
www.ebook3000.com

http://www.TelecommunicationsDemystified.com
http://www.ebook3000.org

Telecommunications
Demystified

A Streamlined Course in Digital Communications
(and some Analog) for EE Students and

Practicing Engineers

by Carl Nassar

Eagle Rock, Virginia
www.LLH-Publishing.com

http://www.LLH-Publishing.com
http://www.LLH-Publishing.com

Copyright © 2001 by LLH Technology Publishing

All rights reserved. No part of this book may be reproduced, in any
form or means whatsoever, without written permission of the pub-
lisher. While every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors
or omissions. Neither is any liability assumed for damages resulting
from the use of information contained herein.

Printed in the United States of America.

ISBN 1-878707-77-9 (eBook)

LLH Technology Publishing and HighText Publications are trademarks
of Lewis Lewis & Helms LLC, 3578 Old Rail Road, Eagle Rock, VA,
24085

www.ebook3000.com

http://www.LLH-Publishing.com
http://www.ebook3000.org

iii

Contents

Foreword xv
What’s on the CD-ROM? xvii

CHAPTER 1
Introducing Telecommunications .. 1

1.1 Communication Systems ... 1
1.1.1 Definition ... 1
1.1.2 The Parts of a Communication System 2
1.1.3 An Example of a Communication System 2

1.2 Telecommunication Systems ... 3
1.2.1 Definition ... 3
1.2.2 Four Examples and an Erratic History Lesson 4

1.3 Analog and Digital Communication Systems 6
1.3.1 Some Introductory Definitions ... 6
1.3.2 Definitions ... 7
1.3.3 And Digital Became the Favorite ... 8
1.3.4 Making It Digital .. 9

1.4 Congrats and Conclusions ... 10

CHAPTER 2
Telecommunication Networks .. 13

2.1 Telecommunication Network Basics .. 13
2.1.1 Connecting People with Telephones 13
2.1.2 Connecting More People, Farther Apart 14
2.1.3 Multiplexing—An Alternative to a Lot of Wire 16

iv

Telecommunications Demystified

2.2 POTS: Plain Old Telephone System ... 19
2.2.1 Local Calls ... 19
2.2.2 Long Distance Calls ... 20
2.2.3 The Signals Sent from Switching Center to
 Switching Center ... 21

2.3 Communication Channels.. 24
2.3.1 Transmission Lines (Wires) ... 24
2.3.2 Terrestrial Microwave ... 26
2.3.3 Satellite Connections .. 28
2.3.4 Fiber-optic Links ... 29

2.4 Data Communication Networks .. 31
2.5 Mobile Communications .. 33
2.6 Local Area Networks (LANs) .. 35
2.7 Conclusion ... 37

CHAPTER 3
A Review of Some Important Math, Stats, and Systems 39

3.1 Random Variables ... 39
3.1.1 Definitions .. 39
3.1.2 The Distribution Function: One Way to Describe x 39
3.1.3 The Density Function: A Second Way to Describe x 40
3.1.4 The Mean and the Variance .. 41
3.1.5 Multiple Random Variables ... 44

3.2 Random Processes ... 45
3.2.1 A Definition ... 45
3.2.2 Expressing Yourself, or a Complete Statistical Description..47
3.2.3 Expressing Some of Yourself, or a Partial Description 47
3.2.4 And in Telecommunications … ... 48

3.3 Signals and Systems: A Quick Peek ... 50
3.3.1 A Few Signals .. 50
3.3.2 Another Way to Represent a Signal:
 The Fourier Transform .. 51
3.3.3 Bandwidth ... 53
3.3.4 A Linear Time Invariant (LTI) System 55
3.3.5 Some Special Linear Time Invariant (LTI) Systems 56

3.4 Onward... 58

www.ebook3000.com

http://www.ebook3000.org

v

Telecommunications Demystified

CHAPTER 4
Source Coding and Decoding: Making it Digital 61

4.1 Sampling .. 61
4.1.1 Ideal Sampling .. 61
4.1.2 Zero-order Hold Sampling ... 67
4.1.3 Natural Sampling .. 69

4.2 Quantization .. 71
4.2.1 Meet the Quantizer .. 71
4.2.2 The Good Quantizer ... 77
4.2.3 The Quantizer and the Telephone .. 88

4.3 Source Coding: Pulse Code Modulator (PCM) 92
4.3.1 Introducing the PCM ... 92
4.3.2 PCM Talk .. 93
4.3.3 The “Good” PCM.. 94
4.3.4 Source Decoder: PCM Decoder ... 95

4.4 Predictive Coding ... 96
4.4.1 The Idea Behind Predictive Coding 97
4.4.2 Why? .. 97
4.4.3 The Predicted Value and the Predictive Decoder 98
4.4.4 The Delta Modulator (DM)... 99
4.4.5 The Signals in the DM ... 101
4.4.6 Overload and Granular Noise ... 105
4.4.7 Differential PCM (DPCM) .. 107

4.5 Congrats and Conclusion ... 110

CHAPTER 5
Getting It from Here to There: Modulators and Demodulators 115

5.1 An Introduction ... 115
5.2 Modulators .. 116

5.2.1 Baseband Modulators .. 116
5.2.2 Bandpass Modulators .. 124

5.3 Just-in-Time Math, or How to Make a Modulator Signal
 Look Funny ... 133

5.3.1 The Idea ... 134
5.3.2 Representing Modulated Signals .. 138

vi

5.4 Bring it Home, Baby, or Demodulators .. 146
5.4.1 What Demodulators Do .. 146
5.4.2 The Channel and Its Noise .. 147
5.4.3 Building a Demodulator,
 Part I—the Receiver Front End.. 148
5.4.4 The Rest of the Demodulator,
 Part II—The Decision Makers ... 152
5.4.5 How to Build It .. 156

5.5 How Good Is It Anyway (Performance Measures) 161
5.5.1 A Performance Measure ... 161
5.5.2 Evaluation of P()ε for Simple Cases 162
5.5.3 Some well-known P()ε ’s ... 166

5.6 What We Just Did ... 166

CHAPTER 6
Channel Coding and Decoding: Part 1–Block Coding and Decoding ... 171

6.1 Simple Block Coding ... 172
6.1.1 The Single Parity Check Bit Coder 172
6.1.2 Some Terminology ... 175
6.1.3 Rectangular Codes ... 175

6.2 Linear block codes .. 177
6.2.1 Introduction ... 177
6.2.2 Understanding Why ... 179
6.2.3 Systematic Linear Block Codes .. 181
6.2.4 The Decoding ... 182

6.3 Performance of the Block Coders .. 188
6.3.1 Performances of Single Parity Check Bit
 Coders/Decoders .. 188
6.3.2 The Performance of Rectangular Codes............................ 189
6.3.3 The Performance of Linear Block Codes 189

6.4 Benefits and Costs of Block Coders ... 192
6.5 Conclusion ... 193

www.ebook3000.com

http://www.ebook3000.org

vii

CHAPTER 7
Channel Coding and Decoding:
Part 2–Convolutional Coding and Decoding 197

7.1 Convolutional Coders ... 197
7.1.1 Our Example ... 197
7.1.2 Making Sure We’ve Got It ... 199
7.1.3 Polynomial Representation .. 200
7.1.4 The Trellis Diagram ... 201

7.2 Channel Decoding .. 203
7.2.1 Using a Trellis Diagram .. 204
7.2.2 The Viterbi Algorithm ... 206

7.3 Performance of the Convolutional Coder 213
7.4 Catastrophic Codes .. 214
7.5 Building Your Own ... 216

CHAPTER 8
Trellis-Coded Modulation (TCM)
The Wisdom of Modulator and Coder Togetherness 221

8.1 The Idea ... 222
8.2 Improving on the Idea .. 225
8.3 The Receiver End of Things .. 230

8.3.1 The Input ... 231
8.3.2 The TCM Decoder Front End .. 233
8.3.3 The Rest of the TCM Decoder.. 234
8.3.4 Searching for the Best Path .. 237

CHAPTER 9
Channel Filtering and Equalizers ... 245

9.1 Modulators and Pulse Shaping ... 245
9.2 The Channel That Thought It Was a Filter 249
9.3 Receivers: A First Try .. 251

9.3.1 The Proposed Receiver .. 251
9.3.2 Making the Receiver a Good One 254
9.3.3 The Proposed Receiver: Problems and Usefulness 256

9.4 Optimal Receiver Front End .. 258

viii

9.5 Optimal Rest-of-the-Receiver ... 262
9.5.1 The Input .. 262
9.5.2 A Problem with the Input, and a Solution 264
9.5.3 The Final Part of the Optimal Receiver 265
9.5.4 An Issue with Using the Whitening Filter and MLSE...... 271

9.6 Linear Equalizers .. 271
9.6.1 Zero Forcing Linear Equalizer .. 272
9.6.2 MMSE (Minimum Mean Squared Error) Equalizer 273

9.7 Other Equalizers: the FSE and the DFE 274
9.8 Conclusion ... 275

CHAPTER 10
Estimation and Synchronization ... 279

10.1 Introduction ... 279
10.2 Estimation .. 280

10.2.1 Our Goal .. 280
10.2.2 What We Need to Get an Estimate of a Given r 281
10.2.3 Estimating a Given r, the First Way 281
10.2.4 Estimating a Given r, the Second Way 282
10.2.5 Estimating a Given r, the Third Way 283

10.3 Evaluating Channel Phase: A Practical Example 285
10.3.1 Our Example and Its Theoretically Computed Estimate .. 285
10.3.2 The Practical Estimator: the PLL 290
10.3.3 Updates to the Practical Estimator in MPSK 292

10.4 Conclusion ... 294

CHAPTER 11
Multiple Access Schemes:
Teaching Telecommunications Systems to Share 299

11.1 What It Is ... 299
11.2 The Underlying Ideas ... 300
11.3 TDMA .. 303
11.4 FDMA .. 305
11.5 CDMA .. 306

11.5.1 Introduction ... 306
11.5.2 DS-CDMA .. 310

www.ebook3000.com

http://www.ebook3000.org

ix

11.5.3 FH-CDMA ... 312
11.5.4 MC-CDMA .. 313

11.6 CIMA .. 315
11.7 Conclusion ... 318

CHAPTER 12
Analog Communications ... 321

12.1 Modulation—An Overview .. 321
12.2 Amplitude Modulation (AM) ... 322

12.2.1 AM Modulators—in Time ... 323
12.2.2 AM Modulation—in Frequency 326
12.2.3 Demodulation of AM Signals—Noise-Free Case 328
12.2.4 An Alternative to AM—DSB-SC...................................... 330

12.3 Frequency Modulation (FM)... 334
12.3.1 The Modulator in FM .. 335
12.3.2 The Demodulator in FM .. 339

12.4 The Superheterodyne Receiver ... 339
12.5 Summary ... 341

Annotated References and Bibliography ... 345

Index .. 349

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

xi

Acknowledgments

In this life of mine, I have been blessed with an abundance of won-
derful people. This book would be incomplete without at least a page to
say “thank you,” for these are people alive in me and, therefore, alive in
the pages of this book.

Dr. Reza Soleymani, your careful guidance through the turmoil that
surrounded my Ph.D. days was nothing short of a miracle. You showed
me, through your example, how to handle even the most difficult of
situations with grace and grit, both academically and in all of life.

Dr. Derek Lile, Department Head at CSU—a young faculty could
not ask for better guidance. Your thoughtfulness, caring, and gentle
support have helped nurture the best of who I am. I am grateful.

Steve Shattil, Vice President of Idris Communications, you are indeed
a genius of a man whose ideas have inspired me to walk down new roads
in the wireless world. Arnold Alagar, President of Idris, thank you for
sharing the bigger picture with me, helping guide my research out of
obscure journals and into a world full of opportunity. To both of you, I am
grateful for both our technological partnerships and our friendships.

Bala Natarajan and Zhiqiang Wu, my two long-time Ph.D. students,
your support for my research efforts, through your commitment and
dedication, has not gone unnoticed. Thank you for giving so fully of
yourselves.

Dr. Maier Blostien, who asked me to change my acknowledgments
page in my Ph.D. thesis to something less gushy, let me thank you now
for saving the day when my Ph.D. days looked numbered. I appreciate
your candor and your daring.

Carol Lewis, my publisher at LLH Technology Publishing, thank
you for believing in this project and moving it from manuscript to
“masterpiece.”

Gretchen Brooks Nassar, you hold my hand and invite me to fly off the
cliffs and into Oceans of Wonder. Your support in inviting me to pursue my
dreams is nothing short of a gift straight from the heavens. I love you.

xii

And to the three of you who have loved me my whole life, and given
me the best of who you are, Mom (Mona), Dad (Rudy), and Christine
(sister)—your love has shaped me and has made this book a possibility.
Wow!

And to all of you I haven’t mentioned, who appeared in my life and
shared your light with me, thank you.

www.ebook3000.com

http://www.ebook3000.org

xiii

About the Author

Carl R. Nassar, Ph.D., is an engineering professor
at Colorado State University, teaching telecommu-
nications in his trademark entertaining style. He is
also the director of the RAWCom (Research in
Advanced Wireless Communications) Laboratory,
where he and his graduate students carry out
research to advance the art and science of wireless
telecommunications. In addition, he is the founder

of the Miracle Center, an organization fostering personal growth for
individuals and corporations.

Since Carl’s undergraduate and graduate school days at McGill
University, he has dreamed of creating a plain-English engineering text
with “personality.” This book is that dream realized.

To contact the author, please write or e-mail him at

Carl R. Nassar, Ph.D.
Department of ECE
Colorado State University
Fort Collins, CO 80523-1373
carln@engr.colostate.edu

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

xv

Foreword

I first met the author of this book, Professor Carl Nassar, after he
presented a paper at a conference on advanced radio technology. Pro-
fessor Nassar’s presentation that day was particularly informative and
his enthusiasm for the subject matter was evident. He seemed especially
gifted in terms of his ability to explain complex concepts in a clear way
that appealed to my intuition.

Some time later, his editor asked me if I would be interested in
reviewing a few chapters of this book and preparing a short preface. I
agreed to do so because, in part, I was curious whether or not his acces-
sible presentation style carried over into his writing. I was not
disappointed.

As you will soon see as you browse through these pages, Professor
Nassar does have an uncanny ability to demystify the complexities of
telecommunications systems engineering. He does so by first providing
for an intuitive understanding of the subject at hand and then, building
on that sound foundation, delving into the associated mathematical
descriptions.

I am partial to such an approach for at least two reasons. First, it has
been my experience that engineers who combine a strong intuitive under-
standing of the technology with mathematical rigor are among the best in
the field. Second, and more specific to the topic of this book, because of
the increased importance of telecommunications to our economic and
social well-being, we need to encourage students and practicing engineers
to enter and maintain their skills in the field. Making the requisite techni-
cal knowledge accessible is an important step in that direction.

In short, this book is an important and timely contribution to the
telecommunications engineering field.

Dale N. Hatfield
Former Chief, Office of Engineering and Technology
Federal Communications Commission

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

xvii

What’s on the CD-ROM?

The CD-ROM accompanying this book contains a fully searchable,
electronic version (eBook) of the entire contents of this book, in Adobe®

pdf format. In addition, it contains interactive MATLAB® tutorials that
demonstrate some of the concepts covered in the book. In order to run
these tutorials from the CD-ROM, you must have MATLAB installed on
your computer. MATLAB, published by The MathWorks, Inc., is a
powerful mathematics software package used almost universally by the
engineering departments of colleges and universities, and at many
companies as well. A reasonably priced student version of MATLAB is
available from www.mathworks.com. A link to their web site has been
provided on the CD-ROM.

Using the Tutorials

Each tutorial delves deeper into a particular topic dealt with in the
book, providing more visuals and interaction with the concepts pre-
sented. Note that the explanatory text box that overlays the visuals can
be dragged to the side so that you can view the graphics and other aids
before clicking “OK” to move to the next window. Each tutorial
filename reflects the chapter in the book with which it is associated. I
recommend that you read the chapter first, then run the associated
tutorial(s) to help deepen your understanding. To run a particular tuto-
rial, open MATLAB and choose Run Script from the Command Window
File menu. When prompted, locate the desired tutorial on the CD-ROM
using the Browse feature and click “OK.” The tutorials contain basic
descriptions and text to help you use them. Brief descriptions are also
given in the following pages.

MATLAB is a registered trademark of The MathWorks, Inc.

http://www.mathworks.com

xviii

ch2.m

Demonstrates the creation of the DS-1 signal.

ch4_1.m

Shows the different sampling techniques, and the effects of sampling
at above and below the Nyquist rate.

ch4_2.m

Demonstrates quantization, and computation of the MSE.

ch4_3.m

Explains the operation of the DM.

ch5_1.m

Shows the workings of modulation techniques such as BPSK and
BFSK.

ch5_2.m

Explains how three signals are represented by two orthonormal basis
functions.

ch5_3.m

Illustrates the damaging effect of noise and the operation of decision
devices.

ch5_4.m

Demonstrates the performance curve for BPSK signals.

ch7.m

Shows how a convolutional coder and convolutional decoder work.

www.ebook3000.com

http://www.ebook3000.org

xix

ch8.m

Provides an example of how TCM works at the coder and the
decoder side.

ch9_1.m

Demonstrates how the sinc and raised cosine pulse shapes avoid ISI.

ch9_2.m

Shows how the decision device operates in the optimal receiver.

ch11.m

Provides colorful examples of TDMA, FDMA, MC-CDMA,
DS-CDMA, and CIMA.

ch12.m

Illustrates the different analog modulation techniques.

Please note that the other files on the CD-ROM are subroutines that
are called by the above-named files. You won’t want to run them on
their own, but you will need them to run these tutorials.

For MATLAB product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

1
Chapter

Introducing
Telecommunications

I can still recall sitting in my first class on telecommunications as an
undergrad—the teacher going off into a world of technical detail and I in my chair

wondering, “What is this stuff called communications and telecommunications?” So,
first, some simple definitions and examples—the big picture.

1.1 Communication Systems

1.1.1 Definition

A communication system is, simply, any system in which information is transmitted
from one physical location—let’s call it A—to a second physical location, which we’ll
call B. I’ve shown this in Figure 1.1. A simple example of a communication system is
one person talking to another person at lunch. Another simple example is one person
talking to a second person over the telephone.

Figure 1.1 A communication system

2 ◆ Chapter One

1.1.2 The Parts of a Communication System

Any communication system is made up of three parts, shown in Figure 1.2. First is the
transmitter, the part of the communication system that sits at point A. It includes two
items: the source of the information, and the technology that sends the information out
over the channel. Next is the channel. The channel is the medium (the stuff) that the
information travels through in going from point A to point B. An example of a channel
is copper wire, or the atmosphere. Finally, there’s the receiver, the part of the commu-
nication system that sits at point B and gets all the information that the transmitter
sends over the channel.

We’ll spend the rest of this book talking about these three parts and how they work.

1.1.3 An Example of a Communication System

Now, let’s run through a simple but very important example of a communication
system. We’ll consider the example of Gretchen talking to Carl about where to go for
lunch, as shown in Figure 1.3.

TRANSMITTER RECEIVER

CHANNEL

A B
Figure 1.2 Parts of a communication system

Figure 1.3
Gretchen talking to Carl at lunch

Channel (the air)

Windpipe
Vocal cords

www.ebook3000.com

http://www.ebook3000.org

Introducing Telecommunications ◆ 3

The Transmitter

The transmitter, in this case, is made up of parts of Gretchen, namely her vocal cords,
windpipe, and mouth. When Gretchen wants to talk, her brain tells her vocal cords
(found in her windpipe) to vibrate at between 100 Hz and 10,000 Hz, depending on the
sound she’s trying to make. (Isn’t it cool that, every time you talk, a part of you is
shaking at between 100 and 10,000 times per second?) Once Gretchen’s vocal cords
begin to vibrate, here are the three things that happen next:

(1) the vibrations of her vocal cords cause vibrations in the air in her windpipe;

(2) these vibrations in the air move up her windpipe to her mouth; and

(3) as the vibrating air moves out through Gretchen’s mouth, the shape of her
mouth and lips, and the position of her tongue, work together to create the
intended sound.

The Channel

In our example, the channel is simply the air between Gretchen and Carl. The shaped
vibrations that leave Gretchen’s mouth cause vibrations in the air, and these vibrations
move through the air from Gretchen to Carl.

The Receiver

The receiver in this case is Carl’s eardrum and brain. The vibrations in the air hit
Carl’s eardrum, causing it to vibrate in the same way. Carl’s shaking eardrum sends
electrical signals to his brain, which interprets the shaking as spoken sound.

The human eardrum can actually pick up vibrations between 50 Hz and 16,500
Hz, allowing us to hear sounds beyond the range of what we can speak, including a
variety of musical sounds.

1.2 Telecommunication Systems

1.2.1 Definition

A telecommunication system is two things: (1) a communication system—that is, a
system in which information is transmitted from one physical location, A, to a second
physical location, B; and (2) a system which allows this information to be sent beyond
the range of usual vocal or visual communications. Gretchen and Carl’s lunchtime chat
would not qualify as a telecommunication system, but the telephone system which
they used later for an afternoon talk does qualify.

4 ◆ Chapter One

1.2.2 Four Examples and an Erratic History Lesson

Here are four examples of telecommunication systems, ordered chronologically to
create what we’ll optimistically call “a brief history of telecommunications.”

Smoking Up In the B.C.’s, smoke signals were sent out using fire and some smoke
signal equipment (such as a blanket). The smoke, carried upward by the air, was seen
by people far (but not too far) away, who then interpreted this smoke to have some
meaning. It is said that a fellow named Polybius (a Greek historian) came up with a
system of alphabetical smoke signals in the 100s B.C., but there are no known re-
corded codes.

Wild Horses Until the 1850s in the U.S., the fastest way to send a message from one’s
home to someone else’s home was by Pony Express. Here, you wrote what you wanted
to say (the transmitter), gave the writing to a Pony Express man, who then hopped on
his horse and rode to the destination (the channel), where the message would be read
by the intended person (the receiver).

Telegraph In 1844, a fellow named Samuel Morse built a device he called the tele-
graph, the beginning of the end of the Pony Express. The transmitter consisted of a
person and a sending key, which when pressed by the person, created a flow of elec-
tricity. This key had three states: “Off” which meant the key was not pressed; “Dot,”
which meant the key was pressed for a short time and then released; and “Dash,”
which meant the key was pressed for a longer time and then released. Each letter of
the alphabet was represented by a particular sequence of dots and dashes. To keep the
time to send a message short, the most commonly used letters in the alphabet were
represented by the fewest possible dots or dashes; for example, the commonly used “t”
was represented by a single dash, and the much- loved “e” was represented by a single
dot. This system of representing letters is the well-known Morse code. The channel
was an iron wire. The electricity created by the person and the sending key (the
transmitter) was sent along this wire to the receiver, which consisted of an audio-
speaker and a person. When the electricity entered the audio-speaker from the iron
wire, it made a beeping sound. A “Dot” sounded like a short beep, and a “Dash”
sounded like a longer beep. The person, upon hearing these beeps, would then decode
the letters that had been sent. The overall system could send about two letters a
second, or 120 letters a minute. The first words sent over the telegraph, by inventor
Morse himself, were “What has God wrought!” (I have since wondered what Morse,
who basically invented a simple dot-dash sending system, would have said about, oh,
say, a nuclear bomb.)

The Telephone The telephone was invented in 1876 by Alexander Graham Bell,
whose first words on the phone were, “Mr. Watson, come at once, I need you.” Alex
had just spilled battery acid down his pants and, as you can imagine, was in quite
urgent need of his assistant’s help. Figure 1.4 shows an illustration of two people, who

www.ebook3000.com

http://www.ebook3000.org

Introducing Telecommunications ◆ 5

we’ll call Carl and Monica, using the telephone. What follows is a wordy description of
how the telephone works. Refer to Figure 1.4 to help you with the terms.

The transmitter consists of Monica (who is talking) and the transmitting (bottom)
end of the telephone. Monica speaks, and her vocal cords vibrate. This causes vibra-
tions in the air, which travel through and out her mouth, and then travel to the
bottom end of the telephone. Inside the bottom end of the telephone is a diaphragm.
When the vibrations of the air arrive at this diaphragm, it, like an eardrum, begins to
vibrate. Directly behind the diaphragm are a bunch of carbon granules. These gran-
ules are part of an electrical circuit, which consists of a 4-V source, copper wire, and
the carbon granules. The carbon granules act as a resistor (with variable resistance) in
the circuit. When the diaphragm is pushed back by the vibrating air, it causes the
carbon granules (right behind it) to mush together. In this case, the granules
act like a low-resistance resistor in the circuit. Hence, the current flowing though the
electric circuit is high (using the well-known IRV ⋅= rule). When the diaphragm is
popped out by the vibrating air, it causes the carbon granules (right behind it) to
separate out. In this case, those carbon granules are acting like a high-resistance
resistor in the electrical circuit. Hence, the current flowing though the circuit is low.
Overall, vibrations in the diaphragm (its “pushing back” and “popping out”) cause the
same vibrations (frequencies) to appear in the current of the electrical circuit (via
those carbon granules).

The channel is a copper wire. The vibrating current generated by the transmitter
is carried along this wire to the receiver.

Figure 1.4
Monica and Carl talking on a telephone

Channel (copper wire)

Windpipe
Vocal
cords

TRANSMITTER RECEIVER

electromagnet

eardrum

4v power supply

carbon granules
diaphragm

Monica Carl

6 ◆ Chapter One

The receiver consists of two parts: the receiving (top) part of the telephone, and
Carl’s ear. The current, sent along the copper wire, arrives at the top end of the tele-
phone. Inside this top end is a device called an electromagnet and right next to that is
a diaphragm. The current, containing all of Monica’s talking frequencies, enters into
the electromagnet. This electromagnet causes the diaphragm to vibrate with all of
Monica’s talking frequencies. The vibrating diaphragm causes vibrations in the air, and
these vibrations travel to Carl’s ear. His eardrum vibrates, and these vibrations cause
electrical signals to be sent to his brain, which interprets this as Monica’s sound.

1.3 Analog and Digital Communication Systems

The last part of this chapter is dedicated to explaining what is meant by analog and
digital communication systems, and then explaining why digital communication
systems are the way of the future.

1.3.1 Some Introductory Definitions

An analog signal is a signal that can take on any amplitude and is well-defined at every
time. Figure 1.5(a) shows an example of this. A discrete-time signal is a signal that can
take on any amplitude but is defined only at a set of discrete times. Figure 1.5(b)
shows an example. Finally, a digital signal is a signal whose amplitude can take on only
a finite set of values, normally two, and is defined only at a discrete set of times. To
help clarify, an example is shown in Figure 1.5(c).

Figure 1.5 (a) An analog signal; (b) a discrete time signal; and (c) a digital signal

x(t) x(t)

t t

(a) (b)

T 2T 3T 4T ...

x(t)

t

(c)

T
0

1

2T 3T 4T ...

www.ebook3000.com

http://www.ebook3000.org

Introducing Telecommunications ◆ 7

1.3.2 Definitions

An analog communication system is a communication system where the information
signal sent from point A to point B can only be described as an analog signal. An
example of this is Monica speaking to Carl over the telephone, as described in Section
1.2.2.

A digital communication system is a communication system where the information
signal sent from A to B can be fully described as a digital signal. For example, con-
sider Figure 1.6. Here, data is sent from one computer to another over a wire. The
computer at point A is sending 0s or 1s to the computer at point B; a 0 is being repre-
sented by –5 V for a duration of time T and a 1 is being represented by a +5 V for the
same duration T. As I show in that figure, that sent signal can be fully described using
a digital signal.

Figure 1.6 A computer sending information to another computer

0

+5v

-5v

0
1

s(t)

t

t

BA
Signal sent is:

Can be represented by:

1 0 1 0

8 ◆ Chapter One

1.3.3 And Digital Became the Favorite

Digital communication systems are becoming, and in many ways have already be-
come, the communication system of choice among us telecommunication folks.
Certainly, one of the reasons for this is the rapid availability and low cost of digital
components. But this reason is far from the full story. To explain the full benefits of a
digital communication system, we’ll use Figures 1.7 and 1.8 to help.

Let’s first consider an analog communication system, using Figure 1.7. Let’s
pretend the transmitter sends out the analog signal of Figure 1.7(a) from point A to
point B. This signal travels across the channel, which adds some noise (an unwanted
signal). The signal that arrives at the receiver now looks like Figure 1.7(b). Let’s now
consider a digital communication system with the help of Figure 1.8. Let’s imagine that
the transmitter sends out the signal of Figure 1.8(a). This signal travels across the
channel, which adds a noise. The signal that arrives at the receiver is found in Figure
1.8 (b).

Figure 1.7 (a) Transmitted analog signal; (b) Received analog signal

Figure 1.8 (a) Transmitted digital signal; (b) Received digital signal

0

+5v

-5v

s(t)

t 0

+5v

-5v

s(t)

t

1 10

(a) (b)

Noise

s(t) r(t)

t t
(a) (b)

Noise

www.ebook3000.com

http://www.ebook3000.org

Introducing Telecommunications ◆ 9

Here’s the key idea. In the digital communication system, even after noise is
added, a 1 (sent as +5 V) still looks like a 1 (+5 V), and a 0 (–5 V) still looks like a 0 (–5
V). So, the receiver can determine that the information transmitted was a 1 0 1. Since it
can decide this, it’s as if the channel added no noise. In the analog communication
system, the receiver is stuck with the noisy signal and there is no way it can recover
exactly what was sent. (If you can think of a way, please do let me know.) So, in a
digital communication system, the effects of channel noise can be much, much less
than in an analog communication system.

1.3.4 Making It Digital

A number of naturally occurring signals, such as Monica’s speech signal, are analog
signals. We want to send these signals from one point, A, to another point, B. Because
digital communication systems are so much better than analog ones, we want to use a
digital system. To do this, the analog signal must be turned into a digital signal. The
devices which turn analog signals into digital ones are called source coders, and we’ll
spend all of Chapter 4 exploring them. In this section, we’ll just take a brief peek at a
simple source coder, one that will turn Monica’s speech signal (and anyone else’s for
that matter) into a digital signal. The source coder is shown in Figure 1.9.

It all begins when Monica talks into the telephone, and her vibrations are turned
into an electrical signal by the bottom end of the telephone talked about earlier. This
electrical signal is the input signal in Figure 1.9. We will assume, as the telephone
company does, that all of Monica’s speech lies in the frequency range of 100 Hz to
4000 Hz.

The electrical version of Monica’s speech signal enters a device called a sampler.
The sampler is, in essence, a switch which closes for a brief period of time and then
opens, closing and opening many times a second. When the switch is closed, the
electrical speech signal passes through; when the switch is open, nothing gets
through. Hence, the output of the sampler consists of samples (pieces) of the electrical
input.

Figure 1.9 A simple source coder

Quantizer Symbol-to-bit
MapperSampler

Monica's speech signal

10 ◆ Chapter One

As some of you may know (and if you don’t, we’ll review it in Chapter 4, so have
no worries), we want the switch to open and close at a rate of at least two times the
maximum frequency of the input signal. In the case at hand, this means that we want
the switch to open and close 2 × 4000 = 8000 times a second; in fancy words, we want a
sampling rate of 8000 Hz.

After the switch, the signal goes through a device called a quantizer. The quan-
tizer does a simple thing. It makes the amplitude of each sample go to one of 256
possible levels. For example, the quantizer may be rounding each sample of the
incoming signal to the nearest value in the set {0, 0.01, 0.02, ..., 2.54, 2.55}.

Now, here’s something interesting. There is a loss of information at the quantizer.
For example, in rounding a sample of amplitude 2.123 to the amplitude 2.12, informa-
tion is lost. That information is gone forever. Why would we put in a device that
intentionally lost information? Easy. Because that’s the only way we know to turn an
analog signal into a digital one (and hence gain the benefits of a digital communication
system). The good news here is engineers (like you and me) build the quantizer, and
we can build it in a way that minimizes the loss introduced by the quantizer. (We’ll talk
at length about that in Chapter 4.)

After the quantizer, the signal enters into a symbol-to-bit mapper. This device
maps each sample, whose amplitude takes on one of 256 levels, into a sequence of 8
bits. For example, 0.0 may be represented by 00000000, and 2.55 by 11111111. We’ve
now created a digital signal from our starting analog signal.

1.4 Congrats and Conclusion

Congratulations—you made it through the first chapter. Just to recap (and I’ll be brief),
in this chapter we defined the words communication and telecommunication system.
Next, I presented a whole gang of examples, to give you a feel for a few key communi-
cation and telecommunication systems. Finally, we talked about analog and digital
communications, discovering that most telecommunication engineers dream in digital.
Meet you in Chapter 2!

www.ebook3000.com

http://www.ebook3000.org

Introducing Telecommunications ◆ 11

Problems

1. Briefly describe the following:
(a) telecommunication system
(b) communication system
(c) the difference between a communication system and a

telecommunication system.
(d) digital communications
(e) analog communications
(f) the main reason why digital communications is preferred

(to analog communications).

2. Describe the function of the following:
(a) source coder
(b) quantizer
(c) sampler
(d) symbol-to-bit mapper.

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

1

2 3

4

56

Copper wire

2
Chapter

Telecommunication
Networks

First, and always first, a definition. A telecommunication network is a telecommuni-
cation system that allows many users to share information.

2.1 Telecommunication Network Basics

2.1.1 Connecting People with Telephones

Let’s say I have six people with telephones. I want to connect them together so they
can speak to one another. One easy way to connect everyone is to put copper wires
everywhere. By that, I mean use a copper wire to connect person 1 to person 2, a wire
to connect person 1 to person 3, ..., a wire to connect person 1 to person 6, ..., and a
wire to connect person 5 to person 6. I’ve shown this solution in Figure 2.1. But, ugh,
all these wires! In general, I need N(N–1)/2 wires, where N is the number of people.
So with only six people I need 15 wires, with 100
people I need 49,950 wires, and with a million people
I need 499,999,500,000 wires. Too many wires.

Let’s consider another way to connect users:
put a switching center between the people, as
shown in Figure 2.2. The early switchboards
worked like this: Gretchen picks up her phone
to call Carl. A connection is immediately made
to Mavis, a sweet elderly operator seated at the
switching center. Mavis asks Gretchen who
she wants to talk to, and Gretchen says “Carl.”
Mavis then physically moves wires at the switch-
ing center in such a way that the wire from
Gretchen’s phone is directly connected to Carl’s
wire, and Gretchen and Carl are now ready to begin
their conversation. Figure 2.1

A single wire between each phone

14 ◆ Chapter Two

Figure 2.2
Phones connected by a switching center

1

2 3

4

56

Switching Center

The manual switching center, oper-
ated by people like Mavis, was the only way
to go until a little after 1889 when Almon B.
Strowger, a mortician by trade, invented
the first automatic switching center. It
seems that Almon suddenly found that he
was no longer getting any business. Sur-
prised, he investigated and discovered that
the new telephone operator was also
married to the competition ... and she was
switching all funeral home calls to her
husband. Determined to keep his mortician
business alive (no pun intended), Almon
created the first automatic switching center.
These switching centers do not require
anyone (and hence no competitor’s wife) to

transfer calls. Entering a 7-digit phone number automatically sets up the connection at
the switching center. Today, all switching centers are automatic.

Just briefly, how many wires are needed by a network using a switching center?
Only N, where N is the number of users. That’s far fewer than the many-wire system
introduced first.

2.1.2 Connecting More People, Farther Apart

Let’s take this switching center idea a bit further. Consider Figure 2.3. A bunch of
people are connected together in Fort Collins, Colorado, by a switching center in
downtown Fort Collins. Then, in nearby Boulder, another group of people are con-
nected together by a second switching center. How does someone in Boulder talk to a
friend in Fort Collins? One easy way is to simply connect the switching centers, as
shown in Figure 2.3. If we put several wires between the Fort Collins and Boulder
switching centers, then several people in Fort Collins can talk to people in Boulder at
the same time.

1 1

2 23 3

4 4

5 56 6

Switching Center Switching Center

Fort Collins, CO Boulder, CO

Figure 2.3
Connections between

switching centers

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 15

Consider now a number of other nearby cities, say Longmont and Denver. The
folks in these towns want to talk to their friends in Boulder and Fort Collins. We could
connect all the switching centers together, as shown in Figure 2.4. Alternatively, we
could have a “super” switching center, which would be a switching center for the
switching centers, as shown in Figure 2.5.

Switching
Center

Switching
Center

Switching
Center

Switching
Center

Longmont Denver

1
1

1
1

2
2

2 2

3
3

3
3

4
4

4
4

5
5

5
5

6
6

6
6

Boulder Fort Collins

Switching
Center

Switching
Center

Switching
Center

Switching
Center

Longmont Denver

1
1

1
1

2
2

2 2

3
3

3
3

4
4

4
4

5
5

5
5

6
6

6
6

Boulder Fort Collins

"Super"
Switching

Center

Figure 2.4 Connecting all the switching centers together

Figure 2.5 Connecting switching centers using a “super” switching center

16 ◆ Chapter Two

2.1.3 Multiplexing—An Alternative to a Lot of Wire

Let’s go back to the Fort Collins and Boulder people in Figure 2.3. Let’s say we’ve
connected their switching centers so they can talk to each other. As more people in
Fort Collins want to talk to more people in Boulder, more and more wires need to be
added between their switching centers. It could get to the point where there are far too
many wires running between the switching centers. The skies around Fort Collins
could grow dark under the cover of all these wires. This probably wouldn’t be true of a
smaller town like Fort Collins, but it was true of big cities like New York.

Finally, someone said, “Something must be done!’’ and multiplexing was invented.
Multiplexing refers to any scheme that allows many people’s calls to share a single
wire. (We’ll talk more about this in Chapter 11, but a brief introduction now is useful.)

First There Was FDM

FDM, short for frequency division multiplexing, was the first scheme created to allow
people’s calls to share a wire. Let’s say Carl, Gretchen, and Monica all want to make a
call from Fort Collins to Boulder. We only want to use one wire to connect calls be-
tween the two towns. This is shown in Figure 2.6. Carl’s speech, turned into a current
on a wire, contains the frequencies 100 to 4000 Hz. His speech is left as is. Gretchen’s
speech, turned into an electrical signal on a wire, also contains the frequencies 100 to
4000 Hz. A simple device called a mixer (operating at 8000 Hz) is applied to her speech
signal. This device moves the frequency content of her speech signal, and the frequen-
cies found at 100 Hz to 4,000 Hz are moved to the frequencies 8,100 Hz to 12,000 Hz,
as shown in Figure 2.7.

Switching
Center

Switching
Center

BoulderFort Collins

Carl, Gretchen
and Monica's voices

all on one wire

Figure 2.6
People’s speech on one wire

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 17

Because Carl and Gretchen’s calls are now made up of different frequency com-
ponents, they can be sent on a single wire without interfering with one another. This
too is shown in Figure 2.7. We now want to add Monica’s speech signal, since she too
is making a call from Fort Collins to Boulder. A mixer, this one operating at 16,000 Hz,
is applied to her speech signal. This moves the frequency content of Monica’s speech
to 16,100 Hz to 20,000 Hz, as shown in Figure 2.7. Because Monica’s speech signal is
now at different frequencies than Carl and Gretchen’s speech signals, her signal can
be added onto the same wire as Carl and Gretchen’s, without interfering. (Again, take
a peek at Figure 2.7.)

Over in Boulder, we’ve got a wire with Carl, Gretchen, and Monica’s speech on it,
and we need to separate this into three signals. First, to get Carl’s signal, we use a
device called a low-pass filter (LPF). The filter we use only allows the frequencies in 0
to 4000 Hz to pass through; all other frequency components are removed. So, in our
example, this filter passes Carl’s speech, but stops Gretchen’s and Monica’s speech
cold. This is shown in Figure 2.8.

Carl's speech signal
100-4000 Hz

Gretchen's speech signal
100-4000 Hz

Monica's speech signal
100-4000 Hz

one wire

Mixer
8000 Hz

Mixer
16,000 Hz

+ +

Figure 2.7
Putting three signals on one wire using FDM

18 ◆ Chapter Two

Next, we want to recover Gretchen’s speech signal. This is a two-part job. First, a
bandpass filter (BPF) is applied, with start frequency 8,000 Hz and stop frequency
12,000 Hz. This filter allows only the frequencies between 8,000 Hz and 12,000 Hz to
pass through, cutting out every other frequency. In the case at hand, this means that
only Gretchen’s speech signal gets through the filter. This is shown in Figure 2.8. We
still have one task left. Gretchen’s speech signal has been moved from 100–4,000 Hz to
8,100–12,000 Hz. We want to bring it back to the original 100–4000 Hz. This is done by
applying a mixer (operating at 8,000 Hz), which returns Gretchen’s voice signal to its
original frequency components.

Monica’s signal is recovered on a single wire in much the same way as
Gretchen’s, and, rather than use many words, I’ll simply refer you to Figure 2.8.

Carl, Gretchen
 and Monica's speech

 on one wire

LPF
0-4000 Hz

BPF
8000-12000 Hz

BPF
16000-20000 Hz

Mixer
8000 Hz

Mixer
16000 Hz

Carl's
speech signal

Gretchen's
speech signal

Monica's
speech signal

Figure 2.8 Getting three speech
signals back from one wire in FDM

Along Came TDM

TDM, short for time-division multiplexing, is the second commonly used technique to
let several people’s speech share a single wire. TDM works like this. Let’s say we’ve
again got Carl, Gretchen, and Monica, who all want to make their calls from Fort
Collins to Boulder. Carl, Gretchen, and Monica’s speech sounds are first turned into an
electrical signal on a wire by their phones, as explained in Chapter 1. Then, their
electrical speech signals are turned into digital signals, again as explained in Chapter
1. The digitized, electricized versions of the speech signal are the incoming signals
that will share a wire. Figure 2.9 shows these incoming signals.

These signals, coming along the wire, then meet “the big switch,” as shown in
Figure 2.9. The big switch makes contact with each of the three incoming signals,
touching each signal for T/3 seconds in every T-second interval. The output of this
switch, again shown in Figure 2.9, consists of one piece of Carl’s speech, then one
piece of Gretchen’s speech, then one piece of Monica’s speech in every T-second
interval. In this way, a part of everybody’s speech sample gets onto one wire. These
speech samples are now sharing time on the wire, and hence the name time-division
multiplexing.

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 19

Gretchen at home

Carl at the office

Class 5
Switching Center

(end office)

Figure 2.10 Connecting a local call: the local loop

2.2 POTS: Plain Old Telephone System

Enough of the basics. Let me now introduce you to a telecommunication network
currently in use. In fact, it’s the most frequently used telecommunication network in
the world. It’s called POTS, short for Plain Old Telephone System. We’ll be consider-
ing the phone connections exclusively in Canada and the United States, but keep in
mind that similar systems exist worldwide.

2.2.1 Local Calls

Let’s say Gretchen, at home in Fort Collins, decides to call
Carl, who is hard at work at CSU writing this book. Here’s

how the call gets from Gretchen to Carl. First,
Gretchen’s phone turns her sounds into an analog

electrical signal, as explained in Section 1.2.2.
This analog electrical signal is sent along a
copper wire (called a twisted-pair cable) to the
switching center called the Class 5 switching
center, or end office (Figure 2.10).

t

t

t

T

T

T

Carl's digital speech

Gretchen's digital speech

Monica's digital speech

...

...

...

...

"The Big Switch"

Carl, Gretchen & Monica's
 digital speech

t

Carl

Gretchen

Monica

T/3

T

Figure 2.9 How three signals share one wire in TDM

20 ◆ Chapter Two

The switching center knows Gretchen’s call is a local call to Carl’s office (based
on a 7-digit number she initially dialed), and it sends Gretchen’s speech signal down
the copper wire that connects to Carl’s office. This signal then enters Carl’s phone,
which turns the electrical signal back into Gretchen’s speech sounds, and there we
have it. This part of the phone system is called the local loop. There are about 20,000
end offices in Canada and the United States.

2.2.2 Long Distance Calls

Connecting the Call

Let’s say that Carl’s mom, Mona, who lives in the cold of Montreal, Canada, wants to
call Carl in Colorado and see if he’s eating well (yes, Mom, I’m eating well). How
would the telephone system connect this call? We’ll use Figure 2.11 as our guide. First,
Mona’s Are you eating well? sounds are turned into an analog electrical signal by her
telephone. This electrical signal is sent along copper wire to the end office (or class 5
switching center). The end office, realizing that this isn’t a local call, does two things:
(1) it mixes Mona’s signal with other people’s voice signals (that are also not local
calls), using multiplexing; then, (2) it takes the mix of Mona’s speech signal and the
other people’s speech signals and sends this mix to a bigger switching center, called a
Class 4 switching center, or toll center, shown in Figure 2.11. The toll center is con-
nected to three sets of things.

Class 5
End Office

Class 4
Toll Center

Class 4
Toll Center

Class 4
Toll Center

Class 4
Toll Center

Class 4
Toll Center

Class 4
Toll Center

Class 3
Primary
Center

Class 3
Primary
Center
Class 3
Primary
Center
Class 3
Primary
Center

Class 2

Class 2

Class 2

Class 2

Class 1

Class 1

Class 5
End Office

Class 5
End Office

Class 5
End Office

Class 5
End Office

Class 5
End Office

A

B

C

D

E

F

AA

BB

Multiplexing of
Mona's speech

and other speech

Figure 2.11
A long-distance call in

POTS

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 21

First, it’s connected to a number of end offices (A, B, C, and D in Figure 2.11),
each end office like the one that Mona’s call came from. If Mona’s call was intended
for a phone that was connected to end office C for example, then Mona’s speech would
be sent to end office C and from there to the intended phone.

The second thing the Class 4 switching center (toll center) is connected to is
other Class 4 switching centers (BB in Figure 2.11). If the call is intended for a phone
connected to end office E, then it would likely be sent to toll center BB, then to end
office E, and then to the intended telephone.

The third thing a Class 4 switching center is connected to is an even bigger
switching center, which is called (no big surprise) a Class 3 switching center (also
called a primary center). If Mona’s call is going to a phone not connected to any of the
end offices available from toll centers AA or BB, then Mona’s speech moves along to
the class 3 switching center.

The good news is that the Class 3 switching center works in pretty much the
same way as the Class 4 switching center. Basically, from the Class 3 switching center,
Mona’s call can go to: (1) any Class 3, 4, or 5 switching center that is connected to the
Class 3 switching center holding Mona’s speech—it will go that route if the intended
phone is connected to one of these Class 3, 4, or 5 switching centers; otherwise, (2)
the call will be switched to an even bigger switching center, called the Class 2 switching
center (and also called the sectional center).

Let’s say Mona’s call heads out to the Class 2 switching center. From here it gets
to Carl in one of two ways: (1) if Carl’s phone is connected to a Class 2, 3, 4, or 5
switching center that is directly connected to the Class 2 switching center containing
Mona’s voice, then Mona’s voice gets sent to that switching center; otherwise, (2)
Mona’s call will go to the last, biggest switching center, the Class 1 switching center (or
regional center). The Class 1 switching center will then send the call to either a Class
1, 2, 3, 4, or 5 switching center that it’s connected to, depending on which center is
most directly connected to Carl’s phone.

And that, my friends, is how Mona’s concern about Carl’s eating habits gets from
Mona in Montreal to Carl in Colorado. It’s a 5-level hierarchy of switching centers.
There are some 13,000 toll centers, 265 primary centers, 75 sectional centers, and 12
regional centers.

2.2.3 The Signals Sent from Switching Center to Switching Center

We now understand that POTS is made up of five stages of switching centers. We
understand how a person’s speech gets from one place to another using the phone
system. Before we move on, I want to discuss what signals are sent from one switch-
ing center to another.

22 ◆ Chapter Two

A telephone call starts out with the phone in your hand. That call goes to a Class
5 switching center. If the call is local, it goes from that Class 5 switching center right to
the person you’re talking to. If the call is not local, the Class 5 switching center puts
the call together with other long-distance calls, and sends them together to a Class 4
switching center. Let’s look at the signal created at a Class 5 switching center that is
sent to a Class 4 switching center.

Class 5 to Class 4

The Class 5 switching center gets the call you place. It also gets a lot of other calls
from your neighborhood. When the Class 5 switching center realizes there are a
bunch of calls that are not in its area (and instead are long-distance calls), it puts these
signals together and sends them out. Specifically, it puts the signals together as shown
in Figure 2.12:

A A

t

Your call

8000 samples/sec

T=1/8000=0.125ms
#1

#2

#3

#24

.

.

.

.

.

.

Symbol
to
bit

mapper

Quantizer 1
Add

bit

The
Big
Switch

Class 5 Switching Center

Forces each amplitude
to the nearest one
out of 256 permitted

output amplitudes

To class 4
*

*

. . .

A

t

T = 0.125ms

Piece from
line #1

Piece from
line #2

Piece from
line #24

T/24

Figure 2.12 The signal created at a Class 5 switching center (headed to Class 4)

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 23

1. First, at the line marked #1, is your call. But that is only one thing coming into
the Class 5 switching center. The center takes your call and at the same time
takes 23 others, for a total of 24 calls. Those calls incoming to the Class 5 switch-
ing center are the lines marked #1 to #24.

2. The switching center puts these 24 calls on a single line using TDM. That idea
is explained in Section 2.1.3, but here are some more details explaining exactly
what the Class 5 switching center does.

2a. Each voice call is sampled. Specifically, samples of each voice call are
taken at a rate of 8000 samples/second (i.e., at 8000 Hz). That means that
each sample taken from a voice call lasts a total time of T = 1/8000 = 0.125 ms.

2b. Each sampled voice signal meets “the big switch.” The big switch makes
contact with each digital voice signal briefly once every 0.125 ms. As a result,
the signal that ends up on the wire following “the big switch” is a collection of
all 24 voice signals. This is shown in Figure 2.12 better than my words can
explain.

2c. On the wire following the big switch, we have all 24 voice samples
smooshed together in the time T = 0.125 ms. The number of samples in each
second is now 24 × 8,000 samples/second = 192,000 samples/second.

3. The 192,000 samples/second on our wire now enter through a device called a
quantizer. The quantizer simply changes the amplitude of the incoming samples.
Each incoming sample, which has some amplitude A, is mapped to an outgoing
sample whose amplitude is one of 256 possible values.

4. Each sample, with an amplitude that is now one of 256 levels, can be fully
represented by a set of 8 bits. (This is because with 8 bits we can represent all
integers between 1 and 256.) A device called a symbol-to-bit mapper takes each
sample with one of 256 possible amplitudes, and represents it with 8 bits. While
before we had 24 samples in each 0.125 ms, we now have 24 × 8 = 192 bits in each
0.125 ms.

5. To tell people where each set of 192 bits begins and ends, an extra bit (a 0) is
squeezed in so that we now have 193 bits in each 0.125 ms. That means we have a
bit rate of 193 bits/0.125 ms = 1.544 Mb/s.

These bits, with a bit rate of 1.544 Mb/s, are sent from the Class 5 switching
center to the Class 4 switching center. The signal sent between the Class 5 and Class 4
switching centers is named DS-1. The wire which connects the Class 5 to the Class 4
switching center is called a trunk line, specifically a T-1 trunk line.

24 ◆ Chapter Two

Other Signals between Switching Centers

Figure 2.13 shows the different signals sent between different switching centers.
Coming into a Class 4 center is a DS-1 signal. It is likely that this incoming signal will
need to be sent to the Class 3 center. If that’s the case, the Class 4 center creates a
very special signal for transmission up to Class 3. Specifically, it takes four DS-1
signals that are coming into it (from Class 5 centers) and puts these signals together
onto a single wire using TDM. It adds a few extra bits to help the Class 3 center
identify the beginning of what it gets and the end of it. When it’s all said and done, the
signal that moves from Class 4 to Class 3 is a stream of bits with a bit rate of 6.312
Mb/s. That signal is called a DS-2 signal.

A signal enters into a Class 3 switching center. This signal might need to move up
to a Class 2 switching center. In that case, the Class 3 switching center puts together a
special signal just for Class 2. It takes seven DS-2 signals that are coming into it (from
Class 4 centers), and puts them together on a single wire using TDM. It adds a few
extra bits to help the Class 2 office identify places where bit streams begin and end.
Ultimately, it sends a signal to Class 2 that is a stream of bits with a bit rate of 44.736
Mb/s. This signal is called a DS-3 signal.

Finally, it is possible in POTS that a signal arriving at a Class 2 switching center
might be sent up to a Class 1 switching center. If that’s the case, Class 2 puts together a
special signal for Class 1. Specifically, a Class 2 center takes five of the DS-3 signals that
come into it (from Class 3 centers), and packages them together on a single wire using
TDM. Including a few extra bits to make the package look nice for Class 1, the stream of
bits sent to Class 1 has a bit rate of 274.1746 Mb/s. This signal is called DS-4.

What I’ve said so far is true, but not the complete truth. In general, it is possible
in POTS that DS-1, DS-2, DS-3, and DS-4 signals could be found between any two
switching centers. For example, I presented DS-3 as the signal Class 3 sends to Class
2 switching centers. It is also possible in POTS that Class 3 sends a DS-2 signal to
Class 2.

2.3 Communication Channels

So far in our discussion, communication signals have been sent on wires. However,
there are a number of different ways in which a communication signal can be sent
from one point to another. Using a wire is just one way—POTS likes and embraces this
way. In this section, I’ll outline the different ways you can send a signal from one point
to another—that is, I’ll outline different communication channels.

2.3.1 Transmission Lines (Wires)

There are two types of transmission lines (wires) over which communication signals
are commonly sent. These are twisted-pair cable and coaxial cable.

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 25

extra
bits

added

extra
bits

added

extra
bits

added

...to class 3
DS-2

...to class 2
DS-3

...to class 1
DS-4

Class 5 S.C. DS-1

Class 4 S.C.

Class 3 S.C.

Class 3 S.C.

Class 5 S.C. DS-1

Class 4 S.C.

Class 3 S.C.

Class 5 S.C. DS-1

Class 4 S.C.

Class 3 S.C.

Class 5 S.C. DS-1

Class 4 S.C.

Class 3 S.C.

Class 4 Switching Center

Class 3 Switching Center

Class 2 Switching Center

(c)

(b)

(a)

.

.

.

Figure 2.13
(a) Creation of DS-2 signal, (b) Creation of DS-3 signal, (c) Creation of DS-4 signal

26 ◆ Chapter Two

In twisted-pair cable, a signal is sent from one point to another as a current along
a wire. Signals that are sent in the frequency range of 0 to 1 MHz can be supported.
The most common use for twisted-pair cables is in POTS. It forms most of the local
loop connections. Specifically, in POTS, an insulated twisted-pair cable leaves from a
home and is combined with many other twisted-pair cables from neighboring homes.
You end up with one, big fat set of twisted-pair cables sent to the end office (Class 5).

Coaxial cables are the second type of “wire” used to send communication signals.
In coaxial cables, the communication information is sent as a current along a wire.
Coaxial cables can support signals in the 100 kHz to 400 MHz range (a much larger
range of frequencies than the twisted-pair cable can support). Perhaps the most
common use of coaxial cable is in connections from TV cable providers to your home.
Other uses include long-distance lines in POTS and local area networks (LANs),
discussed a little later in this chapter.

2.3.2 Terrestrial Microwave

Another way in which information can be sent from one point to another is by use of
(1) a modulator, which turns the incoming information signal into a high-frequency
electrical signal on a wire; and (2) an antenna, which turns the high-frequency signal
into an electromagnetic wave sent through the atmosphere. At the receiver side, you
use (1) a receiver antenna, which picks up the incoming electromagnetic wave and
turns it back into the high-frequency electrical signal, and (2) a demodulator, which
returns the high-frequency electrical signal back to the original information signals.
Some examples of communication systems which send information in this way are
radio stations, wireless communication systems (later in this chapter), and terrestrial
microwave, which I’ll explain right now so you can get a better understanding of this
idea.

A terrestrial microwave transmitter is shown in Figure 2.14. I’ll explain its work-
ings here in three points.

1. In Figure 2.14 you see the incoming information signal. In this example, the
incoming information signal contains voice signals; specifically, it contains two
DS-3 signals combined on a single wire using TDM methods.

2. The incoming information signal enters a modulator, and the modulator maps
the incoming signal into a high-frequency electrical signal. For example, the
modulator may map the incoming signal so that it is now centered around 3 GHz,
11 GHz, or 23 GHz.

3. The antenna takes the incoming electrical signal and maps it into an electro-
magnetic wave of frequency 3 GHz, 11 GHz, or 23 GHz (for example). These
frequencies correspond to microwave frequencies on the EM (electromagnetic)
spectrum, so the system is called a microwave system.

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 27

Between the transmitter and receiver we place some devices called repeaters,
shown in Figure 2.15. Repeaters are placed every 26 miles (40 kilometers). The re-
peater may do one of two things: (1) it may simply amplify and retransmit the signal at
a higher power (non-regenerative repeater); or (2) it may receive the incoming signal,
remove noise as best it can through a demodulation/remodulation process, and then
retransmit the signal at a high power (regenerative repeater). We use repeaters for two
reasons. First, because of the curvature of the earth, the transmit antenna will be hidden
from the receiver if we do not place a repeater between the transmitter and receiver
(Figure 2.15). Second, repeaters can be useful in reducing the impact of channel noise.

...

Modulator

Parabolic dish
antenna

High frequency
signal

(centered around
3 GHz, for example)

EM wave

2 DS-3
signals

26 mi.
26 mi.

26 mi.

Transmitter

Repeater
#1

Repeater
#2

Receiver

Figure 2.14
Terrestrial microwave

system transmitter

Figure 2.15 Repeaters

28 ◆ Chapter Two

Receiver
antenna

EM wave

High frequency
electrical signal

Demodulator

Information-bearing
signal

Figure 2.16 Terrestrial microwave receiver

Finally, after travelling through the repeaters, the signal arrives at the receiver,
shown in Figure 2.16. First, a receiver antenna is applied to return the signal to an
electrical signal of a frequency of 3 GHz. Then, a demodulator is applied that returns
the high-frequency signal to the original information signal.

The terrestrial microwave system just
described typically operates in frequency
ranges of 1 GHz to 50 GHz, and it has
been applied in a number of different
communication systems. For
example, it has been used as a
part of POTS, to connect two
Class 2 switching centers
separated by terrain such as
swamp where it is very difficult
to lay wire. This terrestrial
microwave system has also been set up to connect large branches of big companies. It
has also been implemented as a backup to fiber-optic links (later in this chapter).

2.3.3 Satellite Connections

With satellite connections, a communication system is set up as shown in Figure 2.17.
Here, a transmitter takes the incoming information signal, uses a modulator to turn it
into a high-frequency signal, and then uses an antenna to turn the signal into an elec-
tromagnetic wave sent through the atmosphere (just as in terrestrial microwave).

Solar panels
generating electricity
to operate satellite

Satellite

Modulator Demodulator

Information
signal

Information
signal

High-frequency
electrical signal

High-frequency
electrical signal

Ocean

6 GHz 4 GHz

Figure 2.17
Satellite communication

system

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 29

This signal is then sent up to a satellite in orbit around the earth. Specifically, the
satellite is placed at 36,000 km (22,300 miles), and at that altitude it orbits the Earth at
6,870 mph. Moving at this speed, the satellite appears to be stationary when looked at
from the equator, and so it is said to be in a geo-stationary orbit. The satellite picks up
the signal and does two things:

(1) it acts as a repeater; and

(2) it shifts the frequency (for example, from 6 GHz to 4 GHz) and sends it back
down to earth in the direction of the receiver. Modern satellites are being built
which can do more signal processing at the satellite itself, but we won’t go into
those details here.

The signal leaves the satellite and heads back to the receiver on Earth. At that
receiver, an antenna is applied that turns the incoming electromagnetic wave back to
an electrical signal, and that electrical signal is returned to the original information
signal by a device called a demodulator.

Satellite communications operate in a number of frequency bands. Here are some
of them: (1) C-band, which refers to 6-GHz uplink (“up” to the satellite) and 4-GHz
downlink (“down” to the receiver); (2) Ku-band, which is 14-GHz uplink/12-GHz
downlink; and (3) ACTS which refers to 30-GHz uplink/20-GHz downlink.

Some of the many uses of satellite communications include satellite TV distribu-
tion, live TV transoceanic links, telephone communications over the oceans, backup to
fiber-optic links, and GPS (Global Positioning System). GPS refers to a system of
satellites which enables anyone, using a hand-held device, to determine their exact
position on our planet (very useful for ships, backpackers, and companies with large
fleets of trucks/cars/aircraft).

2.3.4 Fiber-optic Links

Fiber-optic cable is a revolution in connecting transmitters to receivers. It seems
possible to support incredible—and I do mean incredible—rates of information along
this cable. Using fiber-optic cable, it appears that we can support 1014 bits/s, at the
very least. Right now, we don’t know how to send information at this high a rate
(although we’re moving in that direction)—we also don’t have that much information
to send yet!

In a fiber-optic cable system, you have an information signal, which is an incom-
ing electrical signal. To use a fiber-optic cable, you have to turn this electrical signal
into light. Figure 2.18 shows how you might do this at the transmitter side, using a
device called an emitter. The emitter might be, for example, a LED (light-emitting
diode) or an FP (Farby Parot) laser diode.

30 ◆ Chapter Two

The fiber-optic cable, which you can also see in Figure 2.18, is made up of two
parts: a core and a cladding. The light travels down the core. It remains in the core
and never leaves it (never entering the cladding). This is because the two materials
chosen for core and cladding are carefully selected to ensure that total internal refrac-
tion occurs—that means that as light enters the boundary between core and cladding,
it is bent in such a way that it remains in the core. (For more on this, check out a
physics book.)

At the receiver side, the light signal, which has made it through the fiber-optic
cable, must be returned to an electrical signal. That job is done using a detector, as
seen in Figure 2.17. The detector might be, for example, a PIN diode or an APD
(avalanche photo diode).

The light sent down the fiber-optic cable corresponds to an electromagnetic wave
with a frequency in the range of 1014 to 1015 Hz. As mentioned already, the system
appears capable of sending information at rates of 1014 bits/s.

Because of the incredible promise of fiber-optic cable, these cables are being
placed everywhere. They have even been placed on the ocean floor between North
America and Europe, competing with and in many cases replacing satellite links. Fiber-
optic links are being used to connect switching centers in POTS. They are limiting the
use of coaxial cable and twisted-pair cable to areas where they have already been put
in place.

Emitter Detector

Incoming information
on electrical signal

Outgoing information
on a light wave

Original information
on electrical signal

Cladding

Core

Light
signal

Figure 2.18 Fiber-optic link

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 31

2.4 Data Communication Networks

We’ve seen POTS, and we’ve studied the different mediums through which a communi-
cation system can send its information. Let’s take some time here to explore some of the
different ways and networks (other than POTS) which are in place to help people com-
municate with one another. We’ll start with a discussion of data communication. So far, in
all the examples we’ve considered, we’ve discussed voice communication between
different locations. But now we’ll talk about the transmission of data, which here we’ll
define to be computer communication (that is, communication between computers).

One of the most common ways in which people’s computers communicate is
through the use of a modem and POTS (plain old telephone system), shown in Figure
2.19. Here we see a computer ready to send data on the far left. The data it wants to
communicate is sent to a device called a modem, which is short for modulator/
demodular. The modem next to the computer on the left (sending computer) acts like
a modulator, which means that it turns the digital signal (data) into a waveform ready
for transmission over the telephone—specifically, it turns the data into a waveform that
looks like a speech signal as far as the telephone is concerned (but it sure doesn’t
sound like one). Then, the modem is connected to the twisted-pair cable that leaves
the house. The data signal enters into the five-layer telephone system POTS, and
travels through this system of wires and switching centers until it arrives at the
receiver’s home. There, the signal travels into the home along a twisted-pair cable and
enters into the modem. The modem in this case acts as a demodulator, and it turns the
signal that looks like a speech signal (but doesn’t sound like one) back into the original
data signal. That enters into the receiver, and in this way, the two computers can talk.

Modem Modem

acts like
a modulator

acts like
a demodulator

Through POTS,
the telephone network

Data to be sent
(a digital signal)

A signal which looks
like a voice signal Data sent

Computer sinkComputer source

Currently, because of the internet and the fact that people want data at higher and
higher rates (higher rates than you can get using a modem), some alternatives to the
modem are now being used. One involves using the coaxial cable that sends TV signals
into your house to also send data to and from your computer. A second alternative is to
use DSL (digital subscriber line). In this case, the data signal that your computer wants
to send is combined with any telephone voice signals that are leaving the house (using
FDM) and together these are sent out the telephone line to the Class 5 switching center.
I won’t get into the details of either system here.

Figure 2.19 Data communication via a modem and POTS

32 ◆ Chapter Two

Beyond these ways of communicating data, which basically are all about updating
existing voice/TV links so that they also carry computer data, there is another (a
better) way. That way is based on using what is called a packet switched network.

A packet switched network is a communication network designed specifically for
the communication of data. The underlying idea behind the network is this. Data is
very “bursty,” which means that data sent between computers is usually filled with
times when lots of data is sent, followed by times when no data is sent, followed by
times when lots of data is sent, and so on. As a result, people wanted to build a commu-
nication network that allowed for the connection between two computers to be turned
“on” quickly when data was to be sent, and to be turned “off” when there was no data
to be sent (so that the communication link could be used for other computer connec-
tions). Here is what engineers came up with.

Figure 2.20 represents a packed switched communication network. Let’s say the
computer marked “A” wants to send data to the computer marked “B.” What happens
is this.

1. The data from A is broken down into small, equally sized packets of data. Each
packet has on it the name of the computer it wants to go to (in our case computer B).

2. The first packet from computer A is sent out to the nearest node. The node,
which represents a special processor, basically acts like a traffic policeman. It
looks at the data and does two things.

2a. It checks to see if the packet has errors in it that occurred in transmis-
sion. If it sees too many errors, it is sent back; if has only a very few errors it
is sent on.

Node Node

Node Node

Data packet Data packet

Computer
A

Computer
B

Figure 2.20
Data communication through a

packet-switched network

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 33

2b. If the packet is to be sent on, the node decides which is the best node to
send it to, based on its final destination.

3. This movement from node to node continues until the data packet arrives at
computer B. Each packet from computer A to computer B may follow a different
path of nodes.

And this, my readers, is how you build networks intended only for the transmis-
sion of data.

2.5 Mobile Communications

One of the fastest growing markets in the world (and the one I am actively research-
ing) is the field of wireless communications, also called mobile communications.
People on the move (in their car, on their yacht, walking through busy downtown
streets) believe that they must be able to reach other people through voice (and
possibly data) communications. These people want anytime/anywhere/with-anyone
communications, and they are willing to spend their hard-earned dollars to have it. As
a result, many engineers work hard to give this to them.

Taking a look at Figure 2.21, we see the idea underlying a mobile communication
system. We have a person in his car with a mobile phone, which is made up of three
parts. When he talks into it:

1. the phone turns the voice signal into a digital signal using a device called a
codec (coder/decoder);

Electrical signal
representing voice

signal

Electrical version
 of voice

signal

Digital version
of voice signal

Digital version
of voice signal

High frequency
signal

High frequency
signal

MODEM

CODEC

MODEM

CO
DECMTSO

Base
station

EM wave
825 MHz

EM wave
875 MHz

Figure 2.21 Mobile communication system fundamentals

34 ◆ Chapter Two

Cell A

Cell B

Figure 2.22 Cellular concept

2. the phone takes the digital signal it just created and turns it into a high-fre-
quency signal (for example, centered at about 825 MHz) using a device called a
modem (modulator/demodulator);

3. the high-frequency signal feeds an antenna, and that antenna turns the high-
frequency electrical signal into an electromagnetic wave (of frequency 825 MHz).

The electromagnetic wave then travels through the air and is picked up by an
antenna on a tower called a base station. The antenna on the base station turns the
signal into an electric signal. The base station, with help from a switching center called
the MTSO (Mobile Telephone Switching Office), figures out where the call is going,
and then resends the signal down to the receiving mobile phone at a different fre-
quency (for example, at about 875 MHz).

The receiving mobile phone has an antenna on it, and this antenna picks up the
electromagnetic signal intended for the phone, and turns it into an electrical signal
(with frequency 875 MHz). This high-frequency electrical signal is turned into a low-
frequency digital signal by the modem. Finally, the digital signal is returned to the
original speech signal by the codec. This signal travels from phone to person’s ear—
and there you have it, a mobile communication system.

When engineers first built such a system,
they had a problem. The government only
gave them a small band of frequencies to
use for their wireless communication
systems (for example, 824 MHz–849
MHz and 869 MHz–894 MHz). The
problem with that was that many people
wanted to use the wireless communica-
tion systems but with the limited
frequencies, the systems could only
support a few users. Then, an engi-
neer had an idea he called the cellular
concept, and wireless telecommunica-
tions was changed forever. The
cellular concept idea is shown in
Figure 2.22.

1. You can see that the entire area
is divided up into small, funny-
shaped regions. Each region is
called a cell (as in cells in the body).
Each cell is typically between 1 mile to
12 miles long.

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 35

2. Each cell has its own base station. Mobile phones in a cell communicate
through the base station in its cell.

3. The transmit power of a mobile phone in a cell is kept low. Any transmissions
in the cell A that travel in the direction of cell B are effectively zero by the time
they get to cell B.

4. Cell A and B use the exact same frequencies. They can do this because they
are separated in space by a distance that makes cell A’s transmissions unnotice-
able in cell B (and vice-versa).

In this way, phone companies were able to support a large number of wireless
users. When I teach this in my class, there are two common questions. I’ll ask these
questions here and then provide the answers.

Q: What happens if you are in cell A and want to call someone in cell B?

A: If you are making a call while in cell A, and the user you want to talk to is in
cell B, then your call goes to the base station in cell A. It is sent from there to the
MTSO (Mobile Telephone Switching Center); from there the call is sent to the
base station in cell B, which sends it down to the intended listener in cell B.

Q: What happens if, when driving in your car, you head out of one cell and into
another?

A: If you move out of one cell and into another, then the wireless communication
system switches your call from communication with the base station in the old
cell to communication with the base station in the new cell.

2.6 Local Area Networks (LANs)

The final section of this chapter describes a type of communication system known as a
local area network, or LAN for short. As the name suggests, this is a network intended
to allow a number of different users (usually computers) located close to one another
to communicate together. It might be used in an office building, or in a university
setting, to allow people’s computers to talk to one another. Typically, LANs provide
very high-bit-rate communications, enabling multiple users to communicate lots of
information very quickly.

Two types of LANs have become popular. The first is called Ethernet, and the
second is known as Token ring.

Ethernet is shown in Figure 2.23. Here, you see three computers connected
together by a single coaxial cable. These users can communicate at 10 Mb/s (tradi-
tional speed) or 100 Mb/s (high speed). Let’s say that computer A wants to talk with
computer B. Here’s what happens:

36 ◆ Chapter Two

1. Computer A listens to the cable to see if there is a communication transmis-
sion. If there is no transmission, then computer A sends its information on the
cable. If there is a transmission, then computer A waits until the transmission is
done, and then it begins to send its signal.

2. When computer A first sends out its information, it checks to see if another
computer has sent a transmission at the same time. If not, Computer A continues
to send its data. If computer A and another computer were trying to send data at
the same time, a “collision” is detected. Computer A stops its transmission, waits
a random amount of time, and then tries to send it again.

3. When computer A is able to send information on the line (and no “collision” is
detected), it sends out the name of the destination computer, Computer B. All the
computers look at the data, to see if it is for them.

4. Computer B sees its name and reads the information.

That is, briefly, all there is to Ethernet connections.

The second type of communication system is called a Token ring network. The
Token ring network is shown in Figure 2.24, and it operates as follows:

1. When there is no computer transmitting, the bits 1 1 1 1 1 1 1 1 are sent around
the ring connecting the computers. These 8 bits are called the token.

2. When computer A wants to send information, it listens to the ring to make sure
the token is on the ring. If it is, it inverts the last bit of the token (putting out 1 1 1
1 1 1 1 0) and then follows this with its information. Computer A makes sure that
it puts the name of the intended computer in its information—for example, if the
data is headed to computer B, computer A makes sure it puts “computer B” in its
sent data.

Data

Data

Data

Looks -
Sees it is not
for him.

Looks -
Sees data is for him.
Reads data.

Computer
A

Computer
B

Figure 2.23 LAN using Ethernet

www.ebook3000.com

http://www.ebook3000.org

Telecommunication Networks ◆ 37

Computer
A

Computer
B

Coaxial
cable

Data

Token

11111110

111
111

1

Figure 2.24
Token ring network

3. Every computer picks up the data sent by computer A, and reads the name to
see if it is the intended addressee. If it is not, the computer puts the information
back on the ring without reading it. If the data is intended for the computer, the
computer reads the data, and then puts it back on the ring.

4. Eventually, the data gets back to the computer who sent it. This computer picks
up its data, and puts the token 1 1 1 1 1 1 1 1 back on the ring.

And that is how computers communicate using Token ring links.

2.7 Conclusion

This chapter introduced you to the world of communication systems. From here on,
we’ll focus on the details of how these systems work. For example, we will look into a
cellular phone. We will describe how the codec (coder/decoder) works in Chapter 4.
We will understand how the modem (modulator/demodulator) works in Chapter 5. We
will introduce an important part of digital communication systems, called the channel
coder/decoder, in Chapter 6. Basically, in what follows, we get into what is called the
“physical layer”—how all the insides work. But first is Chapter 3, a review of the
statistics and signals and systems details that you’ll want to make sure you know
before forging ahead.

38 ◆ Chapter Two

Problems

1. Briefly describe the following:
(a) how to connect 1000 users to one another without directly

connecting every user to every other one.
(b) two ways to put 1000 users on a single wire.
(c) the cellular concept.

2. Describe three communication systems that send their signal as an EM wave
through the atmosphere.

3. On your own, find on the web or in the library a telecommunication system not
described in this chapter (e.g., HDTV, the Internet) and provide a two-page
overview, highlighting how the system works.

www.ebook3000.com

http://www.ebook3000.org

3
Chapter

A Review of Some Important
Math, Stats, and Systems

My intention in writing this chapter is to give a quick review of key mathematical,
statistical, and engineering concepts which we’ll use in our study of telecommu-

nications. I basically provide a brief review of random variables and random processes,
and then talk in passing about the Fourier transform and linear time invariant (LTI)
systems.

If this material is new to you, read what follows carefully and use the references to
fill in any blanks you find; if this stuff is old hat, then give it a passing glance, if for no
other reason than to familiarize yourself with the notation found throughout the book.

3.1 Random Variables

First, I’ll briefly review random variables, limiting my discussion to continuous random
variables.

3.1.1 Definitions

First, as usual, some definitions. A random event, A, refers simply to an event with an
unknown outcome. An example of a random event is tomorrow’s weather.

Next, a random variable, x, is a number whose value is determined by a random
event, A. For example, it may be tomorrow’s outdoor temperature in Fort Collins,
Colorado (where I live).

3.1.2 The Distribution Function: One Way to Describe x

Let’s say you’ve got a random variable, x, which is tomorrow’s temperature. You want
to somehow be able to describe x = (tomorrow’s temperature) to someone. You don’t
know exactly what this value will be, but you do know it’s the middle of summer, so
you know it’s a lot more likely to be 80 degrees (Fahrenheit) than it is to be 0 degrees.
This section is all about how you can describe a random variable, like tomorrow’s
temperature, to someone without using a lot of words.

40 ◆ Chapter Three

One way to fully characterize our random variable x is by a function called the
probability distribution function, F Xx () . The function F Xx () is defined in words as
follows: F Xx () is the likelihood that the random variable x is less than the number X.
In a nice, neat equation, F Xx () is defined as

() ()XxPXFx <= (3.1)

where P(__) is shorthand for the words “probability that __ happens.”

Let me clarify the meaning of F Xx () by an example. Let’s again go back to x
being tomorrow’s temperature, and let’s say it’s the middle of summer. Then:
(1) Fx (0) = P(x<0) = (the probability that the temperature is less than 0), and this may
be 1/1000000 (1 in a million), and (2) Fx (70) = P(x<70) = (the probability that the
temperature is less than 70), and this may be ½ (1 in 2). By providing F Xx () for all
possible values of X, you completely characterize your random variable.

Here are four simple properties of F Xx () :

(1) 0< F Xx () <1: that is, since F Xx () represents the probability that x<X, it, like
all probabilities, must be between 0 (never happens) and 1 (always happens).

(2) Fx(– ∞)=0: that is, Fx (– ∞) = P(x < – ∞) = (the probability that x is less than
−∞) = 0 (since no number can be smaller than – ∞) .

(3) Fx(∞)=1: that is, Fx (∞) = P(x < ∞) = (the probability that x is less than ∞)
= 1 (since every value must be smaller than ∞).

(4) Fx(x1) ≥ Fx(x2) if x1>x2: that is, for example, the probability that x is less than 20
is at least as big as the probability that x is less than 10.

3.1.3 The Density Function: A Second Way to Describe x

A second way to describe our random variable x is to use a different function called the
probability density function (pdf for short). Let’s take a look again at our random vari-
able x, which represents tomorrow’s summer temperature. The pdf for this variable is
denoted px(x) or p(x), and its meaning will be described first in an equation, then in
words, then in a graph, and, finally (phew), using some intuition.

(1) In an equation

() ()dxxpxxxP
2

1

x

x

21 ∫=≤≤ (3.2)

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 41

(2) In words, if you want to know how likely it is that tomorrow’s temperature x
will be between 70 degrees and 80 degrees, all you have to do is integrate p(x)
over the range of 70 to 80.

(3) In a graph, an example of a possible p(x) is shown in Figure 3.1. If you want to
figure out the probability that tomorrow’s temperature x will be between 70 and 80,
all you have to do is figure out the area under the p(x) curve between 70 and 80.

(4) And now, we turn on the intuition. Intuitively speaking, p(x) at x = 70 gives you
an idea how likely it is that tomorrow’s temperature will be about 70 degrees.
Values of x at which p(x) is biggest are those values most likely to happen.

p(x)

x7570 80

3.1.4 The Mean and the Variance

If you tell me F Xx () or p(x), then I know everything there is to know about x, but
what if I don’t want to know everything about x, or what if it’s hard for you to tell me
everything about x. In either case, there are some common ways for providing partial
(but important) information about x.

Figure 3.1 Possible p(x) for x = tomorrow’s temperature

42 ◆ Chapter Three

(1) the mean, xm (also known as E(x)): One thing you can tell me is the average
(or mean) value of x. If x is tomorrow’s temperature, then xm is the average
(considering all the years gone by), of tomorrow’s temperature. If you know p(x),
then you can easily compute xm like this:

()mx x p x dx
∞

−∞

= ∫ (3.3)

(2) the variance, σ n
2 : Another important piece of information about the random

variable x is how much x varies. That’s measured by a well-named term, variance.
If x changes a lot (for example, if tomorrow’s temperature could be anywhere
between 40 and 120 degrees, and you really can’t be sure where in that range it
will fall), then the variance is a big number. If x changes very little (for example,
you’re very sure tomorrow’s temperature will be between 73 and 77 degrees),
then the variance is a small number. If you know p(x), you can compute variance
using the following integral equation:

() ()∫
∞

∞−

−= dxxpxx 2
m

2
nσ (3.4)

One last thing about variance. You can usually get a feel if it will be big or small
by looking at a graph of p(x). If this graph is kind of flat and spread out over a lot of x
values, variance will be big; if this graph is peaky, or not spread out over a lot of x
values, then variance is small. Figure 3.2 shows you what I mean.

p(x)p(x)

xx

(b)(a)
Figure 3.2

(a) Random variable x with large variance
(b) Random variable x with small variance

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 43

Example 3.1

Given a random variable x and told that x has a probability distribution function
p(x) shown in Figure E3.1, determine its mean and its variance.

p(x)

1

0 2

2

Figure E3.1 The p(x) for our example

We’ll use equation (3.3) to get the mean like this:

()∫
∞

∞−

= dxxpxxm (E3.1)

∫ ∫ ∫
∞−

∞

⋅+⋅+⋅=
2

0

0

2

2
1 00 dxxdxxdxxxm (E3.2)

dxxxm ∫ ⋅=
2

0

2
1 (E3.3)

2

0

2

4

x
xm = (E3.4)

1=mx (E3.5)

We’ll use equation (3.4) to get the variance (it’s plug-and-chug!)

() ()∫
∞

∞−

−= dxxpxx mx
22σ (E3.6)

44 ◆ Chapter Three

3.1.5 Multiple Random Variables

What do you do if you have more than one random variable? Let’s say you have two
random variables, x which is tomorrow’s temperature, and y which is the temperature
on the day after tomorrow. How do you describe these two random variables? That’s
usually handled using a joint probability density function p(x,y). This is just a simple
extension of the probability density function p(x). Mathematically, p(x,y) is defined by
the integral equation

() ()∫∫=≤≤≤≤
2

1

2

1

x

x

y

y

2121 dydxyx,pyyy,xxxP (3.5)

In words, you can use p(x,y) to tell how likely it is that (x,y) falls within any range
of possible values.

But why stop at two random variables? Let’s say you give me 26 random variables
a,b,c, right to z, representing the temperature for the next 26 days. If you want to
describe these statistically, you can characterize them with the joint probability density
function p(a,b,c,...,z). This is defined by the integral equation

() (
2 2 2

1 1 1

1 2 1 2 1 2, , , , ,
z b a

z b a

P a a a b b b z z z p a b≤ ≤ ≤ ≤ ≤ ≤ = ∫ ∫ ∫� � �

(3.6)

And so, just like the p(x) or p(x,y) before it, you can use p(a,b,c,...,z) to tell you
how likely it is that your values fall within any range of possible values.

() () ()
2 0

2 2 22 1
2x

0 2

1 1 0 1 0x dx x dx x
∞

−∞

σ = − ⋅ + − ⋅ + − ⋅∫ ∫ ∫ dx (E3.7)

()
2

22 1
2x

0

1x dxσ = − ⋅∫ (E3.8)

() 3 2
2 1

2x
0

1

3

x −
σ = ⋅ (E3.9)

()
6

1

6

12 −−=xσ (E3.10)

3
12 =xσ (E3.11)

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 45

3.2 Random Processes

3.2.1 A Definition

Random processes are sort of like random variables, only there’s a little more to know.
We’ll work our way to defining a random process like this:

(1) First, let’s say we have A, a random event (an event with an unknown out-
come). We’ll make A the random event: “Will it be sunny tomorrow?”

(2) Now, a random variable x is a
number whose exact value de-
pends on the random event A. For
example, x may be tomorrow’s
high temperature, and that will
depend on whether it’s sunny or
not. So we can write x = x(A)—
that is, x is a function of A.

(3) Now, we jump to a random
process. A random process, x(t),
is a function of time t, where the
exact function that occurs de-
pends on a random event A. For
example, let x(t) be tomorrow’s
temperature as it changes with
time over the day; the values of
x(t) will depend on A (whether
it’s sunny or not). So, we can
write x(t) = x(t,A) to indicate that
the time function depends on the
random event A. Here, x(t,A) is a
random process.

A plot of a random process
is shown in Figure 3.3. We see
that there is a time function x(t) =
x(t,A), and the exact value of the
time function x(t) = x(t,A) de-
pends on the random event A. If

t

t

t

x(t,A)1

x(t,A)2

x(t,A)N

A = A1

A = A2

A = AN

...

Figure 3.3
Plot of a random

process x(t,A)

46 ◆ Chapter Three

t

t

t

x(t,A)1

x(t,A)2

x(t,A)N

A = A1

A = A2

A = AN

x(t , A)1 1

x(t , A)1 2

x(t , A)1 N

t = t1

t = t1

t = t1

...
the random event A corresponds to its first possible outcome—that is, it is sunny
tomorrow—then we get the time function x(t,A1) telling us tomorrow’s temperature
throughout the day. If the random event A corresponds to its second possible outcome,
A2—it is partly cloudy tomorrow—then we get time function x(t,A2) telling us how
tomorrow’s temperature changes throughout the day. And so on.

There’s one very important thing to note about a random process x(t,A). Take a
look at Figure 3.4. There I’ve drawn x(t,A) and I’ve drawn a dotted line through time
t = t1. At time t = t1, we have x(t1,A), which is a number whose exact value depends on A.

That’s just a random variable! So, the sample of a
random process x(t,A) at t = t1 is a random

variable. We’ll call it x1 = x1(A).

Figure 3.4
A random process,

highlighting time t = t
1

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 47

3.2.2 Expressing Yourself, or a Complete Statistical Description

Now, you say, I understand what a random process is. It’s simply a function of time
whose exact function depends on a random event A. But how do I characterize it? Let’s
say I want to tell my mathematician friends all about my random process—how do I do
that?

To totally and fully describe your random process, you’ll have to provide this
information:

(1) At any time t = t1, you’ll have x(t,A) = x(t1,A) = x1, a random variable. Your
mathematically inclined friends will need to know all about this random variable
x1, which means you’ll want to provide p(x1).

(2) At any two times t = t1 and t = t2, you’ll have x(t1,A) = x1 and x(t2,A) = x2, both
of which are random variables. You will need a complete characterization of these
two random variables, and as you know, that’s done by providing the joint prob-
ability density function p(x1,x2).

(3) At any K times, t = t1, t = t2, and so on up to t = tK, you’ll have x(t1,A) = x1,
x(t2,A) = x2 and so on up to x(tK,A) = xK, all of which are random variables. This
time, you’ll have to provide a complete characterization of these random vari-
ables, which means you’ll have to provide p(x1,x2,...,xK).

Actually, all you have to give your friends is what’s in (3), since you can use
p(x1,x2,...,xK) to get the information in (1) and (2), namely p(x1) and p(x1,x2). However,
providing the information in (3) is often tough stuff. Generally, it’s difficult to provide
p(x1,x2,...,xK) for a random process.

3.2.3 Expressing Some of Yourself, or a Partial Description

What most people do is provide partial information about a random process—just
enough information to be able to proceed with a telecommunications study. What they
provide is called a second-order characterization of the random process. In a second-
order characterization, you provide two things:

(1) the mean of x(t1,A) = x1: this number (which may be different at different
times t1) tells you the average value of x(t,A) at t = t1. This value can be generated
using the equation

() ()1 1 1 1mx t x p x dx
∞

−∞

= ∫ (3.7)

48 ◆ Chapter Three

(2) the autocovariance, Rx(t1,t2): this number (which may be different for different
t1 and t2 values) describes the relationship between the random variable x(t1,A) =
x1 and the random variable x(t2,A) = x2. The larger this number, the more closely
related x(t1,A) is to x(t2,A). This value can be generated mathematically through
the equation

() ()() ()() () 21212m21m121x dxdxx,xptxxtxxt,tR −−= ∫∫
∞

∞−

∞

∞−
(3.8)

3.2.4 And in Telecommunications …

Now, you know what a random process is, and you know how to fully describe it and
how to partially describe it. In most communication systems, random processes have a
rather nice property that makes them simple to deal with. In most telecommunication
applications, random processes are wide sense stationary (WSS). This means just two
things:

(1) the mean of x(t1,A) = x1: this value is the same as the mean of the random
variable x(t2,A) = x2, and the same as the mean of the random variable x(t3,A) = x3,
and so on. Mathematically, that means that the value

() () ()1 2 3)m m m mx t x t x t x= = = =� (a single number (3.9)

(2) the autocovariance, Rx(t1,t2): this value depends only on the time difference
between t1 and t2. That is, mathematically,

() () ()1 2 1 2x x xR t , t R t t R= − = τ (3.10)

Example 3.2

Determine the mean and the autocovariance of a random process described by

()() ()

−==

22

1
,

2
1

11

x
expxpAtxp

π (E3.12)

for all times t1, and

() ()() () () ()1 2 1 2 1 2

1
, , , , exp

2
p x t A x t A p x x p x p x

= = ⋅ = π

(E3.13)

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 49

Solution: To solve for the mean, we test out equation (3.7):

() () 1111 dxxpxtxm ∫
∞

∞−

= (E3.14)

 1

2
11

22
dx

x
exp

x

 −= ∫
∞

∞− π (E3.15)

 1

2
1

22

1
dx

x
expx1

 −= ∫
∞

∞−π (E3.16)

∞

∞−

 −−=
22

1 2
1x

exp
π (E3.17)

 0= (E3.18)

To figure out the autocovariance, we plug and play with equation (3.8) like this:

() ()() ()∫ ∫
∞

∞−

∞

∞−

−−= 21212121 ,00, dxdxxxpxxttRx (E3.19)

 () 212121 , dxdxxxpxx ⋅⋅= ∫ ∫
∞

∞−

∞

∞−
(E3.20)

 () ()1 2 1 2 1 2x x p x p x dx dx
∞ ∞

−∞ −∞

= ⋅ ⋅ ⋅∫ ∫ (E3.21)

 () ()∫∫
∞

∞−

∞

∞−

=⋅=⋅= 0222111 mm xxdxxpxdxxpx (E3.22)

50 ◆ Chapter Three

3.3 Signals and Systems: A Quick Peek

3.3.1 A Few Signals

As a way to begin our brief review of signals and systems, I’ll describe two signals that
we’ll use throughout the upcoming chapters.

First, there’s δ(t), which is called the impulse function (or delta function, or just
impulse). This function is very tall and very skinny, and centered around 0. To be a bit
more specific regarding what it looks like, take a look at Figure 3.5. There, you’ll see a
function of height 1/T and of duration T. As T goes to 0, this function becomes very,
very skinny and very, very tall. When T goes to 0, the plot in Figure 3.5 corresponds to
δ(t). So, looking closely at Figure 3.5 as T goes to 0, we can say three things about δ(t):

(1) δ(t) is infinitely tall;

(2) δ(t) is infinitely skinny; and

(3) the area under the δ(t) function is 1; that is, mathematically,

()∫
∞

∞−

=1dttδ

1/ T

t
T

δ →(t) = this plot as T 0

Figure 3.5 Describing δδδδδ(t)

The most common way to represent δ(t) using the plot is shown in Figure 3.6.

The next function that we’ll use frequently is a square wave function, which I’ll
call π()t . This function is of height 1 and duration T. Mathematically, you can write
π()t using the simple equation

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 51

()

 ≤≤

=
else,0

T0,1 t
tπ (3.11)

You can also see what π()t looks like graphically in Figure 3.7.

Figure 3.6
 The most common way to
represent δδδδδ(t) graphically

t

(t)

1

δ

t

π(t)

1

T

Figure 3.7
The signal πππππ(t)

3.3.2 Another Way to Represent a Signal: The Fourier Transform

There are lots of ways to represent a signal s(t). One easy way is to write a mathemati-
cal equation such as

() () ()cos 2 cs t f t t= π ⋅ π (3.12)

52 ◆ Chapter Three

Another way is to draw a picture, which shows you what s(t) looks like and how it
changes with time. For example, for the s(t) of equation (3.12), you can see its plot in
Figure 3.8.

But there’s another way to describe signals, discovered by a fellow named Fou-
rier. He realized that any time signal s(t) can be created by adding together cosine and
sine waveforms with different frequencies. You can describe s(t) by indicating how
much of each frequency f you need to put together to make your signal s(t). To figure
this out, all you have to do is the simple integral

() (){ } () dtetstsFfS ftj2π−
∞

∞−
∫== (3.13)

This is called the Fourier transform of s(t). For the s(t) of equation (3.12), the
S(f) is computed to be

() ()()
()

() ((
()

2 2sin sin1 1

2 2
cc cj f f T

c c

f f T f f
S f e

T f f T T f f T
− π −π − π +

= +
π − π +

(3.14)

While this looks messy, you can see a plot of part of S(f) (the |S(f)|) in Figure 3.9.
So, now you can plot your signal in time, showing how it changes in time, or you can
plot your signal in frequency, showing how much of each frequency you need to make
up your time signal s(t). Your choice.

Example 3.3

Determine the Fourier transform of the signal s(t)=δ(t).

We’ll turn to equation (3.13) for help, where we find:

() ()∫
∞

∞−

−= dtetsfS tj πρ2
(E3.23)

t

s(t) = cos (2 f t) π c • π(t)

Figure 3.8 Plot of s(t)

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 53

f
– fc fc–1/T fc fc+1/T

S(f)

... ...

() ()∫
∞

∞−

−= dtetfS ftj πδ 2
(E3.24)

 02 fje π−= (E3.25)

 0je= (E3.26)

 1= (E3.27)

This S(f) is plotted in Figure E3.2. Interestingly, what we see here is that
the signal s(t)=δ(t) is made up of an equal amount of all the frequencies.

S(f)

f

1

Figure E3.2 The Fourier transform of δδδδδ(t)

Figure 3.9
Plot of S(f)

3.3.3 Bandwidth

Oftentimes, engineers want to know one thing about a signal s(t), its bandwidth. The
bandwidth, s(t), is a way to tell someone how many frequency components you need to
make up your signal s(t). This definition of “bandwidth of a signal” is a rather vague
definition. Engineers have tried to come up with a more specific definition, but, for
some reason, they just couldn’t agree on one way to exactly define the words “band-
width of a signal.” They decided, just to please everyone, they’d use many different
definitions. Here are some of these:

54 ◆ Chapter Three

absolute BW is ∞
– ∞ +∞

f

| |S(f)

......

f

| |S(f)

......

f

| |S(f)

......

peak value of S(f)

peak value = P

fc–1/T fc+1/T

null-to-null
BW = 2/T

3dB BW

(a)

value = P/2value = P/2

(c)

(b)

Figure 3.10
For a particular S(f), plot shows (a) absolute bandwidth,

(b) null-to-null bandwidth, and (c) 3-dB bandwidth

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 55

Input
x(t)

Output
y(t)

Linear Time Invariant
(LTI)

System

Figure 3.11 LTI system

Absolute bandwidth: the range of frequencies over which S(f) (or |S(f)|) is not
zero (Figure 3.10(a)). For example, for the |S(f)| of Figure 3.9, redrawn in Figure
3.10(a), this value is infinity.

Null-to-null bandwidth: the range of frequencies in S(f) (or |S(f)|) as shown in
Figure 3.10(b). In words, and it’s a mouthful, this bandwidth is the range of frequen-
cies from [the frequency, to the right of the peak value of |S(f)|, at which the first 0
occurs] to [the frequency, to the left of the peak value of |S(f)|, at which the first 0
occurs]. So, for example, for the |S(f)| of Figure 3.9 redrawn in Figure 3.10(b), the first
zero to the right of the peak is at f = fc –1/T, and the first zero to the left of the peak is
at f = fc + 1/T, so the null-to-null bandwidth is 2/T.

3-dB bandwidth: the range of frequencies in S(f) (or |S(f)|) as shown in Figure
3.10(c). In words and, again, it’s a mouthful: the range of frequencies from [the fre-
quency to the right of the peak value of |S(f)| where |S(f)| is half its peak value] to [the
frequency on the left of the peak where |S(f)| is half its peak value].

Now you know how to figure out the bandwidth of a signal. Typically, when I use
the word bandwidth, often written BW for short, I’ll be referring to the null-to-null
bandwidth.

3.3.4 A Linear Time Invariant (LTI) System

Figure 3.11 shows a system with an input x(t) and an output y(t). You’ll notice the
system is called LTI, which means

(1) it’s linear: if I put in ax1(t)+bx2(t), I’ll get out ay1(t)+by2(t). Here, y1(t) is the
system’s response to x1(t), and y2(t) is the system’s response to x2(t);

(2) it’s time invariant: if I put in x(t–T), I’ll get out y(t–T)—that is, a delay in the
input creates a delay in the output.

There is just one thing I want you to know about an LTI system. Let’s say you
find out that the system output is y(t) = h(t) when the system input is the impulse
x(t) = δ(t). Just by knowing this one little thing, h(t), called the impulse response, you
can get the output y(t) for any input x(t). All you have to do to get the output, given the
input x(t), is calculate an integral called convolution. It goes like this:

56 ◆ Chapter Three

() () () () () τττ dtxhtx*thty −== ∫
∞

∞−
(3.15)

Sometimes calculating this integral can be a pain. In that case, you can instead
figure out the output y(t), given the input x(t), by using the relationship

() () ()fXfHfY = (3.16)

where Y(f), X(f), and H(f) are the Fourier transforms of y(t), x(t), and h(t),
respectively.

3.3.5 Some Special Linear Time Invariant (LTI) Systems

Earlier, I talked about some special signals. Now, I’ll talk about some special systems.
I’ll use them a lot throughout this book, so it’s rather important you know what these
systems are.

First, there’s a linear time invariant system called a low-pass filter, or LPF for
short. This refers to a system where H(f) is as shown in Figure 3.12. In other words,
it’s a system where the H(f) is made mostly of frequencies less than fm. Take a look at
Figure 3.13. Here, you can see the signal x(t) (i.e., X(f)) coming into the system. The
system has an H(f) that makes it a low-pass filter. What comes out of the system is

x(t) y(t)

LTI
System

characterized by
h(t) H(f)

H(f) H(f)

ff
fm fm

OR

Figure 3.12 LTI system corresponding to LPF

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 57

LTI System
H(f)

H(f)

1
10

10

f f f
fc

y(t)

Y(f)

x(t)

X(f)

Figure 3.14 What happens in a BPF

LTI System
H(f)

1 1 1

10

f f f
f m

y(t)x(t)

X(f) Y(f)H(f)

Figure 3.13 What happens in an LPF

Y(f) = H(f)X(f), and this is also drawn in Figure 3.13. You can see the output corre-
sponds simply to the low-frequency components of the input. Hence, the name
low-pass filter (LPF), because only the low frequencies pass through to the output.

Next, there’s a linear time invariant system called a bandpass filter (BPF for
short). You can understand the BPF by studying Figure 3.14. It has an H(f) as shown
in the figure; in words, the H(f) is not 0 only around some frequency fc. Now, look at
what happens when an input x(t)(X(f)) enters into the BPF. In Figure 3.14, the output
is made up of just the frequencies around fc. That is, the BPF only allows frequencies
around some fc to get to the output.

58 ◆ Chapter Three

Finally, we’ve got an inverse system. For a given LTI system with impulse response
h(t) (H(f)), the inverse system is defined as follows:

(1) in pictures, take a look at Figure 3.15 and you’ll get a feel for what the inverse
system does;

(2) in words, if I take a signal x(t), and pass it through the LTI system with
impulse response h(t), and then pass it through the inverse system, I get back
my original x(t);

(3) mathematically, the inverse system is characterized as the system with
impulse response h–1(t) (H –1(f)) such that:

() () ()tth*th 1 δ=− (3.17)

() () 1=⋅− fHfH 1 (3.18)

3.4 Onward

We’ve come to the end of our rather brief review. I’ll see you as we move ahead into
the heart of telecommunications, starting with Chapter 4.

LTI System
h(t) y(t)x(t)

Inverse LTI System
h–1(t) x(t)

Figure 3.15 Describing inverse LTI system

www.ebook3000.com

http://www.ebook3000.org

A Review of Some Important Math, Stats, and Systems ◆ 59

Problems

1. Consider a random variable with probability distribution function

() ()2

22

1

22

x a
p x exp

 −
= − βπβ (Q3.1)

(a) Evaluate the mean.
(b) Figure out the variance.

2. Consider a random process where

() () () ()() ()()2121, 2121
, xpxpxxP txtxtxtx ⋅= (Q3.2)

() 0
1

=txm (Q3.3)

Determine the value of the autocovariance.

3. Show that

() ()
2

11 1
, txx ttR σ= (Q3.4)

4. Determine the Fourier transform of the time signal

() 1, 2 2
0,

T Tt
x t

 − ≤ ≤=
 else

(Q3.5)

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

4
Chapter

Source Coding and Decoding:
Making it Digital

This chapter talks about how to turn an analog signal into a digital one, a process
called source coding. We took a brief look at it at the end of Chapter 1, when

Monica’s analog speech signal was turned into a digital signal. We’ll now talk at some
length about source coding.

Before going on, just a brief reminder about why we want to turn analog signals to
digital. So many naturally occurring sources of information are analog (human speech,
for example), and we want to make them digital signals so we can use a digital commu-
nication system.

4.1 Sampling

The key first step in turning any analog signal to a digital one is called sampling.
Sampling is the changing of an analog signal to samples (or pieces) of itself.

4.1.1 Ideal Sampling

There are three methods of sampling that we’ll look at together, the first of which is
called ideal sampling, or impulse train sampling. As the name suggests, it is a sam-
pling that is impossible to physically carry out. So, you ask, why are you telling me
about something that can never be done? Well, have faith—there are two good rea-
sons. First, ideal sampling leads to an understanding of the very important sampling
theorem. Second, ideal sampling will help you easily grasp and understand the two
practical sampling methods that follow.

The Sampling

Ideal sampling is simple, and it’s shown in Figure 4.1. Here, an analog input x(t)—say,
Carl’s speech—enters the sampler. The sampler does one thing: it multiplies Carl’s
speech by the signal

62 ◆ Chapter Four

)()(∑
∞

−∞=

−=
k

skTttp δ (4.1)

called an impulse train, shown in Figure 4.1. The output of the sampler is then

)()()()()(∑
∞

−∞=

−⋅=⋅=
k

ss kTttxtptxtx δ (4.2)

The multiplication of x(t) by the impulse train p(t) leads to the output shown on
the output side of Figure 4.1. Here, we see that the output is made up of impulses at
times kTs of height x kTs() ; that is, mathematically,

)()()(∑
∞

−∞=

−=
k

sss kTtkTxtx δ (4.3)

In essence, this is everything there is to know about ideal sampling. Well, almost
everything.

The Information in the Samples

After building the sampler, one telecommunication engineer began to wonder: “How
much of the information in Carl’s speech signal x(t) is lost when it’s sampled to create
x ts() ?” We’ll spend this section answering his question. The easiest way to answer it
is to turn to the frequency domain for help. Let’s first take a look at Carl’s incoming
speech signal, x(t). When described in the frequency domain, as X(f), we’ll assume for
this section that it looks like Figure 4.2(a).

Next, we’ll consider the impulse train p(t). The Fourier transform of p(t) is

P f
T

f k f
s

s
k

() ()= −
=−∞

∞

∑1 δ (4.4)

where fs = 1/Ts and fs is called the sampling rate. You’ll find a picture of this signal in
Figure 4.2(b).

X
x(t) xs (t) = x(t) p(t)·

p(t)
0 t t

=
=

= 0 2Ts3Ts4Ts5Ts

... ...
–Ts 0 Ts

1
Ts

Figure 4.1 Ideal sampling

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 63

Let’s now evaluate X fs(), the Fourier transform of the output signal x ts() . We’ll
then use this to figure out how much of the information in Carl’s speech signal x(t) is
lost when it’s sampled. X fs() corresponds to

X f F x t F x t p ts s() { ()} { () ()}= = ⋅ . (4.5)

To simplify X fs(), we’ll use the following property: Multiplication in the time
domain is convolution in the frequency domain. With this in mind, we have

X f X f P f X f
T

f kfs
s

s
k

() () () () (),= ∗ = ∗ −
=−∞

∞

∑1 δ (4.6)

where * denotes convolution. Next, applying simple properties of convolution, we’re
able to move X(f) into the sum; that is, X fs() becomes

X f
T

X f f kfs
s

s
k

() () ().= ∗ −
=−∞

∞

∑1 δ (4.7)

Finally, we get an even simpler equation for X fs() by applying the shifting
property of the delta function. This gets us to

X f
T

X f kfs
s

s
k

() (),= −
=−∞

∞

∑1
(4.8)

Let’s write out the summation term by term to help us better understand X fs() .
Doing this, we get X fs() described by

X f
T

X f X f f X f f

X f f X f f

s
s

s s

s s

() { () () () ...

() () ...}

= + + + + +

+ − + − +

1
2

2

(4.9)

f f

1

–fM fM

(a) (b)

... ...

1/Ts

–2fs –fs fs 2fs0

P(f)X(f)

Figure 4.2
(a) X(f), the Fourier transform of the input signal x(t)

(b) P(f), the Fourier transform of the impulse train p(t)

64 ◆ Chapter Four

–fM

Xs(f)

–2fs –fs 0–fs+fM

X(f+2fs) X(f+fs) X(f) X(f–2fs)X(f–fs)

fM fs–fM fs 2fs

1
Ts

1
Ts

1
Ts

1
Ts

1
Ts

1
Ts

D C A B

Now that we’ve got X fs() described mathematically, let’s understand what this
means using words and a picture. In words, this last equation indicates that X fs()
consists of a number of X(f)’s, shifted by multiples of fs , and all added together.
Using pictures, for X(f) shown in Figure 4.2(a), X fs() is shown in Figure 4.3.

Figure 4.3 Xs(f), the Fourier transform of the ideal sampling output xs(t)

Here’s where it gets really interesting, so read on carefully. Take a look at Figure
4.3. Here, we see that as long as A<B and D<C, then the X(f) term in X fs() does not
overlap with its neighbors X f fs()− and X f fs()+ . This means that, as long as
A<B and D<C, X(f) is preserved perfectly in X fs() . In other words, as long as A<B
and D<C, then all of Carl’s incoming speech signal x(t) is completely safe in the
sampled signal x ts() .

Now A<B means f f fM s M< − —that is, f fs M> 2 . Similarly, D<C means
− + < −f f fs M M ; that is, f fs M> 2 . So, as long as f fs M> 2 , then A<B and D<C, and
X(f) is preserved perfectly in X fs() .

WOW. All of the information of x(t), the incoming speech signal, is in the
sampled signal x ts() if we just insure that f fs M> 2 . That’s always seemed like an
incredible result to me. It seems logical to think that at least some information would
be lost when we sample an incoming signal, but not so, as we just saw.

Getting Back All the Information from the Samples

Telecommunication engineers jumped up and down with joy, ate ice cream, and had a
party, all the while shouting, “It’s great that all of Carl’s speech x(t) is found in his
sampled signal x ts() , because that means I can sample his speech and not lose any
information.” Then, one engineer piped up, “Now, let’s say at some later time I want to
get Carl’s speech x(t) back from that sampled signal x ts() . How do I do that?” And all
the engineers scratched their heads, went back to their chalkboards, and 5 minutes
later came back and said, “Easy!”

Take a look at Figure 4.3, which shows us X fs() . From this figure, it’s clear that if
we simply get rid of everything except the stuff between − f M and f M , and add a gain of
Ts , then we’ll have regained Carl’s speech. How do we get rid of everything except the
stuff between − f M and f M ? Easy again—just use a low-pass filter (LPF) to cut off
everything outside of − f M and f M , add a gain of Ts , and voila, Carl’s sound is back.

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 65

fM fc fs fs0
f

LPF H(f)Xs(f)

–fM

Figure 4.4
The use of an LPF with frequency

response H(f) to recover X(f) from X
s
(f)

f

Overlapping of term (1/Ts) X (f)
and (1/Ts

) X (f – fs)
is called aliasing

X

1
Ts

(f)s

Figure 4.5 Xs(f) when fs<2fM

One last note. We have some
choice regarding exactly what frequen-
cies the LPF will cut out. Take a look
at Figure 4.4. As long as the cutoff
frequency of the filter, fc , is between
f M and f fs M− , then this LPF will do

a fine job in recovering x(t) exactly
from its sampled signal x ts() . One
common choice for the cutoff fre-
quency of the filter is fc = fs /2. This
puts the cutoff frequency fc smack
dab in the middle of the X(f) and its
shifted replica X f fs()− .

Some Commonly Used Words

A number of terms are commonly used when talking about sampling. First, there’s the
sampling theorem. The sampling theorem simply states that a signal can be recovered
from its samples as long as it is sampled at f fs M> 2 . We know that, and now we’ve
got a name for it.

Next, there’s the Nyquist rate, fN . The Nyquist rate is the smallest sampling rate
fs that can be used if you want to recover the original signal from its samples. From

what we just saw, we know that f fN M= 2 .

Finally, there’s the word aliasing. I’ll explain this word with the help of Figure
4.5. In this figure, you see what happens when we sample at a rate of f fs M< 2 . As
you can see, in this case, in X fs() , there is an overlapping of the X(f) component

with the X f fs()− component. As a result,
the original X(f) is no longer preserved.

The overlapping of X(f) and X f fs()−
is called aliasing.

66 ◆ Chapter Four

Example 4.1

Determine the output (in the time domain and in the frequency domain) of an
ideal sampler with sampling rate 2 Hz (sampling time 0.5 s) when the input
corresponds to

()
t

t
tx

π
πsin= (E4.1)

or, equivalently, in the frequency domain

()

 ≤≤−

=
else,0

,1 2
1

2
1 f

fX (E4.2)

Solution: Turning to equation (4.3), we know that the output in the time
domain corresponds to

() () ()∑
∞

−∞=

−=
k

sss kTtkTxtx δ (E4.3)

()
2 2s

k

k k
x t x t

∞

=−∞

 = −
∑ δ (E4.4)

which is plotted in Figure E4.1(a).

To determine the output in the frequency domain, we turn the pages back
until we reach equation (4.8), which tells us simply

() ()∑
∞

−∞=
−=

k
s

s
s kffX

T
fX

1
(E4.5)

() ()∑
∞

−∞=

−=
k

s kfXfX 22 (E4.6)

() () ()[]�� +−++++⋅= 222 fXfXfX (E4.7)

and this fellow is plotted in Figure E4.1(b).

Figure E4.1 (a) Signal in time (b) in frequency

–1/2

–1/2–3/2–5/2

1/2

1/2 3/2 5/2

xs(t)

–1

–2

2

2

t
0 1

1.5

.

. . .

(a) (b)

x(t) = sinπt
πt

Xs(f)

f

ω

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 67

4.1.2 Zero-order Hold Sampling

We’ll now talk about a method of sampling that can be physically built, a method called
zero-order hold sampling. First, I’ll provide you with a brief description using only a
picture. The input signal—we’ll use Carl’s speech signal, x(t)—and the resulting
output sampled signal, x ts() , are both shown in Figure 4.6.

Although this type of sampling method is not physically built in this way, Figure
4.7 gives some insight into what goes on in zero-order hold sampling. Figure 4.7
shows the incoming signal, Carl’s speech signal x(t), first going into an ideal sampler.
Here, it gets multiplied by a pulse train p(t). As we saw previously, this leads to
impulses of height)(ss kTx once every kTs seconds; that is, it leads to

x t x kT t kTi s
k

s() () ().= −
=−∞

∞

∑ δ (4.10)

Next, the output of the ideal sampler, x ti () , enters into a linear time invariant
(LTI) system. The LTI system is described by the impulse response h(t) shown in
Figure 4.7 (a rectangular impulse response of amplitude 1 and duration Ts). This
leads to the output: for each incoming sample of height x kTs() (in x ti()), the output
corresponds to “holding on” to the value x kTs() for a duration of Ts . The total output
x ts() is shown in Figure 4.7, and it’s described by the words: x ts() is a signal with
height)(ss kTx in each time interval [,())kT k Ts s+1 .

The Information in the Samples

We saw earlier that for ideal sampling all the information contained in the input signal
x(t) is preserved in the output samples x ts() , as long as we sample at a rate f fs M> 2 .
Telecommunication engineers suspected that the same thing was true for zero order
hold sampling. We’ll now see that their suspicions were correct.

Zero-order
hold

x(t) xs(t)
sampling

0 2TsTs 3Ts

Figure 4.6 Input and output of zero-order field sampling

68 ◆ Chapter Four

We want to figure out if we can get x(t) back from x ts() , because if we can, then
we know that all the information in x(t) is saved in x ts() . Take a look at Figure 4.7. We
can see that, to recover the original x(t) from the sampled x ts() , we want to (1) undo
the effects of the LTI system with response h(t), then (2) undo the effects of the ideal
sampling (multiplication by p(t)).

Figure 4.8 shows
us a system that can
undo the effects of the
LTI system h(t) and
then the effects of the
ideal sampling. Here,
the effects of the LTI
system with response
h(t) are undone first by
applying the inverse LTI system, the system with impulse response h t−1() . Then, the
effects of the ideal sampling are undone by (as we saw earlier) using a low-pass filter
with cutoff frequency fc = fs /2.

Here’s an important note—the ideal sampling effects can only be undone if we
sample at f fs M> 2 . So again, as long as f fs M> 2 then all the effects of the sampling
can be undone.

Example 4.2

Determine the output (in the time domain) of a zero-order hold sampler with
sampling rate 2 Hz (sampling time 0.5 s) when the input corresponds to

()
t

t
tx

π

πsin= (E4.8)

X

Ideal sampling

t

x(t)

p(t)

–Ts Ts

Ts

0

1
tt

xs(t)xi(t)
h(t)=

h(t)

t

1

Figure 4.7 What goes on in zero-order hold sampling

h–1(t) LPF
xs(t) x(t)

fc = fs/2
gain = Ts

Figure 4.8 System undoing the effects of
zero-order hold sampling

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 69

Solution: In the zero-order hold sampler, two things happen: first, you have
your ideal sampling, which creates impulses at the sample times of 0, 0.5 s, 1 s, 1.5 s,
and so on. The output of the ideal sampler is shown in Figure E4.2(a). Then, you
follow that with the “hold” circuit, the LTI system which effectively “holds” each
sample for the sampling time of 0.5 s. Its output is drawn in Figure E4.2(b).

–1/2
–1/21/2

1/2

3/2–3/2 3/2–3/2

xi(t)

–1 –12–2

2t t
0 01

1

(a) (b)

x (t) πt

xs(t)

= sinπt

Figure E4.2 (a) After sampling (b) After “holding”

4.1.3 Natural Sampling

Another practical method to sample Carl’s speech signal x(t) is natural sampling. The
workings of natural sampling are shown in Figure 4.9. Here, we see Carl’s incoming
speech signal x(t) multiplied by a signal called p(t). This p(t) is made up of a bunch of
tall, skinny, rectangular shapes of height 1

T and width T; these tall skinny rectangles
are spaced Ts seconds apart. Figure 4.9 shows this more clearly than my description.

X

p(t)

0

0 t

Ts

Ts

2Ts

2Ts

x(t)

t

xs(t)

=

... ...

T T T
1/T

Figure 4.9 Natural sampling

70 ◆ Chapter Four

1

–fM fM

X(f)

f

Figure 4.10
X(f), Fourier transform of input x(t)

The output of the sampler is simply
x t x t p ts() () ()= ⋅ . This signal is just a sequence of pieces
of x(t). It consists of tall, skinny shapes pieced together,
with one shape coming every Ts seconds; each shape
lasts for a time T seconds and has a height shaped by
x(t). Again, Figure 4.9 shows this better than my
description.

The Information in the Samples

Again, the question arises: how much
information is in those samples? The same
answer applies: if you sample at f fs M> 2 , you
can get back Carl’s speech signal x(t) from the

sampled signal. We turn to the frequency domain as a helpful tool to show that all the
information is in the samples if f fs M> 2 . We begin by assuming that X(f), the Fou-
rier transform of Carl’s speech signal, x(t), looks like Figure 4.10. Next, we want to
figure out the Fourier transform of x ts() , X fs() . This is done, using simple math, as
follows:

X f F x t p ts() { () ()}= ∗ (4.11)

As a way to simplify this, we’ll come up with another equation for p(t). Because
p(t) is a periodic signal, it can be written using a Fourier series according to

() 2 sj kf t
k

k

p t c e
∞

π

=−∞

= ⋅∑ (4.12)

where ck are the Fourier series coefficients. For the p(t) at hand, ck can be computed
to get the result

c
T

nT

T T

nT T

nT Tk
s s s

s

s

= =1 1
sinc()

sin(/)

/
.

π
π

(4.13)

Plopping this p(t) equation in the X fs() of equation (4.9) gets us

 X f F x t c es k
j kf t

k

s() { () }= ⋅ ⋅
=−∞

∞

∑ 2π (4.14)

Using some well-known Fourier transform stuff, we can simplify this equation to
get

X f c F x t es k
j kf t

k

s() { () }= ⋅ ⋅
=−∞

∞

∑ 2π (4.15)

X f c X f kfs k s
k

() ()= ⋅ −
=−∞

∞

∑ (4.16)

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 71

C0

–fs fs

... ...

C0 X(f)X(f+fs) X(f–fs)C1

C1

–fs+fM fs–fM–fM fM

C–1

fs

Xs(f)

C–1

Figure 4.11 Xs(f), Fourier transform of the output signal xs(t)

4.2 Quantization

You’ve made it to the second part of source coding. Take a moment to pause and
congratulate yourself on getting this far. Now, let’s continue our talk on source coding
(making an analog signal a digital one). As you saw in the last section, the first part of
source coding involves the mapping of the analog signal into samples of itself, a pro-
cess suitably named sampling. The next operation carried out in source coding is
called quantization, and the device which does it is called a quantizer.

4.2.1 Meet the Quantizer

A quantizer is a fancy word for a very simple device. It is actually just an “amplitude
changer”; it takes the incoming signal x ts() and changes its amplitude (at every time)
to the closest of one of N allowed values.

This is most easily explained by example, so let’s jump right into one. To illus-
trate, I’ll need your help. Every time I say a number, you turn it into the nearest integer
between 1 and 10. So I yell out 7.36, and you give me back the number 7. I yell out 3.9,
you shout back 4. I pipe out 9.22, and you say 9. If you understand this, you totally
understand quantizers. All they do is output the closest amplitude (among N possible
amplitudes), given the amplitude of the incoming signal. What could be simpler?

Now we have X fs() described mathematically. Let me explain this X fs() to
you in words and pictures. In words, X fs() consists of many copies of X(f) added
together, where the kth copy is shifted by k fs and multiplied by ck . Figure 4.11
shows this in one simple picture.

Now, here is the important part. As with ideal sampling, if you’ll take a look at
Figure 4.11, you can see that as long as we keep f f fs M s− > —i.e., f fs M> 2 —then
the signal X(f) is contained perfectly in X fs() . It can be recovered exactly by simply
passing X fs() through a low-pass filter (LPF) that gets rid of everything but c X fo () ,
and introducing a gain of 1/c0 in the LPF.

72 ◆ Chapter Four

To make this even clearer, take a look at Figure 4.12. Here, we see a quantizer with
input x ts() (the output of a sampler). Let’s assume that the quantizer allows output
amplitudes from the set {0, 1, 2, …, 9}. Consider the sample labeled A on the figure, with
an amplitude of 3.3322. It enters into the quantizer. The quantizer changes the amplitude
to the closest allowed amplitude, which in the case of sample A is 3. So we end up with
sample Ao. The quantizer changes sample B in the same way.

OK, now that you’ve got it, I’m going to give you a more technical description,
first in words, then using math, and finally using a picture. Don’t let any of this intimi-
date you, because you’ve already got
it! In words, a quantizer is a device that
maps the amplitude of the incoming
signal to the nearest allowed level.
Mathematically, a quantizer is a device
that performs the mapping � ()x Q x= ,
where x refers to the quantizer input,
�x describes the quantizer output, and
Q()⋅ is a function which maps the
values (,)−∞ ∞ to the closest value in
the set C y y yN={ , ,..., }1 2 , i.e.,
Q C: (,)−∞ ∞ → . Graphically, given
an input of x, the quantizer output �x
can be evaluated using a graph of the
form shown in Figure 4.13. This figure
shows that the output corresponds to
the allowed amplitude closest to the
amplitude of the input.

Xs(t)Xs(t)

t t

3.3322 3
A A0

B B0

C C0

1

4

Quantizer
Allowed output
amplitudes are

{0, 1, ..., 9}

Figure 4.12 Illustration of a quantizer and how it works

Figure 4.13 Figure illustrating how a
quantizer can be described graphically

X

X

y5 = 2

y4 = 1

y2 = –1

y1 = –2

y3 = 0

–0.5–1.5 0.5 1.5

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 73

Example 4.3

Consider the quantizer with the input shown in Figure E4.3(a) and with an input
amplitude–output amplitude relationship drawn in Figure 4.3(b). Draw a plot of its
output.

1.5
x (input amplitude)

0.5

3
2

1

2.52
t

1

(a) (b)

x(t)

3.9
3.1
1.3

x (output amplitude) ^

3

Figure E4.3 (a) Quantizer input
(b) input amplitude-output amplitude relationship describing quantizer

2
t

1

1

x(t) ^

3

3

Figure E4.4 Quantizer output

Solution: When the input between time 0 and 1 is of amplitude 1.3, then (using
Figure E4.3(b)) its output between those times is amplitude 1. You can see that in
Figure E4.4. With the input between times 1 and 2 set to 3.1, then the output
between those times is set at 3. Finally, with input between times 2 and 3 set to 3.9,
then the output from Figure 4.3(b) becomes 3. The final output plot is found in
Figure E4.4.

Who wants it?

Now that you know what a quantizer is, you may be scratching your head wondering
who the heck would want to use a device that maps an incoming amplitude to an
output amplitude that must be one of N allowed values? The answer is: almost every
telecommunication engineer who wants to build a digital telecommunication system/
network. And the reason is best explained by example, as follows.

Let’s say you are acting as a quantizer: I shout out a number between 1 and 10,
and you shout back the closest integer between 1 and 10. So I shout “1.4” and you
shout back “1”. I scream “5.93” and you say “6”. Let’s say we decide we want to build a

74 ◆ Chapter Four

digital communication system. The information I shouted, any number between 1 and
10 (6.984, for example) cannot be represented by a digital signal (because there are an
infinite quantity of numbers between 1 and 10). On the other hand, the numbers you
shouted back—1, 2, 3, …, 10—can be represented by a digital signal (because there
are only 10 possible numbers)—so this information can be sent using a digital commu-
nication system.

So, the quantizer performs a very important task. It turns an incoming signal into
a digital signal, which can be communicated using a digital communication system. Of
course, some of the amplitude information is lost when we quantize a signal. When I
said 1.4 and you replied 1, we “lost” the .4. As you’ll see later, we try to build quantiz-
ers in such a way as to minimize the loss of information.

Quantizer Terms

Telecommunication engineers, with the best of intentions, have created several terms
and definitions to make it easier to describe a quantizer.

First, there’s the word codebook, C. A quantizer changes the amplitude of the
input to one of N allowed output amplitudes. The set of N allowed output amplitudes is
collectively called the codebook, or C for short. Because C contains N amplitudes, it is
often denoted mathematically by writing C y y yN= { , ,..., }1 2 . In the example of Carl
speaking a number, and you, the quantizer, speaking back the closest integer between
1 and 10, the codebook is simply C = {1,2,…,10}.

Next, there’s the word codeword, yi . The codeword, yi , simply refers to the ith of
the N output amplitudes allowed by the quantizer. In the example of the reader as
quantizer (speaking back the closest integer between 1 and 10), the codeword y1

would be 1, the codeword y2 would be 2, and so on.

Next is the word cell, Ri . The cell Ri refers to the set of input amplitudes that are
mapped to the codeword yi . For example, consider the case of the reader (as quan-
tizer) shouting back the closest integer between 1 and 10. If I say 7.6, the reader
screams back 8. If I say 8.3, the reader again shouts back 8. In fact, any number in the
set of numbers [7.5, 8.5) is mapped by the reader to the number 8. Hence, the set [7.5,
8.5) forms a cell. Since this cell corresponds to the amplitudes mapped to y8 8= , this
cell is called R8 . Simple.

There are two types of cells, granular cells and overload cells. A granular cell
refers to a cell that is bounded. For example, consider the cell R8 from the previous
paragraph, which you’ll recall was R8 =[7.5, 8.5). Because this cell consists of a set of
numbers that do not stretch out to either plus or minus infinity, it is called a granular
cell.

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 75

An overload cell, on the other hand, refers to a cell that is unbounded. Consider
the example of Carl screaming a number, and you screaming back the nearest integer
in 1 to 10. I say 9.7, you say 10. I say 10.2, you say 10. I say 100.67, you say 10. I say
100,000, you say 10. From this, you can tell that the cell for the number 10 consists of
[9.5, ∞). Because this cell ends with ∞ , it is called an overload cell.

Types of Quantizers

Not only do we telecommunication engineers have words to describe any quantizer,
but we also have words to help us categorize quantizers.

A quantizer is called a mid-tread if it has a 0 as one of its codewords (allowed
output amplitudes). In other words, a quantizer is a mid-tread if it changes any ampli-
tude very close to 0 into a 0. For example, let’s say I scream out a number, and you
map it to the closest integer between –5 and +5. If I scream 0.3, you say 0. If I shout
–0.2, you shout 0. In this case, you’re acting like a mid-tread quantizer. An example of a
mid-tread quantizer is shown in Figure 4.14(a).

A quantizer is called a mid-riser if it does not have 0 as one of its codewords. In
other words, a quantizer is a mid-riser if it does NOT change amplitudes close to 0 into
0. For example, let’s say I scream a number, and you shout back the nearest number
ending in .5, between –5 and 5. I shout out “–0.3,” and you reply with “–0.5.” I shout out
“0.4,” and you yelp “0.5.” In this case, you are acting like a mid-riser. An example of a
mid-riser is shown in Figure 4.14(b).

X
X

X X

2

1.5

1
0.5

0 0

–1

–0.5

–2

–1.5

–0.5 –1–1.5 –20.5 11.5 2

–2.5

2.5

(a)
(b)

Figure 4.14
(a) Example of mid-tread quantizer (b) Example of mid-riser quantizer

76 ◆ Chapter Four

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

1

9

10

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

(a)

2 4.5 8

10

x

6

3

1

2

3

4

(b)

x

x x

Figure 4.15
(a) Example of uniform quantizer (b) Example of non-uniform quantizer

A quantizer is called uniform if all its codewords are equally spaced. For example,
when I scream a number and you reply with the closest integer in 1 to 10, the possible
codewords are 1, 2, 3, and so on up to 10. These codewords are all spaced apart by the
same distance (of 1), and so this is a uniform quantizer. This type is shown in Figure
4.15(a).

A quantizer is a non-uniform quantizer if all its codewords are NOT equally
spaced. Let’s say I shout out a number, and you reply with either 1, 3, 6, or 10, which-
ever is closest. In this case, the codewords are not equally spaced, and so you are
acting as a non-uniform quantizer. This example is shown in Figure 4.15(b).

Example 4.4

Looking at the quantizers in Figure E4.5, determine if they are mid-tread or mid-
rise and if they are uniform or non-uniform.

Solution: The quantizer in Figure E4.5(a):

1. has zero as one of its codewords, making it mid-tread, and

2. has codewords which are not equally spaced, making it non-uniform.

Meanwhile, the quantizer in Figure E4.5(b):

1. does not have zero as one of its codewords, making it mid-rise, and

2. has equally spaced codewords, making it uniform.

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 77

4.2.2 The Good Quantizer

Now that you’ve got an understanding of what a quantizer is and does, let’s see how to
build a good quantizer for a given application.

What Is a Good Quantizer?

Before we can talk about how one goes about building a good quantizer, we must
understand what is meant by a good quantizer. We’ll introduce a measure of perfor-
mance that we can use to tell us if a quantizer is a good one.

Measures of Performance

A quantizer maps an input amplitude to an output amplitude, and the output amplitude
takes on one of N allowed values. As we mentioned earlier, we’d like to keep the input
amplitude and output amplitude close, because in this way less information is lost in
the quantizer.

With this in mind, at any moment of time, we can tell how well a quantizer is
doing by looking at the difference between the amplitude into the quantizer and the
amplitude coming out of the quantizer. That is, at any moment of time, the quantizer
performance can be measured by the error signal

() xxxe −= ˆ (4.17)

where x is the input to the quantizer at time t and �x is the output of the quantizer at
that same time t. A good quantizer has a small error term, and a poor quantizer has a
large error term.

Engineers, however, are usually not so interested in how well something is doing at
a moment in time (unless, of course, it’s an explosion or something equally dramatic),
but rather at how things are doing overall, or on average. To provide overall measures of
performance, engineers assume that there are some things about the amplitudes coming

x

–1

1

x ̂ x ^

4

–4

x

–0.5

0.5

1.5

–1.5

(a) (b)

Figure E4.5
Two Quantizers

78 ◆ Chapter Four

into the quantizer that are known (or can be “guess-timated”). Specifically, we assume
that we can determine (and we usually can) how likely it is that a particular amplitude
comes into the quantizer; that is, we assume we know the probability density function of
the amplitudes coming into the quantizer, p xx () , where x is the incoming amplitude.

Assuming we know p xx () , the first overall measure of quantizer performance is
mean squared error, or mse for short. Mean squared error, as the name suggests, is
just the average (or mean) of the error e(x) squared; that is, mean squared error is

()[] () ()∫
∞

∞−

−=−= dxxpxxxxEmse x
22 ˆˆ (4.18)

Since we want a quantizer to have a small error (difference between input ampli-
tude and output amplitude), it makes sense that engineers call a quantizer with a small
mean squared error a “good one.”

The second overall measure of quantizer performance is signal to quantization
noise ratio, or SQNR for short. (Some other telecommunication books call this same
measure SNR, but I find that can be confused with terms we’ll talk about in Chapter 5,
so I’ll keep the notation SQNR.) SQNR refers to the ratio of the signal input power to
the power of the error (or noise) introduced by the quantizer. Mathematically, it’s
described by

() ()

mse

dxxpxx

P

P
SQNR

xm

e

s
∫
∞

∞−

−
==

2

 (4.19)

where xm is the average (or mean) x value. Because we want quantizers to have a
small error, and the size of the error term appears on the denominator (bottom) of the
SQNR term, it makes sense that engineers say “good quantizers have a large SQNR.”

A “Classic”

To give you a better understanding of the overall measures mse and SQNR, what
follows is a “classic” example of how to compute the mse and SQNR for a particular
uniform quantizer. Let’s say x is a uniformly distributed random variable between [a,b];
that is to say, p xx () looks like Figure 4.16(a). A uniform quantizer is shown in the
graph of Figure 4.16(b). Let’s figure out the mse and SQNR of the quantizer for the
given input signal and quantizer.

First, the mse. As you’ll recall, the equation for mse is given by

mse E x x= −[(�)]2 (4.20)

() ()∫
∞

∞−

−= dxxpxxmse x
2ˆ (4.21)

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 79

Now, looking at Figure 4.16(a), we see that p xx () is 0 outside the interval [a,b],
and we use this information in equation (4.19) to get to:

() ()∫ −=
b

a

x dxxpxxmse 2ˆ (4.22)

Now, we use two pieces of information to change the integral. We’ll use the
definition of a cell, Ri , to help us out here (so if you don’t remember, flip back and
have a quick peek). (1) First, the interval [a,b] can be broken up into cells
R R RN1 2, ,..., . (2) Second, for all values of x that fall into the cell Ri , the output of the
quantizer, �x , corresponds to the value yi . Applying these two pieces of information to
the integral creates

() () () ()∫∫ −++−=
NR

xNx

R

dxxpyxdxxpyxmse 22

1

1

� (4.23)

() ()
i

N

x
i R

mse x y p x dx
=

= −∑ ∫ 2

1
i (4.24)

()
i

N

x
i R

mse x y dx p
B B=

 = − =
∑ ∫ 2

1

1 1
usingi (4.25)

Now, consider the ith cell Ri . In this cell, the term x – yi is simply the difference
between the input to the quantizer x and the output of the quantizer yi ; that is, x – yi

is simply the error of the quantizer, which we’ll call erri . Using the substitution
erri = x – yi in this integral leads to:

Figure 4.16
(a) p(x) of quantizer input x (b) Graphical description of uniform quantizer

X
∧

X

...

...

yN

∆

∆

∆

b

(b)

y =a+1 ∆/2

a a+∆x

p(x)

a b

1
(b–a)

(a)

= 1
B

80 ◆ Chapter Four

() ()
i,max

i,min

errN

i i
i err

mse err d err
B =

= ∑ ∫
2

1

1
 (4.26)

The limits of the integral erri,min and erri,max refer to the smallest value of the
quantizer error and the largest value of the quantizer error in a cell Ri . Let’s calculate
these values with the help of the graph of Figure 4.16(b). Take a look at the first cell,
which maps all the values between a and a+ ∆ into the value y a1 = + ∆ /2. It follows
that the largest value of error occurs when the input x = a+ ∆ is mapped to the output
y a1 = + ∆ /2; in this case the error is ∆ /2. Similarly, the smallest value of the error

occurs when the input x = a is mapped to the output y a1 = + ∆ /2. In this case, the
error value is – ∆ /2. It’s easily shown that for any cell the largest value of error is
∆ /2 and the smallest value of error is – ∆ /2. Using this maximum value of error and
minimum value of error in the integral leads to

() ()
�

�

N

i i
i

mse err d err
B =

−

= ∑ ∫
2 2

1

2

1
(4.27)

Since all N of the integrals are identical, this equation can be rewritten as

() ()
�

�

N

i

mse err d err
B =

−

= ∑ ∫
2 2

1

2

1
 (4.28)

() ()
�

�

N
mse err d err

B
−

= ∫
2 2

2

(4.29)

() ()
�

�

mse err d err
−

=
∆ ∫

2 2

2

1
(4.30)

where the last equation comes about because, looking at Figure 4.16(b), we see N
steps ∆ in the range B, which tells us N ∆ = B, or N/B = 1/ ∆ . Finally, evaluating the
integral and applying some simple math leads us to

mse
err=

−

1

3

3

2

2

∆ ∆

∆
() | (4.31)

mse = − −1

24 24

3 3

∆
∆ ∆

(
() ()

) (4.32)

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 81

mse = 1

12

3

∆
∆

(4.33)

mse = ∆2

12
(4.34)

As we’ll now see, once you’ve got the mse of the quantizer, it’s easy to get the
SQNR. In what follows, we compute the SQNR assuming that the interval of [a,b]
(shown in Figure 4.16(a)) corresponds to [–A, A]. Starting with the basic SQNR
equation, we have

() ()

mse

dxxpxx

P

P
SQNR

m

e

s
∫
∞

∞−

−
==

2

 (4.35)

() ()

mse

dxxpx

SQNR
∫
∞

∞−=

2

(4.36)

2

2
3

12

A

SQNR =
∆ (4.37)

Next, we’ll get a new value for ∆ that allows us to simplify this equation even
further. Referring to Figure 4.16(b), we see N steps of size ∆ between [a,b] = [–A,A].
It follows that N ∆ = 2A, or, equivalently ∆ = 2A/N. Plugging this into the SQNR
equation leads to

SQNR N= 2 (4.38)

Creating the Good Quantizer

Very simply, we can compute the mse or SQNR of a quantizer, and if the mse is small or
the SQNR is large, then we can say we’ve got a good quantizer! In this section, we’ll
talk about how to build the very best quantizers for any given input.

First off, let me explain what I mean by building a good quantizer. We’ll use Figure
4.17 to help us out. Notice that you know everything about a quantizer, if you know two
things: (1) the codewords y y yN1 2, ,..., ; that is, the N values that the quantizer allows as
output; and (2) the cells R R RN1 2, ,..., ; in other words, the values of input x that are
mapped by the quantizer to y1 , the values of input x mapped to y2 , and so on. Specifying
these values is what I mean by building a quantizer.

82 ◆ Chapter Four

To help us in building the best
quantizer, we’ll assume that the amplitude
distribution of the quantizer input x is
given. That is, if x(t) is the quantizer input,
we’ll assume we know the likelihood that
x(t) has a particular amplitude x at any
time t. Mathematically, we’re assuming we
know p xx () , the likelihood that x(t) has
amplitude x at any given time.

The First Method: Two Rules
and an Algorithm This method for
building the best quantizer is so easy
you’ll whop yourself on the head and say
“I could have thought of that (and been
famous).” Let’s say I somehow magically
know the codewords { ,..., }y yN1 , and I
now want to figure out the best cells
{ ,..., }R RN1 (best from the standpoint of
minimizing the mse). It simply makes
sense that if I’m trying to minimize the error, the best cell R1 (inputs x mapped
to y1) is the set of values of x that are closest to y1 ; the best cell R2 (inputs x
mapped to y2) consists of the values of x closest to y2 ; and so on. That’s the first
rule. Let me state this rule formally for you:

Rule 1: Nearest Neighbor Rule

Given the codewords { y1 ,…, yN }, the best cell Ri is the set of values of x that are
closer to yi than any other codeword.

To make the rule look more impressive, we’ll write it mathematically as
R x x y x y j ii i j= ∈ − ≤ − ∀ ≠{ | | | | }2 2

As a very simple example of this rule, consider the earlier example of my saying a
number between 1 and 10 and you, the quantizer, saying back the integer that mini-
mizes the error between the number I shout and the integer you shout back. I shout
8.7 and you shout 9 (error 0.3); I shout 1.2 and you scream 1 (error 0.2). In this game
it’s easy to see that if we’re trying build a quantizer to minimize the average error (or
average squared error), the values I shout between (for example) [7.5, 8.5) are
mapped to 8 by you. In other words, the cell R8 is made up of the values closest to
y8 8= . That’s exactly what our Rule 1 says.

Now for Rule 2. This rule is all about how to do this: I give you a cell Ri , and you
give me the “best” codeword for that cell, yi . (By best, I mean the codeword that
minimizes the mse.) How do you do that? You choose yi to be the average value of all

X

X

y6

y5

y4

y3

y2

y1

R3 R4R2R1 R5 R6

Figure 4.17 Quantizer graph indicating the
variables of the quantizer

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 83

the values in the cell Ri . So, if my cell is R8 , and it’s made up of the x values [7.5,8.5),
and all these x values are equally likely, then the best choice for yi is the average
value of 8 (best for minimizing the average value of squared error). Let’s define this
rule with more mathematical detail.

Rule 2: Centroid Rule

Given a cell Ri , the best codeword yi for that cell is the average value of all the x’s in the
cell; i.e., the best codeword yi is the centroid of the cell Ri .

Mathematically,

y E x x Ri i= ∈[|] (4.39)

()
i

i

i x R
R

y x p x dx= ∫ (4.40)

()

()
i

i

x

R

i

x

R

x p x dx

y
p x dx

=
∫

∫ (4.41)

We’ll now use these two rules to come up with an algorithm for building the best
quantizer. Basically, the first rule says: “given the codewords { y1 ,…, yN }, I tell you
how to get the best cells { R1 ,…, RN }”. The second rule says: “If you give me the cells
{ R1 ,…, RN }, then I tell you how to get the best codewords { y1 ,…, yN }.” And I say:
“Hey, if I put these two rules together, I’ll get an iterative algorithm that will allow me
to come up with both the best { y1 ,…, yN } and the best { R1 ,…, RN }.” It’ll work like
this:

Algorithm for Building the Best Quantizer: Generalized Lloyd Algorithm:

1. a. Set m = 1.

b. Choose some initial codebook { ym
1 ,…, yN

m }. Oftentimes a good starting
choice is a uniformly (evenly) spaced set of N values.

2. Given the codewords { ym
1 ,…, yN

m }, compute the best cells { R Rm
N
m

1 ,..., } using
Rule 1, the Nearest Neighbor rule.

3. Given the cells { R Rm
N
m

1 ,..., }, compute a new set of codewords labeled
{ ym

1
1+ ,…, yN

m+1 } by using Rule 2, the Centroid rule.

4. a. Compute the mse for the quantizer with codewords { ym
1 ,…, yN

m }.

b. Compute the mse for the quantizer with the codewords { ym
1

1+ ,…, yN
m+1 }.

c. If the percent change in the mse is below some small number (e.g. 1%)
then STOP; otherwise, replace the value of m by m+1 and return to step 2.

84 ◆ Chapter Four

Essentially, this algorithm iterates (repeats) Rule 2 to get cells and Rule 1 to get
codewords; eventually, the algorithm stops when the codewords and the cells together
create such a low mse that even if we update them further the mse really doesn’t
improve much. It’s worth noting from a mathematical standpoint that this algorithm
does not, in general, guarantee the very best choice of codewords and cells, but it
usually works so darn well that almost every telecommunications engineer uses it to
build their quantizer.

The Second Method: Squeezing and Stretching The second method for creating
the best quantizer (a quantizer that minimizes the mse) is rather creative. We’ll use
Figure 4.18 to help. Here, we see a device that’s made up of three parts: (1) a block
G()⋅ that maps the input x to the output G(x); (2) a uniform quantizer; and (3) a block
G− ⋅1() that maps the signal �y to the output G y−1(�) .

x = G–1(y)x
G(.)

y = G(x) y G–1(.)Uniform
Quantizer

Figure 4.18 A new way to create the best quantizer

x = 2,4, or 5x
G(.)

y y = 3,6, or 9
G–1(.)Uniform

Quantizer
you

maps 3 2
6 4
9 5

maps
[2,3.5) [2,4.5)

Figure 4.19 Illustration example of the workings of the new quantizer of Eq. 4.18

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 85

The three parts of Figure 4.18 can work together to create any type of quantizer
we want. This happens by simply choosing the G()⋅ and G− ⋅1() carefully. Let me
illustrate that by example. Let’s say I call out a value between 2 and 10, and you, a
quantizer, call back either 2, 4, or 5, whichever minimizes the error (whichever is
closest). So I yell 2.3 and you say 2; I shout 7.9 and you say 5. However, we can do this
differently. Let’s say that you, our quantizer, are tired and only want to play the quan-
tizer game if you can be a uniform quantizer and call back either 3, 6, or 9. Well, I still
want a quantizer that maps inputs to outputs of either 2, 4, or 5. Can we both get what
we want? Yes. Take a look at Figure 4.19, which helps explain how this can happen. As
we see in this figure, we’ll need to introduce two new functions: first, looking at the
right of the figure, we’ve introduced G− ⋅1() , which maps the output values you say—3,
6, or 9—to the output values I want to hear: 2, 4, or 5. That’s half of it; the other half is
shown on the left of Figure 4.19, where we find the function G()⋅ . This function
changes the inputs you hear me calling out. Consider this: if what I want are outputs of
either 2, 4, or 5, then I’ll want inputs [2, 3.5) to go to 2 (because those numbers are
closest to 2); but, because the outputs you say are 3, 6, or 9, then for the numbers you
hear between [2, 4.5) you’ll say 3 (because these numbers are closest to 3)—so I’ll
introduce a function G()⋅ that changes my original inputs of [2, 3.5) to inputs in [2, 4.5).
In this way, you always say 3 when I want you to say 2 (and that’s great because the
function G− ⋅1() on the right of the figure will map your 3 to my 2). By introducing
these functions G()⋅ and G− ⋅1() as shown in Figure 4.19, I’ve turned you, Mr. or Ms.
Uniform Quantizer saying 3, 6 or 9, into exactly the quantizer I want. So you see, going
back to the original Figure 4.18, we can use this to get any quantizer we want, with the
exact choice of G()⋅ and G− ⋅1() determining the specific type of quantizer.

In this section we’ll find out what indeed is the best choice of G()⋅ and G− ⋅1() . By
best choice, I mean: Given the distribution of the input amplitude, p xx () , the G()⋅ and
G− ⋅1() that allows the quantizer of Figure 4.18 to have a minimum mse.

Let me stop here to make some brief points and introduce some commonly used
words. Briefly, the function G()⋅ and G− ⋅1() are always inverses of one another, so
once you know one you can always specify the other. Now, some notation. G()⋅ is
typically called a compressor because in most cases of practical interest it ends up
smooshing the original input into a smaller set of values. G− ⋅1() is typically called an
expandor, because, being the inverse of G()⋅ , it usually maps the quantizer output
values into a larger set of values. Finally, the entire quantizer of Figure 4.18 is often
dubbed the compandor, with the com coming from compressor and the pandor coming
from expandor.

Now, how do we create G()⋅ and G− ⋅1() in such a way that we minimize the mse
of the compandor of Figure 4.18? I’m just going to simply state the general result that
some researching engineer came up with, because the details don’t really add any
great insight. The answer is: given an input with distribution p(x), the mse is minimized
by choosing G()⋅ according to the equation

86 ◆ Chapter Four

() ()3

0

X

G X Kp x dx= ∫ (4.42)

The mse of a quantizer using G()⋅ (as in Figure 4.18) is shown (not here though)
to be: for inputs with values in the range of [,]max max−x x ,

()
()∫

−

=
max

max

2

2

12

x

x

dx
xG

xpq
mse

� (4.43)

where q is the size of one cell in the uniform quantizer and � ()G ⋅ is the derivative of
G()⋅ .

Example 4.5

Determine the optimal compression characteristic when the input to a compandor
is described by Figure E4.6.

Solution: To figure out the G(x), we turn to equation (4.42), which tells us

() ()∫=
X

dxxKpXG
0

3 (E4.10)

Now, for X in the range of [0,3], we have p(x)=1/6. Applying this to (E4.10)
leads us to

() ()∫ ≤≤⋅=
X

XdxKXG
0

3
1

30,6
1 (E4.11)

() () 30,6
1

0

3
1

≤≤⋅= ∫ XdxKXG
X

 (E4.12)

x

1/6

p(x)

–3 3

Figure E4.6 The pdf of the input

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 87

() () 30,6
3

1

≤≤= XXKXG (E4.13)

When X is larger than 3, we use equation (E4.10), which tells us

() () 3,
0

3 >= ∫ XdxxKpXG
X

(E4.14)

∫∫ >⋅+⋅=
X

XdxKdxK
3

3

0

3 3,06
1 (E4.15)

() 3,36
3

1

>⋅= XK (E4.16)

When X is in the range [–3,0], we have p(x)=1/6. Applying this to (E4.10), we get

() ()∫ ≤≤−⋅=
X

XdxKXG
0

3
1

03,6
1 (E4.17)

()1
3

, 3 06
K X X= − ≤ ≤ (E4.18)

When X is less than –3, we use (E4.10) to discover

() () 3,
0

3 −<= ∫ XdxxKpXG
X

(E4.19)

() ()
3 1 13 3

0 3

1 0 , 36

X

K dx K dx x
−

−

= ⋅ + ⋅ < −∫ ∫ (E4.20)

() () 3,36
3

1

−<−⋅= xK (E4.21)

Putting it all together, we end up with

()

()
()
()

1
3

1
3

1
3

3 , 36

, 3 36

3 , 36

K X

KG X X X

K X

 − ⋅ < −

= ⋅ − ≤ ≤

 ⋅ > +

(E4.22)

which is plotted in Figure E4.7.

88 ◆ Chapter Four

The value of K is traditionally determined by deciding that we want the following:
when the input is at its maximum value xmax, the output should be G(xmax) = xmax. In this
case, that means we want the value of G(3) to be 3. Requiring this leads to

 () 3
1

633 K⋅= (E4.23)

6=K (E4.24)

4.2.3 The Quantizer and the Telephone

Let’s say we want to build a quantizer for a telephone, one that’s going to be applied to
a sampled speech signal. This section discusses how we build such a quantizer and
explains the standard quantizer (for a sampled speech signal) used in telephone
systems in the United States and Europe.

The Idea

Since all kinds of people use the telephone—little people and big ones, fast talkers and
slow ones, loud speakers and quiet ones—telecommunication engineers sat down and
said, “We’ll have to come up with a quantizer that does a good job for most any pos-
sible p xx () (the input amplitude distribution), since so many different people will talk
into our phone.” And with this, the quest for the best telephone quantizer begins.

Let’s say we decide, just like those early telecommunications engineers did, that
we’re going to build our telephone quantizer using the creative compandor (of Figure
4.18). The issue then becomes how to choose a G()⋅ that gets a good performance for
most any possible p xx () . We’ll begin by considering the performance measure of
SQNR. As you may recall (and you can check back if you don’t), SQNR corresponds to

() ()2

m x

s

e

x x p x dx
P

SQNR
P mse

∞

−∞

−
= =

∫
(4.44)

Figure E4.7 The compressor

x

G (x)

–3

3

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 89

In the case of a compandor, with inputs between [,]max max−x x , we can use equa-
tion (4.43) for mse, and now the SQNR equation becomes

() ()

()
()

max

max

2

2

212

m x

s
x

e x

x

x x p x dx
P

SQNR
P p xq

dx
G x

∞

−∞

−

−
= =

∫

∫
�

 (4.45)

Now, from this equation, is there some way we can make the performance (SQNR)
independent of p xx () ? If we can somehow choose G(x) so that the integral in the
denominator equals a constant times the integral in the numerator, then the integrals
cancel, and I get SQNR independent of p xx () . That’s just what we wanted. To get the
top integral and bottom integral to cancel, we just set G()⋅ according to (assuming xm = 0)

| � ()| | |G x
K

x
2

2

= (4.46)

� ()G x
K

x
= (4.47)

G x K x Ce() log ()= ⋅ + (4.48)

While this result makes sense mathematically, I’m now going to take a few
lines to show you that this result also makes good common sense, too. We want to
keep the SQNR (ratio of input power to error power) constant. So when big values
of x (high power) come in, we
want to have big values of quan-
tization error; and when small
values of x come in (low input
power) we want to have small
values of quantization error. This
will keep a constant SQNR. Let’s
see how the G(x) we chose
above, a log function, creates
this. We’ll use Figure 4.20, a
graph of G(x), to help. First,
consider big values of x (high
power); when big values of x
come in, a look at the G(x) of
Figure 4.20 tells us that big
values of x are mapped to a small
range of values in G(x). In the
overall quantizer/compandor,

x

G(x) = log x
Large values of x
get smooshed to

smaller range

Small values of x
get mapped to

this very big range

Small values
of x

Large values
of x

Figure 4.20 Graph illustrating G(x) = log x

90 ◆ Chapter Four

this small range of G(x) then passes through a uniform quantizer, where it probably
gets mapped to only one or two quantization levels. As a result, we have a large range of
x getting mapped to only one or two levels, which creates a lot of quantization error (high
error power). So, large inputs (high input power) create lots of quantization error (high
error power). Similarly, looking at Figure 4.20, small inputs (low input power) get
stretched out into a larger range of values by the function G(x); therefore, considering
the overall compandor/quantizer, when this large range of G(x) outputs goes through
the uniform quantizer, it is mapped to a large number of levels, which results in only little
quantization error (low error power); so we get low input power creating low error
power. This is perfect for creating constant SQNR.

However, when telecommunications engineers took a close look at the G(x) of
Figure 4.20, one of them had a troubling thought: “What happens when a negative
input arrives at the G(x) function in the compandor?” Indeed, that was a very good
point, for as you’ll probably notice, the G(x) function of Figure 4.20 does not tell you
what G(x) will output for negative inputs. But another of the engineers offered a simple
solution: “We want big inputs (either positive or negative) to give big errors, and we
want small inputs (either positive or negative) to give small errors. So what we’ll do is
simple: we’ll use this!” and he pointed to a figure just like Figure 4.21. You see, in this
figure, what G(x) does to the negative values is identical to what it does to positive
values: big negative values are compressed by G(x) creating big errors in the uniform
quantizer (that follows G(x)); small negative values are expanded by the G(x), creating
small errors in the uniform quantizer (that follows G(x)). So, the problem of what to do
with negative inputs was quickly solved.

x

G(x)

Small values
of –x

Large values
of –x

G(x) = logx

G(x) = –log(–x)

Small values of –x
mapped to large range
of G(x)

Big values of –x
mapped to smaller range of G(x)

Figure 4.21 Graph illustrating a G(x) with consideration of negative inputs

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 91

But, alas, that same
eagle-eyed engineer now
spotted a new problem in
the G(x) curve of Figure
4.21: “What shall we do
when a zero (or number
close to it) comes into the
G(x) end of the
compandor?” Another good
point, because a look at
G(x) in Figure 4.21 indi-
cates that it doesn’t tell us
what to do when the input
of x equal or close to 0
comes into the quantizer.
“Well,” piped out another
engineer, “I’ve got a simple
solution. Let’s make G(x)
map an input of x=0 to an
output of 0, and have it map
inputs close to 0 to outputs
close to 0. And we’ll let the
other two curves of Figure 4.21 apply whenever x is not so close to 0. The new G(x)
will look like this.” And he pointed to a figure that looked like Figure 4.22.

Next, engineers decided they needed a careful mathematical description to fully
describe the goings-on in the G(x) of a telephone compandor (Figure 4.22). It was here
that the Europeans and the Americans had a falling out. The Americans used a math-
ematical description of G(x) called the µ-law description, while the Europeans made up
their own description of this G(x) called the A-law description. Since both are just
mathematical descriptions of the same G(x) of Figure 4.22, I’ll present just one of
these descriptions. Being North American, I’ll provide the µ -law description. The
µ -law description of the G(x) of Figure 4.22 is the long equation

() () ()max
max

log 1

sgn
log 1

e

e

x

x
G x G x

+

 = ⋅
+ µ

µ

(4.49)

where typically µ =255, loge(x) is the natural logarithm of x (also written as ln(x)), and
sgn()x is +1 if x is positive and –1 if x is negative.

Now, we’ll see how the above G(x) equation describes the curve of Figure 4.22.

x

G(x)

G(x) = log(x)G(x) = –log(–x) G(x) = x

Figure 4.22 Shape of G(x) used in telephone
system to maintain constant SQNR

92 ◆ Chapter Four

At times when x is close to 0 (specifically µ x /xmax<<1), the G(x) equation simplifies to

() () () ()
max max

max maxsgn
log loge e

x

x x
G x G x G x

 = ⋅ = ⋅

µ

µ µ

µ

(4.50)

So, at times when x is close to 0, G(x) is just a value close to x, as in Figure 4.22
(specifically, G(x) is a constant multiplied by x). At times when x is far from 0 (specifi-
cally µ x /xmax<<1), G(x) in this case reduces to

() () ()max
max

log

sgn
log

e

e

x

x
G x G x

µ

 = ⋅

µ

(4.51)

So, when x is far from 0, G(x) is a value proportional to the logarithm of x, as in Figure
4.22. The µ -law equation for G(x), then, is just another way of saying “see Figure 4.22.”

Telephone quantizers are built using the compandor (Figure 4.18), and we’ve just
seen the G(x) that telecommunication engineers decided to use. The final decision was
how many levels to use in the uniform quantizer of the compandor. After some long
days of work and one tired slide-rule later it was decided that 256 levels would be used
in the uniform quantizer. Both the Europeans and Americans agreed, and with that,
the compandor used in telephones was specified.

4.3 Source Coding: Pulse Code Modulator (PCM)

You now have a solid understanding of sampling, the first part of source coding. You
also have a good understanding of quantizers, the second part of source coders. In this
section we’ll put samplers and quantizers together, and throw in a third device, to build
a source coder. Because there are other ways to build source coders, as we’ll see later,
this source coder is given a very particular name—the pulse code modulator (PCM).

4.3.1 Introducing the PCM

You’ll probably recall that the source coder is a device that maps an analog input into a
digital output. One way to build it, called the PCM, is shown in Figure 4.23 where a sam-
pler is used, followed by a quantizer, which is followed by a third device called a
symbol-to-bit mapper. Here, an analog signal, which we call x(t), comes in at the input side
of Figure 4.23. A sampler creates samples of this original signal, which we’ll call x ts() ; you
can see this in Figure 4.23. A quantizer takes each sample that comes in and creates a new
sample that comes out; this new sample has an amplitude that takes on one of N allowed
levels. We’ll call this signal � ()x ts , and you can see an example of it in Figure 4.23.

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 93

Finally, a device called a symbol-to-bit mapper takes in the quantized samples
� ()x ts and, for each sample in � ()x ts that comes in, it outputs a set of bits, 0’s and 1’s. A

0 may be represented by a short pulse of –5V and a 1 by a short pulse of +5V. Let me
explain how this device works by example. Let’s say the quantizer outputs samples
which take on one of four levels—for example, the output samples of the quantizer are
values in the set {0,1,2,3}. The symbol-to-bit mapper associates a unique set of bits
with each sample; for example, it associates the bits 00 with the symbol 0, it associates
the bits 01 with symbol 1, ..., and it links the bits 11 with symbol 3. When a given
sample comes in, it puts out the bits it has associated with that sample. It’s really quite
a simple device, and you can look at Figure 4.23 to get a better feel for how it works.

To sum up, the tag-team combination of sampler, quantizer, and symbol-to-bit
mapper together take an analog signal x(t)and map it to a digital signal, in this case a
set of bits.

4.3.2 PCM Talk

Telecommunication engineers associate a number of terms with the pulse code modu-
lator of Figure 4.23, as a way to help describe its operation. I’ll discuss three of these
key words here. First, there’s sampling rate, or how many samples per second the
sampler creates. As you’ll probably recall, the sampling rate is usually chosen to be at
least two times the maximum frequency of the input, because if you do this, then all
the information in the original signal is kept in the samples.

Next, there’s the term symbol rate. This is the number of samples per second that
leave the quantizer. Since the quantizer creates one sample out for each sample that
comes in, the symbol rate is also the rate of the symbols that come into the quantizer.
But, if you take a quick peek at Figure 4.23, you’ll notice that the number of samples
that come into the quantizer exactly matches the number of samples that come out of
the sampler, so this number is always equal to the sampling rate.

x(t)

t t t

xs(t)

xs(t) xs(t)

0 0Ts Ts

Ts

2Ts 2Ts

2Ts

3Ts 3Ts

3Ts

0.7
0.3

1.8
2

1

0
0 1 1 0 1 0 0 0

= = = =

1 2 2 0

Quantizer
Symbol-to-bit

mapper
x(t)

∧

Sampler

Figure 4.23 PCM and how it works

94 ◆ Chapter Four

Finally, there’s the bit rate. This indicates how many bits per second come out of
the symbol-to-bit mapper. This number can be evaluated by the simple computation

bit rate symbol rate of bits
symbol= × # (4.52)

4.3.3 The “Good” PCM

Telecommunication engineers needed a way to evaluate how well a source coder, like
the pulse code modulator, was working. Ultimately, they decided that a “good” source
coder was one that had two things going for it. First, the amount of error in the quan-
tizer part should be small; that is, they wanted a large SQNR. They called this “good”
because it meant only a very little bit of information was being lost at the quantizer
part. Second, the bit rate of the source coder should be small. These engineers called
small bit rates “good” because they discovered that a smaller bit rate means a smaller
bandwidth for the source coder output signal (shown in Figure 4.24), and that was
good because a lot of communication channels would only transmit signals with a
small bandwidth.

Figure 4.24 Illustrating that high bit rate leads to large signal bandwidth

... ...

T1 (small)

in frequency domain

T2 (big)

in frequency domain

–1/T1 –1/T2 1/T21/T1 (big) (small)

BW 2/T1 BW 2/T1

(a)

High bit rate = many bits/sec Low bit rate = few bits/sec

... ...

(b)

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 95

However, one bright engineer saw a problem. “Wait a minute! You telecommuni-
cation guys want opposite things. Your number-one want (large SQNR) and your
number-two want (small bit rate) are opposites. Let’s say you want a quantizer with a
high SQNR (low error). Then you’ll need a quantizer with a lot of allowed output
levels, for example, 1024. But this means you’ve got to have 10 bits (2 102410 =) for
each symbol, which will mean a HIGH bit rate (as we see from equation (4.52)).”

He was right. Since what we want are opposite things, we have to define a “good”
source coder like this:

1. If the SQNR is fixed, we get a very small bit rate (compared to other source
coders); or,

2. If the bit rate is fixed, we get a very large SQNR (compared to other source
coders).

All the telecommunication engineers nodded their heads in collective agreement
with this notion of “good,” and so it was.

4.3.4 Source Decoder: PCM Decoder

If you’ve made it this far, it’s very likely that you understand how the source coder, the
PCM, transforms an incoming analog signal into a digital one, and how to decide on a
“good” PCM. Taking a look at Figure 4.25, we see what happens to the digital signal
output by the PCM in the communication system: it’s transformed by a modulator, sent
across the channel, and picked up by a receiver. Continuing to explore this figure, you
can see the receiver hard at work: it tries to reconstruct the original signal x(t). Basi-
cally, it’s the receiver’s job to undo the effects of the transmitter and the channel, as
best it can. As you can see in Figure 4.25, a part of what the receiver does is undo the
effects of source coding, a process suitably named source decoding, and we’ll talk here
about how it works (when the source coding is PCM).

The source decoder which undoes the effects of PCM is shown in Figure 4.26.
The first thing it undoes is the symbol-to-bit mapping, using a bit-to-symbol mapping,
which you’ll find in Figure 4.26. This device, for each incoming set of bits, recreates
the sample, with one of N possible amplitudes, that was output by the quantizer.

Figure 4.25 What happens to the PCM signal in the communication system

x(t)

x(t)

Quantizer Symbol-to-bit
Mapper

Modulator

bits bits

Channel... ... Demodulator Source
Decoder

PCM

Transmitter

Undoes PCM effects

Receiver

96 ◆ Chapter Four

The source decoder would next like to undo the effects of the quantizer, but a
quick look at Figure 4.26 shows that it doesn’t do that. Let me explain what’s going on
here. A quantizer, as you know, maps inputs with any amplitude, for example, 6.345, to
an output with only one of N possible amplitudes. For example, for input 6.345, the
output is 6. So, when a value of 6 is made available to the source decoder, it has no way
of knowing exactly what input came into the quantizer. Was the input 6.001? How about
6.212? All these inputs would create an output of 6.

Looking again at Figure 4.26, you’ll see a low-pass filter (LPF), which is used to
undo the effects of sampling. That’s because, as you’ll recall, and you can check back if
you don’t, that the effects of the sampler are totally undone by a low-pass filtering.

So there you have it. In summary, the source decoder for PCM is made up of two
parts, a piece that undoes the symbol-to-bit mapping, followed by a part that removes
the sampling effects.

4.4 Predictive Coding

Pulse code modulation, while popular, is not the only type of source coding out there in
the telecommunication world today. With a clear definition of what constitutes a good
source coder, telecommunication engineers set out to make really good source coders.
This chapter shares some of what they found, which we’ll call predictive coding.

Bit-to-symbol
Mapping

LPF

... ...
t t

Ts Ts

0 1 1 0

= =

1 2

1
2

0

undo symbol-to-bit mapper
nothing here

to undo
quantizer effects

undo sampler effects

Figure 4.26 The source decoder for PCM

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 97

4.4.1 The Idea Behind Predictive Coding

I’ll explain the idea behind the special type of source coding called predictive coding
with the help of Figure 4.27. This figure uses discrete-time signal notation, and I’ll
explain that as I go through a step-by-step description of the figure. At a glance, Figure
4.27 shows a striking similarity to Figure 4.23 (the PCM), with only one main differ-
ence: there is a subtraction after the sampler. I’ll take you in for a close look and we’ll
see what’s going on. First, we’ve got a signal coming in, which we’ll call x(t). It goes
right into the sampler, which outputs samples of the incoming x(t). In Figure 4.27, we
use the notation xn to indicate the nth sample output by the sampler. Here’s where
something new and exciting happens. Rather than pass this xn right to the quantizer,
we first do a subtraction. Imagine that you could somehow magically predict the value
of the sample xn , creating a predicted value xn

P . Well, in fact, as I’ll show you a little
later, we can create just such a signal with the magic of engineering. What happens in
Figure 4.27 is, once the sample xn is generated, a predicted value xn

P is immediately
created, and subtracted from xn . The output for an input sample xn is the sample En ,
the error between the actual sample value xn and the predicted value xn

P .

x(t)
Quantizer Symbol-to-bit

Mapper++
xn En

xn
P

sampler

En
bits

Main difference between
predictive coder and PCM

–

Figure 4.27
The predictive coder

The error sample En = xn – xn
P (and not the actual sample value xn) now enters

into the quantizer. The quantizer maps this error sample to an output sample made up
of one of N possible amplitudes. We’ll call its output �En . Finally, each of the quantized
samples is turned to a set of bits by a simple mapping device called the symbol-to-bit
mapper. It works in just the same way as described in the PCM section.

4.4.2 Why?

You might be saying, “That’s all fine and dandy, I follow you, but why would anyone
want to use this device instead of the PCM?” I’ll take some time out here and answer
that important question.

98 ◆ Chapter Four

Let’s say we’ve got a way to get a really good predicted value xn
P , one that’s really

close to xn . In that case, the error signal En = xn – xn
P is a very small number close to 0.

Now, consider this: use a quantizer that, for each input sample En , outputs a sample
with an amplitude that takes on one of two possible levels, either –δ or +δ, where δ is a
very small number close to 0. This creates two things that telecommunication engineers
get excited about: (1) because the quantizer input En was a small number close to 0 to
begin with, the error introduced by the quantizer (En – �En) is small, and we get a large
SQNR; (2) also, because the quantizer only creates two possible output levels for each
sample, the number of bits per sample is low; this leads to a low bit rate.

In a word, WOW—using the predictive coder, it may well be possible to get high
SQNR and low bit rate, everything the telecommunication engineer wants from a
source coder!

4.4.3 The Predicted Value and the Predictive Decoder

The key to the good working of the predictive coder is coming up with a good pre-
dicted value xn

P . In fact, there are two different types of predictive coders, and we’ll
talk at some length about how each comes up with the predicted value xn

P .

But before we go into that, let’s take a look at the source decoder for a predictive
coder, the device located in the receiver that undoes the effects of the predictive coder
(as best it can). This device helps the receiver output the original information signal
that was sent.

The source decoder is shown in Figure 4.28. It works to undo the effects of the
predictive coder in reverse order. It begins with a bit-to-symbol mapper, a device which
undoes the effects of the symbol-to-bit mapper in the source coder. Next, it would like
to have a device that undoes the effects of the quantizer; but since there is no such
device (as we saw in section 4.3.4), it moves on. The next effect to try to undo is the
subtraction of xn

P at the encoder. This is undone at the source decoder by adding back
the value xn

P . Finally, the effects of sampling are undone by a low-pass filter; and voila,
you’ve got a source decoder which undoes predictive coder effects.

LPFBit-to-symbol
Mapper ++

+

bits

received
after being

sent across channel

undoes symbol-to-bit
mapper

nothing here to
undo quantizer effects

undo removal of
predicted value

undo sampler effects

En xn

xn
P

Figure 4.28 The decoder for a predictive coder

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 99

Now, here’s a very important point. To make the source decoder described above
(and seen in Figure 4.28) possible, telecommunication engineers are always very
careful to make sure that any signal xn

P they remove during source coding is a signal
that can be created and added back at the receiver side during source decoding. In the
next sections, we’ll explore two predictive coders, one per section. We’ll detail (among
other things) how these devices get xn

P , and how they use only xn
P values that can be

created and added back at the receiver during source decoding.

4.4.4 The Delta Modulator (DM)

The Delta Modulator is the first of two predictive coders that we’ll talk about in this
book. Being a predictive coder, it works in just the way we saw in Figure 4.27. All we’ll
do here is detail how this system creates its xn

P , and understanding that, we’ll explore
in a bit of mathematical detail its inner workings.

How the DM creates an P
nx

This predictive coder creates the predicted value xn
P using a really simple idea: If you

sample an incoming signal very quickly, then a good estimate of the current sample
xn is simply the previous sample value xn−1 . That is, a good predicted value of the
sample xn is xn

P = xn−1 .

However, as one telecommunication engineer was quick to point out, there was a
problem with this idea. “If you use xn

P = xn−1 ,” she argued, “there’s no way to add back
xn

P at the decoder (Figure 4.28), because xn−1 is a sample of the input signal, and the
decoder (in the receiver end of the channel) has no way to create exactly that.”

And with that the telecommunication engineers scratched their collective heads
for a while, until one day one of them screamed, “I’ve got it! Have a look at this.” She
pointed to the source decoder in Figure 4.28. “While the source decoder doesn’t have
access to the xn (or xn−1), it does have access to �xn (and �xn−1). So, we can use �xn−1 as
the predicted value, rather than xn−1 .” That seemed a good idea, and everyone was in
agreement. After some time and a bit of hard work, engineers decided to use �xn−1 as
the predicted value, that is, xn

P = �xn−1 .

Some engineers decided to fine tune this idea, and as they played around with it, they
found that a slightly better choice of xn

P is xn
P =a �xn−1 , where a is a value very close to, but

just a little less than, 1; specifically, they figured out that the optimal value of a was

a
R

R
x

x

= ()

()

1

0
 (4.53)

where Rx(k) = E [xn ⋅ xn – k].

In what follows, we’ll use the predicted value xn
P =a �xn−1 .

100 ◆ Chapter Four

The Block Diagram of the DM

Let’s now take a look at the block diagram of the DM to get an understanding of how
this device is built. Both the DM and the source decoder are shown in the block
diagram of Figure 4.29. The solid line shows that this DM and source decoder has the
same form as the general predictive coder and source decoder of Figures 4.27 and
4.28. The dashed lines show the creation of the predictive value xn

P =a �xn−1 at the DM
and decoder.

Let’s take some time out now and describe how, in this block diagram, the value
xn

P =a �xn−1 is created at the DM and decoder. We’ll start at the source decoder, because
it’s easier. At the source decoder, the value �xn is available at the output. So, all we do—
and the dashed lines of Figure 4.29 show this—is take the available �xn , delay it by one
sample time (with the z−1 block) and multiply it by a; and then we’ve got it: xn

P = a �xn−1 .

At the source coder, the value of �xn is not readily available, so what the dashed
lines on the coder side of Figure 4.29 do is this: (1) first make �xn by adding xn

P and
�En (this is how �xn is made at the decoder), then (2) delay the �xn that’s just made and

multiply it by a to get xn
P =a �xn−1 .

The Sampler and the Quantizer in the DM

While the block diagram of the DM is well-described by Figure 4.29, and a description
of how it works is also given, there are a few things about the DM that have been left
unsaid, and in this section I want to say them. These are things regarding the sampler
and the quantizer.

The Sampler: First, we said earlier that the idea behind the DM was that if you
sampled a signal fast enough, then the previous sample xn−1 was a good predicted
value for xn , and we modified that slightly and came up with the predicted value of
xn

P =a �xn−1 , where a is a value close to 1. What I want to explore here is: how fast does
the sampler in a DM actually sample the signal x(t) such that the sample xn−1 is a very
good predicted value of xn ? I don’t know exactly how telecommunication engineers
came up with this, and I expect that it was trial and error, but ultimately when x(t) is a
speech signal the sampler tends to work at four times the Nyquist rate, or eight times

Quantizer Symbol-to-bit
Mapper

+

×

+

+

×

+
xn xn

xn

En En En

sampler

∧ ∧

∧

∧

bits

∧xn
p = axn–1

∧xnp = axn–1
Z–1

Z–1

a

received
bits Bit-to-symbol

Mapper
modulator,
channel,

demodulator

... LPF
+

+

a

Delta modulator (DM) Source decoder
for DM

–

Figure 4.29 The delta modulator and source decoder block diagram

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 101

the Nyquist rate; that is, the sampler tends to work at eight times or sixteen times the
maximum frequency of the incoming signal x(t).

The Quantizer: Next, let’s consider the quantizer. The quantizer maps the predicted
error, En = xn – xn

P , to an output �En with one of N levels. How many output levels (N)
does the quantizer use? The sampling rate in a DM is so high that the previous sample
xn−1 (and the value a �xn−1) is a very good predicted value for xn , and so the error term
En = xn – xn

P = xn –a �xn−1 is very close to 0. Because of this, a quantizer can be built that is
very good and very simple: the quantizer maps the input En (close to 0) to an output with
one of only two levels, either +δ or –δ where δ is a value close to 0. The exact value of δ
depends on the statistics of the input samples xn .

4.4.5 The Signals in the DM

Now we’ll see what the different signals in the DM look like, given a particular input to
the DM. Have a look at Figure 4.30; this tells you what signals we’ll be studying. We
will assume that a = 1 to keep this analysis nice and simple. Let’s say the input to the
DM, point A in Figure 4.30, looks just like Figure 4.31(a). Then, after sampling, the xn

samples that pop out of the sampler (at point B) are shown in Figure 4.31 (b).

Quantizer Symbol-to-bit
Mapper+

×

+

+

×

+

–

xn En En En
∧ ∧ ∧

bits

Z–1
Z–1

a=1

xnBit-to-symbol
Mapper

modulator,
channel,

demodulator

... LPF
+

+

a

x(t)

C DA B E F

xn
p

xn
p

Figure 4.30 Block diagram of the DM showing signals of interest

We’ll study all the other signals of Figure 4.30, starting our study at the first
sample time n = 0. We’ll assume that the initial value of xn

P is 0, i.e., xP
0 =0. Then,

following Figure 4.30, we discover the following: (1) At C: the signal
E x x x xP

0 0 0 0 00= − = − = is positive. (2) At D: with a positive value entering the
quantizer, the output of the quantizer is + ∂ . (3) At E: once the value �En =+ ∂ is sent
across the channel, the value at point E is + ∂ . (4) At F: the output �x0 is then
�x xP

0 0 0= + ∂ = + ∂ = ∂.

Let’s consider the next sample time n = 1: (1) At C: we have the signal
E x x P

1 1 1= − � . Let’s evaluate the value of xP
1 : x a x xP

n1 1 01= = = +∂−� � . Using this xP
1

value, we have E x x xP
1 1 1 1= − = − ∂. Assuming x1 of Figure 4.31(b) is larger than ∂ ,

then the value E1 is positive. (2) At D: the input to the quantizer is positive, so it
follows that the quantizer output �En is + ∂ . (3) At E: assuming the value + ∂ is safely
sent across the channel, then the value at point E is also + ∂ . (4) At F: finally, the
output value is computed as �x x xP P

1 1 1 2= + = + ∂ = ∂ + ∂ = ∂(value at E) .

102 ◆ Chapter Four

x(t) x n

(a)

(c)

(e)

(b)

(d)

x 0

x 1

x 2

x 3

n

n

t

n

...

......

...

xn
∧

∧

δ

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

x0 – 0 = x0

x3–3δ

x2–2δ

δ

2δ

3δ

4δ

n

En = x–xnp En = x–xnp

x1–δ

Figure 4.31 Following the signals in Figure 4.30: (a) at point A; (b) at point B;
(c) at point C; (d) at point D and E; (e) at point F

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 103

xn

(b)

t
0 1 2 3

x(t)

4 5

1

2

3

4

6 n

Figure 4.32 Graphical evaluation of
input-output relationship of DM

We can continue the computation of the signals in Figure 4.30 at each and every
time instant (and if you try problem 4.7 you’ll get just that opportunity). Ultimately, we
end up with the values at point C of Figure 4.31(c), the values at point D and E of
Figure 4.25(d), and the values at point F of Figure 4.31(e).

I don’t know if it’s clear to you yet from the description above and Figure 4.31, but
there’s a very easy way (a shortcut) to describing the input-output (xn to �xn) relation-
ship of the DM (assuming a = 1). If the input value is larger than the predicted value,
then increase the output by δ; if the input value is smaller than the predicted value,
then decrease the output by δ. And to help you do this, remember—the predicted
value is just the previous output value.

A rather neat result is easy to see from the above shortcut. Since you’re always
increasing or decreasing the output by δ, then if the output is 0 at start-up, the output
at any later time is always some kδ, where k is an integer.

The input–output (xn to �xn) relationship can also be resolved using a different
shortcut, which uses a graph. Assume a = 1. First, draw the input signal using a
dashed line, as I’ve done in Figure 4.32. Then add little dashes on the x-axis at the
sample times. I’ve also added this into Figure 4.32. Now, at time 0, the predicted value
is 0. Because this is smaller than the input at time 0 (see Figure 4.32), increase the
output by δ (which means the output becomes its initial value of 0 plus δ, which is δ).
This is drawn in Figure 4.32 using a solid line (see the line labeled 1). Since the output
doesn’t change until the next sample comes in, draw the output as constant over the
time before the next sample arrives. Again, I show this in Figure 4.32 (see the line
labeled 2).

Now, at sample time 1, a new input
sample arrives; we can determine the
value of this sample by looking at the
dotted line of Figure 4.32 at sample
time 1. At this sample time, the pre-
dicted value (which equals the previous
output value) is δ. Because in this case
the input value is bigger than the
predicted value, increase the output by
δ. This is shown in the solid line of
Figure 4.32 (see the line labeled 3).
Since the output value doesn’t change
until the next input sample arrives,
draw the output as constant over that
time, as seen in Figure 4.32 (see the
line labeled 4).

104 ◆ Chapter Four

Continuing to do this for all other sample times leads to the input-output relation-
ship seen in Figure 4.32. We see from this figure that the output �xn follows the input
x(t) with a staircase-type
waveform, increasing and
decreasing by δ to try to keep
up with the changes in x(t).

Example 4.6

Determine the output of a
delta modulator with a=1
and δ=1, when the input
shown in Figure E4.8 is
sampled at a rate of one
sample per second.

Solution: To deter-
mine the output, we
return to the prophetic
words uttered in Section
4.4.5: “if the input value is
larger than the predicted
value, increase the output
by δ ; if the input value is
smaller than the predicted
value, then decrease the
output by δ.” Figure E4.9
shows you how to apply
the rule and the output
that pops out when you
do.

Figure E4.8 Input to the DM

3.1

2.1

1.1

0.1
0

x(t)

1 2 3 4 5
t

x(t)

1
0.1

predicted
valuepredicted

value

input
value

input
value

x
2 3 4 5

t

ˆ

x(t)ˆ

output

Figure E4.9 Output of the DM

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 105

4.4.6 Overload and Granular Noise

Telecommunication engineers saw some interesting things going on in the input–output
relationship of a DM, and they made up some words to describe what they saw. The first

interesting things they saw were at
times when the input is hardly
changing. Let’s consider an input
that’s near constant at the value 0.5.
We’ll assume that the output is
initially 0, and we’ll assume d = 1, as
shown in Figure 4.33(a). What’s
happening is this: at time 0, the
output increases to d = 1; then at
time 1, the output decreases back to
0; then, at the next time the output
increases back up to 1. Ultimately,
we have the output jumping back
and forth between 0 and 1 while the
input is constant at about 0.5. (You
can check this out yourself using
either of the shortcuts described in
the previous section.) Telecommuni-
cations engineers called this
phenomena—the output jumping
between two values when the input
is small—granular noise.

The next interesting thing
happened at times when the input
changed very quickly. Take a look,
for example, at the input of Figure
4.33(b). Here, the output increases
by + δ at each time. (Again, you can
check that this is what the output
does by using one of the shortcuts I
told you about earlier.) But you’ll
notice from Figure 4.33b that even
with the output increasing by + δ at
each sample time, it still falls further
and further behind the input, and it’s
unable to keep pace with the quickly
changing input. Telecommunication
engineers labeled this phenomena
overload noise.

xn

xn

(a)

t
0 1 2 3

x(t)

4 5 n

0.5

1

...

...

(b)

t

x(t)

n

...
...

0 1 2 3 4 5

Figure 4.33
(a) Granular noise; (b) Overload noise

106 ◆ Chapter Four

Because granular noise and overload noise were experiences telecommunication
engineers wanted to avoid, they found themselves contemplating the following: “We’re
free to change δ; how can we change δ to decrease granular noise? And, how can we
change δ to get rid of that unwanted overload noise?”

Let’s first consider the possibility of changing δ to decrease the amount of granu-
lar noise a DM experiences. Granular noise occurs when the output oscillates above
and below a slowly changing input, as in Figure 4.33(a). Let’s see what happens if we
decrease δ (Figure 4.34(a)). We see in this case that the amount of oscillating above
and below the input has decreased significantly; so, decreasing δ decreases the granu-
lar noise.

Let’s next consider the case of overload noise, an event which occurs when a
quickly changing input can’t be followed by the output, as shown in Figure 4.33(b).
Let’s see what happens in this case with an increase in δ. Figure 4.34(b) shows us just
this. Increasing the δ allows the output to follow the input more closely, decreasing the
amount of overload noise.

So, decreasing δ decreases the granular noise, while increasing δ helps cut down
on the overload noise. Given that, how do telecommunication engineers choose δ?
Typically, they do one of two things. The pick a value of δ that they find creates a
compromise between the amount of granular noise and the amount of overload noise;
or, if they’re getting fancy, the value of δ is updated while the DM is running, increas-
ing at times of overload noise and decreasing at times of granular noise.

x n

(a)

t

x(t)

n

0.5
...
...

x n

(b)

t
0 1 2 3

x(t)

n

...
...

0 1 2 3 4 5 6

Figure 4.34 (a) Demonstrating the effect of decreasing δδδδδ on granular noise
(b) Demonstrating the effect of increasing δδδδδ on overload noise

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 107

4.4.7 Differential PCM (DPCM)

I’ve talked at length about one type of predictive coder, the DM, and you got through it
all. Way to go. Now, I’m going to talk (but, thank goodness, not as much) about a second
type of predictive coder, called the differential PCM, or DPCM for short. Being a predic-
tive coder, the DPCM is built as shown in Figure 4.27. What makes the DPCM different
from the DM is the predicted value, xn

P , explained in detail in the next section.

The Predicted Value

The predicted value xn
P used in the DPCM came about like this. A telecommunica-

tions engineer one day had the idea to use the previous K samples to come up with a
predicted value. Specifically, he recommended that we get the predicted value accord-
ing to the equation

x a xn
P

k n k
k

K

= −
=

∑
1

(4.54)

x a x a x a xn
P

n n K n K= + + +− − −1 1 2 2 ... (4.55)

Now, this engineer had two problems to work out. First, as you’ll recall (and if you
don’t, a quick peek at Figures 4.27 and 4.28 will work to remind you), the value xn

P is
needed at both the predictive coder and the predictive decoder. But, the values of xn−1 ,
..., xn N− used in the xn

P equation are only available at the predictive coder (and aren’t
available to the predictive decoder).

Our engineer, looking at the decoder of Figure 4.28, asked, “What information is
there at the decoder that can be used to create a predicted value xn

P ?” He answered by
realizing that, while xn−1 ,..., xn K− isn’t available there, � ,..., �x xn n K− −1 can be found there.
“I’ll just change my equation slightly to this,” he said and wrote

x a xn
P

k n k
k

K

= −
=

∑ �

1

 (4.56)

x a x a x a xn
P

n n K n K= + + +− − −1 1 2 2� � ... � (4.57)

The final question that remains to be answered is this: What do we use for the
values a1 , a2 , up to aK ? This takes a bit of math. To start, we’ll decide we want to
choose a1 , a2 ,..., aK such that xn

P is as close as possible to xn ; specifically, we’ll
decide we want to choose a a aK1 2, ,..., such that

a a a E x xN
a a a

n n
P

N

1 2
2

1 2

, ,..., arg min [()]
, ,...,

= − (4.58)

where arg min means “the value of a1, a2, ..., aN that minimizes.”
 a1, a2, ..., aN

108 ◆ Chapter Four

Substituting in the xn
P equation in (4.56) leads to

a a a E x a xN
a a a

n k n k
k

K

N

1 2
1

2

1 2

, ,..., arg min [(�)]
, ,...,

= − −
=

∑ (4.59)

Assuming that �xn k− is close to xn k− , we can rewrite this as

a a a E x a xN
a a a

n k n k
k

K

N

1 2
1

2

1 2

, ,..., arg min [()]
, ,...,

= − −
=

∑ (4.60)

From now on, we will use mathematics to come up with a more explicit equation
for the a1 to aK values. We’ll start by trying to find the best a1 , by taking the deriva-
tive of the above term with respect to a1 and setting it to 0. This leads to

E x a x xn k n k
k

K

n[2 () ()]⋅ − ⋅ − =−
=

−∑
1

1 0 (4.61)

And now we just do some simple math to come up with

− ⋅ − =− −
=

−∑2 01
1

1E x x a x xn n k n k
k

K

n[] (4.62)

E x x a E x xn n k n k
k

K

n[] []− −
=

−− =∑1
1

1 0 (4.63)

Using correlation notation, we can rewrite this according to

R a R kx k
k

K

x() ()1 1 0
1

− − =
=

∑ (4.64)

a R k Rk
k

K

x x
=

∑ − =
1

1 1() () (4.65)

That’s the equation we get when we try to get the best a1 . When we repeat this to
get an equation for the best a2 up to aK , we get a total of K equations. Putting these
equations together by using simple matrix notation, we get the following:

() () ()

() () ()

()

()

⋅
⋅
⋅

=

⋅
⋅
⋅

−−
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
−−

KR

R

a

a

RKRKR

KRRR

x

x

Kxxx

xxx 1

021

110 1�

(4.66)

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 109

So, if someone gives you the statistics R R R Kx x x(), (),..., ()0 1 , you get the best
a a aK1 2, ,..., by simply solving the above matrix.

Example 4.7

Figure out the best choice for the values of a1 and a2 in a 2-tap predictor when the
input has a correlation function given by

() 10 =xR (E4.25)

() () 5.011 =−= xx RR (E4.26)

() 25.02 =xR (E4.27)

Solution: We turn to equation (4.66), and use K=2, which leads us to

() ()
() ()

()
()

=

 −
2

1

01

10

2

1

x

x

xx

xx

R

R

a

a

RR

RR
(E4.28)

=

25.0

5.0

15.0

5.01

2

1

a

a
(E4.29)

=

−

25.0

5.0

15.0

5.01
1

2

1

a

a
(E4.30)

−

−
=

25.0

5.0

15.0

5.01

3

4

2

1

a

a
(E4.31)

=

0
8

3

3

4
(E4.32)

=

0
2

1
(E4.33)

The Block Diagram

This section provides you with a block diagram of the DPCM, and its source decoder,
so that you can get an understanding of how people build this device. Figure 4.35
shows that block diagram. The solid line shows how the DPCM and its decoder
maintain the general predictive coder–decoder structure of Figures 4.27 and 4.28, and
the dashed line shows you how the predicted value is generated. Here, the block
called N-tap predictor receives �xn as input and outputs

110 ◆ Chapter Four

x a xn
P

k n k
k

K

= −
=

∑ �

1

. (4.67)

It’s not immediately apparent from Figure 4.35 just how the predicted value of
equation (4.67) is being generated at the source coder. The source coder is creating
xn

P in two steps: (1) first, it creates the value �xn by adding xn
P to �En ; then (2) it

creates the predictor value xn
P using this �xn .

Quantizer Symbol-to-bit
Mapper+

+

+
+

En En En

sampler

∧ ∧

∧

∧

Bit-to-symbol
Mapper LPF

modulator,
channel,

demodulator

...
+

+

K-tap Predictor
K-tap Predictor

x(t) xn

xn

xn

xn
p

–
xn

p

Figure 4.35 DPCM and its source decoder

Finally, there are a couple of details regarding the source coder that I want to
briefly touch on. These are details about the sampler and the quantizer in the DPCM of
Figure 4.35. First, there’s the question of how fast the sampler samples. In three words,
not very fast (when compared to the DM). Typically in DPCM, the sampling is at the
Nyquist rate or perhaps two times the Nyquist rate; that is, the sampler is sampling at
twice the maximum frequency of the input, x(t), or four times that maximum frequency.
Then there is a question about the quantizer—how many allowed output levels N does it
use? Typically, the quantizer operates with 8, 16, or 32 allowed output levels.

4.5 Congrats and Conclusion

Congrats! The end of a (rather lengthy) chapter. To recap, and I’ll be brief, we learned
in detail about two parts of the source coder, the sampler and the quantizer. First, we
learned about three types of samplers and saw the coolest of results: as long as you
sample at (at least) two times the maximum frequency, you can get your original signal
back from your samples. Then we learned about quantizers, a fancy word for an
“amplitude changer”—it maps the input amplitude to one of N allowed output ampli-
tudes. You also saw two ways to build a quantizer that minimize the average error
between input and output. Not only that, but you saw the quantizer most commonly
used in telephone communications.

Then we decided to get adventurous, and we put the sampler and quantizer to-
gether and built a source coder called a PCM. Next, we considered a different source
coder called the predictive coder. It looked a lot like the PCM, the only difference being
that, before you got to the quantizer, you removed a predicted value from your sample.
We talked at length about two different types of predictive coders, the DM and the
DPCM, and finally, you came here to the summary, where we wrapped it all up.

If you feel you want more on this material, and be assured there are books and
books on this stuff, have a look at the references.

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 111

Problems

1. If you know that the signal x(t) is completely characterized by the samples
taken at a rate of 5,000 Hz, what (if anything) can you say about X(f)?

2. Determine the Nyquist sampling rate for the following signals

(a) () ()
t

t
tx

π
π4000sin= (Q4.1)

(b) () ()
22

2 4000sin

t

t
tx

π
π= (Q4.2)

3. Consider the signal

() () ()txtxty 21 ∗= (Q4.3)

where

()1 0, 1000X f f= > Hz (Q4.4)

()2 0, 2000X f f= > Hz (Q4.5)

What is the minimum sampling period that ensures that y(t) is completely recov-
erable from its samples?

4. Assume the signal x(t) has the frequency representation shown in Figure Q4.1.

(a) What does the output of an ideal sampler look like in the frequency
domain?

(b) What is the minimum sampling rate that I can use and still recover my
signal from its samples?

 X (f)

f
–f1–∆f –f1 –f1+∆f f1–∆f f1 f1+∆f

Figure Q4.1 The input

112 ◆ Chapter Four

5. Consider zero-order hold sampling.

(a) If the input x(t) has a Fourier transform shown in Figure Q4.2, what
does the output waveform look like (1) in the frequency domain and
(2) in the time domain? Assume sampling at the Nyquist rate.

(b) If the input x(t) has a Fourier transform shown in Figure Q4.2, what
does the output waveform look like (1) in the frequency domain and
(2) in the time domain? Assume sampling at TWICE the Nyquist rate.

x (f)

–fm fm

f

Figure Q4.2 The input

6. Plot the output of a sampler in frequency given:

• The input signal has maximum frequency 5,300 Hz.

• Ideal sampling is used.

• Sampling is at a rate of 5,300 Hz.

• The input signal in the frequency domain is triangular (i.e., it is a maximum
at 0 Hz and degrades to 0 linearly as frequency increases to 5,300 Hz (and
to –5,300 Hz).

7. Consider a quantizer with an input described in Figure Q4.3.

(a) Draw a quantizer with 7 levels. Make it mid-tread, let it have –3 as its
smallest output value, and make sure that the step size is 1.

(b) Evaluate the mse of your quantizer given the input.

(c) Evaluate the SQNR.

(d) If the input to the quantizer has an amplitude with a probability distribution
uniform between –3.5 and +3.5, what is the SQNR of the quantizer?

www.ebook3000.com

http://www.ebook3000.org

Source Coding and Decoding: Making it Digital ◆ 113

1/4
1/6

p (x)

–3 2
x

Figure Q4.3 The input pdf

8. Find out how many levels a quantizer must use to achieve an SQNR greater
than 30 dB given:

• The incoming audio signal is sampled at its Nyquist rate of 8,000 samples/
sec.

• The amplitudes output from the sampler have a uniform probability distri-
bution function.

• A uniform quantizer is used.

9. Determine the optimal compression characteristic for the input x whose prob-
ability density function is provided in Figure Q4.4.

10. (a) Plot the µ =10 compressor characteristic given that the input values are
in the range [–2.5,2.5].

(b) Plot the corresponding expander.

1/6

1/12

p (x)

–4 –2 2
x

4

Figure Q4.4 The input pdf

114 ◆ Chapter Four

11. Evaluate the symbol rate and the bit rate of the PCM system described by the
following:

• The sampling rate is 5,300 Hz

• The quantizer is an 8-level quantizer.

12. A computer sends:

• 100 letters every 4 seconds

• 8 bits to represent each letter

• the bits enter a special coding device that takes in a set of bits and puts out
one of 32 possible symbols.

What is the bit rate and what is the symbol rate out of the special coding device?

13. Over the time 0 s to 2 s, determine (1) the input to the DM, (2) the output of
the DM, and (3) the times of granular and overload noise given:

• The input to the DM is x(t) = t2

• The sampler offers 10 samples/second

• The step size of the DM is 0.1 V

14. (a) Draw the output of the DM given:

• The input corresponds to x(t)=1.1t + 0.05

• The input is sampled at times t = 0,1,2,3,4

• The step size is 1 and a = 1.

(b)Repeat (a), this time using a = 0.5.

15. A two-tap predictive filter is being designed to operate in a DPCM system. The
predictor is of the form

2211 −− += nn
P
n xaxax (Q4.6)

(a) Provide an explicit equation for the optimal selection of a1 and a2 (in terms
of autocorrelation functions) which minimizes the mean squared prediction
error.

(b) Provide a general equation for the mean squared prediction error using
the values determined in (a).

(c) Determine the values of the predictor taps in (a) and the prediction error
in (b) given:

() 1 , 0,1, 2,33
0 ,

x

n
nR n

else

 − ==

(Q4.7)

www.ebook3000.com

http://www.ebook3000.org

5
Chapter

Getting It from Here to There:
Modulators and Demodulators

In many ways, this is the most important chapter of the book, because there’d be no
telecommunicating without the devices described in this chapter.

5.1 An Introduction

This chapter is really about two simple things: the modulator, and its opposite, the
demodulator. The best way to explain them is to imagine yourself stuck with a particu-
lar communication problem. Let’s say after you read Chapter 4, you got excited and
built a source coder—a PCM—which turns your voice signal into a digital bit stream
(Figure 5.1). You then called up the FCC (Federal Communication Commission) and
told them you want to use your source coder to send a digital voice message to a
friend. They respond, “Sure, just be sure you send it over the Family Radio Service
band, which is 462.5625–462.7125 MHz.”

Figure 5.1 Introducing the modulator and demodulator

Source Coder
PCM

Modulator

Channel

Source decoder
for DCM Demodulator

You built this!

You built this!

The stuff of
this chapter

Also the stuff of
Chapter 5

FCC says your signal
must lie in the

462.5625 MHz to
462.7125 MHz

range

Bits
...10110...

Bits
...10110...

input speech

116 ◆ Chapter Five

You think, “How do I do that?”

The answer is found in this chapter. A modulator is a device that turns your digital
bit stream into a signal that is ready to be sent over the communication channel.
Generally speaking, you’ll transmit your information signal over a channel (for ex-
ample, copper wire, coaxial cable, or as an EM wave through the atmosphere). That
channel will only allow certain frequencies to make it to the receiver (that is, it will act
as a band pass filter (BPF)). The modulator’s job is to turn the information bits into a
waveform that can make it to the receiver.

I bet you can guess what a demodulator does. It sits at the receiver side and turns
the incoming waveform created by the modulator back to the original bit stream.

5.2 Modulators

There are two types of modulators: baseband modulators and bandpass
modulators.

5.2.1 Baseband Modulators

Baseband modulators are devices that turn your bit stream into a waveform centered
around 0 Hz (Figure 5.2). You’d use this type when your channel allows frequencies
around 0 Hz to get safely to the receiver. There are many baseband modulators, each
one creating its own unique waveform around 0 Hz to send across the channel.

Baseband
modulatorBits

...10110...

s(t)

s(t)

t

S(f)

0 Hz

f

Figure 5.2 A baseband modulator

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 117

NRZ Modulators

One kind of baseband modulator is called an NRZ modulator, short for non-return-to-
zero. As you may have already guessed from the name, with an NRZ modulator the
waveform created never returns to 0 (zero) volts. Let’s look at a couple of modulators
from this family. The first-born, which went on to great success in many academic and
business circles, was the popular NRZ-L. You can see what the NRZ-L modulator does
to a 0 and to a 1 in Figure 5.3. A 0 stays at +V volts for the bit duration Tb , and a 1 stays
at –V for a bit duration Tb . Not nearly as popular is the NRZ-M (the black sheep of the
family, I suspect). Here, we send either +V volts for a bit time Tb , or –V volts for bit
time Tb . If the bit is a 0, the signal level doesn’t change. If the bit is a 1, the signal level
changes (e.g., from +V to –V). Figure 5.4 shows you what I mean.

1 mapped to mapped to

+V

-V

V V

t t
Tb

Tb

(a)

0

+V

-V

out

in 1 0 1 1 0 0

t

(b)

Figure 5.3 NRZ-L

118 ◆ Chapter Five

RZ Modulators

Leaving the NRZ family, we come to its well-known rivals, the RZs. As you’ll likely
guess, RZ is short for return-to-zero. These modulators make sure that, for at least
some of the time, the transmitted signal sits at 0. First is unipolar RZ. Figure 5.5 shows
you what happens to a 1 and what happens to 0 after it passes through this type of RZ
modulator. Next, there’s bipolar RZ, another straightforward modulator whose output
waveform is shown in Figure 5.6. And finally, we’ve got RZ-AMI (alternative mark
inversion), in which a 1 corresponds to an alternating symbol, and a 0 is sent as 0
(Figure 5.7).

+V

-V

V V

t t
Tb

Tb

(a)

+V

-V

out

in
1 0 1 1 0 0

(b)

Send either or

1

0

mapped to

mapped to

change in signal level

no change in signal level

Figure 5.4 NRZ-M described

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 119

+V

V V

t t

Tb
(a)

+V

0
out

in 1 0

0

1 1 0 0

(b)

1

Tb/2Tb/2

V

t

(a)

+V

0
out

in 1 0 1 1 0 0

(b)

0

-V

-V

+V

V

t

1
Tb/2 Tb/2

Tb/2 Tb/2

Figure 5.5 Unipolar RZ

Figure 5.6 Bipolar RZ

120 ◆ Chapter Five

+V

0out

in 1 0 1 1 0 0

(b)

-V

+V

V

t
Tb

(a)

0

or (alternates)

V

t

-V

+V

V

t

1
Tb/2 Tb/2

Tb/2 Tb/2

Phase-encoded Modulators

Finally, we come to the modulator family known as the phase-encoded group. Among
the most popular is the Manchester Coding modulator, in which bit 1 is mapped to a
waveform that starts at +V and ends up at 0, and where bit 0 becomes the waveform
starting out at 0 and ending at +V (Figure 5.8). Another popular member of the phase-
encoded group is the Miller Coding modulator. This one believes in choice, so it lets
bit 0 become one of two waveforms and also lets bit 1 be one of two possible wave-
forms (Figure 5.9). The decision as to which of the two possible waveforms to output
is based on this simple rule: always make sure that there’s a transition (e.g., from +V
to –V) between bits (Figure 5.9).

Figure 5.7 RZ-AMI

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 121

+V

V V

t t

(a)

out

in 1 0 1 1 0 0

(b)

1 0

-V

+V

Tb/2 Tb/2Tb/2 Tb/2

Figure 5.8
Manchester Coding

Figure 5.9
Miller Coding

+V

-V

V V

V V

t t

t t

Tb

Tb

(a)

+V

0
out

in 1 0 1 1 0 0

(b)

1

0

-V

or

+V +V

-V -V

or

Always a +V to -V or -V to +V
transition at each new bit

Tb/2 Tb/2 Tb/2 Tb/2

122 ◆ Chapter Five

Which Modulator to Use?

Choice can be a wonderful thing, but it can also be overwhelming. I’ve just given you
seven possible choices for your baseband modulator, but if you want to build a commu-
nication system, you’ll have to choose just one of them. As with all things, what you
choose depends on what you want. There are six things most people want from their
baseband modulator. Ultimately, you’ll have to decide which modulator is best suited
for your communication needs.

(1) No DC component: In some communication systems, very low-frequency
components (that is, frequencies around 0 Hz) don’t make it to the receiver. In
these cases, we want to use modulators that output waveforms with NO fre-
quency component right at 0 Hz (Figure 5.10). Such modulators are said to have
no DC component.

Modulator Channel Receiver

Frequencies
around 0Hz

don't make it

Avoid sending a signal
with a component at 0Hz

It’s easy to tell if a modulator creates a waveform with a component at 0 Hz. Just
look at what happens if you send a sequence of 0101010101... If the average is 0, then
there’s no DC component; if the average is not 0, then there is a DC component. For
example, unipolar RZ has a DC component, NRZ-L does not.

(2) Self-Clocking: In most communication
systems, we want to help the receiver out.
One way to do this is to make it easy for the
receiver to create a clock signal with dura-
tion Tb (Figure 5.11). The modulator can
help the receiver create a clock signal by
sending a waveform that always transitions
(for example, +V to 0 or +V to –V) once
every bit duration Tb . Such a modulator
helps the receiver create a clock and people (and receivers) appreciate it. For
example, the Manchester code helps with self-clocking, but the NRZ-L doesn’t
(consider what happens if we send all 1’s—there are no transitions).

(3) Error Detection: Receivers appreciate it if you can help them detect an error in
transmission. Modulators can help receivers detect errors by sending a waveform

Figure 5.11
Clock signal with duration
Tb wanted at the receiver

+V

T b T b

...
...0

Figure 5.10 Modulators with no DC components

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 123

where some waveshapes are
not allowed. A picture will help,
so take a look at Figure 5.12.
There, an RZ-AMI modulator is
used, and the receiver sees the
waveform shown in Figure 5.12.
You know from having looked at
the RZ-AMI modulator that the
waveform in Figure 5.12 could not be the one sent, so the receiver can easily spot
a transmission error.

(4) BW compression: In most communication systems, you’d like to send your
signal with as small a bandwidth as possible. Take a look at Figure 5.13(a). For
every signal sent of duration Tb , the BW is proportional to 1/Tb . So, consider
NRZ-L and bipolar-RZ (Figure 5.13(b),(c)). In NRZ-L, the waveform is twice as
long as in bipolar-RZ, so the bandwidth of NRZ-L is half that of bipolar-RZ.

s(t)

s(t)

s(t)

S(f)

S(f)

S(f)

t

t

t

T

Tb

-1/T

-1/Tb

-2/T b

1/T

1/Tb

2/Tb

Most of the frequency
components are in

this range

f

f

f

1

1

NRZ-L signal

Bipolar RZ

(a)

(b)

(c)

Tb/2

Figure 5.13
Bandwidth considerations

Figure 5.12 Erroneous recemption in RZ-AMI

Receiver
picks up:

Impossible: must be either

Tb

if 1 sent

if 0 sent

124 ◆ Chapter Five

(5) Inversion Insensitive: Most people don’t like insensitive, but in this case,
insensitive is a good thing. Sometimes, when you send your waveform across the
channel, it gets turned upside-down along the way (+V becomes –V and –V
becomes +V). Inversion insensitive means that even when everything is turned
upside-down, the receiver can still figure out (correctly) which bit is a 0 and
which is a 1. For example, NRZ-L is not inversion insensitive, because if things
get turned upside-down, the waveform for bit 0 becomes the waveform for bit 1,
and the receiver will make mistakes.

(6) Noise immunity: This should come as no surprise—people want modulators
that are relatively immune to noise on the channel. Even when the channel adds
noise, it should still be easy for the receiver to tell the difference between the
waveform for bit 0 and the waveform for bit 1. For example, NRZ-L is considered
more noise immune than unipolar-RZ because, simply put, the waveforms in
NRZ-L are more “different,” so it takes more added noise to create an error.

There you have it—the six things people look for in baseband modulators. The
final choice is based on which of these criteria is most important to you.

Example 5.1

Name a baseband modulation scheme which provides both zero DC component
and low bandwidth.

Solution: Let’s start by taking a look at NRZ-M.

In NRZ-M, a 1 is sent as a +V for the bit duration and a 0 is sent as a –V for
the bit duration. On average, when an equal number of 0’s and 1’s are sent, an
equal number of +V’s and –V’s are sent. As a result, the average value of the
signal sent is 0. The NRZ-M has a zero DC component.

In NRZ-M, the signal sent (when 1 or 0 is input) is constant for the entire
duration T. As a result, this signal has a small bandwidth as discussed earlier.

Hence, NRZ-M meets both our requirements: it has no DC component and it
employs a small bandwidth.

5.2.2 Bandpass Modulators

A bandpass modulator takes incoming bits and outputs a waveform centered around
frequency ωc . This is the modulator you want to use when your communication
channel will provide safe passage to frequencies around ωc (that is, when the channel
lets frequencies around ωc get to the receiver with little distortion). Basically, these
modulators are pretty straightforward. The modulator creates the waveform

s t A t() cos()= +ω θ (5.1)

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 125

where ω is a frequency at or near ωc . The modulator stores the information bits in
either the amplitude (A), the frequency (ω), or the phase (θ). For example, bit 1 may
be sent as + +A tcos()ω θ and bit 0 may be sent as − +A tcos()ω θ . In this case the
information is in the amplitude—the receiver checks to see if it has a +A or –A to
figure out what bit was sent.

Now, let’s talk in more detail about how bandpass modulators work.

ASK

The first bandpass modulators we’ll look at are called ASK modulators, short for
amplitude shift-keying modulators. This refers to the modulators that, given the input
bits, create the waveform s t A t() cos()= +ω θ , where the input bits are stuffed in the
amplitude (A). We’ll start with the simplest of the ASK modulators, called Binary ASK
or B-ASK for short. Figure 5.14 shows you what happens when bits 010 arrive at the B-
ASK modulator. As you can see, whenever a bit 0 is input, the modulator pops out
−A tccos()ω for the bit duration. Whenever a bit 1 arrives, the modulator throws out
+A tccos()ω for the bit duration. Take a peek at Table 5.1 for a summary of how B-
ASK works. In this table, the times iT to (i+1)T refer to the time duration of the
incoming bit.

Input bits

Output
waveform

0 1 0

-Acos ct +Acos ct -Acos ωωω ct

0 T 2T 3T

Figure 5.14 B-ASK modulator

stibtupnI mrofevawtuptuO mrofevawtuptuO
)mrofdnahtrohs(

0 s0 socA–=)t(ωc Ti,t ≤ T)1+i(<t socA– ωc ·t π)Ti–t(

1 s1 socA+=)t(ωc Ti,t ≤ T)1+i(<t socA+ ωc ·t π)Ti–t(

Table 5.1 BASK t

π(t-iT)

1

iT (i+1)T

126 ◆ Chapter Five

1 0 1 1Input bits

Output
waveform

Acosωct 3Acosωct
T

Next up: 4-ASK. Here, we let two bits enter the modulator at the same time.
Rather than simply map bit 0 to one amplitude and bit 1 to another amplitude, we let
the modulator grab two information bits at a time, so that the modulator input is now
either 00, 01, 10, or 11. The 4-ASK modulator maps each set of two bits to a waveform
with a different amplitude. Sometimes pictures are easier, so glance at Figure 5.15.
Here we see the input bits are 1011. That first bit pair 10 comes into the modulator,
which pops out the output waveform with amplitude A. Then bit pair 11 jumps into the
modulator, and the modulator responds by throwing out the output waveform with
amplitude 3A. Table 5.2 provides a summary of 4-ASK. On the left, you can see the
possible two bits that can enter into the modulator. On the right are the output wave-
forms, which are different for each pair of two input bits. The different modulator
outputs differ only in amplitude. There’s one thing to point out in this table about the
times iT to (i+1)T, the time duration of the output waveform. The output of a modula-
tor lasts as long as the input to the modulator. So, in 4-ASK, the output of the
modulator is two bit durations long. You’ll want to notice that each waveform created in
a 4-ASK modulator lasts twice as long as a waveform created in a B-ASK modulator.
That’s because each waveform in 4-ASK is representing two bits (each of duration Tb),
and so will last a total time of T = 2Tb ; meanwhile, each waveform in B-ASK is repre-
senting only one bit (of duration Tb), and so it will last for a time T = Tb .

Figure 5.15 4-ASK modulator

stibtupnI mrofevawtuptuO mrofevawtuptuO
)mrofdnahtrohs(

00 s0 =)t(– socA3 ωc Ti,t ≤ T)1+i(<t – socA3 ωc ·t π t(–)Ti

10 s1 =)t(– socA ωc Ti,t ≤ T)1+i(<t – socA ωc ·t π t(–)Ti

01 s2 socA=)t(ωc Ti,t ≤ T)1+i(<t socA ωc ·t π t(–)Ti

11 s3 socA3=)t(ωc Ti,t ≤ T)1+i(<t socA3 ωc ·t π t(–)Ti

Table 5.2 4-ASK

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 127

Some say “size matters” or “bigger is better.” To those who do, we offer you 8-
ASK. A simple extension of the ideas of B-ASK and 4-ASK, in 8-ASK three bits are input
to the modulator at the same time, and the modulator outputs one of eight possible
waveforms. Table 5.3 summarizes what’s going on. As you can see here, when bits 000
enter the modulator, it outputs −7A tccos()ω ; if the next 3 bits entering the modulator
are 111, then it outputs +7A tccos()ω . And so on.

stibtupnI mrofevawtuptuO mrofevawtuptuO
)mrofdnahtrohs(

000 s0 socA7–=)t(ωc Ti,t ≤ T)1+i(<t socA7– ωc ·t π)Ti–t(

100 s1 socA5–=)t(ωc Ti,t ≤ T)1+i(<t socA5– ωc ·t π)Ti–t(

010 s2 socA3–=)t(ωc Ti,t ≤ T)1+i(<t socA3– ωc ·t π)Ti–t(

110 s3 socA–=)t(ωc Ti,t ≤ T)1+i(<t socA– ωc ·t π)Ti–t(

001 s4 socA=)t(ωc Ti,t ≤ T)1+i(<t socA ωc ·t π)Ti–t(

101 s5 socA3=)t(ωc Ti,t ≤ T)1+i(<t socA3 ωc ·t π)Ti–t(

011 s6 socA5=)t(ωc Ti,t ≤ T)1+i(<t socA5 ωc ·t π)Ti–t(

111 s7 socA7=)t(ωc Ti,t ≤ T)1+i(<t socA7 ωc ·t π)Ti–t(

Table 5.3 8-ASK

Of course, things don’t stop with 8-ASK. You could make a 16-ASK modulator, a
32-ASK modulator, or even a 5092-ASK modulator. The tables just get bigger, but the
idea stays the same.

PSK

The most popular of the bandpass modulators are the PSK modulators, short for phase
shift-keying modulators. With these, input bits are mapped into output waveforms of
the form s t A t() cos()= +ω θ , and the information bits are stuffed in the phase θ .
We’ll start with the simplest case first, BPSK (binary PSK).

In BPSK, when bit 0 goes into the modulator, the modulator spits out the wave-
form A tc

ocos()ω + 0 . If bit 1 struts into the modulator, it pops out A tc
ocos()ω +180 .

Figure 5.16 shows you what happens when bits 010 stroll into a BPSK modulator.
Table 5.4 (look at the top part marked BPSK) summarizes the BPSK idea in a neat
fashion.

128 ◆ Chapter Five

0 1 0Input bits

Output
waveform

Acos(ω °ct+0) Acos(ω °ct+180) Acos(ω °ct+0)

Figure 5.16 BPSK modulator

stibtupnI mrofevawtuptuO mrofevawtuptuO
)mrofdnahtrohs(

KSPB 0 s0 (socA=)t(ωc Ti,)°0+t ≤ T)1+i(<t (socA ωc ·)°0+t π)Ti–t(

1 s1 (socA=)t(ωc Ti,)°081+t ≤ T)1+i(<t (socA ωc ·)°081+t π)Ti–t(

KSP-4 00 s0 (socA=)t(ωc Ti,)°0+t ≤ T)1+i(<t (socA ωc ·)°0+t π)Ti–t(

10 s1 (socA=)t(ωc Ti,)°09+t ≤ T)1+i(<t (socA ωc ·)°09+t π)Ti–t(

01 s2 (socA=)t(ωc Ti,)°081+t ≤ T)1+i(<t (socA ωc ·)°081+t π)Ti–t(

11 s3)t(= (socA ωct Ti,)°072+ ≤ T)1+i(<t (socA ωc ·)°072+t π)Ti–t(

KSP-8 000 s0 (socA=)t(ωc Ti,)°0+t ≤ T)1+i(<t

100 s1 (socA=)t(ωc Ti,)°54+t ≤ T)1+i(<t

010 s2 (socA=)t(ωc Ti,)°09+t ≤ T)1+i(<t

110 s3 (socA=)t(ωc Ti,)°531+t ≤ T)1+i(<t

001 s4 (socA=)t(ωc Ti,)°081+t ≤ T)1+i(<t

101 s5 (socA=)t(ωc Ti,)°522+t ≤ T)1+i(<t

011 s6 (socA=)t(ωc Ti,)°072+t ≤ T)1+i(<t

111 s7 (socA=)t(ωc Ti,)°513+t ≤ T)1+i(<t

Table 5.4 PSK explained

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 129

Next up is 4-PSK. Here, the modulator works on two bits at a time. For every two
bits that come into the modulator, the modulator outputs a different waveform. Con-
sider this. The incoming bits are 0011. The modulator first gets hold of the bit pair 00
and it maps this into A tc

ocos()ω + 0 . Next, it grabs the bit pair 11, mulls it over, and
pops out A tc

ocos()ω + 270 . You can see all the action in Figure 5.17. Table 5.4 (the
part marked 4-PSK) summarizes the workings of 4-PSK. As you can see here, for each
input bit pair, you get a different waveform output. It’s very common for 4-PSK to be
called by the name quadrature PSK (that’s QPSK for short).

Next, you’ve got 8-PSK. It’s that “bigger is better” philosophy, again. (Gotta be
careful with that one—it’ll get you in trouble, as we’ll see later on.) At any rate, in 8-
PSK, three bits are input at the same time, and the modulator thinks it over, and pops
out one of eight possible waveforms. Take a look at the bottom of Table 5.4. For every
possible set of three incoming bits, a different waveform is output, and these wave-
forms differ from one another in phase.

Of course, you don’t have to stop there. There’s 16-PSK, 64-PSK, and, hey, why
not 10192-PSK?

0Input bits

Output
waveform

Acos(ω °ct+0) Acos(ω °ct+270)

0 1 1

Figure 5.17 4-PSK modulation

FSK

Next stop, the FSK modulators, short for frequency shift-keying modulators. As the name
suggests, here we stuff the information bits into the frequency. We’ll look at the simplest
first, which is BFSK (binary FSK). Here, if bit 0 goes into the modulator, it sends out
A tccos(())ω ω θ+ +∆

0 . If bit 1 goes in, then out comes A tccos(())ω ω θ+ +∆
1 . The ∆ω0

is the frequency offset used to represent a 0, and ∆ω1 is the frequency offset used to repre-
sent a 1. You can see an illustration of the BFSK modulator in action in Figure 5.18. Table
5.5 provides a summary of this BFSK modulator.

Next up, 4-FSK. Here, two bits are input to the modulator at the same time, and
the 4-FSK modulator outputs one of four possible waveforms. Take a look at Table 5.5,
where you can see all the 4-FSK modulator action.

Of course, those “bigger-is-better” guys also introduced 8-FSK, 16-FSK, and so on
... same great idea, just a bigger table to describe it.

130 ◆ Chapter Five

QAM

QAM modulators (short for quadrature amplitude modulation modulators) take incom-
ing bits and pop out waveforms of the usual form s t A t() cos()= +ω θ . What makes
QAM modulators unique is that the input bits are stored in both the amplitude (A) and
the phase (θ) of the output waveform.

I know this is going to seem rather short, but I’m going to stop talking about
QAM for now. I’ll provide more details a little later, after I’ve had a chance to tell you
about orthonormal basis.

Figure 5.18 BFSK modulation

Input bits

Output
waveform

0 1 0

Table 5.5 FSK modulator

stibtupnI mrofevawtuptuO mrofevawtuptuO
)dnahtrohs(

KSFB 0 s0 ((socA=)t(ωc+
∆ω0 Ti,)t) ≤ T)1+i(<t ((socA ωc+

∆ω0 ·)t) π)Ti–t(

1 s1 ((socA=)t(ωc+
∆ω1 Ti,)t) ≤ T)1+i(<t ((socA ωc+

∆ω1 ·)t) π)Ti–t(

KSF-4 00 s0 ((socA=)t(ωc+
∆ω0 Ti,)t) ≤ T)1+i(<t ((socA ωc+

∆ω0 ·)t) π)Ti–t(

10 s1 ((socA=)t(ωc+
∆ω1 Ti,)t) ≤ T)1+i(<t ((socA ωc+

∆ω1 ·)t) π)Ti–t(

01 s2 ((socA=)t(ωc+
∆ω2 Ti,)t) ≤ T)1+i(<t ((socA ωc+

∆ω2 ·)t) π)Ti–t(

11 s3 ((socA=)t(ωc+
∆ω3 Ti,)t) ≤ T)1+i(<t ((socA ωc+

∆ω3 ·)t) π)Ti–t(

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 131

Example 5.2

Sketch the output of a 4-ASK and 4-PSK system when the input bits are 001110.

Solution: Turning to Table 5.2 and 5.4, we see the output when different bits
are input. Using these tables, with input 00 11 10, we find the output shown in
Figure E5.1.

Figure E5.1 Output of 4-ASK and 4-PSK

Choosing a Modulation Method

Bandpass modulation offers a lot of choices. You first have to choose from among
ASK, PSK, FSK, and QAM. Once you’ve made that choice, you’ve got to pick a num-
ber: will it be, for example, 4-ASK, 8-ASK, or 16-ASK? In this section, I’ll briefly discuss
the most common criteria for choosing the modulation scheme that’s best for your
communication system. Let’s start by taking a look at the different modulation types
(ASK, PSK, FSK). Rather than tell you what to use, I’m going to tell you what to avoid
using.

In ASK, all the information is in the amplitude. Let’s say your communication
channel creates amplitude distortions. In that case, ASK is not the modulation you
want. That’s because the channel messes up the part of your signal containing the
information. You don’t want that.

4 - ASK

– 3Acos(ωct)

Acos(ωct + 0°) Acos(ωct + 270°) Acos(ωct + 180°)

3Acos(ωct) Acos(ωct)

0 0 1 1 1 0

4 - PSK

A

3A

A

132 ◆ Chapter Five

In PSK, all the information is in the phase. Let’s say your channel introduces
phase distortions and you are unable to remove these phase distortions at the receiver.
In this case, you don’t want to use PSK, because the channel is distorting the part of
the signal with information.

Finally, in FSK, you’ve got information in the frequencies. If the channel causes
significant frequency distortions that you can’t correct, then you don’t want to use
FSK. FSK has another drawback. It takes up more bandwidth than either PSK or ASK.
In ASK and PSK, you always send the information signal at the same frequency—it’s
always sent around ωc (e.g., Table 5.4). But in FSK, you send the signal at a lot of
different frequencies (e.g., around ωc + ∆ω0 or ωc + ∆ω1 (Table 5.5)). This means you’ve
got to have more frequencies available to you if you want to send an FSK signal.

Let’s say you’ve decided on PSK, but should you use BPSK or 4-PSK or 8-PSK?
Let’s talk a little about how to decide. To those of you who are thinking “bigger is
better” (for example, 4-PSK beats BPSK), there is one point that supports your think-
ing. When you use bigger sizes, your signal has a smaller bandwidth. If you use BPSK,
then each signal that leaves the modulator is of duration T = Tb . If you instead use 4-
PSK, then each signal that leaves your modulator is of duration T=2Tb . In Figure 5.19,
you see that the BPSK signal has a null-to-null bandwidth of 2/Tb , while the 4-PSK
signal has a null-to-null bandwidth of only 1/Tb . So, bigger modulation size, smaller
bandwidth.

-1/T b 1/Tb

1/2Tb-1/2T b

s(t)

t

t

T=Tb

T=2Tb

S(f)

f

f

2/Tb

1/Tb

(a)

(b)

...

...

Figure 5.19 Signals of different durations in frequency and time

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 133

But, for those of you say “Life’s not all about size,” well, you too are correct.
While being bigger means that you use a smaller bandwidth, it also means that you are
more vulnerable to channel noise. Consider sending BPSK or 4-PSK. If the channel
noise is going to cause an error in BPSK, it’s got to make A tccos()ω look like
A tc

ocos()ω +180 . Meanwhile, in 4-PSK, if the channel noise is going to cause an
error, it only has to make A tccos()ω look like A tc

ocos()ω + 90 . It’s easier to make a
signal look like it has a 90-degree phase shift than it is to make it look like it has a 180-
degree phase shift. So it’s easier to make symbol errors at the receiver in 4-PSK than it
is with BPSK. We’ll talk more about this when we look at demodulators, coming soon
to a subsection near you.

5.3 Just-in-Time Math, or How to Make a Modulator Signal
Look Funny

When I was taking my Ph.D. comprehensive oral exam, one of my professors asked how
I would get by with the little math I knew. I explained to him the concept, which he later
called “just-in-time math.” Basically, this is the idea that when my research required that
I learn some more math, I’d read the math books then. In keeping with the spirit of “just-
in-time math,” I’m going to share with you some math tools that we’ll need in order to
understand demodulators (coming up next). The particular math skill you’re going to
learn is how to represent a signal as a point in space. Take a look at Figure 5.20. In part
(a) of the figure, we’ve got a point in space. In part (b), you see that we can characterize
that point as (1,1) by introducing an x-axis and a y-axis. It turns out that you can do the
same thing with signals. Take a look at part (c) of the figure. There you see a square
wave. In part (d), you see that we can represent this square wave as a point (1,1), which
means that the signal is made up of one part of the x-axis signal and one part of the y-axis
signal. All kinds of detail will follow.

y

s(t)

x

t

1

2

2

12

1

11/2

1/211

P=(1,1)

s(t)=(1,1)

(b)(a)

P

(c)

φ2(t)=

φ1(t)=

(d)

Figure 5.20
Representing points and signals

134 ◆ Chapter Five

5.3.1 The Idea

The idea is this. Let’s say you throw me a set of signals {s
1
(t), s

2
(t), ..., s

M
(t)}, and you

make sure they have finite energy (and all the signals we look at will be finite energy
signals). Then I can always represent these signals like this:

s t s t s t s tN N1 11 1 12 2 1() () () ... ()= + + +ϕ ϕ ϕ (5.2)

…

s t s t s t s tM M M MN N() () () ... ()= + + +1 1 2 2ϕ ϕ ϕ (5.3)

Here, { (),..., ()}ϕ ϕ1 t tN are called an orthonormal basis. The number of ϕ j t() ’s
(N) is always less than or equal to the number of s ti () ’s (M) you sent me. The
{ (),..., ()}ϕ ϕ1 t tN have two particularly noteworthy properties, both of which have to
do with integrating. And here they are. If you integrate two different ϕ j t() ’s together
you get 0, and if you integrate a ϕ j t() with itself you get a 1. That is, in a nice concise
equation form:

() () 0,i jt t dt i j
∞

−∞

= ≠∫ ϕ ϕ (5.4)

() () 1j jt t dt
∞

−∞

=∫ ϕ ϕ (5.5)

Also in Equations (5.2) to (5.3), the coefficients {s
ij
, i = 1, 2, ..., M, j = 1, 2, ..., N}

are just numbers. These numbers, like s12 for example, tell you how much ϕ 2()t
there is in s t1() .

Now, Equations (5.2) to (5.3) tell me there is a new way I can express signal
s t1() . In the past, I either had to write out a mathematical equation (for example,
s t t1() =) or I had to draw you a picture. Now, I can write s s s N1 11 1= (,...,) , and you
know that to make s t1() —all you do is the math of Equation (5.2).

This is all very nice, but there are two very important things I haven’t yet told
you. How do we figure out the coefficients, {s

ij
, i = 1, 2, ..., M, j = 1, 2, ..., N}, and

how do we figure out the signals { (),..., ()}ϕ ϕ1 t tN ?

The coefficents, from s11 to sMN , are a piece of cake. All you have to do is this
integration:

() ()ij i js s t t dt
∞

−∞

= ϕ∫ (5.6)

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 135

The orthonormal set { (),..., ()}ϕ ϕ1 t tN is a little bit more work, but it’s still quite
easy. You simply follow the mathematical algorithm that I’m going to give you next,
called the Gram-Schmidt orthogonalization procedure (big words, simple algorithm):

(1) To get ϕ 1()t , just compute

ϕ 1
1

1

()
()

t
s t

E
=

where () ()∫
∞

∞−

= dttstsE 111 .

(2) To get ϕ 2()t , compute

ϕ θ

θ
2

2

2

()
()

t
t

E
=

where θ ϕ2 2 21 1() () ()t s t s t= − and () ()∫
∞

∞−

= dtttE 222 θθθ .

(3) To get ϕ 3()t , just compute

ϕ θ

θ
3

3

3

()
()

t
t

E
=

where θ ϕ ϕ3 3 31 1 32 2() () () ()t s t s t s t= − − and () ()∫
∞

∞−

= dtttE 333 θθθ .

(4) Keep going, up to ϕ M t() , and if you get ϕ k t() = 0 along the way, just throw
that one out, because you don’t need it.

Well, now you know this rather neat trick. If someone gives you a set of signals,
you can figure out the set of signals { (),..., ()}ϕ ϕ1 t tN , and you can figure out a set of
coefficients (values) {s

ij
, i = 1, 2, ..., M, j = 1, 2, ..., N}, and you can write their set of

signals in terms of your ϕ j t() ’s and sij ’s. Moreover, you can represent their signal as
a vector, taking their s t1() and writing it as s s s N1 11 1= (,...,) .

136 ◆ Chapter Five

Example 5.3

Determine the orthonormal basis for the two signals shown in Figure E5.2.

Solution: We’ll use the orthogonalization procedure, which tells us

() ()
1

1
1

E

ts
t =ϕ (E5.1)

()

()
2

1

2
1

1

=

∫
∞

∞−

dtts

ts

(E5.2)

()
2

1
1

0

1

4

=

∫ dt

ts

(E5.3)

()
2

1 ts= (E5.4)

Figure E5.2 Two signals

This first element of the orthonormal basis is drawn in Figure E5.3. Return-
ing to the orthogonalization procedure to get the second element, we discover

() ()
2

2
2

θ

θϕ
E

t
t = (E5.5)

t

2

s1 (t)

t

1

2

s2 (t)

1

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 137

() ()

2

2 21 1s t s t

E

−
=

θ

ϕ
(E5.6)

() () () ()

2

1122

θ

ϕϕ

E

tdtttsts ∫
∞

∞−

⋅−
= (E5.7)

() ()

2

1

0

12 1

θ

ϕ

E

tdtts ∫ ⋅−
= (E5.8)

() () ()
2

12
2

θ

ϕϕ
E

tts
t

−= (E5.9)

Figure E5.3 The ϕϕϕϕϕ1(t)

To help get a better feeling of what the numerator looks like, you’ll find it
drawn in Figure E5.4. Using this, we’ll finish solving for the second orthonormal
basis element like this:

() ()
2

2
2

θ

θϕ
E

t
t = (E5.10)

()

()
2

1

2
2

2

=

∫
∞

∞−

dtt

t

θ

θ

(E5.11)

t

1

ϕ1 (t)

1

138 ◆ Chapter Five

() ()2
2 1

2 2

1

1

t
t

dt

=

∫

θ
ϕ

(E5.12)

 ()2 t=θ (E5.13)

The two elements of the orthonormal basis are drawn in Figure E5.5.

Figure E5.4 A plot of θ2(t) = s2(t) – ϕ1(t)

Figure E5.5 The orthonormal basis

5.3.2 Representing Modulated Signals

Next we’ll see some simple examples of what was discussed above. If you totally
understood what I said in the last section, then this part will be a piece of cake. If you
don’t fully understand what I said earlier, then this section will help you nail it.

First, we’ll look at the signals that leave the PSK modulator, then look at the
signals that leave the ASK modulator, and finally look at the signals that leave the
QAM modulator. I’m going to tell you about the orthonormal basis (the ϕ j t() ’s) and
the coefficients (sij ’s) corresponding to these signals. Before I do this, let me empha-
size that the reason I’m doing this has nothing to do with a great love for orthonormal
basis, but it actually turns out to be important when we look at demodulators.

t

1

θ2 (t) = s2 (t) – ϕ1 (t)

1 2

t

1

ϕ1 (t)

1
t

1

ϕ2 (t)

1 2

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 139

BPSK

Let’s look at the signals that leave the BPSK modulator. You can see these two signals,
called s t0() and s t1() , at the top of Table 5.4.

The Orthonormal Basis: Given the two-signal set { (), ()}s t s t0 1 , we’ll start with
the orthonormal basis { (),..., ()}ϕ ϕ1 t tN for these two signals. First, you know you’ve
been given two signals { (), ()}s t s t0 1 , so the orthonormal basis { (),..., ()}ϕ ϕ1 t tN will be
made up of less than or equal to two ϕ j t() ’s.

You can go ahead and do that algorithm I gave you in Section 5.3.1, and you’ll get
the orthonormal basis (actually, it’s good practice, so take a moment and try it here).
OK, here’s what you’ll find (if you didn’t, check your math). The {ϕ

1
(t), ..., ϕ

N
(t)} for

BPSK is just the one-element set
{ ()}ϕ 1 t , where () () ()itttTt c −⋅= πωϕ cos2

1 . That’s right, there’s only one element in
 the orthonormal basis. This means you can write the PSK output signals as

s t s t0 01 1() ()= ϕ (5.7)

s t s t1 11 1() ()= ϕ (5.8)

The Coefficients: Next, do the integral I showed you (Equation (5.6)) to get the
s01 and s11 (Go ahead. Again, it’s good practice). Here’s what you should get: for
s t0() , the s A T

01 2= and for s t1() , the s A T
11 2= − .

A Plot: One nice thing about an orthonormal basis is that it lets you represent
the BPSK signals as a point in space. Once you’ve got the { (),..., ()}ϕ ϕ1 t tN (in this
case the { ()}ϕ 1 t), and you’ve got the coefficients (in this case the s A T

01 2= and
s A T

11 2= −), then you can plot s t0() and s t1() . Figure 5.21 shows you what I mean. It
tells you how much ϕ 1()t you need to get s t0() , and how many ϕ 1()t you need to get
s t1() . And that’s it.

x x

represents s (t)1 represents s (t)0

S =-A11 √(T/2) S =A01 √(T/2)

φ √ ω π1(t)= (2/T) cos (t) (t-iT)c •

Figure 5.21 Plot of BPSK signals s0(t) and s1(t)

140 ◆ Chapter Five

4-PSK

Here we’ll be asking and answering the following question: “How many ϕ j t() ’s (or-
thonormal basis functions) does it take to represent the 4-PSK signals (and what are
those ϕ j t() ’s)?” The answer is really quite easy.

The Orthonormal Basis: If we’re going to represent the 4-PSK signals on an
orthonormal basis, we’ve first got to remember what they look like. Take a quick peek
at Table 5.4 where you can see the 4-PSK signals { (), (), (), ()}s t s t s t s t0 1 2 3 once again.
Now, look at Table 5.6. There, I’ve written the 4-PSK signals as a sum of a sine and a
cosine (using a simple trig identity). I’ve done this because in fact it suggests a particu-
lar orthonormal basis, as I’ll show you next.

If you carry out the algorithm of Section 5.3.1, you’ll get an orthonormal basis
{ (),..., ()}ϕ ϕ1 t tN , and you’d find the basis made up of a cosine and sine. Specifically,
you’d find the orthonormal basis is { (), ()}ϕ ϕ1 2t t where
ϕ ω π1

2() cos() ()t t t iTT c= ⋅ − and ϕ ω π1
2() sin() ()t t t iTT c= − ⋅ − .

Now, this is intuitively pleasing, because, looking at Table 5.6, it’s obvious that 4-
PSK signals are made up of a sum of sines and cosines, and that’s what the
orthonormal basis tells us: you can write 4-PSK signals as a sum of sines and cosines.

Table 5.6 4-PSK written as a sum of sines and cosines

tupnI
stib smrofevawtuptuO

4 KSP- 00 s0)t(= (socA ωc)°0+t π)Ti–t(= (socA ωc ·)t π)Ti-t(0+

10 s1)t(= (socA ωc +t 09 ·)° π)Ti–t(= 0 (nisA– ωc ·)t π)Ti-t(

01 s2)t(= (socA ωc +t 081 ·)° π)Ti–t(= – (socA ωc ·)t π)Ti-t(0+

11 s3)t(= (socA ωc +t 072 ·)° π)Ti–t(= 0 + (nisA ωc ·)t π)Ti-t(

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 141

The Coefficients: Now that you have the orthonormal basis { (), ()}ϕ ϕ1 2t t , let’s
move ahead and take a look at the values (,)s s01 02 , then (,)s s11 12 , and so on. By doing
the simple integration that gives these values (Equation (5.6)), we quickly and easily
find

(,) (,)s s A T
01 02 2 0=

(,) (,)s s A T
11 12 20=

(,) (,)s s A T
21 22 2 0= −

(,) (,)s s A T
31 32 20= −

The Plot: Now we can represent 4-PSK signals on a plot, which will tell us how
much ϕ 1()t and how much ϕ 2()t must be added together to create the QPSK signal.
Take a look at Figure 5.22 and see 4-PSK in a whole new light.

φ2(t)

φ1(t)

x

x

x

x

represents s (t)0

(s , s)=(A01 02 √(T/2),0)

(0,-A√(T/2)) represents s (t)3

(0,A√(T/2)) represents s (t)1

(-A√(T/2),0) represents s (t)2

Figure 5.22 Plot of 4-PSK signals {s0(t), s1(t), s2(t), s3(t)}
using orthonormal basis

8-PSK

“Must we?” I think as I write this title. “I mean we’ve already done BPSK and
4-PSK, do we really have to do 8-PSK?” I think about how nice a short book would feel
as I write late, late into the night. But, don’t worry, after 4-PSK, this one’s a breeze, so
we’ll just do it and it will be over in no time.

142 ◆ Chapter Five

Table 5.7 shows you the 8-PSK signals once again, { (), (),..., ()}s t s t s t0 1 7 , and
adds a little to it by showing how each 8-PSK signal can be written as a sum of sines
and cosines. You’ve really got two ways to find the { (),..., ()}ϕ ϕ1 t tN (orthonormal
basis functions) for 8-PSK. First off, you could jump ahead and use the algorithm of
Subsection 5.3.1. Or, if you’ve got a good gut, you could use your intuition, using the
fact that every 8-PSK signal can be written as a sum of sines and cosines. Either way,
you can come to this result: the 8-PSK signals { (), (),..., ()}s t s t s t0 1 7 can be represented
on the same orthonormal basis as 4-PSK, namely { (), ()}ϕ ϕ1 2t t where
ϕ ω π1

2() cos() ()t t t iTT c= ⋅ − and ϕ ω π1
2() sin() ()t t t iTT c= − ⋅ − .

All that’s left are the values (,)s s01 02 , then (,)s s11 12 , and so on up to (,)s s71 72 . You
can get this by using the integral of Equation (5.6), or if you prefer, you can again use
that old gut of yours, turn on the intuition, and looking at Table 5.7, see how much
ofϕ 1()t and how much ϕ 2()t you need to create s ti () (this gives you (,)s si i1 2). Either
way, you’ll come to the same values, which you’ll find in Table 5.8.

Table 5.7 8-PSK written as a sum of sines and cosines

stibtupnI smrofevawtuptuO

KSP-8 000 s0)t(= (socA ωc ·)°0+t π)Ti–t(= (socA ωc ·)t π)Ti-t(0+

100 s1)t(= (socA ωc ·)°54+t π)Ti–t(= (soc ωc ·)t π)Ti-t((nis– ωc ·)t π)Ti-t(

010 s2)t(= (socA ωc ·)°09+t π)Ti–t(= 0 (nisA– ωc ·)t π)Ti–t(

110 s3)t(= (socA ωc ·)°531+t π)Ti–t(= (soc ωc ·)t π)Ti–t((nis– ωc ·)t π)Ti–t(

001 s4)t(= (socA ωc ·)°081+t π)Ti–t(= – (socA ωc ·)t π)Ti–t(0+

101 s5)t(= (socA ωc ·)°522+t π)Ti–t(= (soc ωc ·)t π)Ti–t(+ (nis ωc ·)t π)Ti-t(

011 s6)t(= (socA ωc ·)°072+t π)Ti–t(= 0 (nisA+ ωc ·)t π)Ti–t(

111 s7)t(= (socA ωc ·)°513+t π)Ti–t(= (soc ωc ·)t π)Ti-t(+ (nis ωc ·)t π)Ti–t(

2
A

2
A

2
A

2
A

2
A

2
A-

2
A-

2
A

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 143

ASK

Good news. ASK is easy. Look at Tables 5.1 to 5.3. There, you’ll see the ASK output
signals, and you’ll quickly notice one thing: all ASK output signals are simply
cos() ()ω πct t iT⋅ − terms; the only difference is the amplitudes.

To get the orthonormal basis for either BASK, 4-ASK, or 8-ASK, you can perform
the algorithm of Section 5.3.1 using the ASK symbols { (),..., ()}s t s tM0 , or, you can
simply realize this: If I consider the one-element orthonormal basis { ()}ϕ 1 t , where
ϕ ω π1

2() cos() ()t t t iTT c= ⋅ − , then I can represent all ASK signals as a constant
times this ϕ 1()t —so this fellow serves as my orthonormal basis.

Next, we turn our attention to computing the coefficients s01 , then s11 , and so on
up to sM1 . You can perform the integral of Equation (5.6), or you can use your intu-
ition, looking at ϕ 1()t , then looking at s ti () , and you can figure out how many ϕ 1()t ’s
you need to get s ti () . Either way, you’ll get the values shown in Table 5.9.

Table 5.8 8-PSK written as a sum of sines and cosines

tuptuO
mrofevaw

nodetneserpermrofevawtuptuO
sisablamronohtro

KSP-8 s0)t(s0 (= s 10 , s 20 =)

s1)t(s1 (= s 11 , s 21 =)

s2)t(s2 (= s 12 , s 22 =)

s3)t(s3 (= s 13 , s 23 =)

s4)t(s4 (= s 14 , s 24 =)

s5)t(s5 (= s 15 , s 25 =)

s6)t(s6 (= s 16 , s 26 =)

s7)t(s7 (= s71, s72 =)

()0A 2,T

2

TA
2

TA
,

()2A0, T

,
 −

A T A T
2 2

()0A 2,T−

()2A 0, T−

 −

A A T
,

2 2
T

,
 − −

A T A T
2 2

144 ◆ Chapter Five

Table 5.9 ASK signals represented on orthonormal basis {φ1(t)}

tuptuO
mrofevaw

nodetneserpermrofevawtuptuO
sisablamronohtro

KSAB s0)t(s0 = s 10 A–=

s1)t(s1 = s 11 A=

KSA-4 s0)t(s0 = s 10 A3–=

s1)t(s1 = s 11 A–=

s2)t(s2 = s 12 A=

s3)t(s3 = s 13 A3=

KSA-8 s0)t(s0 = s 10 A7–=

s1)t(s1 = s 11 A5–=

s2)t(s2 = s 12 A3–=

s3)t(s3 = s 13 A–=

s4)t(s4 = s 14 A=

s5)t(s5 = s 15 A3=

s6)t(s6 = s 16 A5=

s7)t(s7 = s 17 A7=

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

2
T

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 145

QAM

The last one! In QAM, the information bits are stuffed into both the phase (θ) and the
amplitude (A) of the cosine waveform. That is, a typical output waveform for QAM
looks like this:

s t A t t iTj j c j() cos() ()= + ⋅ −ω θ π (5.9)

Now, applying a little bit of trig, we can rewrite this as

s
j
(t) = A

j
 cos(θ

j
)cos(ω

c
t) ⋅ π(t – iT) – A

j
 sin(θ

j
)sin(ω

c
t) ⋅ π(t – iT) (5.10)

You can plainly see that the s tj () can be expressed as a sum of one sine and one
cosine term. So it just makes sense that the orthonormal basis consists of a cosine and
a sine term. Specifically, one orthonormal basis made up of a sine and a cosine term is
this one: { (), ()}ϕ ϕ1 2t t where ϕ ω π1

2() cos() ()t t t iTT c= ⋅ − and
ϕ ω π1

2() sin() ()t t t iTT c= − ⋅ − . This will work wonderfully as the orthonormal basis
for QAM. Using this orthonormal basis, we can write the QAM output signal s tj ()
above as:

s t s t s tj j j() () ()= +1 1 2 2ϕ ϕ (5.11)

Now, you can use the integral in Equation (5.6) to get the values sj1 and sj2 , or
you can figure these out by comparing the above s tj () equations (namely (5.10) and
(5.11)) and seeing what these sj1 and sj2 must be. Either way, you’ll come up with
s Aj j

T
j1 2= cosθ and s Aj j

T
j2 2= sinθ , which means the QAM signal can be written

according to

s t s s s A Aj j j j j
T

j j
T

j() (,) (cos , sin)↔ = =1 2 2 2θ θ (5.12)

One nice way to look at this s tj () is to plot it as a point in space, which I do in
Figure 5.23.

(Aj√ θ √ θ(T/2) cos , A (T/2) sin)j j j

represents s (t)j

φ2(t)

φ1(t)

Figure 5.23 A plot of a single QAM point

146 ◆ Chapter Five

Before we head off into the brave
new world of demodulators, one last
thing about QAM. A typical 16-QAM
constellation looks like Figure 5.24.
There, now you’ve had a chance to see
all 16 output signals, and I didn’t have to
make a table of all 16 input bit pairs
(0000, 0001, …, 1111) and all the corre-
sponding output signals. This
orthonormal basis stuff sure does come
in handy sometimes.

5.4 Bring it Home, Baby, or
 Demodulators

What I want to do here is build a de-
modulator for you, and teach you how to
build it for yourself. But, first, we’ll want
to define the demodulator. What is it? The demodulator is a device that gets the signal
sent across the channel, and turns it back into bits.

5.4.1 What Demodulators Do

Let’s start with a picture. Take a look at Figure 5.25. There, you can see how the signal
s tm() leaves the modulator, packing its bags and taking a journey across the channel.
Finally, after its long journey, it arrives at the receiver side. Just like all us travellers,
after a long trip our hair is a mess and our stomachs may be turned upside-down. Well,
the signal s tm() is no different than we are—it looks a little shaken up. Specifically, by
the time the signal arrives at the receiver, it’s no longer its old s tm() self, but rather it’s
become

r t s t tm() () ()= +η (5.13)

where η()t is the noise added by the channel as our signal s tm() headed along from
transmitter to receiver.

The demodulator doesn’t know s tm() was sent across the channel. All it knows is
that, for example, a 4-PSK signal from the set { (), (), (), ()}s t s t s t s t0 1 2 3 was sent. Its job
is to do the best it can to figure out which s tm() was sent across the channel, given
r t() . Once it figures this out, it uses a look-up table to find out what information bits
are stuffed in the signal it thinks was sent. It then outputs those bits.

The key to building a good demodulator is to minimize the effects of noise and
give the highest probability of guessing the correct sent signal. This will make sure

3A√(T/2)

-3A√(T/2) -A√(T/2) A√(T/2) 3A√(T/2)

A√(T/2)

-A√(T/2)

-3A√(T/2)

φ2(t)

φ1(t)

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 5.24 Plot of 4-PSK signals
{s0(t), s1(t),... s15(t)} for 16-QAM

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 147

that the bits that leave the demodulator (receiver side) are as close as possible to the
bits that come into the modulator (transmitter side).

5.4.2 The Channel and Its Noise

We’ve modeled the channel as an unpleasant fellow that takes the signal you sent, tires
it out, and ultimately adds a noise to it. This is not the only channel model, and chan-
nels can do a lot of other things (some rather ugly things), but this noise model is one
of the most common ones. To characterize the noise term η()t , the most common
noise model, and the one we’ll work with, is called AWGN, shorthand for additive
white gaussian noise. Each word has a meaning:

Additive: tells us the noise signal η()t is added to the sent signal s tm() ;

Gaussian: tells us, first, that the noise signal η()t is a random process. Second, if
you consider a sample of that noise η()t , it is a random variable with a gaussian
distribution. That is, in the concise language of math,

p t pt t i

n

i

n
i

(()|) () exp()η η
πσ

η
σ= = = −1

2 22

2

2 ; (5.14)

White: tells us that the noise η()t , a random process, has the autocorrelation
function:

() ()2
nR =η τ σ ∂ τ .

Modulator

Demodulator

Channel

information
bits

b

output
bits

b

sm(t)

r(t)

s

Figure 5.25 The modulator and demodulator

148 ◆ Chapter Five

What this function means in words is that samples of η()t are completely independent
from one another.

Noise: this little word means that η()t is an unwanted signal introduced by the
channel.

Putting it all together, we know that η()t is added to the sent signal, it’s a random
process, and we know its first- and second-order statistics (p i()η and Rη τ()).

5.4.3 Building a Demodulator, Part I—the Receiver Front End

I can describe the demodulator in two parts, each part having an important role to play
in detecting the received signal. The first part is called the receiver front end.

What it does

The signal

r t s t tm() () ()= +η (5.15)

jumps into the receiver front end. The receiver front end says to itself: “It would be
easier for the rest of the receiver to work with numbers (or a vector of numbers),
rather than this continuous time function r t() .” So it decides to represent r t() as a
vector. One way to do this is to find an orthonormal basis for r t() , such that r t() can
be written as

r t r t r t r tN N() () () ... ()= + + +1 1 2 2ϕ ϕ ϕ (5.16)

In this case, r t() can be represented as r r rN= (,...,)1 . The rest of the receiver
could then work with this vector, which is easier than working with r t() . And that’s
what it does … the receiver front end turns r t() into r , a term easier for the rest of
the receiver to work with. The details follow.

An orthonormal basis for r(t)

The first thing the receiver front end is asked to figure out is the orthonormal basis for
r t s t tm() () ()= +η . In other words, what will that { (),..., ()}ϕ ϕ1 t tN in Equation (5.16)
look like? Let’s take a look at r t() : it is made up of two signals, s tm() and η()t , so
we’ll take a look at the orthonormal basis for each of these signals, and we’ll use that
to get an orthonormal basis for r t() .

Let’s start with s tm() . We’ll pick one out of a hat and say that s tm() is a 4-PSK
signal. That means, from what we saw in the previous section, that the orthonormal
basis for s tm() is { (), ()}ϕ ϕ1 2t t where ϕ ω π1

2() cos() ()t t t iTT c= ⋅ − and
ϕ ω π2

2() sin() ()t t t iTT c= − ⋅ − .

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 149

Next, let’s look at η()t , a random process described as AWGN. How do you get
the orthonormal basis { (),..., ()}ϕ ϕ1 t tN for a random process like η()t ? Answering
that will just introduce a lot of math and stats, which ultimately will lead us to a simple
point—so I’m just going to tell you the simple point. For a random process, specifically
one described as AWGN, any infinitely long orthonormal basis will do. So we’ll choose
this one. I pick { (), (), (), (),...}ϕ ϕ ϕ ϕ1 2 3 4t t t t where { (), ()}ϕ ϕ1 2t t forms the orthonor-
mal basis for s tm() (i.e., ϕ ω π1

2() cos() ()t t t iTT c= ⋅ − and
ϕ ω π2

2() sin() ()t t t iTT c= − ⋅ −), and ϕ ϕ3 4(), (),...t t are some other functions which
when combined with { (), ()}ϕ ϕ1 2t t form an infinitely long orthonormal basis (we’ll
see later that it won’t matter what they are).

Now we have an orthonormal basis for s tm() and an orthonormal basis for η()t ,
so you say: what’s the orthonormal basis for r t s t tm() () ()= +η ? Well, η()t can be
represented on { (), (), (), (),...}ϕ ϕ ϕ ϕ1 2 3 4t t t t and s tm() can be represented on
{ (), ()}ϕ ϕ1 2t t . It follows that r t() can be represented on { (), (), (), (),...}ϕ ϕ ϕ ϕ1 2 3 4t t t t
since: this basis is adequate to represent s tm() (using the first two elements) and
adequate to represent η()t (using all the elements), so it’s got to be enough to repre-
sent r t s t tm() () ()= +η .

Representing r(t) as a vector using the orthonormal basis

Now that we’ve got the orthonormal basis for r t() , let’s figure out the r r r r= (, , ...)1 2 3

in r t r t r t r t() () () () ...= + + +1 1 2 2 3 3ϕ ϕ ϕ
This r is the vector that the receiver front end wants to figure out and hand off to

the rest of the receiver. First, r1 . To get it, all we have to do is use the integral equation
(5.6). The next four lines show the integral computation to get that r1 :

() ()∫= dtttrr 11 ϕ (5.17)

() ()() ()∫ += dttttsr m 11 ϕη (5.18)

() () () ()∫∫ += dtttdtttsr m 111 ϕηϕ (5.19)

r sm1 1 1= +η
Here, sm1 is just the coefficient of s tm() along ϕ 1()t . (In Figure 5.22, it’s the x-

axis part of the 4-PSK signal.) What about the η1 ? Using some statistical arguments
which I won’t present, η1 turns out to be a Gaussian random variable with 0 mean and
variance σ n

2 . How nice.

Next, let’s take a look at r2 . Again, we can figure this one out by using the inte-
gral equation (5.6). The next line shows you what happens when you do it:

150 ◆ Chapter Five

r sm2 2 2= +η (5.20)

This time, sm2 is the coefficient of s tm() along ϕ 2()t . (In Figure 5.22, it’s the y-
axis component.) Here, η2 is a Gaussian random variable with 0 mean and variance
σ n

2 . Not only that, but after some statistical wrangling (about 12 lines long), you can
show that η2 and η1 are statistically independent. That is, knowing η1 tells you
nothing about η2 , and knowing η2 tells you zippo about η1 .

On to r3 . Pulling equation (5.6) out of our pocket and popping it down on paper
leads us to

() ()∫= dtttrr 33 ϕ (5.21)

() ()() ()∫ += dttttsr m 33 ϕη (5.22)

() () () ()∫∫ += dtttdtttsr m 333 ϕηϕ (5.23)

() ()() () () ()∫∫ ++= dtttdtttstsr mm 3322113 ϕηϕϕϕ (5.24)

() () () () () ()∫∫∫ ++= dtttdtttsdtttsr mm 33223113 ϕηϕϕϕϕ (5.25)

Now because ϕ1()t and ϕ 3()t are parts of an orthonormal basis, then by defini-
tion (or by looking back up at Equation (5.4)), we see that their integral is 0; and that
also happens for ϕ 2()t and ϕ 3()t . This realization leads us to:

r s sm m3 1 2 30 0= ⋅ + ⋅ +η `(5.26)

r3 3= η (5.27)

Now, η3 is (using a few lines of statistical analysis) a Gaussian random variable,
independent of η1 and independent of η2 .

Similarly, we can compute r4 , r5 , and so on, and we’ll find

r4 4= η (5.28)

r5 5= η (5.29)

And so on. Here the η4 , η5 , yada yada yada, are all Gaussian random variables
independent of all the other η i terms.

The receiver front end looks at this and says: “You know, I really only want to give
the rest of the receiver information that’s useful for detection. Certainly I’ll give it r1

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 151

and r2 , because these contain an information term. But there really is no point in
passing on r3 , r4 , and so on, because they just contain noise terms, and these noise
terms are independent of all the other noises. And I don’t see any use in passing noise
to the rest of the receiver.”

And so, wisely, the receiver front end only provides the rest of the receiver with
the parts of r that contain a signal term. In the case of 4-PSK, that is r1 and r2 . In the
case of ASK or BPSK, its easy to show that it would simply be r1 .

Building the Receiver Front End

Now that the receiver front end has decided to give the rest of the receiver the part of
r containing the signal terms, this section is all about building a receiver front end.
There are many different ways to build a receiver front end, so that it can do its job and
do it well. The receiver front end presented here is called the correlator receiver front
end. Glance at Figure 5.26, and you’ll see what the correlator receiver front end looks
like.

Looking at Figure 5.26, you see that the incoming signal is r(t). It’s well known
that if you want r1 , all you have to do is the integral () ()∫= dtttrr 11 ϕ . In Figure 5.26 ,
you can see that the receiver front end does this on its top branch. If the receiver front
end also wants to provide rN (and it will if there’s a signal component in rN), then it
just computes the integral () ()∫= dtttrr NN ϕ . And that’s just what the bottom branch of
Figure 5.26 does. And, voila—the receiver front end. Life is good.

r(t)

x

x

.

.

.

.

.

.

∫

∫

(i+1)T

(i+1)T

iT

iT
r1

rN

φ1(t)

φN(t)

Figure 5.26 Correlator receiver front end

152 ◆ Chapter Five

Example 5.4

Describe the receiver front end in a BPSK receiver.

Solution: Turning back the pages to section 5.3.2, you’ll find that there we
discovered the orthonormal basis for a BPSK signal is simply

() ()iTttt cT −⋅= πωϕ cos2
1 (E5.14)

Now, all that the receiver front end does is map the received signal r(t) to its
value along the orthonormal basis, r1. For the BPSK case, two ways of doing this
are shown in Figure E5.6.

Figure E5.6 The receiver front end for BPSK—two implementations

5.4.4 The Rest of the Demodulator, Part II—The Decision Makers

So the receiver front end has done its part—it’s turned r(t) into r . Now it’s up to
the rest of the demodulator, which we call the decision device.

What It Does

The decision device receives r , which, for 4-PSK, corresponds to

r r r= (,)1 2 (5.30)

r sm1 1 1= +η (5.31)

r sm2 2 2= +η (5.32)

In shorthand notation, we can write

r sm= +η . (5.33)

The decision device thinks to itself: “All I see is (,)r r1 2 , which is a noisy version
of (,)s sm m1 2 . I wonder which signal s tm() , or correspondingly, which vector (,)s sm m1 2

(and there are four possibilities in 4-PSK), was sent to me by the modulator?” The
decision device spends its time figuring out which (,)s sm m1 2 (i.e., which s tm()) the
modulator tried to send.

r (t)
x

(a)

r1 r (t)
x

(b)

r1

(i+1)T

iT
∫

∞

–∞
∫

() ()1
2 cos ct t t iTTϕ = ω ⋅π − 2 cos ctT ω

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 153

Once the decision device figures
out which (,)s sm m1 2 , or which s tm() is
sent, its job is nearly done. It does one
more simple thing: it looks to see which
bits the modulator stores in that s tm() ,
and it outputs those bits, and, then, the
demodulator has completed its job.

For example, take a look at Figure
5.27. There, the x’s mark four possible
(,)s sm m1 2 values that may be output by
a 4-PSK modulator. The o marks
(,)r r1 2 , the received values that come
into the decision device from the
receiver front end. The decision device
has the job of figuring out which
(,)s sm m1 2 was sent, given that (,)r r1 2

was received. Once the decision device
decides which (,)s sm m1 2 was sent, it then goes to Table 5.4. There, it can tell which
bits are stored in the (,)s sm m1 2 . For example, if the demodulator decides (,)s s11 12 was
sent (corresponding to sending s t1()), then it knows the bits sent were 01. This is the
demodulator output.

How It Works

“Well”, says the decision device, “I understand what it is I’m going to do, but I’m
unclear about exactly how to do it. Specifically, how do I figure out which sm = (,)s sm m1 2

was sent when I look and see r r r= (,)1 2 ?” In this section, we’ll tell the decision device
exactly how to do that. To come up with our answer, we’re going to do some statistical
work, which will ultimately lead us to an intuitively pleasing answer.

First off, we want to make sure the decision device makes as few errors as
possible. We’ll start to build the decision device by requiring that it minimize the
P()ε , the probability of it making an error. Another way to say this is: we’ll require
that, given the decision device sees r , it must choose the si that is most likely to have
occurred. Statistically, this is stated simply as

� (|)s p s ri
s

i
i

= argmax (5.34)

Let me explain to you what that math/stats equation means. It states two things:

(1) the �si
si

= argmax part: this is shorthand for the words “Have the decision

device choose to output �si , the value of si that maximizes ...”;

φ2(t)

φ1(t)

x

x

xx

(s , s)11 12

(s , s)01 02

(s , s)31 32

(s , s)21 22

(r , r)1 2

Figure 5.27 Possible 4-PSK symbols
and the received vector

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 155

Now, here comes a neat statement that you may not have heard before. If you’re
looking for the value of x that maximizes f(x), then you can alternatively look for the
value of x that maximizes ln f(x). Applying this idea to our equation gets us to

()2

1 1

22 2

1 1
ˆ argmax ln exp exp

22 2i

i
i

s nn n

r s
s

 − = − −
 σπσ πσ

(5.40)

() (2

1 1 2

22 2

1 1
ˆ argmax ln

2 22 2i

i
i

s nn n

r s r s
s

 − − = − + −
 σ σπσ πσ

(5.41)
To get this equation, I just used two simple rules of math: (1) lnxy = lnx + lny and

(2) ln exp x = x. Next, I can remove the terms that are not a function of si , since they’ll
be the same for each and every si , and won’t help me in deciding which si makes the
term biggest. Doing that gets me to

�
() ()

ln[()]s
r s r s

p si
s

i

n

i

n
i

i

= − − − − +argmax 1 1
2

2
2 2

2

22 2σ σ
(5.42)

Then, I’ll multiply though by the constant 2 2σ n which leaves me with

� () () ln[()]s r s r s p si
s

i i n i
i

= − − − − +argmax 1 1
2

2 2
2 22σ (5.43)

Now, here’s a little mathematical trick: I can choose the value that maximizes x,
or equivalently, I can choose the value that minimizes –x. Using this, I can rewrite the
equation according to

� () () ln[()]s r s r s p si
s

i i n i
i

= − + − −argmin 1 1
2

2 2
2 22σ (5.44)

That is, in shorthand notation

� | | ln[()]s r s p si
s

i n i
i

= − −argmin 2 22σ (5.45)

And that, at last (phew), is the final equation for how the decision device goes
about picking si . Now, in the very common case where all the si ’s are equally likely—
that is, p(si) is a constant—then this equation can be rewritten as

� | |s r si
s

i
i

= −argmin 2 (5.46)

156 ◆ Chapter Five

And here lies this really nice and easy interpretation. This equation simply says to
tell the decision device to choose the �si closest to r . Take a look at Figure 5.27. All
Equation (5.46) says in this case is choose s1 , because it’s closest to r . Now isn’t that
an intuitively pleasing result? All that math, and it all comes down to: “Given r , choose
the �si that’s closest on the plot.” Isn’t it nice when math and common sense meet?
Wait a minute ... isn’t that just engineering?

5.4.5 How to Build It

Let’s look at what we now know. First, we know that the decision device receives r ,
and tries to figure out which sm was sent. It makes its decision by choosing the sm

based on equation (5.45) (or (5.46) if all symbols are equally likely—that is, p(sm)
equals a constant). Once the decision device decides on which sm was sent, it then
figures out which bits the modulator stored in that sm (or, equivalently, that s tm()),
and it outputs those bits. That’s pretty much everything there is to know about deci-
sion devices. The only thing left to talk about is how to build them.

The Correlator Receiver

Figure 5.28 shows the complete demodulator, beginning with the receiver front end
and following with the decision device. When we build the demodulator according to
Figure 5.28, people call it the correlator receiver. The receiver front end part is the
part before (to the left of) the dotted line and looks just like the implementation I drew
earlier in Figure 5.26. As we’d expect, it takes the r(t) and hands out the r . To the
right of the dotted line in the figure, I’ve drawn the decision device. It works like this:

(1) processor: the processor receives r = (, ,...,)r r rN1 2 . It outputs M values, where
M is the number of possible s tm() signals (for example, for 4-PSK, it outputs four
values). Specifically, for each s tm() , the processor outputs | r – sm | 2 .

(2) adders: there are M adders, one for each output from the processor. The jth
adder receives the processor output | r – s j | 2 , and adds to it – 2 2σ n ln p(s j). So, to
state the obvious, the jth adder’s output is | | ln[()]r s p sj n j− −2 22σ .

(3) choose min: the “choose min” device receives M inputs,
| | ln[()]r s p sj n j− −2 22σ for j = 1, 2, ..., M. It outputs one value, the s j , which has
the smallest value of | | ln[()]r s p sj n j− −2 22σ .

Combined, these three pieces carry out � | | ln[()]s r s p si
s

i n i
i

= − −argmin 2 22σ .

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 157

Example 5.5

Describe the decision device in a BPSK receiver (assuming each transmitted
signal is equally likely).

Solution: Turning back the pages to Example 5.4, you’ll see we already
decided that the receiver front end is as shown on the left of Figure E5.7. On the
right side of Figure E5.7 is the decision device. As we just said in the text, it
consists of

1. The processor, which in this case inputs r = r1, and outputs M=2 branches.
The top branch puts out the value of |r1–s01|

2 and the bottom branch outputs
the value |r1–s11|

2.

2. The adders (or lack of them!): with all symbols being equally likely,
p(s0)=p(s1). Hence, there is no need for the adders here since all they would
do is add the same number to each branch.

The “choose min” device: The choose min device outputs the BPSK symbol
closest to the received signal.

r(t)

x

x

.

.

.

.

.

.

.

.

.

.

.

.

∫

∫

(i+1)T

(i+1)T

iT

iT

r1

rN

φ1(t)

φN (t)

P
r
o
c
e
s
s
o
r

 1
2r s-

 2r s- m

Choose
min.

Look
up

table

s i
∧ ∧

b i

(bits)

+

+

-2σn 1
2 ln p()s

-2σn M
2 ln p()s

receiver front end decision device

Figure 5.28 Correllator Receiver

158 ◆ Chapter Five

r(t)

.

.

.

.

.

.

.

.

.

P
r
o
c
e
s
s
o
r

 1
2r s-

 2r s- m

Choose
min.

Look
up

table

s i
∧ ∧

bi

(bits)

+

+

-2σn 1
2 ln p()s

-2σn M
2 ln p()s

receiver front end decision device

φ1(T-t)

φN(T-t)

This means a filter
with impulse response h(t)=φ1(T-t)

t=T

t=T

A

B

The Matched Filter Receiver—Version 1

Engineers, being creative types, came up with a second way to build the demodulator,
shown in Figure 5.29. Let’s look at this figure, and compare it to our original figure,
Figure 5.28. First, look to the right of the dotted line (at the decision device): on the
right of the dotted line, you can see that the two figures are identical, meaning that the
two decision devices are identical. Next, glance to the left of the dotted line (the
receiver front end): the two look quite different. But I’m going to show that in fact
these two receiver front ends do exactly the same thing, by demonstrating that the
input and output of the receiver front end in the new figure (Figure 5.29) are identical
to the input and output of the receiver front end in the original receiver figure (Figure
5.28).

Figure 5.29 The matched filter receiver—Version 1

Figure E5.7 The receiver for deleting BPSK symbols

r (t) x

receiver front end decision device

2r1 – s01

r1

p
r
o
c
e
s
s
o
r

Choose
min.

∞

–∞
∫

2r1 – s11

() () ()TttTt c −= πωϕ cos2
1

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 159

Both the receiver front ends receive as input r(t), so, they’ve obviously got the
same input. Now, if I can show you that the value A in Figure 5.29 is equal to r1 , and
the value B in Figure 5.29 is equal to rN, then these receiver front ends will also have
the same output, and so they do exactly the same thing.

It’s all math, showing that A is equal to r1 , and here we go:

A h t r t h t T tt T= = −=()* () | () ()where ϕ1 (5.47)

() () t TA h r t dt == ⋅ −∫ τ τ (5.48)

() ()∫ =−⋅−= TtdttrTA ττϕ1 (5.49)

() ()1A T r T dt= ϕ − τ ⋅ − τ∫ (5.50)

() ()∫ ⋅= duuruA 1ϕ (5.51)

A r= 1 (5.52)

Following the exact same set of mathematical arguments, we can show that
B = rN. So there you have it, the receiver front end of Figure 5.29 has the same input
and output as the receiver front end in Figure 5.28, and so they do the exact same
thing. We can replace one by the other, and still build the equivalent receiver. And
that’s really all Figure 5.29 says.

The Matched Filter Receiver —Version 2

Yep, they made another one, and it’s somewhat popular, so we need to look at it. It’s
going to take some math to figure out how to build this receiver, and a bit of math to
explain the actual implementation, but hang in there.

This next receiver implementation starts out by rewriting the way a decision
device makes its decisions. When last we looked, we saw decision devices making
decisions according to

� | | ln[()]s r s p si
s

i n i
i

= − −argmin 2 22σ (5.53)

Now, we’re going to write out the first term, which leads us to

� () () ln[()]s r s r s p si
s

i i n i
i

= − + − −argmin 1 1
2

2 2
2 22σ (5.54)

assuming r r r= (,)1 2 . Next, we’re going to evaluate () ()()r s r s r si i i1 1
2

1 1 1 1− = − − , which
this time leads us to (after a couple of lines of math)

160 ◆ Chapter Five

� | | () | | ln[()]s r r s r s s p si
s

i i i n i
i

= − ⋅ + ⋅ + −argmin 2
1 1 2 2

2 22 2σ (5.55)

Now, the |r| term is the same for all si , and as a result it won’t affect our decision
on which si to select. So we can drop it, which leads us to

� () | | ln[()]s r s r s s p si
s

i i i n i
i

= − ⋅ + ⋅ + −argmin 2 21 1 2 2
2 2σ (5.56)

Now, for a math trick we’ve used once before: Choosing the value minimizing –x
is the same as choosing the value maximizing x. Using this little trick, let’s write:

� () (| | ln[()])s r s r s s p si
s

i i i n i
i

= ⋅ + ⋅ + −argmax 2 21 1 2 2
2 2σ (5.57)

� () (| | ln[()])s r s r s s p si
s

i i i n i
i

= ⋅ + ⋅ + −argmax 1 1 2 2
2 21

2
2σ (5.58)

� ()s r s r s ci
s

i i i
i

= ⋅ + ⋅ +argmax 1 1 2 2 (5.59)

�s r s ci
s

i i
i

= ⋅ +argmax (5.60)

where c s p si i n i= −1

2
22 2(| | ln[()])σ .

Now we’ve got a new equation describing how the decision device, given r ,
makes a choice on which si to output. I’ll show you how engineers build a demodula-
tor that uses a decision device based on Equation (5.60). There’s really just one
popular way to do it, shown in Figure 5.30. The value marked A in Figure 5.30 is
actually equal to r s⋅ 1 , and the value marked B is actually equal to r s M⋅ . With just a
little looking and a little thinking, I believe it becomes apparent that the demodulator of
Figure 5.30 carries out the optimization of Equation (5.60).

Let’s do some math that shows that indeed A is equal to r s⋅ 1 :

() ()1r t s t dt
∞

−∞

= ∫A (5.61)

() () ()() () ()()∫
∞

∞−

+⋅+++= dttststrtrtrA 212111332211 ϕϕϕϕϕ � (5.62)

() () () ()()
() () () ()()�++

++=

∫∫
∫∫

dtttsrdtttsr

dtttsrdtttsrA

2121221121

2212211111

ϕϕϕϕ

ϕϕϕϕ
(5.63)

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 161

A r s r s r s r s= ⋅ + ⋅ + ⋅ + ⋅ +() (...)1 11 2 12 1 12 2 211 1 0 0 (5.64)

A r s= ⋅ 1 (5.65)

In an identical manner, we can show that B is r sM⋅ . And that’s it. Take this, add
some looking, throw in some thinking, and, voila, Figure 5.30 does indeed implement
the decision shown in Equation (5.60).

5.5 How Good Is It Anyway (Performance Measures)

Of course, anytime you build something, you want to be able to tell people how good it
is. “It’s great!” you might declare. “A four-star performance!” While these descriptions
work well for movie reviewers, they’re rarely sufficient for number-oriented engineers.
“Exactly how wonderful is it?” those engineers will ask. “Give me a number.” You
might think to reply “A perfect 10!”, but they’ll want a more descriptive number. This
section is all about providing such a number.

5.5.1 A Performance Measure

First, we’ve got to decide what number we want to give those engineers, and what that
number will describe. Let’s come up with a way to numerically measure the perfor-
mance of a modulator-demodulator pair. The best way is to ask a simple question:
What’s the most important thing in a modulator-demodulator pair? Well, the most
important thing is that the demodulator correctly decide what the modulator sent. So,
if you want to tell someone how your modulator-demodulator pair is doing, you’ll want
to tell them P()ε , the probability that the demodulator makes an error when it’s
deciding what signal was sent. The smaller the P()ε , the better your demodulator.

r(t)

x

x

.

.

.

.

.

.

.

.

.

A

B

s (t)1

s (t)M

Choose
max.

Look
up

table

s i
∧ ∧

b i

+

+

c1

cM

∫

∫

Figure 5.30 The matched filter receiver—Version 2

162 ◆ Chapter Five

5.5.2 Evaluation of P()ε for Simple Cases

What I’ll do here is teach by example. We’ll take a look at BPSK and study the P()ε
for a BPSK modulator–demodulator pair.

The BPSK Modulator Remembered

Take a look at Table 5.4, which summarizes the BPSK modulator. There, you can see
that a 0 is mapped to s0(t) and a 1 mapped to s1(t). Also, peeking back at Section 5.3.2,
you can uncover that the orthonormal basis for BPSK is simply the one signal {ϕ 1()t },
and s0(t) and s1(t) are easily represented on ϕ 1()t by s01and s11. Figure 5.21 shows you
a visual plot of the two BPSK symbols, plotted on their basis {ϕ 1()t }.

The BPSK Demodulator: A Summary

As we saw in our earlier work, a demodulator consists of two parts: (1) a receiver front
end, and (2) a decision device.

The receiver front end takes r(t) and maps it to r . The details of how it works
and how you build it are all in Section 5.4. If you just follow that, you’ll find in the case
of BPSK that the receiver front end is just like the picture in Figure 5.31 (look to the
left of the dotted line).

r(t)

P
r
o
c
e
s
s
o
r

 2r s1 01-

 2r s1 11-

Choose
min.

Look
up

table

s0i
∧ ∧

b i

(bits)

+

+

-2σn 01
2 ln p()s

-2σn 11
2 ln p()s

receiver front end decision device

x

φ1(t)

r 1
∫

Figure 5.31 BPSK demodulator

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 163

The decision device takes r and figures out which symbol sm was sent. How it
works and how to build it are once again the topics of Section 5.4, and if you look that
over and apply it to BPSK, you’ll discover that the decision device looks just as it’s
drawn on the right side of Figure 5.31. Also, you’ll find that the equation that the
decision device is carrying out is simply

� () ln[()]s r s p si
s

i n i
i

= − −argmin 1 1
2 2

12σ (5.66)

We’ll assume equally likely symbols (that is, p(si1) = constant), which means that
the decision device is carrying out the equation

� ()s r si
s

i
i

= −argmin 1 1
2 (5.67)

That is, the decision device carries out the simple rule: output the symbol which
is closest to the received r1 .

Evaluating the P(εεεεε)

Now that we’ve recapped the modulator and the demodulator for BPSK, we’re ready to
move full-steam ahead and find the P()ε . In BPSK, there are two ways an error can
happen: The demodulator thinks you sent s t1() , but in fact you sent s t0() , or the
demodulator thinks you sent s t0() , but in fact you sent s t1() . Writing this statistically,
we have

P(ε) = P(output s
1
(t)|send s

0
(t)) ⋅ P(send s

0
(t)) + P(output s

0
(t)|send s

1
(t)) ⋅ P(send s

1
(t))

(5.68)

We can simplify this equation by making a simple realization: the symbols are
equally likely, which means the P(sent s t1()) = P(sent s t0()) = 0.5. Plugging this
information into our P()ε equation leads us to

P(ε) = 0.5 · [P(output s
1
(t)|send s

0
(t)) + P(output s

0
(t)|send s

1
(t))] (5.69)

Now, let’s see if we can figure out another value for P (output s t0() | sent s t1()).
Take a look at Figure 5.32(a). There, we sent s t1() , which corresponds to sending 11s .
The decision device picks up r s1 11 1= +η . This decision device makes a decision
according to the rule “Choose the symbol which the received r1 is closest to.”

Look at what happens in Figure 5.32(b), where η1 is bigger than 2
TA . In that

 case, the r1 will be closest to s01 , and the demodulator will decide s01 (that is,

s t0()). If η1 is bigger than 2
TA , the demodulator will make an error. So, the

P (output s t0() | sent s t1()) is equal to ()21
Tp Aη > .

164 ◆ Chapter Five

Similarly, we can show that P (output s t1() |sent s t0()) is equal to

()21
Tp Aη > . Putting this information to good use, we plug it into our P()ε

equation, which leads us to

P()ε = 0.5[p A
T

p A
T

() ()η η1 12 2
> + < −] (5.70)

The good news here is that the equation just gets simpler. One of the neat proper-
ties of a Gaussian random variable is that, if x is a Gaussian random variable, p (x>A) and
p (x<–A) are the same. Putting this information to use in the P()ε equation leads us to

P()ε = p A
T

()η1 2
> (5.71)

() ∫
∞

−=

2

12

2
1

2 2
exp

2

1

T
A

nn

dP η
σ
η

πσ
ε

(5.72)

x

x

x

x

sent this

sent this

S =–A11 √(T/2)

S =-A11 √(T/2)

S =A01 √(T/2)

S =A01 √(T/2)

φ 1 (t)

φ1(t)

r =S +n1 11 1

r =S +n
when

n >

1 11 1

1 A√(T/2)

(a)

(b)
Figure 5.32

Sent and received signals in BPSK

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 165

P(

10–1

10–2

10–3

10–4

)

E /N (dB)s 0

Figure 5.33 BPSK performance

Now, we just make a simple substitution, namely to let 1
n

u η
σ= . Substituting this

into the integration brings us to

() ∫
∞

−=

n

T
A

du
u

P

σ

π
ε

2

2

2
exp

2

1

(5.73)

P Q
A T

n

() ()ε
σ

= 2 (5.74)

where the Q(x) function is just shorthand notation for the integral

() ∫
∞

−=

x

du
u

xQ
2

exp
2

1 2

π .

I want to rewrite this equation in more common notation, so that if you happen to
open another telecommunications book, you can easily follow their notation. First,
there’s Es : it’s easy to show that the energy of the BPSK signal, Es , is given by

()∫ ==
2

2 T
AdttsE is . Additionally, it’s common to express the noise variance of η1

as σ n oN2 2= / . Plugging this into our P()ε equation gives us the end result:

P Q
E

N
s

o

() ()ε = 2
(5.75)

The Q () function can be looked up in a table.

 So, if you give me the energy of the BPSK signal (or its A and T
from which I can get its energy), and you give me the noise

variance, then I’ll give you the P()ε . Actually, all you’ve got to
do is give me the ratio of the energy of the BPSK signal to

the channel noise variance (that is, just give me
E

N
s

o

), which is often called the signal-to-noise
ratio or SNR, and I’ll give you the P()ε .

Take a look at Figure 5.33. There you can
see a plot of P()ε for BPSK that was generated
using Equation (5.75). What you’ll notice is that,
as the signal-to-noise ratio gets higher, the
P()ε decreases rapidly—very rapidly.

166 ◆ Chapter Five

5.5.3 Some Well-known P(εεεεε)’s

While we could calculate all the P()ε ’s for all the modulation schemes in a manner
similar to that in the last section, we simply don’t have to. People have done a lot of it
for us. I’m going to give you some commonly used P()ε ’s for you to use as you please.
Just look at the last table of the chapter, Table 5.10.

5.6 What We Just Did

Another one bites the dust. Let’s take a moment to recap and summarize what we just
went through. Modulators take the incoming bits and map them to a waveform ready
to be sent over the channel. You’ve got baseband modulators (NRZ, RZ, and some
others), and you’ve got bandpass modulators (ASK, PSK, FSK, and QAM).

These modulator output signals fly across the channel. The channel introduces an
unwanted element called a noise.

The demodulator at the receiver end then picks up this noisy version of what was
sent. It has the task of figuring out what the modulator sent from this noisy signal. It
does this by breaking its job up into two tasks: a receiver front end, which maps the
received signal r(t) into r , and a decision device, which, looking intensely at r ,
selects which signal was most likely to have been sent.

Finally, we discussed how to go about telling someone how a modulator–demodu-
lator pair performs. We decided on the measure called probability of error, or P()ε ,
and I explained how you could calculate it.

And so here we are, at another crossroads, another end. But, as you’ll learn when you
turn your attention to Chapter 6—every ending is just a new beginning. See you there.

Table 5.10 Modulation schemes and performance

noitaludoM ecnamrofreP

KSP-M

KSF-B

KSF-M

()
 π∑ ≈ 0

2 sins2E
P Q

N M

()

=∑

0N
E

QP s

() ()

−≈∑

0

1
N
E

QMP s

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 167

Problems

1. Discuss the benefits and drawbacks of Manchester coding in terms of (1) DC
component; (2) self-clocking; (3) bandwidth usage; (4) inversion insensitivity; and
(5) noise immunity.

2. If you want a baseband modulation scheme that is

(1) insensitive to amplitude inversions on the transmission line, and

(2) insensitive to the 60-Hz spike (consider this a DC spike) in the EM
spectrum caused by devices driven by AC current, what would be a good
choice for the baseband modulator?

3. A 16-level quantizer has output levels –7,–6,...,6,7,8. It is followed by a symbol
to bit mapper that maps –7 to 0000, –6 to 0001, and so on. The output of the bit
mapper feeds an 8-PSK modulator.

(a) Assume that the output of the sampler (that feeds the quantizer) is 6.32
(amplitude of first sample), 4.16 (amplitude of second sample), and 1.12
(amplitude of third sample). Draw the output of the modulator.

(b) If the sampling rate is 10,000 Hz, what is the symbol rate out of the
modulator?

4. Given that the input bits are 000110101001, provide the output of a BPSK,
QPSK, 8-PSK and 16-PSK modulator.

5. Given the four signals in Figure Q5.1, find an orthonormal basis for these signals.

2
t0

s2(t)

3
1

–1
1

2
t

0

s0(t)

3

2

211
t

0

s1(t)

3

2

1

2
t

0

s3(t)

3
1

–1

–2

1

Figure Q5.1
Four signals

168 ◆ Chapter Five

6. One of two equally likely signals is sent across a channel. The channel adds an
additive white gaussian noise (AWGN). The signal sent is either

() ()0s t p t= (Q5.1)

or

() ()1 2s t p t= − (Q5.2)

where p(t) corresponds to the signal drawn in Figure Q5.2.

(a) Provide an equation for the received signal r(t).

(b) Determine an orthonormal basis for the transmitted signals.

(c) Sketch the receiver front end.

(d) Provide an equation for the output of the receiver front end, r.

(e) Sketch the decision device for the receiver.

(f) Sketch a block diagram for the entire optimal demodulator.

2
t

0

p(t)

p(t) = 2

1

Figure Q5.2 p(t)

7. You are asked to build a demodulator for 8-ASK. You are told all signals are
equally likely.

(a) Provide a receiver front end for the demodulator.

(b) Sketch the decision device.

(c) Sketch the complete demodulator.

8. An FSK modulator sends one of the following signals

() () ()1 cos , 1cs t A t iT t i T= ≤ < +ω (Q5.3)

() () ()2 cos , 1cs t A t t iT t i T∆= + ≤ < +ω ω (Q5.4)

() () ()3 cos 2 , 1cs t A t t iT t i T∆= + ≤ < +ω ω (Q5.5)

www.ebook3000.com

http://www.ebook3000.org

Getting It from Here to There: Modulators and Demodulators ◆ 169

() () ()4 cos 3 , 1cs t A t t iT t i T∆= + ≤ < +ω ω (Q5.6)

where

2

T
∆ = πω (Q5.7)

(a) Find an orthonormal basis for these four signals;

(b) Build an optimal demodulator when the FSK signal is received in the
presence of AWGN.

9. Consider a binary FSK modulator which transmits one of the following signals:

() ()0 0 0coss t A t= ω + θ (Q5.8)

() ()1 1 1coss t A t= ω + θ (Q5.9)

where

[]πθθ 2,0, 10 invaluerandomuniform= (Q5.10)

(a) Find an equation relating ω0 and ω1 such that the two transmitted signals
are orthogonal, i.e., such that

() ()
()1

0 1 0
i T

iT

s t s t dt
+

=∫ (Q5.11)

For the remainder of this problem, assume that the two transmitted signals are
orthogonal.

(b) Find an orthonormal basis for the two transmitted signals.

(c) Plot the two transmitted signals on the orthonormal basis.

(d) Assume that the signals out of a binary FSK modulator are equally likely,
and that they are sent over an AWGN channel. Draw a block diagram of the
optimal demodulator.

(e) Express, on the plot you drew in (c), the operation of the decision device in
the demodulator.

10. Evaluate the probability of error when

• a modulator sends one of two equally likely symbols;

• the modulator outputs are either 0 or 1, as shown in Figure Q5.3;

• the channel adds AWGN

• an optimal demodulator is used.

170 ◆ Chapter Five

11. Determine the output symbol rate of the 8-PSK modulator given

• An analog input enters a sampler – the analog input has a maximum
frequency of 12 kHz.

• The signal is sampled at the Nyquist rate.

• The sampled signal enters into an 8-level quantizer.

• The quantizer output passes through a symbol-to-bit mapper.

• The bits from the mapper enter into the 8-PSK modulator.

s0=0
X X

s1=1
ϕ1(t)

Figure Q5.3
Modulator outputs on orthonormal basis

www.ebook3000.com

http://www.ebook3000.org

6
Chapter

Channel Coding and Decoding:
Part 1–Block Coding and Decoding

We’re now near the midpoint of the book. This chapter is all about what’s known as
channel coding, and its partner, channel decoding. We’ll start with a brief

overview of the meaning of the words channel coding and channel decoding.

First, in Figure 6.1 you’ll see a device called the channel coder, located right in
the middle of the source encoder and the modulator. (It is this device that performs
channel coding.) If you look at the input to the channel coder, you’ll see that it is a
stream of bits, and its output is also a stream of bits. This leads us to an intriguing
question. Why would somebody introduce a device that takes in a stream of bits and
puts out a stream of bits? To answer this question, we need to look a little more closely
at what the channel coder does: It takes each set of k incoming bits and maps it into a
set of n outgoing bits, where n is greater than k. The extra n – k bits introduced into
the bit stream by the channel coder are added so that we can detect transmission
errors and/or remove transmission errors at the receiver side.

Figure 6.1 Introducing the channel coder

Source
encoder

TRANSMITTER

Channel
coder

Modulator

bits
for example,
1 0 1 1 1 0

bits
for example,

 1 0 1

x(t)
for example,

speech signal

...
sent

across
channel

s(t)

172 � Chapter Six

Channel
coder

add 1 bit
to ensure sum of

all bits is 0

1 0 1 1 0 1 0

Figure 6.3 Single parity check bit coder

Now take a look at Figure 6.2, where you’ll see a picture of an updated receiver
side. This receiver includes, between the demodulator and the source decoder, a
device known as the channel decoder. The channel decoder undoes the operation of
the channel coder. That is, the channel decoder maps each set of incoming n bits into
its best guess on the original set of k bits. Specifically, what it does is use the extra
n – k bits introduced at the channel coder to correct/detect any errors that might have
occurred during transmission.

There are two types of channel coding: block coding and convolutional coding.
This chapter will focus on block coding, as we will save convolutional coding for
Chapter 7.

Figure 6.2 Introducing the channel decoder

RECEIVER

Source
decoder

Channel
decoder

Demodulator

bits
for example,

1 0 1 1 1 0

bits
for example,
1 0 1

...
received

from channel
r(t) = s(t) + n(t)

(t)
speech
signal

x

6.1 Simple Block Coding

6.1.1 The Single Parity Check Bit Coder

In this simple example of channel coding, called the single parity check bit coder, each
set of k incoming bits is mapped to k + 1 outgoing bits. Take a look at Figure 6.3, which
clearly explains what is going on. The additional bit is added to ensure that, if you
added all the bits together, you would get a total of 0 (using modulo 2 addition: 0+0 = 0,
1+0 = 1, 0+1 = 1, 1+1 = 0).

Channel coding where one bit is added to create a
total sum of 0 is called even parity. You can

instead add one more bit so that the total
when adding all bits is 1, and this is

called odd parity. You can decide
which you like better, but to keep
things simple in this book, unless
otherwise stated, you can assume
I’m always referring to even parity.

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 173

Now we know what the channel coder does. What about the channel decoder?
Using the example of Figure 6.3, the decoder takes the four bits received and adds
them all together (modulo 2). If the total of the sum is 0, then it reports that there was
no error detected. If the total happens to be 1, then it reports that in fact an error has
occurred.

For example, look at Figure 6.4. In Figure 6.4(a) you see the four transmitted bits.
In Figure 6.4(b) you see the four received bits. Adding the received bits together
modulo 2 you get a total of 1. Seeing that 1 tells you an error is detected.

Let’s see whether or not we can detect two errors with single parity check bits. In
Figure 6.4(c), you see the received bits, with two errors in them. Adding all the re-
ceived bits together, you get a sum of 0, which indicates “No error.” But we know
there are in fact two errors. So, single parity check bits can’t be used to detect the case
of two bit errors occurring. Actually, if you take a few minutes and look at different
scenarios carefully, you’ll find that a single parity check bit can always detect an odd
number of errors, but can never detect an even number of errors.

sum is 0

sum is 0
Does not detect

2 errors

sum is 1
ERROR!

1 0 1 0

1 1 1 0

bit in
error

1 1 1 1

bit in
error

bit in
error

(a)

(b)

(c)

Figure 6.4 Error detection at channel decoder
(a) sent bits (b) 1 bit received in error

(c) 2 bits received in error

174 � Chapter Six

Let’s consider whether or not we’re able to correct (and not just detect) any trans-
mission errors using single parity check bits. Look at Figure 6.5(a), to see the sent bits.
In Figure 6.5(b) and 6.5(c), you see two cases of received bits, each with a different bit in
error. Now, compute the sum for the case of Figure 6.5(b) and the case of Figure
6.5(c)—in both cases we get a sum of 1. This tells us there’s an error, but we have no
way of knowing which bit is in error—we can’t tell if it’s the case of Figure 6.5(b) or
Figure 6.5(c). Therefore, single parity check bits cannot be used to correct any errors.

sum is 1
ERROR!

sum is 1
ERROR!

1 0 1 0 1 1 1 0

bit in
error

0 0 1 0

bit in
error

(a) (b)

(c)

Figure 6.5 The lack of error correction at the channel decoder
(a) sent bits (b) 1 bit received in error (Case 1) (c) 1 bit received in error (Case 2)

Example 6.1

Determine the output of a parity check bit coder which, for every 3 bits in, puts 4
bits out. Assume the input is 001 110. If bit errors occurred in the first two bits,
could a decoder detect this?

Solution: With input 001 110, a new bit is added after each 3 bits. That bit
makes sure that the sum of each set is now 0. So, with 001 110 coming in, 001 1
110 0 comes out. A 1 is added after the first three bits, with a 0 added after the
final three bits.

If the first two bits are in error, we receive 111 1 110 0. At the receiver, we
form a sum over each set of 4 bits and make sure the sum adds to 0. If it does, we
say “no error detected”; if it doesn’t add to 0, we say “error detected.” So in this
case, we create 1+1+1+1 (modulo 2 sum of first 4 bits) = 0, and over the next set of
4 bits we create 1+1+0+0 (modulo 2) = 0. So, even though two errors occurred,
none are detected.

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 175

6.1.2 Some Terminology

Before we move on to consider the more sophisticated forms of block coding, I’d like
to introduce four key terms to remember. Consider a block code that maps each
incoming set of k bits to an outgoing set of n bits:

1. First, in shorthand notation, this block code will be called an (n,k) code.

2. This block code is said to have a code rate of k/n.

3. This block code is also said to have a redundancy of (n–k)/k.

4. And finally, this code is said to have (n–k) redundant bits (that is, check bits or
parity bits), which refer to the added (n–k) bits.

6.1.3 Rectangular Codes

In rectangular codes, each set of M·N bits are mapped to a set of (M + 1)·(N + 1) bits.

Channel Coders for Rectangular Codes

Let me start by elaborating on what goes on at the channel coder. In Figure 6.6(a), you
will see that the bit stream is mapped from a serial form into a matrix form. In this
case, we have each set of 9 bits mapped to a 3 by 3 matrix. Figure 6.6(b) shows you
what happens next—namely, a parity bit is created for each row and for each column.
With the addition of this bit to each row, the total sum of each row is now 0. With the
addition of an extra bit to each column, the total modulo 2 sum of each column is 0.
These bits, now in a 4 by 4 matrix, are sent serially across the channel as a set of 16
bits. And that’s it—that’s all the channel coding for a rectangular code.

1 1 1 1

0 1 0 1

1 1 0 0

0 1 1 0

(a) (b)

parity check
bit for row 1

parity check
bit for column 1

0 1 0

1 1 0

1 1 11 1 1 0 1 0 1 1 0

1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0

Figure 6.6 The workings of the channel coder for rectangular codes — in 2 parts

176 � Chapter Six

Channel Decoders for Rectangular Codes

We’ll see what (if any) bit errors we can correct and detect using the channel decoder.
For simplicity, I’ll take you on a decoder journey using the example shown in Figure 6.6.

The channel decoder starts by returning the incoming serial bits back to matrix
form. You can see this ongoing in Figure 6.7, where one of the received bits is in error.
Next, the channel decoder computes the sum for each column and the sum for each
row. As you can see, if there is an error in one of the columns, then the sum will be 1.
If there is an error in one of the rows, then the sum will be 1 for that row. You can see
clearly from the sums formed in Figure 6.7 that you can locate the exact column and
the exact row indicating where the single error has occurred, so you know what bit is
in error. Knowing the bit in error, you can correct the bit by changing its value. There-
fore, from Figure 6.7, we see that rectangular codes can easily correct one bit error.
Now this is a nice thing, especially when compared to the case of a single parity check
bit, where you could only detect an error but not correct it. As you can see, we are
building up to more and more sophisticated block coders.

Example 6.2

Given a rate (2×2)/(3×3) rectangular coder, determine the output for input bits 1 1 0 1.

Solution: First the four bits are mapped to a 2×2 matrix, and then parity bits
are added along the columns and rows to make the sum of each column and the
sum of each row 0. This is shown in Figure E6.1. Then, these bits are output
serially (that is, as one long set), leading to the output 110 011 101.

1 1 1 1

0 0 0 1

1 1 0 0

0 1 1 0

1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0
sum =

0

1

0

0

sum = 0 1 0 0

error in row!

error
in

column!

bit in
error

Figure 6.7 Channel decoder for rectangular codes

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 177

1 1 0

0 1 1

1 0 1

Figure E6.1
Determining rectangular code output

6.2 Linear block codes

6.2.1 Introduction

In general, a channel coder grabs each k-bit set and throws out an n-bit set. Let’s say it
takes in a 3-bit set and it throws out a 6-bit set. There are eight possible 3-bit sets that
can come in, whereas there are 64 possible 6-bit sets that can come out of the channel
coder.

Figure 6.8(a) shows one possible 3-bit to 6-bit channel coder. Figure 6.8(b) shows
a second possible 3-bit to 6-bit channel coder. In either case, we see that each 3-bit set
input to a channel coder is mapped to a 6-bit set at the output. But the difference
between the two is that the 6 bits output when, for example, 111 comes in, are different
for the two coders. In general, how would we decide which 6-bit sets to output from the
channel coder?

Linear block coders are a group of block coders that follow a special set of rules
when choosing which set of outputs to use. The rules are as follows, using a (6,3)
code for illustrative purposes:

Let

Vn = the set of all possible 64 6-bit sequences

U = the set of eight 6-bit sequences output at the channel coder

Using this notation, the rule is this:

U must be a subspace of Vn.

This means two very simple things:

1. U must contain {000000}

2. Adding (modulo 2) any two elements in U must create another element in U.

Of course, examples make this much clearer to understand. Look at Figure
6.8(b)—is this a linear block code?

178 � Chapter Six

First, looking at the channel coder outputs, we see that the element 000000 is in
the output of the channel coder (the set U). That satisfies the first part of our rule.
Now, let’s try adding any two elements in U and see if we get another element in U.
The addition, by the way, is modulo 2. Here, 110110 (7th element) + 011010 (3rd
element) = 101100 (5th element). Yes, we decide, it definitely is a block code.

Example 6.3

Determine whether or not the input bit–output bits in Table E6.1 could represent
a linear block coder.

Solution: For a linear block code, you must make sure 0000 is in your output,
and that the addition of any two output elements (modulo 2) leads to another
output element.

We immediately see 0000 as an output element, so we know that we’re OK
with the first requirement. Next, we’ve got to make sure adding any two elements
(modulo 2) leads to another element. Trying this out, we find, for example, 0101

Channel
coder

Channel
coder

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

0 0 0
1 1 0
0 1 1
1 0 1
1 0 1
0 1 1
1 1 0
0 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

possible 3-bit
inputs

6-bit outputs for
given 3-bit input(a)

(b)

6 bit output
for input 000

6 bit output
for input 000

Figure 6.8 Which channel coder do you choose?

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 179

(element 2) + 1010 (element 3) = 1111 (element
4); and 0000 (element 1) + 0101 (element 2) =
0101 (element 2); and 1010 (element 3) + 1111
(element 4) = 0101 (element 2); and so on. Yes,
every element sum leads to a new element.

With the two rules satisfied, we can safely
say that Table E6.1 can represent a linear
block code.

6.2.2 Understanding Why

This unusual rule that a linear block code must satisfy might seem like a randomly
chosen rule. But, as you will now see, this rule actually makes sense. To understand it,
let’s consider how we can build a block coder. The most obvious way to do it is shown
in Figure 6.9. The block coder gets the 3-bit input, uses a look-up table, and selects a 6-
bit output using its look-up table. How wonderfully simple. Until...

There are some block
coders that map each incom-
ing 92-bit set into an output
127-bit set—a (127, 92) code.
If we want to use a look-up
table for this, we’re stuck with
having to construct a look-up
table with one input-output
pair for each possible 92-bit
input, and there are about
1028 possible 92-bit pairs. That
makes for an unbelievably
large and expensive look-up
table!

With linear block codes, there is another way to generate the output bits given
those input bits, and it’s an easy method requiring a lot less memory. It works like this:
you give me the input bits (let’s say 3 input bits) in the form of a vector m (1 0 1), and
I’ll give you the output bits (let’s say 6 output bits) in the form of a vector u = (0 1 1 1 0 1)
by using the simple matrix multiplication

u = m G. (6.1)

G is a k by n matrix of 0’s and 1’s called the generator matrix. Also, whenever you
do an addition when computing m G, you’ll want to do a modulo 2 addition for the
equation to work. You can only use this simple way to create an output from an input if
you satisfy the linear block code rule we saw earlier. This is a handy way to generate

Channel coder : uses look-up table

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
1 1 0
0 1 1
1 0 1
1 0 1
0 1 1
1 1 0
0 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Input Output1 1 0 1 1 0 1 1 0

Figure 6.9 Channel coder built using look-up table

0 0

0 1

1 0

1 1

0 0 0

0 1 0

1 0 1

1 1 1

0

1

0

1

input bits output bits

Table E6.1 A linear block code?

180 � Chapter Six

output bits from input bits, because in this case all you have to store is G, and that is
only n·k bits.

Let’s see if this really works, rather than just taking my word for it. Consider the
generator matrix G corresponding to

=

100101

010110

001011

G (6.2)

This is the generator matrix for the (6, 3) code seen in Figure 6.10. Let’s say the
input is m = (1 0 1). Then the output is

 u = mG (6.3)

 ()

=

100101

010110

001011

101 (6.4)

 ()101110= (6.5)

If we compare that to the output we expect from the look-up table of Figure 6.9,
then we see we’ve got a match.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
1 1 0
0 1 1
1 0 1
1 0 1
0 1 1
1 1 0
0 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

input to linear block coder output of linear block coder

last 3 bits of output
= 3 input bits

Figure 6.10
Systematic linear block codes

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 181

6.2.3 Systematic Linear Block Codes

Look at Figure 6.10 again, which shows the input and the output of a linear block
coder. Specifically, take a look at the right side of this figure, which shows the output.
Look carefully at the last three bits of the block coder output, and note that the last
three bits in the output 6-bit set match the 3 input bits.

Not all linear block codes satisfy this property, but if they happen to, they are
called systematic linear block codes. People—mostly engineers—like to use systematic
linear block codes because it helps them save memory. First, recall that for linear
block codes you can get the channel coder output by applying the simple equation

u = mG (6.6)

If you know that the last bits of the output match the input bits, then you can
easily show that G will look like (for the case of 3-bit sets mapped to 6-bit sets)

()3333 ××= IPG � (6.7)

=

100

010

001

333231

232221

131211

�

�

�

PPP

PPP

PPP

(6.8)

That means all you need to store in the memory of the channel coder is the
matrix P. It will be made up of k·(n–k) elements that are either 0 or 1, so it really won’t
require a lot of memory to store it.

That is about all there is to know about channel coding for block codes. There really
is only one rule that makes a block code a linear block code, and it’s only six words long:
make the output bits a subspace. Once you’ve done that, then you’ve got an easy way to
get output bits from input bits, using G. If you want to make it even easier, add the rule
that the last bits of the output have got to match the input bits, and you’ve made the
matrix G even simpler (and you get to call your code a systematic linear block code).

Example 6.4

True or False: The matrix in Equation (E6.1) is the generator matrix for the linear
block code of Table E6.1 in Example 6.3.

=

1010

0101
G (E6.1)

Solution: If G is the generator matrix for the linear block code of Table E6.1,
then: for every 2-bit input m (e.g., m = (0 0)), the output must be the u (e.g., u =
(0 0 0 0)) shown in Table E6.1.

182 � Chapter Six

Let’s see if that’s true:

 () () ()0000
1010

0101
0000m =

=== Gmu (E6.2)

 () () ()1010
1010

0101
1010m =

=== Gmu (E6.3)

 () () ()0101
1010

0101
0101m =

=== Gmu (E6.4)

 () () ()1111
1010

0101
1111m =

=== Gmu (E6.5)

Yep. For every input m, we get the output u of Table E6.1. It follows that the
G of equation (E6.1) is indeed the generator matrix.

6.2.4 The Decoding

What you do at the transmitter, you’ll want to undo at the receiver. At the transmitter,
with a linear block coder, we mapped, for example, 3-bit sets into 6-bit sets. For the
sake of simplicity in presentation, let’s assume that our linear block coder maps input
bits to output bits as drawn in Figure 6.10 (also seen in Figure 6.9).

Now, the linear block decoder sees a 6-bit set coming in. Let’s say we sent from
the coder (0 1 1 1 0 1) (the original 3 bits were (1 0 1)). This may arrive at the block
decoder input without any bit errors (that is, we see (0 1 1 1 0 1)) or it might come to
the channel decoder input with an error in it (for example, we see (1 1 1 1 0 1)). The
job of the linear block coder is to do the best it can to figure out the 3-bit set that was
input to the channel coder. In our case, the decoder will try to figure out that (1 0 1)
was indeed the input. If there are no errors in the 6-bit set sent, then this should be a
simple task. If there are errors, then the linear block decoder will hopefully correct
those errors and then figure out that (1 0 1) was sent. Let’s see exactly how it works.

In simple, almost nontechnical language, you look at what you’ve got, you correct
errors as best you can (if there are any), and then you decide on what 3-bit input was sent.
So, for example, let’s say you pick up at the decoder (1 1 1 1 0 1). In that case, looking
over at Figure 6.10, you see that this simply isn’t one of the eight possible channel coder
outputs. An error must have happened somewhere along the way. So you ask: which of
the eight channel coder outputs of Figure 6.10 is closest to (1 1 1 1 0 1)? In looking at all

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 183

the eight possible coder outputs, you decide that the closest one is (0 1 1 1 0 1), because
this differs from the received 6-bit set by only one bit. This is error correction, because,
as best you can, you’ve corrected the channel error. Now, with the error corrected, and
(0 1 1 1 0 1) in hand, you use the look-up table of Figure 6.10 and decide that (1 0 1) was
input to the coder, so you output (1 0 1).

The channel coder does exactly as described above. Only, being a thing rather
than a person, it doesn’t have common sense to refer to, so it must be given some
mathematical rules that allow it to work as if it demonstrated common sense. Here are
details on how we can get the channel decoder to work in a manner that allows simple
implementation.

For starters, we have to introduce some mathematical terms. The first term is
called the parity check matrix, H, and it works like this: if you give me a channel coder
that has a generator matrix G, then the parity check matrix H is defined as the matrix
that satisfies the equation:

G H = 0 (6.9)

where 0 refers to the all-zeros matrix. In other words, H is the matrix that when
multiplied by G produces zip, zero, nada. For example, for the generator matrix of
Equation (6.7), the corresponding parity check matrix is simply

=

×

×

33

33

P

I
H (6.10)

which, for the example of G in Equation (6.2), means

=

101

110

011
100

010

001

H
(6.11)

You can check this out yourself by simply multiplying the G H, because when
you’ll do this you’ll get 0, as prophesied.

If you lack common sense, as a channel decoder does, you can use the H at the
decoder side in its place. Let’s say you send out from the channel coder the 6-bit set
u = m G = (0 1 1 1 0 1).

184 � Chapter Six

Let’s consider Case 1, which is the case when you receive at the channel decoder
the 6-bit set v that matches the u sent (i.e., v = u = m G = (0 1 1 1 0 1)). Let’s see what
happens if we take the received v and multiply it by the parity check matrix H. In this
case, we get

v H = u H = m G H = m 0 = 0. (6.12)

Now let’s consider Case 2, the case where the v we receive does not match what
we sent from the channel coder, because an error occurred along the way. We’ll
consider the case where v = (1 1 1 1 0 1). In this case, we can describe what’s going on
according to v = u + e, where u is the sent sequence (0 1 1 1 0 1) and e is the error
that occurred, represented as (1 0 0 0 0 0). Let’s see what happens when we multiply
the received v by the parity check matrix H. In this case we get

v H = u H + e H = m G H + e H = m 0 + e H = 0 + e H = e H = (1 0 0 0 0 0) H
(6.13)

which is not 0. In fact, doing the math for the parity check matrix of Equation (6.11),
you’ll find that v H = (1 0 0 0 0 0)H = (1 0 0).

Let’s interpret these results. First, look at Case 1 (no error in received 6-bit set,
and v H = 0), then look at Case 2 (an error in received 6-bit set, and v H = (1 0 0)).
From these two cases, we can determine a very simple result. Any time there is no
error, multiplying the received 6-bit vector by H gives 0, and if there is an error,
multiplying the received 6-bit error by H does not give 0. So, using H, the channel
decoder has an easy way to detect errors.

Example 6.5

True or False: the parity check matrix H for the generator matrix

=

1010

0101
G (E6.6)

is

=

10

01

10

01

H
(E6.7)

Solution: To find out, we simply multiply G H and see if we get zero. Let’s find out:

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 185

0=

=

=

00

00

10

01

10

01

1010

0101
GH

(E6.8)

Yep. We get zero, confirming that the H of equation (E6.7) is indeed the generator
matrix for G in (E6.6).

Now let’s look into correction of errors. Consider Case 2. We sent u =
(0 1 1 1 0 0), the error described by e = (1 0 0 0 0 0) arose, which led to the decoder
input v = (1 1 1 1 0 0). We ended up at the decoder receiving (1 0 0) after multiplying
by H. If we could tell the decoder that, if after multiplying by H, if you see (1 0 0),
assume the error is e = (1 0 0 0 0 0), then we can correct for this error. In other words,
if we can match what we get from v H to errors e, then we can correct the errors.

Let’s follow engineering convention and call what we get from vH the vector S
(i.e., vH = S), which is called syndrome.

So, you’ve received v, and you multiplied it by H and you got S. Now look at this:

v H = e H = S. (6.14)

(We know v H = e H from Equation (6.13).) So, for every error e there is a syn-
drome S.

In fact, it’s easy to show that there are more e’s than there are S’s, so more than
one e will share the same S. For example, in the 3-bit set to 6-bit set case of Figure
6.10, there are 8 S’s while there are 63 e’s.

Here’s what the channel decoder must do (an example follows the explanation):

1) For each possible value of S, determine which error e you think has occurred.
Do this as follows, using our (6,3) code as an example:

a) Realize the value of S = (0 0 0) = 0 indicates no error. That means there are
8 – 1 = 7 possible S values that we can consider.

b) Start with the most common errors, which are the one-bit errors, i.e., the
errors represented by the vectors e1 = (1 0 0 0 0 0), e2 = (0 1 0 0 0 0),
e3 = (0 0 1 0 0 0) to e6 = (0 0 0 0 0 1). For each of these errors e, figure out
the S using e H = S. So you’ll get S1, S2, S3, up to S6, one for each error
vector. That accounts for a total of 6 of the 7 remaining S values.

c) There is one S value left unused. Start to consider the e values correspond-
ing to two-bit errors (e.g., e = (1 0 1 0 0 0)), and find an e value such that
eH leads to the remaining S.

186 � Chapter Six

2) Now, when a vector v arrives, create v H = e H, and you’ll get S. From the
results of part (1), decide which error e this S corresponds to, and correct the
error you think happened.

Here’s an example to illustrate the point. Consider the channel coder of Figure
6.10, which has G as shown in Equation (6.2) and H as given in Equation (6.11).
Following step 1, you can create a table linking possible error vectors e to S = e H.
When you do this, you’ll get results matching Figure 6.11.

Now, let’s say you sent u = (1 0 1 1 1 0), and you received v = u + e = u +
(1 0 0 0 0 0) = (0 0 1 1 1 0). Computing v H, we get

v H = e H = S = (1 0 0). (6.15)

Now looking to Figure 6.11, we see this syndrome corresponds to error e =
(1 0 0 0 0 0), so we correct for this error. With the error corrected, we then figure out
that the 3-bit input was simply (1 1 0) using Figure 6.10. Good work!

Example 6.6

Determine a table of errors and corresponding syndromes for the 2-bit to 4-bit
linear block coder described in Table E6.2 and described by generator matrix

=

1010

0111
G (E6.9)

0 0 0
1 0 1
0 1 1
1 1 0
0 0 1
0 1 0
1 0 0
1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 1 0

0 0 0
0 0 1
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 1

S = e He

Step 1.a.

Step 1.b.

Step 1.c.

Figure 6.11 Mapping errors e to syndromes S

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 187

and with parity check matrix

=

10

11

10

01

H
(E6.10)

Solution:
1. The first error to consider is the no-error case of e = (0 0 0 0). In this case, we have

() ()

1 0

0 1
0 0 0 0 0 0

1 0

0 1

H

 = = =

=0Se e
(E6.11)

2. The second cases to consider are the one-bit errors, starting with e = (0 0 0 1),
in which case we have the syndrome

 () () ()10

10

01

10

01

10001000 =

=== HeeS
(E6.12)

3. Next, we’ll consider the one-bit error e = (0 0 1 0), in which case the syndrome
corresponds to

 () () ()11

10

11

10

01

01000100 =

==eS
(E6.13)

0 0

0 1

1 0

1 1

0 0 0

0 1 0

1 1 1

1 0 1

0

1

0

1

m u

Table E6.2 Linear block code

188 � Chapter Six

4. Continuing on, we consider the one bit error e=(0 1 0 0), in which case

 () () ()10

10

11

10

01

00100010 =

==eS
(E6.14)

5. That’s it. We’re out of syndromes. So, our table of errors to syndromes corre-
sponds to Table E6.3.

So, whenever we receive a set of four bits v, we multiply it by H, and we get
v H = e H = S. We then use the syndrome table to determine which error e that
corresponds to, and correct that error.

0 0

0 1

1 0

1 1

0 0 0

0 1 0

1 1 1

1 0 1

0

1

0

1

eS __

Table E6.3 Mapping syndromes and errors

6.3 Performance of the Block Coders

Now that you know how these blocks coders work, we’ll characterize their perfor-
mance in order to tell which block coders are better than others. We’ll first
think—hmmm, what do we want these block coders to do? We want them to detect bit
errors and we want them to correct bit errors. So, we will measure the performance of
block coders by determining how well they are able to do both. Specifically, we’ll make
our performance measures:

1. Pm, the probability that a channel decoder failed to detect (or missed) a bit
error; and/or

2. P, the probability that a channel decoder failed to correct a bit error.

With our measuring stick in hand, let’s revisit the channel coders we originally
looked at, and determine Pm and/or P.

6.3.1 Performances of Single Parity Check Bit Coders/Decoders

For single parity check bit coders/decoders, we receive n = (k + 1) bits and can always
detect an odd number of errors in these bits. But we always fail to detect an even

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 189

number of errors. So, the probability Pm (the probability we missed an error) is just the
probability that an even number of errors occurred. That is,

()
2

n

m
j

j even

P P j,n
=

∈

= ∑ (6.16)

where P(j,n) refers to the likelihood of having j bit errors occur in a block of n bits.
This value can be found from some statistics literature, but rather than make you look
it up, I’ll just tell you that it refers to

() () jnj pp
j

n
j,nP −−

= 1 (6.17)

where

1.

j

n
 refers to the value ()!!

!

jnj

n

− and

2. p is the probability that a bit error occurs when a bit travels from channel coder
output to channel decoder input (i.e., the probability that a bit error occurs when
a bit is sent through the modulator, across the channel, and finally through the
demodulator—look at Figures 6.1 and 6.2 to picture this).

Also, since these single parity check bits can’t correct any errors, we know that
P = 1 (i.e., you’re 100% sure that you won’t correct an error).

6.3.2 The Performance of Rectangular Codes

We saw that rectangular codes map k = M·N bits to n = (M+1)·(N+1) bits, and by doing
this they can correct one bit error. One thing I didn’t show you earlier is that the
rectangular codes cannot correct two or more errors, just that one. (You can show this
to yourself by putting two errors in the rectangular code and seeing that you can’t
correct these errors.) So, the probability that you fail to correct an error, P, is simply
the probability that more than one bit error occurs. Knowing this, you can easily open
statistics books and figure this out to be (or you can take my word that this P is)

()∑
=

=
n

j

j,nPP
2

(6.18)

6.3.3 The Performance of Linear Block Codes

In linear block codes you take a chunk of k bits and map it into a chunk of n bits. In
the words of all famous engineering textbooks, let me just say “it can be shown that”

190 � Chapter Six

the number of bits in error, in each chunk of incoming n bits, that can always be
corrected is t, where t is the number you calculate from the equation

 −=

2

1mind
t (6.19)

Here x refers to the integer you get by rounding x down to the nearest integer,
and dmin is the number you get by looking at all the channel coder outputs and counting
the number of 1s in the channel coder output with the fewest 1s (excluding the output
(0 0 0 0 0 0)). For example, consider the channel coder described by Figure 6.10. In
this channel coder, the output with the fewest number of 1s (not counting
(0 0 0 0 0 0)) is the output (0 0 0 1 1 1). This has three 1s in it, so dmin = 3. Then, com-
puting t, we get t =

 −

2

13 = 1. This tells us that, for the channel coder in Figure 6.10, you
can build a channel decoder and always correct all 1-bit errors. You might be able to
correct a few 2-bit errors as well, but t = 1 tells us that the channel decoder cannot
always correct all 2-bit errors.

The probability that the linear block coder will not correct an error, P, is well
approximated by the probability that more than t errors occur in the incoming chunk
of n bits. So, using a wee bit of statistics, that means mathematically that

()∑
+=

=
n

tj

j,nPP
1

(6.20)

Example 6.7

If, in the modulator-channel-demodulator part of the communication system, the
probability that a bit is in error is 1%, what is:

1. the Pm for a rate ¾ parity check bit decoder?

2. the P for a rate 5/10 linear block decoder (assume t = 2)?

Solution: For the parity check bit decoder, turning to equation (6.16), we find

()
2

,
n

m
j

j even

P P j n
=

∈

= ∑
(E6.15)

()

4

2

, 4
j

j even

P j
=

∈

= ∑
(E6.16)

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 191

()

4
4

2

4
1

jj

j

j even

p p
j

⋅

=
∈

= −

∑ (E6.17)

() ()

4
4

2

4
0.01 1 0.01

j j

j

j even

j
⋅

=
∈

= −

∑ (E6.18)

 () () () ()0422 99.001.0
4

4
99.001.0

2

4

+

= (E6.19)

 4106 −⋅≅ (E6.20)

For the linear block decoder, we turn to equation (6.20), which leads us to

 ()∑
=

=
10

3

10,
j

jPP (E6.21)

 () ()∑∑
==

−=
2

0

10

0

10,10,
jj

jPjP (E6.22)

 ()∑
=

−=
2

0

10,1
j

jP (E6.23)

 ()∑
=

⋅−

−=

2

0

101
10

1
j

jj pp
j (E6.24)

 () () () () (0 10 1 910 10 10
1 0.01 1 0.01 0.01 0.99

0 1 2

= − − + +

(E6.25)

 0.000114= (E6.26)

192 � Chapter Six

6.4 Benefits and Costs of Block Coders

So far, all we’ve talked about are the wonderful benefits of block coders. By mapping k
bits to n bits (n > k), they are able to detect bit errors that occur in transmission, and,
even better, they can correct such errors. But, alas, as is the case in all things engi-
neering (big and small), there is always a tradeoff. We know what we gain from block
codes—how about what we lose?

Take a look at Figure 6.12(a). There you see three bits, mapped by a baseband
modulator to a non-return-to-zero format. Each bit sent is of duration T. Now look at
Figure 6.12(b). There you’ll see that a block coder was introduced, and it took three
bits and mapped it to six bits. To operate in real time, the channel coder had to smoosh
(squeeze) all six bits in the time interval that the original three bits fit into. So, the
same modulator maps the six bits into a non-return-to-zero format, where you can
clearly see that each bit is of duration T/2.

Baseband
modulator1 0 1 Channel

coder1 0 1
0 1 1 1 0 1 Baseband

modulator

(a)

3T

T T T

(b)

3T

T/2 T/2 T/2 T/2 T/2 T/2

0 1 1 1 0 11 0 1

We’re at a place where, without the channel coder, the bits sent across the chan-
nel are of duration T, and with the channel coding, the bits sent across the channel are
of duration T/2. It is easily shown (and I’ve shown it in Chapter 5), that the bandwidth
(frequency range) occupied by a sent bit, BW, varies inversely with bit duration. So,
before (or without) the channel coding, we have a bandwidth of 1/T, and with channel
coding we have a bandwidth of 2/T. This means that channel coding comes at the cost
of significantly increased bandwidth.

Figure 6.12 Illustrating the cost of channel coding

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 193

Specifically, the tradeoff is this. You decide to use a block coder. You get to detect
and correct errors at the receiver side. You pay the price of requiring more bandwidth
to send the same amount of information.

6.5 Conclusion

Another chapter come and gone. We learned about some interesting devices called
block coders. They add extra bits to the bit stream, and that costs you bandwidth, but
they give you the power to detect and correct errors at the receiver side.

You saw three ways to implement this. First and simplest was the single parity
check bit coder, which added one bit to each block of k bits, putting out k+1 bits. With
this added bit, which made sure your k+1 bits added to 0, you could detect an odd
number of errors.

Rectangular coders did one better. By mapping M·N bits to (M+1)·(N+1) bits, you
were able to correct one bit error.

Then linear block coders were introduced. They required that your output
codewords be a subspace, and by making that simple requirement they gave you a
powerful way to build the block coder. The block decoder uses a syndrome in order to
correct errors.

Finally, we gave you a way to compare block coders, by providing two perfor-
mance measures and telling you how to compute them for the different block coders
available to you. The end, for now.

194 � Chapter Six

Problems

1. Consider a rate 6/7 channel coder using a single parity check bit.

(a) What is the output for input 100101110011?

(b) Does the channel decoder detect errors if (1) bit 2 is in error? (2) bit 2 and
bit 8 are in error? (3) bit 2 and bit 4 are in error? (Explain.)

2. Consider a rate 9/16 rectangular code.

(a) What does the channel coder output for input bits 100110001?

(b) If an error occurs at bit 3, explain how the error is corrected.

(c) If an error occurs at bit 3 and at bit 7, explain if and how an error is corrected.

3. (a) What are the two rules that a block code must follow in order to be a linear
 block code?

(b) Using these two rules, make up a (4,2) linear block code, drawing a table to
describe it.

(c) Verify that the (4,2) code you made in (b) is indeed a linear block code by
showing that it satisfies the two rules in (a).

(d) Using trial and error (or any other method you can think of), find the
generator matrix G that describes the linear block code.

(e) Verify that G is indeed the generator matrix by insuring that for every input
m it satisfies

 u = mG (Q6.1)

(f) Find the parity check matrix H, and show that GH = 0.

(g) Build a syndrome table for correcting errors (a table with errors in one
column and syndromes in the other).

(h) Demonstrate (using your syndrome table) what happens when v = u + e =
(0000)+(0001) enters the block coder.

4. Consider the 3-bit to 6-bit linear block coder described by generator matrix

=

100101

010111

001011

G (Q6.2)

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 1–Block Coding and Decoding � 195

Channel
Modulator Modulator

Single parity check bit

3 bit 4 bit

111 101

(a) Plot a table of input bits and output bits that describe the linear block coder.

(b) Determine the parity check matrix H.

(c) Create a syndrome table, with errors in one column and syndromes in the
other.

(d) Explain if and how the channel decoder corrects e = (001000).

5. Imagine you have a channel coder and decoder. In between them is

• a BPSK modulator with A = 1 and T = 2

• an AWGN channel with No = 2

• an optimal BPSK demodulator (Chapter 5)

(a) What is the probability p that a bit error occurs at the BPSK demodulator?

(b) If a rate 2/3 parity check bit channel coder/decoder is used, what is the
probability that the channel coder fails to detect an error?

(c) If a rate 4/9 rectangular code is used, determine the probability that you
fail to correct an error.

(d) Given a 3/6 linear block code with t = 1, find out how likely it is that it fails
to correct an error.

6. Name a channel coder/decoder that can

(a) Detect all 1 and 3 bit errors. (Explain.)

(b) Detect all 1, 3, and 5 bit errors. (Explain.)

(c) Correct all 1 bit errors in every 4 bits. (Explain.)

(d) For (a),(b), and (c), provide an example of a received signal with an error
on it, and show how the channel coder/decoder detects or corrects it.

(e) Given the input bits 111000101001, provide the output bits for the three
channel coders you provided in (a), (b), and (c).

7. Study Figure Q6.1. Now sketch the output of the modulator when (1) the
modulator is BPSK and (2) the modulator is QPSK.

Figure Q6.1
A channel coder and modulator

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

7
Chapter

Channel Coding and Decoding:
Part 2–Convolutional Coding and Decoding

In Chapter 6, we took a careful look at block coders and decoders. We’re now going
to look at another class of channel coder and decoder, something called a convolu-

tional coder and decoder. Just like the name indicates, convolutional coders and
decoders are a little bit more complicated than block coders and decoders.

7.1 Convolutional Coders

At the transmitter side, convolutional coders, like block coders, take each set of k bits
and put out a set of n bits. That means an extra (n – k) bits are introduced. At the
receiver side, a convolutional decoder uses the extra bits to detect and correct bit
errors.

There is one main difference between convolutional coders and block coders. In
block coders, you take a block of k input bits and you put out a block of n output bits.
The n output bits only depend on the incoming k input bits. Convolutional coders have
what could be described as a greater appreciation of history. In convolutional coders,
each k-bit block that comes in is mapped to an n-bit output. But with convolutional
coders, the n-bit output depends on the current k-bit block that came in, and also on
the previous K blocks of k bits that came in. This is seen in Figure 7.1. Rather than
elaborate in general, let’s go to an example.

7.1.1 Our Example

We’ll take a look at a convolutional coder which takes in blocks of k = 1 bit at a time
and puts out a chunk of n = 2 bits. Now, if this were a block coder, we might say, “If a 0
comes in, map it to a (0 0), and if a 1 comes in, map it to a (1 1).” But it’s not a block
coder. This convolutional coder makes its decision not just considering the current k =
1 bit but also by considering the previous K = 2k = 2 bits.

A picture will make this much clearer, so take a look at Figure 7.2. The arrow on
the left shows where the bits come in. With k = 1, bits come in one bit at a time. The
box with lines that the k = 1 bit walks into is meant to represent a 3-bit shift register.

198 � Chapter Seven

Figure 7.1 Convolutional coder idea

1 1

1

1

1

1

1

0 0

0

1

1

1 1

1

Convolutional
Coder

. .

Block of
k = 3 bits
comes in

Block of n = 6
bits output

Previous K = 2 sets
of k = 3 bits.

Uses this plus input to
determine output.

remembers

1
1 1

01
1

+

+Block of
k = 1 bit

comes in

Block of
n = 2 bits

comes out

Convolutional coder
1

0

1 2 3

stores
current

incoming
bit

holds
K = 2

previous bit
sets of k = 1 bit

Figure 7.2 Example of convolutional coder

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 199

When the k = 1 bit comes in, it is stored in the position labeled “1.” It moves the bit
that was in position 1 over to position 2, and what is in position 2 over to position 3.

Now, we know what is happening to the inputs, but what about the outputs? You
can see two adders, one at the top of the picture and one at the bottom. The top adder
takes all three bits in the shift register, adds them together (modulo 2), and uses that
to create the first bit of the output. The bottom adder takes the first and third bits, adds
them together (modulo 2), and this forms the second bit of the output. The switch at
the very right is meant to show the conversion of the two output bits from parallel
form to serial form.

In this way, k = 1 bit comes in, and using this one bit and the K = 2 previous bits, two
output bits are created. We get one bit in, two bits out, and this is a convolutional coder.

7.1.2 Making Sure We’ve Got It

Figure 7.3 shows a simple example describing the workings of the convolutional
channel coder in Figure 7.2. The bits coming in are 1, then 0, then 1 0 0. Let’s together
figure out what is coming out of the convolutional coder given this input. At time 0,
before things get started, we have all 0s in the shift register. Now, let’s move to time 1,
when bit 1 comes in, and see what comes out. Looking at Figure 7.3, we see that when
a 1 comes into the shift register, it enters into position 1 and a 0 0 ends up bumped into
position 2 and 3. So the shift register contents are 1 0 0. That means that output 1 is
1 + 0 + 0 (modulo 2) = 1, and the output 2 is 1 + 0 (modulo 2) = 1. So the output at this
time is 1 1.

1

1

1

1

000

00

00

00

0

0 0

1

1

Time Input bit Shift register
contents

Output bits
bit 1 bit 2

0

1

2

3

4
5

1

0

1

0
0

-

1 1

1 0
0 0

1 0
1 1

1 2 3

Figure 7.3 Showing the workings of the convolutional coder

Similarly, at time 2 a 0 comes in, and it bumps the 1 0 into position 2 and 3 in the
shift register. As a result, the two output bits are: 0 + 1 + 0 = 1 (for the first output bit),
and 0 + 0 = 0 for the second output bit. We can continue in this way for all the output
bits, and soon we end up with the outputs shown in Figure 7.3.

200 � Chapter Seven

7.1.3 Polynomial Representation

Another way to express the operations
of the convolutional coder is through
the use of polynomials. Let me explain
by example. Consider the convolutional
coder shown in Figure 7.4, looking
specifically at the lines connecting the
shift register to the top adder, (which
outputs the first output bit). We have a
line connecting shift register position 1
to the adder, and we represent this as a
1. We also have a line connecting shift
register position 2 to the adder, and we
represent this as X. Finally, we have a
line connecting shift register position 3 to the adder, and we represent this as X2. We
denote all these connections that feed the top adder outputting bit 1 by the polynomial

g
1
(X) = 1 + X + X2 (7.1)

Similarly, we describe the bottom adder, outputting bit 2, in this way. As this
adder is connected to shift register position 1, this gets represented by a 1. As it is also
connected to bit register position 3, this gets represented using an X2. Putting this
together, the bottom adder outputting bit 2 is described by the polynomial

g
2
(X) = 1 + X2 (7.2)

Using g1(X) and g2(X), we have a full description of the channel coder, and we can
use this description to determine the output given the input. Let’s say the inputs are
the bits 1, then 0, then 1, then 0, then 0, which we can write as m = 1 0 1 0 0. We
represent this in polynomial form as m(X) = 1 + 0X + 1X2 + 0X3 + 0X4 = 1 + X2. Now, we
can get the output by simple polynomial multiplication like this:

output bit 1 at different times: m(X) ⋅ g1(X) = (1+X2)(1+X+X2)=1 + X + + X3 + X4

output bit 2 at different times: m(X) ⋅ g2(X) = (1+X2)(1+ X2) =1 + + X4

total output bits at different times 11 10 00 10 11

(Note: To get the correct result when multiplying m(X) ⋅ gi(X) use modulo 2
addition, e.g., X2 + X2 = (1 + 1)X2 = 0X2 = 0.)

1

1

1

1 0
11

0

+

+

1 2 3

1 + X + X 2

X2

X2

1

1

1+X2

X

Figure 7.4 Polynomial representation of
convolutional coder

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 201

If you compare this to our work in Section 7.1.2, you can confirm that we got the
correct output bits for the given input bits. So, if you have a love of polynomials, you
can always represent your channel coder using polynomials. There are many other
possible representations for the convolutional coder, such as impulse response and
state transition diagrams, but rather than going through all of these, we’ll jump to the
most useful of them all, the trellis diagram.

7.1.4 The Trellis Diagram

The trellis diagram, shown in Figure 7.5, is a way of representing what goes on at the
convolutional coder from one time to another.

1

1

2

2

0 0

0 0

0 0

1 1

00

0 1

0 1

1 0

1 0

1 1

1 1

time 0

time 0

time 1

time 1

time 2

time 2

(a)

11

00 00

00 00

10 10

10 10

10

10

01 01

01 01
01
01

00
11 11
11 11

11

time 3

(b)

Figure 7.5 Trellis representation of convolutional coder
(a) partial (b) complete

202 � Chapter Seven

Figure 7.5(a) shows you the basics of a trellis diagram. To construct a trellis
diagram, draw a set of times, say time 0, then time 1, then time 2, and so on, going
from left to right on the page. Below each time, draw a big dot, one for each possible
state or node. The state (node) is a short word for saying “what will stay in the shift
register after the new bit comes in.” For example, look at the coder of Figure 7.2. If a
new bit comes in, what will stay in the shift register is what is currently in position 1
and position 2 (what is in position 3 will get bumped out). So in that case the state =
(bit in position 1, bit in position 2). Possible states are 00, 01, 10, and 11. So below each
time we draw the states.

Next we add dotted lines and solid lines leaving each state and entering a new
state. A dotted line is used to describe what happens when a 1 enters at the input. So
for example, for the coder of Figure 7.2, say a 1 comes in and we are at state 00 (0 is in
position 1, and 0 is in position 2). Then, when 1 comes in, the shift register will now
contain (1 0 0), which means the output bits will be 1 1 and the new state = (what’s in
position 1, what’s in position 2) = (1 0). This event is shown in Figure 7.5(a), on the
trellis diagram.

We add a dotted line and a solid line to each and every dot (state) at each and
every time, which leads us to the diagram of Figure 7.5(b). This is called the trellis
diagram, and it fully describes all the possible ongoings of the convolutional coder. It
tells you what comes out (by looking at the top of the line) given what was in the shift
register position 1 and position 2 (the dot) and the input bit (the connecting line).

Example 7.1

Determine the polynomial representation and the trellis diagram for the convolu-
tional coder described by Figure E7.1.

Solution: Using the rules outlined in Section 7.1.3, the polynomial represen-
tation corresponds to

 g
1
(X) = 1 + X2 (E7.1)

 g
2
(X) = X2 (E7.2)

Using the rules outlined in Section 7.1.4, the trellis diagram representation is
shown in Figure E7.2.

+

in out

Figure E7.1
Convolutional Coder

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 203

7.2 Channel Decoding

Let’s now explore what the channel decoder does. First, we’ll define the task of the
channel decoder. In Figure 7.6, at the channel coder, a bit sequence m comes in; we’ll
consider the channel coder of Figure 7.2 with m = (0 0 0) coming in. This is mapped to
the output, which we’ll call u; in the example we’re considering, u = (00 00 00). These six
bits are sent across the channel by the modulator and returned to six bits by the de-
modulator. The bits that come out of the demodulator, which feed the channel decoder,
will be referred to as v. These bits v may or may not be equal to u. An error may have
occurred in transmission, resulting in v = u + e, where e represents the bit error. For the
example we’re considering, we’ll say we receive v = u + e = (00 00 00) + (00 00 01) =
(00 00 01). In this case, one bit error has occurred in transmission at position 6.

The goal of the
channel decoder,
then, is to take the
bits v that it has
received, and come
up with the best
guess at m, the
original information
bits. We’ll call the
channel decoder’s
guess at m the vector
m′. We want to find a
way to make m′ as
close to m as pos-
sible.

0 0
0 0

0 0

0 1 0 1

0 1

1 0

1 1

1 0

1 0

1 1

1 1

Figure E7.2
The trellis diagram

m = (0 0 0) u = (00 00 00)

m m= best guess on v = (00 00 01)

Convolutional
Coder

of Figure 7.2
(takes in 1 bit at a time

and outputs 2 bits)

Modulator

Demodulator
Convolutional

Decoder

C
h
a
n
n
e
l

a bit error
occurred here

Figure 7.6 The role of the channel (convolutional) decoder

204 � Chapter Seven

7.2.1 Using a Trellis Diagram

How does the channel decoder use a “trellis diagram” to help it figure out how to put
out an m′ that matches m? The trellis diagram of Figure 7.5(b) shows the possible
output bits of the channel coder. If you look at the top of the dotted and dashed lines of
the trellis diagram, you see those possible outputs.

Let’s return to our example of Figure 7.6 and consider the transmitted output
u = (00 00 00). We can use the trellis diagram to verify that this u is a possible output
of the channel coder. Looking at the trellis diagram, we see that (00 00 00) is a possible
output by following the chain of 00 outputs that sit above the solid lines at the top of
the trellis diagram. What about the received input v = (00 00 01)? Is that a possible
output of the channel coder? If you look through the trellis diagram, you can find 00
output at time 1, followed by a 00 output at time 2, but you see it can’t be followed by
the output 01 at time 3. So the received v = (00 00 01) is not a possible output of the
channel coder.

Therefore, one thing the channel decoder can do is look at the received v (for
example, v = (00 00 01)) and ask itself if it matches an output path through the trellis.
If the answer is no, then there must be an error in transmission. That’s an easy way to
detect errors.

A convolutional decoder can also correct errors using the trellis diagram. To do
this, it simply asks itself the following: Given v = (00 00 01), what is the path in the
trellis closest to this v (in terms of fewest bits different)? Exhaustively searching all
paths in the trellis, the closest path to v = (00 00 01) is u′ = (00 00 00), as seen in
Figure 7.7(a). The channel decoder decides that the sent bits must have been u′ = (00
00 00). “If these are the sent bits, then the input that created them is m′ = (0 0 0),”
says the channel decoder, “and so we have decided on our output.”

There is a simple tool that we can use to find m′ once we have figured out u′, the
closest path in the trellis to the received bits v. All we have to do is look at the trellis—
at the series of solid and dashed lines that corresponds to u′. A solid line tells us a 0 is
the bit in m′ and a dashed line tells us that a 1 is the bit in m′. Let me explain by
example, using Figure 7.7(b) to help. In Figure 7.7(b), you see that u′ = (00 00 00) is
the output path corresponding to the top lines of the trellis. Now, if you look at the first
branch of the path, there you see below the 00 a solid line—that tells you the first
output bit in m′ is a 0. If you look below the second 00, you see a second solid line—
this tells you the second output bit is a 0, and so on.

So, the function of a convolutional decoder is really quite simple. It looks at v,
then looks at the trellis diagram and searches it until it’s found the output path in the
trellis u′ closest to v. From this u′, it decides on and outputs m′.

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 205

1

1

2

2

0 0

0 0 00

00 00 00

0 1

0 1

1 0

1 0

1 1

1 1

time 0

time 0

time 1

time 1

time 2

time 2

(a)

11

11 11 11

00 00

00 00

10 10

10 10

10

10 10 10

10

10 10 10

01 01

01 01

01

01 01 01

01

01 01 01

00

00 00 00

11 11
11 11

11

11 11 11

time 3

time 3

(b)

received: v = (00

u = (00

. . .

. . .

. . .

. . .

00

00

01)

00)

1 difference 1 more difference

0 difference 0 difference 1 difference

1 more difference

Total 3 different

Total 1 different

Total 2 different

Decide: = bits sent = (00 00 00)u

one possible path

a 2 possible pathnd

a 3 possible pathrd

solid line indicates
input bit is 0

solid line indicates
input bit is 0 input bit is 0

Decide: = (0 0 0)m

Figure 7.7
(a) Deciding on closest path in trellis (3 paths shown)
(b) determining output bits at convolutional decoder

206 � Chapter Seven

Example 7.2

For the convolutional coder described by the trellis diagram of Figure E7.2,
determine the output of the channel decoder when the channel decoder receives
v = (11 11).

Solution: The trellis diagram is drawn over two times in Figure E7.3. Look-
ing over at this figure, we see that the output of the trellis coder can be (11 11)
when it follows the shaded path. This tells us that the input bits that were sent
must have been m = (0 0), since: the best path corresponds to two solid lines,
each solid line indicating an input bit of 0.

0 0 0 0

0 1
0 1

0 1

1 0

1 1

0 0

1 0

1 1

1 1

1 0

0 0

0 1

0 1

0 0

1 0

1 1

1 1

1 0

Figure E7.3 Trellis diagram over 2 times

7.2.2 The Viterbi Algorithm

One thing I haven’t yet mentioned—if you have received, for example, v = (00 00 01 11
10 00 10 00 00 11 11 11 01 10 01 01 01 11 11 01), then you have to search through the
trellis to find the path closest to this v. But that search is a long one. Luckily, a fellow
named Viterbi presented a simple way to look through the trellis. The Viterbi Algo-
rithm (VA for short) lets you (or better yet, your computer or DSP chip), find the
closest path to v in the trellis easily and effectively.

Getting the Basic Idea The Viterbi Algorithm is based on a very simple idea:
Start at the time 0 in the trellis, and move through the trellis from left to right. At each
time, you can systematically eliminate some of the paths in the trellis as being closest
to v. In fact, according to the Viterbi Algorithm, you can eliminate (at every time) all

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 207

but four of the paths through the trellis as being closest to v, for the trellis of Figure
7.5. (In general, you can eliminate all but “s” paths through a trellis at any one time,
where “s” is the number of states.)

This path elimination is briefly explained with the help of Figure 7.8. At time L+1,
look at the top node. There are two paths that head into this node, one originating from
parent node A and the other originating from parent node B. At time L+1, you can
make a decision as to who is the better parent and choose between A and B. You
repeat this for every node at time L+1, thus leaving you with four paths through the
trellis at every time.

Understanding by Example Let’s say we input to the channel coder of Figure
7.2 the bits m = (0 0), in which case it outputs the bits u = (00 00). Let’s also say the
channel decoder receives v = (00 00). Let’s use the Viterbi Algorithm to search for u′,
the path through the trellis closest to v. Once we’ve found u′, we can output m′, our
guess at the bits sent into the channel coder.

First, we draw the trellis, and we associate with each start node the number 0.
This means that we are not biased toward any one start node over any other. This is
shown in Figure 7.9(a). Then, we start by examining the top node at time 1, which you
can see in Figure 7.9(b). For this node, there are two possible parent nodes, node 0 at
time 0 and node 1 at time 0. We are going to decide which is the best parent node,
using this procedure:

1. If we started at node 0 (time 0) and moved to node 0 (time 1), the first output
bits would be 00. Comparing this to v where the first two output bits are 00, we
say “0 bit errors if parent is node 0 (time 0).” We add this 0 to the 0 number that
we gave node 0 (time 0) in Figure 7.9(a), for a grand total of 0.

2. If we started at node 1 (time 0) and moved to node 0 (time 1), the first output
bits would be 11. Comparing this to v where the first two output bits are 00, we
say “2 bit errors if parent is node 1 (time 0).” We add this 2 to the 0 number that
we gave node 1 (time 0) in
Figure 7.8(a), for a grand
total of 2.

Now, since starting at node 0
(time 0) and moving to node 0
(time 1) creates the fewest total bit
errors (0), we proclaim that the
parent node for node 0 (time 1) is
node 0 (time 0), and that it carries
with it the number 0 (for zero total
errors with this selection). We

0 0

0 1

1 0

1 1

time L time L+1

node A

node B

Can decide on best
parent node (A or B)

Figure 7.8 Underlying idea of VA

208 � Chapter Seven

3

0 0 0 0

0 1

1 0

1 1

1 1

time 0

time 0

time 1

time 1

(a)

(b)

v 00

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

= (00)
0

0 0 0
difference:

Total + =

2 difference:
Total + =

0 2 2

Read this first

node 0

node 0

node 1

0
 lowest total

Best parent:
node 0

Read this last

Figure 7.9
(a) Setting initial values to 0

(b) picking best parent node (with lowest total) for node 0

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 209

0 0

1 0

0 1

1 0

1 1 0 1

time 0

lowest total 0

lowest total 1

time 0

time 1

time 1

(d)

(c)

v 00

0

0

0

0

= (00)

difference 1:
Total 0 + 1 = 1

difference 1:
Total 0 + 1 = 1

node 2

node 3

node 1

1
 lowest total

 node 2

 node 3

Best parent:
node 2

Best parent:
node 1

Best parent:
node 2

Figure 7.9
(c) picking best parent node for node 1
(d) best parent node for nodes 2 4 3

210 � Chapter Seven

repeat this for node 1 (time 1). You can see this ongoing in Figure 7.9(c). There, node
2 (time 0) and node 3 (time 0) are possible parent nodes. We decided between these,
as follows:

1. For node 2 (time 0) as starting node moving to node 1 (time 1), the output is
10. Comparing this to the first two bits of v, which are 00, we say “1 bit error if
parent node is node 2 (time 0).” We add this 1 to the 0 number that we gave node
2 (time 0) in Figure 7.9(a), for a grand total of 1.

2. For node 3 (time 0) as starting node moving to node 1 (time 1), the output is
01. Comparing this to the first two bits of v, which are 00, we say “1 bit error if
parent node is node 3 (time 0).” We add this 1 to the 0 number that we gave node
3 (time 0) in Figure 7.9(a), for a grand total of 1.

Since starting at node 2 (time 0) or node 3 (time 0) and moving to node 1 (time 1)
creates the same total bit errors, we proclaim that the parent node for node 1 (time 1)
is node 2 (time 0) (we use a tie-breaker rule of “always choose the top node in case of a
tie”). That carries with it the number 1 (for one total error with this selection).

We repeat this for node 2 (time 1) and node 3 (time 1), and the result of doing this
is shown in Figure 7.9 (d). That is all we do for our first move from left to right
through the trellis.

At the next time, we do a very similar thing. We start again at the top node, this
time starting with node 0 (time 2). Looking at Figure 7.10(a), we can see that this node
has two possible parent nodes, which are node 0 (time 1) and node 1 (time 1). We
decide between these two nodes as follows:

1. If we started at node 0 (time 1) and moved to node 0 (time 2), the second set of
output bits would be 00. Comparing this to v where the second set of output bits
are 00, we say “0 bit errors if parent is node 0 (time 0).” We add this 0 to the 0
number that we gave node 0 (time 1) in Figure 7.9(b), for a grand total of 0.

2. If we started at node 1 (time 1) and moved to node 0 (time 2), the second two
output bits would be 11. Comparing this to v where the second two output bits are
00, we say “2 bit errors if parent is node 1 (time 1).” We add this 2 to the 1 num-
ber that we gave node 1 (time 1) in Figure 7.9(c), for a grand total of 3.

Since starting at node 0 (time 1) and moving to node 0 (time 2) creates the fewest
total bit errors (0), we proclaim that the parent node for node 0 (time 2) is node 0 (time
1), and that it carries with it the number 0 (for zero total errors with this selection). We
repeat this for node 1 (time 2), node 2 (time 2) and node 3 (time 2); the results are
shown in Figure 7.10 (b).

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 211

We continue this process until we have run through the trellis for the length of
time corresponding to the length of v. In our case, since v consists only of two sets of 2
bits (v = (00 00)), we are done after two times. At the end, we have four end nodes with
four numbers. For example, end node 0 (time 2) comes with value 0, while end node 2
(time 2) comes with the value 1. We choose the end node with the smallest value. In
our example, looking at Figure 7.10, we choose the end node 0.

1

3

0 0

1 1

time 0

time 2

time 1 time 2

(a)

v 00= (00)

difference:
Total + =

0
0 0 0

difference: 2
Total 1 + 2 = 3

node 0node 0

node 1

node 1

node 2

node 3

node 1

0 lowest total

Best parent:
node 0

1

0

(b)

Best parent
2

Best parent
1

Best parent
2

lowest total
1

lowest total
1

lowest total
1

Figure 7.10 (a) best parent for node 0 (time 2)
(b) best parent for nodes 1, 2, 3 (time 2)

212 � Chapter Seven

From here, we know the history of parent nodes, so we can “backtrack” through
the trellis, and determine the u′ and the m′. And we’re done. In our case, we choose
node 0 (time 2) with a final value of 0, and we “backtrack” as shown in Figure 7.11.
This leads us to the output m′ = (0 0).

Now you know just how the channel decoder works to undo the effects of channel
coding, and along the way correct bit errors.

0 0

0 1

1 0

1 1

time 0 time 1 time 2

45 1

Best parent =
node 0

start your
reading here

Follow path back
to node 0=

best parent node

Best parent
is node 0

Follow line
back to
node 0

4th item
to read

From to , you have path through trellis.
This path tells you = (00 00) and = (0 0)u m

Figure 7.11 Explaining “backtracking” through trellis to get output

Example 7.3

Use the Viterbi Algorithm to determine the output of a convolutional decoder,
given

• the input bits to the decoder are v = (11 11) and

• the convolutional coder is described by the trellis diagram in Figure E7.2.

Solution: Figure E7.4 shows the trellis diagram when the Viterbi Algorithm
is performed. It shows (1) the number-of-errors computation for each branch, (2)
the best parent selection at each node, (3) the very best final node selection; and
(4) backtracking to determine the best path through the trellis. From this best
path, the decoder decides that the best output is (0 0).

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 213

(0 0)
0 0

(0 1)
0 1

0 1

(1 0)

(1 1)

0

1

2

3

0 0

1 0

1 1

1 1

1 0

0 0

0 1

0 1

0 0

1 0

1 1

1 1

1 0

best parent
= node 1
(total 0)

best parent
= node 1 (total 0)

best parent = 3
(total 0)

best parent = 0
(total 1)

best parent = 3
(total 1)

best parent = 0
(total 1)

best parent = 2
(total 2)

error = 1 (total 2)

error = 2 (total 2)error = 2 (total 2)

error = 1 (total 2)

err
or =

 0 (t
otal 1)

error = 2 (total 3)

error = 0 (total 0)

error = 2 (total 2)

err
or =

 0 (t
otal 0

)

error = 0 (total 0)

error = 1 (total 1)

error = 1 (total 1)

error = 1 (total 1)
error = 1 (total 1)

error = 1 (total 1)

error = 1 (total 1)

best parent = 2
(total 1)

receive: 1 1 1 1

7.3 Performance of the Convolutional Coder

Now that we know how the coder and the decoder in convolutional coding/decoding
work, we want to evaluate their performance. Channel coders and decoders are intro-
duced with the intention of correcting bit errors, so we’ll determine how well a
convolutional coder is able to correct bit errors. In general, a convolutional coder
can correct e bit errors in about every 4k bits, where the value k is the solution to
2k = (number of states (nodes)) and e is the value computed according to:

 −=

2

1mind
e (7.3)

The key to determining how well the trellis decoder is able to correct bit errors is
dmin. It tells you how easy it could be to mistake one path for another in the trellis.
Specifically, dmin is the smallest distance between any two paths with the same start
and end node in a trellis. Alternatively, this dmin value is equal to the smallest distance
between the all-zeroes path and another path through the trellis that starts at node 0
(time 0) and ends at node 0 (any later time).

Figure E7.4 Using the VA to determine best path

214 � Chapter Seven

For example, consider Figure 7.12. There you see a trellis and you see the all-
zeroes path (the path that when followed gives you an output that is all 0 bits). You see
another path highlighted that starts at node 0 and ends at node 0. Above each branch
of that path, you see the output bits, and a number. That number tells you how many
1’s are output by following this path (and therefore how far it is from the all-zeroes
path). You combine all these numbers. You repeat this for each path that starts at node
0 and ends at node 0. The smallest number you get is dmin. In Figure 7.12, dmin = 5.

0 0 00 00 00

0 1

1 0

1 1

time 0 time 1 time 2 time 3

All zeroes path

A path that starts
at node 0

0
and ends at

node

11
2

10
1

11
2

Total distance from
all zeroes:

5
(2+1+2)

Figure 7.12 Computing dmin

7.4 Catastrophic Codes

There are some convolutional codes that are very bad to use in a communication
system—in fact, they are so bad that they are known in engineering circles as cata-
strophic codes. A convolutional code is called a catastrophic one whenever the
following is possible. Look at Figure 7.13. There m = (0 0 0 0 0 0 0 ...) is input to the
convolutional coder, and u = (00 00 00 00 00 00 00 ...) is output by the convolutional
coder. This is sent across the channel, where only three bit errors occur for all time,
and we receive v = (11 01 00 00 00 00 00 ...). In response, the convolutional coder
outputs m′ = (1 1 1 1 1 1 1 ...). That is, only a finite number of bit errors were intro-
duced in the channel, but the convolutional decoder, in seeing the finite number of
errors, made an infinite number of errors. Yikes—catastrophic! Can this really
happen? The answer is that in a badly designed convolutional coder it can!

Let’s look at how a convolutional coder can make this type of error, so you can be
sure to avoid building one like this. Look at the convolutional coder drawn in Figure
7.14. It can be written in polynomial form as follows:

g1(X) = 1 + X (7.4)

g2(X) = 1 + X2 (7.5)

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 215

In modulo 2 multiplication and
addition, we can express g2(X) =
1 + X2 = (1 + X) ⋅ (1 + X). You can see
that in this case g1(X) is a factor of
g2(X). Whenever this happens, the
convolutional code is catastrophic. If
it doesn’t happen, then your code is
okay.

Let me elaborate on the cata-
strophic code idea with a simple
example. Take the coder of Figure
7.14. If you take a few moments to
represent it by a trellis diagram,

you’ll end up with the diagram shown in Figure 7.15. Using this trellis diagram, con-
sider this: you input m = (0 0 0 0 ...) which means the channel coder outputs u = (00 00
00 00 ...). The channel makes only 3 bit errors, and you receive v = (11 01 00 00 00 ...).
The decoder searches for the path in the trellis closest to this received signal, and it
finds that there is a path with no errors through the trellis, as shown in Figure 7.15.
Using this path, the convolutional coder outputs m′ = (1 1 1 1 1 ..). Wow—catastrophic.

Modulator

Demodulator

m = (0 0 0 0 0 ...) u = (00 00 00 00 ...)

v = (11 01 00 00 ...)m = (1 1 1 1 1 ...)

Convolutional
Coder

Convolutional
Coder:

1 bit in - 2 bits out

C
h
a
n
n
e
l

Uses VA

Figure 7.13 A catastrophic code

0
1 1

01
1

+

+

Convolutional coder

Figure 7.14 Convolutional coder
illustrating catastrophic code

216 � Chapter Seven

0 0 00 00 00 00

0 1

1 0

1 1

time 0 time 1 time 2

11 11 1111

00 00 00 00

10 10 10 10

11 11 11 11
00 01 01 01

10 10 10 10
01 01 01 01

time 3 time 4

Receive this path
when only 3

channel errors

v

Sent this path u

Figure 7.15 Explaining a catastrophic error in a catastrophic code

7.5 Building Your Own

Let’s say that you set out to build your own convolutional coder. Here are the criteria to
follow to make it a good one (most important criteria first):

1. Make sure it’s NOT catastrophic.

2. Make dmin (the smallest distance between the all-zeroes path and any other path
starting and ending at node 0) as big as possible. That means your code can
correct more errors e.

3. Make sure there is only one path with a distance dmin in the trellis.

4. Build the coder so that the trellis diagram has as few paths as possible with
distance dmin+ 1.

5. Build the coder so that the trellis diagram has as few paths as possible with
distance dmin+ 2.

Now you’re ready to build your own convolutional coder (although, in fairness,
you may just end up purchasing a chip with its own ready-to-go channel coders on it,
already meeting the above criteria).

www.ebook3000.com

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 217

Problems

1. Draw the trellis diagram for the k = 1, n = 3, K = 3 convolutional coder de-
scribed by

 g
1
(X) = 1 + X + X2 (Q7.1)

 g
2
(X) = 1 + X (Q7.2)

 g
3
(X) = 1 + X2 (Q7.3)

2. Draw the trellis diagram for the convolutional coder described by Figure Q7.1.

+

in
out

Figure Q7.1
Convolutional coder

3. Given the trellis diagram of Figure Q7.2, determine its block diagram.

0 0

0 1

1 0

1 1

0 0

00

00

0 0
0 0

1 0

1 1
Figure Q7.2

Trellis diagram

4. Consider the convolutional coder (k = 1, n = 2, K = 3) shown in Figure Q7.3.
Use the Viterbi Algorithm to determine the output of the convolutional decoder
when it receives (10 00 00 10 11).

http://www.ebook3000.org

Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding � 219

8. (a) Build any rate 1/2 convolutional coder (do not use one of the ones already
used in the problem set or the one used in the text).

(b) Describe it using a trellis diagram.

(c) Explain in three to four sentences how the convolutional decoder works.

(d) Determine if the convolutional coder you built was catastrophic.

+

+

in
out

Figure Q7.6
Convolutional coder

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

8
Chapter

Trellis-Coded Modulation (TCM)
The Wisdom of Modulator and

Coder Togetherness

Figure 8.1 shows a communication system with all the parts that we have drawn for
it so far. The source coder turns the information to bits; the channel coder adds

extra (redundant) bits to help the receiver correct bit errors; and the modulator turns
bits into signals ready to be sent over the channel. After traveling the length of the
channel, a noisy signal arrives at the demodulator. The demodulator returns the signal
to bits, the channel decoder corrects the bit errors, and the source decoder returns
the bits to the original analog information.

In trellis-coded modulation, or TCM for short, the idea is to consider some things
together. Specifically, at the transmitter side, there is a thoughtful matching of the
modulator to the channel coder. At the receiver side, the operation of the modulator
and the channel decoder are actually combined. Let’s look at why this is done and then
at how it all works.

ModulatorSource coder Channel coder

DemodulatorChannel decoderSource decoder

x(t)
Information

signal

m
bits

u
bits

s(t)

channel + n(t)

v
bits

m
bits

x(t)

r(t) = s(t) + n(t)

TCM considers this together

TCM combines this

Figure 8.1 The digital communication system (showing where TCM comes in)

222 � Chapter Eight

8.1 The Idea

Consider the transmitter side of a communication system, which consists of a source
coder, a channel coder, and a modulator. First, imagine that the channel coder is gone,
and we have the transmitter shown in Figure 8.2(a). We have a source coder output-
ting bits with a bit duration of T (a bit rate of R = 1/T), and a BPSK modulator which,
for each bit (0 or 1) that comes in, outputs a signal as shown in Figure 8.2(a). Figure
8.2(a) also shows the signals output by the modulator in the frequency domain. From
this figure, we can see that the output signals have a bandwidth (null-to-null) of
BW = 2/T.

Now, let’s consider the transmission system with the channel coder back in place,
as shown in Figure 8.2(b). Here, the source coder maps the information into bits of
duration T. The convolutional channel coder takes these bits, and for each bit that
comes in it puts out two bits. To operate in real time, the two bits that come out must

BPSK
ModulatorSource coder

x(t)
Information

signal

T

T T T

T T

1 0 1

s(t)=

− ω ω − ωAcos(t) +Acos(t) Acos(t)c c c

s(t) = Acos(t) (t) + Acos (t) (t T) Acos(t) (t 2T)c c c− ω π ω π − − ω π −

f

s(f)

f (1/T)c− fc f +(1/T)c

BW = 2/T

Figure 8.2(a) System without channel coder

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 223

fit (in time) into the same amount of time that the incoming one bit fits into—so each
bit output from the channel coder is of width T/2. See Figure 8.2(b) to get a clearer
picture of this. Finally, the bits that leave the convolutional coder are passed through
the modulator, and each 0 and 1 are mapped to the signal as shown by the BPSK
modulator of Figure 8.2(b).

This figure also shows the output of the BPSK modulator in the frequency do-
main. As you can see, this signal has a bandwidth (null-to-null bandwidth) of BW = 4/T.

If we briefly compare the case of a system with a channel coder and the case of a
system without one—Figure 8.2(b) vs. Figure 8.2(a)—you can see one clear differ-
ence: you benefit from a channel coder because it corrects errors, but when you use a
channel coder you pay the price of sending signals that require a larger bandwidth.

One day, a fellow named Ungerboeck said to himself, “There must be some way
to get the benefit of a channel coder without the cost of increased bandwidth.” He

BPSK
ModulatorSource coder

x(t)
Informational

signal

s(t)=

s(t)

f

S(f)

f (2/T)c− fc f +(2/T)c

BW = 4/T

Convolutional
Channel
Coder

− ωAcos(t)c − ωAcos(t)c Acos(t)cω
− ωAcos(t)c

T T
2

T T

1 0 1 1 0 1 0 11

T
2

T
2

T
2

T
2

T
2

T
2

T
2

T
2

T
2

T
2

T
2

Figure 8.2(b) System with channel coder

224 � Chapter Eight

came up with the idea shown in Figure 8.3. First, comparing Figure 8.3 to Figure
8.2(b) shows us that these two figures are very closely related. In fact, the only differ-
ence is that the system of Figure 8.3 uses a QPSK modulator, while the system of
Figure 8.2(b) uses BPSK. Let’s see what difference this makes. First, the transmitter
uses the same source coder to map the information to bits of duration T. Then, a
channel coder is used, which for every one bit that comes in creates two bits, each of
duration T/2. Finally, the modulator, a QPSK modulator, takes every two bits and maps
them to a symbol as shown in Figure 8.3.

Figure 8.3 shows the output of the system in the time and frequency domain.
Looking at this output in the frequency domain, we see that the signal output has a
bandwidth (null-to-null bandwidth) of BW = 2/T. This bandwidth is the same band-
width as that of the original (no channel coding system) of Figure 8.2(a).

Basically, what Ungerboeck realized (and what Figures 8.2 and 8.3 confirm) is
that if you introduce a channel coder, and follow it by a modulator that takes in more
bits, then you can use channel coding without increasing the bandwidth of the trans-
mitted signal. That turned out to be a very good idea.

QPSK
ModulatorSource coder

T T
2

T T T

T T

1 0 1

s(t)=

f

S(f)

f 1/Tc− fc f +1/Tc

BW = 2/T

Convolutional
Channel
Coder

1 0 1 0 11

s(t) = Acos(t + 3 /2) (t) + Acos (t +) (t T) + Acos(t +) (t 2T)c c cω π π ω π − ω π/2π/2 π −

*

*
1 1 0 1 0 1

Acos(t+3 /2)cω π Acos(t+ /2)cω π Acos(t+ /2)cω π

T
2

T
2

T
2

T
2

T
2

Figure 8.3 Ungerboeck’s idea for a new transmitter

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 225

8.2 Improving on the Idea

There were still a number of details that had to be resolved before this idea was em-
braced by the engineering community. In Figure 8.4(a) you see the outputs of a BPSK
modulator, which are Acos(ωct)π(t – iT) and Acos(ωct + 180°)π(t – iT). An error will only
occur if the noise of the channel is big enough to make a 180-degree phase shift occur. In
Figure 8.4(b) you see a drawing of the outputs of the QPSK modulator, which shows that
the signals sent by the modulator are Acos(ωct)π(t – iT), Acos(ωct + 90°)π(t – iT),
Acos(ωct + 180°)π(t – iT) and Acos(ωct + 270°)π(t – iT). In this case, an error occurs if
the noise is big enough to make it look like a 90-degree phase shift has occurred. By
adding a QPSK modulator in place of a BPSK modulator, the noise in the system will
introduce more errors—possibly so many more that the system of Figure 8.3 will be
lousy when compared to the systems of Figure 8.2(a) and (b).

QPSK
Modulator

BPSK
Modulator

In
0
1

In
0
0
1
1

0
1
0
1

Out

Out

Output in signal space

Output in signal space

s (t) = Acos(t) (t - iT)0 cω π
s (t) = Acos(t +) (t - iT)1 cω π π

s (t) = Acos(t) (t - iT)0 cω π
s (t) = Acos(t +) (t - iT)1 cω π/2 π
s (t) = Acos(t +) (t - iT)2 cω π π
s (t) = Acos(t + 3) (t - iT)3 cω π/2 π

(a)

(b)

s0

s1

s2

s3

ϕ 2(t)

ϕ 1(t)

A√T/2

A√T/2

√ √2 T/2A

ϕ √ ω π1 c(t) = (2/T)cos (t) + (t - iT)
A√(T/2)–A√(T/2)

s1 s0

2A√(T/2)

Figure 8.4 Comparing BPSK to QPSK

226 � Chapter Eight

Ungerboeck resolved this problem by coming up with “mapping by set partition-
ing,” shown in Figure 8.5. There you see a source coder, a new convolutional coder
which takes two bits and maps into three bits, and a modulator using an 8-PSK constel-
lation. Let’s examine this figure.

+

+

Convolutional Coder
2 bits in 3 bits out

1 2 3Source
coder

8-PSK
modulatorm m1 2 m2

m1 u1

u2

u3

u u u1 2 3 s(t)

Uses
 mapping by

set partitioning

Figure 8.5 Ungerboeck’s new transmitter

First, the channel coder takes in two bits (m1, m2) at each time and outputs three
bits (u1, u2, u3) at each time. To better understand its workings, we’ll draw a trellis
diagram for the channel coder as shown in Figure 8.6. First, the nodes (dots): there
are four nodes, one for each possible (bit at position 1, bit at position 2) pair. Then the
branches: the solid branch indicates that incoming bit m2 is 0; the dotted branch
indicates that the incoming bit m2 is 1. If the branch is drawn on top (i.e., if it is the top
branch of a pair) then that means the incoming bit m1 is 0; if it corresponds to the
bottom branch, then that means the incoming bit m1 is 1. For a given state (node) and
a given input (branch), the three-bit output that comes out of the channel coder is
drawn above the branch.

Now let me explain the
modulator and how Ungerboeck
said it would work. His idea was
this: First, draw pretty pictures of
the modulator outputs. Look at
Figure 8.7, where we see on top
the eight possible outputs of an 8-
PSK constellation, drawn on the
orthonormal basis (look back to
Chapter 5 for a refresher if you’d
like).

1 2

0 0

0 1

1 0

1 1

time 0 time 1 time 2

000 000
100 100011 011111 111

011 011111 111

000 000
100 100

010 010110 110
001 001101 101

001 001101 101
010 010

110 110

Figure 8.6 Trellis diagram describing channel coder

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 227

φ √ ω π −1 c(t) = (2/T)cos(t) (t iT)

ϕ −√ ω π −2 c(t) = (2/T)sin(t) (t iT)

s3

s4

s5

s6

s7

s0

s1
s

2

1

0

7

6

5

4

3

2

Figure 8.7 Splitting the 8-PSK constellation

0

0

0

2

2

4

4

4

6

6

1

1

1

3

3

5

5

5

7

7

2

6

3

7

228 � Chapter Eight

Next, separate these points, by putting half on the left and half on the right—
making sure you separate them so that every point has a new neighbor, and so that
each point in a new set of points is as far away as possible from its new neighbors. You
can see this in the second drawing of Figure 8.7. Then, take these points and split
them again, just as you split the first set. You can see this in the third drawing of
Figure 8.7. Do this again, and again, until all that’s left is a set of single points, just as
on the bottom picture of Figure 8.7.

At this point you might think that Ungerboeck had given up engineering alto-
gether and taken an unusual interest in modern art, but fear not, he had good
engineering intentions. Next, he said, you build a modulator with this cool-looking
picture, where at the bottom of the picture are single points (representing output
modulation signals). You match the bits coming into the modulator to the output
modulation signals shown at the bottom of the picture in Figure 8.7, using the trellis
diagram. Ungerboeck came up with just two rules:

(1) All parallel transitions (transitions that start and end at the same node) are
separated by the maximum possible distance; and

(2) All transitions diverging from or merging to a single node are assigned the
next maximum distance.

It’s hard to explain these
rules in general, so let’s go to our
example, where they will make
sense. Take a look at Figure 8.8.
Look first at the top branches.
There are two branches starting
at node 0 and ending at node 0—
these are called parallel branches.
Ungerboeck said in rule (1) that
these branches should be as-
signed points that are as far apart
as possible. Looking at Figure 8.7,
I will assign one branch point 4
and the other branch point 0. You
can see this in Figure 8.8, marked
(a). You can also see that our
selection tells us that modulator
input bits (0 0 0) are mapped by
the modulator to point 0, and (1 0
0) is mapped by the modulator to
the modulator output labeled 4
(see Figure 8.8, marked (b)).

Figure 8.8 Assigning modulation symbols to
incoming bits using the trellis

1 2

0 0

0 1

1 0

1 1

time 0 time 1

000

100
011111

011
111

000
100

010 110

001101

001 101

010

110

a

b

c

d

0
4

2
6

2

6

0

4

3

7
1

5

1
5

3

7

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 229

Next we’ll move to the branches going from node 0 to node 2. There are two
branches here, so following rule (1), we want to assign to these branches two points as
far apart as possible—giving the branches either the points 1 and 5, or 2 and 6, or 3
and 7 (Figure 8.7). We seem to have a choice here. But now rule (2) comes into play,
and it tells us which of these to choose. Rule (2) says that all branches leaving the
same node must be given the next maximum distance—in our case, since “0 and 4” are
already leaving the node 0, we’ll want to choose “2 and 6” to be the other points leaving
the node 0 (since these points are farther from 0 and 4 than our other choices of “3
and 7” or “1 and 5”). This is shown in Figure 8.8 (marked (c)). From here, we can see
that the input bits (0 1 1) are mapped to the modulator output labeled 2, and the input
bits (1 1 1) are mapped to the modulator output labeled 6 (see Figure 8.8, marked (d)).

We can continue in this way, moving through our entire trellis, and we quickly
end up with the trellis shown in Figure 8.8. This indicates that the modulator maps
input bits to output symbols as you can see in Figure 8.9.

And with that, Ungerboeck smiled, for he had just devised a smart way to build
modulators that were matched to channel coders.

In

000

001

010

011

100

101

110

111

Output symbol number

0

1

3

2

4

5

7

6

Output symbol

s = (A

s = (A/

s = (

s = (0, A

s = (A

s = (

s = (

s = (0,

0

1

3

2

4

5

7

6

√

√ √ √

− √ √

√

− √

− √ − √

√ − √

−

T/2, 0)

2 T/2, T/2)

T/2, T/2)

T/2)

T/2, 0)

T/2, T/2)

T/2, T/2)

)

Output signal

s (t) = Acos(t) (t iT)0 cω π −

ω π π −

ω π π −

ω π π −

ω π π −

ω π π −

ω π π −

ω π π −

s (t) = Acos(t+ /4) (t iT)

s (t) = Acos(t+3 /4) (t iT)

s (t) = Acos(t+ /2) (t iT)

s (t) = Acos(t+) (t iT)

s (t) = Acos(t+5 /4) (t iT)

s (t) = Acos(t+7 /4) (t iT)

s (t) = Acos(t+3 /2) (t iT)

1 c

3 c

2 c

4 c

5 c

7 c

6 c

A/√2

A/√2 A/√2

A/√2

A/√2 A/√2

A/√2

A/√2

Figure 8.9 8-PSK modulator input and output created using trellis of Figure 8.8

Example 8.1

For this example, we’ll use the convolutional coder of Figure 8.5. But this time, an
8-ASK modulator will be used, in place of an 8-PSK modulator. Match the outputs of
the 8-ASK modulator to the different branches of the trellis shown in Figure 8.6.

230 � Chapter Eight

Solution: First, the 8-ASK constellation is separated into parts, separating the
constellation into points further and further apart, as shown in Figure E8.1.

Next, we assign each point in the 8-ASK constellation to a branch in the
trellis according to the two rules spelled out by Ungerboeck: all parallel transi-
tions separated by a maximum distance, and all transitions diverging or merging
get the next maximum distance. Applying this rule leads to the first two columns
of Figure 8.9, where this time the 0’s, 1’s, …, 7’s refer to the points marked in
Figure E8.1.

x x x x x x x x
54 610 2 3 7

x x x x
4 60 2

x x x x
2 6

x x
1 5

x x
3 70 4

x x x x
5 71 3

1(t)

x x
0 4

x x
2 6

x x
1 5

x x
3 7

The 8 PSK constellation drawn in its orthonormal basis

Figure E8.1 Separating the 8-PSK points

8.3 The Receiver End of Things

At the receiver side, Ungerboeck had an unusual idea: he would combine the demodu-
lator and channel decoder together and they would operate as a single device, as
shown in Figure 8.10. He would call his new unit the TCM decoder. We’ll explain how
it works using an example, shown in Figure 8.11.

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 231

8.3.1 The Input

First, we’ll figure out what is coming into the decoder (its input). Figure 8.11(a)
shows the communication system under consideration. The input to the channel
coder is m = (00 00 00 00), which makes its output u = (000 000 000 000). These bits
enter into the modulator. Looking back at the modulator in the previous section (we
studied it in Section 8.2, and detailed it in Figure 8.9), we know that for each input of
000, the modulator outputs the signal corresponding to “0”, which corresponds to
Acos(ωct)π(t – iT). More importantly to our case in hand, for the input u = (000 000
000 000), the entire output corresponds to (as seen in Figure 8.11):

() () () () () () (cos cos cosc c cs t A t t A t t T A t t= ω π + ω π − + ω π −
(8.1)

() () () ()1 2 3s t = s t s t s t+ +
(8.2)

where si(t) = Acos(ωct)π(t – (i – 1)T). Graphically, we have s(t) corresponding to the
plot shown in Figure 8.11(a). This signal s(t) leaves the modulator and is sent out
across the channel, which adds a noise to the transmitted signal s(t). The resulting
signal is

() () ()tntstr += (8.3)

Demodulator Channel
decoder

r(t) = s(t) + n(t)

r(t) = s(t) + n(t)

bits
v

bits
m

bits
m

Combine
to get

T C M
Decoder

Figure 8.10 Ungerboeck’s idea at the receiver side

232 � Chapter Eight

Channel
coder

8-PSK
modulator

m = (00 00 00 00) u = (000 000 000 000)

s(t)

s(t) =

Output symbol #

Output symbol

Output signal

0 T 2T 3T 4T

Acos(t)cω Acos(t)cω Acos(t)cω Acos(t)cω

s (t)1 s (t)2 s (t)3 s (t)4

0

s0

0

s0

0

s0

0

s0

(a)

0 T 2T 3T 4T

s(t) +

n(t)

r(t) = s(t) + n(t)

r (t) = s (t) + n (t)1 1 1

r (t) = s (t) + n (t)2 2 2

r (t) = s (t) + n (t)4 4 4

r (t) = s (t) + n (t)3 3 3

r(t) = r (t) + r (t) + r (t) + r (t)1 2 3 4

(b)

Figure 8.11 Getting the input to the TCM decoder
(a) modulator output s(t)

(b) channel output = TCM decoder input = r(t) = s(t) + n(t)

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 233

which is drawn in Figure 8.11(b). As shown in this figure, another way to express r(t),
more convenient in our upcoming presentation, is to write r(t) as a sum of time-sepa-
rate components. This leads to an r(t) written as:

() () () () ()trtrrrtrtr 4321 +++= (8.4)

where r1(t) = s1(t) + n1(t), r 2(t) = s2(t) + n2(t) and so on. This r(t) feeds the TCM
decoder.

8.3.2 The TCM Decoder Front End

With r(t) coming in, let’s see what the TCM decoder does. It gets started with a
decoder front end. Looking at each time interval separately, we see

() () ()tntstr iii += (8.5)

where si(t) = Acos(ωct) ⋅ π(t – (i – 1) T) .

We know, from our reading in Chapter 5, that the r i(t) can be represented
fully on the orthonormal basis () () ()() ()2

1 2cos 1 ,T ct t t i T t= − − =φ ω π φ
() ()()TittcT 1sin2 −−− πω . Specifically, ri(t) can be represented as:

()iii r,r 21=r (8.6)

where

iii nsr 111 += (8.7)

iii nsr 222 += (8.8)

Here, () ()0,, 221
Tii Ass = and n1

i and n2
i represent independent Gaussian random

variables.

Now, Ungerboeck knew this too. He said to himself: Since r i(t) can be fully
represented as a vector of two values, what I’ll do to start out the construction of the
TCM decoder is build a device that maps ri(t) into the vector r i = (r1

i, r2
i).

With that in mind, Ungerboeck drew the TCM decoder front end shown in Figure
8.12. This simply maps r i(t) into its alternative representation of r i = (r1

i, r2
i).

When the decoder front end was done with the incoming r(t), this is what came
out of the receiver front end:

IN: r1(t), r2(t), r3(t), r4(t)

OUT: r1, r2, r3, r4

234 � Chapter Eight

×

×
r (t) = s(t) + n (t)i i i

S

S

ϕ 1(t)

ϕ2(t)

r1
i

r2
i

Figure 8.12 The TCM decoder front end

8.3.3 The Rest of the TCM Decoder

Ungerboeck noted that he had in his TCM decoder something he could write as one
big vector:

()4321 ,,, rrrrr = (8.9)

He could write this as

nsr += (8.10)

where s = (s1, s2, s3, s4) (and si = (s1
i, s2

i)) represents the sent signal from the modula-
tor and n = (n1, n2, n3, n4) (and ni = (n1

i, n2
i)) represents the channel noise.

He wanted to go from this long vector r to what he called m′, a decision on the
incoming bits m. The idea is this. You have r = (r1, r2, r3, r4). You’d like to decide on
the four sent symbols s = (s1, s2, s3, s4). If you knew s, the signals sent from the
modulator, then you could, by looking at the table of Figure 8.9, figure out m, the sent
bits.

So, given r, you want to figure out what I’ll call s′, your best guess on the transmit-
ted s. To do this, you look at the trellis diagram, which you’ll find redrawn in Figure
8.13. You find the one path through the trellis that creates an s as close as possible to
the sent r. By this, I mean you find the path through the trellis that minimizes the
value

 244233222211 srsrsrsr −+−+−+−=V (8.11)

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 235

where si refers to the ith output symbol of the selected path in the trellis and
 ri – si refers to the distance between ri = (r1

i, r2
i) and si = (s1

i, s2
i). The one path through

the trellis closest to r indicates the sent s, and from this you can then determine the m.

Let’s look at an example. In the example we’ve been considering throughout
Section 8.3, the sent s corresponds to

 ()4321 ,,, sssss = (8.12)

where () ()21 2, , 0i ii Ts s A= =s . Let’s assume A = 1 V and T = 2 sec, which leads us

to si = (s1
i, s2

i) = (1, 0). We’ll also assume that the noise n is a noise which leads to

 ()44332211 ,,, nsnsnsnsnsr ++++=+= (8.13)

where

() () ()1, 0 0.1, 0.1 1.1, 0.1i i+ = + =s n (8.14)

We can easily show, by an exhaustive search of the trellis diagram of Figure 8.13,
that the path through the trellis that has a corresponding s = (s1, s2, s3, s4) closest to r
is that shown in Figure 8.14. Now, looking at the branches of this path through the
trellis (solid branch indicates m2 = 0, top branch indicates m1 = 0), we immediately
figure out that the decoder should output m′=(00 00 00 00 00).

0 0

0 1

1 0

1 1

time 0 time 1 time 2 time 3 time 4

(r1 r2 r3 r)4RECEIVE =r

s0
s4

s2

s6

s2

s6s0

s4

s3

s7s1

s5

s1

s5s3

s7

s0
s4

s2

s6

s2

s6s0

s4

s3

s7s1

s5

s1

s5s3

s7

s0
s4

s2

s6

s2

s6s0

s4

s3

s7s1

s5

s1

s5s3

s7

s0
s4

s2

s6

s2

s6s0

s4

s3

s7s1

s5

s1

s5s3

s7

Figure 8.13 The trellis diagram of Figure 8.8 –
representing channel coding and modulation

236 � Chapter Eight

s0=(1,0) s0=(1,0) s0=(1,0) s0=(1,0)

Figure 8.14 Best path through trellis given
r = ((1.1, 0.1), (1.1, 0.1), (1.1, 0.1), (1.1, 0.1))

Example 8.2

Assume, as in the section just before this example, that a rate 2/3 convolutional
coder is followed by an 8-PSK modulator. Let the trellis diagram describing these
operations correspond to Figure 8.8. Assume the input bits are m = (00 00 00 00),
which means the output from the convolutional coder is then v = (000 000 000 000),
and the output from the modulator is thus the 8-PSK output that can be expressed
on an orthonormal basis as

 s = (s1, s2, s3, s4) = ((1,0), (1,0), (1,0), (1,0)) (E8.1)

Now, assume that the channel is particularly noisy, and somehow the de-
modulator receives

 r = s + n = ((1,0), (1,0), (1,0), (1,0)) + ((0.9, 0), (0.9, 0), (0.9, 0), (0.9, 0))
 = ((1.9, 0), (1.9, 0), (1.9, 0), (1.9, 0))

(E8.2)

Determine the output of an optimal decoder.

Solution: At this point in the chapter, an exhaustive search through the
trellis would have to be performed to determine the best path. However, in this
case, a little bit of thinking let’s us avoid an exhaustive search.

As you can see in Figure E8.2, the received value (1.9, 0) is closer to (1, 0)
than any other point in the 8-PSK constellation. This tells us that if the path corre-
sponding to outputs of (1, 0) exists, this would be the closest path to inputs (1.9, 0).

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 237

That (1, 0)’s path does indeed exist—it’s the top line through the trellis. So,
following this top line, which corresponds to the best path through the trellis, we
decide to output the bits (00 00 00 00).

8.3.4 Searching for the Best Path

One thing that the decoder must do is search for the best path through the trellis—
that is, search for the path through the trellis that has an s closest to r. One way to
figure out the best path is to perform an exhaustive search of all paths and figure out
which one demonstrates an s that is closest to r. But this is computationally very
expensive.

There is a better and easier way to search through the trellis, using a method
we’ve seen earlier, when we discussed channel decoders for convolutional codes. It’s
called the Viterbi Algorithm.

Let’s look at an example to show how to apply the Viterbi Algorithm to find the
best path through the trellis in the case of trellis-coded modulation. We’ll use the same
example from the previous subsection, where

 ()4321 ,,, rrrrr = (8.15)

and

ri = (1.1, 0.1).

Let’s use the Viterbi Algorithm to search for s′, the path through the trellis
closest to r. Once we’ve found s′, we can output m′, our guess at the bits sent by the
transmitter side. First, we draw the trellis, and we associate with each start node the
number 0. This means that we are not biased toward any one start node over any
other. This is shown in Figure 8.15(a). Then, we start by examining the top node at

x

x

x x

x

x

x

x

(1.9, 0)(1, 0)

closest point in an
8-PSK constellation

Figure E8.2 Closest point to (1.9, 0) in our 8-PSK constellation

238 � Chapter Eight

00

01

10

11

(a)

0

0

0

0

00

01

10

11

time 0 time 1

s0=(1,0)

s4=(–1,0)

s 2=(0,1)

s6=(0,–1)

r 1 = (1.1, 0.1)

node under consideration = node 0 (time 1)

Best:
best parent node = node 0 (time 0)
branch = top branch

Lowest total = 0.02

(b)

Figure 8.15 Using the VA to move from time 0 to time 1 through trellis

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 239

time 1, which you can see in Figure 8.15(b). For this node, there are two possible
parent nodes, node 0 at time 0 and node 1 at time 0. Each node comes with two pos-
sible branches, a top branch and a bottom branch. We are going to decide which is the
best parent node and the best branch for node 0 (time 1), like this:

1. If we started at node 0 (time 0) and moved to node 0 (time 1) using the top
branch, the first output symbol would be (1, 0). Comparing this to r where the
first symbol is (1.1, 0.1), we say “d1 = (1.1 – 1)2 + (0.1 – 0)2 = 0.02 distance if parent
is node 0 (time 0), top branch.” We add this 0.02 to the 0 number that we gave
node 0 (time 0) in Figure 8.15(a), for a grand total of 0.02.

2. If we started at node 0 (time 0) and moved to node 0 (time 1) using the bottom
branch, the first output symbol s1 would be (–1, 0). Comparing this to r where the
first symbol is (1.1, 0.1), we say “d2 = (1.1 – (– 1))2 + (0.1 – 0)2 = 4.85 distance if
parent is node 0 (time 0), bottom branch.” We add this 4.85 to the 0 number that
we gave node 0 (time 0) in Figure 8.15(a), for a grand total of 4.85.

Figure 8.15 (continued) Using the VA to move from time 0 to time 1 through trellis

time 1

(c)

Node 0 (time 0), top
0.02

Node 3 (time 0), top
 0.5

Node 1 (time 0), top
0.02

Node 2 (time 0), top
0.02

240 � Chapter Eight

3. If we started at node 1 (time 0) and moved to node 0 (time 1) using the top
branch, the first output symbol s1 would be (0, 1). Comparing this to r where the
first output symbol is (1.1, 0.1), we say “d3 = (1.1 – 0)2 + (0.1 – 1)2 = 2.02 distance if
parent is node 1 (time 0), top branch.” We add this 2.02 to the 0 number that we
gave node 1 (time 0) in Figure 8.15(a), for a grand total of 2.02.

4. If we started at node 1 (time 0) and moved to node 0 (time 1) using the bottom
branch, the first output symbol s1 would be (0, –1). Comparing this to r where the
first output symbol is (1.1, 0.1), we say “d4 = (1.1 – 0)2 + (0.1 – (– 1))2 = 2.42
distance if parent is node 1 (time 0), bottom branch.” We add this 2.42 to the 0
number that we gave node 1 (time 0) in Figure 8.15(a), for a grand total of 2.42.

Since starting at node 0 (time 0) and moving to node 0 (time 1) along the top
branch creates the smallest distance (0.02), we proclaim that the parent node for node
0 (time 1) is node 0 (time 0) and the best branch is the top branch, and that it carries
with it the number 0.02 (for total distance with this selection).

We repeat this for node 1 (time 1), node 2 (time 1) and node 3 (time 1), and the
results are shown in Figure 8.15(c). That is all we do for our first move from left to
right through the trellis.

At the next time, we do a similar thing. We start again at the top node, this time
starting with node 0 (time 2). Looking at Figure 8.16, we can see that this node has
two possible parent nodes, which are node 0 (time 1) and node 1 (time 1). Each parent
node comes with two possible branches. We decide between these nodes and branches
as follows:

1. If we started at node 0 (time 1) and moved to node 0 (time 2) using the top
branch, the second output symbol would be (1, 0). Comparing this to r where the
second signal is (1.1, 0.1), we say “d1 = (1.1 – 1)2 + (0.1 – 0)2 = 0.02 distance if
parent is node 0 (time 1), top branch.” We add this 0.02 to the 0.02 number that
we gave node 0 (time 1) in Figure 8.15(b), for a grand total of 0.04.

2. If we started at node 0 (time 1) and moved to node 0 (time 2) using the bottom
branch, the second output symbol would be (–1, 0). Comparing this to r where
the second signal is (1.1, 0.1), we say “d2 = 4.85 distance if parent is node 0 (time
1), bottom branch.” We add this 4.85 to the 0.02 number that we gave node 0
(time 1) in Figure 8.15(b), for a grand total of 4.87.

3. If we started at node 1 (time 1) and moved to node 0 (time 2) using the top
branch, the second output symbol would be (0, 1). Comparing this to r where the
second sent signal is r2=(1.1, 0.1), we say “d3= 2.02 distance if parent is node 1
(time 1), top branch.” We add this 2.02 to the 0.5 number that we gave node 1
(time 1) in Figure 8.15(c), for a grand total of 2.52.

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 241

0.02

0.5

0.02

0.5

time 1 time 2

s0=(1,0)

s4=(–1,0)

s 2=(0,1)

s6=(0,–1)

r2=(1.1, 0.1)

node 0 (time 2)

Figure 8.16 Moving through the trellis using the VA (from time 1 to time 2).
Only movement to top node is drawn.

4. If we started at node 1 (time 1) and moved to node 0 (time 2) using the bottom
branch, the second sent symbol would be (0, –1). Comparing this to r where the
second output symbol is (1.1, 0.1), we say “d4= 2.42 distance if parent is node 1
(time 1), bottom branch.” We add this 2.42 to the 0.5 number that we gave node 0
(time 1) in Figure 8.15(b), for a grand total of 2.92.

Since node 0 (time 1) to node 0 (time 2), along the top branch, creates the small-
est total (0.04), we proclaim node 0 (time 1) and the “top” branch the best parent and
branch.

We continue this process for node 1 (time 2), node 2 (time 2) and node 3 (time 2).
And that ends our next move from left to right through the trellis.

We repeat the process at time 3, and then at time 4. Now, at the end, we have four
end nodes with four numbers. For example, end node 0 (time 4) comes with value
0.08. We choose the end node with the smallest value.

From here, we know the history of parent nodes and branches, so we can “back-
track” through the trellis, and determine the s′ and the m′. And we’re done.

In our case, we choose node 0 (time 4) with a final value of 0.08, and we “back-
track,” leading us to the path shown in Figure 8.14. This leads us to the output m′ =
(00 00 00 00 00).

Now you know how the TCM decoder works to undo the effects at the transmit-
ter side and correct bit errors along the way.

242 � Chapter Eight

Problems

1. You want to build a TCM system that is to use the convolutional coder of Figure
Q8.1 and the modulation scheme of Figure Q8.2.

(a) Draw the trellis diagram representing the convolutional coder.

(b) Assign modulation symbols to output bits by using mapping -by -set
-partitioning. Provide a complete trellis diagram including modulation
outputs.

(c) Draw the TCM decoder front end.

(d) Given A = 1 and that the output of the TCM decoder front end is (0.7, 0),
(1.2, 0), (3.3, 0), (1.2, 0) use the Viterbi Algorithm to determine the output
of the TCM decoder.

+

m2

m1

u2

u1

u3

2 bits input 3 bits output

+

Figure Q8.1
Convolutional coder

x x x x

x

x

x

x

5 4

3A

6

0 1

2

3

7

φ2 (t)

φ1(t)A

Figure Q8.2
8 outputs of modulator

www.ebook3000.com

http://www.ebook3000.org

Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness � 243

2. Consider the convolutional coder of Figure Q8.3. Assume that the modulation
is 32-ASK. Using your understanding of trellis diagrams and mapping-by-set
partitioning, draw a trellis diagram that includes the output of the modulator.

3. Provide a trellis diagram and a block diagram that fully describes a TCM coder
meeting the following criteria:

• The channel coder must have 1 bit input and 2 bits output;

• The modulation scheme must be QPSK.

4. Describe the benefits of using the TCM of Figure Q8.1 in place of using the
same convolutional coding followed by a 4-PSK modulator.

+

m4

m3

u4

u3

u5

m2 u2

m1 u1

input bits output bits

+

Figure Q8.3
Convolutional coder

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

9
Chapter

Channel Filtering and
Equalizers

In Chapter 5, we talked about using modulators to map bits m to a signal s(t) that
could be sent over the channel. We saw that the channel added a noise n(t) to the

sent signal, giving the receiver the noisy r(t) = s(t) + n(t). We took this a step further
when we talked about demodulators, which, given r(t) = s(t) + n(t), did their best to
regenerate the original bit sequence m.

Now we take this even further. This time we’ll consider something called pulse
shaping at the modulator. Modulators still take bits m and turn them to a signal s(t)—
we just consider a more general way to do this. We can now talk of channels that do
two things—add a noise and do a filtering c(t), giving the receiver r(t) = c(t) ∗ s(t) +
n(t). We’ll also spend some time talking about what goes on at the receiver, which is
called equalization.

9.1 Modulators and Pulse Shaping

Consider the modulators we talked about in Chapter 5. We talked of ASK, PSK, and
QAM (as well as FSK, but we’ll leave that one out for now). Look over to the QPSK
modulator in Figure 9.1(a) for a refresher. In Figure 9.1(b), we see that in comes
m = (10 00 10 10 00), and out goes the waveform s(t). We can express the modulator
output, such as this QPSK output, mathematically according to

() () () () () ()0 1 2 3 4s t s t s t s t s t s t= + + + + (9.1)

() () () () ()
() ()

0 0 1 1 2

3 3 4

cos cos c

cos 3 c

c c

c

s t A t t A t t T A

A t t T A

= ω + θ π + ω + θ π − +

+ ω + θ π − +

(9.2)

() () ()
4

0

cosi c i
i

s t A t t iT
=

= + −∑ ω θ π (9.3)

246 � Chapter Nine

QPSK

in out

(a)

0
0
 1
 1

0
 1
0
 1

Acos(ωct + 0), iT<t<(i+1)T = Acos(ωct + 0)π(t–iT)
Acos(ωct + π/2), iT<t<(i+1)T = Acos(ωct + π/2)π(t–iT)

Acos(ωct + 3π/2), iT<t<(i+1)T = Acos(ωct + 3π/2) . π(t–iT)
Acos(ωct + π), iT<t<(i+1)T = Acos(ωct + π) . π(t–iT)

Accos(ωct + π) Accos(ωct + π) Accos(ωct + π)Accos(ωct) Accos(ωct)

10

out:in:

m = 10 00 10 10 00

s(t) =

s0(t) s1(t)

(b)

s2(t) s3(t) s4(t)

00 10 10 00

0 T 2T 3T 4T

QPSK

Figure 9.1 Describing a modulator using QPSK as an example
(a) input-output relationship

(b) input-output example

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 247

() { } ()
4

0

Re i cj j t
i

i

s t A e e t iT
=

= −∑ θ ω π (9.4)

 When you write what comes out in this way, it indicates a simple way to build the
modulator. For example, the QPSK modulator can be built as shown in Figure 9.2.
Here, bits come in and they are mapped by a coder to a complex amplitude indicating
the ij

iA e θ value. This is then passed through what is called the pulse shaper, which
turns the information ij

iA e θ into the shape ()ij
iA e t iT−θ π . Finally, we multiply this

by cj te ω and take the real part, and, voila, for every two bits that come in we’ve got
{ } ()Re i cj j t

iA e e t iTθ ω π − coming out.

coder

bits
0 0
0 1
1 0
1 1

pulse
shaper x Re { . }

symbols = (Aejπ Aej0) signals = Aejπ π(t) + Aej0π(t–1T) s(t) = ∑ Re{Aejθi ejωct} . π(t–iT)

ejωct

Aiejθi π(t–iT) s(t)π(t)Symbol, Ii = Aiejθi

Aej0

Aej π/2

Aejπ

Aei 3π/2

m = (10 00)
i=0

1

Figure 9.2 Construction of modulator (e.g. QPSK)

Now, examine the modulator shown in Figure 9.3. It is identical in every way to
the modulator in Figure 9.2, with one exception. The pulse-shaping filter, which was
previously π(t), is changed to g(t). As a result, the output of the modulator is now

() { } ()
1

0

Re i c

L
j j t

i
i

s t A e e g t iT
−

=

= −∑ θ ω
(9.5)

() { } ()
1

0

Re c

L
j t

i
i

s t I e g t iT
−

=
= −∑ ω

(9.6)

where g(t) may be any shape you’d like, and Ii is shorthand for ij
iA e θ . So far in all the

modulators we’ve looked at, we’ve used g(t) = π(t). Soon, as you read on, you’ll see that
will be a reason for using a different g(t). But for now, simply know that you have a
new way to build modulators and an easy way to generalize them.

248 � Chapter Nine

Example 9.1

Consider a BPSK modulator. Express the output of a BPSK modulator in an
equation that looks similar to Eq. (9.6).

Solution: For starters, let’s consider the output of a BPSK modulator at one
time. It looks like

 () () ()cosi c is t A t t iT= ω + θ π − (E9.1)

where

 0 or 180iθ = � � (E9.2)

Now, in a more general form (we can generalize the pulse shape), we write
this equation according to

 () () ()cosi c is t A t g t iT= ω + θ − (E9.3)

Applying a little bit of math to the output of a BPSK modulator, we end up with

 () { } ()Re i cj j t
is t Ae e g t iTθ ω= − (E9.4)

Now, if we consider the output at a whole bunch of times, we have

 () { } ()
1

0

Re i c

L
j j t

i

s t Ae e g t iT
−

θ ω

=
= −∑ (E9.5)

 () { } ()
1

0

Re c

L
j t

i
i

s t I e g t iT
−

ω

=

= −∑ (E9.6)

Figure 9.3 Construction of new modulator with different pulse shaper

coder Re { . }
bits
0
0
1
 1

0
1
0
 1

pulse
shaper x

new

s(t)g(t)

ejωct

Symbol, Ii = Aiejθi

Aej0

Aejπ/2

Aejπ

Aej3π/2

Aiejθi g(t–iT)

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 249

where

 0 180orij j j
iI Ae Ae Ae

� �θ= = (E9.7)

9.2 The Channel That Thought It Was a Filter

We have just re-expressed the modulators that we saw in Chapter 5—in fact, we’ve
found a way to generalize them somewhat. In Chapter 5 we also saw channels. Those
channels added a noise, and the channel was modeled as shown in Figure 9.4(a). We
are now going to present a new channel, a more general model. A channel may do
more than add a noise—it may act as a filter c(t) and add a noise n(t). In this case, the
channel is modeled as shown in Figure 9.4(b).

channel
filter

+

+

new

r(t) = s(t) + n(t)

r(t) = s(t) * c(t) + n(t)s(t)

s(t)

n(t)

c(t)

(a)

(b)

The Channel

The Channel

n(t)

Figure 9.4
(a) Channel model seen so far (b) New channel model

Let’s say we have our new modulator from Figure 9.3, and the signal s(t) out of
this modulator is sent across the channel, which acts as a filter, as shown in Figure
9.4(b). We therefore have the system shown in Figure 9.5. Let’s evaluate the channel
output r(t):

() () () ()r t s t c t n t= ∗ + (9.7)

250 � Chapter Nine

Here, r(t) is the sent signal passed through the channel filter with a noise added
on to it. Plugging in the value for s(t) coming out of the modulator in Equation (9.6)
leads us to

() { } () () ()
1

0

Re c

L
j t

i
i

r t I e g t iT c t n t
−

=

= − ∗ +∑ ω
(9.8)

or, using properties of convolution,

() { } () ()
1

0

Re c

L
j t

i
i

r t I e h t iT n t
−

=

= − +∑ ω
(9.9)

where () () ()Eh t g t c t= ∗ and ()Ec t is the baseband filter corresponding to the
channel filter c(t) shifted in frequency so that it is centered around 0 Hz. That is, the
channel, through its filter c(t), reshapes the transmitted pulses, changing the shape
from g(t) to h(t), and it adds a noise n(t).

Example 9.2

Determine the output of a channel that performs a filtering and adds a noise given

• the channel filter is described according to

 () () ()Ec t t t= δ + δ − τ (E9.8)

• the modulator used is a BPSK modulator.

Solution: Using equation (9.9), we have

 () { } () ()
1

0

Re c

L
j t

i
i

r t I e h t iT n t
−

ω

=

= − +∑ (E9.9)

Figure 9.5 New modulator and new channel

coder Re { . }
bits

pulse
shaper x

n(t)
r(t)g(t)

channel
filter
c(t)

+

new modulator new channel new
received
signal

Ii = Aiejθi

ejωct

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 251

where

 () () ()Eh t g t c t= ∗ (E9.10)

Using the information about the channel in Equation (E9.8) leads us to the
result

 () () () ()h t g t t t= ∗ δ + δ − τ (E9.11)

 () () ()h t g t g t= + − τ (E9.12)

Applying this to equation (E9.9) leads to

 () { } () () ()
1

0

Re c

L
j t

i
i

r t I e g t g t n t
−

ω

=

= ⋅ − − τ + ∑ (E9.13)

Knowing that the modulator is BPSK further tells us (from Example 9.1) that

 where 0 or 180ij
i iI Ae � �θ= θ = (E9.14)

Equation (E9.13) and (E9.14) together describe the output of the channel filter.

9.3 Receivers: A First Try

We now have a general form for the modulators we’ve been studying. We know if we
send the signal s(t) across a channel that does a filtering, we get out (at the receiver
side) the r(t) of Equation (9.9). At the receiver side, the job at hand is this: take the r(t)
coming in, and figure out m′, a best guess of the original bits m that were sent. Alter-
natively, if we can come up with I′, a good guess on the coder outputs I = (I0, I1, ...), we
can figure out m′. So we’ll say that the task of the receiver is to come up with I′, as
good a guess as possible on the value of I.

The receiver I’ll describe here won’t turn out to be the best receiver you can use,
but it will be a useful one in helping us understand the problems a receiver faces when
it picks up a received signal r(t) of Equation (9.9), a signal that includes channel
filtering.

9.3.1 The Proposed Receiver

Take a look at the receiver in Figure 9.6. It takes the incoming signal r(t) and first
multiplies it on top by a cosine and on the bottom by a sine. This leads to two signals
which are fed into a filter f(t), which passes frequencies around 0 Hz but cuts out
higher frequency terms.

252 � Chapter Nine

First, the multiplication by a cosine leads to (after about three lines of math):

() { } () ()

()()

1

0

Re

high frequency terms that will be cut out by

L

c i c
i

r t I h t iT n t

f t

−

=

= − +

+

∑
(9.10)

and the multiplication by a sine leads to (after a different three lines of math)

() { } () ()

()()

1

0

Im

high frequency terms that willbecut out by

L

s i s
i

r t I h t iT n t

f t

−

=

= − +

+

∑
(9.11)

where () ()cosc cn t n t tω= and () ()sins cn t n t tω= .

To simplify the presentation and not have to bring two different signals with us in
the rest of our discussion, we can represent this as a single complex signal, namely

() () ()c sr t r t jr t′ = + (9.12)

which leads to

() { } { } () () ()

()

1

0

Re Im

high frequency terms

L

i i c s
i

r t I j I h t iT n t jn t
−

=

′ = + − + +

+

∑
(9.13)

Figure 9.6 Proposed receiver for new r(t)

Decision
device

x

r(t)

r′(t) r″(t)

f(t)

kT

rs(t)

rc(t)

x rk

cos(ωct)

sin(ωct)

Ik
or

bits

∧

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 253

() () ()

()()

1

0

high frequency terms that will be cut out by

L

i
i

r t I h t iT n t

f t

−

=

′ ′= − +

+

∑
(9.14)

where () () ()c sn t n t jn t′ = + . This is the signal we show entering the channel filter
f(t). The multiplication by sine and cosine in essence: (1) removes the ctω term from
the received signal (that is, returns the signal to baseband); and (2) allows us to write
the signal in a handy complex notation.

Next, we apply the filter f(t). This leads to

() () () () ()
1

0

L

i
i

r t I h t iT f t n t f t
−

=

′′ ′= − ∗ + ∗∑ (9.15)

() () ()
1

0

L

i
i

r t I x t iT n t
−

=

′′ ′′= − +∑ (9.16)

where () () () () () ()Ex t h t f t g t c t f t= ∗ = ∗ ∗ and () () ()n t n t f t′′ ′= ∗ . This tells us
that our sent signal, after passing through a channel filter and having noise added on
to it, and then passing through a receiver filter f(t), basically is the sent signal with the
combined effects of the filtering and the noise.

We now sample the signal at times kT (k = 0, 1, 2, ...). At time kT, we end up with
the output r

k
 which corresponds to

()
1

0

L

k i k
i

r I x kT iT n
−

=

= − +∑ (9.17)

where ()kn n kT′′= ; or, taking the kth term out of the sum, we can write this as

() ()
1

0

0
L

k k i k
i
i k

r I x I x kT iT n
−

=
≠

= + − +∑ (9.18)

(The decision device is exactly the same one we built in Chapter 5, taking in an r
k

and putting out a guess on the symbol sent.)

Desired
Information

Intersymbol
Interference (ISI)

Noise

254 � Chapter Nine

9.3.2 Making the Receiver a Good One

We’d like to have the receiver work so that it creates k kr I= ; in other words, we’d like
for the kth received sample from the sampler in Figure 9.6 to correspond exactly to the
kth information symbol sent at the transmitter. If we could do that, then the decision
device would, given k kr I= , always make the correct decision on kI . Looking at Equa-
tion (9.18), let’s see what it would take to make k kr I= . It would take three things:

1. x(0) = 1

2. x(kT – iT) = 0, k ≠ i

3. n
k
 = 0.

We can’t make the noise nk = 0, but recall that () () () ()Ex t g t c t f t= ∗ ∗ , and g(t)
is a filter put in at the transmitter, while f(t) is a filter we put in at the receiver. Since we
control g(t) and f(t), we can control x(t). So, we could choose g(t) and f(t) such that

() () () () ()
1, 0

0,E

t
x t g t c t f t

t kT iT k i

=
= ∗ ∗ = = − ≠

(9.19)

which means we would satisfy points 1 and 2 above. If f(t) and g(t) are selected such
that x(t) satisfies Equation (9.19), x(t) and/or the communication system is said to
satisfy the Nyquist criteria for zero ISI (intersymbol interference). Here are some
choices for x(t) that satisfy Equation (9.19).

The sinc scenario: The first well-known choice for x(t) that satisfies Eq. (9.19) is

()
sin

sinc

t
t T

x t
tT

T

π
 = = π (9.20)

A plot of this x(t) is shown in Figure 9.7(a). In the frequency domain, this signal is
shown in Figure 9.7(b).

The raised cosine scenario: Another well-known choice for x(t) is called the raised
cosine function, in which case x(t) corresponds to

() () 2
2

2

sin cos

1 4

t t

T T
x t RC t

t t
T T

α

π πα = = ⋅
π

− α
(9.21)

where α is called the roll-off factor and corresponds to a value between 0 and 1. Three
raised cosine functions are shown in Figure 9.8(a), and their frequency response is
shown in Figure 9.8(b).

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 255

Figure 9.7 x(t) = sinc (t/T): (a) in time and (b) in frequency

0

(a)

–T–2T T

1

2T 3T
t

f

X(f) = F{sinc(t/T)}

–1/2T
1/2T

(b)

x(t) = sinc(t/T) =
sin (π t/T)

π t/T

(a)

–2T 2T–T T0

(b)

t

α = 1 (....)

α = 1

α = 0

α = α

α = 0.5 (--)
α = 0 (__)

x(t) = RCα (t)

x(f) = F{RCα (t)}

–1/T –1/2T(1+α) –1/2T
1/2T 1/2T(1+α) 1/T

Figure 9.8 x(t) = RCααααα(t): (a) in time and (b) in frequency

256 � Chapter Nine

9.3.3 The Proposed Receiver: Problems and Usefulness

Let’s look at the receiver that we’ve been discussing so far. It’s shown in Figure 9.6,
and we figured out that the r

k
 value is:

() ()
1

0

0
L

k k k k
i
i k

r I x I x kT iT n
−

=
≠

= + − +∑ (9.22)

where () () ()k t kTn n kT n t f t =′′ ′= = ∗ . We also saw that if we chose f(t) and g(t)
carefully, we could make sure that the x(t) was such that x(0) = 1 and x(kT – iT) = 0,
which would lead to

k k kr I n= + (9.23)

where () () ()k t kTn n kT n t f t =′′ ′= = ∗ . This looks great. We’ve now been able to get

the receiver to produce a kth sample that has in it the kth information symbol I
k
 and

some noise n
k
.

But there are problems with the noise nk. This noise corresponds to
() () ()k t kTn n kT n t f t =′′ ′= = ∗ . Now, f(t) was chosen to make x(t) satisfy the Nyquist

criteria; we made no effort to consider how f(t) would affect the noise. Indeed, f(t)
could cause dramatic noise amplification, making the information Ik lost in the sea of
loud noise nk. So, generally speaking, this receiver of Figure 9.6 is not used in its
current form, except...it does have one really nice use: when the channel filter c(t) is
flat over the transmission frequency—that is, when c(t) has a frequency response C(f)
such as that shown in Figure 9.9. In this case, the channel C(f) = 1 for all intents and
purposes, as long as we make sure all the transmit frequencies fall in the flat part of
C(f). For all practical purposes, the channel can be modeled as () ()Ec t tδ= .

Figure 9.9 A possible channel filter c(t) shown in the frequency domain

f

1

C(f) =

fc

flat over range
of transmission

frequency response
of channel filter

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 257

In this case, for the modulator and receiver we’re considering, we have an r
k

equal to

() ()
1

0

0
L

k k i k
i

r I x I x kT iT n
−

=

= + − +∑ (9.24)

where this time () () () () () ()Ex t g t c t f t g t f t= ∗ ∗ = ∗ , and, as before,
()kn n kT′′= with () () () t kTn kT n t f t =′′ = ∗ .

If we want to try to make r
k
 as close as possible to I

k
 , then we’ll make sure that

() () () ()
1, 0

0,

t
x t g t f t

t kT iT k i

=
= ∗ = = − ≠

(9.25)

If we do this and also make sure g(t) = f(t), it can be shown (with a bit of statistical
wrangling) that we not only make x(0) = 1 and x(kT – iT) = 0, but also this f(t) does not
cause noise amplification.

This receiver is therefore a popular choice whenever the channel is “flat” over the
range of transmission frequencies.

Example 9.3

Assuming a flat channel, figure out a possible g(t) and f(t) so that there is no ISI
in the received signal r

k
.

Solution: Equation (9.24) shows us the received r
k
 when the channel is flat. If

we want to get rid of ISI (the middle term), all we have to do is make sure that
x(t) = g(t) ∗ h(t) satisfies Equation (9.25).

The easiest way to find a g(t) and h(t) that satisfy Equation (9.25), the easiest
way is to find an x(t) = g(t) ∗ h(t) that satisfies

 () () ()
sin

t

Tx t g t h t
t

T

π

= ∗ =
π (E9.15)

To solve for the g(t) and h(t) from here, turn to the frequency domain, where
we find out that we can write Equation (9.25) according to

 () () ()
1 1

1,
2 2

0,

f
X f G f F f T T

else

− ≤ ≤= ⋅ =

(E9.16)

258 � Chapter Nine

One solution to this equation is to let

 () ()
1 1

1,
2 2

0,

f
G f F f T T

else

− ≤ ≤= =

(E9.17)

Turning this back to the time domain we end up with

 () ()
sin

t

Tg t f t
t

T

π

= =
π (E9.18)

So, here is one possible g(t) and h(t) that satisfies Equation (9.25), insuring
that in a flat channel we get no ISI.

9.4 Optimal Receiver Front End

So far, we considered one example of a possible receiver, shown in Figure 9.6. This
receiver explains the idea of a receiver filter f(t) and how it can be used to remove
intersymbol interference (ISI). In the case where the channel is “flat” over the frequen-
cies of transmission, that receiver actually turns out to be the optimal receiver. But in
other cases, that receiver causes noise amplification, and may not be a very good one.
You need alternatives! You need choices! You’ll want to know how to build the very best
receiver possible. That’s why this section is here—to tell you exactly how to build the
optimal receiver front end, which is the first part of the optimal receiver.

We start at our receiver with the input

() { } () ()
1

0

Re c

L
j t

i
i

r t I e h t iT n t
−

ω

=
= − +∑ (9.26)

where () () ()Eh t g t c t= ∗ . Without any loss of information, we can map this r(t) signal
to a signal without the carrier cj te ω . We do this by multiplying the r(t) by a cosine and
then by a sine, as shown in Figure 9.10. This leads to the outputs (which we saw earlier)

() { } () ()

(

1

0

Re

high frequency terms which will be cut out in a mo

L

c i c
i

r t I h t iT n t
−

=

= − +

+

∑
(9.27)

() { } () ()

(

1

0

Im

high frequency terms which will be cut out in a mo

L

s i s
i

r t I h t iT n t
−

=

= − +

+

∑
(9.28)

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 259

where () ()cosc cn t n t tω= and () ()sins cn t n t tω=
To simplify the presentation and keep us from having to bring two different

signals with us in the rest of our discussion, we can represent this as a single complex
signal, namely

() () ()c sr t r t jr t′ = + (9.29)

which leads to

() { } { } () () ()

()

1

0

Re Im

high frequency terms,cut out in a moment

L

i i c s
i

r t I j I h t iT n t jn t
−

−

′ = + − + +

+

∑
(9.30)

() () () (
1

0

high frequency terms,cut ou
L

i
i

r t I h t iT n t
−

−

′ ′= − + +∑
(9.31)

� � � � � � �high frequency terms,cut our t s t n t� � �� � �

(9.32)

where () () ()c sn t n t jn t′ = + and () ()
1

0

L

i
i

s t I h t iT
−

=

′ = −∑ .

Now, each ij
i iI A e θ= is one of a finite number of values (one of M values, to be

exact, because Ii represents the output from the coder, which takes in n bits and
outputs one of M = 2n possible Ii’s. See Figure 9.3 for an illustrative example.) That

means that () ()
1

0

L

i
i

s t I h t iT
−

=

′ = −∑ is a time function that is one of a finite number

of time functions (one of ML possible time functions to be exact). So we have

 r′(t) = s′(t) + n′(t), where () ()
1

0

L

i
i

s t I h t iT
−

=

′ = −∑ is one of a finite number of time functions.

Figure 9.10
The first part of an optimal receiver front end

x

r(t)

r′(t)

rs(t)

rc(t)

x

cos(ωct)

sin(ωct)

260 � Chapter Nine

If you look back to Chapter 5, we saw there that:

if you receive r(t) = s(t) + n(t), where s(t) takes on one of a finite number of
values, M values, to be exact,

then an optimal receiver front end is the one shown in Figure 9.11(a).

So, now that we have r ′ (t) = s′(t) + n′(t), where s′(t) takes on one of a finite num-
ber of values (one of ML values), then an optimal receiver front end for r ′ (t) must be
the one shown in Figure 9.11(b).

Figure 9.11
(a) Optimal receiver front end for received signal of Chapter 5, namely r(t) = s(t) + n(t)

(b) Corresponding optimal receiver front end for received signal of Chapter 9:
(1) first creating r′′′′′(t) = s′′′′′(t) + n′′′′′(t), then (2) using receiver front end analogous to (a)

x

r(t) = s(t) + n(t)

x

s1(t)

x

r′(t) x

s′ML(t)

sM(t)

(a)

(b)

x

r(t)

x
= s′(t) + n′(t)

∫

∫

∫

∫

cos ωct s′1 (t)

sin ωct

u1

uM

u1

uML

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 261

Of course, nobody wants to build the receiver front end shown in Figure 9.11(b)
because there are ML branches, which can be quite a lot. But, this did give some smart
engineer an idea—namely, to take a closer look at that u

k
 coming out of the receiver

front end of Figure 9.11(b). That u
k
 corresponds to:

() ()k ku r t s t dt′ ′= ∫ (9.33)

 () ()
1

,
0

L

k i k
i

u r t I h t iT dt
−

=

′= −∑∫ (9.34)

() ()
1

,
0

L

k i k
i

u I r t h t iT dt
−

=

′= −∑ ∫ (9.35)

1

,
0

L

k i k i
i

u I r
−

=

′= ∑ (9.36)

where () ()ir r t h t iT dt′ ′= −∫ . If we have ir′ (for i = 0,1,...,L – 1), we could generate
every uk we want. We don’t have to build a receiver front end as big as the one of
Figure 9.11(b)—all we have to do is build one that provides the value of ir′ for
i = 0, 1, 2, ..., L–1. If we can do that, then from this receiver front end we have the
values needed to build the receiver front end of Figure 9.11(b) if we want it—or any
other important receiver we want to build, for that matter.

Take a look at Figure 9.12. From this receiver front end, r(t) is mapped to r′ (t) by
the cosine and sine multiplication; then with r′ (t) coming into the filter and sampler, ri′
comes out—like this:

Let Oi= output of filter and sampler at sample time i; then

� � � �i t iTO r t h t
�

�� � � (9.37)

� � � �i t iTO r h t d
�

�� �� � � � (9.38)

� � � �iO r h iT d�� �� � � � (9.39)

i iO r �� (9.40)

Figure 9.12, then, is our receiver front end. It takes in r(t) and it puts out ir′ ,
i = 0, 1, 2, ..., L – 1. With these values ir′ , we have all the numbers we need to generate
any values we might want in our receiver.

262 � Chapter Nine

9.5 Optimal Rest-of-the-Receiver

We’ve gone from the new modulator, through the new channel that put out the new
r(t), and through a receiver front end which outputs ir′ . You can see it all together in
Figure 9.13. Now let’s build the optimal “rest-of-the-receiver,” which puts out m′ , the
best possible guess on the transmitted bits m.

Figure 9.12 Optimal receiver front end

x

r(t)

r′(t)

rs(t)

rc(t)

x

h(–t)

kT ri′

sin(ωct)

cos ωct

coder Re { . }

(bits)

pulse
shaper x

n(t)

g(t)
c(t) +

s(t) r(t)
rk′

h(–t)

TRANSMITTER CHANNEL
RECEIVER

FRONT END

m

ejωct
cos ωct

sin ωct

kT

x

x

Figure 9.13 The new modulator (transmitter) with pulse shaping, followed by the new
channel (with a channel filter), followed by the optimal receiver front end

9.5.1 The Input

Coming into what I’m calling the rest-of-the-receiver is the value:

� � � �kr r t h t kT dt� �� �� (9.41)

Let’s take a more careful look at kr′ , and see what we’ve got to work with. Here
comes the math that allows us to better understand kr′ . Taking the kr′ of Equation

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 263

 (9.41), and substituting in () () () () ()
1

0

L

i
i

r t s t n t I h t iT n t
−

=

′ ′ ′ ′= + = − +∑ , we end up with

� � � � � �
1

0

L

k i
i

r I h t iT n t h t kT dt
�

�

� �
� �� �� � � 	 �
� �
 �
�� (9.42)

� � � � � � � �
1

0

L

k i
i

r I h t iT h t kT dt n t h t kT dt
�

�

� �� � � � ��� � (9.43)

� � � �
1

0

L

k i k
i

r I h t iT h t kT dt n
�

�

� � � � �� � (9.44)

� � � �� �
1

0

L

k i k
i

r I h t h t k i T dt n
�

�

� � � � �� � (9.45)

where () ()kn n t h t kT dt′= −∫ . Look at the integral in Equation (9.45). Let’s

compare it to () () () () () () () ()Ex t g t c t h t h t h t h h t dτ τ τ= ∗ ∗ − = ∗ − = −∫ . From a
brief look at the integral of Equation (9.45) and x(t), you’ll be able to understand what I
mean when I write:

� �� �
1

0

L

k i k
i

r I x k i T n
�

�

� � � �� (9.46)

which, letting ()()k ix x k i T− = − can be rewritten as

1

0

L

k i k i k
i

r I x n
�

�

�

� � �� (9.47)

There are two other ways we can express this kr′ . The first is a shorthand nota-
tion from digital signals and systems literature, which tells us we can write kr′
according to

k k k kr I x n� � � � (9.48)

where k kI x∗ denotes the sum of Equation (9.47) and represents a discrete-time
convolution. The second way we can write the rk′ of Equation (9.47) is to write out the
sum longhand, leading to

 ¢= + + +() + + + + +- - + - + - - -r I x I x I x I x I x I x I xk k k k k k k L k L0 1 1 1 1 0 1 1 2 2 1K K --()() +1 nk

(9.49)

264 � Chapter Nine

That is to say, the output we are seeing, kr′ , corresponds to the output generated
by the shift register, multiplier, and adder shown in Figure 9.14. There, the Ii’s are
stored in a shift register of length L, and each Ii is multiplied by k ix − ; then they are all
added together and a noise is added onto them.

Figure 9.14 Illustrating pictorially the value of rk′′′′′ coming out of the receiver front end
and into the “rest of the receiver”

+
+ r′k

nk

xk x0 xk–(L–2)

xk–(L–1)xk–1

I1I0 Ik IL–2 IL–1

.

. xxxxx

9.5.2 A Problem with the Input, and a Solution

There is a problem with kr � , something that it makes it very hard to build an optimal
rest-of-the-receiver. We have that

1

0

L

k k k i k
i

r I x n
�

�

�

� � �� (9.50)

where () () .kn n t h t kT dt= −∫ Herein lies our problem. The n(t) in the n
k

integral is additive white Gaussian noise, and it is filtered by h(–t) (that is, integrated
with h(t – kT)). The output, n

k , can be shown to be a Gaussian random variable that is
correlated with noise samples at other times—that is, n

k is correlated with n
k –1 and

n
k–2 , and so on, as well as being correlated with n

k +1 and n
k +2 , and so on. This noise

correlation makes building an optimal receiver a very difficult and complicated task.
It’s a problem engineers are still working to resolve.

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 265

But there is a way around this problem. We can introduce another filter, a digital
filter called a whitening filter, w

k , so that, after passing kr′ through w
k , we end up with

� �k k k k k k kr r w I x n w�� � � � � � (9.51)

 � �k k k k k kr I x w n w� � � � � (9.52)

k k k kr I v n�� � � (9.53)

where k k kn n w′ = ∗ is now a Gaussian random variable that is independent of all other
Gaussian random variables 1 2,k kn n+ +′ ′ , and so on. That is, we can filter out the depen-
dence of the random noise on other random noise samples using a filter w

k
.

It really doesn’t serve us to go through the details of how we construct the
whitening filter w

k
, as it all comes out of statistical literature, and other texts delight in

sharing that with you. Let’s just get right to the key result (how to build the whitening
filter!), so we have what we need to keep surging ahead with our construction of the
optimal rest-of-the-receiver.

For this one paragraph, I’m going to assume some knowledge of discrete time
processing. If you don’t have it, this paragraph may be hard to understand, and in that
case (if this paragraph is important to you) you’ll want to take a look at a book on
discrete time processing. The whitening filter wk is obtained from the equation

() ()
2 1j

j
W e

X e
ω

ω
= (9.54)

Any W(e jω) that satisfies Equation (9.54) will do, although it is conventional
wisdom to choose the W(e jω) that is also causal and stable (that is, all poles fall within
the unit circle).

So, the first step in the optimal rest-of-the-receiver is adding a whitening filter w
k
 .

This filter changes the noise samples for us—it makes each noise sample independent
of other noise samples, which is key in building an optimal receiver. (Engineers still
are unsure of ways to build optimal receivers otherwise.)

9.5.3 The Final Part of the Optimal Receiver

So far, we’ve built the optimal receiver front end, which receives r(t) and puts out

k k k kr I x n� � � � (9.55)

266 � Chapter Nine

We realized we had a problem with kr′ , with the noise samples at time k, n
k
. This

noise is a random variable that depends on other noise samples at other times (for
example, n

k+1). So we put in a filter called a whitening filter which took in rk′ and put
out r

k , where

1

0

L

k k k k i k i k
i

r I v n I v n
−

−
=

′ ′= ∗ + = +∑ (9.56)

and kn′ is a random variable that is independent of other noise samples at other times
(for example, 1kn +′). From here, we are ready to build the final part of the optimal
receiver. To start, we take a better look at r

k
 . First, if we write out the sum in long-

hand, we find that we can rewrite r
k
 in the following form:

()

()()
0 1 1 1 1 0

1 1 2 2 1 1

k k k k k

k k L kk L

r I v I v I v I v

I v I v I v n

− −

+ − + − − − −

= + + + +

′+ + + + +

�

�

(9.57)

Now, that means we can visualize r
k
 being built as shown in Figure 9.15. There,

we have the Ii’s being stored in a shift register; each Ii is multiplied by vn – i, and then
these are added together. Finally, the noise is added on.

Figure 9.15 Illustrating the creation of rk (coming out of the whitening filter)

+
+

I0 I1 Ik IL–2 IL–1

vk

vk–1

v0 vk–(L–2)

nk′

rk

.

x x x x x

vk–(L–1)

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 267

To keep the construction of the rest of the receiver easy to understand, let’s
consider a simple example. Let’s say

0 1 1k k k kr I v I v n− ′= + + (9.58)

That is, we’re assuming that all the other v
k–i terms are 0, so we have a simpler

equation to work with. We’ll also assume (1) v0 = 1 and v1 = 0.5, and (2) that we have
BPSK modulation, in which case I

k
 is either A or –A. The r

k
 in this simpler case corre-

sponds to Figure 9.16.

Now, as marked in that figure, we can see r
k
 created as follows: An “input” I

k

comes in, it moves the “state” (what’s at position 1) over to position 2 (creating I
k–1).

Multiplication by v0 and v1, and the addition of noise, creates the final output r
k .

We can draw a trellis diagram describing the creation of the output r
k
 if the noise

were not present. This diagram is shown in Figure 9.17:

1. The “state” (in Figure 9.16) is represented by nodes, the dots drawn at each
time—at any one time, this state is either –A or +A.

2.The “input” I
k
 (in Figure 9.16) is represented as a branch—if the input is

I
k
 = – A, the branch is solid; if the input is I

k
 = A, the branch is dotted.

3. When an input comes in (that is, a branch is drawn), it changes the state. You
can see this indicated by the state a branch begins at, and the state it ends in.

4. Finally, if we know the “state” and the “input,” then we have all the information
we need to figure out the output r

k
 (assuming no noise). That output is drawn

above each branch.

Figure 9.16 Illustrating the creation of rk in a simpler case

"state"

Ik

v0 = 1
v1 = 0.5

"input"

nk′

rk

x x

+
+

Ik–1
1 2

268 � Chapter Nine

Here, I’m going to use a “common sense” argument (rather than a lengthy statis-
tical one) to explain how the optimal decoder uses the trellis of Figure 9.17 to get the
output I′ :

1. Since the noise kn′ is easily shown to be a Gaussian random variable with zero
mean, then that, by definition, means that the average noise is 0.

2. It makes sense, then, that given the sequence of received r
k
 (k = 0, 1, 2, ..., L–1),

which on average contain noise n
k
 that equals 0, you could try to match the r

k
’s to

the best path of noise-free outputs in the trellis. That is, you would want to find
the path in the trellis whose outputs (drawn with no noise) are closest to the rk
(k = 0, 1, 2, ..., L–1) that you received. Once you’ve found this path, then you can
figure out, by following the branches, what inputs I

k
 (k = 0, 1, 2, ..., L–1) to put out

from the receiver.

Here’s an example. Let’s say that we receive the two values r1 = 1.7A and r2 =
1.7A. We want the receiver to output the best guess on the sent bits. To do this, we
turn to our trellis, and we find the path through the trellis with outputs that are closest
to r1 = 1.7A and r2 = 1.7A. Looking at each path through the trellis, we find out how
close each path is—see Figure 9.18(a) through (d). We then decide that the “bottom
lines” path of Figure 9.18(d) is the closest. The branches on this path indicate that the
outputs are I1 = A and I2 = A, which tells us that the input bits are m = (1,1). Our
receiver outputs these bits.

This optimal rest-of-the-receiver is commonly called an MLSE (Maximum Likeli-
hood Sequence Estimator).

In general, searching through a trellis for the closest path can be a difficult task.
But, in Chapters 7 and 8, we saw a handy way to do it—a way called the Viterbi algo-
rithm. When you want to use the Viterbi algorithm to find the best path, just use it in
exactly the same way explained in Section 8.3.

time 1time 0 time 2

–A

+A

–1.5A –1.5A

1.5A 1.5A

0.5A

–0.5A

0.5A

–0.5A

…

Figure 9.17 A trellis describing the creation of rk (without the noise)

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 269

time 1time 0 time 2

–1.5A –1.5A

time 1time 0 time 2
–1.5A

0.5A

time 1time 0 time 2

1.5A

–0.5A

time 1time 0 time 2

1.5A 1.5A

P A T H 1

P A T H 2

P A T H 3

P A T H 4

r1 = 1.7A r2 = 1.7A

(a)

(b)

(c)

(d)

Distance2 = (1.7A – (–1.5A))2 + (1.7A – (–1.5A))2
 = 20.48A2

Distance2 = (1.7A – 1.5A)2 + (1.7A – 1.5A)2 = 0.08A2

Distance2 = (1.7A – (–1.5A))2 + (1.7A – 0.5A)2 = 11.72A2

Distance2 = (1.7A – 1.5A)2 + (1.7A – (–0.5A))2 = 10.32A2

Figure 9.18 Looking for the closest path through the trellis

270 � Chapter Nine

Example 9.4

If, after a whitening filter, the received signal is described by

0 1 1k k k kr I v I v n−= + + (E9.19)

where

0 1 1v v= = (E9.20)

1 or 1k kI I= + = − (E9.21)

then figure out the output of an MLSE (using the Viterbi algorithm) when the
input to the decoder corresponds to

1 22.1 and 0.1r r= − = (E9.22)

Solution: Figure E9.1 shows the trellis diagram characterizing the received
signal in Equation (E9.19). This diagram is created from Equation (E9.19) using
the four steps outlined in the writing you just read.

Also shown in Figure E9.1 is the application of the Viterbi algorithm to
determine the best path through the trellis. For each node, the best parent is
found by choosing the parent with the smallest total distance. When we get to the
last nodes, we look for the node with the smallest total and we backtrack through
the trellis as marked by the arrows. These arrows tell us that the output of the
trellis should be (–1 1) (based on the branch lines of the best path).

Figure E9.1
Trellis describing received signal + Viterbi Algorithm used to get best output

–2 –2

2

0
–1

+1
0

2

0

best parent
= –1

(total 4.42)

best parent
= –1

(total 0.02)

best parent =–1
(total 0.01)

dist2 = 0.01 total = 0.01

dist2 = 16.81 total =16.81

dist2 = 0.01 total = 0.02

dist2 = 4.41 total = 4.42

dist2 = 0.01

total = 4.42
dist2 = 4.41

total = 4.41

dist2 = 4.41 total = 4.41

best parent
= –1

(total 4.41)

received –2.1 0.1

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 271

9.5.4 An Issue with Using the Whitening Filter and MLSE

First, congratulations. When you build a receiver as shown in Figure 9.19 you’ve got an
optimal one. You pass the incoming signal through an optimal receiver front end to get

kr′ ; then you pass it through a whitening filter to get r
k
. Finally, you pass it through an

MLSE (which finds the closest path through a noiseless trellis), and that puts out the
best guess on bits m′.

However, there is a problem with the MLSE. In many communication systems,
the number of states and the number of branches in the trellis can be very large. In
fact, the trellis can be so large that it becomes very expensive to build receivers that
implement the MLSE. People began to look for inexpensive alternatives. In essence,
the rest of this chapter is all about cheaper options. We want to find alternatives to
using the whitening filter followed by the MLSE—alternatives that will perform well,
and will be far more cost effective.

Figure 9.19 The optimal receiver

x

r(t)

r′(t)
x

cos ωct

sin ωct

h(–t)

rkkT rk′

ωk MLSE
m′

9.6 Linear Equalizers

We start here with Figure 9.20(a): we’ve got the new modulator putting out s(t), the
new channel putting out r(t) = s(t)*c(t)+n(t), and the optimal receiver front end putting
out kr′ . We know how to build an optimal rest-of-the-receiver, but it’s so darn expensive
that we’re looking for cheaper alternatives. The first alternative is called the linear
equalizer.

The use of the linear equalizer in the receiver is shown in Figure 9.20(b). It is
simply a discrete filter with impulse response c

k
 that takes the input kr′ and turns it into

a new variable called r
k
 ; this r

k
 is then passed through a decision device which outputs

kI ′ , the best guess on the data symbol I
k
. The decision device always works in the

same way, exactly the way decision devices were described in Chapter 5.

272 � Chapter Nine

coder Re { . }
bits

pulse
shaper x

n(t)

c(t) +

x

x

ck

kT
rk′

cos ωct

ej(ωct)

sin ωct

h(–t)

NEW MODULATOR NEW CHANNEL
NEW OPTIMAL

RECEIVER FRONT
END

m
symbol

Ik

(a)

(b)

rk′ rk

Decision
device

Ik′
LINEAR
EQUALIZER

Figure 9.20 (a) The modulator, channel, and receiver front end
(b) The new rest-of-the-receiver (a linear equalizer followed by a decision device)

What is this impulse response c
k

, and how do we choose it? There are many
different possible choices for c

k
 , and we’ll spend the next few sections discussing

these choices (one section per choice).

9.6.1 Zero Forcing Linear Equalizer

To understand this case, let’s start with a look at what is coming into the receiver,
namely r ′k:

k k k kr I x n′ = ∗ + (9.59)

The intention in the zero forcing linear equalizer is to force the ISI to zero—to get the
output r

k
 to have the form

k k kr I n′′= + (9.60)

That’s easy. All we do in this case is make c
k
 undo x

k
. That is, we choose c

k
 to be

the inverse filter for the filter x
k
 . Mathematically, we choose (using the z-transform

domain)

C(z) = 1/X(z) (9.61)

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 273

There’s one problem with building the linear equalizer in this way: it focuses on
getting rid of the filtering effect (the x

k
), but it pays no attention to what happens to the

noise. The noise passes through the filter c
k
 , and it may get much bigger. This phe-

nomenon, known as noise amplification, can cause the I
k
 to get lost in the much larger

noise kn′′ . For this reason, this type of linear equalizer is rarely used.

Instead, engineers have a fondness for the...

9.6.2 MMSE (Minimum Mean Squared Error) Equalizer

With this type of equalizer, in comes

k k k kr I x n′ = ∗ + (9.62)

or, written differently,

1

0

L

k i k i k
i

r I x n
−

−
=

′ = +∑ (9.63)

1

0
0

L

k k i k i k
i
i k

r I x I x n
−

−
=
≠

 ′ = + +

∑ (9.64)

We’d like to choose the equalizer (the filter) c
k
 so that what comes out, namely

k k kr r c′= ∗ is as close to I
k
 as possible. With that in mind we say, mathematically, that

we want to choose c
k
 to minimize the function:

() 2

k k k kf c E r c I ′= ∗ − (9.65)

where E[x] is the expected value of x. That is, in words: on average, we want the
output of the filter to be as close as possible to I

k
 . After about a page of statistical

wrangling, you can show that this requirement is met by choosing c
k
 to satisfy (in the

z-transform domain)

C(z) = 1/[X(z) + No] (9.66)

where No /2 is the variance of the noise introduced in the channel and X(z) is the
z-transform of x

k
 .

Example 9.5

If a receiver sees the input

 1 20.5 0.25k k k k kr I I I n− −′ = + + + (E9.23)

274 � Chapter Nine

provide an equation for the zero forcing linear equalizer and an equation for the
MMSE linear equalizer. Assume No=0.5.

Solution: Writing the received signal in the form of a convolution, we have

 ()1 20.5 0.25k k k k k kr I n− −′ = ∗ δ + δ + δ + (E9.24)

Comparing this with Equation (9.59), we recognize that

 1 20.5 0.25k k k kx − −= δ + δ + δ (E9.25)

which, using z-transforms, corresponds to

 () 1 21 0.5 0.25x z z z− −= + + (E9.26)

Now, for the zero forcing linear equalizer, we turn to Equation (9.61) which
in this case leads us to

 () 1 2

1

1 0.5 0.25
C z

z z− −=
+ + (E9.27)

and, for the MMSE linear equalizer, we turn to Equation (9.66), which this time
leads us to

() 1 2

1

1.5 0.5 0.25
C z

z z− −=
+ + (E9.28)

9.7 Other Equalizers: the FSE and the DFE

In addition to the linear equalizer, sometimes called LE for short, engineers designed
other cheap alternatives to the optimal whitening filter followed by MLSE. I’ll provide
just a brief overview here, and I’ll let you, in graduate courses or out of general inter-
est, read other books that describe the workings of the other alternatives to the
whitening filter and the MLSE.

First, there is the fractionally spaced equalizer, or FSE. If someone introduces you
to this equalizer, don’t be at all intimidated. It is, in truth, just a linear equalizer in
disguise, for which they have found a way to do all of the filtering in the digital domain,
where it is cheaper and easier anyway.

Secondly, there is the differential feedback equalizer, or DFE. In this case, what
you do once you have kr′ from the receiver front end is shown in Figure 9.21. Basically,
you have what looks like a linear equalizer followed by a decision device. The main
difference here is that a feedback filter has been added below the decision device.

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 275

Very briefly, you receive

k k k kr I x n′ = ∗ + (9.67)

1

0

L

k i k i k
i

r I x n
−

−
=

′ = +∑ (9.68)

1 1

0
0 1

k L

k k i k i i k i k
i i k

r I x I x I x n
− −

− −
= = +

 ′ = + + +

∑ ∑ (9.69)

You use the c
k
 to get rid of the second term and the d

k
 to get rid of the third term.

+

dk

ck
rk′ Decision

device
In′

FEEDBACK
EQUALIZER

FEEDFORWARD
EQUALIZER

rk +
–

Figure 9.21 The DFE

9.8 Conclusion

The channel was different. Instead of giving you what you sent with a noise—i.e., r(t) =
s(t) + n(t)—it gave you something else. It gave you what you sent, filtered by a channel
filter, plus a noise—that is, r(t) = c(t) ∗ s(t) + n(t). Because of that, we had to introduce
a whole chapter.

We first found a new way to express the modulator, and we were able to general-
ize it so that it did what we called “pulse shaping.” Then we looked at receivers. First,
we tried one out, and we found out that it had problems with noise amplification, except
in the case when we had a channel filter that was flat over the frequencies of transmis-
sion.

Then we found the optimal receiver front end. From there, we built an optimal
receiver, which was made up of a whitening filter and what is called an MLSE. Finding
that costly to build, engineers came up with a new design. They built the linear equal-
izer in two forms (zero forcing and MMSE).

That’s the meat of this chapter, in a nutshell.

276 � Chapter Nine

Problems

1. (a) Provide an equation s(t) describing the output of a 16-PSK modulator with
 pulse shaping g(t). Make sure that your s(t) is in a form similar to
 Equation (9.6).

(b) Repeat (a) for a 16-ASK modulator.

2. Consider a system where we have a transmit filter g(t), a channel filtering
cE(t) = δ(t), and the receiver of Figure 9.6 with filter f(t). The total filtering effect
is x(t) (the convolution of all the filter effects).

(a) Draw a block diagram of the communication system, including the modula-
tor and the receiver front end. Indicate the value of the signal before the
decision device.

(b) It is decided that x(t) will be a raised cosine function. Use a table of values
to plot the raised cosine function x(t) of equation (9.21). On one column,
use t values spaced by T/4, and on the other column provide the value of
x(t). Do this over the range [–2T, 2T]. Provide two plots, for roll-off factors
of 0.5 and 1.0.

(c) Use your plot and your answer to (a) to explain how the raised cosine
function x(t) allows you to avoid ISI.

(d) Provide a possible selection for the filter g(t) and the filter f(t) so that the
total filter x(t) is the raised cosine filter.

3. Find three possible choices for f(t) ∗ g(t) (the combining of the transmit and
receive filter) when you are told

• the channel impulse response can be modeled as cE(t) = δ(t).

• you will use the receiver of Figure 9.6.

• you want to zero ISI.

• you want to transmit at a symbol rate corresponding to a symbol duration
T = 9600 symbols/sec.

• you want the total bandwidth of the transmission to correspond to less than
6000 Hz.

4. You are told that the received signal after the receiver front end and whitening
filter corresponds to

 1

1 1

2 2
k k k kr I I n− ′= + + (Q9.1)

www.ebook3000.com

http://www.ebook3000.org

Channel Filtering and Equalizers � 277

where

 1 or 1k kI I= + = − (Q9.2)

(a) Assuming an MLSE is applied to this signal, plot the trellis diagram that the
MLSE uses to make a decision on the final output symbols.

(b) If you receive the values +1,+1,+1,0, use the Viterbi algorithm to determine
what symbols the MLSE decides were sent.

5. Your manager tells you that his receiver front end is outputting the signal:

 10.9 0.3k k k kr I I n− ′= + + (Q9.3)

where

 2 or 1 or 1 or 2kI = − − (Q9.4)

(a) Assuming the noise nk is white, he asks you to design the optimal receiver
for data detection. Be as complete and detailed as possible in your reply –
include the trellis diagram, the values on all the branches, and a description
of the Viterbi algorithm to be used for detection.

(b) Design the optimal linear equalizer to (1) remove ISI; (2) minimize MSE.
(Assume No = 0.7).

6. Out of a receiver front end comes the signal

 10.5k k k kr I I n− ′= + + (Q9.5)

where

 3 or or or 3kI A A A A= − − (Q9.6)

and the noises are independent Gaussian random variables (i.e., a whitening filter
has already been applied).

(a) Describe the MLSE.

(b) Given inputs 1.5A, 2.5A, and –1.5A, what would your MLSE output?

278 � Chapter Nine

7. You are given the communication system of Figure Q9.1.

(a) Determine the output after each block in the figure.

(b) Specify the criteria on the communication system for zero ISI at the output
of the sampler.

(c) If I select

 () () () () ()
1, 0

0,E

t
x t g t c t f t

t kT iT k i

=
= ∗ ∗ = = − ≠

(Q9.7)

for what values of τ do I have zero ISI out of the receiver front end?

Figure Q9.1 A communication system

Pulse
shaping

Ing(t–nT)Ik
n=1

N
cE(t) +

n(t)

f(t)
kT + τ

www.ebook3000.com

http://www.ebook3000.org

10
Chapter

Estimation and
Synchronization

So far in this book, we have considered two channel effects. Prior to Chapter 9, we
considered channels adding a noise n(t) to the sent signal. In Chapter 9, we said

the channel in fact added more than just a noise; it also acted as a filter with impulse
response c(t). In this chapter, we again add to what channels do—we make them more
realistic.

10.1 Introduction

In addition to noise and/or filtering, channels also add unwanted parameters to the
sent signal. For example, take a look at Figure 10.1. There you see that the modulator
sent the signal

 () () ()cos , 1c is t A t iT t i Tθ= ω + ≤ < + (10.1)

which might, for example, be a QPSK signal. Many channels are well-modeled as
follows:

n(t)

r(t)

s(t) = Acos(ωct + θi), iT ≤ t < (i + 1)T

r(t) = Acos((ωc + ∆ω)(t – τ) + θi + θ) + n(t), iT < t – τ < (i + 1)T

Modulator +

CHANNEL

phase
offset

θ

frequency
offset
∆ω

timing
offset

τ

Figure 10.1 Channel effects

280 � Chapter Ten

(1) the channel adds a timing offset τ, a phase offset θ, a frequency offset ∆ω; and
(2) the channel adds a noise n(t). Combining these effects leads to the received signal

() ()() () ()cos , 1c ir t A t n t iT t i= ω + ∆ω + + + ≤ − τ < +θ θ (10.2)

Many receivers, given this received signal, try first to estimate and remove the
timing offset τ, the phase offset θ, and the frequency offset ∆ω. Then, all that is left is
the sent signal in the presence of noise n(t). They use the demodulators we saw in
Chapter 5 to detect the signal in the presence of noise n(t).

This chapter is all about how a receiver estimates τ, θ, ∆ω and any other unknown
parameter, so that it can remove these parameters from the received signal (leaving
just the signal in the presence of noise). This process of estimating unknown param-
eters at receivers is called estimation or synchronization. We will begin with a general
explanation of how to estimate any parameter that a channel might introduce to a
signal, and then we will explain different techniques that the receiver might use to
estimate and remove a channel phase θ.

10.2 Estimation: Part 1
10.2.1 Our Goal

In this section, we consider the following problem. We receive a signal r(t) with a
random value a (with probability density function p(a)) contained in it. For example,
we may receive the signal

() () () ()cos , 1c ir t A t a n t iT t i Tθ= ω + + + ≤ < + (10.3)

where a represents a random phase offset introduced by the channel. We want to find a
way to estimate the value of a in r(t). There is a way to express this problem mathemati-
cally to make it easier. Any r(t) can be represented on an orthonormal basis, and can be
written instead as a vector r. We saw this idea in Chapter 5. For example, the signal r(t)
in Equation (10.3) can be fully represented as the vector ()1 2,r r=r using the

orthonormal basis () (){ }1 2,t tφ φ where () () ()1

2
cos , 1ct t iT t i T

T
φ = ω ≤ < +

and () () ()2

2
sin , 1ct t iT t i T

T
φ = − ω ≤ < + . Specifically, the signal r(t) in

Equation (10.3) can be expressed as the vector r described by

()1 2,r r=r (10.4)

where

()1 1cos2 i
Tr A a nθ= + + (10.5)

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 281

()2 2sin2 i
Tr A a nθ= + + (10.6)

The problem we want to solve can now be stated as: Given r, we want to find an
estimate of a. We do not just want to estimate a in the special case of Equations (10.4)
to (10.6), but we want to do this for any r containing a random value a. In general, we
have an r equation, and we have a random value a contained in that r equation. We
want to estimate that a.

10.2.2 What We Need to Get an Estimate of a Given r

There are two or three things required to create an estimate of a given r. They are all
statistical quantities.

1. p(rrrrr|a): The exact value of r depends on: the random value a; the value of the
signal sent; and the random value of the channel noise. The value of r, then, is a
random value that depends on three values. For a given a, r becomes a random
variable that depends only on the signal sent and the noise. That is, for a given a,
r can be described as a random variable with a distribution that we will label
p(rrrrr|a). We require knowing or being able to evaluate this distribution before we
can create an estimate of a, given r.

2. p(a): a, being a random value, is characterized by a probability density function
p(a). We also need to know this in order to compute an estimate of a.

3. p(rrrrr): As I explained in point 1, r is a random value, and that means it can be
described by a probability density function p(rrrrr). In some cases, generating the
value of a will require we know the function p(rrrrr).

Next, we’ll see how to use these values to create an estimate of a, given r. There are
three main ways to come up with this estimate, and these are described in the next
three sections.

10.2.3 Estimating a Given r, the First Way

The first way is called the minimum mean squared error (MMSE) method. It gener-
ates an estimate ˆmmsea called the minimum mean squared error estimate. The idea
here is to output the estimate of a, ˆmmsea , that is, on average, as close to a as possible.
Mathematically, the idea is to output the ˆmmsea that satisfies the following state-

ment: The value ˆmmsea minimizes the value ()2ˆmmseE a a − (where E[x] is the
expected value of x).

282 � Chapter Ten

After some work, you can show that the minimum mean squared estimate ˆmmsea
can be calculated with a simple mathematical equation if you know the probabilities
p(rrrrr|a), p(a), and p(rrrrr):

()ˆmmsea a p a da
∞

−∞

= ∫ r (10.7)

where () () ()
()

p a p a
p a

p
=

r
r

r
.

10.2.4 Estimating a Given r, the Second Way

Often, the mathematical computation of the estimate ˆmmsea from Equation (10.7) is
rather messy. So, engineers, who have never been big on “messy math,” found a new
way to get an estimate of a. They called their new way the maximum a posteriori, or
MAP, estimate of a, and labeled it ˆMAPa . This is the estimate that satisfies the following
mathematical statement: Choose the value ˆMAPa that minimizes ()ˆ, MAPE C a a
where ()ˆ, MAPC a a = 1 if ˆMAPa is not very close to a, and ()ˆ, MAPC a a = 0 if ˆMAPa is
very close to a.
This mathematical statement basically says, in words, find the ˆMAPa that is very close
to a.

The value of ˆMAPa can be found if you know the two probabilities p(rrrrr|a) and p(a).
If you know these two things, then the value of ˆMAPa can be found according to the
mathematical statement: ˆMAPa is the value that maximizes the function p(rrrrr|a)· p(a); or,
equivalently through the mathematical equation

() ()ˆ argmaxMAP
a

a p a p a= r (10.8)

or

() () ˆ 0
MAPa ap a p a

a =
∂ =
∂

r (10.9)

Generally speaking, the estimates ˆmmsea and ˆMAPa work out to the same value. In
fact, in almost every case of practical interest, these values are identical.

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 283

10.2.5 Estimating a Given r, the Third Way

There is one more way to generate an estimate for a given r. This method is used
if you have a slightly different case than that we have been studying so far. It is used if
the channel introduces an unknown value a—this time a is not described as a random
value but rather a is just some unknown value. For example, the channel may add a
constant a to the sent signal, as shown in Figure 10.2, and the value a added on is not
well-described as a random value, but just some unknown, fixed number.

Engineers wanted to create an estimate that would be as close to a as statistically
possible. They found a way to create this estimate mathematically, and called the
estimation method they invented maximum likelihood (or ML) estimation. The esti-
mate for a that this method provides is called ˆMLa .

The ˆMLa estimate is created according to the following mathematical equation:

()ˆ argmax ,ML
a

a p a= r (10.10)

or, equivalently,

() ˆ 0
MLa ap a

a =
∂ =
∂

r (10.11)

n(t)
r(t) = s(t) + a + n(t)

modulator ++
s(t)

receiver

some unknown
value

a

Figure 10.2 A channel introduces an unknown value

Example 10.1

Let’s say that you pick up some unknown value a corrupted by a zero-mean unit-
variance Gaussian noise. That is, let’s say you find:
 r a n= + (E10.1)
where

()
21

exp
22

n
p n

 −= π
(E10.2)

284 � Chapter Ten

Determine the best estimate of a.

Solution: We’re dealing with an unknown value of a here, so in this case we
turn to Equation (10.11). Specifically, this equation tells us that we require p(r|a)
if we’re going to come up with an estimate for a, so let’s start by getting p(r|a).

The key is realizing that p(r|a) is the likelihood of having r (for example,
r = 1) show up, given a (for example, a = 0.2). Now, since r = a + n, I’ll get r
when a is sent only if n = r – a (so for our example values, n = 1 – 0.2 = 0.8).
Mathematically,

 () ()p r a p n r a= = − (E10.3)

Now, plugging in the known distribution for noise (Equation E10.2), this
means

 () ()2
1

exp
22

r a
p r a

 − −
 =
 π

(E10.4)

Okay, now we have p(r|a). We’re ready to come up with our estimate using
Equation (10.11).

 () ˆ 0
MLa ap r a

a =
∂ =
∂ (E10.5)

()2

ˆ

1
exp 0

22 MLa a

r a

a =

 − −∂ =
 ∂ π

(E10.6)

() () ()2 2

ˆ

21
1 exp 0

2 22 MLa a

r a r a
=

 − − − −
 ⋅ − ⋅ =
 π

(E10.7)

 () ()2ˆ
ˆ exp 0

2
ML

ML

r a
r a

 − −
 − ⋅ =

(E10.8)

 ˆMLa r= (E10.9)

Therefore, if I see r = a + n = 0.7, with n defined according to equation (E10.2), I’ll
guess (estimate) that 0.7 is in fact the value of a.

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 285

10.3 Evaluating Channel Phase: A Practical Example

10.3.1 Our Example and Its Theoretically Computed Estimate

Let’s now look at a practical example of how to come up with an estimate of a given r.
Take a look at Figure 10.3, where we have a transmitter that is sending a cosine wave

() ()cos cs t A t= ω over a short time interval. The channel introduces a phase offset a
and adds a noise n(t). As a result, the received signal is

() () ()cos , 0c Er t A t a n t t T= ω + + < < (10.12)

where the channel phase a is known to be a random value uniform in the range [0, 2π),
and the noise n(t) represents an additive white Gaussian noise.

The receiver greets the incoming signal with a receiver front end, which maps
r(t) to the vector r = (r1, r2) by mapping it on to the orthonormal basis () (){ }1 2,t tφ φ

where () ()1

2
cos , 0c E

E

t t t T
T

φ = ω < < and () ()2

2
sin , 0c E

E

t t t T
T

φ = − ω < < .

 Specifically, as seen in Chapter 5, the receiver front end computes

()1 2,r r=r (10.13)

where

() () () () () ()

() ()

1 1 1 1

0 0

1 1

0

cos

cos

E E

E

T T

c

T

c

r r t t dt r t t dt A t a t dt

A t a t dt n

∞

−∞

= φ = φ = ω + φ

= ω + φ +

∫ ∫ ∫

∫
(10.14)

n(t)
s(t) = Acos(ωct), 0 < t < TE r(t) = Acos(ωct + a) + n(t), 0 < t < TE

+

CHANNEL

phase
offset

a

a is uniform random value
between [0, 2π).

Figure 10.3 Channel introducing phase offset and noise

286 � Chapter Ten

() () () () () ()

() ()

2 2 2 2

0 0

2 2

0

cos

cos

E E

E

T T

c

T

c

r r t t dt r t t dt A t a t d

A t a t dt n

∞

−∞

= φ = φ = ω + φ

= ω + φ +

∫ ∫ ∫

∫
(10.15)

Using a little bit of math, this simplifies to

()1 2,r r=r (10.16)

where

()1 1cos
2
ET

r A a n= + (10.17)

()2 2sin
2
ET

r A a n= + (10.18)

We’ll assume TE = 2 to simplify our presentation. It can be shown (but you’ll have
to take my word for it) that n1 and n2 are both Gaussian random variables with mean 0
and variance σn

2, and n1 and n2 are independent. We’ll now figure out the MAP estimate
ˆMAPa given the r = (r1, r2) of equations (10.16) to (10.18). To get this estimate we will

need two things, p(a) and p(rrrrr|a). Let’s start out by evaluating these.

1. p(a): We were told that a is a random variable, uniform in the range of [0, 2π).
Writing this statistically, we know that the distribution of a, p(a), corresponds to

() [)1
, 0, 2

2
0 , otherwise

a
p a

 ∈ π= π

(10.19)

2. p(rrrrr|a): We will need to figure this one out statistically, as follows: We start with

() ()1 2,p a p r r a=r (10.20)

That is, p(rrrrr|a) is the probability that r1 takes on a particular value given a, and the
probability that r2 takes on a particular value given a.

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 287

Now, we know that r1 = Acos(a) + n1. So, given a, the likelihood that r1 = x is the
likelihood that the noise n1 = x – Acos(a). Similarly, with r2 = Asin(a) + n2, the likeli-
hood that r2 = y given a is the likelihood that n2 = y – Asin(a). With these two things in
mind, we can write

() () ()()1 2 1 1 2 2, cos , sinp r r a p n r A a n r A a= = − = − (10.21)

Now, with the noises n1 and n2 independent of one another, then we can express
the equation above according to

() ()() ()()1 2 1 1 2 2, cos sinp r r a p n r A a p n r A a= = − ⋅ = − (10.22)

Next, we can continue to apply what we know to this equation. We know that the
noise n1 and n2 are Gaussian random variables, with mean 0 and variance σn

2—that

is, mathematically, () ()
2

1 2 22

1
exp

22 nn

n
p n n p n n

 −= = = = σπσ
. Substituting this into

Equation (10.22), we have

() ()()2

1
1 2 22 2

cos1 1
, exp exp

22 2nn n

r A a
p r r a

 − − = ⋅
 σπσ πσ

(10.23)
Using the simple mathematical property exp(a)exp(b) = exp(a + b) we end up with

() ()() ()(2

1 2

1 2 2 2

cos sin1
, exp

2 2n n

r A a r A a
p r r a

 − − − −=
πσ σ

(10.24)

This equation represents p(rrrrr|a). We now have p(a) and p(rrrrr|a), which is all we
need to compute the MAP estimate p(a).

The estimate ˆMAPa corresponds to the value computed from the equation

() ()ˆ argmaxMAP
a

a p a p a= r (10.25)

From (10.19), p(a) is a constant
1

2π for any phase a in [0, 2π). Being constant, it

does not affect the choice of maximum value ˆMAPa (that is, the value maximizing

() 1

2
p a ⋅

π
r is the same value maximizing p(rrrrr|a)). Hence, we can write our equation as

()ˆ argmaxMAP
a

a p a= r (10.26)

288 � Chapter Ten

Substituting the values we have from Equation (10.24) for p(rrrrr|a) we end up with:

()() ((2

1 2

2 2

cos sin1
ˆ argmax exp

2 2
MAP

n na

r A a r A − − − −=
πσ σ

a (10.27)

() () ()() (2 2 2 2 2
1 2 1

2 2

cos sin 21
ˆ argmax exp

2 2
MAP

n na

r r A a a r − + − + +
=
πσ σ

a

(10.28)

()2 2 2
1 2 1

2 2 2

21
ˆ argmax exp exp exp

2 2 2
MAP

n n na

r r r AA − + − = πσ σ σ
a

(10.29)

We can remove all multiplier terms that are not a function of a because these
terms won’t affect the optimization. This leads us to

� � � �1 2

2

cos sin
ˆ argmax expMAP

na

r A a r A a
a

�

� �� �� ��� �� ���	

(10.30)

Now, we use a little mathematical trick. We can find the value that maximizes x or
we can find the value that maximizes ln(x). Either way, we will end up with the same
value. This tells us that our equation can be rewritten according to

� � � �1 2

2

cos sin
ˆ argmax expMAP

na

r A a r A a
a ln

�

� � �� ��� ���� �� �� ���� �� �
 �
(10.31)

() () [1 2
12

cos sin
ˆ argmax argmax cosMAP

n
a a

r A a r A a
a r A a

+
= =

σ

(10.32)

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 289

Borrowing from a bit of math not shown here—take my word for it—you can
rewrite the equation according to

() ()
0

ˆ argmax cos
ET

MAP c
a

a r t A t a dt= ω +∫ (10.33)

(This comes about because
i

∑aibi is the same as () ()a t b t dt∫ where ai’s and bi’s

represent a(t) and b(t) on an orthonormal basis.) Now, since a is the value that maxi-
mizes the righthand term, it is equivalent to the value a that satisfies the equation
(borrowing from first-year calculus)

() () ˆ

0

cos 0
E

MAP

T

c a ar t A t a dt
a =
∂ ω + =
∂ ∫ (10.34)

Taking this derivative leads us to

() ()
0

ˆsin 0
ET

c MAPr t t a dtω + =∫ (10.35)

That means that our estimate ˆMAPa is the one that, given r(t), forces the integral
of Equation (10.35) to 0. A physical device that finds this ˆMAPa given r(t) is shown in
Figure 10.4. Here, you see a term, ()ˆsin ct aω + , where â is the current estimate of
the phase a, multiplies r(t). This product is passed through an integrator, which
outputs the value

() ()
0

ˆsin
ET

cr t t a dtω +∫ . (10.36)

r(t)
= Acos(ωct + a) + n(t), 0 < t < TE

TE

0
∫x decision

device
close to φ

not close to φ

sin(ωct + a)∧

∧sin(ωct + a)

∧update a
and send

it back

output

Figure 10.4 A device to evaluate aMAP
^

290 � Chapter Ten

This value enters into a decision device (typically implemented using a voltage-
controlled oscillator, or VCO for short). If the integral is 0 (or very close to it), then the
decision device decides that the current â estimate is the desired estimate ˆMAPa . If
the value is not close to 0, then the decision device updates the value of â and sends it
back to see if it now makes the integral of Equation (10.35) equal to 0 (or very close to
it). In this way, given () () () []cos , 0,c Er t A t a n t t T= ω + + ∈ , we can generate an
estimate of a.

10.3.2 The Practical Estimator: the PLL

In practice, engineers estimate the phase a using a device very close to the one shown
in Figure 10.4, namely the device shown in Figure 10.5, called a phase-locked loop, or
PLL for short.

Looking at Figure 10.5, we see that the PLL is very close to the estimator of
Figure 10.4. Here are the differences: (1) the integrator has been replaced by a filter
F(f); and (2) the decision device has been implemented using a VCO.

= Acos(ωct + a) + n(t), 0 < t < TE

x
decision

device built
using VCO

sin(ωct + a)∧

∧sin(ωct + a)
outputF(f)r(t)

Figure 10.5 Phase-locked loop

Figure 10.6 helps to explain the workings of the PLL. At the input we have

() () ()cos cr t A t a n t= ω + + (10.37)

To keep the written explanation of the PLL workings simple, I’ll simply ignore the
noise for the sake of the verbal description. We’ll be assuming that the input is

() ()cos cr t A t a= ω + (10.38)

Now, as this r(t) comes in, it gets multiplied by the sinusoid

()ˆsin ct aω + (10.39)

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 291

where â is the current estimate of our channel phase. The output signal from that
product is

() () ()ˆcos sinc cr t A t a t a′ = ω + ω + (10.40)

() () ()ˆ ˆsin 2 sin
2 2c

A A
r t t a a a a′ = ω + + + − (10.41)

This signal then goes through the filter F(f), which acts as a low-pass filter,
cutting out the high-frequency term in r′(t) (the first term in r′(t)). As a result, the
output corresponds to

() () ()ˆsin
2

A
r t a a f t′ = − ∗ (10.42)

We will assume that F(f) is close to 1 (f (t) is close to δ(t)) in the low-frequency
range, and hence the r ′(t) is well-approximated by

() ()ˆsin
2

A
r t a a′ = − (10.43)

This signal then enters into the VCO, which acts as a decision device, deciding based
on its input whether to update the current estimate â , or keep it and be done. Specifi-
cally, the VCO is a device that determines the rate of change of the phase estimate â ,
according to

()ˆ
input to VCO

a
K

t

∂ = ⋅
∂ (10.44)

r(t)
= Acos(ωct + a), 0 < t < TE

x

sin(ωct + a)∧

sin(ωct + a)∧

∧

F(f) VCO

∧
 Acos(ωct + a) . sin(ωct + a)

= A sin(2ωct + a + a) + A sin(a – a)

∧

∧

∧
2 2

∧
2

2

A sin(a – a) * f(t)
≈ A sin(a – a)

∧
2∂t

∂a ∝ A sin(a – a)

Figure 10.6 The PLL explained

292 � Chapter Ten

()ˆ
ˆsin

2

a A
K a a

t

∂ = ⋅ −
∂ (10.45)

Now, if the phase estimate â a= , then plugging this into the equation above,

ˆ
0

a

t

∂ =
∂ (10.46)

That is, the estimate â is not changed. The VCO decides to hold onto its current
estimate.

Alternatively, let’s say the value of â is close to a. In that case, ()ˆ ˆsin a a a a− ≈ − ,
and we have

()ˆ
ˆ

2

a A
K a a

t

∂ ≈ ⋅ ⋅ −
∂ (10.47)

If â is smaller than a, then
â

t

∂
∂ will be positive, which means that the VCO is

going to increase the estimate â . If, on the other hand, â is larger than a, then
â

t

∂
∂ is

negative, which means that the VCO will decrease the value of â . In this way, the
VCO acts as a decision device, making changes in â until â a= .

This is, practically speaking, the way engineers generate an estimate of the
unknown phase a. There are a number of tweakings to the PLL that are sometimes
performed, and under different conditions they make different choices for the F(f). But
these details are left for another time—and another book.

10.3.3 Updates to the Practical Estimator in MPSK

Let’s consider what we’ve done so far. We received the signal

() () ()cos , 0c Er t A t a n t t T= ω + + ≤ < (10.48)

where a represents a random phase offset and n(t) represents an additive white
Gaussian noise. We then built a device that creates the estimate â of a. We also saw
an alternative version of this estimator, called the PLL, which is commonly deployed
by most engineers.

But in some communication systems, we receive

() () ()cos cr t A t a n tθ= ω + + + (10.49)

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 293

where θ is a value in the set
2

, 0, 1, , 1k k M
M

π = −

� and represents information

bits stored in the transmitted phase. This is what we receive if the transmitter corre-
sponds to an MPSK modulator. You can see how this received signal is created by
taking a look at Figure 10.7. In this section, we are interested in finding a way to create
an estimate for a, given the received signal shown in Equation (10.49), rather than the
r(t) shown in Equation (10.48).

n(t)
= Acos(ωct + θ),

 θ∈ 2πk, k = 0,1,… , M – 1}
r(t) = Acos(ωc + θ + a) + n(t)

s(t)

MPSK
modulator +

CHANNEL

phase
offset

abits

M

Figure 10.7 A practical received signal

Typically, the way engineers generate the estimate of a, given r(t), is shown in
Figure 10.8. The idea, as explained in that figure, is this: use a processor that gets rid
of θ, and then use the PLL shown in Figure 10.5. Only one question remains: how do
we get rid of the phase θ? One device commonly employed to do this is shown in
Figure 10.9. In comes

() () ()cos cr t A t a n tθ= ω + + + (10.50)

r(t)
= Acos(ωct + θ + a) + n(t)

processor:
get rid of θ∈

2πk, k = 0,1,… , M – 1}
M

PLL
sin(ωct + a)∧

Figure 10.8 Creating an estimate of a, a, given r(t)^

294 � Chapter Ten

PLL
sin(Mωct + a)∧

 r′′(t) ≈ AMcos(Mωct + M . a)

(.)M

BPF
 centered

at
M . ωc

θ∈{ 2π k, k = 0, 1, … , M–1}

r(t)
= Acos(ωct + θ + a)

r′(t) = [r(t)]M

M
M = AMcos(Mωct + 2π k . M + M . a)

+ low freq. terms

Figure 10.9 Processor to remove θθθθθ

where θ is a value in the set
2

, 0, 1, , 1k k M
M

π = −

� . To simplify the presentation

of the workings of Figure 10.9, we’ll ignore the noise. That means we can write the
input as

() 2
cos cr t A t k a

M

π = ω + +
(10.51)

where k = 0 or 1 or … or M – 1. After passing this input through the power-of-M
device, we end up with

() 2
cos

M

cr t A t k a
M

 π ′ = ω + +
(10.52)

()

()

2
cos

lower frequency terms

M
cr t A M t M k M a

M

π ′ = ω + ⋅ + ⋅
+

(10.53)

This signal is passed through a bandpass filter, which cuts out all the terms
except the term centered around frequency Mωc—that is, except the first term of
Equation (10.53). As a result, the output of the bandpass filter is

() () ()cos 2 cosM M
c cr t A M t k Ma A M t Ma′′ = ω + π + = ω + (10.54)

The PLL tracks the phase of this term and, hence, it ends up with the phase esti-
mate â Ma= . We use a divide-by-M to generate the desired phase estimate of a.

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 295

10.4 Conclusion

This chapter describes the world of estimation, also known as synchronization. It is an
important part of telecommunications because, when sending a signal from transmitter
to receiver, the channel often adds unwanted parameters along the way, which we label
a. We need to be able to estimate these parameters so we can remove them from the
received signal. This chapter provided a general framework for creating the estimate
â of any given parameter a. Specifically, there are three ways to generate this esti-
mate. The first method is known as MMSE, the second as MAP, and the third as ML.
We then considered an important practical example, namely the estimation of channel
phase. We saw how to estimate phase using the MAP method and we saw how engi-
neers implement a device similar to the estimator created from the MAP method.

296 � Chapter Ten

Problems

1. A transmitter sends a. A receiver picks up the value r, which is characterized
by

 () ()()2

2

11
exp

22

r a
p r a

 − − =
 σ πσ

(Q10.1)

Draw a block diagram of a receiver that performs ML detection.

2. A transmitter sends a value a, which is a random variable characterized by
Figure Q10.1. A receiver picks up the value r.

(a) If r is characterized by

 () ()1
1 exp

2
p r a r= + = − (Q10.2)

 () 21 1
1 exp

2 2
p r a r

− = − =
(Q10.3)

draw a block diagram of a receiver that performs MAP detection.

(b) If r is characterized by

 ()
2

22
11

1
1 exp

22

r
p r a

 −= + = σπσ (Q10.4)

–1

1/2 δ(t + 1) 1/2 δ(t – 1)
1/2

+1
a

p(a)

Figure Q10.1
The pdf of a

www.ebook3000.com

http://www.ebook3000.org

Estimation and Synchronization � 297

 ()
2

22
22

1
1 exp

22

r
p r a

 −= − = σπσ (Q10.5)

draw a block diagram of a receiver that performs MAP detection.

3. A receiver observes

 r a n= + (Q10.6)

where a is a Gaussian random variable with mean 0 and variance s2, and n is a
Gaussian random variable with mean 0 and variance s1

2.

(a) Find the MMSE estimate.

(b) Find the MAP estimate.

4. A transmitter sends

 () () ()cos , 1is t A t iT t i Tθ= ω + ≤ < + (Q10.7)

where θi = 0° or 180°

and receives

 () () () ()cos , 1ir t A t n t iT t i T= ω + + ε + ≤ < +θ (Q10.8)

Draw a block diagram of a system that will estimate the phase offset and briefly
describe its operation.

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

11
Chapter

Multiple Access Schemes
Teaching Telecommunications Systems to Share

This chapter explores the different ways in which a communication channel can be
shared by multiple users. We looked at this briefly in Chapter 2, where we intro-

duced time division multiplexing and frequency division multiplexing. In this chapter,
we provide more details so that you can understand how to build a communication
system that shares the channel among the many users who want to use it.

11.1 What It Is

Let’s say you have been given a license by the FCC to build a wireless communication
system operating in a frequency band of 1.8 GHz to 1.805 GHz. You decide that you
would like many users to be able to use your system. You also decide that each user
will communicate only digital signals (that is, they will use a source coder to make all
the information they send digital). You need to find a way to allocate portions of the
communication channel to each user. This chapter is about how to do that.

There are two general methods that allow many users to share a single communi-
cation channel:

1. Multiplexing schemes. Multiplexing schemes are channel-sharing schemes
where portions of the channel are assigned to each user by a system controller at
a central location. The system controller assigns, in advance, the channel por-
tions for each user, and controls each user’s access to the channel.

2. Multiple access schemes. Multiple access schemes refer to channel-sharing
schemes where a system controller assigns portions of the channel to each user
based on current availability. The system controller can update the sharing of
portions of the channel based on changes in system demand. Once the system
controller tells the user what portion he can use, the user is in charge of making
sure he uses the portion requested.

Most modern communication systems use multiple access schemes, so we’ll
spend our time on them.

300 � Chapter Eleven

11.2 The Underlying Ideas

Look at Figure 11.1, since it explains what I describe next.

source
coder

source
coder

modulator

modulator

+

x

x

+

sent over channel

n(t)

si(k)(t)

si,M(t)

si,1(t)

si(j)(t)

si(k)(t) + si(j)(t)

r(t) = si(k)(t) + si(j)(t) + n(t)

signal

channel

(a)

(b)

DEMODULATOR FOR USER k (from Chapter 5)

source
decoder

wants to
hear user

k
(not user j)

OPTIMAL RECEIVER
FRONT END FOR USER k

DECISION DEVICE
FOR USER k

R1

r(t) = si(k)(t) + si(j)(t)
 + n(t)

decision
device

(i+1)T

iT

(k)

(k)

∫

(i+1)T

iT ∫

user k

user j

Figure 11.1 (a) User k and user j send their signals over the channel
(b) A receiver tries to pick up user k’s signal

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 301

1. In Figure 11.1(a), we have a new naming convention. We use the notation () ()k
is t

to indicate the signal sent out by the kth user during the time [iT,(i + 1)T]. Let’s say
that the kth user’s information, () ()k

is t is one of the following signals:
() () () () () (){ },1 ,2 ,, , ,k k k
i i i Ms t s t s t� . (Let’s assume, for example, it is a signal from a

 QPSK signal set.)

2. In Figure 11.1(a), we assume that there are two users, user k and user j, using
the communication system. That means that the signal being sent over the
channel is the combination of both sent signals,

3. In Figure 11.1(b), we want to pick up the signal from user k, () ()k
is t . We do not

want the signal from user j, because we are not interested in what user j is saying.
From Chapter 5, we know that the receiver front end to use when we want to pick
up the signal () ()k

is t (from user k) is the one shown in Figure 11.1(b).

4. Let’s look at the top branch of this receiver front end.

4a. In comes () () () () () ()k j
i ir t s t s t n t= + + , where ()n t is channel noise.

4b. We want to make sure that the signal () ()j
is t in r(t) does not make it out of

this top branch. If this signal does not make it out of the top branch then
we have effectively eliminated the presence of () ()j

is t (user j) in this part
of user k’s receiver.

4c. The signal coming out of the top branch is

()() ()
()

()() ()() ()()
()1 1

,1 ,11 ()
i T i T

k k k j
i i i i

iT iT

R s t r t dt s t s t s t n t
+ +

 = = ⋅ + + ∫ ∫ (11.1)

()() ()()
()

()() ()()
()

()() (
1 1

,1 ,1 ,11
i T i T

k k k j k
i i i i i

iT iT

R s t s t dt s t s t dt s t n t
+ +

= + +∫ ∫ ∫ (11.2)

If we make sure that () ()
()

() ()
1

,1 0
i T

k j
i i

iT

s t s t dt
+

=∫ , then the signal () ()j
is t will not make

it out of the top branch. So, we require that
() ()

()
() ()

1

,1 0
i T

k j
i i

iT

s t s t dt
+

=∫ .

5. Next, we also want to make sure that the signal () ()j
is t in r(t) does not make it

out of branch 2, branch 3, and branch 4. That means we require that

() () () (),2 0k j
i is t s t dt =∫ (11.3)

302 � Chapter Eleven

() () () (),3 0k j
i is t s t dt =∫ (11.4)

() () () (),4 0k j
i is t s t dt =∫

6. Generally, we can state that we want to make sure that

() () () () 0k j
i is t s t dt =∫ (11.5)

for all possible () ()k
is t and () ()j

is t signals sent. It is easily shown using Fourier

transforms that, equivalently, we want to make sure that

() () () () 0k j
i iS f S f df =∫ (11.6)

In words, we want to make sure that the signal sent by user j is orthogonal to the
signal sent by user k. This is the underlying principle of multiple access techniques—
making sure that Equation (11.5) or (11.6) is satisfied. If you do that, then you make
sure that user j’s signal does not appear in the output of a receiver that wants to pick
up user k’s signal, and vice versa.

Recently, engineers have become a more forgiving lot. Some say: “It would be OK
if just a tiny bit of user j’s signal appeared in user k’s receiver, as long as it was such a
small amount that it didn’t affect the performance of user k’s receiver.” Mathematically
what they are saying is that they want to make sure that

() () () ()k j
i is t s t dt < ε∫ (11.7)

where ε is a very small number. If you decide to build a multiple access system where
this is the case, it is called interference-limited, and the signals sent are called pseudo-
orthogonal.

Example 11.1

Two users set out to share a communication channel. One user sends her binary
information as +x(t) (if the bit to send is 1) or –x(t) (if the bit is 0). The second
user sends his bit as +y(t) or –y(t). The x(t) and y(t) are shown in Figure E10.1.
Determine if these users are able to share the channel without interfering with
one another.

Solution: The users, we’ll call them user 1 and user 2, will be able to share the
channel if the signals they send satisfy

 () () () ()1 2 0s t s t dt =∫ (E11.1)

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 303

Now, we know that user 1 sends either + or – x(t) and user 2 sends either
+ or – y(t). So, plugging this into our requirement leads to

 () () 0x t y t dt± ⋅ ± = ∫ (E11.2)

Now, let’s use a little math and see if indeed this equality holds:

 () () 0x t y t dt± ⋅ =∫ (E11.3)

 () ()
1

0

0x t y t dt =∫ (E11.4)

 ()
1

2

1
2

1

0

1 1 1 1 0dt dt⋅ + ⋅ − =∫ ∫ (E11.5)

 ()1 1
2 2 0+ − = (E11.6)

 0 0= (E11.7)

Yes, the equality holds. The two users will be able to share the channel
without interfering with one another.

t

1

1

x(t)

1/2

1
1

y(t)

-1

Figure E11.1 Signals sent by user 1 and user 2

11.3 TDMA

A very common type of multiple access system, and one that satisfies Equation (11.5),
is called TDMA, short for time division multiple access. You can see this idea in Figure
11.2. User k has a slot of time in which to send his information, and then user j has a
different time in which to send his information. In this way, the signal sent by user j
(() ()j

is t) is 0 when user k’s signal is non-zero; and the signal sent by user k (() ()k
is t) is

0 when user j’s signal is non-zero. This makes sure that the product in the integral of
Equation (11.5) is 0, and therefore the integral is 0.

304 � Chapter Eleven

The basic principle of TDMA is also shown in Figure 11.3. One user uses the
entire frequency range of the communication channel for a brief period of time, then
another user uses the entire frequency range of the communication channel for a brief
time. An analogy could be a cocktail party where, to avoid hearing two conversations at
once, one pair of people talk at one time, then another pair talk at another time, then
another pair talk the time after that, then the first pair talk again, then the second pair
talk again, then the third pair talk again, and so on. It’s a polite cocktail party where
people share the time domain.

Generally, in TDMA, users send an entire set of data symbols in their time slot,
and this entire set is called a burst. For example, in a well-accepted standard called
GSM, users send a burst of 148 data symbols at one time slot.

source
coder

source
coder

modulator

modulator

t

t

si(k)(t)

si(j)(t)

user k

user j

time
align

time
align

Figure 11.2 The TDMA idea

time

user j user k user j user k

frequency

TB TB TB TB

Figure 11.3 The TDMA idea in the frequency-time domain

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 305

Example 11.2

Propose a TDMA system which

• allows two users to transmit data at a rate of 1 Mb/s and

• allows each user to send three bits at a time.

Solution: What we want to do is give user 1 a time slot long enough for three bits,
which is a time slot of length

6

6
13 3 3 10 sec
1 10 bits / secSLOT bT T − = ⋅ = ⋅ = ⋅ ⋅

(E11.8)

We then want to give user 2 a slot long enough for his three bits, again a slot of
duration

 ()6 63 3 1 10 3 10 secSLOT bT T − −= ⋅ = ⋅ ⋅ = ⋅ (E11.9)

We’ll rotate between giving user 1 a slot for her three bits and giving user 2 the
slot for his three bits. In the end, we end up with a TDMA scheme as shown in
Figure E11.2, where the shaded bits represent user 2’s bits, and the unshaded
ones represent user 1’s bits.

Figure E11.2 The TDMA scheme

t

SLOT 1 SLOT 2 SLOT 3 SLOT 4

3 . Tb

= 3 . 10–6

3 . Tb

11.4 FDMA

FDMA is another way to enable multiple users to share an entire communication resource.
In FDMA (short for frequency division multiple access) each user uses a different band of
frequencies to communicate his or her information. An example of FDMA is shown in
Figure 11.4. There, we see user k sending his information at one frequency and user j
sending her information at a different frequency. If you know who you want to listen to, you
tune your receiver to pick up transmissions at the desired user’s frequency. This system
satisfies Equation (11.6), because user k is 0 at the frequencies where user j is transmit-
ting, and user j is 0 at frequencies where user k is transmitting. That makes
 () () () () 0k j

i iS f S f = , and therefore () () () () 0k j
i iS f S f df =∫ .

306 � Chapter Eleven

The use of FDMA is also shown in Figure 11.5. Here, we see that each user is
given all the time they could ever want, but they can only communicate over a small
frequency band.

Figure 11.4 The FDMA idea

source
coder

source
coder

modulator

modulator

f

f

Si(k)(f)

Si(k)(f)

user k

frequency
shift

frequency
shift

user j

user k

user j

frequency

time

Figure 11.5 The FDMA idea in the frequency-time domain

11.5 CDMA

11.5.1 Introduction

CDMA is short for code division multiple access. The idea underlying CDMA was put
forward by an attractive Hollywood actress, Hedy Lamarr, and composer George
Antheil. CDMA itself was made possible by improvements in technology in the late
1980s and was designed by a giant company which has a football stadium named after
them in San Diego, Qualcomm.

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 307

The idea behind CDMA is this. Give user k a unique shape, called a signature
waveform or a code, and give user j a different unique shape, also called a signature
waveform or a code. Make sure that the code you give user k and the code you give user
j are carefully chosen to ensure that Equation (11.5) or Equation (11.7) is satisfied.

For example:

1. Let’s say that we give user j the shape () ()jx t shown in Figure 11.6(a). User j
sends ()() ()()j j

is t x t= + to say the bit sent is 1, or he sends ()() ()()j j
is t x t= − to

say the bit sent is 0, as shown in Figure 11.6(b).

x(j)(t)

si(j)(t)=

+x(j)(t) –x(j)(t)

(a)

OR

(b)

(i + 1)T

(i + 1)T

(i + 1)T

t

t

iT

iT

iT

+0.5

–0.5

0.5

–0.5

+0.5

–0.5

Figure 11.6 (a) Code (shape) given to user j
(b) Possible signals sent by user j

308 � Chapter Eleven

2. Let’s also say that we give user k the shape () ()kx t shown in Figure 11.7(a).
User k sends () () () ()k k

is t x t= + to say the bit sent is 1, or he sends
() () () ()k k
is t x t= − to say the bit sent is 0, as shown in Figure 11.7(b).

3. Now, you can easily show that () () () () 0k j
i is t s t dt =∫ for any () ()k

is t and
() ()j
is t , which tells us that this choice satisfies Equation (11.5). That means that

user j and user k can send these two signals and user j’s signal will not appear in
user k’s receiver (and vice versa).

Figure 11.7 (a) Code (shape) given to user j
(b) Possible signals sent by user k

x(k)(t)

si(k)(t)=

+x(k)(t) –x(k)(t)

(a)

(b)

(i + 1)T

(i + 1)T

(i + 1)T

t
iT

iT

iT

+1

+1

–1

OR

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 309

4. In this particular example, it is easily shown with a graphic how giving user k
the code () ()kx t and giving user j the code () ()jx t allows us to send both user k
and user j’s signal and not experience any interference. Consider the example of
Figure 11.8. There you see a signal sent by user j, and a signal sent by user k, and
you see the combining of user k and user j’s signal. You can see from the com-
bined signal that you can still tell what user k and user j sent: (1) user k’s
information is 1 if the combined signal is above the x-axis, and it is 0 if the com-
bined signal is below the x-axis; (2) user j’s information is 1 if the combined signal
slopes upward, and his information is 0 if the combined signal slopes downward.
So, by giving each user a carefully chosen code, you can send signals at the same
time and at the same frequency, but still have a way to separate users.

Figure 11.8 How assigning codes (shapes) lets you determine each user’s signal

2T 3T 4TT0

2T 3T 4TT
0

2T 3T 4TT

1 0 1 1

0 0 1 0

1.5

0.5

0.5

–0.5

–0.5

–1.5

user k

user k

 + user j

user j

310 � Chapter Eleven

CDMA is a great idea, because with it you have users sending information at the
same time, and over the same frequencies, but you can still perfectly separate users.
An analogy to CDMA could be that of being at a cocktail party filled with two humans
and two aliens. The humans and aliens talk at the same time and over the same fre-
quencies, but the human communication is completely undetectable to the aliens and
what the aliens speak is completely unnoticeable to the humans.

There are two classes of CDMA. The first class is called orthogonal CDMA. In
orthogonal CDMA, user j’s and user k’s signals satisfy Equation (11.5)—that is

() () () () 0k j
i is t s t dt =∫ . The second class is pseudo-orthogonal CDMA, where user j’s

and user k’s signals instead satisfy Equation (11.7). In this case, a little bit of user j’s
signal appears in user k’s signal, but just a very little, not enough to significantly affect
the performance of the user k’s receiver. When you use pseudo-orthogonal CDMA,
you can support more users than with orthogonal CDMA, TDMA, or FDMA.

11.5.2 DS-CDMA

There are three different types of CDMA, distinguished by the codes given to each
user. The first and most-used form of CDMA is called direct sequence CDMA, or DS-
CDMA for short.

In DS-CDMA, each user is given a code like the one shown in Figure 11.9. As you
can see in that figure, each code consists of short pulses of duration Tc, and each short
pulse has a height of either +1 or –1. In Figure 11.9, four short pulses comprise the
user’s code. In general, there are N short pulses that make up a user’s code. User k
takes her code, say the one in Figure 11.9, called () ()kx t , and, in the simplest case,
sends () () () ()k k

is t x t= to indicate the information bit is 1, and sends
() () () ()k k
is t x t= − to indicate that the information bit is 0.

Figure 11.9 Code (shape) assigned to user k in a DS-CDMA system

TC

T

2TC 3TC 4TC

+1

0

-1

x(k)(t)

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 311

Each user is given a unique code. For example, Figure 11.10 shows four codes, each
one of which is given to a different user. User 1 uses the top code ()()1x t , user 2 uses the
second code ()()2x t , and so on. For the codes in Figure 11.10, it is easy to show that

()() ()() ()0 for all ,k jx t x t dt k j k j= ≠∫ (11.8)

With ()() ()() () ()(),k k jj
i is t x t s t x t= ± = ± , and so on, this guarantees that

()() ()() ()0 for all ,k js t s t dt k j k j= ≠∫ (11.9)

TC

t

t

t

t

2TC 3TC 4TC

TC 2TC 3TC 4TC

TC 2TC 3TC 4TC

T

T

+1

+1

-1

+1

-1

+1

-1

x(1)(t)

x(2)(t)

x(3)(t)

x(4)(t)

Figure 11.10
Code for user 1, 2, 3, and 4

312 � Chapter Eleven

Hence, the example of Figure 11.10 represents an example of orthogonal CDMA.

In general, in DS-CDMA, the code for user k can represented as

() () ()
()

()
1

0

1
k

i

c

N
ck

T c
i

x t p t iT
−

=

= − −∑ (11.10)

Here, the ci
(k) is either 0 or 1, and hence the ()

()
1

k
ic− is either +1 or –1. This term

tells us if the pulses that make up the code have an amplitude of –1 or +1. The ()
cTP t

represents the basic pulse shape that the code is made up of—in all the examples I’ve
been drawing, this pulse shape is a simple rectangular shape. In general, the basic
pulse can take on slightly different shapes, but all of these are, approximately speak-
ing, rectangular.

11.5.3 FH-CDMA

Another type of CDMA, not nearly as common today as DS-CDMA but still used, is
called frequency-hopping CDMA, or FH-CDMA for short. In FH-CDMA, the codes are
not made up of little pulses, as in DS-CDMA, but instead they are made up of little
cosine waveforms, as shown in Figure 11.11.

What happens in FH-CDMA is this. The user k, using the code () ()kx t in Figure
11.11, sends either () () () ()k k

is t x t= + to represent the bit 1 or () () () ()k k
is t x t= − to

represent the bit 0. To the communication channel, it looks like a signal is sent at one
frequency, then suddenly it jumps (hops) to another frequency, and then it suddenly
hops to a different frequency. Hence the name frequency hopping.

To keep users’ signals from interfering with one another, you make sure that the
frequency jumps that one user takes never collide with the frequency jumps that the
other users take. Basically, the system must make sure that two users are never using
the same frequency at the same time.

t
T

+1

-1

0

x(k)(t)

cos(ω2t)cos(ω1t) cos(ω3t) cos(ω4t)

Tc 2Tc 3Tc 4Tc

Figure 11.11 Code (shape) assigned to user k

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 313

Figure 11.12 The creation of user k’s code x(k)(t) for MC-CDMA (main idea)

t
T

1

x(k)(t)

cos((ωc + ∆ω)t)

cos(ωct)

cos(ωc + (N–1)∆ω)t)

x

x

x

x
p(t)

In FH-CDMA, the code used by a user can be described mathematically by the
equation

() () ()() ()
1

0

cos
c

N
kk

i T c
i

x t t p t iT
−

=

= ω −∑ (11.11)

Here,
()() ()cos

c

k
i Tt p tω represents a cosine waveform which exists over the very

 short period of time [0,Tc]. The value ()k
iω indicates the frequency of this cosine wave-

form and is typically chosen from a finite set of possible frequencies.

11.5.4 MC-CDMA

The final member of the exclusive three-member CDMA club is a newcomer that
announced its presence in 1993, and has been slowly growing in popularity since its
late arrival. Its name is multicarrier CDMA, or MC-CDMA for short. In MC-CDMA,
each user is given a code that is best understood in the frequency domain. I’ll explain
this code in two parts.

1. The code for user k is generated by the block diagram of Figure 11.12. There you
see a pulse of duration T is put at many different frequencies. Figure 11.13 shows
the code for user k in the frequency domain. Each bump in frequency represents a
pulse of duration T in time.

x(k)(f)

f
fc fc + ∆f fc + (N–1)∆f

Figure 11.13 The frequency make-up of user k’s code x(k)(t)

314 � Chapter Eleven

2. Actually, the code is a little different than that explained in part 1. Figure 11.14
shows the actual code given to user k. The code for user k is not only a pulse sent
over the same frequencies over and over again, but a +1 or –1 is applied to each
frequency. User k sends his information bit of 1 by sending the code for user k
multiplied by +1, and sends the information bit 0 by sending the code for user k
multiplied by –1.

Figure 11.14 The creation of user k’s code x(k)(t)

t
T

+1

x(k)(t)

cos((ωc + ∆ω)t)

cos((ωc + (N–1)∆ω)t)

x

x

x

x

x

x

p(t)

cos(ωct)

user k

+

THESE +1 and –1 values
are different for different users

–1

–1

+1

User j sends his information in exactly the same way—the only difference is that
his code uses different +1 and –1 values to multiply each frequency. For example, user
j may send his signal as +1 or –1 multiplied by the code generated as shown in Figure
11.15. If you compare Figure 11.15, which generates the code for user j’s signal, to
Figure 11.14, which generates the code for user k’s signal, you can immediately see
that the only difference is in the +1 and –1’s at each frequency of the code.

By carefully choosing the +1 and –1 values for each user’s code, we can make
sure that their codes, and therefore their transmitted signals, are orthogonal or
pseudo-orthogonal (that is, they satisfy Equation (11.5) or Equation (11.7)).

Figure 11.15 The creation of user j’s code x(j)(t)

t
T

+1

x(j)(t)

cos((ωc + ∆ω)t)

cos((ωc + (N–1)∆ω)t)

x

x

x

x

x

x

p(t)

cos(ωct)

user j

+

+1

+1

+1

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 315

The MC-CDMA code can be expressed mathematically according to the equation

() () ()
() ()() ()

1

0

1 cos
k

i
N

ck
c

i

x t i t p t
−

∆

=

= − ω + ω ⋅∑ (11.12)

where ci
(k) is either 0 or 1, meaning that ()

()
1

k
ic− is either +1 or –1; this tells us that

each frequency component is multiplied by either +1 or –1. The p(t) represents the
pulse of duration T sent at each of the carrier frequencies.

11.6 CIMA

CIMA, short for carrier interferometry multiple access, is a novel set of multiple
access techniques under development by friends Steve and Arnold at Idris Communi-
cations (which also holds the patent). I’ve spent the last year researching it, and my
graduate students and I think it is a revolutionary multiple access scheme, so I de-
cided to include it here.

The easiest way to understand CIMA is to consider one simple example, an
example close to MC-CDMA. In CIMA, each user is given a unique code. The code for
user k is generated according to Figure 11.16. Here, you can see that the CIMA code
consists of a pulse shape of duration T, which is sent out over a large number of fre-
quencies, just like MC-CDMA. The difference is that each carrier frequency is not
multiplied by a +1 or –1, as in MC-CDMA, but instead the nth carrier frequency is
multiplied by the phase offset () ()1 kj ne

∆− θ .

t
T

+1

x(k)(t)

ej(ωc)∆ω)t

ej(ωc + (N–1)∆ω)t ej(N–1)∆θ(k)

x

x

x

x

x

x

p(t)

ejωct

ej∆θ(k)user k

+

1

takes the
real part

(makes ej(.) cos(.)).

Re{.}

Figure 11.16 The creation of user k’s code x(k)(t) in CIMA

Let’s look at the code for user k in the time domain. The code in CIMA can be
expressed mathematically according to

() () () ()() ()
1

0

cos
N

k k
c

i

x t i t i p t
−

∆ ∆

=

= ω + ω + θ∑ (11.13)

316 � Chapter Eleven

() () () (){ } ()
1

0

Re
k

c
N

j i t ik

i

x t e p t
∆ ∆− ω + ω + θ

=

 = ⋅
∑ (11.14)

() ()
()() ()

1

0

Re
k

c

N j i t ik j t

i

x t e e p t
∆ ∆− ω + θω

=

 = ⋅

∑ (11.15)

() ()
()() ()

1

0

Re
k

c

N j i tk j t

i

x t e e p t
∆ ∆− ω + θω

=

= ⋅

∑ (11.16)

Now, using the properties of summation from our friendly math textbooks (spe-
cifically looking up geometric series), we can rewrite the sum in Equation (11.16)
according to

() ()
()()

()() ()1
Re

1

k

c

k

jN t

k j t

j t

e
x t e p t

e

∆ ∆

∆ ∆

ω + θ
ω

ω + θ

 − = ⋅ −
(11.17)

After about five lines of added math, we find out that this term can be rewritten
according to

x t

N
t

t

k

k

k

()

()

()

() =

+()
Ł ł

+()
Ł ł

sin

sin

2
1

2

D D

D D

w q

w q
+

-
+()

Ł ł
()

()cos w w qc
kt

N
t p t

1

2
D D

(11.18)

Drawing this code in the time domain, we end up with the code shown in Figure
11.17. It looks like a big pulse in the time domain with little lobes (side lobes) sur-
rounding it. So user k has a code which

1. is generated according to Figure 11.16; and

2. in the time domain looks like Figure 11.17.

User k sends the bit 1 by multiplying his code () ()kx t by +1 and sending it across
 the channel; he sends the bit 0 by multiplying the code () ()kx t by –1 and sending it
across the channel.

User j has a different code () ()jx t , generated as shown in Figure 11.18. As you
can see in this figure, the only difference between the code () ()jx t for user j and the
code () ()kx t for user k is the phases that multiply each frequency. User j’s code is
drawn in the time domain in Figure 11.19.

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 317

Figure 11.17 The user k’s code x(k)(t) (drawn without the cos(ωωωωωct) terms)

Figure 11.18 The creation of user j’s code x(j)(t) in CIMA

Figure 11.19 x(j)(t) in the time domain (with cos(ωωωωωct) not drawn)

T

x(k)(t)

t =
∆θ

(k)

∆ω

t

T

1

x(j)(t)

ej((ωc + ∆ω)t)

ej((ωc + (N–1)∆ω)t) ej(N–1)∆θ(j)

x

x

x

x

x

x

p(t)

ejωct

ej∆θ(j)user k

+

1

T

x(j)(t)

t =
∆θ

(j)

∆ω

t

318 � Chapter Eleven

When looked at in the time domain, the only difference between the code of user
k and the code of user j is that their pulses occur at different times. In that way, CIMA
looks like TDMA—each user sends a pulse with a +1 or –1 on it, and these pulses are
separated in time. However, one main difference is this. In TDMA, you always make
sure that Equation (11.5) is satisfied; in CIMA, you start out by making sure Equation
(11.5) is satisfied. When more users want to use your system, so many that Equation
(11.5) can no longer be satisfied, TDMA tells some users they cannot use the system;
CIMA shifts to making sure that Equation (11.7) is satisfied instead (that is, your users
shift automatically from being orthogonal to pseudo-orthogonal) and you can now
handle all the new users. Not only that, but our current research is showing us that
CIMA is able to offer better performance than TDMA.

In a very real way, CIMA is a bridge between TDMA and CDMA, and that is a
nice thing.

11.7 Conclusion

This chapter is all about the “how-to” of sharing a communication channel among
many users. We saw the guiding principle behind this idea, then we saw how to share
time (TDMA), how to share frequencies (FDMA), and finally, in CDMA, how to share
codes. We also proposed a new set of multiple access possibilities when we introduced
CIMA, a brand-new multiple access system.

www.ebook3000.com

http://www.ebook3000.org

Multiple Access Schemes: Teaching Telecommunications Systems to Share � 319

Problems

1. Consider the signals shown in Figure Q11.1(a), (b), (c), (d). Two users want to
use the system. User 1 will send +s1(t) for bit 1 and –s1(t) for bit 0. User 2 will
send +s2(t) for bit 1 and –s2(t) for bit 0.

(a) If the two users want to experience no interference with one another, which
of the four signal sets should they use? Explain.

(b) If the two users want to share the same channel but can tolerate a little bit of
interference, which of the four signal sets would you recommend? Explain.

(c) Which signal sets would you recommend they avoid? Explain.

t
1

t
1

1

s2(t)

s2(t)

t
1

s1(t)

s1(t)

(c)

(b)

(a)

t
1

f

1

1

S1(f)

–fm –fmfm fm
f

S2(f)

A1

A2
(d)

0.99 1.99

1/2

1/21/2

1/2

t

1

1

s2(t)

-1
t1

1

s1 (t)

A1 = A2

–

Figure Q11.1
Four signal sets

320 � Chapter Eleven

2. Propose a TDMA system which allows four users to send 148 bits at a time at a
data rate of 9.6 kb/s. Explain what each user sends, when they send it, and
explain why.

3. Propose an FDMA system which allows seven users to send data at a rate of
9.6 kb/s. Explain what each user sends, in what frequency bands, and explain
why.

4. You are asked to build a DS-CDMA system to support (a) two orthogonal users
and (b) four orthogonal users. Using trial and error (or any other method),
determine the codes (see equation (11.10)) assigned to each user.

5. Consider the three-user CDMA system with codes as shown in Figure Q11.2.
Determine if these codes are orthogonal or pseudo-orthogonal. Explain.

6. The CIMA user code is generated using Figure 11.16. Show, without skipping
any lines of math, that the output signal corresponds to equation (11.18).

t

1

x(1)(t)

–1

Tc 2Tc 3Tc

t

1

x(2)(t)

–1

–1

Tc 3Tc

t

x(3)(t)

2Tc

+1

3Tc

Figure Q11.2
CDMA codes

www.ebook3000.com

http://www.ebook3000.org

12
Chapter

Analog Communications

Wow, the last chapter, which is about something that came first. Before there were
digital communications, before there were source coding and channel coding

and digital modulation and equalization, there were analog communications.

I will not go into the details of analog communications in this book, because in
most cases it is being quickly replaced by powerful digital communication techniques.
But, because some of what currently exists in the world today was built when there
was only analog, it is important to have a basic understanding of it.

12.1 Modulation—An Overview

An analog communication system, roughly speaking, looks like what is drawn in
Figure 12.1. You can see that the information signal x(t) comes in and is mapped by a
modulator into a new signal s(t)
ready to be sent over the
channel. And that is all that
happens at the transmitter
side—no source coder, no
channel coding. At the receiver
side, the signal that arrives
from the channel is picked up,
and it goes through a demodu-
lator, which returns it to a best
guess of the original informa-
tion signal. That’s it—no
channel decoder, no source
decoder. So, all we’ll do in this
chapter is study the modulator
and demodulator.

r(t)

s(t)x(t)

x(t)
demodulator

modulator

signal
ready to be

sent over the channel

information signal

C
h
a
n
n
e
l

best guess on x(t)

^

Figure 12.1 An analog communication system

322 � Chapter Twelve

At the modulator, the input signal x(t) is typically a baseband signal—that is, a
signal centered around 0 Hz. You can see this in Figure 12.2(a). The signal you want to
send over the channel must be sent around the frequency ωc, as seen in Figure
12.2(b). The goal of the modulator is to map the incoming signal at baseband to a
signal that is centered around ωc. To do this, the modulator takes a sinusoid at the
frequency ωc and it shoves x(t) in it as its amplitude, or as variations in its phase or
frequency. I can explain that last line better in math, so: given x(t), the modulator
outputs s(t) according to

() () ()()cos cs t A t t t= ω +θ (12.1)

where the information x(t) is put into either A(t) or θ(t).

X(f)

ωc
f

(a)

(b)

your analog signal
must travel the channel
in this frequency band

f

Figure 12.2 (a) Your analog signal x(t) in the frequency domain
(b) The frequency band over which your signal must be sent

12.2 Amplitude Modulation (AM)

One of the options on your radio is AM, shorthand for amplitude modulation, a simple
type of modulator.

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 323

12.2.1 AM Modulators—in Time

The basic idea in AM modulators is to take the information signal x(t) and map it into
the amplitude of the sent signal s(t). Specifically, what happens is this:

1. Make sure that the amplitudes of x(t) are in the range [–1, 1]. If they exceed
this range, update x(t) by multiplying by a scalar so that it fits into the range [–1,
1]. In what follows, I will assume x(t) has amplitudes in the range [–1, 1].

2. Send

() ()() ()1 cosc cs t A m x t t= + ω (12.2)

where m is a value in the range [0,1] and is called the modulation index.

Let’s say the input coming in is the x(t) shown in Figure 12.3(a); that is, the
incoming x(t) is a square wave. To create the output s(t), let’s assume that m = 1. In
this case, we can figure out the output as follows:

x(t)

s(t)

t

t

(a)

(b)

+1

1 2 3

–1

2Ac

Figure 12.3 (a) Input to AM modulator (b) Output of AM modulator (m = 1)

324 � Chapter Twelve

1. At times when x(t) = –1, we have an output

() ()() ()1 cosc cs t A m x t t= + ω (12.3)

() ()() ()1 1 cosc cs t A t= + − ω (12.4)

() 0s t = (12.5)

2. At times when x(t) = +1, we have an output

() ()() ()1 cosc cs t A m x t t= + ω (12.6)

() () ()1 1 cosc cs t A t= + ω (12.7)

() ()2 cosc cs t A t= ω (12.8)

These two results tell us that for the x(t) of Figure 12.3(a), we have the output
shown in Figure 12.3(b). You can see from Figure 12.3(b) that the shape (dotted lines)
of Figure 12.3(b) is the same as the x(t) in Figure 12.3(a). The x(t) is said to create the
“envelope” of the sent signal s(t).

Let’s look at another example. In Figure 12.4(a), we see the input waveform
x(t) = cos(Wt), where W is a very small value (close to 0). That means that s(t) has the
form (using m = 1 again)

() () ()1 cos cosc cs t A Wt t= + ω (12.9)

The plot of this is shown in Figure 12.4(b). Again, you can see that the
x(t) = cos(Wt) shape forms the envelope of s(t).

In general, to plot s(t) given x(t), you first plot x(t). Then, plot mx(t). Next, plot 1 +
mx(t). Continuing on, plot Ac(1 + mx(t))—most times, it’s easy to go right from x(t) to
Ac(1 + mx(t)). Finally, draw in dotted lines at Ac(1 + mx(t)) and its negative –Ac(1 +
mx(t)). Between these dotted lines, draw a sinusoid cos(ωct). That’s it. You’ve got your
AM signal.

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 325

Example 12.1

Plot the output of an AM modulator using m = 1 and Ac = 2, when the input is that
in Figure E12.1.

Solution: The sent signal, which in general corresponds to Equation (12.2), this
time looks like

() ()()2 1 cos cs t x t t= + ω (E12.1)

The 2(1 + x(t)) looks like the dotted line drawn at the top of Figure E12.2. This
creates the envelope of the sent signal s(t), which is shown in the solid “jiggly”
line of Figure E12.2.

x(t)

s(t)

t

t

(a)

(b)

+1

–1

cos(ωct)

Ac(1 + mx(t))

Figure 12.4 (a) Input to AM modulator (b) Output of AM modulator (m = 1)

326 � Chapter Twelve

12.2.2 AM Modulation—in Frequency

Let’s see what the sent signal s(t) looks like in the frequency domain—that is, let’s
look at the Fourier transform of s(t), S(f). First, we know

() ()() ()1 cosc cs t A m x t t= + ω (12.10)

() () () ()cos cosc c c cs t A t A mx t t= ω + ω (12.11)

Now, turning to the frequency domain, and using basic properties of Fourier trans-
forms, we have

() () ()()
() () ()

2
1 1

2 2

c
c c

c c c

AS f f f f f

A m X f f f f f

= δ + + δ − +

 ∗ δ + + δ −
(12.12)

() () ()() () ((
2 2

c c
c c c

A A m
S f f f f f X f f X= δ + + δ − + + + (12.13)

A picture is worth a thousand words, so let’s see what S(f) looks like. Let’s say
we have an X(f) as shown in Figure 12.5(a). According to Equation (12.13), we then
have an S(f) as shown in Figure 12.5(b). The different parts of S(f) in Equation
(12.13) are pointed out in the plot of Figure 12.5(b).

x(t)

2 4

+1

–1

t

Figure E12.1 Input to AM modulator

2 4

4

0

2(1 +x(t))
Figure E12.2 Output from AM modulator

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 327

X(f)

S(f)

f

(a)

(b)

δ(f + fc)

f0

1

fc

Acm
2

X(f + fc)
Acm

2Ac . m
2

Ac
2

Ac
2

δ(f – fc)

fc

X(f – fc)

Figure 12.5
(a) Information signal input to AM modulator in frequency domain, X(f)

(b) Signal output by AM modulator in frequency domain, S(f) (shown with m = 0.5)

One thing engineers noticed when they looked at what was going on in the
frequency domain was that transmission power was being spent in sending the im-
pulses in S(f)—the δ(f + fc) and δ(f – fc)—across the channel. They decided to come up
with a measure to figure out what percent of power was being spent sending these
impulses, called modulation ef ficiency, and defined as follows:

modulation efficiency, η = percent of total power that is being used to convey
information;

or, more mathematically,

information power/total powerη = (12.14)

2

21
x

x

m P

m P
η =

+ (12.15)

328 � Chapter Twelve

where Px is the power in x(t), and is calculated using the integral

()
2

2

21
lim

T

T

x
T

P x t dt
T→∞

−

= ∫ .

For example, if Px =1 and m = 1, then we have a modulation efficiency η = 0.5 = 50%.

12.2.3 Demodulation of AM Signals—Noise-Free Case

In this section, we will study the demodulator used when a modulator sends an AM
signal. The demodulator receives the signal r(t) that comes across the channel, and
puts out ()x̂ t , its best guess on the original information signal x(t). To keep our
presentation simple, I’ll assume that the input to the demodulator is r(t) = s(t). That is,
we will ignore all the channel effects and assume an ideal channel where what comes
out is exactly what came in.

The idea behind demodulation is simple. Look, for example, at the signal in Figure
12.4(b). Let’s say that this signal r(t) = s(t) is coming into the demodulator. The top
dotted line in that picture, called the envelope, is simply Ac(1 + mx(t)) = Ac (1 + m cosWt).
If we can find a way to get that top dotted line out of the received r(t)=s(t), then we in
essence have our information x(t). (All we have to do once we get [the top dotted line]=
Ac(1 + mx(t)) = Ac + Ac mx(t) is subtract Ac and multiply the result by the scalar 1/mAc.)

So the key question in demodulation is: Can we build a simple device to get that
top dotted line from the signal in Figure 12.4(b)? The answer is a resounding yes.
There are very cheap and simple devices, called envelope detectors, that can easily
extract the envelope from the s(t). So, AM receivers are called envelope detectors.

An example of an inexpensive envelope
detector is shown in Figure 12.6. In this
figure, the little triangle, a diode, makes all
negative values zero, and leaves all the
positive values untouched. For example,
with the input of Figure 12.4(a), redrawn in
Figure 12.7(a), the output from the diode is
Figure 12.7(b). The resistor (R) and the
capacitor (C) work together as a low-pass
filter. The RC low-pass filter cuts out the
rapid variations in the signal and leaves the
slow variations intact. That is, for the input of
Figure 12.7(b), it creates an output of
approximately that shown in Figure 12.7(c).
Given the incoming s(t), we’ve got its enve-
lope pulled out, which means—good
news—we’ve pretty much got our x(t).

diode
makes all negative
values 0

Low-Pass Filter

R C

Figure 12.6 An implementation of an AM
demodulator = envelope detector

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 329

k

(a)

cos(ωct) high-frequency term

r(t) = s(t)

k

Ac(1 + mx(t))
cos(ωct)

k
(c)

(b)

output of
RC LPF

output of
diode

Ac(1 + mx(t)) low-frequency term

Ac(1 + mx(t))

Figure 12.7 Workings of envelope detector of Figure 12.6
(a) input (b) diode output (c) LPF output

330 � Chapter Twelve

12.2.4 An Alternative to AM—DSB-SC

Some use an alternative to AM called double sideband suppressed carrier, which merci-
fully is written and spoken in shorthand using the acronym DSB-SC.

In AM, we sent

() ()()1 cosc cs t A mx t t= + ω (12.16)

In DSB-SC, we send pretty much the same thing, only we get rid of the “1” and
the “m”; that is, in DSB-SC, we send

() ()cosc cs t A x t t= ω (12.17)

In some ways this is a good thing, and in some ways it isn’t. To see its benefits,
let’s look at the frequency domain, and study the Fourier transform of the DSB-SC sent
signal s(t)—that is, study S(f). Using simple Fourier transform properties, and the s(t)
of Equation (12.17), we find

() () () ()1 1
2 2c c cS f A X f f f f f = ∗ δ − + δ + (12.18)

() () ()
2

c
c c

A
S f X f f X f f= − + + (12.19)

So, if X(f) looks the way it’s drawn in Figure 12.8(a), then it follows that S(f) looks
like Figure 12.8(b). We can see that in DSB-SC, we are not wasting any power sending
an impulse at ωc (as in AM, which wastes power here, as shown in Figure 12.5).

But, alas, it was not all good news for DSB-SC. People said: Well, we need a de-
modulator for it—let’s try to use the envelope detector. Let’s say x(t) = cos(Wt) (where W
is very small) as shown in Figure 12.9(a). That means that s(t) = Ac cos(Wt) cos(ωct),
which corresponds to the multiplication shown in Figure 12.9(b) and leads to
s(t) = Ac cos(Wt) cos(ωct) as shown in Figure 12.9(c). Now, let’s look at the envelope of
s(t), which is the dotted line on top of it, shown in Figure 12.9(d). You can clearly see,
comparing the envelope of Figure 12.9(d) with the x(t) of Figure 12.9(a), that these have
completely different shapes. In fact, in this case, the envelope of s(t) is |x(t)| and not x(t).
So, the envelope detector does not work for the DSB-SC signal. This is unfortunate,
because envelope detectors are so inexpensive.

Nevertheless, some designers did decide to use DSB-SC. But first, they had to
come up with a demodulator at the receiver side, to get x(t), given r(t). The demodula-
tor that they found worked well is shown in Figure 12.10. The input coming into the
demodulator is

() () () ()cosc cr t s t A x t t= = ω (12.20)

This gets multiplied by a cosine term, leading to

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 331

X(f)

S(f)

f

(a)

(b)

f

1

–fc

–fm

–fc – fm –fc + fm fc – fm fc + fm

fm

Ac
2

fc

() () () ()cos cosc c cr t A x t t t′ = ω ⋅ ω (12.21)

() () ()1 cos 2
2

c
c

A
r t x t t′ = + ω (12.22)

Next, this signal is passed through a low-pass filter, which cuts out the high-
frequency term, leading to the output

() ()
2

cA
r t x t′′ = (12.23)

Finally, a multiplication is applied to generate x(t). This demodulator is a little
more complex than that of AM. DSB-SC gives you a choice—spend less power in
transmission by using DSB-SC, or use a less expensive receiver by using AM.

Figure 12.8 DSB-SC (a) Information signal in frequency domain, X(f)
(b) Sent signal in frequency domain, S(f)

332 � Chapter Twelve

(c)

(d)

s(t) = x(t) ⋅ Accosωct
 = AccosWt cosωct

x(t)

s(t) =

t

t

(a)

(b)

1

–1

x(t) = cosWt

x(t) = cosWt

t

t

t

Accosωct

Ac

–Ac

envelope of s(t)

Figure 12.9 (a) Information signal x(t) = cosWt (b) Creating sent signal s(t)
(c) Sent signal s(t) (d) Envelope of s(t)

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 333

x(t)
r'(t) r"(t)

cos(ωct) 2/Ac

r(t) = s(t)
= Acx(t)cos(ωct)

x xLPF

Figure 12.10 Demodulator for DSB-SC
Given r(t) = s(t), it outputs x(t)

Example 12.2

Assuming Ac = 4:

(a) Determine the output (in time) of the DSB-SC modulator when the input
corresponds to Figure E12.3.

(b) Determine the output (in frequency) of the DSB-SC modulator when the
input corresponds to Figure E12.4.

x(t)

2 4

+1

–1

t

Figure E12.3
The input to DSB-SC modulator for (a)

Solution: (a) The output signal corresponds to

 () ()4 cos cs t x t t= ω (E12.2)

X(f)

5

–100Hz 100Hz0

Figure E12.4
The input to DSB-SC modulator for (b)

334 � Chapter Twelve

In Figure E12.5, the 4x(t) is drawn as a dotted line, and forms the envelope
for the signal s(t). A – 4x(t) is also drawn as a dotted line. The signal s(t) is the
solid “jiggly” line between the two dotted lines.

(b) The output signal corresponds to

 () () ()4

2 c cs f X f f X f f= − + + (E12.3)

For the X(f) of Figure E12.4, this S(f) corresponds to Figure E12.6

2 4

4

–4

4x(t)

–4x(t)

s(t)

t

Figure E12.5
The DSB-SC output for (a)

S(f)

10

fc + 100fc – 100 fc–fc + 100–fc – 100 –fc

f

Figure E12.6 Output of modulator

12.3 Frequency Modulation (FM)

To some, FM is a dial on the radio where you can hear love songs, classic rock, or
greatest hits. To engineers, FM is shorthand for frequency modulation.

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 335

12.3.1 The Modulator in FM

The idea in frequency modulation is to map the information x(t) into the fre-
quency of the transmitted signal s(t). Mathematically, what is done is this: Given an
information bearing signal x(t), you send out over the channel

() ()()cosc cs t A t t= ω +θ (12.24)

where

() ()
t

ft K x d
−∞

= τ τ∫θ . (12.25)

Looking at this equation, you really can’t tell that the information x(t) is placed in
the frequency of s(t). So let’s do a little math that will show that x(t) has indeed been
placed in the frequency of s(t). The frequency of s(t), at any moment in time t, is given
by

() ()()c

d
t t t

dt
ω = ω +θ (12.26)

() ()
t

c f

d
t t K x d

dt −∞

ω = ω + τ τ

∫ (12.27)

() ()c ft K x tω = ω + (12.28)

This tells us that at time t, the frequency of the sent signal s(t) is ωc + Kf x(t), which
indicates that x(t) is determining the frequency of s(t).

Let’s use pictures to see what is going on in FM. Let’s say we have the informa-
tion-bearing signal x(t) as shown in Figure 12.11(a). Using this, we can determine
some important information about s(t):

1. At times when x(t) = –1, the frequency of s(t) is ω(t) = ωc + Kf x(t) = ωc – Kf .

2. At times when x(t) = +1, the frequency of s(t) is ω(t) = ωc + Kf x(t) = ωc + Kf .

Using this information, we can get the plot of s(t) shown in Figure 12.11(b). Here, we
see the variation in the frequency of s(t) as a direct result of changes to x(t).

For another example, take a look at Figures 12.12(a) and (b). There, we see the
input x(t) = cos(Wt) (where W is a very small number). We also see the output in
Figure 12.12(b)—as x(t) gets bigger, the frequency of s(t) gets bigger, and as x(t) gets
smaller the frequency of s(t) gets smaller.

336 � Chapter Twelve

t

t

Ac

–Ac

+1

–1

s(t)

x(t)

(a)

(b)

. . .

. . .

Figure 12.11
(a) Information signal x(t)

(b) Transmitted FM signal s(t)

Let’s see if we can characterize the sent signal s(t) in the frequency domain—that
is, let’s see if we can evaluate the Fourier transform of s(t), called S(f) . To help us out,
let’s start by rewriting s(t):

() ()()cosc cs t A t t= ω +θ (12.29)

() (){ }Re cj t t
cs t A e ω +θ= (12.30)

() (){ }Re cj t j t
cs t A e eθ ω = (12.31)

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 337

() (){ }Re cj ts t g t e ω= (12.32)

where g(t) = Ace
jθ(t). Taking the Fourier transform of s(t) and applying properties of the

Fourier transform, we end up with

() () ()1 1
2 2c cS f G f f G f f= − + − − (12.33)

Figure 12.12
(a) Information signal x(t)
(b) Sent signal s(t) in FM

x(t)

t

(a)

t

Ac

–Ac

s(t)

(b)

highest
frequency

lowest
frequency

x(t) =
cosWt

338 � Chapter Twelve

where G(f)is the Fourier transform of ()j t
cA e θ and () ()

t

t x d
−∞

= τ τ∫θ . The relationship

between G(f)and x(t) is so complex that there is no simple mathematical equation to
relate the value G(f) to the value X(f)—that means there is no simple equation to relate
S(f)to X(f).

In the simple case when x(t) = cos(Wt) and W is small, we can derive an equation
relating X(f) to S(f), but this equation is messy, involving Bessel functions, and I just
want to offer an introduction to analog communications here. Look in the reference list
to see a book that covers the joys of Bessel functions.

Example 12.3

Draw the output of an FM modulator when the input corresponds to Figure E12.7.

Solution: The output corresponds to equation (12.24), which shows that the
output corresponds to a sinusoid with constant amplitude. Equation (12.28) tells
us that the frequency of the FM output changes linearly with x(t). Putting this
information together leads to the output plot of Figure E12.8.

Figure E12.7 Input to FM modulator

Figure E12.8 Output of FM modulator

t

x(t)

t

Ac

–Ac

s(t) = Ac cos (ωct + θ(t))

. . .

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 339

12.3.2 The Demodulator in FM

We now know about how the FM modulators work and what they do. At the receiver
side, you want to build an FM demodulator that gets the received signal r(t) = s(t) and
turns that back into your information x(t).

You know that there is no information x(t) in the amplitude of r(t) = s(t)—all the
information is in the instantaneous frequency ω(t) = ωc + Kf x(t). The demodulator
works to get ω(t), the instantaneous frequency, out of r(t) = s(t), the received signal.

A demodulator for an FM signal is shown in Figure 12.13. First, a limiter is
applied. The limiter takes r(t) = s(t) and gets rid of all amplitude fluctuations, by simply
forcing all positive values to +1 and all negative values to –1. The output is called r ′ (t).
The limiter’s operation does not affect the ability to extract the information signal x(t),
since the information is stored in the frequency (not in the amplitude). Then, the
signal r ′ (t) is passed through a discriminator. The discriminator outputs a value r″ (t),
which is proportional to the instantaneous frequency ω(t). That is, it outputs

() ()r t K t′′ = ω (12.34)

() ()()c fr t K K x t′′ = ω + (12.35)

Once we have this output, a processor doing a simple subtraction and a scalar
multiplication creates the output ()x̂ t .

And that, my friends, is FM, its modulation and its demodulation.

x(t)r'(t)r(t) = s(t) r"(t)

in
1

–1

out

LIMITER DISCRIMINATOR

amplitude of output

frequency
of input

Simple
subtraction

&
scalar

multiplication

^

12.4 The Superheterodyne Receiver

The last section of this book has a grand title. The superheterodyne receiver is a stan-
dard AM receiver that you can use to pick up any radio station. Let me explain how
this receiver works, then we’ll call it a done book.

Take a look at the top of Figure 12.14. This shows a part of the frequency spec-
trum. Specifically, each peak in the spectrum represents the presence of a radio station
transmitting its songs and sounds at that frequency. You want to build an inexpensive
radio which allows you to pick up any radio station that you’d like to listen to.

Figure 12.13 FM demodulator

340 � Chapter Twelve

The standard construction of such a receiver is shown in Figure 12.14. Let’s say
that you want to pick up an AM signal at 900 kHz.

1. To start, you have an antenna, which picks up all the radio signals.

2. Next, you use three components to get rid of the other radio stations and leave
you only with the sounds of 900 kHz.

2a. The first component used to cut out the other radio stations is a tunable RF
(radio frequency) filter. The RF filter is tuned to 900 kHz, and acts as a
bandpass filter, as shown in Figure 12.14. It cuts down (but not out) the
radio signals at other frequencies—the reason we don’t use a very sharp
bandpass filter here that cuts out all the other radio stations is because it is
expensive to build a very sharp filter that is tunable.

2b. Next, we apply a mixer, which is just a fancy way to say that we multiply
the signal by a cosine waveform with frequency fL. Multiplication by a
cosine causes the incoming signal to shift in frequency by fL. By tuning the
dial to 900 MHz, the cosine waveform frequency fL is set to shift the fre-
quency of the 900 MHz station to 455 MHz.

RF
filter

Envelope
Detector

IF
filter

455 kHz
x

PICKS
UP ALL
RADIO

STATIONS

REMOVES ALL BUT DESIRED
RADIO STATION

TURNS AM SIGNAL
TO SOUND

f
f

H(f)H(f)

455 kHz

ANTENNA

900 kHz
f

AM
radio stations at

different frequencies

900

this line means
"adjustable" or

"tuneable"

cos2πfLt

Figure 12.14 The superheterodyne receiver

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 341

2c. A very sharp filter, called the IF (intermediate frequency) filter, is applied to
the incoming signal. This filter is a very sharp bandpass filter at 455 MHz,
as shown in Figure 12.14. With the desired AM signal now at 455 MHz, it
makes it through the IF filter—all the other radio frequencies are cut out.

3. Now you have the AM signal you want with all those other radio signals cut
out. So you put your AM signal through an envelope detector, which extracts the
sound information x(t) from the AM signal.

12.5 Summary

This is it. The end of the chapter. The end of a long journey through a book. In this
chapter, we briefly looked at analog communication systems. We looked at AM and
FM modulation, and we saw how to detect AM and FM signals. We even “built” a
receiver that allows you to listen to your favorite radio station.

It is my sincerest hope that this book provided you with a solid understanding of
the basics of telecommunications systems engineering, without the mountain of
“muck” created by intimidating attitudes and big words. Life is simple, if it’s just
explained that way.

342 � Chapter Twelve

Problems

1. Figure Q12.1 shows the input to a modulator. Determine the output if

(a) the modulator is an AM modulator.

(b) the modulator is an FM modulator.

(c) the modulator is a DSB-SC modulator.

Figure Q12.1 Modulator input

2. Figure Q12.2 shows the input to a modulator. Determine the output (in the
frequency domain) if

(a) the modulator is an AM modulator.

(b) the modulator is a DSB-SC modulator.

f

1

X(f)

-2.fa fa fa 2.fa

Figure Q12.2 Modulator input

3. Given that the signal x(t) in Figure Q12.3 is input to a DSB-SC modulator:

(a) Determine the output of the modulator.

(b) Assume this signal is sent over a channel which is ideal (the received
signal equals the sent signal).

t
3.5321

x(t)

. . .

www.ebook3000.com

http://www.ebook3000.org

Analog Communications � 343

(1) Determine the output of the demodulator when the demodulator is a
perfect envelope detector.

(2) Determine the output of the demodulator when the demodulator is a
mixer, low-pass filter, and processing device as described in the chap-
ter.

Figure Q12.3 DSB-SC input

1

x(t)

1
–1

2 3

4. Given the input in (Q12.1), provide an analytical equation for the modulator
output when the modulator is

 ()
,0 1

2 ,1 2

0 ,else

t t

x t t t

≤ <
= − < <

(Q12.1)

(a) an AM modulator

(b) a DSB-SC modulator

(c) an FM modulator

5. An AM receiver is tuned to pick up the station at 600 MHz. Draw a block
diagram of the AM receiver used to detect this signal.

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

Annotated References and
Bibliography

While this book provides a streamlined overview of the world of telecommunica-
tions engineering, I’d like to refer you to other books that can serve as useful
resources. They offer some added detail on topics covered in this book, and address
topics I didn’t have the space to include in this book. Here’s my recommended list,
with some notes that I hope prove valuable.

1. B. Sklar, Digital Communications: Fundamentals and Applications. Englewood
Cliffs, NJ, Prentice-Hall, 1988.

An older book, but in my opinion a classic. (The second edition will be coming in
early 2001.) I learned telecommunications using it, and I enjoyed it. Well-written
for the most part, and includes some details not included in this book.

2. J.G. Proakis, Digital Communications, 4th Edition, Boston, McGraw-Hill, 2000.

This is THE classic book in the field. The book is a little tough to read in places
(intended for the graduate student audience) but it is a wonderfully detailed book
and a great reference.

For further reading on the topics in Chapter 1 and 2, try:

3. J.G. Nellist, Understanding Telecommunications and Lightwave Systems: An
Entry-Level Guide. IEEE Press, 1995

A nice little book that gives a nontechnical introduction to telecommunication
systems. A good book if you want to introduce someone without a strong techni-
cal background to the field.

4. Roger B. Hill, “The Early Years of the Strowger System,” Bell Laboratories
Record, Vol. XXXI No. 3, p. 95.

www.privateline.com/Switching/EarlyYears.html
The cited article is reprinted on this website, which also has a lot of other
interesting material on telephone history.

For further reading on the topics in Chapter 3, try:

5. A. Oppenheim, A. Willsky and H. Nawad, Signals and Systems, Second Edition.
Upper Saddle River, NJ, Prentice Hall, 1996.

http://www.amazon.com/exec/obidos/ASIN/0132119390/llhtechnologypub/107-7740260-3074107
http://www.amazon.com/exec/obidos/ASIN/0072321113/llhtechnologypub/107-7740260-3074107
http://www.amazon.com/exec/obidos/ASIN/0780311132/llhtechnologypub/107-7740260-3074107
http://www.privateline.com/Switching/EarlyYears.html
http://www.amazon.com/exec/obidos/ASIN/0136511759/llhtechnologypub/107-7740260-3074107

http://www.amazon.com/exec/obidos/ASIN/0471170275/llhtechnologypub/107-7740260-3074107
http://www.amazon.com/exec/obidos/ASIN/0792391810/llhtechnologypub/107-7740260-3074107
http://www-s.ti.com/sc/psheets/spra163a/spra163a.pdf
http://www.amazon.com/exec/obidos/ASIN/0132100711/llhtechnologypub/107-7740260-3074107
http://www.alantro.com/viterbi/viterbi.htm
http://www.ebook3000.org

Annotated References and Bibliography � 347

For further reading on the topics of Chapter 10, try:

12. H. Van Trees, Detection, Estimation and Modulation Theory: Part I. New
York, NY: John Wiley and Sons, 1968.

Man, you say, this author is recommending a 1968 book. How old is this guy
anyway? Actually, this is THE classic in the field of detection and estimation. It
can be a tough read at times, but if you want all the details of detection and
estimation discussed in Chapter 10, I recommend it. It’s out of print, but you can
probably find a copy online.

For further reading on the topics in Chapter 11, try:

13. J.S. Lee and L.E. Miller, CDMA Systems Engineering Handbook. Boston, MA:
Artech House Publishers, 1998.

This fat book, over 1,000 pages long, is by far the best and easiest to read book in
the area of CDMA. It’s wonderfully complete, nicely written, and just an all-
around gem.

For further reading about wireless telecommunications, consider:

14. T. Rappaport, Wireless Communications. Upper Saddle River, NJ: Prentice
Hall, 1996.

If you want to learn about the wireless world, I would recommend in particular
the first four chapters in this book as an introduction. Rappaport does a wonderful
job of providing an easy-to-read vision of the wireless communication channel, the
first step to a good understanding of the wireless world.

http://www.amazon.com/exec/obidos/ASIN/0471899550/llhtechnologypub/107-7740260-3074107
http://www.amazon.com/exec/obidos/ASIN/0890069905/llhtechnologypub/107-7740260-3074107
http://www.amazon.com/exec/obidos/ASIN/0133755363/llhtechnologypub/107-7740260-3074107

[This is a blank page.]

www.ebook3000.com

http://www.ebook3000.org

Index

3-dB bandwidth, 55
4-ASK, 126, 143
4-FSK, 129
4-PSK, 129, 146, 151
4-PSK signals, 140
8-ASK, 127, 143
8-FSK, 129
8-PSK, 129, 141, 142
µ-law description, 91

A

A-law description, 91
absolute bandwidth, 55
additive white gaussian noise, 147
aliasing, 65
alternative mark inversion, 118
AM, 322, 340, 341
AM modulator, 325
AM modulators, 323
AM receiver, 339
amplitude modulation, 322
amplitude shift-keying, 125
analog, 6
analog communication, 7, 8, 321
analog signal, 6
antenna, 26
ASK, 131, 132, 143
ASK modulators, 125
autocovariance, 48
AWGN, 147, 149

B

B-ASK, 125
bandpass filter, 18, 57, 294, 340
bandpass modulator, 124
bandwidth, 53
baseband filter, 250
baseband modulator, 116, 122, 192

baseband signal, 322
BASK, 143
Bayes’ Rule, 154
benefits of block coders, 192
BFSK, 129
Binary ASK, 125
bipolar RZ, 118
bit rate, 94, 95
bit-to-symbol mapper, 98
bit-to-symbol mapping, 95
block coding, 172
BPF, 18, 57
BPSK, 127, 165
BPSK modulator, 139, 162, 222, 225
burst, 304
BW compression, 123

C

carrier interferometry multiple access, 315
catastrophic code, 214, 215
CDMA, 306, 310
cell, 74
Centroid Rule, 83
channel, 3, 147
channel coder, 171, 175
channel decoder, 171, 172, 176, 183, 203
channel filter, 250
check bit, 173
CIMA, 315, 318
Class 1 switching center, 21
Class 2 switching center, 21
Class 3 switching center, 21
Class 4 switching center, 20
Class 5 switching center, 19
coaxial cable, 24
code, 307, 311
code division multiple access, 306
code rate, 175

350 � Index

codebook, 74
codeword, 74, 82
compandor, 85, 89
compressor, 85
convolution, 55, 63, 250
convolutional coder, 199, 200, 201
convolutional coders and decoders, 197
convolutional decoder, 204
correlator receiver, 156
correlator receiver front end, 151
cutoff frequency, 65

D

data communication, 31
decision device, 152, 153, 160, 163, 253, 271,

291, 292
delta function, 50
Delta Modulator, 99, 104
demodulator, 26, 28, 115, 116, 146, 148, 162
DFE, 274
differential feedback equalizer, 274
differential PCM, 107
digital communication, 7, 8
digital signal, 6
digital subscriber line, 31
direct sequence CDMA, 310
discrete time processing, 265
discrete-time convolution, 263
discrete-time signal, 6
discriminator, 339
DM, 99, 100, 101
double sideband suppressed carrier, 330
DPCM, 107, 109
DS-1, 23, 24
DS-2, 24
DS-3, 24
DS-4, 24
DS-CDMA, 310, 312
DSL, 31

E

end office, 19
envelope, 324
envelope detector, 328, 330
Error Detection, 122

error signal, 77
estimation, 280, 281, 282, 283, 295
Ethernet, 35, 36
even parity, 172
expandor, 85

F

FDM, 16
FDMA, 305, 306
FH-CDMA, 312, 313
fiber-optic cable, 30
fiber-optic links, 29
FM, 334, 339
FM demodulator, 339
Fourier transform, 51, 52, 326, 330, 337
fractionally spaced equalizer, 274
frequency distortions, 132
frequency division multiple access, 305
frequency division multiplexing, 16
frequency domain, 326
frequency modulation, 334, 335
frequency offset, 280
frequency shift-keying, 129
frequency-hopping CDMA, 312
FSE, 274
FSK, 132
FSK modulators, 129

G

Generalized Lloyd Algorithm, 83
generator matrix, 179, 180, 184
Gram-Schmidt orthogonalization procedure,

135
granular cells, 74
granular noise, 106
GSM, 304

I

ideal sampling, 61, 62, 67
IF, 341
impulse function, 50
impulse response, 58, 272
impulse train, 62
impulse train sampling, 61

www.ebook3000.com

http://www.ebook3000.org

Index � 351

instantaneous frequency, 339
interference-limited, 302
intermediate frequency, 341
intersymbol interference, 254, 258
inverse filter, 272
inverse system, 58
Inversion Insensitive, 124
ISI, 258

J

just-in-time math, 133

L

LANs, 35
limiter, 339
linear block coder, 177, 178
linear block decoder, 182
linear equalizer, 271, 273
Linear Time Invariant, 55, 56, 67
Local Area Networks, 35
local loop, 20
low-pass filter (LPF), 56, 64, 96, 291, 328
LTI, 55, 56, 58

M

Manchester Coding modulator, 120
MAP, 282
MAP estimate, 286, 287
mapping by set partitioning, 226
Matched Filter Receiver, 158, 159
maximum a posteriori, 282
maximum likelihood, 283
Maximum Likelihood Sequence Estimator, 268
MC-CDMA, 313, 315
mean, 42, 47, 48
mean squared error, 78, 84
mid-riser, 75
mid-tread, 75
Miller Coding modulator, 120
minimum mean squared error, 281
minimum mean squared estimate, 273, 282
mixer, 16, 340
ML, 283

MLSE, 268, 270, 271
MMSE, 273, 281
MMSE linear equalizer, 274
mobile communications, 33
modem, 31
modulation efficiency, 327
modulator, 26, 115, 116, 322
MPSK modulator, 293
mse, 78, 81, 82, 84, 85, 86
multicarrier CDMA, 313
multiple access, 299, 302
Multiple Random Variables, 44
multiplexing, 16, 299

N

(n,k) code, 175
natural sampling, 69
Nearest Neighbor Rule, 82
node, 202
noise, 249, 279
noise immunity, 124
non-return-to-zero, 117
non-uniform quantizer, 76
NRZ modulator, 117
NRZ-L, 117
NRZ-M, 117
Null-to-null bandwidth, 55
Nyquist criteria for zero ISI, 254
Nyquist rate, 65, 100, 110

O

odd parity, 172
optimal decoder, 268
optimal receiver, 258, 260, 264, 265, 271
orthogonal CDMA, 310, 312
orthogonalization procedure, 136
orthonormal basis, 134, 136, 138, 139, 140,

142, 143, 145, 148, 149, 162, 233, 280,
285, 289

overload, 106
overload cells, 74, 75
overload noise, 106, 107

352 � Index

P

packet switched network, 32
parity check matrix, 183
PCM, 92, 115
pdf, 40
performance of block coders, 188
performance of linear block codes, 189
performance of rectangular codes, 189
performance of the convolutional coder, 213
phase distortions, 132
phase offset, 280, 285
phase shift-keying, 127
phase-encoded modulators, 120
phase-locked loop, 290
Plain Old Telephone System (POTS), 19
PLL, 290, 292, 293
POTS, 19
predictive coder, 96, 98, 107
predictive decoder, 98
primary center, 21
probability density function, 40, 44
probability distribution function, 40
pseudo-orthogonal, 302
pseudo-orthogonal CDMA, 310
PSK, 132
PSK modulators, 127
pulse code modulator, 92, 93
pulse shaping, 245
pulse-shaping filter, 247

Q

QAM, 145, 146
QAM modulators, 130
quadrature amplitude modulation, 130
quadrature PSK, 129
quantization, 71
quantizer, 10, 71, 72, 73, 101
quantizer error, 80

R

radio frequency, 340
raised cosine function, 254
random event, 39
random processes, 45

random variable, 39, 45
receiver antenna, 26, 28
receiver filter, 258
receiver front end, 148, 151, 158, 162, 262
rectangular codes, 175, 176, 189
redundancy, 175
redundant bits, 175
regional center, 21
repeaters, 27
RF, 340
RZ Modulators, 118
RZ-AMI, 118

S

Sampler, 9, 100
sampling, 61
sampling rate, 62, 93
sampling theorem, 65
satellite connections, 28
sectional center, 21
self-clocking, 122
shifting property, 63
signal to quantization noise ratio, 78
signal-to-noise ratio, 165
signature waveform, 307
sinc scenario, 254
single parity, 173
single parity check bit coder, 172, 188
single parity check bits, 174
SNR, 165
source coder, 9, 95, 110
source coding, 61
source decoding, 95
speech signal, 18
SQNR, 78, 81, 88, 89, 94, 95, 98
square wave function, 50
state, 202
superheterodyne receiver, 339
switching center, 13, 14, 15
symbol rate, 93
symbol-to-bit mapper, 10, 93
synchronization, 280, 295
syndrome, 185, 188
systematic linear block codes, 181

www.ebook3000.com

http://www.ebook3000.org

Index � 353

T

T-1 trunk line, 23
TCM, 221
TCM decoder, 230, 233, 241
TCM Decoder Front End, 233
TDM, 18
TDMA, 303, 304, 305, 318
telecommunication network, 13
telephones, 13
terrestrial microwave, 26, 28
time division multiple access, 303
time-division multiplexing, 18
timing offset, 280
Token ring, 35, 37
toll center, 20
trellis diagram, 201, 202, 204, 226, 234, 267
trellis-coded modulation, 221, 237
trunk line, 23
twisted-pair cable, 24

U

Ungerboeck, 223
uniform quantizer, 76
unipolar RZ, 118, 122

V

variance, 42
VCO, 290, 291, 292
Viterbi algorithm, 206, 207, 212, 237, 268,

270
voltage-controlled oscillator, 290

W

whitening filter, 265, 271
wide sense stationary, 48
WSS, 48

Z

zero forcing linear equalizer, 272
zero-order Hold Sampling, 67

Demystifying TechnologyTMTMTMTMTM
 series

Video Demystified, Second Edition
A Handbook for the Digital Engineer
by Keith Jack
INCLUDES WINDOWS/MAC CD-ROM. Completely
updated edition of the “bible” for digital video
engineers and programmers.
1-878707-23-X $59.95

NEW!
Short-range Wireless Communication
Fundamentals of RF System Design and Application
by Alan Bensky
INCLUDES WINDOWS CD-ROM. A clearly written,
practical tutorial on short-range RF wireless design.
The CD-ROM contains a number of useful Mathcad
worksheets as well as a full searchable version of the
book.
1-878707-53-1 $49.95

Digital Frequency Synthesis Demystified
by Bar-Giora Goldberg
INCLUDES WINDOWS CD-ROM. An essential
reference for electronics engineers covering direct
digital synthesis (DDS) and PLL frequency synthesis.
The accompanying CD-ROM contains useful design
tools and examples, and a DDS tutorial.
1-878707-47-7 $49.95

Bebop to the Boolean Boogie
An Unconventional Guide to Electronics
Fundamentals, Components, and Processes
by Clive “Max” Maxfield
The essential reference on modern electronics,
written with wit and style. Worth the price for the
glossary alone!
1-878707-22-1 $35.00

Modeling Engineering Systems
PC-Based Techniques and Design Tools
by Jack W. Lewis
INCLUDES WINDOWS CD-ROM.Teaches the
fundamentals of math modeling and shows how to
simulate any engineering system using a PC spread-
sheet.
1-878707-08-6 $29.95

Fibre Channel, Second Edition
Connection to the Future
by the Fibre Channel Industry Association
A concise guide to the fundamentals of the popular
ANSI Fibre Channel standard for high-speed com-
puter interconnection.
1-878707-45-0 $16.95

NEW!
Telecommunications Demystified
A Streamlined Course in Digital (and Some Analog)
Communications for E.E. Students and Practicing
Engineers
by Carl Nassar
NEW! INCLUDES WINDOWS CD-ROM. A straight-
forward and readable introduction to the theory,
math, and science behind telecommunications. The
CD-ROM contains useful Matlab tutorials and a full
searchable version of the book.
1-878707-55-8 $59.95

NEW!
PCI Bus Demystified
by Doug Abbott
NEW! INCLUDES WINDOWS CD-ROM with full
searchable version of the text. This concise guide
covers PCI fundamentals, for both hardware and
software designers, including the new PCI Hot-Plug
Specification and new features of the PCI BIOS spec.
1-878707-54-X $49.95

Digital Signal Processing Demystified
by James D. Broesch
INCLUDES WINDOWS 95/98 CD-ROM. A readable
and practical introduction to the fundamentals of
digital signal processing, including the design of
digital filters.
1-878707-16-7 $49.95

Visit www.LLH-Publishing.com for great technical print books, eBooks, and more!

Technical publications by engineers, for engineers.

www.ebook3000.com

http://www.llh-publishing.com/catalog/books/videodm.htm
http://www.llh-publishing.com/catalog/books/DSPdm.htm
http://www.llh-publishing.com/catalog/books/dfsd.htm
http://www.llh-publishing.com/catalog/books/srwc.htm
http://www.llh-publishing.com/catalog/books/pcibd.htm
http://www.llh-publishing.com/catalog/books/td.htm
http://www.llh-publishing.com/catalog/books/bebop.htm
http://www.llh-publishing.com/catalog/books/engnrsys.htm
http://www.llh-publishing.com/catalog/books/fchannel.htm
http://www.LLH-Publishing.com
http://www.ebook3000.org

	Cover Page
	Title Page
	Copyright
	Table of Contents
	Foreword
	What’s on the CD-ROM?
	Chapter 1 - Introducing Telecommunications
	1.1 Communication Systems
	1.1.1 Definition
	1.1.2 The Parts of a Communication System
	1.1.3 An Example of a Communication System

	1.2 Telecommunication Systems
	1.2.1 Definition
	1.2.2 Four Examples and an Erratic History Lesson

	1.3 Analog and Digital Communication Systems
	1.3.1 Some Introductory Definitions
	1.3.2 Definitions
	1.3.3 And Digital Became the Favorite
	1.3.4 Making It Digital

	1.4 Congrats and Conclusion

	Chapter 2 - Telecommunication Networks
	2.1 Telecommunication Network Basics
	2.1.1 Connecting People with Telephones
	2.1.2 Connecting More People, Farther Apart
	2.1.3 Multiplexing—An Alternative to a Lot of Wire

	2.2 POTS: Plain Old Telephone System
	2.2.1 Local Calls
	2.2.2 Long Distance Calls
	2.2.3 The Signals Sent from Switching Center to Switching Center

	2.3 Communication Channels
	2.3.1 Transmission Lines (Wires)
	2.3.2 Terrestrial Microwave
	2.3.3 Satellite Connections
	2.3.4 Fiber-optic Links

	2.4 Data Communication Networks
	2.5 Mobile Communications
	2.6 Local Area Networks (LANs)
	2.7 Conclusion

	Chapter 3 - A Review of Some Important Math, Stats, and Systems
	3.1 Random Variables
	3.1.1 Definitions
	3.1.2 The Distribution Function: One Way to Describe x
	3.1.3 The Density Function: A Second Way to Describe x
	3.1.4 The Mean and the Variance
	3.1.5 Multiple Random Variables

	3.2 Random Processes
	3.2.1 A Definition
	3.2.2 Expressing Yourself, or a Complete Statistical Description
	3.2.3 Expressing Some of Yourself, or a Partial Description
	3.2.4 And in Telecommunications

	3.3 Signals and Systems: A Quick Peek
	3.3.1 A Few Signals
	3.3.2 Another Way to Represent a Signal: The Fourier Transform
	3.3.3 Bandwidth
	3.3.4 A Linear Time Invariant (LTI) System
	3.3.5 Some Special Linear Time Invariant (LTI) Systems

	3.4 Onward

	Chapter 4 - Source Coding and Decoding: Making it Digital
	4.1 Sampling
	4.1.1 Ideal Sampling
	4.1.2 Zero-order Hold Sampling
	4.1.3 Natural Sampling

	4.2 Quantization
	4.2.1 Meet the Quantizer
	4.2.2 The Good Quantizer
	4.2.3 The Quantizer and the Telephone

	4.3 Source Coding: Pulse Code Modulator (PCM)
	4.3.1 Introducing the PCM
	4.3.2 PCM Talk
	4.3.3 The “ Good” PCM
	4.3.4 Source Decoder: PCM Decoder

	4.4 Predictive Coding
	4.4.1 The Idea Behind Predictive Coding
	4.4.2 Why?
	4.4.3 The Predicted Value and the Predictive Decoder
	4.4.4 The Delta Modulator (DM)
	4.4.5 The Signals in the DM
	4.4.6 Overload and Granular Noise
	4.4.7 Differential PCM (DPCM)

	4.5 Congrats and Conclusion

	Chapter 5 - Getting It from Here to There: Modulators and Demodulators
	5.1 An Introduction
	5.2 Modulators
	5.2.1 Baseband Modulators
	5.2.2 Bandpass Modulators

	5.3 Just-in-Time Math, or How to Make a Modulator Signal Look Funny
	5.3.1 The Idea
	5.3.2 Representing Modulated Signals

	5.4 Bring it Home, Baby, or Demodulators
	5.4.1 What Demodulators Do
	5.4.2 The Channel and Its Noise
	5.4.3 Building a Demodulator, Part I—the Receiver Front End
	5.4.4 The Rest of the Demodulator, Part II—The Decision Makers
	5.4.5 How to Build It

	5.5 How Good Is It Anyway (Performance Measures)
	5.5.1 A Performance Measure
	5.5.2 Evaluation of P() ε for Simple Cases
	5.5.3 Some Well-known P(ε εε εε)’s

	5.6 What We Just Did

	Chapter 6 - Channel Coding and Decoding: Part 1–Block Coding and Decoding
	6.1 Simple Block Coding
	6.1.1 The Single Parity Check Bit Coder
	6.1.2 Some Terminology
	6.1.3 Rectangular Codes

	6.2 Linear block codes
	6.2.1 Introduction
	6.2.2 Understanding Why
	6.2.3 Systematic Linear Block Codes
	6.2.4 The Decoding

	6.3 Performance of the Block Coders
	6.3.1 Performances of Single Parity Check Bit Coders/Decoders
	6.3.2 The Performance of Rectangular Codes
	6.3.3 The Performance of Linear Block Codes

	6.4 Benefits and Costs of Block Coders
	6.5 Conclusion

	Chapter 7 - Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding
	7.1 Convolutional Coders
	7.1.1 Our Example
	7.1.2 Making Sure We’ve Got It
	7.1.3 Polynomial Representation
	7.1.4 The Trellis Diagram

	7.2 Channel Decoding
	7.2.1 Using a Trellis Diagram
	7.2.2 The Viterbi Algorithm

	7.3 Performance of the Convolutional Coder
	7.4 Catastrophic Codes
	7.5 Building Your Own

	Chapter 8 - Trellis-Coded Modulation (TCM) The Wisdom of Modulator and Coder Togetherness
	8.1 The Idea
	8.2 Improving on the Idea
	8.3 The Receiver End of Things
	8.3.1 The Input
	8.3.2 The TCM Decoder Front End
	8.3.3 The Rest of the TCM Decoder
	8.3.4 Searching for the Best Path

	Chapter 9 - Channel Filtering and Equalizers
	9.1 Modulators and Pulse Shaping
	9.2 The Channel That Thought It Was a Filter
	9.3 Receivers: A First Try
	9.3.1 The Proposed Receiver
	9.3.2 Making the Receiver a Good One
	9.3.3 The Proposed Receiver: Problems and Usefulness

	9.4 Optimal Receiver Front End
	9.5 Optimal Rest-of-the-Receiver
	9.5.1 The Input
	9.5.2 A Problem with the Input, and a Solution
	9.5.3 The Final Part of the Optimal Receiver
	9.5.4 An Issue with Using the Whitening Filter and MLSE

	9.6 Linear Equalizers
	9.6.1 Zero Forcing Linear Equalizer
	9.6.2 MMSE (Minimum Mean Squared Error) Equalizer

	9.7 Other Equalizers: the FSE and the DFE
	9.8 Conclusion

	Chapter 10 - Estimation and Synchronization
	10.1 Introduction
	10.2 Estimation: Part 1
	10.2.1 Our Goal
	10.2.2 What We Need to Get an Estimate of a Given r
	10.2.3 Estimating a Given r, the First Way
	10.2.4 Estimating a Given r, the Second Way
	10.2.5 Estimating a Given r, the Third Way

	10.3 Evaluating Channel Phase: A Practical Example
	10.3.1 Our Example and Its Theoretically Computed Estimate
	10.3.2 The Practical Estimator: the PLL
	10.3.3 Updates to the Practical Estimator in MPSK

	10.4 Conclusion

	Chapter 11 - Multiple Access Schemes Teaching Telecommunications Systems to Share
	11.1 What It Is
	11.2 The Underlying Ideas
	11.3 TDMA
	11.4 FDMA
	11.5 CDMA
	11.5.1 Introduction
	11.5.2 DS-CDMA
	11.5.3 FH-CDMA
	11.5.4 MC-CDMA

	11.6 CIMA
	11.7 Conclusion

	Chapter 12 - Analog Communications
	12.1 Modulation—An Overview
	12.2 Amplitude Modulation (AM)
	12.2.1 AM Modulators—in Time
	12.2.2 AM Modulation—in Frequency
	12.2.3 Demodulation of AM Signals—Noise-Free Case
	12.2.4 An Alternative to AM—DSB-SC

	12.3 Frequency Modulation (FM)
	12.3.1 The Modulator in FM
	12.3.2 The Demodulator in FM

	12.4 The Superheterodyne Receiver
	12.5 Summary

	Annotated References and Bibliography
	Index
	Demystifying Technology Series

	goto: Click title to review book on web.
	toc: Click the page number to go to that page.
	reflabel: Click the reference to locate it on the web.
	License: LICENSE INFORMATION
	LicenseText1: This is a single-user version of this eBook.
	LicenseText2: It may not be copied or distributed.
	LicenseText3: Unauthorized reproduction or distribution of this eBook
	LicenseText4: may result in severe civil and criminal penalties.

