expressed by the Lyddane–Sachs–Teller relation is depen-
dent on the frequencies of the longitudinal and transverse optic phonon modes for
an isotropic medium such as MgO,

εr = ε∞
ω2
L

ω2
T

. (7.6.1)

The temperature coefficient of permittivity τε, which is defined as

τε = 1

εr

∂εr

∂T
(7.6.2)

can be directly related to the mode Grüneisen parameters of the zone-centre (q = 0)
optic modes:

τε = 1

εr

∂εr

∂T

= 2
∂V

∂T

(
1

ωL

∂ωL

∂V
− 1

ωT

∂ωT

∂V

)

= 2

V0

∂V

∂T
(γT − γL)

= 6Vα

V0
(γT − γL) .
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Fig. 7.6 Thermal strain
contribution to temperature
coefficient of permittivity τε

for MgO. Calculated
contribution (solid line) and
measured (dashed line). The
measured data are from
Chap. 3
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If we take V/V0 ≈ 1 (since V300/V0 = 1.004), then

τε ≈ 6α (γT − γL) .

Recalling that the mode Grüneisen parameters for the zone-centre optical phonons in
MgO were calculated earlier to be γT = 2.308 and γL = 1.148, leads to an approx-
imate relation for the thermal strain component of the τε:

τε ≈ 7α,

where α is the linear coefficient of thermal expansion (Fig. 7.6).

7.7 Dielectric Loss

For a cubic system such as MgO, Gurevich’s theory predicts that dielectric losses
at low temperatures follow tan δ ∝ ω2T 4. These losses are mostly due to transitions
between acoustic phonon branches due to their higher occupation at low tempera-
tures compared with optical phonons. At higher temperatures where optical phonon
branches become populated, losses are expected to follow tan δ ∝ ω2T . For MgO
with two atoms per unit cell and possessing a single degenerate transverse optical
(TO) mode, the complex relative permittivity as a function of field frequency, ε(ω) is

ε(ω) = ε∞ + ω2
TO�ε

ω2
TO − ω2 − 2iωTO�TO(ω)

,

where �ε = ε0 − ε∞, ε0 is the static permittivity, ωTO is the frequency and �TO(ω)

is the relaxation frequency of the transverse optical mode. Since the microwave
field frequency is very small compared to the transverse optical phonon frequency,

http://dx.doi.org/10.1007/978-3-319-44547-2_3
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ω � ωTO, the real and imaginary parts of the complex permittivity, ε′′ can be written
as

ε′(ω) ≈ ε0 (7.7.1)

and

ε′′(ω) = �ε
2�TO(ω)

ωTO
. (7.7.2)

The loss tangent, tan δ, can then be simplified as

tan δ(ω) = �ε

ε0
· 2�TO(ω)

ωTO
. (7.7.3)

This expression shows that the loss tangent is inversely proportional to the frequency
of the transverse optic mode. A rough estimate of the relaxation frequency at ω =
2π × 8 GHz and room temperature can be made for MgO, from knowledge of the
tan δ. Since ε′

αβ(0) ≈ 9, εαβ(∞) ≈ 3, tan δ ≈ 5 × 10−6 and ω j ≈ 400 cm−1 this
yields �(50 GHz) = 1.5 ×10−3 cm−1.

7.8 Phonon–Phonon Contribution to the Self-energy

The lowest order contribution to the frequency dependent and imaginary part �(�)

of the TO phonon self-energy is the ‘bubble’ diagram Fig. 7.7, where a zone-centre
transverse optical phononλ = {0, jT O} interacts with phononsλ1 = {q, j1} andλ2 =
{−q, j2} on different branches.

The expression for �(�) is

�(�) = 18

�2

∑
q j1,−q j2

|V3(0 j, q j1,−q j2)|2×

{2 (n1 − n2) δ(ω2 − ω1 − �) + (n1 + n2 + 1) δ(ω1 + ω2 − �)} ,

where V3(0 j,q j1,−q j2) are the anharmonic coupling coefficients, ni are the Bose–
Einstein phonon occupation numbers, ωi = ω(q ji ) are the eigenfrequencies for
phonons with wave vector q on branch i and � is the frequency of the microwave

Fig. 7.7 Bubble diagram

λ; iωn

λ1; iωn1

λ2; i(ωn − ωn1)

λ ; iωn



7.8 Phonon–Phonon Contribution to the Self-energy 147

field (now represented by a capitalised Greek letter to distinguish from phonon fre-
quencies).

The Kronecker delta functions define points, lines and surfaces within the
Brillouin zone, on which the energy conservation criteria are met. This provides valu-
able information and insight into the types of phonon–phonon interactions which con-
tribute to the self-energy at particular frequencies and temperatures and the regions
in reciprocal space in which they occur. The first delta function δ(ω2 − ω1 − �) is
represented by the Feynman diagrams shown in Fig. 7.8 and is known as a differ-
ence process since the difference in the energies of the two phonons ω2 − ω1 is an
argument in the delta function. The second delta function δ(ω1 + ω2 − �) is a sum-
mation process since a sum of the phonon energies, ω1 + ω2 is an argument. It is
represented by the decay and coalescence Feynman diagrams in Fig. 7.9. The signif-
icance of the difference and summation processes will now be investigated further
by paying attention to the two-phonon density of states.

q1j1

h̄Ω

q2j2 q1j1

q2j2

h̄Ω

(a) Absorption (b) Emission

Fig. 7.8 a Diagram showing absorption of photon �� by two-phonon difference process involving
phonons q1 j1, q2 j2 and anharmonic optical phonon (dashed line). b Diagram showing emission
of anharmonic phonon (dashed line) �� by difference process between phonons q1 j1 and q2 j2,
where q1 = q2

h̄Ω

q1j1

q2j2

q1j1

q2j2

h̄Ω

(a) Decay (b) Coalescence

Fig. 7.9 a Diagram showing absorption of photon by two-phonon summation process where q1 =
−q2 via anharmonic optical phonon decay. b Diagram showing emission of photon by two-phonon
summation (combination) process where q1 = −q2
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7.9 Two-Phonon Density of States

The two-phonon density of states (TPDOS), ρ2(�) can be calculated in the same way
as the phonon density of states, using Blöchl’s improved tetrahedron method [16] for
Brillouin zone integration of Kronecker delta functions of the form δ(ωq j ′ ± ω−q j −
�), where q is the phonon wave vector and j labels the phonon branch. It can be
split into two contributions by difference and summation processes over frequency
bands in � for which the delta function arguments are satisfied:

ρ2(�) = ρ−
2 (�) + ρ+

2 (�) = 1

N

∑
q j j ′

[
δ(ωq j ′ − ω−q j − �) + δ(ωq j ′ + ω−q j − �)

]
,

where

ρ−
2 (�) = 1

N

∑
q j j ′

δ(ωq j ′ − ω−q j − �) (7.9.1)

and

ρ+
2 (�) = 1

N

∑
q j j ′

δ(ωq j ′ + ω−q j − �). (7.9.2)

The summations are taken over N q-points for all phonon branches covering the
Brillouin zone. Figure 7.10 shows the two-phonon density of states, ρ2(�) calculated
for MgO using Blöchl’s improved tetrahedron method.

The difference-band is evident at low frequencies, increasing linearly very quickly
up to about 0.5 THz and then decreasing steadily after 5.5 THz until it is negligi-
ble above 15 THz. The summation-band below these higher frequencies has a very
low density of states (8 orders of magnitude less) due to the very small region

Fig. 7.10 Two-phonon
difference-band and
summation-band density of
states for MgO. The
difference-band plays the
dominant role at low
frequencies
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within the Brillouin zone where energy is conserved, but comes into play at a much
higher frequency band centred around 25 THz. Considering that the field frequen-
cies of interest are in the sub-THz domain it follows that the summation processes
can safely be neglected in the calculation of the TO mode self-energy �TO(�) for
microwave and sub-millimetre wave field frequencies (� < 1 THz) and that differ-
ence processes play the dominant role. Neglecting the summation-band processes
leads to a simplified expression for the relaxation frequency:

�(�) = 36

�2

∑
q j1,−q j2

|V3(0 j,q j1,−q j2)|2 (n1 − n2) δ(ω2 − ω1 − �). (7.9.3)

7.10 Energy Conservation Surfaces

The argument in the Kronecker delta function in (7.9.3) for the two-phonon
difference-band contribution to the self-energy of the TO mode, �TO(�), is only
satisfied at q-points in the Brillouin zone where the following energy conservation
criterion is satisfied:

�ω2 − �ω1 = ��,

where ω2 > ω1 are the frequencies of phonons on different branches and � is the
microwave field frequency.

As the microwave frequency approaches zero, � → 0, energy conservation will
occur around points, lines or surfaces in the Brillouin zone where the constant-
frequency surfaces for different phonon eigenmode branches come into contact or
intersect. The importance of the contact between constant-frequency surfaces of
phonons was first noted by Herring [18, 19], who studied the effect of anharmonic
interaction between acoustic phonons on sound absorption in crystals. It was found
that constant-frequency surfaces intersected at points and along lines of high sym-
metry dependent on the group symmetry of the crystals. Balagurov et al. [20] then
studied the effect of contact points on dielectric relaxation in cubic ferroelectrics and
Gurevich [21–24] applied Herring’s theory to study the role of acoustic phonons in
microwave dielectric loss at low temperatures.

For transverse acoustic phonons in MgO, the intersection of the frequency iso-
surfaces is expected to occur along high-symmetry directions where the phonons
are doubly degenerate as shown in Fig. 7.11. This would represent the limit of the
field frequency going to zero, � → 0. For finite field frequencies, � > 0, the lines
would become cones whose radii would be a function of the modulus of the q-
vector. Figure 7.12 shows contours through a cross section of the Brillouin zone,
where δ(ω1 − ω2 + �) is satisfied for field frequencies � ranging from 1 cm−1 (30
GHz) to 28 cm−1 (840 GHz), where both ω1 and ω2 are transverse acoustic (TA)
phonons. Along the �-K direction, the q-points at which energy is conserved are a
linear function of field frequency, |q|� ∝ �, as one would expect for low-frequency
linear dispersion phonons. For the X − W direction along the edge of the Brillouin
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Fig. 7.11 Phonon dispersion
curves for MgO along
high-symmetry directions in
the Brillouin zone. The
transverse acoustic and
optical phonon branches are
doubly degenerate along
these directions. Filled
circles are neutron
diffraction data [17]
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Fig. 7.13 Transverse acoustic phonons: Surfaces on which the energy conservation criterion,
δ(ω j1 − ω j2 + �) is satisfied, where ω j2 > ω j1 and j1 and j2 are different transverse acoustic
(TA) phonon branches. The microwave field frequency � = 9, 30, 60, 90 GHz for (a), (b), (c) and
(d), respectively. For � = 9 GHz the energy conservation surface exists about the high-symmetry
directions � → � → X and � → � → L , where for � → 0, the transverse acoustic phonons
become doubly degenerate in frequency for � = 0. The isosurface has fourfold and threefold sym-
metry about the � and � directions, respectively, and an interesting threefold connecting manifold
between them for low microwave frequency �

zone boundary, they seem to follow a power law of roughly |q|� ∝ �
1
3 . To visualise

the surfaces in three dimensions, a computer program was developed which applied
the ‘marching tetrahedra’ algorithm [25] in conjunction with tricubic interpolation
of the phonon frequencies to produce fine triangular meshes representing the sur-
faces on which the phonon transition energy conservation criteria δ(ω j1 − ω j2 + �)

are met throughout the Brillouin zone. Surfaces consisting of hundreds of thousands
of triangles, were visually rendered using three-dimensional computer graphics1

1OpenGL.
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Fig. 7.14 The two-phonon
difference-band density of
states calculated by
interpolated integration over
a mesh generated by the
marching tetrahedron
method. Also shown are the
partial contributions from
phonon transitions jn → jm ,
where n = 1, . . . , 5 and
m = n + 1, . . . , 6. The inset
shows which phonon
transitions contribute most to
the two-phonon
difference-band density of
states
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and integrated analytically to calculate the partial two-phonon density of states in
a similar way to Blöchl’s tetrahedron method but with improved accuracy due to
tricubic interpolation of the phonon frequencies (Fig. 7.14). Furthermore, the inte-
gration method serves as a basis for calculating the relaxation frequency �TO(�).
For example, Fig. 7.13 shows manifolds on which energy conservation, defined by
the Krönecker delta function δ(ω2 − ω1 + �), is satisfied for transitions between the
lowest acoustic phonon branches j1 and j2 for field frequencies of � of 9, 30, 60
and 90 GHz. The shape is evidently similar to the contours shown in Fig. 7.12, but
also shows the fourfold and threefold symmetry about the � and � directions in the
Brillouin zone.

7.11 Weighted Two-Phonon Density of States

If we compare the expressions for the two-phonon difference-band density of states,
ρ−

2 (�) (7.9.1) with the expression for the self-energy due to the bubble diagram:

�−
TO(�) = 36

�2

∑
q j1 j2

|V3(0 jTO,q j1,−q j2)|2 (n1 − n2) δ(ω2 − ω1 − �)

it can be seen that the self-energy calculation is essentially a weighted two-phonon
density-of-states calculation with weights defined by

w−
q j j ′ = 36

�2
|V3(0 jTO,q j1,−q j2)|2

[
n(ωq j ′) − n(ωq j )

]
.

The weights encapsulate the third-order anharmonic coefficientsV3(0 jTO,q j1,−q j2)
and the difference in the Bose–Einstein phonon population numbers of the phonon
branches j1 and j2. The Bose–Einstein phonon population is defined as
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Fig. 7.15 Difference in
Bose–Einstein phonon
populations for transition
between phonon branches
with energy difference ��,
where the microwave field
frequency is � = 2π×10
GHz

n(ωq j ) =
[

exp

(
�ωq j

kT

)
− 1

]−1

,

so the population difference for two branches can be approximated for field frequen-
cies � much lower than the phonon frequencies, � � ω j , by

n2 − n1 = n(ω2) − n(ω1) = n(ω1 + �) − n(ω1)

≈ �
∂n(ω)

∂ω

∣∣∣∣
ω=ω1

= ��

kT
n1(n1 + 1). (7.11.1)

This shows that the difference in phonon populations is far greater for acoustic low-
frequency phonons which are much more heavily populated than optic phonons at
low temperatures. The calculation of the relaxation frequency, �(�) therefore only
requires a minor modification to the tetrahedron or marching tetrahedra integration
methods used to calculate the two-phonon difference-band density of states.

Figure 7.15 shows the difference in phonon populations for a fixed field frequency
of � = 2π×10 GHz. For low-frequency acoustic phonons, the population difference
is orders of magnitude greater than at higher optical frequencies.

7.12 Anharmonic Phonon Coupling Tensors

Third-order anharmonic coupling tensors were calculated using both the direct
‘2n + 1’ method and the indirect ‘frozen-phonon’ finite-difference method. The
‘2n + 1’ method directly calculates derivatives of the dynamical matrix using the
third-order perturbation of the density with respect to phonon normal modes whereas
the Frozen-Phonon method takes finite differences between dynamical matrices for
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Table 7.2 Comparison of ‘2n + 1’ theorem and Frozen-phonon calculated derivatives of dynam-
ical matrices with respect to the transverse optic (TO) phonon normal-mode coordinate,
∂ D̃κ1κ2

α1α2
(q)/∂Q(0 jTO). Values shown here are for κ1 = 1, κ2 = 2, α1 = 1, α2 = 1

q-point ‘2n + 1’ theorem Frozen-phonon method

(0.00, 0.00, 0.00) 0.3441 0.3440

(−0.25, 0.25, −0.25) 0.3441 0.3440

(0.50, −0.50, 0.50) 0.4851 0.4347

(0.00, 0.50, 0.00) 0.0243 0.0315

(0.75, −0.25, 0.75) 0.332 0.3469

(0.50, 0.00, 0.50) 0.4854 0.4908

(0.00, −1.00, 0.00) 0.000 0.0001

(−0.50, −1.00, 0.00) 0.4865 0.4918

the equilibrium structure and structures with small normal-mode atomic displace-
ment patterns ‘frozen’ into them. The ‘2n + 1’ and ‘frozen-phonon’ methods each
produced derivatives of the dynamical matrix with respect to normal-mode coordinate
of the TO phonon for eight special q-points corresponding to the Monkhorst-Pack set
[26] for the irreducible wedge of a 4 × 4 × 4 grid in reciprocal space. A comparison
of the largest components obtained using these two techniques are shown in Table 7.2
where good agreement is evident.

The third-order anharmonic tensors can then be calculated via the Frozen-Phonon
method by taking the dynamical-matrix derivatives with respect to TO phonon dis-
placements:

V3(0 jTO,q j1,−q j2) =
(

�
3

8N 3ωq j1ωq j2ω0 jTO

) 1
2 ∑

α1α2
κ1κ2

εκ1
α1

(q j1)εκ2
α2

(q j2)
∂ D̃κ1κ2

α1α2
(q)

∂Q(0 jTO)
,

where εκ
α(q ji ) is the α-component of the atomic displacement for atom κ associated

with phonon mode on branch i with wave vector q. The dynamical-matrix deriv-
atives were Fourier-interpolated onto a Monkhorst-Pack set of 3107 special points
corresponding to a 50 × 50 × 50 grid in reciprocal space. The anharmonic coupling
tensors V3(0 jTO,q j1,−q j2) were finally calculated for the same 50 × 50 × 50 set of
points in reciprocal space upon which the phonon eigenfrequencies and difference-
band isosurfaces were determined. Figure 7.16 shows anharmonic coupling tensor
components for phonon branches along the high-symmetry directions of the MgO
Brillouin zone.
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Fig. 7.16 a Anharmonic
coupling tensor components
between phonon branches
along � − � − X direction.
b Coupling along
� − � − L direction
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7.13 The Relaxation Frequency, �

The relaxation frequency was calculated as a function of field frequency � and
temperature T using the modified Blöchl tetrahedron method of integration over a
50 × 50 × 50 mesh, essentially performing a two-phonon difference-band density-
of-states calculation weighted with anharmonic phonon coupling constants and
phonon occupation numbers according to the expression:

�−
TO(�) = 36

�2

∑
q j1 j2

|V3(0 jTO,q j1,−q j2)|2 (n1 − n2) δ(ω2 − ω1 − �).

The frequency dependence of �(�) will be investigated first before proceeding to
probe its temperature dependence at microwave frequencies.
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7.13.1 Frequency Dependence

Figure 7.17 shows the broadband frequency dependence of the TO mode relax-
ation frequency � (or inverse lifetime) at a temperature of 300 K where contributions
from the dominant phonon transitions are highlighted. Note the interesting peak in �

near � ≈ 130 cm−1. It is also apparent that transitions between particular phonons
are more likely within specific frequency ranges, implying that they are resonant. For
example, for frequencies up to 50 cm−1 (1.5 THz) the j3 − j4 transition is dominant.
This transition represents an acoustic to optic phonon transition, most probably LA to
TO. Note that phonon branches are designated numerically by increasing frequency
at a particular q-point and that they do not always coincide with the TA-LA-TO-LO
sequence of modes near the �-point. In the 50–130 cm−1 range, the dominant tran-
sition is j1 − j3 which represents an acoustic–acoustic transition (TA to LA), with a
smaller contribution from j2 − j3 (also TA to LA). Above 130 cm−1 various acoustic
to optic transitions occur with a dominant contribution from j1 − j6 (TA-LO) above
250 cm−1.

Figure 7.18 shows the surfaces in the Brillouin zone where these processes occur.
The TA-LA transitions (a) j1 − j3 and (b) j2 − j3 at 100 cm−1 take place upon mani-
folds which enclose the � − � − X directions of fourfold symmetry with no apparent
transitions in q-space extending toward the L-point at the edge of the Brillouin zone.
The dominant transitions at 5 cm−1 have more complex manifolds which also have
threefold symmetry and also include q-points at the L boundary. The relative per-
mittivity as a function of field frequency � can be calculated using the dispersion
relation and the calculated relaxation frequency, �(�),

ε(�) = ε∞ + ω2
TO�ε

ω2
TO − �2 − 2iωTO�(�)

.

Fig. 7.17 Transverse optic
relaxation frequency of MgO
as a function of frequency,
�(�) at a temperature of
300 K
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(a) j1 − j3 at 100 cm−1 (b) j2 − j3 at 100 cm−1

(c) j1 − j2 at 5 cm−1 (d) j3 − j4 at 5 cm−1

Fig. 7.18 Dominant phonon transitions at room temperature: Frequency surfaces for transitions
between phonon branches ja and jb on which the energy conservation criteria δ(ω jb − ω ja + �) are
satisfied and which provide dominant contributions to the relaxation frequency at room temperature
(300 K). Figures (a) and (b) show the j1 − j3 and j2 − j3 (TA-LA) contributions at 100 cm−1 (3
THz) which exhibit fourfold symmetry about the � − � − X directions. Figures (c) and (d) show
the j1 − j2 (TA-TA) and j3 − j4 (LA-TO) contributions at 5 cm−1 (150 GHz), additional threefold
symmetry about the � − � − L directions

Taking the imaginary part yields the loss, ε′′ and is shown in Fig. 7.19 with data
measured using terahertz spectroscopy [27], and also the contribution due to isotopic
disorder.

At microwave and millimetre wave frequencies, the real part of the relative per-
mittivity is relatively constant and the loss tangent, tan δ(�), is given by ε′′/ε′.
Figure 7.20 shows the calculated loss tangent, tan δ in the microwave frequency
range at room temperature.



158 7 Anharmonic Properties of MgO

Fig. 7.19 Calculated and
measured imaginary part of
relative permittivity at room
temperature in terahertz
range: The measured data are
for a MgO single crystal
using terahertz spectroscopy
[27]. The isotopic disorder
contribution to �(�) has also
been included out of interest
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Fig. 7.20 Calculated
microwave loss, tan δ as a
function of frequency at
room temperature. The
dominant phonon
interactions are j1 − j2
(TA-TA) and j3 − j4
(LA-TO). The TA-TA
mechanism has a linear field
frequency dependence and is
dominant below 100 GHz,
whereas above 100 GHz the
LA-TO transition comes into
play with a �2 frequency
dependence
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The calculated peak in loss around 130 cm−1 due to TA-LA phonon transitions
is confirmed in the measured spectroscopic data and the magnitude of losses are in
good agreement. At low field frequencies, � < 30 GHz, the frequency dependence
of the loss is linear (tan δ ∼ �), but then becomes quadratic (tan δ ∼ �2) at higher
frequencies as predicted by Gurevich’s theory. There are two main contributions to
the loss, each with different frequency dependencies and dominant over different
frequency ranges. The j1 − j2 transitions between transverse acoustic phonons (TA-
TA) are dominant below 100 GHz and have a linear frequency dependence. The
j3 − j4 transitions between longitudinal acoustic and transverse optic phonons (LA-
TO) are negligible below 40 GHz, but become dominant above 100 GHz with a �2

frequency dependence. The calculated loss tangent at 10 GHz is 2.03 × 10−6 which
compares very favourably with the room temperature measured value of tan δ =
3.22 × 10−6 at 10.3 GHz.
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7.13.2 Temperature Dependence

At lower temperatures, high-frequency phonons such as optic and zone-boundary
phonons are less populated and hence the population difference between phonon
branches as shown in Fig. 7.15 is markedly higher for low-frequency phonons such
as acoustic ones. It would be expected that as the temperature is decreased that LA-
TO phonon interactions in the microwave loss spectrum would become less likely.
Relaxation frequency spectra �(�) were calculated at temperatures in the range
10–340 K in steps of 10 K.

A subset for temperatures 100, 150, 200, 250 and 300 K is shown in Fig. 7.21. Note
that the relaxation frequency decreases rapidly below 200 K and that the feature near
130 cm−1 remains prominent at 100 K due to absorption by low-frequency acoustic
phonons. For microwave frequencies at a temperature of 100 K (see Fig. 7.22), the
interaction between transverse acoustic phonons (TA-TA) becomes dominant over
the entire frequency range up to 5 cm−1 (150 GHz) since the acoustic to optic (LA-
TO) transition rate has decreased dramatically due to the decrease in high-frequency
phonon population. The calculated loss tangent at 10 GHz is 1.55 × 10−7, which is
half the value of tan δ = 3.98 × 10−7 measured at 10.3 GHz. The larger measured
losses are due to the onset of defect-induced dielectric losses below 100 K.

Figure 7.23 shows the calculated loss tangent at 10 GHz as a function of tem-
perature compared with the measured values. The calculated values are lower by
a small factor which is thought to be because the finite lifetimes of the phonons
involved in transitions were not taken into account and that 4th order phonon inter-
actions, which are expected to become more significant at high temperatures have
been neglected. A log–log plot (Fig. 7.24) allows the temperature dependence of the
measured and predicted losses to be compared. At low temperatures, the calculated
loss tangent has a T 4 dependence as predicted by Gurevich’s theory. As tempera-
ture increases the dependence becomes T 2, confirming Gurevich’s prediction and
agreeing with the measured losses. Unfortunately, the defect-induced losses in the

Fig. 7.21 Relaxation
frequency, �(�) at
temperatures of 100, 150,
200, 250 and 300 K
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Fig. 7.22 Calculated
microwave loss tangent, tan δ
as a function of frequency at
a temperature of 100 K: The
dominant phonon
interactions are still j1 − j2
(TA-TA) and j3 − j4
(LA-TO), but the
longitudinal acoustic to
transverse optical transition
(LA-TO) has reduced
relative to the (TA-TA)
interaction
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Fig. 7.23 Calculated and
measured microwave
dielectric loss tangent at
10 GHz as a function of
temperature
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Fig. 7.24 Calculated and
measured microwave
dielectric loss tangent at
10 GHz as a function of
temperature in log–log scale
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measured MgO single crystal do not allow the low-temperature T 4 dependence to be
confirmed. However, the agreement between calculated and measured losses is very
encouraging. Finally, since �(�), the imaginary part of the TO phonon self-energy
is calculated over a frequency range spanning the entire domain of phonons in MgO,
a Kramers–Kronig transformation can be applied to produce the real part of the self-
energy, �(�). This will allow the temperature coefficient of permittivity prediction
due to thermal strain, calculated earlier in the chapter, to be improved upon. The
results of the Kramers–Kronig transformations appear in Fig. 7.25 for temperatures
ranging from 10 to 300 K in steps of 10 K. The same was done for the LO phonon
to produce the real frequency shifts for both TO and LO phonons as functions of
temperature. The shifts at � = 0 cm−1 were taken in order to calculate the static
relative permittivity as a function of temperature (see Fig. 7.26). This result shows
that the temperature coefficient of permittivity in microwave dielectric ceramics is
a purely anharmonic phenomenon, partly due to thermal expansion, which for most
ceramics is usually of similar magnitude, but more importantly also due in part to
the same mechanism that is responsible for intrinsic dielectric losses.
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Fig. 7.25 Real and imaginary parts of TO phonon self-energy � = � + i� as functions of fre-
quency for a range of temperatures from 10 to 300 K. The real parts of the self-energy � were
calculated using a Kramers–Kronig transformation of the calculated imaginary part �
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Fig. 7.26 Calculated
temperature coefficient of
permittivity τε for MgO at
microwave frequencies. The
calculated value (solid line)
includes contributions to the
real shift in frequency of the
TO and LO zone-centre
optical phonons from both
the thermal strain and the 3rd

order bubble diagram. The
calculated data agree well
with the measured data
(dashed line)
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7.14 Summary and Conclusions

This chapter has investigated the anharmonic properties of MgO using the quasi-
harmonic approximation, a simple quantum field theory of absorption and ab initio
results from quantum mechanical calculations using density functional perturbation
theory. No empirical data were used in the calculations which resulted in fairly
accurate predictions of the linear coefficient of thermal expansion, electromagnetic
absorption up to terahertz frequencies and the frequency and temperature dependence
of the complex permittivity of MgO. Although the agreement was satisfactory, of
more importance was the information the calculations and their subsequent analysis
produced. For example, visualisation of the phonon–phonon energy conservation
surfaces provides valuable insight into the structure of loss mechanisms. Further-
more, by calculating the contribution to the relaxation frequency of the interactions
between specific pairs of phonon branches, a rich landscape of frequency and tem-
perature dependence was revealed. This suggests that the techniques used here are
powerful and valuable tools for the study of microwave dielectric materials and could
be used in the terahertz regime where a new generation of devices and applications
are emerging.
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Chapter 8
Discussion and Conclusions

Modelling and Measuring Dielectric Resonators

Various types of resonator for measuring the dielectric properties of microwave
ceramics were reviewed. The shielded dielectric resonator was discussed in more
detail and modelled analytically usingMaxwell’s equations. The radial mode match-
ing method was successfully implemented and used to model an example dielectric
resonator demonstrating efficiency and accuracy. Computer-controlled cryogenic
apparatus was developed for measuring the resonant frequency and Q-factor of
dielectric resonators containing samples ofMgO, LaAlO3, TiO2 and Al2O3. Temper-
ature measurements between 10K and room temperature were taken and processed
using the radial modematching to produce accurate values of the relative permittivity
and loss tangent. Anisotropy in the relative permittivity was tackled by measuring
different resonant modes, close in frequency, with different polarizations.

Harmonic Properties of Metal Oxide Dielectrics from First Principles

The lattice dynamics of insulators and basic outline of density functional perturba-
tion theory was reviewed followed by a discussion on how to calculate dynamical
matrices, phonon frequencies, Born effective charges and dielectric tensors. The
power and accuracy of DFPT within the LDA was then demonstrated by modelling
the crystal structure, phonon frequencies and low-frequency relative permittivities
of MgO, LaAlO3, TiO2 and Al2O3. The predicted values for the relative permittivity
were in excellent agreement with the low-temperature experimental data as shown
in the Table8.1.

Theory of Anharmonic Phonons and Prediction of Properties for MgO

The lattice dynamics of anharmonic crystals were reviewed and a quantum field
theory-based definition of the self-energy of phonons in the interaction represen-
tation was introduced. A graphical technique for evaluating Feynman diagrams of
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Table 8.1 Summary of predicted permittivities at 0K comparedwith low-temperature experimental
values

Material Theory Expt.

MgO εr 9.674 9.651

LaAlO3 εr 24.12 23.62

TiO2 εr,⊥ 110.9 112.6

εr,‖ 250.2 250.5

Al2O3 εr,⊥ 9.363 9.260

εr,‖ 11.321 11.344

phonon–phonon interactionswas used to derive expressions for the lowest-order con-
tributions to the self-energy. Supporting this theoretical framework with numerical
ab-initio calculations allowed the anharmonic properties of MgO to be investigated.
The quasi-harmonic approximation yielded thermal expansion coefficients for MgO
as functions of temperature which were in excellent agreement with experimental
data. Two-phonon difference band density of states were analyzed and visualized,
providing insight into the role of the different phonon branches at difference fre-
quencies. The dielectric loss was then calculated to terahertz frequencies as a func-
tion of temperature and frequency. An interesting peak in the loss was found near
3THz, confirmed by terahertz spectroscopy of a MgO single crystal and attributed to
transverse acoustic to longitudinal acoustic phonon transitions. The microwave loss
temperature dependence was in excellent agreement with the measured data, within
a factor of two. Kramers–Kronig transformation of the self-energy inverse lifetime
as a function of field frequency �(�) yielded the real part of the self-energy, a shift
in phonon frequency. When this frequency shift was combined with the frequency
shift due to thermal expansion and the 4th-order anharmonic contribution, the relative
permittivity, τε was also in excellent agreement with the measured data.

In summary, it was shown that it is possible to produce fairly accurate predic-
tions of the linear coefficient of thermal expansion, electromagnetic absorption up to
terahertz frequencies and the frequency and temperature dependence of the com-
plex permittivity of MgO from first principles using freely available ab-initio codes
and a general theory of dielectric loss. Although the agreement was satisfactory, the
information the calculations and their subsequent analysis produced was of much
value. For example, visualization of the phonon–phonon energy conservation sur-
faces provide valuable insight into which phonons branches contributed to the loss
within specific frequency ranges. Even a simple crystal like MgO generated a rich
landscape showing the interplay of phonons over frequency and temperature ranges.

Scope for Future Work

The results of this thesis have for the first time predicted the dielectric properties of
microwave dielectric materials as a function of temperature and frequency, demon-
strating that the techniques used were powerful and valuable tools for the overall
study of microwave dielectric materials. To improve the results, it would of course
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be desirable to calculate higher order anharmonic terms and also to include the self-
energy implicitly in the phonon propagators so that the lifetime of the phonons taking
part in interactions could be taken into account. To accomplish this, it is envisaged
that a self-consistent approach should be taken, where the self-energies of phonons
are calculated on a grid spanning the Brillouin zone instead of only at the zone-
centre Gamma point. Self-consistent iteration of the system would hopefully lead to
convergence across all points and lead to more accurate predictions of losses. A cal-
culation of this kind would be considerably more involved than the present one, but
is entirely feasible within the context of currently available computational resources
especially if parallel computation is considered. It would of course be interesting to
continue this work further by calculating the losses for other microwave dielectric
materials, such as LaAlO3, TiO2 and Al2O3, complex ordered perovskites such as
Barium Magnesium Tantalate or high-resistivity Silicon. Although the thesis was
primarily concerned with complex permittivity at microwave frequencies, it has also
shown that the properties can be predicted into the terahertz range. This exciting
frequency range has recently become accessible with new devices and applications
emerging in fields as diverse as medicine, imaging, sensors and security.

Finally, being able to structure a material at the nanoscale enables the exciting
possibility of being able to enhance or suppress the phonon density of states at specific
frequencies or wave vectors and thus offers the promise of being able to engineer
properties such as dielectric loss and thermal conductivity.
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