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Preface

This book is intended as an introduction to those who are new to neural network hydrological
modelling and as a useful update for those who have been experimenting with different tools
and techniques in this area. The scope for applying neural network modelling to hydrological
forecasting and prediction is considerable and it is only really in the last five to ten years that
it has been tried and tested. The various chapters show that while rainfall runoff forecasting
is the main area of research, neural networks are also used in ecological, fisheries, water qual-
ity, sediment, groundwater and many other water related applications. The scope is consider-
able because a neural network works in an equation free environment so that economic,
social, hydrological and chemical data can be integrated on an equal basis. Neural networks
are often denigrated as black box solutions, but they are sophisticated black boxes, which can
produce very useful results. We hope that this book will encourage further users to get
involved and experiment.

Each of the chapters has been the subject of an independent review and we are grateful for
the many comments and time involved. We are also grateful to the authors for responding to
our comments and the reviewers’ input and for making the changes requested.

Robert Abrahart Pauline Kneale Linda See
Nottingham Leeds Leeds
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ABSTRACT: Neural networks are one computational methodology for hydro-
logical forecasting. Although widely used in other research and application
fields they are employed less by hydrologists than might be expected given the
data driven nature of the applied problems to be solved. Neural networks pro-
vide a modelling route that can be helpful when there is enough data to link x
to y and especially where results are needed in real time. This chapter intro-
duces neural network issues generally, setting them in a wider modelling con-
text and provides a framework link to later chapters which handle neural
network topics in detail.

1 INTRODUCTION

Neural networks (NN) are an alternative and complementary set of techniques
to traditional models. NN can be thought of as computational pattern searching
and matching procedures that permit forecasting without an intimate know-
ledge of the physical or chemical processes. For the hydrologist this technique
has considerable appeal, provided the absence of a detailed process explan-
ation can be borne.

NN rely on the provision of adequate data sets, and where these are avail-
able, NN may be programmed to search for patterns within the data. On the
basis of this pattern-matching, forecasts are made on independent data sets
first for model validation and then for operational purposes. NN are one
approach within the broader hydroinformatics framework which emerged in
the 1990s as a route to managing information overload in an effective way
(Govindaraju & Rao, 2000). Price (2000) recognises four strands to hydro-
informatics, the mathematical and physical sciences understanding, the handling
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of data and the human cultural element. One of the significant strengths of the
NN approach is that it can handle all data types.

The challenge of managing water in its many dimensions and applications
calls for techniques which can link a myriad of components, from the complex-
ity of hydraulics and water quality, to financial planning and social agendas.
This is a move towards a holistic or integrated approach to modelling. The tech-
niques available to the hydrologist are many and varied, each with their own
advantages and drawbacks. The vision of 1970s modellers (Freeze & Harlan,
1969) that forecasting problems would be cracked when computers became
powerful enough to handle very complex equations and infinitely large data sets
has become a receding, but by no means disappearing, target. Natural environ-
mental variability, the uniqueness of catchments, system chaos and the com-
plexities of scale integration, together with the expense of data acquisition, make
the forecasting task challenging. Flood modelling at the basin scale with fine
mesh models requires prodigious amounts of computer time, but Beven and
Feyen (2002) consider that these goals are coming nearer as visualisation and
virtual game technologies advance, so the ambitions for catchment-wide 4D
modelling are getting closer. NN do not in any way aim to replace such models
but they can provide a very fast forecasting system that is operationally available
in very short time frames. NN do not compete with distributed models but rather
offer alternative and complementary ways of tackling forecasting problems. 

This text is aimed both at those using NN in research for the first time and
at those wanting to review recent examples of NN hydrological applications. It
is not intended as a manual but should be used as a supportive guide for anyone
wanting to experiment with this type of modelling. This chapter introduces
some of the basic ideas and background behind the NN approach, particularly
for those who are new to this methodology. If you are already familiar with NN
techniques then skipping to later chapters may be helpful. The sections that fol-
low provide a link to the more detailed materials in the main chapters and to
broader applications.

2 THE BASIC IDEAS OF THE NN APPROACH

To understand the basic ideas behind the NN approach, let’s look at a simple
hydrological example. Imagine that you could access data banks of hydro-
logical information. Suppose that the databases contain stage data recorded
every ten minutes at 4 points on a river (C–F), precipitation data from a gauge
(A) collated every fifteen minutes from a radar system (B) and weekly soil
moisture data (G) (Fig. 1.1). Your first task is to decide which station you want
to model. In a conventional approach you might choose to model stage at F
using all the data sets including past records from site F as inputs. Alternatively
you might (eccentrically) decide to forecast precipitation at B using all the data
(Fig. 1.2). The point is that the NN has no knowledge of the spatial relationship
between the sites as seen on a map nor any idea about what it is being mod-
elled. The NN only seeks the relationships between the input and output data
and then creates its own equations to match the patterns in an iterative manner.

2 PAULINE E. KNEALE ET AL.
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Continuing with this example, a forecaster might choose to start modelling
with all the data, and look to eliminate those data sets that are not contributing
significantly to the output to find the most parsimonious approach, thereby
saving data collection and data processing time. It may be that operationally
the best forecasting model for stage at station E is the stage at station E in pre-
vious time steps. In forecasting terms this may be the cheapest and most accur-
ate model, but a user might choose a less optimal model that includes an
upstream site in real-time forecasting in case there are data transfer problems
during a real-time event. The ‘best’ computational solution may not be the ideal
practical solution. This is a forecasting approach where there are many deci-
sions to be made by the user.

NN models are variously described as mimicking the parallel-information
processes of the brain. However, a typical human brain is thought to contain
1011 neurons, each receiving input from an additional 5000 to 15000 neurons.
The average worm has approximately 103 connections. A NN is likely to have
connection numbers in the 10–1000 range so a NN would be considered to be

WHY USE NEURAL NETWORKS? 3
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of sub-worm complexity (Openshaw, 1997). Comparisons of this kind are illu-
minating at one level but do not inspire immediate confidence in the technical
merits of NN as a sophisticated analytical technique. It is important to see why
they are so described and evaluate this description (see Chapters 2, 3 and 4).

The brain analogy is helpful for new users. NN are a mathematical repre-
sentation of a process that operates like nerve cells. Each network is made up
of nodes and links, much like the nerve cells and messages in a nervous sys-
tem. The user defines the architecture of the network and following trial and
error runs, this mathematical representation of the NN becomes the model
framework. For example, trials may show that the radar data at B (Fig. 1.2) may
not be contributing useful additional information so that node would then be
removed in further model trials.

Forecasting should follow in three clearly separate stages of NN develop-
ment, stages that are kept separate to make comparisons as accurate as pos-
sible. In ‘training mode’ the output pattern at say station F (Fig. 1.1) is linked
to as many of the input nodes (A–G) as desired and the patterns are defined. In
the training phase, part of the total data set is used. Conjusingly, NN scientists
may also refer to a ‘validation’ dataset used at this stage to ensure the model is
not overtrained. The data may be temporally contiguous or it may be selected
as being representative across the whole period. This can be important if it is
thought that there may be systematic change on a catchment across the whole
period, arising for example from land use change. This is followed by a ‘testing
phase’ when the model is tested using data sets that were not used in training.
If the forecasts are satisfactory then the model may be used in an ‘operational’
or ‘real time mode’ to generate live forecasts. These live forecasts are evaluated
against real events. Measures of accuracy of a model should ideally refer to
forecast performance in the real-time mode or independent validation mode. 

Once established the NN can be developed or updated as more data become
available. In this sense NN are dynamic in that the operator can adjust and
adapt them as change occurs, which makes them potentially very valuable in
hydrological operational modes. In this simple hydrological example it would
be logical for an operator to update the forecasting networks at the end of each
wet season to take account of recent precipitation events and thus give the users
additional confidence in the modelling. Because the processing speeds of NN
are very high, in practice a model can be updated and redeveloped in real time
to take account of new or changing circumstances if required (Abrahart, 2003).

NN may be regarded as data driven techniques but it is argued here that their
flexibility in data handling and the ability to solve problems where it is effectively
impossible to get primary data, as in groundwater modelling solutions (Ouenes,
2000; Zio, 1997) and with the added complexity of groundwater chemistry
(Gumrah et al., 2000), or where processes are highly non-linear and spatially and
temporally variant (Islam & Kothari, 2000), makes these techniques well worth
exploring. If a distributed modelling solution is not available but the data are, then
this may be a useful approach. Certainly many NN applications have been
prompted by unsatisfactory results with regression and time series techniques.

4 PAULINE E. KNEALE ET AL.
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3 SOME ANTECEDENTS

The pattern for classifying hydrological modelling approaches was articulated
by Dooge (1977). His three phase black box empirical, lumped and physically-
based distributed model distinction is very widely recognised. This lead to an
acceptance of an apparent hierarchy in quality of approach with the ‘simple
black box’ considered to be less acceptable than the more mathematically rig-
orous, theoretically based distributed approach. While this distinction is aca-
demically valid, it is not always helpful in practical terms. The advice to use the
simplest tool that will do the job is appropriate in practical and operational
modelling. If the data are available and the problem is linear then using linear
regression is fine. The unit hydrograph and rational formulas survive because
they are practical tools that supply useful answers.

While NN are a relatively recent technique for hydrologists they have an
established antecedence which Govindaraju and Rao (2000) acknowledge as
starting in the 1940s. NN concepts arrived with McCulloch and Pitts’ (1943)
work but their practical use followed Rumelhart et al.’s (1986) development of
the back propagation neural network (BPNN) algorithm which lead to a plethora
of applications in many subjects. Various text books in the 1990s generated
some interest (Masters, 1993; Cruz, 1991) and the first hydrological applica-
tions were probably Daniell (1991), French et al. (1992) and Hall and Minns
(1993). So for hydrologists this is a young technique with a short pedigree. But
there has been a rapid uptake and a positive blossoming in conferences and pub-
lications. Good generic texts on the subject include Bishop (1995), Haykin
(1998) and Picton (2000) but there are many other sources available.

Various authors describe NN models as black box and dismiss them as
empirical, and therefore by definition, as inferior. Certainly the calculations are
‘set-up’ by the modeller but the nature of the relationship between variables is
found by the computer (see Chapter 2). So in this sense NN are input-output
models. They are therefore vulnerable to the problems of inadequate data and a
less than thoughtful forecaster. However, they have the strength when compared
for example with ARMA and regression approaches that non-linearity in rela-
tionships will be captured (Hsu et al., 1995) and the black box can be looked
into in detail if the forecaster wishes (Abrahart et al., 2001; Wilby et al., 2003).
The early hydrological literature is dominated by rainfall-runoff forecasting
applications, probably because these represent a conceptually straight-forward
starting point. There are some lengthy records for both variables for training and
validation, and the solutions are evidently non-linear; this theme is well
reviewed in this text in Abrahart (Chapter 2), by Minns and Hall (Chapter 9),
and in the GIS application of rainfall modelling discussed by Ball and Luk
(Chapter 10).

Alternative introductions to NN modelling in hydrological contexts include
Maier and Dandy (2001b) who provide a sound introductory overview in the
context of cyanobacterium and salinity modelling in River Murray, and Dawson
and Wilby (2001). In a Special Issue of Computers and Operations Research,
Gupta and Smith (2000) cover a significant range of non-hydrological examples,
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and the business applications considered are of interest to those considering
modelling economic and management aspects of water supply and water
management.

The hydrological applications from the last seven years fall into a series of
broad categories and styles of modelling. There are three main types of NN:
backpropagation (BPNN), radial basis function network (RBFN) and the self-
organising feature map (SOFM). Abrahart addresses each style in detail in
Chapter 2 and as later chapters will indicate, backpropagation neural networks
(BPNN) dominate for forecasts at specified points such as river stage, whereas
SOFM mapping algorithms are employed to predict spatial patterns. 

Running models with multiple inputs implies the availability of appropriate
data sets, a problem for any field-based hydrological work. However where
data are captured in remote sensing operations and GIS programmes the NN
approach can be very powerful as Foody’s Chapter 14 indicates. Gautam et al.
(2000) have the advantage of a well instrumented catchment at Tono, Japan,
providing meteorological, runoff and soil moisture content data for their stream
flow forecasts. This is a luxury not available in most areas; however, the results
are satisfactory indicating that the NN technique may be of benefit for small 
catchment forecasts and perhaps in agricultural applications. To forecast soil
texture from remotely sensed maps Chang and Islam (2000) use brightness
temperature and remotely sensed soil moisture. The soils are classified into six
classes. Forecasting the permeability of oil reservoirs, Bruce and Wong (2002)
use an evolution NN algorithm to solve a forecasting problem bedevilled by
solutions that can be trapped in local minima using backpropagation. 

NN are not necessarily run in isolation. In linking NN within their models
Maskey et al. (2000) for example show how NN can be used with process
models to calculate travel times of groundwater pollution plumes in response
to well injections and pumping in an experiment to optimise a groundwater
clean up programme. The flexibility to use a NN within a broader modelling
framework is an attractive use of the technology.

While hydroinfomatics primarily concentrates on aquatic forecasting, for
some authors NN technologies assist in the objective inclusion of social and
economic dimensions. Jonoski (2002) looks towards a sociotechnological role
for the hydrological forecaster where these additional dimensions are an inte-
gral part of the modelling process in what they define as Network Distributed
Decision Support Systems.

The reported use of NN models is broad and considerable in statistical and
engineering applications (Ma et al., 2001; Venkateswaran et al., 2002). Their
operational rather than research use is also extensive in a wide range of indus-
tries: in mining to identify rocks that can be obstructive (Cabello et al., 2002),
converting speech to text (Wang et al., 2002), monitoring wear on machine tools
(Scheffer & Heynes, 2001), automating wastewater treatment and chemical
monitoring (Zyngier et al., 2001), forecasting sea ice conditions in Canadian
waters (El-Rabbany et al., 2002), coffee bean blending (Tominaga et al., 2002),
flavour of blackcurrants (Boccorh & Paterson, 2002) and identifying corrosion
rates on aircraft parts (Pidaparti et al., 2002).

6 PAULINE E. KNEALE ET AL.
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Govindaraju and Rao (2000) suggest that the adoption of NN techniques by
hydrologists has been constrained by the relative newness of the technique, and
its position as an empirical methodology in a subject which struggled to get rid
of its soft empirical subject image and emerge as an accepted physics-based
discipline. Maier and Dandy (2000) reiterate the essential need for thoughtful
applications: ‘In many applications, the model building process is described
poorly, making it difficult to assess the optimality of the results obtained’.
Flood and Kartam (1994) also add a relevant observation: ‘There is a tendency
among users to throw a problem blindly at a NN in the hope that it will formu-
late an acceptable solution’. Maier and Dandy’s (2000) paper would be a great
place for many modellers to start. The authors review the issues for modelling
with a wide range of practical examples.

Much of this text exemplifies the need for a systematic approach to think-
ing through the methodological approaches and constraints. Then to apply
these approaches to relevant hydrological issues. We would argue that it repre-
sents an opportunity to model with greater freedom and speed some of the
‘difficult’ multifaceted problems in hydrology.

However, it is important to point out that NN are not magic boxes. There is
an extensive mathematical background and theory that has underpinned their
development and for those mathematically inclined this is a rich area of investi-
gation. The NN technique cannot be criticised as theoretically unsupported and
therefore unsound. Users can decide to try the NN approach without exploring
the mathematics in detail and to take advantage of the plethora of freeware or
shareware off-the-shelf packages. This is really no different to users taking 
some of the more advanced codes in SPSS for partial canonical correlation.
Caveat emptor always applies, and as the authors of Chapters 2–5 which look 
at the basics of different types of modelling approaches emphasise, it is vital to
understand the data and programming decisions involved. But these are
explained in practical terms and are on a par with understanding that 3 samples
are not enough for multiple regression with 6 variables and that ANOVA values
require significance tests. In other words try it for yourself. 

4 WHERE DO I FIND THEM? NN PLATFORMS

Individual chapters in the book direct you to specific software sources, while
this section provides a brief overview of the sites available. There are a very
substantial number of companies and web sites offering NN software and a
range of product support packages. The most useful starting point might be
ftp://ftp.sas.com/pub/neural/FAQ.html; a users site that is updated monthly. As
it says: ‘its purpose is to provide basic information for individuals who are new
to the field of neural networks’. There are software programs to download via
ftp sites, for use on multiple platforms. Table 1.1 provides a short starting list
of websites that you might check out, while later chapters point users to particu-
lar software packages.

You can also find NN embedded within data mining software such as
Clementine or IBM’s Intelligent Data Miner. Data mining is a popular term in
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the business world for all techniques that can be used to turn large amounts of
data into useful information, of which NN are only one example. Clearly any
package needs evaluation and for the novice the array of software available is
confusing. The hydrological NN literature is not awash with citations of soft-
ware used; some users will have written their own programmes but given the
availability of packages this seems as unnecessary today as writing a program
to calculate regression. A starter suggestion is the SNNS, Stuttgarter Neural
Network Simulator which is well documented and user friendly.

Rather than re-inventing program codes for backpropagation it would seem
to be more useful for hydrological forecasters to develop a suitable suite of quality
testing procedures. Kneale and See (2003) testing Time Delay Neural Network
(TDNN) forecasts use ten tests to compare hydrograph forecast accuracy. It is
critical that the tests chosen include those normally used in hydrological model
evaluation, such as the Nash and Sutcliffe (1970) index. This permits users to
evaluate the forecasts in a consistent and objective manner and compare them to
results obtained from traditional hydrological forecasting procedures.

8 PAULINE E. KNEALE ET AL.

Table 1.1. NN software suppliers and web sites, a starting list.

Software name and company Web sites

Free or Share ware
Ainet – Freeware Neural Network www.ainet-sp.si/
GENESIS and PGENESIS 2.2 http://www.bbb.caltech.edu/GENESIS
KarstenKutza – http://www.geocities.com/CapeCanaveral/1624/
NEURALFUSION – http://www.neuralfusion.com/
PDP Plus, MIT Press http://www.cnbc.cmu.edu/PDP��/

PDP��.html
SNNS, Stuttgarter Neural http://www-ra.informatik.uni-tuebingen.de/

Network Simulator, University SNNS
of Tuebingen, Germany

Commercial packages
Brain Maker, California Scientific www.calsci.com

Software Company
Cortex-Pro www.reiss.demon.co.uk/webctx/detail.html
IBM Neural Network Utility, nninfo@vnet.ibm.com

IBM Company
NeuralWorks Professional II http://www.neuralware.com/

Plus, NeuralWare Inc. 
Neuro Genetic Optimizer (NGO), www.bio-comp.com/pages/

Bio Comp Systems Inc. neuralnetworkoptimizer.htm
Neuro Shell Predictor, Ward www.wardsystems.com

Systems Group Inc.
NeuroSolutions v3.0, Neuro http://www.nd.com/

Dimension, Inc. 
QNET v2000 www.qnetv2k.com
STATISTICA: Neural http://www.statsoft.com/

Networks version 4.0, 
Statsoft Inc. 

Neural Connection, SPSS Inc. http://www.spss.com/
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5 SUMMARY

Essentially NN are one of many tools at the disposal of the hydrological
researcher. The user defines the independent and dependent variables and has
all the normal modelling problems of locating suitable data sets to develop, test
and validate the models.

One major advantage the NN approach has over traditional input-output
modelling is that it makes fewer demands on the data. Unlike multiple regres-
sion, where the constraints of normality in the data distributions are often sim-
ply ignored, NN do not make assumptions about the statistical properties of a
data set. Data for different variables can be of all types and available on differ-
ent time or spatial scales. This allows for a flexible approach to data collection
and model development. In management models for example weather related,
soil dynamic, crop development and agricultural management information 
can be used as inputs using parameters that are recorded on hourly, weekly,
monthly, m2, hectare and currency scales.

A second major advantage is that in searching for patterns and links in the
data sets there are no assumptions of linearity. NN are non-linear pattern iden-
tification tools, which is why they are potentially so attractive for tackling the
non-linear problems of hydrology.

The powerful potential of NN models to solve ‘hard computational prob-
lems’ including those where the underlying ecological relations are not under-
stood was cited by Lek and Guegan (1999). There is a wealth of understanding
of hydrological processes at a range of scales from laboratory to hillslope 
and catchment. But it is not always clear how to write the equations to link
processes that are understood at the m2 scale so that they scale up to the basin
scale. NN search for the patterns in the data and therefore have the potential to
create the equations that describe the processes operating on the catchment
under study. As with all modelling an ill-specified NN will generate inad-
equate to useless forecasts. A good hydrological understanding of the relevant
field processes is a pre-requisite of good modelling. That together with enough
understanding of the NN to have the confidence to eliminate inessential vari-
ables and so define, through experimentation, the most parsimonious but effi-
cient model. The relationship that a NN defines must be sought again in data
for different catchments, the chosen model reflects the complex interactions
within the specified data sets. However the final selection of parameters, model
architectures and training times for any model will be helpful guidance for
forecasters applying the NN approach in comparable catchments, speeding up
the development of future models. 

The potential speed of model development is a factor that most NN users find
attractive. Forecasting algorithms are available from a range of web and share-
ware sources. Data acquisition is part of every modelling process but the fore-
caster then moves into model development and testing. Our experience of river
stage modelling is that computational run times are a matter of minutes and vali-
dation and independent forecasting is effectively instantaneous (Kneale et al.,
2000). A forecaster should not find this element of the hydrologist’s toolbox more
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difficult to apply than partial Canonical Correspondence Analysis, a GIS system,
an ARMA model or complex process-based software applications.

It may be that the role of NN is as part of a larger modelling framework,
where the NN is one element in a data handling and management tool. Most of
this text is concerned with the application of NN to solving specific hydro-
logical problems with the NN as the primary technique, but this is just one
potential role. The considerable scope for links to GIS models is made explicit
in Foody’s Chapter 14. There is a dominance of rainfall runoff applica-
tions which are explored more fully in various chapters. NN were developed 
to mirror biological activities, their non-linear flexibility makes them very
attractive for forecasting complex multi-disciplinary hydrological problems
like crop and fish stock management, pesticide leaching and runoff from hill-
slopes, and groundwater pollution and abstraction interactions (Freissinet 
et al., 1999; Tansel et al., 1999; Morshed & Powers, 2000; Tingsanchali &
Gautam, 2000).

Where the NN fits in the mosaic of techniques for the hydrologist is still
uncertain but we hope these chapters will encourage each reader to see its rele-
vance in a range of applications and to try the techniques. 
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1 INTRODUCTION

This chapter discusses the main elements in the neural network (NN) toolbox;
it also addresses the ‘what’ and ‘when’ of NN hydrological modelling. Section 2
contains a brief introduction to the mechanisms and procedures involved – which
includes a discussion on architectures and learning; while Section 3 contains a
detailed description of the most popular tools that have been used in the field
of water related research. Sections 2 and 3 are intended to complement one
another and are designed to impart the minimum amount of information that
would be required to understand the various operations and processes that are
adopted in neurohydrological modelling. There are several respected sources
that can be consulted for a more authoritative and comprehensive discussion on
generic NN modelling items or issues of interest. Bishop (1995) and Masters
(1995) are good academic texts; each book contains a copious amount of
in-depth material. Reed and Marks (1999) is oriented towards the developer
and practitioner. It describes selected techniques in sufficient detail, such that
real-world solutions could be implemented, and technical issues or operational
problems could be resolved. Section 4 illustrates the range of different hydro-
logical possibilities and potentials that exist in which to develop and implement

2

Neural Network Modelling: Basic Tools 
and Broader Issues

ROBERT J. ABRAHART
School of Geography, University of Nottingham, UK

ABSTRACT: The purpose of this chapter is to define and illustrate the basic
terms and concepts involved in neural network modelling. The main neu-
rohydrological modelling tools used to date are introduced. The chapter also
includes an insight for new users into the scope and function of potential
neural network hydrological modelling applications with respect to the broader
hydrological picture.
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a neural solution. Section 5 highlights the numerous opportunities and benefits
that are on offer and further strengthens the argument for increased research
into the provision of data-driven models. Sections 4 and 5 are thus intended to
bolster appeal and to encourage uptake amongst interested parties; the exploration
and testing of unorthodox strategies and alternative mindsets can indeed be
a rewarding experience that leads to fresh insights and discoveries.

2 WHAT IS A NEURAL NETWORK?

NN are structures which forecast and predict through pattern matching and
comparison procedures. NN tools are, in most cases, non-linear adaptive infor-
mation processing structures that can be ‘described mathematically’ (Fischer,
1998). NN can exist as real-time hard-wired mechanisms, software simulators,
optical processors and specialized neurocomputing chips (Taylor, 1993) and
their computational elements are generic. NN software simulation programs,
written in a standard high-level language, are the most common form.

There are a number of commercial and public domain simulators that
users can select from, depending upon their preferred computer platform, and
the sophistication offered in such packages provides a significant attraction.
Catalogues of established software and shareware can be found on the World
Wide Web e.g. NEuroNet (2001) or Sarle (2002). See Table 1.1 for a more
comprehensive list. It is both an advantage and a potential drawback that users
can download and install powerful NN products and packages with little or no
real effort e.g. Stuttgart Neural Network Simulator (SNNS Group, 2003). Trained
NN solutions can also be converted into dedicated 3GL (Third Generation
Language e.g. C�� ) functions, for amalgamation into home-grown software
products, or linked to commercial applications using a run-time connection
based on standard software libraries (e.g. DLL). This is a major advantage for
users, and especially new users wishing to experiment with the technique, but
all users must be clear about the pros and cons of this modelling procedure.

2.1 Network architecture
NN are constructed from two basic building blocks: processing units (also
referred to as elements or nodes or neurons) and weighted connections 
(also referred to as arcs or edges or links). These components and their respect-
ive organisation, into a set of interconnected items, form the ‘network 
architecture’.

Maren (1991) has suggested that the architectural configuration can be
described at three basic levels and this framework is used to explain the com-
ponents here:
(a) Microstructure. The characteristics of each processing unit in a network.
(b) Mesostructure. The manner in which a network is organised, including such

features as the number of layers, the pattern of connections, and the flow of
information.
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(c) Macrostructure. The manner in which a number of ‘networks’ are linked
together, interacting with each other to build a more complex solution, for
more demanding tasks.

Figure 2.1 illustrates the standard organization of an individual processing
unit – which is the microstructure. Each processing unit can have numerous incom-
ing connections, that arrive from other processing units, or from the ‘outside world’
X1 … Xn. The ‘outside world’ could be raw input data, or outputs produced from
another forecasting model, that exports data to the NN. The connections function
as unidirectional paths that conduct signals or data, and transmit their information
in a predetermined direction. These are the user-defined ‘input connections’ and
there is no upper limit on their number. There is also a program default input,
termed bias, that is a constant X0 � 1. Each processing unit first computes an
intermediate value that comprises the weighted sum of all its inputs I � �Wji Xj.
This value is then passed through a transfer function f(I ), which performs a non-
linear ‘squashing operation’. The user can opt for default transfer functions or in
certain software packages define their own – the standard options being logistic,
sigmoid, linear, threshold, gaussian and hyperbolic tangent – with the selection of
an appropriate transfer function being dependant upon the nature of each specific
problem and its proposed solution. Shamseldin et al. (2002) explored the applica-
tion of several different transfer functions to the amalgamation of multi-model
hydrological forecasts and found that in most cases a logistic function provided
the best results and an arctan function produced the worst results. Each processing
unit can have numerous output connections, that lead to other processing units 
or to the ‘outside world’, and again there is no restriction on their number. Each
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Fig. 2.1. The microstructure of a neural network model in terms of processing units.
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output connection carries identical copies of each numerical output, or signal,
which is the state, or activation level, of that processing unit Yj. The weights are
termed ‘connection parameters’. It is these weights that are adjusted during the
learning process, to determine the overall behaviour of the neural solution, and
that in combination generate the so-called ‘network function’.

Figure 2.2 illustrates the standard organisation of a network architecture –
which is the mesostructure. The basic structure consists of a number of processing
units, arranged in a number of layers, and connected together to form a net-
work. Data enters the network through the input units (left). It is then passed
forward, through successive intermediate hidden layers, to emerge from the
output units (right). The outer layer, where information is presented to the net-
work, is called the input layer and contains the input units. These units disperse
their input values to units in the next layer and serve no other function or pur-
pose. The layer on the far side, where processed information is retrieved, is
called the output layer and contains the output units. The layers in between the
two outer layers are called hidden layers, being hidden from direct contact with
the outside world, and contain the hidden units. Full connection is said to exist
if each node in each layer is connected to all nodes in each adjacent layer. To
avoid confusion the recommended method for describing a NN is based on the
number of hidden layers. Figure 2.2 thus depicts a one-hidden-layer feedfor-
ward architecture with no feedback loops. However, it is also possible to have
connections that transfer information backwards from output units to input units,
from output units to hidden units, or from a unit to itself. These are termed 
partial-recurrent networks (PRNN) – see Van den Boogaard (Chapter 7) and
Ball and Luk (Chapter 10). If the internal connections circulate information
from each node to all other nodes then it is a recurrent network.

The use of storage tanks and chronological updating procedures is a famil-
iar concept to the hydrologist and such items comprise an integral part of most
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conceptual models and distributed modelling solutions. Thus far, however, in
direct contrast most published NN hydrological modelling applications have
been based on static models that contain no explicit consideration of time, pre-
vious events, antecedent conditions or state-space evolution – with no attempt
being made to account for the complex interaction that should in fact occur
between sequential representations of different but related input-output ‘snap-
shots’. It is therefore argued that feedback loops could perhaps be used to
address this issue, through the addition and circulation of dedicated variables
that change or update specific factors in response to previous computations,
and thus provide a dynamic and responsive solution that is better suited to
modelling hydrological processes.

The number of processing units in the input and output layers is fixed
according to the number of variables in the training data and is specific to each
individual problem depending on the number of predictors and predictands.
But the selection of an optimal number of hidden layers and hidden units will
in all cases depend on the nature of the application. Intuition suggests that
‘more is better’ – but there are limits on the extent to which this is true. In cer-
tain instances a small(er) number of hidden units is advantageous. The number
of hidden units and layers is important, since a larger architecture will extend
the power of the model to perform more complex modelling operations, but
there is an associated trade-off between the amount of training involved and the
level of generalisation achieved. The use of large hidden layers can also be
counterproductive since an excessive number of free parameters encourages
the overfitting of the network solution to the training data, and so reduces the
generalisation capabilities of the final product (Fig. 2.3). The other question
that needs to be addressed is the number of hidden layers and the relative
organisation of their hidden units. Practical methods to establish an ‘optimum’
set of hidden features range from best guess (e.g. Cheng & Noguchi, 1996) or
trial and error (e.g. Shamseldin, 1997) to the application of sophisticated com-
putational solutions e.g. cascade correlation which is a constructive algorithm
(Imrie et al., 2000; Lekkas et al., 2001); weight or node based pruning which
is a destructive algorithm (Abrahart et al., 1999); or evolution-based approaches
using a dedicated genetic algorithm package (Abrahart et al., 1999). In the first
instance inexperienced users might opt for one hidden layer with the number of
hidden units equal to the number of inputs. More experienced users might match
the number of hidden units to an anticipated number of empirical functions.

2.2 Learning considerations
NN ‘learning’ is defined as ‘deliberate or directed change in the knowledge
structure of a system that allows it to perform better or later repetitions of some
given type or task’ (Fischler & Firschein, 1987). Specific information on a par-
ticular topic or task is thus encoded in order for the solution to produce a suitable
response on subsequent occasions. The two most common types of learning are
supervised and unsupervised: the difference between them is that supervised
learning requires each input pattern to have an associated output pattern. In
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supervised training the model input might be discharge data collected at one or
more upstream gauges with the output being forecast discharge at a downstream
station. Cameron et al. (2002), for example, used a combination of river stage at
two upstream stations and two local variables to estimate future river stage at a
downstream station. In unsupervised training the output is in most cases a set of
clusters; for instance river level series can be partitioned into different categories
of event (Abrahart & See, 2000); rainfall and river series records can be parti-
tioned to establish combined clusters that span the total input space (Hsu et al.,
2002); catchments can be clustered into homogeneous categories that possess
similar geomorphological and climatological characteristics (Hall et al., 2002).

Each combination of input and output data is referred to as a training pair
and the complete set of training pairs is the training set. The training period for
the presentation of an entire training set is one epoch. The goal of training is to
minimise the output error, which is achieved through the use of different algo-
rithms that ‘search the error surface’ and ‘descend the gradient’. Inputs (predic-
tors) are passed through the network to become the outputs (predictands) and
through the learning process the internal connection weights are modified in
response to computed error – the equation that specifies this change is termed
the ‘learning law’ or ‘learning rule’. There are a large number of different learn-
ing methods and the learning process is often complex, with numerous options,
variables, and permutations to choose from.

The learning process is continued until such time as an acceptable solution
is arrived at. This is accomplished through numerous repeated iterations of
data presentation and weight updates, until such time as an acceptable pre-
specified stopping condition is met, and the underlying function has been ‘dis-
covered’. However, it is important to ensure that the network does not become
over-familiarised with the training data, and thus lose its power to generalise to
unseen data sets. Figures 2.3 and 2.4 illustrate the basic problem of underfit-
ting (undertraining) and overfitting (overtraining). The data set used in this
process may be referred to as a ‘validation’ set.

If a neural solution has insufficient complexities, or has been underfitted, it
will fail to detect the full signal in a complicated data set. If the neural solution
is too complex, or has been overfitted, it will fit the noise as well as the signal.
To differentiate between these opposing situations in an effective manner 
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Fig. 2.3. The training trilemma (adapted from Flood & Kartam, 1994).
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is problematic and continuous assessment would be required throughout the
different stages of construction and development. Several techniques are avail-
able to prevent overfitting:
(a) Jitter: addition of artificial noise to the input data during training that will

produce a smoother final mapping between inputs and outputs e.g.
Abrahart and White (2001).

(b) Weight Decay: addition of an extra term to the error function that
penalises large weights in order to create a smoother final mapping
between inputs and outputs – but no hydrological modelling investigation
of this method has been reported.

(c) Early Stopping: use of split-sample validation, cross-validation or boot-
strapping techniques to determine that point at which a sufficient degree 
of learning has taken place. For a comparison between continuous cross-
validation and continuous bootstrapping applied to discharge forecasting
see Abrahart (2003).

(d) Structural Control: restrict the number of hidden units and weighted 
connections such that a limited number of free parameters is available dur-
ing the ‘fitting process’. Each hidden node in each solution will attempt to
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Fig. 2.4. Two possible scenarios for a plot of network error against training cycles. In
each case overfitting arises when the solution learns the exact nuances of each individual
case in the training data such that the final product has limited or no real interpolation
capabilities (a) after Flood and Kartam (1994) (b) after Caudhill and Butler (1992).
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represent a discrete input-output association; so in the case of discharge
forecasting simple functions such as ‘quickflow’ and ‘baseflow’ will be
assigned to specific hidden nodes, whereas more complex entities such as
‘soil moisture switches’, would be assigned to one or more of the unclaimed
units. Wilby et al. (2003) illustrate the inner workings of this mechanism,
in a series of river-level forecasting experiments, in which a conceptual
model is cloned with a number of neural solutions.

3 MAIN CATEGORIES OF MODEL

Neural networks are often promoted as a one-stop-shop but caveat emptor
applies; users must recognise that there are several important decisions that
must be taken to select an appropriate class of model. Certain forms of solution
might be better suited to modelling specific hydrological functions or processes –
although this notion is still quite novel and extensive testing will be required
before indicative outcomes could be converted into a set of definitive guide-
lines. Different types of solution can nevertheless be differentiated in terms of:
(a) node characteristics i.e. properties of the processing units;
(b) network topologies i.e. the pattern of connections; and
(c) the learning algorithm and its associated parameters.

The number of possible combinations and permutations that could be imple-
mented is enormous and to perform a detailed and comprehensive analysis is
impractical. However, for hydrological modelling purposes, the three most
common tools are:
(a) BPNN – backpropagation neural network;
(b) RBFN – radial basis function network;
(c) SOFM – self-organising feature map.

3.1 Backpropagation neural network (BPNN)
The most popular ‘default’ training algorithm is ‘backpropagation’ (Rumelhart
et al., 1986; Tveter, 2003). This technique offers an efficient computational
procedure for evaluating the derivatives of the network performance function,
with respect to a given set of network parameters, and corresponds to a propa-
gation of errors backwards through the network. The term has however been
extended to describe feedforward multi-layered networks trained using the
backpropagation algorithm – which causes confusion. BPNN have emerged as
major workhorses in various areas of business and commerce; such tools are
also the most popular mechanism that has been applied to ‘difficult’ hydro-
logical modelling problems (Maier & Dandy, 2000). The first port-of-call for
most users will be a standard backpropagation network – but should initial tri-
als prove inadequate – then see Imrie et al. (2000) who adopted non-standard
activation functions or Mason et al. (1996) who examined different options in
terms of the number of epochs to convergence.
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Backpropagation for a multi-layered network works as follows:
The weighted input to each processing unit is:

(1)

The output from each processing element is a sigmoid function, the most
common being:

(2)

with the derivative:

(3)

Weight updates are based on a variation of the generalised delta rule:

(4)

where � is the learning rate, E is the error, f(I ) is the output from a processing
unit in the previous layer (incoming transmission), � is the momentum factor,
and where 0.0 � � � 1.0 and 0.0 � � � 1.0. Error for the output layer is desired
output minus actual output:

(5)

whereas error for a hidden processing unit is derived from error that has been
passed back from each processing unit in the next forward layer. This error is
weighted using the same connection weights that modified the forward output
activation value, and the total error for a hidden unit is thus the weighted sum
of the error contributions from each individual unit in the next forward layer. To
ensure a stable mathematical solution the total error for each unit is then multi-
plied using the derivative of the output activation, for that unit, in the forward pass:

(6)

which is an operation that is propagated backwards across the network. Following
training, input data are then passed through the trained network in recall mode,
where the presented data are transformed within the hidden layers to provide the
required modelling output values.

BPNN are used to perform non-linear regression operations; such mech-
anisms will develop a function that relates a set of inputs to a set of outputs in
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a data-driven environment. This tool is well suited to several different kinds of
hydrological modelling, with reported applications that range from rainfall-runoff
forecasting (Minns & Hall, 1996) and algal growth prediction (Whitehead
et al., 1997), to the construction of rating curves (Tawfik et al., 1997; Jain, 2001)
and the provision of error updates (Shamseldin & O’Connor, 2001) or multi-
model data fusions (Abrahart & See, 2002). For more information on the math-
ematics involved see Bishop (1995).

3.2 Radial basis function network (RBFN)
The second most popular model is a radial basis function network (RBFN).
This form of network has three layers: input, hidden, and output. The main
architectural differences between an RBFN and a standard BPNN is that in the
former the connections between the input units and the hidden units are not
weighted and the transfer functions in the hidden units possess radial-symmetric
properties (as opposed to sigmoidal). The hidden units perform a fixed non-linear
transformation with no adjustable parameters and the output layer combines
these results in a linear fashion, in most cases, using a simple summation
(Leonard et al., 1992).

Figure 2.5 provides a schematic diagram of an RBFN. The activation func-
tion in each hidden unit is not critical to the performance of the network (Chen 
et al., 1991) and several forms of basis function have to date been considered.
The most common form is the gaussian kernel. There are N inputs, L hidden
layer units, and M output layer units for the general transformation of ND points
X (X1, …, Xi, …, XND) in the input space to ND points Y (Y1, …, Yi, …, YND) in
the output space. The parameters of the network consist of the centers (Uj) and
the spread (�j) of the basis functions in the hidden layer units and the synaptic
weights (Ekj) of the output layer units. The function centres are also points in the
input space; so to have a unit at each distinct point on the input space would be
the ideal solution. But for most problems a few inputs points will be selected
from the full set of all available points using a clustering process.
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Fig. 2.5. Schematic diagram of a radial basis function network (after Jayawardena &
Fernando, 1998).
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For an input vector X i the jth hidden unit produces the following response:

(7)

where ||X i � Uj|| is the distance between the point representing the input X i and
the centre of the jth hidden unit as measured according to some norm. Euclidian
distance is the common measure.

The output of the network at the kth output unit will then be:

(8)

Training is carried out using a hybrid learning procedure that contains both
unsupervised and supervised methods. First, in the unsupervised phase, statistical
clustering techniques are used for the estimation of kernel positions and kernel
widths e.g. a k-means based clustering algorithm. Training of the hidden layer
involves determination of the radial basis functions by specifying appropriate
Uj and 	j values for each unit. Clustering provides an effective method to reduce
the number of centres from the ideal ND input points such that each point then
falls into one of several hyperspheres, which on a collective basis, span the entire
input space. The value of 	j is computed as the mean distance from the centre
of a cluster to the other points that form that cluster. The number of hidden units
is therefore equal to the number of clusters.

Second, in the supervised learning phase, adjustment of the second layer of
connections is implemented using linear regression or a gradient-descent tech-
nique. The output unit functions are in most cases linear, so the application of
an initial non-iterative algorithm is commonplace, and often sufficient. However,
if need be, a supervised gradient-based algorithm can be utilised in a further
step to refine the connection parameters. The appropriate connection weights,
between units in the hidden and the output layers, would thus be determined for
example using either least mean squares or the backpropagation algorithm.

RBFN (in comparison to BPNN) have fast convergence properties and do
not suffer from the problematic effects of local minima. However, although the
training process could indeed be orders of magnitude faster, such networks
require more training data and more hidden units, to achieve the same levels of
approximation. The nature of their two non-linear activations is also quite differ-
ent: RBFN non-linearities are derived from data in the training set; BPNN non-
linearities are a fixed function of the pre-determined sigmoid transfer equation.

RBFN are also used to perform non-linear regression operations and can be
applied to several different kinds of hydrological modelling task. RBFN and
BPNN are thus similar in the sense of what can or cannot be achieved; the main
difference between the two algorithms is in the method of construction. RBFN
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are much quicker to train, which could save a vast amount of time and effort,
and will be of particular benefit for solutions that must be developed on massive
(e.g. global) data sets. The two are often compared and contrasted; the initial
findings from such investigations are mixed, but comparative results suggest that
the fast build solution is a viable option in terms of forecasting skill. Example
applications in the field of runoff forecasting can be found in Mason et al. (1996);
Jayawardena and Fernando (1998); and Dawson and Wilby (1999). For more
information on the mathematics involved, again see Bishop (1995).

3.3 Self-organising feature map (SOFM)
The third most popular model is a self-organising feature map (SOFM)
(Kohonen, 1995). This network algorithm is based on unsupervised classification
in which the processing units compete against each other, to discover the import-
ant relationships that exist within a data set. There is no prior knowledge to
assist in the clustering process. The traditional architecture contains two layers
of processing units, a one-dimensional input layer and a two-dimensional com-
petitive layer. The competitive layer, or feature map, is organised into a regular
grid of processing units and each unit in the input layer is connected to each
unit in the competitive layer. The feature map has connections between the com-
petitive units and each competitive unit also has one or more additional weights,
or reference vectors, that will be trained to represent the fundamental pattern
associated with each class group. Training consists of (i) random weight initial-
isation; (ii) presenting a data pattern to the network; (iii) determining which
unit has the closest match; and then (iv) updating both the winning unit and
those around it. This process is repeated over numerous epochs until a stopping
condition is reached. The training rule is:

(9)

where wi is the weight on the ith reference vector, � is the learning rate, xi is the
transmission along the ith weighted reference vector and where 0.0 � � � 1.0.

The winning unit and its neighbours will adapt their reference vectors to bet-
ter fit the current pattern, in proportion to the strength of the learning coefficient,
whereas other units are either inhibited or experience no learning whatsoever.
Lateral interaction is introduced between neighbouring units within a certain
distance using excitors; beyond this area, a processing unit either (i) inhibits the
response of other processing units or (ii) does not influence them at all. Two popu-
lar examples are (i) the Mexican Hat Function (Caudill & Butler, 1992 p.84)
and (ii) the Square Block Function (Openshaw, 1994 p.64). The weight adjust-
ment of the neighbouring units is instrumental in preserving the topological order-
ing of the input space. The neighbourhood for updating is then reduced, as is
the learning coefficient, in two broad stages: (i) a short initial training phase in
which a feature map is trained to reflect the coarser and more general details;
and (ii) a much longer, fine-tuning stage, in which the local details of the

� �� �w x wi i i
old( )
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organisation are refined. This process continues until the network has stabilised
and weight vectors associated with each unit define a multidimensional partition-
ing of the input data.

SOFM will perform unsupervised clustering and classification operations,
to produce a set of clustered inputs, and for each cluster a set of internal vectors
ordered in either one- or two-dimensional topological space. Two main applica-
tions are evident: ‘divide and conquer’ clustering in which a bigger problem is
split into several smaller problems; and ‘partner identification’ clustering in
which similar items are matched together for various purposes. The use of divide
and conquer clustering involves the construction of less challenging and easier
to model relationships, that can be resolved on an individual basis, taking a multi-
model approach. For instance, river level series data can be partitioned into differ-
ent categories of event, that are then modelled to produce a combined forecast
(Abrahart & See, 2000); rainfall and river series records can be partitioned to
establish combined records that span the total input space and which are then
modelled to produce a combined forecast (Hsu et al., 2002). The use of partner
identification clustering is about common properties and mutual associations.
For instance, in regional flood estimation activities, catchments can be clustered
into homogeneous categories possessing similar climatological, geomorpho-
logical, vegetation or soil characteristics (Hall et al., 2002). Clothiaux and
Batchmann (1994) explore the relevant mathematics in detail.

4 WHAT USE IS A NEURAL NETWORK?

NN can be described as a generic ‘solution in-waiting’; the burden is thus placed
on the hydrologist to discover what can and cannot be done with these tools.
This section examines the broad range and nature of the potential opportunities
that are on offer to the hydrologist in terms of:
(a) implementation strategies with respect to standard tools (Section 4.1).
(b) the types of processing operation that can be undertaken and the manner in

which specific problems can be resolved (Section 4.2).

4.1 Different implementation methods
There are three different methods of implementation that can be envisaged with
respect to a traditional hydrological modelling solution. This breakdown is
intended to provide a formal nomenclature and categorisation of several alter-
native possibilities, which is important, since given that neural solutions are at
this time being brought into hydrological modelling, not just for straightforward
linking of input (e.g. rainfall) to output (e.g. discharge at outfall, level of flood-
ing, etc.), but also for example to clone traditional modelling mechanisms. Such
replication, in turn, speeds up the process of computation so that items such as
long time series analyses or Monte Carlo simulations can be done in a much
faster and more efficient manner (Abebe et al., 2000; Gautam, 1998; Khindker
et al., 1998; Liu & Lin, 1998). Neural solutions also demonstrate considerable
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promise for efficient real time operational control, in which optimised scenarios
can be selected at a particular stage/moment, depending on rainfall or other
types of input-output forecast (Price, 2000; Bazartseren, 1999; Rahman, 1999).

4.1.1 Replacement option
Direct replacement involves using a neural model to perform an identical oper-
ation to something that would otherwise be performed with a traditional solu-
tion. Neural alternatives can for instance be developed to formulate rating
curves that link stage and discharge under conditions of strong hysteresis
(Tawfik et al., 1997), to simulate catchment response from environmental inputs
associated with simple conceptual models (Shamseldin, 1997), or to produce a
direct data-driven solution to the complex task of forecasting typhoon-related
runoff events in a heterogeneous watershed (Chang & Hwang, 1999). Neural
replacements can also facilitate the inclusion of additional data sources, irrespect-
ive of our comprehension about their relative hydrological roles. This offers
considerable potential for exploring meaningful relationships where process
data are inadequate for conventional deterministic forecasting. In situations
where the theoretical understanding is limited, where equations are difficult to
code, where data are nonstationary (Minns, 1996) or where data are limited to
isolated points rather than areal distributions (Lorrai & Sechi, 1995), neurocom-
putation provides modelling alternatives that deserve exploration.

4.1.2 Enhancement option
Enhancement is the process of building hybrid mechanisms that contain an inte-
grated bundle of traditional solution(s) and neural model(s). Enhancement could
involve intelligent data pre-processing or post-processing operations, or be used
to connect two or more existing models, as a simple filter which corrects incon-
sistencies in either input or output data streams, or to combine multi-model fore-
casts (Xiong et al., 2001; Abrahart & See, 2002; Shamseldin et al., 2002). The
neural model might also function as a direct replacement for some internal com-
ponent, or could be trained on residual data from an existing model, and then
run in parallel acting as an error corrector or real-time output updating mechanism
(Shamseldin & O’Connor, 2001). The basic idea is that through the adoption of
neural plug-ins or add-ons it is possible to improve upon traditional techniques.
Modern neural software will also facilitate the inclusion of trained solutions in
other software packages, through the use of dynamic links, or will export the
finished product as a function that can be compiled as part and parcel of a
bespoke program (Van den Boogaard & Kruisbrink, 1996; Abrahart, 1998;
Abrahart et al., 2001).

4.1.3 Cloning option
Cloning is the process of using a neural model to mimic an existing equation-
based solution – including inherent imperfections. In addition to offering rapid
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improvement in processing speed and data handling capabilities, for instance
in an integrated optimisation procedure (Rogers & Dowla, 1994; Solomatine &
Avila Torres, 1996), such clones could also be used to reduce existing model
calibration time through building a response surface that relates internal param-
eters to original output (Liong & Chan, 1993). Clones can also be constructed
to include additional variables or to omit certain variables in those instances
where one or more standard inputs are not available (Abrahart, 2001). It is also
possible to mimic the internal functions of an existing model, for model reduc-
tion purposes, or for rapid prototyping, sensitivity analysis, and bootstrapping
operations. Less obvious is the use of neural clones to mimic spatial distribu-
tions, thus making redundant our existing problems of storing and accessing
copious amounts of spatial input, and enabling models to switch from file-based
data retrieval (slower) to chip-based data computation (faster) operations.

4.2 Different types of processing operations
Fischer and Abrahart (2000) proposed a five-fold classification of NN applica-
tions based on the type of modelling that is being performed. This breakdown
provides a useful insight into some of the different kinds of functions and oper-
ations that could be considered as suitable targets for a NN hydrological model-
ling implementation. Each model could operate alone, or in combination with
other modelling constructs, as part and parcel of a hybrid formulation.

4.2.1 Pattern classification/recognition
The task of pattern classification is to assign an input pattern to one of several
pre-specified class groups, (either user-defined, or determined from an automated
clustering exercise). This is a decision making process that will often involve
the use of ‘hard’ boundaries in which the class groups represent a set of dis-
crete and exclusive entities. However, hard boundaries are not appropriate for
continuous hydrological variables that inter-grade. These demand a ‘softer’
approach – one that is able to encapsulate a certain degree of natural fuzziness.

Classification is employed in spectral pattern recognition where ground-
truth information is utilised for the transformation of individual pixel values on
multispectral images into given land cover categories (Kanellopoulos et al., 1997;
for an appraisal of progress with respect to remote sensing of hydrological
processes see Islam and Kothari 2000 or Foody (Chapter 14)). It is also possible
to perform pattern recognition of an entire image to determine different weather
patterns, or to differentiate between cloud patterns that are cumuliform and strat-
iform, in order to switch between different short range meteorological forecasting
tools (Pankiewicz, Chapter 13).

4.2.2 Clustering/categorisation
In clustering operations (also known as unsupervised pattern classification) there
are no pre-specified, or accepted, class group labels attached to the training data.
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The clustering algorithm is used to explore the data and to determine the intrinsic
similarities that exist between the various patterns which make up a particular
data set. Each item in that data set is then identified as belonging to a cluster of
similar patterns. Popular clustering applications would include data mining,
data compression, and partitioning of the hydrograph.

Hall and Minns (1999) performed neural clustering on flood data to produce
homogeneous regions that facilitated the subsequent transfer of information
from gauged to ungauged catchments (not between neighbouring catchments
based on geographical proximities). Abrahart and See (2000) used neural clus-
tering to divide river level data into different hydrograph sectors or compon-
ents. These component clusters were then used to illustrate the benefits of
multi-network modelling applications.

4.2.3 Function approximation
Numerous hydrological problems require non-linear function approximation.
The task of function approximation is to create a generalised model of some
known or unknown function. Suppose a set of n training patterns (input-output
pairs) have been collected and are associated with an unidentified function f(x)
which are subject to noise. Then the task of function approximation would be
to build a (descriptive or mathematical or computational) model which is able to
reproduce that, in most cases, continuous function.

Examples include the provision of numerical solutions for: flood quantiles in
ungauged catchments based on data from neighbouring areas (Liong et al., 1994);
two-year peak stream discharge based on geographical and meteorological
variables (Muttiah et al., 1997); soil water retention curves based on soil sample
data (Schaap & Bouten, 1996): unit hydrographs related to small catchments in
Bavaria (Lange, 1999); and the relationship between rainfall-runoff and sediment
transfer in Malawi (Abrahart & White, 2001).

4.2.4 Time series forecasting
In mathematical terms given a set of n samples Yt1, Yt2,…, Ytn in a time
sequence t1, t2,…, tn then the role of forecasting would be to estimate the sample
Y(t) at some future point in time (often tn�1). Time series prediction is an
important requirement and the final product can have a significant impact on
decision-making with respect to operational forecasting, for example in reservoirs
and power plants, and in life threatening real-time flood warning assessment.
The estimation of associated sediment, ecological and pollution variables is also
important.

Examples include modelling stream output from a conceptual model, based
on a time series of simulated storm events, in which the sequence generator
was calibrated to represent linear and non-linear catchment response (Minns &
Hall, 1996); modelling real hydrological and meteorological time series data
on a fifteen minute time step with a six hour lead time for flood forecasting
purposes (Dawson & Wilby, 1998); and a solution to address particular hydro-
logical issues associated with modelling low-flow periods (Campolo et al., 1999).
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4.2.5 Optimisation
Certain types of hydrological modelling can be posed as a (non-linear) optimisa-
tion problem, in which the goal is to find a solution that satisfies a set of con-
straints, such that some objective function is maximised or minimised. The
solution will depend on a number of factors or possibilities; with an enormous
number of possible combinations often rendering such problems either insoluble
or too time consuming for more conventional methods of analysis and modelling.
Traditional model calibration procedures are a case in point.

Liong and Chan (1993) describe a neural optimisation process for the calibra-
tion of a traditional model based on the inherent relationship between model
parameters and output. Hybrid implementations are also possible in which the
speed of a neural solution can be exploited e.g. in combination with a genetic
algorithm to establish optimal groundwater remediation (Rogers & Dowla, 1994;
Rao & Jamieson, 1997); or as an integrated part of a larger multi-criteria reservoir
optimisation exercise (Solomatine & Avila Torres, 1996).

5 POTENTIAL BENEFITS TO BE EXPLOITED

Neurocomputing will never become a universal panacea and there is no question
of it making conventional computer methodologies or traditional modelling pro-
cedures obsolete. These modern tools are not in all cases better than conventional
statistical methods or traditional mathematical models; although it is often pos-
sible to get equivalent good results, in a fast and efficient manner, working with
minimum sized data sets. Neural solutions do however possess a number of dis-
tinctive features and properties – which should, at least in principle, enable these
automated tools to exceed various inherent limitations or drawbacks associated
with standard information processing techniques. It is the strength of these spe-
cific items that should therefore be investigated, understood, and exploited to
their full potential. The main potential with respect to neural modelling opportun-
ities in this field of science is considered to fall within the following categories.

5.1 Power to handle complex non-linear functions
If a function can be represented as a mapping between two or more vectors then
it can also be approximated, albeit with uncertain precision, using a neural solu-
tion. Such opportunities would be of particular benefit in all cases where relation-
ships are difficult to determine or in situations where hard and fast rules cannot
be applied.

5.2 Power to perform model-free function estimation
Nothing is assumed or enforced in NN. There are no pre-specified relationships,
constraints, or single solution conditions. This has obvious advantages for model-
ling situations in which there is limited available information on the nature of
the data distribution functions, when the data are non-gaussian, or when different
levels of generalisation are required.
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5.3 Power to learn from training data
No prior knowledge of the underlying mechanisms is needed. The modelled rela-
tionships are derived from a synergistic combination of training data and learning
procedures. This is important since certain functions and processes are not fully
understood in the field or laboratory. Some processes also suffer from poor def-
inition or are misunderstood. In other cases the process might be well understood
but algorithms for their implementation do not exist, or full data sets to oper-
ationalise such equations cannot be obtained at a commensurate level of detail.

5.4 Power to adapt to changing environments
The solution is not static. It can adapt to accommodate alternative data, processes
or constraints, to produce a different model. This form of dynamic adaptation
would be useful in a fast-changing environment, to resolve a problem using
anticipated trends, to take account of changes in the nature of the problem, or
help to resolve an old problem in a fresh manner.

5.5 Power to handle incomplete, noisy and fuzzy information
Distributed processing means that each specific component is responsible for
one small part of the total input-to-output ‘mapping operation’. The neural solu-
tion will thus possess substantial ‘fault tolerant’ characteristics; it would generate
an acceptable response, plus exhibit graceful degradation, based on incomplete,
imprecise or noise-ridden data.

5.6 Power to effect multi-level generalisation
Solutions are developed through the process of ‘construction’. This process can
be halted at different stages as the solution moves from a more general, to a
more specific, representation. If the relationship can be described using some
sort of rule then it will tend to discover that rule; with high levels of noise it
will extract the central trend, or prototype, of that particular data set.

5.7 Power to perform high speed information processing
Neural models are fast. Their inherent parallelism and simple algorithms can pro-
vide rapid throughput. Speed is crucially important in most real-time hydrological
applications where real-time response is required to events. Other operations can
be made viable with this technique: production of bootstrap confidence intervals;
replacement of ‘number crunching’ with ‘model crunching’; detailed research
on vast data sets for example at the scale and magnitude of global warming.

6 CONCLUSIONS

There can be little doubt, following a decade or so of essential groundwork,
that neural solutions are well suited to the challenging task of hydrological
forecasting and prediction. The most important item for the successful implemen-
tation of each solution will be the acquisition of appropriate and representative

32 ROBERT J. ABRAHART

Copyright © 2004 Taylor & Francis Group plc, London, UK



data (Tokar & Johnson, 1999; Smith & Eli, 1995) and the proper division of
this material into training, validation and testing data sets (Bowden et al., 2002).
From then on the implementation of an effective model will be to a large extent
dependent upon the skill and experience of each individual neurohydrologist.
The modeller is faced with a number of potential opportunities and alternative
strategies at each stage of the model building process and this search space
must henceforth be reduced. Future advances will thus be contingent upon
(i) the creation of detailed working protocols that (ii) contain objective guidelines
for the development and application of each individual modelling solution.
These guidelines must distinguish between those circumstances, under which a
particular approach should be adopted, and the manner in which to best optimise
the numerous procedures and parameters that exist therein. Effort should also
be directed towards the identification of specific tasks and circumstances in
which particular strategies might under-perform or might perhaps fail – to delimit
the boundaries of their application.
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ABSTRACT: Artificial neural networks have been applied to the problem of
rainfall-runoff modelling and flood forecasting since the late 1980s. However,
despite the extensive literature base which has built up in this field, there is not
a systematic method that the neural network engineer can use to develop such
models. This chapter introduces such a method and explains, through the use of
a case study experiment, how each of the stages of this process are executed to
develop a single network modelling solution.

1 INTRODUCTION

Before developing artificial neural network (NN) rainfall-runoff models, it is
important to have a fundamental understanding of both the application area
(hydrology) and the modelling tool. The field of NN research is diverse, which
makes it difficult but nevertheless essential to: (i) grasp the fundamental workings
of this ‘tool’ and (ii) develop an appreciation of the broad range of NN models
available, the different training approaches that can be used and, perhaps most
importantly, understand their strengths and limitations.

Hydrological forecasting and NN are discussed elsewhere within this book.
It is the purpose of this chapter to provide an ‘instruction handbook’ on how to
build a NN model of rainfall-runoff processes and how to evaluate the model(s)
thus developed.

The NN field is constantly evolving and new network types and training
algorithms are constantly being discovered, defined and refined (for example,
‘support vector machines’ are an area of current research – see Haykin, 1999).
However, while these areas provide interesting fields of exploration, such tools
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are of limited value to the ‘neurohydrologist’ until they become established and
accessible. For this reason, the case study presented in this chapter is based on
an established NN model and training algorithm – the multi-layer perceptron
(MLP), trained using the popular error backpropagation algorithm (BPNN).
This is used in the majority of hydrological applications and is probably the
best starting point for building NN models of a specific river catchment.

When developing NN to model rainfall-runoff processes, a number of deci-
sions must be made. For example, as implied above, one must choose a suitable
network from the plethora of different types available and then go on to choose
an associated training algorithm. One must also decide how to process the avail-
able data. A number of considerations must be made in terms of partitioning the
data into training, validation and test data sets, identifying predictors, defining net-
work outputs and on standardising or normalising the data. While some of these
operations may be automated using appropriate modifications to the training
algorithm, many decisions must still be made through a process of trial-and-
error. A full discussion of these topics is beyond the scope of this chapter and
interested readers are directed towards authoritative texts such as Bishop (1995).

The remainder of this chapter is divided as follows. First, an overview of the
NN model development process is introduced. Second, an introduction to the case
study is presented. Third, this case study is used as a vehicle to explain the process
stages outlined. Finally, a summary is presented and areas for future research
are discussed.

2 THE PROCESS

Dawson and Wilby (2001) introduced a seven stage process to develop NN models
for hydrological applications. This has been reduced to the following six stages:
1. Data selection: gather an appropriate data set.
2. Select an appropriate predictand: decide what is to be modelled (flow volume,

flow stage or depth, changes in flow, etc.) and the accompanying lead time.
3. NN selection: select an appropriate type of network and choose a suitable

training algorithm.
4. Data preprocessing: process the original data in terms of identifying suitable

network inputs (predictors) and perform data cleansing (i.e. remove or reduce
problematic artefacts) as appropriate – for example, if necessary, remove
trends or seasonal components. In addition, one must normalise or standard-
ise the data and split the data into training, validation and testing data sets.

5. Training: train a number of networks using the chosen training algorithm
and preprocessed data.

6. Using appropriate assessment criteria, evaluate the model(s) produced and
select the ‘best’ solution for subsequent implementation.

This process is represented in Figure 3.1, adapted from Dawson and Wilby
(2001). Solid lines show the process flow, dashed lines indicate influences of one
process stage on another, and subprocesses are identified by rectangles with
double-lined sides.
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It is difficult to identify which of these stages is the most important. Without
an adequate data set (gathered in Stage 1), a meaningful study would be impos-
sible. However, even if a suitable data set is available, should any of the other
stages of the process be performed badly, unsuitable models and poor evaluation
results will be produced. Each of these stages is discussed in more detail in the
case study below.

3 CASE STUDY

3.1 Introduction
The purpose of this section is to apply the NN development process model 
outlined above to a case study in order to show how the stages are implemented
in practice. This case study is based on the ANNEXG (Artificial Neural Network
Experiment Group) experiments undertaken during 2001/2002 by thirteen
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Fig. 3.1. NN model development process advocated by Dawson and Wilby (2001).
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neurohydrologists worldwide. The concept behind the ANNEXG experiments
was to provide a benchmark data set to a number of participants in an attempt to
compare and contrast several different modelling approaches that are used by
neurohydrologists and to evaluate the forecasting skill of the different models
produced. Initial results from the ANNEXG experiments are reported in
Dawson (2002). The results of the authors’ contributions to the ANNEXG case
study and the thinking behind the model development is presented in this chap-
ter. Two contrasting approaches to data preprocessing operations – a complex
method and a simple method – using the ANNEXG data set are described.

3.2 Catchment description
Table 3.1 provides the characteristics of the river catchment used in the ANNEXG
study. The modelling was undertaken ‘blindly’ by all groups in order that none
were disadvantaged through lack of first hand knowledge of the catchment. The
site receives on average 700 mm of precipitation per year, distributed evenly
across the seasons. However, the drainage network is restricted to the lowest part
of the catchment, and comprises an ephemeral system of small inter-connected
ponds and subsurface tile drains. Furthermore, a network of naturally occurring
soil pipes at about 50 cm below the surface promotes rapid lateral flow during
winter storms. The flow regime, therefore, ranges from zero flow during dry sum-
mer months to a ‘flashy’ response following rainfall (and occasional snow-melt)
events in winter.

3.3 Stage 1: Gather data

‘The success of an ANN application depends both on the quality and the
quantity of data available’ (ASCE, 2000:121)

It is paramount to the effective development of data driven models, such as
NN, that sufficient data are available for model development. Sufficient in this
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Table 3.1. Case study catchment descriptors.

Descriptor Description

Catchment area (Ha) 66.2
Elevation (m) 150–250
Geology Pre-Cambrian outcrops comprising granites, pyroclastics, 

quartzites and syenites
Soils Brown rankers, acid brown soils and gleys
Land use Bracken heathland (39%), mixed deciduous woodland 

(28%), open grassland (23%), coniferous plantation 
(6%), open deciduous and bracken under-storey (2%), 
surface waters (�1%), urban (�1%)

Annual rainfall (mm) 700
Annual runoff (mm) 120
Runoff (%) 17
Drainage Mainly open channel, with tile drains and soil piping 

at 50 cm
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context means that the data are of high quality (i.e. free of errors, omissions,
conflicts) and available in adequate quantity for a meaningful model. In other
words, the information content is paramount (Tokar & Johnson, 1999). There
is little point, for example, in using a data set that contains few historical flood
events if flood forecasting is the primary objective of the model. In this case the
NN model that is developed will not have been exposed to sufficient training
examples to adequately predict flood events in the future. However, how we
measure ‘information content’and how we define ‘sufficient examples’ is unclear
and is an area for further research. Other examples where data may be inappro-
priate for training include: direct transfer of data from another catchment;
using data from different seasons; or using data gathered prior to fundamental
changes in the catchment’s properties (for example, urbanisation or deforest-
ation). How models can be adopted and adapted, having been developed using
a non-representative data set, is also an area for future research.

In the example presented in this chapter, three years of daily data were made
available for a small experimental catchment in central England (see previous
section). These data included stage (mm), precipitation (mm) and maximum
daily air temperature (°C) for the period 1 January 1988 to 31 December 1990.
This data series contained some missing values for each of the three variables –
represented in the data set as -999. Two years of data were used for model devel-
opment (1989 and 1990) and one year for independent testing (1988). 1988
was chosen as the testing period as this contained values outside the range of the
data used in model development and thus provides a severe test of model skill.
How the remaining data for 1989 and 1990 were split for training and validation
purposes is discussed later.

3.4 Stage 2: Select predictand(s)
It is important to understand exactly what is to be modelled within the catchment
and this must be stated clearly at the outset. Is it the intention, for example, to
model flow volume or flow depth? If a flood forecasting model is required, what
is an appropriate lead time – days or possibly weeks for large catchments? It might
be better to model ‘changes in flow’if the data contain a large variance (and model
development data may be unrepresentative of long-term extremes). Some authors
use change in flow rather than flow per se to reduce the likelihood of problems
in extrapolating beyond the range of the model development data (e.g. Minns &
Hall, 1997).

In the ANNEXG experiments, the intention was to evaluate model skill for
forecasting depth of flow (or stage) at t � 1 and t � 3 days ahead. For simplicity
and clarity, in this chapter only a t � 1 day ahead model is reproduced and 
presented as the case study.

3.5 Stage 3: NN selection
Since NN were repopularised in the 1980s, a plethora of different types (e.g.
BPNN, radial basis function networks (RBFN), support vector machines, 
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probabilistic neural networks, etc.) and training algorithms (e.g. backpropaga-
tion, conjugate gradient, cascade correlation, skeletonisation, etc.) have been
developed or rediscovered. In addition, there are numerous NN tools available to
the neurohydrologist that automate the development and implementation of dif-
ferent networks and provide the user with a selection of training algorithms.
Many software packages are available as either shareware or freeware that can be
easily downloaded from the Internet. Further details are provided in Table 1.1.
Alternatively, many researchers develop their own tools in their favourite pro-
gramming language – enabling them to adapt their models more easily to differ-
ent problems and ensuring that they understand, more clearly, the inner workings
of the model.

It is beyond the intended scope of this chapter to discuss the full range of
alternative architectures, training algorithms and tools that are available. However,
as a starting point, it is best for the ‘budding’ neurohydrologist to choose a tool
that is tried and tested. We advocate a simple BPNN, which can be used as a
‘baseline’ that should only be modified or replaced if more sophisticated models
prove to be more accurate. This type of network and training algorithm are
included within most NN tools and packages or can, if preferred, be programmed
using no more than one or two pages of code. This is the approach taken in the
case study reported in this chapter – a simple BPNN has been implemented
(written in Pascal) and has been trained using backpropagation.

3.6 Stage 4: Data preprocessing
Data preparation involves a number of processes such as data ‘cleansing’, identi-
fying appropriate predictors (using data reduction techniques), standardising or
normalising the data, and finally, dividing the data into training, validation and
testing data sets.

3.6.1 Data ‘cleansing’
NN can, theoretically, handle incomplete, noisy and non-stationary data (Zealand
et al., 1999), but with suitable data preparation beforehand, it is possible to
improve their performance (Masters, 1995). Data cleansing involves identifying
and removing trends and non-stationary components (in terms of the mean and
variance) within a data set. For example, trends can be removed by differencing
the time series and the data can be centred using rescaling techniques. Seasonal
variability can be accommodated by using, for example, moving averages
(Janacek & Swift, 1993). To date, data cleansing techniques have not been widely
used in NN rainfall-runoff modelling so there is much scope for development
in this area (Maier & Dandy, 1996).

As the test data used in the case study covered an entire year (1988), it was
not necessary to remove any seasonal components from the data set. In add-
ition, because the testing and model development periods were adjacent (1988,
1989–1990 respectively), there was no need to remove long term trends or cycles.
However, the data set did contain missing values that required some prepro-
cessing and two approaches were used. First, during training and validation,
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any days containing missing values were simply ignored and removed from the
data set. During testing, if a day contained missing data, then no prediction was
attempted. This is a simple solution but one must question the acceptability of
such an approach for real time implementation if the model cannot provide a
prediction when data are unavailable (for example, if a rain gauge should fail).

As an alternative, a second, more complicated solution was investigated. In
this case an additional input driver was added to the data set called ‘missing data
identifier’. This was set to zero when all predictors were available and one when
one or more predictors were missing. Thus, during development, it was antici-
pated that the NN model would ‘learn’ to deal with missing inputs having been
warned that data were missing by the extra input parameter.

Another approach that can be used is to infill missing data by interpolating
between the last and next available data point. This is acceptable during model
development but during testing in real time there is no ‘next available’data point
to work with. In such cases, monthly averages or a moving average could be used
or even a value from the same day on a previous year. Each of these techniques
has advantages and disadvantages and there is no one ‘right’ solution for dealing
with missing data.

3.6.2 Identifying suitable predictors
In order to improve model performance it is useful if the most ‘powerful’predict-
ors can be identified. The majority of studies in the literature focus on predicting
flow (as either discharge or stage) using antecedent or concurrent catchment 
conditions. In this case the NN is attempting to model a process of the form:

(1)

in which Qt�x is future flow (at x time steps in the future), Qt�n is antecedent
flow (at t, t � 1, t � 2, . . . , t � n time steps), Rt�n is antecedent rainfall (at t, t �1,
t � 2, . . . , t � n), and Xt�n represents any other factors identified as affecting
Qt�x, e.g. year type such as wet or dry (Tokar & Johnson, 1999); percentage
impervious area (Minns, 1996); or storm occurrence (Dawson & Wilby, 1998).

In order to improve performance, the neurohydrologist must first establish
the optimal lag-interval between input and response. This can be achieved
through the use of NN (e.g. Furundzic, 1998), ARMA models (Refenes et al.,
1997) or autocorrelation functions. Auto Regressive Moving Average (ARMA)
models are often used to determine appropriate variables, lead times and the
optimal window(s) for averaging (Maier & Dandy, 2000). Alternatively, correl-
ation testing may be used to identify the strongest causal relationships from a
set of possible predictor variables (as in Dawson & Wilby, 1998). The chosen
predictor variables are then applied as either individual inputs to multiple nodes
(e.g. predictors are Q, Qt�1, Qt�2, Qt�3, etc.) and/or as lumped averages (in
which case an input node receives a moving average).

If the available data comprise many input variables but few points, it is
important to attempt some form of data reduction. Otherwise, the model will

Q f Q R Xt x t n t n t n� � � �� , ,( )
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have more free parameters to establish than data to constrain individual param-
eter values. Data reduction techniques might involve statistical manipulations,
such as extracting principal components (e.g. Masters, 1995), or reducing phys-
ical data sets, by averaging rainfall data from several rain gauges (e.g. Chang &
Hwang, 1999).

In our case study, two approaches have been used to determine appropriate
input drivers for flow forecasting in the test catchment. First, data preprocessing
and analysis were used in which moving averages (ranging from one to fifty
days were calculated) and lags (also from one to fifty days) were correlated
against flow. Those lagged and moving average variables that were most strongly
correlated with flow were chosen as inputs to the model. In addition, two clock
variables were included (Sine and Cosine of the Julian day number) to represent
the seasonal cycle, along with a missing data flag (as discussed in the previous
section). Further preprocessing of the data was undertaken to incorporate the
interaction between variables. In this case, precipitation minus temperature, and
stage minus temperature, were calculated to capture some sense of net loss
through evapotranspiration from the catchment. Also, precipitation plus stage
was calculated to provide some indication of ‘wetness’ within the catchment.
These analyses led to the selection of the 14 input drivers shown in Table 3.2
(henceforth referred to as the M14 inputs).

A second, less sophisticated approach to identifying suitable inputs was used
for comparison. In this case it was decided that antecedent variables for the pre-
vious three days would be used as input drivers (stage, precipitation and max-
imum air temperature). No attempt would be made, in this case, to deal with
missing data and so missing data days were simply removed from the training,
validation and testing data sets (as discussed in the previous section). This led
to the nine inputs shown in Table 3.3 (henceforth referred to as the M9 inputs).
No analyses were performed with these data – the lagged inputs were merely
chosen ‘intuitively’.
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Table 3.2. Fourteen model predictors (M14) identified by preprocessing analysis for the
t � 1 day ahead model.

Precipitation (t)
Temperature (t � 7)
Stage (t)
Sin Clock
Cos Clock
Precipitation minus temperature (t � 5)
Stage plus precipitation (t)
Stage minus temperature (t)
10 day moving average precipitation (t)
10 day moving average temperature (t � 9)
10 day moving average precipitation minus temperature (t)
6 day moving average stage plus precipitation (t)
6 day moving average stage minus temperature (t)

Missing data identifier (0 – no data missing, 1 – data missing)
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3.6.3 Data standardisation
All variables should be standardised to ensure that they receive equal weight dur-
ing the training process (Maier & Dandy, 2000). Without standardisation, input
variables measured on different scales will dominate training to a greater or lesser
extent because initial weights within a network are randomised to the same
finite range.

Data standardisation is also important for the efficiency of training algo-
rithms. For example, error backpropagation used to train BPNN is particularly
sensitive to the scale of the data used. Due to the nature of this algorithm, large
values slow training because the gradient of the sigmoid function at extreme
values approximates zero. To avoid this problem, data are rescaled using an appro-
priate transformation. In general, data are rescaled to the intervals [�1, 1], [0.1,
0.9] or [0, 1] (referred to as standardisation). Another approach is to rescale
values to a Gaussian function with a mean of zero and unit standard deviation
(referred to as normalisation). The advantage of using [0.1, 0.9] for runoff mod-
elling is that extreme (high and low) flow events, occurring outside the range
of the training and validation data, may be accommodated (Hsu et al., 1995).
Other authors advocate [0.1, 0.85] (e.g. Shamseldin, 1997) or [�0.9, 0.9] (e.g.
Braddock et al., 1998). In the present study, data were standardised to the range
[0.1, 0.9] as logistic sigmoid transfer functions were used.

3.6.4 Data sets
Provided one does not become caught in local error minima (which can be
avoided using certain techniques), theoretically one could continue training NN
indefinitely, steadily improving the accuracy of the model with respect to the
training data. However, while the network might become very adept at modelling
the training data, it may well lose its ability to generalise to new and unseen situ-
ations. Figure 3.2 highlights this situation and shows that after training a net-
work for eo epochs, the network begins to lose its ability to generalise and its
performance with respect to unseen data begins to deteriorate. Thus, as train-
ing progresses, a validation set is used to halt training if it appears that the net-
work is becoming over-trained on the training data. Ideally then, three data sets
should be used for a rigorous analysis of NN skill: a training set, a validation
set and a test set (called ‘cross validation’). The training set is used to develop a
number of different NN model configurations. The validation set is used to decide
when to stop training (to avoid over-fitting) and also to determine which of the
networks is the most accurate. Finally, the test set is used to evaluate the chosen
model against independent data.

Lachtermacher and Fuller (1994) identify a number of problems with using
three data sets. First, if there are limited data available, it can be impractical to
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Table 3.3. Nine model predictors (M9) chosen for the t � 1 day ahead model.

Stage (t, t � 1, t � 2)
Precipitation (t, t � 1, t � 2)
Temperature (t, t � 1, t � 2)
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create three independent data sets. Second, the method of dividing the data can
significantly affect the results. Third, when using a validation set to cease training,
it is not always clear when a network is beginning to ‘learn’ the noise inherent
to the time series.

With finite data availability, it is often prudent to use a ‘cross training’ tech-
nique. This method involves splitting the available data into S equal sized seg-
ments. NN models are then trained using all the data in S-1 of these segments and
validated on the remaining segment of unseen data. The procedure is repeated S
times so that S models are built and tested for each model type and configuration.
This ensures that each data segment is used only once for validation. Thus, when
the validation segments are recombined, one has a validation set equal to the
entire data set. Typical values for S are 5 and 10 (Schalkoff, 1997). An alternative
is to use the ‘hold-one-out’ or ‘jack-knife’ method, in which S � n � 1 (where n is
the number of data points in the entire data set). Thus, for a data set containing n
data points, one would have to create and test n NN models.

In the case study presented here, three years of daily data were available –
1989 and 1990 were used for model development, and 1988 for model testing
purposes. In order to create a training and validation set, to avoid over-training,
it was decided that the model development data should be split thus: 1989 was
used as training data and 1990 as validation data. By using a full year of data for
training, all seasonal variations were captured.

3.7 Stage 5: Network training
During training, the NN developer is trying to ‘optimise’ a number of things –
the network architecture (number of hidden layers, number of nodes in each
layer), the weights connecting neurons and the biases that are applied. As 
discussed earlier, there are a number of algorithms that exist that can be used
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to (i) identify an appropriate architecture (quite often a trial-and-error approach
is used) and/or (ii) optimise the interconnecting weights.

During training with the case study data, a simple trial-and-error approach
was used to identify an optimal network structure. Thus, a number of networks
were constructed with 3, 5, 10, 15, 20, 30 hidden nodes (single hidden layer),
each being trained from 100 to 2000 epochs in steps of 100 epochs. After each
period of 100 epochs, the network weights were saved and evaluated with respect
to the unseen validation data. The network configuration (in terms of hidden
nodes and epochs) that performed best against the validation data was chosen as
the best NN model and thus used for the final evaluation (with the test data set).
In this exercise, using the M14 predictor set, a network with five hidden nodes
trained for 100 epochs proved most accurate with respect to the validation data.
For the M9 predictor set, a network with 15 hidden nodes trained for 1300 epochs
proved to be most accurate with respect to the validation data. In all cases BPNN
was used, trained using error backpropagation, with the learning parameter fixed
at 0.1 and the momentum value set at 0.9.

3.8 Stage 6: Evaluation
Dawson and Wilby (2001) provide a detailed discussion of assessment criteria
and the evaluation of rainfall-runoff models. This discussion is reproduced here
with some modification.

There is a general lack of objectivity and consistency in the way in which
rainfall-runoff models are assessed or compared (Legates & McCabe, 1999). This
also applies to the more specific case of NN model assessment and arises for
several reasons. First, there are no standard error measures (although some have
been more widely applied than others). Second, the diversity of catchments stud-
ied (in terms of area, topography, land use, climate regime, etc.) hinders direct
comparisons. Third, different aspects of flow may be modelled (e.g. discharge,
stage, change in discharge, etc.). Finally, there are broad differences between
studies with respect to lead times (ranging from 0 to �24 model time steps)
and the temporal granularity of forecasts (from seconds to months).

When NN are trained using algorithms such as backpropagation, they are
generally optimised in such a way as to minimise their global error. While this
is a useful general target, it does not necessarily lead to a network that is proficient
for both low flow (drought) and high flow (flood) forecasting. The squared error,
which is used in many training algorithms, does provide a general measure of
model performance, but it does not identify specific regions where a model is
deficient. Other error measures are, therefore, employed to quantify these defi-
ciencies (see the review of Watts, 1997).

The most commonly employed error measures are: the mean squared error
(MSE), the mean squared relative error (MSRE), the coefficient of efficiency (CE),
and the coefficient of determination (r2) (see Equations 2, 3, 4, and 5 respectively):

(2)MSE 1�
�

�
( ˆ )Q Q

n
i ii

n 2∑
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(3)

(4)

(5)

where Qi are the n modelled flows, Q̂i are the n observed flows, Q
–

is the mean
of the observed flows, and Q� is the mean of the modelled flows.

According to Karunanithi et al. (1994), squared errors (MSE) provide a good
measure of the goodness-of-fit at high flows, whilst relative errors (MSRE)
provide a more balanced perspective of the goodness of fit at moderate flows.
However, the appropriateness of these measures are strongly affected by the
nature of the flow regime, and so care must be taken when comparing results
between sites.

CE and r2, on the other hand, provide useful comparisons between studies
since standardised measures are independent of the scale of the data used (i.e.
flow, catchment, temporal granularity, etc.). These are correlation statistics that
assess the goodness of fit of modelled data with respect to observed data. CE
is referred to by some authors as the ‘determination coefficient’ (e.g. Cheng &
Noguchi, 1996), the ‘efficiency index’, E (Sureerattanan & Phien, 1997;
Abrahart & Kneale, 1997), the F index (Minns & Hall, 1996), and R2 (Nash &
Sutcliffe, 1970). Care must be taken not to confuse R2 with the coefficient of
determination, r2, which some authors also refer to as R2 (e.g. Furundzic, 1998,
Legates & McCabe, 1999, Lorrai & Sechi, 1995).

The CE statistic provides a measure of the ability of a model to predict flows
that are different from the mean [i.e. the proportion of the initial variance
accounted for by the model (Nash & Sutcliffe, 1970)], and r2 measures the vari-
ability of observed flow that is explained by the model (see the evaluation of
Legates & McCabe, 1999). CE ranges from negative infinity in the worst case
to �1 for a perfect correlation. According to Shamseldin (1997), a CE of 0.9
and above is very satisfactory, 0.8 to 0.9 represents a fairly good model, and
below 0.8 is deemed unsatisfactory. r2 ranges from �1 (perfect negative corre-
lation), through 0 (no correlation) to �1 (perfect positive correlation). 

Legates and McCabe (1999) highlight a number of deficiencies with relative
measures such as CE and r2. They note that r2 is particularly sensitive to outliers
and insensitive to additive and proportional differences between modelled and
observed data. For example, a model could grossly, but consistently, overesti-
mate the observed data values and still return an acceptable r2 statistic.
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Although CE is an improvement over r2 (in that it is more sensitive to differences
in modelled and observed means and variances), it is still sensitive to extreme
values. The index of agreement measure, d (Equation 6), has been proposed as
a possible alternative (Legates & McCabe, 1999) but owing to the use of squared
differences, it is still sensitive to extreme values. Modified versions of d and
CE have also been described which are both baseline adjusted (adjusted to the
time series against which the model is compared) and adapted from squared to
absolute differences. The second adaptation reduces the sensitivity of these 
measures to outliers. For a more thorough discussion, the interested reader is
directed to Legates and McCabe (1999).

(6)

Another error measure that has been used is S4E (presented as MS4E in
Equation 7) by Abrahart and See (2000). This higher order measure places
more emphasis on peak flows than the lower order MSE. Alternatively, the
mean absolute error (MAE, Equation 8), which computes all deviations from the
original data regardless of sign, is not weighted towards high flow events.

(7)

(8)

Other measures that have been employed in only a limited number of cases
include RMSE/
 [RMSE as a percentage of the observed mean (Fernando &
Jayawardena, 1998; Jayawardena et al., 1997)]; %MF [percent error in mod-
elled maximum flow relative to observed data (Hsu et al., 1995; Furundzic,
1998)]; %VE [percent error in modelled runoff volume (Hsu et al., 1995)];
%NRMSE [percentage of values exceeding the RMSE (Campolo et al., 1999)];
and RMSNE [root mean squared normalised error (Atiya et al., 1996) defined
as the square root of the sum squared errors divided by the square root of the
sum squared desired outputs (Equation 9)].

(9)

Lachtermacher and Fuller (1994) identified other measures for time series
analysis such as the Average Relative Variance (Nowlan & Hinton, 1992) and
the Mean Error (Gorr et al., 1992). Another measure often used in time series
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analysis is Theil’s U-statistic (Theil, 1966) which provides a relative basis for
comparing complex and naïve models. However, these measures have yet to be
used in the evaluation of NN rainfall-runoff models.

Classification approaches are also used to evaluate predictive models. 
For example, Colman and Davy (1999) used a classification technique to eval-
uate seasonal weather forecasts. In this technique the observed data were assigned
to one of three equiprobable sets, or terces (in this case, below average, 
average and above average temperatures). Model skill (relative to chance) is
then assessed using a Chi-square test of the modelled versus expected frequen-
cies in each category. Similarly, Abrahart and See (2000) classified predictions
according to: % correct; % predictions within �5, 10, 25% of observed and %
predictions greater than �25% of observed. This allows direct comparisons to
be made between different models irrespective of the predictand and model
time step.

While the above discussion relates more generally to rainfall-runoff mod-
elling, flood forecasting systems need to employ additional error measures. For
example, P-P (Dawson et al., 2000) is a measure of the error in the timing of a
predicted flood peak [Chang and Hwang (1999) refer to this as Etp]. Abrahart
and See (2000) use MAEpp and RMSEpp which measure equivalent values to
MAE and RMSE for all predicted peak flood events in a data set. These authors
also employed a classification criteria which measures % early, % late and %
correct occurrences of individual predicted peaks (although they do not indicate
what discrepancy constitutes a ‘late’ peak). A further measure used for flood
forecasting is total volume but this measure provides no indication of temporal
accuracy (Zealand et al., 1999).

The measures introduced above take no account of the parsimony of the
models. One would expect a model with many parameters to provide a better
‘fit’ to the data than one with fewer degrees of freedom. However, more com-
plex models do not necessarily lead to proportionate increases in accuracy and
one must question whether the additional effort is justifiable. Too many param-
eters may also result in over-fitting to the training data. Fortunately, several
performance measures take into account the number of parameters used in a
model. For example, the A Information Criteria – AIC (Akaike, 1974); the B
Information Criteria – BIC (Rissanen, 1978); the Schwarz Information Criteria –
SIC (Schwarz, 1978); the Vapnik-Chervonenkis dimension (Abu-Mostafa,
1989); or the Network Information Criteria – NIC (Murata et al., 1994). The
AIC and BIC measures are defined as follows:

(10)

(11)

in which m is the number of data points and p is the number of free parameters
in the model. These measures take into account the number of parameters used
within a model and give credit to models that are more parsimonious. In both
cases, lower scores indicate a more parsimonious model.

BIC RMSE)� �m p mln( ln( )

AIC ln(RMSE) 2� �m p
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Given this assortment of performance measures, the problem then becomes
one of deciding which (if any) are most appropriate to a particular application.
For example, Figure 3.3 shows different types of model error produced by four
hypothetical rainfall-runoff models. Model A, which is somewhat naïve, predicts
the shape of the hydrograph well but consistently overestimates flow and pre-
dicts the flood peak late. Model B predicts low flows accurately but returns poor
estimates of the flood peak. Model C simulates flow generally well but contains
a lot of ‘noise’, and Model D reproduces flood events very well but performs
poorly for low flows. Table 3.4 reports the error measures associated with each
model. Model B may be selected in preference to model D based on the MSRE
or MAE statistic. However, model D would be selected in preference to model
B from the RMSE, CE, d and r2 statistics. Model C consistently outperforms all
other models based on the error statistics, but it is not as accurate as Model B
during low flow periods, or Model D during flood events. Model A appears rela-
tively weak when assessed using most of the error statistics, but it performs very
well according to r2. This echoes the results of Legates and McCabe (1999)
who point out the imperfections of the r2 statistic (which does not penalise addi-
tive and proportional differences).

The results in Table 3.4 emphasise the importance of not relying on indi-
vidual error measures to assess model performance. Thus, goodness-of-fit error
measures (e.g. CE, d, and r2) and absolute error measures (RMSE and MAE)
should be used in combination (Legates & McCabe, 1999).
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3.9 Case study results
Table 3.5 presents summary statistics for the two NN models developed from
the case study data. Note that the MSRE has not been calculated in this case
because extremely low values of observed stage (often zero) overly skew the
results. The M9 model was not tested on days when data were missing; hence,
the M14 model was also evaluated on the same (reduced) testing period in
order to provide a fair comparison of both models.

Figures 3.4 and 3.5 show the hydrographs of these two models for the test
period. Comparing these two hydrographs, it appears that the M9 model is pre-
dicting flood peaks more closely than the more complex M14 model. Because
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Table 3.4. Error measures of four hypothetical models (reproduced from Dawson &
Wilby, 2001).

MSRE RMSE r2 CE d MS4E MAE

Model A 0.0510 61.24 0.827 44% 0.871 215 56
Model B 0.0243 72.28 0.397 21% 0.558 2003 34
Model C 0.0123 29.78 0.885 87% 0.968 14 26
Model D 0.0430 50.89 0.785 61% 0.922 152 39

Table 3.5. Comparative results of case study models.

Predictors Parameters RMSE r2 CE AIC BIC

M14 81 1.3517 0.948 93.96% 252 552
M9 166 1.3065 0.944 94.37% 409 1018
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Fig. 3.4. Time series hydrograph of M14 model versus observed during test period.
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the M14 model is based on antecedent moving average values, it has tended to
underestimate the falling limb of the September event as the predictors from
the drier summer period are influencing the model ahead of more recent events.
This is not a problem with the M9 model as it is using data from only three days
beforehand. These results emphasise the reliance such models have on the data
upon which they are developed and tested. In other words, the models become
dependent upon the relationships ‘identified’during data preprocessing which may
lead to the models being ‘tuned’ to specific seasons and catchment conditions.
When the models are then applied to test data covering a range of events,
overemphasis on particular situations becomes apparent and a model’s ability
to generalise appears to be weakened.

4 SUMMARY/CONCLUSIONS

The results of the case study indicate that it is not always necessary to employ
complex data preprocessing techniques in order to improve model performance.
Indeed, in this example, additional model predictors actually degraded the model
according to certain evaluation statistics (i.e. RMSE and CE). This could be
due to the fact that certain combinations of predictor variables were not in hydro-
logical terms a sensible selection at particular times of the year – for example,
precipitation minus temperature. More complex preprocessing is only helpful
when valid hydrological insight is conveyed through data manipulation and/or
input selection. The relatively poor performance of the M14 model may be due
to poor combinations or non-sensible combinations of predictors rather than the
act of preprocessing per se. However, this may not always be the case and the
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NN developer should always try alternative predictors and different NN models
before selecting the ‘best’ one.

Having identified an accurate NN model, the final stage (not discussed as
part of the process here) is the implementation of this model in the field. How
such models are integrated within packages, linked to telemetry data and imple-
mented with appropriate graphical user interfaces is beyond the intended scope
of this chapter.

In summary, a development process model has been presented, which con-
sists of, at the top level, six simple to follow, sequential stages. However, what
cannot be explicitly defined are the subjective rules and the complex decisions
that the NN developer must consider at each stage of the process. Due to the com-
plex nature of the problem domain and the extensive range of NN tools that are
discussed in the literature, with countless variations and minor modifications,
the NN developer is also plagued with a number of options at each stage. For
this reason it is recommended that those new to the practice should attempt 
to implement simple, tried and tested solutions such as a BPNN. Indeed, as shown
in the example presented here, it is not necessarily the case that more complex
models provide more accurate results.

While the literature accumulates more examples of NN applications in 
different catchments worldwide (with increasingly minor adjustments to the
basic approaches), there has been relatively little attention paid to more funda-
mental questions. For example, does the internal configuration of a trained NN
in anyway represent the physical processes that are at work within a catchment
(see Wilby et al., 2003)? The answer to this question may lead to improved con-
fidence in network performance and increasing respect for such models across
the wider hydrological community. Can NN – once trained – be transferred to
other (ungauged) catchments without extensive retraining – perhaps using 
generalised catchment indices? Finally, could network weights be modified in
the light of new information in real time, for example, through an under-
standing of the physical processes represented by the neurons? In this way,
such tools could become much more appealing to environmental organisations
attempting to estimate flow in real time with useful lead times and forecasting
horizons.

NN models of the river flow process, as far as we are aware, have still not
been implemented as full working versions in a real time operational context.
Indeed, until the above raised fundamental issues have been properly addressed
in a thorough and consistent manner, the use of neural tools for water-related
applications will continue to be restricted to a small band of proactive neuro-
hydrologists and computer scientists working in a research environment.
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1 INTRODUCTION

Artificial neural networks (NN) can be applied in the form of stand-alone mod-
els, or combined with other tools including other NN, to provide hybrid model-
ling solutions. Hybrid neural network (HNN) models can be defined as the
integration of a number of different models, but with the proviso that one or more
of the constituent models is a NN. The underlying principle of the hybrid model
is that it exploits the strength of the individual component models in a synergis-
tic manner to produce a better forecasting solution. The hybrid model offers
opportunities for integrating conventional hydrological models with those based
on artificial intelligence techniques, such as neurocomputing and fuzzy logic.
Moreover, in hybrid modelling, conventional models and the artificial intelli-
gence solutions are intended to complement rather than compete with each other.

Hybrid models can be modular or non-modular. In the case of modular hybrid
models a complex forecasting problem is divided into a number of simpler
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modelling sub-tasks, appropriate models are used to solve these sub-tasks, and
their results are integrated to produce the hybrid forecast. In non-modular
hybrid modelling, a number of component models are used to provide an inde-
pendent solution to the exact same problem and the hybrid forecast (temporal)
or prediction (non-temporal) is a combination of individual outputs from the
individual component models.

The idea of developing HNN models was discussed in Van den Boogaard
and Kruisbrink (1996). The authors presented several avenues for the integra-
tion. Some of these approaches were discussed in Chapter 2 and include using
NN to estimate some of the inputs to the numerical model and the enhance-
ment of the numerical model outputs by using NN to forecast the errors in the
numerical model outputs.

This chapter provides several examples that illustrate the potential benefits
and use of HNN. The river flow forecasting applications discussed here, cover
both non-modular and modular approaches to problems associated with river
flow forecasting, and the results of their use on catchments of various sizes and
different climatic conditions in different parts of the world. The final section is a
discussion on training issues and uncertainties related to modelling with HNN.

2 NON-MODULAR NEURAL NETWORK SOLUTIONS

2.1 Neuro-combination technique for river flow forecasting
The essence of a combination non-modular river flow forecasting system is the
synchronous use of the discharge forecasts from a number of individual com-
peting river flow forecasting models in order to provide an overall combined
forecast which is more accurate and reliable than each individual model output
(see Fig. 4.1). The objective of the combination system is not the development
of a new single individual model, based on combining the different structural
features of various models, but the provision of a shell for blending the fore-
casts of the different models.

The theoretical background behind this combination process is that each con-
stituent model is regarded as providing an important source of information, which
in certain aspects might provide different information from that contained in the
other models. Thus, it is logical to assume that the intelligent combination of
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information from these different sources can be used to provide more reliable
discharge forecasts.

There is also a practical justification for the use of combination river flow
forecasting systems since, at the present time, there is no superior individual river
flow forecasting model providing discharge forecasts that are better under all cir-
cumstances with respect to alternative competing models. This fact has been
echoed in a number of inter-comparison studies of river flow forecasting models,
which showed that neither simple nor complex models are free from failure
(WMO, 1992; Ye et al., 1997; Perrin et al., 2001). These inter-comparison stud-
ies have also affirmed the equifinality principle of river flow forecasting models,
which is a further illustration of the fact that the construction of a single superior
river flow forecasting model is at best improbable. This principle states that dif-
ferent models with identical or different structures and complexities can gener-
ate quite equivalent results (Loague & Freeze, 1985; Hughes, 1994; Franchini &
Pacciani, 1991; Michaud & Sorooshian, 1994; Ye et al., 1997; Beven & Freer,
2001; Mein & Brown, 1978; Kachroo, 1992; O’Connor, 1995; Lidén & Harlin,
2000).

The recurrent emergence of publications on improvements to existing models
and on the development of new models is further evidence that a single super-
ior model has still to be developed. Consequently, there is considerable risk in
depending on the results of one river flow model in an operational flood fore-
casting system, and the failure of a model to produce reliable flood forecasts will
weaken the integrity of such tools. Moreover, unreliable river flow forecasts can
lead to unreliable flood warnings, which could prove to be expensive in terms of
socio-economic or environmental damage and losses (as reported in Chapter 10).

The combination river flow forecasting system addresses such deficiencies
in traditional flood forecasting systems, which exclusively depend upon the
output from a single model, through the simultaneous application of a suite of
alternative individual models. However, the use of combination forecasting,
although very well established and regarded as standard practice in diverse fields
such as economics, business, statistics and meteorology (Clemen, 1989), has
seen limited uptake in the field of river flow forecasting (Shamseldin et al.,
2002). There are a small number of publications in this area notwithstanding
the fact that the first attempt at river forecasting combinations can be traced back
to the pioneering efforts of McLeod et al. (1987). This initial work sought to
combine monthly river flows obtained from different time series models; such
ideas were further developed and investigated to combine daily discharge fore-
casts from different rainfall-runoff models in Shamseldin (1996), Shamseldin
et al. (1997), Shamseldin and O’Connor (1999) and Xiong et al. (2001), and to
combine hourly discharge forecasts from different rainfall-runoff models in See
and Openshaw (2000), See and Abrahart (2001) and Abrahart and See (2002).

The recent studies mentioned above, although limited in number, demon-
strate the tremendous potential and capabilities of combination methodologies
to provide more accurate and more reliable forecasts. The results show that in
most cases the combined forecasts were more accurate than the forecasts of the
best individual model used in producing the combined solution.
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The most popular approaches to produce the combined river flow forecasts
that users will find useful include linear-based, fuzzy-based and NN-based
methods. To produce a linear combination, the combined forecast is obtained
from the forecasts of the individual models using either a simple average (SAM)
or a weighted average (WAM) method. The combined forecast obtained by
simple averaging is often regarded as a naïve forecast and used as a benchmark
against which the forecasts of the more sophisticated combination methods can
be compared; persistence is another well-liked universal benchmark.

Fuzzy-based combination methods are based on fuzzy logic and fuzzy sys-
tems, which are powerful in the approximation of non-linear time variant func-
tions, and for dealing with imprecise and uncertain knowledge (Goonatilake &
Khebbal, 1995; Khan, 1999). Each fuzzy system is a collection of if-then 
rules that transform a set of inputs into a set of outputs. The rules and sets are
developed using the fuzzy set theory of Zadeh (1965), which is regarded as an
extension to classical set theory, and the use of such methods for the combin-
ation of river flow forecasts is established in See and Openshaw (2000), Xiong
et al. (2001) and Abrahart and See (2002).

In the NN combination method, as the name indicates, NN are used to build
combination river flow forecasting systems. This offers a novel approach that
differs from other hydrological applications. In combination systems, NN work
synergistically with the constituent models to produce better river flow fore-
casts, while in other hydrological applications NN contend with traditional
hydrological models. Shamseldin et al. (1997) advocated the use of NN as a
complex method for the combination of river flow forecasts obtained from dif-
ferent rainfall-runoff models. NN combinations are in most cases better than
those of WAM and SAM (Shamseldin et al., 1997; Abrahart & See, 2002). Xiong
et al. (2001) also found that neuro-combination forecasting was often more
accurate and more reliable than linear and fuzzy-based combination systems,
although Abrahart and See (2002) report that neuro-combinations perform well
on certain categories of error, but do less well on others, given shorter time
steps and forecasting horizons. NN combinations of differenced data were also
observed to provide the best solution for a stable regime – whereas a fuzzified
probabilistic solution produced superior results in a more volatile environment.

NN, as described in Chapter 2, can be classified into different types
depending upon the arrangement of their internal neurons and the pattern of
the interconnections between them. The neurons are the computational pro-
cessing elements of the network, which operate on the external inputs to pro-
duce the final network outputs, and, in the context of river flow combination,
the external inputs at each time step are the forecasts of the individual models
while the network output is the combined forecast.

There are various different types of NN that can be used in a neuro-
combination river flow forecasting system. However, the common multi-layer
perceptron (MLP) has to date been the only NN type used in river flow forecast
combination systems, in part due to the dominance of this solution in all other
forms of river flow forecasting applications (Dawson & Wilby, 2001; Maier &
Dandy, 2000, Chapter 2).
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Each neuron can have multiple inputs but produces a single output, which
becomes an input to other neurons in the next layer. The process of input-output
transformation is governed by a mathematical function known as the neuron
transfer function. A linear transfer function is used in the input layer while a
non-linear transfer function is used in the hidden and output layers. The logistic
function is the most common non-linear transfer function. Shamseldin et al.
(2002) examined the significance of using different non-linear transfer func-
tions for the hidden and output layers in an MLP when used in the context of
the river flow forecast combination method. Five neuron transfer functions
were used in the investigation: the logistic function; the bipolar function; the
hyperbolic tangent function; the arctan function; and the scaled arctan func-
tion. The results of the investigation showed that the logistic function generated
the best results while the arctan function often produced the worst results.

The field of combination river flow systems is a new and challenging area of
research. There is tremendous scope for investigation, e.g. to test if the use of
different types of NN, other than MLP, will lead to further improvements in the
performance of the neuro-combination method. Future applications of neuro-
combination river-flow forecasting systems will also need to be tested over a wide
range of catchments with different characteristics to develop general guide-
lines about their use in different catchment types with respect to area, land use,
soil type and relief. The complexity of the combination system will also be
increased, commensurate with an increase in the number of constituent models,
and there is a need to determine the optimum number of the constituent models
for each combination system. However, the increase in complexity does not
always guarantee a significant improvement in the system performance, and it
is necessary to provide guidance on the optimal number of models beyond which
the performance of the system does not substantially improve. This optimal
number would therefore maintain a balance between the complexity of the sys-
tem and the performance of the system, which is a recurring theme in the field
of applied hydrological science, and which is of particular significance with
respect to neurocomputation where there is a strong danger of over-modelling.

The results obtained so far with the combination river flow forecasting sys-
tem are very encouraging in terms of forecast reliability and accuracy. The impli-
cation of these results is that users of modern flood forecasting systems, who use
a suite of river flow forecasting models, should seriously consider switching to
the synchronous combination of alternative forecasts. Indeed, the implementa-
tion of combination procedures in flood forecasting centres that use an existing
suite of forecasting models would be a simple and inexpensive operation.

3 MODULAR HYBRID NEURAL NETWORK SOLUTIONS

3.1 Neuro-updating technique for river flow forecasting
In real-time river flow forecasting systems, the substantive simulation rainfall-
runoff model operates on-line on the basis of the latest available data, with aux-
iliary updating procedures being used to compensate for the errors that arise
between the simulated and observed discharge hydrographs. These errors are
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due to numerous factors, which include inadequacy of the model structure,
poor estimation of the model parameters and inherent errors (systematic or
random) in both rainfall and discharge data.

There are different categories of updating procedure but there is no common
or universal agreement on the best method to be used in river flow forecasting
(WMO, 1992; Refsgaard, 1997). The common task of different updating pro-
cedures is to provide the substantive simulation model with feedback informa-
tion based on the latest river flow data observed prior to the time of issuing the
forecast. This feedback information is then used to offset a significant propor-
tion of the errors that occur between the observed and the simulated discharge
hydrographs, thereby refining the discharge forecasts. In general, the use of an
updating procedure considerably improves the forecasting accuracy for short-
term forecasting. Such considerable improvements are essential for the reliable
management of the routine operation of real-time river flow forecasting sys-
tems. Such systems provide reliable information that can be used to help mitigate
the impacts of floods for real-time operation.

The substantive rainfall-runoff model, coupled to its discharge updating
procedure, is termed a real-time river flow forecasting model (Becker & Serban,
1990). The estimated discharges produced by the substantive simulation model
prior to the application of the updating procedures are known as simulation-
mode (or design mode) forecasts; the estimated discharges obtained after apply-
ing the updating procedures are known as updating-mode forecasts. The real-time
forecasting model is an example of a modular hybrid model in which the real-
time forecasting problem is divided into two modelling sub-problems: (i) simu-
lation and (ii) updating. NN can be used for modelling either or both of these
two sub-problems.

Moore (1986) classified real-time river flow updating procedures into four
types depending on the nature of the substantive model variables to be modified.
These variables are the input variables to the model, the water content of the
various storage elements in the model, the internal parameters of the model,
and the output variables from the model. The four possible updating procedure
types are thus: (i) input updating procedures; (ii) storage content updating pro-
cedures; (iii) parameter updating procedures; and (iv) output updating proced-
ures. There is no restriction on the number or type of procedures that can be
applied to updating and more than one type of updating procedure can be used
to produce a set of output forecasts (Becker & Serban, 1990; Serban & Askew,
1991; WMO, 1992). NN could also, therefore, be used to update one or more
such variables, either alone, or in a combination.

Input updating is based on adjusting the hydro-meteorological input vari-
ables to the model, e.g. rainfall or upstream discharge. The input adjustment is
made such that re-running the substantive river flow forecasting model with
the modified inputs produces near-correct discharge forecasts. The input
updating is in essence an inverse modelling problem in which the model inputs
are expressed as an explicit or implicit function of the model outputs. However,
since most river flow forecasting models have complex structures, it is not
always possible to derive the implicit inverse function. For this reason, input
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updating is normally performed on a trial-and-error basis. NN could also be
trained to explicitly approximate the inverse function. Figure 4.2 shows a
schematic diagram of how NN can be used for an input updating procedure in
conjunction with a substantive rainfall-runoff model.

The operation of storage content updating depends on real-time or run-time
recursive adjustment of the water content in the various storage elements to
enhance the forecasts. In a quasi-physical conceptual rainfall-runoff model,
such enhanced forecasts could be achieved by modifying the water content of
the water balance part and/or of routing reservoir elements. The raison d’être
of storage updating is that errors in the physical input variables to the model
accumulate and appear as corresponding errors in the water content of the stor-
age elements. Therefore, if these water contents are adjusted in accordance
with identified discrepancies between simulated and observed discharge, then
better discharge forecasts can be obtained (Moore, 1986). The storage contents
are usually adjusted using two methods: (i) the Kalman filter which has a
strong hydrological tradition and (ii) empirical state updating procedures. In
both methods the adjusted storage content is the sum of the current storage
content value and the model error multiplied by a gain coefficient. In the case
of the Kalman filter, the gain coefficient is statistically defined, while in the
case of the empirical adjusting procedures, the empirical gain coefficient is
found from off-line optimisation. NN can also be used for storage updating, as
such tools can be trained to produce either the gain coefficient, or the final
adjusted content itself.

The parameter updating procedure involves real-time or run-time adjust-
ments to parameter values of the model using the recursive least squares method
and the Kalman filter (O’Connell & Clarke, 1981). This updating procedure is
con-sidered less attractive than the other updating procedure categories and the
degree of parameter variation normally demonstrates the extent of structural
unsuitability of the substantive model (Moore, 1986). It is also hard to sub-
stantiate that such considerable variations in parameter values can occur in
such a short time as the observation interval. NN-based parameter updating
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procedures can be developed in a similar fashion to the NN storage updating
procedures to produce the final adjusted parameters.

In the output updating procedures, the updated discharge forecasts are
obtained from external adjustment of the simulation mode discharges. This
external adjustment is performed without interfering with the internal oper-
ation of the simulation model in the sense that the updates do not alter the model
parameters. Furthermore, there is no need to re-run the substantive simulation
model to obtain the updated forecasts. For the aforementioned reasons, in com-
parison to other types of updating procedure, the application of output-updating
procedures is regarded as a simple and straightforward operation.

Output updating procedures can be classified as direct or indirect. The indi-
rect output updating procedure is based on forecasting the errors in simulation
mode discharge forecasts. The final updated discharge forecast is then the sum of
non-updated (simulation-mode) discharge values and the corresponding error
forecast. The forecast updating via error predictions is perhaps the most popular
updating procedure, which has been extensively used in applied hydrology in
conjunction with numerous different rainfall-runoff models (Serban & Askew,
1991). Such procedures, which are normally used for indirect updating, are the
uni-variate linear stationary time series solutions of Box and Jenkins (1976), e.g.
the autoregressive (AR) models and autoregressive moving average (ARMA)
models. These time series models generally exploit the time persistence structure
of the error series to forecast future errors. NN can thus be implemented as a
more general non-linear form of these time series models, which are used for
error forecasting. For example, Xiong and O’Connor (2002) developed an NN
error-forecast updating procedure based on the structure of a multi-layer feed
forward neural network (MLFN). The external inputs to the NN, for one-step
ahead error forecasting, are the simulation mode errors of the substantive model
up to the time of issuing the forecasts. Figure 4.3 shows a schematic diagram of
the NN updating procedure operating in parallel in conjunction with a substan-
tive rainfall-runoff model. Babovic et al. (2001) used the NN error updating pro-
cedure for updating the forecast of a hydrodynamic model. The authors
concluded that the NN error updating procedure ‘provides very good forecasting
skills that can be extended over a forecasting horizon of a significant length’ (p.
181). Xiong and O’Connor (2002) compare the NN error updating procedure
with the standard AR error updating procedure, using the simulation mode dis-
charges of a conceptual rainfall-runoff model on eleven selected catchments. The
results of their comparison illustrated that the complex NN error updating pro-
cedure offers no significant merits in terms of enhancing the real-time flow fore-
cast performance over the simple AR error updating procedure.

The direct procedure is in most applications based on the input-output
structure of the linear and non-linear Auto-Regressive eXogenous-input Model
(ARXM), which encompasses a self-correcting mechanism that can be exploited
for direct updating of the forecasts of the substantive model. Some of the indir-
ect output can be regarded as a special case of the direct output updating pro-
cedure. For example, Shamseldin and O’Connor (1999) show that the AR
updating procedure is a limiting case of the linear ARXM updating procedure.
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In general, the linear ARXM updating procedure can lead to better real-time
forecasting results than those produced from AR and ARMA error updating
procedures (Shamseldin, 1996).

Traditionally, the linear ARXM is used as a river flow forecasting model in
its own right where the exogenous inputs to the model are the conventional
physical inputs such as rainfall and the upstream inflow hydrograph. In the case
of direct output updating, the autoregressive component of the ARXM provides
a feedback information mechanism in the form of the latest observed discharges.
In the direct output updating procedures, the exogenous inputs to the ARXM
are the simulation mode discharge forecasts of the substantive model. These
exogenous inputs are used in combination with the latest observed discharges
prior to the time of issuing the forecast to produce the updated discharge fore-
casts as direct outputs of the linear ARXM. The first apparent application of an
implicit use of the linear ARXM in the context of output updating was in the
unpublished work of Peetanonchai (1995). Further investigation into the use of the
ARXM in this context was later reported in Abdelrahman (1995), Shamseldin
(1996), Suebjakla (1996), Shamseldin and O’Connor (1999) and Shamseldin
and O’Connor (2001).

Shamseldin and O’Connor (2001) developed a Non-linear Auto-Regressive
eXogenous-input Model (NARXM), which is based on the structure of the MLP.
This NARXM updating mechanism presents new avenues for the integration of
substantive rainfall-runoff models with NN. The overall operation of a NARXM-
NN output updating procedure is shown in Figure 4.4. For one-step ahead fore-
casting, the external inputs to the NN are simulation-mode discharge forecasts,
up to the time of issuing the forecasts, and the current or the latest observed dis-
charges, prior to the time of issuing the forecasts. The NN output, after suitable
transformation, constitutes the updated discharge forecast. The performance of
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the NARXM-NN output updating procedure was tested using the daily discharge
forecasts of a conceptual rainfall-runoff model for five catchments that had dif-
ferent climatic conditions. The results of the NARXM-NN output updating pro-
cedure were compared with a linear ARXM updating procedure. The results of
this comparison indicate that the NARXM generally performed better than the
linear ARXM. The results also show that the highest improvement in perform-
ance was obtained for semi-arid catchments where the time persistence structure
(i.e. autocorrelation) of the simulation mode error time series was very weak.

3.2 Modular neural networks
Modular neural networks MNN are based on the concept of divide and conquer.
According to this concept, a complex non-linear computational problem is
divided into a number of simple computational sub-tasks thus splitting the input
space into regions, with the solution for one or more specific sub-tasks or mod-
ules being assigned to a different NN. It is assumed that different constituent
solutions will work best in different regions of the solution space (Haykin, 1999).
Modular solutions will also have an integrating unit. The main function of the
integrating unit is to combine the results of the constituent modules. MNN,
undoubtedly, will be very complex in contrast to standard NN. MNN will also
have a large number of parameters (i.e. they are not parsimonious) and can there-
fore be quite difficult to train. There are several publications that deal with the
use of the MNN in rainfall-runoff studies (e.g. See & Openshaw, 1999; Zhang &
Govindaraju, 2000; Hu et al., 2001; Hsu et al., 2002).

See and Openshaw (1999) developed a MNN model for river flow forecast-
ing on the River Ouse in the UK. In this case the ‘divide and conquer’ element
involved breaking up the hydrographs into their component parts: rising flow
limb, peak flow, falling limb and low flows. Independent NN models were then
produced for each hydrograph section and their outputs reintegrated. The inte-
gration of the different MNN modules was achieved using a sophisticated fuzzy
logic rule-based model. It was concluded that the developed MNN model ‘may
provide a well performing, low-cost solution, which may be readily integrated
into existing operational flood forecasting and warning systems’ (See &
Openshaw, 1999 p. 763).
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Zhang and Govindaraju (2000) used MNN to perform rainfall-runoff trans-
formations for three medium sized catchments in the USA. There were three NN
modules in each MNN to simulate low, medium and high flow events. The jus-
tification for using three modules is that, in the chosen catchments, different
runoff generating mechanisms are dominated by different physical processes
depending on the magnitude of each runoff event. The MNN used a linear
function to combine the three individual outputs and the results were compared
against those obtained using a standard MLP. This comparison showed that,
while MLP are capable of adequately simulating the average events, such tools
fail to capture extreme events, whereas MNN appear to be more successful at
simulating such items. Similarly, Hu et al. (2001) found that MNN were more
successful than MLP in reproducing low flow events.

Hsu et al. (2002) also developed an MNN in which the input domain is par-
titioned into different regions using a Self-Organising Feature Map (SOFM)
(Kohonen, 1984), which is a specific type of NN – for more details see Chapter 2.
These regions correspond to different hydrological situations such as base
flow, increasing rainfall, peaking hydrograph, etc. The output is then calculated
using a set of piecewise linear regression equations, one for each node in the
SOFM, which relates the model inputs to an estimation of flow at the next time
step. The linear regression coefficients were calculated using a least square
error solution. Hsu et al. (2002) found that the performance of the MNN was
better than those of other commonly used river flow forecasting models such as
MLP, ARMX and conceptual rainfall-runoff models.

4 BROADER ISSUES

This section of the chapter discusses issues of training and uncertainties in the
development of modelling solutions based on HNN. It outlines practical diffi-
culties associated with these issues and provides an outline of several methods
that can be used for training and the quantification of uncertainty. The discus-
sion is of a general nature since most of the items considered in this section are
also valid for both traditional hydrological models and NN.

4.1 Training of hybrid solutions
The use of standard and hybrid NN models for river flow forecasting in a spe-
cific catchment requires the estimation of numerical values for the parameters
that control the overall operation of the model. This is achieved through train-
ing. For MLP, the connection weights assigned to the connection paths that link
the neurons, together with the neuron threshold values, constitute the param-
eters of the network. Hence, the objective of the training process is to find a set
of parameter values for a particular catchment that can provide the best pos-
sible fit between the simulated and the observed outputs. Thus, the training
process is essentially equivalent to the traditional process of model calibration.

For hydrological applications of NN and HNN models, the issue of their
training has received less attention, to the extent that most publications do not
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quote the number of model parameters. The calibration process has a consider-
able role in testing the appropriateness of the model for a specific catchment. The
use of an inadequate set of model parameter values would generally produce
poor predictions and, consequently, this may lead the model developer to aban-
don the use of a model when, properly optimised, it might be quite adequate.

Estimation of the parameters entails the specification of an estimation cri-
terion to quantify how good the simulated outputs are in replicating the actual
observed outputs (i.e. a goodness-of-fit criterion). The estimation criterion is
also known as the objective function and could be a single criterion or a com-
bination or weighting of several criteria for goodness-of-fit. Several forms of
objective function have been used in a hydrological context (Sorooshian &
Gupta, 1995). However, the most widely used objective function for the esti-
mation of parameters in the context of NN and hydrological models is the least
squares criterion. The least squares objective function is the sum of the squares
of deviations between the estimated model outputs and the actual observed
outputs. The choice of a particular objective function will, in most cases,
mainly depend on the purpose of the model and on what results the model is
expected to produce. As an example, if the emphasis is on the estimation of the
flood peaks, then a greater weight to peaks could be incorporated in the object-
ive function to reflect this emphasis.

The training of a hybrid model involves the calibration of both the con-
stituent models and the integration unit. In most cases, the constituent models
and the integration unit are developed as individual and unrelated solutions
(Shamseldin et al., 1997). However, this separate development may not yield
the best results. On the other hand, combined calibration of both constituent
models and the integration unit will most often be a problematic undertaking
that involves the estimation of a large number of parameters.

In most of the cases, the constituent models and the integration unit in the
hybrid model are non-linear, and their calibration or training with observed input-
output data involves the optimisation of a non-linear objective function. There are
several different deterministic local search methods and global stochastic search
methods that can be used to solve this non-linear optimisation problem.

‘Local search methods are defined as those that are designed to efficiently
find the minimum of unimodal functions – functions for which any strategy that
seeks to continuously proceed downhill (a direction of improving function
value) must eventually arrive at the location of the function minimum, irre-
spective of where in the parameters space the search procedure is started’
(Sorooshian & Gupta, 1995, pp. 31–32). Depending on whether or not the
derivatives of the objective function are used, the local search methods can 
be further classified as direct search methods or gradient search methods. 
The gradient search methods (e.g. the backpropagation and conjugate gradi-
ent algorithms) are the most widely used methods for training NN. Direct
search methods such as the Simplex Method (Nelder & Mead, 1965) and the
Rosen-brock Method (Rosenbrock, 1960), which have been widely used for
decades in calibrating rainfall-runoff models, can also in principle be used for 
calibrating HNN.
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Stochastic global optimisation methods offer efficient tools that can be used
to discover a global minimum, and adopt probabilistic rules to search the response
surface of the objective function. These methods will guarantee the conver-
gence of each solution to the global optimum in a probabilistic sense (Duan 
et al., 1992). Examples of stochastic global optimisation methods are genetic
algorithms and simulated annealing algorithms. There are also global opti-
misation methods, which are developed based on the integration of concepts
drawn from local search (deterministic) and stochastic optimisation methods,
which have been found to be successful in calibrating rainfall-runoff models.
For example, Duan et al. (1992) developed the complex shuffled evolution
method to combine the strength of the simplex method with the concept of
information sharing and concepts drawn from evolution-based biological the-
ories that are similar to those used in genetic algorithms.

The parameters of the hybrid model can also be estimated by a sequential
optimisation procedure. This sequential optimisation involves the successive
use of a stochastic global search method and a local search method. The final
optimised parameters of the stochastic global search method are used to pro-
duce the initial starting values for a local search method (Shamseldin et al.,
2002). The sequential optimisation procedure combines the strength of the sto-
chastic method in locating the global solution with the efficient convergence of
a local search technique, which is used to fine-tune the results of the stochas-
tic method. Wang (1991) found that further sequential tuning of the final opti-
mised parameters from a genetic algorithm, using the simplex method, is a
robust and efficient method for the calibration of conceptual models.

The NN and HNN models are in most cases too complex, having a large
number of parameters (i.e. not parsimonious), in contrast with traditional river
flow forecasting models. For example, a simple MLP rainfall-runoff model can
have more than a dozen or so parameters. Such over complex solutions can
cause numerous difficulties in the process of model identification and in find-
ing the true optimum set of parameters. The extent of these difficulties is much
greater for NN and HNN models, compared to those reported for traditional
conceptual rainfall-runoff models, which possess far less parameters. Difficul-
ties in the calibration of traditional models can be attributed to (Ibbitt &
O’Donnell, 1974; Johnston & Pilgrim, 1976; Moore & Clarke, 1980): i) param-
eter interdependence, in which numerous parameters produce the same opti-
mum value from the objective function, i.e. equifinality ii) discontinuities in
the objective function causing numerical problems for gradient-based opti-
misation methods iii) scaling of the parameters resulting in narrow elongated
valleys in objective function response surfaces, along which the search progress
is generally very slow iv) indifference of the objective function to the parame-
ter values causing the optimisation algorithm to end in a premature fashion v)
local minima causing the search algorithm to be terminated at a point at which
the objective function is lower than all surrounding points in a local neigh-
bourhood, but at a higher value than a point in another region of the objective
response surface, which is the true minimum.
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4.2 Uncertainties of hybrid solutions
Most reported NN hydrological forecasting applications, including HNN appli-
cations, do not provide a measure of forecast uncertainties (Maier & Dandy,
2000). The uncertainty analysis on the forecast of each HNN and NN model,
however, is quite important given the internal complexities involved. It will be
interesting to see whether or not the use of such models can lead to a reduction
in forecast uncertainties when compared to traditional hydrological models.

The uncertainties in the forecasts of river flow models can be attributed to
a number of different factors such as model structure, poor estimation of the
model parameters and errors in the input data (Lei & Schilling, 1996). The esti-
mation of such uncertainties is important because a single deterministic model
prediction will be always be wrong (Beven et al., 2001). The analysis of river
flow forecast uncertainties will enhance the utility of the forecasting system as
it will enable the estimation of potential flooding probabilities, which has numer-
ous benefits, such as to enable the setting of risk-based criteria for flood warn-
ing codes (e.g. flooding possible, flooding expected, severe flooding expected
and all clear) and emergency response plans (Krzysztofowicz, 2001).

There are various simple and complex methods, such as the Mean Value
First Order Method (MVFOM) and Monte Carlo simulation methods, which
can be used to perform uncertainty analysis (Melching, 1992; Yu et al., 2001).
MVFOM is the most common method as it is simpler to apply than the other
methods of uncertainty analysis. MVFOM is based on a linearisation of the
model output equation around the mean value or other convenient central value,
or around other basic variables such as parameters and inputs (Melching, 1992;
Lei & Schilling, 1996). This method yields information about the expected
value and the variance of the forecast as well as the contribution of each variable
to the variance (output uncertainties) of the forecast. However, its application
requires the specification of the mean and the variance of the basic variables.

The Monte Carlo method involves randomly generating a large number of
basic variable sets from their corresponding probability distributions. The
model is run repeatedly with a new randomly generated set of basic variables
in each run. In this way, a large number of model forecast samples are gener-
ated and these samples are used to calculate the mean and the variance of the
forecast. Thus, the operation of this method requires knowledge of the prob-
ability distribution of the basic variables. The results of the Monte Carlo
method are often used as a benchmark against which the results from other
uncertainty analysis methods can be compared.

As noted above, the use of uncertainty methods such as MVFOM and the
Monte Carlo method requires the specification of the statistical moments (i.e.
mean and variance) and the probability distributions of the basic variables. In
the case of model parameters, the statistical moments can be estimated by
repeated model calibration to different time periods. The nature of the prob-
ability distributions can also be inferred from the results of the repeated model
calibration to different time periods (Melching, 1992). From the results of the
uncertainty analysis, a model reliability index can be calculated, and used to
compare the results of different models. The results of this approach, together
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with an appropriate assumption about the distribution of the model forecasts,
can also be used to construct a set of forecast confidence intervals.

5 CONCLUSIONS

In this chapter, the use of hybrid neural network (HNN) models in the context
of river flow forecasting is examined. HNN models offer frameworks for the
integration of traditional hydrological models with modern soft computing
models, such as NN models and fuzzy logic models. They also offer good
opportunities for enhancing the forecast accuracy. The literature review pre-
sented in the chapter suggests that the use of HNN models is not wide spread.
However, the number of publications dealing with their applications is increasing.

The literature review reveals that the issue of training HNN models is often
overlooked. The primary focus of most HNN modelling studies has been to
demonstrate the potential capabilities of HNN models for improving the output
forecasts, compared to stand-alone models. This chapter has discussed the vari-
ous methods that can be used for training HNN models. It is envisaged 
that many of the long-reported problems faced during the calibration of trad-
itional rainfall-runoff models could be exacerbated in the calibration of HNN
rainfall runoff models due to their inherent complexities. There is a need to
determine whether or not the current procedure for calibrating HNN, which
involves the separate calibration of the individual constituent units, is the best
calibration solution.

The forecasts of HNN and NN models are not at present usually issued with
measures of forecast uncertainties. This is not acceptable as a practice; rectify-
ing this omission is thus a research priority that is needed to give confidence to
future modellers. This omission could be due in part to the structure of existing
NN software source codes taken from ‘off-the-shelf’ packages, which does not
allow room for further development as source code is often concealed from the
user. Using off-the-shelf code is sensible but the adoption of open source code
would permit further refinement or the addition of user-constructed modules,
which can systematically examine the output quality. Many of the methods
used for uncertainty analysis in traditional hydrological models can and should
be used in conjunction with HNN models to aid the critical evaluation of the
results, and to provide better modelling developments.
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1 INTRODUCTION

There are many different artificial neural networks (NN) (Shepherd, 1997)
but as mentioned in Chapters 2 and 9, NN for forecasting river flow are
almost always trained using backpropagation (BPNN). This may be due in
part to the fact that BPNN were the first successful models to be implemented

5

The Application of Time Delay Neural
Networks to River Level Forecasting

LINDA M. SEE AND PAULINE E. KNEALE
School of Geography, University of Leeds, UK

ABSTRACT: This chapter considers the use of time delay neural networks for
river flow forecasting. These tools have an advantage over feedforward net-
works trained with backpropagation because such mechanisms are responsive
to time-varying behaviours. This has relevance for the inclusion of information
from upstream stations, in which the input data set must be lagged, using aver-
age travel times, when used with a feedforward network trained with back-
propagation. However, this average travel time is not an accurate representation
of the time-varying behaviour of the flood wave as it moves down the channel.
To compare the performance of both types of neural network, a series of mod-
els to forecast lead times of 2 and 4 hours ahead were developed for the River
Tyne in Northumbria. The networks were trained on 22 storm events and vali-
dated on an additional 14 events over a 10 year period. Global and flood specific
evaluation measures were used to assess and compare the performance of the
different models. The time delay neural networks performed slightly better
overall relative to neural networks trained with backpropagation at a 2 hour
lead times but showed a greater overall improvement at 4 hour lead times, sug-
gesting that these models become more effective at longer forecasting hori-
zons. These preliminary results suggest that time delay neural network models
should be examined in more depth for use in river flow forecasting.
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(Rumelhart et al., 1986), and because the algorithm is simple to program and
apply. Within hydrology there are many examples of the successful application
of these network types, e.g. as rainfall-runoff models (Abrahart & Kneale,
1997; Campolo et al., 2003; Minns & Hall, 1996; Salas et al., 2000;
Shamseldin, 1997; Smith & Eli, 1995), for predicting water quality (Brion et al.,
2001; Gumrah et al., 2000, Maier & Dandy, 1996) and in estimating rainfall
(Dell’Acqua & Gamba, 2003; French et al., 1992; Hsu et al., 2000).

Despite the frequent use of BPNN, a major limitation of the standard back-
propagation algorithm is that it can only learn an input-output mapping that is
static (Haykin, 1994), rendering it well suited to time-independent pattern recog-
nition problems. When time is added in the form of time series data, it is possible
to develop a forecasting model using a BPNN provided that the data are station-
ary, i.e. there are no time varying behaviours in the mean or the variance of the
series. River level data are generally nonstationary but this can usually be cor-
rected by pre-processing the data using a single point differencing operation
(Masters, 1995). The real difficulty arises when data from upstream gauging sta-
tions are used as inputs in the forecasting model. It is then necessary to calculate
a travel time between stations which represents the average time difference for a
peak flow passing between the two stage gauges. This average travel time is used
to lag the upstream station inputs before training the network. If the average travel
time does not vary with each storm event, the BPNN should not have any prob-
lems in forecasting levels. However, this is not necessarily the case. For example,
the average travel time between Bywell and Reaverhill on the River Tyne (Fig. 5.1)
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has been calculated at 2 hours but this can vary by �1 hour. Travel times vary
with storm event size and duration; therefore, instead of using a BPNN for
forecasting river levels, a time delay neural network (TDNN) (Lang & Hinton,
1988) might be more appropriate. TDNN are dynamic feedforward networks that
are designed to capture time-varying behaviour through the addition of time
delays in the architecture of the network. These time delays are analogous to
adding memory capability (Elman, 1990). This is another example of the appli-
cation of biological inspiration to NN, as signal delays are important in process-
ing information in the brain (Haykin, 1994).

This chapter considers the feasibility of using TDNN for river level fore-
casting and contrasts them to BPNN. Both types of model were developed and
tested on the River Tyne at Bywell in Northumbria (Fig. 5.1), forecasting levels
at lead times of 2 and 4 hours ahead. The networks were trained and validated
on a series of storm events over a 10 year period. Global and flood specific evalu-
ation measures were used to compare the different model types. Hydrographs
of validation events were also examined.

2 TIME DELAY NEURAL NETWORKS (TDNN)

TDNN have been used to date for a range of different applications including time
series analysis of both the stock market (Sitte & Sitte, 2000) and ionospheric
conditions (Wintoft & Cande, 1999), image sequence analysis (Cancelliere &
Gemello, 1996; Wöhler & Anlauf, 1999), speech recognition and analysis (Waibel
et al., 1989; Lavagetto, 1997), the regulation of anesthetic dosages to patients
(Vefghi & Linkens, 1999), traffic in Banff National Park (Lingras et al., 2003)
and in wastewater treatment (Zhu et al., 1998; Belanche et al., 1999). Previous
hydrological research includes the use of TDNN to estimate rainfall (Luk et al.,
2001) and some preliminary explorations of river flow forecasting on the River
Tyne (Smith, 2000). Luk et al. (2001) developed BPNN, TDNN and PRNN
(partial recurrent neural network) models to forecast rainfall one step ahead.
These authors found that the models produced comparable results. It was thought
that these rainfall time series have very short-term memory characteristics,
which might explain why neither TDNN nor PRNN improved upon the perform-
ance of BPNN. Smith (2000) compared the performance of TDNN and BPNN
for a range of forecasting horizons ranging from 3 to 24 hours ahead. He
developed models to predict levels at Bywell using only stations from the North
Tyne. This simultaneously addressed the question of whether NN developed on
information from the North Tyne would be good enough for flood prediction in
the event that the telemetry on the South Tyne failed. The results showed that for
the majority of cases, TDNN outperformed BPNN.

2.1 Network architecture
TDNN are a type of feedforward network, i.e. the information travels forward
so there are no feedback loops as one would find, for example, in recurrent
neural networks (Pineda, 1987). TDNN, as with BPNN, have neurons arranged
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in three layers: the input, hidden and output layer, and there are weighted inter-
connections between the neurons in each layer; these get updated during the
training phase. The difference between the two network types can be found in:

• the inputs to the network

• the interconnectivity between neurons

• the training algorithm

As mentioned previously, when using upstream station information as
inputs to the BPNN, the average travel time is used to lag the inputs. Figure 5.2
illustrates an example of using two input stations (one at the point of predic-
tion, station A, and one upstream, station B) to predict the level at time t � x.
If we calculate the average travel time to be 3 hours between station A and sta-
tion B, we might input the current and two previous level readings at station A
and the same number of inputs at the upstream station but lagged by three
hours. Abrahart et al. (2001) showed using saliency analysis that the three most
recent river level inputs are the most important in predicting future river levels.
Thus, there are 6 inputs to the model and all neurons in each layer are fully
interconnected. This would be the configuration for the BPNN.

Figure 5.3 shows a three dimensional representation of a TDNN for the same
stations in Figure 5.2, which illustrates the difference in network inputs between
the BPNN and TDNN. The inputs are arranged in a matrix where the x-axis is the
station and the y-axis is time, and the inputs are not lagged. The number of 
elements in the y-axis is referred to as the total delay length. In the example given
in Figure 5.3a, the total delay length is five, which covers the same inputs as
provided to the BPNN in Figure 5.2.

The second difference between the network types involves neuron intercon-
nectivity and is also illustrated in Figure 5.3, which shows three views of the
TDNN. These have been separated out to allow a clearer view of the intercon-
nections but such items are all part of a single TDNN. Connectivity is deter-
mined by the size of the receptive field, which is shown as a dashed box in
Figure 5.3. The size of the receptive field is determined by the input to hidden
delay length, which is chosen to be three in this situation. This again matches 
the findings of Abrahart et al. (2001). The first receptive field is completely
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Fig. 5.2. Backpropagation neural network.
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connected to the first neuron in the hidden layer. The second receptive field,
which is shown in Figure 5.3b, can be thought of as a window in time that has
moved backwards one step. This window is only connected to the second neuron
of the hidden layer. Finally in Figure 5.3c, the third and final receptive field is
connected to the third neuron of the hidden layer. The length of the hidden layer
is specifically chosen to match the number of receptive fields in the network but
the width, which in this case is 1, can vary.

2.2 Network training
TDNN are trained using an algorithm similar to backpropagation. The modifica-
tion to this algorithm is necessary to account for what are referred to as coupled
links. These are the links that are duplicated in each receptive field and are treated
as a single link during the network training. As in standard backpropagation, a
forward pass is performed and an output value is calculated. This is compared
to the actual output value and the difference or error term is propagated back-
wards. A single error term is then calculated for each set of coupled links, by
averaging the error terms, and this is then applied to the entire set of coupled
links. These links are, therefore, changed according to the average of the changes
they would experience if treated separately. This method does tend to lead to
slower convergence than backpropagation as applied to BPNN and hence a longer
training period is required.
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3 NEURAL NETWORK EXPERIMENTS

This section outlines the NN experiments undertaken on the River Tyne data.
Information on the study area is provided as well as the nine evaluation measures
used to compare the models.

3.1 Study area
The study area comprises the non-tidal section of the River Tyne, North East
England (Fig. 5.1). The Tyne basin has an area of approximately 2,920 km2. The
lowest non-tidal stage gauge is located at Bywell, west of Newcastle. Historic data
of stage gauge and rainfall values are available, measured at six stations through-
out the Tyne catchment. Telemetered data at 15 minute intervals for the years 1992
to 2001 were provided by the Environment Agency for Bywell and three upstream
stations on the River Tyne: Reaverhill, Haydon Bridge and Featherstone.

The average travel times between stations were calculated by plotting
hydrographs of historical storm events. The average travel time from Reaverhill
to Bywell is 2 hours, from Haydon Bridge to Bywell is 4 hours and from Feather-
stone to Haydon Bridge 1 hour. Data from the upstream stations were offset by
the average travel time before training with backpropagation (BPNN), but the
TDNN were not provided with lagged data.

Every major river under the jurisdiction of the Environment Agency has
between one and four flood risk warning levels associated with its stage gauges.
Each warning level indicates a point where forecasters may need to take action,
from alerting emergency services to evacuation of residents. The alarm levels
at Bywell are 3.5 m, 4.4 m, 5.3 m and 5.8 m, respectively. These alarm levels were
used in devising the TDNN operational evaluation measures.

3.2 Level vs. flow modelling
In this chapter the NN models use river levels. River forecasting may be based
on modelling level (stage) or flow volumes. The choice for the modeller is
likely to depend on data availability and the reason for forecasting. Stage is the
height of flow above a datum at the gauging station and is the variable meas-
ured by traditional gauges. The stage data are then converted to flow volumes
via the gauging station rating curve. This has problems of accuracy and is
transforming the data. Flow has the advantage that it is a variable that increases
downstream as the river widens and tributaries add to the discharge. Stage in
likely to be a more accurate value, and for the flood forecaster it is helpful
because at a specific height above the datum the river will start to flow over
bank. In practical terms this is very useful. However, for the modeller looking at
changing regimes downstream, the datum heights will not necessarily increase
(or increase in proportion) to the flow volume. A narrow weir in the upper
reaches may record higher absolute stages than a wider, shallower weir down-
stream with higher flow volumes. The advantage of NN modelling is that it
treats each set of inputs independently so modelling on the stage data is practical,
eliminating errors associated with the rating curve. If the modeller has doubts
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about the rating curve, then using stage data is sensible. It is an advantage that
NN independently treat data since a series of forecasts along a channel could
be based on a combination of stage data from some traditional gauges and volu-
metric data from, for example, a sonic gauging station.

3.3 Outline of experimental runs
A series of feedforward BPNN and TDNN were trained on historical data
covering the period 1992 to 2001 to forecast levels at Bywell for lead times of
2 and 4 hours ahead. From this time period, 47 flood events were selected where
a flood event was defined as an event which reached the first alarm level at Bywell
of 3.5 m. A three day period around the peak of the flood event was selected.
These 47 flood events were then divided into training and validation data sets
where 23 storms were selected for the training data set and 14 storms were
selected for the validation data set. The highest flood event was placed in 
the training data set to ensure that each network would see the full range of
events and not be forced to extrapolate to heights never seen before. When
choosing the training and validation data sets, flood events were selected from
each year and from both winter and summer to ensure a good balance between
the two.

NN model inputs for all experiments were the levels at Bywell and upstream
stations on both the North and South Tyne including Reaverhill, Haydon Bridge
and Featherstone. No rainfall information was used. The BPNN had 12 inputs,
which covered three previous levels at Bywell and 3 lagged inputs from the three
upstream stations. There were 6 neurons in the hidden layer and the output was
to predict the level at Bywell at 2 and 4 hours ahead. The TDNN was given a
matrix of inputs from the 4 stations at the current time t to t �5. This covered
the entire travel time of the BPNN. The width of the hidden layer was 6 neurons
and the length was 4, to match the number of receptive fields in the input data
set with an input to hidden delay of 3 and a total delay length of 6.

Two different data pre-processing operations were applied prior to training.
The first involved normalising the absolute values of the input data between the
range 0.1 to 0.9 while the second applied a single point differencing operation
prior to normalisation. A continuous river level data set is normally nonstation-
ary but storm events were selected over a 10 year period. Therefore, it is more 
difficult to determine whether the data set is still nonstationary so both data sets
were provided to the different models. NN were trained using backpropagation
with momentum (in the BPNN) and backpropagation for a time delay neural
network (in the TDNN). Training was stopped when the errors in both the train-
ing and validation data sets were at a minimum to avoid problems with overfitting
of the data.

3.4 Evaluation measures
A series of global and flood specific evaluation measures were calculated on
the predictions made by the BPNN and TDNN for the training and validation
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data sets. Hydrographs of events from the validation data set were also exam-
ined. The following global goodness-of-fit statistics were calculated:

(a) Root Mean Squared Error (RMSE)

(1)

where Oi is the observed value at time i, Pi is the predicted value at time i and
N is the total number of observations.

(b) Mean Absolute Error (MAE)

(2)

(c) A modified Coefficient of Efficiency

(3)

where O
–

is the mean of O over N and P
–

is the mean of P over N. This measure
was introduced by Nash and Sutcliffe (1970) and is widely used in the hydro-
logical literature but Legates and McCabe (1999) suggest a modification to the
coefficient in which the squared terms are changed to absolute values. They
argue that this modification will reduce the influence of outliers.

(d) A modified Index of Agreement

(4)

which was originally proposed by Willmott (1981) as an adaptation of the Nash
and Sutcliffe efficiency index but with the squared terms still in place. The
change to the denominator acts to penalise the differences in the mean pre-
dicted and observed values. Legates and McCabe (1999) once again suggest
changing the squared term to an absolute value to reduce the sensitivity to out-
liers in the data set.

(e) Difference of means

(5)

(f) Difference of standard deviations
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These measures, although not fully descriptive goodness-of-fit statistics, do
provide a useful measure of the model performance. These are also recommended
by Legates and McCabe (1999).

The following are a list of additional evaluation measures that are specif-
ically aimed at measuring flood forecasting performance:

(g) Proportion of false alarms

(7)

It is useful to assess the proportion of the time that a model falsely predicts an
alarm level. The lower this value, the more useful the model will be for oper-
ational purposes.

Measures (h) and (i) were originally suggested by Smith (2000) in his
investigation of NN forecasting models for the River Tyne. These were found
to be useful indicators in combination with the other measures outlined above.

(h) Root Mean Flow Weighted Error (RM_FWE)

(8)

The absolute difference between the observed and predicted values is weighted by
the observed level. Although this weighting assumes a linear importance, the
error term will be biased towards storm events. There are very few measures
designed to capture an accurate picture of errors at high flows as most global
statistics average out the results and are biased towards low flow performance.

(i) Root Mean Gradient Weighted Error

(9)

This is another measure designed to characterise errors at high flows. It adds
an extra dimension beyond the RM_FWE, which is insensitive to the errors
in the lower part of the rising limb of the hydrograph. This measure takes the
gradient, which is the absolute difference between the observed and predicted
value, and multiplies it by the absolute error. In this way the sensitivity of the
error calculation is increased for periods of rapid change in levels and reduced
for periods of stable flow. However, this measure also penalises a model that
inaccurately predicts the falling limb of the hydrograph, which is less import-
ant for flood forecasting purposes.
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4 RESULTS AND DISCUSSION

The goodness-of-fit statistics are provided in Table 5.1 corresponding to lead
times of 2 and 4 hours. Note that for the BPNN, the statistics for the undifferenced
data are provided while for the TDNN, the statistics for the differenced data are
provided, as they produced the best overall results for comparison. However,
there was not a great deal of difference between them.

The results for both models generally show an increase in RMSE, MAE,
the false alarm rate, RM_FWE and FM_GWE as the lead time increases,
which is to be expected. However, the TDNN had lower values for both lead
times compared to the BPNN, especially at the longer lead time, indicating that
these networks are handling the data better. The RM_FWE and RM_GWE are
more difficult measures to interpret than the RMSE and MAE so such items
are best used for comparing model performance. It might be more useful to
calculate the RMSE and MAE at certain river level intervals so that the vari-
ation in the ability of the model to predict at different levels would be clearer.

E1 and d1 also follow the same expected pattern, decreasing as the lead time
increases. Similarly, the TDNN generally had higher values for all lead times
compared to the BPNN. The average differences are very small for the entire
data set so there is little indication of a general over or underprediction. The
difference in standard deviations indicates a difference in the variation of pre-
dictions relative to the observed data. These numbers are also very small,
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Table 5.1. Error measures for BPNN and TDNN with a 2 and 4 hour lead time. The
top value in each row is the statistic for the training data set while the bottom value is
the statistic for the validation data set.

BPNN TDNN

Measure 2 hr 4 hr 2 hr 4 hr

RMSE (m) 0.0764 0.2413 0.0735 0.1376
0.0960 0.2766 0.0754 0.1366

MAE (m) 0.0432 0.1335 0.0374 0.0773
0.0537 0.1687 0.0403 0.0814

E1 0.9499 0.8444 0.9565 0.9090
0.9376 0.8034 0.9531 0.9042

d1 0.9748 0.9216 0.9783 0.9542
0.9686 0.9023 0.9765 0.9516

False Alarms 0.1243 0.3148 0.1000 0.1588
0.1474 0.3626 0.1158 0.2210

Difference in Mean �0.0007 0.0028 0.0037 �0.0077
�0.0056 �0.0648 0.0089 0.0034

Difference in Std Dev 0.0053 0.0279 0.0039 0.0113
0.0053 �0.0361 0.0063 0.0196

RM_FWE (m) 0.3384 0.6072 0.3207 0.4597
0.3871 0.6907 0.3419 0.4865

RM_GWE (m) 0.1024 0.1948 0.0937 0.1368
0.1117 0.1871 0.0968 0.1340
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showing a difference in variation of a few millimetres or less. These measures
did not provide very much information to differentiate model performance.

Overall, the goodness-of-fit statistics, with the exception of the differences
in the average and standard deviation, showed that the TDNN performed better
than the BPNN but that the increase in performance was more noticeable at the
longer lead time. This has positive implications for operational flood forecasting.

Figures 5.4 to 5.7 show hydrographs from two events in the validation
data set. Figure 5.4 shows an event in the winter of 1995 for a lead time of
2 hours. Both the BPNN and TDNN capture the hydrograph well but the BPNN

TIME DELAY NEURAL NETWORKS 91

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Time [hours]

Observed

BPNN 2 hr

TDNN 2 hr

Le
ve

l [
m

et
re

s]

Fig. 5.4. Validation hydrograph (Feb 21 to 23 1995) 2 hr lead time.

6

5.5

4.5

3.5

2.5

1.5

1
1

5

4

3

2

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Observed

BPNN 4 hr

TDNN 4 hr

Time [hours]

Le
ve

l [
m

et
re

s]

Fig. 5.5. Validation hydrograph (Feb 21 to 23 1995) 4 hr lead time.
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is better in terms of the timing of prediction of the first and second alarm
(i.e. 3.5 m and 4.4 m) levels. The BPNN predicts the next level (5.3 m) early while
the TDNN predicts it on time. The highest level (5.8 m) is not reached. The
peak is better predicted by the TDNN, and both models predict the falling limb
well although the BPNN is early in its predictions.

Figure 5.5 shows the same event for a lead time of 4 hours. The alarm level is
predicted well by the BPNN and one hour late by the TDNN but after this point
the behaviour of the BPNN is very poor. The timing is completely wrong with
the predicted hydrograph shifted by a few hours. The TDNN predicts the third
alarm level (5.3 m) on time but overpredicts the peak. The TDNN is better at
predicting the falling limb than the BPNN. Thus, the TDNN shows better per-
formance at a 4 hour lead time relative to the BPNN. This is also reflected in
the goodness-of-fit statistics in Table 5.2.

Figures 5.6 and 5.7 show an event in the winter of 2000 for both 2 and 4
hour lead times. The 2000/2001 winter period was one of the worst for flood-
ing in the UK on record. This event does not reach the maximum ever recorded
but is nevertheless still an event of considerable magnitude. Figure 5.6 shows
that both models predict the hydrograph well although in overall terms the
TDNN is better than the BPNN (which is a little bit late). Alarm levels are 
predicted very well by both models but there is a slight underprediction of the
peak by the TDNN. The falling limb is also well predicted by both models.

Figure 5.7 shows the same event for a lead time of 4 hours. The TDNN is a
bit late on the rising limb, missing the alarm by an hour but predicts the next
alarm level on time. The higher alarm levels were not triggered. The peak is well
predicted but there is a sharper decline in the falling limb. For the BPNN, the ris-
ing limb is well predicted although the alarm level is out by one hour. After this
point, the same behaviour occurs as in Figure 5.5. The hydrograph is shifted and
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the peak is over predicted, with a false prediction of the third alarm level (5.3 m)
that did not occur in practice. Finally, the falling limb is poorly characterised.

The BPNN is better than the TDNN at predicting the initial alarm level (3.5 m)
but after this point it appears to break down at a lead time of 4 hours. There
may be a change in the travel time of the flood wave as the storm progresses.
The TDNN is able to pick up this behaviour but the BPNN with its static map-
ping is incapable of adapting to this change. As both models are quick to train
on storm events, as opposed to a continuous data set, it would be possible to use
both models in a multi-modelling approach whereby the early part of the rising
limb, which appears to be better predicted by the BPNN, could be used to make
initial predictions, with a switch to the TDNN when later predictions or longer
lead times are needed. More investigation is required to determine whether this
pattern is consistent.

5 CONCLUSIONS

This chapter has compared the performance of TDNN with conventional feed-
forward networks trained with backpropagation (BPNN). These networks were
trained to forecast stage on the River Tyne, Northumbria using only upstream
stations. The networks were trained on a series of flood events over a 10 year
period for lead times of 2 and 4 hours. An examination of the goodness-of-fit
statistics showed that the TDNN marginally outperformed the BPNN at a 2 hour
lead time. This was confirmed when examining the hydrographs of 2 validation
events although the BPNN appeared to be better at predicting the initial alarm
level. However, at a 4 hour lead time, the TDNN considerably outperformed
the BPNN. The validation hydrographs illustrated the poor performance of the
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BPNN after reaching the alarm levels, which may indicate a change in the travel
time between stations and the inability of the BPNN to respond to this change.
These results are encouraging and suggest that TDNN may be able to play an
important operational role in forecasting floods at longer lead times.
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1 BACKGROUND AND MOTIVATION

Artificial neural networks (NN) provide a potential alternative to statistical
methods as a data-driven approach to environmental modelling. Multi-layer feed-
forward networks (MLFN), which in most environmental applications are used
for prediction and forecasting purposes (Maier & Dandy, 2000), are able to
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Forecasting
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ABSTRACT: The cascade correlation learning architecture (Falman & Lebiere,
1990) is a constructive neural network algorithm which automatically determines
the structure of the neural network by adding hidden neurons throughout the train-
ing process. At present, it is more commonly used for classification tasks than for
regression tasks, as the learning process tends to saturate the units (Hwang et al.,
1996). However, despite this limitation, it has been successfully employed in a
number of river flow forecasting applications (Karunanithi et al., 1994; Muttiah 
et al., 1997; Imrie et al., 2000; Lekkas et al., 2001).

This chapter provides an insight into the background and the motivation
that led to the development of cascade correlation. The mechanics of the algo-
rithm are described in some detail, as is the quickprop (Falman, 1988) update
rule that is often used in conjunction with cascade correlation. This is followed
by a number of suggested modifications that may render the algorithm more
suitable for regression tasks such as river flow forecasting. Finally there is a
flow-routing case study using the River Trent in the UK.
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approximate non-linear functions through learning procedures such as the error
backpropagation algorithm (Rumelhart et al., 1986). However, although NN have
the computational ability to outperform statistical techniques, there are a number
of disadvantages that have restricted their application to the research environment.

If the backpropagation neural network (BPNN) architecture is used for
training, the network’s size and structure must be predefined, although network
pruning can be incorporated as part of the training algorithm (Abrahart et al.,
1999). The optimal architecture will have sufficient parameters to capture the
relevant processes, but too few for the network to readily over-train. However,
it is impossible to identify the correct size for a NN without having prior
knowledge of the rules it will have to learn (Lee, 1997). Although a number of
studies have been conducted, there is at present no standard method of deter-
mining the most suitable configuration of hidden units. As such, a trial and
error approach is usually employed in finding the optimum architecture (Maier
& Dandy, 2000). However, this process may be somewhat frustrating and time-
consuming (Karunanithi et al., 1994).

One approach towards surmounting this problem may be to search the space
of network structures using a genetic algorithm (Miller et al., 1989; Yao, 1993;
Blanco et al., 2000). This process, however, would be time and CPU intensive
(Russell & Norvig, 1995). Maren et al. (1990) suggest that where the outputs
must be continuous functions of the input, two layers of hidden units should be
used. A number of guidelines for determining the optimum number of hidden
units empirically have arisen through experimentation. For example, Hecht-
Nielsen (1987) suggests an upper limit of 2I � 1, where I is the number of input
units. Other suggestions relate the number of hidden units to the number of
training patterns available (Weigend et al., 1990).

Various ‘pruning’methods have been developed whereby training commences
with a large network structure and weights are gradually removed, reducing the
network’s size. Optimal brain damage (Le Cun et al., 1990), for example, cal-
culates the saliencies (importance) of the weights when a specified error level is
reached and removes those connections with the lowest values. The network is
trained again and this process of elimination is repeated until no further improve-
ment is observed. Karnin (1990) also suggests beginning with a large number
of hidden units and pruning these until an optimal architecture is found. A method
for weight pruning using genetic algorithms was more recently forwarded by
Bebis et al. (1997).

In practice, however, it is more computationally efficient and therefore
more practical to begin with a minimal network and add units one at a time
(Hsu et al., 1995). To locate an optimal architecture in this manner, a number
of ‘constructive’ algorithms have been developed (Fahlman & Lebiere, 1990;
Hirose et al., 1991; Setiono & Hui, 1995).

Besides the need to pre-specify the architecture of the NN before training,
another problem that is associated with the error backpropagation algorithm is
caused by the fact that all the weights in the network are adjusted at the same
time. Each unit tries to detect a feature defined by the error signal propagated
backwards. However, since a unit’s weights change independently to those 
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of the others, the error signal, and hence the problem, are constantly being
redefined. This leads to a ‘complex dance’ amongst the units, increasing the
time taken to reach a stable condition (Fahlman & Lebiere, 1990).

The problems discussed above inspired the development of the cascade cor-
relation learning architecture (Fahlman & Lebiere, 1990), which constructively
builds the network by adding one hidden unit at a time. Once fully installed in
the network each new hidden unit acts as an individual ‘feature detector’, thus
eliminating the moving target problem.

A final point to make here concerns another aspect of generalisation. An
important criterion when developing environmental forecasting models is that
the models can perform well in the event of an extreme occurrence. However, it
has been found in previous studies (Minns & Hall, 1996; See et al., 1997;
Dawson & Wilby, 1998; Campolo et al., 1999) that NN tend to perform poorly
outside the calibration range, and therefore cannot be reliably used in situations
where significant events are of the most concern. Obviously, flow forecasting is
one such application since we are often interested in the extremes and are often
faced with a limited amount of calibration data. The main reason for the poor
performance of the popular BPNN is that all the data are routed through one or
more layers of sigmoidal functions, which ultimately means that the maximum
output value attainable is proportional to the number of hidden units in the final
layer. Although the cascade correlation algorithm is largely overlooked by NN
modellers, it surmounts this problem to a large degree as the input units have
direct connections to the output units, and so the restriction does not apply.

2 THE CASCADE CORRELATION LEARNING ARCHITECTURE

2.1 Training procedure
The training of a NN using the cascade correlation (CC) learning architecture
proceeds as follows:
1. The algorithm begins with a one-layer network comprising an input layer

and an output layer. The interconnecting weights are trained until a pre-
specified or minimum error level is reached.

2. The input-output weights are then frozen, and a pool of ‘candidate’ units is
connected to the input layer.

3. The data patterns are propagated forwards through the CC network both to
the output layer and to the layer of candidate units.

4. The activation of each candidate cp is compared with the residual error Eo

summed over the output layer upon the presentation of each pattern p.
5. The covariance C between each candidate’s activation and the error signal is

calculated as follows:

(1)

where c� and E
–

o are the values of c and Eo averaged over the pattern set.

C c c E Ep p o
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6. The input-candidate weights are trained so that the covariance C is maxi-
mised, using the following update rule:

(2)

where wi are the candidate’s incoming weights, and for each pattern p, f �p is
the derivative of the candidate’s activation with respect to the sum of its
inputs, and Ii,p is the input each receives from unit i. The value of 	o is [�1]
if C is negative and [�1] if C is positive. The weights are adjusted until no
further improvement is observed, or until a specified maximum number of
iterations has been reached.

7. The covariances calculated for each candidate are compared, and the candidate
which is deemed most highly correlated with the residual error is installed
into the network as a hidden unit. Its input weights are frozen and new
weights connect it to the units in the output layer.

8. A second round of error minimisation is undertaken, as in Step 1. After
these weights have been frozen, a second pool of candidate units is connected
to both the input layer and the newly-installed hidden unit, and the procedure
continues as before.

Hidden units are incorporated in this way until the output error has reached
a satisfactory level. The final network will therefore have a multi-layer struc-
ture, with each hidden layer containing a single hidden unit. The topology of a
cascade correlation neural network is illustrated in Figure 6.1.

∂
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As can be seen in Figure 6.1, the input units of a CCNN have direct con-
nections with the output units, and as such the data are not forced through hid-
den layers of limiting sigmoidal functions. If linear activation functions are
used at the output layer, an indirect advantage of this is that there is no limit to
the network’s output.

A standard rule such as the gradient descent method can be used to update
the network’s weights. However, due to the fact that only one layer of weights
is trained at a time, the learning algorithm Quickprop (Fahlman, 1988) can be
used instead. This allows faster convergence to be observed (Fausett, 1994).
This update rule is described in detail below.

2.2 Quickprop
An alternative to the gradient descent method of calculating the weight incre-
ments is the use of quickprop (Fahlman, 1988). This algorithm was developed
to speed up the NN training process. In brief, the quickprop algorithm uses
information about the error surface curvature to take larger steps towards the
solution. For each weight, a copy of the previous error derivative, as well as the
difference between the current and previous weight value, are stored. Fahlman
assumed that the error versus weight curve could be approximated by a
parabola for each weight. Another assumption was that the change in the slope
of the error curve is not affected by the simultaneous changing of the other
weights. The weight increments �w(t) are calculated as follows:

(3)

A number of parameters were added to the algorithm in order to make it 
work properly. For example, to avoid the possible scenario whereby an infinite
step is taken, or the algorithm begins instead to search for a local maximum,
the ‘maximum growth factor’, �, was introduced. The algorithm specifies that
no step greater than � multiplied by the previous step for that weight can be
taken.

An additional parameter, �, is used as a momentum factor, and a weight
decay term is used to avoid excessive growth of the weight values. Due to the
inclusion of the previous weight update in the algorithm, the quickprop learn-
ing process has to be started by making a single update using the gradient
descent method.

It should also be noted that a number of alternative update rules may be
used, besides quickprop and the gradient descent method. One such rule is resili-
ent backpropagation, which is a local adaptive learning scheme (Riedmiller &
Braun, 1993) whereby the weight update values change according to the behav-
iour or the error function.
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The cascade correlation learning architecture and the quickprop update
rule are provided as part of the well-established neural network software pack-
age SNNS. The Stuttgart Neural Network Simulator (SNNS) is a freeware
package (SNNS Group, 2002). The package includes a wide range of neural
network architectures and algorithms, and provides a graphical user interface
through which neural networks can be designed and trained. Its use has been
reported in a number of applications (Abrahart & Kneale, 1997; Tchaban et al.,
1998; See & Openshaw, 1998; Campolo et al., 1999; Hasenauer et al., 2001).

The cascade correlation algorithm provided in SNNS does not include an
automatic method for early stopping using cross-validation. This means that a
manual process of cross-validation must be employed to ensure generalisation,
whereby training is temporarily stopped after the addition of each hidden 
neuron so that the performance of the NN can be checked against a separate
data set. Such a procedure was described by Hasenauer et al. (2001). This
tedious process can however be automated, as demonstrated by Imrie et al.
(2000) with a number of additional modifications to improve model generality.
These modifications are described in the next section.

3 MODIFIED CASCADE CORRELATION

3.1 Ensuring model generality
In order to ensure that the network will generalise and the final model will per-
form adequately when confronted with fresh data, a ‘guidance system’ may be
incorporated (Imrie et al., 2000). This involves the use of a cross-validation
method whereby the available data are split into three sets: a training set, used
by the algorithm to build the network and update the weights; a testing set, used
to periodically check the performance of the network during the training pro-
cedure; and a validation set, by which the performance of the final NN model
is assessed.

The training and testing patterns are first loaded into the computer’s mem-
ory. Input-output weight arrays are constructed and initialised with random
values between �1.0 and 1.0. The training process is kick-started by adjusting
the input-output weights with a single round of gradient descent. The weights
are then trained using the quickprop algorithm over a pre-specified maximum
number of weight updates. The procedure to automatically check for over-training
has been incorporated as follows. Before training commences, a parameter fail
is set to zero. When the weights have been adjusted 24 times, the residual error
E24 is calculated over the testing pattern array. This is repeated after the next
weight update, and if the test set error E25 is greater than E24, fail is incre-
mented by 1. The update counter is reset to 1 and training is allowed to proceed
for another 24 updates, whereupon the error E24 is calculated and compared
with the previous E25. If the new E24 is greater than the old E25 fail is incre-
mented by 1, otherwise it is reset to zero. Each time a lower test set error is
encountered the current weights are saved in a temporary array. The training
process is stopped when the condition (fail � 2 AND E25 � E24) is satisfied.
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The first hidden unit can then be added to the network. An array of input-
candidate weights is initialised so that their values lie between –1.0 and 1.0.
The procedure of maximising the covariance between the output residual error
and the activation of the candidate units is kick-started as before with a round
of gradient descent. Quickprop is then used to update the candidate weights.
Each update involves two ‘sweeps’ through the training patterns: the candidate
covariance is calculated first, and this is then used to compute the weight
increments during the second sweep.

An automatic stopping procedure is also included in the candidate training
phase. After every 25 weight updates the testing patterns are used to calculate
the covariance between the candidate activations and the residual output errors.
Each time a higher test set covariance is observed, the corresponding weights
are saved in a temporary array. Once the test set covariances for all the candidate
units have stopped increasing, the temporary weight array is used to install a new
hidden unit.

A hidden unit activation array is then constructed for the training and testing
patterns. An array of hidden-output weights is initialised randomly with values
between �1.0 and 1.0, and a round of output weight training commenced. The
training phase proceeds as described above, adjusting both the input-output
weight array and the hidden-output weights to minimise the residual error at the
output layer.

The algorithm continues to build the network architecture in this way until
a specified maximum number of hidden units have been installed. A parameter
best_error is updated every time a lower total error is calculated for the testing
data. The configuration of weights that has given rise to this network should be
saved in an external network file, so that this ‘best model’ can be retrieved at
the end of training. The performance of this model can then be evaluated using
the validation data set.

Further modifications can be implemented to increase the chance of an
optimal model being obtained. One such modification involves the undertak-
ing of a number of ‘trials’ at each stage of the algorithm. The network saved at
stage t is used as a starting point for the trials undertaken in stage t � 1, where
each stage commences at the covariance update phase. Figure 6.2 outlines the
progress of the cascade correlation learning algorithm with these changes
implemented.

3.2 Improved Candidate Selection Procedure
Through experimentation with the SNNS software and the version of cascade
correlation with the modifications implemented, it has been observed that the
performances of the resulting NN were relatively insensitive to the number of
candidates involved in the correlation phase. In addition, it appeared that the
magnitude of the covariances calculated with respect to the test set had little
bearing on the ensuing reduction in the test set residual error. Indeed, Prechelt
(1997) noted that the “covariance is an ill-suited target function for training the
candidates”. This was attributed to the resulting tendency for the algorithm to
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over-compensate for errors, leading to the conclusion that cascade correlation
was more suitable for classification tasks than for regression.

Furthermore, the correlation phase of the cascade correlation learning
architecture requires two passes through the training data prior to each weight
update and is therefore time-consuming. Reducing the size of the candidate
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pool and the number of trials undertaken would allow the training process to
progress at a greater speed. It was therefore considered that if an improved method
of candidate selection could be identified, the modified cascade correlation
algorithm would be rendered more efficient.

Maximisation of the cross-correlation between the candidate activations and
the residual error would be extremely computationally expensive, and therefore
impractical. The original cascade correlation algorithm of Fahlman and Lebiere
(1990) assumes that maximising the covariance will make an acceptable alter-
native. Experimentation with the algorithm, however, revealed that the candidate
unit with the highest covariance is not necessarily that with the highest cross-
correlation. Bearing this in mind, together with the previous observation that
the candidate unit with the highest covariance was not necessarily the best
choice, an alternative candidate selection procedure was developed.

Intensive experimentation revealed that the candidate covariance was typically
positively correlated with the test set residual error, suggesting that the higher
the covariance of a candidate, the worse it was likely to perform when installed
as a hidden unit. The highest negative correlation was obtained for a combina-
tion of two parameters: the sum of the training and test set cross-correlations
between the candidate activation and the residual error. The candidate selection
procedure implemented in the cascade correlation algorithm can therefore be
altered to operate as follows:

• After the 25th weight update, the cross-correlations with respect to the
training and testing data are calculated and summed for each candidate unit.

• Once all the cross-correlation sums have stopped increasing, the covariance-
maximising phase is stopped.

• The candidate with the highest cross-correlation sum is installed as a hidden
unit.

Furthermore, the algorithm was found to converge more quickly when out-
put weights for the new hidden units were initialised with the cross-correlation
coefficient calculated with respect to the training data. A similar procedure was
suggested by Phatak and Koren (1994). Liang and Dai (1998) suggest using a
genetic algorithm to search for the optimum weights, although this method is
likely to be time-consuming and may encourage NN over-training. As a final
note, Prechelt (1997) suggests that for regression tasks, the covariance maxi-
misation procedure should be replaced by a direct error minimisation. This is
an option for future research.

4 RECURRENT MODIFIED CASCADE CORRELATION
ALGORITHM

The majority of NN forecasting applications in hydrology involve the construc-
tion of input patterns that contain a length of lagged values representing time
series windows of the determinant of interest and other pertinent variables (e.g.
Hsu et al., 1995; Minns & Hall, 1997; Campolo et al., 1999; Zealand et al., 1999).
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However, when the forecast lead-time is greater than one time-step, it may be
useful to use the NN forecast of the modelled variable as an additional input to
the next time step. This principle is used in recurrent neural networks, which
were first conceived by Jordan (1986). These tools are now commonly employed
to do temporal processing tasks (Wang et al., 1996), although their application
in hydrological modelling is not widely reported.

The simplest form of a partial recurrent NN is the Elman network (Elman,
1988), whose architecture is presented in Figure 6.3. These networks assume
that the NN operates in discrete time-steps. The activations of the hidden units
at time t are fed backwards and used as inputs to ‘context units’ at time t � 1,
representing a kind of short-term memory. The importance and influence of
these lag 1 inputs are determined during the training of the network.

A recurrent version of the original cascade correlation algorithm has also
been developed (Fahlman, 1991). In this case the hidden unit activations are no
longer fed back to all of the other hidden units. Instead, every hidden unit has
only one self-recurrent link, which is trained along with the candidate unit’s
other input weights to maximize the correlation. When the candidate unit is
added to the active network as a hidden unit, the recurrent link is frozen along
with all other links.

The majority of recurrent NN algorithms were originally designed for tasks
associated with temporal sequences, such as natural language processing and
recognising characters from Morse Code (Fahlman, 1991; Wang et al., 1996).
As such, the hidden unit activations are recycled as internal state variables, and
the resulting NN are used to map sequences of inputs into desired correspond-
ing sequences of outputs. The problem posed in river flow forecasting differs
in that the aim is to provide a continuous sequence of forecasts with lead times
of greater than one time step. For this reason, the recurrent modified cascade
correlation algorithm developed in this chapter recycles the output of the net-
work instead of the activations of the hidden units. There are a number of
advantages to this simple implementation: the number of input units does not
grow as the hidden units are added; and it would be possible to directly deter-
mine the relative importance of the recycled values in a sensitivity analysis.
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It should be noted that there are also a number of possible drawbacks to the
use of recurrent NN. Firstly, the procedure of training the weights in recurrent
neural networks is much less orderly than in simple feedforward networks
(Russell & Norvig, 1995). The networks can become unstable and chaotic. In
particular, for a NN that uses its outputs as additional inputs on the next pattern,
each input pattern will change after each weight update. This constitutes a
moving target problem, as the error surface is continually changing as training
proceeds. Furthermore, the benefits of recycling the output predictions will
ultimately depend on the quality of the predictions themselves. However,
results obtained in previous research showed that the recurrent version performed
better in various river flow prediction applications than the modified cascade
correlation algorithm alone (Lekkas et al., 2001).

5 CASE STUDY: 12-HOUR FLOW FORECASTING ON 
THE RIVER TRENT, UK

All the modifications to the original CC algorithm suggested above are assessed
in this case study. The example was first discussed in Lekkas et al. (2001)
where the cascade correlation neural networks (CCNN) were found to perform
well in comparison with traditional ARMA and state-of-the-art transfer function
methods of river flow routing. Here, the following different NN algorithms will
be compared:

• SNNS backpropagation

• SNNS cascade correlation

• Modified cascade correlation

• Recurrent modified partial cascade correlation.

River flow data for 1996, 1997 and 1998 were obtained from the Environment
Agency of England and Wales for a number of gauging stations located within
the catchment of the River Trent, as shown in Figure 6.4.

The aim was to create models that could forecast the flow at Colwick with
a lead-time of 12 hours. The size of the catchment upstream of Colwick is
7486 km2. Drought during 1995 and 1996 (Smith & Crymble, 1998) means that
the flows during this period were unusually low. Although 1997 saw a greater
number of high flow events, the highest and most numerous flood peaks were
observed in 1998. Therefore, in order to test the performance of the methods
for significantly higher flows than those present in the calibration period, it was
considered most informative to use the years 1996 and 1997 as calibration
data, and to validate the models using the data from 1998. The Colwick flow
time-series for all three years is plotted in Figure 6.5, which also shows the
division of the data into training, testing and validation sets.

A correlation analysis was performed on the data, to identify suitable lags
to be applied to each upstream gauging station time series in order to form the
NN input patterns. The intention was to provide the models with a snapshot of
the current (t � 0 hours) and antecedent (t � �1, �2, … �n hours) conditions
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at each of the selected gauging stations, which could then be used to predict the
flow at Colwick at t � 12 hours. For Hopwas Bridge and Izaac Walton, lags up
to t � �14 hours were considered appropriate, whereas at Littlethorpe, which
is closer to Colwick, lags up to t � �12 hours were used.
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Four NN models were developed, based upon the input data described above.
All the NN incorporated linear activation functions at the output layer.

• SNNS backpropagation: the traditional feed-forward BPNN was trained with
the gradient descent method and used the cross-validation method imple-
mented in SNNS. This involved a periodic quantification of the residual
error over the test set data. When the test set error was observed to increase,
the training procedure was stopped. The best BPNN obtained had one layer
of 15 hidden units.

• SNNS cascade correlation: This was developed using the original CC learning
architecture as implemented in SNNS. The software provides no means of
performing automatic cross-validation and no attempt was made to do it
manually. The maximum number of hidden units was limited to three, in a
simple attempt to reduce the possibility of over-training. It should be noted
that with CC the hidden units are connected to the previously installed hidden
units, so that a network with three hidden units is comparable to one with
three hidden layers containing one unit each, and therefore allows a greater
level of model complexity.

• Modified cascade correlation: This implementation of the CC algorithm
containing the procedures for automatic cross-validation developed above.
The algorithm was set to install a maximum of twenty hidden units, and
include five trials at each stage.

• Recurrent modified partial cascade correlation: The maximum number of
hidden units was again set to twenty and five trials were performed at each
stage. The algorithm was found to perform best when it included one recurrent
output, that is, the forecast representing time t � 11 was appended to the
input pattern for forecasting the flow at time t � 12.

6 RESULTS AND DISCUSSION

The overall performance of each model obtained was judged with respect to
the validation data on the basis of the coefficient of efficiency, R2, defined as
follows:

(4)

where yp, and dp are the model predictions and target values for each pattern
(sample) p respectively, and d

�
is the mean target output. The R2 coefficient is a

useful statistic in that it provides a measure of the proportion of variance that
is explained by the model. The closer its value is to unity, the better the fit of
the model.

The results obtained using each of the NN algorithms over the training,
testing and validation data periods are presented in Table 6.1. It can be seen that
in this application, there is little difference in the performances obtained using
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the implementations of the commonly used backpropagation algorithm and
cascade correlation. This suggests that the cascade correlation algorithm can
be used as effectively as backpropagation to model river flow.

The BPNN and original CCNN give the poorest results with respect to the
validation data set, while the modified CCNN give the best results. Corres-
pondingly, the performance over the training data set is poorer with the modified
CCNN than it is using the BPNN and original CCNN. It is possible that a mod-
eller with more time and patience, might produce better models from these
algorithms, but the results nevertheless emphasise the benefits of an effective
and automated method for ensuring model generalisation.

The best model was obtained using the recurrent version of the modified
cascade correlation algorithm, whereby the network’s output is recycled as an
additional input for the next prediction. Although the improvement here is small,
the algorithm can be adapted so that the NN can continuously produce output
when the input data form an irregular or incomplete series.

110 CLAIRE E. IMRIE

Table 6.1. Flow forecasting results at Colwick with a lead-time of 12 hours.

R2 R2 R2

NN Algorithm (Training) (Testing) (Validation)

SNNS backpropagation 0.984 0.792 0.906
SNNS cascade correlation 0.991 0.762 0.917
Modified cascade correlation 0.963 0.892 0.955
Recurrent modified partial cascade 0.962 0.897 0.961
correlation
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Fig. 6.6. Graph of measured flow against 12-hour predictions made by original cascade correlation NN.
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Figure 6.6 shows the 12-hour flow predictions made by the original CCNN,
while Figure 6.7 plots those made by the recurrent modified partial CCNN.
Only a portion of the time series is shown for reasons of clarity. Although both
models perform similarly during the period of low flow, the recurrent modified
partial CCNN performs far better over the peak flows at the end of October.
These results further demonstrate the importance of implementing a good gener-
alisation procedure.

7 SUMMARY AND DISCUSSION

This chapter has described the cascade correlation learning architecture, and
offers a number of possible modifications to render it more suitable for envi-
ronmental modelling. The potential advantages of using CCNN are immedi-
ately clear in that by using a constructive algorithm there is no need to
implement a trial and error procedure for finding the optimal network archi-
tecture. A further advantage was identified: that the structure of the CC net-
work allows direct connections between the input and output units, which
avoids saturation of the hidden units. This means that the resulting models are
less likely to perform poorly when predicting events which lie outside the
range of values included in the calibration data.

One of the factors that have caused cascade correlation to be largely over-
looked in river flow forecasting is their reputation to be ill-suited to regression
problems. This stems from the fact that the hidden units are prone to saturation.
However, the modifications to the CC algorithm suggested above include
early-stopping criteria, which should alleviate this problem to some extent. The
case study demonstrates that when a suitable method for ensuring generalisation
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was implemented, the algorithm could produce highly effective river flow 
prediction models.
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ABSTRACT: This chapter deals with partial recurrent neural networks and
their application to the non-linear autoregressive modelling of dynamic sys-
tems. This particular type of neural network can be seen as a data-driven model
in state space, where a standard neural network model is used for the descrip-
tion of the non-linear transfer function. Each solution will thus possess the
same generic form of time propagation mechanism that appears in conceptual
dynamic models and linear black box models of type ARMAX. In this chapter,
the theoretical background to partial recurrent neural networks is provided,
together with two applications that demonstrate the practical relevance of these
tools for modelling dynamic hydrological systems.

1 INTRODUCTION

In numerous disciplines related to applied science and technology, an increas-
ing trend is observed towards the use of artificial neural networks (NN) for
non-linear modelling, control, optimisation, design, data analysis and classifi-
cation. For recent applications in areas such as meteorology, oceanography,
hydraulics, hydrology and ecology the reader is referred to: Wüst (1995),
Minns (1996), Minns and Hall (1996), Scardi (1996), Abrahart and Kneale
(1997), Recknagel et al. (1997), Clair and Ehrman (1998), Hsieh and Tang
(1998), Lange (1998), Sanchez et al. (1998), Shen et al. (1998), Van Gent and
Van den Boogaard (1998), Wen and Lee (1998) or See and Openshaw (1999).
NN are in most cases used to perform an identification of input–output rela-
tions and multi layer perceptrons (MLP) or radial basis function networks
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(RBFN) are the two most popular types of tool for studies; see Haykin (1994),
Beale and Jackson (1990) or Abrahart (Chapter 2).

Data-driven modelling, which includes NN, is often used when there is a
lack of system understanding or process knowledge that prevents the develop-
ment of conceptual models. Conceptual modelling requires system description
and physical principles that must be formulated and quantified. The black box
approach, with an appropriate level of robustness, can provide a more flexible
and efficient solution with associated savings – in terms of time, cost and effort –
for defining and refining the detailed information that is required to implement
a conceptual model. NN can be used either as part of a conceptual model or to
establish an alternative standalone solution. NN can also offer an attractive
technique for emulating existing conceptual models since such tools will per-
form faster digital processing at higher computational speeds. Emulators make
good sense (i) when for some reason a large number of model evaluations must
be carried out, e.g. to perform sensitivity or uncertainty analysis, scenario evalu-
ation, risk assessment, optimisation, or inverse modelling and/or (ii) when single
model runs must be super fast e.g. to perform rapid assessment, decision sup-
port, real-time forecasting, or operational management and control. For examples
of model emulation in practice see Solomatine and Avila Torres (1996) and
Proaño et al. (1998).

The flexibility, efficiency and emulation capacity of data-driven models is
particularly relevant within the fields of hydrology, meteorology and hydraulics.
However, in these disciplines, an important modelling issue is the need to deal
with dynamic systems and processes that can evolve over time. This leads to a
serious limitation for ‘standard’ NN – these models are static and there is no
explicit mechanism that accounts for time propagation or facilitates ‘system
memory’ in terms of previous states and past events. Indeed, in both network
training, and network application operations, the input-output patterns are
processed in an independent manner such that the modelling response to pre-
vious input patterns has no direct influence on the modelling response to cur-
rent input patterns. The input-output data set must be available beforehand and
the order of pattern presentation is not important although random order is pre-
ferred. This situation also applies to common linear or non-linear regression
methods and to interpolation techniques where curves or manifolds are fitted
to a given set of data points. Thus ‘standard’ NN are in fact little more than uni-
versal function approximators (Cybenko, 1989; Hornik et al., 1989) and as
such form part of a set of generalised regression techniques. Such tools are
static non-linear regression models that offer no explicit consideration of time,
past events, time evolution and/or the complex interaction that should occur
between different or sequential patterns of input-output material. This problem
of adopting static solutions for time series modelling is also addressed in other
chapters; Chapter 5, for instance, considers the use of time delay neural 
networks (TDNN).

For dynamic systems, neither dependencies, nor the interaction of input-
output patterns should be ignored. This is perhaps most recognisable in the state
space (or phase space) mechanism of dynamic models. In discrete time, a state
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space model is characterised with a time propagation mechanism, wherein the
system state at time t is based upon a combination of the system state at time 
t � 1 and/or previous time steps, together with the set of external forcings that
impact on this system. In continuous time, typical state space models will have
the form of one or more coupled partial differential equations, such as flow
models, based on the Saint Venant equations, or transport models, which use
advection diffusion equations.

In this chapter the state space mechanism of dynamic models is extended
into the neural modelling environment to obtain data-driven models that are
better suited to non-linear modelling and for the analysis of dynamic systems
and time series data. This extension results in the development of partial recur-
rent neural networks (PRNN). Such models are equipped with a time propaga-
tion mechanism that involves feedback of computed outputs as opposed to
observed outputs. Sections 2.1 and 2.2 consider the state space properties of
discrete time dynamic conceptual models and linear black box models of type
ARMAX. PRNN are discussed in Section 3 and their practical relevance is
demonstrated using two hydrological applications in Section 4. Section 5 con-
tains summarised conclusions and provides some suggestions for related
research and development in this field.

2 THEORETICAL BACKGROUND

2.1 Dynamic conceptual models in discrete time
Many dynamic conceptual models (as used in the fields of oceanography,
meteorology, hydraulics, hydrology, ecology) are state space mechanisms that
offer state space solutions. For continuous spatial and temporal coordinates the
evolution of the ‘system state’ is governed by one or more coupled partial dif-
ferential equations. The usual order of presentation in such equations is: left-hand
side contains first and/or higher order temporal derivatives for all state variables;
right-hand side contains all other model terms.

The complex nature and extent of these partial differential equations will in
most instances prevent the derivation of analytical solutions. Difficulties will
often arise from, or be related to, the occurrence of marked non-linearities,
non-constant and/or non-uniform coefficients, irregular spatial domain, etc.
Therefore, one must instead turn to numerical techniques, where the differen-
tial equations are discretised in terms of temporal and spatial coordinates. This
results in a discrete time model that is of the following generic form:

(1)

The discretised model of Equation 1 is in state space form and can be
solved through numerical integration of the state space equations. The output
vector X

→
t denotes the system state at discrete time t. It consists of the state vari-

ables at all spatial grid points and could have a large dimension. Note that the
‘old’ states {X

→
t�1}M

m�1, on the right hand side of Equation 1, can be seen as part
of the model input which will be propagated to the ‘new’ state X

→
t at time t.

X X X X U U Ut t t t M t t t N  , , , , ; , , ,� �� � � � �� 1 2 1K K K |⎛
⎝
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The orders M and N in the discretised model are related to the order of the tem-
poral derivatives in each partial differential equation. If present, partial deriva-
tives with respect to the spatial coordinates, are absorbed in the transfer
function �t (�) as well as in the model coefficients and in the other terms of this
equation.

The vectors {U
→

t�1}N
n�1 are also inputs for the model and represent the non-

autonomous part of the equation. These vectors originate from one or more
external system forcings: wind drag in flow or wave models, sources or sinks
in transport models, etc. It is also common for boundary conditions to be mod-
elled as external inputs.

The (non-linear) function �t(�) is a transfer function that governs the time
propagation of the system state from discrete time t � 1 to time t. For conceptual
models this function should be derived from physical principles such as the
laws of conservation with respect to mass, momentum, energy, heat, etc. The
transfer function �t(�) thus attempts to incorporate all system and physical
knowledge, although such activities will to some extent also depend on the
degree to which encapsulation is possible, and on the numerical scheme that
was adopted for the discretisation of each continuous process.

The vector �
→

represents one or more uncertain parameters in the concep-
tual model. These uncertainties may include unknown parameters in the bed
and/or surface friction coefficients, parameters in dispersion, reaction or
exchange coefficients, parameters in the boundary or initial conditions, etc.
Such parameters are in practice often determined from calibration based on
observations of the model state. For conceptual models the number of unknown
parameters will in general be small compared to the dimension of the system
state and/or the total number of state variables. The calibrated model is in con-
sequence, still for the most part based on physical principles and system
knowledge, and to a minor extent on data.

2.2 Linear black box models in discrete time (ARMAX)
ARMAX (Autoregressive Moving Average with eXterior or eXogeneous input)
models are often used to provide linear dynamic black box solutions for the
processing and analysis of time series data. For a general discussion on such
matters see Ljung and Söderström (1983); for hydrological applications of
ARMAX models see Gourbesville and Lecluse (1994). In discrete time, and
for a univariate case, such models will have the following form:

(2)

where Xt is the autoregressive model output, Ut is the deterministic external
forcing input, and Zt is a write random process with zero mean that is included
to account for model uncertainties, i.e. Zt1 and Zt2 are independent for t1 � t2.
This random noise represents non-modelled sub-grid processes, discretisation
errors, or errors in the external forcings.
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The model in Equation 2 is time invariant if its parameters �
→

� {�m, �n, �i }
are constant over time. Generalisation of this univariate ARMAX model to a
multivariate (and/or time variant) system is straightforward, leading to:

(3)

This is again a state space model, albeit that the revised model is stochas-
tic, and involves a linear transfer function Ft (� | �

→
). So, in contrast to the con-

ceptual model that is described in Section 2.1, all aspects of the transfer
function are derived from parameterisation and nothing is based on physical
principles. The end product from this data-driven modelling operation could
also contain a large number of unknown parameters �

→
, that must be identified

using calibration procedures, based on an appropriate set of observed input-
output patterns. For further details and methods of parameter identification 
on ARMAX models the interested reader is again referred to Ljung and
Söderström (1983).

3 PARTIAL RECURRENT NEURAL NETWORKS

NN with feedback connections are not new and can be labelled as either ‘recur-
rent networks’ or ‘partial recurrent networks’; recurrent networks exhibit full
connection between each node and all other nodes in the network, whereas par-
tial recurrent networks contain a limited number of specific feedback loops.
The term ‘lattice networks’ is also used when source nodes are included that
supply external inputs. Haykin (1994) notes the interest in such networks for
dealing with time varying inputs or outputs; recurrent or sequential networks
are also considered by Hertz et al. (1989) who assign the name Jordan Networks,
for a one step delayed feedback of outputs, and Elman Architecture when the
feedback to the network input is from one or more hidden layers. These networks
and their names originate from Jordan (1986) and Elman (1990).

It should also be noted that the author would prefer to use the expression
‘autoregressive neural network’. This might help to retain (as much as possible)
the common terms and meanings that are used in system theory, conceptual
models and time series analysis. Data-driven approaches, which include all types
of regression modelling, form a small subset of the total modelling spectrum –
which varies from a full conceptual approach to a total data-driven approach –
such that data-driven neurocomputation is not identified to be a toolbox of
distinct techniques deserving specialist consideration. From this viewpoint the
name autoregressive neural network might perhaps better emphasise the non-
linear generalisation of linear autoregressive moving average models that are
common tools in time series analysis e.g. ARMA or ARMAX. However, to be
consistent with a book on neural network modelling techniques, the term par-
tial recurrent neural networks will be used throughout this chapter.
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3.1 PRNN basics
Equations 1 and 3 are closely related with regard to the mechanism that gov-
erns the time evolution of the corresponding models. Both are in state space
form and involve the feedback of earlier computed previous system states. The
transfer function in Equation 1 is based on physical principles – to the extent
that such things are possible – and will often possess a strong non-linear com-
ponent. In Equation 3 the transfer function is linear and must be identified
from observed data. These concepts form the basis for the definition of a
PRNN. The idea is to replace the transfer functions �t(�) and/or Ft(�), with an
NN, which leads to the following dynamic model in discrete time:

(4)

‘NN’, on the right hand side of this equation, serves as a black box model for
the transfer function, which is of a standard input-output configuration. MLP
or RBFN solutions would both offer a suitable architecture. The vector w

→
rep-

resents the weights of the connections in the NN. These weights equate to the
uncertain parameters of each model, analogous to �

→
in the conceptual model

of Equation 1, or �
→

in the ARMAX model of Equation 3.
Equation 4 introduces a dynamic model in which the complete time propa-

gation mechanism is derived from the process of parameterisation; no system
understanding or physical process knowledge has been incorporated. The
PRNN version of Equation 4, thus follows a data-driven approach, albeit that
the state space concept which is inherent to generic dynamic conceptual models
has been incorporated. PRNN models thus form an important extension to stand-
ard static NN models, and can be seen as a first step in importing the properties
or components of conceptual models, into the domain of neurocomputation.
This also provides some interesting opportunities for hybrid modelling (see
Thompson & Kramer, 1994; Van den Boogaard & Kruisbrink, 1996).

PRNN must encapsulate the dynamic properties of each system that is con-
sidered in an accurate and efficacious manner. This could require the develop-
ment of complex architectures, albeit that more complex architectures will
contain a larger number of uncertain parameters w

→
. The dimension of w

→
will, in

particular, be much larger than the dimension of the model state, such that this
large number of uncertain parameters is in contrast to the situation for con-
ceptual models, where the number of uncertain parameters is in most cases
quite small.

The uncertain parameters w
→

must again be identified using training proced-
ures, and given a fully parameterised representation of the transfer function,
this calibration process will often require a large number of observed input-
output patterns. The assessment of a suitable network architecture will also form
an important aspect of such operations, since this item will be used to represent
the transfer function, and as such the complexities of each dynamic model.

PRNN models, compared to ARMAX models, can also be viewed as a non-
linear generalisation with respect to the latter type of linear black box model.
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The PRNN model does in fact reduce to an ARMAX model if a linear NN is
used to represent the transfer function. It must be noted, however, that random
model components have so far been omitted from consideration in the PRNN
model, i.e. the stochastic part of an ARMAX model. This then introduces a
restriction to the deterministic approach that will in consequence possess no
statistical representation of the model error. This important aspect of the devel-
opment process is considered in more detail in Section 3.5.

If possible, the orders M and N of the (auto)regressive parts of the model-
ling input, should be determined on the basis of system knowledge or from cor-
relation analysis applied to the different processes and lag times involved.
However, a proper (and minimal) estimate for both factors can also be obtained
through the process of calibration.

The components Xt
(k) and U(l)

t of the K-dimensional state vector X
→

t and
L-dimensional external forcing U

→
t will in practice often refer to processes 

of different origin, type or character. Therefore, the (minimum required) orders
of M and K can differ for the individual components suggesting different ‘opti-
mal’ orders Mk for Xt

(k)
and Nl for Ut

(l). To make the model as ‘compact’ as pos-
sible, it also makes sense to take these different orders into account, and the
PRNN model of Equation 4 can thus be further generalised to the following form:

In this case the architecture of a (standard) NN consists of ∑K
k�1 Mk �

∑L
l�1(1 � Nl) neurons in the input layer and K neurons in the output layer. Not

all components Xt
(k) of the output vector X

→
t must be autoregressive. For a non-

autoregressive component k, the order Mk is 0, and this output is not then sub-
ject to feedback at later time steps.

Figure 7.1 illustrates a ‘simple’ PRNN model in which the basic NN is of 
type MLP. The model output X

→
t is two-dimensional, the first output component 

Xt
(1) is order two autoregressive, and the second output component Xt

(2) is non-
autoregressive. Therefore K � 2, M1 � 2 and M2 � 0. The external input U

→
t of the

model is one dimensional, but is order two regressive, so that L � 1 and N1 � 2.
This figure shows that a PRNN model can also be viewed as a complex NN.

The latter contains a large number of layers, part of the output from certain
layers is not fed forward to other layers, whilst other parts of the output skip
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122 HENK F.P. VAN DEN BOOGAARD

over adjacent layers and are fed forward to non-adjacent layers. This architec-
ture differs from a feedforward solution, with a standard set of connections,
where the outputs from each node in each layer are always fed forward to all
nodes in the next layer and not to nodes in other layers.

Summarising, the PRNN of Equation 5 is found after embedding the time
propagation mechanism of dynamic conceptual models into a data-driven
modelling environment – such that a non-linear black box model with state
space properties is obtained. PRNN models are thus seen to be a non-linear
generalisation of ARMAX models. Some other important aspects of the PRNN
model will be discussed in Section 3.

The main issue in PRNN is the feedback of outputs, from the NN at time t,
to provide inputs at time t � 1 and/or later. This feedback might also involve
self-feedback loops, at the level of an individual neuron, albeit that in the
reported applications no such loops were present when hidden layers existed.
Thus, seen in time, there is a strict direction for subsequent feedback such that
at each time step the output is an explicit function of the input and the ‘numeri-
cal scheme’ is in this regard explicit rather than implicit.

3.2 Open loop versus closed loop systems
The PRNN model is a closed loop system where a ‘new’ system state follows
from one or more system states computed at one or more previous time steps.
Under certain conditions, a closed loop architecture can be reorganised into an
equivalent open loop arrangement, and in this situation the modelling input
will involve external forcings alone. The model in Equation 4 will thus become:

(6)

The model is no longer autoregressive and ‘system memory’ in terms of
previous states and past events must therefore be made available using a suffi-
cient set of historical time series forcings N. However, the required series could
be infinite, as can be verified from the following one-dimensional, first order,
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Fig. 7.1. The architecture of a partial recurrent neural network.
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time invariant and autoregressive model:

(7)

The order N in an open loop representation can indeed become infinite even
when the order N in the closed loop architecture is finite or small. However, in
practice, a fair approximation will often be possible with a finite order N,
although this N will still be much larger than the sum of the orders K and N, in
the original autoregressive model. The number of parameters in the open loop
model will also be much larger, which can significantly handicap parameter
identification, and in consequence decrease the predictive capabilities of the
calibrated model. Hence the preference for a closed loop solution.

The use of an autoregressive or closed loop model, under certain condi-
tions, will often be more of a necessity than an option. Here one must think of
dynamic systems with an infinite memory, leading to non-stationary processes
and responses, where initial conditions are not ‘gradually forgotten’. Let us
consider the case of a simple and pure (non-leaky) integrator. In mathematical
terms, this system is described in the model of Equation 7 when � � 1. In
hydrological terms, it represents the filling of a reservoir with no output mech-
anism, although this configuration is not very realistic and some form of dis-
charge mechanism must in practice be included. For instance, a weir is a simple
passive emptying mechanism, which produces an overflow when the upstream
water depth exceeds its crest. The overflow is then a non-linear function of
water depth, and for this modified and more realistic reservoir model, it can be
verified that an autoregressive tool is a better-suited solution than an open loop
description. Proaño et al. (1998) dealt with such overflows in sewerage sys-
tems and used a PRNN for the emulation of a detailed conceptual model. Their
approach and results are reviewed and further discussed in Section 4.1.

3.3 Calibration of a PRNN using adjoint modelling
PRNN encapsulate a standard NN that is applied at each time step and which
will, through recursion, generate a temporal sequence of changes in the model
state over time. However, due to the occurrence of feedback over one or more
time steps, the application of common training approaches based on backprop-
agation of error must be customised to provide an appropriate generalisation.
The adjoint formalism that is used for the calibration of large scale determinis-
tic dynamic models is well suited to such a task. The advanced calibration or
data assimilation facilities that have been developed for, and applied to, deter-
ministic numerical models can thus be applied to PRNN, which is to be expected
since the latter tool is a direct adaptation from the generic structure of such
earlier modelling methodologies.

Model calibration in general, and NN training in particular, involves the
definition of a cost function or a goodness-of-fit criterion that is used to assess
the level of (dis)agreement that occurs between model predictions and real
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world observations. This cost function must be minimised with respect to the
control variables. The control variables will in most instances entail a combin-
ation of uncertainties in model parameters, in initial conditions, or in external
forcings. For large scale minimisation problems, gradient descent techniques
offer a practical solution, provided that such gradients are not too difficult or
too time consuming to extract. Efficient gradient descent techniques include
conjugate gradient and quasi-Newton methods (see Press et al., 1989). Several
tools are available to provide an estimate of the gradient at each stage in the
calibration process; one important and efficient method is adjoint modelling.
In this approach the desired gradient is obtained from the results of two model
runs and is independent of the number of control variables. The first run
involves the propagation of an ‘original’ model over the time interval whilst the
second run involves the construction of a so called ‘adjoint solution’. The lat-
ter is intended to be a tangent model of the original solution; it thus equates to
a linear dynamic system that has the same spatial and temporal dimensions as
the original model. However, in contrast to the original model, the adjoint solu-
tion must be solved backwards in time. The cost function gradient is expressed
in the states and prediction residuals of the original model, which together with
the states of the adjoint model, provides an exact set of analytical derivatives,
as opposed to an imperfect numerical approximation. Each gradient, in associ-
ation with previous gradients computed during earlier iterations, is then used to
provide the inputs for a gradient descent operation that will find an update for
the uncertain parameters and in so doing will provide a better performance for
the model. The adjoint model is thus applied more than once, the updating pro-
cedure is repeated until the cost function is minimised, and the parameters are
updated in batch mode, after each forward (model) and backward (adjoint)
sequence and not at separate time steps.

Within the context of dynamic models, adjoint modelling is also known as
variational data assimilation and for a detailed introduction to adjoint model-
ling and its practical significance with respect to the calibration of large scale
dynamic numerical models the reader is referred to: Chavent (1980), Long
(1989), Panchang and O’Brien (1990), Van den Boogaard et al. (1993), Lardner
et al. (1993), or Ten Brummelhuis et al. (1993). The relevance of variational
data assimilation techniques to NN models is also mentioned in Hsieh and
Tang (1998).

The adjoint formalism can be derived for PRNN and such adjoint PRNN
would in turn offer a generalisation of the backpropagation rule for standard
MLP. The adjoint PRNN model reduces to standard backpropagation if the
model is not autoregressive.

3.4 Calibration of a PRNN using data insertion
Static NN that model time series data often use a different training procedure
to the one that is advocated in the work that is reported in this chapter. In such
cases, the NN is fed with observations, rather than system states that were
computed in previous time steps so that the model is propagated and calibrated
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according to:

(8)

Time propagation in the above equation is based on the process of data inser-
tion. Equation 8 is in consequence not autoregressive and the solution thus
equates to a ‘one-step-ahead forecasting’ operation. The ‘advantage’ of data
insertion, in a strict sense, is that standard procedures can be used in the train-
ing process e.g. backpropagation, which is described in Chapter 2. The devel-
opment and implementation of advanced calibration techniques that deal with
strict autoregressiveness is thus avoided, e.g. the adjoint method, which is
described in Section 3.3.

For the following reasons, however, it is argued that data insertion is often
considered to be an improper form of modelling and/or data assimilation:
1. Replacing computed system states with their corresponding observations

means that a user has no confidence in the model. Prediction of one or more
future system states, based on auto/cross-correlations with observed data,
could be an inaccurate method for longer time horizons. It would in conse-
quence be reasonable to expect improved accuracies over longer prediction
horizons from an autoregressive model that had been trained and applied in
a strict and proper sense.

2. Data insertion is not an acceptable method of data assimilation because the
true estimate of a ‘system state’ can never be more accurate than the last
data point inserted. Data insertion gives no possibilities to average redun-
dant information over time in order to reduce the effects of noise; it is thus
impossible to improve the estimated ‘system state’. Moreover, overwriting
model states with observations can leave the model dynamically unbal-
anced. This is a particular problem when the observed data are sparse, noisy
and/or inconsistent with the modelling predictions. Each insertion might
typically inject bursts of noise into an evolving modelling solution with obvi-
ous consequences in the form of undesirable modelling results. For a more
detailed discussion see Long (1989).

3. In practice, observed data sets are often sparse and irregularly distributed in
space and time. With data insertion, outputs cannot be generated when one
of the required antecedent observations is missing. Moreover, such gaps in
the data set can significantly reduce the quantity and quality of the training
and/or verification patterns and thus limit applications to those cases where
state space observations are not missing. True autoregressive models do not
suffer from these limitations since such tools propagate computed rather
than observed model states. In fact, this pinpoints the main issue of model-
ling, which should be to generate estimates of the full system state, and, in
particular, for positions and times where observations are missing.

4. Data insertion introduces a strong difference between the use of a model in
the calibration stage and the application of that same model to real-world
forecasting operations. For the purposes of calibration each output is
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replaced with a corresponding observation at the next time step; but this
cannot be done in forecast mode, since future states are still an unknown
factor, and there is no alternative other than to propagate the model as a
strict autoregressive solution with feedback of computed outputs. Hence,
calibration based on data insertion has optimised a model that is based on
different conceptions, with respect to the one that is used for forecasting
operations which could reduce the quality of forecasts.

3.5 On-line or sequential data assimilation for PRNN models
Data assimilation facilities are often used to improve the performance of (deter-
ministic) dynamic conceptual models. The data insertion process, described
above, represents a simple form of on-line sequential assimilation. However, 
in a dynamic environment, it is also important that each model is able to adapt
to changing conditions and as such to improve its skill or power with respect to
short or medium term forecasting horizons. Thus other factors must be con-
sidered and assimilated as each model proceeds from time step to time step,
such that the consistent integration of changing conditions, within an adaptive
solution, will produce an operational product that is superior in comparison to
a corresponding non-adaptive deterministic solution.

Even a well-calibrated standard model will not provide a perfect set of pre-
dictions in forecast mode and such predictions will in most cases become less
accurate over modelled time. Gradual increases in error will arise from errors
in the calibration data set, unresolved modelling miscalculations, fluctuations
or long term trends in the model parameters and/or external forcings. These
uncertainties can be described as changing internal or external conditions, such
that to provide improved forecasting power, it is essential that the model must
adapt to pertinent trends, oscillations or environmental switches. To allow for
this, and to make the model better suited to operational and/or real time pre-
diction, on-line or sequential data assimilation techniques are important. The
usual approach is to describe all model and observation uncertainties using
random noise, such that the uncertainties are modelled in a statistical sense, as
opposed to the imposition of a strict physical relationship. The original deter-
ministic model is thus embedded in a stochastic environment and the actual
process of data assimilation then involves the consistent integration of all
sources of modelled or observed information so far available, whilst also tak-
ing the statistics of their uncertainties into account. Thus, following the inte-
gration of model and data, an optimal instantiation of the model is obtained for
forecasting purposes. The most common procedure that is used to perform this
type of data assimilation exercise is Kalman filtering; for theoretical back-
ground material see Gelb (1974), Jazwinski (1970) or Maybeck (1979); for
applications in tidal flow models with emphasis on storm surge forecasting see
Heemink (1986), Heemink and Kloosterhuis (1990) or Verlaan (1998).

Most on-line data assimilation facilities have been developed for, and
applied to, dynamic conceptual models. PRNN, however, with their state space
architecture, also provide a suitable basis to develop data-driven models that
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are equipped with on-line data assimilation procedures. So, in addition to the
inclusion of state space form, another important and substantial component of
dynamic conceptual models is imported into the sphere of neurocomputation.
This will provide new and important opportunities with respect to the develop-
ment of operational or real-time applications. For example, in hydrological
modelling, real time flood forecasting, prediction of water loads in drainage
systems, forecasting and controls of structures such as sluices, weirs or barriers,
can be mentioned as relevant applications for on-line real-time or run-time data
assimilation. Similar examples can be given for other disciplines where opera-
tional modelling is important.

From the above it is clear that for the integration of on-line data assimila-
tion facilities, random noise must be incorporated to allow for the statistical
modelling of uncertainties, in the form of extended and stochastic PRNN. Such
mechanisms are not considered in this chapter but will require a much stricter
generalisation of linear ARMAX models in comparison to deterministic PRNN
models. For calibration and/or data assimilation procedures with respect to sto-
chastic PRNN, the same mechanisms that are used for conceptual or ARMAX
models, could also be used to develop neural solutions. Technical details on the
construction of such tools can be found in Van den Boogaard et al. (2000).

4 PRNN APPLICATIONS

Two hydrological applications are presented. The first case involves using a
PRNN to emulated a dynamic conceptual model of a sewerage system. In the
second case a PRNN is applied to model the water balance of Lake IJsselmeer
in the Netherlands.

4.1 PRNN emulation of a sewerage system
This section outlines the potential use of PRNN for model emulation. Further
details on the reported application can be found in Proaño et al. (1998).

One major problem with respect to sewerage systems is the overflows that
can and do occur during severe rain storm events. Sewerage overflow occurs
when the capacities of either sewerage systems or treatment plants are exceeded
during a rainfall event. The overflow devices are often nothing more than a
storage chamber, with a weir that acts to control the flow, such that an overflow
occurs when the upstream water depth exceeds its crest.

In the Netherlands, some 90% of all sewerage systems are combined sys-
tems, which spill diluted sewage into open water systems during extreme rain-
fall events. For most towns, these systems have either no slope or mild slopes,
such that the resultant network of interconnected flows will contain a large
number of loops. Moreover, when all street sewer lines are included, the total
structure could contain several thousands or even tens of thousands of pipes.

Models based on a numerical solution to the Saint Venant equations can be
used to simulate sewerage systems. The SOBEK-URBAN modelling system is
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the main tool that is used to perform such simulations in the Netherlands; for 
a numerical description of this mechanism see Stelling (2000). The main point
to note is that this tool can provide an integrated approach for the simulation of
1-D processes in rivers, sewers and drainage systems, where integrated means
that flows in the pipe network and the receiving waters can be combined.

Legislation regarding sewage spilling into open water systems has in recent
times placed more and more constraints on the frequencies and quantities of
permitted overflow that is allowed to occur during storm events. Moreover, to
deal with current legislation, and to assess whether or not a particular case sat-
isfies the regulations, simulations must be performed for a 10 year period, and
in the near future this period is expected to be extended from 10 to 25 years.

Simulation of sewerage systems over such a long period are performed on
recorded series of historical rain storm events. For a current design, or one or
more proposed rehabilitation designs (e.g. dealing with additional storage capaci-
ties), this implies that the set of simulated storm events must contain storms
with the potential to produce overflows. However, for a time period of 10 to 
25 years, this will require at least a few hundred such events.

For large cities, with several tens of thousands of pipes, the computational
burden associated with such simulations will remain extreme, despite antici-
pated computer improvements in terms of faster processors and more powerful
memories (Verwey, 1994). Even when restricted to subsets of events with poten-
tial overflow, the computational effort will still be large, in particular when
numerous designs must be compared. It is for this reason that a number of
alternative methods have been investigated; see Proaño et al. (1998) or Price
et al. (1998). NN, under such circumstances, offer two possible opportunities:
(i) to act as fast model emulators and/or (ii) to perform model reduction oper-
ations. PRNN, in contrast to static standard NN, would in both cases be
expected to provide a more suitable solution since the solution would in both
operations be required to encapsulate numerous dynamic systems and dynamic
processes.

Proaño et al. (1998) used a PRNN for the dynamic emulation of overflow
discharges. The external input consisted of rainfall time series data for a storm
event. The output of the PRNN was a time series of overflow discharges at one
or more overflow structures. This output must be zero when no overflow occurs.
The PRNN was calibrated on a data set of rainfall-overflow combinations, the
overflow time series was generated from a numerical conceptual model, and the
output time series of a few nodes in the numerical model were emulated as
opposed to the production of a solution that would model the complete state of
the sewerage system. It was also ensured that the calibration and verification
data sets, each contained rain storm events that produced overflow, as well as
events without overflow.

It was important in the research to assess whether or not the emulation
could be based on a limited subset of the large ‘original’ set of events. If not,
then the input and output patterns for all events would have to be derived from
the conceptual model, and the desired reduction of computational cost would
not be achieved. In addition, an emulation would no longer make sense, since
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the frequencies and quantities of overflow would be contained in the numerical
model predictions.

This model emulation and reduction exercise was applied to the sewerage
system of Maartensdijk, a town with about 10000 inhabitants, in the centre of
the Netherlands. Based on system emptying time and storage/pump capacities,
200 potential overflow events were selected from a rainfall series of 10 years,
and an overflow model produced from 89 of the 200 events.

The selection of representative calibration and validation data sets was
based on scatter plots of three parameters that characterised the main features
of the rainfall time series: storm duration, maximum rainfall depth and total
rainfall depth. 20 overflow events and 7 non-overflow events were selected for
the calibration set; a verification set of 17 events was likewise constructed.
Then, for all 44 calibration and verification events, simulation with a SOBEK-
URBAN model of the Maartensdijk sewerage system was carried out. This
provided a time series of water depths and discharges at three overflow struc-
tures and from which a PRNN model was then constructed. This PRNN model
was calibrated and verified in batch mode, which means that the connection
weights were optimised for all training events in concert as a collective item,
and that individual events were not treated as separate entities for model devel-
opment purposes.

The external inputs for this PRNN consisted of current and antecedent rain-
fall samples. There were two outputs: current discharge and current water
depth at the weir. The latter was needed because at such structures, the water
depth determines the state of the system and not discharge. In fact, discharge is
a rating curve function of the water depth, but this relation is not one-to-one,
e.g. discharge is zero when water depth falls below the crest of a weir. Therefore,
discharge cannot be used to represent the ‘system state’. This also illustrates
the fact that, within black box procedures, physical principles or system know-
ledge must often be used in order to ensure that there is a meaningful set up for
each model.

Similar physical considerations, as well as test experiments, also revealed
the need for PRNN models to deal with non-transient effects for the accumu-
lation of rain depths into water depths. Open loop models (see Section 3.2) or
standard NN models are thus seen to be less suitable approaches for the sewer-
age emulations reported herein.

Several training experiments were undertaken, a suitable architecture was
assessed, and accurate PRNN emulations of the SOBEK-URBAN model
obtained. Validation tests on events not contained in the training and verifica-
tion data sets also demonstrated the capabilities of a PRNN to generalise to
unseen data sets.

4.2 Water balance in Lake IJsselmeer
This section summarises the potential use of a PRNN to model water balance.
The reported application is for Lake IJsselmeer in the Netherlands. Further
details on this investigation can be found in Van den Boogaard et al. (1998).
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The most important factors that affect the water balance of Lake IJsselmeer
are the inflow of the River IJssel and the outflows from the sluices at Den
Oever and Kornwerderzand. Figure 7.2 provides a map of the area which marks
the position of the River IJssel and the locations of both sluices. The sluices are
used to discharge excess water and form an interface between the lake and the
tidal Dutch Wadden Sea. Such spilling is possible during low tides, when water
levels outside the lake are lower than water levels within the lake, and spill vol-
ume is estimated in terms of the difference between these two water levels. The
wind can also have a significant effect on the difference between the inner
water level and the outer water level.

Water balance modelling, in most instances, will involve building some
type of autoregressive mechanism. This can be recognised from the manner in
which the water volume Vt, changes over a time increment �t, which can be
expressed as:

(9)

where Qin(�) and Qout(�) denote the inflow and outflow discharges. If the total area
remains more or less constant, the water level ht, will then evolve according to:
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Fig. 7.2. Plan view of Lake IJsselmeer.
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Typical evolutions will occur in state space form. The transfer function will
be non-linear when the relationship between the currents qin(�) or qout(�) and the
water levels is non-linear. However, non-linear mechanisms will often impact
on the inflows and outflows, and marked non-linearities are evident for the
overflow at sluices.

In the reported work a PRNN was used to perform dynamic modelling of
the water levels of Lake IJsselmeer as a function of five external system forc-
ings: discharge of the River IJssel, the North-South and East-West components
of the wind, and the outside tidal water levels at the sluices of Kornwerderzand
and Den Oever. The output was the water level of Lake IJsselmeer. The time
step in this model is �t � 1 day, which corresponds to the sampling period of
observed discharges for the River IJssel, and the sampling period of water levels
for Lake IJsselmeer. Daily time series of the maximum wind speed and the min-
imum outer tidal water levels were also included in this modelling operation.

In this research, only winter seasons were considered, since the dynamic
behaviour of the system at these times is the most interesting. The data set con-
sisted of daily samples, for the period October 1 to March 31, taken from the
15 winter seasons between 1978/9 and 1992/3. From this data set, nine seasons
were selected for training, whilst the other six seasons were used for testing.
The training and testing data sets were each considered to be more or less rep-
resentative of the whole data set and the chosen architecture was calibrated to
find a set of weights w

→
that provided the best model performance as follows.

For each season, initial conditions were derived from one or more observations
taken on October 1, and the model was then propagated in a strict autoregres-
sive sense through to the following March 31. The standard least squares cri-
terion provided a cost function and quantified the level of (dis)agreement
between modelled and observed water levels. Figure 7.3 shows the perform-
ance of the calibrated solution for four representative periods. For all periods,
including ones not shown here, a reasonable level of performance was
obtained. However, during certain periods, considerable prediction errors were
still present. These are thought to be related to errors in the external forcings
and not a result of poor training. PRNN performance was also better than a
conceptual water balance model that had been developed in earlier work –
albeit that the actual difference was considered to be minor.

In Section 3.4 it was argued that data insertion is not a proper form of 
calibration for PRNN and the effect of data insertion on such models for
Lake IJsselmeer is considered in Van den Boogaard et al. (1998). PRNN out-
put, where the model is applied and calibrated in a strict autoregressive sense,
was compared against the outcomes of the corresponding model trained with
data insertion. For all periods in the training data set, the model based on data
insertion reproduced the observed data with near-perfect levels of skill, and
performed much better than the autoregressive solution trained with feedback
of computed outputs. The weights of the model based on data insertion were
then substituted into an autoregressive model that was used to predict the water
levels for the periods of the verification data set. This model was run in pre-
diction mode as an autoregressive forecaster and the outputs were found to be
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Fig. 7.3. Observed water levels (solid curves) and water levels computed with a calibrated PRNN
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systematically less accurate than those produced from the corresponding auto-
regressive solution that had been trained with strict computed feedback.

The reported comparison was based on the root mean square error of both
forecasts. Such findings support the theoretical arguments that strict autore-
gressive solutions will contain better predictive skills than models based on
data insertion. The observed accuracies of the data insertion model for the train-
ing data set is misleading since this could reflect strong temporal correlations
between the various observations. PRNN trained with feedback of computed
outputs will, in general, better mimic the dynamics of the physical system and
as such offer strong potential for superior modelling.

It should also be noted that major uncertainties were associated with the
discharge figures for the River IJssel. These discharges were not direct obser-
vations but estimates derived from empirical relationships using water level
registrations from the River Rhine at Lobith near the Dutch-German border.
These relationships could contain errors, especially for winter seasons, when
water levels and/or discharges are large or even extreme. In all other external
forcings, such as the wind, large uncertainties will also have been present. For
applications under operational or real time conditions, such as short to medium
term water level forecasting or sluice controls, these uncertainties must be
taken into account in a more explicit form. Section 3.5 argued that this could
be done in a statistical sense, through the use of on-line data assimilation tech-
niques, to improve the forecasting capabilities of the model. The application of
on-line data assimilation to this situation is presented in Van den Boogaaard 
et al. (2000).

5 DISCUSSION AND CONCLUSIONS

This chapter has considered the role of PRNN – in hydrological science and for
dynamic systems modelling. Each PRNN is a non-linear dynamic model in
state space form where the transfer function is modelled with a standard NN.
The complete time propagation mechanism is thus a parameterised solution
that must be identified from observed data. Each PRNN is in essence a data-
driven model, but with the incorporation of a state space architecture, an
important generic aspect of dynamic conceptual models is included. PRNN
models can be viewed as a non-linear generalisation of ARMAX models – which
are common tools for the modelling and analysis of time series data. PRNN are
also observed to be a dynamic extension of standard static NN, since the for-
mer is able to deal with time varying inputs and outputs, whereas the latter con-
tains no explicit provision for ‘system dynamics’ or ‘system memory’.

The state space mechanism of a PRNN involves the feedback of outputs
computed in one or more previous time steps. This closed loop architecture can
be written in an equivalent open loop form, leading to a non-autoregressive
model. The transfer function in this situation can be modelled with a standard
NN. However, to account for ‘system memory’, a much longer series of histor-
ical external forcings must be provided in the shape of numerous inputs. This
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will produce a significant increase in the number of unknown parameters in
terms of additional connection weights that will cloud the issue and reduce the
power of the network to establish a clear model. For some solutions, the demand
for historic factors could be infinite, which leaves little real choice other than to
use an autoregressive model or PRNN. Indeed, this is not a theoretical issue, as
can be seen from the sewerage experiment presented in Section 4.1.

The feedback of computed outputs requires a proper generalisation of the
training rules that are used in a standard NN. It was also argued, that for the cali-
bration of a PRNN, gradient descent techniques and adjoint modelling were
appropriate. The latter is a variational data assimilation technique, which pro-
vides an extremely efficient and elegant means of computing the gradient of a
cost function and is one that is widely used for the calibration of large scale
meteorological models and for 2-D or 3-D hydraulic flow modelling. PRNN
share a common state space architecture with large scale conceptual models,
such that the adjoint method has direct application, and the adjoint formalism
is in fact a generalisation of the standard backpropagation rule.

Sometimes an alternative training procedure is followed using data inser-
tion. This means that real observations are used for feedback, rather than the
actual model outputs, that were computed in one or more previous time steps.
It was argued that, in general, this is not a proper form of modelling and an
inappropriate mechanism for calibration or data assimilation purposes. In the
case of data insertion, the modelling and/or forecasting is based on the tem-
poral correlations of the observed processes, rather than the consistent identifi-
cation of the physical mechanism that governs the time propagation operation.
Each calibrated autoregressive solution represents a model in a strict sense that
is better suited to forecasting operations. This was confirmed in the practical
application provided under Section 4.2. In fact, data insertion should not be
used for model calibration purposes, unless the circumstances are such that
there is an absence of both model error and observation noise.

This chapter has considered deterministic PRNN. The implication of this is
that both the model and the external forcings, which form the modelling input,
are assumed to be perfect. In Section 4.1, these conditions are clearly satisfied,
as the input-output is adopted from the results of a deterministic dynamic con-
ceptual model. The PRNN was shown to be a feasible solution for model emu-
lation and/or model reduction purposes. Such findings would be applicable to
the general case as, within emulations, external forcings and observations are
consistent and without uncertainties. Moreover, the number of observations
can be as large as demanded or desired, and fast neural emulators of dynamic
conceptual models will provide important opportunities for rapid assessment,
real time control and management, scenario optimisation and uncertainty/
sensitivity/risk analysis. However, the main problem still lies in finding the
right architecture.

In Section 4.2 the deterministic PRNN was used to model the water balance
of Lake IJsselmeer based on observed hydrological and meteorological data.
For a test data set of winter seasons, the calibrated model produced reasonable
water level predictions, although in certain periods the prediction errors were
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still large and could well be due to uncertainties in the observations. Section
3.5 suggested that to achieve improved performance, such uncertainties should
be taken into account, and that the uncertainties could be modelled in an
explicit statistical manner. Sequential data assimilation techniques could then
be used for the optimal integration of both model and observations. PRNN
combined with sequential data assimilation facilities will also provide a robust
solution in terms of errors and adaptation to changing conditions. This could
lead to significant improvements in forecasting skill and further increase the
potential benefits for operational and/or real time applications.

Sequential data assimilation techniques, applied to conceptual dynamic 
models, can also be imported into a PRNN. The state space form of such mod-
els means that this a simple operation; so, after the state space architecture and
the adjoint formalism, this third important feature of dynamic conceptual mod-
els could also be embedded within a neural solution.

The other chapters in this book describe numerous feasible and adequate
hydrological modelling applications based on standard static NN, but for fore-
casting purposes, such solutions are in most cases limited to the simple pro-
duction of one-step-ahead outputs. Hence one future challenge will be to
ascertain the extent to which this window of prediction or forecasting horizon
can be extended with a PRNN, and, if so, what then would be the most appro-
priate architectures and training methods?

ACKNOWLEDGEMENTS

The author wishes to thank Arthur Mynett, Matthew Turner and Micha Werner
of WL|DELFT HYDRAULICS for their support, stimulating discussions and valu-
able comments during the preparation of this manuscript. Important contribu-
tions to the PRNN application section were supplied by Oswaldo Proaño and
Dilip Gautam of IHE-Delft.

REFERENCES

Abrahart, R.J. & Kneale, P.E. 1997. Exploring neural network rainfall-runoff
modelling. Proceedings Sixth National Hydrology Symposium, University
of Salford, 15–18 September 1997: 9.35–9.44.

Beale, R. & Jackson, T. 1990. Neural Computing. An Introduction. Bristol: IOP
Publishing Ltd.

Chavent, G. 1980. Identification of distributed parameter systems: about the
output least square method, its implementation, and identifiability. In 
R. Iserman (Ed.), Proc. 5th IFAC Symposium on Identification and System
Parameter Estimation. I: 85–97. New York: Pergamon Press.

Clair, T.A. & Ehrman, J.M. 1998. Using neural networks to assess the influence
of changing seasonal climates in modifying discharge, dissolved organic
carbon, and nitrogen export in eastern Canadian rivers. Water Resources
Research 34(3): 447–455.

PARTIAL RECURRENT NEURAL NETWORKS 135

Copyright © 2004 Taylor & Francis Group plc, London, UK



Cybenko, G. 1989. Approximation by Superpositions of a sigmoidal function.
Math. Control Signals Systems 2: 303–314.

Elman, J.L. 1990. Finding structure in time. Cognitive Science 14: 179–211.
Gelb, A. 1974. Applied Optimal Estimation. Cambridge, MA: The MIT Press.
Gourbesville, P. & Lecluse, Y. 1994. STORAGE: A Stochastic multimOdel

pRocedure for dischArGe forEcasting. In Verwey, Minns, Babovic &
Maksimovic (Eds.), Hydroinformatics ’94 (pp. 147–154). Rotterdam:
Balkema.

Haykin, S. 1994. Neural Networks. A Comprehensive Foundation. New York:
Macmillan Publishing Company.

Heemink, A.W. 1986. Storm surge prediction using Kalman filtering. Ph.D.
Thesis, Enschede: Twente University of Technology.

Heemink, A.W. & Kloosterhuis, H. 1990. Data assimilation for non-linear tidal
models. International Journal for Numerical Methods in Fluids 11:
1097–1112.

Hertz, J., Krogh, A. & Palmer, R.G. 1991. Introduction to the Theory of Neural
Computation. Reading, MA: Addison Wesley.

Hornik, K., Stinchcombe, M. & White, H. 1989. Multilayer feedforward 
networks are universal approximators. Neural Networks 2: 359–366.

Hsieh, W.W. & Tang, B. 1998. Applying neural network models to prediction
and data analysis in Meteorology and Oceanography. Bulletin of the American
Meteorological Society: 1855–1870.

Jazwinski, A.H. 1970. Stochastic Processes and Filtering Theory. Volume 64
of Mathematics in Science and Engineering. New York: Academic Press.

Jordan, M.I. 1986. Attactor Dynamics and Parallelism in a Connectionist
Sequential Machine. In Proceedings of the Eight Annual Conference of the
Cognitive Science Society (Amherst, Massachusetts): 531–546. Hillsdale:
Erlbaum.

Lange, N.T.G. 1998. Advantages of unit hydrograph derivation by neural net-
works. In Babovic & Larsen (Eds.), Hydroinformatics ’98 (pp. 783–789).
Rotterdam: Balkema.

Lardner, R.W., Al-Rabeh, A.H. & Gunay, N. 1993. Optimal estimation of
parameters for a two-dimensional model of the Arabian Gulf. Journal of
Geophysical Research. 98(C10): 229–242.

Ljung, L. & Söderström T. 1983. Theory and Practice of Recursive Identi-
fication. New York: MIT Press.

Long, R.B. 1989. Notes on assimilating observations into numerical models.
Report Z274. Delft: WL|Delft Hydraulics.

Maybeck, P.S. 1979. Stochastic Models, Estimation, and Control. Volume 141-1
of Mathematics in Science and Engineering. London: Academic Press, 
Inc. Ltd.

Minns, A.W. 1996. Extended rainfall-runoff modelling using artificial neural
networks. In Müller (Ed.), Hydroinformatics ’96 (pp. 207–213). Rotterdam:
Balkema.

Minns, A.W. & Hall, M.J. 1996. Artificial neural networks as rainfall-runoff
models. Hydrological Sciences Journal 41(3): 399–417.

136 HENK F.P. VAN DEN BOOGAARD

Copyright © 2004 Taylor & Francis Group plc, London, UK



Panchang, V.G. & O’Brien, J.J. 1990. On the determination of hydraulic model
parameters using the adjoint state formulation. In A.M. Davies (Ed.),
Modelling Marine Systems, Volume I, Chapter 2: 5–18. Boca Raton, FL:
CRC Press, Inc.

Press, W.H., Flannery, H., Teukolsky, S.A. & Vetterling, W.T. 1989. Numerical
Recipes. The art of scientific computing. Cambridge: Cambridge
University Press.

Price, R.K., Samedov, J.N. & Solomatine, D.P. 1998. An artificial neural net-
work model of a generalised channel network. In Babovic & Larsen (Eds.),
Hydroinformatics ’98 (pp. 813–818). Rotterdam: Balkema.

Proaño, C.O., Verwey, A., Van den Boogaard, H.F.P & Minns, A.W. 1998.
Emulation of a sewerage system computational model for the statistical
processing of large number of simulations. In Babovic & Larsen (Eds.),
Hydroinformatics ’98(2) (pp. 1145–1152). Rotterdam: Balkema.

Recknagel, F., French, M., Harkonen, P. & Yanunaka, K.I. 1997. Artificial neural
network approach for modelling and prediction of algal blooms. Ecological
Modelling 96: 11–28.

Sanchez, L., Arroyo, V., Garcia, J., Koev, K. & Revilla, J. 1998. Use of neural
networks in design of coastal sewage systems. Journal of Hydraulic
Engineering: 457–464.

Scardi, M. 1996. Artificial neural networks as empirical models for estimating
phytoplankton production. Marine Ecol. Progress Series 139: 289–299.

See, L. & Openshaw, S. 1999. Applying soft computing approaches to river
level forecasting. Hydrological Sciences Journal 44(5): 763–778.

Shen, Y., Solomatine, D.P. & Van den Boogaard, H.F.P. 1998. Improving
performance of chlorophyll concentration time series simulation with arti-
ficial neural networks. Annual Journal of Hydraulic Engineering, JSCE 42:
751–756.

Solomatine, D.P. & Avila Torres, L.A. 1996. Neural network application of a
hydrodynamic model in optimizing reservoir operation. In Müller (Ed.),
Hydroinformatics ’96 (pp. 201–206). Rotterdam: Balkema.

Stelling, G.S., 2000. A numerical method for inundation simulations. In Yoon,
Jun, Seoh & Choi (Eds.), Proceedings of the 4th International Conference
on Hydro-Science and Engineering. Seoul, Korea.

Ten Brummelhuis, P.G.J., Heemink, A.W. & Van den Boogaard, H.F.P. 1993.
Identification of shallow sea models. International Journal for Numerical
Methods in Fluids 17: 637–665.

Thompson, M.L., Kramer, M.A. 1994. Modelling Chemical Processes 
Using Prior Knowledge and Neural Networks. AIChE Journal 40(8):
1328–1340.

Van den Boogaard, H.F.P., Hoogkamer, M.J.J. & Heemink, A.W. 1993. Parameter
identification in particle models. Stochastic Hydrology and Hydraulics
9(2): 109–130.

Van den Boogaard, H.F.P. & Kruisbrink, A.C.H. 1996. Hybrid Modelling 
by integrating neural networks and numerical models. In Müller (Ed.),
Hydroinformatics ’96 (pp. 471–477). Rotterdam: Balkema.

PARTIAL RECURRENT NEURAL NETWORKS 137

Copyright © 2004 Taylor & Francis Group plc, London, UK



Van den Boogaard, H.F.P., Gautam, D.K. & Mynett, A.E. 1998. Auto-regressive
neural networks for the modelling of time series. In Babovic & Larsen
(Eds.), Hydroinformatics ’98 (pp. 741–748). Rotterdam: Balkema.

Van den Boogaard, H.F.P., Ten Brummelhuis, P.G.J. & Mynett, A.E. 2000. 
On-Line Data Assimilation in Auto-Regressive Neural Networks. Hydroin-
formatics 2000 Conference, The University of Engineering, IOWA City,
USA, July 23–27, 2000.

Van Gent, M.R.A. & Van den Boogaard, H.F.P. 1998. Neural network model-
ling of forces on vertical structures. In Proc. ICCE 1998 Copenhagen, 2:
2096–2109. ASCE

Verlaan, M. 1998. Efficient Kalman filtering algorithms for hydrodynamic
models. Ph.D. Thesis, Delft: Delft University of Technology.

Verwey, A. 1994. Linkage of Physical and Numerical Aspects of Models
Applied in Environmental Studies. Keynote Lecture in: Proceedings of the
Conference on Hydraulics in Civil Engineering. Brisbane, Australia.

Wen, C.-G. & Lee, C.-S. 1998. A neural network approach to multiobjective
optimization for water quality management in a river basin. Water Resources
Research 34(3): 427–436.

Wüst, J.C. 1995. Current prediction for shipping guidance. In Kappen &
Gielen (Eds.), Neural Networks: Artificial Intelligence and Industrial
Applications. London: Springer Verlag.

138 HENK F.P. VAN DEN BOOGAARD

Copyright © 2004 Taylor & Francis Group plc, London, UK



1 INTRODUCTION

Following a successful pilot project to demonstrate the application of artificial
neural network (NN) methods to flood forecasting (Openshaw et al., 1998), the
main barrier to the practical implementation and use of NN based flood forecast-
ing systems was considered to be one of communication. In order for the river
engineers and hydrologists who are responsible for flood warning and control to
place their trust in such tools, the world of NN must first be demystified. To help
address this issue, an integrated NN based flood forecasting system, called
RLF/1, was developed using web-based technologies. RLF/1 comprises a suite
of software tools running on a SUN-Solaris workstation. The tools have been writ-
ten in C�� and are integrated via HTML and UNIX shell scripts. The system can
be accessed and run on-line from the following address:
http://www.ccg.leeds.ac.uk/simon/intro.html

8

RLF/1: Flood Forecasting via the Internet

SIMON A. CORNE AND STAN OPENSHAW
School of Geography, University of Leeds, UK

ABSTRACT: This chapter introduces a web-based neural network flood fore-
casting toolbox called RLF/1. This system comprises a set of software tools
written in C��, neural network models, data sets and documentation, and runs
on a SUN-Solaris workstation. The system is integrated using UNIX shell scripts,
which display forms, upload data, create databases, train networks, control a simu-
lation and display results. Output including results files, session logs and trained
models are available for downloading. Three default neural network models,
which are stored on the system and can be experimented with, were developed
for flood forecasting on stable, flashy and intermediate river systems. They use
historical data for gauging stations around the Ouse catchment in Yorkshire, UK.
Using the models, a simulation of a real-time forecast may be run by supplying
historical time-series data. Alternatively, the time series may be used to construct
new models.
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The aim of RLF/1 is to demonstrate that NN solutions are a practical tool for
real-world flood forecasting operations. The Internet offers a system that can be
openly accessed at minimal cost by engineers and scientists from around the
world who can experiment with the NN models at their leisure. Time series data
can be uploaded and a real-time forecast simulated using stored NN models.
New models can also be constructed, trained on-line and then used to provide
simulated forecasts. The use of web-based technologies means that background
material, on-line help, instructions and links to relevant information are fully
integrated within the software package.

Initial work on the application of NN to flood forecasting was applied to
river flow data for the Yorkshire Ouse catchment (Openshaw et al., 1998). Input
data for NN training were selected on the advice of hydrologists. A database was
constructed from historical time series comprising immediate river-level history
for principal and upstream gauging stations at fifteen-minute resolution, mean
hourly river-level histories, mean daily rainfall, averaged long-term rainfall
history, averaged daily temperatures, averaged daily evapotranspiration, and the
length of daylight. In the current work, NN models have been developed using
a minimal set of input data (river level time series for a principal gauging station
combined with suitably lagged upstream time series) in conjunction with a
method of pre-classification. Models have been trained for stable, flashy and
intermediate types of river system. These models are then integrated to produce
a computer system that can be adapted to fit a similar network of rivers and
tributaries where comparable information is available.

2 MODELLING APPROACH

The RLF/1 system may be used in two ways. The first approach uses existing
NN models that were developed for stable, intermediate and flashy types of
river network based upon a simple routing model. For each of the three types of
river network, two different sets of models were built: one producing a single
predicted river level or flow at some future time (e.g. three hours ahead, six
hours ahead, twelve hours ahead, etc.); the other produced a predicted time
series of river levels/flows up to some future time. These models may be used to
predict river levels for comparable river systems. When supplied with historical
time series data by the user, RLF/1 can simulate a forecast by using the raw
data as input variables to the models. The software allows for predictions to be
compared with observations to give a measure of the success.

The second approach involves using RLF/1 as an interactive model-building
tool, creating and training user-defined NN with user-supplied data.

2.1 Basic model
The RLF/1 system uses a very simple model of a river network. The system
aims to forecast the river level (or flow) at a principal gauging station. The
main input data for this station is derived from high-resolution historical river
level time series for that station. Additional inputs, suitably lagged for mean
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time of transport, include: river level time series for the upstream gauging stations,
rainfall time series for relevant upstream rainfall gauges, coarser-resolution and/or
averaged time series of other upstream data, e.g. soil moisture (explicit measure-
ment or implicit from long-term mean rainfall), temperature, evapotranspiration,
etc. A simple model with two upstream gauging stations and two upstream
rainfall gauges is illustrated in Figure 8.1.

RLF/1 may then be used to model the response at the principal gauging station
by supplying the time series for the principal station and the four upstream
gauges and their mean time of transport to the principal station.

2.2 Pre-classification
In earlier flood forecasting experiments (Openshaw et al., 1998), it was found
difficult to train networks to cover the entire dynamic range of the data. The
database, constructed from a long historic record, is mostly composed of vectors
from periods of very low activity, punctuated with relatively short periods of
interest: rising, falling and peak levels. Rather than attempting to train a single
NN using randomly selected vectors from the entire database, a Kohonen (1988)
self-organizing feature map (SOFM) was used to identify clusters in the data.
The sixteen clusters produced by the optimum SOFM (a four-by-four map) were
found to fall into five general categories (rising, falling, low and flat, moderate
and flat, peak). Separate databases were created according to these five cat-
egories and NN were generated for each. For practical forecasting, the category
of an input vector was identified and the forecast was generated using the most
appropriate model.

In the web-based version of RLF/1, this procedure has been simplified.
Instead of the five separate classes, RLF/1 makes use of either two (high, low) or
three (high, intermediate, low) categories. The selection of thresholds to distin-
guish categories may be automatic or interactive. Separate network models are
then used for each of the categories.
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Fig. 8.1. Example of a simple routing model used by RLF/1.
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2.3 NN for stored models
Conventional multilayer feedforward NN were used as the basis for stored
models. These were constructed, trained and tested using the Stuttgart Neural
Network Simulator (SNNS Group, 2002) from the University of Stuttgart,
Germany. Models were trained using the resilient propagation modification
(Riedmiller & Braun, 1993) to the backpropagation training algorithm and also
using the scaled conjugate gradient method (Moller, 1993).

2.4 NN for on-line model building
The principal concern for on-line model building was to create adaptable NN
models. Conventional multilayer feedforward networks are prone to a problem
commonly known as catastrophic forgetting, i.e. once trained, the NN cannot
assimilate new training information without losing the ability to represent its
original training information. We have used an approach for adaptive modelling
developed for process control (Mills et al., 1995). These methods are based upon
conventional multilayer feedforward models but incorporate some architectural
modifications and make use of new training algorithms.

2.4.1 Architectural modifications
Two modifications to the conventional multilayer networks have been imple-
mented. The first is the use of linear nodes at the output layer. This has the
advantage of a wide dynamic range with respect to the strict range enforced by
the standard sigmoidal transfer function (Mills et al., 1995). A modified gain
parameter for updating hidden-to-output connection weights is also required
during training. Following Mills et al. we have used a fixed value of 0.1 for this
parameter.

Some features of the data being modelled may have an approximately lin-
ear relationship. Conventional feedforward networks, which by nature use non-
linear transfer functions, cannot always make a very close approximation to
linear functions. But it is possible to represent a near linear relationship by com-
bining a non-linear network with linear component mappings. The second
architectural modification is the incorporation of linear bypass connections,
with trainable weights, between the input and linear output layers (Mills et al.,
1995); this is illustrated in Figure 8.2.

2.4.2 History stack adaptation
It has been suggested that the computational requirements of simulated NN are
too great for real-time application (Sanner & Slotine, 1991). The history stack
adaptation method (Mills et al., 1995) can enhance convergence characteristics
for adaptive identification of non-linear processes using multilayer feedforward
networks (MLFN). The algorithm is based upon a short history of input patterns
that can represent an approximation to the non-linear mapping. The history stack
is a first-in-first-out (FIFO) stack containing np patterns. The method requires
warming-up for several time steps as the stack is filled. At each subsequent time
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step a new pattern is loaded onto the stack while the oldest pattern is discarded;
also, network weights are adjusted over nc cycles using the patterns in the
stack. Supervised learning using all patterns in the stack, in random order, 
at each time step results in a network that minimizes the error corresponding 
to the approximate mapping represented in the stack patterns.

The algorithm uses each pattern npnc times before it is discarded, with a con-
comitant increase in the load on computational resources. The selection of these
two parameters is critical to the adaptation process: the number of cycles must be
greater than one in order to achieve a large learning increment at each time step;
the number of patterns should be small enough to be both representative and to
avoid the retention of out-of-date information. The combination of np and nc is crit-
ical to performance. Different combinations can be used for a variety of purposes:
e.g. fast adaptation, low computational cost, complex mapping and noisy data.

As well as the architectural modifications described above, further extensions
to the history stack adaptation algorithm can enhance performance. For time-
varying processes it may be appropriate to attach more weight to more recent pat-
terns. This can be achieved by exponential time weighting of the NN learning
rate parameter. For stability it may be necessary to exclude some patterns from
the stack: an entry criterion may be used to measure the ‘novelty’of each pattern.
If a new pattern is too similar to those already present in the stack, there is little
to gain from its inclusion. A sufficiently novel pattern will make more efficient
use of the history stack method.

2.4.3 Reinforcement backpropagation
A truly adaptable NN system must use current data to modify the behaviour of the
model. Reinforcement backpropagation (Mills et al., 1995) uses reinforcement

RLF/1: FLOOD FORECASTING VIA THE INTERNET 143

Input layer

Output layer‘Hidden layer(s)’

Fig. 8.2. Schematic diagram of a modified multilayer network. Standard weighted
interconnections are shown by solid lines. Linear bypass connections are shown by 
dotted lines.

Copyright © 2004 Taylor & Francis Group plc, London, UK



learning, in which feedback is provided by a scalar performance measure given by
a so-called ‘critic function,’ and the history stack algorithm to provide good
learning performance.

The reinforcement learning system receives a time-varying input vector and
generates a time-varying output vector. The output vector is adjusted by a ran-
dom dither vector with elements selected from a Gaussian distribution. After a
delay, the system receives a time-varying scalar signal related to the performance
resulting from the output vector. This performance measure is based upon the
comparison of calculated u(k) and observed y(k) outputs:

(1)

The reinforcement learning algorithm aims to optimize the performance scalar
for future cases. The performance measure is passed through a discrete-time
low-pass first order filter that estimates the current average performance against
which new performances are measured. This is called the improvement compar-
ison: a positive value indicating improvement, a negative value indicating dimin-
ished performance. Given the delay in acquiring the performance measure, the
input, dither and output vectors are passed through a shift register corresponding
to the delay. A new target vector based upon the suitably delayed output and
dither vectors is created and combined with delayed input vector to create a new
training pattern which can be entered into the history stack. A modification to
this algorithm only accepts the new training pattern if the improvement compar-
ison is positive. The method proceeds using the history stack algorithm
described in the previous section.

2.5 Bootstrapping
The RLF/1 software includes a simple bootstrapping algorithm to give a statis-
tical measure of the errors in forecasted values. At each step of the bootstrapping
algorithm, some input variables are discarded at random and are replaced by
duplicates of remaining variables. The output is calculated according to the modi-
fied input vector and the process is repeated. This method permits the calculation
of a mean output with confidence limits. The statistical significance of the results
is increased by increasing the number of steps although this will also increase the
overall computation time. The method also simulates the effect of missing input
values, a problem commonly faced by real-time computer applications. The
number of steps may be set to zero, which results in a single calculation of output
without statistics.

2.6 Historical data
The RLF/1 system has been constructed and tested on a set of data supplied by the
UK Environment Agency, North-Eastern Division. The data cover the years 1982–
1996. River levels at fifteen-minute intervals were available for nineteen gauging
stations in the Ouse catchment in North Yorkshire. Rainfall data at fifteen-minute

p k y k u k( ) . log([ ( ) ( )] . )= − +�0 2 0 0012
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intervals were available for eleven stations in the same geographical area. In
addition, daily mean rainfall data were available for thirty-five different locations.
Daily climate data for Leeming in North Yorkshire were obtained from the UK
Meteorological Office archive maintained by the British Atmospheric Data
Centre at the Rutherford Appleton Laboratory in Chilton, Oxfordshire. The data
files for use by RLF/1 may be supplied in Hydrolog and Rainark formats (used by
the Environment Agency) or as comma-separated variable files.

The Ouse catchment (Fig. 8.3) incorporates several river sub-networks that
exhibit quite different characteristics. The gauging station at Skelton, near the city
of York, has a very stable, slowly-evolving response, where the flood-peak can
take a week to rise and fall. At the top of the catchment, the gauging station near
Low Houses exhibits a very flashy response, where a flood peak might rise and
fall within a few hours. The gauging station near Boroughbridge, roughly midway
between Low Houses and Skelton, displays characteristics intermediate to
these two extremes, with a flood peak that may last two or three days. The data
for these three principal stations, together with their upstream stations, were
used to construct the stable, flashy and intermediate models, respectively.

3 THE WEB-BASED INTERFACE

The RLF/1 system uses web-based technologies to provide a relatively seamless
transition between descriptive text (both background and help screens), data
uploading, parameter specification, program control and the evaluation of results.
The system encompasses C�� software tools, HTML documentation, SUN-
Solaris shell scripts and GNU utilities. It contains five main sets of tools for
data file conversion, simple statistics, database construction, NN and flood
forecasting. Step-by-step guides to using the flood forecaster and model builder
are also available on-line.
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Fig. 8.3. Location of the Ouse catchment.
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3.1 Using the flood forecaster
The RLF/1 system is comprised of a series of forms, which are listed in Table 8.1.
Form 1 is the RLF/1 home page, which contains background information written
in HTML. Several choices are provided. Selection of the flood forecasting
or model building options leads to a registration page (name, address, e-mail
address). The next stage is to define the river system, its associated data files (i.e.
river level/flow and rainfall time-series) and the formats. Form 2 (Specification
of the basic model), shown in Figure 8.4, allows the construction of the routing
model in terms of transport times from upstream gauging stations to the principal
station. Several other parameters may be specified: the look-ahead time (n hours),
the data resolution (quarter-hourly, hourly, etc.), the catchment type (i.e. stable,
flashy, intermediate) and the type of model (i.e. trained network, trained network
with some adaptation, the history stack/reinforced learning model). The flood
forecasting models normally generate a single number, which is the river level at
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Table 8.1. Forms in RLF/1.

Form Function

1 RLF/1 home page
2 Specification of the basic model
3 Specification of the pre-classification thresholds
4 Modified version of Form 3
5 Specification of model architectures and training parameters

Fig. 8.4. Form 2: Specification of the basic model.
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a time n hours in the future. The use of bootstrapping to measure statistical error
in the forecast can be specified. This method also provides an idea of how well
the models would perform if one or more input variables were missing.

Once the model is run, Form 3 (Specification of the pre-classification thresh-
olds) appears, as shown in Figure 8.5, which displays the time series for the prin-
cipal station and allows the specification of a level threshold to distinguish high and
low levels, as well as the expected minimum and maximum levels. These levels are
estimated automatically but may be overwritten as required. Following a parameter
check the forecaster is run, displaying the current time, time of prediction, predicted
value and confidence limits (if bootstrapping has been specified) and the prediction
error. The results are displayed graphically, with error bars on the predictions if
bootstrapping has been specified. A series of expanded plots allows a closer exam-
ination of the quality of the predictions. Separate pages provide a listing of the time
series of predictions, observations, comparison between the predictions and obser-
vations and a log file, all of which can be downloaded. The final form allows the
extension of the forecast beyond the supplied time series. The last few levels/flows
for each of the stations are displayed and the values at the next time step may be
supplied to generate a new forecast.

A step-by-step guide is also available. To examine the capabilities of the sys-
tem, or if the interested user has no suitable data, a demonstration is provided
using data stored on the web-server.
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Principal hydrograph for skelton from [1994/12/25 at 0:0:0] to [1994/12/31 at 23:45:0]
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Fig. 8.5. Form 3: Specification of the pre-classification thresholds.
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3.2 Using the model builder
The interface to the model builder is largely the same as that used by the flood
forecaster. The data specification form following registration does have one
major difference: an additional low-resolution (e.g. daily, monthly) time-series
may be included in the modelling, such as soil moisture, average temperature
or long-term average rainfall.

Next is a modified version of the flood forecaster time-series display form.
The major differences, shown in Figure 8.6a, are the specification of the
expected minimum and maximum for the additional low-resolution data and
the high/low (H/L) or high/intermediate/low (H/I/L) classification; Figure 8.6b
shows the specification of the parameters for constructing the databases. The
input window and look-ahead time determine the size of input and target vec-
tors. By default, half of each database is used for training, a quarter for valid-
ation and a quarter for testing but these proportions can be changed. Generally,
training vectors are selected in random order from the database, but this can
also be changed to sequential selection, if required.

Using the parameters specified in the previous form, the two (H/L) or three
(H/I/L) databases are created and then split into training, validation, and test-
ing files. Further events may be added to the databases using a modified data
specification form, before the NN models are created. The final form (Form 5),
as shown in Figure 8.7, is used for the specification of the architecture and
training parameters for the H/L or H/I/L NN models. NN architecture is speci-
fied by the number of hidden layers (one or two), the size of the hidden
layer(s), the use of linear bypass connections and the use of linear output gain.
Training is controlled by the number of training cycles, gain and momentum
parameters, initial weight range and exponential time weighting factor. The next
two screens serve to display useful feedback information: the first lists the
parameters and the second displays the classification of input vectors into the
two or three categories selected. The two or three NN models are then trained
according to the parameters. The training and validation data sets are used 
during the NN training. On completion, i.e. at the end of the specified number of
iterations, the unseen data set is passed through the model and the calculated
and observed values are listed.

The results of training are made available in a number of ways, mostly via
links to files that can be displayed and downloaded. Such files include the
progress of training, the trained network represented as a text file, as well as a
session log. Graphical displays are also provided, showing the progress of
training and a comparison of the calculated and observed values.

If the models are sufficient for the end user, they may be saved. It is then
possible to test the saved models with new, unseen data or a new training exer-
cise may be started. If training is not satisfactory, the models may be trained fur-
ther with the option of changing one or more parameters (number of cycles,
gain, momentum and exponential time weighting). To test a trained network, the
data specification form is again used to upload time series files for the stations
comprising the routing model. The flood forecaster is then run using the models
and the test data. The display of results is as described in the previous section.
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Principal hydrograph for Low from [1994/12/25 at 0:0:0] to [1994/12/31 at 23:45:0]
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Fig. 8.6. Form 4: Modified version of Form 3 (a) The RLF/1 model builder form for data-
base construction. Setting pre-classification thresholds. (b) The RLF/1 model builder
form for database construction. Setting database parameters.
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4 WORKING EXAMPLES

The model builder in conjunction with the flood forecaster has been tested with
several examples derived from two different data sets, one from the Ouse
catchment and the second from Northumbria; both data sets were supplied by
the Environment Agency. The results of the tests with both catchments are
available on the website. In this chapter, examples are provided for a stable,
intermediate and flashy regime from the Ouse catchment.

4.1.1 Stable response testing
The aim of this stable event experiment was to predict the river level at the
Skelton gauging station, near the city of York, using historical level time series
for Skelton only. A six-hour input window was used to predict the future level
with a forecasting horizon of six hours. A threshold of 2 m was used to perform
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Fig. 8.7. Form 5: Specification of model architectures and training parameters.
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a pre-modelling classification of the data into three categories. All input data
were standardised and the expected data range was set to 0–7 m. The three
models are described in Table 8.2.

Training data were derived from events at Skelton during the summer of
1986 and the winter of 1994. The results of training are shown in Figure 8.8,
where the predicted values are plotted alongside the observed levels. The
trained models were tested with a flood event at Skelton from the winter of
1995. The test results are provided in Figure 8.9, which show good correspond-
ence with the first peak and an under prediction of the second peak. This is
probably due to the fact that the second event is particularly large and exceeds
the levels that were used to train the model. To improve the model perform-
ance, very large events, either real or simulated, should be presented to the
model during the training process.
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Table 8.2. Model architectures for the stable example.

Model Input size Hidden layers Hidden size Output size Training cycles

Low 24 1 6 1 250
Intermediate 24 2 3 1 500
High 24 2 3 1 500
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Principal hydrograph for from [1994/12/25 at 0:0:01 to [1994/12/31 at 23:45:0]

5

4.5

4

3.5

3

2.5

2

1.5

Le
ve

l/n

1

0.5

0
0 1 2 3 4 5 6 7

Days elapsed since [1994/12/25 at 0:0:0]

Obs
Model: train
Model: valid
Model: unseen

Fig. 8.8. Results for training events at Skelton from the summer of 1986 and the 
winter of 1994.
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4.1.2 Intermediate response testing
In this experiment, the aim was to predict the river level at Boroughbridge in
North Yorkshire based upon historical level time series for the nearby gauging
station at Westwick, together with upstream gauging stations at Alma Weir,
Kilgram and Low Houses, as well as the rainfall gauge at Tow Hill, near Low
Houses. A four-hour input window was used to predict the future level with a
forecasting horizon of three hours. A threshold of 1.12 m was used to perform
a pre-modelling classification of the data into three categories. All input data
have been standardised. The expected data range was set to 0–4.25 m. The three
models are described in Table 8.3.

Training data were derived from events in the region during the winters of
1994 and 1995. The results of training are shown in Figure 8.10, where the pre-
dicted values are plotted alongside the observed levels. The trained models
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Fig. 8.9. Results for a test event at Skelton from the winter of 1995.

Table 8.3. Model architectures for the intermediate example.

Model Input size Hidden layers Hidden size Output size Training cycles

Low 80 1 4 1 250
Intermediate 80 1 8 1 400
High 80 2 4 1 500
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were tested with an event in the region during the winter of 1996. The test
results are shown in Figure 8.11.

Although the training hydrographs are predicted perfectly, the validation
event shows a lag and a small under prediction although the general shape of
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Fig. 8.10. Results for training events at Boroughbridge from the winters of 1994 and 1995.
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the curve is well represented. The absolute errors in level are quite small so 
further improvements might require training on more events of this size.

4.1.3 Flashy response testing
The aim of this flashy event experiment was to predict the river level at Low
Houses gauging station in North Yorkshire, using historical level time series for
Low Houses, together with time series for the rainfall gauge at nearby Tow
Hill. A four-hour input window was used to predict with a forecasting horizon
of three hours. A threshold of 0.2 m was used to perform a pre-modelling clas-
sification of the data into three categories. The expected data range was set to
0–2.5 m. In contrast to the other two examples, all input data were retained as
raw values. The three models are described in Table 8.4.

Training data were derived from events at Low Houses during the winters
of 1994 and 1996. The results of training are shown in Figure 8.12, where the
predicted values are plotted alongside the observed levels. The trained models
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Table 8.4. Model architectures for the flashy example.

Model Input size Hidden layers Hidden size Output size Training cycles

Low 32 1 4 1 500
Intermediate 32 2 2 1 500
High 32 2 2 1 500
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Fig. 8.12. Results for training events at Low Houses for the winters of 1994 and 1996.
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were tested with an event at Low Houses during the winter of 1995. The test
results are shown in Figure 8.13.

The results for the test event exhibit similar patterns to the first experiment,
i.e. good forecasts for smaller hydrographs and under prediction for larger ones
although once again, the absolute errors are not large. However, the model was
trained to see events close to 1.2 m so the problems with under prediction may
simply reflect the more difficult nature of this hydrological regime.

5 NEXT STEPS

The aim of RLF/1 is to demonstrate to a wider audience that NN are a prac-
tical tool for flood forecasting. The implementation of this tool as an Internet
application means that interested engineers and scientists can experiment with
NN, at little or no cost, and see whether or not these tools can provide a suit-
able solution for the task in hand.

RLF/1, as the name implies, is a first release and therefore still has some
limitations. For example, the underlying routing model is very simple, the
maximum number of upstream gauging stations is restricted to five and only
one additional long-term input variable can be specified. The selection of 
certain training parameters is also limited to menu choices. It should, however,
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Fig. 8.13. Results for a test event at Low Houses from the winter of 1995.
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be stressed that the software beneath the interface is not limited so it will be
possible to provide a more flexible tool in future versions. Another limitation is
that the only NN supplied are multilayer perceptrons with either one or two
hidden layers, although some extensions to the basic models are provided.
Additional NN architectures will be added in later versions. Finally, the system
does not permit prediction of hydrographs with different lead times or fore-
casting horizons. RLF/2 is being developed and will incorporate alternative
methods for time series prediction (ARMA and fuzzy logic modelling) as well
as hybrid systems that will provide increased flexibility.

The technologies underlying RLF/1 can be customized for particular river
networks and climatic regimes and can therefore be used as a practical flood
forecasting tool. It is left to hydrologists and river engineers to experiment with
RLF/1 to see if it answers (some of) their requirements for flood forecasting.
Please visit the web site and test our software.
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1 INTRODUCTION

In this chapter we look at the position of rainfall-runoff models in the broader
context of the already wide choice of models for hydrological forecasters. Why
should a modeller choose this approach? The last decade has seen the gradual
introduction of informatic tools, such as artificial neural networks (NN), into
hydrology, hydrogeology and water resources planning and management. The
applications of these techniques have been many and various, but a broad
appreciation of their potential has been slow to develop. One reason for 
the apparent reluctance to consider such an approach may be unfamiliarity with
the concept of, and nomenclature associated with, NN. Essentially, NN are
excellent computational devices for pattern recognition and classification; it is
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ABSTRACT: Artificial neural networks (NN) are recognised as being univer-
sal approximators and are capable of extracting the underlying relationship
between any input, or stimulus, and its subsequent output, or response. This
property is particularly attractive when dealing with the complex natural sys-
tems that are commonly encountered in hydrology, hydrogeology and water
resources planning and management. Among the many other applications, the
last few years have seen increasing attention being paid to rainfall-runoff mod-
elling. However, the effective use of NN in this context is seen to demand
almost as much, if not more, hydrological insight than conceptual/physical
rainfall-runoff models. Particular attention must be paid to the choice of input
variables, and to the patterns of inputs and outputs upon which the NN is
trained and validated.
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their origins in artificial intelligence and cognitive sciences that have given rise
to what is unfamiliar terminology in the hydrological sciences.

The structure of a NN, which consists of multiple interconnections and their
parallel processing architecture have an obvious analogy with biological sys-
tems, as explained in any introductory textbook on the subject (e.g. Alexander &
Morton, 1990; Beale & Jackson, 1990; Hertz et al., 1991). There are, however,
many different types of NN, the choice between which can add to the discomfort
of the potential user. However, the purpose of this commentary is not to elaborate
upon the different forms of NN (see Chapters 2–7), although inevitably some ref-
erence has to be made to the architectures and calibration methods that have been
applied to date. In preference, the emphasis is placed on the applications. In this
context, a cursory review of the literature is sufficient to reveal the wide variety
of problems to which NN have been applied successfully. The following listing is
intended to be illustrative rather than exhaustive:
– as sub-models of complex processes within a larger physically-based frame-

work; the estimation of daily solar radiation from daily maximum and min-
imum air temperatures and precipitation (Elizondo et al., 1993), and the
modelling of drying water retention curves for sandy soils by Schaap and
Bouten (1996) provide ready examples of this approach;

– as a replacement for, or for modelling the results obtained from, more com-
plex, physically-based computer models that impose heavy demands on com-
puting resources; examples include the river salinity forecasting model of
Maier and Dandy (1996), and the determination of optimum pumping scen-
arios for groundwater remediation schemes by Rogers and Dowla (1994)
and Rogers et al. (1995), and Aly and Peralta (1999);

– as models of analytically-intractable relationships, such as the approximation
for the confidence limits to the quantiles from a flood frequency distribution
derived by Whitley and Hromadka (1999);

– as a method of avoiding the constraints associated with standard techniques,
such as multiple linear regression analysis, in deriving relationships between
the parameters of a regional flood frequency distribution and catchment char-
acteristics (Muttiah et al., 1997; Hall & Minns, 1998; Hall et al., 2000, 2002);

– as a screening model, e.g. for the identification of critical realisations of log
conductivity fields for a single realisation groundwater remediation man-
agement model (Ranjithan et al., 1993);

– as a method of pattern completion, e.g. the neural kriging method of Rizzo
and Dougherty (1994);

– as a model of the preferences of decision-makers in multi-objective opti-
misation (see Wen & Lee, 1998 for an example);

– as a forecasting device, such as that for predicting rainfall fields proposed
by French et al. (1992) and Luk et al. (1998);

– as an alternative to parameter-intensive physical/conceptual models in appli-
cations that do not require a detailed understanding of the system dynamics.

The problem that seemingly has attracted the most attention in this last cat-
egory has been that of modelling the relationship between rainfall and runoff.
However, as the following review is intended to demonstrate, the application of
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NN to the development of a rainfall-runoff model demands as much, if not more,
hydrological insight than the calibration of a standard physical/conceptual
model (see also Maier & Dandy, 1999).

The details of a representative selection of 16 studies in which NN have been
employed to develop rainfall-runoff models are presented in Table 9.1. A more
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Table 9.1. Summary of previous studies in which NN have been employed to model rainfall-runoff
relationships

Reference Time unit Catchment Area (km2) Technique

Abrahart and Hour Wye, UK 11 MLP/BPNN
Kneale (1997)

Campolo et al. Hour Tagliamento, Italy 2480 MLP/BPNN
(1999)

Carriere et al. 30 second Laboratory catchment 2.1 m2 MLP/BPNN
(1996)

Dawson and 15 minute Amber, UK 139 MLP/BPNN
Wilby (1998) 15 minute Mole, UK 142 MLP/BPNN
Fernando and 10 minute Kamihonsha, Japan 3.12 RBF/OLS;
Jayawardena MLP/BPNN
(1998)

Hall and Minns 5 second Laboratory catchment 26.8 m2 MLP/BPNN
(1993) one minute Doncaster, UK 5.14 ha MLP/BPNN

Hsu et al. (1995) Day Leaf River, USA 1949 MLP/LLSSIM
Jayawardena and Hour Kamihonsha, Japan 3.12 RBF/OLS;
Fernando (1998) MLP/BPNN

Lange (1998) Hour Zeller Bach, Germany 20 MLP/BPNN
Hour Windach, Germany 344.7 MLP/BPNN

Lorrai and Month Araxisi, Italy 121 MLP/BPNN
Sechi (1995)

Minns and 30 minute Dollis Brook, UK 24 MLP/BPNN
Hall (1997)

30 minute Silk Stream, UK 31.25 MLP/BPNN
Poff et al. (1996) Day Independence, USA 230 MLP/BPNN

Day Little Patuxent, USA 97 MLP/BPNN
See and Hour Ouse, UK 3286 MLP/BPNN
Openshaw with KN
(1998)

Shamseldin Day Sunkosi, Nepal 18000 MLP/CG
(1997) Day Shiquan, China 3092 MLP/CG

Day Yanbain, China 2350 MLP/CG
Day Bird Creek, USA 2344 MLP/CG
Day Wolombi Creek, 1580 MLP/CG

Australia
Day Brosna, Ireland 1207 MLP/CG

Teegavarapu 10 day Malaprabha, India ? MLP/BPNN;
(1998) RBF/OLS

Zealand et al. Quarter- Namakan 19270 MLP/BPNN
(1999) month

Notation: MLP – multi-layer perceptron; BPNN – error back-propagation; RBF – radial basis
function; OLS – ordinary least squares; LLSSIM – linear least squares with multi-start simplex
operation; CG – conjugate gradient; KN – Kohonen network.
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comprehensive tabulation has been provided by Dawson and Wilby (2001), and
the details of several of the cited studies have been reviewed by the ASCE Task
Committee on Application of Neural Networks in Hydrology (2000). The
approach that has been overwhelmingly favoured has been the multi-layer percep-
tron (MLP) network with the error back-propagation learning algorithm (BPNN).
Several authors reported favourable results using radial basis function (RBF) net-
works due primarily to the fact that the training time of RBF networks was usually
significantly less than for equivalent MLP networks. Furthermore, the RBF net-
works appear to provide a superior performance over MLPs when dealing with
only small numbers of input data sets (see Dibike et al., 1999). However, the gen-
eralisation properties of the RBF networks deteriorate as the number of input data
sets increases and RBF networks are subsequently out-performed by MLP net-
works (Y B Dibike personal communication, 1997, see also Minns, 1998, p. 33).

2 RAINFALL-RUNOFF RELATIONSHIPS

The shape of a hydrograph for any given stream is a function of total
available overland flow supply, subsurface flow, groundwater flow, slope
of the overland and stream segments, roughness characteristics of flow
elements, and geometry of channels. (Bras, 1990, p. 385)

The above quotation, from a well-known hydrological textbook, provides a suc-
cinct description of the physics of hydrograph generation. The forcing function
to the catchment system is obviously precipitation in general, and the variations
of rainfall intensity over time in particular. However, the relationship between
the rainfall intensity and the response of the catchment in terms of changes in
discharge at the outlet is primarily dependent on the action of the intervening
processes within the hydrological cycle. Overland flow supply and subsurface
flow are essentially functions of the soils and vegetative cover, and therefore
dependent on the state of wetness of the catchment prior to the rainfall. The con-
tribution of groundwater is a function of geology and the height of the phreatic
surface in relation to the channel system. The slope, roughness and geometry
of the latter then shape the formation of the outlet hydrograph.

Such influences are well appreciated in a qualitative sense, and models of indi-
vidual processes, such as those for unconfined/confined groundwater flow, are
readily available. Their integration into spatially-distributed, physically-based
models of the land phase of the hydrological cycle has been pursued vigorously
for almost two decades. However, as noted by Abbott and Refsgaard (1996),
their application in practice belies the need for the type of results that such models
are capable of providing. Nevertheless, not all hydrological problems which
depend on rainfall-runoff modelling for their solution require an in-depth
knowledge of individual components of the hydrological cycle. This differenti-
ation was recognised many years ago by Amorocho and Hart (1964), who coined
the terms physical hydrology and systems investigation to describe the two dif-
ferent approaches. Whereas the former is directed at a complete synthesis of
the hydrological cycle, in the spatially-distributed and physically-based sense
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described above, systems investigation is concerned with the solution of tech-
nological problems within the constraints imposed by the available data.

Perhaps the most widely-known of the modern generation of physically-based,
distributed catchment modelling systems is the Système Hydrologique Européen
(SHE), the original structure of which was described by Abbott et al. (1986).
Details of a case study in which SHE was applied to a river basin of some
4955 km2 in India have been provided by Refsgaard et al. (1992). Those authors
provided a frank discussion of the substantial data requirements and supple-
mentary fieldwork required to implement their model. They acknowledged that
their use of 2 km � 2 km grid squares still did not provide a fully physically-
based and fully-distributed description of the basin, even though it was entirely
sufficient for the practical application in question. Even in these systems there
remained a certain degree of empiricism in the representation of particular
hydrological processes. Consequently process identification and the associated
determination of parameter values by direct measurement continued to require
extensive calibration procedures.

From this it can be concluded that for many problems of rainfall-runoff
modelling simpler approaches have serious merit. Less detailed models would
in most situations be equally accurate and much cheaper to apply. For example
for forecasting at sites without any significant changes in land use, or for fore-
casting over a certain range and distribution of antecedent soil conditions. But
to be fair to the distributed, physically-based models it should be pointed out that
many of these aim to solve more complex process problems than simple rainfall-
runoff. In practical terms problems of waste disposal, erosion, changes in vegeta-
tion and so on, are much more important than rainfall-runoff alone although
such models might include a NN approach as part of its structure.

In contrast, systems investigation is a data-driven approach and hydrology in
general and rainfall-runoff modelling in particular provides ample opportunities
to take advantage of informatic techniques, such as NN. The principal advantage
of NN is that, even if the precise relationship between input and output data
streams is unknown but is acknowledged to exist, the network can be trained to
learn that relationship. The use of the data as recorded, i.e. the total rainfall vol-
umes instead of the rainfall excess volumes and the recorded stages or discharges
instead of the direct runoff rates is an added incentive to avoid unnecessary
empiricism. However, the user must be assured at the outset that the relevant
input and output data sets have been selected in the first place.

To date, NN have been applied to model the rainfall-runoff relationships of
anything from laboratory catchments (Hall & Minns, 1993; Carriere et al., 1996)
to drainage areas in excess of 19000 km2 (Zealand et al., 1999) – see Table 9.1.
For the larger sizes of catchment, the use of stage or flow records for sites
upstream of the outlet may be possible, so that the NN are implicitly routing
hydrographs as part of the learning process (e.g. See & Openshaw, 1998). Indeed,
NN have been applied directly for the routing of flood and stage hydrographs by
Zhu and Fujita (1994), Raman and Sunilkumar (1995), Thirumallaiah and Deo
(1998) and Teegavarapu (1998). Minns (1998, 2000) showed that for these types
of simple advection and dispersion processes, a NN is capable of encapsulating
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the same knowledge that is contained in the governing partial differential equa-
tions. In fact, the governing continuum equations could actually be restored by
analysing the weights of the NN that had been trained with measured data.

The following discussion, however, is more specifically concerned with the
art of rainfall-runoff modelling, which despite being a fertile area for exploration
offers several less-than-obvious traps for the unwary. The first choice to be made
by the NN modeller is the mode of presentation of the data to the network, i.e. how
can the input and output patterns be defined? One possibility is to take the n
successive ordinates of the rainfall hyetograph and feed these into the n input
nodes of a network whose m output nodes carry the m successive ordinates of
the flow hydrograph. This was the approach followed by both Smith and Eli
(1995) and Lange (1998). In the former case the outputs were the coefficients
from a truncated harmonic series representation of the hydrograph, which had
the added advantage of already being standardised within the interval �1.

An alternative method of defining patterns is the so-called dynamic approach.
In this case the input is a set of concurrent ordinates of (say) the rainfall totals
from p raingauges within the catchment, and the output is the concurrent rate
of outflow. Each time step defines a pattern, and therefore a single storm event
provides as many exemplars as there are runoff ordinates, rather than only a
single input-output pairing. This is the approach that has been adopted by the
majority of writers on rainfall-runoff modelling using NN, but requires a much
higher level of hydrological insight into the working of the catchment system.
Within the dynamic approach, three types of model can be identified:

– naïve dynamic model;

(1)

– rainfall-runoff simulation model;

(2)

– ‘auto regressive’ model;

(3)

where Q(t) is the outflow at time level t and r(t) is the rainfall ordinate at time
level t.

The simplest, naïve dynamic rainfall-runoff model (1) would consist of a NN
with inputs from one or more raingauges at time t, and an output of concurrent
flow. A simple scatter plot of input(s) against output is sufficient in this case to
indicate that the description of the input pattern is inadequate. Some improvement
is obtainable by allowing for the time lag between the occurrence of the flow and
the incidence of the causative rainfall. Since the flow at any instant is effectively
composed of contributions from different sub-areas with highly variable travel
times to the outlet, both the concurrent and antecedent rainfalls can be considered
to be contributing to the outflow. Use of a moving window of rainfall at time

Q t f Q t Q t( ) ( 1),  2), )� � �( ( K

Q t f r t r t Q t Q t( ) ( ),  1), , 1),  2), )� � � �( ( ( (K K

Q t f r t r t( ) ( ( ),� � ( 1) , )K
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t and the k previous intervals provides some improvement (e.g. Karunanithi
et al., 1994).

The choice of length for the moving window of rainfall can significantly affect
the accuracy of the resulting NN model. If the window is too short, the input data
does not contain enough information about the entire rain event that is contribut-
ing to the concurrent outflow. The square shapes of the output hydrographs in
Figure 9.1(a) seem to represent only the shape of the rainfall bursts and there is a
very poor representation of the rising limbs and the recession limbs. The equilib-
rium discharges are also underestimated. Conversely, if the window is too long,
the input contains too much information, which may even include historical rain-
fall events whose effects have long since passed out of the catchment and so are
no longer contributing to the concurrent flow. Figure 9.1(c) is indicative of a NN
that can no longer ‘generalise’ the relationship between rainfall and runoff.
There is simply too much data being presented at the input layer and – to maintain
the biological analogy – the NN gets ‘confused’. The most accurate results, shown
in Figure 9.1(b), are obtained using a moving window length that broadly encom-
passes the range of centroid-to-centroid lag times of the training data; a result
that has some intuitive appeal. Details of the laboratory catchment experiment
depicted in Figure 9.1 are given in Hall and Minns (1993).

A further problem with model (1) is that the simplistic input patterns may
easily result in ambiguous results. More specifically, intervals with zero rainfall
inputs are encountered in two contrasting situations. First immediately prior to the
beginning of the storm and the start of the rising limb, and secondly some time
after the end of the storm event when flows are moderately high and in recession.
The NN has no information to discriminate between these two ‘no-rainfall’ con-
ditions and once more becomes ‘confused’. These conditions have to be differ-
entiated by the addition of another input if the NN is to achieve the correct
mapping. The most obvious candidate is adding a flow ordinate. This is most
easily provided by making the output at time t an input at time t � 1 (Hall &
Minns, 1993; Minns & Hall, 1996, and similar use of stage outputs by Campolo
et al., 1999). This approach is described above as model (2). In effect, the flow
(or stage) ordinate is employed as a crude measure of catchment wetness.
Figure 9.2 demonstrates the remarkable improvement in the NN model obtained
by simply adding several antecedent flow ordinates to the input.

Model (3) is then the logical extension of models (1) and (2) into purely
‘auto-regressive’ time series prediction. This model does not make use of any
rainfall data at all but uses only antecedent outflow values as input to the NN
to predict the concurrent outflow. Figure 9.3 depicts the results of a NN that
uses only the 5 antecedent flow values to predict the concurrent outflow.

Although the rising limb of the hydrograph in Figure 9.3 is not reproduced
very accurately and the equilibrium flows are slightly underestimated, this NN
model provides only slightly poorer performance than the results from model
(2) in Figure 9.2. The overshoot at the top of each rising limb is caused by the
fact that the network has no other information to tell it at which level the rising
limb should stop until the actual measurements indicate that this has happened.
That is, at the top of the rising limb, the output from the NN continues rising in
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Fig. 9.1. Performance of NN on the verification event for a laboratory catchment using
only 10-second-interval rainfall data as input for (a) 10-interval; (b) 25-interval; and 
(c) 50-interval windows.
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magnitude reflecting the pattern of the preceding flows. It is not until several time
steps have passed for which the measured values are all constant, that the NN
‘recognises’ that the equilibrium level has been reached. Similarly, the phase error
that occurs at the beginning of the recession limb is caused by the fact that the NN
has no knowledge about the cessation of the rainfall until one or two time steps
after the actual measured values start to decrease.

Figures 9.1–9.3 depict respectively the results of models (1), (2) and (3)
when applied to the problem of one-step-ahead time series prediction. In gen-
eral, the plethora of literature involving the application of NN to rainfall-runoff
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Fig. 9.2. Performance of NN on verification event for laboratory catchment using 25
rainfall ordinates and 4 antecedent flow ordinates at 10-second intervals as input.
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Fig. 9.3. Performance of NN on verification event for laboratory catchment using 5
antecedent flow ordinates only as input.
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modelling confirms the exceptional accuracy of NN models for short forecasting
intervals. Longer forecasting intervals may be obtained by utilising Q(t � 1),
Q(t � 2), … etc. as outputs during the training of the NN. Unfortunately, the
performance of the NN decreases quite rapidly with an increasing prediction time
horizon (Campolo et al., 1999; Zealand et al., 1999). Another approach is to use
a trained NN with a ‘feedback’ loop in which the predicted output is used directly
as input data for the subsequent time step. Unfortunately, the error accumulation
associated with this approach also means that the performance of the NN dete-
riorates quite rapidly after only one or two iterations (van den Boogaard et al.,
1998). Although Abrahart (1998) describes a method to deal with the accumulated
error, the most promising approach would appear to involve the use of partial
recurrent neural networks (PRNN), which contain feedback loops in both the train-
ing and recall modes of the network. Hertz et al. (1991) describe the architecture
of these so-called Jordan/Elman Recurrent Networks. Proaño et al. (1998) and van
den Boogaard et al. (1998) show significant improvements in long-term predic-
tions using PRNN (see Chapter 7), which they also refer to as ‘auto regressive’NN.

In terms of the number of patterns that can be extracted from a given data set,
the dynamic models described above are superior to those based simply on the
rainfall hyetograph as the input and the complete hydrograph as the output.
However, the problem then arises as to the set of time points for which those
patterns are extracted. Here a clear perspective is required as to the purpose of
the modelling, since with any series of discharges the (positive) skewness of its
marginal distribution tends to increase as the time interval at which the data are
recorded reduces. This effect is manifested in the appearance of sustained reces-
sions to the hydrographs as the time interval becomes shorter, such that with (say)
daily data they become the dominant features of the time series. In these circum-
stances, the rising limbs and peaks of the storm hydrographs form only a small
portion of the total number of patterns in the time series, and the mapping of
inputs to outputs is biased in favour of the recession behaviour. If therefore the
purpose of the modelling is to capture the essence of the flood regime of the
catchment, then the inputs should be restricted to the major storm events. For
convenience, these inputs and outputs may be arranged in the form of an artificial
time series in which the flow transitions between successive events are smoothed
to provide continuity. In the absence of seasonal influences, this approach has
been found to work satisfactorily (Hall & Minns, 1993; Minns & Hall, 1996,
1997; Minns, 1996; Campolo et al., 1999). If the full range of flow behaviour
is of interest, then an alternative approach might be to carry out a prior classi-
fication of event types or hydrograph features – perhaps employing a Kohonen
network – and to develop a separate NN rainfall-runoff model for each class
(e.g. See & Openshaw, 1998).

Dawson and Wilby (1998) have concluded that NN for long flow series at
short time intervals should ideally be calibrated and validated on data for a com-
mon period of the year. Seasonal influences can, of course, be incorporated by
extending the list of input variables. For example, Abrahart and Kneale (1997)
and Abrahart (1998) employed an annual hour count converted into its sine and
cosine equivalents to denote ‘time of year’. Alternatively, Zealand et al. (1999)
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added a ‘period of the year’ (in effect, a week number) and cumulative precipita-
tion since the previous 1st November to the current time up to 1st April, to their
inputs. The latter being intended as a measure of winter snowpack accumula-
tion. Yet another approach to incorporating a seasonal variable is to use tem-
perature data as an additional input (Lorrai & Sechi, 1995; Poff et al., 1996;
Zealand et al., 1999).

Despite the potential significance of seasonal influences, the majority of 
NN rainfall-runoff models rely on combinations of current and antecedent
rainfall totals and antecedent flow (or stage) ordinates as inputs (see Hsu et al.,
1995; Minns & Hall, 1996, 1997; Jayawardena & Fernando, 1998; Fernando &
Jayawardena, 1998; Campolo et al., 1999). More elaborate inputs derived from
the basic records have been introduced in some studies. Mason et al. (1996) for
example uses the derivative of the rainfall intensity and the integral of the rain-
fall intensity over the previous five time steps. Shamseldin (1997) defined a
series of rainfall indices consisting of weighted sums of previous rainfall ordin-
ates, the weights being derived from the ordinates of a gamma distribution.

The predominant objective of the rainfall-runoff models that have been
developed using some form of NN has been that of forecasting future flows given
the knowledge of past flows, rainfalls and other relevant variables. Unfortunately,
the MLP-type of NN is not ideally suited to this application. This is largely
because the sigmoidal activation function adopted by many authors imposes a
scaling on the network output such that the network is incapable of predicting
a flow larger in magnitude than that contained within the training data set. This
effect is amply demonstrated by Minns and Hall (1996) based upon trials with
synthetic data. NN modellers must be aware that when a NN is applied to a real
catchment, even if the training data included all the available measurements,
there remains a small, but non-negligible probability that an extreme event,
beyond the range of recorded experience, might occur in the future, and not be
correctly forecast.

An alternative approach suggested by Minns (1996) and Minns and Hall
(1997) is to use the change in flow as the output rather than the absolute magni-
tude of the discharge. This variable was used independently by Zhu and Fujita
(1994) for forecasting purposes, but without explanation. Change in stage was
adopted as the forecast variable by See and Openshaw (1998), presumably
because of the scaling problem outlined above. However, Karunanithi et al.
(1994) claim that a (clipped) linear activation function allows extrapolation.
This property arises due to the unbounded nature of the linear activation out-
put. However, if this type of NN is applied with little or no hydrological insight,
this apparent luxury of ‘unlimited’ extrapolation may lead to quite unacceptable
linear extrapolations of some very non-linear hydrological processes. The results
may then be not only meaningless, but also quite dangerous to apply! More
recently, Imrie et al. (2000) have proposed the addition of a ‘guidance system’ to
the output layer of a cascade correlation architecture of NN in order to assist with
extrapolation beyond the range of the training data set. However, this approach
depends upon information from the testing data set, and thereby disrupts the
cycle of training and independent verification (see also Chapter 6).
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3 EXAMPLE: A SMALL SEWERED CATCHMENT

In order to minimise the possible effects of seasonal variations in losses, Hall
and Minns (1993) constructed a NN model using records from an urban catch-
ment area. The Cantley Estate in Doncaster was gauged for a 3-year period 
in the late 1950s as part of a research programme carried out by the then 
Road Research Laboratory (see Watkins, 1962). The catchment, which has a
gross area of 5.14 ha, is served by a separate surface water drainage system
having an outfall 610 mm in diameter. The details of 16 storm events were
kindly supplied by the Institute of Hydrology (now the Centre for Ecology 
and Hydrology), Wallingford. Twelve of these events were randomly selected
for training and the remaining 4 reserved for verification. With data at one-
minute intervals, there were therefore 985 data sets for training and 270 for
verification.

Several different network configurations were trained and tested. A series of
runs was carried out exploring the effect of changing the length of the rainfall
window, and then adding antecedent flows to the input. Simultaneously, the num-
ber of nodes in the hidden layer was adjusted to eventually obtain the smallest
possible network with the best generalisation properties. Rainfall-only input (i.e.
model (1)) produced very noisy outputs, with peak flows significantly under-
estimated on some events and overestimated on others. In addition, the lower
limbs of the recessions were too steep. The addition of 3 antecedent flows (i.e.
model (2)) removed most of these undesirable features, although the highest peak
flow rate was both underestimated in magnitude and late in timing. The results
of the best-performing network configuration, with 18 inputs, 10 hidden nodes
and 1 output, are presented in Figure 9.4.
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Having demonstrated that a NN with a suitable choice of inputs is capable
of reproducing, with some fidelity, the responses to storm events upon which it
has not been trained, the question arises as to whether the approach offers any
advantages over a conventional black-box rainfall-runoff model. The 4 verifi-
cation events from the Cantley Estate were therefore modelled separately by
means of a well-established, conceptual hydrological modelling package, RORB
(Mein et al., 1974).

The basic element of the RORB model is a single, conceptual, non-linear
reservoir for which the relationship between storage, S, and discharge, Q, is
given by:

(4)

where Kc is a storage constant applicable to all sub-areas within the catchment
and Kr is a relative delay time applicable to individual channel reaches within
the network estimated from the expression:

(5)

where Li is the length of the reach represented by the storage element, Lav is the
average flow distance of sub-catchment inflows within the channel network, and 
f is a factor depending upon the type of channel reach, i.e. natural, lined or unlined.

For this experiment, the power of the non-linear reservoir, m, was set to the
default value of 0.8, and the initial loss and storage constant manipulated until
the peak flow rate and total runoff volume were satisfactorily reproduced. In
the case of the event of 3 July, 1957, which was double-peaked, the rainfall was
separated into two bursts, thereby introducing the ratio between the runoff vol-
umes caused by each burst as a third calibration parameter. The plots of the sin-
gle-peaked storm of 26 August, 1956 and the double-peaked event of 3 July,
1957 are displayed in Figures 9.5 and 9.6 respectively.

The results are compared in Table 9.2 in terms of their coefficients of effi-
ciency as defined by Nash and Sutcliffe (1970). The coefficients of efficiency
(COE) of the two models on these four events are generally comparable in
magnitude. However, in the case of the event of 3 July 1957 (that with a pro-
nounced double peak), the performance of the NN is obviously superior.

Some important factors should be considered when evaluating these results.
Firstly, the calibration parameters for the RORB model included an initial 
loss rate, while application of the NN did not involve any consideration of loss
separation. In fact, the NN has no calibration parameters as such, but only the
set of weights which it learns itself. It thus involves no operator intervention
and no a priori knowledge of the catchment. Moreover, since the RORB model
was calibrated for each event individually but the NN operated on all 4 events
with the same set of weights determined from the training, this comparison is
inherently unfavourable to the NN model. Although the training of the NN
requires a substantial investment in computer time, the procedure is far more
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straightforward than is the calibration of even a simple conceptual model,
which must be undertaken on an event-by-event basis.

The results obtained are sufficient to demonstrate that, for situations involv-
ing rainfall-runoff modelling in which there are no extraneous influences such
as land-use changes, a NN has the potential to perform in a comparable fashion,
if not better than a conceptual hydrological model.
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Fig. 9.5. Model comparison for storm of 26 August, 1956 (Cantley Estate).
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Fig. 9.6. Model comparison for storm of 3 July, 1957 (Cantley Estate).
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4 CONCLUDING REMARKS

Since flood forecasting has emerged as one of the dominant applications of NN
rainfall-runoff models, the problem of extrapolation beyond the confines of
events in the training data set has to be carefully addressed. MLP having a sig-
moidal activation function are not capable of departing very far outside the range
of training events and this feature of their behaviour is not always well appreci-
ated. The alternatives are either to choose a variable that is more constrained in 
its absolute values, such as change in flow or stage, or to adopt an alternative form
of activation function, or even a different type of network. Definitive recommen-
dations have yet to emerge on this critical issue. However, the further possibility
of incorporating additional domain knowledge into the modelling process by
adding a (synthetic) Estimated Maximum Flood to the training data set has been
shown to hold considerable promise (see Hettiarachchi et al., 2004).

The results of all of the numerical experiments reported to date indicate that
suitably configured NN are capable of identifying usable relationships between
runoff discharges and antecedent rainfall depths to an exceptional degree of
accuracy. The relationships are obtained using only the raw, measured data and
do not require the use of any derived or artificial calibration parameters. In par-
ticular, the NN model provides these exceptional results unhindered by con-
straints of volume continuity in the input and output data and, in fact, the units
of the data are chosen simply for convenience of measurement and representa-
tion (e.g. rainfall depths in mm, discharges in m3/s). Furthermore, simple, non-
hydrological parameters like the percentage of impervious area may be easily
incorporated into the model at the discretion of the modeller (see Minns & Hall,
1997). These types of parameters may be derived from simple measurements
or may even be highly intuitive, and are likewise unrestricted in terms of con-
ditions of dimension or hydrological-physical consistency.

The discussion above demonstrates that although a NN may be regarded as an
ultimate form of ‘black box’model (Minns & Hall, 1996), the potential user is not
absolved from devoting some thought to the mode of presentation of data to the
network. The principal question to be posed is: what exactly constitutes the pattern
of inputs that produces the pattern of outputs? Moreover, do the selected input
and output patterns contain additional information that is not strictly relevant to
the purpose of the exercise? These questions are inevitably problem-dependent,
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Table 9.2. Comparison between fit provided to four storm events by a NN model
and the RORB conceptual model in terms of coefficients of efficiency (COE).

Coefficients of efficiency

Storm of RORB NN

23 August 1956 0.974 0.981
26 August 1956 0.983 0.982
3 July 1957 0.884 0.978
21 July 1957 0.990 0.951
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but in all cases the selection of inputs, whether data as recorded or variables
derived from operations on recorded data, requires the application of hydro-
logical insight as much as any conventional physical/conceptual rainfall-runoff
model. Provided that such insight is applied, the performance of NN models
can be undoubtedly superior to conventional hydrological models in situations
that do not require more detailed knowledge of the hydrological system.
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1 INTRODUCTION

Flash floods are a life-threatening phenomenon, which also result in economic
losses and social disruption. Handmer et al. (1988), for example, estimated
direct economic losses for residential property in the Toongabbie Creek catch-
ment (a subcatchment of the Upper Parramatta River, in the western suburbs of
Sydney, Australia) as being approximately $5 million (1986 Australian dollars)
for the 1% Annual Exceedance Probability (AEP) event. Commercial and
industrial activities within the catchment were also estimated to have suffered
economic losses of a similar magnitude. In the decade since these estimates
were made, significant additional urbanisation, which decreases the potential
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A Neural Network Approach to Rainfall
Forecasting in Urban Environments
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Water Research Laboratory, School of Civil and Environmental 
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ABSTRACT: An effective flood warning system in urban areas must provide
the warning with sufficient lead time for an appropriate response by the relevant
emergency services and the affected community. This requirement poses a crit-
ical problem as most urban catchments are characterised by a fast hydrologic
response to storm events. The approach used here to forecast rainfall over the
Upper Parramatta River Catchment in Sydney is based on the application of a
pattern recognition technique using an artificial neural network. It assumes that
the future rainfall is a function of a discrete number of past spatial and temporal
rainfall records; an important task, therefore, is the determination of the number
of spatial and temporal rainfall records necessary for accurate prediction of
future rainfall. The rainfall prediction model performed best when an optimal
amount of spatial and temporal rainfall information was provided to the network.
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response time of warning systems, together with inflation, make such potential
losses an underestimate in present day terms.

Development of an effective flood warning system can be expected to miti-
gate these losses. For an effective flood warning system, there needs to be suf-
ficient time between the recognition of a potential flood event and its occurrence,
for dissemination of flood warning messages and the activation of appropriate
emergency services. More accurate forecasts of a flood should help to increase
the time between the recognition of a potential flood event and its subsequent
occurrence. This need has prompted the development of an effective rainfall
forecasting system, wherein it must be recognised that rainfall is a dynamic
process, which varies in space and time. There is a need to consider the spatial
variability in a point-based rainfall forecasting model and to transform the
point data output into areal distributions using spatial tools within a Geographic
Information System (GIS).

There are two basic approaches suitable for the development of a rainfall
forecasting model. These can be categorised as (i) the process model approach,
in which the physical processes influencing rainfall are analysed and process
models are developed, although this approach may not be feasible because:

• rainfall is a complex dynamic system which varies both in space and time
resulting in problems associated with the definition of solution space
boundaries;

• even if the rainfall processes can be described concisely and completely, the
volume of calculations involved may be prohibitive; and

• the data that are available to assist in the definition of control variables for
the process models, such as pressure, evaporation, wind speed and direction
are limited in both the spatial and temporal dimensions.

and (ii) the ‘black box’ model approach, in which pattern recognition technology
is used to predict the most likely future pattern of rainfall in time and space.
The aim is to extract from the historical rainfall records the essential patterns
necessary for the prediction of future rainfall events. There are many alterna-
tive techniques for the extraction of the essential features from historical
records; the technique used here is based on artificial neural networks (NN).

Rainfall forecasts at rain gauge locations provide only scattered data and
forecasts of rainfall over a catchment. The rainfall forecasts may have a fine
temporal resolution, but the true areal rainfall, which produces runoff, is not
known. This highlights a critical problem in conventional rainfall-runoff mod-
elling where simplified approaches, such as Thiessen Polygons, are used without
taking either the spatial distribution or the dynamic properties of the rainfall
into account. These simplified approaches can result in large errors in runoff
estimation (Fontaine, 1991; Urbonas et al., 1992). In response to this need, Ball
and Luk (1998) developed a method to model the spatial variability of rain-
fall using point measurements of rainfall as the input information. NN rainfall
forecasts can therefore be passed to this model for the determination of future
rainfall patterns over a catchment. The integration of these tools provides a
powerful forecasting solution.
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2 THE UPPER PARRAMATTA RIVER CATCHMENT

2.1 Catchment details
The Upper Parramatta River Catchment is used as the study area for the devel-
opment of an integrated rainfall forecasting system. This river is situated in the
western suburbs of Sydney and drains into Sydney Harbour (Fig. 10.1 and 10.2).
The tidal limit of the river is the Charles Street Weir. Immediately upstream of
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the Weir, is the Parramatta Central Business District which has suffered con-
siderable flood damage over a number of years. There are two main tributaries
of the Parramatta river within the Upper Parramatta River Catchment: the
Toongabbie Creek and Darling Mills Creek. The catchment is steep with an
average slope of 1.2%.

The dominant land use is a mix of residential, commercial, industrial and
open space (parkland) areas. Considerable development as a result of the rapid
increase in population and dwellings has occurred within this catchment over
the past two decades, as shown in Table 10.1 (Australian Bureau of Statistics,
Census of Population and Housing, personal communication). The increase in
the number of dwellings from 1986 to 1991 is 18%. A rough estimation of the
increase in impervious area can be obtained by assuming an average dwelling
size of 200 square metres and allowing 50% of this area for associated imper-
vious area such as roads and footpaths. Using this approach, an estimate for the
increase in impervious area is 6.5 km2 or 6%. Both increases are significant
from a hydrological and flood management viewpoint.

The effect of this urbanisation has been continuing increases in estimates of
the peak level for all flood events. To mitigate the social and economic losses
associated with these floods the Upper Parramatta River Catchment Trust
(UPRCT) was instituted in 1989, with the task of managing flood mitigation
measures within the catchment, among other duties.

2.2 Rainfall records
There are sixteen continuously recording rain gauges within the catchment
(Fig. 10.2). The majority of these gauges have been installed by the UPRCT
since its formation. Consequently, long-term records are not available, and there
is, on average, one point rainfall sample for each 7 km2 of catchment. Moreover,
although this would represent a high density of rain gauge information for
most catchments, Urbonas et al. (1992) suggest that an even higher density of
spatial information is required if accurate predictions of catchment response
are to be obtained for convective storm events (Table 10.2).

Records from the 16 rain gauges within the Upper Parramatta River Catch-
ment were obtained from January 1991 to September 1996. During this period,
34 storm events occurred where the daily rainfall total exceeded 20 mm. More
than 70% of such storms were convective and the rest were frontal. The con-
vective storms occurred predominantly during the summer and autumn seasons,
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Table 10.1. Population and dwellings in Parramatta.

% change over Total occupied % change over 
Year Total population past five years dwellings past five years

1976 348398 – 100246 –
1981 374190 7.4 111064 10.8
1986 384601 2.8 119229 7.4
1991 435478 13.2 140900 18.2
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while the frontal storms were more evenly distributed through the year. The
data series were extracted in 15-minute intervals. Missing rainfall values, due
to malfunctioning gauges or errors in transmission of the data, were estimated
from neighbouring rain gauges using the spatial rainfall model of Ball and Luk
(1996, 1998).

3 RAINFALL FORECASTING – POINT PATTERNS

3.1 Building a neural network solution
To develop the proposed rainfall forecasting model, the continuous process of
rainfall was represented using a discrete Markovian process, in which the rain-
fall value at a given location in space and time is a function of a finite set of
previous realisations. With this assumption, a simple model structure can be
expressed as:

(1)

where X(t) � [x1t, x2t, …, xNt]T represents a vector of rainfall values x1t, x2t,..,
xNt at N different gauge sites at time t, where T denotes the transpose operator,
f [ ] is a non-linear mapping function, which shall be approximated using NN,
e(t) is a mapping error (to be minimised) and k is the (unknown) number of
past realisations contributing to rainfall at the next time step, referred to as the
model lag. If k is equal to 1, rainfall at the next time step is related only to the
present rainfall, representing a lag-1 model.

Multi-layer feed-forward neural networks (MLFN) offer a straightforward
approach to represent the above rainfall model. Further particulars about the
workings of this network are provided in Chapter 2. The MLFN is presented
with the current and past rainfall values as inputs, e.g. X(t), …, X(t � k � 1),
and the next rainfall value X(t � 1) is used as the network output. There are,
however, several drawbacks associated with this approach. First, since the
model lag k is unknown, a lengthy trial process is required to determine the
optimal value of k. Second, for a network with high orders of lag, a large num-
ber of input nodes would be required. Consequently, the number of parameters
will increase, making the network unnecessarily complex and with a higher
risk of overfitting. Finally, the MLFN is a static model, which might struggle

X t X t X t k e tf X t X t( ) ), ( ), , ( ) ( )[ ( ), ( ]+ − − … − − +=1 1 2 1
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Table 10.2. Accuracy of rainfall-runoff models (after Urbonas et al., 1992).

Gauge density (km2/gauge) Range (%) Mean deviation (%)

8.0 �100.0 to 150.0 �24.2
4.0 �75.3 to 94.5 0.5
2.7 �32.2 to 63.66 15.8
2.0 �32.2 to 18.8 �0.9
1.6 0.0 to 0.0 0.0
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or fail to model the dynamic nature of rainfall processes. Further details on
MLFN are provided in Chapter 2.

Time delay neural networks (TDNN) offer an alternative solution, which
can effectively model the rainfall process while keeping a minimum number of
parameters. More details about this type of network are provided in Chapter 5.
A distinctive feature of TDNN is the use of partial connections; this dramat-
ically reduces the number of weights in the network compared with a fully con-
nected MLFN architecture. In addition, TDNN have been developed for
detecting local features within a larger pattern; this feature detection ability is
very useful for the task of rainfall forecasting. Each TDNN, however, is still a
static model. This static representation has several drawbacks. First, if the rain-
fall process has a long term memory, a large number of inputs nodes will be
required, resulting in a network containing a large number of free parameters.
Second, the number of past rainfall inputs has to be determined through the
process of investigation, which often requires a lengthy series of trial and error
experiments. A dynamic model may overcome this problem. Further details on
TDNN are provided in Chapter 5.

NN with feedback connections that feed past states of the system back to
the network can be used to build dynamic models. This is a recurrent network;
recurrent networks exhibit full connection between each node and all other
nodes in the network whereas partial recurrent networks contain a limited
number of specific feedback loops. A recurrent network possesses the charac-
teristic of dynamic memory. In addition, a recurrent network reduces the num-
ber of inputs and consequently the number of parameters, speeding up the
calculations. For practical applications, the partial recurrent neural network
(PRNN) is more appropriate because the training of such networks is similar to
that of the MLFN and is therefore also much easier than a recurrent network.
In partial recurrent networks the main network structure is feedforward and the
feedforward connections are trainable. The feedback connections are formed
through a set of ‘context’ units that are not trainable, which simplifies the train-
ing process. The function of the context units is to store information from the
previous time steps. To achieve this, the context units make a copy of the acti-
vation of hidden nodes in the previous time step. Therefore, at time t the con-
text units have some signals related to the state of the network at time t � 1. As
a result, the rainfall at time t � 1 is a function of the rainfall at time t and the
previous states of the system represented by the activation of the hidden nodes
at time t � 1, expressed by

(2)

where X(t � 1) are rainfall at time t � 1, which are outputs of the network,
X(t) are rainfall at time t, which are inputs of the network, O(t � 1) are the acti-
vations of the hidden nodes at time t � 1 and copied back to the context units
for input at time t, g( ) is a recurrent mapping function and e(t) is the mapping
error. Further details of PRNN are provided in Chapter 7.

X X( ) ( ( ), ( )) ( )t g t O t e t+ = − +1 1
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3.2 Neural network methodology
MLFN, TDNN and PRNN models were developed for forecasting the storm
events occurring over the Upper Parramatta River Catchment. The PRNN and
TDNN were specifically developed to model the structures in time series, so
they are considered to be the most suitable candidates for the current study. The
MLFN, however, is the most popular model and has a relatively simple struc-
ture. The MLFN was included in this study to provide a base line for compari-
son. The networks were developed through: (i) data preparation, including data
pre-processing, (ii) selection of training algorithm and performance indicators,
and (iii) determination of the appropriate inputs and outputs.

In the data preparation step, two data sets were established for training and
testing the network; the third data set was used for validating the training to
ensure that the network learns the pertinent information and not the noise asso-
ciated with the data used for training the network. To obtain unbiased samples
for each of the data sets, the 34 storm events were divided randomly into:

• a training set – 16 storm events with a total of 748 rainfall periods. This data
set was used to calibrate the connection weights of the various networks
tested.

• a validation set – 8 storm events with a total of 376 rainfall periods. This
data set was used to monitor the performance of the training and to provide
an indication of when to cease training.

• a testing set – 10 storm events with a total of 625 rainfall periods. This final
data set was used to evaluate the performance of the networks on data pre-
viously unseen by the network.

The selection of individual events for a particular data set was random;
hence all events should have similar characteristics (Table 10.3).

Prior to training, the data were scaled to a smaller range [0, 1], which is
associated with the choice of a sigmoid activation function. There are several
alternative data transformation approaches that can be used, with each approach
having its own advantages and disadvantages. In this case, a logarithmic algo-
rithm was used to ensure that the recorded rainfall values were transformed
into the desired range.

The next step in the implementation of the network is the selection of the
training algorithm and performance indicator. The normalised mean squared
error (NMSE) was chosen as the performance indicator for a comparison
between the three alternative types of network. One problem with the use of
sum squared error for the network comparison is that the rainfall series had dif-
ferent lengths, which introduces problems. This problem was overcome with a
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Table 10.3. Summary of storm characteristics.

Characteristics Training Validation Testing

Storm type 10 convective, 6 frontal 4 convective, 4 frontal 8 convective, 2 frontal
Storm duration (hours) 3 to 22 2 to 21 6 to 24
Time to max. rainfall 30 min to 10 hr 1 hr to 18 hr 45 min to 21 hr
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normalised version of sum squared error, i.e. the normalised mean squared
error (NMSE). Weigend et al. (1992) defined the NMSE as

(3)

where N is the total number of output nodes, P is the total number of data sam-
ples, dnp are the target outputs, ynp are the network outputs and �2 is the vari-
ance of the target outputs. NMSE is, in essence, the sum of squared errors
normalised by the number of data samples over all output nodes and the esti-
mated variance of the data.

The final step in the data preparation is the determination of the input and
output data representation. For the Upper Parramatta River Catchment, there
are a number of possible configurations for the input and output information.
The three most feasible approaches are to:

• divide the catchment into grids (439 cells of 500 m � 500 m) and use rain-
fall at each cell as inputs to forecast rainfall at all cells simultaneously. The
resulting outputs will be the rainfall at each cell of the catchment;

• use rainfall at the 16 gauges as inputs to forecast rainfall for the 16 gauges
simultaneously. In this case, one network represents the rainfall for all 16
gauges, and from the rainfall forecasts for the 16 gauges, a spatial rainfall
model is used to generate the rainfall at all points of the catchment; or

• use rainfall at the 16 gauges as inputs to forecast rainfall for a single gauge.
This will result in 16 networks for the 16 gauges of the catchment. Again,
after the rainfall forecasts for the 16 gauges are obtained, a spatial rainfall
model is used to generate the rainfall at all points in the catchment.

Initial assessment of these three configurations suggests that the option of
using information from the 16 rain gauges as input information and using the
same locations as the output information (i.e. rainfall forecast) is the most
desirable option. The main reasons for this are:

• information from all measurement points are used simultaneously to pro-
duce forecasts for each of the measurement points; and

• forecast results can be used readily in an existing spatial rainfall model.

The option of forecasting a single gauge was rejected because the same
process was required once for each prediction location and, therefore, 16 net-
works were needed. In a similar manner, the option of using 439 cells as both
input and output was rejected, since it involved the use of a large number of
input and output nodes and because the consequent network would contain a
large number of parameters (weights). For example, a one-hidden layer MLFN
with 439 input nodes, 439 output nodes and 2 hidden nodes comprises 1756
connections (439 � 2 � 439 � 2, excluding the biases). The available rainfall
data (max. 1749 data points) were not considered sufficient information to
train a network of this size and nature.
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3.3 Development of alternative networks
The three alternative types of NN considered in this chapter were trained and
tested with rainfall data collected from the catchment, i.e. a total of 34 storm
events with depth recorded every 15-minutes. Various network configurations
were explored to determine the effect of the key variables: lag of the network
and the number of hidden nodes.

MLFN solutions comprised networks with 1, 2, 3 and 4 lags and 2, 4, 8, 16,
24, 32, 64, and 128 hidden nodes. We also explored MLFN with two hidden
layers. For TDNN, the size of input windows was 2, 3 and 4, and for PRNN, the
lag was fixed at 1, while the number of context units tried was 2, 4, 8, 16, 24,
32 and 64. The complete listing of all modelling results using these parameters
is presented in Luk (1998).

Initial investigation of network performance with various numbers of hid-
den nodes indicated that the networks with a greater number of hidden nodes
resulted in a lower training error, at a fixed stopping condition, which was set
at 1000 epochs and where one epoch represented a complete sweep through the
training patterns. Moreover, since the connection weights of the network were
updated only at the end of each epoch, a maximum of 1000 epochs also means
that the weights were updated at most 1000 times. This result is to be expected
since more hidden nodes equates to more free parameters, which results in
lower training errors. During testing, however, these solutions had poorer per-
formance since the networks had over-learned the training data. This effect is
illustrated in Table 10.4. Irrespective of the order of lag in the network, MLFN
with 128 hidden nodes produced a smaller NMSE during training, but a much
higher NMSE during testing. For example, the lag-4 MLFN with 128 hidden
nodes had the smallest training error of 0.27 while the testing error for the
same network was the highest at a value of 2.33.

The influence of the order of lag can also be assessed from Table 10.4.
Perusal of the data shown in this table indicates that MLFN with higher order
lags tended to learn the training data better. For validation, however, the reverse
is the case. These results do not suggest that a network with higher order lag will
give poorer results. The results in fact indicate that networks with higher order
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Table 10.4. MLFN with different architectures and time lags.

Normalised Mean Squared Error (NMSE)

Network Training Testing

Lag-1 MLFN with 2 hidden nodes 0.53 0.71
Lag-1 MLFN with 128 hidden nodes 0.40 1.20
Lag-2 MLFN with 2 hidden nodes 0.51 0.73
Lag-2 MLFN with128 hidden nodes 0.36 0.96
Lag-3 MLFN with 2 hidden nodes 0.49 0.72
Lag-3 MLFN with 128 hidden nodes 0.32 1.26
Lag-4 MLFN with 2 hidden nodes 0.49 0.78
Lag-4 MLFN with 128 hidden nodes 0.27 2.33

Note: Each network was trained for 1000 epochs.
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lag, which contain more connection weights and hence more free parameters,
like networks with more hidden nodes, tended to over-learn the training data.

From this analysis it was concluded that the performance of a network
depended more on the complexities of the network than the inclusion of add-
itional information through the use of data from previous time periods. The
effect of using higher orders of lag was to increase such complexities without
the provision of pertinent additional information. Consequently, it is suggested
that the performance of a network depends not on the number of hidden nodes
or the order of lag but rather on the combination of these two aspects.

3.4 Comparison of alternative networks
The network results of Luk (1998), in addition to being used for determination
of network components and architectures, can also be used as the basis of a
comparison between alternative types of network. The selection of a best net-
work configuration based on NMSE scores computed using test data for eight
networks with the lowest validation error are shown in Table 10.5. Each row of
Table 10.5 represents a network with a specific lag. For example, the first row
shows the results for a lag-1 MLFN with 24 hidden nodes, while the second
row shows the results for a lag-2 MLFN with 8 hidden nodes.

In general, all three types of NN have comparable performance, which sug-
gests that the functions being modelled are quite similar. NMSE test scores for
all networks were in the range of 0.63 to 0.67. Such small differences are 
due to networks being developed on an optimal architecture defined through
the interaction between the lag and the number of hidden nodes. For example,
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Table 10.5. Comparison of alternative networks.

Training error 
Training Validation Testing Stopping at 1000 epoch

Network (NMSE) (NMSE) (NMSE) epoch (NMSE)

MLFN Lag 1 0.50 0.68 0.64 200 0.49
(16-24-16)
MLFN Lag 2 0.51 0.69 0.66 100 0.47
(32-8-16)
MLFN Lag 3 0.48 0.69 0.67 700 0.47
(48-4-16)
MLFN Lag 4 0.52 0.71 0.65 200 0.49
(64-2-16)
PRNN 0.49 0.67 0.64 300 0.48
(16-4-16)
TDNN Lag 2 0.50 0.67 0.63 100 0.41
(32-16-16)
TDNN Lag 3 0.50 0.69 0.64 100 0.41
(48-32-16)
TDNN Lag 4 0.51 0.69 0.65 100 0.40
(64-32-16)

Notation: The network configuration is denoted by three figures (x-y-z), where
x � no. of input nodes, y � no. of hidden nodes and z � no. of output nodes.

Copyright © 2004 Taylor & Francis Group plc, London, UK



the lag-1 MLFN requires more hidden nodes to achieve an optimal solution
while the more complicated lag-4 MLFN requires two hidden nodes due to the
large number of parameters associated with high order of lag. This result is
consistent with the concept of the existence of an optimal configuration for a
network that was discussed earlier.

Figures 10.3 and 10.4 compare three one-step ahead forecasts of rainfall
depth at a single gauge. The hyetograph in each figure shows the actual rainfall
recorded at that gauge site and the forecast rainfall, and similar plots for other
gauges and storm events presented in Luk (1998) and Luk et al. (2000).

Analysing the forecast errors for one storm with each of the three solutions,
we conclude that: (i) the forecast error increases as the rate of change of rain-
fall intensity increases; (ii) the networks made better predictions after the peak
of the storm event; and (iii) all the networks tended to under-predict the rainfall
when the rate of change in the rainfall intensity was positive, and to over-pre-
dict the rainfall when the rate of change in the rainfall intensity was negative.

Summarising all the comparison tests, it was found that:

• the three alternative types of NN have comparable performance;

• MLFN with lower orders of lag have a marginally better performance than
networks with higher orders of lag;

• MLFN with higher lags tended to over-learn the training data, resulting in
smaller training errors, but larger validation errors;

• MLFN with lower lags require more hidden nodes, and vice versa, suggest-
ing an optimal set of architectural components;

• PRNN showed comparable performance with lag-1 MLFN and outper-
formed MLFN with higher order lag;
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Fig. 10.3. Forecasting rainfall at gauge no. 7253 for the storm event on 2 January 1996.
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• a lag-2 TDNN provided the lowest error for the test data set (0.63); and

• all forecast errors in all cases increased as the rate of change of rainfall
intensity increased in either a positive or negative direction.

4 RAINFALL FORECASTING – AREAL DISTRIBUTIONS

4.1 Building an integrated modelling solution
The integration of GIS and NN approaches provides a powerful rainfall fore-
casting model that merges the merits of the two technologies together. For the
purposes of developing an areal rainfall forecasting system, it was assumed
that no rainfall data, other than that measured at the rainfall gauges, were avail-
able for this catchment. There are two alternative approaches that could be used
to generate future rainfall forecasts; these two approaches are:

• Use of a GIS to estimate the rainfall for each cell within the catchment based
on the measured rainfall at each gauge. This will generate a significant num-
ber of estimated rainfall surfaces. The NN could then be used to map these esti-
mates to produce a direct rainfall forecast for each cell within the catchment.

• Use of an NN to forecast the rainfall at each of the rainfall gauges and then
use the GIS to generate a distributed rainfall forecast for all cells within the
catchment.

The first approach of using catchment cells as the location of both input and
output information was not considered feasible due to the large number of
input and output nodes that would be required, which for 0.25 km2 cells in the
Upper Parramatta River catchment is 439 per layer. This would result in 1756
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Copyright © 2004 Taylor & Francis Group plc, London, UK



connections for a 3-layer MLFN and training such a large network would be
extremely time consuming. Moreover, a network with so many free parameters
would need a large volume of detailed rainfall data that seldom exists.

4.2 Integrated solution
150 artificial storm events were used to build and test the integrated rainfall
forecasting system. This need for synthetic data was due to an inadequate num-
ber of recorded storm events. The forecast rainfall at each cell was compared
with the actual value of rainfall (from the artificial event) to ascertain the fore-
cast error. Of these events, 100 storm events were used for training the NN, 25
storm events for validation of the training process, and 25 storm events for testing
the rainfall forecasting system.

The artificial storm events were assumed to be a random process, with
some degree of tracking, and were generated from a mixture of autoregressive
and random techniques. The first step involved the random start of a storm cen-
tre at a point close to or within the study catchment. The location of this start-
ing point was biased according to historical records of storms over the Upper
Parramatta River Catchment. The storm then moved towards the centre of the
catchment subject to deviations from the initial direction defined by the fol-
lowing autoregressive equation:

(4)

where direction(t) is the direction of the storm centre at time t, direction(0) is
the initial direction of storm movement and e(t) is the random deviation of
storm movement, which had a mean of 0° and a standard deviation of 15°. The
intensity of the storm at its centre was an autoregressive process that had the
following relationship:

(5)

where Pmax(t) is the rainfall intensity at the storm centre (mm/hr) at time t, and
e(t) is the random fluctuation. The movement of the storm centre was a random
process with a mean speed of 12 km/hr, and a standard deviation of 2 km/hr, as
illustrated in Figure 10.5. This storm moved across the catchment from the
North East to South West over a period of 2.5 hours (15 min � 10 time steps).

4.3 Test results and discussion
In ascertaining the accuracy of the spatial rainfall forecasts, both visual and
arithmetic comparisons were established. Validation of the spatial rainfall fore-
casting system was on the basis of

• replicating the areal rainfall patterns (visual inspection);

• tracking the movement of storm centres (visual inspection);

• predicted rainfall at individual cells; and

• predicted rainfall for subcatchments.

P P t e tmax max= − +0 2 1 0 8. * ( ) . * ( )

direction direction direction( ) . * ( ) . * ( ) ( )t t e t= + − +0 8 0 0 2 1
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The results for Storm No.138 are presented in Tables 10.6 and 10.7 and in
Figures 10.6 and 10.7. Figure 10.6 shows the distribution of rainfall at one
instant during this testing event. A complete history of this storm event,
together with other events, is presented in Luk (1998). Figure 10.7 maps the
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Fig. 10.5. Track of storm centres.

Table 10.6. Forecast errors for storm no. 138.

Time step Intensity (mm/15-min) Distance (km) Angle (degree)

1 �4.0 0.11 �47.2
2 �4.6 0.64 12.3
3 �5.8 �0.61 28.3
4 �1.5 �0.66 16.4
5 �3.5 �0.56 �15.8
6 1.8 �0.22 25.4
7 �3.1 �1.05 �10.7
8 1.8 �1.00 �1.5
9 �2.0 �0.34 109.4
10 �3.6 �0.17 74.8

Table 10.7. Error statistics for storm no. 138.

Statistic Intensity (mm/15-min) Distance (km) Angle (degree)

High 1.8 �0.22 28.3
Low �5.8 �1.05 �15.8
Mean �1.7 �0.68 7.0
Median �2.3 �0.63 7.4
Standard deviation 3.1 0.31 18.9
Skewness 0.1 0.18 �0.1
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actual storm centre track against the predicted storm centre track for the same
storm event. The actual track of storm centres is represented by numbers,
whereas the forecast track is shown by alphabetic characters. Both tracks had
similar characteristics; the forecasting system did very well in tracking the
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Fig. 10.6. Predicted and actual rainfall during a validation storm event.
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storm centres from time steps 2 to 8. There were, however, distance errors in
forecasting the storm centres at time steps 7 and 8. These errors resulted in an
overestimation of the spatial rainfall distribution.

Tables 10.6 and 10.7 also show large angle errors in the first and last two
time steps. It is suspected that these errors are due to initiation and boundary
conditions related to one or both parts of the combined modelling operation.
Due to high uncertainties at such locations, the values at these time steps are
excluded from the calculation of the error characteristics presented in Table 10.7.
The average intensity of this storm event was 28.9 mm per 15-minute period
(or approximately 76 mm/hr). The error in the forecast was small and the pre-
diction of location was excellent. The range of error in location was only �1.05
to �0.22 km, with a mean error of �0.68 km, which means that, on average,
the storm centre is predicted to be in a cell that is adjacent to the correct cell.

Similar characteristics were replicated for all 25 storm events and are sum-
marised in Table 10.8. The integrated forecasting system is observed to have
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Table 10.8. Error statistics for 25 test storm events.

Statistic Intensity (mm/15-min) Distance (km) Angle (degree)

High 8.2 0.73 178.3
Low �16.8 �1.68 �172.5
Mean �2.8 �0.62 �0.9
Median �2.9 �0.62 0.6
Standard deviation 4.3 0.49 53.0
Skewness �0.1 0.27 �0.03
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produced reliable predictions for rainfall intensities and location of storm centres,
but this was not the case for prediction of storm movement.

The normalised mean squared error for each time step during all 25 test
storm events is 0.263, which is considered to be a reasonable result for a reli-
able model (Table 10.9). There were, however, several abnormal figures, but all
of these occurred at the first time step and the integrated solution provided
accurate forecasts for the remainder of the storm movements and associated
rainfall intensities. These errors are ascribed to problems in recognising the ini-
tial position of the storm centres.

5 CONCLUSIONS

Development of an integrated rainfall forecasting system using GIS and NN
technologies has been the focus of this chapter. This development process
involved investigations into models of the spatial distribution of rainfall, and
the appropriate form of NN for rainfall forecasting as well as an assessment of
the forecast accuracy of the proposed system.
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Table 10.9. Normalised mean squared errors for all 25 test storm events.

NMSE at each time step

Event 1 2 3 4 5 6 7 8 9 10 Mean

126 0.444 0.245 0.227 0.429 0.015 0.028 0.072 0.162 — — 0.203
127 0.063 0.875 0.506 0.482 0.042 0.083 0.101 0.027 0.055 — 0.248
128 0.246 0.227 0.156 0.232 0.327 0.436 0.312 0.046 0.097 0.193 0.227
129 0.362 0.046 0.177 0.161 0.341 0.156 0.254 0.617 0.587 0.163 0.286
130 0.328 0.336 0.173 0.056 0.150 0.177 0.554 0.116 0.196 0.193 0.237
131 0.160 0.512 0.305 0.010 0.015 0.031 0.185 0.066 0.098 — 0.154
132 0.469 0.264 0.321 0.078 0.070 0.239 0.454 0.348 0.215 0.143 0.295
133 0.703 0.123 0.267 0.199 0.206 0.074 0.161 0.299 0.124 — 0.240
134 0.175 0.328 0.328 0.074 0.175 0.168 0.040 0.055 0.194 — 0.171
135 0.145 0.092 0.266 1.643 0.167 0.307 0.241 0.132 0.176 — 0.352
136 0.884 0.350 0.120 0.503 0.202 0.236 0.140 0.144 0.137 0.140 0.286
137 0.070 0.443 0.213 0.224 0.615 0.375 0.063 0.221 — — 0.278
138 0.130 0.086 0.286 0.139 0.127 0.081 0.026 0.176 0.199 0.396 0.165
139 0.150 0.245 0.301 0.427 0.062 0.054 0.082 0.080 — — 0.175
140 1.561 0.165 0.388 0.244 0.419 0.210 0.237 0.410 0.101 0.059 0.344
141 4.422 0.026 0.826 0.147 0.217 0.199 0.278 0.053 0.048 0.113 0.587
142 0.039 0.178 0.056 0.134 0.083 0.167 0.286 0.024 0.299 1.755 0.302
143 0.416 0.028 0.383 0.070 0.809 0.441 0.224 0.117 0.165 0.147 0.280
144 0.756 0.181 0.305 0.222 0.191 0.204 0.347 0.207 0.261 — 0.297
145 0.703 0.112 0.132 0.651 0.103 2.333 0.211 0.226 0.115 0.094 0.430
146 0.434 0.196 0.13 0.128 0.257 0.056 0.045 — — — 0.178
147 0.093 0.655 0.104 0.402 0.355 0.069 0.071 0.009 0.059 — 0.202
148 0.149 0.107 0.073 0.093 0.207 0.073 0.150 0.170 0.185 — 0.134
149 0.063 0.186 0.09 0.102 0.476 0.120 0.285 0.041 0.051 — 0.157
150 1.075 0.432 0.391 0.097 0.566 0.296 0.251 0.080 0.073 0.156 0.342

Overall Mean NMSE 0.263
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During NN development, three alternative types were identified, developed
and compared: a MLFN; a PRNN; and a TDNN. It was found that all three
types were able to make reasonable 15-minute forecasts of rainfall for multiple
locations within a catchment. From test results, the following points are noted:

• For each network, there was an optimal configuration, which was determined
from a combination of the number of hidden nodes and the lag of the network;

• The three networks had comparable performance when developed and
trained to reach their optimal forecasting power; and

• Networks with lower lags outperformed ones with higher lags due to the 
15-min rainfall time series possessing no long-term relationships.

The integration of GIS and NN technologies enabled reasonable 15-minute
forecasts of the spatial distribution of rainfall over the Upper Parramatta River
Catchment. The system accurately preserved spatial rainfall patterns and pro-
duced good forecasts with strong agreement to actual rainfall values. In con-
clusion, the rainfall forecasting system developed for the Upper Parramatta
River Catchment had the following characteristics:

• A spatial and temporal distributed architecture;

• The system has been developed for real-time operation. It receives present
rainfall values at multiple gauge positions and produces rainfall forecasts
for each cell in the catchment; and

• With collection of new rainfall data, the NN component can be re-trained to
provide improved performance.

REFERENCES

Ball, J.E. & Luk, K.C. 1996. Determination of the Rainfall Distribution over a
Catchment using Hydroinformatics Tools. Proc. 2nd International
Conference on Hydroinformatics, Zurich, Switzerland: 369–376.

Ball, J.E. & Luk, K.C. 1998. Modelling the spatial variability of rainfall over a
catchment. ASCE, Journal of Hydrologic Engineering 3(2):122–130.

Elman, J.L. 1990. Finding structure in time. Cognitive Science 14:179–211.
Fontaine, T.A. 1991. Predicting Measurement Error of Areal Mean Precipitation

During Extreme Events. Water Resources Bulletin 27(3): 509–520.
Handmer, J.W., Smith, D.I. & Lustig, T.L. 1988. The Sydney Floods of 1986:

Warnings, Damages, Policy and Future. Proc. Hydrology and Water
Resources Symposium, 1988, Australian National University, Canberra,
Australia, IEAust Nat Conf Pub 88/1: 206–210.

Luk, K.C. & Ball, J.E. 1996. Application of GIS for Modelling of the Spatial
Distribution of Rainfall. Research Report 191, Water Research Laboratory,
School of Civil and Environmental Engineering, University of New South
Wales.

Luk, K.C. 1998. An application of hydroinformatic tools for rainfall forecast-
ing. PhD Dissertation, School of Civil and Environmental Engineering,
The University of New South Wales, Sydney, Australia.

194 JAMES E. BALL AND KIN CHOI LUK

Copyright © 2004 Taylor & Francis Group plc, London, UK



Luk, K.C., Ball, J.E. & Sharma, A. 2000. A study of optimal lag and spatial
inputs to artificial neural network for rainfall forecasting. Journal of
Hydrology v.227: 56–65.

Luk, K.C., Ball, J.E. & Sharma, A. 2001. An application of artificial neural
networks for rainfall forecasting. Mathematical and Computer Modelling
33: 683–693.

Rumelhart, McClelland, and the PDP Group 1986. Parallel Distributed
Processing, Vols 1 & 2. Cambridge, MA: MIT Press.

Urbonas, B.R., Guo, J.C.Y. & Janesekok, M.P. 1992. Hyetograph density
effects on urban runoff modelling, Proc. Int. Conf. On Comp. Applications
in Water Resources, Tamkang University, Tamsui, Taiwan: pp. 32–37.

Weigend, A.S., Huberman, B.A. & Rumelhart, D.E. 1992. Predicting Sunspots
and Exchange Rates with Connectionist Networks. In M. Casdagli, & 
S. Eubank (Eds.), Non-linear Modeling and Forecasting: (pp. 395–431).
Addison Wesley.

RAINFALL FORECASTING IN URBAN ENVIRONMENTS 195

Copyright © 2004 Taylor & Francis Group plc, London, UK



1 INTRODUCTION

The sustainable management of river water resources and modelling of fresh-
water ecological systems is challenged by the interaction of many heterogeneous
processes. The complex dynamics are not easily coded into process models, and,
when available, the required data are often sparse with variable sequencing or
qualities. In addition to receiving natural, urban and industrial effluent inflows,
river waters may be polluted by diffuse runoff from agricultural, industrial and
household processes, and from buildings and road surfaces which impacts on 
the in-stream ecology (Beasley & Kneale, 2002; Ellis & Hvitved-Jacobsen, 1996;
Lee & Bang, 2000; Moog & Chovanec, 2000). This water may be abstracted later
for drinking or industrial use. Water quality management agendas involve identi-
fying and preventing pollution, and identifying and restoring water courses, to
enhance water quality and make water available for use and re-use downstream.
Sensitive water bodies and ecosystems may require protection, mitigation or
remediation.

Effective water quality management involves respecting the ecological
integrity and diversity of the system. In planning water and related land
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ABSTRACT: The sustainable management of watercourses involves an appre-
ciation of the interactions between multiple ecological, hydrological, hydro-
chemical and anthropogenic factors. In these matters getting the water flow right
is vital, adding the complex ecology adds to the challenge. Since many hydro-
ecological interactions are difficult to model in a process manner and ecological
data are often limited, neural networks are a valuable forecasting tool. This chap-
ter presents a literature review of the use of artificial neural networks in water
quality applications and considers the value of the various approaches adopted.
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resources, the US Water Resources Council (1973) recommended consideration
of national economic development and environmental quality. Therefore, mod-
elling the quality of flow for management purposes may also require the coup-
ling of hydrological, biogeochemical, ecological and socio-economic models 
at river basin and sub-basin scales. Colasanti (1991) discussed the similarities
between the structure and behaviour of artificial neural networks (NN) and 
natural ecological systems, arguing that the parallels implied that NN tech-
niques should be appropriate tools for ecological modelling. In this chapter the
current role of NN in contributing to the management of river water quality is
reviewed.

2 DATA ISSUES

Given the complexity of the biogeochemical processes involved, the changes that
occur from point to point and the natural variability of environmental systems,
the NN approach to identifying and managing pollution is extremely valuable.
But as previous chapters have shown, NN solutions require appropriate data and
evaluation. Modelling biological and chemical processes in water and associated
ecological behaviour is a technically complex issue. Compared with river flow
forecasting, where lengthy records of stage or discharge and rainfall may be
available at multiple stations at 15 minute or hourly intervals, good water quality
data are often very limited; it may be weekly or monthly data, for a reduced
network of sites, and a limited number of parameters. Ecological observations are
even less frequent, often comprising snapshot surveys made on one or two days
each year.

Point data may be available for the chemistry of the water column and bed
sediment, but the equations which govern the spatial and temporal chemical
interactions between the column and the sediment are by no means definitive.
Simple models using 1D equations, driven by average travel times, may be suc-
cessful in forecasting the movement of pollution plumes downstream but miss
the detail required to look at biological and chemical interactions. However, when
attempting to account for a large number of factors, distributed mathematical
modelling becomes infinitely more complex, and requires heavy computational
investment.

The key questions for evaluating a NN application include asking:

• Does the approach provide an answer that is appropriate for a particular
experimental investigation?

• Does it improve on current forecasting practice?

• Is the forecast accurate enough and achieved at an acceptable cost?

Bowden et al. (2002) using data for the River Murray catchment analyse issues
that can arise as the result of the way in which subsets of data are selected for the
training, testing, and validation of models and shows that the less than optimal
selection will impair model performance. Cigizoglu (2003) shows that using
longer training stage datasets improves the NN forecast and argues that generat-
ing synthetic series can be advantageous where the full data set is limited.
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3 MODELLING STYLES

Because NN were designed to mimic certain biological functions of the brain, we
might have expected widespread interest in applying this technology to biological
applications of water quality. But, as Table 11.1 indicates, NN applications have
really only mushroomed since 1996. The range of applications is very wide, from
explorations of individual parameters (Cancilla & Fang, 1996; Moatar et al.,
1999), through fisheries management (Aurelle et al., 1999; Olden & Jackson,
2002), to describing more complex patterns and interactions for management
purposes (Schleiter et al., 1999; Walley & Fontama, 1998).

The objective evaluation of NN outputs comes in one of two forms. Either NN
forecasts are compared to field or laboratory time series as in the case of Maier
et al. (1998) and Recknagel et al. (1997), or outputs are compared to results
developed using alternative forecasting techniques. Table 11.1 indicates that in
40% of the applications, linear regression is the chosen alternative; comparisons
with process models are infrequent.

The following statement made by Lek and Guegan (1999) when reviewing
NN progress in a wide range of applications is true for these cases: ‘Most of
these examples showed that NN performed better than more classical modelling
methods’. It can be argued, somewhat cynically, that the authors would not have
published if their results had been worse. It should also be noted that multiple
regression is a less sophisticated form of black-box input-output modelling, and
that in a very complex and non-linear natural world, NN models should do better
by definition. For optimum evaluation NN forecasts should be set against the
most sophisticated modelling approach normally used for each application.

It is notable that where results are reported with reference to times series, the
correlation coefficients are frequently above 0.9. Even where the ecological and
hydrological processes are complex, the results are impressive as in Karul et al.’s
(2000) study of modelling eutrophication in Turkish lakes and dams. The
authors state that ‘despite the very complex and peculiar nature of Keban Dam,
a relatively good correlation (correlation coefficient between 0.60 and 0.75)
was observed between the measured and calculated values. For Mogan and
Eymir, which are much smaller and more homogenous lakes compared to Keban
Dam Reservoir, correlation values as high as 0.95 were achieved between the
measured and calculated values’ (p. 145).

4 LABORATORY ANALYSIS

The increasing need to detect low levels of pollutants in water and sediment and
to look at the reactions of combinations of herbicides, pesticides and chemical
pollutants on organisms demands discriminating laboratory analytical tech-
niques that are sensitive and fast. Water quality managers may first encounter
NN in the laboratory where such tools are being incorporated into ‘smart’ and/or
integrated sensing equipment to automate pollutant detection and to discriminate
chemicals or identify organisms (Morris et al., 2001) at very high speeds.
Yatsenko (1996) shows how NN can assist in disentangling information from
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Table 11.1. A selection of applications of NN in water quality modelling.

Topic/ NN learning system Model comparison
authors (software if known) Application (where made)

Water chemistry
Cancilla and Fang (1996) Backpropagation (Brainmaker Water chemistry, three sites on the PCA and UPM

Professional) Niagara River, USA
Clair and Ehrman (1998) Backpropagation (Neuroshell 2) Changing climate impacts on discharge,

dissolved organic carbon, and nitrogen
from 14 eastern Canadian rivers

Clair et al. (1999) Backpropagation (Neuroshell 2) DOC in runoff for climate modelling Linear regression
Gong and Denœux (1996) Epochwise backsweep Transfer of solid waste in sewer pipes
Lek et al. (1996) Backpropagation Phosphorous and orthophosphate runoff 

from 927 USA tributaries
Lek et al. (1999) Backpropagation Nitrogen in stream water using land use 

variables. Data from 927 US watersheds
Maier and Dandy (1996) Backproagation Salinity of River Murray
Maier and Dandy (1998) (NeuralWorks Professional II/Plus)
Maier and Dandy (2001)
Manescu et al. (1998) DO and flow
Moatar et al. (1999) Backpropagation Daily pH 1st and 2nd order polynomial

regression
Poff et al. (1996) Backpropagation Temperature and flow changes in response 

to climate change scenarios
Starrett et al. (1998) Backpropagation Pesticide leaching from golf courses
Starrett et al. (2001)
Yang et al. (1997) Backpropagation Daily soil pesticide concentrations
Zhang and Stanley (1997) Backpropagation Water colour for treatment and

drinking water management
Cyanobacteria
Maier and Dandy (1997) Backpropagation (NeuralWorks Forecasting algal blooms in River 

Professional II/Plus) Murray using Anabaena and river  
water chemistry, colour, and temperature

Maier et al. (1998) Backpropagation (NeuralWorks Anabaena in River Murray
Professional II/Plus)

Copyright © 2004 Taylor & Francis Group plc, London, UK



W
A

T
E

R
Q

U
A

L
IT

Y
A

N
D

E
C

O
L

O
G

IC
A

L
M

A
N

A
G

E
M

E
N

T
IN

F
R

E
SH

W
A

T
E

R
S

201

Maier et al. (2001) Backpropagation Anabaena in River Murray, Associative memory
four week forecasts networks (AMNN)

Recknagel (1997) Backpropagation Blue green algae species forecast using water
chemistry information for lakes in Japan

Recknagel et al. (1997) Backpropagation (EXPLORER Blue-green algae species abundance 
from Neural Ware Inc.) is forecast from water chemistry inputs 

for lakes in Finland and Japan, and 
River Murray, Australia 

Walter et al. (2001) Backpropagation Chlorophyll-� as a measure of eutrophication, Deterministic model 
Burrinjuck Reservoir, Australia SALMO

Wei et al. (2001) Backpropagation (MATLAB Algal densities – four genera
Neural Network Toolbox)

Whitehead et al. (1997) Backpropagation Algal models for River Thames reaches Time series, Dynamic
process growth model

Wilson and Backpropagation 1 and 30 day forecasts of algal 
Recknagel (2001) abundance, 6 lakes

Fish
Aurelle et al. (1999) Backpropagation Distinguishing hatchery and natural 

brown trout stocks
Baran et al. (1996) Backpropagation Brown trout population density Multiple regression
Brosse et al. (1999) Backpropagation Lake fish abundance, multiple species Multiple regression
Brosse et al. (2001) Kohonen self-organizing map Fish assemblages, 15 species, Principal component 

Lake Pareloup, France analysis
Chen and Ware (1999) Backpropagation Pacific herring stocks Multiple regression, process

based climate-stock
recruitment model

Gozlan et al. (1999) Backpropagation River fish diversity and abundance Multiple regression
Huse and Ottersen (2003) Backpropagation Recruitment and biomass 

development of Northeast Arctic cod.
Ibarra et al. (2003) Backpropagation Fish guilds, Garonne
Laë et al. (1999) Backpropagation Fish yields from 59 lakes in Africa Descriptive statistics,

Stepwise multiple 
regression

Lek and Baran (1997) Backpropagation Brown trout population density
Mastrorillo et al. (1997a) Backpropagation Minnow abundance Stepwise multiple

regression
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Table 11.1. (Continued)

Topic/ NN learning system Model comparison
authors (software if known) Application (where made)

Mastrorillo et al. (1997b) Backpropagation Presence/absence 3 small fish: Discriminant factor 
minnow, gudgeon, stone loach analysis

Reyjol et al. (2001) Backpropagation Habitat modelling, brown trout, 
minnow, stone loach.

Zhou (2003) Backpropagation Abundance of Pacific salmon Moving average
Oncorhynchus spp.

Ecological Interactions and Management
Campolo et al. (1999) Backpropagation (Stuttgart Flow forecasting to manage 

Neural Network Simulator) water quality at low flows
Chon et al. (1996) Kohonen Network Benthic macroinvertebrates, 

Suyong river, Korea
Chon et al. (2000) Adaptive Resonance Theory Monthly benthic macroinvertebrates 

Kohonen Network in two streams
Karul et al. (1999) Backpropagation Lake eutrophication Multiple regression
Karul et al. (2000) Backpropagation Eutrophication in lakes 

and dams in Turkey
Lek and Guegan (1999) Backpropagation Kohonen A review paper discussing the 

Self-Organizing Map use of NN for ecological modelling
Obach et al. (2001) Kohonen Self-Organizing Map Ecosystem dynamics, 30 year record

of macroinvertebrate and habitat data
Olden (2003) Backpropagation Lake fish communities
Paruelo and Tomasel (1997) Backpropagation Seasonal vegetation growth Multiple regression
Schultz and Wieland (1997) Backpropagation Managing crop development 

and  soil moisture using 
meteorological and crop data

Schleiter et al. (1999) Backpropagation with senso-nets Multiple water chemistry 
parameters, habitat variables and 
benthic macro-invertebrates

Walley and Fontama (1998) Backpropagation initial Average score per taxon (ASPT) 
experiments included trials Number of families in unpolluted rivers
with 7 types of  NN before 
backpropagation was selected

Wen and Lee (1998) Backpropagation Catchment scale planning and management
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sensors as part of water analysis procedures. He uses a neural chip to separate and
classify pollutant characteristics. Charef et al. (2000) use the NN approach to
estimate concentrations of COD (Chemical Oxygen Demand) in urban waste
waters. Detailed discussion on the place of NN technologies in laboratories is
beyond the scope of this review, but these applied uses of NN solutions are typ-
ically tied to pollution monitoring at water and sewage treatment works (Adgar
et al., 2000; Baxter et al., 2001; Brion et al., 2001; Choi & Park, 2001;
Delgrange-Vincent et al., 2000; Joo et al., 2000; Milot et al., 2002; Pigram &
Macdonald, 2001; Serodes et al., 2001; Shetty et al., 2003).

5 FLOW FORECASTING IN RIVERS

At the heart of a traditional distributed forecasting model for water quality or
pollution monitoring there are routing models that forecast the in-channel
movement of water. Corne et al. (1998) have shown that the travel times of flood
waves can be forecast where the river data series is long enough to train the initial
model. But pollution wave travel times vary from event to event and do not
move at the same pace as the flood wave. At times of high flow a pollution inci-
dent may be mitigated by dilution, but the more rapid travel times may also be
critical in planning downstream pollution prevention measures. The potential
of NN solutions to act independently of a flow model by looking at event data
individually is a potential strength over traditional models that forecast the
chemistry of the runoff and then route the flows downstream as a separate
operation. NN are particularly valuable where flow is not well related to pre-
cipitation because of abstraction for hydro power plants, reservoirs or irrigation
(Golob et al., 1998; Stokelj et al., 2002). The application of NN in other flow
routing applications can be found elsewhere in this book (Chapters 5, 6 and 10).

What is not clear is whether in the long-term eco-hydro-chemical models
should be linked to flow forecasting models with good flood-wave travel-time
forecasting performance. Or whether the NN treatment of flow and chemistry
data independently but simultaneously will make robust models that solve this
non-linear problem. TDNN algorithms may prove more accurate since they can
search for appropriate lags in sequential data series (see Chapter 5). Developing
research in the latter area is potentially more appealing.

6 WATER QUALITY MODELLING

Classical water quality modelling started in the 1920s with the Streeter-Phelps
models for dissolved oxygen (DO) forecasts and some of the earliest NN inves-
tigations modelled the same variable. Partly this is driven by the importance of
DO in any aquatic system and because this is a variable with reasonably
detailed field records in many cases. Manescu et al. (1998) use a NN solution in
conjunction with a Geographical Information System (GIS) to forecast DO and
stream flow. The presented results are good but there is no independent forward
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testing for accuracy and stability. They pick up the point that non-uniformity of
sampling over 3 years forced the use of monthly averaged data. The model works
well but any data averaged over a month hides individual incidents of high or low
levels. This is fine for applications where monthly averages are the required out-
put, but the NN can forecast at shorter time intervals, given appropriate data.

Daily data are available for the Middle Loire which permits Moatar et al.
(1999) to forecast pH. The inputs are river flow and radiation, variables chosen
as important in controlling the eutrophication processes during summer low-
flow regimes. Testing was undertaken using 4 years of data and validated with
1 year of independent data. The reported pH forecast accuracy is 86%.

6.1 Chemical pollution
Nutrient loading is an issue in eutrophication where enriched runoff leads to
increased algal growth and decreased water quality. Phosphorous (P) has been
shown to be significantly related to enrichment characteristics, and so the pos-
sibility of forecasting P levels on a national basis was explored by Omernik
(1997). Omernik took data for 927 tributary catchments from across the USA
which did not have point source pollution inputs. Using multiple regression she
found it necessary to divide the USA into three regions and produce different
models for each region. Lek et al. (1996) have explored the forecasting poten-
tial of the same data set using backpropagation neural network (BPNN) mod-
elling and compared the performance of the different approaches. Lek et al.
used six independent variables to develop models for four dependent variables
which characterise P in runoff (Table 11.2). In each model run the six inde-
pendent variables were linked to one of the dependent variables (concentration
or export of P). Experimental runs with up to 20 hidden nodes showed that a
good predictive model could be created for each measure of P using only 5
hidden nodes and training for 500 iterations. The independent variables reflect
land use and stocking density, but have no direct information about regional
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Table 11.2. Variables used by Lek et al. (1996) to forecast four measures of P in
runoff from USA catchments.

Independent variables Dependent variables

FOR % of catchment CTP Concentration of
under forest total phosphorous (mg � l�1)

AGR % of catchment COP Concentration of 
under agriculture ortho-phosphorous (mg � l�1)

OTH % other land uses ETP Export of total
phosphorous (mg � l�1)

PRE Average annual EOP Export of 
precipitation (cm) ortho-phosphorous (mg � l�1)

FLO Discharge (m3 �s�1)
ANI Animal density 

(animal/km�2)
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variability. The forecasting efficiency in terms of a correlation coefficient was
in each case better than 0.7. NN performance also either equalled or improved
upon the regression approach. Moreover, there is no need for multiple regional
models, as a single network can cope with variation across the US. The advan-
tage of the NN approach over regression modelling is that the non-linearity
inherent in the systems is dealt with better. The performance of the BPNN in
this case shows that a single model can outperform the multiple regression
approach, and is more flexible.

Moving from a regional to a local scale, Cancilla and Fang (1996) sought to
compare techniques which will discriminate water chemical data from three
sites on the Niagara River. In this application the goal is classification, i.e. can
the NN or other methods discriminate within and between samples to identify
their source? The data comprised 24 hour composite water samples, taken
weekly and analysed for 32 target compounds, including chlorinated pesticides
and polynuclear aromatic hydrocarbons (PAHs). The NN was trained to see
how well the program could determine the source of each sample. The authors
compared the performance of the NN with results from a Universal Process
Modelling (UPM) analysis (O’Sullivan, 1991; Teranet IA Inc, 1992) and Principal
Components Analysis (PCA). All three approaches discriminated the sources
of the water samples.

In their experiments models were built using 25% of the data and then
validated against the unseen 75%. Table 11.3 shows the relative performance
of the NN and UPM approaches, which are both successful, with results above
the 90% level. The NN performs slightly better. Additionally the authors inves-
tigate the size of the minimum data set required to build an adequate model.
Figure 11.1 shows the results of training with sample sizes ranging from 2 
to 112. A predictive success of 65% was achieved from models developed on
2% of the samples, but when given 25% of the sampled data (35–40 records),
prediction success rose above the 90% level. This is an example of NN being
used to classify data, in this case to identify patterns and changes in patterns.
Given appropriately accurate data sets for normal hydrological conditions, this
technique has tremendous potential in natural and drinking water quality
analyses to spot changes in trends and locate contamination sources.

The water supply for Adelaide, Australia, relies on piped transfers from
adjacent basins. The piped supply contributes 10–80% of demand and may
have a high salinity. Maier and Dandy (1996) sought to forecast salinity levels
and recognised the potential appropriateness of developing NN solutions
‘because longer-term forecasts are required, non-linear relationships are
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Table 11.3. The percentage of times samples were correctly identified from chemical
data for 3 sites on the Niagara River (from Cancilla & Fang, 1996).

Method NN (%) UPM (%)

Training data 25% (37 seen samples) 100 93.7
Validation data 75% (112 unseen samples) 94.4 91.7
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suspected and it is difficult to prescribe the exact mathematical relationship
between the variables’ (p. 1016).

Their initial model had 141 inputs: flows, lagged flows and salinity data for
a series of sites, and the output was a 14-day ahead forecast of flow and salin-
ity at Adelaide. The final model had a reduced number of inputs (51) which
reduced training time and raised output efficiency. The validation 14-day fore-
casts had errors ranging from 5.3–7.0%. This is acceptable for planning pur-
poses, but could probably be improved given further data, although Maier and
Dandy (1998) show that it can also be improved by looking in detail at the
parameters of the NN structure itself. Through careful adjustment of the learn-
ing rate, searching for appropriate local minima and paying attention to the
length of the training period, the model can be further optimised. The authors
make the point that the model will learn common patterns quickly and well but
is slow to learn infrequent patterns and may model these very badly. Similarly,
in flood modelling, Kneale and See (2000) deal with this issue by training net-
works for extreme events on the high stage hydrographs only, and ignoring the
low flow discharge patterns. In looking at chemical and biological responses it
may be a good managerial approach to develop NN solutions for typical and
regular conditions and specialist models for rare events.

Where water is taken from rivers for drinking water, the intake quality
determines the level of purification required. On the North Saskatchewan
River at Edmonton, Alberta, the key variable is colour (Zhang & Stanley,
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Fig. 11.1. The effect of the training data set size on the prediction rate (from Cancilla &
Fang, 1996).
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1997). Catchment land cover is forest and agriculture, the water quality is good
but subject to high colour in spring and summer. In managing the treatment
works, a one-day ahead forecast is appropriate, giving time for chemical addi-
tives to be adjusted for the next intake. The input parameters are based on river
flow, change in flow rate, current and lagged colour data, precipitation and tem-
perature. Data are lagged to take account of river water travel times and season-
ality indices. The authors acknowledge that the models described in the paper
may not be the optimum solutions for this particular site but the results show
that NN can provide practical tools for forecasting water quality in real-time so
that operational decisions can be taken. Potentially the results from this type of
modelling can be linked to a computerised water treatment control process,
with additives and settlement times being controlled through the model.

Amongst a host of other applications Starrett et al. (1998, 2001) have shown
that their BPNN can be used to forecast the leaching of pesticides, in this case
for the short turf on golf courses. Their KTURF model outperformed the com-
parative regression models to forecast the complex interaction between the pes-
ticide, its solubility, leaching rates, and soil parameters. This model has potential
practical use in many irrigation applications where the leaching of chemicals or
pesticides are of concern.

6.2 Climate change
There have, to date been limited numbers of ‘what if’ climate and water chem-
istry modelling studies that used NN technologies, but Clair and Ehrman (1998)
is a valuable exception. These authors take up the challenge of assessing climate
change influences on forecasts of monthly discharge (Q, m3 � s�1), dissolved
organic carbon (DOC, kg � ha�1 � mo�1), and dissolved organic nitrogen (DON,
kg � ha�1 � mo�1) for 14 basins in Atlantic Canada where wetlands influence the
hydrological response. Modelling comprised a three-layer BPNN process and the
inputs were: month number, basin area, basin slope and 6 climate inputs which
are entered for the current and preceding month – maximum, minimum and mean
monthly temperature, total rain, total snow and total precipitation. This modelling
is at the seasonal scale, taking monthly values and summing them to generate sea-
sonal figures. The model is trained and validated on historic data but can also be
used with GCM (global circulation model) forecasts to look at the impact of
future climates. Such forecasts are clearly limited by the accuracy of the GCM
estimates of climate parameters and results cannot be compared with outcomes.
However, logical results are found. A warmer winter scenario reduces storage in
the snow pack and so produces more runoff, whereas summer warming increases
evapotranspiration and the forecast flows are lower. The forecasts for Q and DOC
which follow similar patterns are good. The DON forecasts are less good, because
nitrogen runoff is a more complex process than climate and basin topography can
be pattern matched against the results. These results have practical management
implications where water is extracted for irrigation and power generation and in
flood control, but as the authors point out, their reliability for future climate
related forecasting is a function of the GCM data input quality.
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An indirect investigation of climate change consequences for ecology is dis-
cussed by Poff et al. (1996). They use BPNN to forecast flows in the Little
Pauxtent and Independence Rivers. The models are trained on historic flow data
and then used to generate new forecasts given various scenarios for climate
change. The discussion of the ecological implications of various scenarios is
based on flow data only, and there is no ecological element in the modelling.
However, the NN forecasts provide an interesting basis for future speculation.

Frakes and Yu (1999) compare NN with a GIS based hydrological model to
forecast direct surface runoff, on a daily basis, from four sub-basins of the
Susquehanna River. The results were similar, with the NN doing slightly better
in the larger sub-basins and slightly less well in the smaller basins.

While Pearson et al. (2002) are concerned with forecasting plant species
evolution their modelling approach couples the power of a NN approach with
a process based climate–hydrological model, which identifies bioclimatic
envelopes and predicts species distribution changes in response to various cli-
mate change scenarios. This coupling approach giving additional power to the
modeller.

6.3 Biological interactions
Water quality may be characterised directly by its chemistry; but the abun-
dance or absence of biota is also a significant indicator of the quality and
health of a channel reach. Algae and indicator species such as Cryptosporidia
present water managers with immediate problems (Maier & Dandy, 1997;
Recknagel et al., 1997; Maier et al., 1998). The abundance and diversity of fish
species in a river reach are also an indication of water quality (Baran et al.,
1996; Lek & Baran, 1997). There are a number of investigations that have stud-
ied fish population diversity and the effectiveness of NN simulations to fore-
cast biological population diversity (Mastrorillo et al., 1997a, b; Walley &
Fontama, 1998) or to establish general relationships between environmental
variables and the ecological status of a river or lake.

Table 11.1 indicates that fish modellers are wedded to BPNN and generally
compare the results to regression models. Baran et al. (1996) compare forecasts
of population density and biomass in Salmo trutta L. (brown trout) for 220
channel reaches on 11 streams in the Pyrenees. The NN model was trained on
data from 165 reaches and validated on 55 reaches. In both analyses, observed
and estimated biomass and density are related, but the NN correlation coeffi-
cients are higher, and therefore the models are more accurate (Fig. 11.2). Taking
these data further, NN are used to predict the density and biomass of trout from
environmental variables (Lek & Baran, 1997). The independent variables are
mean Froude number, mean depth, mean bottom velocity, mean surface veloc-
ity, % shelter, % deep water, % total cover and stream altitude. Again the results
are very useful in an area where modelling ecological relationships from deter-
ministic flow equations is fraught with difficulty.

Gozlan et al. (1999) use NN to look at the structure and diversity of young
(0� years) fish in the River Garonne. For thirty-eight sites on the river 
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system, seventeen channel characteristics are used to forecast the abundance of
six fish species and related variables (Table 11.3). The non-linearity of the
relationships and the mix of data types suggest that NN should provide a more
accurate forecast than a multiple regression approach and their results show
this to be true. In this study 4250 fish were captured in 596 samples and of
these 3911 were 0�. The specific species included in the model comprise 71%
of the total. The NN forecasts the abundance of the species, which on this river
is ecologically very helpful. The hydrology of the Garonne is influenced by
dams along the main channel which have reduced microhabitat diversity. This
has changed the overall diversity of the fish population. Robust species like
Chubb were not affected by the changes but lentic species are reduced in num-
bers and rheophil and limnophil species are more dominant. The success of
these NN models once again indicates that such technologies can provide use-
ful planning tools for estimating the impact of physical change to a channel
morphology on fish populations.
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Fig. 11.2. Relationship between density or biomass, observed and estimated using multiple regression
models (MLR) and backpropagation neural networks (BPNN). (Redrawn from Baran et al., 1996, Figs.
11.2 and 11.3).
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Mastrorillo et al. (1997a) use NN to explore the dynamics of Phoxinus
phoxinus (minnow) populations because these fish are typical of the small
species which are critical in the food chain dynamics of streams. The use
of a BPNN shows minnow abundance increases as gravel and sand increases, 
but decreases with distance from the bank, stream velocity and pebbles. 
The BPNN successfully picks out the habitat preferences for this species as
shown in other ecological studies (Mastrorillo et al., 1996) provided there is a
suitably large database. This work is further developed in Mastrorillo et al.
(1997b) where BPNN forecast the presence or absence of three species
(Phoxinus phoxinus; Gobio gobio – gudgeon; Barbatula barbatula – stone
loach) in the same river. Comparison with a discriminant factor analysis shows
that NN are able to assign a higher number of individuals correctly. Both meth-
ods can predict the presence or absence of the three species but the NN are
more accurate.

Going beyond water quality, Aurelle et al. (1999) used NN to look at genet-
ically differentiated forms of Salmo trutta (brown trout). From the river man-
agement perspective this study shows that the impact of stocking and the
genetic differentiation of different populations of trout can be successfully
undertaken.

Forecasting the biomass of Clupea pallasi (Pacific herring) stocks over a
41 year period (Chen & Ware, 1999) is an example of a longer-term ecosystem
research application. NN performance of optimal models measured in terms of
the coefficient of determination is between 0.6–0.7, whereas a multiple regres-
sion model achieved 0.29, and a process climate-stock recruitment model
scored 0.42. Essentially the NN can forecast the biomass of the fish stock at a
higher accuracy than alternative methods and in a way that positively assists in
the management of fish resources.
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Table 11.3. The parameters used by Gozlan et al. (1999) for sites on the River
Garonne.

Input parameters Output parameters

Flowing channel (0/1) % clay Abundance of Blicca
bjoerkna

Partially abandoned channel (0/1) % silt Abundance of Leuciscus
cephalus

Abandoned channel (0/1) % sand Abundance of Leponmis
gibbosus

Distance from bank (m) % gravel Abundance of Barbus
barbus

Water depth (cm) % pebbles Abundance of Gambusia
affinis

Slope of bank % cobbles Abundance of Rutilis rutilis
Temperature (°C) Macrophytes (0/1) Specific richness
Water velocity Algae (0/1) Number of 0� fishes
% roots Shannon diversity index
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6.4 Macroinvertebrates
The biological condition of rivers in the UK is monitored using the BMWP
(Biological Monitoring Working Party) system where families of benthic
macroinvertebrates are grouped according to their sensitivity to organic pollu-
tion. Families which have low scores are relatively insensitive and so are wide-
spread whereas families with high scores are sensitive to pollution and
generally only found at clean, rural streams (Chesters, 1980). BMWP scores
are used in RIVPACS, a software model that combines macroinvertebrate
information with catchment data to forecast the ‘expected’ species compos-
ition at clean sites (Wright et al., 1995). This system uses the average score per
taxon (ASPT) and the number of families present (NFAM) because they are
less sensitive to seasonal and sampling variations than raw BMWP totals.
Walley and Fontama (1998) report the results of a NN study to forecast ASPT
and NFAM as a basis for biological classification of water quality. The thirteen
input variables describe catchment location co-ordinates, distance from source,
slope, alkalinity, discharge, altitude, boulders, pebbles, sand, silt, river width
and depth. Two NN were developed and both solutions were observed to per-
form slightly better than the industry standard RIVPACS III. Where the NN
appeared to be working less well the authors suggest the problem lies in the
data quality rather than the forecasting mechanism. For example, high altitude
sites gave relatively poor predictions, but of the five sites above 450 m, three had
unusually high alkalinities so it is probable that these three sites lead to dis-
tortion in the results at non-alkaline locations. The input variables could be
expanded to consider other geological or catchment characteristics, and it is
probable that some of the observed error is due to the natural seasonal and spa-
tial variation in species distributions.

6.5 Algal blooms
The issue of algal blooms in lakes and rivers is biologically significant 
and has implications for recreational users of the resource (Ferguson, 1997;
Codd et al., 1995). Bloom appearance is a complex function of nutrient load-
ing, enriched runoff, BOD, air and water temperatures and physical character-
istics of the river, lake or reservoir. Kneale and Howard (1997) showed the
inadequate power of multiple regression to explain bloom behaviour in UK
lakes and reservoirs, a problem that is relevant when data collection is
restricted to monthly spot sampling. Statistics can describe these data, but
forecasting potential is very limited. Recknagel et al. (1997) characterise the
roles and limitations of different approaches to phytoplankton modelling
(Table 11.4), an approach that could be usefully replicated in other areas of
quality modelling.

Recknagel et al. (1997) applied NN to the problem of forecasting seasonal
changes in the numbers of cells present for a range of algal species. These
authors use different input and output layers, for each of the five lakes con-
sidered, but with a common architecture (Fig. 11.3). Their success in forecast-
ing the number of cells present for a range of species from meteorological and
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Table 11.4. Characteristics of phytoplankton modelling (from Recknagel et al., 1997).

Empirical Time-series Neural 
steady Deterministic analysis Heuristic Fuzzy network 
state models models models models models models

Data type Cross-section Cross-section/ Time series Cross-section/ Cross-section/ Time series
time series time series time series

Time step for Minute/hour/day Day Month Day
simulation

Time resolutions Season/year Day/week/month Month Month/season Month/season Day/week
of predictions

Considered control Limiting Limiting, Limiting factors Limiting, Limiting and Limiting and
factors for factors physiological and physiological and multiple factors multiple factors
phytoplankton growth multiple factors multiple factors

Bases for Relationships Trend/ Multivariate Seasonality/ Seasonality/ Connections
predictions seasonality/ relationships serial serial

serial dependency dependency dependency

Predicted Chlorophyll-a Species/ Chlorophyll-a Species Species Species
phytoplankton functional assemblages assemblages assemblages
composition groups
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water quality information is indicative of the strength of this approach. These
authors also looked in more detail at the internal weightings assigned by the
different models and use sensitivity analysis to understand a little more about
the processes driving the bloom forecasts. This allows them to determine that
in the Lake Kasumigaura example, ‘chlorophyll-a determines most of the
dynamics of Microcystis’ and that clumps of Microcystis are indirectly pro-
tected from grazing by zooplankton which preferentially feed on non-toxic
algae. Effectively the NN models forecast the ‘timing, magnitude and succe-
sion of several algal species realistically, such as Microcystis, Oscillatoria and
Phormidium’ (Recknagel et al., 1997).

When there are good data sets, as for the lower River Thames, where the
UK Environment Agency collects flow, chemical and bio-indicator data regu-
larly, algal forecasts should be more operationally useful. Whitehead et al.
(1997) modelled the growth of algae and its transport downstream with the
benefit of weekly data. Usefully this paper compares NN performance against
that of a time series model and a dynamic mass balance and growth model. As
a forecasting tool NN are seen to perform as well as the two alternative mod-
els, but as the authors state ‘the advantage of NN is that no subjective infor-
mation is required to determine the model structure or estimate parameters’.
NN are therefore seen as the more pragmatic approach and one that can be
implemented independently by forecasters who do not have detailed local
catchment knowledge. Black box NN provide the forecast but do not give an
insight into processes of growth and mass, for which the mass balance model
is the more appropriate.

For the River Murray, Australia, Maier and Dandy (1997) and Maier et al.
(1998) forecast Anabena cell counts using BPNN. Blooms occur over rela-
tively short periods, 12–14 weeks in the summer months. This application
shows that NN may be calibrated on data from the first seven weeks of the year
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Fig. 11.3. NN structure used to forecast algal species at Lake Kasumigaura, Japan (from Recknagel 
et al., 1997).
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when colonies are developing but are not a management problem, and then
used to make forecasts for the next four weeks when numbers multiply and the
matter becomes more serious. The models provide useful forecasts of both 
the incidence and the magnitude of the peak in Anabena cell counts. As would be
expected, temperature is the key variable, and forecasts based on temperature
alone were very successful. Adding turbidity, soluble phosphorous and dis-
charge to the inputs slightly improves the forecast, as does adding lagged data.
For water management purposes a four week ahead forecast of cyanobacteria
peaks is acceptable; it allows time for management intervention if wished and
adequate warning if necessary. More recently Maier et al. (2001) looked at
four-week ahead forecasting, comparing neurofuzzy associative memory neu-
ral networks (AMNN) with BPNN. This is an approach that others will no
doubt want to explore because they show the AMNN to be more parsimonous
and a slight improvement on the BPNN.

In searching for a management tool to deal with eutrophication in lakes
Karul et al. (1999) develop a model to forecast chlorophyll-�. The inputs are
PO4 phosphorous, NO3 nitrogen, alkalinity, pH, water temperature, suspended
solids, conductivity, DOC, and Secchi depth. The comparable multiple regres-
sion model has a correlation coefficient of 0.71, which is very similar to the
NN performance at 0.74. The authors comment that the NN win out where the
inputs and outputs are not linearly correlated, but where the correlation is lin-
ear, the two approaches generate very similar results.

As in other areas the user must define the required output. If you want an
estimate of chlorophyll-� at a given time interval, NN will do the job, but if
you want process insights then look elsewhere.

6.6 Urban runoff
Urban storm water management presents a series of engineering challenges,
not the least of which is limited data availability because continuous monitor-
ing within pipes and sewers is expensive and difficult. There are some limited
applications but the information is relatively sparse. Zaghloul and Abu Kiefa
(2001) have reported on the use of NN approaches to perform sensitivity
analysis in conjunction with the very widely used US Environmental Pro-
tection Agency Storm Water Management Model. Previdi et al. (1999) used NN
to forecast flow in experimental urban networks and Gong and Denœux (1996)
use PRNN within a model to forecast both flow and total suspended solids. The
authors state that, in principle, their approach could be extended to forecast
COD, nitrogen heavy metals and other variables but they are restricted to TSS
by the availability of the data. The results are very good, improving on process
modelling, but again data availability is a key limitation to further work. Ha et al.
(2003) link a radial-basis-function neural network and a NN to classify land
use and land cover and then link to a process based urban runoff and water
quality model. They show that this coupling can be used to forecast changing
water quality runoff in response to an actual or planned urban landscape
change.
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7 INTEGRATED MODELS FOR CATCHMENT MANAGEMENT

One can envisage a catchment forecasting model that integrates water resource
demands with real-time flow and quality information, handles conflicting demand
requirements including economic elements, makes decisions about flow regimes,
extractions and releases, and thus provides a decision support system. Since these
diverse demands are highly non-linear and data are likely to be recorded on dif-
ferent scales and time frames, NN should offer some advantages. The program
described by Wen and Lee (1998) moves in this direction. These authors use data
for the Tou-Chen River, Taiwan to seek management proposals which:
(a) find a reasonable allocation of waste loading for each pollution source

against discharge to the river
(b) achieve higher standards of water quality for fish, and improve the envi-

ronmental quality, and
(c) determine a basis for the total elimination of mass loading in a deteriorat-

ing river.

The flexibility of the NN approach allows economic and environmental variables
to be linked in a manner that would not be clear in a process model. The authors
conclude that their NN solutions can be used to manage the river basin and
select feasible strategies to meet environmental quality goals.

The speed of execution of NN solutions and their general tendency to
require fewer parameters than conventional models present the forecaster with
tools to compile and compare multiple management scenarios. Yang et al.
(1997), modelling accumulated pesticide concentrations in agricultural fields,
showed that the model could be run in real time, while spraying was taking
place, and allow field application rates to be varied. The output from this
model, which has the potential to generate multiple scenarios, could provide
the input to a hydrological drainage and runoff model.

There are a limited number of cases where there has been a comparative
study of water quality and/or ecological model performance. In the ecological
literature Paruelo and Tomasel (1997) test aspects of a simulated data series for
a seasonal vegetation growth index and show that NN models outperform
regression models as a forecasting tool. NN solutions handle the non-linearities
in the system better. These authors generate their data series, which creates an
interesting experiment, but field trials would be very valuable. This is the crux.
The data must be available.

More recently these approaches have been used by Chen and Mynett (2003)
to explore eutrophication, Shim et al. (2002) for flood control on the Han River
Korea, Wang and Jamieson (2002) for wastewater treatment planning and Xia
et al. (2001) to forecast lake basin water and salt balances.

8 ARE NN USEFUL FOR WATER QUALITY MODELLING?

Since Colasanti (1991) speculated on the value of NN for ecological fore-
casting there has been a wealth of hydrological water quality applications. 
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The similarities between the structure and behaviour of NN and natural eco-
logical systems argues for the use of NN tools in ecological modelling. But do
these NN applications improve on current forecasting practice and are the fore-
casts accurate enough and achieved at an acceptable cost?

Looking across the water quality modelling literature it is clear that in the
last six years NN have been used in a diverse range of applications. Results from
comparison studies with alternative statistical approaches suggests that the NN
models give slightly better results. NN do demand large data sets but these solu-
tions have a real edge in eco-biological studies in being able to handle data that
are qualitative. Where model performance falls below expectation, errors are
most frequently attributed to inadequacy in the data, as for example reported in
Walley and Fontama (1998). When compared with statistical alternatives the
evidence suggest that NN models can more accurately forecast non-linearity,
handle complex inter-relationships and give a good indication of input-output
responses. In water quality modelling hydroinformatics is thus seen to run in
parallel with ecological informatics, hopefully to the benefit of both.

In many traditional examples of water quality modelling, the bio-chemical
elements followed on as a second step after a hydrological model was created.
The water quality elements were in some cases constrained by the structure of
the original model and limited by the lower quality and consistency of data.
There is no water quality equivalent of the 15-minute stage or rainfall record
nor is the spatial distribution of these data comparable. The NN approach
offers the opportunity for the modeller to treat all inputs independently and to
link detailed and sparse data sets as inputs on an equal basis. The flexibility this
affords is a major breakthrough. Their practical potential to combine diverse
data, for example crop information with land use and weather data in agricul-
tural modelling, has been highlighted by Schultz and Wieland (1997). Lek and
Guegan (1999) stress the powerful potential of NN models to solve ‘hard compu-
tational problems’ including those where the underlying ecological relations are
not understood. Gevrey et al. (2003) are confident enough to say ‘Convinced
by the predictive quality of artificial neural network (ANN) models in ecology,
we have turned our interests to their explanatory capacities’.

NN software packages are available but clearly users need to understand
the real world function well enough to make good judgements about NN model
architecture, training and validation. Zhang and Stanley (1997) show that the
variable which is most highly correlated with the output, yesterday’s raw water
colour with today’s, does not give a good model. The strong autocorrelation in
the data causes the model to forecast a repetition of today’s values for tomor-
row. ‘The model lost its ability to distinguish the small individual difference
between today’s colour value and yesterday’s’ (p. 2343), but it is this crucial
small scale difference that the water treatment manager requires. Hence the
modeller’s intuitive ideas about model structure were modified in the light of
initial model forecasts. Starrett et al. (1988) describe the trial and error process
involved in finding the optimum number of hidden layers and hidden nodes,
and in comparing the effect of different transfer functions on the forecast.
Indeed, as stated, ‘tens of run were made with each new network structure to
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determine the solution that had the lowest error’ (p. 3103). The forecaster must
take the time to investigate the effects of model architecture to ensure the valid-
ity of the results. However, this is one of the few papers to consider that the
time taken to create and test the model was a constraint.

The major disadvantage in taking a NN approach is that it does not give the
modeller further insights or explanations of catchment processes and dynamic
change, although Recknagel et al. (1997) have shown that sensitivity analysis
can produce useful insights about the processes. For the water quality manager
this is a technique that is powerful, easily available and produces results that
are directly understood by the user. Where this type of information is required
then NN modelling offers a useful managerial tool. Working further with the
approach and recognising its value in allowing the integration of various types
of data, as in the Wen and Lee (1998) case where the approach is used to
choose multiple options, is perhaps the next most useful step.

The increase in NN applications in the late 1990s has been followed by
continued acceptance of the technique (Brion & Lingireddly, 2003; Lee et al.,
2003) and links to the development of fuzzy logic (Maier et al., 2001), fusion
modelling (Abrahart & See, 2002) and genetic algorithm rule-based models
(Bowden et al., 2003; Chen et al., 2003; Wang & Jamieson, 2002). So far the
dominance of backpropagation learning rules is clear. The availability of NN
tools as shareware and the speed of model calculation make this an appealing
set of technologies. Where the modelling alternative is a regression or correla-
tion approach then the theoretical advantage of applying a non-linear model-
ling solution makes considerable sense.
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1 INTRODUCTION

The supply and transfer of sediment to and through the river system consists of 
a number of complex phenomena. At all stages of the process, from initial
detachment of sediment particles to arrival of sediment at a point of interest, a
combination of highly non-linear and interacting processes contribute to this
complexity. There are problems in the estimation of any individual process com-
ponent, and therefore the estimation of a final sediment flux resulting from the
combin-ation of all components is extremely difficult and prone to error. In con-
trast, many of the techniques available for estimation of various parts of the sed-
iment supply and transfer system are very simple, and often empirically based.
This combination of complex process and simplistic estimation occurs in several
areas of science. For many projects in engineering, agriculture or hydrology, an
assessment of erosion rates or sediment movement has to be made rapidly and
without recourse to detailed and expensive field monitoring programmes.
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As the contributory processes are so complex, their full explanation in math-
ematical terms is not possible. Even if it were possible to derive physically-
based equations that reflect the full complexity of the situation, it is certain that
for any given study or project, sufficient data would not be available to apply
such techniques. This is particularly so in cases where one is trying to predict
what may happen over the course of, for example, the next 100 years, during
which time many of the controlling parameters may change. However, in many
situations, an estimate of erosion rates or sediment yields must be obtained so
recourse is made to the simpler and empirical models.

One may argue that where estimates are made for long time scales the poten-
tial change in short term sediment supply or transfer rates, due for example 
to changes in land use or management, are so great that complex modelling
methods are not justified. Unforeseen changes in the system may alter esti-
mates by a factor greater than the inherent error in an over-simplistic estima-
tion method. There is merit in such a point of view; however, some estimation
procedures result in extremely high errors, even for today’s well monitored
sites, which may also determine the success or failure of a project. Thus it
seems logical to attempt to improve the estimation methodologies available.
The development of artificial neural networks (NN) over recent years offers
good potential to develop more robust and accurate sediment modelling solu-
tions (Li & Gu, 2003; Nagy et al., 2002; Tayfur, 2002).

In this chapter, an overview is given of the processes involved in sediment
supply and transfer. The difficulties of measurement are discussed and a sum-
mary of widely used prediction techniques given. At each stage of this discus-
sion the non-linearities and interactions between processes and stages of the
supply-transfer chain are highlighted. The potential advantages offered by NN
are then explored. This is followed by reports of some preliminary studies car-
ried out using NN for the estimation of sediment yield from small catchments
and for larger river sites. Finally, an assessment of results to date and future
research directions is given.

2 THE SEDIMENT SUPPLY AND TRANSFER SYSTEM

The sediment supply and transfer system starts with the detachment of soil parti-
cles from their parent material or current location. Eroded material is transported
overland, through the air, or through the river system and at some later stage is
deposited. This sequence of processes occurs many times as a sediment particle
moves from its original detachment site through the catchment (Fig. 12.1).

All three components of the sediment cycle vary, both spatially and tempor-
ally, and are affected by a range of controlling parameters. Sediment supply
sources include geological weathering, freeze-thaw processes, sheet, rill and
gully erosion, wind erosion, mass movements, construction sites, mining, log-
ging, roads and river bank collapse. The rates of supply from these various
sources are in turn affected by land use and management practices, climate,
topography, geology and soil type. Thus both the potential for a particular site
to supply sediment and the actual rate at which sediment is supplied to some
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point down-slope or down-stream show extreme variability in both time and
space. In areas where the regolith is disturbed, for example in mining and agri-
culture, the sediment load is likely to be enhanced and enriched with pollutants
whose transport, deposition and re-erosion may also be of interest (Doyle et al.,
2003; Erskine et al., 2002; Martin & Calvert, 2003; Melieres et al., 2003).

Sediment transport is controlled by gravity and erosion agents such as water
and wind. In mass movement the energy to move sediment down-slope is gravi-
tational in nature, although water may well have played an important initial role
in destabilising the slope. Where water flows over land or through a drainage net-
work, the ability of the water to move particles is related to the depth and veloc-
ity of the water as well as the characteristics of individual sediment particles
(size, shape, density). A similar combination of factors comes into play for sedi-
ment transport by wind. A sediment particle may take seconds or thousands of
years to move from its initial point of detachment across a catchment and through
a river network. Once in a river system, sediment moves in three main modes:
1. Bedload consists of large particles which are moved along in continuous

contact with the river bed, i.e. shear velocities of flow are never sufficient to
entrain this material into the body of the flow.

2. Suspended bed load consists of material that is intermittently in suspen-
sion in the flow body, and at other times on the river bed (either at rest or
forming part of the bedload). Material is entrained from the river bed as 
the shear velocity of the flow increases, and is re-deposited as velocities
decrease again. The result is that this material is found in varying concen-
trations throughout the river section. Generally a logarithmic profile is found
through depth, with a normal distribution across the section. Maximum
transport rates are generally in mid-river and in the mid-depth range, 
coincident with the maximum velocity zones in straight river sections. The
entrainment and deposition process is complicated by the burial and shad-
ing of soil particles by larger particles. Thus material of a size that could,
theoretically, be entrained at a certain velocity may be trapped on the river
bed under larger particles and thus unavailable for transport. In extreme
cases river beds may effectively be arrowed by large particles.
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3. Washload consists of material that is constantly in suspension, and is found
at constant concentrations throughout the river depth, and across the profile.
For estimation methods and measurement programmes this is often defined
as material finer than 63 
m in diameter, although intuitively this criterion
will be different for different flow rates.

Normally measurements of bedload and suspended material (including
washload) are made separately. Bedload is often not measured directly but is
estimated from the bed grain size data.

At any point from the time of initial detachment sediment can be picked up
and transported by a body of water with sufficient energy. Once that energy is
dissipated in some way, such as a reduction in flow rate, water entering a reser-
voir, a wider section of river, or shallow flow over floodplains, sediment will
settle out of the flow and be deposited. This happens in both overland and river
flow. Thus a particular soil particle can be moved in several steps from its ori-
ginal location to a river, with a time delay of days to centuries, depending on the
obstacles that are in its way. Once in a river, sediment can only be transported
when there is sufficient flow to do so. For a particular river, flow will never
have sufficient energy to move some particles; some will only be able to move
along the bed and some will be intermittently in suspension in the flow, whilst
the very finest particles may be permanently in suspension. Individual par-
ticles can be buried under other particles and so trapped within the river system
for considerable amounts of time before re-entrainment.

Thus transport of sediment through the river system is dependent on both
the supply of sediment to the river channel and the ability of the flow in the
river to move the supplied sediment. Rivers are often described as supply or
capacity limited transport systems, although in reality there is not a discernible
transport capacity limit for the finest sediment particles. In practice a river can
move from one state to the other dependent on the temporal distribution of both
sediment supply (amount of sediment and sediment particle size) and river
flow. In the majority of rivers the ability of the river to transport sediment is not
the limiting factor; it is rather the supply of sediment from the range of sources
in the catchment which restricts the amount of sediment moved. This means
that for most rivers the relationship between sediment concentration and water
discharge exhibits marked hysteresis. This can be in either a clockwise or anti-
clockwise direction dependent on the proximity of active sediment sources 
to the monitoring point. In practice, data from an individual site will exhibit
both leading and lagging sediment peaks relative to the flow peak. Figure 12.2
demonstrates this for a site on the River Tees in north-east England for a series
of events before and after a large storm (on 28 October 2000) which activated
new, local sediment sources. Post-flood events all had leading sediment peaks.
Hysteresis for events with leading and lagging sediment peaks (above and
below zero time difference on the graph) is in opposite directions.

White (1996) assessed the contribution to overall sediment yield of wet and
dry season flows, thunderstorms and tropical cyclones for a reservoir catchment
in the Philippines. It was generally held that the cyclone events, which generate
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large widespread flooding, were the main reason for the high sedimentation
rates of reservoirs, but it was also clear that much of the sediment supply work
was done by smaller frequent and localised thunderstorm events. When a
cyclone occurred there was already a large amount of detached sediment mov-
ing through the river system, which was available for transport when the river
discharges were raised.

It is also clear from a number of comparative and paired catchment studies,
that sediment supply can be dramatically reduced (or increased) by human
activity. For example, in a study in Malawi, White et al. (1988) found that the
difference in sediment yield between a fully managed and a traditionally
farmed catchment was of the order of 100 times. These characteristics of sedi-
ment movement, which are temporally erratic, spatially variable and impos-
sible to monitor on an appropriate scale to permit process modelling, suggests
that NN should theoretically present a practical option for the forecaster.

Large catchments do, however, behave as integrators of the individual parts
of the catchment, and in the same way as hydrological modelling began 
with ‘lumped’ and ‘empirical’ approaches and developed to ‘distributed’ and
‘physically-based’tools, so sediment yield modelling has followed a similar route.

3 EROSION AND SEDIMENT YIELD ASSESSMENT

For the NN modeller the potential to integrate hillslope and river processes 
is attractive. It has been shown elsewhere in this book that river flow, which is
a main controlling factor for sediment transport, may be forecast reasonably
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well with NN. But there is no absolute requirement to model river flow 
as a pre-requisite to modelling sediment transport, as early empirical models
show. Sediment supply and transport rate forecasts have historically developed
from two directions, agricultural engineering and civil engineering. These two
sub-disciplines developed distinctively different approaches because of the 
differing objectives of their studies. Agricultural engineers were primarily
interested in field scale erosion of soil, i.e. the loss of soil from fields, and
measures to prevent it. Civil engineers were interested in the transport of sedi-
ment by rivers, and particularly in the long-term yield of sediment to reservoir
impoundments. Over the years, work by specialists with other interests and
disciplines have resulted in new approaches to erosion and sediment transport
estimation. The following section gives an overview of the techniques that are
available for assessment of field-scale erosion, in-stream sediment transport
and long-term sediment yield. The potential use of NN at each of these scales
is highlighted.

3.1 Field-scale erosion rates
Work to assess field-scale erosion rates developed rapidly early in the 20th
century as a result of severe erosion in the USA. A series of monitoring sites
were developed to measure the rate of sediment loss for different soils and
topographic conditions under different land uses, land management regimes
and rainfall. Measurements were carried out on standard rectangular plots.
Such measurements have been replicated in many countries throughout the
world. In the USA, a total of 10,000 plot years of data was collated and used to
develop an empirical relationship between soil loss and its controlling factors
(Wischmeier & Smith, 1978). This relationship, the Universal Soil Loss Equation
(USLE), forms the basis for many erosion and sediment yield estimation 
techniques.

The basic model is:

E � R � K � LS � C � P (1)

where:

E � Rate of soil loss
R � Rainfall erosivity parameter
K � Soil erodibility parameter
LS � A topographic factor, accounting for slope length and steepness
C � A crop cover factor
P � A management factor

The equation was modified for situations where runoff or rainfall dom-
inates the sediment detachment process, to produce RUSLE (SWCS, 1995) and
MUSLE (Williams & Berndt, 1977) respectively. In Southern Africa, a similar
technique, the Soil Loss Estimator for Southern Africa (SLEMSA), was 
developed (Elwell, 1980).
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Alternative attempts were made to develop a more physically-based model to
include field-scale processes such as rills, under the auspices of the Water Erosion
Prediction Project (WEPP) (Flanagan & Nearing, 1995; Renschler, 2003).

In fact what is actually estimated by these techniques is a very small-scale
land-based sediment yield figure. This can give an idea of loss of soil from an
agricultural area, or the potential relative contribution of a certain area of a
river catchment to the overall sediment load carried by the river. These tech-
niques allow comparison of different potential land uses or management tech-
niques in terms of their effectiveness at maintaining soil in place and can,
therefore, be used in planning, design and assessment of catchment manage-
ment plans or as a means of evaluating soil conservation programmes.

The USLE and its derivatives are a common method that is used to provide
the soil loss estimation component in several catchment scale hydrological
models. The widely used Soil Water Assessment Tool (SWAT) (Arnold et al.,
1998; Chanasyk et al., 2003) has an erosion model based on MUSLE. In com-
mon with other USLE based models this effectively restricts its use to areas
where sheet and rill erosion dominate the sediment supply system.

3.2 Sediment transport rates
In order to design sediment extraction devices, to plan dredging programmes,
to understand sediment supply and movement through a catchment, and to
assess the influence of sediment on river ecology and habitat (particularly 
for fisheries; see Chapter 11), we need to estimate sediment transport rates at 
a point.

This can be done in two ways, although in reality monitored data are
required to validate any modelling approach:

• Measurement of sediment concentrations across a river cross-section. This
is labour intensive and expensive. In order to define the whole sediment
transport regime, measurements must be carried out at frequent intervals
over a long period. In addition, there is often hysteresis in the sediment 
concentration-discharge curve, and this may change with varying antecedent
conditions and with changes in the catchment (on a seasonal or longer term).
The result is a high degree of uncertainty, with the sediment rating curve
often consisting of a cloud of points around a regression line. It may also 
be necessary to carry out repeat surveys of the river channel to identify 
deposition and erosion zones.

• A number of sediment transport formulae are available (for a review of sedi-
ment transport in rivers, see Fisher, 1993). These provide an estimate of the
capacity of the river to transport sediment of a given size, and thus theoreti-
cally provide an upper limit to the sediment transport rate. There are many
equations available, most of which have been developed with flume data.
Such equations may be unrealistic for natural river conditions. Most of the
equations require a representative bed grain size as input. This is very diffi-
cult to obtain, as bed material clearly changes with flow condition. The avail-
able equations normally give a wide range of answers for a given river site.
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• Other investigators use a ‘stream power’ approach, first suggested by
Bagnold in 1966, which considers a body of moving water in a river to be
analogous to an engine able to exert power in order to carry out the work of
sediment transport. This approach has been revisited and improved recently
(Finlayson & Montgomery, 2003; Martin & Church, 2000).

3.3 Sediment yield
Sediment yield can be defined as the total volume or mass of sediment passing
a point of interest over a specified time. For example, the long term average
annual input of sediment to a reservoir may be needed for the practical man-
agement of siltation problems or be required in reservoir design modelling.

The need to estimate sediment yield has mainly and historically been related
to the construction of large dams. As well as estimating how long a reservoir
will take to fill with water, there is also a need to estimate how fast it will fill
with sediment. This defines the viable life of the reservoir. In reality sediment
yield estimates are subject to so much uncertainty that it is extremely rare for a
proposed dam project to be abandoned because of predicted high sedimentation
rates. At best, the design may be adapted to include some sediment exclusion or
extraction device such as low level sluices, but these are often ineffective.

Sediment yield estimates for dam projects often constitute 1 or 2 pages in
an overall feasibility study running to hundreds if not thousands of pages. 
And yet one of the major problems encountered in many reservoirs around the
world is that of excessive sedimentation. Even where sedimentation is not a
problem in volume terms, water quality problems may be associated with input
of contaminants attached to the sediments. Sediment inputs are almost without
exception in excess of those predicted at the feasibility stage, often by an order
of magnitude (see for example: Brabben, 1982; Fish, 1983; Patnaik, 1975;
Dickinson et al., 1990). This poor record of pre-construction estimates of sedi-
ment yield rates has many contributory causes. In order to understand the
shortcomings in currently available techniques, it is necessary to look in more
detail at the options that are available for sediment yield estimation, and the
factors that contribute to error.

There are four basic options for sediment yield estimation:

• Measurement of sediment concentration and stage (river flow) in order to
develop a sediment rating curve. This is then used in conjunction with a
long-term river discharge record to estimate long-term sediment yield. This
is subject to the same problems of measurement as discussed above.

• The use of hydrological models of various types (conceptual, black-box, 
stochastic, physically-based). Even the most sophisticated hydrological
models use empirical relationships for sediment components, often based on
USLE. Although some make an attempt to impose a more rigorous phys-
ically based approach, even these resort to empirical ‘parameters’. In order
to get the supply side of the equation correct, predictions of overland flow
have to be correct. There is much debate in the literature over whether any
model (even the most complex) can realistically model internal catchment
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processes. Although models may make a good prediction of river flow at the
catchment outlet, the various components of that flow (overland, shallow
soil, groundwater interaction, etc.) may not be well estimated in time or
space and both are necessary pre-requisites for accurate modelling of sedi-
ment supply and transport.

• Sediment yield models (e.g. Al Kadhimi, 1980; Fournier, 1960) are nor-
mally highly empirical. They are based on simple bulk catchment charac-
teristics such as catchment area, main channel slope and vegetation type.

• GIS based models of erosion and sediment transfer, which are based on ero-
sion risk, are themselves often based on one of the empirical soil loss 
models in an attempt to represent spatial variability in sediment supply. The link
between the estimation of movement of eroded sediments from the hillslope
to and within rivers is often weak. Some work has been based on distance
and slope to main river channel, i.e. the further the original erosion is from
a river and the shallower the slope between it and the river, the longer it will
take for eroded material to move into the river. Some attempts have also
been made to integrate this sort of approach with more sophisticated dis-
tributed hydrological models (e.g. Burton & Bathurst, 1998).

In estimating at any scale (field-scale erosion, sediment transport and 
sediment yield) we are interested in three phenomena and their interactions - 
supply, transport and deposition of sediment. As described above, all of these
processes are extremely complex and non-linear, and show high temporal and
spatial variability, with in-built and variable lags in the system and continue to
need field assessments to judge reliability (Walling et al., 2003).

4 WHY USE NN FOR SEDIMENT MODELLING?

A consideration of the factors affecting supply and transport of sediment and
the inadequacy of the techniques available for estimation allows us to list a
number of possible advantages of NN sediment modelling:
1. Non-linear behaviour can be learnt – e.g. variation due to antecedent condi-

tions, location of rainfall events, seasons, thresholds, etc.
2. There is no need to explicitly define all contributory processes as they can

be represented by proxy variables (e.g. date). This is also true of statistical
models.

3. Input variables can include those that use, for example, varying upstream
inputs to represent spatial variability (e.g. flow rates for upstream tributar-
ies or upstream raingauge data). Causal links do not have to be explicitly
explained.

4. NN have been shown to work for river flow prediction, which is one of the
main controlling factors for sediment transport.

5. There is no requirement with NN to model river flow as a pre-requisite to
modelling sediment transport, thus removing one major source of potential
error.
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6. Where data are scarce there may be a possibility to transfer models
between hydrologically similar rivers with geographically similar catch-
ments - although ‘similar’ remains to be defined.

7. NN are mathematically and computationally less demanding than most
sediment related modelling alternatives.

8. Non-contributing variables can be identified and removed or ignored. This
is also true for statistical models.

9. Some understanding of the physical system functioning may be gained by 
an analysis of which events are affected by the removal of input variables
(Abrahart et al., 2001) or hidden neurons, which represent specific hydro-
logical processes, e.g. overland flow, flow recessions, flow peaks (Wilby et al.,
2003).

10. Potentially, more general models can be developed.

5 PREVIOUS NN STUDIES IN SEDIMENT MODELLING

There are a limited number of studies that have used NN to model the sediment
supply and transfer system. Abrahart and White (2001) applied NN to a series
of four small experimental catchments in Malawi. The catchments experienced
differing land use and management regimes and had been monitored over a
period of 3–5 years. A small data set with 117 records containing rainfall, runoff
and sediment yield were available covering the 1981 to 1985 rainy seasons.
Models for predicting sediment output were developed using multiple linear
regression (MLR) (Fig. 12.3) as a benchmark and a fully connected 8:8:1 NN
trained with backpropagation and jitter, which is the addition of artificial noise
(Fig. 12.4). In both cases, proxy variables were used to represent different
catchment characteristics. Due to the small size of the data set, the networks
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were trained with increasing amounts of jitter, which was added to the input
patterns during training in order to facilitate a generic solution and to avoid
over-fitting.

The results showed that the NN significantly outperformed the MLR
approach. The NN solution provided a tighter fit to the data and created a
marked reduction in the number of pronounced outliers. The NN approach also
had the added advantage of producing a solution with a similar pattern of error
for each catchment unlike the MLR, which exhibited bias in favour of the
catchment with the largest number of recorded observations. The NN technique
produced a more flexible response to changing circumstances and the pattern
of error between the individual catchments was equalised so that the model
could be transferred to unknown scenarios with reasonable confidence.

Jain (2001) used NN to model the sediment-rating curve at two sites on the
Mississippi River. This work built on his earlier research to model discharge
rating curves, which also used NN (Jain & Chalisgaonkar, 2000). A sediment
rating curve expresses a non-linear relationship between the sediment and river
discharges and is usually modelled using regression analysis and curve fitting.
NN provide an alternative method for modelling this non-linear relationship.
Different combinations of input variables were used including current and 
previous levels, discharge and sediment concentration inputs while the output
layer had two nodes, one for discharge, and one for sediment concentration.
The number of hidden layer nodes was determined through trial and error.
Conventional rating curves were also developed for the two gauging stations
concerned to provide a comparison. The results showed that the NN provided a
better estimate of sediment discharge for the validation period at both sites, 
relative to a conventional curve fitting approach, which encountered problems
with peak prediction. NN were also successful in modelling the hysteresis
concentration using 161 observations from 4 streams. Half of the observations
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were used for training and the remaining half for verification. The input vari-
ables included 6 parameters covering tractive shear stress, suspension, water
depth ratio and Froude effect.

Nagy et al. (2002) used NN trained with backpropagation to estimate total
sediment concentration. Testing was undertaken to determine the most suitable
NN discharge, Reynolds numbers and stream width ratio, which were used to
predict the sediment transport. The final architecture contained 12 hidden
nodes. The model was verified with a large number of data points from several
rivers. The results showed that the NN approach estimated sediment concen-
trations well compared to conventional methods. The authors also compared
the NN results with seven other formulae presented in the literature, and the
NN model gave the best results overall.

NN have also been used to model sheet sediment transport (Tayfur, 2002).
Three-layer feedforward networks were trained and tested using experimental
slope and rainfall intensity input data to predict sediment discharge as an output.
The NN were compared to results from the most commonly used physical mod-
els including flow velocity, shear stress, stream power and unit stream power.
The results showed that the NN performed as well as the physically based mod-
els at predicting nonsteady-state sediment loads at varying slopes. The various
approaches were also used to predict the mean sediment discharge from exper-
imental runs. The results indicated that the NN performed better than the phys-
ically based models at steep and very steep slopes under very high rainfall
intensities.

6 NN EXPERIMENTS

This section discusses initial results from an investigation into the possibility of
modelling sediment concentration directly from flow rate without the need for a
sediment-rating curve. Data from the Land Ocean Interaction Study (LOIS)
(Wass & Leeks, 1999) and the sustainability in managed barrages study
(SIMBA: www.silsoe.cranfield.ac.uk/iwe/projects/simba.htm) were used in
these experiments. Flow and sediment concentration data for two stations were
used: the Low Moor station on the River Tees, and the Thornton Manor station
on the River Swale, both in north east England. The catchments providing sedi-
ment to the Swale River and the Tees River have similar characteristics, which
justified the use of the data for both rivers during the training and testing stages.

The backpropagation method was employed to train the NN. A series of 
trials were undertaken to determine optimum values for the number of nodes in
each layer, the number of hidden layers, the learning rate, the momentum rate
and the connection weights. Fixed stopping was used and all data were scaled
between 0 and 1.

6.1 Spatial transfer based on flow
The first set of experiments was designed to train NN for a station on the 
River Swale and for the solution to be tested and applied to a station on the
River Tees. NN were trained using 15-minute flow values as inputs for the time
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period 10/11/1994 to 25/12/1994 for the River Swale. Six flow values (t to t � 5)
were used to estimate the unique suspended sediment concentration at time t.
The testing of the trained NN was accomplished with 15-minute flow and sus-
pended sediment data from the Low Moor station on the River Tees for the time
period 23/01/2000 to 07/03/2000. The results are shown in Figure 12.5.

The results indicate that the suspended sediment concentration predicted by
the NN generally approximated the observed value but underestimated the
peaks. The MSE and the estimated total sediment yield at the end of the testing
period were 472 and 3496 t respectively. The difference between the estimated
and observed sediment yield (5664 t) was 38%.

The experiment was repeated, replacing the training data with the testing
data and vice versa, i.e. the Tees River data were used for training and the
Swale River data for testing. The time periods of the data considered during
both stages remained unchanged. The results showed that the NN predicted the
general behaviour of the observed Swale series but again there was a general
underestimation of the peaks. The NN estimated a sediment yield of 7739 t,
which was just 4.4% higher than the observed value of 7412 t, with an MSE of
632 t. The small difference in yield estimates arose because the underestima-
tion of peaks was balanced by an overestimation of low flows.

The above experiment was then repeated with the input and output data
rescaled to between 0.2 to 0.8 and an input time interval from t � 8 to t � 13. The
results showed that changing the input time interval and the scaling limits pro-
vided closer approximations to the observed values. The MSE decreased to 533 t
and the total sediment yield estimated was 2.3% higher than that observed.

These results show that if river flow and suspended sediment data from a
nearby river with similar catchment characteristics are available, then the gen-
eral behaviour of the suspended sediment time series can be estimated using
the available flow series for the corresponding time interval. The results
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obtained are especially significant considering the expense of installing sediment
measurement equipment and the importance of providing realistic future 
estimates for a river’s potential sediment yield.

6.2 Temporal transfer based on flow
In the second set of experiments, NN were trained on 15-minute data from the
Low Moor station on the River Tees for the time period 21/01/2000 to
25/02/2000 and tested on a later period at the same location. The input data
consisted of six flow values from t to t � 5 and the output was the unique sus-
pended sediment concentration at time t. The testing stage covered 25/02/2000
to 30/03/2000. The NN estimated time series was again close to the observed
record but the peaks were underestimated (Fig. 12.6). The total estimated sedi-
ment yield, 3980 t, was 5.2% less than the observed value of 4206 t.

In this experiment it was shown that even in the absence of observed sedi-
ment data, it was possible to obtain reliable corresponding estimates by train-
ing with sediment and flow data from previous events at the same location.

6.3 Temporal transfer based on sediment data
If some sediment data are available then preceding values of sediment concen-
tration can be used as training data. This was carried out for the River Ouse at
Skelton for the time period 07/01/1995 to 18/01/1995 using the 6 previous sedi-
ment concentration values as inputs (t � 1 to t � 6). The results are shown in
Figure 12.7, which indicates that the availability of the preceding sediment
concentration data would improve the ability of the NN to predict future sedi-
ment concentration values (the MSE in this experiment was just 32.5 t). The
sediment concentrations predicted by the NN do not reflect the full variability
of the monitored data, although it is not certain that the high variability seen in
the monitored data is a true representation of sediment movement in the river.
Sediment monitoring is a complex procedure with high levels of uncertainty
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attached to the data. Even so, the total sediment yield estimated from field data
and from the NN are very close, and in terms of estimating sedimentation rates
in reservoirs, this would be an entirely acceptable estimation procedure.
However, this example must be considered as illustrative only, as the existence
of immediately preceding sediment concentration data would mean that this is a
situation where one may not, in practice, need to use NN.

In these examples the data sets used were small and the training times for
the NN were limited. It is clear that with the availability of a longer continuous
data set the NN would be trained with more input and output patterns. This
would increase the accuracy of the models by providing better validation results.

No technique can be expected to model processes that are outside the range
of those considered in its development, and yet this is often what happens with
the modelling of sediment yield. Data may be available for a series of flow con-
ditions, but are usually not monitored during extreme flows. This is in part
because extreme flows are by definition rare and will probably not occur 
during any monitoring period, and in part because of the difficulties of obtain-
ing a true measurement of sediment transport rate in high flow conditions.
Normally, very few data are available at all. In such circumstances it is import-
ant to include process understanding in any modelling approach. This can
potentially be done with NN by including information on upstream conditions
without explicitly defining the controlling processes.

7 CONCLUSIONS

The modelling of any part of the sediment supply-transport-deposition cycle is
highly complex, involving many non-linearities and a diverse mix of controlling
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factors. Existing techniques are limited by the ability of models to fully repre-
sent this complexity. In particular the often extreme spatial and temporal vari-
ability of all phases of the cycle presents difficulties for both data input and
model construction. NN offer an alternative estimation procedure with the
capability to learn complex and non-linear behaviour. A major advantage is the
possibility of using proxy variables to represent different climatic or hydro-
logical situations or land use management combinations within a catchment. Such
an approach means that important influences can be included in the model
without explicit parameterisation. Preliminary tests at the small catchment and
river basin scale have shown promising results. Work is ongoing to combine
such a modelling approach with recent developments in field data collection in
order to better represent variability in the system.

There are relatively fewer applications for NN modelling in sediment trans-
port forecasting than there are, for example, in the water quality and fisheries
areas (Table 11.1) but the potential for use is just as extensive. Given that bed-
load sediments are critical for spawning, or as habitat sites, and that pollutants
readily attach themselves to sediments on slopes in the stream bed, and when
suspended in the water column, the scope for applied forecasting is consider-
able. There is also, for example, little research on coupling the hillslope-stream
interface in this context. The USLE model has held its premier position for
nearly a century. Its straightforward approach is appealing in simplifying
processes that are distributed and highly complex. NN would appear to have an
advantage in being mathematically and computationally less demanding than
process-based hydrological modelling approaches and have the potential to
generate new options in both hillslope runoff modelling and stream sediment
transport forecasting.
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1 NOWCASTING

Nowcasting concerns very short range weather forecasting over horizontal scales
of around 1 to 100 km. It tends to focus on the extrapolation of observed trends
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Satellite Applications Section, The Meteorological Office, Exeter, UK

ABSTRACT: Nowcasting and Numerical Weather Prediction (NWP) form the
backbone of quantitative weather forecasting at the UK Meteorological Office
(Met Office), covering very short to medium range forecasts (up to about 5 days
ahead), and for horizontal scales from about 1 km to global. Due to the way in
which observations are assimilated into NWP, very short range nowcasting
methods have a significant impact on forecasts such as cloud and precipitation,
and indeed are used for mesoscale model initialisation.

Meteorological satellites using visible, infrared and microwave radiometers
provide a valuable source of information in support of both nowcasting and NWP.
This chapter describes the use of meteorological satellite image data in now-
casting, and why neural networks have started to become an important technique
for dealing with the complex patterns present in such data in near-real time
operational forecasting applications.

Two such applications researched and developed at the Met Office, which
use visible and infrared geostationary meteorological satellite imagery, are pre-
sented. The first concerns the discrimination of cloud type for determining
which of two nowcasting techniques to use in a flood forecasting system. The
second application is concerned with efforts to determine a probability of pre-
cipitation from visible and infrared imagery to improve precipitation forecasts
from the British Isles precipitation radar network for use in the Met Office’s
Nimrod nowcasting system.
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in cloud, precipitation and similar meteorological variables, as opposed to the
approach of NWP, which determines the atmospheric state and uses quasi-
geostrophic dynamical equations to forecast future states from which distribu-
tions of cloud and precipitation can be inferred (Golding, 1998).

1.1 Nowcasting techniques
Many nowcasting techniques are available, such as extrapolation, advection,
conceptual models, statistical techniques, expert systems and decisions trees,
as well as the use of 1-dimensional and NWP models (Conway, 1992; Conway,
1999).

The original nowcasting method is simple linear extrapolation based on the
assumption that the rate of change is constant. Persistence, for example, is a
special example of linear extrapolation in which the rate of change is zero.
Advection is an alternative to linear extrapolation, which can allow for curved
motion to be forecast. Typically, the components of advection are derived from
NWP forecasts.

Conceptual models embody some qualitative or semi-quantitative description
of meteorological phenomena, such as their structure, life-cycles and mechan-
isms. Examples include the development of mid-latitude depressions (cycloge-
nesis), and the concept of a warm conveyor belt of moist air in so-called
‘Spanish plume’ events.

Statistical techniques are often used in situations where the physical basis
of a relationship is poorly understood, or there is some complex nonlinear rela-
tionship, for example between observations and atmospheric variables, and where
sufficient data exists to help define that relationship. Although regression tech-
niques have been used for many years, it is no surprise that artificial neural net-
works (NN) started to take their place amongst this set of tools in the early 1990s,
precisely for those reasons mentioned, but not least because nowcasting products
are often required in near-real time.

If a forecasting task can be reduced to a set of rules, then decision trees,
which represent the rules in the form of a flow-chart, can be used in the process.
‘Inference engines’ can operate on sets of rules to reach conclusions, and these
are the basis of expert systems.

Perhaps the dominant forecast method in the medium-range since the 1960s
has been the NWP model, in which a 3-dimensional representation of the atmos-
phere is contained, either in a grid-point or in a spectral space. Such numerical
models can be global in nature, or can represent a limited area with finer hori-
zontal and vertical resolution. Some numerical modelling centres, such as the
Met Office, run both global and local models, so that boundary conditions from
the global model can be used to initialize values at the edges of local models.
The models integrate the so-called primitive equations which represent Newton’s
second law of motion, the ideal gas equation, the first law of thermodynamics,
the conservation of mass and a pressure tendency equation, using the best ‘ana-
lyzed’ state of the atmosphere in terms of motion (winds), mass (pressure and
temperature) and moisture (humidity).
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Although NN have been suggested as a forecasting alternative to NWP
models, it is very unlikely that they would be used, because the physical basis of
these models at synoptic scales is well understood. The main problem with NWP
models is one of gathering sufficient observational data, assimilating it, and
using the finest horizontal and vertical resolutions possible, the last two factors
being largely dependent on the computing power available. (The Met Office
currently uses a Cray T3E supercomputer to run its Unified Model (Cullen,
1993), which caters for medium-range forecasting, climate and ensemble pre-
diction applications at global- and meso- scales, all in one operational suite.)

1.2 Nowcasting versus NWP?
Nowcasting systems rely heavily on remotely sensed observations of atmos-
pheric variables such as cloud and precipitation, and usually contain relatively
simple assumptions for extrapolating them. NWP also relies on remotely sensed
observations to determine the state of the atmosphere, but because of the relative
lack of observations (105 for example in a global NWP model) compared to the
number of grids points used (typically 107 in such models), there are many more
degrees of freedom than the observational information can provide, and the
problem is said to be ‘under-determined’.

NWP therefore relies heavily on ‘first-guess’ fields: on forecasts produced
from a previous forecast run. Data assimilation techniques are then used to
weigh up the information from observations against the information in the first-
guess to produce the best idea of the current state of the atmosphere, the analysis.
Assimilation requires a large number of observations (often from a 6 hour
period centred on the analysis, because of the asynoptic nature of some data
such as weather radar, satellite retrievals and lightning detection), and together
with the effects of limited resolution, a significant amount of time is required
for the observations to affect the model forecast. In other words, the information
input to NWP models is relatively slow. This means that NWP models tend to
produce poor forecasts of variables such as cloud and precipitation at short
forecast lead times, but because they have a good representation of the atmos-
pheric dynamics, produce better forecasts in the medium range (3 to 48 hours).

In addition to the resolution problems, current NWP models suffer from
timeliness and quality of very short range forecasts. So does this mean that
nowcasting should rely on observational data alone and forecasting techniques
such as advection, statistical analysis, conceptual models and expert systems?

1.3 Sources of data
Nowcasting is inextricably linked to remotely sensed observations and near-
real time products that can be obtained from platforms such as weather radar
and geostationary meteorological satellites. In answer to the last question,
however, the truth is that more and more nowcasting systems are making use of
first-guess and forecast data from NWP models, so we should not refer to
‘Nowcasting versus NWP’, but rather to ‘Nowcasting using NWP’. Indeed,
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modern nowcasting systems use as many techniques that are required, and as
much observational and model data to provide significant information for the
required forecast variable.

Consider the case of the Met Office’s Nimrod nowcasting system (Golding,
1998), in which precipitation forecasts use:
1. radar and satellite observations to generate frequent rain rate analyses
2. linear extrapolation, or advection from NWP forecast winds, depending on

recent quality levels, to advect the precipitation
3. relative use of observational data and NWP precipitation forecasts, where

the latter dominates towards the end of the nowcast, as the relevance of the
observational data declines.

Nowcasting data sources therefore not only include weather radar network
data, geostationary satellite imagery, synoptic reports, but indirectly, all the
observations that are used in NWP models: data from radiosondes, drifting and
stationary buoys, aircraft reports, as well as top-of-the-atmosphere infrared and
microwave radiances, scatterometer winds and atmospheric motion vectors
derived from meteorological satellites.

2 THE USE OF METEOROLOGICAL SATELLITE IMAGERY IN
NOWCASTING

At the Met Office, meteorological satellite observations have been used to
improve weather forecasts in a number of ways. The classic approach was to
provide imagery products for bench forecasters, such as visible and infrared
imagery, and information on cloud top height and the presence of fog. These
products were used to aid decision making for a range of tasks, from local fore-
casting to the validation of NWP models.

In recent years, the increase in speed and memory of computers has helped
to process satellite data in near-real time, so that a much larger array of meteoro-
logical products can be considered. These include temperature and humidity
retrievals from infrared and microwave sounding instruments and atmospheric
motion vectors obtained from geostationary visible, infrared and water vapour
imagery. A large number of additional meteorological products are expected to
be obtained from new satellite instruments. Meteosat Second Generation pro-
duces images every 15 minutes with 3 km sub-satellite resolution for 12 visible
and infrared channels, and products include high-resolution winds, convective
rainfall rate, stability analysis imagery and information on rapidly developing
thunderstorms.

2.1 Visible, infrared and microwave imagery
Satellite sensor measurements can be broadly classified according to their use
in nowcasting or NWP. The domains of nowcasting and NWP have already been
discussed, and it is no surprise, therefore, that nowcasting requires near-real time
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mesoscale products, usually related to specific meteorological variables such
as cloud and precipitation, whilst NWP requires global data, usually related to
the atmospheric state such as temperature and humidity soundings and wind-
speed. An important difference is the platform used to get the meteorological
variables of interest. On balance, polar orbiters tend to provide data for NWP,
and geostationaries the data for nowcasting.

Geostationary meteorological satellites nearly always have one visible and one
infrared channel (at about 0.7 
m and 11.0 
m respectively), and occasionally
a channel centred on the 6.7 
m water vapour band. From the radiance observed
in the visible channel, a measure of the visible reflectivity is obtained, which is
high for opaque cloud, and low for warm land and sea surfaces. Infrared channel
radiances are used to determine an infrared brightness temperature of a given
pixel. For example, thick cirrus cloud at high altitudes can result in a cloud-top
brightness temperature of around 220 K, whilst land surfaces in summer can
produce brightness temperatures in excess of 300 K. Figure 13.1 shows visible
and infrared images of the UK on Christmas day 1995, together with the cor-
responding values for selected pixels, in a 2-dimensional ‘feature space’. Note
that different cloud and surface classes occupy different regions of the space:
thick cirrus clouds (diamonds) have reflectivities of 55–90% and brightness
temperatures of 215–230 K, whilst clear sea (crosses) occupies a smaller cluster
with reflectivities of 10–20% and brightness temperatures of 275–285 K.

As well as images at visible and infrared wavelengths, some radiometers
have been flown which operate in the microwave (for example, the Special Sensor
Microwave Imager on the US Defense Meteorological Satellite Program satel-
lites). These passive microwave imagers operate at wavelengths of several milli-
metres, although channels are usually expressed in terms of frequency, with
SSM/I for example having channels at 19, 22, 37 and 85 GHz.

2.2 Cloud
Figure 13.1 illustrates how visible and infrared satellite imagery can be used as
a source of information on cloud amount and type. Kidder and Vonder Haar
(1995) provide an excellent review of cloud products from meteorological
satellite imagery, and Pankiewicz (1995) discusses the use of pattern recognition
techniques for such products.

The simplest and oldest technique for discriminating cloud from cloud-free
areas is to use a threshold in both visible and infrared channels (Arking, 1964),
such that if a pixel is brighter or colder than some threshold value, it is assumed
to be cloud covered. Two fundamental problems with this technique, however,
are the choice of threshold and the effects of sub-pixel cloud. An alternative is
to use histogram techniques, in which histogram contours are plotted in a space
similar to that shown in Figure 13.1. In one approach (Desbois et al., 1982),
clusters of classes are determined by first identifying local maxima, then
assigning samples to the nearest maxima to form growing clusters.

Spatial coherence (Coakley & Bretherton, 1982) relies on parts of the infrared
brightness temperature image being either completely clear or completely cloudy.
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The mean and standard deviations of infrared radiances are calculated and plot-
ted against each other. Areas free of cloud have low standard deviation and low
mean radiance, whilst areas filled with cloud also have low standard deviation
but high mean radiance. Partly cloudy areas have high standard deviation and
an intermediate mean radiance. The radiance values for clear and cloudy areas
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Fig. 13.1. Meteosat visible and infrared images taken at 11:30UTC on 25th December 1995, processed
at the Met Office to produce visible reflectivity in the range 0–100%, and infrared brightness tempera-
ture in the range 193–303 K, both represented here in grey-levels from 0–255. A 2-dimensional feature
space shows samples of data taken from 2500 pixels in the bottom right hand corner (mid-level cloud,
dots), 100 pixels in the centre of the North Sea depression (thick cirrus, diamonds), and 100 pixels just
south of Ireland (clear sea, crosses).
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are then determined, and knowing the actual radiance, the effective cloud
amount can be calculated for each pixel.

To some extent, pattern recognition techniques take the concept of thresh-
olding, histogramming and spatial coherence, and use all of this information
together to determine cloud properties in imagery. A multi-dimensional space
is constructed, the most basic example being where each radiance measurement
relates to one axis (as in Fig. 13.1). However, other features such as standard
deviation and textural measures (Haralick, 1986) of a small group of pixels can
be used to provide additional information. As in histogramming, samples are
used to define clusters of classes. However, the idea is then to discriminate
these classes so that any set of features values can be identified with that class
again. Over the past 20 years or more, a number of cloud type classifiers have
been constructed using the elements of pattern recognition (Parikh, 1997 pro-
vided an early review), using parallelepipeds in a 7-dimensional feature space
(Karlsson, 1994) and Gaussian maximum likelihood classification (Ebert,
1987; Garand, 1988).

2.3 Precipitation
The estimation of precipitation using satellite imagery is ‘one of the most difficult
and unsolved problems facing the science and technology of satellite remote
sensing’ (Levizzani, 1999). Reviews of visible, infrared and microwave tech-
niques have been produced by Barrett and Martin (1981) and Kidder and Vonder
Haar (1995), who broadly classify visible and infrared techniques into cloud
indexing, bi-spectral techniques, life history methods and the use of cloud
models. With any visible or infrared technique, precipitation rates are inferred
indirectly: the precipitation falls from the cloud base, but visible and infrared
radiances are observed at the top of the atmosphere. Hence no cloud means there
is no precipitation, but cloudy regions may also produce no precipitation, and
clouds in the tropics produce precipitation in quite a different way to mid-latitude
frontal bands. In addition, verification of precipitation is difficult. Data from
radar networks are used, but come with their own sources of uncertainty. The
representativity of rain gauges makes their use with satellite data a problem.
Since radars sample volumes comparable to satellite pixels, radar networks are
probably the best source of verification data.

The oldest technique of cloud indexing aims to identify cloud types in satellite
imagery, after which rain rates can be assigned to the different cloud types, e.g.
the widely used Global Precipitation Index method, (Arkin & Meisner, 1987).

Bi-spectral methods (Lovejoy & Austin, 1979) attempt to combine the rules
of probabilities of precipitation associated with both visible and infrared channels,
so that clouds which have the best chance of raining must be both cold and
bright. Currently, the Met Office’s Nimrod nowcasting system uses this type of
method to determine a probability of precipitation from Meteosat (Cheng &
Brown, 1995).

For convective clouds, life-history techniques are particularly relevant,
since there is a clear relationship between the rate of change of a cirrus anvil
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associated with cumulonimbus clouds and the resulting precipitation. One of
the most widely used techniques is known as the Griffith-Woodley technique
(Griffith et al., 1978), which identifies cloud colder than 253 K in a series of
images. The maximum areal extent is obtained, and the inferred rain rates are
determined according to the stage of cloud growth, the cold cloud area and the
cloud-top temperature within the cold cloud area.

In principle, pattern recognition techniques can combine cloud type, bi-
spectral and life history information, if sufficiently accurate and comprehensive
training sets are available. Wu et al. (1985) used the Gaussian maximum like-
lihood method to classify samples measuring 400 km2 taken from GOES imagery.
To train the classifier, rain rates were inferred from collocated National
Weather Service radar data. More recently, Grassotti and Garand (1994) used
cloud-top pressure, albedo and cloud fraction as input features to an unsuper-
vised classifier, as well as 6-hourly estimated NWP model rain rates.

2.4 Neural network approaches to cloud and precipitation estimation
Visible and infrared cloud and precipitation nowcasting products are ideal can-
didates for retrieval by pattern recognition techniques, and in particular, multilayer
perceptron neural networks (MLP) using the backpropagation learning algo-
rithm (Rumelhart et al., 1986). They both require two aspects of pattern recog-
nition: automatic recognition of the structures and shapes observed in cloud
(machine vision), and automatic recognition of rain rates or cloud types in terms
of spectral and textural data, as well as ancillary data, such as latitude and hour
of the day (statistical pattern recognition). The reasons that MLP have been
considered useful for this work is that:
1. Apparently unrelated input features (such as average values, grey-level dif-

ference vectors, hour of the day and latitude) can all be combined.
2. Complex nonlinear relationships between meteorological variables (such as

cloud structure and rain rate for example) can be learned.
3. Preconceived ideas of class distributions (such as Gaussians) are not assumed –

NN training is ‘data driven’.
4. Operational use of trained NN is very fast, important in near-real time appli-

cations where large datasets (such as images) are processed.
5. In classification mode (with two or more output nodes), estimates are

Bayesian in the sense that a mixture of information is provided to the trained
NN, and the outputs represent the likelihood of those classes existing. (This
means that for all output values less than 0.1, for example, an extra ‘don’t
know’ class can be ascribed.)

6. Adaptability to loss of data (‘graceful degradation’) is possible, which can
be of particular use in meteorological satellite imagery applications, where
visible channel data effectively disappears at night.

There are naturally a number of drawbacks to these techniques, including the
amount and quality of data used in training (robustness), the correct represen-
tation of all likely situations in the training set (extreme events), and the fact
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that to some extent, the trained network is a black box (although the strengths
of connections between input and output nodes can indicate the relative importance
of certain relationships). However, given a sufficiently good training set, these
problems can be largely overcome, resulting in good candidates for operational
applications.

3 CLOUD CLASSIFICATION FOR A FLOOD 
FORECASTING SYSTEM

One key problem related to very short range forecasting in mid-latitudes con-
cerns the different types of weather that can result from conditions controlled by
synoptic-scale advection as opposed to conditions controlled by mesoscale con-
vection. In advective situations, frontal and stratiform cloud types are more dom-
inant, and cloud and rain tend to be advected according to steering level winds.

On the other hand, convection is often governed by small, local instabilities
in the lowest few kilometres of the atmosphere, which are able to trigger the
release of large quantities of Convectively Available Potential Energy (CAPE)
over a short period of time. Once this CAPE has been released, development of
convective cells and storms can be extremely fast: a mature cumulonimbus
storm can develop from a cumulus cloud in as little as 30 minutes. The weather
associated with severe convection can include a number of violent phenomena:
heavy precipitation (rain rates of more than 30 mmh�1 are not uncommon over
a period of a few minutes), strong gusts, downdraughts (important to aviation),
not to mention lightning, hail and tornadoes.

Forecasting in such convective situations can be improved with an under-
standing of the life-cycle of convective cells, as well as knowing the recent history
of those cells. This is because convective cells tend to undergo stages of evolution,
dissipation, splitting and merging, even to the extent of producing daughter
cells. It would therefore appear to be of interest to not just describe cloud
according to the well-known classes such as altocumulus, cirrostratus and strato-
cumulus, but into more physically related classes including stratiform cloud,
and shallow and deep cumuliform (convective) cloud.

This section discusses the use a NN cloud classifier trained to distinguish
just these classes, for use in a flood forecasting system which is required to use
advective or convective forecasting techniques, appropriately.

3.1 Overview of the GANDOLF system
GANDOLF (an acronym for Generating Advanced Nowcasts for Deployment
in Operational Land-based Flood forecasts) is a system designed to provide
automated precipitation forecasts to the Environment Agency, and to issue
warnings of likely accumulations in regions of interest (Collier et al., 1995;
Pierce et al., 1995). Many of the sources of error in flood forecasting often
occur during periods of heavy convective precipitation, because the exact tim-
ing, location and intensity of convective activity is difficult to assess, and many
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nowcasting systems currently rely on extrapolative and advective techniques.
However, a promising new technique which uses an object-oriented conceptual
model (OOM) of convective cells (Hand & Conway, 1995) began a series of tests
at the Met Office in 1994, and was more recently trialled in a pre-operational
version of GANDOLF during the summer months of 1996 to 1998 in collabo-
ration with the Environment Agency.

There are three levels of operation of GANDOLF:

• Level 1 (Monitor) co-ordinates the gathering of remote data, primarily from
the Nimrod nowcasting system. Processed Meteosat data are used at this stage
to determine the overall synoptic conditions in terms of advection or con-
vection, and a decision is made to use Nimrod nowcasts or to start the OOM.
If precipitation is detected within the GANDOLF domain, and specifically
within the Chenies radar domain (an area of about 420 km � 420 km cen-
tred to the north west of London), the second level of operation is started.

• Level 2 (Action) is concerned with running and validating the OOM. 
If the OOM forecasts convective precipitation in the Thames Domain 
(NG 380–580 km E; 120–280 km N), GANDOLF initiates the third and
highest level of operation.

• Level 3 (Alert) is the third and highest level of operation. The latest OOM
precipitation forecast is sent to the Flood Warning Centre. Verification sta-
tistics are also sent when observed 10 minute instantaneous rain rate and 
15 minute accumulations are available. Level 3 issues heavy precipitation
warning messages if such precipitation is forecast.

3.2 Cloud classifier training and testing
Some automatic technique for distinguishing stratiform cloud from convective
cloud was therefore required for level 1 of the GANDOLF system. A good can-
didate method seemed to be the use of cloud classification from satellite
imagery, available in near-real time, for the whole of the GANDOLF domain.

3.2.1 Early results
In 1996, a MLP was trained using Meteosat visible and infrared imagery, for
use in the pre-operational version of GANDOLF (Pankiewicz, 1997). A total
of 365 Meteosat visible and infrared images was restored from a satellite image
archive from 1994, one image pair being selected for every day of the year, at
some randomly chosen time between dawn and dusk. The area covered by the
imagery included northwest Europe, the North Sea and part of the Atlantic
Ocean east of 20°W, roughly from 45°N to 65°N.

For each image pair, a total of six samples of 17 � 17 pixels were selected
by an experienced meteorologist at the Met Office, using surface analyses to
verify airmasses and cloud types. This resulted in 2190 samples (over 6 � 105

pixels), which were labelled into one of: clear land or sea, stratiform cloud
(including frontal cirrus, thin cirrus, altostratus, nimbostratus, stratus, fog and
haar), shallow convective cloud (including stratocumulus and cumulus), and
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deep convection (cumulonimbus and mesoscale convective systems). The
number of samples in each class was not the same, but was a measure of the a
priori distributions of the classes encountered in the imagery, which can be an
important factor in terms of classification accuracy for such NN (Foody et al.,
1995). The samples were finally split randomly into a training set of two-thirds
and a test set of one-third of the samples.

Feature selection at this stage was performed by a literature search of
proven cloud classification features (Gu et al., 1991; MacLaren et al., 1994;
Bankert 1994). A more objective method is discussed in Section 4.2. Simple
features were used including the minimum, maximum, standard deviation and
mean Robert’s gradient in the visible, the maximum, ratio of minimum to max-
imum and standard deviation in the infrared, and the month of the year and
hour of the day of the sample (9 inputs plus a threshold node). All features were
normalized linearly in the range 0 to 1, especially as few feature values were
found to occur near the limits. Output class values were set to 0 or 1 for each
sample with the true class being represented by 1.

One hidden layer was deemed sufficient for the network, and after numerous
trials, the fewest misclassifications were obtained for a 10:12:4 network archi-
tecture. The network used backpropagation with a momentum term added. The
number of samples used in the training set was found to improve classification
accuracy if the ratio was approximately 1:4:3:1 for clear, stratiform, shallow and
deep convective cloud, respectively. A deliberately large learning rate of 0.9
was set to provide a gradient descent that would cover a large portion of the error
surface. Changes in the mean square error were checked every five epochs, and
training was stopped if the error was less than 10�5 for 10 consecutive epochs,
or when a maximum number of 200 epochs had passed. If an apparently good
solution was obtained, classification accuracies were calculated 10 times on
randomly chosen subsets of the test set, since a large standard deviation in clas-
sification accuracy implies that the network became stuck in a local minimum
(MacLaren et al., 1994). The best classification accuracy obtained in this way
was 80.8 � 2.2%.

Table 13.1 below shows a typical confusion matrix for this network, in which
the number of true samples used are compared against the number estimated by
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Table 13.1. A typical confusion matrix for the 1996 version of the GANDOLF cloud
classifier, with a classification accuracy of 81.0%. True class numbers are given in the
rows (50 per class), and NN estimates in the columns.

Estimated Estimated Estimated Estimated
clear stratiform shallow convection deep convection

True clear 49 1 0 0
True stratiform 7 30 8 5
True shallow 0 2 42 6
convection

True deep 1 4 4 41
convection
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the NN. Ideally, the matrix should be diagonal, but in practice, non-zero off-diag-
onal elements exist, which indicate where the worst misclassifications occur.
The main source of error was in identifying stratiform cloud. For example, some
cases of thin cirrus were misclassified as clear and some cases of broken stra-
tus were misclassified as shallow convection.

3.2.2 Night-time, dawn and dusk
One of the problems with the 1996 version of the network was that it relied on
visible imagery, and could not be used at night. To improve the classifier, 100
cases of Meteosat visible and infrared imagery were restored from archive (a
new training set), spread over the period July 1995 to December 1997. Half of
the cases were chosen randomly, whilst the remainder were chosen to contain
examples of particular meteorological situations that might be missed in the
randomly chosen set (such as polar Arctic and polar maritime showers, Spanish
plume events, deep convection in a polar maritime returning flow, anticyclonic
clear situations and so on).

Some 3000 samples (nearly 9 � 105 pixels) at 5 km resolution were selected
and were once again labelled according to clear, stratiform cloud, or shallow or
deep convective cloud. Met Office analyses were used to ensure the synoptic
situation warranted the class chosen, and deep convective cloud was dis-
criminated from shallow convective cloud if cloud top temperatures were less
than �15 °C, warmer than the corresponding threshold used during the initial
GANDOLF classifier training in 1996. The final distribution of samples is
given in Table 13.2.

Initially, the plan was to provide two cloud classifiers, one for visible and
infrared data, the other for infrared only. However, some experiments were per-
formed with a single cloud classifier, that could adapt to loss of visible data at
night. It became obvious after some time that two classifiers tended to show
significant mismatches at dawn and dusk when GANDOLF switched from one
to the other. NN are, however, claimed to be good at coping with the loss of input
data (graceful degradation), so an experiment was tried in which missing 
visible channel input values were set to 256/255 (1.0039; the normal range is
0.0 to 1.0). This appeared to work very well indeed, providing a network with
an overall (day and night) classification accuracy of 92%. Nine input features
were used for this network, the same as those used for the 1996 GANDOLF
classifier.
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Table 13.2. Distribution of training and testing samples by class for the 1999 version
of the GANDOLF cloud classifier.

Clear Stratiform Shallow convection Deep convection

Visible and infrared 189 789 99 298
Infrared only 274 1190 14 147

Total 463 1979 113 445
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The few remaining problems were now concerned with the classification of
deep convective cloud at night, and the changeover from the 23:30 image to the
00:00 image (due to the training data being non-cyclic). To avoid these prob-
lems, some modifications were made, including the addition of the mean
Robert’s gradient as an input feature in the infrared, which showed an ability to
discriminate deep convective cloud and stratiform cloud, and a change from
using the minimum visible and infrared values to the mean visible and infrared
values, which was found to better discriminate shallow convection. Additionally,
the hour of the day and month of the year features in the training set were 
randomly split into two, with one set having 24 hours (or 1 year) added if the
value was less than 12:00 (or before July), or subtracted if it was greater than
11:59 (or after June), to provide a training set covering 48 hours or 2 years for
each feature. This enabled the network to perform the same fit to the data at the
start and end of these features, thereby improving the 23:30 to 00:00 and
December to January matches. Table 13.3 below shows an example of the net-
work classification accuracy for the NN delivered for operational use within
GANDOLF, for a typical distribution of samples.

Figure 13.2 gives an example of the 1999 GANDOLF NN cloud classifier,
at dusk at 19:00 on the 6th June 1999, when visible data were starting to be lost.
Stratiform cloud is correctly identified in the infrared section, but convective
cloud remains near the coast of southern France. This would have resulted in
the object oriented forecast model of convective cells being used, since most the
south of the UK is covered with deep convective cloud.

In practical use, the classifier, although trained on samples of 17 � 17
pixels, was used to calculate features in regions of 7 � 7 pixels, and was used to
classify tiles of 3 � 3 pixels (15 � 15 km). This loses little information in terms
of classification accuracy, except that the centres of deep convective cells tend to
become classified as stratiform cloud. This is strictly true given that they con-
sist of cirrus anvils. The advantages of this procedure are that edge effects are
improved (tiles of 17 � 17 pixels may classify everything as stratiform cloud
if the region contains clear sea and stratiform cloud), the image is not too noisy

NOWCASTING PRODUCTS FROM METEOROLOGICAL SATELLITE IMAGERY 255

Table 13.3. A confusion matrix for the 1999 version of the GANDOLF cloud
classifier, with a classification accuracy of 92.7% for a typical distribution of
samples. True class numbers are given in the rows, and NN estimates are given in
the columns.

Estimated Estimated Estimated Estimated
clear stratiform shallow convection deep convection

True clear 60 0 0 0
True stratiform 1 256 0 0
True shallow 1 6 30 1

convection
True deep 0 9 15 73

convection
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(which occurs if every pixel is classified), and the time required to perform the
classification is about 32 times quicker.

4 PRECIPITATION ESTIMATION FOR THE NIMROD
NOWCASTING SYSTEM

Spurious echoes in the form of anomalous propagation (anaprop) and clutter
can provide fairly common, yet unwanted signals in weather radar data, resulting
in false observations of precipitation. The Nimrod nowcasting system produces
a variety of cloud and precipitation fields which are also used in initialising the
mesoscale model. The quality of radar data therefore has an important conse-
quence for both short-range forecast guidance and mesoscale model initialisation.

Currently, the Nimrod nowcasting system attempts to detect spurious radar
echoes automatically using a scheme that includes a Probability of Precipita-
tion (PoP) field determined from two independent sources: ground-based syn-
optic data and Meteosat visible and infrared imagery. The Meteosat data are
analysed on a pixel-by-pixel basis to help form the PoP field by using a simple
thresholding technique, described by Cheng et al. (1993), and based on the
method of Lovejoy and Austin (1979). Essentially, cloud-free areas result in a
low PoP, whilst in cloudy areas, PoP is estimated according to the climatological
occurrence obtained by Cheng et al. (1993). The scheme is often referred to 
as the Nimrod anaprop removal scheme, although the aim is to remove all 
spurious echoes. This Meteosat PoP is then combined with the ground-based
synoptic reports and forecast PoP using Bayes’ theorem (Pamment & Conway,
1998), and results in a value of a parameter known as alpha, which can range
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Fig. 13.2. GANDOLF NN cloud classification at dusk, 19:00UTC on 6th June 1999. The left panel
shows the Meteosat parallax corrected infrared image for the Nimrod area at 5 km resolution, the centre
panel the Meteosat visible image (note the effect of dusk), and the right panel shows the classified
image (black is clear, dark grey is stratiform cloud, mid-grey is shallow convective cloud, light grey is
deep convective cloud and white is unclassified).
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from 0 (definitely no rain) through 1 (the climatological probability of rain) to
large values (definitely rain). A threshold is set within the field of alphas to
remove radar echoes where there is a sufficiently low probability of rain.

Although the current Meteosat thresholding scheme provides a Probability
of Detection of about 60% for cold frontal precipitation where rain rates are
greater than 1/32 mmh�1, it is about 50% for warm fronts, and only 30% for
cold-air convection.

A study was undertaken to estimate precipitation rate in 4 classes from
NOAA AVHRR data using a NN classifier, which provided a new capability of
incorporating spectral and textural image characteristics. The results were
encouraging, with an average PoP of 72% at a threshold of 1/8 mmh�1, taken
in various synoptic conditions, compared to similar mesoscale model PoP val-
ues of 69% at T � 0 and 63% at T � 6. False Alarm Rates (FAR) were 37%
from the NN, compared to 51% from the mesoscale model at T � 0 and 56%
at T � 6.

The combination of different discriminatory inputs such as infrared bright-
ness temperature and visible reflectivity texture meant that local neighbourhood
information around the pixel of interest could be used to improve the estimate
of precipitation, over and above that of a threshold technique (for example in
cases of cold-air convection, by recognizing convective cells). The NN approach
used in this case had further advantages in that its output values provided
Bayesian estimates of the PoP directly, and that it could operate at high speed,
because of the statistical nature of the trained NN.

4.1 Training and validation data
At the Met Office, Meteosat image data are processed through the Autosat sys-
tem, which reprojects images into polar stereographic coordinates, and derives
a range of products, including visible reflectivity and infrared brightness tem-
peratures, from the instrument counts. Infrared grey-scales range from 4 to 251,
and represent brightness temperatures of 198 K to 308 K respectively. The Nimrod
nowcasting system ingests these two Meteosat products, corrects them for par-
allax and sun angle and maps them onto a 5 km grid within the Nimrod domain
(Golding, 1998).

Each image underwent pre-processing including identification and removal
of corrupt images and was then composited into the Nimrod domain at 5 km
resolution.

For the development of the PoP classifier, we used 48 sets of Meteosat and
radar composite images from July 1995 to June 1997 (including visible reflect-
ivity data when available). Two sets were restored for each month at random
times, coinciding with half hourly Meteosat imagery.

For each radar composite, two additional composites were chosen before and
after the time of interest, to form a radar movieloop with 5 half-hourly frames.
These movieloops were examined for anaprop, often seen best in this way as
patches of shimmering radar echoes bearing little relation to real rain systems
and often related to orography. Areas suspected of being contaminated with
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anaprop were marked on a copy of each image, to avoid selection for the NN
training set.

A total of 3200 samples of 17 � 17 pixels (85 � 85 km) were selected from
the collocated infrared brightness temperature and radar rain rate fields from
uncontaminated regions of the images. Samples were labelled as no rain
(�1/32 mmh�1) or as rain (�1/32 mmh�1), depending on the central radar
rain rate (centre labelling) or the average radar rain rate over the sample (aver-
age labelling).

Average labelling is less sensitive, but provides a better correlation between
cloud brightness temperature statistics and rain or no rain. Any subsample could
therefore be chosen, with its own centre or average label, if required. Of the
3200 samples, 2097 had no rain as the central label and 1103 had rain, giving
a dry to wet ratio of 1:1.9. This compares to the dry to wet ratio used by Cheng
et al. (1993) of 1:2.8.

From this set of 3200 samples, 1142 were selected for which uncorrupted
visible reflectivity data were known to be available. These data were restored
from archive, and added to the training and validation sets. Of the 1142 samples,
749 had no rain as the central label and 393 had rain, giving the same dry to wet
ratio as for the infrared only cases.

4.2 Feature selection for the PoP classifier
Given samples of infrared brightness temperature or visible reflectivity pixels
which we wish to correlate with a central or average rain rate label, it is pos-
sible to calculate numerous statistics or features over different sized regions. The
most obvious features are the infrared brightness temperature or visible reflect-
ivity values at the central pixel; given this information, a NN classifier should
be able to classify as well as, or better than the threshold classifier discussed in
Cheng et al. (1993), for example. However, it is possible to extract some sim-
ple local features, such as the mean, standard deviation, minimum, maximum,
and the range and ratio of the maximum and minimum, providing a total of 7
features per spectral channel, including the central value.

It is also possible to extract textural features from regions of at least 3 � 3
pixels, such as grey-level difference vectors (Weszka et al., 1976). A grey-level
difference vector �g(�) is the absolute difference between two grey-levels
with a fixed spatial relationship � of angle, and distance (in pixels). In this
work, four relationships were used: (0°,1.00), (45°,1.41), (90°,1.00) and (135°,
1.41). Grey-level differences were calculated for every pair of pixels in the
sample governed by these relationships, to produce a series of histograms h�(�g).
These histograms were then used to construct five statistics of interest: the
mean, contrast, angular second moment, entropy and homogeneity, as detailed
in Pankiewicz (1994).

To determine the ability of these 17 candidate features per spectral channel
to discriminate rain from no rain, multi-dimensional Bhattacharyya distances
were calculated (see Gu et al. (1991), for example). Bhattacharyya distances
were calculated for sample sizes of of 7 � 7 pixels, using centre labelling for
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cases where both visible reflectivity and infrared brightness temperature data
were available. In this case, the largest Bhattacharyya distances were found to
continue increasing at a feature vector size of 9 dimensions, with textural fea-
tures starting to be used at 9 dimensions.

The largest Bhattacharyya distance of a feature vector without textural fea-
tures was found to consist of the minimum, maximum, range and ratio of the
visible reflectivity, plus the minimum, maximum, range and ratio of the the
infrared brightness temperature (8 dimensions). At 9 dimensions, the largest
Bhattacharyya distance included the same features as at 8, together with the
maximum visible reflectivity entropy measure of texture.

4.3 PoP training and testing
Feature selection showed that 5 or 8 features depending on availability of vis-
ible reflectivity data are most useful at discriminating 2 rain classes (no rain
and rain with a threshold of 1/32 mmh�1). The 3200 training samples were split
randomly into a training set and a validation set, containing two-thirds and
one-third of the data respectively. A MLP was trained with the input features
described above, together with a bias node. Weight values were recorded every
5 epochs, and the validation set was used to obtain the average Probabilities of
Detection (POD) and False Alarm Rates (FAR). The aim was to increase the PoP
and decrease the FAR. Note however that to get the same ratio of wet to dry
pixels, we require FAR � 1-PoP. If FAR � 1-PoP, then the scheme overestimates
the number of wet pixels. In tests, a 1:2.8 wet to dry distribution of samples
was used in order to compare the results with the work of Cheng et al. (1993).

After a large number of experiments in which the number of hidden nodes
was changed, as well as values of the learning rate and momentum factor, the
best network was found to produce a PoP of 66 � 9%, a FAR of 57 � 5% and
an Equitable Threat Score (ETS) of 17 � 6%. These are average scores in the
sense that the validation set was constructed out of samples taken during vari-
ous synoptic conditions. An idea of the variances was obtained by calculating
PoP, FAR and ETS for subgroups of samples from the total validation set. A
total of 8 hidden nodes provided this solution, and a learning rate of values of
0.5 and momentum factor of 0.05 were used. The input features were normal-
ized according to zero mean, 4	 variance, and all samples were 7 � 7 pixels
with centre class labelling.

The results for the infrared only network can be compared with the best PoP
of 61 � 24% and FAR of 47 � 12% for cold frontal cases obtained by Cheng
et al. (1993), and their values of 28 � 21% and 74 � 11% respectively for
cold-air convection, and 50 � 19% and 50 � 16% respectively for mesoscale
convective systems.

An example of the resulting PoP where echoes were recorded in the Nimrod
radar composite is shown in Figure 13.3 for 20:30UT on 15th May 1997, together
with the Meteosat infrared image and the radar composite. The radar com-
posite was obtained after processing with the Meteosat threshold classifier, 
and a large number of spurious echoes still remain over Ireland, Strathclyde,
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Grampian region, the Midlands, the southeast and the Normandy and Brittany
coast. The NN PoP classifier has assigned PoP values of around 0.02–0.3 
over Northern Ireland, Strathclyde and the Grampian region, 0.02–0.5 over
the Midlands, 0.01–0.3 over the southeast and 0.02–0.3 over the Normandy and
Brittany coast. However, PoP values of around 0.5 are found for the band of rain
over the Firth of Forth, and 0.5–0.7 for the rain off the Lincolnshire coast.

260 GEORGE S. PANKIEWICZ

Fig. 13.3. An example of PoP values from the infrared feature NN: The top left panel shows the Meteosat
infrared image for the Nimrod area at 5 km resolution, at 20:30UTC on 15th May 1997. The top right panel
shows rain rates within the Nimrod radar composite area (white is no rain, light grey �1/32 mmh�1,
dark grey � 1/2 mmh�1 and black 2 mmh�1), and the lower panel shows the NN PoP field where radar
echoes were recorded (dark grey is PoP � 0.4, light grey is PoP � 0.4).

Copyright © 2004 Taylor & Francis Group plc, London, UK

http://www.crcnetbase.com/action/showImage?doi=10.1201/9780203024119.ch13&iName=master.img-004.jpg&w=359&h=378


For the visible and infrared feature network, the 1142 available samples
were again split into a training set from two-thirds of the data, and a validation
set from the remaining third. The same procedure was adopted to search for the
best classifier, and in this case, the best network was found to produce a PoP of
69 � 10%, a FAR of 41 � 3%, and an ETS of 33 � 7%, all superior to the
infrared only PoP classifier. A total of 12 hidden nodes were required, together
with a learning rate of 0.2 and a momentum factor of 0.01. All other NN aspects
were the same as for the network using infrared features alone.

4.4 Results of trialling the PoP classifier in Nimrod
In the Nimrod anaprop removal scheme, PoP values are not used in the calcula-
tion of a final probability map. Alpha values are used instead, where in general:

(1)

where P(W) is the probability of a pixel being wet and P(D) is the probability
of a pixel being dry. An alpha value can be said to be the ‘odds’ that a pixel is
actually wet and ranges from 0 (definitely no rain) through to 1 (the climato-
logical probability of precipitation) to large values up to 100 (definitely rain).
The use of alpha values in the Nimrod anaprop removal scheme is described by
Pamment and Conway (1998). The NN PoP product is converted into a field of
alphas before it is implemented into the current anaprop removal scheme.

The NN PoP field must be shown to provide a better diagnosis of precipi-
tating and non-precipitating cloud than the current field (described by Cheng
et al., 1993), if it is to be used in the Nimrod anaprop removal scheme. The cur-
rent PoP field diagnoses shallow and small-scale convection poorly and this is
particularly evident when only infrared data are available: the NN classifier
would be of particular value if it can show improvements in such conditions.

The classifier must identify areas of non-precipitating cloud in order that
spurious echoes in radar images can be effectively removed. However, an over-
riding requirement of the anaprop removal scheme is that precipitation echoes
must not be removed; therefore, the classifier must also accurately identify areas
of precipitation.

The performance of the new classifier was evaluated during two periods,
between 28th May and 8th September 1998, and 28th October and 18th
December 1998.

During the initial period, the assessment was designed to measure the 
performance of the NN PoP classifier, without surface reports or short period
forecasts. The PoP from the classifier was converted into a field of alphas 
(NN alphas) which could be directly compared to the Nimrod Meteosat field of
alphas (Nimrod alphas) of the current anaprop removal scheme. In the current
scheme, an alpha value of 1 is the threshold with values below 1 assumed to indi-
cate dry conditions and any echoes falling in these regions being deleted. Alpha
values of 1 or greater are assumed to indicate a climatological probability of

��
P(W)
P(D)
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rain and any echoes falling in these regions are retained. A set of linear transforms
were used to convert the NN PoP into alpha values. These transforms were derived
by examining a number of radar composites and finding a transformation which
produced a balance of alpha values for wet and dry radar pixels in a similar way
to the current Nimrod alphas field. The threshold at which echoes would be
deleted or retained was derived by finding a value which produced a balance of
anaprop removal and rain retention similar to the current Nimrod alphas. The
same linear transforms were applied to the NN PoP field, regardless of whether
infrared only or visible and infrared data were used. In this period, the trans-
forms used meant that, for the NN PoP, the threshold probability below which
echoes are removed was 0.143 (i.e. a NN PoP of 0.143 is equal to an alpha of 1).

The NN scheme performed better than the Nimrod scheme in terms of the
accuracy of anaprop diagnosis. Some 97% of the cases examined showed the
NN scheme to have either diagnosed all cases of anaprop correctly, or retained
only some light anaprop or clutter. This compares favourably with 84% for the
Nimrod scheme. In terms of the accuracy of rain diagnosis, the current Nimrod
scheme performed better than the NN scheme. A total of 77% of the cases exam-
ined showed the Nimrod scheme to have either diagnosed all cases of rain cor-
rectly or removed only an insignificant amount of light rain (e.g. from the edges
of rain clouds). The NN scheme diagnosed 60% of cases to this level of accur-
acy, with the remainder having rain deletion likely to give a misleading analy-
sis and forecast, or deletion of significant amounts of rain.

Over the winter assessment period (28th October–18th December 1998),
144 cases were examined. The anaprop assessment scores show that the current
Nimrod scheme removed more anaprop and clutter than the NN scheme in 47%
of cases examined. In 76% of cases examined, the NN scheme retained a sig-
nificant amount of anaprop or an amount likely to cause problems for TV appli-
cations. The NN scheme performed better than the Nimrod scheme in terms of
the amount of rain retained. In the rain assessment, the NN scheme deleted sig-
nificant amounts of rain in only 1% of cases, compared with 15% of cases for
the Nimrod scheme. On the basis of the assessment results, the NN PoP classi-
fier has not been implemented operationally within Nimrod.

The NN scheme showed early promise, particularly for improving PoP diag-
nosis based on infrared data only. Although a number of problems emerged dur-
ing the trial period, it became apparent that nearly all of these could be remedied.
Given that few alternatives exist to improve the analysis of spurious echoes
from independent data, and that the NN technique can be refined with the use
of surface temperature, snow cover and a surface climatological albedo field
(all used in the current scheme), an improved NN PoP classifier is currently
being developed.

5 CONCLUSIONS

The role of meteorological satellite imagery as a data source for nowcasting prod-
ucts has been described, emphasising the need for the ability of such products to
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incorporate ancillary information, such as time, geographical location and
NWP analysis data. From a list of nowcasting techniques currently available, it
appears that NN, in the role of pattern recognition systems, can provide the
flexibility and speed for building the type of nowcasting products that are
being required for near-real time operational use.

Two examples of the application of NN used in this way have been pre-
sented, one for use in discriminating stratiform cloud and convective cloud in
the GANDOLF flood forecasting system, and the other for determining a prob-
ability of precipitation from satellite imagery in order to assess rain rates from
the British Isles radar network in the Nimrod nowcasting system.

The cloud discriminator undertook some 3 years of testing in a pre-operational
environment before its limitations could be properly assessed. Modification of
NN for additional sources of information and new training data is a relatively
simple matter, and an improved version of the cloud classifier became part of
the operational GANDOLF system on 1st June 1999.

The probability of precipitation estimator for Nimrod underwent trialling
during 1998, and although it showed early promise with an ability to detect light
rain from shallow convection in summer, also showed a number of problems,
particularly during winter, when there is small contrast between land surface
temperature and low cloud. However, it is expected that the problems can be
remedied, and further development is planned in the near future.

The applications of NN described in this chapter have been shown to provide
useful near-real time operational techniques. From the wealth of data expected
from new and upcoming meteorological satellites, and from the increasing com-
plexity of nowcasting systems, it is expected that the requirement for such tech-
niques will continue well into the foreseeable future.
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1 INTRODUCTION

Remote sensing has many applications in hydrology but is particularly attractive
as a source of data for hydrological models. Modelling work has progressed from
a period characterised as being data sparse and computationally constrained to
one that is data rich and computationally powerful (DeCoursey, 1988; Melone
et al., 1998; Storck et al., 1998; Jakeman et al., 1999). Many hydrological
models have been produced but selecting a model and obtaining appropriate
data to use in it can, however, be difficult (Melone et al., 1998). Initially, and
to some extent as a function of past data availability and computing facilities,
emphasis was placed on lumped models. Although valuable, lumped models are
spatially constrained. Remote sensing has the potential to provide complete data
coverage of large areas. As a consequence, remote sensing may be used to para-
meterise spatially distributed models (Harvey & Solomon, 1984). These dis-
tributed models offer the potential to refine our understanding of important
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Mapping Land Cover from Remotely Sensed
Imagery for Input to Hydrological Models

GILES M. FOODY
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ABSTRACT: Remote sensing has been widely used as an input to hydrological
models. Often the remotely sensed data are used indirectly, especially through
the derivation of land cover data that may be incorporated into spatially distrib-
uted models. Although land cover mapping is one of the most common applica-
tions of remote sensing, there are numerous problems with the techniques used,
which limit map accuracy and thus the associated value of the map to hydro-
logical modellers. This chapter focuses on the potential of feedforward neural
networks as a tool for land cover mapping using supervised digital image clas-
sification. Neural networks are considered relative to conventional methods and
examples of comparative performance in different situations are provided.
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hydrological issues, particularly those for which the spatial dimension is
important (Dunn et al., 1998; Frankenberger et al., 1999).

Artificial neural networks (NN) are a form of computational intelligence that
imitates functions of the human brain (Aleksander & Morton, 1990; Fischer,
1998). NN are general purpose computing tools that can be used to solve complex
non-linear problems (Simpson & Li, 1993; Fischer, 1996) and have been used in
a wide range of applications in remote sensing. These tools have been used for
unsupervised classification (Baraldi & Parmiggiani, 1995), geometric correction
(Smith et al., 1995), image compression (Walker et al., 1994), model inversion or
variable estimation (Pierce et al., 1994; Schweiger & Key, 1997; Wang & Dong,
1997), but especially for supervised classification (Benediktsson et al., 1990;
Kanellopoulos et al., 1992; Mannan & Ray, 2003). A broad range of different
network types have been used including radial basis function networks (RBFN)
and binary diamond networks (BDNN) (Salu & Tilton, 1993; Bishop, 1995;
Murnion, 1996) but by far the most widely used is the feedforward multi-layer
perceptron (MLP) network (see Chapter 2). For brevity, attention here is focused
only on the use of feedforward NN for supervised digital image classification.
This technique converts remotely sensed imagery, sometimes in association
with ancillary data sets such as topography, into a thematic map.

Remote sensing has developed into a major source of data for hydrological
models (Klein & Barnett, 2003; Lacaze et al., 2003; Hillard et al., 2003;
Mackaya et al., 2003). The image data are acquired by a sensor in a consistent
manner that provides a complete and near-simultaneous coverage of large areas.
Furthermore, remotely sensed imagery are available at a range of spatial and
temporal scales and so capable of providing information on a vast range of envir-
onmental issues (Foody & Curran, 1994). In essence, the imagery acquired by
remote sensors provide a spatial representation of the manner in which electro-
magnetic radiation interacts with the Earth’s surface. The nature of the interactions
of radiation with the Earth’s surface is controlled by a set of state variables
(Verstraete et al., 1996; Curran et al., 1998). As these state variables, typically
basic physical, chemical and biological properties of the surface, control the
observed remotely sensed response they can be estimated directly from remotely
sensed imagery. Fortunately some hydrological variables of interest are, or are
very highly correlated with, state variables and so can also be estimated directly.
For example, evapotranspiration, a fundamental component of the hydrological
cycle, may be estimated from remotely sensed imagery acquired in the thermal
infrared part of the electromagnetic spectrum (Hoshi et al., 1989; Engman &
Gurney, 1991). The estimation of hydrological variables from remotely sensed
data can, however, be extremely difficult, especially if the variable of interest
is only indirectly related to the observed remotely sensed response or requires
highly accurate radiometric calibration of the data. It is, therefore, common for
remote sensing to be used indirectly as a source of data for hydrological mod-
els. Thus, for example, measures of vegetation amount such as leaf area index
(LAI), which is effectively a state variable (Curran et al., 1998; Foody & Boyd,
2002), or biomass (Foody et al., 2001, 2003; Held et al., 2003) can be derived
remotely and may be used to derive estimates of vegetation parameters for
hydrological models (Schultz, 1996; Watson et al., 1999). Similarly, land cover
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is strongly linked to a range of hydrological variables of interest and state vari-
ables controlling the remotely sensed response. Land cover has a strong influ-
ence over key hydrological properties such as interception, infiltration and
evaporation. Thus land cover maps may be used to estimate a range of hydro-
logical variables or used to parameterise models (Hoschi et al., 1989; Neumann
& Schultz, 1989; Sharma & Singh, 1992; Garatuza-Payan et al., 1998; Storck
et al., 1998). Land cover maps derived from remotely sensed images have,
therefore, been widely used as an input to hydrological models including those
focused on the estimation of evapotranspiration (Jensen & Chery, 1980; Uchida
& Hoshi, 1988), and stream flow and sediment yield (Harvey & Solomon, 1984).
Furthermore, as land cover controls many basic properties, changes in land cover
have important hydrological implications. The effects of major changes in land
cover and use such as those associated with urbanisation (Olsin et al., 1988; Bellal
et al., 1996; Kang et al., 1998; Tsihrintzis & Hamid, 1998), forest clearance
(Schultz, 1996; Brooks & Spencer, 1997; Crockford & Richardson, 1998; Woube,
1999), agricultural expansion and management practices (Boardman, 1995;
Barjracharya & Lal, 1999) have, amongst others (Walling, 1981), attracted con-
siderable interest. These land cover changes may be monitored as a consequence
of the temporal dimension of remote sensing.

Remote sensing may be used to map land cover at a range of spatial and
temporal scales. Classification techniques are generally used in the mapping of
land cover from remotely sensed imagery. This applies to both visual and digital
based approaches to mapping. Visual interpretation proceeds in a similar manner
to aerial photograph interpretation, with the analyst using image tonal, textural
and contextual features to identify land cover, often with the aid of a discrimin-
ation or interpretation key (Lillesand & Kiefer, 2000). Although visual classifi-
cation can be highly accurate, digital analyses are often preferred. Digital
classifications can be undertaken more objectively than visual analyses and can
more easily handle the voluminous digital images acquired by current and pro-
posed sensing systems. Moreover, the output of the digital classification is typi-
cally in a format conducive for integration with other digital data sets,
particularly those held within a geographical information system (GIS), which
is attractive for use with hydrological models, especially distributed models.

Many digital image classification approaches have been used to map land
cover with varying degrees of success. Two broad categories of classification
technique have been used, unsupervised and supervised (Mather, 1999; Tso &
Mather, 2001). Unsupervised classifications seek to identify natural classes
within the imagery. They are essentially clustering algorithms that identify a set
of spectrally dissimilar classes present in the imagery. Once derived the analyst
must then attempt to label the classes in some meaningful way. If, as is more
typical, the classes of interest are known in advance it may be preferable to use
a supervised classification. With a supervised classification the analyst speci-
fies the classes of interest and provides the classification with information on
which to characterise each class in the imagery. This enables the analyst to
focus on the classes of interest to the particular study, which can be a major
advantage as the classes of hydrological significance may not be depicted on
available thematic maps (Knox & Weatherfield, 1999). On the basis of the class
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characterisations derived and the classifier’s decision rule, the class member-
ship of every image pixel may be predicted. If desired, different spatial units
(e.g. fields or land parcels such as hillslopes rather than individual pixels) that
match more closely the hydrological issues under study (Bronstert, 1999)
could be used as the basic spatial unit in a particular classification; for sim-
plicity the standard per-pixel approach to classification will be assumed
throughout but the discussion has applicability to other approaches.

Despite the considerable developments made recently, the accuracy with
which land cover may be mapped from remotely sensed imagery with a super-
vised classification is often perceived to be inadequate for operational applica-
tions (Wilkinson, 1996). This limits the value of land cover maps derived from
remotely sensed imagery for input to hydrological models as error will propagate
into later analyses based upon them. Consequently, the considerable potential
of remote sensing as a source of land cover data for use in hydrological models is
not being realised. Many reasons may be cited for this situation. These include
issues such as the nature of the land cover classes, the spectral, spatial and radio-
metric resolutions of the remotely sensed imagery and the methods used in
mapping (Meiner, 1996; Takara & Kojima, 1996; Campbell, 2002). Here, atten-
tion is focused only on the latter issue with particular emphasis on the potential
use of NN as tools for mapping land cover from remotely sensed imagery.

2 SUPERVISED DIGITAL IMAGE CLASSIFICATION

Supervised image classification is one of the most common digital image
analyses undertaken in remote sensing. It aims essentially to convert the remotely
sensed imagery, sometimes in association with ancillary data sets (e.g., topog-
raphy), into a thematic map. Prior to a classification a series of pre-processing
analyses may be undertaken to prepare the imagery. Typically pre-processing
involves the removal or reduction of distortions or degradations in the imagery
(Mather, 1999). This may include making corrections for atmospheric attenuation
effects (Chavez, 1996), variations in the sensor’s viewing geometry due to both
sensor and terrain variables (Meyer et al., 1993; Ekstrand, 1996) and image
geometry (Mather, 1999). If, for example, a time series of imagery is to be used in
mapping it may also be necessary to radiometrically correct or calibrate the
imagery to absolute units. Further pre-processing of the imagery may be under-
taken to meet the requirements of the particular mapping investigation. If the
imagery are noisy (e.g. synthetic aperture radar imagery) the analyst may seek to
reduce noise prior to the classification through the application of a smoothing
or low-pass filter. Perhaps, more commonly, it may be desirable to use only a
sub-set of the remotely sensed data in the classification. Although multispectral
imagery are usually required for an accurate land cover classification, many sen-
sors, especially hyperspectral instruments, provide an unnecessarily large
amount of data for classification applications. Typically the imagery acquired in
the different wavebands of a sensor are highly inter-correlated and, therefore,
the useful discriminatory information could be conveyed by a subset of the
wavebands recorded. A feature selection analysis may be undertaken to define a
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sub-set of the acquired imagery that reduces the size of the data set while main-
taining the useful discriminatory information. This is often based on inter-
waveband comparisons of class separ-ability or data compression techniques
such as principal components analysis (Mather, 1999). The feature selection is
helpful not only in reducing the size of the data set but also in terms of reducing
ground data requirements and maximising classification accuracy. It can, how-
ever, be difficult and sometimes the data discarded may contain highly signif-
icant discriminatory information.

When all pre-processing operations have been completed the imagery may
be classified. A supervised digital image classification can be broken down into
three basic stages. First is the training stage which involves the analyst identifying
sites of known class membership in the imagery. These sites are used to derive
training statistics that describe the classes in the remotely sensed data. In the
second, class allocation, stage of the classification these training statistics are
used with the classification decision rule to allocate each pixel in the remotely
sensed image to one of the defined classes. For example, the maximum likeli-
hood classification allocates each pixel to the class with which it has the highest
posterior probability of membership. The third and final stage of the classifi-
cation is the testing stage in which the accuracy of the classification is assessed
(Campbell, 2002). Many factors influence the quality of a supervised digital
image classification. Ground data on class membership are, for example, required
in the training and testing stages and the acquisition and quality of these data
can have a major impact on the resulting classification (Campbell, 2002). The
classification algorithm must also be selected with care. Classification algorithms
differ enormously in terms of the assumptions made and sensitivity to deviations
from the assumed conditions. The maximum likelihood classification, for
example, is a conventional statistical classifier that assumes, amongst other things,
that the spectral data for each class are normally distributed. This is often not the
case and also places a demand for a large ground data set on which to derive accu-
rate estimates of the class distributions (Mather, 1999). Nonetheless, the conven-
tional statistical classification approaches are the most widely used techniques for
land cover mapping from remotely sensed imagery, although a range of, often non-
parametric, alternatives have been advocated (e.g. Dymond, 1993; Peddle, 1993;
Tso & Mather, 2001).

3 ADVANTAGES OF NEURAL OVER STATISTICAL
CLASSIFICATION

Conventional statistical image classification techniques are not always appro-
priate for mapping land cover from remotely sensed imagery. For example, the
requirements and assumptions of the maximum likelihood classification, one of
the most widely used techniques, are often unsatisfiable. Of particular concern
are four inter-related problems:

• In a conventional parametric classifier, the data are assumed to be nor-
mally distributed. This may often not be the case with remotely sensed
imagery. Furthermore, there may be significant inter-class differences in the
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distributions which cannot be normalised prior to the classification as class
membership, the desired output of the classification, is unknown.

• To define a representative sample from which the descriptive statistics (e.g.
mean and variance) are generated and upon which the analysis is based may
require a large amount of data. Typically, it is recommended that the minimum
training set size is some 10–30 times the number of discriminating variables
(e.g. wavebands) per-class (Mather, 1999). Clearly a very large training set is
required for mapping from some multi-spectral imagery and this runs contrary
to a major goal of remote sensing, which involves extrapolation over large
areas from limited ground data. With high dimensional data sets, such as those
acquired by hyperspectral sensors operating in hundreds of wavebands, the
training set requirement for correct application of such a classification may
be exorbitantly high. Related to this issue, the ‘Hughes Phenomenon’, whereby
classification accuracy may decline with an increase in the number of dis-
criminating variables, may be observed with algorithms such as the maximum
likelihood classification. To avoid this problem it may be necessary to perform
some kind of feature selection to focus only on part of the data set which
conveys useful discriminatory information.

• The classification can only make use of data acquired at a high level of
numerical precision (e.g., ratio level) and cannot accommodate directly data
with a directional component. Unfortunately, there may often be useful dis-
criminatory information that is available at a low level of measurement pre-
cision (e.g., a nominal level soil type map) or has a directional component
(e.g., terrain slope aspect). As re-scaling the data is often difficult the only
practical means of integrating the ancillary data is by stratifying the imagery
by the low level ancillary data and classifying each stratum independently.
This will, however, also compound the training data requirement problem as
each stratum will require its own training set.

• The maximum likelihood classification is computationally demanding and,
therefore, relatively slow. The significance of this problem may become
increasingly evident in the near future given the large data volumes antici-
pated from proposed remote sensing systems (Gershon & Miller, 1993) and
increasing use of hyperspectral sensors.

Although the analyst may proceed with a maximum likelihood classification
when its assumptions are not satisfied, for example without correcting for non-
normal distributions or with disregard to the training set size requirements for a
particular data set, it is likely that the full information content of the remotely
sensed imagery would not be utilized. Consequently, alternative classification
approaches have been sought and recently much attention has focused on feed-
forward NN.

The feedforward NN approach to supervised image classification is less
sensitive to some of the problems associated with conventional statistical classi-
fications. This is evident in relation to the four problems with the maximum
likelihood classification discussed above. First, NN make no assumptions about
the nature and distribution of the data. As a consequence, a large sample may
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not required to estimate the properties of the distribution, although a represen-
tative training set is still required to provide an adequate description of the
classes with training set properties, such as size and composition, requiring
careful selection in relation to the properties of the classes and the network itself
(Baum & Haussler, 1989; Foody et al., 1995; Staufer & Fischer, 1997). Second,
as NN learn the underlying relationships in the data and effectively weight the
importance of the discriminating variables, such tools may, therefore, have no
limitations placed on data dimensionality which reduces the need for feature
selection to identify, for instance, an optimal band combination for a classifi-
cation. Pre-processing operations including feature selection can, however,
still be beneficial, particularly in the reduction of network complexity and
thereby training requirements in addition to the provision of potential increases
in classification accuracy (Chang & Lippmann, 1991; Benediktsson &
Sveinsson, 1997; Yu & Weigl, 1997; Kavzoglu & Mather, 2002). Third, NN are
able to use directly data acquired at any level of measurement precision and
accommodate directional data when appropriately scaled. These factors com-
bined also enable NN to be used as black box tools which may be attractive
when there is little or no prior knowledge about the particular problem. Lastly,
classification by trained NN are extremely rapid (Peddle et al., 1994).

4 SUPERVISED IMAGE CLASSIFICATION WITH A 
NEURAL NETWORK

Feedforward NN are particularly attractive for supervised image classification
as a consequence of their ability to learn by example and generalise (Schalkoff,
1992). Each network may be envisaged as comprising a set of simple processing
units arranged in layers, with each unit in a layer connected by a weighted
channel to every unit in the adjacent layer(s). Combined these elements transform
the remotely sensed image (which essentially depicts the measured multispectral
radiance) into a thematic map (depicting the spatial distribution of the land
cover classes of interest) (Fig. 14.1). The NN architecture is determined by 
a range of factors which relate, in part, to the nature of the remotely sensed
imagery and the desired land cover classification. There is, for example, usually
an input unit for every discriminating variable and an output unit associated
with each class in the classification. The number of hidden units and layers is
defined subjectively, often on the basis of a series of trial runs. Alternatively,
the number of hidden units and layers could be defined with the aid of various
published ‘rules of thumb’ or optimised with the use of methods that allow the
network to add or delete units until a satisfactory structure is produced (Chauvin,
1989; Jiang et al., 1994; Bishop, 1995; Bischof & Leonardis, 1997; Kavzoglu
& Mather, 2003). In general, the larger the number of hidden units and layers
used, the more able the network will be to learn the training data but this may
be achieved at the expense of an undesirable reduction in the overall capacity
for generalisation and an increase in computer processing time.

Each NN is initially constructed with the inter-unit weights set at randomly
defined values. The magnitude of each of these weighted connections is then
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adjusted during an iterative training process which aims to minimise output
errors (Schalkoff, 1992). Once the overall output error has declined to an
acceptable level, which is typically determined subjectively, training ceases and
the trained network is then ready for the classification of pixels of unknown
land cover class membership. For this, the remotely sensed data for each pixel of
unknown class membership are input to the trained network and the pixel allo-
cated to the class associated with the most highly activated unit in the output
layer. This type of approach has been widely used for the classification of
remotely sensed imagery and generally found to be more accurate than alterna-
tive classification approaches (Bendiktsson et al., 1990; Kanellopoulos et al.,
1992; Peddle et al., 1994; Foody et al., 1995). Before briefly illustrating its
potential with an example, some disadvantages of the approach will be considered
and possible solutions to some problems raised indicated by a further example.

5 PROBLEMS WITH NEURAL NETWORKS FOR 
SUPERVISED CLASSIFICATION

Although emulating some aspects of the human eye-brain system, which is very
effective for pattern recognition, NN generally used in mapping land cover
from remotely sensed imagery have the computing power of lower life-forms
such as earthworms (Simpson & Li, 1993). The relative simplicity of NN typically
used for land cover mapping can be illustrated with reference to the number of
weighted connections in the network which is a function of the number of units
and their arrangement. The human brain, for instance, contains some 1011 units
or neurons (Aleksander & Morton, 1990) while NN used in remote sensing are
much smaller, with typically less than 103 units. There are many other problems
associated with the use of NN for supervised image classification. Here, some
are briefly discussed and possible solutions indicated.

While NN may generally be used to classify imagery at least as accurately
as other classification approaches there are a range of factors that limit their use
(Wilkinson, 1997). Feedforward NN are, for example, semantically poor. Thus,
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while NN may be able to accurately map land cover from remotely sensed
imagery it is difficult understand how the result was achieved. It is, for example,
difficult to identify the relative contribution of different wavebands for inter-class
discrimination which would be useful in the design of new sensors. Some infor-
mation may be gleaned from an analysis of the weighted connections but if the
analyst wanted to understand how, for example, a particular class allocation was
achieved it may be preferable to adopt an alternative technique and those based
on genetic programming and fuzzy logic may be more appropriate (Corne et al.,
1996). The accuracy of a classification is also not always the only concern of
the analyst. Other criteria of classification performance may be important. In
many of the comparative studies undertaken, performance criteria other than
accuracy, notably training time, have been evaluated and revealed that NN may
be less attractive than other classification approaches. This problem may, how-
ever, be resolved through developments in computing, particularly in parallel
hardware or through other approaches that seek to accelerate training (Dawson
et al., 1993; Manry et al., 1994). Alternatively, if training time is a major con-
straint, different network types, such as the ‘one-shot’ BDNN (Salu & Tilton,
1993) and RBFN (Bishop, 1995), or fast learning algorithms, could be used.

Perhaps one of the most important problems is that classification, by whatever
method, is highly subjective (Johnston, 1968). Despite apparent objectivity, the
analyst has control over a range of NN parameters that strongly influence network
performance, especially in terms of speed and accuracy (Foody, 1999a). Issues
such as the selection of a suitable network architecture and properties, together
with the avoidance of problems such as overfitting to the training data while
deriving a sufficient generalisation capacity are important (Fischer et al., 1997),
but largely based on subjective decisions. Even if the various network parameters
are selected judiciously there is still no guarantee that NN will provide an accept-
able let alone optimal land cover classification. While the adoption of NN avoids
problems with the assumptions made by other classification techniques it does
not free the analyst from a range of basic problems that are common to all super-
vised image classifications. Many factors will influence classification perform-
ance. For instance, the accuracy of the classification may be constrained largely
by the quality of the training data. Issues such as the size and composition of the
training sets have a considerable effect on the accuracy of NN classifications
(Zhuang et al., 1994; Foody et al., 1995; Blamire, 1996; Staufer & Fischer, 1997)
as they do on other classification approaches. The analyst must also accept that
the use of NN does not guarantee that the classification will be sufficiently accu-
rate. Although generally more accurate than other classifications, the accuracies
reported in the literature, like those of other classifiers, often fall short of an oper-
ationally acceptable level (Wilkinson, 1996). Moreover, NN classifications do
not always provide the highest classification accuracy, on a per-class and/or over-
all basis and some form of consensual or hybrid approach may be desirable
(Wilkinson et al., 1995; Wilkinson, 1996). Perhaps more importantly, the appro-
priateness of classification as a tool for mapping is debatable.

The classification process outlined and its resulting outputs are ‘hard’, with
each image pixel allocated to a single land cover class. This type of classification
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is only appropriate for the mapping of classes that are discrete and mutually
exclusive. On many occasions this will not be the case. Many land cover
classes are continuous and so inter-grade (Foody, 1996; Foody & Boyd, 1999;
Kent et al., 1997). This is in part a consequence of class definition. For exam-
ple, forest classes are often defined on the basis of relatively arbitrary thresh-
olds of tree canopy cover. Furthermore, ‘hard’ classification is only appropriate
if the basic spatial unit used, typically the pixel, is pure (i.e., represents an area
of homogeneous cover of a single class). This is rarely the case, with many pix-
els of mixed land cover composition contained within remotely sensed imagery
(Campbell, 2002). These, mixed pixels, may occur whatever the nature of the
classes. For instance, with continuous classes, mixed pixels will occur in the
inter-class transition zones where the classes co-exist spatially. Whereas for
discrete classes, the area represented by a pixel will often enclose or straddle
class boundaries. The exact proportion of mixed pixels in an image will vary
with a range of factors, notably the land cover mosaic on the ground and the
sensor’s spatial resolution, but is often very large (Campbell, 2002). Mixed
pixels may, for instance, vastly dominate coarse spatial resolution imagery
used in mapping land cover at regional to global scales (Foody et al., 1997).
With fine spatial resolution imagery mixing also occurs but here the concern is
generally about the extent of sub-class components, such as soil, leaves and
shadow of an individual vegetation class. Mixed pixels will, therefore, be evi-
dent in fine spatial resolution data sets, particularly for heterogeneous classes
such as urban areas (Townshend, 1981).

For the full potential of remote sensing as a source of land cover data to be
realised alternative approaches to conventional ‘hard’ classifications may be
required. Most attention has focused on fuzzy or soft classifications that allow for
partial and multiple class membership (Wang, 1990; Tso & Mather, 2001). In
such a classification, the full class membership of each pixel is partitioned
between all classes and so a pixel can display any possible membership scenario,
from full membership to one class through to having its membership divided, in
any permutation, between all classes.

The conventional NN approach to classification outlined above is ‘hard’
but can be softened to provide a fuzzy land cover classification (Foody, 1996). For
this, the magnitude of the activation level of an output unit may be taken as a
measure of the strength of membership to the class associated with the unit that
reflects the fractional coverage of the class in the area represented by the pixel
(Foody, 1996, 1997) in a manner similar to mapping probabilities from the max-
imum likelihood classification (Foody, 1996). Thus, rather than deriving only the
code of the class associated with the most activated network output unit the
magnitude of the activation level of each output unit could be derived and
mapped. This makes fuller use of the information content of the remotely sensed
imagery and may enable a more accurate and appropriate representation of
land cover to be derived. This applies to both relatively discrete (Foody et al.,
1997) and continuous land cover classes (Foody & Boyd, 1999). The magnitude
of the output units has also been utilised in various measures for different
hydrological and meteorological applications (e.g. Chapter 13).

276 GILES M. FOODY

Copyright © 2004 Taylor & Francis Group plc, London, UK



In addition to being able to derive a fuzzy class allocation, it is possible to use
mixed pixels or fuzzy data directly in the training stage of NN classification, as
the analyst must specify the target vector for the training data set (Foody, 1997;
Foody et al., 1997). As a consequence, NN may be able to produce a land cover
classification at any point along the continuum of classification fuzziness
(Foody, 1999b). At the hard end of this continuum are the conventional ‘hard’
or completely-crisp classifications (Fig. 14.2). These are based on the standard
approach to classification in which a pixel is associated with a single class at
each stage of the classification and so the data may be considered to belong to
crisp rather than fuzzy sets. Most supervised image classifications adopt this
approach but its application may be inappropriate due, for instance, to the pres-
ence of mixed pixels. At the other extremity of the continuum are fully-fuzzy
classifications (Fig. 14.2). In these, fuzziness is accommodated in all three
stages of the classification. This type of approach may provide a more realistic
and accurate representation of the land cover of a site and use more fully the
information content of the remotely sensed imagery. Between these extremes
lie classifications of varying fuzziness, including those generally referred to in
the literature as fuzzy classifications, in which only the class allocation stage
actually accommodates fuzziness (Foody, 1999b). Recognising the existence
of the continuum and designing a classification to fit the appropriate point
along it for a particular study may aid land cover mapping and thereby hydro-
logical modelling. The potential of feedforward NN for classification along the
continuum can be illustrated by comparative evaluation against conventional
classification methods.

6 EVALUATION RELATIVE TO OTHER CLASSIFICATION
APPROACHES

Numerous comparative studies have been undertaken to assess the accuracy of
NN based classifications relative to those derived from more conventional
classification approaches such as maximum likelihood classification, linear
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discriminant analysis and evidential reasoning (e.g. Benediktsson et al., 1990;
Peddle et al., 1994; Paola & Schowengerdt, 1995). As a generalisation, these
studies have revealed that a neural network may be used to map land cover at
least as accurately, but commonly more accurately than conventional classifi-
cation approaches. For instance, Peddle et al. (1994) show that classifications
derived from NN were generally, but not always, more accurate than those
derived using maximum likelihood and evidential reasoning approaches.
Moreover, the incorporation of use of additional discriminatory information
(e.g., image texture) to the analyses increased the accuracy of NN classifica-
tions while that of the conventional maximum likelihood classification
declined. NN, therefore, have considerable potential for accurate land cover
mapping and in the realisation of the potential of remote sensing as a source of
land cover data for input to hydrological models. This can be illustrated, here
with reference to classifications undertaken at either end of the continuum of
classification fuzziness.

6.1 Hard
In many studies of agricultural regions land cover maps depicting crop types
have been used to parameterise hydrological models. Remote sensing is partic-
ularly attractive for crop mapping as the temporal repeat cycle of many sensing
systems enables the observation of crop-specific cycles which greatly enhances
class separability (Middlekoop & Janssen, 1991). The relative advantage of the
NN approach to conventional classification can be illustrated with a simple
example. Using fine spatial resolution SAR imagery, in which mixing of classes
within pixels could be avoided, that were acquired on four dates through a grow-
ing season Foody et al., (1995) compared the accuracy of mapping seven crop
types using NN and discriminant analysis. The discriminant analysis used was
relatively similar to the maximum likelihood classification and allocated each
case to the class with which it has the highest posterior probability of member-
ship (Tom & Miller, 1994). The NN comprised 4 input (one for each SAR image),
3 hidden and 7 output units (one for each class) and used the quickprop learn-
ing algorithm (Fahlman, 1988). Using the same data sets, the accuracy of the
classifications were calculated as 65.5% and 81.9% for the discriminant analy-
sis and NN, respectively. In this instance, the NN was therefore able to derive a
significantly more accurate classification (at the 95% level of confidence) than
the conventional statistical approach.

6.2 Fuzzy
In many instances the land cover to be mapped may be considered to be fuzzy.
This is particularly the situation when the spatial resolution of the sensor used
is comparable to or coarser than the typical size of the features being mapped
(e.g. fields). In such circumstances a fuzzy classification may be undertaken
and NN are particularly attractive as they may be used at any point along the
continuum of classification fuzziness. This can be illustrated with an example

278 GILES M. FOODY

Copyright © 2004 Taylor & Francis Group plc, London, UK



of mapping urban land cover. Urban land cover is highly heterogeneous and
can significantly influence hydrological processes. Often of key concern is the
amount and distribution of impervious surfaces such as roads, pavements and
buildings. These are typically of sub-pixel size in satellite sensor data and so
cannot be mapped accurately by conventional digital image classifications.
However, NN may be trained with mixed data and used to derive a fuzzy clas-
sification. As an example, Foody (1997) used a BPNN with a single hidden
layer to derive a fuzzy classification of an urban area. The NN predictions of
sub-pixel class composition were found to be closely correlated with reference
data (r � 0.88) indicating the potential to derive sub-pixel level land cover data.
This is very advantageous when mixing is a problem, which is often the case
for heterogeneous land covers and/or the remotely sensed data with a coarse
spatial resolution (Foody, 2000; Zhang & Foody, 2001).

7 SUMMARY AND CONCLUSIONS

Remote sensing is a major source of information for hydrological models.
Frequently the remotely sensed imagery are used indirectly through the provision
of land cover data. NN are particularly attractive for the production of land
cover maps from remotely sensed imagery via a supervised digital image classi-
fication analysis. The independence of restrictive assumptions, ability to inte-
grate diverse data sets and, ultimately, the derivation of very accurate land cover
classifications are key advantages of the NN approach. Although NN have
many advantages over conventional classification approaches and have often
been noted to provide more accurate classifications they are not without their
problems. Indeed there is an argument that NN are the second best way of per-
forming a task. Thus, if, for example, the data set to be classified does satisfy
the requirements of the maximum likelihood classification then that approach,
rather than a NN, may be the most appropriate. In such circumstances, the fun-
damental model underlying the maximum likelihood classification is a major
advantage over the distribution-free black-box approach of the NN. By recognis-
ing that different classification approaches vary in their ability to separate the
classes in an image, however, it may be appropriate to adopt a multi-classifier
approach to make the best use of each method of classification (Wilkinson et al.,
1995; Roli et al., 1997; Warrender & Augusteijn, 1999).

A major advantage of NN for land cover mapping lies in their flexibility,
particularly in relation to their applicability at any point along the continuum
of classification fuzziness. This helps reduce the problems associated with the
often-inappropriate dependence on conventional ‘hard’ classification techniques
for land cover mapping when there is generally significant fuzziness to be
accommodated. Since NN may be used to derive a classification at any point
along the continuum of classification fuzziness they, therefore, have considerable
potential for land cover mapping applications and play a significant role in the
realisation of the potential of remote sensing as a source of information for
hydrological modelling applications.
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1 A RESEARCH AGENDA

Artificial neural networks (NN) are now commonly used in many fields, ranging
from social sciences to engineering, where in comparison to more conventional
statistical or theoretical approaches, such tools are providing better and/or faster
solutions to different types of problem. Despite this overall success, the uptake
of NN technologies in the hydrological sciences has been much slower although
we are now witnessing an increasing momentum in the reported use of NN and
other AI technologies. Throughout this book there are clear illustrations of areas
in which hydrological science could benefit from the application of NN includ-
ing: rainfall-runoff modelling (Chapters 3 to 9); rainfall forecasting (Chapter
10); water quality prediction (Chapter 11); sediment modelling (Chapter 12);
and applied remote sensing (Chapters 13 and 14). The examples presented in
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these chapters all demonstrate that neurocomputing can produce models of sim-
ilar or superior performance, but to date there is little evidence that the avail-
able technologies are being transferred into an operational environment, which is
the next crucial step forward, if the widespread potential of these tools is to be
successful. To facilitate a process of technological transfer, neurohydrologists
will need to pursue a research agenda that continues to tackle questions about
improvements in modelling mechanics, and also address the concerns of tradi-
tional hydrologists who prefer to use process-based models and to exclude data-
driven approaches. This chapter suggests five general directions in which
research in the next decade could be pursued:

• improvement to existing NN hydrological models including the investigation
of current NN hydrological problems;

• more emphasis on their comparison with operational and process-based
models;

• the development and construction of more powerful and more efficacious
modelling evaluation criteria;

• further research into understanding their internal workings and the real-world
meaning of each component; and

• the construction of integrated and hybrid NN software for hydrological
research.

Each of these items is discussed in the sections that follow.

2 CONTINUE TO IMPROVE EXISTING NN MODELS

This is a massive area of research that ranges from experimentation with different
NN algorithms and architecture to the development of hybrid models and
dynamic solutions.

2.1 Algorithms and architectures
The multi-layer perceptron trained using backpropagation is the default situation
and the most common tool that is used in all areas of application. Some initial
research into alternative algorithms and architectures is however occurring in the
area of rainfall-runoff modelling: see for example Chapter 5 on Time Delay
Neural Networks (TDNN), Chapter 6 on Cascading Correlation Neural Networks
(CCNN) and Chapter 7 on Partial Recurrent Neural Networks (PRNN). There is
also a vast, theoretical literature on other types of network which remains an
area for further research, e.g. second order NN methods (Shepherd, 1997).

Another important area for research is the fact that there are no fixed rules for
the design of an individual solution and that it is not possible to establish an appro-
priate model a priori. It is likewise impossible to obtain subsequent confirmation
that the final architecture is the optimum one (Kanellopoulos et al., 1992). The
problem of no theoretical support persists throughout all areas of design; even
the most basic matters must be determined through experimentation. Most practi-
tioners use intuition or trial and error assessment procedures. Even sophisticated
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automated search procedures will suffer from comparable problems since dif-

steps in this direction, that relate internal functions to conceptual model
processes in which the number of required hidden nodes is matched against
specific mechanical ‘anchors’, is illustrated in Wilby et al. (2003).

2.2 Learning regimes
Training is the process of optimising connection weights in the search for an
appropriate level of fit. It is not possible to determine the best course of action 
a priori. There are no fixed rules about: the selection and implementation of an
appropriate learning algorithm; the number, distribution, or format of the training
patterns; or the manner in which the data are presented. The training process
must also be considered in relation to the selection of an appropriate architecture
and such decisions are further complicated with the problem that it is possible
to overfit the training data. Trial and error, plus regular monitoring with alter-
native data sets, is again the best advice to date (Sarle, 2000).

Most NN hydrological forecasting and prediction has involved modelling
combinations of traditional rainfall-runoff variables in a supervised learning envir-
onment. However, various problems can arise from skewed data distributions or
weak deterministic hydrological relationships, and the supervised learning model
thus puts an arduous burden on the learning mechanism since it requires a com-
plete set of all possible input-output situations. It is therefore suggested that the
information content, on either the input or the output side of the modelling func-
tion, must be increased if these tools are to achieve improved performance. It is
in this respect that alternative relationships derived from the original data could
also perhaps be used to help build superior modelling solutions. Reed and
Marks (1999) have classified potential addition and replacement strategies for
improvements to the supervised training model into ‘hints’ and ‘distal learners’:

• Supervised learning with hints is where extra output nodes are added to the
network, which is equivalent to training the network to learn additional func-
tions. These hint functions should be related to the main function of interest
and should be easier to learn. Their use could create non-zero derivatives in
regions where the original function has plateaued and thus help to speed-up
convergence. The provision of additional constraints could also control the
final solution under problematic circumstances or help overcome difficul-
ties associated with local minima in the underlying relationship.

• Supervised learning with a distal teacher, is where the outputs from a network
act as inputs to another system, which then transforms the network output
into the final output. The overall modelling procedure is thus split into a
two-stage operation. The first part is used to predict simple intermediate
concepts and the second part then transforms these output values into the
required outputs. The potential to achieve significant gains exists when the
intermediate function is easier to learn and the final transformation is based
on an exact statistical, mathematical or trigonometric function.
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Some hydrological examples of addition and replacement strategies that have
been suggested in the past include: the addition of binary inputs to mark the
start and end of rainfall (Hall & Minns, 1993); the introduction of additional
outputs to help preserve or monitor global features in the overall structure or
particular aspects of the data set (French et al., 1992); and conversion of the pre-
dicted data into a set of alternative representations that are better items to model
such as the use of Fourier Series parameters instead of actual hydrological vari-
ables (Smith & Eli, 1995).

Yet another problem for investigation is the fact that it is not possible to
establish confidence intervals for each coefficient; t-values for example are
meaningless in the case of a non-linear solution. The recommended method for
testing a neural solution is empirical and involves validation against one or more
sets of unseen test data (for more details see Maier and Dandy (2000, p. 112)).
This process demands unbiased datasets that are difficult to construct, and pro-
vides a test for overfitting not a measure of trustworthiness. Other assessment
mechanisms include: an examination of residuals (Hsu et al., 1995; Lek et al.,
1996); and the plotting of error bounds (Hwang & Ding, 1997; Whitley &
Hromadka, 1999).

2.3 Multi-modelling and hybrid modelling solutions
Most NN hydrological modelling applications have to date involved the construc-
tion of a single standalone NN solution. Yet there exists a growing realisation
that more significant applications can be facilitated through the development of
multi-network solutions, in the form of serial and parallel combinations, as
illustrated in Chapter 4. Sharkey (1999) has also argued that multi-neural appli-
cations would in most cases provide improved performance over single-neural
modelling solutions. Indeed, compound solutions could be developed to perform
tasks that cannot be modelled with a single solution, and a modular combination
of neural components could be used to resolve difficult problems in a more effect-
ive manner. Moreover, better overall performance and higher levels of skill, can
often be achieved through an efficacious mix of unstable predictors which are
organised in the form of a ‘redundant combination’. There are two main
approaches that could be investigated: ensemble combinations and modular
combinations.

The term ‘ensemble’ is used to describe a combination of redundant networks;
other terms for this form of combination include ‘committee’ and ‘committee
machine’. In an ensemble combination the component networks are redundant
in that each network provides a solution to the same task, or problem, or task
component. The final result is then amalgamated or averaged using a suitable
method of numerical combination. The motivation behind this approach is to
obtain improved generalisation capabilities and thus guard against the failure of
each individual component solution. Individual components could for instance
be developed using variation in: initial random weights, architectures, training
algorithm, or data sampling. Empirical investigation into the effectiveness of
different methods of ensemble creation suggests that variation in the training
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data has the greatest potential for producing networks that make different
errors (Sharkey & Sharkey, 1995; Sharkey et al., 1996; Tumer & Ghosh, 1996;
Cigizoglu, 2003).

In the modular approach the task or problem is decomposed into a number of
sub-tasks and the complete task solution requires the contribution of several mod-
ules. There are various motivations for taking a modular approach, some of the
most important are to:

• use decomposition to improve performance i.e. no monolithic solutions; use of
more appropriate modules or blend of modules; a mixture of experts approach;

• enable switching of control from one solution to another;

• use sub-problems to extend the capabilities of a single solution;

• permit recombination of data from different sources and partial representations;

• build less complex solutions that are easier to understand;

• develop modular combinations that can be modified and extended with
minimal effort;

• use individual components that are quicker to train;

• create modular solutions that will permit the incorporation of prior know-
ledge that is implemented in terms of an appropriate decomposition.

Further development and testing is required of hybrid models that are derived
from an integration of neurocomputing tools with other ‘smart technologies’ or
conventional and traditional techniques. There is a growing realisation in the field
of intelligent systems (Teodorescu, 2000) that complex problems will require
hybrid solutions, derived from an amalgamation of diverse tools and methods,
originating from traditional mathematics (e.g. dynamical systems; linear algebra;
symbolic computation) and computer science (e.g. logic and theorem proving;
cellular automata; graph algorithms). There is also a marked trend towards com-
bining genetic algorithms, fuzzy logic, NN and expert systems. Each individual
technique has specific computational properties that are well suited to a particu-
lar problem but not to others. Two or more techniques are thus often combined
in such a manner as to overcome the limitations of an individual technique. Thus
hybrid systems are also important when considering the complex and varied
nature of application domains wherein different component problems, or asso-
ciated sub-problems, might require different types of processing or different
forms of solution.

Hybrid formulations could range from the provision of large-scale multi-
model unions to the simple insertion of direct replacement parts. Two examples
will be provided in support of the general case. Shamseldin and O’Connor (2001)
have demonstrated that a neural solution can be coupled to a conceptual model in
the manner of a hydrological model-output updating procedure, with proven bene-
fits, for use in real time forecasting applications. Dssanayake and Phan-Thien
(1994) have described a neural method for solving partial differential equations
that could be adopted in process-based distributed modelling applications. The
mathematical solution of problems associated with continuum mechanics, are
well developed and well understood, but the numerical implementation of such
methods is seldom straightforward. Yet it is often the case that a quick and

TOWARDS A HYDROLOGICAL RESEARCH AGENDA 293

Copyright © 2004 Taylor & Francis Group plc, London, UK



(within-reason) accurate solution can be achieved from a neural approximation,
that can deliver an acceptable set of independent outputs, with minimal user
effort under either linear or non-linear conditions.

NN can also be used to perform data fusion operations on the modelling out-
puts that are produced from an independent set of individual neural forecasters,
e.g. from an ensemble combination of or mixed neural and conventional hydro-
logical forecasters (Abrahart & See, 2002). Data fusion in this context describes
the process of combining or amalgamating information from multiple sensors,
data sources or modelling outputs and can involve serial, parallel, or mixed
strategies of combination. The principal objective of data fusion is to provide a
solution that is either more accurate in some form or which allows one to make
additional inferences above and beyond those which could be achieved through
the use of single source data alone. Data fusion can also operate at more compli-
cated feature-based or decision-based levels, using any combination of input
types, to produce either a numerical output, a feature output, or a higher level deci-
sion. Decisions from individual sensors or sources can also be fused into a higher-
level decision in the manner of an expert system; see Dasarathy (1994, 1997).

2.4 Dynamic modelling
Further development and testing is required of dynamic tools that are able to
model complex chaotic systems. Most hydrological modelling has assumed that
it is possible to describe the rainfall-runoff transformation using a finite number
of basic operators rather than attempting to explain the total process as a complex
whole. It is likewise assumed that: (i) the process is deterministic or stochastic;
(ii) small distortions in the data can have little or no effect on the power of the
model to predict; and (iii) problems associated with modelling and calibration
issues will disappear with improved access to greater volumes of more and better
catchment data derived from automated recording devices. However, such beliefs
are not consistent with the concept of chaos, or the idea that simple nonlinear
deterministic systems can at times behave in what appears to be an unpredictable
and chaotic manner (Gleick, 1987; Stewart, 1997). Extreme or irregular behaviour
can indeed arise from a simple deterministic system, which contains a small
number of non-linear inter-dependent variables, wherein small initial distortions
will under certain circumstances develop in an exponential manner.

The term ‘chaos’ is used in a formal sense to describe the complicated behav-
iour of a non-linear dynamic system, that is a self-organised process, in which the
next state of the system can be expressed as a non-linear function of previous
states. The phase space of a chaotic system is the feature space in which the
process involved is traced over time, such that a chaotic process goes around
areas or points that are situated in phase space, termed chaotic attractors. There is
no repetition of the same trajectories and the system can evolve in continuous or
discrete time. It can embrace stretches and contractions of the phase space and it
is sensitive to initial conditions such that different initial states will produce dif-
ferent trends and outcomes. Sivakumar (2000) discusses the hydrological impli-
cations of chaotic behaviour that is observed in rainfall (e.g. Sivakumar et al.,
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1999) and runoff (e.g. Krasovskaia et al., 1999) time series data. These find-
ings suggest that a similar situation will exist for the rainfall-runoff transfor-
mation process and should therefore be incorporated within the model building
process (albeit that a recent attempt to determine the existence of this chaotic
process was inconclusive (Sivakumar et al., 2001)). Kasobov (1996, pp.
486–493) lists several different types of NN that could be used to model non-
linear dynamical systems: (i) recurrent networks, with feedback connections,
can be used to learn short-term time-dependencies e.g. using input neurons
that could feed their output back to themselves – thus producing a response to
a given input that did not occur the first time that input was presented; (ii) con-
nectionist models, based on chaotic neurons, in which the behaviour of a neu-
ron depends on its external stimulus, or connectionist models with oscillators,
in which functional units comprise two more neurons that act as excitors or
inhibitors and model frequencies, phases or amplitudes; and (iii) spatio-tem-
poral solutions in which time is treated as a variable. For other possibilities see
Zaldivar et al. (2000) and Giustolisi (2000).

3 FURTHER COMPARISON WITH SOLUTIONS OPERATIONAL
AND PROCESS-BASED SOLUTIONS

Extensive exploration and reporting is required to establish the exact relation-
ship between neural solutions and traditional or conventional hydrological
models. Such studies must provide a detailed account of each reported investiga-
tion and contain all model-related facts and decisions. The main focus of recent
comparisons has been with statistical time series predictors and conceptual
models, for example, Tingsanchali and Gautam (2000) compare two lumped
conceptual models and a statistical solution with a NN forecaster. However, the
range and scope of neural applications must be extended, to include a consid-
eration of more complex problems and undertakings and to make comparisons
against state-of-the-art distributed process modelling operations.

Further studies should also be directed towards the emulation of existing
hydrological mechanisms, either in part or in full, since there are clear benefits to
be had in terms of a speed-up (see Abebe et al., 2000; Gautam, 1998; Khindker
et al., 1998; Liu & Lin, 1998). This would be of immense value with respect to
real-time forecasting, large scale processing of detailed satellite data or for long
term simulation runs e.g. MEDRUSH (Abrahart et al., 1996) and SIBERIA
(Willgoose & Riley, 1998; Willgoose, 2000). Most neural applications involve
less than 100 neurons and require a modest amount of training; software simu-
lation in most situations will therefore be sufficient. However, more powerful
mechanisms will be required to meet anticipated future demands, which must at
some point proliferate to include useful things that can be done with 1000s of pro-
cessing elements and 10000’s of weighted connections. This will in turn herald a
need for high performance hardware, in the form of dedicated neurocomputing
platforms and hard-wired machines, which is a specialist area that will require
substantial research into the technologies involved; such equipment is at present
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restricted to a limited number of specialist areas that demand high performance
computing e.g. high energy physics.

Sorooshian (1991) states that most hydrological models suffer from (i) an
assumption that the dynamics of a watershed can be represented using a
lumped approach and point-based data and that (ii) great inaccuracies occur
when such models are applied to situations that possess significant differences
in space-time scales. NN solutions should therefore be developed at different
scales of spatial, temporal or process-based investigation; to provide cross-
scale models that can be used to perform macro-unions for up-scaling or down-
scaling operations. NN, based on multiple catchments, could also be used to
provide evidence that improved levels of modelling can be achieved at differ-
ent levels of process-based or spatio-temporal generalisation. Moreover,
important environmental associations that suffer from poor conventional mod-
elling or an insufficient theoretical foundation, might perhaps be modelled in a
more accurate or more efficacious manner than was hitherto possible. Schaap
and associates (Schaap & Bouten, 1996; Schaap & Leij, 1998; Schaap et al.,
1998; Schaap et al., 1999; Lebron et al., 1999) provide several classic exam-
ples on the prediction of soil water properties. This field of research is charac-
terised with small data sets, widespread disparities, and problematic hysterisis
loops; for NN modelling of loop-rating hysteresis curves, see Jain and
Chalisgaonkar (2000). The use of fuzzification methods and neural modelling
concepts to overcome sediment transfer prediction problems associated with
small data sets has also been demonstrated; see Abrahart and White (2001).

4 DEVELOPMENT OF MORE MEANINGFUL EVALUATION
CRITERIA AND ASSOCIATED HYDROLOGICAL 
MODELLING BENCHMARKS

The calculation of dimensionless indices to assess model skill is still the norm:
descriptive statistics based on sum-squared error or similar measures are com-
puted to provide an assessment of global or seasonal goodness-of-fit. However,
conventional indices will tend to emphasise a limited number of features in the
data, such that specific items of interest with respect to the proposed application
will often be masked. Hall (2001) investigated volume, bias and timing issues. He
commented that the preferred solution would be to use a series of different meas-
urement criteria (ten were suggested) that focused on the more important aspects
of model behaviour – as opposed to placing total reliance on a single index. Gupta
et al. (1998) (see also Yapo et al., 1998) have also proposed a multi-criteria cali-
bration procedure in which several different objectives could be satisfied and this
approach might be adopted in a similar manner for model evaluation, as opposed
to calibration, purposes. Model output could thus be assessed on the basis of mul-
tiple measures and different features, or different periods, using a dedicated inter-
active analytical toolbox that still awaits development. The hydrographic record
can for example be divided into periods with or without rainfall. The rain-free
periods might then be further divided into periods dominated by either
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throughflow or baseflow processes, and performance assessed for each divi-
sion e.g. Wagener et al. (2000).

The selection and weighting of individual components within a multi-
assessment procedure must be application specific and related to fitness-for-
purpose; the assessment of a flood model should perhaps emphasise peaks, whilst
the assessment of a resources model might perhaps be more directed towards an
evalu-ation of low flow sequences. Improved measures and metrics are also
needed to extend the scope of the assessment exercise: ranging from hydrological
indices related to operational forecasting (e.g. See et al. (2001) have suggested
the use of alarm levels and the rising limb of the hydrograph) to geometrical
analysis based on constructs that are devised to perform an evaluation of line
simplification algorithms (e.g. differences in lengths, angles, curvatures, or dis-
placements: for further details see McMaster (1987, 1989)). The list of additional
items to be evalu-ated might also be extended to include a consideration of vari-
ous non-skill-based issues such as: model construction time; data input require-
ments; error handling capabilities; or temporal adaptation characteristics.

True comparison of reported strategies is often difficult because the reported
solutions are developed in different environments. Thus local variations can have
a significant impact on model performance. To address this problem the develop-
ment of better measures and metrics will also require the provision of associated
benchmarks and standards. These must be based on shared data sets, which can
be used to demonstrate the difference between strong and weak solutions, and
thus facilitate subsequent multi-model comparison exercises.

5 IMPROVEMENTS TO MODEL UNDERSTANDING

It is difficult to detect or to understand the internal processes that are occurring
within each model, since the information that has been extracted from the orig-
inal training data, is distributed throughout the NN architecture. Neural solu-
tions provide no justification or explanation for their answers; there are no
facilities to match the ‘how and why’ querying procedures of an expert system.
Each user must therefore have confidence in the construction of the NN and its
associated modelling outputs. It is nevertheless desirable that each solution
should be capable of imparting some form of an explanation, even if it is a par-
tial explanation, as an integral part of its function. Minns (2000) has argued that
neural methods can discover usable relations in measured and experimental data
with little or no a priori knowledge of the governing physical process charac-
teristics. The neural solution cannot perform an explicit identification of the
form of a model but such form is nevertheless implicit in the neural structure,
being encoded within the distribution of nodes and weights. Each NN solution
is thus an electronic knowledge encapsulator, that stores encoded information at
the sub-symbolic level, which is difficult to extract in mathematical terms due
to the high degree of non-linear complexities that are involved. Direct transla-
tion of weighted coefficients into a mathematical equation does not help; even
with small architectures such equations are too complicated for direct human
comprehension (c.f. genetic programming).
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Flood and Kartam (1993, p. 136) demonstrated that the NN output response
surface of a NN is the amalgamation of the output response surfaces from each
of the hidden neurons, and that analysis of the output from each hidden unit,
will thus provide a representation of the function that each unit is performing.
Wilby et al. (2003) have also shown that the inner workings of a river-level
forecaster can be matched against the inner workings of a conceptual model
that was cloned with a neural solution. NN internal functions can therefore be
extracted and inspected for real-world meaning, in terms of a one-to-one map-
ping against recognised hydrological processes, along the same lines as those
reported for data-based mechanistic modelling of rainfall-runoff in Young
(1993, 1998a,b, 1999a,b), Young and Beven (1991, 1994), Young et al. (1997)
and Lees (2000).

Two other preferred methods of extraction are based on global diagnostics.
To perform a meaningful examination of individual weights and connections is
problematic because the mutual interaction between each neural component is
of critical importance. It would therefore seem prudent to develop further
methods of exploration and analysis along similar lines to holistic testing pro-
cedures such as:

• sensitivity analysis: which investigates ‘the rate of change in one factor with
respect to change in another’ (McCuen, 1973), and

• saliency analysis: which involves zeroing neural input vectors to determine
the effect that a particular input has on the overall modelling process
(Abrahart et al., 2001).

Other methods include the inspection of connection weights (Maier & Dandy,
1997), and the construction of stereotypical inputs or Hinton Diagrams, i.e.
visualization of the weight matrix (Silverman & Dracup, 2000).

Further exploration and analysis of internal components and relationships is
required, using both quantitative (i.e. measurement) and qualitative (i.e. visual-
ization) techniques, to assess the influence and possible meaning of specific
nodes, weights and topologies. Future research must also aim to extract relevant
material and to discover useable relations that will foster better understanding and
thus assist future modelling efforts at the development stage:

• to build parsimonious NN modelling solutions.

• and facilitate rapid prototyping of more complex mechanisms.

It is also recommended that the end product should be visualized and inter-
preted, in contrast to the provision of a detailed numerical description, that is
based on the use of global statistics. Laffan (1998) reports that large-scale real
time geographic visualisation of nodal output during training, for dynamic
assessment purposes, is not a realistic option. However, post-model building
visualization can still provide a powerful means of analysis, since it is easier
for people to interpret diagrams vis-à-vis all other forms of digital data pre-
sentation. The end product does not remove the black box tag but does enable
some insight into the mechanism and thus makes each solution a little more
transparent to both practitioners and scientists.
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6 DEVELOPMENT OF DEDICATED HYDROLOGICAL NN
SOFTWARE PACKAGES

Most NN hydrological modelling applications have been developed using com-
mercial packages or in-house programs, that adopt a static approach to modelling,
based on the use of standard architectures and algorithms: (i) the data are
organised; (ii) the data are imported; and (iii) the model is then developed. Each
alternative solution that is to be tested thus requires a fresh start. No neural soft-
ware package or program at present supplies a customisable hydrological pro-
gramming interface that could be used to (i) ease the development process or
(ii) provide a suitable test bed for rapid application development or for modelling
exploration purposes. The present generation of software tools and products is thus
unable to provide a high level of interaction commensurate with the demands of a
modern data-driven paradigm. It is therefore argued that a bespoke NN software
package should be developed, to perform detailed interactive exploration and
analysis operations, and tailored to the purposes of hydrological science. This pro-
gram should be in the form of a dedicated toolbox that would permit practitioners
to assemble and test a range of solutions, or to perform basic modifications to a
specific application, based on libraries of functions in an integrated and controlled
user-empowered environment (cf. GeoVISTA Studio (Gahegan et al., 2000)).

Some basic examples of the different sorts of interactive experiment that
model builders might wish to perform might include the adoption of alternative
data pre-processing transformations. Sarle (2002), for example, explains that
in addition to simple linear conversions there are several other recognised pro-
cedures which include (i) log transformations that can be used to reduce large gaps
between upper outliers e.g. peak flow situations and (ii) logistical trans-
formations that could be used to expand distances within a cluster of similar
values e.g. in a parallel hybrid error-updating mechanism based on the predic-
tion of residual data from a traditional model. The other major item that would
be useful is an option to construct and incorporate dedicated transfer functions,
that can be run or changed at will, without the need for a higher degree in soft-
ware engineering. Imrie et al. (2000) have investigated the use of different out-
put activation functions and the implication is that some functions might be
more appropriate than others, under certain circumstances, according to the
inherent hydrological properties of a catchment and its data e.g. use of cubic
polynomial activation function for river flow prediction. The development of a
dedicated neural-hydrological toolbox would also permit the incorporation of
several automated mechanisms that would (i) perform a detailed exploration and
analysis of internal relationships and (ii) could implement a broad range of appro-
priate hydrological evaluations.

7 FINAL WORD

NN have much to offer. The opportunities for exploring and forecasting are
both numerous and challenging. Hydrological problems are appropriate, the
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possibilities are exciting, the software is available, and we encourage hydrolo-
gists to continue their involvement.
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