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1
Introduction
Tuomas Virtanen1, Rita Singh2, Bhiksha Raj2

1Tampere University of Technology, Finland
2Carnegie Mellon University, USA

1.1 Scope of the Book

The term “computer speech recognition” conjures up visions of the science-fiction capabil-
ities of HAL2000 in 2001, A Space Odessey, or “Data,” the anthropoid robot in Star Trek,
who can communicate through speech with as much ease as a human being. However, our
real-life encounters with automatic speech recognition are usually rather less impressive, com-
prising often-annoying exchanges with interactive voice response, dictation, and transcription
systems that make many mistakes, frequently misrecognizing what is spoken in a way that
humans rarely would. The reasons for these mistakes are many. Some of the reasons have to
do with fundamental limitations of the mathematical framework employed, and inadequate
awareness or representation of context, world knowledge, and language. But other equally
important sources of error are distortions introduced into the recorded audio during recording,
transmission, and storage.

As automatic speech-recognition—or ASR—systems find increasing use in everyday life,
the speech they must recognize is being recorded over a wider variety of conditions than ever
before. It may be recorded over a variety of channels, including landline and cellular phones,
the internet, etc. using different kinds of microphones, which may be placed close to the mouth
such as in head-mounted microphones or telephone handsets, or at a distance from the speaker,
such as desktop microphones. It may be corrupted by a wide variety of noises, such as sounds
from various devices in the vicinity of the speaker, general background sounds such as those
in a moving car or background babble in crowded places, or even competing speakers. It may
also be affected by reverberation, caused by sound reflections in the recording environment.
And, of course, all of the above may occur concurrently in myriad combinations and, just to
make matters more interesting, may change unpredictably over time.

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
Edited by Tuomas Virtanen, Rita Singh, and Bhiksha Raj.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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2 Techniques for Noise Robustness in Automatic Speech Recognition

For speech-recognition systems to perform acceptably, they must be robust to the distorting
influences. This book deals with techniques that impart such robustness to ASR systems.
We present a collection of articles from experts in the field, which describe an array of
strategies that operate at various stages of processing in an ASR system. They range from
techniques for minimizing the effect of external noises at the point of signal capture, to methods
of deriving features from the signal that are fundamentally robust to signal degradation,
techniques for attenuating the effect of external noises on the signal, and methods for modifying
the recognition system itself to recognize degraded speech better.

The selection of techniques described in this book is intended to cover the range of ap-
proaches that are currently considered state of the art. Many of these approaches continue to
evolve, nevertheless we believe that for a practitioner of the field to follow these developments,
he must be familiar with the fundamental principles involved. The articles in this book are
designed and edited to adequately present these fundamental principles. They are intended
to be easy to understand, and sufficiently tutorial for the reader to be able to implement the
described techniques.

1.2 Outline

Robustnesss techniques for ASR fall into a number of different categories. This book is divided
into five parts, each focusing on a specific category of approaches. A clear understanding
of robustness techniques for ASR requires a clear understanding of the principles behind
automatic speech recognition and the robustness issues that affect them. These foundations
are briefly discussed in Part One of the book. Chapter 2 gives a short introduction to the
fundamentals of automatic speech recognition. Chapter 3 describes various distortions that
affect speech signals, and analyzes their effect on ASR.

Part Two discusses techniques that are aimed at minimizing the distortions in the speech
signal itself.

Chapter 4 presents methods for voice-activity detection (VAD), noise estimation, and noise-
suppression techniques based on filtering. A VAD analyzes which signal segments correspond
to speech and which to noise, so that an ASR system does not mistakenly interpret noise as
speech. VAD can also provide an estimate of the noise during periods of speech inactivity. The
chapter also reviews methods that are able to track noise characteristics even during speech
activity. Noise estimates are required by many other techniques presented in the book.

Chapter 5 presents two approaches for separating speech from noises. The first one uses
multiple microphones and an assumption that speech and noise signals are statistically inde-
pendent of each other. The method does not use a priori information about the source signals,
and is therefore termed blind source separation. Statistically independent signals are separated
using an algorithm called independent component analysis. The second approach requires only
a single microphone, but it is based on a priori information about speech or noise signals. The
presented method is based on factoring the spectrogram of noisy speech into speech and noise
using nonnegative matrix factorization.

Chapter 6 discusses methods that apply multiple microphones to selectively enhance speech
while suppressing noise. They assume that the speech and noise sources are located in spatially
different positions. By suitably combining the signals recorded by each microphone they are
able to perform beamforming, which can selectively enhance signals from the location of the
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speech source. The chapter first presents the fundamentals of conventional linear microphone
arrays, then reviews different criteria that can be used to design them, and then presents
methods that can be used in the case of spherical microphone arrays.

Part Three of the book discusses methods that attempt to minimize the effect of distortions
on acoustic features that are used to represent the speech signal.

Chapter 7 reviews conventional feature extraction methods that typically parameterize the
envelope of the spectrum. Both methods based on linear prediction and cepstral processing
are covered. The chapter then discusses minimum variance distortionless response or warping
techniques that can be applied to make the envelope estimates more reliable for purposes of
speech recognition. The chapter also studies the effect of distortions on the features.

Chapter 8 approaches the noise robustness problem from the point of view of human speech
perception. It first presents a series of auditory measurements that illustrate selected properties
of the human auditory system, and then discusses principles that make the human auditory
system less sensitive to external influences. Finally, it presents several computational auditory
models that mimic human auditory processes to extract noise robust features from the speech
signal.

Chapter 9 presents methods that reduce the effect of distortions on features derived from
speech. These feature-enhancement techniques can be trained to map noisy features to clean
ones using training examples of clean and noisy speech. The mapping can include a criterion
which makes the enhanced features more discriminative, i.e., makes them more effective for
speech recognition. The chapter also presents methods that use an explicit model for additive
noises.

Chapter 10 focuses on the recognition of reverberant speech. It first analyzes the effect
of reverberation on speech and the features derived from it. It gives a review of different
approaches that can be used to perform recognition of reverberant speech and presents methods
for enhancing features derived from reverberant speech based on a model of reverberation.

Part Four discusses methods which modify the statistical parameters employed by the
recognizer to improve recognition of corrupted speech.

Chapter 11 presents adaptation methods which change the parameters of the recognizer
without assuming a specific kind of distortion. These model-adaptation techniques are fre-
quently used to adapt a recognizer to a specific speaker, but can equally effectively be used to
adapt it to distorted signals. The chapter also presents training criteria that makes the statistical
models in the recognizer more discriminative, to improve the recognition performance that
can be obtained with them.

Chapter 12 focuses on compensating for the effect of interfering sound sources on the
recognizer. Based on a model of interfering noises and a model of the interaction process
between speech and noise, these model-compensation techniques can be used to derive a
statistical model for noisy speech. In order to find a mapping between the models for clean
and noisy speech, the techniques use various approximations of the interaction process.

Chapter 13 discusses a methodology that can be used to find the parameters of an ASR
system to make it more robust, given any signal or feature enhancement method. These noise-
adaptive-training techniques are applied in the training stage, where the parameters the ASR
system are tuned to optimize the recognition accuracy.

Part Five presents techniques which address the issue that some information in the speech
signal may be lost because of noise. We now have a problem of missing data that must be
dealt with.
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Chapter 14 first discusses the general taxonomy of different missing-data problems. It then
discusses the conditions under which speech features can be considered reliable, and when
they may be assumed to be missing. Finally, it presents methods that can be used to perform
robust ASR when there is uncertainty about which parts of the signal are missing.

Chapter 15 presents methods that produce an estimate of missing features (i.e., feature
reconstruction) using reliable features. Reconstruction methods based on a Gaussian mixture
model utilize local correlations between missing and reliable features. The reconstruction can
also be done separately for each state of the ASR system. Sparse representation methods
model the noisy observation as a linear combination of a small number of atomic units taken
from a larger dictionary, and the weights of the atomic units are determined using reliable
features only.

Chapter 16 discusses methods that estimate which parts of a speech signal are missing and
which ones are reliable. The estimation can be based either on the signal-to-noise ratio in each
time-frequency component, or on more perceptually motivated cues derived from the signal,
or using a binary classification approach.

Chapter 17 presents approaches which enable the modeling of the uncertainty caused by
noise in the recognition system. It first discusses feature-based uncertainty, which enables
modeling of the uncertainty in enhanced signals or features obtained through algorithms
discussed in the previous chapters of the book. Model-based uncertainty decoding, on the
other hand, enables us to account for uncertainties in model compensation or adaptation
techniques. The chapter also discusses the use of uncertainties with noise-adaptive training
techniques.

We also revisit the contents of the book in the end of Chapter 3, once we have analyzed the
types of errors encountered in automatic speech recognition.

1.3 Notation

The table below lists the most commonly used symbols in the book. Some of the chapters
deviate from the definitions below, but in such cases the used symbols are explicitly defined.

Symbol Definition

a, b, c, . . . Scalar variables
A, B, C, . . . Constants
a,b, c, . . . Vectors
A,B,C, . . . Matrices
⊗ Convolution
N Normal distribution
E{x} Expected value of x
AT Transpose of matrix A
xi:j Set xi, xi+1 , . . . , xj

s Speech signal
n Additive noise signal
x Noisy speech signal
h Response from speaker to microphone
t Time index
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Symbol Definition

f Frequency index
xt Observation vector of noisy speech in frame t
q State variable
qt State at time t
μ Mean vector
Θ,Σ Covariance matrix
P, p Probability
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The Basics of Automatic
Speech Recognition
Rita Singh1, Bhiksha Raj1, Tuomas Virtanen2

1Carnegie Mellon University, USA
2Tampere University of Technology, Finland

2.1 Introduction

In order to understand the techniques described later in this book, it is important to understand
how automatic speech-recognition (ASR) systems function. This chapter briefly outlines the
framework employed by ASR systems based on hidden Markov models (HMMs).

Most mainstream ASR systems are designed as probabilistic Bayes classifiers that identify
the most likely word sequence that explains a given recorded acoustic signal. To do so, they use
an estimate of the probabilities of possible word sequences in the language, and the probability
distributions of the acoustic signals for each word sequence. Both the probability distributions
of word sequences, and those of the acoustic signals for any word sequence, are represented
through parametric models. Probabilities of word sequences are modeled by various forms of
grammars or N-gram models. The probabilities of the acoustic signals are modeled by HMMs.

In the rest of this chapter, we will briefly describe the components and process of ASR
as outlined above, as a prelude to explaining the circumstances under which it may perform
poorly, and how that relates to the remaining chapters of this book. Since this book primarily
addresses factors that affect the acoustic signal, we will only pay cursory attention to the manner
in which word-sequence probabilities are modeled, and elaborate mainly on the modeling of
the acoustic signal.

In Section 2.2, we outline Bayes classification, as applied to speech recognition. The
fundamentals of HMMs—how to calculate probabilities with them, how to find the most
likely explanation for an observation, and how to estimate their parameters—are given in
Section 2.3. Section 2.4 describes how HMMs are used in practical ASR systems. Several
issues related to practical implementation are addressed. Recognition is not performed with
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10 Techniques for Noise Robustness in Automatic Speech Recognition

the speech signal itself, but on features derived from it. We give a brief review of the most
commonly used features in Section 2.4.1. Feature computation is covered in greater detail
in Chapters 7 and 8 of the book. The number of possible word sequences that must be
investigated in order to determine the most likely one is potentially extremely large. It is
infeasible to explicitly characterize the probability distributions of the acoustics for each and
every word sequence. In Sections 2.4.2 and 2.4.3, we explain how we can nevertheless explore
all of them by composing the HMMs for word sequences from smaller units, and how the set
of all possible word sequences can be represented as compact graphs that can be searched.

Before proceeding, we note that although this book largely presents speech recognition and
robustness issues related to it from the perspective of HMM-based systems, the fundamental
ideas presented here, and many of the algorithms and techniques described both in this chapter
and elsewhere in the book, carry over to other formalisms that may be employed for speech
recognition as well.

2.2 Speech Recognition Viewed as Bayes Classification

At their core, state-of-art ASR systems are fundamentally Bayesian classifiers. The Bayesian
classification paradigm follows a rather simple intuition: the best guess for the explanation
of any observation (such as a recording of speech) is the most likely one, given any other
information we have about the problem at hand. Mathematically, it can be stated as follows:
let C1 , C2 , C3 , . . . represent all possible explanations for an observation X. The Bayesian
classification paradigm chooses the explanation Ci such that

P (Ci |X, θ) ≥ P (Cj |X, θ) ∀j �= i, (2.1)

where P (Ci |X, θ) is the conditional probability of class Ci given the observation X, and θ

represents all other evidence, or information known a priori. In other words, it chooses the
a posteriori most probable explanation Ci , given the observation and all prior evidence.

For the ASR problem, the problem is now stated as follows. Given a speech recording X,
the sequence of words ŵ1 , ŵ2 , · · · that were spoken is estimated as

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

P (w1 , w2 , · · · |X, Λ). (2.2)

Here, Λ represents other evidence that we may have about what was spoken. Equation (2.2)
states that the “best guess” word sequence ŵ1 , ŵ2 · · · is the word sequence that is a posteriori
most probable, after consideration of both the recording X and all other evidence represented
by Λ.

In order to implement Equation (2.2) computationally, the problem is refactored using
Bayes’ rule as follows:

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

P (X|w1 , w2 , · · ·)P (w1 , w2 , · · · |Λ). (2.3)

In the term P (X|w1 , w2 , · · ·), we assume that the speech signal X becomes independent of all
other factors, once the sequence of words is given. The true distribution of X for any word
sequence is not known. Instead it is typically modeled by a hidden Markov model (HMM)
[2]. Since the term P (X|w1 , w2 , · · ·) models the properties of the acoustic speech signal, is it
termed an acoustic model.
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The second term on the right-hand side of Equation (2.3), P (w1 , w2 , · · · |Λ), provides the
a priori probability of a word sequence, given all other evidence Λ. In theory, Λ may include
evidence from our knowledge of the linguistic structure of the language (i.e., how people
usually string words together when they speak), about the context of the current conversation,
world knowledge, and anything else that one might bring to bear on the problem. However, in
practice, the probability of a word sequence is usually assumed to be completely specified by
a language model. The language model is often represented as a finite-state or a context-free
grammar, or alternatively, as a statistical N-gram model.

2.3 Hidden Markov Models

Speech signals are time-series data, i.e., they are characterized by a sequence of measurements
x0 ,x1 , · · ·, where the sequence represents a progression through time and xt represents the
tth measurement in the series (the exact nature of the measurement xt is discussed in Section
2.4.1). In the case of speech, this time series is nonstationary, i.e., its characteristics vary with
time, as illustrated by the example in Figure 2.1.

HMMs are statistical models of time-series data. An HMM models a time series as having
been generated by a process that goes through a series of states following a Markov chain.
When in any state, the next state that the process will visit is determined stochastically and
is only dependent on the current state. At each time, the process draws an observation from
a probability distribution associated with the state it is currently in. Figure 2.2 illustrates the
generation of observations by the process.
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Figure 2.1 Upper panel: a speech signal. Lower panel: a time-frequency representation, or spectro-
gram, of the signal. In this figure the horizontal axis represents time and the vertical axis represents
frequency. The intensity of the picture at any location represents the energy in the time-frequency com-
ponent represented by the location. The observed time-varying patterns in energy distribution across
frequencies are characteristic of the spoken sounds.
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State
sequence

Observation
sequence

Figure 2.2 Left panel: schematic illustration of an HMM. The four circles represent the states of the
HMM and the arrows represent allowed transitions. Each HMM state is associated with a state output
distribution as shown. Right panel: generation of an observation sequence. The process progresses
thorough a sequence of states. At each visited state, it generates an observation by drawing from the
corresponding state output distribution.

Mathematically, an HMM is described as a probabilistic function of a Markov chain [11],
and is a doubly stochastic model. The first level of this model is a Markov chain that is specified
by an initial state probability distribution, usually denoted as π, and a transition matrix, which
we will denote as A. π specifies the probability of finding the process in any state at the
very first instant. Representing the sequence of states visited by the process as q0 , q1 , · · ·,
π(i) = P (q0 = i) is the probability that at the very first instant the process will be in state i.
A is a matrix whose (i, j)th entry ai,j = P (qt+1 = j|qt = i) represents the probability that the
process will transition to state j, given that the process is currently in state i. The Markov
chain thus is a probabilistic specification of the manner in which the process progresses
through states.

The second level of the model is a set of state output probability distributions, one associated
with each state. We denote the state output probability distribution associated with any state i
as P (x|i), or more succinctly as Pi(x). If the process arrives at state i at time t, it generates an
observation xt by drawing it from the state output distribution Pi(x).

When HMMs are employed in speech-recognition systems the state output distributions are
usually modeled as Gaussian mixture densities, and Pi(x) has the form

Pi(x) =
K∑

k=1

wi,kN (x; μi,k ,Θi,k ), (2.4)

where N (x; μ,Θ) represents a multivariate Gaussian density with mean vector μ and covari-
ance matrix Θ. wi,k , μi,k and Θi,k are the mixture weight, mean vector, and covariance matrix
of the kth Gaussian in the mixture Gaussian state output distribution for state i. K is the number
of Gaussians in the mixture.

2.3.1 Computing Probabilities with HMMs

Having defined the parameters of an HMM, we now explain how various probabilities can be
computed from them.

The Probability of Following a Specific State Sequence

The state sequence that the process follows is governed by the underlying Markov chain (i.e.,
the first level of the doubly stochastic process). The probability that the process follows a state
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sequence q0:T −1 = q0 , q1 , · · · , qT −1 can be written using Bayes’ rule as

P (q0:T −1) = P (q0)P (q1 |q0)P (q2 |q0 , q1) · · ·P (qT −1 |q0 · · · qT −2)

= P (q0)P (q1 |q0)P (q2 |q1) · · ·P (qT −1 |qT −2)

= P (q0)
T −1∏
t=1

P (qt |qt−1) (2.5)

= πq0

T −1∏
t=1

aqt−1 ,qt .

Here, we have used the Markovian property of the process: at any time, the future behavior
of the process depends only on the current state and not on how it arrived there. Thus,
P (qt |q0 · · · qt−1) = P (qt |qt−1).

The Probability of Generating a Specific Observation Sequence from a Given
State Sequence

We can also compute the probability that the process will produce a specific observation
sequence x0:T −1 = x0 ,x1 , · · · ,xT −1 , when it follows a specific state sequence q0:T −1 =
q0 , q1 , · · · , qT −1 . According to the model, the observation generated by the process at any
time depends only on the state that the process is currently in, that is P (xt |q0 , q1 , · · · , qT −1) =
P (xt |qt) = Pqt (xt). Thus,

P (x0:T −1 |q0:T −1) =
T −1∏
t=0

Pqt (xt). (2.6)

The Probability of Following a Particular State Sequence and Generating a Specific
Observation Sequence

The joint probability of following a particular state sequence and generating a specific ob-
servation sequence can be factored into two terms: the product of a probability of a state
sequence (2.5) and a state-sequence conditional probability of an observation sequence (2.6),
as illustrated in Figure 2.3. The probability that the process will proceed through a par-
ticular state sequence q0:T −1 and generate an observation sequence x0:T −1 can thus be
stated as

P (x0:T −1 , q0:T −1) = P (x0:T −1 |q0:T −1)P (q0:T −1)

= P (q0)P (x0 |q0)
T −1∏
t=1

P (qt |qt−1)P (xt |qt) (2.7)

= πq0 Pq0 (x0)
T −1∏
t=1

aqt ,qt−1 Pqt (xt). (2.8)
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Figure 2.3 An HMM process can be factored into two parts: following a state sequence (top panel)
and generating the observation sequence from the state sequence (bottom panel).

The Forward Probability

The probability P (x0:t , qt = i) that the process arrives at state i at time t while generating the
first t observations x0:t , is often called the forward probability and denoted by α(i, t). At t = 0,
when there have been no transitions, we only need to consider the initial state of the process
and the first observation, and therefore

α(i, 0) = P (x0 , q0 = i)

= P (x0 |q0 = i)P (q0 = i)

= Pq0 (x0)πq0 .

Thereafter, α(i, t) can be recursively defined. In order to arrive at state j at time t, the process
must be at some state i at t − 1 and transition to j. Thus, the probability that the process will
follow a state sequence that takes it through i at t − 1 and arrive at j at t and generate the
observation sequence x0:t = x0:t−1 ,xt is merely the probability that the process will arrive at
i at t − 1 while generating x0:t−1 , transition from i to j and finally generate xt from j, that is

P (x0:t , qt−1 = i, qt = j) = P (x0:t−1 , qt−1 = i)P (qt = j|qt−1 = i)P (xt |qt = j)

= α(i, t − 1)ai,j Pj (xt).

Since α(j, t) is not a function of the state at t − 1, i must be integrated out from the above
equation:

α(j, t) =
Q∑

i=1

P (x0:t , qt−1 = i, qt = j) (2.9)

= Pj (xt)
Q∑

i=1

α(i, t − 1)ai,j , (2.10)

where Q denotes the total number of states in the model.
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Figure 2.4 A “Trellis” showing all possible state sequences that the HMM on the left may follow
to generate the observation sequence shown at the bottom. The thick solid lines show the “forward”
subtrellis representing all state sequences that terminate at state j at time t. The “backward” subtrellis,
shown by the thick dotted lines, shows all state sequences that depart from state j at time t. The union of
the two shows all state sequences that visit state j at time t.

Figure 2.4 gives a graphical illustration of the recursion that can be used to obtain α(j, t).
The figure shows a directed acyclic graph, called a trellis, that represents all possible state
sequences that an HMM might follow to generate an observation sequence. The HMM is
shown on the left, along the vertical axis. The observation sequence x0 ,x1 , · · · is represented
by the sequence of bars at the bottom. In the trellis, node (j, t) aligned with a state j of the HMM
and the tth observation xt of the observation sequence represents the event that the process
visits j in the tth time step and draws the observation xt from its state output distribution. All
nodes and edges have probabilities associated with them. The node probability associated with
node (j, t) is Pj (xt). An edge that starts at a state i and terminates at j is assigned the transition
probability ai,j . The probabilities of subpaths through the trellis combine multiplicatively in
any path. The probabilities of multiple incoming paths to any node combine additively.

The “forward” subgraph, shown by the thick arrows terminating at state j at time t, represents
the set of all state sequences that the process may follow to arrive at state j at time t when
generating x0:t . The total probability for this set of paths including the node at (j, t), is α(j, t).
This subgraph is obtained by extending all subgraphs that end at any state i at t − 1 (shown by
the shaded states at t − 1) by an edge that terminates at j, leading to Equation (2.9) as the rule
for computing the total forward probability for node (j, t).

The Backward Probability

The probability P (xt+1:T −1 |qt = j) that the process generates all future observations
xt+1:T −1 , given that it departs from state j at time t, is called the backward probability
and is denoted by β(j, t). Note that β(j, t) does not include the current observation at time t;
it only gives the probability of all future observations given the state at the current time. We
also note that at the final time instant T − 1 there are no future observations. Hence, we define
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β(j, T − 1) = 1 for all j. We can compute the β(j, t) terms recursively in a manner similar to
the computation of the forward probability, only now we go backward in time:

β(j, t) =
Q∑

i=1

aj,iβ(i, t + 1)Pi(xt+1). (2.11)

Figure 2.4 illustrates the computation of backward probabilities. The “backward” subgraph
with the dotted arrows emanating from state j at time t represents all state sequences that the
HMM may follow, having arrived at state j at time t, to generate the rest of the observation
sequence xt+1:T −1 . The total probability of this subgraph is β(j, t). It is obtained by extending
a path from node (j, t) to all subgraphs that depart from any achievable state i at time t + 1,
leading to the recursive rule of Equation (2.11).

The Probability of an Observation Sequence

We can now compute the probability that the process will generate an observation sequence
x0:T −1 . Since this does not consider the specific state sequence followed by the process to
generate the sequence, we must consider all possible state sequences. Thus, the probability of
producing the observation sequence is given by

P (x0:T −1) =
∑

q0:T −1

P (x0:T −1 , q0:T −1).

Direct computation of this equation is clearly expensive or infeasible. If the process has Q
possible states that it can be in at any time, the total number of possible state sequences is
QT , which is exponential in T . Direct computation of P (x0:T −1) as given above will require
summing over an exponential number of state sequences. However, using the forward and
backward probabilities computed above, the computation of the probability of an observation
sequence becomes trivial.

The probability that the process will generate x0:T −1 while following a state sequence that
visits a specific state j at time t is given by

P (x0:T −1 , qt = j) = P (x0:t , qt = j)P (xt+1:T −1 |qt = j)

= α(j, t)β(j, t). (2.12)

Figure 2.4 illustrates this computation. The complete subgraph including both the solid
and dotted edges represents all state sequences that the process may follow when generating
x0:T −1 that visit state j at time t. The total probability of this subgraph is obtained by extending
the forward subgraph by the backward subgraph and is given by α(j, t)β(j, t).

Since P (x0:T −1) must take into account all possible states at any time, it can be obtained
from Equation (2.12) by summing over all states:

P (x0:T −1) =
Q∑

j=1

P (x0:T −1 , qt = j)

=
Q∑

j=1

α(j, t)β(j, t). (2.13)

Note that the above equation holds for all t.
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The Probability that the Process Was in a Specific State at a Specific Time, Given the
Generated Observations

We are given that the process has generated an observation sequence x0:T −1 . We wish to
compute the a posteriori probability P (qt = i|x0:T −1) that it was in a specific state i at a given
time t. The probability is often referred to as γ(i, t), and is directly obtained using Equations
(2.12) and (2.13):

γ(i, t) =
P (x0:T −1 , qt = i)

P (x0:T −1)
=

α(i, t)β(i, t)∑Q
j=1 α(j, t)β(j, t)

. (2.14)

Given an observation x0:T −1 , we can also compute the a posteriori probability P (qt = i,

qt+1 = j|x0:T −1) that the process was in state i at time t and in state j at t + 1 as

γ(i, j, t) = P (qt = i, qt+1 = j|x0:T −1) (2.15)

=
α(i, t)ai,j Pj (xt+1)β(j, t + 1)

P (x0:T −1)
. (2.16)

2.3.2 Determining the State Sequence

Given an observation sequence x0:T −1 , one can estimate the state sequence followed by the
process to generate the observations. We do so by finding the a posteriori most probable state
sequence, i.e., the sequence q̂0:T −1 such that P (q̂0:T −1 |x0:T −1) is maximum:

q̂0:T −1 = argmax
q0:T −1

P (q0:T −1 |x0:T −1) = argmax
q0:T −1

P (q0:T −1 ,x0:T −1).

In the right-hand side of the above equation, we have used the fact that the state sequence with
the maximum a posteriori probability given the data also has the largest joint probability with
the observation sequence. Once again, direct estimation is infeasible since one must evaluate
an exponential number of state sequences to find the best one, but a dynamic programming
alternative makes it feasible.

The Markov nature of the model ensures that the most likely state sequence q̂0:T −1 ending
in state j at t + 1 is simply an extension of a most likely state sequence ending in one of the
states i = 1, · · · , Q at t. Let δt(i) denote the probability of the most likely state sequence ending
in state i at time t, that is

δt(i) = max
q0 : t−1

P (x0:t , q0:t−1 , qt = i). (2.17)

Also let ψt(i) denote the state at time t − 1 in the most likely state sequence ending in i at time
t. For t = 0, since there is no previous time instant t − 1, we simply have ψ0(i) = 0 and

δ0(i) = πiPi(x0). (2.18)

At subsequent time indices t = 1, . . . , T − 1, we recursively calculate δt(i) by selecting from
the extensions of most probable state sequences at t − 1 to state i at t:

ψt(i) = argmax
j

δt−1(j)aj,i , (2.19)

δt(i) = δt−1(ψt(i))aψt (i),iPi(xt). (2.20)
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Figure 2.5 Upper panel: the inference problem addressed in Viterbi decoding. The state sequence
that the process followed while producing an observation sequence is to be inferred from the obser-
vations. Lower panel: each path shown by the thick solid lines ending at any of the shaded nodes at
t − 1 represents the most probable state sequence ending at the state for that node at t − 1. The most
probable state sequence to node (i, t) is an extension of one of these by the edges shown by the dotted
lines.

This recursion is illustrated by Figure 2.5.
The probability δ∗ of the most likely overall state sequence is simply the largest among

the probabilities of the most likely state sequences ending at any of the states i = 1, . . . , Q at
T − 1:

δ∗ = max
i

δT −1(i).

The state index q̂T −1 of the most likely sequence at time T − 1 is obtained as

q̂T −1 = argmax
i

δT −1(i).

The entire state sequence for times t = T − 2, T − 3, . . . , 0 is obtained by backtracking as

q̂t = ψt+1(q̂t+1). (2.21)

The above procedure, known as the Viterbi Algorithm [5,13], forms the basis for the search
employed in ASR systems as we shall see later.
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2.3.3 Learning HMM Parameters

The above sections described how to determine various probabilities, and how to identify the
most likely state sequence to explain an observation sequence when all HMM parameters are
known. Let us now consider a more fundamental problem: how to estimate the parameters of
an HMM from a collection of data instances.

In an HMM, the parameters to be estimated are the initial state probabilities πi = P (q0 = i),
the transition probabilities ai,j = P (qt+1 = j|qt = i) and the parameters of the state output
distributions Pi(x), which, in speech-recognition systems that assume state output distributions
to be Gaussian mixtures, would be the mixture weights wk,i , mean vectors μk,i and covariance
matrices Θk,i for each Gaussian k of each state i. We assume that the number of states Q in
the HMM and the number of Gaussians K in the Gaussian mixtures are known. In practice K
and Q are often set by hand, although techniques do exist to estimate them from data as well.

To learn the parameters of the HMM, we typically use multiple observation sequences,
which we refer to as “training” instances. In the equations below, we denote individual
training instances by X, and the sum over all the training instances by

∑
X . Since individual

training instances are of potentially different lengths, we have also used the subscripted value
TX to refer to the length (number of observations) in any X, i.e., X comprises the observation
sequence x0:TX −1 . Let us denote the total number of data instances used to train the HMM by N.

The most common estimation procedure is based on the expectation maximization (EM)
algorithm, and is known as the Baum–Welch algorithm. The derivation of the algorithm can be
found in various references (e.g., [9]); here, we simply state the actual formulae with an attempt
at providing an intuitive explanation. The EM estimation algorithm consists of iterations of the
following formulae. In these formulae, γX (i, t) and γX (i, j, t) refer to the terms in Equations
(2.14) and (2.16) obtained using the current estimates of the HMM parameters. The subscript
X is used to indicate that the term has been computed from a specific training data instance
X = x0:TX −1 :

πi =
∑

X γX (0, i)
N

, (2.22)

ai,j =
∑

X
∑TX −2

t=0 γX (i, j, t)∑
X

∑TX −2
t=0

∑Q
j=1 γX (i, j, t)

, (2.23)

γk
X (i, t) = γX (i, t)

wkN (xt ; μi,k ,Θi,k )∑K
k ′=1 wk ′N (xt ; μi,k ′ ,Θi,k ′)

, (2.24)

wi,k =
∑

X
∑TX −1

t=0 γk
X (i, t)∑

X
∑TX −1

t=0 γX (i, t)
, (2.25)

μi,k =
∑

X
∑TX −1

t=0 γk
X (i, t)xt∑

X
∑TX −1

t=0 γk
X (i, t)

, (2.26)

Θi,k =

∑
X

∑TX −1
t=0 γk

X (i, t)(xt − μi,k )(xt − μi,k )�∑
X

∑TX −1
t=0 γk

X (i, t)
. (2.27)

The above equations are easily understood if one thinks of γX (i, t) as an expected count of
the number of times state i was visited by the process at time t when generating X.
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Thus,
∑

X γX (0, i) is the expected count of the number of times the process was in state i
at time 0 when generating the N observation sequences. Equation (2.22) is simply a ratio of
the count of the expected number of sequences where the state of the process at the initial
time instant was i and the total number of sequences, an intuitive ratio of counts. Similarly,
γX (i, j, t) is the expected number of times the process transitioned from state i to j at time t.
Thus, Equation (2.23) is the ratio of the total expected number of transitions from state i to j,
and the total expected number of times the process was in state i.

Equation (2.24) represents the expected number of times the observation at time t in X was
drawn from the kth Gaussian of the state output distribution of i. Equation (2.25) is similarly
the ratio of the expected number of observations generated from the kth Gaussian of i to the
expected total number of observations from i. We note that all of these equations are intuitive
extensions of familiar count-based estimation of probabilities in multinomial data.

Equations (2.26) and (2.27) are likely to be somewhat less intuitive, in that they are not ratios
of counts. Rather, they are weighted averages of first and second-order terms derived from
the observations. The numerator in Equation (2.26) is the expected sum of the observations
generated by the kth Gaussian of i. The denominator is the expected count of the number
of observations generated from the Gaussian. The ratio is strictly analogous to the familiar
formula for the mean of a set of vectors. Equation (2.27) computes a similar quantity for the
second moment of the data. In order to reduce computational complexity and to avoid singular
covariance matrices, the nondiagonal entries of Θi,k are often restricted to be zero.

2.3.4 Additional Issues Relating to Speech Recognition Systems

The basic HMM formalism described above is typically extended in several ways in the im-
plementation of speech-recognition systems. We describe some key extensions below. These
extensions are not specific to speech recognition, but are also commonplace in other applica-
tions.

The Nonemitting State

A nonemitting state in an HMM is a state that has no emission probabilities associated with
it. When the process visits this state, it generates no observations, but proceeds on to the
next transition. The inclusion of nonemitting states in an HMM separates the progression of
the process through the Markov chain underlying the HMM from the progression of time.
Visits to nonemitting states do not represent a progression of time; only emitting states where
observations are generated represent time progression. To prevent the process from remaining
indefinitely within nonemitting states (thereby not producing additional observations and
thus effectively “freezing” time), self-transitions are not allowed on nonemitting states. More
generally, loops between nonemitting states in the Markov chain are disallowed; any loop
must include at least one emitting state.

Nonemitting states serve a number of theoretical and practical purposes in Markov models
for processes:

� A Markov process that generates observations of finite duration must terminate once the
final observation has been generated. In order for a Markov process to terminate, it must
have an absorbing state that, once arrived at, ceases all further activity. An absorbing state
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Figure 2.6 An example of an HMM with two nonemitting states. Only the shaded states have state
output distributions associated with them. The two extreme states which are not shaded are nonemitting
states. No observations are generated from nonemitting states, and they have no self-transitions. In this
example, the process is assumed to start at the first nonemitting state and transition out of it immediately.
It stops generating observations when it arrives at the terminal nonemitting state.

can be viewed as a nonemitting state with no outgoing transitions. In the absence of such
an absorbing state, all outputs generated by the process are infinitely long since there is
no mechanism for the process to terminate. As a result, any finite-length observation must
per-force be considered to be a partial observation of an infinitely long output generated by
the process.

� The conventional specification of HMM parameters includes a set of initial-state probabil-
ities {πi} that specify the probability that the process will be in any state i at the instant
when the first observation is generated. This can instead be reframed through the use of an
initial queiscent nonemitting state “−1” that has only outgoing transitions, but no incoming
transitions. The model now assumes that the process resides in this state until it begins to
generate observations. It then transitions to one of the remaining states with a probability
a−1,i , where a−1,i is identical to the initial state probabilities in the conventional notation,
i.e., a−1,i = πi .

� Nonemitting states with both incoming and outgoing transitions provide a convenient mech-
anism for concatenating HMMs of individual symbols (phonemes or words) into longer
HMMs (for words, sentences, or grammars) as we explain later in this chapter.

Figure 2.6 shows an example of an HMM that has left-to-right “Bakis topology” HMM [1]
which employs both a nonemitting initial (quiescent) state and a nonemitting final (absorbing)
state. This topology, which does not permit the process to return to a state once it has tran-
sitioned out of it, is most commonly used to represent speech sounds. This constraint can be
imposed by defining ai,j = 0 for j < i.

The inclusion of nonemitting states modifies the various estimation and update formulae
in a relatively minor way. We must now consider that the process may visit one or more
nonemitting states between any two time instants. Moreover, the set of nonemitting states
a process can visit may vary from time instant to time instant. For instance, in the HMM
of Figure 2.6, a nonemitting state can only be visited after generating a minimum of two
observations.

Let Q(t) be the set of emitting states that the process may visit at time instant t, and let U(t)
be the set of nonemitting states that it may visit after t, before it advances to time instant t + 1.
The calculation of the forward variable in Equation (2.9) is modified to

α(j, t) =

{
Pj (xt)

∑
i:ai , j >0 α(i, t − 1)ai,j , j ∈ Q(t)∑

i:ai , j >0 α(i, t)ai,j , j ∈ U(t).
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The forward variables must be calculated recursively for t = 0, . . . , T − 1 as earlier. The α(i, t)
values for emitting states i ∈ Q(t) must be computed before those for nonemitting states
i ∈ U(t). Additionally, α(i, t) values for nonemitting states must be computed in such an
order that variables required on the right-hand side of the equation above are available when
assigning a value for the left-hand side.

The calculation of the backward variable in Equation (2.11) changes to

β(i, t) =
∑

j :j∈Q(t+1)

β(j, t + 1)ai,jPj (xt+1) +
∑

j :j∈U(t)∧ai,j >0

β(j, t)ai,j .

As in the case of forward probability computation, the order of computation of β(i, t) terms
must be such that the variables on the right-hand side are available when assigning a value for
the left-hand side.

The state occupancy probabilities γ(i, t) continue to be computed as in Equation (2.14),
with the addendum that they can now be computed for both, emitting states i ∈ Q(t) and
nonemitting states i ∈ U(t).

The transition-occupancy probabilities γ(i, j, t) can occur between both types of states:

γ(i, j, t) =

⎧⎪⎪⎨
⎪⎪⎩

α(i, t)ai,j Pj (xt+1)β(j, t + 1)
P (x0:T −1)

j ∈ Q(t + 1)

α(i, t)ai,j β(j, t)
P (x0:T −1)

j ∈ U(t).

All reestimation formulae for HMM parameters remain unchanged, with the modification
that we do not need to estimate state output probability distribution parameters for nonemitting
states.

A corresponding modification is also required for the Viterbi algorithm, which is used to find
the optimal state sequence. The most likely predecessor to state i at t is computed according to

ψt(i) =

⎧⎨
⎩

argmax
j :ai , j >0

δt−1(j)aj,i , i ∈ Q(t)

argmax
j :ai , j >0

δt(j)aj,i i ∈ U(t).

The probability δt(i) of the most likely state sequence arriving at state i while generating the
observation sequence x0:t is now given by

δt(i) =

{
Pi(xt)δt−1(ψt(i))aψt (i),i , i ∈ Q(t)

δt(ψt(i))aψt (i),i i ∈ U(t).

If the HMM has absorbing states, the final state of the most likely sequence at time T − 1
is the absorbing state i with the highest probability δT −1(i). Otherwise, the final state of the
most likely state sequence is the emitting state with the highest δT −1(i). The complete, most-
probable state sequence can then be obtained by backtracking. The details of the backtracking
procedure are similar to Equation (2.21) and are omitted here.

Composing HMMs

The HMM for a compound process comprising sequences of subprocesses can be composed
from the HMMs for the subprocesses. This mechanism is often utilized in speech-recognition
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HMM for /R/ HMM for /AO/ HMM for /K/

Composed HMM for word ROCK

Figure 2.7 The HMM for the word “ROCK” is composed from the HMMs for the phonemes that
constitute it—“/R/,” “/AO/,” and “/K/” in this example. Here, the HMMs for the individual phonemes
have Bakis topology with a final nonemitting state (shown by the blank circles). The composed HMM
for ROCK has nonemitting states between the phonemes, as well as a terminal nonemitting state. Other
ways of composing the HMM for the word, which eliminate the internal nonemitting states, are also
possible.

systems. For instance, HMMs for words in a language are often composed by concatenating
HMMs for smaller units of sound such as phonemes (or phonemes in context, such as diphones
or triphones) that are present in the word. Figure 2.7 illustrates this with an example.

Parameter Sharing

When simultaneously modeling multiple classes, some of which are highly similar, it is often
useful to assume that the HMMs for some of the classes obtain their parameters from a
common pool of parameters. Consequently, subsets of parameters for several HMMs may
be identical. For instance, in speech-recognition systems, it is common to assume that the
transition probabilities of the HMMs for all context-dependent versions of a phoneme are
identical. Similarly, it is also common to assume that the parameters of the state output
distributions of the HMMs for various context-dependent phonemes are shared.

Sharing of parameters does not affect either the computation of the forward and backward
probabilities, or the estimation of the optimal state sequence for an observation. The primary
effect of sharing is on the learning of HMM parameters. We note that each of the parameter
estimation rules in Equations (2.22)–(2.27) specifies a single parameter for a specific state i of
the HMM, and is of the form

parameter(i) =
numerator(i)

denominator(i)

This is now modified to

parameter(I) =
∑

i∈I numerator(i)∑
i∈I denominator(i)

parameter(i) = parameter(I) ∀i ∈ I,

where I represents the set of states that share the same parameter.
The manner in which parameters are shared, i.e., the set I for the various parameters, is often

determined based on the expected similarity of the parameters of the HMMs that share them. In
speech-recognition systems, the parameters of Gaussian-mixture state output distributions are
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usually shared by HMMs for different context-dependent phonemes according to groupings
obtained through decision trees [8].

2.4 HMM-Based Speech Recognition

Having outlined hidden Markov models and the various terms that can be computed from
them, we now return to the subject of HMM-based speech recognition. To recap, we restate
the Bayesian formulation for the speech-recognition problem: given a speech recording X, the
sequence of words ŵ1 , ŵ2 , · · · that was spoken is estimated as

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

P (X|w1 , w2 , · · ·)P (w1 , w2 , · · ·). (2.28)

We are now ready to look at the details of exactly how this classification is implemented.

2.4.1 Representing the Signal

The first factor to consider is the representation of the speech signal itself. Speech recognition
is not performed directly with the speech signal. The information in speech is primarily in
its spectral content and its modulation over time, which may often not be apparent from the
time-domain signal, as illustrated by Figure 2.1. Accordingly, ASR systems first compute a
sequence of feature vectors X = x0 ,x2 , · · ·xT −1 to capture the salient spectral characteristics
of the signal. The probability P (X|w1 , w2 , · · ·) in Equation (2.28) is computed using these
feature vectors.

The most commonly used features are mel-frequency cepstra [4] and perceptual linear
prediction cepstral features [7]. A variety of other features have also been proposed, and some
of these and the motivations behind them are described in Chapters 7 and 8.

The principal mechanism for deriving feature vectors is as follows: the signal is segmented
into analysis frames, typically 25-ms wide. Adjacent analysis frames are typically shifted by
10 ms with respect to one another, resulting in an analysis rate of 100 frames/s. A feature vector
is derived from each frame. Specifically, the widely used mel-frequency cepstral features are
obtained as follows:

1. The signal is preemphasized using a first-order finite impulse response high-pass filter to
boost its high-frequency content.

2. The preemphasized signal is windowed, typically with a Hamming window [6].
3. A power spectrum is derived from it using a discrete Fourier transform (DFT) and squaring

the magnitudes of the individual frequency components of the DFT.
4. The frequency components of the power spectrum are then integrated into a small number

of bands using a filter bank that mimics the frequency sensitivity of the human auditory
system as specified by the mel scale [12], to obtain a mel spectrum.

5. The mel spectral components are then compressed by a logarithmic function to mimic the
loudness perception of the human auditory system.

6. A discrete cosine transform (DCT) is then performed on the log-compressed mel spectrum
to obtain a cepstral vector. The first few components of the cepstral vector, typically 13 in
number, are finally retained to obtain the mel-frequency cepstral vector for the frame.
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Windowed signal

Log-mel spectrum40-point mel spectrum

Cepstrum

DFT magnitude

Preemphasized signal25-ms segment
of speech signal

Figure 2.8 A typical example of the sequence of operations for computing mel-frequency cepstra.

An example of the above processing is shown in Figure 2.8.
Often each cepstral vector is augmented with a velocity (or delta) term, typically computed

as the difference between adjacent cepstral vectors, and an acceleration (or double-delta,
or delta-delta) term, typically computed as the difference between the velocity features for
adjacent frames. The cepstral, velocity and acceleration vectors are concatenated to obtain an
extended feature vector. The terms static and dynamic features are also used to describe the
cepstral features and their derivatives, respectively.

2.4.2 The HMM for a Word Sequence

The main term in Equation (2.28) is P (X|w1 , w2 , · · ·). We will henceforth assume that
the speech recording X is a sequence of feature vectors. The probability distribution
P (X|w1 , w2 , · · ·) is modeled using an HMM.

The HMM for each of the word sequences considered in Equation (2.28) must ideally be
learned from example (or training) instances of the word sequence. The number of word
sequences to consider in Equation (2.28) is typically very large, and it is usually not possible
to obtain a sufficient number of training instances of each word sequence to learn its HMM
properly. Therefore, we must factor the problem.

The vocabulary of a speech recognizer, i.e., the set of words it can recognize, is finite,
although the words can compose infinitely many word sequences. Therefore, we only learn
HMMs for the words that the system can recognize. The HMM for any word sequence is
composed from the HMMs for the words as explained in Section 2.3.4. Often, the vocabulary
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/IH//S/ /NG//AO//NG/ /S/

Figure 2.9 Illustrating the composition of HMMs for word sequences from the HMMs for smaller units.
Here, the HMMs for the words “SING” and “SONG” are composed from the HMMs for the phonemes
/S/, /IH/, /AO/, and /NG/. The HMM for the word sequence “SING SONG” is then composed from the
HMMs for “SING” and “SONG.” Note that this is essentially identical to the procedure illustrated in
Figure 2.7.

itself is so large that it may not be possible to train HMMs for all the words in it. In such
situations, the words in turn are modeled as sequences of phonemes, and HMMs are learned
for the phonemes. The advantage here is that phonemes are far fewer in number than words:
most languages have at most a few tens of phonemes. There is usually sufficient training data
to train the HMMs for all phonemes. The HMMs for words that compose any word sequence
are now in turn composed from the HMMs for the phonemes. Figure 2.9 illustrates the
composition.

The HMMs for the lowest level units, whether they are phonemes or words, are usually
assigned a left-to-right Bakis topology, as illustrated in Figures 2.7 and 2.9. Commonly,
phonemes are modeled in context, for example triphones. For example, a phoneme /AX/,
when in the context of a preceding /B/ and a succeeding /D/ (as in the word BUD) may be
assigned a separate HMM than when the same phoneme is preceded by /D/ and followed by
/B/ (as in the word DUB). However, since a complete set of in-context phonemes may be very
large, their parameters are frequently shared, as explained in Section 2.3.4, in order to reduce
the total number of parameters required to represent all units.

2.4.3 Searching through all Word Sequences

Direct evaluation of Equation (2.28) to perform recognition is clearly an infeasible task under
most circumstances: P (X|w1 , w2 , · · ·) must be computed for every possible word sequence in
order to identify the most probable one. However, the classification problem becomes more
tractable if we modify it to the following:

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

[
max

q
P (X,q|w1 , w2 , · · ·)P (w1 , w2 , · · ·)

]
, (2.29)

where q represents a state sequence through the HMM for w1 , w2 , · · ·. When calculating
the probability of a word sequence, Equation (2.29) considers only the most probable state
sequence corresponding to the word sequence instead of all possible state sequences. The
word sequence that has the most probable state sequence of all is chosen.

This rather simple modification converts recognition to a tractable problem. To explain,
we begin by considering a simple problem where the spoken utterance may only be one of
a restricted set of sentences, such as all sentences specified by a simple finite-state grammar.
Although the grammar actually specifies a distinct set of “acceptable” word sequences, the set
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Freezy Breeze Made

Freezy Trees Made

These Three Trees Freeze

These Trees Cheese Freeze

Freezy

Breeze

Trees

Made

Three Trees

FreezeThese

Trees Cheese

P(three trees freeze| these)

P(trees cheese freeze| these)

(a) A composite HMM from a word graph representing four sentences

(b) A compressed version of the same graph

Figure 2.10 A composite HMM for recognizing four sentences from a poem. Each path from the source
state to the final absorbing state represents one of the four sentences. In the upper panel, the a priori
probability of each sentence is assigned to the transition from the source state to the first word in the
word sequence. In the lower panel, the a priori probabilities are spread, enabling portions of the HMM
to be shared between different sentences. The product of word probabilities on any path from source to
sink is the a priori probability for the corresponding word sequence.

can be represented as a single directed word graph as illustrated by Figure 2.10. The graph
has a “source” node and one or more “sinks.” Any path from a source to a sink is a valid word
sequence.

We can now replace the words on the edges by HMMs for the words, as also illustrated
by Figure 2.10. This results in a single “composite” HMM that represents all valid word
sequences. The source node now becomes the initial source state for the composite HMM
and the sink node (assuming for simplicity that we only have a single sink node) becomes an
absorbing terminal state. Any state sequence that begins at the source state and ends at the
terminal state also represents a state sequence through the HMM for a single word sequence.
The a priori probabilities of word sequences can be incorporated into the composite HMM in
multiple ways, two of which are shown in Figure 2.10.
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It can be shown that the a posteriori most probable state sequence through this composite
HMM is identical to the a posteriori most probable state sequence among the HMMs for the
individual word sequences that compose it. That is, if we represent the set of all valid word
sequences as W, the HMM for any word sequence w ∈ W in the set as H(w), and the single
composite HMM derived from the graph representing all word sequences as L:

argmax
q

P (X,q;L) ∼= argmax
q

[
max
w∈W

P (X,q;H(w))P (w)
]

. (2.30)

Here, the terms to the right of the semicolon in P (X,q;L) and P (X,q;H(w)) represent the
HMM used to compute the probability. It is easy to see that the right-hand side of the above
equation represents the most probable state sequence for the word sequence ŵ1 , ŵ2 , · · · given
by Equation (2.29). In other words, if we identify the most probable state sequence through
the composite HMM, and determine the word sequence that it represents, we would also have
found the solution to Equation (2.29).

When the recognizer must recognize natural speech, the set of valid word sequences is
infinite, and all possible word sequences must be considered as candidates. In this scenario, it
is usual to model the a priori probability of a word sequence through an N-gram model. An
N-gram model specifies that the probability of any word depends only on the previous N − 1
words:

P (wm |w1w2 · · ·wm−1) = P (wm |wm−N +1 · · ·wm−1). (2.31)

Thus, the probability of the word sequence w1 , w2 , · · · , wK is given by:

P (w1 , w2 , · · · , wK ) = P (w1 |b)P (w2 |b w1) · · ·P (wN −1 |b w1 · · ·wN −2) ·[
K∏

k=N

P (wk |wk−N +1 · · ·wk−1)

]
P (e|wK−N +1 · · ·wK−1),

where b and e are special symbols that indicate the beginning and termination of a word
sequence. The various N-gram probabilities can be learned from analysis of text using a
variety of methods. We refer the reader to [3] or [10, pp. 191–234] for details on estimating
N-gram probabilities.

The N-gram model for a language as given above carries an interesting implication. It states
that all instances of word w that occur after a specified sequence of N − 1 words are statistically
equivalent. This permits us to represent the set of all possible word sequences in the language
as a graph where each N-gram is represented exactly once. For a vocabulary of V words,
the graph will hence have no more than O(V N ) edges, each representing a unique N-gram,
and at most O(V N −1) nodes representing words. We can represent a given N-gram model by
assigning to each edge in the graph the probability of the N-gram that it represents. As before,
any path from the source node to a sink node on this graph represents a word sequence. The
product of the probabilities of the edges on this path will be exactly the probability for the
word sequence as specified by the N-gram model. Figure 2.11 illustrates this for a vocabulary
of two words using a trigram model.

We can now compose a composite HMM for the entire language by connecting the HMMs
for words according to the graph. Recognition is performed by finding the most probable
state sequence through this HMM for a given speech recording. It can be shown that the
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Figure 2.11 A graph representing a trigram LM over a vocabulary of two words in a hypothetical
language consisting only of the words “sing” and “song.” The symbols “<s>” and “</s>” represent the
source node indicating the start of a sentence, and a sink node representing the termination of a sentence
respectively. Dotted edges represent transitions into the sink node. In the composite HMM formed from
this graph, each oval representing a word would be replaced by the HMM for the word.

word sequence corresponding to the most probable state sequence is identical to that given by
Equation (2.29).
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This chapter deals primarily not with what makes automatic speech-recognition systems
(ASRs) work, but with some of the factors that make them go wrong. As mentioned earlier
in Section 1.1, ASR systems often make errors in conditions in which a human listener could
continue to hold a conversation effortlessly. Most real-life situations where people converse
with one another or with an automated system are fraught with acoustic adversity. The speech
that is finally heard may be distorted by a variety of external influences, not related to what
was spoken, which affect its characteristics. While humans are not affected by them, ASR
systems can be highly sensitive to these distortions. In other words, ASR systems are not
robust to distortions in the speech signal in the manner that humans are. In this chapter, we
discuss some of the reasons for this lack of robustness.

We recall that the problem of automatic speech recognition is fundamentally one of Bayesian
classification. Recognition errors in ASR systems are a consequence of misclassification.
Therefore, we begin by briefly discussing the rationale behind Bayesian classification and
the conditions under which it can perform poorly. Later in the chapter, we relate these to the
causes for errors in ASR, describe the various types of distortions that affect speech to evoke
these causes, and discuss approaches to mitigate them.

3.1 Errors in Bayes Classification

The problem of classification can be summarized as follows: we have a data instance charac-
terized by a feature x. We know a priori that it belongs to one of a set of classes C = {C}.
Based on the value taken by the feature x, we must determine the class C ∈ C to which the
instance belongs.
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The Bayes classification rule [3] can be derived by minimizing the probability of error in
a classifier. Defining R(c, C) as the error incurred by assigning a data instance that actually
belongs to class C, to the class c

R(c, C) =
{

0, if c = C

1, if c �= C.

Now, consider an instance where x takes the value X. If the data instance is assigned to class
c by a classifier, the expected error is

L(c, X) = R(c, c)P (c|X) + R(c, c)P (c|X)

= P (c|X) = 1 − P (c|X), (3.1)

where P (c|X) is a short-hand notation for P (c|x = X), and is the a posteriori probability of
the class c given that feature x took the value X. In other words, it is the fraction of all data
instances for which x = X , that also belonged to c. We denote the set of classes other than c by
c, that is c = C\c. Equation (3.1) simply states that the expected error of classifying X as c is
equal to the fraction of all data instances for which the feature x took the value X which do not
belong to c. Minimizing the expected error L(c, X) gives us the familiar Bayes classification
rule:

ĉP (X) = argmaxcP (c|X) (3.2)

= argmaxcP (c)Px(X |c), (3.3)

where we have used the explicit notation Px(X |c) to represent the probability that for any
instance of c, the feature x will take the value X. We denote the estimated class for the instance
X by ĉP (X). Here, we have used the subscript P to indicate that the selected class maximizes
the true a posteriori probability P (c|X). In other words, the optimal classifier that minimizes
the expected error must choose c such that the largest fraction of all instances for which x = X

are from c.
The error rate of a classifier is the expected fraction of all data instances that will be

misclassified by the classifier. The error rate of the optimal classifier of Equation (3.2) is
called the Bayes error. It is the statistical mean of the expected error given by Equation (3.1),
over all possible values of x, when classification is performed by the optimal Bayes classifier:

E{L(ĉP (X), X)} = 1 −
∫

X
dXPx(X)P (ĉP (X)|X). (3.4)

The Bayes error for a feature x is the lowest possible error rate for classification with it. Let
us represent this as Lx .

We will also alternately represent the Bayes error for x as Lx(P, P ). The first argument
P in our notation indicates that the true conditional distribution of the classes is P (c|X)
(P being used as an abbreviation of P (c|X)). The second argument, which is also P here,
explicitly indicates that classification too has been performed using P (c|X) in Equation (3.2).
The reason for using this notation will become apparent shortly.

Let us now consider the conditions under which the error rate of a classifier can increase.
For later reference, we will assign a type to each of these conditions.
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3.1.1 Type 1 Condition: Mismatch Error

The formulation of Equation (3.2) considers the true conditional class-probability distribution
P (c|X). In other words, in order to achieve the Bayes error of Equation (3.1), the decisions
of the Bayes classifier must be based on the true a posteriori probability distributions P (c|X).
If the alternate factored form of Equation (3.3) is used, the classifier must use the true class
probability P (c) and the true class-conditioned data probability, Px(X |c).

In practice, the distributions used by a Bayes classifier are frequently not the true distribu-
tions. There are two common reasons for this discrepancy:

� Model mismatch error: It is usually difficult, if not impossible to characterize the true
distribution Px(X |c) of any data. Instead, a proxy, typically a model P̂x(X |c), is used. The
parameters of the model are usually learned from data to minimize the divergence between
P̂x(X |c) and Px(X |c). Differences between the two nevertheless remain, and can sometimes
be large. Similar modeling errors also occur for P (c).

� Data-mismatch error: Data-mismatch errors happen when the value X of the feature x used
for classification is modified for some reason. This might happen, for instance, when it has
been affected by noise. As a result, instead of obtaining X as the feature value, we obtain
Z = g(X) for some function g(). In effect, the actual feature obtained is z = g(x) whose true
distribution is Pz(Z |c), whereas classification is performed assuming that the feature is x,
that is with Px(Z |c).

Discrepancies between the true and assumed distributions, regardless of the cause, have a
common consequence: the effective a posteriori class probability used for classification differs
from the true posterior.

Now consider that classification is performed assuming a distribution P̂ (c|X), which may
not be the true distribution P (c|X):

ĉ
P̂

(X) = argmaxc P̂ (c|X). (3.5)

Its easy to see that L(ĉ
P̂

(X), X) ≥ L(ĉP (X), X). Let us represent the error rate
E{L(ĉ

P̂
(X), X)} for this classifier by L(P, P̂ ). The notation in L(P, P̂ ) represents the fact

that data with distribution P (c|X) are classified by a Bayes classifier that assumes a distribu-
tion P̂ (c|X). This error rate is given by

L(P, P̂ ) = E{L(ĉ
P̂

(X), X)}

= 1 −
∫

X
dXPx(X)P (ĉ

P̂
(X)|X).

Since optimal classification with minimum error, that is the Bayes error, is only guaranteed if
classification is performed using the true distribution P (c|X):

L(P, P̂ ) ≥ L(P, P ). (3.6)

More generally, if classification is performed using the factored formulation of Equa-
tion (3.3), performing classification based on a distribution P̂x(X |c) instead of the true distri-
bution Px(X |c) will result in increased classification error rate. Thus, any mismatch between
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Figure 3.1 Illustration of Bayes error through a two-class problem. Left panel: the two curves represent
the scaled class-conditional distributions P (c)Px(X |c) for both classes, which are assumed to be
Gaussian. The shaded region is the area under the lower of the two curves. It represents the probability
of drawing a feature from either class that is more likely to be obtained from the other class, and will be
misclassified. This is the Bayes error. Right panel: the curves represent P (c)Pz(Z |c), where z = x + y,
and y is a zero-mean Gaussian random variable that is independent of the class c. The variance of z is
the sum of the variances of x and y, and is greater than the variance of x alone. Consequently, the area
of the shaded region increases. Generally, even if the distributions are not Gaussian, the Bayes error for
z will be greater than that for x.

the true distribution of data and the distribution assumed by a Bayes classifier will result in
suboptimal classification.

3.1.2 Type 2 Condition: Increased Bayes Error

We first note that for any one-to-one (injective) function f () with the property that for any X the
transformed value Y = f (X) is unique, P (c|x = X) = P (c|f (x) = f (X))1. Thus, monotonic
transformations of X such as log(), exp() etc. will not affect the Bayes error, that is

Lf (x) = Lx . (3.7)

Consider a random variable x that is dependent on a class variable c (e.g., measurements
of observations from the class). Let y be a random variable that is independent of the class
(e.g., noise). Let z = x + y. The Bayes error of a classifier based on z will be no lower than
the Bayes error of x alone, that is Lz ≥ Lx . In practice, Lz will usually be greater than Lx .
Figure 3.1 illustrates this pictorially.

1 Here, we have explicitly used the notation P (c|x = X) to represent the a posteriori probability of c given that
the feature x takes the value X, and P (c|f (x) = f (X)) to represent the a posteriori probability of c given that
the f (x) takes the value f (X). This is to avoid the potential confusion of the notation P (c|f (X)) which may be
interpreted either as P (c|x = f (X)) or P (c|f (x) = f (X)).
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If z is obtained by combining x and y through some function g(), that is, z = g(x, y), such
that we can write U (z) = V (x) + W (y) for some injective U (), V () and W (), Lz ≥ Lx still
holds as a consequence of Equation (3.7). In practice, this will usually hold for most functions
g() that we encounter, even if we cannot express the relation between z, x and y as an additive
decomposition of injective functions.

Each of the two condition types described above has multiple consequences vis-à-vis auto-
matic speech recognition.

3.2 Bayes Classification and ASR

ASR is generally performed through Bayes classification. We recount the classification rule
here for reference. Given a speech signal X, the sequence of words ŵ1 , ŵ2 , · · · is recognized
according to

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

P (w1 , w2 , · · · |X) (3.8)

= argmax
w 1 ,w 2 ,···

P (X|w1 , w2 , · · ·)P (w1 , w2 , · · ·). (3.9)

The set of classes here is the set of all possible word sequences. We have dropped the
subscript used to distinguish between the feature and the value it takes (such as in Px(X |c)) in
P (X|w1 , w2 , · · ·) for brevity.

We now consider the issues that affect speech-recognition performance. We identify three
key factors.

3.2.1 All We Have is a Model: A Type 1 Condition

As mentioned in Section 3.1, a Bayes classifier is only optimal if the distributions employed
are the true distributions of the data. In the formulation of Equation (3.9), we would re-
quire P (w1 , w2 , · · ·) to represent the true probability of the word sequence w1 , w2 , · · ·, and
P (X|w1 , w2 , · · ·) to represent the true probability distribution of all feature vector sequences
derived from recordings of the word sequence w1 , w2 , · · ·.

However, in practice, we do not have the true probability distributions for the data—we
only have models that attempt to represent these true distributions. The probability of a word
sequence P (w1 , w2 , · · ·) is typically represented by a finite-state or context-free grammar, or
an N-gram language model. The probability of a speech signal given a specific word se-
quence P (X|w1 , w2 , · · ·) is modeled by an hidden Markov model (HMM) (or some other
model if the recognizer is not HMM based). The actual process that produces speech sig-
nals is significantly more complex than HMMs, and unlikely to be representable exactly by
an HMM.

Thus, we have a Type 1 condition represented by Equations (3.5) and (3.6)—classification is
performed using a distribution that is different from the true conditional probability distribution
of the classes. The classification error rate is greater than the Bayes error. This is a fundamental
restriction that affects any statistical classification paradigm: the true nature of the distribution
of the data can never be known and can only be guessed.
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3.2.2 Intrinsic Interferences—Signal Components that are Unrelated to the
Message: A Type 2 Condition

A person’s speech carries a significant amount of information in addition to the actual words
being spoken. For instance, information about the person’s identity, their emotional state,
the emphasis used, etc. are all present in the signal. These features are largely unrelated to
the lexical content of the speech. Even if they are related to the underlying words in a spe-
cific situation, they are usually highly variable in their manifestations, making them poor
general predictors of what was spoken. For instance, the pitch patterns or spectral harmon-
ics in a particular speaker’s speech may well be characteristic of the specific sounds he or
she is producing, but it is highly unlikely that any other speaker will employ exactly the same
pitch patterns or harmonic structures when producing those same sounds. Thus, while these
patterns are effective cues for identifying the spoken sounds for that specific speaker, they
are useless as cues for identifying the same sounds uttered by a different speaker.

These lexical-content-independent attributes of the speech signal can affect the feature
vectors derived from it, increasing their intrinsic variability, thereby increasing the minimum
(Bayes) recognition error that may be obtained from them. Alternately viewed, each of these
nonlexical attributes can be considered to be a separate random variable, and the observed
signal itself can be viewed as a composition of these variables and the lexical-content-related
features. This results in the Type 2 condition described in Section 3.1.2, and we may expect
an increased recognition error with respect to what we would obtain if the speech signal
comprised only lexical-content-related features.

3.2.3 External Interferences—The Data are Noisy: Type 1 and
Type 2 Conditions

In addition to the above, speech signals are frequently influenced by external factors, not
related to what was uttered by the speaker. These influences can result in two kinds of effects.
First, they can introduce a mismatch between the distributions of the data being recognized
and those employed for classification (a Type 1 condition). Second, even if the classification
is done with the appropriate distributions, they can cause an increase in the minimum (Bayes)
recognition error (a Type 2 condition).

The effect of external influences on the speech signal, and techniques to mitigate them are
the primary focus of this book. Below, we briefly consider the nature of these influences.

3.3 External Influences on Speech Recordings

In order to understand what external influences may affect a recording and how they might
do so, we begin by considering the nature of the speech signal itself and how it is captured.
The speech signal is a pressure wave—the speaker’s mouth causes minute variations in the
pressure of the surrounding air. These vibrations must be sensed and converted to a digital
signal that the recognizer can operate on.

Figure 3.2 illustrates the overall signal capture process that delivers the pressure waves
produced by the speaker as a digital signal to the recognizer. The first component in this
process is a microphone. The primary sensing element in the microphone is a membrane that
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x[k]Analog 
channel

Digital
channel

Analog to digital
conversion

Digital to analog
conversion

s(t)
Recognizer

Figure 3.2 Signal-capture procedure. The speech uttered by a speaker is converted by the microphone
to an analog signal s(t). The signal is transmitted through a variety of digital and analog channels and
eventually delivered to the recognizer as the digital signal x[k].

is caused to vibrate by the pressure wave [4]. The vibrations of the membrane are converted
to an analog electrical signal s(t). The analog signal s(t) is then conveyed through a digitizing
channel which delivers it as the digital signal x[k] to the recognizer. In representing the analog
and digital signals here, we have employed the convention of representing continuous time
t within parentheses for continuous time signals, as in s(t), and using square brackets to
represent the discrete sample index k for digital signals, as in x[k].

The digitizing channel includes zero or more analog transmission channels, analog-to-
digital conversion, and zero or more digital transmission channels. Our definition of digital
transmission channels include storage and retrieval schemes that may incorporate compression.
The actual combination of analog and digital transmission channels depends on the particular
application in which ASR is deployed. Often, the exact configuration of the digitizing channel,
i.e., the number and type of analog and digital transmission channels between the speaker
and the recognizer, is known. This happens, for instance, when speech is recognized on
a local computer, or transmitted over a dedicated link to a recognizer. At other times, for
example, for recognition of speech recorded over telephone channels, even this may not be
known, since land-line, cell-phone, and internet telephony all employ different transmission
schemes.

Ideally, the signal that is eventually delivered to the recognizer would be a faithful fac-
simile of the signal produced by the speaker. In practice, though, both analog and digital
transmission channels will frequently modify or distort the signal that is transmitted. Sep-
arately, extraneous noises may also interfere with the speech signal. As a result, the actual
signal that is delivered to the recognizer is a distorted version of what would ideally be
delivered.

Below, we discuss how these various influences affect the speech signal. Initially, we
will discuss the distortions introduced by various components of the signal-capture process,
following which we will consider the effect of extraneous noises. For illustrative purposes, we
use as an example an undistorted speech signal and its spectrogram shown in Figure 3.3.

3.3.1 Signal Capture

By the term “signal capture,” we refer to the entire process of capturing and digitizing a
signal to prepare it for recognition, as shown in Figure 3.2. Let us now examine the various
components of this process.

www.ebook3000.com
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Figure 3.3 Top. A “clean” speech signal that has been recorded over a close-talking microphone
in a noise-free environment. The signal is sampled at 16 000 samples per second and has frequency
components up to 8 kHz. Bottom. The spectrogram of the signal.

The Microphone

At the leading end of the sound-capture process is a microphone that converts pressure
waves to analog electrical signals. For the purpose of this discussion, we consider the micro-
phone to comprise all components of the system that are involved in converting the acoustic
pressure wave into the analog electrical signal s(t). This includes the actual microphone el-
ement that transduces the pressure wave to an electrical signal, and any preamplifier that
is required to boost the captured signals to a level that is acceptable for transmission or
digitization.

Ideally, the microphone would respond equally to all the frequencies in the speech signal,
i.e., it would have a flat frequency response. In reality, the response of the microphone is
usually nonuniform across all frequencies. Although high-quality microphones tend to have
a relatively flat response across most of the frequency spectrum, more typically the response
tends to be variable. Moreover, no two microphones will have exactly the same frequency
response, even if they are manufactured identically. The frequency characteristics of the signal
captured by the microphone will also vary due to other external factors, such as the direction and
distance of the speaker with respect to the microphone, and even the atmospheric conditions
in the space that the speech is being recorded in.

In addition, the response of the microphone itself is not always perfectly linear—an increase
in the energy with which the speaker speaks may not result in a proportional increase in
the energy of the captured signal. When the captured signals are boosted by a preamplifier,
the linearity of the response of the preamplifier also becomes a factor. A preamplifier’s response
is generally linear at low to medium gain levels, but at high gain levels it becomes nonlinear.
This can cause saturation of the signal values, with concomitant spectral distortions including
aliasing in the final digitized signal as illustrated in Figure 3.4.
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Figure 3.4 The effect of saturation. Top: The signal from Figure 3.3 when it has been distorted by
saturation resulting from excessive gain in the amplifier. Saturation is often visually apparent in the
envelope of the signal. Bottom: The spectrogram of the saturated signal, after it has been digitized at
16 kHz. Saturation results in high-frequency components that get aliased into spurious spectrographic
patterns in the 0–8 kHz frequency band. Note that the spurious patterns are chiefly visible in regions
where the signal amplitude was high enough to be affected by the saturation. Other forms of nonlinearities
also result in similar distortion.

The Channel

The channel can often introduce a variety of distortions as discussed below:

� Analog transmission. If the analog signal is transmitted in analog form, for example over
an analog radio or television channel, some form of encoding scheme, typically amplitude
or frequency modulation, is used. These schemes, while nominally nondestructive to the
transmitted signal, will nevertheless introduce distortions into it.

� Bandwidth restrictions. The bandwidth permitted to the signal is often limited. For in-
stance, older analog telephone lines only transmit the 300–3400-Hz frequency band of the
signal—the remaining frequencies are filtered out prior to transmission. Modern cellphone
and VoIP channels can transmit higher bandwidths (e.g., 8 kHz), but still the most com-
monly used cut-off frequency is 4 kHz. This can result in significant loss of useful spectral
information as shown by the example in Figure 3.5.

� Digitization. The analog signal must eventually be digitized for processing with a computer.
Digitizing requires sampling the speech signal in time. According to the Nyquist sampling
theorem [8] no information is lost in sampling, provided that the sampling frequency is at
least twice as high as the highest frequency component in the signal. Spectral components
at frequencies above half the sampling frequency will get aliased into spurious spectral
patterns in lower frequencies. To prevent this, the analog signal must be bandlimited by
an antialiasing filter that attenuates all frequencies above half the sampling rate, prior to
digitization. Poor attenuation of these frequencies will show up as aliasing artifacts in the
digital signal. In addition, the digital signal must be quantized to the bit-resolution employed
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Figure 3.5 The signal from Figure 3.3 when it has been bandlimited to the frequencies present in a
typical telephone signal (top), and its spectrogram (bottom). Information-bearing spectrographic patterns
in the higher frequencies have been erased.

(i.e., the number of bits used to represent each sample). This inevitably results in quantization
errors, which show up as low-energy noise in the digitized signal.

� Clipping. Analog-to-digital converters operate on a limited range of incoming signal values.
Signal amplitudes that exceed these limits are truncated to the largest value that can be
represented by the analog-to-digital converter, resulting in distortion of the signal and its
spectral content as seen in Figure 3.6.
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Figure 3.6 The effect of clipping that results when the dynamic range of the analog signal exceeds the
operating range of the analog-to-digital converter. The signal in the upper panel has several segments
where its amplitude is the maximum allowed by the 16-bit digitization used in this example. The
spectrogram of the signal, shown in the lower panel, exhibits clear indications of aliasing and other
distortions in the regions where the signal has been clipped.
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Figure 3.7 An example of a signal that has been corrupted by a coded transmission channel. The speech
signal in Figure 3.3 has been coded by the ITU-T G.723.1 codec [6] at 6.3 kbits/s. The upper panel shows
the signal and the bottom panel shows its spectrogram. The codec operates on reduced-bandwidth (4
kHz) speech. Additional distortions introduced by the codec can be seen by comparing this spectrogram
with Figure 3.5.

� Coding distortions. Digitized speech data are commonly also transmitted over wired or
wireless channels. In these cases, it is usual to compress the digital signal through one of a
large variety of lossy coding schemes. The received coded data is then decoded to recreate
a digital signal. The coding schemes are designed to retain the intelligibility of clean speech
signals, but the decoded signals are not an exact replica of the originally encoded data. As
a consequence, the coding schemes modify the spectral content of the speech signal as seen
in Figure 3.7. The coding schemes are frequently designed to function optimally on speech
signals, but will badly distort other types of signals. In particular, when the speech signal is
corrupted by noises that the coding scheme is not designed for, this can magnify the effect
of these noises on the intelligibility of the decoded signal.

� Data loss. Digital channels typically transmit the signal as packets of encoded data. Fre-
quently, some of these packets are “lost” during transmission and are not received at the
destination. Consequently, the recomposed signal will have gaps in it. Coding schemes for
digital channels institute mechanisms to smooth over these gaps to reduce discontinuities in
the signal; nevertheless the information in these gaps is lost.

3.3.2 Additive Corruptions

In addition to the various distortions and changes inflicted by the signal capture process,
speech signals can also be corrupted by undesired signals that get recorded along with the
speech (Figure 3.8). These signals are usually from external sound sources which produce
signals that are also incident on the microphone. These might include sounds from localized
or “point” sources such as a radio, air conditioner or even a competing speaker, or diffuse
sound sources such as the hum in an automobile that cannot be localized. These noises are
primarily additive—the recorded signal is a direct sum of the signals from the different sound
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Figure 3.8 The signal of Figure 3.3 when it has been corrupted by street traffic noise to 10 dB. In
addition to introducing various spectral features of its own, the noise also obscures many of the spectral
patterns in the speech.

sources. Other noises are introduced by the recording equipment itself even when there is no
external noise source. All of these noises, in addition to being unrelated to the actual speech
signal, are also often time varying, introducing an extra degree of variability that complicates
matters further.

The level of undesired noise in a noisy signal is usually quantified through the signal-to-
noise ratio, or SNR of the signal, and expressed in decibels. If we represent the clean speech
signal that we would capture in the absence of noise as s[k] and the noise that corrupts it as
n[k], the SNR in decibels is given by

SNR(dB) = 10 log10

∑
k s[k]2∑
k n[k]2

. (3.10)

The lower the SNR, the higher the level of the corrupting noise in comparison to the speech.
An SNR of 0 dB implies that speech and noise have equal power in the noisy signal.

3.3.3 Reverberation

Most recordings are performed in closed spaces with walls and other objects that can reflect
the sound signal. In these situations, the signal generated by the speaker not only travels
directly from the speaker’s mouth to the microphone but also arrives at the microphone
through reflections from walls, reflections of reflections, etc., as illustrated in Figure 3.9. Since
the reflections must travel a longer distance than the direct signal itself, their arrival at the
microphone is delayed with respect to the direct signal. These delayed signals are consequently
combined with the direct signal to result in the phenomenon known as reverberation.

The effect of reverberation is to “smear” sounds in the recording—even a sharp click
produced by the speaker gets recorded as an extended signal, since the reflections continue
to bring delayed, but attenuated copies of the signal to the microphone long after the speaker
has produced the click. The smearing of the signal causes a loss of signal quality, since the
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Figure 3.9 Left: in reverberant recording environments the signals arriving at the microphone after
one or more reflections from walls and other reflecting surfaces interfere with the direct signal from the
speaker to the microphone. Right: the signal in Figure 3.3 when it has been reverberated in a room with
a reverberation time T60 of 373 ms (top) and its spectrogram (bottom). The signal is smeared in time,
which makes temporal details less clearly perceivable.

microphone now captures the currently spoken sound along with other sounds spoken in
the past.

The amount of reverberation in a recording environment is typically characterized by
reverberation time T60 [4], which is defined as the time taken for the energy in the reflections
of a signal to decrease to 60 dB below that in the initial direct signal. The longer the T60 time,
the greater the reverberation.

3.3.4 A Simplified Model of Signal Capture

All of the above effects introduce artifacts in the digitized signal processed by the recognizer,
which are largely unrelated to the actual spoken message, i.e., the words uttered by the speaker.
To explain how they affect recognition, it is convenient to consider the “idealized” model of
the signal capture process shown in Figure 3.10a. The speaker generates a pristine signal in an
ideal environment with no external interferences. A perfect microphone transduces this signal
to an ideal signal s(t) which is digitized by a perfect analog-to-digital converter to the “clean”
digital signal s[k]. s[k] captures the signal generated by the speaker faithfully. Thereafter, a noisy
channel corrupts the clean signal, distorting it and adding various noises to it to generate the
distorted signal x[k] which is delivered to the recognizer. We attribute all corrupting phenomena
to this channel. Ideally, the channel would not distort the signal at all and x[k] = s[k]. However,
in reality the relationship is more complex and has the form x[k] = f (s[0]..s[k], H,N), where
f () is a possibly nonlinear, usually unknown function, N represents the aggregate of the
various noises that affect the signal and H represents the characteristics of the channel that
delivers the digitized signal to the recognizer. The characteristics of the channel can be time
varying.

Often, for purposes of analysis and mathematical tractability, the noisy channel is assumed
to follow the simplified model shown in Figure 3.10b. It comprises a linear time-invariant filter
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RecognizerNoisy channel
x[k]s[k]Ideal captures(t)

Linear channel h[n]s[k] x[k]= s[k]    h[k] + n[k]+
Noise n[k]

⊗

(a)

(b)

Figure 3.10 (a) Idealized model of the signal capture process. The speech uttered by the speaker is
converted to the pristine analog signal s(t) by the microphone. This signal is digitized to obtain the
pristine digital signal s[k] which is transmitted through a noisy channel to arrive as the noisy signal x[k]
at the recognizer. (b) A simplified model that is often assumed for the noisy channel that transforms
the ideal digital signal s[k] to the noisy digital signal x[k]. It comprises a linear filter h[k] followed by
addition of noise n[k].

h[k] that modifies the spectral characteristics of the signal, followed by an addition of noise
n[k]. Thus,

x[k] = s[k] ⊗ h[k] + n[k], (3.11)

where ⊗ represents the convolution operator. In this model, both reverberation and any spectral
shaping effect from the recording setup are attributed to h[k].

3.4 The Effect of External Influences on Recognition

How do the various factors described above affect automatic speech recognition? To under-
stand, we recall the old adage that a picture is worth a thousand words. Figure 3.11 shows
recognition accuracy on speech corrupted by different types of external influences. For pur-
poses of this illustration, we have assumed the corruption model of Figure 3.10b. We separately
evaluate the effect of the two components of this model, the linear channel h[k] and the additive
noise n[k].

Figure 3.11a shows the effect of additive noise on recognition error. In this experiment,
noisy speech was created by adding corrupting music digitally to a clean speech signal, with
no linear filtering involved. By the term “clean” speech here, we refer to speech that has been
recorded over a close-talking microphone and can be assumed to be unaffected by any linear
filter or additive noise, and is a close approximation to the ideal signal s[k]. Since there is
no linear filtering, the noisy speech is simply x[k] = s[k] + n[k]. The curves show recognition
accuracy on speech corrupted by noise as a function of the SNR of the signal. The lower curve
shows the recognition accuracy obtained on noisy speech when the recognizer has been trained
on clean speech. The upper curve shows recognition performance on noisy speech, when the
recognizer too has been trained on the same kind of noisy speech.
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Figure 3.11 (a) The effect of different levels of background music on speech-recognition accuracy.
The noise level is measured in terms of the signal-to-noise ratio of the noisy signal expressed in decibels.
(b) The effect of reverberation on speech recognition. The different bars show recording environments
with different reverberation times. The speech data were drawn from the Wall Street Journal (WSJ)
corpus [9] in both cases.

We pause here to explain the distinction between the two curves. A recognizer comprises
a collection of HMMs for various sound units (words or phonemes). The parameters of the
HMMs are trained from a collection of speech recordings. For simplicity, let us assume that
the HMMs represent the true class-conditional distributions of the data they are trained from.

In the upper curve of Figure 3.11a the HMMs are trained from clean speech. They represent
PS (S|c), the true class conditional distribution of feature vectors S derived from clean speech
s[k]. In the notation here the subscript S indicates that PS (S|c) is the probability distribution
of feature vectors of clean speech, while the argument, also S here, indicates that probability
values are also computed for feature vectors of clean speech. The feature vectors X of the
noisy test speech (i.e., the speech to be recognized) x[k] on the other hand, have a different
distribution PX (X|c). This gives us a data-mismatch variety of Type 1 condition, since the
recognizer, having been trained on clean speech, performs classification based on PS (X|c).
As a result, the recognition accuracy is compromised. As the level of noise increases (i.e.,
as the SNR decreases), the difference between PS (X|c) and PX (X|c) increases, resulting in
increased recognition error as shown by the curve.

In the lower curve of Figure 3.11a, the HMMs have been trained on noisy speech that
has been corrupted by the same kind and level of noise as the test speech. As a result they
represent the distribution PX (X|c). Such a recognizer is called a “matched” recognizer for
the test data—the distributions used by the recognizer for Bayes classification are the same
as the distribution of the test data, and we have an optimal Bayes classifier. This may be
considered to be the “best” case-recognition accuracy that can be obtained with the noisy test
data. Nevertheless, since the noise is not related to the underlying sound classes, we get a
Type 2 condition—the Bayes error is greater than what can be obtained with the clean signal
s[k]. Furthermore, the error, while optimal for the data, increases as the noise level increases,
although it increases much less than when the recognizer is trained on clean speech. Thus,
increasing noise levels degrade recognition accuracy in all cases.
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Figure 3.11b shows recognition accuracies on data that have only been affected by a
linear channel, but no noise. Here, x[k] = s[k] ⊗ h[k]. Specifically, here the linear filter h[k] is
the reverberation in a recording environment. For this experiment, clean data were digitally
reverberated by passing them through a digital filter h[k] that was obtained using the “image
method” [1] to represent the reverberant room response of a simulated 5m × 4m × 3m room.
Figure 3.11b shows recognition accuracy on reverberated speech as a function of reverberation
time. Here, the gray bars show recognition performance when the recognizer has been trained
on clean speech, but the speech to be recognized is reverberant. The black bars show recognition
performance with a recognizer, when the recognizer itself has been trained on a collection of
reverberant speech from a variety of reverberant recording conditions. Once again, we note
that in both cases the recognition accuracy degrades with increasing reverberation, although
it plummets much more rapidly when the recognizer has been trained on clean speech.

Although the above results only consider simulations of the simplified model of Figure 3.10,
similar patterns are also observed for other more realistic signal degradations. Recognition
error generally increases as the level of degradation increases (as measured by any appropriate
quantitative metric), even when the recognizer is matched to the test data. In practice, the
data used to train the recognizer are rarely matched to the test data and this results in further
increased error.

In the examples above, we have not considered the other two effects mentioned earlier, i.e.,
(1) that the recognizer is only a model for the true distribution of speech and (2) the speech
signal itself contains various additional components that are unrelated to the spoken words
and interfere with our ability to recognize it. These effects also affect recognition accuracy.

3.5 Improving Recognition under Adverse Conditions

It is clear that the various problems described in Sections 3.2 and 3.3 affect speech-recognition
accuracy and must be addressed. The chapters in this book present a number of solutions.
Let us briefly review possible mechanisms for addressing the problems and how the chapters
relate to them.

3.5.1 Handling the Model Mismatch Error

Let us begin by considering the most basic problem of all, described in Section 3.2.1—the
HMMs in a speech recognizer are only models of the true distributions of speech from
the various sound classes, and hence do not guarantee optimal recognition. As we saw in
Section 3.1, the reason for this is that L(P̂ , P ), the error rate for a classifier that performs
classification based on an assumed distribution P̂x(X |c), is greater than the Bayes error
L(P, P ).

One solution to this problem is to simply train the recognizer on a large amount of speech,
and have a sufficient number of parameters (i.e., Gaussians in state output distributions) in the
HMMs to approximate the true distributions of speech as well as possible within the limitations
of the model.

Another solution is to estimate the distribution P̂x(X |c) to directly minimize L(P̂ , P ), rather
than to match the distribution of the data from the class. In the context of speech-recognition
systems, this would imply learning HMM parameters to minimize recognition error, rather
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than to model the distributions of the individual sound units as faithfully as possible. Such
techniques are usually called discriminative training techniques.

In Chapter 11, Estève and Deléglise describe MMI and MPE training, two discrimina-
tive learning formalisms that explicitly attempt to minimize recognition error based on this
principle.

3.5.2 Dealing with Intrinsic Variations in the Data

The second, fundamental problem that affects speech recognition is that the signal carries
information beyond what is spoken, and this can interfere with recognition as explained in
Section 3.2.2. The solution to this is to utilize feature-extraction techniques that can somehow
capture only the characteristics of the signal that relate to the underlying lexical message,
without representing remaining characteristics that are irrelevant to recognition. While we do
not explicitly address this problem in this book, the feature-extraction techniques described by
Stern and Morgan in Chapter 8 are based on modeling aspects of human perception that key
in on phonetic, and consequently lexical contents of the signal, implicitly reducing, although
not eliminating the representation of other lexical-content-independent aspects of the signal.

3.5.3 Dealing with Extrinsic Variations

However, the bulk of this book is aimed at addressing the problem of external influences.
Specifically, we consider additive noise, which might indeed be the most vexing problem of
all, although many of the techniques are applicable to generically degraded speech.

Normalizing the Data

The primary issue that arises from external influences is that they induce a data-mismatch error
in the recognizer—the distributions of the speech to be recognized differ from those used to
train the classifier. Furthermore, even the individual utterances in the training data may vary
in their distributions, both because the recording conditions and the distortions affecting the
signals may have varied from recording to recording, and because of instrinsic variations in
the speech.

The solution, of course, is to somehow modify the distribution of the features derived from
each test recording, so that they conform to the distributions used by the recognizer. Indeed,
this is what some of the techniques presented in later chapters do.

However, a rather large benefit can be obtained by simply matching the moments of the
distributions of the features obtained from test and training recordings. Feature-normalization
techniques take this approach.

They assume that individual speech recordings, both from the training and test data, are
perturbed samples drawn from an unknown common underlying distribution. Therefore, they
attempt to modify the distributions of each recording to return them to this underlying distri-
bution. This distribution itself cannot be known, but for the purposes of normalization it can be
assumed to be a zero-mean Gaussian with a variance of unity for each component. A variety
of normalization schemes are commonly used in ASR systems, based on this assumption.
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� Mean normalization [5] subtracts the mean of the sequence of feature vectors for an utterance
from the individual feature vectors, such that the resulting sequence of vectors has zero mean:

μx =
1
T

∑
k

xk ,

xk = xk − μx ∀ k. (3.12)

� Variance normalization [10] also normalizes the variance of the individual components of
the feature vectors to unity:

σx(i) =
√

1
T

∑
k

(xk (i) − μk (i))2 ,

xk (i) =
xk (i) − μx(i)

σx(i)
∀ k, i, (3.13)

where xk (i) represents the ith component in the kth feature vector xk .
� Histogram equalization [2] goes beyond matching moments. It further maps the cumulative

histogram for individual components of the feature vectors to the cumulative distribution
function of a zero-mean, unit variance Gaussian.

Normalization is surprisingly effective and has become a staple part of ASR systems. Indeed,
any “baseline” evaluation of a recognizer naturally includes, at the minimum, mean normal-
ization of features. Nevertheless, it is not a panacea. Noise and other distortions modify the
distributions of the data in a manner that cannot be completely accounted for by simple nor-
malization techniques, and considerable degradation of recognition performance still occurs.
More sophisticated techniques are needed to deal with them.

Advanced Techniques

Clearly, the best way to deal with degraded speech is not to have degradation in the speech
signal at all. In the context of additive noise, recognizers are best served if the recorded speech
simply does not contain high levels of noise.

In Chapter 6, McDonough and Kumatani discuss how this may be achieved even in noisy
recording environments using a microphone array. As they explain, by suitably combining
signals captured by multiple microphones, it becomes possible to selectively enhance signals
from the location of the speaker, effectively suppressing signals from other locations.

Noise may also be eliminated by not considering regions of the speech signal that do not
contain speech at all. In Chapter 4, Martin and Kolossa present methods for voice activity
detection to accurately identify the locations of speech carrying regions of the signal, thereby
eliminating unnecessary noise-carrying regions from consideration for recognition.

In spite of our best efforts, the captured signal is likely to contain noise anyway. In Chapter 4,
Martin and Kolossa also describe techniques for estimating the noise and suppressing it in
the noisy signal. Smaragdis describes techniques for separating speech out from noise using
single- or multiple-microphone recordings in Chapter 5.
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Feature computation is another stage in the capture and characterization of speech signals
for recognition, where the problem of noise may be directly addressed. Noise robustness may
be achieved by deriving features from the signal that, while retaining all the characteristics
of speech, are relatively unaffected by noise. Stern and Morgan in Chapter 8 and Wölfel in
Chapter 7 describe techniques for extracting features from speech signals that approach the
problem of robust feature extraction from human-auditory and signal processing perspectives,
respectively.

This far, we have considered what happens to a signal or features derived from it before it
arrives at the speech recognizer. Nevertheless, we note that the above procedures do have an
effect on the recognizer. In cases where the recognizer has been trained on clean speech, they
have the effect of reducing the mismatch between the probability distributions employed by
the recognizer and those of the the test data to be recognized. If the recognizer is trained on
noisy speech there is no mismatch. Nevertheless, by reducing the variations among the speech
signals in the training data due to noise, they can improve the minimum recognition error
(Bayes error) achievable with the data. Nevertheless the recognizer itself was not explicitly
considered in developing these solutions.

However, once the features arrive at the recognizer, the classifier must explicitly be consid-
ered. As we know by now, the primary reason for the increased recognition error is mismatch
between the test data and those used to train the recognizer. Here, we have two options—we
may either modify the features derived from the signal such that their distributions better match
those used by the recognizer, or we may modify the distributions employed by the recognizer.

Droppo describes feature-enhancement techniques in Chapter 9 that attempt to modify
features derived from noisy signals, such that their distributions are closer to that of clean
speech. In Chapter 10, Häb-Umbach describes a technique for enhancing features derived
from reverberant speech.

In Chapter 11, Estève and Deléglise describe adaptation methods, that modify the dis-
tributions in a recognizer to better match those of incoming speech features using generic
affine transforms. In Chapter 12, Hershey et al. describe more detailed methods of modifying
recognizer parameters using models of the interaction process between speech and noise.

Here, a generic rule of thumb must be kept in mind. Techniques that modify the features
only change the average characteristics of the features, without eliminating the variations
introduced by noise. Thus, the features will typically retain variations that are not represented
in the recognizer. On the other hand, techniques that modify the distributions of the recognizer
to match the incoming data can do so in such a manner that they also represent the variation in
the data correctly. Thus, methods that modify the distributions in the recognizer to match the
data may generally be expected to result in better recognition accuracy than those that modify
the features to match the distributions in the recognizer. We refer the reader to Appendix A of
[7] for a more detailed explanation of this issue.

This factor must hence explicitly be taken in to account. In Chapter 13, Seltzer describes
a methodology for learning speech recognizer parameters in a manner that makes it more
amenable to features that have been enhanced in any given manner. Liao describes techniques
for explicitly incorporating the uncertainty in noise-compensated or otherwise enhanced fea-
tures into a recognizer in Chapter 17.

A completely different perspective is derived from the fact that speech has time-varying
spectral characteristics. As a result, when a speech signal is corrupted by noise, some
spectro-temporal components nevertheless retain their fidelity since they have much greater
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energy than the noise, while others may get obliterated. Missing-feature techniques key in
on this characteristic. They attempt to identify the reliable spectro-temporal components that
have been relatively unaffected by noise, and use the partial information in these regions to
perform recognition.

The key to these methods, of course, is identifying which spectro-temporal components
of a signal may be considered to reliably belong to the speech signal. Narayanan and Wang
describe methods to identify these components using various techniques in Chapter 16.

In Chapter 14, Barker describes conditions under which speech features may be considered
reliable, and describes methods to perform recognition with partial data. He also describes
methods to perform recognition when there is uncertainty about which parts of the signal are
missing.

Gemmeke and Remes, on the other hand, take a different approach in Chapter 15. They
describe methods of reconstructing the unreliable spectro-temporal components of speech. The
resulting complete spectro-temporal characterization can now be used to recognize speech.

Together the techniques presented in this book address the problem of robust speech recog-
nition from a variety of perspectives. We invite the reader to read on about them in greater
detail in the following chapters.
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4
Voice Activity Detection, Noise
Estimation, and Adaptive Filters
for Acoustic Signal Enhancement
Rainer Martin, Dorothea Kolossa
Ruhr-Universität Bochum, Germany

4.1 Introduction

The presence of acoustic noise degrades automatic speech-recognition (ASR) performance as
it adds irrelevant information to the target signal. In the best case, this irrelevant information
does not disturb the speech recognizer; in the worst case, it leads to a complete mismatch of the
acoustic signal and the signal model of the recognizer. One widely used approach to improve
the performance of ASR is to filter the acoustic signal such that the amount of irrelevant
information is reduced and the match of the signal with its model is improved.

In the past 20-some years, many different filtering methods for noise reduction have
been proposed, either using a single signal or multiple microphone signals. Although beam-
forming methods based on multiple microphone signals yield larger improvements than single-
microphone processing methods, the latter are very widely used.

On the one hand, single-channel approaches are relatively easy to apply as their microphone
arrangement requires less space and they need in general less hardware and computational
resources. On the other hand, single-channel methods do not provide a spatial selectivity
and are restricted in their ability to remove time-varying noise components. Therefore, the
complete restoration of the undisturbed speech signal, as desirable as it would be, is hard to
achieve with a single-microphone approach: The removal of broadband noise goes along with
a degradation of the target signal. Therefore, most single-microphone noise-reduction systems
are adjusted to achieve a suppression of noise power in the order of 10–20 dB.

Single-microphone noise-reduction methods use a variety of different processing ap-
proaches. The simplest approach is to employ a voice activity detector (VAD) and to discard
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those signal segments which contain noise only. In the context of ASR, this procedure is
also known as frame dropping. Others use adaptive filters in the time domain such as the
Wiener filter, the Kalman filter and/or linear prediction techniques. However, the largest class
of methods employs some form of spectral decomposition in conjunction with an adaptive
spectral gain function. The spectral decomposition may be based on a block transformation,
for example, discrete Fourier transform or Karhunen–Loève transform, or a bank of filters.
These transforms or filters may provide either a uniform or nonuniform frequency resolution;
the latter is often based on a model of the filters in the human auditory system. In all of these
cases, the processing model must enable the reconstruction of the enhanced time-domain sig-
nal with small reconstruction errors. The computation of the adaptive gain is in turn closely
linked to the VAD and to the estimation of the noise power spectral density.

The objective of this chapter is to review the most prominent techniques for voice activity
detection, noise power estimation and single-channel noise reduction and to provide insights
into the tradeoff between noise reduction and target signal distortion. Throughout this chapter,
we will focus exclusively on additive noise, that is, consider disturbed signals x[�] which are
a sum of the target speech signal s[�] and the noise signal n[�], x[�] = s[�] + n[�]. Here, all
signals are discrete-time signals sampled at a rate fs with sampling index �. Furthermore, s[�]
and n[�] are assumed to be zero-mean signals and to be statistically independent, which also
implies E{s[�1 ]n(�2)} = 0∀�1 , �2 , where E{·} denotes the statistical expectation. Waveforms
of a clean speech signal s[�] and two noisy versions x[�] thereof are shown in Figure 4.1. The
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Figure 4.1 Waveforms of a clean speech signal (top), of the signal disturbed by white Gaussian noise
(center), and of the signal disturbed by babble noise (bottom). The sentence “Spring street is straight
ahead” is spoken by a female speaker. The SNR is 2 dB in both noisy cases.
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signal in the center plot is contaminated by stationary white Gaussian noise and the signal
in the bottom plot by nonstationary speaker babble noise. The signal-to-noise ratio (SNR) is
2 dB in both cases. These three signals will be used throughout this chapter for illustration
purposes.

4.2 Signal Analysis and Synthesis

Many noise-reduction approaches process the signal in a spectral domain. Spectral analysis-
synthesis schemes based on invertible block transformations provide very attractive processing
models for signal enhancement as they can easily be adjusted to provide perfect or near-perfect
reconstruction of the input signal. For signal-independent block transformations such as the
discrete Fourier transform (DFT), an additional advantage lies in their high computational
efficiency. Furthermore, spectral components of natural signals show less overlap in the spec-
tral domain than in the time domain and are less correlated than the time domain signal
samples. Therefore, each spectral component may be modeled and processed independently,
which greatly facilitates the algorithm design and, in a first-order approximation, allows for a
relatively straightforward scaling of these algorithms in terms of sampling rate or bandwidth.
For these reasons we will base the discussion of VAD and noise-reduction techniques on the
widely used DFT and a perfect reconstruction overlap-add signal synthesis approach. Most
of these techniques are equally useful when other types of decompositions or filter banks, for
instance with a nonuniform frequency resolution, are employed.

4.2.1 DFT-Based Analysis Synthesis with Perfect Reconstruction

The DFT provides a uniform spectral resolution which may be controlled by choosing an
appropriate analysis window wA [�]. Likewise, reconstruction artifacts can be controlled by
the synthesis window wS [�]. In fact, using the DFT, it is straightforward to design a perfect
reconstruction analysis-synthesis system, where in the analysis stage we obtain the Fourier
transform of the tth signal frame:

X(t, f ) =
M −1∑
�=0

wA [�]x[tR + �] exp
(
−j

2πf�

M

)

=
M −1∑
�=0

wA [�]s[tR + �] exp
(
−j

2πf�

M

)
+

M −1∑
�=0

wA [�]n(tR + �) exp
(
−j

2πf�

M

)
= S(t, f ) + N (t, f ). (4.1)

M is the length of the DFT, which is assumed to be an even number, R is the frame shift, and
t and f are the frame and frequency bin indices. Given the Fourier coefficients Ŝ(t, f ) of the
enhanced signal ŝ[�], the overlap-add synthesis can be written as

ŝ[�] =
∞∑

t=−∞
wS [� − tR]

1
M

M −1∑
f =0

Ŝ(t, f ) exp
(

j
2πf (� − tR)

M

)
. (4.2)
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Table 4.1 Window choices for DFT-based perfect-reconstruction
spectral analysis-synthesis systems.

wA [�] wS [�] R

Hamming Boxcar M/4
Hann Boxcar M/2
Square-root Hann Square-root Hann M/2

The window functions are defined in the text. Boxcar denotes the
rectangular window.

The window functions wA [�] and wS [�] are defined to have nonzero samples in the interval
� = 0 . . . M − 1 only. Typical analysis windows are the Hamming, the Hann, and the square-
root Hann window, which, for � = 0 . . . M − 1, are written as follows:

Hamming window: wA [�] = 0.54 − 0.46 cos
(

2π�

M − 1

)
, (4.3)

Hann window: wA [�] = 0.5
(

1 − cos
(

2π�

M − 1

))
, (4.4)

square-root Hann window: wA [�] =

√
0.5
(

1 − cos
(

2π�

M − 1

))
. (4.5)

These window functions and the corresponding synthesis windows and frame shifts R that
result in a perfect-reconstruction analysis-synthesis system are summarized in Table 4.1.

Frequently, we will also use the magnitude |X(t, f )| or the squared magnitude |X(t, f )|2
of the complex DFT coefficients X(t, f ). The latter, with an appropriate normalization of
the window function wA [�], is often referred to as the periodogram (see [15]). However,
the periodogram is a short-time estimate of the power spectral density with a relatively large
variance. Depending on its application, it requires further smoothing as outlined in Section 4.4.
Nevertheless, it is highly instructive to plot the temporal succession of 20 log10(|X(t, f )|) in a
color or gray-level plot. This is known as the spectrogram. Figure 4.2 depicts the spectrograms
of the signals shown in Figure 4.1. The succession of different phones as well as the harmonics
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Figure 4.2 Spectrograms of the signals in Figure 4.1: the clean speech signal (left), the signal disturbed
by white Gaussian noise (center), and the signal disturbed by babble noise (right).
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of the fundamental frequency during voiced sounds can clearly be observed. Furthermore,
although the two noise signals can be hardly distinguished in the time domain plots in Figure
4.1, they exhibit their significant differences in the corresponding spectrograms.

Speech and noise signals are typically modeled as stochastic processes. Therefore, in the
next section, we will briefly discuss the statistics of discrete Fourier coefficients. Whenever
possible, we will drop the frame index t for improved readability.

4.2.2 Probability Distributions for Speech and Noise DFT Coefficients

Discrete Fourier transform coefficients and the quantities derived thereof have a number of
statistical properties that facilitate the design of optimal detection and estimation algorithms.
For large transform lengths, the complex Fourier coefficients are known to be asymptoti-
cally complex-Gaussian distributed [15]. Thus, for the real and the imaginary parts of X(f ),
�{X(f )} and �{X(f )}, the probability density functions (PDFs) are given by

p�{X (f )}(a) =
1√

πσ2
X (f )

exp

(
− a2

σ2
X (f )

)

p�{X (f )}(b) =
1√

πσ2
X (f )

exp

(
− b2

σ2
X (f )

)
, (4.6)

where σ2
X (f ) = E{|X(f )|2} denotes the signal power in frequency bin f . The power σ2

X (f )
is equal to the noise power σ2

N (f ) during speech pauses and to σ2
S (f ) + σ2

N (f ) during speech
activity. For the joint probability density of real and imaginary parts we obtain for f �∈ {0, M/2}

p�{X (f )}, �{X (f )}(a, b) =
1

πσ2
X (f )

exp

(
−a2 + b2

σ2
X (f )

)
. (4.7)

As a consequence of the Gaussian model the magnitude B(f ) = |X(f )| and the magnitude-
squared DFT coefficients B2(f ) = |X(f )|2 follow a Rayleigh distribution

pB (f )(a) =

⎧⎪⎨⎪⎩
2a

σ2
X (f )

exp

(
− a2

σ2
X (f )

)
a ≥ 0

0 a < 0
(4.8)

and an exponential distribution

pB 2 (f )(a) =

⎧⎪⎨⎪⎩
1

σ2
X (f )

exp

(
− a

σ2
X (f )

)
a ≥ 0

0 a < 0
(4.9)

respectively.
The asymptotic distributions are a good approximation to the observed data when the

span of correlation of the signal is much smaller than the length M of the DFT. This is a
valid assumption for many noise signals. However, for speech signals, the duration of highly
correlated vowels is frequently larger than the transform length. In these cases, the observed
distribution is more closely approximated by super-Gaussian distributions. These distributions
are more peaky at small amplitudes than the Gaussian distribution and are heavy tailed. While
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sometimes specialized PDFs like the gamma and Laplace densities have been employed (see,
e.g., [32,48,49]), parametric distributions are in general more practical. For example, the
χ-distribution of speech amplitudes A(f ) = |S(f )| is given by

pA(f )(a) =
2

Γ(μ)

(
μ

σ2
S (f )

)μ

a2μ−1 exp

(
− μ

σ2
S (f )

a2

)
, (4.10)

where Γ(·) denotes the complete gamma function and μ is a “shape” parameter which may be
adjusted to fit the empirical data or to optimize estimation results.

4.3 Voice Activity Detection

To improve the robustness of the ASR, the detection of talk spurts is of critical importance.
This can be accomplished by the recognizer itself, for instance, by including a silence or
a background noise model. In this way, the recognizer can deal with roughly end-pointed
utterances that may still contain long noise-only segments. Carrying this idea to the extreme
means to do no end-pointing at all, as explored for instance in [68].

However, in many cases, it is more practical to evaluate the voice activity at the acoustic
front-end and to exclude noise-only segments from further processing. For this purpose, a
VAD is used, the design of which is not trivial if the noise is nonstationary or speech-like. As
for any detection device, its design has to balance missed hits with false alarms.

Voice activity detection is employed not only in the context of ASR but also in mobile
communications for the control of discontinuous transmission schemes (a.k.a. DTX, where
a mobile device sends a radio signal only when its user talks) and in many noise tracking
algorithms for speech enhancement. As a result, a large variety of different approaches are
available. Most of them are tailored to their specific types of application and might not be
ideally suited for robust ASR. For example, unlike the application in mobile communication,
the latency of the detector is less critical in ASR applications. Voice activity detection methods
for ASR and DTX have in common that the speech signal should be detected with high
probability. For ASR applications, some noise-only segments can be admitted, especially
when the recognizer includes a well-adapted background model.

4.3.1 VAD Design Principles

Most VAD approaches are composed of a feature extraction stage, a detector, and some form
of state tracking.

Feature Extraction

A variety of short-term features have been proposed for application in VAD devices. Early
approaches were mostly based on the short-time energy of the signal (e.g., [64]). Obviously,
these approaches are not robust to high levels of noise. Therefore, most state-of-the-art de-
tectors consider SNR in spectral subbands (see, e.g., [65,71]). In addition, some approaches
use features which are tailored to the properties of speech signals, such as linear prediction
coefficients or prediction residuals, the periodicity of the signal, or properties of the human
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auditory systems, see [55] for a range of such features. In any case, the features come along
with their specific statistical properties. Thus, the selection of features has a significant impact
on optimal detector designs.

In the Fourier domain, the distribution and dependencies of spectral coefficients have been
thoroughly investigated, some results are summarized in Section 4.2.2. Therefore, Fourier
coefficients serve as a good basis for designing VAD algorithms. For example, the statistical
properties of the instantaneous SNR which is also known as the a posteriori SNR,

γ(t, f ) =
|X(t, f )|2
σ2

N (t, f )
, (4.11)

where σ2
N (t, f ) denotes the noise power in signal frame t and frequency bin f , make the

a posteriori SNR a very suitable detection statistics. Under the assumption of a complex
Gaussian model for the Fourier coefficients X(t, f ) the a posteriori SNR γ(t, f ) follows an
exponential distribution (4.9). Then, during speech pause the mean and the variance of γ(t, f )
are equal to one [76, page 127]. Since the mean and the variance are significantly larger than
one for speech activity, the a posteriori SNR or an average thereof over frequency is well
suited to construct a threshold test for VAD (see, e.g., [70,76, page 426].

A significant challenge in the design of a VAD arises when the noise is nonstationary and
non-Gaussian. In this case, the statistics of the noise is more similar to the statistics of the
speech signal than for Gaussian noise. As a consequence, a more precise statistical model
is required. To differentiate between the two signals, it is advantageous to adapt a statistical
model to the observed noise. Breithaupt and Martin [10] present an approach that evaluates the
outlier statistics of the a posteriori SNR. An outlier is detected whenever γ(t, f ) > γth, where
a typical value is γth = 4. The PDF of the a posteriori SNR during speech pause is modeled
by a Rayleigh inverse Gaussian distribution

pγ (t,f )(a) =

√
2
π

α
3/2 δ exp(δ|α|) a

(δ2 + a2)3/4
K3/2

(α
√

δ2 + a2), (4.12)

where K3/2
(·) is a modified Bessel function of the second kind. The shape parameter α deter-

mines the heavy tailedness of the distribution of the a posteriori SNR during speech pause
and is used here to model the different noise types. The scale parameter δ is determined by the
variance. Both α and δ are estimated by the expectation-maximization algorithm presented in
[21] using the first few signal frames, which implicitly assumes that there is no speech activity
at the beginning of the signal. Using this model, the expected number of outliers during speech
pause can be computed. Since speech in the short-time Fourier domain is also heavy tailed and
typically has more outliers than noise, speech presence can be assumed when the observed
number of outliers is greater than the expected outlier count resulting from the above noise
model.

As an alternative to DFT-based measures, the wavelet coefficients of a signal may also serve
to distinguish speech from noise segments. The rationale lies in the fact that detail coefficients
of a multiresolution wavelet decomposition are mainly determined by speech, while exhibiting
smaller values for noise (see [46]). Therefore, comparing the energy ratios between appropriate
sets of wavelet coefficients can lead to an effective VAD when a suitable energy measure is
used (see, e.g., [59,69]).
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Detection Principles

In the previous section, a number of features, such as the a posteriori SNR γ(f ), have been
discussed. Having decided on the set of features c to be used, a statistically optimal decision can
now be reached, for instance, by the maximum likelihood (ML) or the maximum a posteriori
(MAP) principles.

Given a feature set c, the ML detector entails comparing the likelihood p(c(t)|M1) of
speech presence and the likelihood p(c(t)|M0) of speech absence, where M1 and M0 denote
the statistical model parameters of the features under speech presence and speech absence,
respectively.

Using these likelihood values, a decision for the hypothesis that speech is present,
H(1)(t), can be taken if p(c(t)|M1) > p(c(t)|M0), or equivalently, if p(c(t)|M 1 )

p(c(t)|M 0 ) > 1, and for

the nonspeech hypothesis H(0)(t) otherwise. The MAP detector uses the posterior den-
sities p(M1 |c(t)) and p(M0 |c(t)), which leads to the MAP criterion for speech presence
p(c(t)|M1)P (M1) > p(c(t)|M0)P (M0).

Obviously, for equal a priori probabilities of speech presence and absence, P (M1) and
P (M0), respectively, the ML and MAP estimators lead to the same result. In general, the MAP
estimator will test whether p(c(t)|M 1 )

p(c(t)|M 0 ) >
P (M 0 )
P (M 1 ) .

For K independent feature vector components ck (t), and after replacing the threshold of
P (M 0 )
P (M 1 ) by the parameter exp(η′), the MAP detector corresponds to the decision rule

Λ(t) =
K−1∏
k=0

p(ck (t)|M1)
p(ck (t)|M0)

def =
K−1∏
k=0

Λk (t)
H(0)(t)

<>

H(1)(t)
eη ′

. (4.13)

Rather than thresholding the product of all likelihood ratios Λk (t) directly, we may also
work with log

∏
k (Λk ) =

∑
k

log(Λk ), which is often preferable as many useful densities belong

to the exponential family. Obviously, this is equivalent to a test on the mean of log-likelihood
ratios

log (Λ(t))
1
K =

1
K

K−1∑
k=0

log(Λk (t))
H(0)(t)

<>

H(1)(t)

η′

K
= η. (4.14)

In [70], the likelihoods of speech presence and speech absence are based on the distribution
(4.7) of the complex Fourier coefficients. In this case, Λk (t) can be approximated by the
a posteriori SNRs of all K = M/2 frequency bands. Other features are used in conjunction
with the same likelihood ratio test in [31,73]. In [73], it is suggested to use only harmonic
frequency components as features for this test if the current frame is voiced, which reduces
speech clipping under low-SNR conditions. More elaborate decision functions using temporal
characteristics of the power envelope are introduced in [55,66], and a likelihood test using
multiple signal frames is described in [67].

Smoothing Detector Decisions Using a Finite State Machine

Short-time decisions may exhibit a lot of fluctuations. These may be due to short speech pauses
between syllables and words but also to wrong decisions. Especially in low-SNR conditions,
such decision errors may lead to significant clipping of talk spurts. A simple method to cope
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Figure 4.3 A five-state Markov model for smoothing instantaneous voice activity decisions H(t). The
labels of the states show, whether the current frame is classified as speech (S) or nonspeech (NS). T1
and T2 denote the minimum length of speech segments and the hangover time, respectively. Δt is the
time that has passed since a state has been entered [10].

with clipping at the end of words is to include a hangover procedure which holds the speech
active decision for a period of 100 ms or more. Offline methods can also add a number
of hangover frames to the beginnings of detected utterances (see [64]), and more elaborate
schemes use a full-fledged Markov model to take the temporal dynamics of the speech signal
into account. An example for the latter strategy of smoothing the frame decisions for the
hypothesis noise, H(0)(t), or speech-plus-noise, H(1)(t), is shown in Figure 4.3. Figure 4.4
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Figure 4.4 VAD decisions based on the comparison of the averaged a posteriori SNR (4.11) with a
threshold of 1.5 for the signals shown in Figure 4.1. The raw decisions are smoothed via the five-state
Markov model shown in Figure 4.3. The minimum length of speech segments and the hangover time are
set to T1 = 0.1s and T2 = 0.2s. A high level of the bold line indicates speech activity.
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shows an example of typical VAD performance for the speech signals shown in Figure 4.1. In
the first step, a comparison of the averaged a posteriori SNR with a fixed threshold delivers
initial decisions which are then smoothed using the five-state Markov model. For the most part
the talk spurt is nicely detected. However, some limitations are also visible: in white noise,
the initial fricative /s/ is not fully detected while in babble noise, speech-like noise segments
result in an increased number of false detections.

An alternative to such explicit hangover mechanisms is suggested by Ramı́rez et al. [67].
Here, the idea of multiple hypothesis testing is considered, where complex speech/nonspeech
hypotheses are defined regarding a number of observation windows simultaneously. A MAP
decision over these multiframe hypotheses is shown to be helpful for speech/nonspeech dis-
crimination under severe noise conditions.

Most recently, another statistical model has also been applied to improve VAD decisions in
nonstationary noise. This model, a partially observable Markov decision process or POMDP,
is also quickly adaptable for short-time sporadic noises (see [58]). For this purpose, the system
includes prior knowledge on temporal and feature-space noise characteristics in an elaborate
state-space model, including such states as “breath” or “click” explicitly. On the basis of this
model, the VAD decisions are reached by a so-termed agent, which not only realizes the frame-
by-frame decision function, but has additional actions it can take to improve discriminance
for critical frames, such as that of computing additional features when necessary. Decisions
are reached by optimizing a reward function, which penalizes wrong decisions but also time
delays, thus attempting to attain the best trade-off between decision quality and efficiency.

4.3.2 Evaluation of VAD Performance

In the context of ASR, the final target consists in the minimization of recognition error rates.
However, it can be useful to evaluate the stand-alone performance of VAD algorithms. For
this purpose, the receiver operating characteristic (ROC) (see [20]), is a useful concept. The
ROC plots the detection probability P (H(1)(t)|M1) as a function of the false alarm probability
P (H(1)(t)|M0). It illustrates the effect of a tuning parameter such as a decision threshold
and thus the tradeoff inherent to all detection devices. As shown in Figure 4.5, 100% speech
detection can be achieved if the detector indicates speech at all times. However, this goes
necessarily along with a 100% false alarm probability. At the other extreme, all false alarms
can be avoided, when the detector does not indicate speech at all, which is also not a useful
operating point. The art of VAD design thus lies in finding a detection principle which yields
a steep initial slope of the ROC, and to set an operating point which satisfies the requirements
of the application.

4.3.3 Evaluation in the Context of ASR

Automatic speech recognition poses specific requirements for VAD, which go beyond those
measurable by means of static ROC curves. Most notably, it is important that low-energy
portions of speech not be discarded, not even in the presence of highly nonstationary noise.
This is even more significant for low-energy frames within words, so that the state machine
and the hangover mechanism are of special importance for ASR applications.
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Figure 4.5 Receiver operating characteristic (ROC) for several detection algorithms. The ROC rep-
resents the P (H(1)(t)|speech is present) versus P (H(1)(t)|speech is absent) tradeoff. The closer the
ROC approaches the upper left corner the better the detector.

But while these requirements may make VAD more challenging, at the same time, ASR
systems can also be used to inform the VAD and to thus arrive at better results than may be
possible in a stand-alone application. This is discussed in more detail below:

� The VAD essentially aims at distinguishing the feature distribution of noise from that of
noisy speech. Any ASR system contains a clean speech model with a high level of detail.
This speech model can well form the basis of a noisy speech model, either by construction,
or by retraining or adapting the model to the noisy speech characteristics in the operating
environment of the system.

� ASR already contains a decision logic designed to classify temporal sequences of phonemes.
When the ASR is equipped with a model for noise alone, this model can be included in the
recognition process, thus performing VAD as part of the operation of ASR. However, the
success of such a strategy depends strongly on the quality of the noise model and while it
may be promising for ASR trained under matched conditions, an ASR trained on clean data
will profit greatly from an added VAD under noisy conditions.

As can be seen from these considerations, it is important to measure the performance of a
VAD not only in terms of its classification accuracy or ROC but also by means of the finally
obtainable recognition rate. Since there is a wide variety of tasks and experimental setups, in
the following, we will present some exemplary results and attempt to draw conclusions for
more general setups as well.

Effects of Improving Static Classification Performance

For improving static performance, all approaches that are described in Section 4.3.1 for feature
extraction and detection apply.
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As an example for the effects of an improved feature extraction, [41] compares the results
of wavelet-coefficient-based VAD with that of the AMR-WB (Adaptive Multirate-Wide band)
VAD specified in [1], which uses standard spectrum-based features in addition to a correlation-
based periodicity measure. Depending on the noise type and characteristics, it can be seen
in [41] that the improved, wavelet-based VAD features can lead to improved VAD decisions
under highly noisy conditions, both in terms of classification accuracy and ASR recognition
rate.

However, while great gains in ASR performance are due to a suitable VAD under mismatched
conditions, the effect of an external VAD is not pronounced once the ASR is trained on the
specific noise from the test scenario.

Effects of Improving the State Machine and Decision Logic

For stationary noise, a simple smoothing strategy for a slowly adaptive statistical noise
model may be sufficient. In contrast, for highly nonstationary noise conditions, it is nec-
essary to find ways of rapidly adapting the internal noise or noisy-speech models to new
situations.

This leads to the idea of using switching dynamic models, as described, for example, by
Fujimoto and Ishizuka [30]. In their work, a model of clean and a model of noisy speech,
realized in the form of Gaussian mixture models (GMM), are decoded with the help of a
switching Kalman filter. For this purpose, a switching state space model is defined, allowing
transitions from a “noise” to a “speech plus noise” state, and vice versa, at any time frame.
The computations are then carried out in two iterated steps:

1. A state estimation, which is in effect the VAD decision.
2. The noise update, which is carried out using the Kalman filtering update formulas.

In this approach, a clean speech model is given in the form of a GMM, pretrained on
5050 utterances which were parameterized as 24th-order log-Mel spectra. For this method,
the evaluation was carried out on a database of Japanese digit sequences. The results show a
significant reduction of error rates relative to the baseline of using no VAD at all. The greatest
factor here for improved speech-recognition accuracies was found to be the quality of the
speech model [30].

However, all reported results here are obtained under mismatched conditions. In contrast,
[67], also using connected digits recognition as an example, evaluates both scenarios—matched
and mismatched conditions. As already seen above, having an adaptive decision strategy with
an appropriate hangover mechanism to allow for time varying noise is again a significant
advantage for ASR performance.

In contrast, under matched conditions the ASR performance reported in [67] is quite similar
for many of the presented strategies, again illustrating the effect of a precise internal noise
model in the ASR system. This should not mislead one into disregarding the design of
VAD for matched conditions, though—in this paper as in many other publications, the VAD
recommended in G.729 for DTX-purposes [40], gives very low word accuracies in conjunction
with frame dropping. This effect may well be hypothesized to correspond to its high rate of
false rejections, that is to its erroneous classification of a significant percentage of speech
frames as noise.
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Conditions for Using Implicit VAD

When the ASR system contains a silence model, as it is almost always true for ASR beyond
isolated command word recognition, the VAD can be carried out as a part of the ASR search.

However, the quality of such systems is vitally dependent on the quality of the nonspeech
model that the ASR system uses. This can be seen in [41], where the performance of ASR
after multicondition training is hardly influenced by the quality of the VAD, whereas the
performance of an ASR after clean training is shown to suffer significantly from bad VAD
decisions in the front end. Thus, an internal silence model adaptation of the ASR can be seen
to be of great importance when implicit VAD is desired, and adaptation strategies such as
those described in Chapter 11 may be considered for the purpose.

If adaptation is possible, or if training and deployment take place in statistically very
similar noise backgrounds, a simple VAD is generally sufficient, or VAD may be carried out
completely as part of the ASR search with no noticeable loss in accuracy (see [41,68]). The
only requirement that is truly significant in such cases is that the employed VAD not have a
high miss rate, as this will degrade ASR performance in all cases.

4.4 Noise Power Spectrum Estimation

Most noise-reduction algorithms and model compensation methods (see Chapter 12) require
an estimate of the background noise power and in most cases, the noise power needs to be
estimated in frequency subbands corresponding to the spectral analysis scheme of the noise-
reduction or feature-extraction algorithm. In contrast to applications in mobile telephony, the
latency of the noise-reduction processing in ASR is not of critical concern. In most systems,
short utterances are processed as a whole and the noise power spectral density of a particular
utterance is obtained from the first few signal frames which are assumed to be noise only.
This simple off-line processing approach is certainly suitable for short utterances and fairly
stationary noise. However, in general the noise power needs to be tracked over time.

To obtain estimates of the noise power or average noise magnitudes, voice activity decisions
are not explicitly required. Nevertheless, many approaches make use of a VAD and acquire
the noise power during periods of speech absence. However, the design of a reliable VAD
for low SNR and nonstationary noise conditions is a difficult task. Therefore, many widely
used methods for noise power estimation and power tracking do not rely on binary decisions
of a VAD but use a soft-decision noise power update scheme, the minimum power tracking
principle, or a combination of these. These methods have the advantage that the noise power
estimate can be updated to some extent also during speech activity and are therefore more
appropriate when the noise is nonstationary.

A critical issue of any noise power spectral density estimator is the balance of estimation
errors and tracking speed. In general, a fast-tracking algorithm is more susceptible to random
fluctuations in the observed noisy signal. To cope with these fluctuations, some smoothing
is necessary. Therefore, we will begin with a brief review of smoothing methods before we
discuss the tracking methods in more detail.

4.4.1 Smoothing Techniques

As the noise waveform during voice activity is random and unknown, the spectral magnitude
and the phase of the noise components also exhibit random fluctuations. Therefore, to reduce
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the estimation error on average, the noise power estimator has to deliver a smoothed version
of the noise components in the observed signal. In what follows, we will briefly review several
options for smoothing periodograms |X(t − i, f)|2 of the noisy signal. Obviously, during
speech pause these will approximate the noise power spectral density.

The Moving Average

Given a succession of periodograms |X(t − i, f)|2 , i = 0 . . . I − 1, and no speech activity, the
noise power spectral density may be estimated via a moving average

P X (t, f ) =
1
I

I−1∑
i=0

|X(t − i, f)|2 (4.15)

over I frames as proposed in [77]. When successive DFT spectra X(t − i, f) are statistically
independent and complex Gaussian distributed, the resulting power estimate P X (t, f ) follows
a χ2-distribution with 2I degrees of freedom. A disadvantage of the moving average method
is the necessity to store the past I − 1 signal frames. Moving average smoothing can also be
interpreted as a convolution of the temporal succession of periodograms with a rectangular
kernel function.

The above smoothing method cannot be applied when only a single frame of spectral data
is given, for example at the beginning of a speech utterance. Then, smoothing over frequency
is the method of choice. In this case, the single periodogram may be convolved with a non-
negative spectral kernel function κ(f ), or, equivalently, after an inverse Fourier transform the
corresponding autocorrelation function may be multiplied with a window function. Therefore,
the Fourier transform of this window function is the spectral kernel. When a triangular or a
Parzen window is used in the autocorrelation domain, the corresponding spectral kernel is non-
negative. Then, its convolution with the sequence of periodgrams will always be nonnegative,
a highly desirable property of power estimates.

In a variation of this scheme spectral kernel functions are used which vary in their spectral
width and / or vary as a function of time. In the simplest case of a rectangular spectral kernel

κ(f ) =

{
1

2L(t,f )+1 f = −L(t, f ), . . . , L(t, f )

0 else
(4.16)

the smoothing procedure is described as

P̃X (t, f ) =
L(t,f )∑

q=−L(t,f )

κ(q)|X(t, q)|2 =
1

2L(t, f ) + 1

f +L(t,f )∑
q=f−L(t,f )

|X(t, q)|2 , (4.17)

where 2L(t, f ) + 1 indicates the number of bins which are averaged at frame index t and fre-
quency bin index f . Thus, the smoothing process may be adapted to the speech or noise signal,
as proposed, for example in [27] for the suppression of undesirable fluctuations (“musical
noise”, see Section 4.5). For complex Gaussian data the distribution of P̃X (t, f ) may again
be approximated by a χ2-PDF. However, the correlation of adjacent bins, which depends on
the spectral analysis window wA [�], needs to be taken into account. The resulting degrees of
freedom are discussed in [54].
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First-Order Recursive Smoothing

First-order recursive smoothing

PX (t, f ) = αPX (t − 1, f ) + (1 − α)|X(t, f )|2 (4.18)

is more memory efficient than the moving average as it needs to store only the previous average
PX (t − 1, f ). The smoothed data can be also written in terms of an infinite sum

PX (t, f ) = (1 − α)
∞∑

i=0

αi |X(t − i, f)|2 . (4.19)

It follows that recent data contributes most to the average, as the implicit exponential weighting
reduces the influence of past data. The probability distribution of the recursive average may
be approximated by a χ2-distribution where for statistically independent complex Gaussian
DFT spectra the number of degrees of freedom is given by 2(1 + α)/(1 − α). However, when
the χ2-distribution is used as an approximation, the tails of the true distribution may not be
well represented (see [51]).

4.4.2 Histogram and GMM Noise Estimation Methods

The standard smoothing methods such as first-order recursive smoothing require explicit
information about the presence of speech, and therefore a VAD and / or an intelligent control
of the smoothing parameter α. Other methods, such as the minimum tracking methods (see
Section 4.4.3), are more robust in this sense but will require some form of estimation error
compensation. In any case, it is beneficial to acquire knowledge about the statistics of the
observed signal and to derive VAD parameters (see Section 4.3.1) or noise power estimates
based on these statistics. The latter approach has been followed in [38] where the histogram of
the noisy magnitudes is tracked, or in [74] which fits a GMM to the observed noisy data. For
SNR above 0 dB the histogram of the noisy data clearly exhibits a bimodal structure where the
peak at lower amplitudes corresponds to noise and the peak at higher amplitudes corresponds
to speech-plus-noise components. In [74], a two-component GMM is fitted to the observed
log-magnitude data. Then, a speech-versus-noise decision threshold is derived from the point
of equal probabilities of the two component densities. Based on the resulting decisions, the
noise power can be estimated using one of the above smoothing techniques. In the approach
proposed in [38] a noise estimate is derived from a histogram of magnitude DFT coefficients
which belong to noise-only segments. The histogram is acquired over a period of 400 ms and
the noise magnitude corresponding to the peak of the histogram is extracted. Then, to attenuate
outliers, successive peaks are smoothed over time using a first-order recursive system. The
acquisition of the noise histogram is stopped whenever the observed noisy DFT magnitudes
are larger than the product of the last noise estimate by a factor in the range of 1.5–2.5.

4.4.3 Minimum Statistics Noise Power Estimation

The minimum statistics noise power estimator has been originally proposed for full-band
noise power estimation in [52] and subsequently for estimating the noise power in frequency
subbands in [53]. It does not rely on binary voice activity decisions. The basic principle
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Figure 4.6 The minimum statistics noise power estimation approach [47]. Its main ingredients are a
minimum search on short segments of typically 200 ms, a bias compensation, a minimum search over
longer segments of 1–2 s, a fast noise power update mechanism, and a variance estimator. z−1 denotes
a delay element.

is detailed in the block diagram in Figure 4.6. The main idea is to search for the minima
of recursively smoothed periodograms within a time window of 1.5–2 s. Toward this end,
the “adaptive recursive smoothing” block in Figure 4.6 implements a first-order recursive,
temporal smoothing (see Section 4.4.1) where the smoothing parameter α is controlled by a
smoothed a posteriori SNR and the global long-term SNR (summarized in block “compute
adaptive smoothing parameter”). Little smoothing is applied during speech activity and much
smoothing during speech absence. As a result, the variance of the smoothed signal power
is high during speech activity and low during speech absence. Consecutive power estimates
are compiled into a subframe of about 200 ms and the minimum within these subframes is
determined. Since the power of noisy speech drops to the level of the noise during speech
pauses and in between words and syllables, the observed minimum may serve as an initial noise
power estimate. However, the fluctuations in the power due to nonstationary noise and random
variations around the mean may render the minimum substantially smaller than the mean value.
This bias will depend on the amount of smoothing applied to the periodograms. Therefore, a
compensation of this systematic error (in block “compensation of bias”) is necessary. In the
next block, the minimum over an extended duration of several subframes, corresponding to
1.5–2 s, is searched. Further details, such as the online variance estimation and a fast update
mechanism which acts on the subframe level can be found in [47]. The minimum tracking
method has also become an ingredient to many other soft-decision tracking approaches such
as the improved minimum-controlled recursive averaging (IMCRA) method (see [16]).

4.4.4 MMSE Noise Power Estimation

The minimum statistics method can cope with stationary and mildly nonstationary noise.
It cannot follow noise power variations on a time scale much below 2 s. Therefore, noise-
tracking methods have been developed which respond faster to nonstationary noise. However,
improving the tracking speed may also lead to more speech leakage, that is the noise estimate
will also contain some speech components.
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Figure 4.7 The minimum mean-square error (MMSE) noise estimation approach [37]. It comprises an
MMSE noise power estimator, a bias compensation, and a signal-to-noise ratio (SNR) and clean speech
estimator. z−1 denotes a delay element.

Some of the recently developed methods are based on short-time estimation principles in
the DFT domain as explained in Section 4.5.5. For example, the methods proposed by Yu [81]
and by Hendriks et al. [37] employ an estimator of the noise periodogram |N (f )|2 under a
Gaussian model and minimize the mean-square error (MMSE) E{( ̂|N (f )|2 − |N (f )|2)2}, the
solution of which is the conditional expectation

̂|N (f )|2 = E
{
|N (f )|2 |X(f )

}
. (4.20)

This estimator depends on the a priori SNR, the estimates of which are typically biased.
Thus, to derive an exact noise power estimate the bias needs to be compensated in an accurate
fashion. The main components of this algorithm are shown in Figure 4.7. In addition to the
optimal noise power estimator the method employs a simple minimum tracking mechanism
and takes the maximum of the two estimates in order to avoid estimates that are too small. In a
recent evaluation, the approach of [37] has been shown to outperform many other approaches
on highly nonstationary noise (see [72]). Figure 4.8 depicts the result of the MMSE noise
estimation process applied to the two noisy signals in Figure 4.1. The graphs show the signal
power as well as the estimated noise floor versus time. For the stationary white noise (top
graph) the noise power estimate matches the power of the noise very well. For the speech
signal disturbed by babble noise, we find that the noise power is slightly underestimated. This
is, in fact, desirable as the noise power is fluctuating and a noise-power overestimation would
lead to speech signal distortions.

4.4.5 Estimation of the A Priori Signal-to-Noise Ratio

Because of its inherent normalization, it is often more practical to use the SNR instead of
the noise power. In fact, most noise-reduction approaches are formulated in terms of an
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Figure 4.8 Estimated signal power and average noise floor for the signal disturbed by white Gaussian
noise (top) and for the signal disturbed by babble noise (bottom) as shown in Figure 4.1. The noise power
is averaged over all frequencies and estimated using the MMSE approach of Hendriks et al. [37].

a posteriori SNR as introduced in Equation (4.11) and an a priori SNR

ξ(t, f ) =
σ2

S (t, f )
σ2

N (t, f )
, (4.21)

where σ2
N (t, f ) and σ2

S (t, f ) denote the noise power and speech power in frame t and frequency
bin f . While the a posteriori SNR is straightforward to compute, the a priori SNR is not directly
accessible and must be estimated. Two successful methods are outlined below.

The Decision-Directed Approach

The decision-directed approach for a priori SNR estimation as introduced in [23] uses an
estimate of the speech spectral components of the previous frame t − 1 in conjunction with the
current observation of frame t. Both contributions to the estimated a priori SNR ξ̂DD(t, f ) are
formulated in terms of signal-to-noise ratios and are now functions of frequency f and frame
index t. They are weighted with αd and (1 − αd), respectively,

ξ̂DD(t, f ) = αd
G(t − 1, f )2 |X(t − 1, f )|2

σ2
N (t, f )

+ (1 − αd) max (0, γ(t, f ) − 1) , (4.22)

where G(t − 1, f ) denotes a spectral gain function, see Section 4.5, and γ(t, f ) the a posteriori
SNR as before. Note, that γ(t, f ) − 1 is also the maximum-likelihood (ML) estimate of ξ(t, f )
for a χ2-distributed a posteriori SNR as shown in [33]. αd controls the tradeoff between a fast
reaction to speech transients and a low error variance during steady state. As a fast reaction to
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transient speech sounds also emphasizes fluctuations in the residual noise, the best setting for
the smoothing parameter is not easy to determine and may depend on the application, see [11]
for a thorough analysis. Several improvements to the basic decision-directed approach have
been reported (e.g., in [22,60]).

Temporal Cepstrum Smoothing

In [13], an approach for the a priori SNR estimation has been proposed which is based on a
temporal smoothing of the cepstrum of the ML estimate of ξ(t, f ). The cepstrum is well suited
to represent speech sounds and has been shown to be a highly effective domain for smoothing
noisy speech spectra and related quantities. The method has been shown to outperform the
decision-directed approach [13].

The basic idea of temporal cepstrum smoothing is to remove random fluctuations and outliers
in the spectrum while preserving the salient speech features. This requires the identification
of the cepstral bins which are primarily related to speech. In general, these are the low-order
cepstral coefficients describing the spectral envelope and the cepstral peak corresponding to
the fundamental frequency during voiced speech frames. The latter needs to be tracked in
an adaptive fashion. Then, using a first-order recursive smoothing, the cepstral components
not corresponding to these speech features can be smoothed over time. In this way random
fluctuations in the spectrum are significantly reduced. Note that this method can also be applied
to arbitrary spectral gain functions (see [12]).

4.5 Adaptive Filters for Signal Enhancement

While the VAD enables the end pointing and dropping of noise-only frames, the enhancement
of speech segments requires an adaptive filter which, in most cases, is based on noise power
and SNR estimates. The most prominent techniques are briefly discussed below. All of these
methods can be cast in a spectral modification framework which achieves noise reduction
through the application of a spectral gain function. Extended discussions of these methods are
found, for example in [19,50,76].

4.5.1 Spectral Subtraction

The spectral subtraction technique represents one of the first successful noise-reduction ap-
proaches in speech signal processing. It was pioneered by Boll [7], Berouti et al. [6], Preuss
[63], and others and is based on the idea of subtracting the noise from the noisy signal in
the autocorrelation or power spectral density domains. In its simplest form it uses a VAD and
first-order recursive noise power and signal power estimates

PX (t, f ) = αX PX (t − 1, f ) + (1 − αX )|X(t, f )|2 (4.23)

PN (t, f ) = αN PN (t − 1, f ) + (1 − αN )|N (t, f )|2 , (4.24)

where the smoothing parameters αX and αN are typically in the range of 0 ≤ αX ≤ 0.5 and
0.5 ≤ αN < 1. PX (t, f ) and PN (t, f ) denote the estimates of the power of noisy speech and of
noise, respectively. As these short-time estimates are subject to random fluctuations, a simple
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subtraction of estimated powers may yield negative results. Thus, a limitation is necessary,
and an estimate of the clean speech power may be obtained via

̂|S(t, f )|2 = max (PX (t, f ) − PN (t, f ), 0)

= PX (t, f ) max
(

1 − PN (t, f )
PX (t, f )

, 0
)

= PX (t, f )|GSS(t, f )|2 , (4.25)

where the max(·, ·) function guarantees nonnegative results. Equation (4.25) links the estimated
power spectra at the input and the output of a noise-reduction filter. Therefore, the spectral
subtraction method may be interpreted in terms of a time-variant linear filter with magnitude
response

GSS(t, f ) =

√
max

(
1 − PN (t, f )

PX (t, f )
, 0
)

. (4.26)

Since we subtract in the power spectral density domain, this approach is called power sub-
traction. Many variations of this basic principle have been proposed, such as the magnitude
subtraction

̂|S(t, f )| = max
(√

PX (t, f ) −
√

PN (t, f ), 0
)

=
√

PX (t, f ) max

(
1 −

√
PN (t, f )√
PX (t, f )

, 0

)
=
√

PX (t, f ) |GMS(t, f )| (4.27)

or a generalized form

̂|S(t, f )| =
√

PX (t, f )

[
max

(
1 −

(
PN (t, f )
PX (t, f )

)β

, 0

)]α

, (4.28)

where the parameters α and β control the shape of the spectral gain function. They can be kept
either fixed or adapted to the characteristics of the speech and the noise signals (see, i.e. [35]).
Obviously, the general subtraction rule includes the power subtraction (α = 0.5 and β = 1),
the magnitude subtraction (α = 1 and β = 0.5), as well as an approximation to the Wiener
gain (α = 1 and β = 1). In general, the subtraction parameters control the tradeoff between
a maximum amount of noise reduction, random fluctuations in the residual noise and target
signal distortions. For a more thorough discussion, we refer the reader to [18,39,75].

Spectral subtraction techniques as discussed above typically achieve a fairly good speech
quality. However, the residual noise after processing is characterized by many spectral outliers
(see [75]). These outliers appear randomly in all spectral bins and excite short sinusoidal
tones during the synthesis process. In listening experiments, these random fluctuations are
perceived as rapid fluctuations also known as musical noise or musical tones. As a result, the
overall quality of the processed signal may not be acceptable. The impact of random outliers
on ASR performance is less clear. If the ASR is trained on the processed signal, it can be
assumed that they will not significantly degrade the performance. In other cases, they might
lead to a mismatch with the silence or background model as they increase the variance of the
processed signal and of the features derived thereof. In general, it is advisable to avoid musical
tones.
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In the context of spectral subtraction, two simple techniques have been proposed to reduce
the variance of the processed spectral components during speech absence. The first is the
introduction of an oversubtraction or noise overestimation factor. This factor emphasizes the
estimated noise power by a factor in the range of 1–3 and thus leads to a significant suppression
of spectral components in low-SNR bins. To a lesser extent, it also leads to a degradation of
high-SNR bins and thus needs to be applied with care. Therefore, if the voice quality is of great
concern, noise overestimation should be avoided. The second technique which is frequently
applied in conjunction with noise overestimation is the introduction of a spectral floor. The
spectral floor is defined in proportion to the input signal power, it can be set, for example to a
value of 10 dB below the spectral power of the noisy input signal. Thus, Equation (4.25) may
be modified into

̂|S(t, f )|2 = max (PX (t, f ) − PN (t, f ), 0.1PX (t, f )) . (4.29)

This measure reduces the variance of the processed residual noise but also limits the maximum
noise reduction. As a result the musical tones are less audible and the residual noise appears
to be more natural.

4.5.2 Nonlinear Spectral Subtraction

The limitations of the noise overestimation with spectral floor approach as described above
has triggered the development of a plethora of heuristic schemes which exercise some adaptive
control on the noise overestimation factor and/or the spectral floor. A highly successful im-
plementation of such schemes, known as nonlinear spectral subtraction (NSS), was proposed
for robust speech recognition in [43,44]. The NSS employs a frequency-dependent nonlinear
mapping φ(X(t, f ), α(t, f ), N (t, f )) in the subtraction gain

GNSS(t, f ) = 1 − φ(X(t, f ), α(t, f ), N (t, f ))
X(t, f )

, (4.30)

where the temporal averages of speech and noise magnitude X(t, f ) and N (t, f ) are computed,
similarly to the temporal power averages in Equations (4.23) and (4.24), as

X(t, f ) = αX X(t − 1, f ) + (1 − αX )|X(t, f )| (4.31)

N (t, f ) = αN N (t − 1, f ) + (1 − αN )|N (t, f )| (4.32)

and α(t, f ) is the overestimated noise magnitude. The overestimated noise magnitude α(t, f )
is computed during speech pauses as the maximum of magnitudes within temporal intervals
of about 0.65 s, corresponding to about 40 signal frames at a rate of 62.5 frames per second.
Several nonlinear mapping functions φ have been proposed (see [44]). The following was
found to be useful for robust ASR

φ(X(t, f ), α(t, f ), N (t, f )) =
α(t, f )

1 + ρ
X (t,f )
N (t,f )

, (4.33)

where ρ is a scaling factor. The nonlinear functions follow the general idea of applying a small
overestimation factor in high SNR regions and a large factor in low SNR regions. Recognition
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experiments and substantial improvements using the NSS technique are reported for both 8
and 16 kHz data (see [45]).

4.5.3 Wiener Filtering

The Wiener filter is the MMSE estimator of the desired signal, here, the clean speech sig-
nal, subject to a linear constraint. Note that the optimal linear estimator is identical to the
unconstrained optimal filter for Gaussian distributed input signals.

The Wiener filter was originally formulated in the time domain and assumes wide-sense
stationary input signals [78]. When the output signal, the clean speech estimate, is computed
via an infinite-impulse response (IIR) filter

ŝ[�] =
∞∑

κ=−∞
h[κ] x[� − κ] (4.34)

the coefficients hW [κ] of the Wiener filter are the solution to

hW [κ] = argmin
h [κ ]

E

⎧⎨⎩
(

s[�] −
∞∑

κ=−∞
h[κ] x[� − κ]

)2
⎫⎬⎭ . (4.35)

When the speech and the noise signals are statistically independent and additive, the fre-
quency response of the optimal filter hW [κ] is given (see, e.g., [76, Chapter 11]), by

HW (ejΩ) =
Φss(ejΩ)

Φss(ejΩ) + Φnn (ejΩ)
, (4.36)

where Φss(ejΩ) and Φnn (ejΩ) are the power spectral densities of speech and noise, respectively.
Then, the filter coefficients are obtained by an inverse Fourier transform. The frequency
response of the Wiener filter allows a nice intuitive interpretation: When the power of the
speech signal at a given frequency is much larger than the power of the noise signal, the
frequency response is close to one. When the noise power is much larger than the speech
power, the frequency response is close to zero. In this way, the Wiener filter suppresses signal
components which are dominated by the noise.

Inspired by the above frequency domain solution of the IIR Wiener filter, a corresponding
“Wiener” gain function may be also computed for DFT coefficients. In this case, only a single
signal frame is considered and the mean-square error is minimized according to

GW (t, f ) = argmin
G(t,f )

E
{∣∣∣S(t, f ) − G(t, f )X(t, f )

∣∣∣2} (4.37)

to yield

GW (t, f ) =
σ2

S (t, f )
σ2

S (t, f ) + σ2
N (t, f )

=
ξ(t, f )

1 + ξ(t, f )
. (4.38)

Thus, the Wiener gain function depends solely on the a priori SNR, for the estimation of
which the considerations in Section 4.4.5 apply.
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Figure 4.9 Block diagram of the ETSI AFE as described in [28].

4.5.4 The ETSI Advanced Front End

The ETSI advanced front end (AFE) [28], was specified for distributed ASR in 2002, and it
has since proven its suitability for ASR under very noisy conditions (e.g., in [57] and [80]).
The specification is separated into two sections: terminal-side and server-side processing.

On the terminal side, it is based on a standard approach for extracting mel-frequency
cepstrum coefficients (MFCCs), but includes two additional components, namely, a two-stage
mel-warped Wiener-like filter for signal preprocessing and a blind equalization of cepstrum
features (which is similar in principle to a cepstral mean normalization). For noise power
estimation the AFE uses a VAD based on an SNR threshold and a hangover mechanism.
Furthermore, a decision-directed approach is employed for the estimation of the SNR, the
square-root of which is then used in the gain function.

In addition, a low-bit-rate coder for speech transmission over wireless networks and a
server-side bitstream decoder and feature processor are also specified, with the server-side
feature processor being responsible for the calculation of the energy feature and of first and
second derivatives. An overview of the AFE feature extraction stage is shown in Figure 4.9.

4.5.5 Nonlinear MMSE Estimators

Flexibility beyond the above solutions is introduced if the noise-reduction problem is con-
sidered in an estimation-theoretic framework. The estimation problem may be formulated for
either the complex DFT coefficients S(t, f ) or their magnitude A(t, f ). Additional degrees
of freedom are available since specific non-Gaussian probability distributions for speech and
noise coefficients may be assumed and also functions c(A(t, f )) of the DFT magnitude A(t, f )
may be defined as the estimation target. Thus, a better fit to the observed probability distribu-
tions is achieved and perceptually more meaningful error measures can be introduced. In what
follows, we will discuss the most prominent instantiations of this concept and conclude with a
flexible parametric amplitude estimation approach. Again, we will drop the frame index t for
improved readability.

Amplitude Estimation: The Gaussian Case

The MMSE short-time spectral amplitude (MMSE-STSA) estimator minimizes the mean
quadratic error in the spectral amplitudes E{(A(f ) − Â(f ))2}. The optimal estimator [23] can
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be expressed in terms of the complete Γ-function and the confluent hypergeometric function
1F1(a, c; x) [34, Theorem 9.210.1]

Â(f ) = E {A(f )|X(f )} =

√
v(f )

γ(f )
Γ(1.5) 1F1(−0.5, 1;−v(f ))|X(f )|, (4.39)

where v(f ) is defined as

v(f ) =
ξ(f )

1 + ξ(f )
γ(f ). (4.40)

Therefore, using the phase of the noisy DFT coefficient, we have

Ŝ(f ) =

√
v(f )

γ(f )
Γ(1.5)1F1(−0.5, 1;−v(f ))X(f ) = GSTSAX(f ), (4.41)

where GSTSA denotes the corresponding spectral gain function.

MMSE Magnitude-Squared Estimation

As a second example, we consider the estimation of c(A(f )) = A(f )2 . The MMSE estimator
then minimizes E{(A(f )2 − Â(f )2)2}. When the probability distribution of A(f )2 is specified
in terms of the PDFs for the real and imaginary parts, it is convenient to decompose the optimal
estimator into the real and the imaginary parts

Â(f )2 = E
{

A(f )2 |X(f )
}

=
∫ ∞

−∞

∫ ∞

−∞
(�{S(f )}2 + �{S(f )}2)

· p (�{S(f )} ,�{S(f )} | � {X(f )} ,�{X(f )}) d�{S(f )} d�{S(f )} .

For Gaussian real and imaginary parts of speech and noise, the solution (see [2]) is related to
the Wiener filter and is given by

Â(f )2 =

(
σ2

S (f )
σ2

S (f ) + σ2
N (f )

)2

|X(f )|2 +
σ2

S (f )σ2
N (f )

σ2
S (f ) + σ2

N (f )
. (4.42)

Solutions for non-Gaussian statistical models are described in [8].

MMSE Log-Spectral Amplitude Estimation

Small speech signal amplitudes are very important for speech intelligibility. Therefore, it is
sensible to use an error measure which places more emphasis on small signal amplitudes, for
example by using a compressive function such as c(A(f )) = log(A(f )).

The MMSE log-spectral amplitude (MMSE-LSA) estimator minimizes the mean-square
error of the logarithmically weighted amplitudes E{(log(A(f )) − log(Â(f )))2} and thus im-
proves the estimation of small amplitudes. The MMSE-LSA estimator was derived in [24] and
is given by

Â(f ) = exp (E {log(A(f ))|X(f )}) =
ξ(f )

1 + ξ(f )
exp

(
1
2

∫ ∞

v (f )

exp(−τ )
τ

dτ

)
|X(f )| (4.43)
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with v(f ) as defined in Eq. (4.40). For a practical implementation, the exponential integral
function in Equation (4.43) can be tabulated as a function of v(f ). Then, the enhanced complex
coefficient and the corresponding gain function GLSA are given by

Ŝ(f ) =
ξ(f )

1 + ξ(f )
exp

(
1
2

∫ ∞

v (f )

exp(−τ )
τ

dτ

)
X(f ) = GLSAX(f ). (4.44)

A General MMSE Amplitude Estimator

While for most noise signals the Gaussian distribution is appropriate, it turns out that the
speech components are more closely modelled by a super-Gaussian distribution. Therefore, the
estimators based on the Gaussian speech and noise model have been extended to more general
distribution models (see [4,26,36,48,49,61]). Furthermore, a compressive cost function, as
used, for example, in the derivation of the MMSE-LSA estimator, is beneficial in many
applications. In [14], an MMSE estimator based on the χ-density of Equation (4.10) and a
parametric compressive function

c(A(f )) = A(f )β (4.45)

has been developed. Starting with the general MMSE solution

̂c(A(f )) = E
{

c(A(f ))
∣∣∣X(f )

}
(4.46)

and substituting Equations (4.10) and (4.45) into Equation (4.46), the estimate A(f ) of the
clean speech magnitude becomes

Â(f ) = c−1( ̂c(A(f )))

=

√
ξ(f )

μ + ξ(f )

[
Γ(μ + β

2 )
Γ(μ)

1F1(1 − μ − β
2 , 1;−ν(f ))

1F1(1 − μ, 1;−ν(f ))

] 1
β √

σ2
N (f ) (4.47)

with c−1(·) the inverse of c(·). We have ν(f ) = γ(f ) ξ(f )/(μ + ξ(f )) and γ(f ) the
a posteriori SNR as before. Equation (4.47) is valid for μ > 0 and μ + β/2 > 0 with β �= 0.
Note that this implies that β < 0 can be a valid choice. The estimator (4.47) can be tuned by
its two parameters μ and β, and yields several known estimators depending on the choice of μ

and β (see Table 4.2). The compression in Equation (4.45) contains the power, the magnitude,

Table 4.2 List of magnitude estimators that are contained in
Equation (4.47) as special cases.

β μ Estimator

1 1 STSA [23, Equation (7)]
β → 0 1 LSA [24, Equation (20)]
β > 0 1 [79, Equation (14)], [24, Equation (13)]
1 μ > 0 [3, Equation (6)], [26, Equation (12)]
2 1 [2, Equation (20)]
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Figure 4.10 Input-output mapping characteristics for an a priori SNR of 0 dB. The graphs show the
estimated speech amplitudes versus the noisy input amplitudes, both quantities being normalized on the
square root of the noise power. Therefore, values

√
γ(f ) ≈ 1 are typical for speech pause and values√

γ(f ) � 1 are typical for speech activity. Upper graph: variation of the shape parameter μ for β = 0.5.
Lower graph: variation of the compression parameter β for μ = 0.3. The asymptote of Equation (4.48)
is also shown.

and the root estimator of Porter and Boll [62]. Furthermore, in [79], it was shown for μ = 1
and β → 0 that the solution (4.47) approaches that of the MMSE-LSA estimator in [24].

A high input SNR results in ν(f ) � 1. Then, the mapping characteristics can be shown with
[56, Equation (2.17)] to asymptotically approach

Â(f )√
σ2

N (f )

∣∣∣∣∣
ν (f )�1

=
ξ(f )

μ + ξ(f )

√
γ(f ). (4.48)

For μ = 1, this is the Wiener solution. Figure 4.10 plots the normalized input–output char-
acteristics of this estimator where the input is the square root of the a posteriori SNR γ(f ).
When the shape parameter μ is tuned toward low values, more noise reduction is achieved for
small normalized amplitudes while less attenuation is applied to larger normalized amplitudes.
When using a shape parameter μ = 0.3, corresponding to a super-Gaussian speech PDF, a re-
duction of the compression parameter β leads to a significant attenuation of small normalized
amplitudes, especially for negative values of β.

The time domain waveforms and the corresponding spectrograms of the clean signal and
two enhanced signals are shown in Figures 4.11 and 4.12. The signals have been processed
using the log-spectral amplitude estimator, the MMSE noise estimator, and the decision-
directed SNR estimator. Clearly, the noise level is significantly reduced but also the speech
signal is somewhat attenuated. However, the most salient features of the speech signal, such as
harmonic structures in vowels and high-frequency components in consonants are preserved.
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Figure 4.11 Waveforms of a clean speech signal (top) and of two enhanced signals (center: white
Gaussian noise, bottom: babble noise). The corresponding noisy signals are shown in Figure 4.1. The
enhanced signals have been processed using the log-spectral amplitude estimator Equation (4.44), the
MMSE noise estimator [37], and the decision-directed SNR estimator Equation (4.22).

0

0
0

0
0

0
0

2

2

2

2

2

2

4

4

4

4

4

4

666

888

Time (s)Time (s)Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

dB

-10

-20

-30

-40

Figure 4.12 Spectrograms of the clean speech signal in Figure 4.1 (left) and of two enhanced signals
(center: white Gaussian noise, right: babble noise). The corresponding noisy signals and their spectro-
grams are shown in Figures 4.1 and 4.2. The enhanced signals have been processed using the log-spectral
amplitude estimator Equation (4.44), the MMSE noise estimator [37], and the decision-directed SNR
estimator Equation (4.22).
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Figure 4.13 Spectrogram of the clean speech signal in Figure 4.1 (left) and of two enhanced signals
(center: white Gaussian noise, right: babble noise). The enhanced signals have been processed using
the log-spectral amplitude estimator Equation (4.44), the MMSE noise estimator [37], and the decision-
directed SNR estimator Equation (4.22). In addition, temporal cepstrum smoothing was applied. The
corresponding noisy signals and their spectrograms are shown in Figures 4.1 and 4.2.

Figure 4.13 shows the result when the temporal cepstrum smoothing is employed. From these
spectrograms, we observe that for both noise types the random fluctuations in the enhanced
signal are significantly reduced.

4.6 ASR Performance

To give an overview of effects, in the following, we show recognition results for a number of
noise-reduction techniques. We have tested the LSA, STSA, and Wiener magnitude estimators
on speech with artificially added white and babble noise. The speech data was taken from the
GRID database, a small-vocabulary audiovisual command-and-control corpus (see [17]). For
each utterance, the noise signal n(�) was scaled in such a way as to yield the SNRs 0, 10, 20,
and 30 dB according to

SNR = 10 log10

∑�1
�=�0

x2(�)∑�1
�=�0

n2(�)
, (4.49)

where �0 and �1 are the first and the last sample of the speech signal within the file. These
were obtained from the transcription files provided with the GRID corpus.

The word accuracy in percent, abbreviated by PA, was measured by

PA = 100
N − D − S − I

N
. (4.50)

Here, N denotes the number of reference labels, and D, S, and I signify the number of
deletions, substitutions and insertions, respectively.

ASR tests were carried out using simple left-right HMMs trained with the JASPER system
[42], using feature vectors with 13 MFCCs and first and second derivatives. Furthermore,
cepstral mean subtraction was applied per utterance. The output distributions were diagonal
covariance GMMs with five mixture components. Training was carried out on 6000 sentences
from the GRID database, using speakers s1 through s10, with Baum–Welch reestimations
carried out as many times as necessary to maximize recognition rates on a 2000-sentence



P1: TIX/XYZ P2: ABC
JWST201-c04 JWST201-Virtanen August 31, 2012 8:30 Printer Name: Yet to Come Trim: 244mm × 168mm

Voice Activity Detection, Noise Estimation, and Adaptive Filters for Acoustic Signal Enhancement 81

Table 4.3 Recognition accuracy (PA) for unprocessed data (baseline) and after signal processing.
Highly significant improvements (P = 0.01) are indicated in bold print.

Estimator Noise 0 dB 10 dB 20 dB 30 dB Clean

Baseline
Babble 40.9 76.9 92.9 97.4 99.0
White 19.9 47.8 85.3 96.2 99.0

WIENER
Babble 44.3 81.2 94.4 97.8 98.9
White 46.0 80.3 94.4 98.0 98.8

STSA
Babble 49.2 83.2 94.9 97.9 99.0
White 36.6 76.8 94.3 98.1 99.0

LSA
Babble 44.5 80.4 94.4 97.9 98.9
White 43.1 80.0 95.2 98.3 98.9

development set. The training was carried out on clean data without any preprocessing. Final
recognition accuracies were obtained on 2000 held-out sentences from the same 10 speakers.

Table 4.3 shows recognition results for unprocessed speech, and for speech after noise
reduction using the Wiener, STSA and LSA estimators, respectively. For all noise-reduction
methods, the minimum a priori SNR was set to –20dB.

For all scenarios up to 30 dB in white and up to 20 dB in babble noise, the improvements of
all three estimators are significant at the 1% level, when considering the null-hypothesis that
the recognition performance is unchanged by preprocessing.

Additionally, one can observe one trend at least for the two noise types considered—whereas
the STSA estimator shows the best overall performance for the nonstationary babble noise, the
Wiener and LSA estimators generally reach better recognition rates for the white noise case.

Most importantly, there is no need for retraining the model on processed speech, as none of
the considered estimators lead to significant losses of accuracy even when testing the system
on clean data.

4.7 Conclusions

In this chapter, we have introduced some of the most prominent techniques for VAD, noise
estimation, and signal enhancement. In the preprocessing stages of the ASR system, these
algorithms go hand in hand and are used either for frame dropping or adaptive noise-reduction
filtering. An advantage of these lies in the fact that they, at least to some extent, alleviate the
need to train the recognizer on the noisy speech and thus increase the range of applications
for ASR. Typical improvements that can be achieved with single-channel noise-reduction
preprocessing are in the order of 20 ± 10% in an SNR range of 0–20 dB.

It is interesting to note that noise-reduction preprocessing for human consumption and for
ASR does follow similar goals. For both applications, highly intelligible speech is important.
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Therefore, distortions to the target signal must be avoided, especially when there is no op-
portunity to train either the auditory system or the ASR on processed speech data. Secondly,
undesirable random fluctuations in the processed signals must be avoided. In the acoustic sig-
nal, these manifest in the form of annoying musical noise while they may lead to a mismatch of
variances in the ASR. In fact, it has been shown that by a proper control of the variance of the
processed signal both a high acoustic quality and a high ASR performance can be achieved [9].

Despite all this progress, a lot of work remains to be done, especially when scenarios with
nonstationary noise or competing speakers are considered. Some recent developments such as
data-driven approaches, [25,29], or the use of uncertainty-of-observation techniques, [5], have
shown promising results in such contexts.
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Extraction of Speech from
Mixture Signals
Paris Smaragdis
University of Illinois at Urbana-Champaign, USA

5.1 The Problem with Mixtures

Traditionally, signal-processing and pattern-recognition algorithms tend to look at signals
under the assumption of little, if any, interference. The vast majority of algorithms for speech
recognition, pitch detection, phonetic classification, etc., assume that the input is a relatively
clean speech signal, potentially contaminated by a simple noise term such as additive Gaussian
noise. The reason for that tendency is partially pedagogical; one should not only know how to
treat a clean signal before moving to more complex cases but also a result of being limited in
our abilities to mathematically analyze signals. Once we are confronted with mixture signals
a lot of our signal processing intuition and mathematical foundations no longer apply directly,
and there is little algorithmic basis to map well-defined operations on clean speech to cases of
speech plus interference.

A practical way out of this problem is that of considering preprocessing steps that attempt to
separate mixed signals and provide a reasonably clean version of the speech component. Once
that is obtained, and under the assumption that the interference is reasonably well removed,
one can perform operations which assume a clean speech input which we can now provide.

Historically the field of source separation has seen many approaches based on a varying range
of schools of thought ranging from logic-based systems, to neuroscience-inspired models, to
pure mathematical operations and many more. In this chapter we will not try to make any
extensive survey of these approaches, there is simply no space to do them all justice. Instead we
will examine two successful approaches to extracting speech from mixtures, which have been
well received because of their relative simplicity and strong performance. In the remaining of
this chapter we will focus on multichannel source separation based on Independent Component
Analysis (ICA), and on monaural source separation based on spectral factorization methods.
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5.2 Multichannel Mixtures

Multichannel sound mixtures are the types of recordings we obtain when we employ micro-
phone arrays. Using a set of microphones which are sampled synchronously we can capture an
audio scene from multiple locations and then take advantage of the differences between all the
individual microphone recordings to try to isolate any speech in the recorded mixture. There is
a rich literature on approaches that employ microphone arrays as described in Chapter 6. Here,
we will examine a specific subset of that work, one that is called blind source separation. The
name of this area arises from the fact that, unlike standard microphone array methods, we do not
assume to know anything about the recording situation (such as microphone positions, source
statistics, etc.) and in effect we operate blindly. This is, of course, a very constraining situation
which we will later relax for our purposes; however, the basic principle of providing minimal
information and constructing a system that “sorts things out” on its own will still remain.

5.2.1 Basic Problem Formulation

The initial formulation of the multichannel mixture case will be one that is known as the
instantaneous mixture case. The instantaneous mixing model is an extreme simplification of
the mixing process, but one that helps us form a strong foundation to attack the more complex
problem at hand.

An instantaneous mixture of N sounds si [t] as recorded by N microphones is assumed
to be

xi [t] =
∑

j

ai,j sj [t]. (5.1)

The signals xi [t] are what each microphone records and the values ai,j represent gain factors
that model the attenuation of each sound as it gets recorded by each microphone. Pictorially
this is explained in Figure 5.1 where we sketch the case of two sound sources are recorded
from two microphones. All microphones will get to record all the sounds, but there will be
a difference on how loud each sound is captured from every microphone depending on their
relative distance. Sound sources that are close to a microphone will be get recorded louder,
whereas more distance sources will be softer.

In order to make the notation more convenient we will rewrite the above model in matrix
form as

x[t] = A · s[t], (5.2)

where the vector x[t] = [x1 [t], x2 [t], . . . , xN [t]]T represents the recorded multichannel signal,
the matrix A(i, j) = ai,j contains the source gains and is known as the mixing matrix, and the
vector s[t] = [s1 [t], s2 [t], . . . , sN [t]]T are the signals of the original sources. Given this form we
can clearly see the problem. We will have access to what the microphones record (x[t]), but
that would be a mixed set of sources. The true sources s[t] are obviously not observed, nor do
we know the gain values in the mixing matrix A since the location of the sources relative to
the microphones is also unknown. Ideally if we are able to somehow estimate the values of
the mixing matrix A, then we can use an estimate of its inverse W to obtain an estimate of the
sources by

ŝ[t] = W · x[t], (5.3)
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s1[t]

s2[t]

x2[t]

x1[t]

a1,1

a1,2
a2,2

a2,1

Figure 5.1 An illustrative example of a 2 × 2 instantaneous mixture. The sound sources are denoted
by sj [t] and the microphone recordings by xi [t]. Depending on the distance between the sources and the
microphones a gain change is imposed and denoted by ai,j . Due to proximity, s2 [t] will be recorded
louder than s1 [t] in microphone 2; therefore, the value of a2,2 will be relatively larger than the rest.

and obtain a clean version of the speech signal(s) that are in the recording. The matrix W
is often referred to as the unmixing matrix. Alas the above process will involve solving an
equation with three variables in which two are unknown, so there is little hope of using
conventional algebra to help here. A solution to this problem came by clever use of statistics
and is now known as ICA.

Independent Component Analysis

The above problem in its pure form is one that is found in many applications in signal
processing and its solution was sought after for a long time. The term itself was first coined in
[1], although similar approaches had been presented prior to that. In the mid-1990s after a series
of publications on efficient and robust approaches to achieve ICA [2,3,4] the above problem
was effectively solved to a satisfying degree and some of its first successful applications were
on the problem of separating mixed sounds as presented above.

The key observation we need to make in order to solve the above equation is that the time
series si [t], being sounds that emanate from physically decoupled systems such as different
speakers, are going to be statistically independent. As such if try to solve the problem by
finding the maximally statistically independent set of ŝ[t] then we stand a chance at recovering
the original sources. However, this optimization is not straightforward. In this chapter we will
go through a simple sketch of the basic idea behind ICA, but we will note that there are dozens
of different ways to solve the ICA problem and there are far more rigorous approaches to
describing the process than what we will use here. The interested reader can refer to [5] for an
excellent collection of information on the history and wide variety of this field.

We start by a simple way to state statistical independence for two random variables. We
will consider two random variables x1 and x2 to be independent if

E{g1(x1)g2(x2)} − E{g1(x1)}E{g2(x2)} = 0, (5.4)

for all element-wise continuous functions gi(·) that are zero outside a finite interval. Therefore
as a starting point we would want to find an algorithm that finds values for W such that the
above constraint is satisfied (or at least best approximated) between all our source estimates



P1: TIX/XYZ P2: ABC
JWST201-c05 JWST201-Virtanen August 31, 2012 8:32 Printer Name: Yet to Come Trim: 244mm × 168mm

90 Techniques for Noise Robustness in Automatic Speech Recognition

ŝi [t]. Taking advantage of the fact that most normal sound recordings are zero mean and
constraining ourselves to odd functions gi(·) the second term in the above equation becomes
zero and we are left with a simple expression that can evaluate the independence across
multiple variables:

D(s) = E

{∏
i

gi(ŝi [t])

}
. (5.5)

In the above expression minimizing D(s) results in increasing the statistical independence
between the signals in s[t]. Needless to say the fact that we require this to hold for an infinite
set of functions gi(·) is not making the problem easier. However, in practice, if we specify a
well-chosen set of gi(·) it is sufficient to achieve our goal. This type of optimization is known
as nonlinear decorrelation and there are various ways to solve it. Curiously, whether we start
with this objective in mind or many other ones that also strive for independence, we find that a
specific form of solution always comes up. This solution is in the form of an iterative algorithm
performing gradient descent shown in Algorithm 1.

Algorithm 1: ICA via nonlinear decorrelation

ε {Value defining when parameter updates are not significant anymore}
W ← I {Initial conditions assume no transform is needed}
0 < μ < 1 {Learning rate parameter}
repeat

for all t do
y[t] = W · x[t]
ΔW =

[
I − g(y[t]) · y[t]T

]
· W

W ← W + μΔW
end for

until ||ΔW|| < ε

In practice choosing g(x) = tanh(x) yields good results for sound sources, although other
function combinations can also be used, often depending on our knowledge of the statistics
of the sources, or one could estimate the optimal nonlinearities as well [6]. The parameter
μ is a learning rate parameter that tempers the gradient updates to avoid jerky updates. The
parameter ε is a threshold that specifies when the update to W is not significant and further
iterations are unnecessary.

ICA for Separating Sound Sources

Let us now demonstrate an example with speech signals. Consider the two signals s1 [t] and
s2 [t] in Figure 5.2. These are spoken sentences from a male and female speaker. We mix these
two recordings by performing

x[t] = A · s[t] =

(
x1 [t]
x2 [t]

)
=

(
2 1
1 1

)
·
(

s1 [t]
s2 [t]

)
. (5.6)
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Figure 5.2 The two original speech recordings used in the instantaneous separation example.

The mixed time series xi [t] are shown in Figure 5.3. Based only on these two signals we use
the ICA algorithm presented above and after 200 iterations we estimate the unmixing matrix

W =

(
1.0378 −1.0363

−1.2425 2.4847

)
, (5.7)

which when multiplied by the mixing matrix A results in

W · A =

(
−1.2425 2.4847

1.0378 −1.0363

)
·
(

2 1
1 1

)
=

(
−0.0003 1.2422

1.0393 0.0015

)
, (5.8)

a matrix with approximately only one significant value per row (or column). This means that
multiplication with the unmixing matrix “undoes” the mixing effects of the mixing matrix
and results in an estimate of the original sources si [t]. That estimate is shown in Figure 5.4,

1 2 3
−10

0

10

x1[ t]

Time (s)

1 2 3
−10

0

10

x2[ t]

Time (s)

Figure 5.3 The multichannel mixed speech recording used in the instantaneous separation example.
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Figure 5.4 The separated speech signals used in the instantaneous separation example.

where by visual inspection one can (perhaps) see that the two original speech signals have
been separated. However there are two disturbing observations. We note that the order of the
two signals has been swapped, that is ŝ1 [t] ≈ s2 [t] and ŝ2 [t] ≈ s1 [t], and furthermore that
the gain of the separated version of s2 [t] has been increased (something we can also see
in the above equation where the elements of significant magnitude are not both close to 1).
These two observations illustrate problem that plagues ICA algorithms, the output estimates
will be arbitrarily permuted and scaled. The reason why this happens is that as defined
the independence criterion that we optimize is invariant to these two operations. If a set of
signals are mutually statistically independent, changing their order or gain will not change that
relationship and all possible scalings and permutations will be just as independent as any other.
In this particular example the scaling issue is not a problem since we can always renormalize
the estimated outputs to a gain that we prefer. However, the source permutation problem is
more significant because in cases where we would try to separate, say, speech from noise we
would not know which of the two output signals is the speech signal and which is the noise.
This is, of course, a problem that can be easily resolved by using simple classifiers, but as we
see later on it can introduce more severe problems which are not as easy to deal with.

5.2.2 Convolutive Mixtures

As anyone with rudimentary knowledge in acoustics would notice, the unmixing process
described in the previous section is far too simplistic to work in real life. In a real recording the
original sound sources will go through a series of transformations such as propagation delays,
room reverberation and nonuniform microphone responses (see Figure 5.5). In general we can
think of these operations as a sequence of linear filters that can be collectively described by
one convolution operation. Taking this in mind we can update the mixing model we used so
far as

xi [t] =
N∑
j

T∑
k

hi,j [k]sj [t − k], (5.9)
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s1[t]
s2[t]

x2[t]

x1[t]

h1,1

h1,2

h2,2

h2,1

h1,1

Figure 5.5 An illustrative example of a 2 × 2 convolutive mixing. The sound sources are denoted by
sj [t] and the microphone recordings by xi [t]. Each microphone records not only the direct source signal
but also its reflections from other objects in that setting. In addition to that there is filtering that takes place
in the microphone, as well a propagation delay due to the fact that sound transfer is not instantaneous.
All these parameters are encapsulated in the mixing filters hi,j . The dashed lines are example reflections
from the two sources as they bounce of a wall (striped structure on the right). In a real situation there
will be a high number of reflections from all objects in the setting, most of them being higher order
reflections (i.e., reflections of already reflected signals).

where the T-point length filters hi,j encapsulate the transformations that source signal j
undergoes as it travels from its origin to microphone i. This model is considerably more
complex than the instantaneous case, but we note that it is still a linear problem, and that we
can use the same principles as before. This time we will strive to find a set of unmixing filters that
will “undo” the effects of the mixing filter hi,j , but we still use independence as a objective to
strive for.

Although there are ways to solve this problem in the time domain by directly inverting the
equation above [7,8], we will instead transform this problem into a collection of instantaneous
mixing problems. Consider the application of a length L short-time DFT [9] on one of the
sources:

Sj [f, t] = DFT{Sj [t, . . . , t + L − 1]T}, (5.10)

where Sj [f, t] is the Fourier coefficient for frequency f at time t. In that domain we can
express the convolution with a corresponding filter hi,j as an element-wise multiplication in
the frequency domain:

T∑
k

hi,j [k]sj [t − k] ≡ Hij [f ]Sj [f, t], (5.11)

where Hij [f ] is the f th frequency of the DFT of hij . We have to make sure that the DFT size
is long enough to accommodate the convolution operation. This is done by the use of zero
padding when taking the Fourier transform in order to avoid circular convolution [10]. With
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this new viewpoint we can rewrite the convolutive mixing problem as:

Xi [f, t] =
N∑
j

Hij [f ]Sj [f, t] (5.12)

or we can use matrix notation to rewrite this mixing once more as:⎛
⎜⎜⎝

X1 [f, t]
...

XN [f, t]

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

H1,1 [f ] · · · H1,N [f ]
...

. . .
...

HN,1 [f ] · · · HN,N [f ]

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

S1 [f, t]
...

SN [f, t]

⎞
⎟⎟⎠ ⇒ xf [t] = Hf · sf [t], (5.13)

where the f subscript indicates the f th frequency of the DFT of the respective signal.
Therefore, xf [t] is a vector containing the f th frequency bin of the DFT of each recorded
signal at time t, Hf is a matrix containing the f th bin of all the filters, and sf [t] contains that
frequency bin of the original sources.

We can now make the observation that the equation above is the same as that of the
instantaneous mixing model, except that now we have to consider this mixing on each possible
frequency independently (Figure 5.6). Since we use an L-point DFT this means that we will
have L/2 + 1 unique instantaneous mixing problems to solve. Solving these problems will
result in estimating a set of frequency unmixing matrices Gf which will be the inverse of
their corresponding Hf . Multiplying the mixed frequency components with these matrices
will yield a set of separated frequency components which we can then transform back to the
time domain with an inverse short-time Fourier transform (STFT).

The benefits of performing this operation in the frequency domain are twofold. First we
decompose a complex problem to a set of simpler problems which we can easily solve,
and second we can take advantage of the fast Fourier transform to efficiently perform all
the necessary convolutions that this operation implies. In realistic scenarios we are likely to
require long convolutions, in the thousands of filter taps, where time-domain operations can

x1[t]

x2[t]

xN [t]

xf1 [t]

xf2 [t]

xfL
2 +1

[t]

...

ŝf1 [t]

ŝf2 [t]

ŝfL
2

+1[t]

...
...

ŝ1[t]

ŝ2[t]

ŝN [t]

...
...

...
...

Gf1

Gf2

GfN

Figure 5.6 Illustration of ideal convolutive unmixing in the frequency domain. The input signals
are being decomposed to multiple frequency bands which are then individually separated using the
instantaneous unmixing model we introduced in Section 5.2.1. Once this unmixing has been performed
in the frequency domain we can transform the unmixed frequencies back to the time domain to obtain
the estimated source signals.
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be comparatively very inefficient. By making use of the frequency domain we can speed up
these computations considerably.

Complications in the Frequency Domain

After we reformulated the problem of convolutive mixing as a set of instantaneous mixing
problems, it appears that we are now able to solve this problem since it has been reduced to
something we already know how to solve. However there are a few complications that we need
to address, both relating the ambiguities in the ICA algorithm.

As we mentioned previously there is no guarantee regarding the scaling and the order
of the outputs of ICA. In our frequency domain separation context this means that each
frequency band will be arbitrarily scaled and that even though the frequency components will
be separated, we can not be sure that their order will be the same across all of the frequency
bands. In the case of the scaling issue this will result in an arbitrary equalization of the outputs
where the spectral character of the original sources can be severely distorted. In the case of the
permutation we will notice that some frequency bands of an output will contain one source,
but others will contain another source. Resolving these problems is easy for scaling, but hard
for the permutations.

In order to resolve the scaling problem we can take a number of different steps. A simple
approach is to ensure that all the the unmixing matrices Gf preserve the energy of their input
signals. This implies that the determinant of all Gf is set to be 1; a scaling we can easily
perform once we have estimated these matrices [11]. Performing this operation ensures that
the energy coming out of each ICA transform is comparable to what came in; therefore we
alleviate cases in which some unmixing matrices would boost their input by a large factor,
whereas others would suppress it. Although this does not guarantee that we will have no scaling
issues, it will alleviate most obvious audible problems by ensuring that no frequency bands
get a disproportionate boost of attenuation imposed on them. More sophisticated approaches
have also been explored, such as scalings of Gf that try to maximize the similarity of the
output source spectra to the microphone input spectra, or postprocessing that shapes the spectra
of the output sources according to predetermined priors (e.g., if we know that the source is
a speech signal we can then equalize the source estimate to have the average spectrum of
speech).

The permutation problem is a more complex issue which is not as easy to address. Finding
the correct source permutation for all output frequencies is a combinatorial optimization
problem which quickly becomes practically intractable in a realistic situation. There have been
multiple solutions proposed to resolve this problem, ranging from simple approximations to
more sophisticated systems. In terms of simple solutions one thing to take advantage of is
the continuity of real-world objects in the frequency domain. This statement implies that the
sequence of unmixing matrices has some smoothness, that is Gf is somewhat similar to Gf +1 .
An obvious way to take advantage of this property is to permute each unmixing matrix so that
we maximize its similarity to its neighboring unmixing matrices across frequencies. Although
practical for two sources this quickly becomes an inefficient approach when we have more
sources and we require more extensive searching. Another approach along these lines is to bias
the adaptation of the unmixing matrices so that neighboring structure is taken into account [12].
An example of such an operation is to average the current estimate of Gf with Gf−1 and Gf +1
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so at to bias their convergence towards similar solutions thus achieving a permutation with a
smooth spectrum. Although this can work in practice it results in significant contamination of
the proper estimates and a substantial loss of separation quality. More sophisticated approaches
take into account additional information such as the location of the sensors. Armed with that
information one can treat the situation at hand as a microphone array problem and examine the
spatial locations that the filters Gf steer the array towards. Upon doing so we can cluster the
separating matrices in terms of the directions that they are pointing the microphone array to. By
appropriately rearranging them so that all the directions are consistent for each source estimate
we can obtain a solution that is geometrically correct and does not focus on multiple sources
for each output. More details of this approach and frequency domain ICA-based separation
are shown in [13], and the effects of these approaches on speech recognition are examined
in [14].

An example of this process is shown in Figures 5.7 and 5.8. The input is a simple convolutive
mixture of two speech recordings. In Figure 5.7 we display the estimated and the corrected
directional responses that highlight the problem with the inconsistent permutations across
frequencies. These plots show how the response of each source estimator across frequency
and angle of incidence. Ideally a source estimator would focus consistently on the same angle
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Figure 5.7 Learned directional responses from an example convolutive mixture. The two patterns on
the left denote the array’s response to a sound as it pertains to the two discovered sources across all
frequencies and sound incidence angles. Note how the array’s response changes abruptly across certain
frequencies indicating permutation problems. In the right we display the beampatterns after we correct
for permutation problems in our unmixing matrices.
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Figure 5.8 A convolutive separation example. The top two spectrograms show the original input
sounds, the plot pair under that shows the recorded mixtures from two microphones. Note how elements
from both sounds exist in both of the recordings now. The third row displays the result of performing ICA
in each frequency without correcting for permutation errors. Note how in the left plot elements of the
interfering sound are present in some frequency bands. Likewise these bands are erroneous in the second
source estimate. The bottom row shows the corrected source estimates when attempting to correct the
beam patterns to point to consistent directions across all frequencies. Also note how the source estimates
have more high frequency energy in the case of the first source, and a set of frequency notches in the
second source. These are effects that are due to the scaling problem when estimating each frequency
component separately.

throughout all the frequencies. Due to physical constraints in the design of arrays we will see
sidelobes that form in the response for higher frequencies, but we should always expect to
see a consistent vertical pattern that implies a frequency-wide response towards a fixed angle
which is where the targeted source is expected to be. As shown in Figure 5.7 the response
patterns when we have permutation problems create an inconsistent pattern which disappears
once we choose the right permutation. In Figure 5.8 we display the spectrograms of all the
involved signals where again we can see the effects of permutation errors and some of the
effects of incorrect scaling.



P1: TIX/XYZ P2: ABC
JWST201-c05 JWST201-Virtanen August 31, 2012 8:32 Printer Name: Yet to Come Trim: 244mm × 168mm

98 Techniques for Noise Robustness in Automatic Speech Recognition

Although these approaches can work well for reasonable mixing situations they do suffer
from a serious limitation. It is quite unlikely that one will have access to as many microphones
as there are sources in a mixture. Because so far our formulation has focused on invertible
cases we did not explicitly consider that case, but it is one that is very likely to confront a
practitioner. The case where one attempts separation with fewer microphones than sources
(which is the most realistic case), is called the undetermined mixtures case and is one that
has been studied widely, and attacked with a variety of approaches. Due to space limitations
we will not be covering the details of these approaches, but we will note that they are rather
straightforward extensions of the material presented so far. The interested reader can find a lot
of that material in [17].

5.3 Single-Channel Mixtures

In the previous sections we considered the case where we had multiple microphones sampling
an auditory scene and we took advantage of the differences between their recordings in
order to focus on a specific source. However a limitation of these approaches is that they
require multiple time-synchronized microphones, which can be a costly proposition for many
applications. An alternative problem formulation is that of attempting separation from a single-
channel recording.

Single-channel separation is a much more challenging problem because its objective cannot
be easily defined. In the case of multiple-channel signals we could use the differences between
the channels to discover sources and the entire process was reduced to a linear inversion. In
the single-channel case we do not have that extra information and we have to somehow pick
out only elements that belong to one source from a single waveform, a mathematically ill-
defined problem. Historically this problem has been attacked from the perception perspective
(see Chapter 16) where researchers attempted to extract parts of the mixture that seemed to
be correlated enough to imply that they belong to the same source. How and when these
parts matched was based on principles of psychoacoustics, the study of human hearing.
Although intuitive, this approach makes it hard to construct compact mathematical models
and complicates any subsequent implementations. A more recent trend in single-channel
separation is one that uses training data to assist an algorithm in selecting the proper source
in a mixture. In this chapter we will examine a specific area of this approach, that based on
nonnegative spectral factorizations.

5.3.1 Problem Formulation

Let us consider the example mixture shown as a spectrogram in Figure 5.9. It contains two
sounds that of a speaker and that of a siren. Using a time-frequency representation of that
mixture, we can visualize the two sounds in, the wavy pattern being the siren and the finer
texture in the background being the speech signal. The mixture x[t] itself is defined as

x[t] =
N∑
i

si [t], (5.14)

where the time series si [t] are the actual sources that comprise it (in the presented case the
speech and the siren). Note that unlike the multichannel case we only observe one recording.
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Figure 5.9 A mixture of a speech and a siren sound. The wavy pattern in this spectrogram is the siren
sound as it oscillates in frequency. The finer texture superimposed on that is the recording of a female
speaker. Single-channel separation is the process of automatically picking components of such an input
that belong to one source only. Although this seems like a tractable task in in this case, in many other
situations it becomes a very difficult problem to resolve manually.

We also do not make use of scalar gains for each source since for our purposes an arbitrarily
scaled version of any source is the same. The estimation problem at hand is now to directly
estimate all the si [t] from only x[t]. Obviously this is a very ill-defined problem since we are
asked to estimate N times more data than we observe.

Theoretically one can manually select the parts of that spectrogram that belong to the
undesirable sound, set their energy to zero and then invert that representation in order to obtain
a cleaned version of the target sound (see use of binary masks in Chapter 16). However this
kind of matching can be extremely tedious and in more realistic mixture cases very hard to
perform. In order to get some help in performing this task we will take advantage of examples
of how the sources in the mixture sound like, and then use that information to help us perform
the separation. Unlike the approach presented in the previous sections this is not “blind”
anymore since we will use a lot of information outside of the input data.

We will start by examining this problem directly in the time-frequency domain. We will use
a STFT representation of the mixture sound x[t]:

X [f, t] = DFT{x[t, . . . , t + L − 1]T}. (5.15)

Since the STFT representation is linear it will hold that

x[t] =
N∑
i

si [t] ⇒ X [f, t] =
N∑
i

Si [f, t], (5.16)

where Si [f, t] are the STFT’s of the original sources si [t]. We will now make an assumption
that it also holds that

|X [f, t]| =
N∑
i

|Si [f, t]|. (5.17)

Even though this is not a mathematically correct statement it is in practice approximately
correct and a widely used approximation in this field.
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We can now make a few key observations about this new mixing model. In general a
sound class tends to have a consistent spectral character. For example in the above mixture
the speaker’s spectral character will almost always be consistent (e.g., a nasal high-pitched
voice), whereas a siren’s tone will always assume the same sequence of spectral states in
succession. Thus, the mixture magnitude spectrogram of a mixture of these two sounds will
contain spectral elements of both of these sounds in it. Our goal is to somehow capture the
spectral elements that describe these sounds and use them to decompose the mixture in parts
that spectrally look like the speaker or the siren.

5.3.2 Learning Sound Models

In order to learn sound models we need some training data. We thus obtain sound examples of
the classes of sounds that we expect to find in the mixture we try to resolve. For example, in
the above case where we know that the mixture consists of a speech and a siren signal we can
obtain some clean recordings of speech and sirens. These recordings are only supposed to be
indicative of the timbre of the intended outputs and are of course different instances from the
ones in the mixture. We denote these training sounds as ri [t] and we obtain their magnitude
spectrograms:

Ri [f, t] = |DFT{ri [t, . . . , t + L − 1]T}|. (5.18)

We will additionally denote the magnitude spectrograms of the training data as a set of matrices
Ri = Ri [f, t].

We now wish to somehow learn the salient spectral elements of these two sounds. In order
to do so we will use a matrix-factorization technique called Nonnegative Matrix Factorization
(NMF) [16]. This matrix decomposition takes a nonnegative M × N matrix X and approx-
imates it as a product of a nonnegative M × K matrix W and a nonnegative K × N matrix
H. The user needs to specify the value of K which is the rank of the decomposition. The
matrix W contains a set of column vectors that describe the vertical structure of X and the
matrix H contains a set or row vectors that describe the horizontal structure. Alternatively
we can think of the W matrix as a set of bases and H as their corresponding activations. In
the audio case the matrix W contains a set of spectral shapes in its columns and matrix H
contains their corresponding activation across time in its rows. This problem can be solved
in a variety of ways; however for our purposes the most broad interpretation comes from
[15]. A central problem in the estimation the two matrix factors is that we need to define a
proper cost function for NMF, that is specify what we mean by approximating X. In order to
get maximal breadth we can define the difference between X and W · H as

D(X|WH) =

∣∣∣∣∣
∣∣∣∣∣X

β + (β − 1)(W · H)β − βX � (W · H)β−1

β(β − 1)

∣∣∣∣∣
∣∣∣∣∣ , (5.19)

where all the exponentiations are element-wise and � denotes element-wise multiplication.
The parameter β is key here since it help shape the cost function. Some notable cases are when
β = 2, in which case the above expression becomes proportional to the Euclidean distance
between X and W · H, when β = 1 where the resulting cost function becomes something akin
to the Kullback–Leibler divergence, and when β = 0 where the distance becomes the Itakura–
Saito divergence. Consequently, the choice of β informs the noise model that we assume in
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this model which for the above cases would be Gaussian, Dirichlet and Gamma distributed,
respectively. The choice of β is up to the user, and in theory it dictates the kind of input that
X represents, magnitude spectra for β = 1, power spectra for β = 0 as shown in [15]. In this
chapter we generate all subsequent examples using magnitude spectra and β = 1. Somewhat
varying results can be achieved with other values of β, although qualitatively there is no
significant change. In order to estimate W and H the iterative algorithm shown in Algorithm 2
is used.

Algorithm 2: NMF algorithm

β {Parameter to specify the type of cost function used}
ε {Desired maximum value for D(X|WH)}
k {Rank of approximation}
X ∈ R

m,n
≥0 {Input to approximate}

W ∈ R
m,k
≥0 , Wi,j ∼ U [0, 1] {Random initial conditions}

H ∈ R
k,n
≥0 ,Hi,j ∼ U [0, 1] {Random initial conditions}

repeat

H ← H � WT((W · H)β−2 � X)
WT(W · H)β−1

W ← W � ((W · H)β−2 � X)HT

(W · H)β−1HT

Nornalize columns of W to sum to 1
until D(X|WH) < ε

To best illustrate how this decomposition works consider the nonnegative factorization of
the siren spectrogram in Figure 5.10 using K = 5. This is a different recording of the same
sound that is in the mixture. Upon factorizing it we see that the matrix Wsiren contains a set of
spectral bases, and the matrix Hsiren tells us how these get activated in time. Similarly we can
decompose the speech recording from the speaker in the original mixture. The results of that
are shown in Figure 5.11. Note how the two W matrices encapsulate the spectral structure of
the two sound classes. The components in Wspeech describe different aspects of the speaker
such as pitched harmonic parts (the three middle components), or wide-band elements (first
and last component). Likewise Wsiren contains a simple series of tones which when put in
order can describe the siren sound. We note here that given ample training data, the W spectral
basis matrices are presumed to be indicative of all spectral states that a learned sound class
assumes and can constitute a model of that sound class. In general that information can be
obtained by using a few seconds of training data (usually 30–60 seconds for most cases),
although this is something that can vary depending on the nature of the sounds to model and
the diversity of the training data.

5.3.3 Separation by Spectrogram Factorization

If we are confronted with a mixture of two sounds and we already have learned a set of
dictionaries for the constituent sound classes, we can speculate that the elements contained
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Figure 5.10 Nonnegative spectral factorization of a siren sound. The input sound is the top right plot,
the columns of the spectral bases matrix Wsiren are on the top left and the rows of the matrix Hsiren
are shown at the bottom plot. Note how the columns of Wsiren capture some of the spectral states of
the siren sound. Likewise the Hsiren matrix tell us how we can mix the elements of W in order to
approximate the input Rsiren .
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Figure 5.11 Nonnegative spectral factorization of a speech sound. The input sound is the top right plot,
the columns of the spectral bases matrix Wspeech are on the top left and the rows of the matrix Hspeech
are shown at the bottom plot. Note how the columns of Wspeech capture some of the spectral states of
the speech sound.
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in the learned Wi matrices can be used to reconstruct the mixture. In order to perform this
approximation we need to estimate H in the following equation:

X = (W1 , . . . ,WN ) · H, (5.20)

where X is the magnitude spectrogram of the mixture sound. This is of course a simpler
instance of NMF in which we only have to estimate the H matrix. We can do this with the
update rule shown previously by keeping the values in W fixed and updating only H. Just as
the matrix W is segmented by blocks that correspond to spectral bases for each sound source,
likewise the matrix H contains a similar segmentation. In order to keep the correspondence
with the bases in W the matrix H can be interpreted as

H =

⎛
⎜⎜⎝

H1
...

HN

⎞
⎟⎟⎠ , (5.21)

where Hi contains the activations for source i.
Given this segmentation we can rewrite the mixing model above as

X =
(

W1 , . . . ,WN

)
·

⎛
⎜⎜⎝

H1
...

HN ,

⎞
⎟⎟⎠ =

∑
i

Wi · Hi . (5.22)

If we find the optimal values for the matrix H we will essentially know where in time and how
much of each classes’ components we would have to use to approximate the input mixture.
Given such a source-specific explanation of the mixture we could then use only one source’s
bases and activations in order to reconstruct only the part of the input that this particular source
contributed. Thus, in order to estimate the contribution of source i we would perform

Xi ≈ Wi · Hi , (5.23)

where Xi would correspond to the estimated magnitude spectrogram of the isolated source
i. However, this estimate is potentially incomplete and is not guaranteed to contain all of
the input’s energy. Since this is a low-rank approximation of the input it is very likely that
low-energy sections have not been adequately represented and might be missing when we
reconstruct. This problem can be addressed by using the following source approximation
instead which allocates all of the input’s energy to the resulting source spectrograms:

Xi ≈ (Wi · Hi) �
(

X∑
j Wj · Hj

)
. (5.24)

Once the individual source magnitude spectrograms Xi are obtained we can combine them
with the original phase spectrogram of the mixture in order to invert this representation back
to a time domain signal. This can be done naively by simply modulating the original phase
spectrogram P of the mixture with the source magnitude spectrogram approximations:

Fi = Xi �
(
eP

√−1
)

, (5.25)
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Algorithm 3: NMF-based separation

X ← magnitude spectrogram of mixture
P ← phase spectrogram of mixture
Xi ← magnitude spectrogram of training data for source i
NMF() ← Algorithm 2
for i = 1 to N do

Wi ← NMF[Xi ]
end for
W = [W1 , ...,WN ]
H ← NMF[X] given W
for i = 1 to N do

Hi ← rows of H corresponding to Wi

Fi = (Wi · Hi) �
(
eP

√−1
)
�

(
X

W ·H
)

sourcei ← ISTFT[Fi ]
end for

where the exponentiation is element-wise. The complex-valued spectrograms Fi can then be
inverted back to the time domain using the inverse short-time Fourier transform in order to
produce the waveforms of the separated sounds. The overall process is shown in Algorithm 3.

Let us now examine how this operation performs in the case of the siren and the speech
mixture in Figure 5.9. In this example we used 50 bases for each of the sounds. In general if
we do not use any regularization, more than a few hundred bases will result in an increased
risk that the bases will assume a very basic shape that can also model other sources and thus
result in source confusion during the separation process. Using too few bases will not give the
models the required flexibility to approximate the sources and the result will be suboptimal.
Choosing 50 bases per source as we did is a good conservative estimate which works for most
cases. The training data consisted of 20 seconds of speech from the same speaker as the one in
the mix, and 2 seconds of the siren sound. The sounds that made up the mixture were not used
in the training data. The purpose of the training data is to represent the spectral characteristics
of the two sources in the mixture. Because of the repetitive and almost deterministic spectral
character of the siren we only needed 2 seconds, whereas the more varying speech signal
necessitated a larger training set. The estimated outputs are shown in Figure 5.12. Using our
knowledge of the true inputs to the mixture we find that the signal to interference ratio was
about 14 dB while maintaining the proper spectral character of the target source.

This is, of course, a contrived example which is designed to illustrate how this approach
works. As realistic as it might have been it contained two sources which are spectrally very
different thus making their separation an easy task. Had we been confronted with a mixture
of two speech recordings then the task would be harder since the two basis sets that describe
each source would be very similar and discerning between the two sources would be a more
ambiguous process. However, even in that case it is not uncommon to obtain a signal to
interference ratio of 10 dB or more, assuming that the two speakers do not have largely
identical voices [18].
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Figure 5.12 The results of performing NMF-based source separation on the mixture in Figure 5.9. The
left plots show the magnitude spectrograms of the two sources before they were mixed, and the right
plots show their estimates by observing only the mixture and some training data. Although one can see
minor traces of the siren sound in the estimated speech spectrogram, for all practical purposes the sources
were accurately recovered.

5.3.4 Dealing with Unknown Sounds

A more serious problem that arises in the case of this single-channel model is one that comes
with practical deployment. In is often unrealistic to expect to have training data for all the
sources that comprise a mixture. One way to address this problem is to make a couple of
observations. In most applications, we will know either the kind of target source that we are
interested in (e.g., to extract speech from some unknown background noise), or we will know
the kind of interference to expect (e.g., a plane cockpit system will expect a specific type of
ambient noises). Additionally, unlike the multichannel case it is not required that we separate
all sources in a mixture. In the case of a speaker in a street we only need to treat the problem
as a two sound class case where one class is the speaker and the other class includes all the
other sounds (cars, background babble, etc). Based on these observation we can simplify the
overall problem as that of source separation between two sources, one of which is known but
the other is not.

Despite its apparent difficulty this problem can be solved in the single-channel mixture
framework. The basic setup here is that we have in our disposal a training set for one of the
two implied sound classes in the mixture (it can be either the target or the interference), and
a mixture containing that sound class plus one more. In terms of the decomposition we used
previously, we now have

X = W · H =
(

Wtarget ,Wother

)
·
(

Htarget

Hother

)
, (5.26)

where X is the magnitude spectrogram of the mixture and the W and H matrices are the
bases and activations of the target (subscript target) and the interference (subscript other)
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respectively. If we have training data for, say, the target sound we can learn Wtarget offline.
Once presented with a mixture that would be the only known quantity in the right-hand side of
the equation above. We can however still perform an estimation of the remaining parameters
by employing the same update equations as before, only this time we only estimate Wother ,
Htarget and Hother . This is easily done by updating the two matrices W and H as usual,
but additionally keeping the columns of W that correspond to Wtarget fixed to their original
values. This process will result in Wother to converge to a set of bases that best explain what
Wtarget can not. In other words, we will learn a model of whatever in the input mixture does
not sound like the already known sound class. After all these matrices are estimated we will
have two models for the two sound classes and their corresponding activations and we can
revert to the material in the previous section to perform separation.

To illustrate this process consider the case of the speech and siren mixture in Figure 5.9. We
attempted separation under two scenarios. First we assumed that we know the speech model
and we estimated the siren model from the mixture and then attempted to extract speech. Then
we assumed that we know the siren model and estimated the speech model and extracted the
speech again. The resulting suppression of the siren was around 10 and 14 db, respectively.
The magnitude spectrogram of the extracted speech is shown in Figure 5.13.

As these examples show this approach can be quite flexible and used in a variety of situations
where we only know what the target source will be, or only what the interference source will
be like. Especially in speech situations, this is a realistic expectation where a system can be
optimized for only speech (or a specific speaker), or be optimized for the particular setting
where the recording takes place, such as a plane cockpit, a car, etc.

Fr
eq

ue
nc

y

Time

Extracted speech knowing only speech model

Fr
eq

ue
nc

y

Time

Extracted speech knowing only interference model

Figure 5.13 Extracted speech from the mixture in Figure 5.9. The top plot shows the extracted speech
when the speech model is known and the interference is not, and the bottom plot shows the extracted
speech when the interference model was known and the speech model was not. Note how the two
approaches yield slightly different results, but do manage to separate the speech signal well enough.
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5.4 Variations and Extensions

So far we described a simple approach to separation of speech from noise using nonnegative
models. More elaborate approaches have been developed, and they can often provide addi-
tional advantages depending on the problem at hand. These approaches include convolutive
models [19,20] that are able to model time-frequency elements of sources, Markovian models
[21,22] which can statistically model time evolution of the sources, sparse and overcomplete
models [18] that use overcomplete dictionaries to model sources and tensor methods that
generalize the matrix factorization to tensors and allow multichannel formulations [23]. Other
interesting directions include the statistical underpinnings of these approaches are exposed in
[15,24,25,26]. Techniques such as these have been used in the field of speech recognition in
order to remove unwanted sources, or to directly perform recognition on noisy signals. Some
of this work is described in [27,28,29,30].

5.5 Conclusions

In this chapter we described two popular approaches in the audio source separation literature,
the ICA-based multichannel approaches and the NMF-based single-channel approaches. As
many fields of speech and audio research, these areas are constantly evolving and improving
at an impressive rate. In this chapter, we only covered the foundations of these techniques up
to a point where a reasonably simple implementation can be devised. As in all speech research
the devil is in the details and it often takes considerable engineering to obtain that useful
handful of dB of improvement from the otherwise easy to get to baseline. It is out hope that
this chapter we set the proper foundations so that the interested reader can endeavor in this
field and experiment with this very interesting area of research.
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This contribution takes as its objective the class of techniques suitable for performing speech
recognition, not on the signal capture by a single microphone, but on that obtained by com-
bining the signals from several microphones. The techniques discussed here differ from those
presented in Chapter 5 in that they are based on the pair of assumptions that:

1. The geometry of the array of microphones is fixed and known.
2. The position of the active speakers relative to the array are known or can be accurately

estimated.

Such techniques—known collectively as beamforming—have been the subject of intense in-
terest in recent years within the acoustic array processing research community. Unfortunately,
such techniques have been largely ignored in the mainstream automatic speech-recognition
field, although this may rapidly change given the recent release and widespread popularity of
the Microsoft Kinect® platform. The simplest of beamforming algorithms, the delay-and-sum
beamformer, uses only this geometric knowledge—that is the arrangement of the microphones
and the speaker’s position—to compensate for the time delays of the signals arriving at each
sensor and then additively combine them. More sophisticated adaptive beamformers minimize
the total output power of the array under the constraint that the desired source must be unat-
tenuated. The conventional adaptive beamforming algorithms attempt to minimize a quadratic
optimization criterion related to signal-to-noise ratio (SNR). However, recent research has re-
vealed that such quadratic criteria are not optimal for acoustic beamforming of human speech.
Hence, we also present beamformers based on nonconventional optimization criteria that have
appeared more recently in the literature. In particular, recent research has revealed that use-
ful optimization criteria can be devised by attempting to restore the non-Gaussian statistical
characteristics present in uncorrupted or “clean” speech. As these characteristics are dimin-
ished through the introduction of noise or reverberation, the use of adaptive beamforming
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techniques to restore the original statistical characteristics reduces the effect of these distor-
tions, and hence improves speech-recognition performance.

A second research trend upon which we will report is the growing use of spherical mi-
crophone arrays. The literature on array processing with spherical arrays differs from the
“conventional” array processing literature in that it attempts to explicitly account for diverse
acoustic phenomena, namely, the diffraction of sound around a solid sphere, as well its scat-
tering from such an object. While diffraction and scattering are present in all acoustic array
processing applications, the conventional literature takes them into account only through the
calculation of second-order statistics (SOS) between pairs of sensors. In the spherical array
literature, on the other hand, these effects are incorporated into the theoretical analysis.

A third trend upon which we report is the combination of adaptive beamforming techniques
developed for conventional arrays with the acoustic theory developed for spherical arrays. This
all important research direction, which has only very recently appeared, will, in the opinion
of the current authors, dominate the field in the coming years and decades.

The balance of this contribution is organized as follows. We begin in Section 6.1 by
discussing speaker tracking based on the use of Bayesian filters. In Section 6.2, we review
the basics of the conventional array-processing literature. Beginning with the theory of linear
apertures, we investigate the effects of processing with discrete arrays as well as array steering.
Two important concepts introduced in this section are those of poor low-frequency directivity,
which arises from the finite extent of an array, and high-frequency spatial aliasing that arises
from the necessity of sampling an aperture at discrete points. Our discussion of adaptive
array processing begins in Section 6.3. This includes both array processing based on SOS,
as introduced in Section 6.3.1, as well as that based on higher order statistics (HOS) or
non-Gaussian criteria, as discussed in Section 6.3.8. Other topics covered in Section 6.3
include theoretical models for noise fields in Section 6.3.2, subband analysis and synthesis
for adaptive filtering and beamforming in Section 6.3.3, beamforming performance criteria
in Section 6.3.4, the generalized sidelobe canceller (GSC) in Section 6.3.5 as well as its
recursive implementation in Section 6.3.6, and other conventional beamformers in Section
6.3.7. The first set of distant speech-recognition (DSR) results is presented in Section 6.3.10;
these compare the performance of several different beamforming optimization criteria. Section
6.4 takes up our presentation of spherical array processing; we discuss acoustic diffraction and
scattering, as well as their effects on the sensitivity of a spherical array to plane waves. We
also introduce the concept of decomposing a sound field into spherical harmonics, which can
be used for beamforming much like the output of a single microphone is used in conventional
beamforming techniques. Section 6.5 describes how beamforming techniques based on the
SOS discussed in Sections 6.3.1 can be profitably applied to spherical array processing. A
comparison of conventional, linear, and spherical arrays is presented in Section 6.6 based on
the beamforming performance criteria defined in Section 6.3.4. Thereafter, our second set of
DSR results comparing the two arrays is presented. Finally, in Section 6.8, we present our
conclusions.

6.1 Speaker Tracking

Before beamforming can be effectively used to enhance the speech of a desired speaker in a
DSR application, the speaker’s position, denoted as x, relative to the microphone array must
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be known or estimated. Hence, let us begin our discussion by briefly examining how such an
estimation can be performed.

The time delay of arrival (TDOA) between the microphones at positions m1 and m2 can
be expressed as

T (m1 ,m2 ,x) � ‖x − m1‖ − ‖x − m2‖
c

, (6.1)

where c is the speed of sound, which is approximately 344 m/s at sea level. The definition
(6.1) can be rewritten as

T (mm , mn ,x) � Dm − Dn

c
, (6.2)

where

Dn � ‖x − mn‖ ∀ n = 0, . . . , S − 1 (6.3)

is the distance from the speaker to the microphone located at mn and S is the total number of
microphones, as shown in Figure 6.1.

Let τ̂mn denote the observed TDOA for the mth and nth microphones. The TDOA can
be observed or estimated with a variety of well-known techniques. Perhaps the most popular
method involves the phase transform (PHAT) [7], a variant of the generalized cross-correlation
(GCC), which can be expressed as:

ρmn (τ ) � 1
2π

∫ π

−π

Ym (ejωτ )Y ∗
n (ejωτ )

|Ym (ejωτ )Y ∗
n (ejωτ )| ejωτ dω, (6.4)

where Yn (ejωτ ) denotes the short-time Fourier transform (STFT) of the signal arriving at the
nth sensor in the array [54]. The definition of the GCC in (6.4) follows directly from the fre-
quency domain calculation of the cross-correlation of two sequences. The normalization term∣∣∣Ym (ejωτ )Y ∗

n (ejωτ )
∣∣∣ in the denominator of the integrand is intended to weight all frequencies

equally. It has been shown that such a weighting leads to more robust TDOA estimates in noisy
and reverberant environments [12]. Once ρmn (τ ) has been calculated, the TDOA estimate is

Figure 6.1 Positions of the microphones {ms} and speaker x, as well as the distances between them
{Ds}.
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obtained from

τ̂mn = max
τ

ρmn (τ ). (6.5)

In other words, the “true” TDOA is taken as that which maximizes the value of the PHAT.
As (6.5) is typically calculated with an inverse discrete Fourier transform (DFT), a parabolic
interpolation is often performed to overcome the granularity in the estimate due to the digital
sampling interval [54]. Usually Yn (ejωk ) appearing in (6.4) is calculated with a Hamming
analysis window of 15–25 ms in duration [12].

Let us assume that the microphones are divided into a number S2 of distinct microphone
pairs. Consider two microphones located at ms1 and ms2 comprising the sth microphone pair,
and once more define the TDOA as in (6.2), where x represents the position of an active speaker,
and define Ts(x) � T (ms1 ,ms2 ,x). Source localization based on the maximum likelihood
(ML) criterion [31] proceeds by minimizing the error function

ε(x) =
S2 −1∑
s=0

[τ̂s − Ts(x)]2

σ2
s

, (6.6)

where σ2
s denotes the error covariance associated with this observation, and τ̂s is the observed

TDOA as in (6.4) and (6.5).
Although (6.6) implies we should find that x minimizing the instantaneous error criterion,

we would be better advised to attempt to minimize such an error criterion over a series
of time instants. In so doing, we exploit the fact that the speaker’s position cannot change
instantaneously; thus, both the present and past TDOA estimates are potentially useful in
estimating a speaker’s current position. Klee et al. [32] proposed to recursively minimize the
least square error position estimation criterion (6.6) with a variant of the extended Kalman
filter (EKF). This was achieved by first associating the state xk of the EKF with the speaker’s
position at time k, and the kth observation with a vector of TDOAs. In keeping with the
formalism of the EKF, Klee et al. then postulated a state and observation equation:

xk = Fk |k−1xk−1 + uk−1 and (6.7)

yk = Hk |k−1(xk ) + vk , (6.8)

respectively, where

� Fk |k−1 denotes the transition matrix,
� uk−1 denotes the process noise,
� Hk |k−1(x) denotes the vector-valued observation function, and
� vk denotes the observation noise.

The unobservable state xk is to be inferred from the sequence yk of observations. The process
uk and observation vk noises are unknown, but both have zero-mean Gaussian pdfs and
known covariance matrices. Associating Hk |k−1(x) with the TDOA function (6.1) with one
component per microphone pair, it is straightforward to calculate the appropriate linearization
about the current state estimate required by the EKF [67, Section 10.2]:

Hk (x) � ∇xHk |k−1(x). (6.9)
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Figure 6.2 Predictor-corrector structure of the Kalman filter.

By assumption Fk |k−1 is known so that the predicted state estimate is obtained from

x̂k |k−1 = Fk |k−1 x̂k−1|k−1 , (6.10)

where x̂k−1|k−1 is the filtered state estimate from the prior time step; the calculation of x̂k |k−1
as in (6.10) is known as prediction. Let us define the innovation as

sk � yk − Hk |k−1
(
x̂k |k−1

)
.

The innovation is called as such because it represents the component of the response of the
system that could not be predicted from the state equation (6.7). The new filtered state estimate
is calculated from

x̂k |k = x̂k |k−1 + Gk sk , (6.11)

where Gk denotes the Kalman gain, which can be calculated through a well-known recursion
[67, Section 4.3]. A block diagram illustrating the prediction and correction steps in the state
estimate update of a conventional Kalman filter is shown in Figure 6.2.

6.2 Conventional Microphone Arrays

We will now analyze the characteristics of conventional apertures and arrays. As we will learn
in Section 6.4, several of these characteristics are shared by the less conventional spherical
apertures and arrays.

The relationship between the spherical coordinates (r, θ, φ) and Cartesian coordinates
(x, y, z) is shown in Figure 6.3; the polar angle θ and azimuth φ are measured from the
z- and x-axes, respectively, and have ranges 0 ≤ θ ≤ π and −π ≤ φ ≤ π where φ = π/2 cor-
responds to the y-axis. In the figure, a plane wave is impinging on an array of microphones
located along the x-axis; the vector a indicates the direction of arrival of the plane wave. A
plane wave is named as such because any locus of constant phase—or wavefront—is a plane;
the plane-wave assumption is most accurate when the sources are relatively distant from the
array as compared to the aperture length, which by definition is the maximum physical extent
of the aperture.

Before taking up the case of conventional microphone arrays, let us consider the linear
aperture of length L shown in Figure 6.4. The unit normal vector perpendicular to the wavefront
can be expressed in Cartesian coordinates as

a = −

⎡
⎢⎣ sin θ cos φ

sin θ sin φ

cos θ

⎤
⎥⎦ . (6.12)
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Figure 6.3 Relation between the spherical coordinates (r, θ, φ) and Cartesian coordinates (x, y, z).

The vector wavenumber

k � 2π

λ
a, (6.13)

where λ is the length of the propagating wave, indicates both the direction of arrival and
frequency of the propagating wave; the direction of arrival is given by a � k/|k|, while the
scalar wavenumber—defined as

k � ‖k‖ =
2π

λ
=

ω

c
, (6.14)

cos θz

z

z θ

−k

k

L

Wavefront

x

Linear aperture

a

Figure 6.4 A plane wave with normal vector a and wavenumber k impinging on a linear aperture of
length L lying along the z-axis.
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where c is the speed of sound—is the angular frequency of the plane wave. Both k and k
are often referred to as simply the wavenumber; we will also adopt this practice where the
difference between the two is clear from context. For an arbitrary point x, the TDOA with
respect to the origin of the coordinate system is

τ (x) =
aT x

c
. (6.15)

Assuming now that all points on the linear aperture lie on the z-axis, then (6.12) and (6.15)
imply

τ (z) = −z cos θ

c
= −uz

c
, (6.16)

where u � cos θ is the direction cosine for the z-axis. The component of k along the z-axis is
given by:

kz � −‖k‖ cos θ = −ω

c
u = −2π

λ
u. (6.17)

From (6.16) and (6.17) it then follows

ωτ (z) = kz z. (6.18)

Consider now a narrow-band source signal f (t) with spectrum F (ω). Given that a delay
τ (z) in the time domain corresponds to a linear phase shift e−iτ (z )ω in the frequency domain,
the Fourier transform of the signal component arriving at point z can be expressed as:

F (ω, kz , z) = F (ω)e−iτ (z )ω = F (ω)e−ikz z , (6.19)

where1 i �
√−1. If the signal components arriving along the entire aperture are weighted with

a function w∗
a (z) and then combined, then the result is the frequency wavenumber response

function

Υ(ω, kz ) �
∫ ∞

−∞
w∗

a (z)e−ikz z dz. (6.20)

Let us initially assume that

wa(z) =
1
L

{
1, ∀ − L/2 ≤ z ≤ L/2,

0, otherwise.
(6.21)

Substituting (6.21) into (6.20), we find

Υ(ω, kz ) =
∫ L/2

−L/2
e−ikz z dz = sinc

(
L

2
kz

)
,

where

sinc(x) � sin x

x
. (6.22)

1 For present purposes, we break with the signal processing convention of defining j �
√−1, as j must be reserved

to denote the spherical Bessel function in the sequel.
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Figure 6.5 Beam patterns for the linear aperture with L/λ = 0.5, 1, 2, and 10.

Equivalently, given that sinc(x) is an even function

Υ(ω, kz ) = sinc
(
−L

2
· 2π

λ
u

)
= sinc

(
πL

λ
· u
)

. (6.23)

A plot of Υ(ω, kz ) for several values of L/λ is shown in Figure 6.5. In order to properly analyze
the curves in the figure, we must introduce several new terms. With our initial analysis, we strive
primarily for intuition rather than mathematical precision; the latter will follow in subsequent
sections. First of all, as the x-axis of the plot in Figure 6.6 corresponds to u = cos θ, we recognize

d = L / S

L x

z

Figure 6.6 A linear aperture of length L and its approximation with an array of S = 11 elements with
a uniform spacing of d = L/S.
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that these curves represent the sensitivity of the array to plane waves impinging from various
directions. In general, we will refer to such curves as beam patterns. The maximum sensitivity
for all beam patterns is achieved at u = 0, which corresponds to θ = π/2. We will refer to
this angle of maximum sensitivity as the look direction, because it will presumably align
with the direction of the desired source. All beam patterns attain a value of unity in the look
direction, which implies that a plane wave impinging from this direction is neither amplified
nor attenuated; we will refer to this condition by saying that any beam pattern fulfilling it
satisfies the distortionless constraint in the look direction. We will refer to the broad lobe
around the look direction as the main lobe, and the smaller lobes on either side of the main
lobe as side lobes. Finally, we will refer to the capacity of a given beamformer to maximize
the ratio of its sensitivity in the look direction to its average sensitivity over all directions as
its directivity; high directivity is associated with focussing on a desired signal impinging from
the look direction while suppressing noise and interference from other directions.

Now that we have equipped ourselves with the proper vocabulary, we can proceed with the
analysis of the beam patterns in Figure 6.5. The figure indicates that for very low frequencies
in which L ≤ λ, the directivity of the linear aperture is poor. However, the directivity improves
with increasing frequency. Clearly, all beam patterns satisfy the distortionless constraint for a
look direction of u = 0. The size of the main lobe grows broader with decreasing frequency
and increasing wavelength. For higher frequencies with shorter wavelengths, the beam pattern
exhibits a marked sibe-lobe structure. As we will learn in Section 6.3, more advanced adaptive
beamforming algorithms attempt to reduce the effects of ambient noise and interfering signals
by controlling the structure of these side lobes, a process known as null steering.

As a uniformly sensitive aperture is difficult or impossible to construct, let us consider
sampling the aperture at S points:

zs =
(

s − S − 1
2

)
d ∀ s = 0, 1, . . . , S − 1, (6.24)

where d � L/S is the intersensor spacing of the array elements as shown in Figure 6.6. This
sampling is accomplished by defining the sampled sensitivity function:

ws(z) � 1
S

S−1∑
s=0

δ(z − zs). (6.25)

Substituting (6.25) into (6.20), provides

Υs(ω, kz ) =
1
S

exp
{

ikz d

(
S − 1

2

)} S−1∑
s=0

e−ikz sd ,

which can be readily simplified to [67, Section 13.1.3]

ΥS(ω, kz ) =
1
S

·
sin
(

S
d

2
kz

)

sin
(

d

2
kz

) = sincS

(
d

2
· 2π

λ
· u
)

= sincS

(
πd

λ
· u
)

, (6.26)
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Figure 6.7 Beam patterns for the linear aperture (dotted line) and linear array (solid line) with S = 11
and (a) d/λ = 1

2 , (b) d/λ = 1, and (c) d/λ = 3
2 .

where

sincS (x) � 1
S

· sin Sx

sinx
.

Note that unlike (6.23), the beam pattern (6.26) is periodic with period λ/d. Beam patterns
ΥS(ω, kz ) for several values of d/λ are shown in Figure 6.7. From the figure, it is apparent
that for d/λ ≤ 1/2, the behavior of the array is a very good approximation of that of the
continuous aperture throughout the entire working range −1 ≤ u ≤ 1. On the other hand,
while the behavior of the main lobe around u = is good for d/λ = 1, 3/2, large spurious lobes
with the same magnitude as the main lobe arise at points well removed from the look direction;
these are known as grating lobes.

Clearly, the look direction for the beam patterns in Figures 6.5 and 6.7 is given by (θL, φL) =
(π/2, 0), which is typically referred to as broadside. Setting the look direction to broadside is
achieved with a uniform weighting of the linear aperture as in (6.21), or the uniform weighting
of the sensor outputs in (6.25). The process of setting the look direction is known as beam
steering or simply steering. The look direction can readily be set to any desired direction
k = kL by setting the sensor weights to

ws(z; kL) � 1
S

S−1∑
s=0

e−ikLdδ(z − zs). (6.27)

Doing so yields the beam pattern:

B(kz , ω; kL) � vH
k (kL)vk(kz ), (6.28)

where the array manifold vector is defined as

vk(kz ) �
[

ei( S −1
2 )kz d ei( S −1

2 −1)kz d · · · e−i( S −1
2 )kz d

]T
. (6.29)

The array manifold vector is nothing more than a vector of phase shifts induced by the
propagation delay for each sensor.

While the visible region is by definition −1 ≤ u ≤ 1, it is customary to conceptualize u as
extending over the entire real line. This is done to facilitate the visualization of grating lobes
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(a) d = 2λ/ 3, θL = π/4

(b) d = λ/2, θL = π/2

Figure 6.8 Effect of steering on the grating lobes for S = 20 plotted in Cartesian and polar coordinates.

moving into the visible region as the result of beam steering. The effect of steering is shown in
Figure 6.8, from which it is apparent that the grating lobes recur at regular intervals whether
or not they are within the visible region. From the figure it is apparent that steering can cause
grating lobes to enter the beam pattern for d > λ/2. This phenomenon is known as spatial
aliasing, and occurs when the propagating wave is not sampled sufficiently often in space.
The half wavelength rule [67, Section 13.1.4] states that avoiding spatial aliasing—even when
steering over the entire front half plane—requires that

d

λ
≤ 1

2
,

which is to say, the wave must be sampled as least twice along its length. This rule is analogous
to the Nyquist sampling theorem [55, Section 4] from conventional signal processing.

The beam pattern (6.28) leads to the definition of the delay-and-sum beamformer weights
as:

wH
DS(ω, kz ) =

vH
k (ω, kz )

vH
k (ω, kz )vk(ω, kz )

. (6.30)

The delay-and-sum beamformer is the simplest fixed design that satisfies the distortionless
constraint, which can be expressed as

wH vk = 1, (6.31)
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where for convenience the dependence on (ω, kz ) has been suppressed. Equation (6.31) implies
that such a beamformer passes plane waves impinging from the look direction without atten-
uation or amplification. This is achieved by time aligning the signals reaching each element
in the array, and then summing them together coherently. As we will learn in the sequel, more
advanced designs maintain this distortionless constraint, while simultaneously attempting to
combine the signal components due to interference in a destructive manner, such that they are
suppressed in the final output of the beamformer.

Although simple to analyze, it is well known that a linear array does not provide the optimal
placement of sensors. The analysis of this section indicates that designing a microphone array
for a broadband signal such as human speech involves a careful trade-off between achieving
sufficient directivity at low frequencies, and avoiding spatial aliasing at high frequencies (see,
e.g., [63, Section 3.9.2] and Gazor and Grenier [20]). We will encounter these issues again in
considering the design of spherical microphone arrays.

6.3 Conventional Adaptive Beamforming Algorithms

In this section, we discuss adaptive beamforming algorithms. In addition to passing a desired
signal undistorted through the processing chain, such algorithms suppress unwanted noise,
reverberation, or overlapping speech emanating from other directions. Hence, they are poten-
tially far more effective at enhancing the desired signal than any fixed beamformer design.

6.3.1 Minimum Variance Distortionless Response Beamformer

The delay-and-sum beamformer can emphasize a wave emanating from a desired or look
direction, and to some degree suppress waves impinging from other directions. However,
as it is a fixed design, it does not provide optimal suppression for strong, coherent sources
of interference. In contrast, the adaptive beamformers can effectively place a null on any
interference by controlling the sidelobe structure of the beam pattern, which is achieved by
minimizing the variance of beamformer’s outputs while maintaining a distortionless constraint
in the look direction. This section describes one of the most basic adaptive beamforming
methods, the minimum variance distortionless response (MVDR) beamformer. The MVDR
beamformer is based on the use of second order statistics (SOS), that is it requires only the
knowledge of the covariance or spatial spectral matrix of the inputs to the microphone array.

For reasons of computational efficiency, modern adaptive filtering or beamforming al-
gorithms are usually implemented in the frequency or—better yet—subband domain [24,
Section 7]. Section 6.3.3 briefly presents subband analysis and synthesis. Here, we consider
beamforming in the subband domain. Let us define the subband domain snapshot for an array
of S discrete sensors as

X(ω) �
[
X0(ω) X1(ω) · · · XS−1(ω)

]T
, (6.32)

where Xs(ω) is the subband component for sensor s. For present purposes, let us assume that
the complete snapshot consists of the sum

X(ω) = F(ω) + N(ω), (6.33)
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where F(ω) is the component contributed by the desired signal and N(ω) is due to the ambient
noise and interference. Let us define the desired signal F (ω), which we assume to be transmitted
on a plane wave with wavenumber ks impinging on the sensor array. Letting ms denote the
position of the sensor s leads to the representation

F(ω) � F (ω)vk(ks), (6.34)

where the array manifold vector in this case is defined as

vk(ks) �
[

e−kT
s m 0 e−kT

s m 1 · · · e−kT
s mS −1

]T
. (6.35)

Alternatively, we can express the array manifold vector as

v(ω) �
[

e−iωτ0 e−iωτ1 · · · e−iωτS −1
]
, (6.36)

where

ωτs = kT
s ms ∀ s = 0, 1, . . . , S − 1.

Equation (6.36) is actually a more general definition of the array manifold vector than (6.35),
in as much as it encompasses spherical as well as plane waves; it is only necessary to modify
the way in which τs is calculated. The output of the beamformer can then be expressed as

Y (ω) = wH (ω)X(ω), (6.37)

where wH (ω) are the frequency-dependent sensor weights.
In order to calculate the optimal MVDR sensor weights, the covariance matrix of the outputs

of the array sensors must be known or estimated. Here, we assume they are known such that

ΣX (ω) � E
{
X(ω)XH (ω)

}
, (6.38)

where E{−} is the probabilistic expectation operator [57, Sections 5–3]. We then determine
the optimum weight vector that minimizes the variance of the beamformer’s outputs:

ΣY � E
{
|Y (ω)|2

}
= wH (ω)ΣX (ω)w(ω), (6.39)

subject to the distortionless constraint (6.31). The well-known solution is the MVDR beam-
former [67, Section 13.3.1]. The weight vector of the MVDR beamformer can be expressed
as

wH
MVDR(ω) =

vH (ω)Σ−1
X (ω)

vH (ω)Σ−1
X (ω)v(ω)

. (6.40)

In practice, acoustic beamforming applications update the covariance matrix ΣX only dur-
ing periods of inactivity of the desired source in order to avoid cancellation of the desired
signal, which is known as signal cancellation [65]. Van Trees [63, Section 6.2.4] refers to
the beamformer that uses the entire input for computation of the covariance matrix as the
minimum power distortionless response (MPDR) beamformer, although both beamformers
are commonly referred to as MVDR beamformers in the literature.

In order to avoid excessively large side lobes in the beam pattern, small weights are typically
added to the main diagonal of ΣX , which is known as diagonal loading [67, Section 13.3.7].
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(a) Beam pattern in Cartesian coordinates (b) Polar plot of the beam pattern

Figure 6.9 Beam patterns of the MVDR beamformer with N = 20 sensors and d/λ = 1/2 in the case
of the look direction of u = 0 for two interference signals.

Letting σ2
d denote the amount of diagonal loading, the weight vector of the MVDR beamformer

can be written as

wH
MVDR =

vH
(
ΣX + σ2

d I
)−1

vH
(
ΣX + σ2

d I
)−1 v

, (6.41)

where the frequency ω is omitted here for the sake of clarity.
Figure 6.9 shows the beam patterns of the MVDR beamformer constructed from the linear

array with twenty equally spaced sensors and an intersensor spacing of d = λ/2. In Figure
6.9, the diagonal loading is σ2

d = 0.01, and the look direction is set as u = 0; two interference
signals are assumed to come from u = −0.3 and u = 0.3 as indicated by the dotted lines. It is
clear from the figure that the MVDR beamformer can maintain unity gain in the look direction
at u = 0, while placing deep nulls on the directions of arrival of the interference at u = ±0.3.

6.3.2 Noise Field Models

Although the MVDR beamformer can effectively suppress the interference signals by comput-
ing the noise covariance matrix from actual observations, it is often better to use a theoretical
noise field model in practice. Two models that appear frequently in the literature are the
incoherent and diffuse noise models.

In the case that a noise field is spatially uncorrelated (incoherent), the correlation of noise
signals received at microphones at any given spatial location is zero. It was shown in [6, Section
4] that, under that condition, the noise covariance matrix becomes an identity matrix, that is,
ΣX (ω) = σ2

N I. In that case, the MVDR solution for the sensor weights becomes equivalent
to those of the delay-and-sum beamformer. The incoherent noise model is often appropriate
when the distance between microphones is large and there are no coherent noise sources.
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If the sensors of an array receive plane wave noise signals uniformly distributed on the
surface of a sphere with random phase, a spherically isotropic noise field results. In this case,
the components of the noise covariance matrix can be expressed as

ΣN
s , s

′ (ω) = σ2
N sinc

(
ωds,s′

c

)
, (6.42)

where ds,s′ is the distance between microphones s and s
′
. When the weights (6.41) of the

MVDR beamformer are estimated based on (6.42), the superdirective beamformer is obtained
[67, Section 13.3.4]. Another theoretical noise model frequently used in acoustic beamforming
is the cylindrically isotropic noise field, which yields a sensor covariance matrix of

ΣN
s , s

′ (ω) = σ2
N J0

(
ω ds,s′

c

)
, (6.43)

where J0 is the cylindrical Bessel function of order zero [53, Section 10.2]. The cylindrically
isotropic noise field is a good approximation for babble noise [5, Section 2.3.3].

6.3.3 Subband Analysis and Synthesis

Because of its computational efficiency, adaptive filtering and beamforming operations are
often performed in the frequency or subband domain [67, Section 11], which provides addi-
tional advantages in terms of speed of convergence. Frequency domain analysis is typically
performed by applying a windowing sequence w[n], such as the Hamming window, to isolate
a segment of the input, then performing a discrete Fourier transform (DFT) to this win-
dowed sequence. This is equivalent to calculating STFT of the segment [56, Section 10.3].
In principal, the same steps are also used for subband analysis. However, in the latter, if M
subbands are to be used for analysis, the length of the window is typically mM for some
integer m > 1, which implies that the windowed signal must be time aliased. The advantage
afforded by the longer window is that the stop band suppression can be much greater than that
achieved by frequency domain analysis [67, Section 11.8]. This is a desirable characteristic
for both adaptive filtering and beamforming as the outputs of all subbands can be treated as
statistically independent; this independence is violated if there is significant spectral overlap
between adjacent subbands. Moreover, the design of a subband analysis bank can be paired
with that of a subband synthesis bank such that the combination is able to reconstruct the
original input signal to arbitrary accuracy; that is it is able to achieve perfect reconstruction.
Subband analysis and synthesis filter banks that are optimally suited to adaptive filtering and
beamforming applications achieve perfect reconstruction through oversampling rather than
aliasing cancellation [67, Section 11].

A system for performing subband analysis and synthesis is shown in Figure 6.10. The set
of transfer functions {Hm (z)} comprises the analysis filter bank, which splits the input x[n]
into M subband signals {Xm [n]}M −1

m=0 . The set {Gm (z)} of transfer functions comprises the
synthesis filter bank, which recombines the M subband signals {Ym [n]}M −1

m=0 into a single
output x̂[n]. Each Ym [n] is obtained by multiplying Xm [n] with a complex constant, which is
determined with an adaptive filtering or beamforming algorithm. In the former case, there are
a single analysis bank and a single synthesis bank; in the latter, there is one analysis bank for
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Figure 6.10 Schematic of subband processing.

each element in a sensor array, but only a single synthesis bank as all the samples for a given
subband are combined with a beamforming operation prior to synthesis.

A common class of filter banks is that wherein the impulse response of each filter is obtained
by modulating a prototype impulse response h0 [n] according to

hm [n] = h0 [n] ej2πnm/M ∀m = 0, . . . , M − 1, (6.44)

which implies that the impulse responses for all the filters in the bank are obtained from a
single prototype. The processes of windowing and filtering are then equivalent provided that
h0 [n] = w[−n]. Applying the z-transform to both sides of (6.44), we obtain

Hm (z) � H0(zW m
M ), (6.45)

where WM = e−j2π/M is the Mth root of unity. Equation (6.45) implies that Hm (ejω ) is a
shifted version of the frequency response of H0(ejω ) according to

Hm (ejω ) = H0(ej (ω−2πm )/M )). (6.46)

Similarly, for the synthesis bank, the impulse responses of the individual filters are related
by

gm [n] = g0 [n] ej2πnm/M ∀ m = 0, . . . , M − 1,

so that we can write

Gm (z) � G0(zW m
M ). (6.47)

We will now introduce two important operations in the filter bank system, decimation and
expansion. Figure 6.10 also illustrates two corresponding blocks referred to as the D-fold
decimator and the D-fold expander. The D-fold decimator with input x[n] produces the output

xD[n] = x[nD] (6.48)
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for integer D. In the frequency domain, the output of the decimator can be written as

XD(ejω ) =
1
D

D−1∑
k=0

X(ej (ω−2πk)/D ); (6.49)

see Vaidyanathan [62, Section 4.1]. From (6.49), the operation of the decimator can be
interpreted as follows: (1) stretch the input spectrum X(ejω ) by a factor of D in order to form
X(ejω/D ), (2) create D − 1 copies of the stretched spectrum by shifting it with an amount of
2π, (3) sum the original spectrum and all the stretched versions together, and (4) divide it by
D. Normally, each stretched version is overlapped with the other shifted copies. The effect of
the overlap is known as frequency aliasing. In order to control such aliasing, the decimation
factor D is set according to D = M/2r for some integer r > 1, which implies that the subbands
are oversampled.

The D-fold expander takes input y[n] and interpolates as

yE[n] =

{
y[n/D] if n is an integer multiple of D,

0 otherwise.
(6.50)

Based on (6.50), we can write

YE (z) =
∞∑

n=−∞
yE [n] z−n =

∞∑
k=−∞

yE [kD] z−kD =
∞∑

k=−∞
y[k] z−kD . (6.51)

Upon setting z = ejω for the last equality, we have

YE (ejω ) = Y (ejωD ). (6.52)

It is clear from (6.52) that the expander scales the frequency axis, which creates images of the
compressed spectrum of Y (ejω ); this is known as imaging.

The filter bank obtained in the fashion described above is known as a uniform DFT filter
bank, where DFT refers to the discrete Fourier transform used in its implementation. The
uniform DFT analysis and synthesis filter banks are typically implemented in polyphase form
in order to achieve maximal computational efficiency [67, Section 11]. The task of designing
a uniform DFT filter bank devolves to that of designing the analysis and synthesis prototypes
h0 [n] and g0 [n], respectively.

In the class of cosine modulated filter banks, perfect reconstruction is achieved through
aliasing cancellation [62, Section 5.6]. However, during adaptive filtering or beamforming, the
perfect reconstruction property can be destroyed as arbitrary magnitude scalings and phase
shifts are applied to the subband samples. De Haan et al. [11] abandoned aliasing cancellation
and designed analysis and synthesis prototypes based on minimization of the individual aliasing
components for each subband. De Haan et al. also demonstrated that adaptive beamforming
with their filter banks provides superior speech enhancement due to better suppression of
aliasing effects; frequency distortion effect in such filter banks can be eliminated by imposing
a Nyquist(M) constraint on the filter bank prototypes [33].

Use of a digital filter bank requires that the array manifold vector (6.36) be redefined as

v(ωm ) �
[

e−iωm τ0 fs e−iωm τ1 fs · · · e−iωm τS −1 fs

]
, (6.53)

where fs is the digital sampling frequency.
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6.3.4 Beamforming Performance Criteria

Before continuing our discussion of adaptive array processing algorithms, we introduce three
measures of beamforming performance, namely, array gain (AG), white noise gain (WNG),
and directivity index (DI). These criteria will prove useful in our performance comparisons of
conventional, linear and spherical arrays in Section 6.5.

Array Gain

The array gain is defined as the ratio of the SNR at the output of the beamformer to the SNR at
the input of a single channel of the array. Hence, array gain is a useful measure of how much
a particular acoustic array processing algorithm enhances the desired signal. In this section,
we formalize the concept of the array gain, and calculate it for both the delay-and-sum and
MVDR beamformers given in (6.30) and (6.40), respectively.

As in Section 6.3.1, let us assume that the component of the desired signal reaching each
component of a sensor array is F (ω) and the component of the noise and interference reaching
each sensor is N (ω). This implies that the SNR at the input of the array can be expressed as

SNRin(ω) � ΣF (ω)
ΣN (ω)

, (6.54)

where ΣF (ω) � E{|F (ω)|2} and ΣN (ω) � E{|N (ω)|2}. Then, for the vector of beamforming
weights wH (ω), the output of the array is given by

Y (ω) = wH (ω) X(ω) = YF (ω) + YN (ω), (6.55)

where YF (ω) � wH (ω) F(ω) and YN (ω) � wH (ω) N(ω) are, respectively, the signal and noise
components in the output of the beamformer. Let us define the spatial spectral covariance
matrices:

ΣF (ω) � E{F(ω)FH (ω)},
ΣN (ω) � E{N(ω)NH (ω)}.

Then, upon assuming the F (ω) and N (ω) are statistically independent, the variance of the
output of the beamformer can be calculated according to

ΣY (ω) = E{|Y (ω)|2} = ΣYF
(ω) + ΣYN

(ω), (6.56)

where

ΣYF
(ω) � wH (ω) ΣF (ω) w(ω) (6.57)

is the variance of the signal component of the beamformer’s output, and

ΣYN
(ω) � wH (ω) ΣN (ω) w(ω) (6.58)

is the variance of the noise component. Expressing the snapshot of the desired signal once
more as in (6.32), we find that the spatial spectral matrix F(ω) of the desired signal can be
written as

ΣF (ω) = ΣF (ω) vk(ks) vH
k (ks). (6.59)
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Substituting (6.59) into (6.57), we can calculate the variance of the output signal spectrum as

ΣYF
(ω) = wH (ω) vk(ks) ΣF (ω) vH

k (ks) w(ω). (6.60)

If we now assume that w(ω) satisfies the distortionless constraint (6.31), then (6.60) reduces
to

ΣYF
(ω) = ΣF (ω),

which holds for both the delay-and-sum and MVDR beamformers.
Substituting (6.30) into (6.58) it follows that the noise component present at the output of

the delay-and-sum beamformer (DSB) is given by

ΣYN
(ω) =

1
N 2 vH

k (ks) ΣN (ω) vk(ks) (6.61)

=
1

N 2 vH
k (ks)ρN (ω)vk(ks)ΣN (ω), (6.62)

where the normalized spatial spectral matrix ρN (ω) is defined through the relation

ΣN (ω) � ΣN (ω) ρN (ω). (6.63)

Hence, the SNR at the output of the beamformer is given by

SNRout(ω) � ΣYF
(ω)

ΣYN
(ω)

=
ΣF (ω)

wH (ω) ΣN (ω)w(ω)
. (6.64)

Then based on (6.54) and (6.64), we can calculate the array gain of the DSB as

Adsb(ω, ks) � ΣYF
(ω)

ΣYN
(ω)

/
ΣF (ω)
ΣN (ω)

=
N 2

vH
k (ks) ρN (ω) vk(ks)

. (6.65)

Repeating the foregoing analysis for the MVDR beamformer (6.40), we arrive at

Amvdr(ω, ks) = vH
k (ks) ρ−1

N (ω) vk(ks). (6.66)

If noise at all sensors are spatially uncorrelated, then ρN (ω) is the identity matrix and the
MVDR beamformer reduces to the DSB. From (6.65) and (6.66), it can be seen that in this
case, the array again is

Amvdr(ω, ks) = Adsb(ω, ks) = N. (6.67)

In all other cases

Amvdr(ω, ks) > Adsb(ω, ks). (6.68)

The MVDR beamformer is of particular interest because it comprises the preprocessing
component of two other important beamforming structures. Firstly, the MVDR beamformer
followed by a suitable postfilter yields the maximum SNR beamformer [63, Section 6.2.3].
Secondly, and more importantly, by placing a Wiener filter [24, Section 2.2] on the out-
put of the MVDR beamformer, the minimum mean-square error (MMSE) beamformer is
obtained [63, Section 6.2.2]. Such postfilters are important because it has been shown that
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they can yield significant reductions in error rate [46,47]. If only a single subband is con-
sidered, the MVDR beamformer without modification will uniformly provide the highest
SNR, as indicated by (6.68), and hence the highest array gain; we will return to this point in
Section 6.5.

White Noise Gain

The WNG is by definition [10]:

Gw(ω) �

∣∣∣wH (ω) v(ks)
∣∣∣2

wH (ω) w(ω)
. (6.69)

The numerator of (6.69), which will be unity for any beamformer satisfying the distortionless
constraint (6.31), represents the power of the desired signal at the output of the beamformer,
while the denominator is equivalent to the array’s sensitivity to self-sensor noise. Gilbert and
Morgan [22] explain that WNG also reflects the sensitivity of the array to random variations
in its components, including the positions and response characteristics of its sensors. Hence,
WNG is a useful measure of system robustness.

It can be shown that uniform weighting of the sensor outputs provides the highest WNG
[63, Section 2.6.3]. Hence, we should expect the delay-and-sum beamformer to provide the
highest WNG in all conditions; we will reexamine this assumption in Section 6.5.

Directivity Index

We now describe our third beamforming performance metric. Let us begin by defining the
power pattern as

P (θ, φ) � |B(θ, φ)|2 , (6.70)

where B(θ, φ) is the beam pattern described in Section 6.2 as a function of the spherical coordi-
nates Ω � (θ, φ); see Figure 6.3. Let Ω0 � (θ0 , φ0) denote the look direction. The directivity is
typically defined in the traditional (i.e., nonacoustic) array processing literature as [63, Section
2.6.1]

D(ω) � 4πP (θ0 , φ0)∫
Ωsph

P (θ, φ) dΩ
, (6.71)

where Ωsph represents the surface of a sphere with differential area dΩ; we will consider such
spherical integrals in detail in Sections 6.4 and 6.5.

Assuming that the beamforming coefficients satisfy the distortionless constraint (6.31)
implies P (Ω0) = 1 such that (6.71) can be simplified and expressed in decibels as the directivity
index

DI � −10 log10

[
1
4π

∫
Ω

P (θ, φ) dΩ
]

= −10 log10

[
1
4π

∫ 2π

0

∫ π

0
P (θ, ω) sin θdθdφ

]
. (6.72)
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Figure 6.11 Generalized sidelobe canceller.

Note the critical difference between array gain and directivity index. While the former requires
specific knowledge of the acoustic environment in which a given beamformer operates, the
latter is the ratio of the sensitivity of the array in the look direction to that averaged over the
surface of the sphere. Hence, the directivity index is independent of the acoustic environment
once the beamforming weights have been specified.

In the acoustic array-processing literature, directivity is more often defined as SNR in the
presence of a spherically isotropic diffuse noise field with sensor covariance matrix defined
in (6.42); see Bitzer and Simmer [5]. Under this definition, the directivity index can be
expressed as

DI � −10 log10

∣∣∣wH v(kS)
∣∣∣2

wH ΓSIw
. (6.73)

The superdirective beamformer mentioned in Section 6.3.2 will uniformly provide the highest
directivity index, although this may not be the case when the covariance matrix (6.42) is
diagonally loaded to achieve greater robustness. We will return to this point in Section 6.5.

6.3.5 Generalized Sidelobe Canceller Implementation

The MVDR beamformer can be also realized with a GSC. Figure 6.11 illustrates the beam-
former in GSC configuration.

Henceforth, we will suppress the frequency index ω for the sake of convenience. The weights
of the GSC beamformer consists of three components, the quiescent weight vector wq, the
blocking matrix B, and the active weight vector wa. The output of the beamformer at frame k
for a given subband can be expressed as

Y (k) = (wq − Bwa)H X(k). (6.74)

In keeping with the GSC formalism, wq is chosen to give unity gain in the desired look
direction [67, Section 13.3.7]. The blocking matrix is chosen to be orthogonal to the quiescent
vector such that BH wq = 0. The blocking matrix can be, for example, calculated with an
orthogonalization technique such as the modified Gram—Schmidt method, QR decomposition
or singular value decomposition (SVD) [23]. The orthogonality implies that the distortionless
constraint will be satisfied for any choice of wa. Note that the blocking matrix is not unique.

In the case that the position of a sound source is static, the active weight vector is typically
adjusted so that the variance of the GSC beamformer’s outputs is minimized. Without diagonal
loading, the solution of the active weight vector can be expressed as

wH
a = wH

q ΣXB
(
BH ΣXB

)−1
, (6.75)

where ΣX is the covariance matrix of the input vectors.
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The interference signal can be effectively suppressed based on Equations (6.40), (6.41),
or (6.75). However, they are not suitable for the online implementation because it assumes
that the SOS, ΣX , are known from a sufficient amount of data. It is preferably updated on
a sample-by-sample basis. In Section 6.3.6, the online algorithm of the conventional GSC
beamformer will be described.

6.3.6 Recursive Implementation of the GSC

In many applications, the active weight vector of the GSC beamformer is updated at each frame
by using a recursive least squares (RLS) method or a least mean square (LMS) algorithm. Here,
we review, without formal proof, the RLS algorithm and briefly comment on the differences
between the RLS and LMS algorithms. Further details can be found in [63, Section 7.4] and
[63, Section 7.6], respectively.

In order to recursively update the active weight vector at frame T while retaining the
information from frames t = 0, 1, . . . , T − 1 , we first introduce forgetting factor 0 < μ < 1
and define the exponentially weighted spatial spectral matrix

ΦX (T ) �
T∑

t=1

μT −tX(t)XH (t). (6.76)

Similarly, the exponentially weighted spatial spectral matrix of the output Z(t) of the blocking
matrix is

ΦZ (T ) �
T∑

t=1

μT −tZ(t)ZH (t) = BH ΦX (T )B. (6.77)

Finally, the cross-correlation between the blocking matrix’s output Z(t) and the quiescent
vector’s output Yc(t) is given by

ΦZY ∗
c

(T ) �
T∑

t=1

μT −tZ(t)Y ∗
c (t) = BH ΦX (T )wq. (6.78)

Now, let us define the precision matrix and Kalman gain respectively as

PZ (T ) = Φ−1
Z (T ) and (6.79)

gZ (T ) =
μ−1PZ (T − 1)Z(T )

1 + μ−1ZH (T )PZ (T − 1)Z(T )
. (6.80)

The notations are deliberately chosen by considering the relationship between the RLS algo-
rithm and the Kalman filter [24, Section 10.8]. In this case, the well-known Riccati equation
[8, Section 7.4] can be expressed as

PZ (T ) = μ−1PZ (T − 1) − μ−1gZ (T )ZH (T )PZ (T − 1). (6.81)

Postmultiplying both sides of (6.81) by Z(T ) and substituting the resulting equality into (6.80),
we find the gain vector

gZ (T ) = PZ (T )Z(T ). (6.82)



P1: TIX/XYZ P2: ABC
JWST201-c06 JWST201-Virtanen August 31, 2012 8:34 Printer Name: Yet to Come Trim: 244mm × 168mm

Microphone Arrays 131

The goal of the RLS method is to minimize a weighted sum of array outputs Y (t) defined
as

ΦY (T ) �
T∑

t=1

μT −t |Y (t)|2 . (6.83)

Note that the importance of the past outputs decreases exponentially with time T . Upon taking
the derivative of (6.83) with respect to wa(T ) and setting the result to zero, we find

wa(T ) = Φ−1
Z (T )ΦZY ∗

c
(T ) = PZ (T )ΦZY ∗

c
(T ). (6.84)

Substituting (6.78) and (6.81) into (6.84), we obtain

wa(T ) = wa(T − 1) + gZ (T )e∗p (T ). (6.85)

where

ep (T ) = Yc(T ) − wH
a (T − 1)Z(T ). (6.86)

At each frame, we can add the diagonal component σ2
z to Z(t)ZH (t). The RLS update

formula with diagonal loading can be then written as

wa(T ) =
[
I − σ2

z PZ (T )
]
wa(T − 1) + gZ (T )e∗p (T ), (6.87)

Notice that (6.87) does not directly load the diagonal component of the sample spectral matrix
in contrast to (6.41).

The update algorithms of (6.86) and (6.87) are suitable for on-line operation because the
active weight vector can be adapted with the instantaneous input vector.

The LMS algorithm is a stochastic gradient procedure where a small step in the direction
of the instantaneous gradient is taken at each time step. The difference between the RLS and
LMS implementations is the step size parameter for the update formula. The LMS algorithm
has a choice to adjust the step size parameter whereas the GSC-RLS algorithm uses Φ−1

Z as
the step size. Multiplying the gradient with Φ−1

Z enables each component of the active weight
vector to converge at the same rate. The disadvantage would be additional computation which
can be non-trivial.

6.3.7 Other Conventional GSC Beamformers

In theory, the conventional MVDR beamfomers described above can eliminate interfering
signals. However, in practice, they are prone to the signal cancellation problem whenever there
is an interfering signal that is correlated with the desired signal. In real acoustic environments,
interfering signals are highly correlated with the desired signal, as the latter is reflected from
hard surfaces such as walls and tables and thereafter impinges on the sensor array from
directions that are distinct from the look direction. Beam steering errors as well as magnitude
and phase errors in the frequency responses of the individual sensors in an array can also cause
signal cancellation to occur.

To avoid the signal cancellation, many algorithms have been proposed in the literature. Such
approaches can be classified into the following categories:

1. Updating the active weight vector only when noise signals are dominant [9,26,52].
2. Constraining the update formula for the active weight vector [8,28,51].
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3. Blocking the leakage of desired signal components into the sidelobe canceller by designing
the blocking matrix [25,27,28,64].

4. Taking speech distortion due to the the leakage of a desired signal into account using a
multichannel Wiener filter which aims at minimizing a weighted sum of residual noise and
speech distortion terms [13].

5. Using acoustic transfer functions from the desired source to each sensor in an array instead
of merely compensating for time delays [9,19,59,64].

As mentioned before, the algorithms discussed in this section minimize nearly the same
criterion based on the SOS such as the variance of the beamformer’s outputs. In the following
section, we describe beamforming algorithms which adjust the active weight vector based on
HOS; these algorithms have appeared more recently in the literature.

6.3.8 Beamforming Based on Higher Order Statistics

A multidimensional Gaussian pdf is completely characterized once its mean vector and covari-
ance matrix are known. Hence, speech-enhancement techniques that assume—either implicitly
or explicitly—that speech is a Gaussian random process are said to be second-order methods.
For any non-Gaussian pdf on the other hand, the higher order moments have a great deal of
influence on the fine structure of the pdf. Thus, enhancement techniques that take into account
the deviation from Gaussianity inherent in human speech are said to based on HOS. Such
techniques are the subject of this section.

Statistical Characteristics of Human Speech

In order to avoid the signal cancellation problem, HOS recently have been introduced to the
field of acoustic beamforming. HOS have long been used in the field of independent component
analysis (ICA) [29].

The entire field of ICA is founded on the assumption that all signals of interest are not
Gaussian distributed [30]. Briefly, the reasoning is grounded on two points:

1. The central limit theorem states that the pdf of the sum of independent random variables
(RVs) will approach Gaussian in the limit as more and more components are added,
regardless of the pdfs of the individual components. This implies that the sum of several
RVs will be closer to Gaussian than any of the individual components.

2. The entropy for a complex-valued RV Y is defined as

H(Y ) � −E {log pY (v)} = −
∫

pY (v) log pY (v)dv, (6.88)

where pY (.) is the pdf of Y . The integral form of the entropy for the continuous RVs
with the pdfs is referred to the differential entropy, or simply entropy, and distinguished
from an ensemble average for samples. The entropy is the basic measure of information
in information theory [18]. It is well known that a Gaussian RV has the highest entropy of
all RVs with a given variance [18, Theorem 7.4.1], which also holds for complex Gaussian
RVs [50, Theorem 2]. Hence, a Gaussian RV is, in some sense, the least predictable of
all RVs. Information-bearing signals, on the other hand, are redundant and thus contain
structure that makes them more predictable than Gaussian RVs.
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Figure 6.12 Histograms of real parts of subband frequency components of clean speech and (a) pdfs,
(b) noise-corrupted speech, and (c) reverberated speech.

These points suggest that one must look for the least Gaussian RV in order to obtain
the information-bearing signals. The fact that the pdf of speech is super-Gaussian has often
been reported in the literature [34,45,16]. Noise, on the other hand, is more nearly Gaussian
distributed. In fact, the pdf of the sum of several super-Gaussian RVs becomes closer to
Gaussian. Thus, a mixture consisting of a desired signal and several interfering signals can be
expected to be nearly Gaussian distributed.

Figure 6.12a shows a histogram of the real parts of subband samples of speech at frequency
800 Hz. To generate these histograms, the authors used 43.9 min of clean speech recorded
with a close-talking microphone (CTM) from the development set of the Speech Separation
Challenge, Part 2 (SSC2) [43]. The Gaussian, Laplace, K0 , Γ [34], and generalized Gaussian
(GG) pdfs [35] are also shown in Figure 6.12a. In Figure 6.12a, the parameters of each pdf
were estimated from training data based on the ML criterion. It is clear from Figure 6.12 that
the distribution of clean speech is not Gaussian but super-Gaussian. Figure 6.12a suggests that
the GG pdfis well suited for modeling subband samples of speech. From Figure 6.12 a, it is also
clear that the Laplace, K0 , Γ, and GG pdfs exhibit the spikey and heavy-tailed characteristics.
Super-Gaussian pdfs have a sharp concentration of probability mass at the mean, relatively
little probability mass as compared with the Gaussian at intermediate values of the argument,
and a relatively large amount of probability mass in the tail; that is far from the mean.

Figure 6.12b shows histograms of real parts of subband components calculated from clean
speech and noise-corrupted speech. The figure indicates that the pdf of the noise-corrupted
signal, which is in fact the sum of the speech and noise signals, is closer to Gaussian than that
of clean speech.

Figure 6.12c shows histograms of clean speech and reverberant speech in the subband
domain. In order to produce the reverberant speech, a clean speech signal was convolved with
an impulse response measured in a room; see Lincoln et al. [43] for the configuration of the
room. We can observe from Figure 6.12c that the pdf of reverberated speech is also closer to
Gaussian than the original clean speech.

Maximum Kurtosis Beamforming

The excess kurtosis or simply kurtosis of a RV Y with zero mean is defined as

kurt(Y ) � E{|Y |4} − β(E{|Y |2})2 , (6.89)
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where β is a positive constant, which is typically set to three for kurtosis of real-valued RVs
in order to ensure that the Gaussian pdf has zero kurtosis; pdfs with positive kurtosis are
super-Gaussian, and those with negative kurtosis are sub-Gaussian.

As indicated in (6.89), the kurtosis measure considers not only the variance but also the
fourth moment, an HOS. As mentioned previously, any Gaussian pdf is completely specified
by its mean and variance; the HOS are not required.

In practice, the kurtosis of T outputs Y (t) from a beamformer can be measured by simply
averaging samples according to

Jkurt(Y ) � 1
T

T −1∑
t=0

|Y (t)|4 − β

(
1
T

T −1∑
t=0

|Y (t)|2
)2

, (6.90)

where the frequency index ω has been omitted for clarity. The kurtosis criterion does not
require any explicit assumption as to the exact form of the pdf. Due to its simplicity, it is
widely used as a measure of non-Gaussianity. As demonstrated in Kumatani et al. [34,35],
maximizing the degree of super-Gaussianity yields an active weight vector wa capable of
canceling interference—including incoherent noise that leaks through the sidelobes—without
the signal cancellation problem encountered in conventional beamforming.

As discussed in Section 6.3.1, diagonal loading is typically used in beamforming with SOS
in order to reduce the norm of the active weight vector and thereby improve robustness by
inhibiting the formation of excessively large sidelobes [67, Section 13.3.8]. Such a regular-
ization term can be also applied to maximum kurtosis beamforming by defining the modified
optimization criterion of (6.90) with a weight parameter α as

Jkurt(Y ; α) � Jkurt(Y ) − α‖wa‖2 α > 0. (6.91)

In Kumatani et al. [35], the sensitivity of the weight parameter α was investigated in terms of
speech recognition. The best recognition performance was obtained with α = 0.01 although
the effect was not significant.

Unfortunately, there is no closed-form solution for the active weight vector which provides
the maximum kurtosis. Thus, we have to resort to numerical optimization algorithms such as
gradient descent. Upon substituting (6.74) into (6.91) and taking the partial derivative with
respect to wa, we obtain

∂Jkurt(Y ; α)
∂w∗

a
=

2
T

T −1∑
t=0

{
−|Y (t)|2 + βσ2

Y

}
BH (t)X(t)Y ∗(t) − αwa, (6.92)

where σ2
Y is the variance of beamformer’s outputs.

Equation (6.92) is sufficient to implement a numerical optimization algorithm based, for
example, on the method of steepest descent [4, Section 1.6], whereby kurtosis of beamformer’s
outputs can be maximized. The norm of the active weight vector is usually normalized in
addition to the regularization term because it tends to become large.

Maximum Negentropy Beamforming

Another criterion for measuring the degree of super-Gaussianity is negentropy. The negentropy
of a complex-valued RV Y is defined as

neg(Y ) � H(Ygauss) − βH(Y ), (6.93)
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where Ygauss is a Gaussian variable with the same variance σ2
Y as Y , β is a positive constant for

adjusting the equilibrium condition and normally set to unity for negentropy. The entropy of
Ygauss can be expressed as

H(Ygauss) = log
∣∣∣σ2

Y

∣∣∣ + (1 + log π) . (6.94)

Note that negentropy is nonnegative, and zero if and only if Y has a Gaussian distribution.
Clearly, it can measure how far the desired distribution is from the Gaussian pdf. Computing
the entropy of the super-Gaussian variables H(Y ) requires knowledge of their specific pdf.
Thus, it is important to find a family of pdfs capable of closely modeling the distributions of
actual speech signals.

However, the value calculated for kurtosis can be strongly influenced by a few samples
with a low observation probability. Hyvärinen and Oja [30] demonstrates that negentropy is
generally more robust in the presence of outliers than kurtosis.

As shown in Figure 6.12a, the distribution of the subbands of clean speech can be represented
with the generalized Gaussian pdf. In the case that the complex-valued RV Y possesses circular
symmetry, the complex-valued GG pdf can be expressed as

pGG(Y ) =
f

2πB2(f )Γ(2/f )σ̂2 exp

[
−
∣∣∣∣ Y

σ̂B(f )

∣∣∣∣
f
]

, (6.95)

where

B(f ) =
[

Γ(2/f )
Γ(4/f )

]1/2
and (6.96)

Γ(.) is the gamma function [3, Section 5.2]. Note that the GG with f = 2 corresponds to
the Gaussian pdf, whereas the GG pdf converges to a uniform distribution in the case of
f → +∞.

The parameters of the GG pdf can be, for example, estimated using the ML criterion, as in
Wölfel and McDonough [67, Section 13.5.2] and Kumatani et al. [37]. The shape parameters
are estimated independently for each subband, as the optimal pdf is frequency dependent.

In order to develop maximum negentropy beamforming, we compute an ensemble average
of negative log-likelihoods instead of differential entropy. In this case, negentropy of T frames
of output from the array can be calculated according to

Jneg(Y ) = − 1
T

T −1∑
t=0

log pgauss (Y (t)) + β
1
T

T −1∑
t=0

log pGG (Y (t)) , (6.97)

where pgauss(.) is the complex Gaussian pdf. Similar to (6.91), a regularization term can be
added to the empirical negentropy to provide the modified optimization criterion

Jneg(Y ; α) = Jneg(Y ) − α‖wa‖2 α > 0. (6.98)

Upon substituting (6.74) into (6.98) and taking the partial derivative, we obtain

∂Jneg(Y ; α)
∂w∗

a
=

1
T

T −1∑
t=0

{
− 1

σ2
Y

+ β
f |Y (t)|f−2

2(B(f )σ̂)f

}
BH (t)X(t)Y ∗(t) − αwa. (6.99)
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The HOS-based beamformers, maximum kurtosis and maximum negentropy beamformers,
do not suffer from signal cancellation encountered in the SOS-based adaptive beamformers.
Therefore, the active weight vector can be adapted even when the desired source is active.
Indeed, Kumatani et al. [34,35] demonstrated through acoustic simulations that beamformers
based on HOS can emphasize the desired signal by coherently adding its reflections after a
suitable phase shift in the subband domain. Hence, adaptation of the active weight vector is
best performed while the desired speaker is active.

6.3.9 Online Implementation

Adaptive beamforming algorithms require a certain amount of data for stable estimation of the
active weight vector. In the case of HOS-based beamforming, this problem becomes significant
because it entirely relies on numerical optimization algorithms.

In order to achieve efficient estimation, a subspace (eigenspace) filter [63, Section 6.8] can
be used as a preprocessing step for estimation of the active weight vector. Motivations behind
this idea are to (1) reduce the dimensionality of the active weight vector and (2) improve speech
enhancement performance based on decomposition of the outputs of the blocking matrix into
spatially correlated and ambient signal components. Such decomposition can be achieved by
performing an eigendecomposition on the covariance matrix of blocking matrix’s outputs.
Then, we select the eigenvectors corresponding to the largest eigenvalues as the dominant
modes [63, Section 6.8.3]. The dominant modes are associated with the spatially correlated
signals and the other modes are averaged as a signal model of ambient noise. By doing so,
we can readily subtract the averaged ambient noise component from the beamformer’s output.
Moreover, the reduction of the dimension of the active weight leads to computationally efficient
and reliable estimation. Notice that we adjust the active weight vector based on the maximum
kurtosis criterion in contrast to the normal dominant-mode rejection (DMR) beamformers [63,
Section 6.8.3]. It is also worth noting that subspace filtering here is analogous to whitening
used as a preprocessing measure in the field of ICA [30].

In the following sections, we first discuss the subspace method for maximum kurtosis
beamforming and then describe its online implementation. We will continue to omit the
frequency index ω for the sake of convenience.

Subspace Method

In the case that there are neither steering errors nor mismatches between microphones, the
blocking matrix’s output Z(t) only contains the spatially correlated (coherent) interference
and ambient (incoherent) noise signals. However, in the real environments, it also includes the
desired signal components due to those errors as well as reverberation effects.

Let us first denote the D spatially correlated signal components contained in the output of
the N × (N − 1) blocking matrix as

V(t) = [V0(t), · · · , Vd(t), · · · , VD−1(t)]T . (6.100)

Then, the output of the blocking matrix can be expressed as

Z(t) = AV(t) + N(t), (6.101)
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where A and N(t) represent a mixing matrix and the ambient noise signals, respectively. The
direct path from the desired source signal to each microphone is assumed to be excluded from
A because of the distortionless constraint imposed with the blocking matrix. Thus, in the case
that there is neither reverberation nor error such as a microphone array mismatch and steering
error, Z consists of the interference signals only.

Assuming that V(t) and N(t) are uncorrelated, we can write the covariance matrix of Z as:

ΣZ = E
[
Z(t)ZH (t)

]
= AΣVAH + ΣN , (6.102)

where

ΣV = E
[
V(t)VH (t)

]
and ΣN = E

[
N(t)NH (t)

]
.

The subspace method seeks a set of D linearly independent vectors contained in the subspace,
	{A}, spanned by the column vectors of A. The first step for obtaining such set of the vectors
is to solve the generalized eigenvalue (GE) decomposition problem as in Van Trees [63], Roy
and Kailath [58, Section 6.8],

ΣZE = ΣNEΛ,

where Λ is a diagonal matrix of the eigenvalues sorted in the descending order:

Λ = diag [λ0 , · · · , λD−1 , · · · , λN −2 ] (6.103)

and E is a matrix of the corresponding eigenvectors:

E = [e0 , · · · , eD−1 , · · · , eN −2 ] . (6.104)

Here, we assume that ΣN is an identity matrix. Then, we select the eigenvectors with the D
largest eigenvalues, EV = [e0 , · · · , eD−1 ]. In the similar manner, we define the subspace for
the ambient noise as EN = [eD , · · · , eN −2 ].

The theoretical properties of the eigenvectors and eigenvalues can be summarized as follows:

� The subspace spanned by the eigenvectors is equal to that of A, that is R{EV } = R{A}.
� The power of the D spatially correlated signals is associated with the D largest eigenvalues.
� The power of N(k) is equally distributed over all the eigenvalues and N − D − 1 smallest

eigenvalues are all equal to σ2
N , that is the noise floor.

�
R{EN } is the orthogonal complement of R{EV }, that is R{EN } = R{EV }⊥.

In order to cluster the eigenvectors for the ambient noise, we have to determine the number
of the dominant eigenvalues D. Figure 6.13 illustrates actual eigenvalues sorted in descending
order over frequencies. In order to generate the plots of the figures in this section, we computed
the eigenvalues from the outputs of the blocking matrix on the real data described in Kumatani
et al. [38].

As shown in Figure 6.13, it is relatively easy to determine the number of the dominant modes,
D, especially in the case that the number of microphones is much larger than the number of the
spatially correlated signals. We determined D by setting a threshold on the contribution ratio,
λi/

∑N −2
j=0 λj . Figure 6.14 shows the number of the contribution ratios exceeding thresholds,

10−2 , 10−3 , and 10−4 , at each frequency. Figure 6.14 indicates how many dominant modes
are used for subspace filtering when we ignore the eigenvectors associated with the lower
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Figure 6.13 Three-dimensional representation of the eigenvalue distribution as a function of the order
and frequencies.

contribution ratio than the threshold. It is clear from Figure 6.14 that the lower the threshold for
the contribution ratio is set, the more eigenvectors are used. Generally, the lower threshold leads
to accurate representation of the spatially correlated signals at the expense of computational
efficiency.

In the optimization of the active weight vector, we estimate each component corresponding
to the ambient noise signal separately. Accordingly, we use the sum of the eigenvectors for the
ambient noise space as ẽn =

∑N −2
d=D ed . Our subspace filter can be now written as

U = [e0 , · · · , eD−1 , ẽn , ] . (6.105)

Note that we assume the covariance matrix in (6.102) can be approximated as

ΣZ ≈
D−1∑
d=0

λdede
H
d + σ̄2

N ẽn ẽH
n , (6.106)
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where

σ̄2
N =

1
N − D − 1

N −2∑
d=D

λd.

With the outputs of the subspace filter, we estimate the active weight vector providing the
maximum kurtosis value. If the output of the subspace filter is a noise signal, the corresponding
component of the active weight vector should be adjusted so as to subtract the noise component
from the output of the quiescent vector. If it is an echo of the desired signal, the active weight
vector could shift the phase and add the component to the desired signal in order to strengthen
it. These operations would be easier by separating the echo from the ambient noise component
with the subspace filter.

Block-Wise Adaptation of Maximum Kurtosis Beamforming with Subspace Filtering

Figure 6.15 shows configuration of the MK beamformer with the subspace filter. The beam-
former’s output can be expressed as

Y (t) = [wq(t) − B(t)U(t)wa(t)]H X(t). (6.107)

The active weight vector is adjusted so as to achieve the maximum kurtosis of the beamformer’s
outputs. The difference between (6.74) and (6.107) is the subspace filter between the blocking
matrix and active weight vector. The subspace filter can decompose the output vector into
the spatially correlated signal and ambient noise components. Therefore, we only need to
estimate the phase shifts of the active weight vector on the constrained subspace [30, Section
7.4]. Moreover, the solution of the general eigenvector decomposition is less dependent of
the initial values than that of the gradient algorithm for multidimensional maximization or
minimization.

Based on equation (6.107), the kurtosis of the outputs is computed from a block of input
subband samples at each block instead of using the entire utterance data. We incrementally
update the dominant modes and active weight vector at each block b consisting of Lb samples
here. Accordingly, the kurtosis at block b can be expressed as

J(Y (b)) =

⎛
⎝ 1

Lb

bLb −1∑
t=(b−1)Lb

|Y (t)|4
⎞
⎠ − β

⎛
⎝ 1

Lb

bLb −1∑
k=(b−1)Lb

|Y (t)|2
⎞
⎠

2

. (6.108)

Figure 6.15 Maximum kurtosis beamformer with the subspace filter.
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In order to inhibit the formation of excessively large sidelobes, a regularization term is
applied to the cost function as follows:

J (Y (b); α) = J(Y (b)) − α‖wa(b)‖2 . (6.109)

In addition to the regularization term, a unity constraint is imposed on a norm of the active
weight vector so as to prevent it from exceeding that of the quiescent vector.

Then, the active weight vector is adjusted so as to maximize the sum of the kurtosis and
regularization terms (6.109) under the norm constraint at each block. Again, we have to resort
to the gradient-based numerical optimization algorithm. Upon substituting (6.107) and (6.108)
into (6.109) and taking the partial derivative with respect to the active weight vector, we obtain

∂J (Y (b); α)
∂wa(b)∗

= − 2
Lb

⎛
⎝ bLb −1∑

t=(b−1)Lb

|Y (t)|2UH (b)BH (t)X(t)Y ∗(t)

⎞
⎠

+
2β

L2
b

⎛
⎝ bLb −1∑

t=(b−1)Lb

|Y (t)|2
⎞
⎠
⎛
⎝ bLb −1∑

t=(b−1)Lb

UH (b)BH (t)X(t)Y ∗(t)

⎞
⎠ − αwa(b). (6.110)

The gradient (6.110) is iteratively calculated with a block of subband samples until the
kurtosis value of the beamformer’s outputs converges. For the gradient algorithm, the active
weight vectors are initialized with the estimates at the previous block. The active weight vector
of the first block is initialized with wa = [0, · · · , 0, 1]T because the last component corresponds
to the ambient noise which should be subtracted from the output of the quiescent vector.

The beamforming algorithm can be summarized as follows:

1. Initialize the active weight vector with wa(0) = [0, · · · , 1]T .
2. Given estimates of time delays, calculate the quiescent vector and blocking matrix.
3. For each block of input subband samples, recursively update the covariance matrix as

ΣZ (b) = μΣZ (b − 1) + (1 − μ)ΣZ (b) where μ is the forgetting factor, calculate the dom-
inant modes UH (b) and estimate the active weight vector wa(b) based on the gradient
information computed with (6.110) subject to the norm constraint until the kurtosis value
of the beamformer’s outputs converges.

4. Initialize the active weight vector obtained in step 3 for the next block and go to the step 2.

This block-wise method is able to track a nonstationary sound source, and provides a more
accurate gradient estimate than sample-by-sample gradient estimation algorithms.

6.3.10 Speech-Recognition Experiments

The results of the DSR experiments reported in this section were obtained on speech material
from the Multichannel Wall Street Journal Audio Visual Corpus (MC-WSJ-AV) recorded
by the Augmented Multiparty Interaction (AMI) project; see Lincoln et al. [43] for details
of the data-collection apparatus. The size of the recording room was 650 × 490 × 325 cm
and the reverberation time T60 was approximately 380 ms. In addition to reverberation, some
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recordings include significant amounts of background noise produced by computer fans and
air conditioning. The far-field speech data were recorded with two circular, equispaced eight-
channel microphone arrays with the diameter of 20 cm. Additionally, each speaker was
equipped with a CTM to provide a reference signal for speech recognition. The sampling
rate of the recordings was 16 kHz. For the experiments, we used a portion of data from the
single speaker stationary scenario where a speaker was asked to read sentences from six
positions, four seated around the table, one standing at the white board and one standing at a
presentation screen. The test data set for the experiments contains recordings of 10 speakers
where each speaker reads approximately 40 sentences taken from the 5000 word vocabulary
WSJ task. This provided a total of 352 utterances for a total 39.2 minutes of speech.

Prior to beamforming, we first estimated the speaker’s position with a source tracking system
[21]. Based on the average speaker position estimated for each utterance, active weight vectors
wa were estimated for the source. After beamforming, we perform Zelinski postfiltering [44]
which uses the auto- and cross-power spectrums of the input signals to estimate the target
signal and noise power spectrums under the assumption of zero cross-correlation between
noise on different sensors. The parameters of the GG pdf were trained with 43.9 min of speech
data recorded with the CTM in the SSC2 development set. The training data set for the GG
pdf contains recordings of 5 speakers.

We performed four decoding passes on the waveforms obtained with various beamforming
algorithms including ones described in prior sections. The details of our ASR system used in the
experiments are given in Kumatani et al. [35]. Each pass of decoding used a different acoustic
model or speaker adaptation scheme. The speaker adaptation parameters were estimated using
the word lattices generated during the prior pass, as in Uebel and Woodland [61]. A description
of the four decoding passes follows:

1. Decode with the unadapted, conventional ML acoustic model and bigram language model
(LM).

2. Estimate vocal tract length normalization (VTLN) [67, Section 9] parameters and con-
strained maximum likelihood linear regression (CMLLR) parameters for each speaker as
discussed in Section 11.4.2, then redecode with the conventional ML acoustic model and
bigram LM.

3. Estimate VTLN, CMLLR, and MLLR parameters for each speaker as discussed in Section
11.4, then redecode with the conventional model and bigram LM.

4. Estimate VTLN, CMLLR, and MLLR parameters for each speaker, then redecode with the
ML-SAT model [67, Section 8.1] and bigram LM.

Table 6.1 shows the WERs for every beamforming algorithm. As references, WERs in
recognition experiments on speech data recorded with a single array channel (SAC) and CTM
are also presented in the table. It is clear from these results that the maximum kurtosis beam-
forming (MK BF) and maximum negentropy beamforming (MN BF) methods can provide
better recognition performance than the SOS-based beamformers, such as the superdirective
beamformer (SD BF) [67, Section 13.3.4], the MVDR beamformer (MVDR BF) described in
Section 6.3.1, and the generalized eigenvector beamformer (GEV BF) [64]. This is because
the HOS-based beamformers can use echoes to enhance the desired signal, as mentioned pre-
viously. Adaptation of the HOS-based beamformers was performed while the desired source
was active. This fact implies that the maximum kurtosis and negentropy beamformers do not
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Table 6.1 Word error rates for each beamforming algorithm after every decoding pass.

Pass (%WER)

Beamforming (BF) algorithm 1 2 3 4

Single array channel (SAC) 87.0 57.1 32.8 28.0
Delay-and-sum (D&S) BF 79.0 38.1 20.2 16.5
Superdirective (SD) BF 71.4 31.9 16.6 14.1
Minimum variance distortionless response (MVDR) BF 78.6 35.4 18.8 14.8
Generalized eigenvector (GEV) BF 78.7 35.5 18.6 14.5
Maximum kurtosis (MK) BF 75.7 32.8 17.3 13.7
Maximum negentropy (MN) BF 75.1 32.7 16.5 13.2
SD MN BF 75.3 30.9 15.5 12.2
Close talking microphone (CTM) 52.9 21.5 9.8 6.7

suffer the signal cancellation. It is also clear from Table 6.1 that every adaptive beamformer
achieved better recognition performance than the delay-and-sum beamformer (D&S BF).

The SOS-based and HOS-based beamformers can be profitably combined because max-
imum kurtosis and negentropy beamformers employ different criteria for estimation of the
active weight vector. For example, the superdirective beamformer’s weight can be used as
the quiescent weight vector in GSC configuration [36]. We observe from Table 6.1 that the
maximum negentropy beamformer with superdirective beamformer (SD MN BF) provided
the best recognition performance in this task.

6.4 Spherical Microphone Arrays

In this section, we discuss the fundamentals of spherical arrays. This includes the acoustic
phenomena that occur when a plan wave scatters from the surface of a rigid sphere. We also
develop the concept of expanding a function defined on the surface of a sphere in spherical
harmonics; such series expansions will play a key role in our development of beamforming al-
gorithms for spherical arrays. This material is intended to provide the theoretical underpinning
to the emprical studies presented in the following sections.

Meyer and Elko [48] and Abhayapala and Ward [1] were among the first to propose the use
of spherical microphone arrays for beamforming. The state-of-the-art theory of beamforming
with spherical microphone arrays explicitly takes into account two phenomena of sound
propagation, namely, diffraction and scattering; see Kutruff [39, Section 2] and Williams [66,
Section 6.10]. While these phenomena are certainly present in all acoustic array-processing
applications, no particular attempt is typically made to incorporate them into conventional
beamforming algorithms; rather, they are simply assumed to contribute to the room impulse
response. The development in this section is based loosely on Meyer and Elko [49, Section 2]
with interspersed elements from Teutsch [60].

To begin our discussion, let us express a plane wave impinging with a polar angle of θ on
an array of microphones as

Gpw(kr, θ, t) � ei(ωt+kr cos θ) , (6.111)
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where k � 2π/λ is the wavenumber as before, and r is the range at which the wave is observed.
The definition (6.111) can be rewritten as

Gpw(kr, θ, t) =
∞∑

n=0

in (2n + 1) jn (kr) Pn (cos θ) eiω t , (6.112)

where jn and Pn are, respectively, the spherical Bessel function of the first kind [53, Section
10.47] and the Legendre polynomial, both of order n [66, Section 6.10.1]. A similar expansion
of spherical waves—such as would be required for near-field analysis—is provided by Williams
[66, Section 6.7.1]. If the plane wave encounters a rigid sphere with a radius of a it is scattered
[66, Section 6.10.3] to produce a wave with the pressure profile

Gs(kr, ka, θ, t) = −
∞∑

n=0

in (2n + 1)
j′n (ka)
h′

n (ka)
hn (kr) Pn (cos θ) eiω t , (6.113)

where hn = h
(1)
n denotes the Hankel function [53, Section 10.47] of the first kind2 while the

prime indicates the derivative of a function with respect to its argument. Combining (6.112)
and (6.113) yields the total sound pressure field [66, Section 6.10.3]:

G(kr, ka, θ) =
∞∑

n=0

in (2n + 1) bn (ka, kr) Pn (cos θ), (6.114)

where the nth modal coefficient is defined as

bn (ka, kr) � jn (kr) − j′n (ka)
h′

n (ka)
hn (kr). (6.115)

In principle, ka and kr need not be equivalent, but in practice they are; that is the sensors of
the array are located on the surface of the scattering sphere. Hence, in the sequel, we will
uniformly replace kr with ka. Note that the time dependence of (6.114) through the term
eiωt has been suppressed for convenience. Plots of |bn (ka, ka)| for n = 0, . . . , 8 are shown in
Figure 6.16.

Let us now define the spherical harmonic of order n and degree m as [14]

Y m
n (Ω) �

√
(2n + 1)

4π

(n − m)!
(n + m)!

P m
n (cos θ) eimφ , (6.116)

where Ω � (θ, φ) and P m
n is the associated Legendre function of order n and degree m

[15, Section 14.3]. The spherical harmonics fulfill the same role in the decomposition of
square-integrable functions defined on the surface of a sphere as that played by the complex
exponential eiωnt for Fourier analysis of periodic functions defined on the real line. Let γ

represent the angle between the points Ω � (θ, φ) and Ωs � (θs , φs) lying on a sphere, such
that

cos γ = cos θs cos θ + sin θs sin θ cos(φs − φ). (6.117)

2 Note that Meyer and Elko [49] incorrectly used the Hankel function of the second kind in (6.113) and (6.115).
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Figure 6.16 Magnitudes of the modal coefficients bn (ka, ka) for n = 0, 1, . . . , 8, where a is the radius
of the scattering sphere and k is the wavenumber.

Then, we can express the addition theorem for spherical harmonics [2, Theorem 12.8] as

Pn (cos γ) =
4π

2n + 1

n∑
m=−n

Y m
n (Ωs)Ȳ m

n (Ω), (6.118)

where Ȳ denotes the complex conjugate of Y . Upon substituting (6.118) into (6.114), we find

G(Ωs , ka, Ω) = 4π
∞∑

n=0

in bn (ka)
n∑

m=−n

Y m
n (Ωs)Ȳ m

n (Ω). (6.119)

The spherical harmonicsY0 � Y 0
0 , Y1 � Y 0

1 , Y2 � Y 0
2 , and Y3 � Y 0

3 are shown in Figure 6.17
The spherical harmonics possess the all important property of orthonormality, which implies

δn,n ′ δm,m ′ =
∫

Ω
Y m

n (Ω) Ȳ m ′
n ′ (Ω) dΩ (6.120)

=
∫ 2π

0

∫ π

0
Y m

n (Ω) Ȳ m ′
n ′ (Ω) sin θdθdφ,

Figure 6.17 The spherical harmonics Y0 , Y1 , Y2 , and Y3 .
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where Ω indicates the surface of the sphere of integration and the Kronecker delta is defined
as

δn,m �
{

1, n, m = 0,

0, otherwise.
(6.121)

The plot of Y0 in Figure 6.17 and magnitudes of the modal coefficients in Figure 6.16
make it clear why the spherical array—like its linear, conventional counterpart—suffers from
poor directivity at low frequencies. For ka = 0.2, which corresponds to 220 Hz for a = 5 cm,
only Y0 is truly useful for beamforming, as the levels of all other modes are 20 dB or more
below that of Y0 ; amplifying the other modes sufficiently to use them in beamforming would
introduce a great deal of self-noise from the array components into the final signal. But Y0
is completely isotropic; that is, it has no directional characteristics whatsoever, and hence
provides no improvement in directivity over a single microphone.

The implication of (6.120) is that the individual terms of the series expansion are orthonor-
mal. Hence, any sound field V (ka, Ωs), which is square integrable over a sphere with radius
a, admits the modal decomposition [60, Section A.3]:

V (ka, Ωs) =
∞∑

n=0

n∑
m=−n

V m
n (ka) Y m

n (Ωs), (6.122)

when observed at (a, Ωs), where

V m
n (ka) �

∫
Ωs

V (ka, Ωs) Ȳ m
n (Ωs) dΩs (6.123)

is the (n, m)th coefficient of the decomposition. Equation (6.122) is readily verified by substi-
tuting (6.122) into (6.123) and applying the orthonormality property (6.120). The coefficients
V m

n (ka) represent a transform domain much like the Fourier coefficients of a periodic function.
Specializing the above by substituting V (Ωs) = G(Ωs , ka, Ω) from (6.119) into (6.123)

yields

Gm
n (Ω, ka) =

∫
Ωs

G(Ωs , ka, Ω) Ȳ m
n (Ωs) dΩs (6.124)

= 4π

∞∑
n ′=0

in
′
bn ′(ka)

n ′∑
m ′=−n ′

Ȳ m ′
n ′ (Ω)

∫
Ωs

Y m ′
n ′ (Ωs)Ȳ m

n (Ωs) dΩs

= 4π in bn (ka) Ȳ m
n (Ω), (6.125)

where the latter equality follows directly from (6.120).3 These results will shortly prove useful
in deriving the modal analog of the array manifold vector defined in Section 6.2.

Equation (6.122) can be interpreted as the decomposition of an arbitrary square-integrable
sound field into an infinite series of spherical harmonics or modes. Equation (6.124) is then a
specialization for a plane wave. We will now consider how those spherical harmonics can be
used for beamforming.

3 Teutsch [60, Section 5.1.2] incorrectly reports the leading coefficient of (6.125) as
√

4π.
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For the case of a discrete array of microphones as opposed to a continuous, pressure-sensitive
surface, it is necessary to reformulate (6.120) as [42]

4π

S

S−1∑
s=0

Y m
n (Ωs) Ȳ m ′

n ′ (Ωs) = δn,n ′δm,m ′ , (6.126)

where S is the number of sensors, each of which is located at some (Ωs) for s = 0, 1, . . . , S − 1.
Similarly, we can define a discrete version of (6.123) as

V m
n (ka) � 4π

S

S−1∑
s=0

V (ka, Ωs) Ȳ m
n (Ωs) (6.127)

and of the modal decomposition of the plane wave (6.125) as

Gm
n (Ω, ka) =

4π

S

S−1∑
s=0

G(Ωs , ka, Ω) Ȳ m
n (Ωs). (6.128)

Note that the presence of the leading coefficient of 4π/S in (6.126)–(6.128) ensures that
(6.123) and (6.127) are equivalent for V m

n (ka) ≡ 1.
Equations (6.127) and (6.128) are of fundamental importance in that they define the modal

decomposition that is typically performed prior to beamforming with a spherical array. One
of the primary challenges in designing realizable and effective spherical arrays is choosing
the set of sensor locations {(Ωs)} such that (6.126) is satisfied as nearly as possible; see Li
et al. [42,40]. Li and Duraiswami [41] discuss the use of variable quadrature weights [17] to
minimize the orthonormality error between (6.120) and (6.126). The early work by Meyer and
Elko [49] reported two sensor placement schemes for arrays of S = 24 and 32 elements; the de-
viation of the modes of these discrete arrays from orthonormality are illustrated in Figure 6.18,
wherein lighter colored squares indicate a higher sensitivity reported in a decibel scale. From
Figure 6.18a, it is clear that the 24-element array maintains orthogonality only through mode
n = 2, while Figure 6.18b indicates that the 32-element array maintains orthogonality through
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Figure 6.18 Deviation of the spherical harmonics from orthonormality for (a) S = 24 and (b) S = 32
elements.
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Figure 6.19 (a) A 32-channel Eigenmike® spherical array; photo reproduced courtesy of mh acoustics,
Inc. (b) A 64-channel spherical array with five integrated video cameras; photo reproduced courtesy of
VisiSonics Corporation.

n = 8. However, typically, the order is truncated such that (N + 1)2 ≤ S to avoidspatial alias-
ing, implying that a 32-element array can support a maximum order of N = 4.

Shown in Figure 6.19 are a spherical, 32-element Eigenmike® manufactured by mh acous-
tics and a 64-element, spherical array with five integrated video cameras manufactured by
VisiSonics Corporation. Both instruments are available commercially and have attracted a
great deal of interest within the acoustic beamforming research community.

Stacking the modal components (6.125) together provides the modal array manifold vector

v(Ω, ka) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0
0(Ω, ka)

G−1
1 (Ω, ka)

G0
1(Ω, ka)

G1
1(Ω, ka)

G−2
2 (Ω, ka)

G−1
2 (Ω, ka)

G0
2(Ω, ka)

...
G−N

N (Ω, ka)
...

GN
N (Ω, ka)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.129)
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where Ω denotes the direction of arrival of a plane wave. The modal array manifold vector is so
dubbed because it fulfills precisely the same role as the array manifold vector defined in (6.29);
that is, it describes the excitation of the (n, m)th mode—as opposed to the nth microphone—of
the spherical array by a plane wave arriving from the direction Ω; clearly this interaction is
more complicated than the simple phase shift seen in the conventional array. Evaluating any
individual component Gm

n (Ω, ka) in v(Ω, ka) requires (6.125) as well as the identity

Y −m
n (Ω) ≡ (−1)m Ȳ m

n (Ω);

the latter follows directly from the definition (6.116) and the identity [15, Section 14.9]

P−m
n (x) ≡ (−1)m (n − m)!

(n + m)!
Pm

n (x).

With these relations in mind, we can trivially evaluate G−2
3 (Ω, ka), for example, as

G−2
3 (Ω, ka) = 4π i3b3(ka) · (−1)2 Y 2

3 (Ω) = −4π i b3(ka)Y 2
3 (Ω).

To close this section, we note that while spherical arrays possess several attractive char-
acteristics, they are no panacea for the many maladies of DSR; they too suffer from poor
directivity at low frequencies and spatial aliasing at high frequencies just like conventional
arrays. Establishing the suitability of spherical arrays for DSR will require both more detailed
analysis and empirical studies; we turn our attention to both of these tasks in the coming
sections.

6.5 Spherical Adaptive Algorithms

To begin this section, we investigate the well-known MVDR beamformer for spherical arrays.
The solution for the MVDR beamforming weights with diagonal loading is given by (6.41).
As discussed in Section 6.4, in the case of a spherical array, we treat each modal component as
a microphone, and apply the beamforming weights directly to the output of each mode. In so
doing, we are adhering to the decomposition of the entire beamformer into eigenbeamformer
followed by a modal beamformer as initially proposed by Meyer and Elko [48,49].

For use in the GSC discussed in Section 6.3.5, we can set

wq(Ω, ka) =
1
C

v(Ω, ka), (6.130)

where C is a normalization constant that ensures satisfaction of the distortionless constraint,

wH
q (Ω0 , ka) v(Ω0 , ka) = 1, (6.131)

for the look direction Ω0 . The blocking matrix can then be derived in the normal way from
wH

q (θ, φ, ka).
With formulations of the relevant array manifold vector (6.129), we can immediately write

the solution (6.30) for the delay-and-sum beamformer. Another popular fixed design for
spherical array processing is the hypercardioid [49]. The beam patterns obtained with the
delay-and-sum and hypercardioid designs are shown in Figure 6.20a and 6.20b, respectively.
The MVDR design both with and without a radial symmetry constraint are shown in Figure
6.20 and 6.20d, respectively.
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(a) Delay-and-sum (b) Hypercardioid

(c) Radially symmetric MVDR (d) Asymmetric MVDR

Figure 6.20 Spherical beam patterns for ka = 10.0: (a) delay-and-sum beam pattern; (b) hypercardioid
beam pattern H = Y0 +

√
3 Y1 +

√
5 Y2 ; (c) symmetric MVDR beam pattern obtained with spherical

harmonics Yn for n = 0, 1, . . . , 5, diagonal loading σ2
D = 10−2 for a plane wave interferer π/6 rad

from the look direction; and (d) asymmetric MVDR beam pattern obtained with spherical harmonics
Y m

n for n = 0, 1, . . . , 5, m = −n, . . . , n, diagonal loading σ2
D = 10−2 for a plane wave interferer π/6

rad from the look direction.

Let us now consider the case where the look direction is (θ, φ) = (0, 0) and there is a single
strong interference signal impinging on the array from (θI, φI) = (π/6, 0) with a magnitude of
σ2

I = 10−1 . In this case, the covariance matrix of the array input is

ΣX (ka) = v(Ω, ka) vH (Ω, ka) + σ2
I v(θI, φI, ka) vH (θI, φI, ka). (6.132)

6.6 Comparative Studies

In this section, we present a set of comparative studies for a conventional, linear array and a
spherical array. We first compare the arrays on the basis of the theoretical performance metrics
introduced in Section 6.3.4, namely array gain, WNG, and directivity index. Thereafter, we
compare the arrays on a metric of more direct interest to those researchers on the forefront of
DSR technology, namely, WER.

The orientation of the conventional, linear and spherical arrays shown in Figure 6.21 were
used as the basis for evaluating array gain, WNG, and directivity index; these configurations
were intended to simulate the condition wherein the arrays are mounted at head height for a
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(a) Spherical 32-channel array

x
z

y

Linear array 
d

(b) Conventional, 64-channel, linear array

Figure 6.21 Orientation of the (a) Mark IV linear array and (b) Eigenmike® spherical array.

standing speaker. The acoustic environment we simulated involved a desired speaker, a source
of discrete interference—such as a screen projector—somewhat below and to the left of the
desired source, and a spherically isotropic noise field—such as might be created by an air
conditioning system; the details of the environment, which is equivalent for both arrays, are
summarized in Table 6.2 The specific arrays we chose to simulate were the Mark IV linear
array and the Eigenmike® spherical array.

In Figure 6.22 are shown the plots of array gain as a function of ka of for the ideal spherical
array as well as the discrete arrays with S = 24 and 32. From these plots two facts become
apparent. Firstly, the MVDR beamformer, as anticipated by the theory presented in Section
6.3.1, provides the highest array gain overall. This was to be expected because minimizing the
noise variance is equivalent to maximizing SNR if performed over each individual subband;
in order to maximize SNR over the entire subband, the subband signals must be weighted by
a Wiener filter prior to their combination. Secondly, the figures for S = 24 and 32 indicate that
the array gain of the ideal array is reduced when the array must be implemented in hardware
with discrete microphones.

Figure 6.23 shows the WNG for the ideal spherical array, as well as its discrete counterparts
for S = 24 and 32. Once more, as predicted by the theory, the uniform (i.e., D&S) beamformer
provides the best performance according to this metric. The SD and MVDR beamformers
provide substantially lower WNG at low frequencies, but essentially equivalent performance
for ka ≥ 30.

As described in Section 6.2, the beam pattern is the sensitivity of the array to a plane wave
arriving from some direction Ω. By weighting each spherical mode (6.125) by w̄m

n , the beam
pattern for the ideal array can be expressed as

B(Ω, ka) = 4π
N∑

n=0

in bn (ka)
n∑

m=−n

w̄m
n Ȳ m

n (Ω).

Table 6.2 Acoustic environment for comparing the Mark IV linear array with the
Eigenmike® spherical microphone array.

Position Ω � (θ, φ)

Source Mark IV Eigenmike Level (dB)

Desired (3π/8, 0) (π/2,−π/8) 0
Discrete interference (3π/4, π/8) (3π/8, π/4) −10
Diffuse noise — — −10
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Figure 6.22 Array gain as a function of ka for (a) S = 24, (b) S = 32, and (c) the Ideal array.

This implies that the power pattern (6.70) is given by

P (Ω) � |B(Ω, ka)|2 (6.133)

= 16π2
∞∑

n,n ′=0

in īn
′
bn (ka) b̄n ′(ka)

n,n ′∑
m,m ′=−n,−n ′

w̄m
n wm ′

n ′ Ȳ m
n (Ω) Y m ′

n ′ (Ω).

Substituting (6.133) into (6.72) and applying (6.120) then provides [68]

DIideal(ka,w) = −10 log10

{
4π

N∑
n=0

|bn (ka)|2
m∑

m=−n

∣∣wm
n

∣∣2} . (6.134)

The directivity index as a function of ka for both ideal and discrete arrays is plotted
in Figure 6.24. These figures reveal that—as anticipated by the theory of Section 6.3.1—the
superdirective (SD) beamformer provides the highest directivity save in the very low frequency
region where the sensor covariance matrix (6.42) is dominated by the diagonal loading.

Now, we come to an equivalent set of plots for the Mark IV linear array; these are shown in
Figure 6.25, where each metric is shown as a function of d/λ, the ratio of intersensor spacing
to wavelength. Once more, the MVDR beamformer provides the highest array gain, the D&S
beamformer the highest WNG, and the superdirective beamformer the highest directivity
index. What is unsurprising is that the Mark IV provides a higher array gain than the Eigenmike
overall, given its greater number of sensors. What is somewhat surprising is the drastic drop
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Figure 6.23 White noise gain as a function of ka for (a) S = 24, (b) S = 32, and (c) the Ideal array.
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Figure 6.24 Directivity index as a function of ka for (a) S = 24, (b) S = 32, and (c) the Ideal array.

in all metrics just below the point d/λ = 1; this stems from the fact that this is the point where
the first grating lobe crosses the source of discrete interference. A grating lobe cannot be
suppressed given that—due to spatial aliasing—it is indistinguishable from the main lobe and
hence subject to the distortionless constraint as discussed in Section 6.2.

6.7 Comparison of Linear and Spherical Arrays for DSR

As a spherical microphone array has—to the best knowledge of the current authors—never
before been applied to DSR, our first step in investigating its suitability for such a task was to
capture some prerecorded speech played into a real room through a loudspeaker, then perform
beamforming and subsequently speech recognition. Figure 6.26 shows the configuration of
room used for these recordings. As shown in the figure, the loudspeaker was placed in
two different positions; the locations of the sensors and loudspeaker were measured with
OptiTrack, a motion-capture system manufactured by NaturalPoint. For data capture, we used
an Eigenmike® which consists of 32 microphones embedded in a rigid sphere with a radius of
4.2 cm; for further details see the website of mh acoustics, http://www.mhacoustics.com. Each
sensor of the Eigenmike® is centered on the face of a truncated icosahedron. We simultaneously
captured the speech data with a 64-channel, uniform linear Mark IV microphone array with
an intersensor spacing of 2 cm for a total aperture length of 126 cm. Speech data from the
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Figure 6.25 (a) Array gain, (b) white noise gain, and (c) directivity index as a function of d/λ for the
64-element, linear Mark IV micophone array with an intersensor spacing of d = 2 cm.
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Figure 6.26 The layout of the recording room.

TIMIT corpus were used as test material. The test set consisted of 3,241 words uttered by 37
speakers for each recording position. The far-field data were sampled at a rate of 44.1 kHz.
The reverberation time T60 in the recording room was approximately 525 ms.

We used the speech recognizer described in Section 6.3.10. Tables 6.3 and 6.4 show WERs
for each beamforming algorithm for the cases wherein the incident angles of the target signal
to the array were 28◦ and 68◦, respectively. As a reference, the WERs obtained with a SAC and
the clean data played through the loudspeaker (Clean data) are also reported. It is clear from
the tables that every beamforming algorithm provides superior recognition performance to the
SAC after the last adapted pass of recognition. It is also clear from the tables that superdirective
beamforming with the small spherical array of radius 4.2 cm (Spherical SD BF) can achieve
recognition performance very comparable to that obtained with the same beamforming method
with the linear array (SD BF with linear array). In the case that the speaker position is nearly
in front of the array, superdirective beamforming with the linear array (SD BF with linear
array) can still achieve the best result among all the algorithms. This is because of the highest

Table 6.3 WERs for each beamforming algorithm in the case that the incident
angle to the array is 28◦.

Pass (%WER)

Beamforming (BF) algorithm 1 2 3 4

Single array channel (SAC) 47.3 18.9 14.3 13.6
D&S BF with linear array 44.7 17.2 11.1 9.8
SD BF with linear array 45.5 16.4 10.7 9.3
SD BF with spherical array 43.9 14.2 12.1 10.5
Spherical D&S BF 47.3 16.8 13.0 12.0
Spherical SD BF 42.8 14.5 11.5 10.2
CTM 16.7 7.5 6.4 5.4
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Table 6.4 WERs for each beamforming algorithm in the case that the incident
angle to the array is 68◦.

Pass (%WER)

Beamforming (BF) algorithm 1 2 3 4

Single array channel (SAC) 57.8 25.1 19.4 16.6
D&S BF with linear array 53.6 24.3 16.1 13.3
SD BF with linear array 52.6 23.8 16.6 12.8
Spherical D&S BF 57.6 22.7 14.9 13.5
Spherical SD BF 44.8 15.5 11.3 9.7
CTM 16.7 7.5 6.4 5.4

directivity index can be achieved with 64-channels, twice as many as the sensors as in the
spherical array. However, in the other configuration, wherein the desired source is at an oblique
angle to the array, the spherical superdirective beamformer (Spherical SD BF) provides better
results than the linear array because they it is able to maintain the same beam pattern regardless
of the incident angle. In these experiments, spherical D&S beamforming (Spherical D&S BF)
could not improve the recognition performance significantly because of its poor directivity.

6.8 Conclusions and Further Reading

In this contribution, we have examined the application of spherical microphone arrays to
beamforming and compared this with the use of conventional arrays. As we have explained,
the primary difference between the conventional and spherical array-processing literature is
that the latter makes an explicit attempt to account for and model two phenomena that are
present in all acoustic array processing applications, namely, diffraction, which is the tendency
of sound to bend around fixed obstacles, and scattering, which is the tendency of sound to be
dispersed through reflection from nonplanar surfaces. By modeling both phenomena, spherical
array processing typically begins by decomposing the sound field into a number of orthogonal
components, which are subsequently weighted and combined, much like the outputs of single
microphones in conventional array processing. The advantage of the spherical configuration is
that it is spatially isotropic, implying that the look direction can be set to nearly any spherical
coordinate with equal ease.

We have found that both conventional and spherical arrays suffer from two primary
problems:

1. Poor low-frequency directivity, which is a result of the finite physical aperture that a
realizable array must necessarily have.

2. High-frequency spatial aliasing, which arises from the necessity of sampling a continuous
aperture at discrete locations through the placement of microphones.

The detrimental effects of both these problems can be minimized, and ongoing attempts to do
so are the topics of a great deal of current research. However, neither effect can be eliminated
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entirely, and hence must be taken into account in developing effective beamforming algorithms
for real microphone arrays.

Finally, as we have shown here, the adaptive beamforming algorithms developed in the
conventional literature can be effectively applied to spherical arrays. This includes the second-
order methods such as MVDR, but would also certainly include the algorithms based on the
optimization of non-Gaussian and HOS such as maximum kurtosis and maximum negentropy
beamforming. In the view of the present authors, further investigation of these techniques in
the context of spherical arrays is likely to prove one of the most promising topics of acoustic
beamforming research in the coming years and decades. Moreover, the effect of this research
on applications involving DSR is likely to be dramatic.
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Matthias Wölfel
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7.1 Introduction

Acoustic classification of speech signals as well as some speech feature-enhancement tech-
niques require that the speech waveform s(t) is processed to get a sequence of feature
vectors—the so called speech features—of a relative small number of dimensions. This re-
duction is necessary to not waste resources by representing irrelevant information and to
prevent the curse of dimensionality1. The transformation of the speech waveform into a set of
dimension-reduced features is known as speech feature extraction, acoustic preprocessing, or
front-end processing.

The set of transformations has to be carefully chosen such that the resulting features will
contain only relevant information to perform the desired task. Feature extraction as applied
in automatic speech recognition (ASR) systems aims to preserve the information needed to
determine the phonetic class while being invariant to other factors including speaker differences
such as accent, emotions, fundamental frequency (in the case of nontonal languages), or
speaking rate or other distortion such as background noise, channel effects, or reverberation.
For other systems, different information might be needed. For example, in speaker verification
one is interested in keeping the speaker-specific characteristics. Note that the correct choice
of feature transformation and reduction is critical, because if useful information is lost in this
step it cannot be recovered in following processing steps.

Experience has proven that feature-extraction techniques based on characteristics of the
human auditory system, as described in Chapter 8, are likely to provide classification per-
formance for various audio tasks such as ASR and speaker identification that is superior to

1 The term curse of dimensionality was coined by Bellmann [1] and describes the problem whereby volume
increases exponentially as additional dimensions are added to a space.
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naive or ad hoc techniques. This stems from the fact that the human auditory system evolved
concurrently ove millions of years with the human speech-production apparatus, and hence is
highly “tuned” to the perception of all aspects of human speech.

7.1.1 About this Chapter

This chapter describes methods how to transform speech signals into speech features based on
signal processing. While signal processing, in particular digital signal processing, is based on
“abstract” mathematical methods, the choice of the processing steps to extract speech features
is partly motivated by aspects of the human auditory system. Due to space constrains, it is
not possible to cover the broad field of speech feature extraction extensively. The selected
topic presented here have been carefully chosen such that a reader with basic knowledge
of signal processing is able to follow and that it provides the necessary information for the
following chapters about speech enhancement. For a broader coverage of feature extraction,
the reader should refer to [8,17,33,40] where more space is devoted on feature extraction and
its mathematical background.

7.2 The Speech Signal

Although there are many possible speech sounds which can be produced by humans, the shape
of the vocal tract and its mode of excitation are restricted. Without knowing much about its
origin, we can observe several basic characteristics of the speech signal by looking at a speech
waveform, such as the one depicted in Figure 7.1.

We observe that the speech signal:

� is time variant;
� is quasi-periodic in some segments (at voiced regions), has a stochastic spectral character

(at unvoiced regions) or is paused;
� is quasi-stationary in time intervals of 5–25 ms, which implies that the vocal tract shape and

thus its transfer function remain nearly unchanged within this period; and
� is changing continuously and gradually, not abruptly.

These characteristics of the speech signal are defined by its generation process originating
in the lungs as the speaker exhales. Speech consists of pressure waves created by the airflow

VoicedUnvoiced

12080400
ms

Figure 7.1 A speech waveform of unvoiced and voiced speech.
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through the vocal tract. The vocal folds in the larynx can open and close quasi-periodically
to interrupt this airflow. The result is voiced speech. Vowels are the most prominent examples
of this type. It is characterized by its periodicity, where the frequency of the excitation
provided by the vocal cords during voiced speech is known as the fundamental frequency.
The periodicity of voiced speech gives rise to a spectrum containing harmonics lf0 of the
fundamental frequency f0 for integer l ≥ 1. These harmonics are known as partials. A truly
periodic sequence, observed over an infinite interval, will have a discrete-line spectrum, but
voiced sounds are only locally quasi-periodic. For unvoiced speech the vocal cords do not
vibrate. Rather, the excitation is provided by turbulent airflow through a constriction in the
vocal tract, imparting to the phonemes falling into this class a noisy characteristic. The positions
of the other articulators in the vocal tract serve to filter the noisy excitation, amplifying certain
frequencies while attenuating others. The spectra for unvoiced speech range from a flat shape
to spectral patterns lacking low-frequency components.

7.3 Spectral Processing

Spectral processing, estimation, and analysis are fundamental for many speech applications
including recognition, identification, compression, coding, and voice conversion, to just name
a few, because it allows for additional analysis possibilities in contrast to the time signal. These
applications impose a variety of requirements on the spectral estimate, including

� spectral resolution;
� nonlinear modeling of the frequency axis;
� variance of the estimated spectra; and
� the capacity to model or suppress the fundamental frequency during voiced speech.

To satisfy these requirements, a broad variety of solutions has been proposed in the literature,
all of which can be classified into either

� nonparametric methods based on periodograms (e.g., the power spectrum); or
� parametric methods, using a small number of parameters estimated from the data (e.g., the

spectral envelope).

In this section, we will consider only such spectral estimation techniques which are useful in
extracting speech features for further processing or analysis. An overview of spectral estimation
approaches which are useful in speech processing is given in Table 7.1. Those methods not
treated here (namely warped power spectrum, perceptual linear prediction, warped-twice linear
prediction, and warped-twice minimum variance distortionless response) are covered in [40].

7.3.1 Windowing

In order to analyze the speech signal in alternative domains for better analysis, such as the
spectral domain (as discussed in the remainder of this section) or cepstral domain (Section 7.4),
it is necessary to split its continuous stream into short segments by multiplying the speech
signal component wise with an analysis window. Selecting the length of these windows, the
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Table 7.1 Overview of spectral estimation methods.

Properties

Spectrum Method Frequency axis Frequency resolution Pitch sensitivity

PS Nonparametric Linear Static Very high
Warped PS Nonparametric Nonlinear Static Very high
Mel-filter bank Nonparametric Nonlinear Static High
LP Parametric Linear Static Medium
Perceptual LP Parametric Nonlinear Static Medium
Warped LP Parametric Nonlinear Static Medium
Warped-twice LP Parametric Nonlinear Adaptive Medium
MVDR Parametric Linear Static Low
Warped MVDR Parametric Nonlinear Static Low
Warped-twice MVDR Parametric Nonlinear Adaptive Low

PS = power spectrum, LP = linear prediction; MVDR = minimum variance distortionless response.

so called frame size, involves a trade off between two conflicting requirements. Each segment
must be

� short enough to provide the required time resolution, and
� long enough to ensure adequate frequency resolution2 and to be insensitive to its exact

position relative to the glottal cycle3.

The choice of frame shift, which defines the step size of the window, and frame size are
dependent on the velocity of the articulators, which determines how quickly the vocal tract
changes shape. Some speech sounds, such as stop consonants or diphthongs, have sharp
spectral transitions with a spectral peak shift of up to 80 Hz/ms [20]. It is common to adjust
the frame shift and frame size together; as a shorter frame shift can track more rapid variations
of the shape of the vocal tract, the analysis window size should also be shortened to achieve
better localization in fast-changing articulator configurations. In general, it can be said that
the advantage of a long observation segment is that it smoothes out some of the temporal
variations of unvoiced speech while its disadvantage is that it blurs rapid events, such as the
release of stop consonants. In speech processing a frame size of 16–32 ms and a frame shift
of 5–15 ms are commonly used.

Besides choosing the right frame shift and size, the shape of the analysis window is very
important. The windowing theorem states that the Fourier transform of the time window is
convolved with the short-term spectrum of the actual signal. This means that true spectral
characteristics of the signal will be “smeared” with the Fourier transform of the analysis
window. The amount of spectral leakage is directly related to the size of the side lobes in
the frequency domain. Windowing functions without abrupt discontinuities at their edges in

2 The frequency resolution is defined as the inverse time interval width (Rayleigh frequency resolution).
3 One glottal cycle can be described in three phases: the opening phase, during which the glottis opens, the returning

phase, the interval when the glottis is closing and the closed phase, the time during the glottis is closed and there is
no glottal excitation.
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Figure 7.2 The Hamming window in time and frequency domain.

the time domain are known to have a smaller smearing effect. Many types of windowing
functions of this kind have been proposed in the literature, including the Hann, Blackman,
Kaiser, and Bartlett windows. A detailed description of the different windowing functions can
be found, for example, in Oppenheim and Schafer [30, Theorem 7.4.1]. In speech processing,
the Hamming window, for a window length Nw , is defined by

w[n] =

{
0.54 − 0.46 cos

(
2πn
Nw

)
, ∀ 0 ≤ n ≤ Nw ,

0, otherwise,
(7.1)

and used almost exclusively. The Hamming window is illustrated in Figure 7.2. From its
frequency response it can be observed that the Hamming window has a wide main lobe4, but
its side lobes5 are more than 40 dB below the main lobe.

7.3.2 Power Spectrum

A very simple approach to spectral analysis of a signal x[n], given an observation window of
M samples n = 0, . . . , M − 1, is to calculate its power spectrum. The power spectrum plots, for
each spectral bin, the signal’s power falling within a frequency range defined by the sampling
frequency and observation window. It can be obtained through the calculation of the discrete
circular autocorrelation

φ[l] =
M −1−l∑

n=0

x[n]x[(n + l)%M ], (7.2)

where % is the modulo operator. Thereafter, the discrete Fourier transform of the autocorrela-
tion coefficients is calculated, resulting in the discrete power spectrum

S[m] =
M −1∑
l=0

φ[l]e−j2π lm/M ∀ m = 0, 1, . . . ,M − 1,

where m is the discrete angle frequency.
The power spectrum is widely used in speech processing because it can be quickly calculated

via the fast Fourier transform (FFT) [6]. Nonetheless, it is poorly suited to the estimation of

4 The main lobe is the lobe containing the maximum power.
5 Side lobes are the lobes that are not the main lobe. Usually they are not wanted.
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speech spectra intended for automatic classification, because it models spectral peaks and
valleys equally well. This characteristic is bad for two reasons:

1. It cannot suppress the effect of the fundamental frequency and its harmonics in voiced
speech, and therefore provides a poor estimate of the response function of the vocal tract.6

2. It cannot reduce the influence of distortions.

7.3.3 Spectral Envelopes

The spectral envelope is a plot of power versus frequency representing the resonances of
the vocal tract. The spectral envelope is typically subject to certain smoothness criteria, such
that the spectral effects of the periodic or noisy excitations, which are provided by the vocal
cords or by the turbulent flow of air through a constriction of the vocal tract, respectively,
are excluded. The spectral envelope models the spectral peaks of the power spectra nearly
exactly, but may devote less precision to modeling the spectral valleys. It may be impossible or
undesirable to model every individual peak; for example if a group of peaks is close together.
In such cases, the spectral envelope should provide a reasonable approximation. In addition,
the method used for estimating the spectral envelope should be stable and applicable to a wide
range of signals with very different characteristics. To provide robustness in the presence of
distortion, it is desirable that a local change in signal frequency does not affect the intensity
of the spectral estimate at frequencies well apart from this point. Moreover, spectral envelope
representation should be resilient to distortions in the data. We begin our discussion of the
spectral envelope estimation with the most popular method, namely, linear prediction.

7.3.4 LP Envelope

The idea behind linear prediction (LP) is to predict the signal x[n] at time n by a weighted
linear combination of M immediately preceding samples and some input u[n], such that

x̂M [n] = −
M∑

m=1

am x[n − m] + G · u[n],

where M is known as the model order and G as the gain. Hence, it is necessary to determine the
values of the weights {a}M

m=1 which are dubbed LP coefficients in case of all-pole modeling.
Assuming that u[n] is unknown and thus that x[n] must be predicted solely from a weighted
combination of prior samples, the error between x[n] and the prediction x̂M [n] is given by the
error term

eM [n] = x[n] +
M∑

m=1

am x[n − m]. (7.3)

The higher the error term eM [n], the worse the approximation of the “true” signal representation
by the linear LP coefficients. Note that the goal of LP is not always, in particular in spectral

6 To model the vocal tract is important since it contains the relevant information about uttered phonemes.
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estimation, to faithfully represent the “tuned” signal, but to represent the transfer function of
the vocal tract. And therefore, a higher model order, which leads to a better approximation
of the “tuned” signal representation, does not necessarily lead to a better representation with
respect to the goal.

The vector of prediction coefficients a = a1 a2 · · · am
T

is estimated by minimizing
the total power of the prediction error as:

â = argmin
a=[a1 ,a2 ,···,aM ]

∞∑
n=−∞

(
x[n] +

M∑
m=1

am x[n − m]

)2

. (7.4)

Three principal methods to solve this minimization problem, yielding slightly different
prediction coefficients [19], exist:

� the autocorrelation method;
� the covariance method which is based on the covariance matrix; and
� the lattice method.

The autocorrelation coefficients, in the autocorrelation method, have a very simple and
symmetric structure. This structure allows for a recursive solution procedure in which each
predictor coefficient may be derived in turn from previous coefficients. Due to this simple pro-
cedure, which is known as the Levinson–Durbin recursion [19], the autocorrelation method is
used almost exclusively in speech processing. The Levinson–Durbin recursion is summarized
in Table 7.2 where

φ[m] =
N∑

n=0

x[n] x[n − m] (7.5)

is the autocorrelatation sequence of the input signal x of length N . A detailed introduction to
LP covering also the covariance and lattice method can be found in Strobach [35].

Table 7.2 The Levinson–Durbin recursion.

Step Description

1. Initialize with a0,0 = 1 and e0 = φ[0]
2. For m = 1, 2, · · · , M

km =
−1

em−1

m−1∑
i=0

φ[i − m] ai,m−1

with

ai,m =

⎧⎨⎩
1, i = 0,
ai,m−1 + km a∗m−i,m−1 , i = 1, 2, · · · , m − 1,

km , i = m

and
em = em−1(1 − |km |2)

3. The final set of linear prediction coefficients is given by {ai = ai,M }i .
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Frequency Domain Formulation

So far we have introduced the basic concept of LP from a time domain perspective. By applying
the z-transform to (7.3), and summing over z to get the total power of the prediction error, we
obtain the formulation in the transform domain:

â = argmin
a=[a1 ,a2 ,···,aM ]

∞∑
z=−∞

((
1 +

M∑
m=1

am z−m
)

X(z)

)2

.

Replacing z by ejω and applying Parseval’s theorem [30] to replace the infinite summation
by a finite integral, we get

â = argmin
a=[a1 ,a2 ,···aM ]

1
2π

∫ π

−π

∣∣∣A (
ejω

)
· X

(
ejω

)∣∣∣2 dω, (7.6)

where

A
(
ejω

)
= 1 +

M∑
m=1

am e−jmω . (7.7)

Once the LP coefficients a and the squared prediction error eM = G2 have been obtained from
the Levinson–Durbin recursion, the transfer function of the discrete all-pole model can be
expressed as

H(z) =
G

A(z)
=

G

1 +
∑M

m=1 am z−m
, (7.8)

where the gain G matches the scale of the LP model to the spectrum of the original signal. The
all-pole spectral estimate Ŝ

(
ejω

)
, henceforth known as the LP envelope, is then given by

Ŝ
(

ejω
)

=
∣∣∣H (

ejω
)∣∣∣2 =

eM∣∣∣1 +
∑M

m=1 am e−jmω
∣∣∣2 . (7.9)

Limitation of LP Envelopes

Figure 7.3 illustrates the limitation of LP spectral estimation. By comparing the LP envelope
with the Fourier spectrum in Figure 7.3, it can be observed that the LP envelope overestimates
the spectral peak at 4 kHz.

To understand the limitation of LP envelopes from a mathematical standpoint, we can
oversimplify voiced speech by modeling only the harmonics [24]. This can be represented as
the short-time spectrum of a segment of voiced speech as the overtone series

Sharmonic

(
ejω

)
=

L∑
l=1

2π
|bl |2

4

[
δ(ω + ω0 l) + δ(ω − ω0 l)

]
, (7.10)

where δ is the Dirac delta function, ω0 = 2πf0 for a fundamental frequency of f0 . In the above,
bl is the amplitude of the lth harmonic and L = fs/2f0 is the number of harmonics, where fs is
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Frequency (kHz)
0 84 62 7531

Overestimation

Figure 7.3 Spectral estimation of voiced speech for the linear prediction envelope (top) with model
order 15 and the Fourier spectrum (bottom).

the sampling frequency. We can now set
∣∣∣X (

ejω
)∣∣∣2 = Sharmonic

(
ejω

)
and substitute (7.10)

into (7.6) to obtain

â = argmin
a=[a1 ,a2 ,···,aM ]

1
2π

∫ ω

−ω

∣∣∣∣A (
ejω

) ∣∣∣∣2 · Sharmonic
(
ejω

)
dω,

or, equivalently,

argmin
a=[a1 ,a2 ,···,aM ]

L∑
l=1

|bl |2
2

∣∣∣∣A(ej lω0 )
∣∣∣∣2 .

To achieve the desired minimization of the prediction error, the LP filter (7.7) attempts to null
out the harmonics lω0 present in the original spectrum. With increasing model order M , the
ability of the LP filter to null out these harmonics increases. But in the process, the zeros of the
LP filter move ever closer to the unit circle, thereby causing sharper contours in the spectral
envelope (7.9) and an overestimation of the spectral power at the harmonics [24]. Such effects
are particularly problematic for medium- and high-pitched voices, because the harmonics are
more spread as in low-pitched voices. As such, the LP method does not provide spectral
envelopes which reliably estimate the power at the harmonic frequencies in voiced speech.

7.3.5 MVDR Envelope

Here, we briefly review the minimum variance distortionless response (MVDR)7 as originally
introduced by originally introduced by Capon [5]. It has been adopted by Lacoss [18] who
demonstrated that this method provides an unbiased minimum variance estimate of the spectral

7 Also known as Capon’s method or the maximum-likelihood method [25].



P1: TIX/XYZ P2: ABC
JWST201-c07 JWST201-Virtanen September 3, 2012 8:51 Printer Name: Yet to Come Trim: 244mm × 168mm

170 Techniques for Noise Robustness in Automatic Speech Recognition

components, hence the name MVDR. In order to overcome the problems associated with LP,
Murthi and Rao [23] proposed the use of the MVDR for all-pole modeling of speech signals.
A detailed discussion of speech spectral estimation using the MVDR can be found in Murthi
and Rao [24].

MVDR spectral estimation can be posed as a problem in filter bank design, wherein the
final filter bank is subject to the distortionless constraint [15]:

The signal at the frequency of interest (FOI) ωfoi must pass undistorted with unity gain.

This can be expressed as

H
(
ejω fo i

)
=

M∑
m=0

h[m] e−jmω fo i = 1.

This constraint can be rewritten in vector form as:

vH
(
ejω fo i

)
h = 1,

where v
(

ejω f o i
)

is the fixed frequency vector,

v
(

ejω
)

= [1 e−jω e−j2ω · · · e−jM ω ]
T

,

and h is the stacked impulse response,

h = [h[0] h[1] · · · h[M ]]
T

.

The distortionless filter h can now be obtained by solving for the constrained minimization
problem

min
h

hH Φh subject to vH
(

ejω f o i
)

h = 1, (7.11)

where Φ is the (M + 1) × (M + 1) Toeplitz autocorrelation matrix with (m, n)th element
Φ[m, n] = φ[m − n] of the input signal (7.5). The minimization of the output power in (7.11)
guarantees minimum leakage from other frequencies. The solution of the constrained mini-
mization problem can be expressed as [15]:

h =
Φ−1 v(ejω fo i )

vH (ejω fo i )Φ−1 v(ejω fo i )
.

This implies that h is the impulse response of the distortionless filter for the frequency ωfoi .
The MVDR envelope of the spectrum S(e−jω ) at frequency ωfoi is then obtained as the output
of the optimized constrained filter [15]:

SMVDR(ejω f o i ) =
1
2π

∫ π

−π

∣∣∣H(ejω f o i )
∣∣∣2 S(e−jω ) dω. (7.12)

Although MVDR spectral estimation was posed as a problem of designing a distortionless
filter for a given frequency ωfoi , this was only a conceptual device. The MVDR spectral
envelope can in fact be represented in parametric form for all frequencies and computed as

SMVDR(ejω ) =
1

vH (ejω )Φ−1v(ejω )
.
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Table 7.3 Fast MVDR spectral envelope calculation.

Step Description

1. Compute the LPCs a0 , a1 , · · · , aM of order M and the prediction error eM as
defined in Table 7.2.

2. Correlate the LPCs, as

μm =

⎧⎪⎨⎪⎩
1

eM

M −m∑
i=0

(M + 1 − m − 2i) a
(M )
i a

∗(M )
i+m , m = 0, 1, 2, · · · , M,

μ∗−m , m = −M, · · · ,−1

3. Compute the MVDR envelope

SMVDR(ejω ) = 1
M∑

m=−M

μm e−jωm

Under the assumption that matrix Φ is positive definite and thus invertible, Musicus [25]
derived a fast algorithm to calculate the MVDR spectral envelope from a set of linear prediction
coefficients (LPC)s, as given in Table 7.3.

The MVDR envelope copes well with the problem of overestimation of the spectral power
at the harmonics of voiced speech. To show this, we once more model voiced speech as the
sum of harmonics (7.10). Using the frequency form of the MVDR envelope given by (7.12),
the spectral estimate at ωl = ω0 l ∀ l = 1, 2, . . . is given by

SMVDR(ejω0 l) =
L∑

l=1

|bl |2
4

{|H(ejωl )|2 + |H(e−jωl )|2} ,

where bl is the amplitude of the lth harmonic. Thus, the MVDR distortionless filter h faithfully
preserves the input power at ω0 l while treating the other (2L − 1) exponentials as interference
and attempting to minimize their influence on the output of the filter. Hence, the MVDR
envelope models the perceptually important speech harmonics very well. However, unlike
warped spectra, as introduced in the following section, it does not mimic the human auditory
system and does not model the different frequency bands with varying accuracy.

7.3.6 Warping the Frequency Axis

So far we have investigated methods on a linear frequency scale. To better approximate the
human auditory analysis and to increase classification8, it is necessary to map the linear
frequency axis ω to a nonlinear frequency axis ω̃. Two widely used, but in principal very
different methods, exist:

� Critical band filtering applies an array of overlapping bandpass filters which, set accordingly,
are able to approximating the mel or Bark scale.

� Warping applies a conformal map to approximate the mel or Bark scale.

8 The application of nonlinear frequency scale, such as the mel and the Bark scale, has been demonstrated to
increase performance of speech recognition as well as speaker identification.
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Figure 7.4 Mel frequency (scale shown along left edge of left image) and Bark frequency (scale shown
along left edge of right image) can be approximated by a BLT (scale shown along right edges) for a
sampling rate of 16 kHz, αmel = 0.4595, αBark = 0.6254.

While critical band filtering [32] sums frequency bins9 and therefore always looses spectral
resolution, this is not the case for warping. A convenient way to implement warping is through
a conformal map, such as a first order all-pass filter [30, Theorem 5.5], which is also known
as the bilinear transform (BLT) [3, 31], or a Blaschke factor [12, Theorem 9.1]. It is defined
in the z-domain as

z̃−1 = Qz =
z−1 − α

1 − α · z−1 ∀ − 1 < α < +1, (7.13)

where α is the warp factor. A particular characteristic of the BLT is that it preserves the unit
circle, such that ∣∣Q (

ejω
)∣∣ = 1 ∀ − π < ω ≤ π.

Indeed, this latter property is the reason behind the designation all-pass. The relationship
between ω̃ and ω is nonlinear as indicated by the phase function of the all-pass filter [21]:

ω̃ = arg
(
Q

(
e−jω

))
= ω + 2 arctan

(
α sin ω

1 − α cos ω

)
. (7.14)

A good approximation of the mel and Bark scale by the BLT is possible if the warp factor is
set accordingly. The optimal warp factor depends on the sampling frequency and can be found
by different optimization methods [34]. Figure 7.4 compares the mel-scale and the Bark-scale
with their approximated counterparts for a sampling frequency of 16 kHz.

Warping can be applied in different domains. Note that the frequency axis is nonlinearly
scaled independent of the application of the BLT in the time or frequency domain. However,

9 due to the application of the bandpass filters in the discrete frequency domain
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the achieved accuracy of the spectral estimate depends on wether the BLT is applied in the
time or frequency domain. This effect can be explained as follows:

� Warping in the time domain modifies the values in the autocorrelation matrix and therefore,
in the case of autoregressive models more coefficients are used to describe lower frequencies
and fewer coefficients to describe higher frequencies.

� Warping in the frequency or cepstral domain does not change the spectral resolution as the
transform is applied after spectral analysis.

As indicated by Nocerino et al. [27], a general warping transform in the same domain,
such as the BLT, is equivalent to a matrix multiplication

fwarp = L(α) f ,

where L(α) denotes the transformation matrix which depends on the warp factor α. It follows
that the values fwarp on the warped scale are a linear interpolation of the values f on the
linear scale and therefore the spectral resolution is not altered.

Figure 7.5 demonstrates the effect of warping, with a warp factor α > 0, on the spectral
envelope if applied either in the time or in the frequency domain. The figure also compares
the warped spectral envelopes with its unwarped counterpart. We observe, that if the BLT
is applied in the time domain, that spectral resolution decreases as frequency increases. In
comparison to the resolution provided by the linear frequency scale, corresponding to α = 0,
the warped frequency resolution increases for low frequencies up to the turning point (TP)
frequency [13]

ftp(α) = ± fs

2π
arccos(α), (7.15)

where fs represents the sampling frequency. At the TP frequency, the spectral resolution is
not affected. Above the TP frequency, the frequency resolution decreases in comparison to the
resolution provided by the linear frequency scale.

No warpingTime domain warping Frequency domain warping
Changed resolution Same resolution

0 4 5 6 7 82
Frequency (kHz)

1 3 0 842 6
Frequency (kHz)

751 3 0 4 5 6 7 82
Frequency (kHz)

1 3

Figure 7.5 Influence of warping applied in the time or frequency domain on the spectral envelope.
While warping in the time domain changes the spectral resolution and frequency axis, warping in
frequency domain does not alter the spectral resolution but still changes the frequency axis.
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As observed by Strube [36], prediction error minimization of the predictors ãm in the warped
domain is equivalent to the minimization of the output power of the warped inverse filter

Ã(z) = 1 +
M∑

m=1

ãm z̃−m (z), (7.16)

in the linear domain, where each unit delay element z−1 is replaced by a BLT z̃−1 . The
prediction error is therefore given by

E
(

ejω
)

=
∣∣∣Ã (

ejω
)∣∣∣2 P

(
ejω

)
, (7.17)

where P
(
ejω

)
is the power spectrum of the signal. From Parseval’s theorem [29] it then

follows that the total squared prediction error can be expressed as

σ2 =
∫ π

−π
E

(
ej ω̃

)
dω̃ =

∫ π

−π
E

(
ejω

)
W 2

(
ejω

)
dω, (7.18)

where W (z) denotes the weighting filter

W (z) =
√

1 − α2

1 − αz−1 . (7.19)

However, the minimization of the squared prediction error σ2 does not lead to minimization
of the power, but the power of the error signal filtered by the weighting filter W (z), which
is apparent from the presence of this factor in (7.18). Thus, the BLT introduces an unwanted
spectral tilt. To compensate for this negative effect, the inverse weighting function

∣∣∣W̃ (z̃) · W̃ (z̃−1)
∣∣∣−1

=

∣∣∣1 + α · z̃−1
∣∣∣2

1 − α2 (7.20)

can be applied. The effect of the spectral tilt introduced by the BLT and its correction (7.20) are
depicted in Figure 7.6. For a fixed warp parameter α, it can be easily applied in the frequency
domain by a precalculated frequency dependent correction term.

0 4 62
Frequency (kHz)

7 8531

Figure 7.6 The plot of two warped spectral envelopes α = αmel demonstrates the effect of spectral
tilt. While the spectral tilt is not compensated for the dashed line, it is compensated for the solid line. It
is clear to see that high frequencies are emphasized for α > 0 if no compensation is applied.
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7.3.7 Warped LP Envelope

The LP and MVDR all-pole models approximate speech spectra equally well at all frequency
bands, while the human auditory system provides frequency resolution which is higher for low
frequencies and lower for high frequencies. To eliminate for this inconsistency, two widely
used modifications exist for LP:

� perceptual linear prediction [16]
Perceptual linear prediction (PLP) modifies LP spectral analysis by the introduction of the
Bark scale and logarithmic amplitude compression (raised to the power of 0.33 to simulate
the power law of hearing) prior to the Levinson–Durbin recursion.

� warped linear prediction [36]
An alternative to PLP, for which there is no need to convert between time and frequency
domains, is to perform LP analysis on a warped frequency axis by replacing the unit
delay element e−jkω with a cascade of first-order all-pass filters such as were presented in
Section 7.3.6.

Similar to LP, warped LP can be estimated with the Levinson–Durbin recursion, Table 7.2,
but yet using autocorrelation coefficients derived from a warped frequency scale. Those au-
tocorrelation coefficients are referred to as warped autocorrelation coefficients. Note that
applying the BLT to the spectrum of a finite sequence produces a spectrum corresponding to
an infinite sequence

X̃(z̃) =
∞∑

n=0

x̃[n] z̃−n = X(z) =
N −1∑
n=0

x[n] z−n .

Thus, the direct calculation of the warped autocorrelation coefficients

φ̃[m] =
∞∑

n=0

x̃[n] x̃[n − m], (7.21)

is not feasible. To overcome this problem, a variety of solutions has been proposed [10, 36,
37]. Here, we give the algorithm proposed by Matsumoto et al. [22]. To obtain the warped
predictors, we must solve the normal equations

p∑
y=1

Φ̃[m, n] ãm ,n = −Φ̃[m, 0], ∀ m = 1, 2, · · · , p, (7.22)

where

Φ̃[m,n] =
∞∑

l=0

ym [l] yn [l],

and

ym [n] = α · (ym [n − 1] − ym−1 [n]) − ym−1 [n − 1]
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is the output of the mth order all-pass filter excited by y0 [n] = x[n]. The last equation implies
that Φ̃[m, n] is a component of the warped autocorrelation function

Φ̃[m, n] = φ̃[|m − n|]. (7.23)

Thus, (7.22) is revealed to be an autocorrelation equation, exactly like the autocorrelation
equation found in standard LP analysis. Furthermore, as Φ̃[m, n] depends only on the difference
|m − n|, we can replace (7.21) by

φ̃[|m − n|] =
N −1−|m−n |∑

l=0

x[l] y|m−n |[l]. (7.24)

Hence, the warped autocorrelation coefficients Φ̃[m, n] can be calculated with a finite sum.
Given the warped-LP coefficients, we can now obtain the transfer function Hwarped−LP(z).

Thereby, we derive an all-pole spectral estimate in the warped-frequency domain, henceforth
referred to as the warped LP envelope

Swarped−LP(ejω ) =
∣∣∣Hwarped−LP

(
ejω

)∣∣∣2 =
ẽM∣∣∣1 +

∑M
m=1 ãm e−jmω

∣∣∣2 , (7.25)

where ẽ is the squared prediction error of the warped estimate.
Note that if α is set appropriately, the spectrum (7.25) is already in the mel-warped frequency

domain and therefore it is necessary to either

� eliminate the mel spaced triangular filter bank traditionally used in the extraction of mel-
frequency cepstral coefficients, or

� replace it by a filter bank of uniform half-overlapping triangular filters to provide feature
reduction or additional spectral smoothing.

The warping of the LP envelope addresses the inconsistency between LP spectral estimation
and that performed by the human auditory system. Unfortunately, for high-pitched voiced
speech the lower harmonics become so sparse that single harmonics appear as spectral poles,
which is highly undesirable in all-pole modeling. One proposed approach to overcome this
drawback is to weight the warped autocorrelation coefficient φ̃[m] with a lag window [21]. An
alternative is to use the warped MVDR envelope as described in Section 7.3.8.

7.3.8 Warped MVDR Envelope

To overcome the problems inherent in LP while emphasizing the perceptually relevant portions
of the spectrum, the BLT must be applied prior to MVDR spectral envelope estimation [41].
Let us define the warped frequency vector ṽ as

ṽ(ejω ) =
[

1
e−jω − α

1 − α · e−jω

e−j2ω − α

1 − α · e−j2ω
· · · e−jM ω − α

1 − α · e−jM ω

]T

.
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In order to calculate the distortionless filter h̃ in the warped domain, we must once more solve
the constrained minimization problem

min
h̃

h̃H Φ̃h̃ subject to ṽH (ejω f o i )h̃ = 1, (7.26)

where Φ̃ is the Toeplitz autocorrelation matrix as defined by (7.23). Clearly, this solution is
different from MVDR on the linear frequency scale. However, the way to solve for the warped
constrained minimization problem is very similar to its unwarped counterpart. The warped
MVDR envelope of the spectrum S(e−jω ) at frequency ωfoi can be obtained as the output of
the optimal filter

SwarpedMVDR(ejω f o i ) =
1
2π

∫ π

−π

∣∣∣H̃(ejω f o i )
∣∣∣2 S(e−jω )dω, (7.27)

under the same constraint as in MVDR, that the signal at the frequency of interest must pass
undistorted with unity gain, but yet on a nonlinear scaled frequency axis

H̃(ejω fo i ) =
M∑

m=0

h̃(m)
e−jmω fo i − α

1 − α · e−jmω fo i
= 1.

Assuming that the Hermitian Toeplitz correlation matrix Φ̃ is positive definite and thus invert-
ible, Musicus’ (1985) algorithm, as given in Table 7.3, can be readily applied to compute the
warped MVDR spectral envelope. However, the LPCs and the error term in Step 1 of Table 7.3
must be replaced by their warped counterparts from Section 7.3.7. Note that the spectrum
(7.27) derived by the modified, fast algorithm has a warped frequency axis and should be
handled as suggested in Section 7.3.7.

Warped-Twice MVDR Envelope

If one is aiming for adjusting spectral resolution to lower or higher frequency regions without
changing the frequency axis it should be noted that the warping of the frequency axis due
to the BLT in the time domain can be compensated through a second BLT in the frequency
domain [26, 38]. Due to the application of two warping stages in MVDR spectral estimation,
this approach is dubbed warped-twice MVDR.

7.3.9 Comparison of Spectral Estimates

Figure 7.7 displays plots of the spectral envelopes derived from the power spectrum as well
as the LP and MVDR models on both a linear and nonlinear frequency scale. The warp factor
for the warped LP and warped MVDR was set to 0.4595 so as to simulate the mel-frequency
for a signal sampled at 16 kHz. Due to its stronger smoothing properties, the model order of
the MVDR envelope was set to 30, while that of the LP envelope was set to 15.

The spectral estimates on the nonlinear frequency scale differ from those in the linear fre-
quency scale inasmuch as more parameters are apportioned to describe the lower as compared
to the higher frequency regions. Thus, the warped estimates provide a higher spectral reso-
lution in low frequencies and lower spectral resolution in high-frequency regions. Therefore,
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Warped frequency

Frequency (kHz)
0 842 61 3 5 7

Figure 7.7 Different spectral estimations (logarithmic power vs. frequency, for a better visualization
each envelope has a particular energy offset) of voiced speech and the influence of warping. From top
to bottom: minimum variance distortionless response envelope with model order 30, linear prediction
envelope with model order 15 and Fourier spectrum, and their mel warped, α = 0.4595, counterparts
with same model order.

warping prior to spectral analysis provides properties which cannot be achieved when the
spectral analysis is followed by frequency warping.

The MVDR envelope prevents the unwanted overestimation of the harmonic peaks in
medium- and high-pitched voiced speech that is seen in the LP envelope. As it is apparent
from Figure 7.7, the LP envelope overestimates the spectral peak at 4 kHz, which is apparent
upon comparing the LP envelope with the Fourier spectrum. Unlike the LP envelope, the
MVDR envelope provides a broad peak which matches the true spectrum better.
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Spectral Relationship Between LP and MVDR Envelopes

Burg [4] showed that the MVDR envelope of model order M can also be expressed as the
harmonic mean of the LP spectra S

(M )
LP (ejω ) of orders 0 through M :

S
(M )
MVDR(ejω ) =

[
M∑

m=0

1

S
(m )
LP (ejω )

]−1

.

The given relation, which also holds for the warped counterparts, explains why the (warped)
MVDR spectral envelope exhibits a smoother frequency response with decreased variance than
the corresponding (warped) LP spectrum if compared for the same model order.

7.3.10 The Spectrogram

The spectrogram is a graphical representation of the energy density as a function of discrete
angular frequency m and discrete time frames t

spectrogramt(m) = |X[n,m)|2 ,

where X [n, m) can be some of the previously described spectral estimation methods. A
spectrogram is typically displayed in gray scale, such that the higher the energy at a specific
frequency range and a given time frame, the darker this region appears in the time-frequency
plane. Hence, spectral peaks are shown in black, while spectral valleys are shown in white.
Values in between these two extremes have a gray shade. Due to the large dynamic range of
human speech, spectrograms are alternatively displayed in a logarithmic scale

logarithmic spectrogramt(m) = 20 log10 |X[n,m)| .
Depending on the window size used we differentiate between:

� The wide-band spectrogram. In this case a short duration window of less than a pitch period,
typically 10 ms, is used. This provides good time resolution, but smears the harmonic
structure, thereby yielding spectra similar to those of spectral envelopes.

� The narrow-band spectrogram. In this case, a long duration window of at least the length of
two pitch periods is used. The narrow-band spectrogram provides good frequency resolution
but poor time resolution. Due to the increased frequency resolution, the harmonics of f0 can
be observed as horizontal striations during segments of voiced speech.

An example of a wide-band as well as the narrow-band spectrogram is given in Figure 7.8.

7.4 Cepstral Processing

Cepstral10 features were originally invented by Bogert et al. [2] to distinguish between earth-
quakes and underground nuclear explosions. Just one year later, Noll [28] adopted them into
speech processing for vocal pitch detection. The cepstrum was introduced to other fields of

10 Cepstra stems from the reversal of the first four letters of spectra.
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Figure 7.8 Narrow-band and wide-band, mel-scaled, logarithmic spectrogram of clean speech. All
spectrograms were produced from the phrase “distant speech recognition” spoken by a male speaker.

speech processing in the early 1980s. Its first use for the purpose of ASR and for speaker ver-
ification was reported by Davis and Mermelstein [7] and Furui [11], respectively. Nowadays
cepstral features are widely used in a broad variety of speech applications.

7.4.1 Definition and Calculation of Cepstral Coefficients

The cepstrum is defined as the result of taking the Fourier transform of the (warped) logarithmic
spectrum. It can thus be interpreted as containing information about rate changes in the different
spectrum bands. The cepstrum is in particular useful in speech processing. This is due to the
fact that the low-frequency periodic excitation from the vocal cords and the formant filtering
of the vocal tract are located in different regions in the cepstral domain. Thus, the influence of
the excitation and the shape of the vocal tract in a signal can be easily separated in the cepstral
domain.

The real cepstrum11 is defined as the sequence

cx [k] =
1
2π

∫ π

−π
log

∣∣∣X (
ejω

)∣∣∣ ejωk dω, (7.28)

where X
(

ejω
)

can be any of the presented spectral estimate (the mel or the Bark scale is most
commonly used) as presented in Section 7.3.

11 The cepstrum can be defined complex; however, the real cepstrum is exclusively used in speech technology. The
reader who is interested in the definition of the complex spectrum should refer to Oppenheim and Schafer [30].
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To generate acoustic features, for the purposes of speech recognition or speaker identifica-
tion/verification, the minimum phase12 equivalent

x̂min [k] =

⎧⎪⎨⎪⎩
0, ∀ k < 0,

cx [0] k = 0,

2cx [k] ∀ k > 0
(7.29)

of the cepstral sequence is almost invariably used. Such features can be calculated by using the
inverse discrete Fourier transform to calculate cx [k] as in (7.28), then using this intermediate
result to calculate x̂min [k] as in (7.29).

Noting that the logarithmic magnitude and power spectra are real symmetric functions
[33], (7.29) can also be represented as the Type 2 discrete cosine transform (DCT). The
transformation can thus be conveniently represented as a simple matrix multiplication to the
log-power spectral density vector log

∣∣∣X (
ejω

)∣∣∣, such that

x̂min [k] =
M −1∑
m=0

log
∣∣∣X (

ejωm

)∣∣∣ T
(2)
k,m , (7.30)

where T
(2)
k,m are the individual components of the Type 2 DCT.

7.4.2 Characteristics of Cepstral Sequences

To investigate the characteristics of cepstral sequences, we define a system transfer function
with Mi zeros pm and Ni poles qm inside the unit circle and Mo zeros dm and No poles em

outside the unit circle. Together with the scale term K we can then write the equation of the
transfer function as

H(z) = K

∏M o
m=1(1 − dm z)

∏M i
m=1(1 − pm z−1)∏No

m=1(1 − em z)
∏Ni

m=1(1 − qm z−1)
. (7.31)

Note that, by definition, |dm |, |em |, |pm |, |qm | < 1 for all poles and zeros.
In order to determine that cepstral sequence ĥ[k] of which the transform pair is the transfer

function Ĥ(z), we can make use of the series expansions

log
(
1 − α z−1

)
= −∑∞

k=1
αk

k z−k ∀ |z| > |α|, (7.32)

log (1 − β z) = −∑∞
k=1

βk

k zk ∀ |z| < |β|−1 . (7.33)

Hence, we can express ĥ[k] as

ĥ[k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

log |K |, k = 0,

−
M i∑

m=1

pk
m

k
+

Ni∑
m=1

qk
m

k
, ∀ k > 0,

M o∑
m=1

d−k
m

k
−

No∑
m=1

e−k
m

k
, ∀ k < 0.

(7.34)

12 A system is minimum-phase if its inverse is causal and stable [30].
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Several characteristics of cepstral sequences emerge from (7.34):

� A minimum phase system will have a causal sequence of cepstral coefficients, which implies
ĥ[k] = 0 ∀ k < 0.

� For real h[k], which implies that the complex poles and zeros of H(z) occur in complex-
conjugate pairs, the cepstral coefficients ĥ[k] will also be real as stated at the outset.

� The cepstral coefficients ĥ[k] decay at least by the factor 1/k. Hence, it can be concluded,
that the lower order coefficients contain most of the information about the overall spectral
shape of H

(
ejω

)
.

The low order cepstral coefficients, especially x̂min [0] and x̂min [1], can be given a particular
intuitive meaning. The initial value x̂min [0] represents the average power of the input signal.
The next value x̂min [1] indicates the distribution of spectral energy between low and high
frequencies. A positive value indicates a sonorant sound, as the preponderance of the spectral
energy will be concentrated in the low-frequency regions. A negative value indicates a fricative,
inasmuch as most of the spectral energy will be concentrated at high frequencies [9]. Higher
order cepstral coefficients represent ever increasing levels of spectral detail. Note that a finite
input sequence results in an infinite number of cepstral coefficients. However, it is a well-
established fact that a finite number of coefficients, typically ranging between 12 and 20
depending on the sampling rate and estimation method, is optimal for speech analysis [17].

7.5 Influence of Distortions on Different Speech Features

In this section, we investigate the influence of different kinds of distortions, namely noise,
reverberation, and a change in fundamental frequency, both in the logarithmic power spectral
domain13 and cepstral domain. The comparison is performed on the power spectrum as a proto-
typical representative for nonparametric spectral estimation methods and warped MVDR as a
prototypical representation for parametric spectral estimation and spectral envelopes. We have
chosen these prototypes because the power spectrum is probably the most common spectral
estimation method and warped MVDR, a method, which has been demonstrated superior to
a broad range of alternative methods in speech processing [39] for the reasons discussed in
Section 7.3. Figure 7.9 shows two block diagrams illustrating all the processing steps required
for the calculation of the compared mel-frequency cepstral coefficient (employing the power
spectrum) and warped MVDR cepstral coefficient (employing the warped MVDR spectral
envelope) front-ends.

But before we can start with the analysis and comparison, we have to first define different
useful objective functions.

7.5.1 Objective Functions

To evaluate and compare the quality of different feature-extraction methods objective functions
are required which are able to judge the overall, or particular parts, of the system quality. To

13 The spectral domain is easier comprehensible by humans than the cepstral domain and thus, it is preferable to
do some of the analysis in this domain.



P1: TIX/XYZ P2: ABC
JWST201-c07 JWST201-Virtanen September 3, 2012 8:51 Printer Name: Yet to Come Trim: 244mm × 168mm

From Signals to Speech Features by Digital Signal Processing 183

Discrete Cosine Transform

Logarithm

Mel Filterbank

Hamming Window

Logarithm

Sampeled Waveform Sampeled Waveform

Mel-Frequency Cepstral Coefficients Warped MVDR Cepstral Coefficients

|Fourier Transformation|2 Warped MVDR Spectral Estimate

Hamming Window

Discrete Cosine Transform

Figure 7.9 Block diagrams illustrating all the processing steps required for the calculation of the
compared mel-frequency cepstral coefficient and warped MVDR cepstral coefficients front-ends.

evaluate speech features the overall system quality could be measured by the word error rate
in case of speech recognition or acceptance and rejection ratios in case of speaker verification.
Evaluating the whole system, which would result in high computational costs and turnaround
times, might not only be unhandy for the given reasons, but might also not be a useful tool
for analysis. To overcome high computational costs and turnaround times objective functions
can be used which correlate strongly to methods judging the overall system performance,
but without the need to run the whole system. One such method, to evaluate the quality of
speech features, which is strongly correlated to the word error rate, is class separability.
Class separability measures how good different classes can be distinguished from each other.
For analysis, alternative methods which are able to provide additional information exist. We
introduce two of such techniques in the next sections which are particular useful to investigate
the influence of distortions on speech features.

Scatter Plot of Clean versus Distorted Features

To compare how speech features are changing in respect to a given distortion, one can prepare
a scatter plot. These scatter plots can either be derived over all dimension (used in our
experiments) or for a subset (e.g., if the influence of a particular frequency range should be
investigated). In our scatter plots, the x-axis represents clean speech features, while the y-axis
represents their distorted14 counterparts. Therefore, each point in the scatter plot correlates the
position of a clean observation to the corresponding distorted observation. A darker color in
the scatter plot reflects more “hits” at a particular position while a lighter color has less “hits.”
Therefore, a distortion-free signal is reflected by different shades of gray on the line x = y. If
a signal becomes more and more distorted more points are farther from the line x = y. While
the scatter plot gives a good indication on “how” and “where” the features are moved, it does
not allow to see the amount of relative changes.

14 Distorted in this respect can be any kind of unwanted change on the feature values.
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Histogram of Relative changes

A second method for visual inspection is to build a histogram of relative changes (the differ-
ence) between the distortion free and distorted speech features. The change is relative, because
it does not consider the original position of the clean speech feature. While those histograms
are not able to show the absolute change, as the scatter plots, they give a distribution of change.
The distortion free case would have all hits at zero. As the features get increasingly distorted,
the distribution is becoming less centered around zero which results in an increased variance
of the distribution.

Class Separability

Under the assumption that for each of M classes15, there exists a set {ym,k} of labeled training
samples, class separability can be expressed as a function of two (out of three)16 scatter
matrices. With the given definitions

� Km is the number of samples in the mth class;
� μm is the mean of all samples in the mth class;
� K is the total number of samples; and
� μ is the mean of all samples regardless of class;

these matrices can be defined as

� The within-class scatter matrix

Sw =
1
K

M∑
m=1

[
Km∑
k=1

(ym,k − μm )(ym,k − μm )T

]
,

which is defined as the expected covariance of each of the classes. It is a measure of “how
compact” the classes are.

� The between-class scatter matrix

Sb =
1
K

M∑
m=1

Km (μm − μ)(μm − μ)T ,

which is defined as the covariance of the mean values of each of the classes. It is a measure
of “how separated” classes are to each other.

� The total scatter matrix

St = Sw + Sb =
1
K

M∑
m=1

[
Km∑
k=1

(ym,k − μ)(ym,k − μ)T

]
,

which is defined as the expected covariance of the data set whose members are the mean
vectors of each class.

15 In speech recognition, a class can be defined as phoneme or subphoneme.
16 Any of the scatter matrices can always be derived from the other two.
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Figure 7.10 Wide-band, mel-scaled, logarithmic spectrogram of noisy speech.

From the above relations, it is clear that for a high class separability all vectors belonging
to the same class must be close together and well separated from the feature vectors of other
classes. Class separability can be expressed in a single value as

d = trace
(
S−1

w Sb

)
. (7.35)

7.5.2 Robustness against Noise

Figure 7.10 shows a wide-band spectrogram of noisy speech. The frequency axis of this
spectrogram is scaled according to the mel scale while the energy axis is logarithmic. It is easy
to see, compare to Figure 7.8, that the additive noise fills up the regions of the time-frequency
plane with low speech energy.

To further investigate this effect on the power spectrum and warped MVDR, we plot scatter
matrices of logarithmic power (see Figure 7.11). In the case of additive noise, the lower values
are lifted to higher energies; that is the low-energy components are masked by noise and their
information is missing. This effect is more apparent on the power spectrum as on the warped
MVDR envelope. The warped MVDR envelope has less features in low-energy regions and
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Figure 7.11 Scatter plots showing the influence of noise on speech in the logarithmic power domain.
The average signal-to-noise ratio is 10 dB.
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Figure 7.12 Histogram of relative changes between the distortion free and distorted speech features
for different signal-to-noise ratios.

thus, the features are closer to the x–y-axis for the case of warped MVDR than the power
spectrum.

The robustness to distortions for different features is clearer by plotting the histogram
of relative changes. By comparing the histograms of relative changes, for the two spectral
estimation methods, in Figure 7.12 for different SNRs we observe that the power spectrum
is more spread and therefore has a wider variance than that of the warped MVDR. Also
note that the distribution of relative changes is not limited to positive values, but contains
negative values. Those negative values are due to the phase between the clean signal and the
distortions. This finding is important for enhancement techniques where it is still common to
“only” subtract spectral energy.

Comparing the class separability of the two features mel-frequency cepstral coefficients
(MFCCs) and warped MVDR cepstral coefficients (WMVDRCCs) in Figure 7.13, we observe
that WMVDRCCs have, on average, a higher class separability. It is interesting to observe that
for very high distortions the two features have nearly the same class separability, while for
higher SNR values the WMVDRCCs shows its advantages. While the class separability stays
nearly equal in the case of WMVDRCCs for SNR values above 20 db, the class separability
degrades continuously from higher to lower SNRs for MFCCs. This difference can be explained
by the fact of the unequal modeling of high- and low-energy regions by spectral envelopes as
already discussed.
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Figure 7.13 Influence of noise on class separability.

7.5.3 Robustness against Echo and Reverberation

Figure 7.14 shows a wide-band spectrogram of reverberant speech. In contrast to additive
distortions reverberation smears the spectral energy along the time axis.

Comparing the scatter plots of speech distorted by reverberation, Figure 7.15, with those of
speech distorted by noise, Figure 7.11, we observe that the distribution of the scatter points is
quite different. Reverberation influences spectral features nearly independently of the power
of the clean speech (with a tendency to lower variations for higher energies), while in contrast
noise distortions influence in particular spectral features where the power of the clean speech
signal is low. By comparing the scatter plot of the power spectrum (left image) and the scatter
plot of the warped MVDR spectral envelope (right image) in Figure 7.15, it can be observed
that—as before—there are not as many low-energy values for the MVDR spectral envelope
as compared to the power spectrum.

As before by looking at the histogram of relative change for different reverberation times,
Figure 7.16, we once more observe that the power spectrum is more spread, and therefore
has a wider variance than the warped MVDR. Thereofore, we can conclude that the warped
MVDR spectral envelope is more robust to additive as well as reverberant distortions than the
power spectrum. The findings, that the distribution of relative changes is not limited to positive
values, but contains negative values, also hold for reverberation.
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Figure 7.14 Narrow-band, mel-scaled, logarithmic spectrogram of reverberant speech.
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Figure 7.15 Scatter plots showing the influence of reverberation on captured speech in the logarithmic
power domain. The average RT60 is 2 s.

Figure 7.16 Histogram of relative changes between the distortion free and distorted speech features
for different reverberation times.



P1: TIX/XYZ P2: ABC
JWST201-c07 JWST201-Virtanen September 3, 2012 8:51 Printer Name: Yet to Come Trim: 244mm × 168mm

From Signals to Speech Features by Digital Signal Processing 189

C
la

ss
 s

ep
ar

ab
il

it
y

4

5

6

7

8

9

10

4.0
Reverberation time delay RT60

0.5

WMVDRCC

MFCC

1.01.52.02.53.03.5

Figure 7.17 Influence of noise on class separability.

Looking at the class separability in Figure 7.17 for different time delay values RT60 , we
observe that the curve of the degrading effect is differently pronounced than in the case of
noise. In contrast to noise, for reverberation the difference between the two features, MFCCs
and WMVDRCCs, is not very apparent, but for most values the class separability is slightly
higher for WMVDRCCs.

7.5.4 Robustness against Changes in Fundamental Frequency

While the field of robustness, at least in the case of speech recognition, is dominated by methods
against noise and echo/reverberation, it is easily overseen that other distortions such as speaker
specific information or emotion (which might be a source of wanted information for other
tasks such as speaker identification or verification) might play a significant role in increasing
the variance of the extracted speech features, and thus result in an increased mismatch between
training and testing. Thereofore, a key role of speech feature-extraction methods for speech
recognition is not only to provide robustness against noise and echo/reverberation, but also
against other variations such as speaker variation or the emotional state.

Due to the nature of speech production, the previously introduced analysis methods (Sec-
tion 7.5.1), cannot be applied here. The influence of the model order in spectral envelope
estimation is represented on voiced speech in Figure 7.18:

� A higher model order shows more detail of the fine structure of the spectrum and represents
the fundamental frequency.

� A low model order reduces the influence of the excitation and is more or less a representation
of the transfer function of the vocal track.

The overall performance of speech recognition and speaker identification/verification accu-
racy for WMVDRCCs for model orders between 20 and 120 is depicted in Figure 7.19.
Comparing the optimal choice of model order for speech recognition—which is around
3017—with the optimal choice for speaker identification/verification—where larger model

17 Note that in those experiments in the literature where a significant higher model order is used for speech
recognition, the spectral estimate is followed by a filter bank which adds additional smoothing.
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Figure 7.18 Influence of the model order on the spectral envelope of voiced speech for fundamental
frequencies of 100 Hz (left image) and 200 Hz (right image). The gray line represents the transfer
function of the vocal tract.

orders perform better—it becomes apparent that the optimal choice of model order, for the
two tasks, is significantly different. And thus the required or provided information:

� For speaker identification/verification tasks, it is important to keep the information about
the fundamental frequency and their harmonics (which is speaker specific).

� For speech recognition (at least for nontonal languages), it is important to suppress the
influence of the fundamental frequency and their harmonics.

By suppression this particular classification irrelevant information spectral estimates, and thus
speech features, become more robust to pitch variation of the same speaker as well as to
speaker specific characteristics.

It is interesting to note that for lower model orders the performance difference—for speech
recognition as well as speaker identification/verification—is relative high, while for higher
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11010090807060504030 12020
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Speech recognition

Figure 7.19 Speech-recognition and speaker identification/verification accuracy for warped MVDR
cepstral coefficients versus model order.
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model orders the performance difference is relative low. This can be explained by the fact that
the influence of the overall spectral resolution is higher, for the same step size, in the case of
lower model orders in comparison to higher model orders.

7.6 Summary and Further Reading

This chapter has given a brief insight into digital signal processing to extract speech features.
We have seen that one contribution to the robust extraction of acoustic features is the appropriate
estimation of the spectral representation. The bilinear transform has been introduced as an
alternative to nonlinear scaled filter banks to represent nonlinear resolution of the human ear.
Additional robustness to speech features is provided by a successive processing chain using
cepstral processing and truncation18 [30]. Human, as well as automatic, phonetic categorization
and discrimination is poor for short observation windows. This fact suggest the use of longer
observation context. Due to space constrains this has not been considered here, the interested
reader should refer to Huang et al. [17] or Wölfel and McDonough [40]. Feature reduction
is another important step not treated here. Linear discriminant analysis and heteroscedastic
linear discriminant analysis which is frequently used in acoustic front-ends is explained in
Hastie et al. [14].
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8.1 Introduction

It is well known that human speech processing capabilities far surpass the capabilities of cur-
rent automatic speech recognition and related technologies, despite very intensive research in
automated speech technologies in recent decades. Indeed, since the early 1980s, this observa-
tion has motivated the development of speech-recognition feature-extraction approaches that
are inspired by auditory processing and perception, but it is only relatively recently that these
approaches have become effective in their application to computer speech processing. The
goal of this chapter is to review some of the major ways in which feature extraction schemes
based on auditory processing have facilitated greater speech-recognition accuracy in recent
years, as well as to provide some insight into the nature of current trends and future directions
in this area.

We begin this chapter with a brief review of some of the major physiological and perceptual
phenomena that have motivated feature-extraction algorithms based on auditory processing.
We continue with a review and discussion of three seminal “classical” auditory models of
the 1980s that have had a major impact on the approaches taken by more recent contrib-
utors to this field. Finally, we turn our attention to selected more recent topics of interest
in auditory feature analysis, along with some of the feature extraction approaches that have
been based on them. We conclude with a discussion of the attributes of auditory models that
appear to be most effective in improving speech-recognition accuracy in difficult acoustic
environments.

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
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8.2 Some Attributes of Auditory Physiology and Perception

In this section, we very briefly review and discuss a selected set of attributes of auditory
physiology that historically or currently have been the object of attention by developers of
auditory-based features. This discussion has been simplified for clarity’s sake at the expense
of other interesting phenomena that have received less attention in constructing models, at
least to date, and it is far from comprehensive, even with respect to the auditory response
to speech sounds. Furthermore, the physiological response to speech sounds is the object of
much current attention, so that any report on current progress will inevitably be quickly out of
date. The reader is referred to standard texts and reviews in physiology and psychoacoustics
(e.g., [77, 88, 117]) for more comprehensive descriptions of general auditory physiology as
well as the psychoacoustical response to speech sounds. The physiological response of the
auditory system to speech and speech-like sounds is described in [86], among other places.

8.2.1 Peripheral Processing

Mechanical Response to Sound

The peripheral auditory response to sound has been well documented over a period of many
years. Very briefly, small increases and decreases in pressure of the air that impinges on the two
ears induce small inward and outward motion on the part of the tympanic membrane (eardrum).
The eardrum is connected mechanically to the three bones in the middle ear, the malleus, incus,
and stapes (or, more commonly, the hammer, anvil, and stirrup). The cochlea is the organ that
converts the mechanical vibrations in the middle ear to neural impulses that can be processed
by the brainstem and brain. The cochlea can be thought of as a fluid-filled spiral tube, and the
mechanical vibrations of the structures of the middle ear induce wave motion of the fluid in
the cochlea. The basilar membrane is a structure that runs the length of the cochlea. As one
moves from the basal end of the cochlea (closest to the stapes) to the apical end (away from
the stapes), the stiffness of the basilar membrane decreases, causing its fundamental resonant
frequency to decrease as well. Figure 8.1 illustrates some classical measurements of cochlear
motion by Georg von Békésy [112] which were obtained using stroboscopic techniques in the
1940s. These curves show that the membrane responds to high-frequency tones primarily at
the basal end, while low-frequency signals elicit maximal vibration at the apical end, although
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Figure 8.1 The response of the basilar membrane as a function of frequency, measured at six different
distances from the stapes. As the frequency axis is plotted on a logarithmic scale, it can be easily seen that
the effective bandwidth is proportional to center frequency at higher frequencies; effective bandwidth is
roughly constant at lower frequencies (from [112]).
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the response to low-frequency sounds is more asymmetric and distributed more broadly along
the membrane.

Affixed to the human basilar membrane are about 15 000 hair cells, which enervate about
30 000 individual fibers of the auditory nerve. Through an electrochemical mechanism, the
mechanical motion of the hair cells elicits the generation of a brief transient or “spike” in the
voltage inside the cell wall. This transient is then propagated along the nerve fibers and beyond
to the cochlear nuclei and subsequently to higher centers in the brainstem and the brain. The
most important attribute of these spikes is the time at which they take place. Because each
nerve fiber takes input from a relatively small number of fibers that in turn move in response to
vibration over only a limited length along the basilar membrane, and because a given location
along the basilar membrane is most sensitive to a narrow range of frequencies, each fiber of
the auditory nerve also only responds to a similar range of frequencies.

It should be borne in mind that the basic description above is highly simplified, ignoring
nonlinearities in the cochlea and in the hair-cell response. In addition, the there are actually
two different types of hair cells with systematic differences in response. The inner hair cells
transduce and pass on information from the basilar membrane to higher levels of analysis
in the auditory system. The outer hair cells, which constitute the larger fraction of the total
population, have a response that is affected in part by efferent feedback from higher centers
of neural processing. These cells appear to amplify the incoming signals nonlinearly, with
low-level inputs amplified more than more intense signal components. This amplification
produces a compression in dynamic range, and it is also believed to play an important role
in the mechanism underlying lateral suppression, which improves frequency resolution. We
describe some of the simple attributes of the auditory-nerve response to simple signals in
the sections below, focussing on those attributes that are most commonly incorporated into
feature extraction for automatic speech recognition.

Transient Response of Auditory-Nerve Fibers

The spikes that are generated by fibers of the auditory nerve occur at random times, and
hence the response of the nerve fibers must be characterized statistically. Figure 8.2 is a
“poststimulus-time” (PST) histogram of the rate of firing in response to tone bursts as a
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Figure 8.2 PST histograms in response to tone bursts (from [88]).
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Figure 8.3 Tuning curves indicating the response threshold for pure tones for an assortment of auditory-
nerve fibers with different CFs (from [48]).

function of the time after the initiation of the burst, averaged over many presentations of the
tone burst. It can be seen there is a low level of spontaneous activity before the tone burst
is gated on. When the tone is suddenly turned on, there is an “overshoot” in the amount of
activity, which eventually settles down to about 50 spikes per second. Similarly, when the tone
is gated off, the response drops below the spontaneous rate before rising to it. These results
illustrate the property that the auditory system tends to emphasize transients in the response
to the signals, with less response from the steady-state portions.

Frequency Resolution of the Auditory System

As was noted above, different frequency components of an incoming signal elicit maximal
vibrations of the basilar membrane at different locations along the membrane. Because each
of the roughly 30 000 fibers of the auditory nerve is connected to a particular location along
the membrane, the response of each of these fibers is frequency specific as well, as illustrated
by the curves of Figure 8.3. Each of the curves in this figure represents the intensity at a given
frequency that is needed to cause the mean rate of firing from a particular auditory-nerve
fiber in response to a sine tone to increase a predetermined percentage above the spontaneous
average firing rate for that fiber. Each curve in the figure represents the response of a different
fiber. It can be seen that each of the fibers responds only over a relatively narrow range of
frequency and there is a specific frequency of the incoming signal at which the fiber is the most
sensitive, called the “characteristic frequency” (CF) of that fiber. This portion of the auditory
system is frequently modeled as a bank of bandpass filters (despite the many nonlinearities
in the physiological processing), and we note that the “bandwidth” of the filters appears to
be approximately constant for fibers with CFs above 1 kHz when plotted as a function of log
frequency. This means that these physiological filters could be considered to be “constant-Q”
in that the nominal bandwidth is roughly proportional to center frequency. The bandwidth
of the filters is roughly constant at lower frequencies, although this is less obvious from the
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Figure 8.4 Rate of spike discharges as a function of intensity for three auditory-nerve fibers with
different CFs (as indicated), after subtracting the spontaneous rate of firing (from [89]).

curves in Figure 8.3. This frequency-specific or “tonotopic” organization of individual parallel
channels is generally maintained as we move up from the auditory nerve to higher centers of
processing in the brainstem and the auditory cortex.

Rate-Level Responses

We have previously stated that many aspects of auditory processing are nonlinear in nature.
This is illustrated rather directly in Figure 8.4, which shows the manner in which the rate
of response increases as a function of signal intensity. (The spontaneous rate of firing for
each fiber has been subtracted from the curves.) As can be seen, the rate-intensity function is
roughly S-shaped, with a relatively flat portion corresponding to intensities below the threshold
intensity for the fiber, a limited range of about 20 dB in which the response rate increases in
roughly linear proportion to the signal intensity, and a saturation region in which the response
is again essentially independent of the incoming signal intensity. (There are some exceptions
to this, such as the fiber with CF 1.6 kHz in the figure.) The fact that each individual fiber
is limited to approximately 20 dB of active response implies that psychophysical phenomena
such as loudness perception must be mediated by the combined response of a number of fibers
over a range of frequencies.

Synchronized Response to Low-Frequency Tones

When the excitation for a particular auditory-nerve fiber is below the threshold intensity level
for that fiber, spikes will be generated randomly, following a Poisson interval distribution with
a refractory interval of no response for about 4 ms after each spike. Figure 8.5 is a “postzero-
crossing histogram” (PZC histogram) which describes the firing rate that is observed as a
function of the phase of the input signal. We note that the response roughly follows the shape
of the input signal at least when the signal amplitude is positive (which actually corresponds
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Figure 8.5 Period histograms in response to a 1100-Hz pure tone at various signal intensities (from
[94] as redrawn by [88]).

to times at which the instantaneous pressure is lower than the baseline level). This “phase-
locking” behavior enables the auditory system to compare arrival times of signals to the two
ears at low frequencies, which is the basis for the spatial localization of a sound source at
these frequencies. While the auditory system loses the ability to respond in synchrony to the
fine structure of higher frequency components of the input signal, its response is synchronized
to the envelopes of these signal components (e.g., [21]). The frequency at which the auditory
system loses its ability to track the fine structure of the incoming signal in this fashion is
approximately the frequency at which such timing information becomes useless because that
information becomes ambiguous for localization purposes, which strongly suggests that the
primary biological role for low-frequency synchrony is indeed sound localization.

While temporal coding is clearly important for binaural sound localization, it may also play
a role in the robust interpretation of the signals from each individual ear as well. For example,
the upper panel of Figure 8.6 depicts the mean rate of response to a synthetic vowel sound by
an ensemble of auditory-nerve fibers as a function of the CF of the fibers, with the intensity of
the vowel sound varied over a wide range of input intensities, as described by Sachs and Young
[96]. The lower panel of that figure depicts the derived averaged localized synchronized rate
(or ALSR) to the same signals [119], which describes the extent to which the neural response
at a given CF is synchronized to the nearest harmonic of the fundamental frequency of the
vowel. It can be easily seen that the mean rate of response varies dramatically as the input
intensity changes, while the ALSR remains substantially unchanged. These results suggest
that the timing information associated with the response to low-frequency components of a
signal can be substantially more robust to variations in intensity (and potentially various other
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Figure 8.6 Comparison of auditory-nerve responses to a computer-simulated vowel sound at various
intensities based on mean rate (upper panel) and synchrony to the signal (see text). For clarity of
presentation, the lower panel is drawn with the curves shifted along the vertical axis (redrawn from
[96] and [119]).

types of signal variability and/or degradation) than the mean rate of the neural response. Most
conventional feature extraction schemes (such as MFCC and PLP coefficients) are based on
short-time energy in each frequency band, which is more directly related to mean rate than
temporal synchrony in the physiological responses.

Lateral Suppression

The response of auditory-nerve fibers to more complex signals also depends on the nature
of the spectral content of the signals, as the response to signals at a given frequency may be
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Figure 8.7 The shaded portions of the figure indicate combinations of intensities and frequencies at
which the presence of a second tone suppresses the auditory-nerve response to a tone at a fiber’s CF
presented 10 dB above threshold (from [5]).

suppressed or inhibited by energy at adjacent frequencies (e.g., [5, 95]). For example, Figure
8.7 summarizes some aspects of the response to a pairs of tones. The signal in this case is
a pair of tones, a “probe tone” that is 10 dB above threshold at the CF (indicated by the
open triangle in the figure) plus a second tone presented at various different frequencies and
intensities. The cross-hatched regions indicate the frequencies and intensities for which the
response to the two tones combined is less than the response to the probe tone at the CF alone.
The open circles outline the tuning curve for the fiber that describes the threshold intensity for
the probe tone alone as a function of frequency. It can be seen that the presence of the second
tone over a range of frequencies surrounding the CF inhibits the response to the probe tone at
CF, even when the second tone is presented at intensities that would be below threshold if it
had been presented in isolation. This form of “lateral suppression” has the effect of enhancing
the response to changes in the signal content with respect to frequency, just as the overshoots
and undershoots in the transient response have the effect of enhancing the response to changes
in signal level over time.

8.2.2 Processing at more Central Levels

While the phenomena described above are all observed at the level of the cochlea or the
auditory nerve, substantial processing takes place at the level of the precortical centers of the
brainstem as well as in the auditory cortex itself. We note here three sets of more central
phenomena that also play significant roles in auditory modeling.
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Figure 8.8 Response of a unit in the MSO to pure tones at various frequencies plotted as a function of
the stimulus ITD (from [116]).

Sensitivity to Interaural Time Delay and Other Binaural Phenomena

It is well known that two important cues for human localization of the direction of arrival
of a sound are the interaural time difference (ITD) and interaural intensity difference (IID)
(e.g., [24]). As first noted by Rayleigh [108], ITDs are most useful at low frequencies and
IIDs are only present at higher frequencies for reasons related to spatial aliasing and physical
diffraction, respectively. Physiologists have observed units in the superior olivary complex
and the inferior colliculus that appear to respond maximally to a single “characteristic” ITD
(e.g., [93,116]). As an example, Figure 8.8 depicts the response of a unit in the superior
olivary complex in the brainstem of a cat which responds in excitatory fashion when signals
are presented binaurally. The figure plots the relative number of spikes in response to tones at
various frequencies as a function of the ITD with which the signals are presented to the two
ears. We note that this unit exhibits a maximum in response when the tones are presented with
an ITD of approximately 33 μs for frequencies ranging from 500 to 1700 Hz. In other words,
the function of this unit appears to be the detection of a specific ITD, and that ITD of best
response is sometimes referred to as the characteristic delay (CD) of the unit. An ensemble
of such units with a range of CFs and CDs can produce a display that represents the interaural
cross-correlation of the signals to the two ears after the frequency-dependent and nonlinear
processing of the auditory periphery. Over the years many theories have been developed that
describe how a display of this sort can be used to describe and predict a wide range of binaural
phenomena as reviewed by Stern and Trahiotis [103] and Stern et al. [105]). Units have also
been described that appear to record the IIDs of a stimulus (e.g., [93]).

Another important attribute of human binaural hearing is that localization is dominated by
the first-arriving components of a complex sound [113]. This phenomenon, which is referred
to as the precedence effect, is clearly helpful in causing the perceived location of a source
in a reverberant environment to remain constant, as it is dominated by the characteristics of
the direct field (which arrives straight from the sound source) while suppressing the potential
impact of later-arriving reflected components from other directions. In addition to its role in
maintaining perceived constancy of direction of arrival in reverberation, the precedence effect
is also believed by some to improve speech intelligibility in reverberant environments.
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Sensitivity to Amplitude and Frequency Modulation

Physiological recordings in the cochlear nuclei, the inferior colliculi, and the auditory cortex
have revealed the presence of units that appear to be sensitive to the modulation frequencies
of sinusoidally-amplitude-modulated (SAM) tones (e.g., [47]). In some of these cases, re-
sponse would be maximum at a particular modulation frequency, independently of the carrier
frequency of the SAM tone complex, and some of these units are organized anatomically
according to best modulation frequency [58]. Similar responses have been observed in the
cochlear nuclei to sinusoidal frequency modulations [76], with modulation frequencies of
50–300 Hz providing maximal response. These results have lead to speculation that the so-
called modulation spectrum may be a useful and consistent way to describe the dynamic
temporal characteristics of complex signals like speech after the peripheral frequency anal-
ysis. In one perceptual study Drullman et al. [22, 23] conducted a series of experiments that
characterized the perception of speech that had been analyzed and resynthesized with modified
temporal envelopes in each frequency band, concluding that modulation spectrum components
between 4 and 16 Hz are critical for speech intelligibility. Nevertheless, the extent to which
the physiological representation of amplitude modulation is preserved and remains invariant
at higher levels remains an open issue at present.

Feature Detection at Higher Levels: Spectro-Temporal Receptive Fields

There is a rich variety of feature-detection mechanisms that have been observed at the higher
levels of the brainstem and in the auditory cortex as reviewed by Palmer and Shamma
[86]. A characterization that has proved useful is that if the spectro-temporal response field
or STRF, which can, in principle, be used to describe sensitivity to amplitude modulation,
frequency modulation, as well as a more general sensitivity to sweeps in frequency over time,
as might be useful in detecting formant transitions in speech. As an example, researchers at the
University of Maryland and elsewhere have used used dynamic “ripple” stimuli, with drifting
sinusoidal spectral envelopes, to develop the STRF patterns in the responses of units of the
primary auditory cortex (A1) in ferrets [20,56]. They reported units with a variety of types of
response patterns, including sensitivity to upward and downward ripples, as well as a range of
best frequencies, bandwidths, asymmetries in response with respect to change in frequency,
temporal dynamics, and related characteristics. It is frequently convenient to illustrate the
observed STRFs as color temperature patterns in the time-frequency plane.

8.2.3 Psychoacoustical Correlates of Physiological Observations

All of the phenomena cited above have perceptual counterparts, which are observed by
carefully-designed psychoacoustical experiments. The results of these experiments give us
direct insight into the characteristics and limitations of auditory perception, although we must
infer the mechanism underlying the experimental results. (In contrast, physiological exper-
iments provide direct measurements of the internal response to sound, but the perceptual
significance of a given observation must be inferred.) Interesting auditory phenomena are
frequently first revealed through psychoacoustical experimentation, with the probable physio-
logical mechanism underlying the perceptual observation identified at a later date. We briefly
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discuss four sets of basic psychoacoustic observations that have played a major role in auditory
modeling.

The Psychoacoustical Transfer Function

The original psychoacousticians were physicists and philosophers of the nineteenth century
who had the goal of developing mathematical functions that related sensation and perception,
such as the dependence of the subjective loudness of a sound on its physical intensity. As can
be expected, the nature of the relationships will depend on the temporal and spectral properties
of the signals, as well as how the scales are constructed. The original psychophysical scales
for intensities were based on the empirical observations of Weber [115], who observed that
the increment in intensity needed to just barely perceive that a simple sound (such as a tone)
was louder than another was a constant fraction of the reference intensity level. This type
of dependence of the just-noticeable difference or JND of intensity on reference intensity is
observed in other sensory modalities as well, such as the perception of the brightness of light
or the weight of a mass. Fechner [26] proposed that a psychophysical scale that describes
perceived intensity as a function of the intensity of the physical stimulus could be constructed
by combining Weber’s empirical observation with the assumption that JNDs in intensity should
represent equal intervals on the perceptual scale. It is easy to show that this assumption implies
a logarithmic perceptual scale

Ψ = C log(Φ), (8.1)

where Φ in the above equation represents physical intensity and Ψ represents its perceptual
correlate (presumably loudness in hearing). The logarithmic scale for intensity perception,
of course, motivated the decibel scale, and it is partially supported by the fact that there
is typically a linear relation between the neural rate of response and intensity in dB for
intermediate intensity levels, as in intermediate range of the curves in Figure 8.4. Many years
later Stevens proposed an alternate loudness scale, which implicitly assumes that JNDs in
intensity should represent equal ratios on the perceptual scale. This gives rise to the power
law relationship

Ψ = K1ΦK 2 , (8.2)

where Φ and Ψ are as in Equation (8.1). The Stevens power law is supported by the results
of many magnitude estimation experiments in which subjects are asked to apply a subjective
numerical label to the perceived intensity of a signal. While the value of the exponent K2
depends to some extent on the nature of the signal and how the experiment is conducted, it
is typically on the order of 0.33 when physical intensity is expressed in terms of stimulus
amplitude [106]. More extensive discussion of these theories and their derivation are available
in texts by Gescheider [31] and Baird and Noma [10], among many other sources.

Auditory Frequency Resolution

As noted above, the individual parallel channels of the auditory system are frequency selective
in their response to sound. It is generally assumed that the first stage of auditory processing
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may be modeled as a bank of bandpass filters, and all modern theories of auditory perception
are attentive to the impact of processing by the peripheral auditory system on the representation
of sound. For example, the detection of a tonal signal in a broadband masker is commonly
assumed to be mediated by the signal-to-noise ratio at the output of the auditory filter that
contains the target tone. Auditory frequency resolution was first studied psychophysically in
the 1930s by Fletcher and colleagues at Bell Laboratories [28], which preceded Békésy’s
physiological measurements of cochlear mechanics in the 1940s [112] as well as subsequent
descriptions of the frequency-specific physiological response to sound at the level of the
fibers of the auditory nerve and at higher centers (e.g., [48]). There are a number of ways of
measuring auditory frequency selectivity (cf. [78] and Chapter 3 of [77]), and to some extent
the estimated bandwidth of the auditory channels (commonly referred to as the “critical band”
associated with each channel) depends on the assumed filter shape and the way in which
bandwidth is measured. In general, the estimated channel bandwidth increases with increasing
center frequency of the channel, and at higher frequencies the filter bandwidth tends to be
roughly proportional to center frequency, as was observed in Figure 8.3.

From these experiments, three distinct frequency scales have emerged that describe the
bandwidths of the auditory filters and, correspondingly, the center frequencies of the filters
that are needed to ensure that the filters are separated by a constant number of critical bands
at all frequencies. The Bark scale (named after Heinrich Barkhausen), based on estimates of
the critical band from traditional masking experiments, was first proposed by Zwicker [123],
quantified by Zwicker and Terhardt [124], and subsequently represented in simplified form by
Traunmüller [110] as

Bark(f ) = [26.8/(1 + (1960/f ))] − 0.53, (8.3)

where the frequency f is in Hz.
The mel scale (which refers to the word “melody”) was proposed by Stevens et al. [107]

and is based on pitch comparisons; it is approximated by the formula [85]

Mel(f ) = 2595 log10

(
1 +

f

700

)
. (8.4)

The original critical band estimates of Fletcher were based on the simplifying assumption
that the auditory filters were rectangular in shape. The shape of the auditory filters has been
estimated in several ways, frequently making use of notch-shaped maskers (e.g., [87]). A
popular scale proposed by Moore and Glasberg [79] called the ERB scale describes the
equivalent rectangular bandwidth of these filters. The number of ERBs as a function of
frequency is approximated by the formula

ERBN (f ) = 21.4 log10(1 + 4.37f/1000), (8.5)

where again f is in Hz. For example, at 1 kHz this function is equal to about 130 Hz, which
means that an increase of frequency of 130 Hz centered about 1 kHz would constitute one
ERB.

Figure 8.9 compares the Bark, Mel, and ERB scales from the equations above after multiply-
ing each curve by a constant that was chosen to minimize the squared difference between the
curves. It can be seen that despite the differences in how the frequency scales were formulated,
they all look similar, reflecting the fact that the perceptual scale is expanded with respect to
frequency at low frequencies and compressed at higher frequencies. All common models of
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Figure 8.9 Comparison of frequency scales derived from the Bark, mel, and ERB scales.

auditory processing begin with a bank of filters whose center frequencies and bandwidths are
based on one of the three frequency scales depicted in this figure.

Loudness Matching and Auditory Thresholds

A final set of results that have had an impact on feature extraction and auditory models is the
set of equal loudness contours depicted in Figure 8.10 after measurements by Fletcher and
Munson [29]. Each curve depicts the intensity of a tone at an arbitrary frequency that matches
the loudness of a tone of a specified intensity at 1 kHz, which is defined to be the loudness
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of that tone in phons. These curves indicate that threshold intensities (the lowest curve) vary
with frequency, with the ear being the most sensitive between frequencies of about 1000 and
4000 Hz. The upper limit of hearing is much less sensitive to frequency.

Nonsimultaneous Masking

Nonsimultaneous masking occurs when the presence of a masker elevates the threshold in-
tensity for a target that precedes or follows it. Forward masking refers to inhibition of the
perception of a target after the masker is switched off. When a masker follows the probe in
time, the effect is called backward masking. Masking effects decrease as the time between
masker and probe increases, but can persist for 100 ms or more [77].

8.2.4 The Impact of Auditory Processing on Conventional
Feature Extraction

The overwhelming majority of speech-recognition systems today make use of features that are
based on either Mel-Frequency Cepstral Coefficients (MFCCs) first proposed by Davis and
Mermelstein in 1980 [19] or features based on perceptual linear predictive (PLP) analysis of
speech [36], proposed by Hermansky in 1990. We briefly discuss MFCC and PLP processing
in this section. The major functional blocks used in these procedures are summarized in
Figure 8.11.

As is well known, MFCC analysis consists of (1) short-time Fourier analysis using Hamming
windows, (2) weighting of the short-time magnitude spectrum by a series of triangularly-
shaped functions with peaks that are equally spaced in frequency according to the Mel scale,
(3) computation of the log of the total energy in the weighted spectrum, and (4) computation
of a relatively small number of coefficients of the inverse discrete-cosine transform (DCT) of
the log power coefficients from each channel. These steps are summarized in the left column
of Figure 8.11. Expressed in terms of the principles of auditory processing, the triangular
weighting functions serve as a crude form of auditory filtering, the log transformation mimics
Fechner’s psychophysical transfer function for intensity, and the inverse DCT can be thought
of as providing a lowpass Fourier series representation of the frequency-warped log spectrum.
The cepstral computation can also be thought of as a means to separate the effects of the
excitation and frequency-shaping components of the familiar source-filter model of speech
production (e.g., [90]).

The computation of the PLP coefficients is based on a somewhat different implementation
of similar principles. PLP processing consists of (1) short-time Fourier analysis using Ham-
ming windows (as in MFCC processing), (2) weighting of the power spectrum by a set of
asymmetrical functions that are spaced according to the Bark scale, and that are based on
the auditory masking curves of [97], (3) preemphasis to simulate the equal-loudness curve
suggested by Makhoul and Cosell [66] to model the loudness contours of Fletcher and Munson
(as in Figure 8.10), (4) a power-law nonlinearity with exponent 0.33 as suggested by Stevens
et al. [107] to describe the intensity transfer function, (5) a smoothed approximation to the
frequency response obtained by all-pole modeling, and (6) application of a linear recursion
that converts the coefficients of the all-pole model to cepstral coefficients.
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Figure 8.11 Comparison of major functional blocks of the MFCC, PLP-RASTA, and PNCC processing
methods. (PNCC processing is discussed in Section 8.4.)

PLP processing is also frequently used in conjunction with Hermansky and Morgan’s
RASTA algorithm [37], a contraction of relative spectral analysis. RASTA processing in effect
applies a bandpass filter to the compressed spectral amplitudes that emerge between Steps (3)
and (4) of the PLP processing above. RASTA processing also models the tendency of the
auditory periphery to emphasize the transient portions of incoming signals, as noted in Section
8.2.1 above. In practice, the bandpass nature of the filter causes the mean values of the spectral
coefficients to equal zero, which effects a normalization that is similar to the normalization
provided by cepstral mean normalization (CMN) that is commonly used in conjunction with
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MFCC processing. Both the RASTA filter and CMN are effective in compensating for the
effects of unknown linear filtering in cases for which the impulse response of the filter is
shorter than the duration of the analysis window used for processing. Hermansky and Morgan
[37] also propose an extension to RASTA processing, called J-RASTA processing, which
provides similar compensation for additive noise at low signal levels.

In summary, PLP feature extraction is an attempt to model several perceptual attributes of
the auditory system more exactly than MFCC processing, including the use of the Zwicker
filters to represent peripheral frequency selectivity and the preemphasis to characterize the
dependence of loudness on frequency. In addition, it replaces the mel scale by the Bark scale,
the log relation for intensity by a power function, and it uses autoregressive modeling of a low
order (rather than truncation of a Fourier-based expansion) to obtain a smoothed representation
of the spectrum.

8.2.5 Summary

We have described a number of physiological phenomena that have motivated the development
of auditory modeling for automatic speech recognition. These phenomena include frequency
analysis in parallel channels, a limited dynamic range of response within each channel, preser-
vation of temporal fine structure, enhancement of temporal contrast at signal onsets and offsets,
enhancement of spectral contrast (at adjacent frequencies), and preservation of temporal fine
structure (at least at low frequencies). Most of these phenomena also have psychoacoustical
correlates. Conventional feature extraction procedures (such as MFCC and PLP coefficients)
preserve some of these attributes (such as basic frequency selectivity and spectral bandwidth)
but omit others (such as temporal and spectral enhancement and detailed timing structure).
As an example, Figure 8.12 compares a high-resolution spectrogram in response to a short
utterance to a spectrogram reconstructed from MFCC coefficients computed for the same ut-
terance. In addition to the frequency warping that is intrinsic to MFCC (and PLP) processing,
it is clear that substantial detail is lost in the MFCC representation, some of which is sacrificed
deliberately to remove pitch information. One of the goals of the auditory representations is
to restore some of this lost information about the signal in a useful and efficient fashion.

8.3 “Classic” Auditory Representations

The first significant attempts to develop models of the peripheral auditory system for use as
front ends to ASR systems occurred in the 1980s with the models of Seneff [99], Ghitza [32],
and Lyon [61, 62], which we summarize in this section. The Seneff model, in particular, has
been the basis for many subsequent studies, in part because of it was described in great detail
and it is easily available in MATLAB form as part of the Auditory Toolbox developed and
distributed by [102]. This very useful resource, which also includes the Lyon model, is based
on earlier work by Lyon and Slaney using Mathematica.

Seneff’s Auditory Model

Seneff’s auditory model [99] is summarized in block diagram form in Figure 8.13. The first of
three stages of the model consisted of 40 recursive linear filters implemented in cascade form
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Figure 8.12 Upper panel: wide-band spectrogram of a sample utterance. Lower panel: reconstruction
of the spectrogram after MFCC analysis.

to mimic the nominal auditory-nerve frequency responses as described by Kiang et al. [48]
and other contemporary physiologists.

Substantial effort was devoted in Stage II to describing the nonlinear transduction from the
motion of the basilar membrane to the mean rate of of auditory-nerve spike discharges. As
indicated in the central panel of Figure 8.13, this “inner-hair-cell model” included four stages:
(1) nonlinear half-wave rectification using an inverse tangent function for positive inputs and
an exponential function for negative inputs, (2) short-term adaptation that modeled the release
of transmitter in the synapse, (3) a lowpass filter with cut-off frequency of approximately
1 kHz to suppress synchronous response at higher input frequencies, and (4) a rapid automatic
gain control (AGC) stage to maintain an approximately-constant response rate at higher input
intensities when an auditory-nerve fiber is nominally in saturation.

Stage III consisted of two parallel operations on the hair-cell model outputs. The first of
these was an envelope detector, which produced a statistic intended to model the instantaneous
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Figure 8.13 Upper panel: general structure of the Seneff model. Central panel: block diagram of the
Seneff hair cell model. Lower panel: block diagram of of Seneff’s generalized synchrony detector (after
[99]).

mean rate of response of a given fiber. The second operation was called a generalized synchrony
detector (GSD), and was motivated by the ALSR measure of [119]. The GSD is summarized
in the lower panel of Figure 8.13. The hair-cell output is compared to itself delayed by the
reciprocal of the center frequency of the filter in each channel, and the short-time averages of
the sums and differences of these two functions are divided by one another. The threshold δ is
introduced to suppress response to low-intensity signals, and the resulting quotient is passed
through a saturating half-wave rectifier to limit the magnitude of the predicted synchrony.

Ghitza’s EIH Model

A second classic auditory model developed by Ghitza [32] is called the Ensemble Interval
Histogram (EIH) model and is summarized in Figure 8.14. Ghitza makes use of the peripheral
auditory model proposed by Allen [3] to describe the transformation of sound pressure into
the neural rate of firing and focussed on the mechanism used to interpret the neural firing
rates. The most interesting aspect of the EIH model is its use of timing information to develop
a spectral representation of the incoming sound. Specifically, the EIH model records in each
frequency channel the times at which the outputs of the auditory model crosses a set of seven
thresholds that are logarithmically spaced over the dynamic range of each channel. Histograms
are compiled of the reciprocals of the times between the threshold crossings of each threshold
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in each channel, and these histograms are summed over all thresholds and channels, producing
an estimate of the internal spectral response to the incoming sound.

The EIH model was the only one of the three original auditory models for which the
developer included speech-recognition evaluations with the original description of the model.
Ghitza obtained these results using a contemporary DTW recognizer [32]. He observed that
while the use of the auditory model provided no advantage in clean speech (and in some cases
degraded performance compared to baseline MFCC processing), improvements were noted in
noise and reverberation.

Lyon’s Model

The third major model of the 1980s was described initially by Lyon [61,62]. Lyon’s model for
auditory-nerve activity [61] included many of the same elements as the models of Seneff and
Ghitza (such as bandpass filtering, nonlinear rectification, and compression, along with several
types of short-time temporal adaptation), as well as a mechanism for lateral suppression, which
was unique among the classical models. Lyon was particularly concerned with the nature and
shape of the filters used to model peripheral analysis and a longitudinal of his perspective on
this subject may be found in [64]. In an extension of this work, Lyon proposed a “correlogram”
display [63] that is derived from the short-time autocorrelation of the outputs of each channel
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that was believed to be useful for pitch detection and timbre identification. In 1983, Lyon
described a computational binaural model based on cross-correlation of the corresponding
outputs from the monaural processors. This model has the ability to separate signals based on
differences in time of arrival of the signals to the two ears, and is similar in concept to the
classic mechanism for extracting interaural time delays (ITDs) first suggested by Jeffress [46].

Performance of Early Auditory Models

The classic models included a number of attributes of auditory processing beyond MFCC/PLP
feature extraction: more realistic auditory filtering, more realistic auditory nonlinearity, and
in some cases synchrony extraction, lateral suppression, and interaural correlation. Unsur-
prisingly, each system developer had his or her own idea about which attribute of auditory
processing was the most important for robust speech recognition.

While the EIH model was the only one of the original three to be evaluated quantitatively
for speech-recognition accuracy at the time of its introduction, a number of early studies com-
pared the recognition accuracy of auditory-based front ends with conventional representations
(e.g., [32,43,45,70]). It was generally observed that while conventional feature extraction in
some cases provided best accuracy when recognizing clean speech, auditory-based processing
would provide superior results when speech was degraded by added noise. Early work in
the CMU Robust Speech Group (e.g., [84,104]) confirmed these trends for reverberation as
well as for additive noise in an analysis of the performance of the Seneff model. We also
noted, disappointingly, that the application of conventional engineering-approaches such as
codeword-dependent cepstral normalization (CDCN, [1]) provided recognition accuracy that
was as good as or better than the accuracy obtained using auditory-based features in degraded
acoustical environments. In a more recent analysis of the Seneff model, we observed that the
saturating half-wave nonlinearity in Stage II of the Seneff model is the functional element that
appears to provide the greatest improvement in recognition accuracy compared to baseline
MFCC processing [17].

One auditory model of the late 1980s that was successful was developed by Cohen [18], and
it exhibited a number of the physiological and psychoacoustical properties of hearing described
in Section 8.2. Cohen’s model included a bank of filters that modeled critical-band filtering, an
empirical intensity scaling to describe equal loudness according to the curves of Fletcher and
Munson [29], a cube-root power-law compressive nonlinearity to describe loudness scaling
after Stevens [106]. The final stage of the model was a simple differential equation that models
the time-varying release of neural transmitter based on the model of Schroeder and Hall
[98]. This stage provided the type of transient overshoots observed in Figure 8.2. Feature
extraction based on Cohen’s auditory model provided consistently better recognition accuracy
than features that approximated cepstral coefficients derived from a similar bank of bandpass
filters for a variety of speakers and microphones in relatively quiet rooms. On the basis of
these results, Cohen’s auditory model was adopted as the feature extraction procedure for the
IBM Tangora system and was used routinely for about a decade.

Despite the adoption of Cohen’s feature extraction in Tangora and interesting demonstrations
using the outputs of the models of Seneff, Ghitza, and Lyon, interest in the use of auditory
models generally diminished for a period of time around the late 1980s. As noted above,
the auditory models generally failed to provide superior performance when processing clean
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speech, which was the emphasis for much of the research community at this time. In part,
this may well have been a consequence of the typical assumption in the speech-recognition
systems of the day that the probability densities of the features were normally distributed. In
contrast, the actual outputs of the auditory models were distinctly non-Gaussian in nature. For
example, Chigier and Leung [16] noted that the accuracy of speech-recognition systems that
used features based on the Seneff model was greatly improved when a multilayer perceptron
(which learns the shape of the feature distributions without a priori assumptions) is used instead
of a Bayesian classifier that assumed the use of unimodal Gaussian densities. The classical
auditory models fared even worse when computation was taken into account. Ohshima [83],
for example, observed that the Seneff model requires about 40 times as many multiplies and
33 times as many additions compared to MFCC or PLP feature extraction. And in all cases,
the desire to improve robustness in speech recognition in those years was secondary to the
need to resolve far more basic issues in acoustic modeling, large-vocabulary search, etc.

8.4 Current Trends in Auditory Feature Analysis

By the late 1990s, physiologically-motivated and perceptually-motivated feature extraction
methods began to flourish once again for several reasons. Computational capabilities had
advanced over the decade to a significant degree, and front-end signal processing came to
consume a relatively small fraction of the computational demands of large-vocabulary speech
recognition compared to score evaluation, graph search, etc. The development of fully contin-
uous hidden Markov models using Gaussian mixture densities as probabilities for the features,
along with the development of efficient techniques to train the parameters of these acoustic
models, meant that the non-Gaussian form of the output densities of the auditory models was
no longer a factor that limited their performance.

In this section, we describe some of these trends in auditory processing that have become
important for feature extraction beginning in the 1990s. These trends include closer attention
to the details of the physiology, a reconsideration of mechanisms of synchrony extraction,
more effective and mature approaches to information fusion, serious attention to the temporal
evolution of the outputs of the auditory filters, the development of models based on spectro-
temporal response fields, concern for dealing with the effects of room reverberation as well
as additive noise, and the use of two or more microphones motivated by binaural processing
(which we do not discuss in this chapter).

In the sections below, with some exceptions, we characterize the performance of the systems
considered only indirectly. This is because it is almost impossible to meaningfully compare
recognition results across different research sites and different experimental paradigms. For
example, the baseline level of recognition accuracy will depend on many factors including
the types of acoustical models employed and the degree of constraint imposed by language
modeling. The type of additive noise used typically affects the degree of improvement to
be expected from robust signal processing approaches: for example, it is relatively easy to
ameliorate the effects of additive white noise, but effective compensation for the effects of
background music is far more difficult to achieve. As the amount of available acoustic training
increases, the degree of improvement observed by advanced feature-extraction or signal-
processing techniques diminishes because the initial acoustical models become intrinsically
more robust. While most of the results in robust speech recognition that are reported in the
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literature are based on training on clean speech, the amount of improvement provided by
signal processing also diminishes when an ASR system is trained in a variety of acoustical
environments (multistyle training) or when the acoustical conditions of the training and testing
data are matched.

We begin with peripheral phenomena and continue with more central phenomena.

Speech Recognition Based on Detailed Physiological Models

In addition to the “practical” abstractions proposed by speech researchers including the classi-
cal representations discussed in Section 8.3, auditory physiologists have also proposed models
of their own that describe and predict the functioning of the auditory periphery in detail. For
example, the model of Meddis and his colleagues (e.g., [68, 69]) is a relatively early formula-
tion that has been quite influential in speech processing. The Meddis model characterizes the
rate of spikes in terms of a mechanism based on the dynamics of the flow of neurotransmitter
from inner hair cells into the synaptic cleft, followed by its subsequent uptake once again by
the hair cell. Its initial formulation, which has been refined over the years, was able to predict
a number of the physiological phenomena described in Section 8.2.1 including the nonlinear
rate-intensity curve, the transient behavior of envelopes of tone bursts, synchronous response
to low-frequency inputs, the interspike interval histogram, and other phenomena. Hewitt and
Meddis reviewed the physiological mechanisms underlying seven contemporary models of
auditory transduction, and compared their ability to describe a range of physiological data,
concluding that their own formulation described the largest set of physiological phenomena
most accurately [42].

The Carney group (e.g., Zhang et al. [120]; Heinz et al. [35]; Zilarny et al. [122]) has also
developed a series of physiologically based models of auditory-nerve activity over the years.
The original goal of the work of Carney and her colleagues had been to develop a model that
can describe the response to more complex signals such as noise-masked signals and speech,
primarily through the inclusion into the model of the compressive nonlinearity of the cochlear
amplifier in the inner ear. A diagram of most of the functional blocks of the model of Zhang
et al. is depicted in the left panel of Figure 8.15. As can be seen in the diagram, the model
includes a signal path that has many of the attributes of the basic phenomenological models
introduced in Section 8.3, with a time-varying nonlinear narrow-band peripheral filter that
is followed by a linear filter. Both of these filters are based on gammatone filters. The time
constant that determines the gain and bandwidth of the nonlinear filter in the signal path is
controlled by the output of the wide-band control path that is depicted on the right side of
the panel. The level-dependent gain and bandwidth of the control path enable the model to
describe phenomena such as two-tone suppression within a single auditory-nerve channel,
without needing to depend on inhibitory inputs from fiber at adjacent frequencies, as in Lyon’s
model [61].

A few years ago Kim et al. [52] from the CMU group presented some initial speech
recognition results that developed simple measures of mean rate and synchrony from the
outputs of the model of Zhang et al. Figure 8.16 compares the recognition accuracy for speech
in white noise using feature-extraction procedures that were based on the putative mean rate of
auditory-nerve response [52]. The CMU Sphinx-3 ASR system was trained using clean speech
for these experiments. The curves in Figure 8.16 describe the recognition accuracy obtained
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Figure 8.15 Left panel: block diagram of the Zhang–Carney model (from Zhang et al., 2001). Right
panel: block diagram of a much simpler computational model of auditory processing.
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Figure 8.16 Comparison of speech-recognition accuracy obtained using features derived from the
Zhang–Carney model (squares), features obtained from the much simpler model in the right panel of
Figure 8.15 (triangles), and conventional MFCC coefficients (diamonds). Data were obtained using
sentences from the DARPA Resource Management corpus corrupted by additive white noise. The
language model is detuned, which increases the absolute word error rate from the best possible value
(replotted from [52]).
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Figure 8.17 Comparison of recognition accuracy on the DARPA Resource Management RM1 database,
obtained using PNCC processing with processing using MFCC features, RASTA-PLP features, the ETSI
AFE, and MFCC features augmented by VTS processing (from [51]).

using three types of feature extraction: (1) features derived from the mean rate response based
on the complete model of Zhang et al. [120]; (2) features derived from the extremely simplified
model in the right panel of Figure 8.15 (triangles) which contains only a bandpass filter, a
nonlinear rectifier, and a lowpass filter in each channel; and (3) baseline MFCC processing
as described in [19] (diamonds). As can be seen, for this set of conditions the full auditory
model provides about 15 dB of effective improvement in SNR compared to the baseline
MFCC processing, while the highly simplified model provides about a 10-dB improvement.
Unfortunately, the computational cost of features based on the complete model of Zhang et al.
is on the order of 250 times the computational cost incurred by the baseline MFCC processing.
In contrast, the simplified auditory processing consumes only about twice the computation of
the baseline MFCC processing. We note that ASR performance in small tasks including the
DARPA Resource Management task used for these comparisons can easily become dominated
by the impact of a strong language model. In obtaining the results for this figure, as well as for
Figure 8.17, we deliberately manipulated the language weight parameter to reduce the impact
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Figure 8.18 (left) Generation of multistream Gabor filter features. See text for details. (Right) ASR
word accuracy on the Numbers95 test set in the presence of a range of real-world noise sources using
a system trained on clean speech. Results shown use the Gabor-based features to augment an MFCC
feature vector, using SRI’s Decipher system (from [92]).
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of the language model in order to emphasize differences in recognition accuracy that were
due to changes in feature-extraction procedures. As a consequence, the absolute recognition
accuracy is not as good as it would have been had we optimized all system parameters.

Power-Normalized Cepstral Coefficients (PNCC Processing)

The extreme computational costs associated with the implementation of a complete physio-
logical model such as that of Zhang et al. [120] have motivated many researchers to develop
simplified models that capture the essentials of auditory processing that are believed to be
most relevant for speech perception. The development of power-normalized cepstral coef-
ficients (PNCC, [49–51]) is a convenient example of computationally-efficient “pragmatic”
physiologically motivated feature extraction. PNCC processing was developed with the goal
of obtaining features that incorporate some of the relevant physiological phenomena in a com-
putationally efficient fashion. A summary of the major functional blocks of PNCC processing
is provided in the right column of Figure 8.11. PNCC processing includes (1) traditional pre-
emphasis and short-time Fourier transformation, (2) integration of the squared energy of the
STFT outputs using gammatone frequency weighting, (3) “medium-time” nonlinear process-
ing that suppresses the effects of additive noise and room reverberation, (4) a power-function
nonlinearity with exponent 1/15, and (5) generation of cepstral-like coefficients using a dis-
crete cosine transform (DCT) and mean normalization. The power law, rather than the more
common logarithmic transformation, was adopted because it provides reduced variability at
very low signal intensities, and the exponent of 1/15 was selected because it provides a best
fit to the onset portion of the rate-intensity curve developed by the model of Heinz et al. [35].
The power-function nonlinearity has the additional advantage of preserving ratios of responses
that are independent of input amplitude.

For the most part, noise and reverberation suppression is introduced to PNCC processing
through the system blocks labeled “medium-time processing” in the far right column of Figure
8.11 [51]. Medium-time processing operates on segments of the waveform on the order of
50–150 ms duration (as do other waveform-based compensation approaches) in contrast to
compensation algorithms such as vector Taylor series (VTS, [80]) that manipulate cepstral
coefficients derived from from analysis windows on the order of 20–30 ms in duration.

Figure 8.17 compares the recognition accuracy obtained using PNCC processing with
the accuracy obtained using baseline MFCC processing [19], PLP-RASTA processing [37],
MFCC with VTS [80], and the “Advanced Front End” (AFE), a newer feature-extraction
scheme developed as a standard for the European Telecommunications Standards Institute
(ETSI), which also has noise-robustness capabilities [110]. It can be seen from the panels
of Figure 8.17 that the recognition accuracy obtained using features derived with PNCC
processing is substantially better than baseline processing using either MFCC or RASTA-PLP
features, MFCC features augmented by the VTS noise-reduction algorithms, or the ETSI
Advanced Front End for speech that had been degraded by additive white noise and simulated
reverberation. In considering these comparisons, it must be borne in mind that neither MFCC
nor RASTA-PLP coefficients were developed with the goal of robustness with respect to
additive noise. A version of RASTA-PLP known as J-RASTA [37] is far more effective
in the presence of additive noise. A much more thorough discussion of PNCC processing,



P1: TIX/XYZ P2: ABC
JWST201-c08 JWST201-Virtanen September 3, 2012 8:55 Printer Name: Yet to Come Trim: 244mm × 168mm

218 Techniques for Noise Robustness in Automatic Speech Recognition

including recognition results in the presence of a number of other types of degradations,
may be found in [51]. PNCC processing is only about 30% more computationally costly
than MFCC processing, and comparable in computational cost to RASTA-PLP. All of these
methods require substantially less computation than either the ETSI Advanced Front End or
the VTS approach to noise robustness.

Spectral Profiles Based on Synchrony Information

Since the 1980s, the approaches of Seneff and Ghitza for developing a spectral representation
from the temporal fine structure of auditory-nerve firings (rather than simply their mean rate)
have been elaborated upon, and other techniques have been introduced as well. We summarize
some of these approaches in this section.

Ali et al. [2] proposed a simple but useful extension of the Seneff GSD model that develops
a synchrony spectrum by simply averaging the responses of several GSDs tuned to the same
frequency using inputs from bandpass filters with CFs in a small neighborhood about a central
frequency. As described by Ali et al., this approach, referred to as average localized synchrony
detection (ALSD), produces a synchrony spectrum with smaller spurious peaks than are
obtained using either Seneff’s original GSD detector, mean-rate-based spectral estimates, or
the synchrony spectrum produced by the lateral inhibitory network (LIN) of Shamma [100],
and it provides the best recognition results of the methods considered for a small vowel-
classification task in white noise.

D. Kim et al. [53] proposed a type of processing called zero-crossing peak analysis (ZCPA)
that could be considered to be an elaboration of Ghitza’s EIH processing, but without the
complication of the multiple thresholds that are part of the EIH model. Positive-going zero
crossings are recorded directly from the outputs of each of the auditory filters, and the times of
these zero crossings are recorded on a channel by channel basis. A histogram is generated of the
reciprocal of the intervals between the zero crossings (a measure of instantaneous frequency),
weighted by the amplitude of the peak between the zero crossings. While quantitative analysis
of zero crossings of a random process is always difficult, the authors argue that setting the
threshold for marking an event to zero will minimize the variance of the observations. Kim
et al. [53] compared the recognition accuracy in a small isolated word task using ZCPA
with similar results obtained using LPC-based features, features from the EIH model, and
features obtained using zero crossings without the weighting by the peak amplitude. The
ZCPA approach provided the greatest accuracy in all cases, especially at low SNRs. Ghulam
et al. [33, 34] augmented the ZCPA procedure by adding auditory masking, Wiener filtering,
and a weighting of the frequency histograms to emphasize components that are close to
harmonics of the fundamental frequency.

C. Kim et al. [52] implemented a synchrony-based estimation of spectral contours using
a third method: direct Fourier transformation of the phase-locked temporal envelopes of the
outputs of the critical-band filters. This produces a high-resolution spectral representation at
low frequencies for which the auditory nerve is synchronized to the input up to about 2.2 kHz,
and which includes the effects of all of the nonlinearities of the peripheral processing. The
use of the synchrony processing at low frequencies provided only a modest improvement
compared to the auditory model with mean-rate processing as shown in Figure 8.16, although
it was a large improvement compared to baseline MFCC processing.
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Multistream Processing

The articulation index model of speech perception, which was suggested by Fletcher [28] and
French and Steinberg [30], and revived by Allen [4], modeled phonetic speech recognition
as arising from independent estimators for critical bands. This initially led to a great deal of
interest in the development of multiband systems based on this view of independent detectors
per critical band that were developed to improve robustness of speech recognition, particularly
for narrow-band noise (e.g., [11,40,75]). This approach in turn can be generalized to the
consideration of fusion of information from parallel detectors that are presumed to provide
complementary information about the incoming speech. This information can be combined
at the input (feature) level [81,82], at the level at which the HMM search takes place, which
is sometimes referred to as “state combination” [44,65], or at the output level by merging
hypothesis lattices [27,67,101]. In a systematic comparison of all of these approaches, Li [59]
observed that state combination provides the best recognition accuracy by a small margin.

The Tandem approach, first proposed by Hermansky, Ellis, and Sharma [41], has been
particularly successful in facilitating the combination of multiple information streams at the
feature level. Typically, the Tandem method is applied by expressing the outputs of a multilayer
perceptron (MLP) as probabilities, which can be combined linearly or nonlinearly across the
streams. These combined probabilities are then in turn (after some simple transformations, such
as the logarithm followed by principal components analysis) used as features to a conventional
hidden Markov model classifier. If the linear stream weights can be determined dynamically,
there is at least the potential for robustness to time-varying environmental conditions. The
MLP training is quite robust to the nature of the input distribution, and in particular can easily
be used to handle acoustic inputs covering a large temporal context. Over the years, the Tandem
approach has proven to be a very useful way of combining rather diverse sets of features.

Long-Time Temporal Evolution

An additional major trend has been the development of features that are based on the tem-
poral evolution of the envelopes of the outputs of the bandpass filters that are part of any
description of the auditory system. As noted in Section 8.2.2, some units in the brainstem of
various mammals exhibit a sensitivity to amplitude modulation, with maximal responses at
a particular modulation frequency independently of the carrier frequency. Psychoacoustical
results also indicate that humans are sensitive to modulation frequency [111,118]), with tem-
poral modulation transfer functions indicating greatest sensitivity to temporal modulations at
approximately the same frequencies as in the physiological data, despite the obvious species
differences.

Initially, this information has been used to implement features based on frequency com-
ponents of these temporal envelopes, which (as noted in Section 8.2.2) are referred to by
Kingsbury and others as the modulation spectrum [55]. Specifically, Kingsbury et al. [54]
obtained lowpass and bandpass representations of the envelopes of the outputs of the critical-
band filters by passing the filter outputs through a square-root nonlinearity, followed by a
lowpass filter with a 16-Hz cutoff and a bandpass filter with passband from 2 to 16 Hz (in
parallel), and two subsequent AGC stages. The modulation spectrum is obtained by expressing
these signals as a function of the center frequencies of the critical-band filters. This is a useful
representation because speech signals typically exhibit temporal modulations with modulation
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frequencies in the range that is passed by this processing, while noise components often ex-
hibit frequencies of amplitude modulation outside this range. Tchorz and Kollmeier [109] also
developed an influential physiologically-motivated feature extraction system at about the same
time that included the usual stages of filtering, rectification, and transient enhancement. They
were also concerned about the impact of modulation spectra, noting that their model provided
the greatest output for temporal modulations around 6 Hz, and that in general lowpass filtering
the envelopes of the outputs of the auditory model in each channel reduced the variability
introduced by background noise.

Other researchers have subsequently characterized the temporal patterns more explicitly. In
general, these procedures operate on the time-varying envelope or log energy of a long temporal
segment that is the output of a single critical-band filter. These representations effectively slice
a spectrographic representation into horizontal “slices” rather than the vertical slices isolated
by the conventional windowing procedure, which is brief and time and broad and frequency. As
an example, Hermansky and Sharma [38] developed the TRAPS representation (for TempoRAl
PatternS), which operates on 1-second segments of the log spectral energies that emerge from
each of 15 critical-band filters. In the original implementation, these outputs were classified
directly by a multilayer perceptron (MLP). This work was extended by Chen et al. [13] who
developed HATS (for Hidden Activation TRAPS), which trains an additional MLP layer at the
level of each critical band filter to provide a set of basis functions optimized to maximize the
discriminability of the data to be classified.

Athineos and Ellis [6,7,9] have developed frequency-domain linear prediction, or FDLP.
In this process, the temporal envelopes of the outputs of critical band filters are represented
by linear prediction. Much as linear-predictive parameters computed from the time-domain
signal within a short analysis window (e.g., 25 ms) represent the envelopes of the short-time
spectrum within a slice of time, the FDLP parameters represent the Hilbert envelope of the
temporal sequence within a slice of spectrum. This method was further incorporated into a
method called LP-TRAPs [8], in which the FDLP-derived Hilbert envelopes were used as input
to MLPs that learned phonetically relevant transformations for later use in speech recognition.
LP-TRAPS can be considered to be a parametric estimation approach to characterizing the
trajectories of the temporal envelopes, while traditional TRAPS is nonparametric in nature.

It is also worth restating that RASTA processing, described in Section 8.2.4, was devel-
oped to emphasize the critical temporal modulations, and in so doing RASTA emphasizes
transitions, roughly models forward masking, and reduces sensitivity to irrelevant steady-state
convolutional factors. More recently, temporal modulation in subbands was normalized to
improve ASR in reverberant environments [60].

Joint Feature Representation in Frequency, Rate, and Scale

There has been substantial interest in recent years in developing computational models of
speech processing based on the spectro-temporal receptive fields (STRFs) that were described
in Section 8.2.2. In an influential set of studies, Chi et al. [14] conducted a series of psy-
choacoustical experiments that measured the spectro-temporal modulation transfer functions
(MTF) in response to moving ripple signals such as those used to develop physiological
STRFs, arguing that the results were consistent the physiologically measured STRFs, and that
the spectro-temporal MTFs are separable into the product of a spectral MTF and a temporal
MTF. Subsequently, this enabled Chi et al. to propose a model of central auditory processing
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with three independent variables: auditory frequency, “rate” (characterizing temporal modula-
tion), and “scale” (characterizing spectral modulation), with receptive fields of varying extent
as would be obtained by successive stages of wavelet processing [15]. The model relates this
representation to feature extraction at the level of the brainstem and the cortex, including
detectors based on STRFs, incorporating an auditory model similar to those described above
that provides the input to the STRF filtering. Chi et al. also generated speech from the model
outputs and compared the intelligibility of the reconstructed speech to the degree of spectral
and temporal modulation in the signal.

A number of researchers have found it convenient to use two-dimensional Gabor filters
as a reasonable and computationally-tractable approximation to the STRFs of A1 neurons.
This representation was used successfully by Mesgarani et al. to implement features for
speech/nonspeech discrimination [71] and similar approaches were used to extract features for
ASR by multiple researchers (e.g., [39,57,73,121]). In many of these cases, MLPs were used to
transform the filter outputs into a form that is more amenable to use by Gaussian mixture-based
HMMs, typically using the Tandem approach described above [41]. The filters can either be
used as part of a single modulation filter bank that either does or does not incorporate a final
MLP, or the filters can be split into multiple streams, each with their own MLP, as described
in the multistream section above. The choice of filters can either be data-driven (as in [57])
or chosen to span the space of interest, that is to cover the range of temporal and spectral
modulations that are significant components of speech (e.g., [72, 74]).

In one recent study, Ravuri [91] developed a complex model that incorporates hundreds of
two-dimensional Gabor filters, each with their own discriminatively-trained neural network
to generate noise-insensitive features for ASR. As an example, as shown in Figure 8.18,
Ravuri and Morgan [92] describe the recognition accuracy that is obtained by incorporating
feature streams developed by modeling a range of STRFs of mel spectra using Gabor filters.
The resulting MLP posterior probability outputs are linearly combined across streams (the
“Selection/Combination” block in the left panel of Figure 8.18), where each stream is weighted
by inverse entropy of the posterior distribution for each stream’s MLP. The combined stream
is further processed with a log function to roughly Gaussianize it, and with a Karhunen–Loeve
transformation to orthogonalize the features; both steps are taken provide a better statistical
match of the features to systems based on Gaussian mixtures. The system was trained on
the high-SNR Numbers95 database and tested on an independent Numbers95 set with noises
added from the RSG-10 database, which comprises a range of noises including speech babble,
factory noise, etc. The results labeled “multistream Gabor” were obtained using 174 feature
streams, each of which included a single spectro-temporal filter followed by an MLP trained
for phonetic discrimination. It can be seen that the use of the multi-stream Gabor filter features
improves accuracy at all SNRs, although in some cases by only a small amount.

8.5 Summary

In this chapter, we have reviewed a number of signal processing concepts that have been
abstracted from several decades of concentrated study of how the auditory system responds
to sound. The results of these studies have provided insight into the development of more
environmentally robust approaches to feature extraction for automatic speech recognition.
While we have only explicitly included a limited number of experimental ASR results from our
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own groups, many physiologically motivated feature-extraction procedures have demonstrated
recognition accuracy that is as good as or better than the recognition accuracy provided by
conventional signal processing, at least in degraded acoustical environments.

Although there remains no universally accepted theory about which aspects of auditory
processing are the most relevant to robust speech recognition, we may speculate with some
confidence about some of the reasons for the general success of auditory models. The increasing
bandwidth of the auditory analysis filters with increasing center frequency enables good
spectral resolution at low CFs (which is useful for tracking formant frequencies precisely)
and better temporal resolution at higher CFs (which is helpful in marking the precise time
structure of consonant bursts). The nonlinear nature of the auditory rate-intensity function tends
to suppress feature variability caused by additive low-level noise, and an appropriate shape
of the nonlinearity can provide normalization to absolute amplitude as well. The short-time
temporal suppression and lateral frequency suppression provides an ongoing enhancement
of change with respect to running time and analysis frequency. As has been noted by Wang
and Shamma [114] and others, the tendency of the auditory system to enhance local spectro-
temporal contrast while averaging the incoming signals over a broader range of time and
frequency enables the system to provide a degree of suppression to the effects of noise and
reverberation. Bandpass filtering of the modulation spectrum between 2 and 16 Hz will help to
separate the responses to speech and noise, as many disturbances produce modulations outside
that range. In many respects, the more central representations of speech at the level of the
brainstem and the cortex are based primarily on the dynamic aspects of the speech signal, and
perceptual results from classical auditory scene analysis [12] confirm the importance of many
of these cues in segregating individual sound sources in cluttered acoustical environments.

The good success of relatively simple feature extraction procedures such as PNCC pro-
cessing, RASTA, and similar approaches suggests that the potential benefits from the use of
auditory processing are widespread. While our understanding of how to harness the potential
of more central representations such as the spectro-temporal receptive fields is presently in
its infancy, we expect that we will be able to continue to improve the robustness and overall
utility of our representations for speech as we continue to deepen our understanding of how
speech is processed by the auditory system.
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Feature Compensation
Jasha Droppo
Microsoft Research, USA

9.1 Life in an Ideal World

People convey linguistic messages by generating acoustic speech signals. In an ideal world,
we could record that signal and derive acoustic features that contain all of the necessary
information to achieve perfect recognition accuracy, and nothing else.

In our world, the acoustic features are computed from acoustic signals recorded by a mi-
crophone, and the information we need is obscured by noise and other irrelevant variabilities.
To make matters worse, these features often suffer from linear and nonlinear channel effects,
reverberation, and a significant amount of additive noise. Even in the absence of these distor-
tions, the speech portion of the signal itself contains more information than what was said,
including how it was said and who said it.

Figure 9.1 shows the connection between the ideal speech features that we want, the clean
speech features that we may be able to get by carefully controlling the environmental conditions
at the time of capture, and the noisy speech that we must often tolerate.

This chapter focuses on feature-enhancement techniques, which strive to remove extraneous
information and distortion from a sequence of speech-recognition features, while retaining
information about what was said.

9.1.1 Noise Robustness Tasks

When building and testing robust automatic speech-recognition systems, their relative per-
formance often changes with several factors, including the degree of mismatch between the
training and testing data, the size of the vocabulary, and the complexity of the acoustic model.
Therefore, it is useful to control for these variables by comparing performance on a standard
set of data and tasks.

The European Telecommunications Standards Institute’s technical committee for Speech
Transmission Planning and Quality of Service (ETSI STQ) have generated several such data
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Figure 9.1 The goal of feature compensation is to recover more ideal speech features from observed
noisy speech features.

sets. Their AURORA digital speech-recognition working group released a series of tasks
for this purpose, system evaluation. Each contains the necessary data and specifications for
running an experiment, including data and recipes for building acoustic and language models
and several relevant defined training and testing scenarios.

In this chapter, the relative merits of the discussed techniques are demonstrated on two
different standard noise robust speech-recognition tasks, summarized in Table 9.1. Both are
similar in that they were created by artificially mixing clean speech from a base corpus with
noise of various types. The Aurora 2 corpus is based on the TI-Digits corpus and is a small
vocabulary system, consisting only of the numbers zero through nine and the word “oh.”
The Aurora 4 corpus is based on the Wall Street Journal corpus, which has a much larger
vocabulary.

For both tasks, we follow the standard recipes for building acoustic models. In the case of
Aurora 2, this means maximum-likelihood whole-word digit models with 16 emitting states
and 20 mixture components per state. For Aurora 4, we build a maximum-likelihood (ML)
triphone acoustic model with approximately 1500 shared states and 16 mixture components
per state.

9.1.2 Probabilistic Feature Enhancement

The feature compensation methods discussed in this chapter share a common underlying
probabilistic framework.

According to Figure 9.1, the clean and corrupted speech signals are both generated from
the ideal speech signal. As a result, the features they generate will be correlated, allowing us
to build a probabilistic model that relates the two. If the clean speech signal generates features
x, and the noisy speech signal generates y, then their joint distribution p(x, y) contains all of
the information we need.

Table 9.1 Standard tasks used in this chapter.

Task name Base corpus Vocabulary

Aurora 2 TI-Digits 11
Aurora 4 Wall Street Journal 5000
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With this joint distribution, we can estimate the speech features in one domain from speech
features in another. One popular estimate is the minimum mean squared error (MMSE) estimate
of the clean speech feature x given the noisy speech feature y. It produces an estimate that
minimizes the expected squared error to the true value of x, and is well known to be the
conditional expectation of x given y:

x̂MMSE = E [x|y] =
∫

d xp(x|y)x.

Or, we can estimate the most likely value of x as the ML estimate:

x̂ML = max
x

p(x|y).

Both the MMSE and ML estimates contain the conditional probability p(x|y). The max or
E[·] operators use this conditional probability to transform from one feature representation to
another.

To use this form of feature compensation, we need to choose a suitable form for the joint
distribution of x and y, derive the mapping function from the joint distribution, and estimate
the parameters for that form from suitable training data.

9.1.3 Gaussian Mixture Models

The most common model for the joint distribution of clean and noisy speech features is a
Gaussian mixture model (GMM). The variable k indexes the individual mixture components
of the model, each one being a joint Gaussian (normal) distribution over x and y:

p(x,y) =
∑

k

p(k)p(x,y|k).

Each Gaussian component can be written in form where x and y are concatenated to form
a single vector space. In this form, the component conditional means μx|k and μy|k as well as
the variance and covariance matrices Σxx|k , Σyy|k and Σxy|k are readily apparent:

p(x,y|k) = N
([

x
y

]
;
[

μx|k
μy|k

]
,

[
Σxx|k Σxy|k
ΣT

xy|k Σyy|k

])
.

Given this parametrization, the conditional probability distribution function of x given y
and k is also Gaussian:

p(x|y, k) = N
(
x; μx|k + Σxy|kΣ−1

xx|k (y − μy|k ), Σxx|k − (ΣT
xy|k )−1Σyy|kΣ−1

xy|k
)

= N
(
x; μx|y ,k ; Σx|y ,k

)
.

Although the formulae for the parameters of p(x|y) look complicated, they are nothing more
than an affine transformation of y and a residual estimation error Σx|y ,k :

μx|y ,k = Aky + bk , where (9.1)

A = Σxy|kΣ−1
xx|k and (9.2)
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b = μx|k − Σxy|kΣ−1
xx|kμy|k . (9.3)

As a result, it is sufficient to estimate the parameters A, b, and Σ for each Gaussian
component k the model. The final form is

p(x, y) =
∑
k

p(x|y, k)p(y|k)p(k), (9.4)

p(x|y, k) = N (x; Aky + bk , Σx|y ,k ), (9.5)

p(y|k) = N (y; μy|k , Σy|k ). (9.6)

The minimum mean squared estimate of the clean speech feature x given the noisy speech
feature y is equal to the expected value of x given the observed noisy speech y:

x̂ = E [x|y]

=
∫

p(x|y)x dx

=
∫ ∑

k

p(x|y, k)p(k|y)x dx

=
∑
k

p(k|y)E [x|y, k]

=
∑
k

p(k|y) (Aky + bk ) .

This general form is nice, because conceptually k is breaking the feature space into K
overlapping partitions. Within each partition, the mapping is reduced to a simple affine trans-
formation, which is then interpolated by p(k|y). Sometimes, such as when using feature-based
uncertainty decoding (Chapter 17), it is useful to know the variance of the estimate x̂, which
is given by the second central moment of p(x|y):

Σ̂x = E
[
(x − x̂)(x − x̂)T |y

]

=
∫

p(x|y)(x − x̂)(x − x̂)T dx

=
∫ ∑

k

p(x|y, k)p(k|y)(x − x̂)(x − x̂)T dx

= −x̂x̂T +
∑
k

p(k|y)
(
Σx|y ,k + μx|y ,kμT

x|y ,k

)
.

The following sections describe different feature compensation methods that vary depending
on the quality and quantity of data available to estimate the transform parameters.

9.2 MMSE-SPLICE

The SPLICE technique was first introduced as a method for overcoming noisy speech in
[10]. SPLICE is an acronym of “Stereo piecewise linear compensation for environment.” Its
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purpose is to estimate clean speech features x from observed speech features y taken from a
noisy environment.1 It is similar in spirit to the FCDCN of [1] and the RATZ of [18], with
the notable difference that the previous methods learn clean speech GMMs, and SPLICE uses
noisy speech GMMs.

The MMSE-SPLICE transform x̂ = f (y; θ) is defined as the minimum mean squared esti-
mate of x, given y and the model parameters θ. The parameters of the transform are learned
from pairs of observations (x, y) that contain the exact same speech in both clean and noisy
conditions. This data might be generated by a close-talking microphone and far-field micro-
phone in a noisy room, or by artificially mixing noise into an existing clean utterance.

Using the GMM derivation above, the parameters to learn are those of the GMM of noisy
speech

{
μy|k , Σy|k

}
and those of the conditional model’s affine transformations {Ak , bk}.

The parameters of the GMM for noisy speech can be estimated with standard expectation-
maximization techniques, and then held fixed for the remainder of training.

Depending on the amount of training data available, the model can be scaled to have an
appropriate number of parameters to train. Plentiful data one can train a large model with
component-specific affine transformations:

x = y +
∑

i

p(i|y)(Aiy + bi).

With a moderate amount of data, a large number of components can still be trained by assuming
each Ai is the identity matrix. As a result, the transform is a component-specific offset:

x = y +
∑

i

p(i|y)bi .

With a small amount of training data, the model parameters can be shared across all components
of the GMM. The resulting SPLICE transformation is mathematically equivalent to the affine
transformation used in C-MLLR, ([6], also covered in Chapter 11):

x = Ay + b.

9.2.1 Parameter Estimation

Holding the parameters of p(y) constant, we find estimates of the bk and Ak parameters. Be-
cause Σx|y ,k does not appear in the transformation, it is not covered here. But, it may be useful
when doing uncertainty decoding as in [9], which is covered more deeply in Section 17.4.1.

The squared error between x̂ and x in the entire corpus is given by the following. Training
is accomplished by finding model parameters that minimize this squared error

Error =
∑

t

∥∥∥∥∥
∑

i

p(i|yt)(Aiyt + bi) − xt

∥∥∥∥∥
2

, (9.7)

where t is the index of the pair of clean and noisy speech observations in the training set.

1 In this section, y is a traditional feature vector based on static cepstra and its derivatives. But, it is possible to
expand y to include more context information, finer frequency detail, or other nontraditional features.
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For the case where the SPLICE parametrization is a set of offsets bi , the rotations Ai are
fixed, and the optimal set of offsets is easy to find. After making the substitution Ai = I,
the squared error is a quadratic function of bi , and optimal values can be found by setting
the derivative of the error function to zero, and solving for the set of bi :

0 =
∂

∂bj
Error|A i =I ,

0 = 2
∑

t

p(j|yt)

(
yt − xt +

∑
i

p(i|yt)bi

)
,

∑
i

bi

∑
t

p(i|yt)p(j|yt) =
∑

t

p(j|yt) (xt − yt) .

This yields a simultaneous set of K equations, one for each possible value of j. The structure
of this set becomes clear when written as a single equation BU = V, where the matri-
ces are formed by concatenating the individual terms above. The MMSE solution for B is
B = VU−1 .

The columns of the B matrix are the offsets bj that we hope to solve for

B =
[
b1 , b2 , . . . ,bK

]
.

The U matrix is formed by taking the sum of the outer product of posterior component
likelihoods for each frame of training data:

uij =
∑

t

p(i|yt)p(j|yt).

Because this sum contains many more terms than dimensions, the matrix U is generally full
rank. If it is not, then some mixture components in the GMM are highly correlated and should
be discarded.

The columns of the V matrix are component-weighted differences between x and y:

vj =
∑

t

p(j|yt) (xt − yt) .

For the more general case, where both Aj and bj are estimated, Equation (9.7) can be
simplified by representing the affine transformation more compactly as

Aiyt + bi = Āi ȳt , where

Āi =
[
Ai bi

]
and

ȳt =

[
yt

1

]
.

Because the error function above is now a quadratic function of Āi , an optimal value can
be found by setting the derivative of the error function with respect to Āi to zero, and solving
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for Āi :

0 =
∂

∂Āj
Error,

0 =
∂

∂Āj

∑
t

∥∥∥∥∥xt −
∑

i

p(i|yt)Āi ȳt

∥∥∥∥∥
2

,

0 =
∑

t

∂

∂Āj

(
xt −

∑
i

p(i|yt)Āi ȳt

)T (
xt −

∑
i

p(i|yt)Āi ȳt

)
,

0 = 2
∑

t

(∑
i

p(i|yt)Āi ȳt − xt

)
p(j|yt) (ȳt)

T .

As before, we collect the terms dependent on Āi to one side of the equation and simplify:

∑
t

(∑
i

p(i|yt)Āi ȳt

)
p(j|yt) (ȳt)

T =
∑

t

xtp(j|yt) (ȳt)
T ,

∑
i

Āi

∑
t

p(i|yt)p(j|yt)ȳt (ȳt)
T =

∑
t

p(j|yt)xt (ȳt)
T . (9.8)

Because this equation holds regardless of the value chosen for j, we again have a system
of linear equations that can be easily solved for an optimal set of Āj . The easiest way to
see the solution is to define two new variables. The first, qt , is a super-vector composed
by concatenating a number of posterior-scaled values of ȳt . The second, Ā, is a similar
concatenation of the Āi matrices:

qt =
[
p(i = 1|yt)ȳ

T
t , p(i = 2|yt)ȳ

T
t , . . . p(i = K |yt)ȳ

T
t

]T
,

Ā =
[
Ā1 , Ā2 , . . . ĀK

]
.

With these in hand, Equation (9.8) can be reformulated and solved:

Ā
∑

t

qt (qt)
T =

∑
t

xt (qt)
T ,

Ā =

(∑
t

xt (qt)
T

) (∑
t

qt (qt)
T

)−1

.

It is possible that the necessary matrix inverse can not be computed because it it not of full
rank. This can happen if feature space has correlated dimensions or if some Gaussians in the
clean speech model are too similar. In the former case, the offending dimensions should be
removed. In the latter, the clean speech model is too complex and should be shrunk to fewer
components.
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Table 9.2 Word error rate on Aurora 2, demonstrating the benefit of using MMSE-SPLICE.

Training data Feature enhancement Set A Set B Set C Average

Clean None 41.42 47.10 31.73 41.75
Clean MMSE-SPLICE 11.67 12.25 13.67 12.30
Multistyle None 8.64 10.23 11.96 9.94
Multistyle MMSE-SPLICE MMSE-SPLICE 6.66 8.99 7.85 7.83

9.2.2 Results

A 256 mixture component offset-only variant of MMSE-SPLICE was trained and applied
to the Aurora 2 task. The offsets were trained by using the 8440 utterances meant for clean
acoustic model training and their 8440 counterparts meant for multistyle training as a stereo
data set. A 256-component GMM was trained on all of the noisy data, and then the stereo data
were used as described above to train the offset vectors.

For both the clean and multistyle training data, SPLICE was applied to only the static
cepstral coefficients. When processing clean training data, the standard delta and acceleration
coefficients were computed from the enhanced static coefficients. When processing noisy
training data, the delta and acceleration coefficients were computed from the noisy static
coefficients. We have found this setup to be optimal across many algorithms, and unless stated
otherwise, will use this convention for the rest of the chapter.

The word accuracy results for MMSE-SPLICE and Aurora 2 are shown in Table 9.2. For
each row in the table, here and in the rest of this chapter, the same feature-enhancement
processing was applied to both the training and testing data.

For the “Clean” training condition, when no feature enhancement is employed, the average
digit accuracy is 58.25%. MMSE-SPLICE, by design, reduces the mismatch between the noisy
evaluation data and the clean training data and increases the average digit accuracy to 87.70%.
For the multistyle training condition, the baseline system is much more robust to additive noise
and the MMSE-SPLICE is only able to reduce the average digit error rate by about 20%.

The same type of transform was also trained and used in our Aurora 4 system. The noisy
speech GMM was trained on the 7138 utterances in the “multinoise” set, to which the “clean”
set was added to generate the required stereo training data.

Table 9.3 shows the results of adding a 256 mixture component, offset-only variant of
SPLICE to the Aurora 4 task. Because Aurora 4 is significantly different from Aurora 1
in several ways, including vocabulary size, signal-to-noise ratio (SNR), and bandwidth, the
relative gains of applying MMSE-SPLICE have changed. MMSE-SPLICE provides about

Table 9.3 Word error rate on Aurora 4, demonstrating the benefit of using MMSE-SPLICE.

Training data Feature enhancement Test 1 (clean) Test 2–7 (noisy)

Clean None 8.4 33.9
Clean MMSE-SPLICE 8.3 29.9
Multistyle None 14.0 19.3
Multistyle MMSE-SPLICE MMSE-SPLICE 13.4 19.2
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a 10% reduction in word error rate for the clean training condition, but much less of an
improvement for the multistyle training condition.

One place where the technique does provide gains is in the accuracy of recognizing clean
speech based on multistyle training data. It is well known that multistyle training data increase
performance on noisy test data, while simultaneously decreasing performance on clean test
data. For the results in Table 9.3, this is clearly shown by the word error rate rising from 8.4%
to 14.0% on clean test data, while falling from 33.9% to 19.3% on noisy test data. Because the
MMSE-SPLICE technique maps the multistyle training data to look more like clean training
data, some of this performance degradation can be regained.

9.3 Discriminative SPLICE

Even though MMSE-SPLICE is easy to train and deploy, it may not be the best solution. Its
output may be optimal in a MMSE sense, but it might not produce the most accurate composite
system. Furthermore, if stereo data are unavailable, it is impossible to train.

Discriminative SPLICE addresses both of those shortcomings. It uses examples of noisy
speech, together with a speech-recognizer’s acoustic model, to learn SPLICE parameters that
map the noisy speech into features that the acoustic model is more likely to recognize correctly.

Figure 9.2 illustrates how this is accomplished. The parameters θ define the SPLICE
transformation, and the parameters λ define the acoustic model. The objective function can
come from any of a number of well-studied techniques such as minimum classification error
(MCE, as in [15, 16]), maximum mutual information (MMI, as in [2, 19], or minimum phone
error (MPE, as in [20]). Discriminative splice modifies the SPLICE parameters θ in such a
way as to improve the chosen discriminative objective function.

No explicit constraints are placed on the intermediate feature representation x, other than it
comes from a feature space that improves our objective function. This gives the system more
freedom than existing methods that define x as clean speech (e.g. [10]) or phone posteriors
(e.g. [13]).

This style of training can produce superior results to the two channel MMSE approach, and
can even increase accuracy when the data are relatively noise-free. One disadvantage is that

Figure 9.2 The SPLICE transform exists between a sequence of noisy speech features yT
1 and the

objective function calculation. The objective function may be improved through modification of the
SPLICE parameters θ or the acoustic model parameters λ.
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it is easy to overtrain the parameters, leading to an increase in error rate on held out testing
data. To mitigate this problem, the standard tools of regularization and careful partitioning of
development and test data should be employed.

The recommended form of regularization is to bias the model toward a benign set of
SPLICE parameters. Toward that end, it is usually sufficient to add penalty terms to the chosen
objective function that increase as the SPLICE transform diverges from the identity transform.
Two reasonable penalty terms are as follows, where || · ||2 is the L2 matrix norm, and the
scaling constants εb and εA should be tuned on the development set:

Bias penalty = εb

∑
i

bT
i bi ,

Rotation penalty = εA

∑
i

||Ai − I||2 .

For the results presented in this chapter, the SPLICE models were small enough that no
regularization was necessary.

9.3.1 The MMI Objective Function

This chapter demonstrates discriminative SPLICE using a MMI objective function. MMI
maximizes the mutual information between the acoustics and the class (model) labels cor-
responding to the reference transcriptions. It is defined as the sum of the log conditional
probabilities for all correct transcriptions wr of utterance number r, given the corresponding
noisy training data Yr . Note that, unlike MMSE-SPLICE, there is no need for corresponding
clean training data:

F =
R−1∑
r=0

Fr =
R−1∑
r=0

ln p(wr |Yr ). (9.9)

This function favors increasing likelihood assigned by the model to the correct words given
the acoustics and model parameters. That is, the model parameters are changed so that it is
more likely to reproduce the correct transcriptions.

To derive ln p(wr |Yr ), both the front-end and back-end halves of the acoustic processing
need to be considered. The front-end feature transformation Xr = f (Yr ; θ) is parameterized
by θ and converts the rth input sequence Yr into the feature vector sequence Xr . The back-end
acoustic score pX (Xr , w; λ) defines a joint probability distribution over transformed feature
sequences Xr and transcriptions w using the parameters λ.

Assuming the front-end feature transform is differentiable, its composition with the back-
end acoustic score is a simple application of the change of variables theorem. If Jf (Y; θ) is
the Jacobian determinant of the transformation f (Y; θ) evaluated at Y, then

pY (Y, w; θ, λ) = pX (f (Y; θ), w; λ)Jf (Y; θ). (9.10)

Then, we use Bayes’ rule to derive the desired conditional log probability:

ln p(wr |Yr ) = ln
pY (Yr , wr )

pY (Yr )
= ln

pY (Yr , wr )∑
w pY (Yr , w)

. (9.11)
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The utterance-dependant portion of the objective function is given by combining Equations
(9.10) and (9.11):

Fr = ln
pX (f (Yr ; θ), wr ; λ)Jf (Yr )∑
w pX (f (Yr ; θ), w; λ)Jf (Yr )

. (9.12)

When the Jacobian determinant is nonzero, it disappears entirely from Equation (9.12). For
the remainder of this chapter, we assume that to be the case.

Since exact computation of the denominator of Equation (9.12) would be computationally
expensive, the probabilities pX (Xr , w; λ) are approximated on word lattices2 generated by the
baseline ML acoustic model. The numerator is calculated over the best path that corresponds
with the correct transcription, and the denominator is calculated over all paths in the lattice.

As is commonly done in lattice-based MMI estimation, the objective function should also
be modified to include posterior flattening [20], the time marks in the lattice should be held
fixed, and forward-backward performed within each arc to determine arc conditional posterior
probabilities.

9.3.2 Training the Front-End Parameters

In this section, we detail the procedure for discriminative training of the SPLICE parameters
θ after the back-end acoustic model parameters have been fully trained. It is also possible to
jointly optimize θ and λ using the same objective function. For details, see [7].

Because there is no known closed form solution to find the parameters θ that maximize Equa-
tion (9.12), we resort to gradient-based optimization methods. If pX (Xr , w; λ) and f (Yr ; θ)
are continuous and differentiable, we should be able to compute the gradient of F with respect
to θ.

EveryFr is a function of many acoustic model state conditional probabilities p(xr
t |sr

t ).3 Each
of these are functions of the front-end processed acoustic features xr

it . And, each transformed
feature is a function of the front-end parameters θ. This structure allows a simple application
of the chain rule:

∂Fr

∂θ
=

∑
t,s,i

∂Fr

∂ ln p(xr
t |sr

t = s)
∂ ln p(xr

t |sr
t = s)

∂xr
it

∂xr
it

∂θ
. (9.13)

Here, r is an index into a particular utterance in the training data. The tth observation vector
in utterance r is identified by xr

t . The scalar xr
it is the ith dimension of that vector. The back-end

acoustic model state at time t in utterance r is sr
t .

The first term in Equation (9.13) captures the sensitivity of the objective function to indi-
vidual acoustic likelihoods in the model. It is equal to the difference of the conditional and
unconditional posterior, with respect to the correct transcription. These are simply the flattened

2 A lattice is a mathematical structure that efficiently describes a mapping from sequences of symbols to real
numbers, without explicitly enumerating all possible symbol sequences. In our case, the symbols are words, and the
real numbers represent the likelihood of the word sequences under the current model.

3 This derivation assumes one Gaussian mixture component per state of the acoustic model. For the multiple mixture
component case, the variable s indexes not state, but the individual mixture components. Nothing else needs to be
changed.
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numerator and denominator terms that occur in standard lattice-based MMI estimation:

∂Fr

∂ ln p(xr
t |sr

t = s)
= p(sr

t = s|Xr , wr ) − p(sr
t = s|Xr )

= γnum
rts − γden

rts . (9.14)

The second term in Equation (9.13) captures the sensitivity of individual likelihoods in the
acoustic model with respect to the front-end transformed features. Because this is a Gaussian
likelihood, computing its differential is a simple matter:

∂ ln p(xr
t |sr

t = s)
∂xr

t

= −Σ−1
s (xr

t − μs). (9.15)

Here, μs and Σs are mean and variance parameters from the Gaussian component associated
with state s in the back end acoustic model.

The final term in Equation (9.13) captures the relationship between the transformed features
and the parameters of the front-end. Here, we restrict ourselves to training the offset parameters
bm only.4 For the uth element of the vector bm :

∂xr
it

∂bum
=

∂

∂bum

(
yr
ut +

∑
m ′

bim ′p(m′|yr
t )

)

= δ(i = u)p(m|yr
t ). (9.16)

Here, we have used the Kronecker delta function δ(·), which takes the value 1 when its
argument is true, and the value 0 otherwise.

Combining Equations (9.9), (9.13), (9.16), the complete gradient with respect to the vector
bm is

∂F
∂bm

= −
∑
r,t,s

p(m|yr
t )

(
γnum

rts − γden
rts

)
Σ−1

s (xr
t − μs). (9.17)

Equation (9.17) can then used to compute the gradient of the objective function with respect
to the offset vectors during gradient-based optimization of the objective function.

9.3.3 The Rprop Algorithm

Rprop is a well-known gradient-based algorithm that was originally developed to train neural
networks [22]. Here, Rprop is employed to train the transform parameters θ that improve the
MMI objective function, Equation (9.9).

By design, Rprop only needs the sign of the gradient of the objective function with respect
to each parameter. Unlike many other gradient ascent methods, the scale of the step size for
parameter i, Δi , is unrelated to the magnitude of the current gradient ∂F

∂θi
. As a result, Rprop

is quite easy to implement and is robust to nonuniform scaling across the feature dimensions.
Each iteration l of the Rprop training algorithm can be simply described as a loop over

parameter values, a computation of the sign of the gradient of the objective function with respect

4 Training the rotations Am is also possible, and was derived in [12].
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to each parameter, and a rule-based parameter update. The procedure is run independently on
each parameter θi in θ.

For each parameter θi {
d ← ∂F

∂θi
(l − 1) · ∂F

∂θi
(l)

if ( d >= 0 ) then {
if ( d > 0 ) then Δi ← min(1.2 Δi , Δmax)
θi(l + 1) ← θi(l) + sign( ∂F

∂θi
(l)) · Δi

} else if ( d < 0 ) then \{
Δi ← max(0.5 Δi , Δmin)
θi(l + 1) ← θi(l − 1)
∂F
∂θi

(l) ← 0
}

}

There are only a handful of parameters to set in this training algorithm. We typically choose
Δmin = 10−5 and Δmax = 0.1 to bound the step size within a reasonable range. For the first
iteration, set the value for the initial step size to be small, such as Δi = 0.01, ∀i, and assume
the previous gradient was zero.

Analysis of the Rprop algorithm is simple. At each iteration, for every parameter, Rprop
does one of three things:

1. If the current and previous gradient are nonzero and in the same direction (d > 0), the step
size Δi is increased and applied in the same direction as the current gradient.

2. If the current and previous gradient are in opposite directions (d < 0), it means that a local
maximum has been overshot. In this case, the step size is reduced and the parameter is reset
to its value before the last update. Also, the memory of the current gradient is set to zero.
This serves as a flag for the next iteration of the algorithm.

3. If either the current or previous gradient are zero, then d = 0 and the current step size is
applied in the direction of the current gradient. This is appropriate whether the current
gradient is zero, and Rprop has found a local maximum, or the previous gradient is zero,
indicating that the algorithm had overshot and backtracked during the previous iteration.

9.3.4 Results

To demonstrate how MMI-SPLICE affects the accuracy of speech recognition, we apply the
technique to the Aurora 4 task. Several systems were trained with a 128 component, offset-only
version of MMI-SPLICE. As with MMSE-SPLICE, the noisy SPLICE GMM was trained on
the “multinoise” training set. This same “multinoise” data were used in training the SPLICE
parameters when evaluating the MMI objective function. The SPLICE offset parameters are
initialized to zero so that it will mimic the identity transform.

In Table 9.4, an acoustic model is first trained on the clean Aurora 4 training data. The
MMI-SPLICE offset parameters are initialized to zero, and several iterations of Rprop are
made. With each iteration, the word error rate of the clean test set increases, and the word error
rate of the noisy test sets decrease. Overall, the average word error rate drops by about 23%.

Table 9.5 illustrates how MMI-SPLICE can affect the word error rate for systems trained
with multistyle acoustic data. As with MMSE-SPLICE, normalizing the multistyle training
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Table 9.4 Word error rate on Aurora 4, demonstrating how increasing the number of Rprop training
iterations changes the word error rate for seven test conditions.

Iteration Clean Car Babble Restaurant Street Airport Train Average

0 9.0 40.3 57.2 47.6 51.0 50.7 54.3 44.3
20 9.2 34.1 50.1 44.5 46.2 45.1 48.8 39.7
40 10.4 28.2 44.6 43.3 44.7 40.7 47.8 37.1
60 11.6 26.1 41.8 43.1 44.1 39.6 46.6 36.1
80 12.5 24.7 39.1 43.4 41.9 38.0 44.6 34.9

100 13.7 23.6 37.5 43.7 40.3 36.3 42.6 34.0

data toward a more consistent distribution has mitigated some of the expected degradation on
clean testing data. Unlike MMSE-SPLICE, MMI-SPLICE is also able to decrease the word
error rate result on the noisy test utterances.

9.4 Model-Based Feature Enhancement

The previous sections assumed that the functional form of the mismatch between clean speech
and noisy speech was unknown. In that case, we trained general models with many parameters
from a large set of training data.

In this section, we derive an example of model-based feature enhancement (MBFE). It
consists of a model that represents our belief about how the speech has been corrupted, and a
small handful of learnable parameters.

Model-based feature-enhancement algorithms are powerful and can learn their parameters
on an utterance by utterance basis, but are limited to modeling those distortions accounted for
in the initial model design.

For simplicity, we assume here that the model is built in the static cepstral domain, and that
standard delta or acceleration parameters are not used. It is, of course, possible to use them
under the same framework, with further approximation, as in [5].

Figure 9.3 illustrates the necessary steps. First, the relationship between clean speech and
noisy speech is derived. This additive noise-mixing equation is then combined with a clean
speech GMM to produce a joint probability model for the clean and noisy speech. Because
inference on this model is difficult, it is then linearized using vector Taylor series. This resulting
model can then be used to enhance speech-recognition features, in the same way as SPLICE
was used previously.

Table 9.5 Word error rate on Aurora 4, demonstrating that MMI-SPLICE improves upon both the
baseline system and MMSE-SPLICE.

Training data Feature enhancement Test 1 (clean) Test 2–7 (noisy)

Multistyle None 14.0 19.3
Multistyle MMSE-SPLICE MMSE-SPLICE 13.4 19.2
Multistyle MMI-SPLICE MMI-SPLICE 13.4 18.8
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Speech model p(x)

Mixing equation

Noise model p(n)

Joint model of
clean and noisy

speech

p(x, y)

VTS approximate
model for p(x|y)

Figure 9.3 Steps in deriving a tractable model for model-based feature enhancement.

9.4.1 The Additive Noise-Mixing Equation

To address mismatch due to background noise in the signal, we construct a mismatch function
for additive noise. In particular, the noisy time series y[t] is a linear combination of the clean
time series x[t] and the noise time series n[t]:

y[t] = x[t] + n[t].

If this noisy signal is passed through a mel-frequency cepstral coefficient (MFCC) front-end,
the relationship between noisy speech, clean speech, and the additive noise gets a lot more
complicated.

Let x represent the cepstral features that the clean speech would have generated in the
absence of noise, and n represent the cepstral features that the noise would have generated in
the absence of speech. Define the matrix C as the discrete cosine transform used to transform
log mel-frequency energies into the cepstral domain, and D its right inverse such that CD = I.

The approximate noise power, np , approximate clean speech power, xp , and approximate
noisy speech power, yp , can be found by inverting the last two steps of the cepstral calculation:

xp ≈ eDx ,

np ≈ eDn ,

yp ≈ eDy .

Because the power spectra of the noise and speech should mix linearly, we get the following
relationship, which is easily manipulated into a more standard form:

yp = xp + np ,

eDy = eDx + eDn ,

Dy = ln
(

e + Dx + eDn
)

,

Dy = Dx + ln
(
1 + eD(n−x)

)
,

y = x + C ln
(
1 + eD(n−x)

)
.

Because of the approximations, namely that the power spectra mix linearly and determin-
istically, and that the cepstral rotation can be inverted with D, it is customary to include a
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stochastic error e. For an overview of different methods to model this error term, see [11]. The
final formula for the additive noise model is as follows:

y = x + C ln
(
1 + eD(n−x)

)
+ e. (9.18)

9.4.2 The Joint Probability Model

Here, we use the additive noise model, Equation (9.18), together with a clean speech GMM
and a noise model, to develop a joint model for clean and noisy speech. The clean speech
model p(x) is pretrained with high signal-to-noise utterances:

p(x) =
∑

s

p(x|s)p(s) =
∑

s

N (x; μx|s ,Σx|s)p(s).

The simplest form of noise model, which is what we will use here, is a single Gaussian
component trained from known or suspected nonspeech segments of the current utterance.
Other common choices are to recursively track nonstationary noises in concert with the model
[4], or to use an auxiliary noise tracker such as minimum controller recursive averaging [3]:

p(n) = N (n; μn ,Σn).

Of course, we can not directly observe the x or n once they have been mixed and presented
to the system as y. We can only parameterize their stochastic relationship. For simplicity,
we assume that the error term e in Equation (9.18) is deterministically equal to zero. This
formulation is known as the zero variance model (ZVM), and similar to several related models,
including [14, 17, 24].

The joint PDF, shown in Figure 9.4, is a distribution over the clean speech x, the noise n,
the noisy observation y and the speech state s. It is a generative model in which the speech
state affects the clean speech, which mixes with noise to produce the noisy observation:

p(y,x,n, s) = p(y|x,n)p(x, s)p(n).

Because we expect the speech and noise estimates to be highly correlated in the posterior
p(x, n|y), we generally introduce an instantaneous SNR variable r = x − n that can capture
this relationship and stabilize the processing:

p(y, r,x,n, s) = p(y|x,n)p(r|x,n)p(x, s)p(n).

x

s

y n

Figure 9.4 Graphical representation of the observation model. The observation y is a nonlinear function
of speech x and noise n.
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n

Figure 9.5 Graphical system model.

Figure 9.5 contains a graphical representation of the complete model. Here, x and n represent
the continuous hidden speech and noise vectors. The observation y and SNR r are both
deterministic functions of x and n. As a result, the conditional probabilities p(y|x, n) and
p(r|x, n) can be represented by Dirac delta functions:

p(y|x, n) = δ
(
x + C ln

(
1 + eD(x−n)

)
− y

)
, (9.19)

p(r|x, n) = δ (x − n − r) , (9.20)

where 1 is a vector consisting of ones. This allows us to marginalize the continuous variables
x and n, as follows, so the only remaining continuous hidden variable is the instantaneous
SNR r:

p(y, r, s) =
∫

dx
∫

dn p(y, r, x, n, s)

=
∫

dx
∫

dn p(y|x, n)p(r|x, n)p(x, s)p(n)

=
∫

dx
∫

dn δ
(
x + C ln

(
1 + eD(n−x)

)
− y

)
δ (x − n − r) p(x, s)p(n)

= p(x, s)|x=y−C ln(1+eD r )+r p(n)|n=y−C ln(1+eD r )

= N (y − C ln
(
1 + eDr

)
+ r; μx|s , Σx|s)p(s)

N (y − C ln
(
1 + eDr

)
; μn , Σn ). (9.21)

The behavior of this joint PDF is intuitive. At high SNR, the elements of Dr will be much
greater than zero, and we have the approximate relationship:

C ln
(
1 + eDr)

) ≈ r, so

p(y, r, s) ≈ N (y; μx|s ,Σx|s)p(s)N (y − r; μn ,Σn ).

In this high SNR case, the clean speech Gaussian component N (·; μx|s , Σx|s) is evaluated at
the noisy observation y, and the noise Gaussian N (·; μn , Σn ) is evaluated at the noise estimate
y − r. That is, the observation y is assumed to be clean speech, and the noise is at a level r units
below the observation. The converse is true for low SNR, where the elements of Dr are much
less than zero. In this case, the noise Gaussian will be evaluated at the noisy observation y, and
the clean speech Gaussian component will be evaluated at the clean speech estimate y − r.
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By performing inference on this new variable, an estimate for the instantaneous SNR can
be mapped back into estimates of x and n through a nonlinear transformation:

x = y − C ln(1 + eDr) + r and (9.22)

n = y − C ln(1 + eDr). (9.23)

9.4.3 Vector Taylor Series Approximation

Unfortunately, even though the outer form of both terms for p(y, r, s) in Equation (9.21)
are Gaussian, the nonlinearity on r makes the overall distribution non-Gaussian. Because
the difficulty is the nonlinearity, we replace it with a first-order vector Taylor series (VTS)
approximation. This approximation will linearize the arguments to the Gaussian components
in Equation (9.21) and make learning and inference tractable.

The offending nonlinear function g(r) is defined and approximated as

g(r) = C ln
(
1 + eDr) ≈ g(r′) + G(r′)(r − r′),

where the matrix-valued function G(r′) is the Jacobian of g(r) evaluated at r′. It can be
decomposed into a product of the cepstral rotation matrix C, a matrix-valued function F(r′),
and the cepstral rotation pseudo-inverse D:

G(r′) = CF(r′)D.

The function F produces diagonal matrices, whose elements are given by a vector f (r′), which
in turn is

f(r′) =
1

1 + exp(D(r′))
.

The distribution p(y, r) based on this approximation is derived by substituting the Taylor
series approximation for g(r) into Equation (9.21). Note that the expansion point r′s may be
state specific:

p(y, r, s) ≈ N (y − g(r′s) − G(r′s)(r − r′s) + r; μx|s , Σx|s)

N (y − g(r′s) − G(r′s)(r − r′s); μn , Σn )p(s)

= N (r; μr|s , Σr|s)N (as ; bs , Cs)p(s)

= p(r|y, s)p(y|s)p(s).

Standard Gaussian manipulation formulas are used to bring p(y, r, s) into this factored form:

p(r|y, s) = N
(
r; μr|s , Σr|s

)
, (9.24)

Σ−1
r|s = (G(r′s) − I)T Σ−1

x|s(G(r′s) − I) + GT (r′s)(Σn )−1G(r′s), (9.25)

μr|s = Σr|s
(
(G(r′s) − I)T Σ−1

x|s(as − μx|s) + (G(r′s))T Σ−1
n (as − μn )

)
, (9.26)

p(y|s) = N (as ; bs , Cs), (9.27)

as = y − g(r′s) + G(r′s)r′s , (9.28)

bs = μn + G(r′s)(μx|s − μn ), (9.29)

Cs = (G(r′s))T Σx|sG(r′s) + (G(r′s) − I)T Σn (G(r′s) − I). (9.30)
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9.4.4 Estimating Clean Speech

To estimate clean speech using Equations (9.24) and (9.27), a suitable set of expansion
points r′s must be found. Toward that end, an iterative procedure is performed for each
mixture component in the clean speech GMM. Convergence usually occurs within the first
two iterations:

1. Initialize the expansion point r′s to be the expected SNR for that mixture component,
μx|s − μn .

2. Use Equations (9.24)–(9.26) to find the expected value of r under the approximate model,
μr|s .

3. If the value of μr|s has changed significantly, repeat step 2.

After an appropriate expansion point for each mixture component is found, a minimum
mean squared estimate of r given y under the model is computed by taking the expectation of
our approximate model:

r̂MMSE = E[r|y] =
∑

s

p(s|y)E[r|y, s].

Here, p(s|y) is the posterior probability of state s under the model, which can be found by
Bayes’ rule:

p(s|y) =
p(y|s)p(s)∑
s′ p(y|s′)p(s′)

.

Finally, r̂MMSE is used to estimate x by undoing the previous mapping using Equation (9.22).
Note that, since the transformation is nonlinear, our estimate of clean speech x̂ is not the optimal
MMSE estimator for x:

x̂ = y − C ln
(
1 + eDr̂M M SE

)
+ r̂MMSE .

9.4.5 Results

Table 9.6 shows how a feature-enhancing VTS front-end with 32 mixture components improves
accuracy on our Aurora 2 system. The clean speech GMM was trained using the “clean”
training data provided with the corpus. The “multistyle” training data were only used to train
the recognition system’s acoustic models. The VTS front-end improves adapts to each utterance
independently, allowing it to improve upon the global model learned by either MMSE-SPLICE
or MMI-SPLICE.

Table 9.6 Word error rate on Aurora 2, demonstrating the benefits of VTS feature enhancement.

Training data Feature enhancement Set A Set B Set C Average

Clean None 41.42 47.10 31.73 41.75
Clean+VTS VTS 11.08 10.61 12.72 10.82
Multistyle None 8.64 10.23 11.96 9.94
Multistyle+VTS VTS 6.28 6.81 7.21 6.68
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Table 9.7 Word error rate on Aurora 4, demonstrating that VTS feature enhancement also works in
this harder task.

Training data Feature enhancement Test 1 (clean) Test 2–7 (noisy)

Clean None 8.4 33.9
Clean VTS 7.9 23.6
Multistyle None 14.0 19.3
Multistyle VTS VTS 12.3 17.6

Table 9.7 shows that the VTS feature enhancement also improves accuracy on the Aurora 4
tests. Again, the VTS feature enhancement proves to be more powerful than either the MMSE-
SPLICE or MMI-SPLICE algorithms.

Although VTS feature enhancement is more effective than SPLICE at reducing the effects
of additive noise, it comes with two drawbacks: complexity and specificity. Whereas SPLICE
is simple to implement and consumes few resources, VTS feature enhancement is difficult to
implement and consumes much more processing power. Also, SPLICE can compensate for
any systematic corruption in the feature space, but VTS feature enhancement is limited to the
additive noise formula at its core.

9.5 Switching Linear Dynamic System

The previous sections have described how frames of noisy speech features can be transformed
into estimates of clean speech feature frames. Speech and noise models have consisted of time-
independent probability models, and there has been little attention paid to the time evolution
of either.

Because speech and noise tend to evolve from one frame to the next, it stands to reason that
models which incorporate this evolution should outperform models that do not. This intuition
forms the basis for systems that use switching linear dynamic models, first applied to the
feature-enhancement problem in [8, 21], and a good survey of which appears in [23].

A switching linear dynamic model (SLDM) describes the time evolution of a vector-valued
sequence such as speech or noise cepstra. The model parameters consist of state-conditional
rotations Hs and offsets hs . These are combined to form a model for the current vector xt

when the previous vector xt−1 is known:

xt = Hst xt−1 + hst + vst .

The vector-valued sequence vst is a zero-mean Gaussian innovation source which drives
the system.

Figure 9.6 illustrates the structure of the model for a sequence of length T = 4. Every unique
state sequence sT

1 generates a different nonstationary linear dynamic model. As a result, it is
appropriate for describing a number of time-varying systems, including nonstationary noise
processes and the evolution of speech features over time.

The difficulty in replacing the clean speech or noise models with a SLDM is in estimation
of the hidden state sequence. An exact solution would need to sum over all possible state
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Figure 9.6 Graphical representation of the switching LDM useful for modeling clean speech features.

sequences, a problem that increases exponentially with the length of the sequence. Approx-
imate solutions that work well are the generalized pseudo-Bayes technique used by Droppo
and Acero [8] and the particle filtering approach of Raj et al. [21].

9.6 Conclusion

Feature-enhancement algorithms live between the front-end of the speech-recognition system,
where speech features are generated, and the back-end of the speech-recognition system, where
acoustic likelihoods are calculated. Their goal is to reduce any information in the feature stream
that might be confusing or unnecessary to the recognition task, and thereby move closer to the
ideal features we would like to use.

This chapter has presented three different feature-enhancement techniques. Each one uses
a joint probability distribution to generate an estimate of the clean speech features given the
noisy speech features.

MMSE-SPLICE is a good choice if you have or can generate parallel examples of noisy
and clean speech. It is easy to code and can produce dramatic results against a clean acoustic
model. If the acoustic model has been trained with multistyle data, the improvement may be
less dramatic.

A discriminative SPLICE, such as MMI-SPLICE is more complicated to implement, but is
more effective than MMSE-SPLICE both in clean and noisy test environments.

Model-based feature enhancement, such as iterative VTS feature enhancement, produces
the best word error rates of the systems discussed in this chapter, but is very complex to
implement and uses a great deal more processing power. It is the preferred method when
there is enough processing power available, and when the distortion is expected to match the
additive noise mixing equation.
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Reverberant Speech Recognition
Reinhold Haeb-Umbach, Alexander Krueger
University of Paderborn, Germany

10.1 Introduction

From a usage point of view, there are a number of reasons why in many applications of
automatic speech recognition (ASR) distant talking microphones are to be preferred over
close-talking microphones. The first is convenience: freeing the user from holding a mi-
crophone or wearing a headset increases the ease of use, and thus raises the acceptance of
appliances or services operated by voice commands. A second reason is safety: there are nu-
merous applications, where the hands are needed for more important tasks than for holding a
microphone to capture the user’s speech. Examples include the hands-free control of a cellular
phone or a car navigation system while driving, or the control of some apparatus by a surgeon
while being busy with an operation. Finally, moving the microphone away from the mouth of
the speaker is in line with the disappearing computer and the ambient intelligence paradigm,
which has been put forward already for several years [1]. It describes the vision of technology
that is invisible, embedded in our surroundings while still being present whenever we need it.
Interacting with it should be simple and effortless, and speech, as a “remote control” that a
user has with him all the time, is the ideal means of interaction.

However, increasing the distance between the speaker and the microphone has dramatic
consequences on the quality of the captured speech signal. There is first the signal attenuation
due to the propagation from source to sensor. In free space, the value of the signal power is
inversely proportional to the squared distance. Elko [11] considered the following example:
assume that the microphone is located 2 cm away from the speaker’s mouth. Increasing the
distance to 10 cm or 1 m would correspond to an attenuation by 14 and 34 dB, respectively. If
one wanted to compensate this loss by the directional gain of a microphone array, this would
require at least 5 (omnidirectional) microphones for the distance of 10 cm and 50 microphones
for 1 m, assuming an acoustic environment that is characterized by diffuse noise.

Second, if the distance between speaker and microphone is increased, it becomes likely
that the sensor also captures other acoustic events, in addition to the desired speaker’s signal.

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
Edited by Tuomas Virtanen, Rita Singh, and Bhiksha Raj.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Such other acoustic signals could be noise produced by equipment (e.g., fan noise), or speech
by other speakers in the same room. If microphone arrays are used which direct their beam
of sensitivity towards the speaker, directional signal sources from directions of arrival (DoA)
that are sufficiently different from that of the target signal can be well suppressed. However,
problematic are distortions that originate from the same DoA; also diffuse noise cannot be
suppressed very effectively.

Finally, and this is the theme of this contribution, distant talking microphones will capture
reverberant speech, if source and sensor are located in a reverberant enclosure. Reverberation
refers to the process of multipath propagation of an acoustic signal from its source to the
microphone. The received signal generally consists of a direct sound, reflections that arrive
shortly (up to about 80 − 100 ms) after the direct sound, called early reverberation or early
reflections, and reflections that arrive later, termed late reverberation or late reflections [19].
Reflections are caused by walls, ceiling, floor, and objects, that are located in the source-sensor
enclosure.

This contribution is organized as follows. In the next section, we briefly describe the physical
phenomenon of reverberation and discuss its impact on human and machine intelligibility.
We also derive an expression which shows how feature vectors used for speech recognition
are affected by reverberation. In Section 10.3, we present a taxonomy and an overview of
the literature on approaches to improve recognition of reverberant speech. These techniques
typically require knowledge of certain characteristics of the reverberation. As a complete
characterization in terms of the acoustic impulse response (AIR) from the speaker to the
microphone is usually not available, simplified models whose parameters are easier to estimate
than the true AIR are to be preferred. In Section 10.4, we discuss feature domain models of
the AIR that have been used in recognition systems. In Section 10.5, we discuss one feature-
enhancement method that has been developed by the authors of this chapter in a bit more detail.
The following experimental section presents results both on a small and a large vocabulary
task. In particular, we will compare the recognition accuracy obtained by matched reverberant
training with what is achieved by the presented feature enhancement and by an acoustic
model-compensation technique. Finally, some conclusions are drawn in Section 10.7.

10.2 The Effect of Reverberation

10.2.1 What is Reverberation?

As mentioned in the introduction, reverberation denotes the multipath propagation from an
acoustic source to the sensor. As a result, the microphone signal is a superposition of multiple
replicas of the source signal, each with different delay and attenuation. A system theoretic
model for this dispersion is the convolution of the source signal s(l) with an AIR hl(p):

y(l) =
∞∑

p=0

hl(p)s(l − p). (10.1)

The AIR hl(p) from the source to the microphone is in general time variant. Here, the subscript
l indicates the time variance whereas p ∈ N0 is the lag index.

The time variance of the AIR is due to changes within the source-sensor enclosure, for
example, movements of the speaker, movements in the environment or changes in temperature.
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Figure 10.1 Example of a typical acoustic impulse response, measured in a large office room (Ts sam-
pling interval).

To illustrate that even small movements have an effect consider a signal recorded at a sampling
rate of 1/Ts = 8 kHz. The distance traveled during a sampling period is d = c · Ts = 4.3 cm,
where c denotes the sound velocity of 343 m/s. Therefore, a 4.3 cm change in the length of an
echo path, for example, caused by a slight head movement by the speaker, moves the related
impulse by one sampling interval, illustrating the high sensitivity of the impulse response to
even smallest movements. Based on a statistical model of room acoustics Radlovic et al. [47]
demonstrated that even a small movement of the speaker of the order of a tenth of the acoustic
wavelength can cause significant changes in the AIR.

However, in the following, we will assume that the AIR is time invariant, that is hl(p) =
h(p) ∀l ∈ N0 . Figure 10.1 shows a typical AIR, that has been measured in a large office room.
At the very left of the curve, one can observe the direct signal component, which arrives at the
microphone after a short propagation time of below 0.01 s, followed by a few early reflections
(the spikes at the beginning of the AIR). The late reflections appear as a noise-like signal with
a decaying envelope.

The so-called energy decay curve (EDC) is insightful for studying the properties of the
energy decay of the AIR. The EDC is defined as

EDCh (l) :=

∑∞
p′= l h2(p′)∑∞
p′=0 h2(p′)

. (10.2)

Figure 10.2 portrays the EDC corresponding to the AIR of Figure 10.1. The straight line
indicates that the energy of the AIR decreases exponentially with time. The deviation from the
straight line at very low lags is due to the direct signal component and the early reflections,
while the deviation at large lags (l · Ts > 0.4 s) is a measurement artefact.

If the distance between the source and the microphone increases, the energy which is related
to the direct path decreases, while the combined energy of the early and late reflections is
approximately constant. The distance, at which the direct path energy is equal to the combined
energy of the early and late reflections is called the critical distance. Usually, the microphones
are further away than this critical distance, that is the reflective energy is larger than the direct
path energy. For example, a room with a volume of 100 m3 and a reverberation time of 500 ms
has a critical distance of 80 cm, according to Sabine’s formula [34].

The convolution of a speech signal with an AIR like the one in Figure 10.1 results in a
temporal smearing or dispersion of the input signal. The audible temporal smearing is caused
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Figure 10.2 Energy decay curve (on a logarithmic ordinate) correspondig to AIR given in Figure 10.1.

by late reverberation, while early reverberation also causes an audible effect called coloration,
which is a frequency-dependent amplification or attenuation.

The effect of reverberation on human speech perception has been extensively studied in the
literature. Berkley [5] showed that the perception is mainly affected by two factors, coloration
and echo. The former is related to the direct-to-reverberation ratio (DRR), which is defined to
be the ratio of the energy of the direct sound to the total reflective energy (both early and late
reflections). The latter in turn can be quantified by the reverberation time T60 , which is defined
to be the time required for the energy of the AIR to decay by 60 dB compared to its initial
level. Typical reverberation times are in the range from 200 to 1000 ms. Decreasing DRR and
increasing T60 negatively affect speech intelligibility. The example in Figure 10.1 has a DRR
of about 0 dB and T60 ≈ 750 ms.

Still, the intelligibility of reverberant speech by humans is strikingly good, and is often
attributed to the so-called precedence effect. This psychoacoustic effect states that similar
sounds arriving from different locations are solely localized in the direction of the first sound
wave arriving at our ears [39]. Early reverberation is actually perceived to reinforce the
direct sound and is, therefore, considered useful with regard to speech intelligibility. Late
reverberation, on the other hand, impairs speech intelligibility.

10.2.2 The Relationship between Clean and Reverberant Speech Features

In this section, we will derive an analytic expression which relates feature vectors computed
from a reverberant speech signal to those of the corresponding nonreverberant signal.

The microphone signal x(l) is modeled to be the superposition of reverberant speech y(l)
and noise n(l):

x(l) = y(l) + n(l), (10.3)

where y(l) is given by Equation (10.1). However, in the following, we will assume a time
invariant AIR of finite length, that is

hl(p) =

{
h(p) 0 ≤ p < Lh

0 else
∀l ∈ N0 . (10.4)

Further note that we assume that only a single microphone is present.
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Figure 10.3 Modified version of the feature extraction according to ETSI standard front end (SFE),
ES 201 108 [13]. The modification is the replacement of the magnitude spectrum by the power spectrum
and the replacement of the logarithmic frame energy by the zeroth cepstral component.

The noise component n(l) includes all reverberant noise signals, which originate from noise
sources located in the environment, as well as inherent microphone noise. The two signal
components, s(l) and n(l), are modeled as realizations of independent random processes,
since they originate from independent sources.

The feature extraction to be studied next follows mostly the ETSI ES 201 108 standard
front end (SFE) for the computation of mel frequency cepstral coefficients (MFCCs) [13].
Two slight modifications have been applied, which simplify the mathematical analysis: the
magnitude spectrum is replaced by the power spectrum and the logarithmic frame energy is
replaced by the zeroth cepstral component. Figure 10.3 illustrates the processing stages of the
feature extraction and the notation used for intermediate signals.

First, bias removal and preemphasis are applied to the input signal given by Equation (10.3).
The resulting signal x̃(l) is subsequently framed with a frame shift of B samples and windowed
with a Hamming window, whose length is denoted by Lw . The windowed signal is transformed
into the frequency domain by an F-point discrete Fourier transform (DFT). In the short-time
discrete Fourier transform (STDFT) domain the relationships of Equations (10.1) and (10.3)
turn into the following relationship among the STDFTs X̃(t, f ), S̃(t, f ), and Ñ (t, f ) of the
noisy reverberant speech signal x̃(l), the clean speech signal s̃(l) and the noise signal ñ(l):

X̃(t, f ) ≈
LH∑
t′=0

S̃(t − t′, f )H(t′, f ) + Ñ (t, f ), (10.5)
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where the number of summands in the convolution is given by:

LH =
⌊

Lh + Lw − 2
B

⌋
. (10.6)

In (10.5), t denotes the frame index, while f is the frequency bin index. H(t, f ) is a frequency
domain representation of the AIR, which is different to the STDFT H(t, f ) in general (see [31]
for details).

Note that the convolution of (10.1) results in an approximate convolution in the STDFT
domain, however now with respect to the frame index. Only if the AIR length is short compared
to that of the window, the so-called multiplicative transfer function approximation (MTFA) is
valid and the convolution in the time domain is well approximated by a multiplication in the
STDFT domain [3]. However, this is usually not the case with reverberation, which is typically
in the order of several hundred milliseconds, while window lenghts used in ASR are between
20 and 40 ms. Then the temporal dispersion according to (10.5) occurs, that is, X̃(t, f ) not
only depends on S̃(t, f ), but also on the past S̃(t − t′, f ), t′ = 1, . . . , LH.

After the power spectrum computation, application of the mel filter bank and transformation
into the logarithmic domain, the relationship between nonreverberant and the reverberant
features becomes highly complicated and nonlinear [31]:

xt,κ = ln

⎛
⎝ LH∑

t′=0

est−t ′ , κ +ht ′ , κ + ent , κ

⎞
⎠ + vt,κ . (10.7)

Here, xt,κ , st,κ and nt,κ are the logarithmic mel power spectral coefficients (LMPSCs) of the
noisy reverberant speech, the nonreverberant speech and of the noise signal, respectively, at
frame t and mel filter index κ, κ = 1, . . . , Nκ , where Nκ is the number of triangular shaped
mel filters. The term vt,κ captures all errors resulting from the various approximations that
had to be introduced to arrive at (10.7). These include, among others, an error term resulting
from the averaging operation within a mel filter, the error introduced by the omission of the
cross terms between speech and noise STDFTs in the power spectrum computation, and the
error resulting from using a simplified model of the AIR (see Section 10.4 further [31]).

The coefficients

ht′,κ := ln
(Ht′,κ

)
(10.8)

can be interpreted as a logarithmic mel power spectral representation of the AIR with

Ht′,κ :=

(
1

F
(up)
κ − F

(lo)
κ + 1

) F ( u p )
κ∑

f =F
( l o )
κ

|H(t′, f )|2 (10.9)

denoting the averaged AIR power per mel band, where F
(lo)
κ and F

(up)
κ are the frequency

indices of the band edges of the κth mel filter.
Capturing all coefficients xt,κ , κ = 1, . . . , Nκ in a vector xt finally results in the following

relationship between the LMPSCs of clean speech, noise and noisy reverberant speech signals:

xt = ln

⎛
⎝ LH∑

t′=0

est−t ′+h t ′ + en t

⎞
⎠ + vt

= f
(
st−LH:t , h0:LH , nt

)
+ vt , (10.10)
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where

f
(
st−LH:t , h0:LH , nt

)
:= ln

⎛
⎝ LH∑

t′=0

est−t ′+h t ′ + en t

⎞
⎠ , (10.11)

and where

st−LH:t := st−LH , . . . , st (10.12)

h0:LH := h0 , ...,hLH (10.13)

denote the sequence of the vectors for the logarithmic mel power spectrum of clean speech
and the representation of the AIR.

The last step in the feature extraction according to Figure 10.3 is the application of the
discrete cosine transform (DCT) to xt to obtain the MFCCs x

(c)
t,k , where k = 0, . . . , K − 1

denotes the cepstral index.
Figure 10.4 shows an example of the logarithmic mel power spectrum of a nonreverberant

and a reverberant speech signal, respectively, which corresponds to the connected digits
utterance (“one”, “one”, “six”, “eight”, “five”, “two”, “two”). From the figure, a temporal
dispersion can be observed in the logarithmic mel power spectrum of the reverberant signal.

(a) Logarithmic mel power spectrum of clean speech signal (with transcription displayed at the top)

(b) Logarithmic mel power spectrum of corresponding reverberant speech signal
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Figure 10.4 Logarithmic mel power spectra of exemplary nonreverberant and reverberant speech signal
(reverberation time T60 ≈ 450 ms) corresponding to the connected digits utterance (“one”, “one”, “six”,
“eight”, “five”, “two”, “two”).
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Table 10.1 Word error rate [%] on the Aurora 5 and the
reverberated Aurora 4 database using the ETSI standard front end.

Nonreverberant Office Living room

Aurora 5 0.64 6.32 14.94
Aurora 4-rev 14.00 47.47 73.44

Consider, for example, the glottal stop during the pronunciation of the digit “six“ at about
1.15 s, which is clearly visible in the LMPSC trajectory of the nonreverberant signal in
Figure 10.4a, while it has completely disappeared in the reverberant case (see Figure 10.4b).

10.2.3 The Effect of Reverberation on ASR Performance

The effect of reverberation on the ASR performance is illustrated in Table 10.1, which presents
word error rates on the Aurora 5 database, which is related to a connected digit recognition
task, and a reverberated version of the Aurora 4 database, here referred to as Aurora 4-rev,
which is related to a large vocabulary recognition task (see Section 10.6.1 for a description of
the databases). While acoustic model training is always performed on nonreverberant data, the
test set is subdivided into “nonreverberant,” “office,” and “living room” data, where the first
exhibits no reverberation, the second reverberation with reverberation times in the range from
300 to 400 ms, and the third in the range from 400 to 500 ms. The recognizer employed MFCC
feature vectors, including velocity and acceleration features, that were computed by the ETSI
standard front end [13] with the slight modifications mentioned earlier. The dispersive effect
of reverberation leads to a mismatch between the acoustic model of the recognizer trained
on nonreverberant data and the observed reverberant data, resulting in a severe performance
degradation of the ASR system. Notice, for example, the factor of ten increase in the error rate
on the Aurora 5 database when replacing the nonreverberant test data by the data related to the
office environment. In the experimental results section (Section 10.6), we will see that even
in the case of matched training-test conditions, that is, if the training data exhibit the same
reverberation as the test data, a performance loss is observed compared to nonreverberant
training and test data. This is is attributable to a greater violation of the conditional
independence assumption inherent in hidden Markov model (HMM)-based recognizers.

10.3 Approaches to Reverberant Speech Recognition

Research on improving ASR performance on reverberant speech has intensified in recent years,
and a number of approaches have been proposed. The techniques can broadly be classified
into three categories:

1. Signal-based techniques
2. Front-end techniques
3. Back-end techniques

depending on where in the processing chain reverberation is addressed.
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10.3.1 Signal-Based Techniques

Signal-based techniques aim at an enhancement of the time domain signal by speech derever-
beration. This is a complicated task if dereverberation is to be performed blindly, since the
source signal and the AIR, which usually consists of several hundred coefficients, are both
unknown to the receiver. Problems are exacerbated by the fact that the z-transform of the AIR,
the acoustic transfer function (ATF), is nonminimum phase and often has zeros close to the
unit circle, which cause significant noise amplification if equalized. We already mentioned the
high sensitivity of the AIR toward small speaker movements which means that in a practical
setting the AIR has to be considered time variant, further complicating the estimation task.

Two classes of approaches to dereverberation may be discerned: reverberation cancellation
and reverberation suppression. Reverberation cancellation aims at equalizing the AIR, while
reverberation suppression targets the reduction of the effect of reverberation.

A more detailed review of techniques for dereverberating the acoustic signal can be found
in [19, 24, 45] and Chapter 3.

Reverberation Cancellation

Methods falling in the first class are theoretically more appealing as they try to remove the cause
of reverberation rather than its effect. A pioneering work in blind acoustic channel equalization
was done by Miyoshi and Kaneda [42]. They developed a multichannel technique, known as
multiple input/output inverse theorem (MINT), by which theoretically perfect inverse filtering
can be achieved if the AIRs from the source to the microphones are known, even in the
case of mixed-phase AIRs. The existence of the inverse filter is guaranteed if the number of
microphones exceeds the number of active sources and if the ATFs in the individual channels do
not share common zeros. However, even a moderate channel estimation error causes significant
spectral distortions in the output signal.

In most applications, one cannot expect the AIRs to be time invariant and known in advance.
The estimation of the AIRs poses a significant challenge on its own right. Even theoretically,
the channel is only identifiable under two conditions: first, the ATFs from the source to the
sensors are not allowed to have common zeros in the z-plane, and second, the autocorrelation
matrix of the source signal must be full rank [25]. But even then the ATFs can only identified
up to a multiplicative constant, and the issue remains how to separate the transfer function of
the vocal tract from the ATFs. For an identifiable system, Huang and Benesty [25] proposed
two multichannel adaptive approaches, based on the construction of an error signal based on
the cross correlations between different channels, whose power is then minimized using least
mean square (LMS) and Newton algorithms.

If the source signal samples are assumed to be independent and identically distributed
(i.i.d.), equalization can be achieved without an explicit estimation of the AIR, that is, rather
than estimating the AIR and inverting it, an attempt is made to directly estimate the inverse
by whitening the input signal. It is based on an application of linear prediction for blind
equalization. However, the hypothesis of i.i.d. samples does not hold for speech signals, and
whitening the input signal destroys its correlation structure. To compensate for that effect,
the transfer function of the vocal tract needs to be estimated and accounted for in the inverse
filter [7]. As the impulse response of the vocal tract is considerably shorter than the AIR,
an alternative is to conduct long-term multistep linear prediction, whereby only the higher



P1: TIX/XYZ P2: ABC
JWST201-c10 JWST201-Virtanen August 31, 2012 8:50 Printer Name: Yet to Come Trim: 244mm × 168mm

260 Techniques for Noise Robustness in Automatic Speech Recognition

lag correlations due to reverberation are removed. Thereby a sample is predicted not by its
immediate predecessors but by samples further in the past [30].

Reverberation Suppression

Techniques falling in the second class do not equalize the AIRs but reduce the effect of
reverberation instead. One of the earliest approaches to reverberation suppression is the en-
hancement of the linear prediction (LP) residuals by Allen [2]. According to the well-known
source-filter model, the speech production is described in terms of an excitation sequence
(the so-called LP residual) driving a time variant all-pole filter. The excitation signal is either
random noise for unvoiced speech or a quasi-periodic pulse train for voiced speech. The effect
of reverberation on voiced speech is seen in the LP residual by extraneous peaks caused by
multipath reflections. Consequently dereverberation is achieved by attenuating these peaks
and synthesizing the enhanced speech waveform using the modified LP residual and the time
varying all-pole filter with coefficients calculated from the reverberant speech. The assumption
that only the LP residual is affected by reverberation, while the linear predictive coding (LPC)
coefficients characterizing the vocal tract remain unaffected, was later dropped. A detailed
analysis of the effect of reverberation on the poles of the LP model can be found in [16].

Reverberation is known to reduce the modulation index, that is the degree of amplitude
modulation of the speech signal. Temporal envelope filtering aims at restoring the depth of the
amplitude modulation by applying a temporal filtering operation to the time trajectory of the
output of subband filters [35, 57].

Another approach to reverberation cancellation that has been widely studied is a spectral-
enhancement technique that borrows ideas from spectral subtraction known from the enhance-
ment of noisy speech. Here, the late reverberation is considered to be uncorrelated with the
direct sound component, an assumption motivated by the randomness of late reflections. Then
the spectrum of the late reverberation is estimated and subtracted from that of the reverberant
signal to obtain an estimate of the spectrum of the nonreverberant signal [19, 36].

Unfortunately, speech enhancement resulting in less reverberant speech from the viewpoint
of a human listener does not necessarily translate into an improved ASR accuracy. A likely
explanation is that the processing may introduce artefacts, which, even if inaudible, have an
unpredictable effect on the subsequent feature extraction leading to a degradation of the recog-
nition performance. An observation made by Delcroix et al. [8] supports this conjecture. They
have noticed that speech dereverberation by long-term multistep linear prediction increases
the variance of the acoustic features.

10.3.2 Front-End Techniques

Front-end methods aim at computing acoustic features for speech recognition which are insen-
sitive to reverberation. As the human speech perception is much less sensitive to reverberation
than today’s speech recognition systems are, perceptually motivated processing stages have
been included in the acoustic feature extraction. Among those are an analysis of the modulation
spectrum of speech with the aim of enhancing the sensitivity towards amplitude modulations
in the range of 2–16 Hz with a maximum sensitivity at 4 Hz, the syllable rate of speech [29],
the use of a gammatone filterbank replacing the mel filters [41], and nonlinear filtering of
the power spectral coefficients of each frequency band to mimick the precedence effect [27].
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Other front-end approaches aim at normalizing the features such that they are insensitive to
reverberation or removing the effect of reverberation on the computed features, as will be
described next.

Feature Normalization

The most well-known feature normalization technique is probably cepstral mean normalization
(CMN), also called cepstral mean subtraction (CMS). It is based on the following idea: the
discrete-time Fourier transform (DTFT) Ỹ (ejθ ) of the reverberated speech signal y(l) can be
written as the product of the clean speech signal DTFT S̃(ejθ ) and the DTFT of the AIR
H(ejθ ):

Ỹ (ejθ ) = S̃(ejθ )H(ejθ ).

If a STDFT is applied instead of the DTFT, the multiplicative relationship still approximately
holds if the analysis window is larger than the duration of the AIR:

Ỹ (t, f ) ≈ S̃(t, f )H(0, f ). (10.14)

Applying the log-operation on the power spectrum then gives

ln |Ỹ (t, f)|2 ≈ ln |S̃(t, f)|2 + ln |H(0, f)|2 ,
and the relationship remains additive when going to the cepstral domain. Note that ln |H(0, f )|2
is independent of the frame index t. Thus, if the temporal mean is subtracted from ln |Ỹ (t, f ))|2 ,
or from its cepstral representation, the result is independent of the ATF H. The MFCC feature
extraction described in Section 10.2.2 additionally includes the mel filterbank, but the above
argumentation still approximately holds.

CMN has been successfully applied to MFCC feature vectors to make a speech recognizer
insensitive to different microphone characteristics. However, its usefulness for reverberant
speech recognition is limited, because the duration of the AIR is usually much larger than
typical window sizes used in speech recognition. Then the MTFA does not hold and the
simple multiplicative relationship of Equation (10.14) has to be replaced by a convolution
(see Equation (10.5)). As a result, classical CMN and related techniques, such as the RelAtive
SpecTrAl method known by the acronym RASTA [20], perform only poorly on reverberant
speech [28]. As a remedy, Avendano et al. proposed to use an analysis window of the order of
1–2 s [4]. After this so-called long-term cepstral mean normalization a transformation is ap-
plied to obtain features with a time-frequency resolution typically used in speech recognition.
Alternatively, the time domain signal can be reconstructed after long-term CMN followed by
ordinary ASR feature extraction. By doing so, a significant reduction of the word error rate
in the presence of reverberation could be achieved compared to the performance of the ETSI
SFE. However, the technique introduces a latency on the order of several seconds [17].

In CMN, each feature vector component is processed separately. Alternatively, a full trans-
formation matrix can be applied to the feature vector as a whole. In constrained maximum
likelihood linear regression (CMLLR), also called feature space maximum likelihood linear
regression (FMLLR), the transformation matrix is chosen such as to maximize the likelihood
on adaptation data [15]. However, this affine transformation approach suffers from the same
deficiencies as ordinary CMN: since the MTFA does not hold for reverberant speech due
to the small analysis windows used in speech recognition, the gains by the frame-by-frame
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transformation of CMLLR are limited. If the feature vector to be transformed also contains
dynamic features, the vector captures the temporal smearing introduced by reverberation to
some extent, and some improvements in word accuracy by CMLLR/FMLLR can be observed
[31]. Model adaptation techniques such as CMLLR are discussed in Chapter 11 of this book.

Feature Enhancement

Feature enhancement techniques aim at estimating the feature vectors of the underlying clean
speech signal, given the feature vectors computed from the corresponding reverberant speech
signal. If a Bayesian framework is used, the problem can be stated as follows: given an a
priori model of clean speech features and an observation model that describes the relationship
between clean and reverberant features, estimate the posterior probability of the clean features,
given the observed reverberant features.

The Bayesian approach was taken in [59] and in own prior work [31, 32]. The observation
model used by Wölfel [59] modeled reverberation as an additive distortion in the mel power
spectral domain, as is suggested by the late reflection model of [36], which was already
mentioned in Section 10.3.1. Its parameters were estimated by multistep linear prediction [30].
In contrast, Krueger and Haeb-Umbach [31] used the observation model derived in Section
10.2.2, which accounts for the convolutive effect of reverberation in the feature domain. The
error term {vt}t∈N

in Equation (10.10) was assumed to be a realization of a white Gaussian
stochastic process with mean vector μv and covariance matrix Σv . Options for estimating
these parameters are discussed in [32].

Other differences between the two works are in the used a priori model and the inference
algorithm. Wölfel [59] employed higher order autoregressive processes as a priori model
and computationally expensive particle filters for tracking. On the other hand, Krueger and
Haeb-Umbach [31] employed a switching linear dynamic model [26] as an a priori model of
the trajectory of clean speech feature vectors and a bank of Kalman filters for inference. More
details of this approach can be found in Section 10.5.

10.3.3 Back-End Techniques

The third category of approaches to reverberant speech recognition are concerned with modi-
fying the acoustic models and the decoding rule of the recognizer.

Modification of the Acoustic Model

A straight-forward approach to obtain an acoustic model appropriate for the recognition
of reverberant speech is to train the recognizer with reverberant data recorded in the target
environment. If the exact test conditions are not known at training time, a pool of models
for different reverberation conditions can be trained in advance, and the one of the trained
models that is deemed appropriate is selected during recognition [6]. To avoid the effort of
recording a database in the target environment, alternatively only the AIR can be measured
and the reverberant training data is generated by convolving the signals of the nonreverberant
database with the measured AIR [54]. However, this does not account for the time variance of
the AIR and thus may lead to less effective acoustic models. To even save the effort of an AIR
measurement, artificially generated AIRs, for example, generated by the image method [2],
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can be employed, if their parameters, such as the reverberation time, approximately match
those of the target environment.

Alternatively, an acoustic model that is trained on nonreverberant data, can be adapted to
the test reverberation conditions. This can be done either statically, that is prior to recognition,
or dynamically and continuously alongside recognition.

The aforementioned maximum likelihood linear regression (MLLR) [37], an example of
static adaptation, can also be applied to the acoustic models rather than to the feature vectors.
The advantage is that different transformation matrices can be used for different regions
of the acoustic space, while CMLLR is restricted to a single global transformation. The
number of transformation matrices can be chosen according to the amount of adaptation data
available. Originally meant to adapt an acoustic model to new speakers, it was employed for
the recognition of reverberant speech by Toh et al. [56]. However, the same restrictions apply
that were mentioned earlier in the context of CMLLR: MLLR assumes that the distortion of the
acoustic features can be described by affine transforms applied to individual feature vectors.
However, this is an inadequate assumption for reverberation, even if the acoustic feature vector
includes velocity and acceleration features which are computed from an interval of several
successive frames, as reverberation often extends well beyond this interval.

A more exact model must account for the temporal convolution in the spectral domain, as is
seen from Equations (10.5) and (10.7). Thus, the modifications of the emission probabilities
of the acoustic model necessary to account for reverberation greatly depend on the preceding
context. One way to do so is to split an HMM state into substates to take into account the
energy dispersion due to reverberation [49]. The number of substates is chosen according to
the average state occupancy within an HMM state.

Hirsch and Finster [22] proposed to adapt the HMM means, originally trained on nonre-
verberant data, to the reverberant test data prior to recognition in a way that is reminiscent
of the well-known parallel model combination (PMC) method [14]: the mean of the emis-
sion probability of a certain HMM state can be adapted to the reverberant environment by
retransforming it into the power spectral domain, adding the contribution of the preceding
states and transforming it back to the feature, that is cepstral, domain. In [22], the contribution
of the preceding HMM states to a current state caused by reverberation is assumed to decay
exponentially with the temporal distance from the current state. With this and an assumption
about the average state duration, the modified mean of the HMM state emission probability
was computed from the emission probabilities of the preceding states. Obviously, this requires
knowledge of the preceding states. If whole-word HMMs are assumed, this information is
available, at least within a word. However, a dispersion of energy across word boundaries
could not be accounted for. In a triphone-based recognizer the left context that can be ac-
counted for by this kind of static adaptation is even smaller (on the order of 100 ms) and thus
much smaller than typical reverberation times encountered in offices or living rooms.

A better treatment of the energy dispersion is possible with dynamic adaptation, where the
adaptation of the models is carried out in parallel to the decoding of the word sequence. During
decoding different hypotheses about the left context of a current HMM state are evaluated,
and for each context considered its specific impact on the emission probability of the current
state caused by reverberation can be evaluated [53, 55]. However, this much more precise
modeling is bought at the price of a greatly increased computational complexity. Therefore,
acoustic model adaptation techniques have been mostly used in the context of small vocabulary
recognition tasks.
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Modification of the Decoder

In the method proposed by Sehr et al. [50], the effect of reverberation is accounted for during
decoding by modifying the acoustic likelihood computation. The likelihood computation is
concerned with the evaluation of the emission probability of an HMM state qt at the given
observation xt . By introducing the clean feature vector st and the representation of the AIR
h0:LH as hidden variables the acoustic likelihood of an observation xt for a given HMM state
qt can be expressed as

p(xt |qt) =
∫ ∫

p(xt , st−LH:t , h0:LH |qt)dst−LH:tdh0:LH

=
∫ ∫

p(xt |st−LH:t , h0:LH)p(st−LH:t |qt)p(h0:LH)dst−LH:tdh0:LH . (10.15)

Here, the AIR representation h0:LH is modeled as a realization of a random variable, which
can be assumed to be statistically independent of the clean speech feature vector. Further, we
made use of the fact that xt can be considered independent of qt , if st−LH:t is given.

Sehr et al. [50] assumed that the error term vt in (10.10) is zero and that additive noise is
absent (nt = 0). Then xt is a deterministic function of the clean speech features and the AIR
representation:

p(xt |st−LH:t , h0:LH) = δ
(
xt − f

(
st−LH:t , h0:LH

))
(10.16)

and (10.15) becomes

p(xt |qt) =∫ ∫
δ
(
xt − f

(
st−LH:t , h0:LH

))
p(st−LH:t |qt)p(h0:LH)dst−LH:tdh0:LH . (10.17)

Here, δ(·) denotes the Dirac delta function. This expression states that the integration has
to be carried out over all possible clean speech and AIR realizations. However, only those
combinations deliver a contribution, for which f

(
st−LH:t , h0:LH

)
is equal to the observed

xt . Sehr et al. [50] have approximated this integral by the integrand that delivers the largest
contribution resulting in the following acoustic likelihood:

p(xt |qt) := max
st−L H : t ,h0 :L H

{
p(st−LH:t |qt)p(h0:LH)

}

subject to xt = f
(
st−LH:t , h0:LH

)
. (10.18)

Thus, each acoustic likelihood computation requires an optimization to be carried out, which
significantly increases the decoding complexity. So far, this concept could only be applied to
mel or log mel power spectral representations of the speech signal, single Gaussian emission
probabilities, and noise-free input data [51]. An efficient algorithm for the widely used MFCCs
and Gaussian mixture models (GMMs) has yet to be developed.

Another variant of accounting for the impact of reverberation in the decoder is the use of
uncertainty information. Thereby the contribution of those features to the overall decision on
the word sequence is deemphasized which are deemed to be strongly affected by reverberation
and thus to be unreliable. In the so-called missing-data technique unreliable features are even
completely excluded from consideration [18].
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Finally, it should be mentioned that different techniques for reverberant speech recognition
can also be combined. For example, speech dereverberation may be followed by a modification
of the decoder in the spirit of uncertainty decoding, where those features are assigned an
increased variance which are considered to be highly distorted [8].

10.3.4 Concluding Remarks

Speech dereverberation techniques have the advantage that they deliver a dereverberated time
domain signal, that may be used for human-to-human communication. On the other hand, the
previous discussion showed that signal-based techniques tend to be less robust than feature-
based methods: the estimation the the AIR or of the inverse filter is very challenging, in
particular, in time variant and noisy acoustic environments. Further, signal-based techniques
typically require multiple microphones, while the other methods that are closer to the recog-
nizer usually operate on single-channel input, which may be considered an important practical
advantage.

Acoustic model and decoder-based techniques tend to be computationally expensive com-
pared to feature-based methods, and therefore seem to be applicable only for recognition tasks
with a small vocabulary size. A further advantage of feature enhancement methods is that
they basically leave the feature extraction and the back-end untouched, as the enhancement
is carried out after feature extraction and prior to decoding. Thus, it is conjectured that their
integration into different recognition systems should be less challenging than the integration
of model-based or decoder-based methods.

All techniques require more or less exact knowledge about the reverberation conditions.
Signal-based techniques aim at estimating the AIR or an inverse filter, which is still a widely
unsolved task in the presence of time variant acoustic conditions. Many front-end and back-end
methods employ simplified models of the AIR. This is often sufficient, as feature extraction
conducts a decimation in time and frequency anyway: the frame rate is much smaller than the
sampling rate (e.g., 100 vs. 8000 Hz) and the number of mel channels is smaller than the DFT
size (e.g., 23 channels vs. 256 DFT bins). Different options for a feature domain AIR model
are discussed next.

10.4 Feature Domain Model of the Acoustic Impulse Response

The feature domain representation of the AIR can be either a deterministic or a stochastic
model. While the first has been adopted by Hirsch and Finster [22] and by Krueger and Haeb-
Umbach [31], a stochastic model is employed in [50, 51]. The stochastic model is a way to
account for the time variance of the AIR, but Sehr et al. [51] observed that the stochastic model
is beneficial, even if the AIR is time invariant. The reason probably is that in their model the
error term vt in Equation (10.10) has been neglected, and the fluctuations due to this term then
have to be captured by the AIR model.

Sehr et al. [50] considered a matrix H as mel power spectral domain AIR model, whose
elements Ht′,κ , where t′ is the lag (row) index and κ the mel filter (column) index, are
modeled as independent random variables. The sequence of matrices Ht , where t is the frame
index, is assumed to be an i.i.d. matrix-valued stationary Gaussian random process. Different
methods have been proposed to estimate the means and variances of the matrix elements.
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The most straight-forward way is to conduct a number of AIR measurements with different
loudspeaker and microphone positions in the target room, compute the mel power spectral
domain representation of each AIR and estimate the mean and the variance for each mel band
and lag by computing the empirical mean and variance of these representations [50]. The
model can also be derived from a few calibration utterances, whose transcriptions are known
and which are recorded in the target environment. Maximum likelihood estimates of the means
and variances are derived in [52]. A blind-estimation technique has been proposed by Wen et
al. [58].

Hirsch and Finster [22] used a much coarser model of the AIR. In an idealized model the
effect of multiple reflections of sound in a room can be described by an exponential decay of the
acoustic energy [34]. Since the authors were only interested in an average representation they
replaced the square of the AIR by its envelope which they modeled as a decaying exponential
of finite length:

h2(l) ≈ σ2
h · u(l) · e−2l/τ , (10.19)

where

τ =
T60

3 ln(10) · Ts
(10.20)

(Ts : sampling interval). The AIR’s support indicator function

u(l) :=

{
1 for 0 ≤ l < Lh

0 else
(10.21)

enforces the AIR to be causal having a finite length Lh . Further, σh is a normalizing scalar
which determines the AIR’s overall energy.

The authors of this chapter used a more sophisticated AIR model [31], which was originally
proposed by Polack [46]. Here, the AIR is modeled as a realization of a zero-mean white
Gaussian process ζ(l) of finite length with an exponentially decaying envelope

h(l) ≈ σh · u(l) · ζ(l) · e− l
τ . (10.22)

In Monte Carlo simulations it was observed that the distributions of the feature domain AIR
coefficients ht′,κ defined in Equation (10.8), under the stochastic AIR model (10.22) can be
well approximated by Gaussians.

If the distributions of the log mel power spectral coefficients are Gaussians, the coefficients
Ht′,κ defined in Equation (10.8), are lognormally distributed. From the mean and variance
of the lognormal distribution for Ht′,κ the mean of the normal density of ht′,κ is obtained as
follows:

E

[
ht′,κ

]
=

1
2

ln

⎛
⎝ μ4(H)

t′,κ

σ2(H)

t′,κ + μ2(H)

t′,κ

⎞
⎠ , (10.23)

where E [·] denotes the expectation. Here, μ
(H)
t′,κ and σ2(H)

t′,κ denote the mean and variance of the
averaged AIR power in the κth mel band, see (10.9), under the model (10.22). Their values
can be computed from the model (10.22) [31].
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The unknown AIR coefficients ht′,κ in the observation model (10.7) are then replaced by
their mean

ĥt′,κ := E[ht′,κ ]; t′ = 0, . . . , LH; κ = 1, . . . , Nκ . (10.24)

Note that, despite the presence of the noise term ζ(l) in (10.22), the logarithmic mel power
spectral representation ĥt′,κ is not a stochastic random variable, but is a deterministic parameter
instead.

Obviously the models by Hirsch and Finster [22] and our own [31] are much coarser than the
stochastic model by Sehr et al. [50] described first. This can be viewed both as an advantage
and a disadvantage. The great advantage over more sophisticated models is that the estimation
of the model is much simpler, as it is determined by just two parameters.

The first, σ2
h , is closely related to the energy of the AIR. Often it is assumed that the AIR

has unit energy (E[
∑Lh −1

l=0 h2(l)] = 1). This holds for many artificially generated databases,
where the reverberant signal is obtained by the convolution of clean data with an AIR, while it
will usually not hold for true reverberant recordings. Then, a normalization has to be carried
out such that the average power of the speech in the training data equals that of the speech in
the test data. This can be achieved with techniques like CMN.

The second parameter is the room reverberation time T60 . There are a number of techniques
how this parameter can be estimated, where the blind approaches that estimate it from the
reverberant speech signal, rather than from the AIR, are practically more relevant. A maximum
likelihood technique has been proposed by Ratnam et al. [48]. Wen et al. [58] estimated the
parameters of a two-slope model, while Löllmann and Vary [40] treated the estimation of T60 in
the presence of additive noise. Hirsch and Finster [22] proposed to select this parameter based
on the likelihood computed by the ASR decoder: T60 is estimated after multiple recognitions
of an utterance with HMMs adapted under different hypotheses for the value of T60 . They
decided then on that value of T60 , whose corresponding set of HMMs achieved the highest
likelihood in a forced alignment of the feature vector sequence with the recognized sentence.

Thus, the simplified models of the AIR, Equations (10.19) and (10.22), do not require
AIR measurements in the target room, nor do they ask for calibration sentences with known
transcription. This does not only make the approach less complicated, it also increases its
flexibility, as a change of the room can be easily accounted for, since only two parameters
have to be reestimated. These parameters can be estimated blindly without the need for any
calibration sentences, measurements, or offline processing. However, it is likely that the coarser
models will lead to some performance loss in the speech recognizer.

Figure 10.5 depicts the logarithmic mel power spectral representations of two AIRs used
for the compilation of the Aurora 5 database for the office and living room environment,
respectively, together with their approximations (10.24) obtained from the simplified AIR
model (10.22). A critical approximation is probably the poor modeling of the direct signal
component and the early reflections. Further, the simplified model assumes no frequency
dependence of the reverberation time.

10.5 Bayesian Feature Enhancement

In this section we will give some more information about the Bayesian feature enhancement
approach to reverberant speech recognition mentioned earlier. We will describe the principle
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(a) Logarithmic mel power spectral representa-
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ronment (T60 ≈ 450ms).
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Figure 10.5 Logarithmic mel power spectral representations of two AIRs used for the compilation of
the Aurora 5 database together with their approximations.

behind it and the modeling assumptions. For a full treatment, the interested reader is referred
to [31] and [32].

10.5.1 Basic Approach

The well-known vector Taylor series (VTS) approach was probably one of the earliest attempts
to apply the Bayesian principle to robust ASR [43]. For the case of feature enhancement in the
presence of noise and reverberation, the goal is to estimate the posterior density p(st |x1:t) of
the sought-after clean speech feature vector st , given the observed noisy reverberant feature
vectors x1:t .

From the derivation of Equation (10.10), it is clear that this density depends on the noise nt

and the representation h0:LH of the AIR. The two quantities can be either modeled as unknown
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(deterministic) parameters or as stochastic random variables. In [32] the deterministic model
of (10.24) was used for the reverberation, while the log mel power spectrum of noise was
modeled as a random process which is tracked along with the clean speech. The goal is thus
to estimate the joint posterior distribution p (dt |x1:t) of speech and noise, where

dt :=
(
sT
t , nT

t

)T
. (10.25)

Here, (·)T denotes vector transposition. From this, the posterior of the clean speech feature
vector can be obtained by marginalization.

The posterior p (dt |x1:t) is estimated recursively employing two steps, measurement update
and time update, as will be explained next.

10.5.2 Measurement Update

In the measurement update step, the desired posterior distribution p (dt |x1:t) is obtained from
the so-called predictive distribution p (dt |x1:t−1) by

p (dt |x1:t) =
p (xt |dt , x1:t−1) p (dt |x1:t−1)∫
p(xt |d̃t , x1:t−1)p(d̃t |x1:t−1)dd̃t

, (10.26)

employing the observation xt and an observation distribution p (xt |dt , x1:t−1).
For the enhancement of noisy speech feature vectors the dependence of xt on the previous

observations x1:t−1 is usually neglected [9, 43]:

p (xt |dt , x1:t−1) ≈ p (xt |dt) . (10.27)

However, this approximation may be too coarse in the case of reverberant speech recognition,
since successive reverberant feature vectors are strongly correlated with each other due to
the dispersive effect of reverberation. To partly compensate for the error introduced by this
approximation Krueger and Haeb-Umbach [31] proposed to use an extended vector

s̆t :=
(
sT
t , sT

t−1 , . . . , sT
t−LC +1

)T
(10.28)

consisting of the current and an appropriate number of LC − 1 previous clean speech feature
vectors, and the vector dt is replaced by the overall state vector

zt :=
(
s̆T

t , nT
t

)T
. (10.29)

In the following, we are referring to this variable as state vector, as is common practice in
recursive Bayesian estimation using Kalman filtering techniques.

With this extended state vector, it is better justified to neglect the dependence on x1:t−1 and
to approximate the observation distribution by

p (xt |dt , x1:t−1) ≈ p (xt |zt) . (10.30)

The relationship between xt and zt is highly nonlinear, see Equation (10.10), and an exact
analytic expression for the observation probability, Equation (10.30), is not known, even for
the less complicated case of absence of reverberation and distortions only by noise.
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A common solution is to approximate (10.11) by a Taylor series, which is truncated after
the linear term. Recently, a more exact approximation has been proposed, where the Gaussian
for st was approximated by a Gaussian mixture [38]. Since each component density of the
mixture has a smaller variance than the original Gaussian, the Taylor series approximation
of each Gaussian results overall in a smaller linearization error. Alternatively, the unscented
transform [9] or Monte Carlo techniques [59] can be used to approximate p (xt |zt).

10.5.3 Time Update

In the time update step, a predictive distribution for the extended feature vector zt based on
the previous reverberant noisy observations x1:t−1 is computed as:

p (zt |x1:t−1) =
∫

p (zt |zt−1 , x1:t−1) p (zt−1 |x1:t−1) dzt−1 (10.31)

requiring a predictive distribution p (zt |zt−1 , x1:t−1) for the clean speech and noise feature
vectors.

With Equation (10.29) the predictive density can be factorized due to the independence of
speech and noise

p (zt |zt−1 , x1:t−1) = p (s̆t |s̆t−1 , x1:t−1) p (nt |nt−1 , x1:t−1) . (10.32)

The predictive distribution of noise may be usually approximated by a single Gaussian
distribution

p (nt |nt−1 , x1:t−1) ≈ p (nt) = N (nt ; μn , Σn ) (10.33)

whose parameters μn and Σn are assumed to be constant for the duration of an utterance (e.g.,
[43]).

For the predictive distribution of speech, it is advantageous to take a model which accounts
for the correlation between successive speech feature vectors. This can be achieved by a linear
dynamic model. However, it has been observed that a single dynamic model is inappropriate
to model the complicated dynamics of speech, and an interaction of multiple dynamic models,
a switching linear dynamic model (SLDM) [26], describes the dynamics of speech features
much better:

p (s̆t |s̆t−1 , x1:t−1) =
I∑

i=1

p (s̆t |s̆t−1 , x1:t−1 , γt = i) P (γt = i|s̆t−1 , x1:t−1) , (10.34)

where γt ∈ {1, ..., I} is a realization of a hidden regime variable indicating the active
model at frame t. The distribution p (s̆t |s̆t−1 , x1:t−1 , γt = i) is completely determined by
p (st |s̆t−1 , x1:t−1 , γt = i) which in turn is approximated by a linear, autoregressive prediction
model as:

p (st |s̆t−1 , x1:t−1 , γt = i) ≈ p (st |st−1 , γt = i) (10.35)

≈
⎧⎨
⎩

N
(
s1 ; μ(i)

s , Σ(i)
s

)
for t = 1

N
(
st ; A(i)st−1 + b(i) , V(i)

)
for t > 1.

(10.36)
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According to this model, the first clean speech feature vector is modeled by a GMM with mean
vectors μ

(i)
s and covariance matrices Σ(i)

s , i = 1, . . . , I . All successive clean feature vectors are
predicted from their predecessors by an affine transformation described by the state transition
matrix A(i) and the bias vector b(i) . The prediction error is assumed to be zero mean having
a Gaussian distribution with the covariance matrix V(i) .

The mixing probabilities may be approximated by

P (γt = i|s̆t−1 , x1:t−1) =

{
α(i) for t = 1∑I

j=1 aij P (γt−1 = j|x1:t−1) for t > 1
(10.37)

with time invariant state transition probabilities

aij := P (γt = i|γt−1 = j) (10.38)

and model probabilities for the first frame t = 1

α(i) := P (γ1 = i) . (10.39)

This kind of a priori model explicitly considers correlations between successive speech
feature vectors, which are due to the speech production process on the one hand and the feature
extraction process on the other. A variant of this model has been used successfully for noise ro-
bust speech recognition by Droppo and Acero [10]. The SLDM model parameters can be
trained on clean speech training data using the expectation maximization (EM) algorithm [44].

10.5.4 Inference

Assuming all involved distributions to be Gaussians or mixtures of those, the inference sim-
plifies to recursively computing the mean vectors and covariance matrices of the posterior
distribution p (zt |x1:t)

zt|t := E [zt |x1:t ] , (10.40)

Σzt |t := E

[(
zt − zt|t

) (
zt − zt|t

)T
∣∣∣∣ x1:t

]
. (10.41)

The knowledge about the posterior distribution allows the computation of different kinds
of point estimates for the clean speech feature vector st , such as the minimum mean squared
error (MMSE) estimate

ŝ(MMSE)
t := E [st |x1:t ] . (10.42)

Further, the posterior covariance matrix

Σ̂
(MMSE)
st

:= E

[(
st − ŝ(MMSE)

t

) (
st − ŝ(MMSE)

t

)T
∣∣∣∣ x1:t

]
(10.43)

can be regarded as a measure of the degree of uncertainty in the point estimate ŝ(MMSE)
t .

To obtain a first qualitative impression of the power of Bayesian feature enhancement,
consider Figure 10.6. It depicts the spectrogram of the same utterance as in Figure 10.4,
this time after the feature enhancement stage. One can clearly see that Bayesian feature
enhancement is able to undo some of the effects of reverberation. For example, the glottal stop
at about 1.15 s becomes visible again.
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(b) Enhanced logarithmic mel power spectrum.

Figure 10.6 Logarithmic mel power spectrogram of reverberant speech signal and that enhanced by
Bayesian feature enhancement. Same utterance as in Figure 10.4.

10.6 Experimental Results

10.6.1 Databases

Most publications on reverberant speech recognition consider small vocabulary tasks only.
However, here we are going to present experimental results on both a small vocabulary and a
large vocabulary task.

For the small vocabulary task we consider the Aurora 5 database [23], which contains
utterances of connected digits sampled at a rate of 1/Ts = 8 kHz. The database comprises
8623 clean nonreverberant training utterances, which were employed for the training of the
acoustic model of the speech recognizer and for the training of the SLDM parameters.

The test set consisted of reverberant and noisy reverberant utterances under different rever-
beration conditions and different signal-to-noise ratios (SNRs). The considered reverberant
environments comprise an office and a living room. The individual reverberant utterances of
the database had been created by convolving the corresponding clean utterances with artificial
AIRs [23], where the reverberation time T60 was varied in the range between 300 and 400 ms
for the office, and in the range between 400 and 500 ms for the living room. The noisy re-
verberant utterances were created by adding interior noise at different SNR levels, where the
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noise signals in part contained nonstationary segments. For each condition there were 8700
test utterances.

For the large vocabulary task, we consider the Aurora 4 database, which comprises the
Wallstreet Journal Nov’92 5k evaluation test set to which noise at varying SNR levels and
varying types has been added [21]. In our experiments, we used the downsampled version of
the data with a sampling rate of 8 kHz. The Aurora 4 test set consists of seven versions of
a set of 166 utterances with 2715 words per set. One version is the clean data while the six
other versions have been obtained from the clean data by artificially adding noise of different
characteristics at a randomly chosen SNR between 5 and 15 dB. As the Aurora 4 test database
does not contain reverberant speech, we modified the test set as follows. The set of clean
data was artificially convolved with the same AIRs as those used for the generation of the
Aurora 5 test set, resulting in the noise-free office and living room test sets. To these data, we
then added the noise that was also used on the Aurora 5 database at SNRs of 15, 10, 5, and
0 dB. We employed the noise types of Aurora 5 rather than those of Aurora 4, as many of the
Aurora 4 noise types (e.g., train, airport, car, and street) are not representative of reverberant
environments. This modified test database is called Aurora 4-rev in the following.

10.6.2 Overview of the Tested Methods

As a baseline, we consider the performance obtained with the ETSI standards ES 201 108
(standard front end (SFE)) [13] and ES 202 050 (advanced front end (AFE)) [12], to which
we applied the two small modifications that have been discussed in Section 10.2.2. The AFE,
which is also discussed in Section 4.5.4 of this book, is in its essence an extension of the SFE
by a two-stage Wiener filter and a blind equalization to compensate for noise and acoustic
mismatch caused by different transducer characteristics. The MFCC feature vector is 39-
dimensional, resulting from the static MFCCs as well as their corresponding velocity and
acceleration features. Velocity features were obtained from the slope of a linear regression
line over the static features in a window of ±4 frames around the current frame. For the
acceleration features, the window extended over ±2 frames. The parameters of the front ends
are summarized in Table 10.2.

As another reference, we will consider matched training and test conditions, with the
SFE used for feature extraction. Please note that we used exactly the same set of AIRs to
reverberate the training data as was used to generate the reverberant test data. While this may
not be realistic in practice, it nevertheless provides an upper bound of what is achievable with
matched reverberant training.

Results will also be presented for the Bayesian feature enhancement (BFE) outlined in
Section 10.5. For the Bayesian feature enhancement, we employed an SLDM consisting of
I = 4 linear dynamic models as the a priori model of speech. The SLDM was trained on the
same clean speech training data as the acoustic model. For the initialization of the four dynamic

Table 10.2 Parameters for feature extraction according to the ETSI standards.

Frame shift Window size DFT length #mel filters #ceptral coeffs. Window
B Lw F Nκ K type

80 200 256 23 13 Hamming
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models a “k-means++”-like algorithm [33] was used. The models were then refined using four
iterations of the EM algorithm similar to [44]. In the extended state vector, we considered
LC = 6 successive feature vectors (see Equation (10.28)). For the feature domain AIR model,
we assumed a constant reverberation time of T60 = 350 ms for the office and T60 = 450 ms for
the living room environment. The length of the AIR model, LH, was set to 20 and 25 for office
and living room, respectively. This resulted in less than 0.1% error between the energy of the
nontruncated AIR model and the model truncated to Lh samples (see Equation (10.22)).

For the digit recognition task, the acoustic model consisted of speaker and gender indepen-
dent word based HMMs with 16 states per word and four Gaussian mixture components per
state. Simple left-to-right models without skips over states were used. For the large vocabulary
task, training has been carried out on the WSJ0 training database. The HMMs were three-state
triphone models with ten Gaussians per mixture. The training of the HMM parameters and
Viterbi decoding for the recognition were carried out using the hidden Markov model toolkit
(HTK) software [60]. For the Aurora 4-rev experiments a bigram language model was applied.

We will also present results with a system which was trained on the reverberant training
data, after Bayesian feature enhancement has been applied to it. The motivation is that these
processed training data contain the artefacts that the feature enhancement may introduce.
Recognition was then carried out with the same Bayesian feature enhancement that was
applied to the training data. In the tables, this condition is denoted as “BFE (trn+recog).”

To complement the comparison, we also cite the results of Hirsch and Finster [22], who
employed an acoustic model based approach to reverberant speech recognition, where the
acoustic emission probabilities were modified by incorporating the influence of the preceding
frames, as was briefly discussed in Section 10.3.3. Note that Hirsch and Finster had a somewhat
different setup: they used gender dependent HMMs with two Gaussians per mixture in their
digit recognition experiments. For the Wall Street Journal task, Hirsch and Finster employed
triphone HMMs with four Gaussians per mixture. They experimented with the 16 kHz version
of the database whereas the 8 kHz version was taken for the other approaches. With their
settings, they achieved a word error rate of 48.8% on the reverberant office data set of Aurora
4-rev using the SFE, whereas we obtained 47.37% with the SFE and our settings. As these two
results are fairly close, we conclude that despite the somewhat different setup a comparison
of our experimental results with the ones reported in [22] appears to be valid.

10.6.3 Recognition Results on Reverberant Speech

In this section, we compare the recognition performance on noise-free reverberant speech.
Tables 10.3 and 10.4 present the word error rates obtained on noise-free test sets of the Aurora
5 and the reverberant Aurora 4 database.

The drastic increase in error rate of the SFE from nonreverberant to reverberant test data
has already been mentioned in Section 10.1. In the results presented here, it can be seen that
also the AFE is obviously also unable to cope with reverberant speech: the performance on
reverberant speech is as poor as that of the SFE.

This does not only hold for the small vocabulary task related to the Aurora 5 database,
but also for the large vocabulary task related to the Aurora 4-rev database. On Aurora 4 the
error rates of the SFE and AFE on the nonreverberant noise-free test set had been 14.00% and
14.40%, respectively.
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Table 10.3 Word error rates [%] on Aurora 5 (noise-free reverberant
test data) for the ETSI SFE and AFE, Bayesian feature enhancement
(BFE), BFE applied to reverberant training data and to recognition data
(BFE trn+recog), acoustic model adaptation (AMA) (cited from [22]),
and reverberant training and recognition without any enhancement.

Office Living room

SFE 6.32 14.94
AFE 6.11 14.53
BFE 1.97 3.61
BFE (trn+recog) 2.00 3.35
AMA [22] 3.30 8.00
Reverberant training 1.29 2.61

One can observe that the Bayesian feature enhancement (BFE) greatly improves the word
accuracy compared to the SFE and AFE. For example, on Aurora 5 the word error rate is
reduced from 6.32% for the office and 14.94% for the living room environment with the SFE
to 1.97% and 3.61%, respectively, which corresponds to a recovery of approximately 75% of
the errors caused by reverberation. The acoustic model adaptation (AMA) technique is not
quite as effective: only about 50% of the errors caused by reverberation can be recovered on
the Aurora 5 database. However, both techniques are outperformed by matched reverberant
training, which achieves 1.29% and 2.61%, respectively.

A large improvement by Bayesian feature enhancement is also observed on the reverberant
Aurora 4 data, where the error rate decreased from 47.37% (SFE, office) and 73.44% (SFE,
living room) to 27.77% and 40.44%, respectively. If reverberant training data are used and
BFE is applied on them as well, then word error rates are achieved, which equal or outperform
matched reverberant training: 24.38% versus 24.24% and 32.97% versus 36.32%.

Unfortunately, for the reverberated Aurora 4 database Hirsch and Finster [22] presented
only results for the office environment and, in particular, they did not report any details about
the kind of errors. However, for the office environment the word error rate could only be
reduced to 39.80%.

Table 10.4 Word error rates (WER) [%] on Aurora 4-rev (noise-free reverberant test data) for the
ETSI SFE and AFE, Bayesian feature enhancement (BFE), BFE applied to reverberant training data
and to recognition data (BFE trn+recog), acoustic model adaptation (AMA) (cited from [22]), and
reverberant training and recognition without any enhancement. Where available, the decomposition of
the WER into substitutions (Sub), deletions (Del), and insertions (Ins) is shown.

Office Living room

Sub Del Ins WER Sub Del Ins WER

SFE 34.84 5.52 7.00 47.37 56.06 10.87 6.52 73.44
AFE 34.03 6.48 6.08 46.59 55.99 11.16 5.45 72.60
BFE 20.07 2.54 5.16 27.77 29.10 3.61 7.73 40.44
BFE (trn+recog) 17.46 2.43 4.49 24.38 23.72 3.61 5.64 32.97
AMA [22] – – – 39.80 – – – –
Reverberant training 18.01 3.06 3.17 24.24 26.26 6.08 3.98 36.32
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10.6.4 Recognition Results on Noisy Reverberant Speech

In this section, we are going to evaluate the performance on test data to which noise was
artificially added, in addition to the reverberation. We present results for SNRs of 15, 10,
5, and 0 dB on Aurora 5 and 15 and 10 dB on Aurora 4-rev. The error rates on the large
vocabulary task at 10 dB were already so high that we decided not to include the results on
lower SNRs. Note that no change was made to the training conditions, that is training has
always been carried out on noise-free data.

From Table 10.5, it can be observed that the AFE manages to provide a high degree
of robustness against noise on Aurora 5. For the low SNR ranges, where the noise is the
dominant error source, the AFE clearly outperforms the matched reverberant training (which
was carried out on noise-free training data).

The Bayesian feature enhancement manages to keep up with the AFE for moderate noise
levels, while the AFE is superior in low SNR conditions.

The PMC-like model adaptation of [22] shows a great degree of noise robustness and
achieves the best recognition rates on the noisy Aurora 5 database. This is due to the adaptation
of the means of the acoustic emission probabilities to both, the reverberation and the noise seen
on the test data. As the noise is reestimated on a per frame basis, the method is able to follow
nonstationary noise, however, at the expense of a considerable computational complexity.

Table 10.5 Word error rates [%] on Aurora 5 (noisy reverberant test data)
for the ETSI SFE and AFE, Bayesian feature enhancement (BFE), acoustic
model adaptation (AMA) (cited from [22]) and reverberant training.

SNR [dB] Office Living room

15 SFE 19.93 35.58
AFE 10.92 21.31
BFE 7.47 12.21
AMA [22] 6.20 9.20
Reverberant training 15.44 14.58

10 SFE 44.75 57.38
AFE 17.26 29.17
BFE 16.83 24.04
AMA [22] 11.50 16.90
Reverberant training 38.31 51.19

5 SFE 71.73 79.01
AFE 30.09 43.06
BFE 35.13 44.33
AMA [22] 24.30 32.00
Reverberant training 67.81 77.88

0 SFE 88.10 89.72
AFE 51.41 62.65
BFE 62.44 69.51
AMA [22] 49.20 60.00
Reverberant training 87.63 91.88



P1: TIX/XYZ P2: ABC
JWST201-c10 JWST201-Virtanen August 31, 2012 8:50 Printer Name: Yet to Come Trim: 244mm × 168mm

Reverberant Speech Recognition 277

Table 10.6 Word error rates [%] on Aurora 4-rev with SNRs of 15 and 10 dB for the ETSI SFE and
AFE, Bayesian feature enhancement and reverberant training.

Office Living room

SNR [dB] Sub Del Ins WER Sub Del Ins WER

15 SFE 49.13 9.80 8.58 67.51 58.64 16.80 7.55 82.98
AFE 35.14 7.07 7.40 49.61 50.68 8.14 9.10 67.92
BFE 31.09 4.53 10.64 46.26 43.76 5.45 11.57 60.77

Reverberant training 28.40 4.90 12.97 46.26 36.13 6.85 11.57 54.55

10 SFE 57.90 20.77 7.11 85.78 55.58 32.15 4.05 91.79
AFE 44.01 9.47 9.43 62.91 59.08 10.72 9.21 79.01
BFE 46.15 7.29 12.63 66.08 55.32 10.28 14.11 79.71

Reverberant training 43.09 9.54 13.33 65.97 48.25 12.78 10.20 71.23

For the Bayesian feature enhancement, the parameters of the noise model, Equation (10.33),
are estimated on the first and last fifteen (Aurora 5) and fifty (Aurora 4-rev) frames of each
utterance and are then kept constant for the duration of the utterance, resulting in the time
invariant noise model of Equation (10.33). However, this is a poor modeling assumption for
the nonstationary noise types encountered in the databases.

On Aurora 4-rev, all methods perform fairly poor (see Table 10.6). The word error rates
achieved seem to be too high to be of practical interest. It seems that substantial progress
needs to be made until large vocabulary speech recognizers work reliably on noisy reverberant
speech.

10.7 Conclusions

We have presented an overview of approaches to reverberant speech recognition and discussed
signal-based, feature-based, and acoustic model or decoder-based methods. As in practice,
distant microphones also capture an increased amount of additive noise compared to close-
talking microphones we also considered the case of noisy reverberant speech. The relationship
between the clean and the noisy reverberant log mel power spectral feature vectors was derived,
and it was pointed out that it is this highly nonlinear relationship and the convolutive nature of
the distortion introduced by reverberation which makes the development of ASR algorithms
robust to reverberation a tough problem, even if the AIR from the source to the sensor is known.

As the AIR is usually not available and furthermore time variant, there is an interest in
developing simplified models of the AIR in the feature domain, whose parameters can be
estimated more easily than the AIR itself. Some of these models have been discussed in this
chapter.

A Bayesian feature enhancement approach was discussed in somewhat more detail. Its
performance was evaluated as well as that of an acoustic model adaptation approach that
employed the PMC principle, and three reference systems: the ETSI SFE, and AFE, and a
recognizer that was trained on reverberant data.

It was observed that the ETSI AFE performs equally poor as the SFE on the noise-free
reverberant data, while its increased noise robustness became apparent on the noisy reverberant
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test sets. Bayesian feature enhancement and acoustic model adaptation are both able to greatly
improve the recognition performance over the SFE: on the noise-free subset of Aurora 5
feature enhancement recovered up to 75% of all errors introduced by reverberation, while
the acoustic model adaptation recovered 50%. While the acoustic model adaptation does not
require a complete new training when used in an enclosure with a different AIR, it still asks for
the modification of all acoustic model parameters, which is computationally rather expensive.
Feature enhancement, on the other hand, entails low computational complexity which
furthermore is independent of the acoustic model size and thus the size of the vocabulary.

Matched reverberant training delivers a reverberation robust system, that is hardly beaten
by the other approaches. While being conceptually simple, it may still not be very practical,
as it assumes that an acoustic model specific to the target environment can be trained. Moving
to a room with a different AIR would require a whole new training.

Finally, one should bear in mind that the test sets were artificial in the sense that nonrever-
berant data were convolved with a constant AIR. But even in this case the word error rates on
a noisy reverberant 5000-word vocabulary task were too high to be of practical interest. In any
practical setup, a speaker will move, and we have discussed that even slight head movements
can have already a large impact on the AIR. It seems that significant progress is required until
the problem of automatic recognition of noisy and reverberant speech is solved.
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Adaptation and Discriminative
Training of Acoustic Models
Yannick Estève, Paul Deléglise
University of Le Mans, France

11.1 Introduction

The main weakness of automatic speech-recognition (ASR) systems resides in their lack of
robustness to variability. All the knowledge bases used in an ASR system are affected by
this problem: the dictionary – that is the list of the words recognizable by the system, along
with their pronunciation variants – the language models as well as the acoustic models. Those
knowledge bases – most particularly language and acoustic models, of probabilistic essence –
are very dependent on the data used to estimate their various parameters. The problem posed
by this dependence of probabilistic models on their training corpora is made more significant
by the high cost of building such corpora. As a result of that cost, in practice, it is common
for probabilistic models to be used in application contexts that differ considerably from the
context of their training data.

Such mismatch between training data and application context causes the models to lose some
of their precision and predictive power, in turn degrading the quality of speech recognition.
This is a well-known problem, which has led to the development of many techniques aiming at
lessening its impact. Model adaptation consists in reducing the mismatch between probabilistic
models and the data against which they are used.

Noise is a cause of mismatch: it constitutes a variable phenomenon with potentially nu-
merous, unexpected origins; it may appear suddenly, or be constantly present, or during an
indeterminate time. It is a phenomenon that perturbs acoustic models. The perturbation is less
noticeable in the case of a constant noise that is already present in the data used for the training
of the acoustic models – an example of such constant noise (known as stationary additive
noise) is the hum of a video projector during a meeting.

Acoustic model-adaptation techniques, initially developed with a focus on speaker adap-
tation, have seen their scope broaden to cover stationary additive noise, which is a kind of
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acoustic mismatch that they can handle very well (along with similar mismatches such as
changes of transmission channels: microphone and telephone). As a consequence, acoustic
model adaptation is now an essential tool as a means to lessen the impact of noise on the
performance of ASR systems.

Some other kinds of noise, in particular nonstationary additive noise, are found almost
impossible to compensate for using acoustic model adaptation. Yet such adaptation can still
play a role in this case: other techniques presented in this book are able to reduce these kinds
of noise, but usually at the price of transforming the signal itself; acoustic model adaptation
can then be useful in order to minimize the side effects induced by these processes.

In addition to acoustic model adaptation, discriminative training techniques applied to
HMM are really relevant to make acoustic models more robust to noise. They can be applied
conjointly with some adaptation techniques.

The objective of this chapter is to explain to the reader the fundamentals of the most widely
used techniques for acoustic model adaptation. In order to illustrate these theoretical aspects,
algorithms used to implement the acoustic model-adaptation techniques are also described.
This chapter is organized as follows: a brief overview of HMM (Hidden Markov Model)
estimation used for acoustic modeling is first presented, followed by a general discussion on
acoustic model adaptation for noise robustness, including some recent results. Maximum A
Posteriori (MAP) reestimation is then described, followed by the Maximum Likelihood Linear
Regression (MLLR) approach, including Constrained MLLR (CMLLR). Two discriminative
training methods are also presented: Maximum Mutual Information Estimation (MMIE) and
Minimum Phone Error (MPE) training. The last part of this chapter proposes a discussion on
the use of these different techniques in ASR systems.

11.1.1 Acoustic Models

As described in Chapter 2, acoustic models are based on first-order HMMs, each of which
models a phonetic unit, usually in context, such as triphones. In an acoustic model, each
HMM is composed of a set Q of states, whose cardinality is set by hand; of a set A of discrete
transition probabilities ai,j = P (qt+1 = j|qt = i) from state i to state j (i, j ∈ Q); of a set B of
emission probability distributions – with one state-dependent output probability distribution
for each state of the HMM; and of a set Π of initial probabilities over states πq , giving the
probability for each state q ∈ Q of being the initial state of the HMM. Thus, a HMM is defined
by the four-tuple (Q, A, B, Π). Emission probabilities b ∈ B are either discrete distributions,
or mixtures of continuous density functions. In this chapter, we will focus on adaptation
of Continuous Density HMM (CDHMM) acoustic models, which are the most widely used
models: it will be assumed that the state-dependent output probability distributions are multi-
Gaussian, continuous probability density functions, represented by Gaussian Mixture Models
(GMMs). The likelihood of emission x at time t for state q of an HMM is then expressed as

bq (xt) =
I∑

i=1

wq,iN (xt ; μq ,i ,Θq ,i), (11.1)

where
� xt is the output at time t.
� I is the number of mixture components.
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� wq,i is the mixing coefficient for the ith mixture of the qth state.
� N is a Gaussian multivariate density function:

N (xt ; μq ,i ,Θq ,i) =
1√

(2π)D |Θq ,i |
exp−1

2
(xt − μq ,i)

TΘ−1
q ,i (xt − μq ,i).

� μq ,i is the mean vector for the ith mixture of the qth state.
� Θq ,i is the covariance matrix for the ith mixture of the qth state.
� D is the dimension of the vector space.
� |Θq ,i | is the determinant of Θq ,i .

From this point on, the covariance matrices will be assumed diagonal, except when this will
be specified. This diagonal matrix will be represented as a vector, denoted θ, composed by
its diagonal entries. This assumption makes calculations on Gaussians easier, in terms of both
feasibility and computation time. For this reason, this assumption is usually found in practice
in ASR systems.

11.1.2 Maximum Likelihood Estimation

Training acoustic models consists in estimating parameters (Q, A, B, Π) for each of the HMMs
that model a phonetic unit. The structure of the HMMs, that is Q, is set by hand and does not
change. The initial probabilities over states (πq ) are clearly defined in the case of the left-right
HMMs used for speech recognition. The parameters Λ = (A, B) have to be estimated using
the training data; the most widely used technique to do so is maximum likelihood estimation
(MLE). Given representation X of the training corpus as a sequence of observation vectors
(X = x1 , x2 , . . . ,xm ), MLE consists in maximizing the likelihood L(Λ|X), finding Λ̂ such as

Λ̂ = argmax
Λ

L(Λ|X) = argmax
Λ

∑
Y ∈Y

m∏
t=1

by (t)(xt)ay (t),y (t+1), (11.2)

where Y is the set of all the admissible paths in HMMs and Y = y(1) . . . y(m) is a sequence of
HMM states.

The Baum–Welch algorithm, presented in [3], is the most used to compute the value of Λ̂.
It constitutes a particular case of the EM algorithm described in [5]. We will assume here that
the reader knows the Baum–Welch algorithm.

The training corpus is usually seen as a set X = X1 , X2 , . . . , XR of sequences Xr = xr
1 ,

xr
2 , . . . ,xr

Mr
of observation vectors xr

m . Usually, each sequence Xr corresponds to an utter-
ance from the training corpus. A rough initialization of parameters Λ for these sequences is
usually done and training acoustic models consists in reestimating these parameters to match
Equation (11.2). In the case of MLE using the Baum–Welch algorithm, the values of transition
probabilities âi,j can be obtained using the equation below:

âi,j =

∑R
r=1

1
Lr

∑Mr −1
t=1 αr

i (t)ai,j bj (xr
t+1)βr

j (t + 1)∑R
r=1

1
Lr

∑Tr −1
t=1 αr

i (t)ai,j β
r
i (t)

, (11.3)
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where

� ai,j and bj are the initial parameters, pre-reestimation; they are the parameters used during
the forward-backward process involved in the Baum–Welch algorithm.

� R is the number of observation sequences.
� Mr is the number of observation vectors in the rth sequence (Xr ).
� αr

i (t) is the forward probability of state i of the HMM – as obtained with the forward-
backward algorithm – at time t of observation sequence Xr .

� βr
i (t) is the backward probability of state i of the HMM at time t of observation sequence Xr .

� Lr is the total likelihood of observation sequence Xr , obtained through the forward-
backward algorithm1; actually, Lr = αr

N (Mr ) = βr
1 (1) with N being the number of states in

the HMM. Lr can be considered as the sum over likelihoods of all the paths starting from
t = 0 and ending to t = R consuming each observation vector.

Estimating the emission probability function for state bq (xt) consists in estimating parame-
ters Γq = (wq,i , μq ,i ,Θq ,i) of the corresponding GMM. The use of the Baum–Welch algorithm
for MLE yields the following equations:

wq,i =

∑R
r=1

∑Tr
t=1 γr

q,i(t)∑R
r=1

∑Tr
t=1 γr

q (t)
, (11.4)

μ̂q ,i =

∑R
r=1

∑Tr
t=1 γr

q,i(t)x
r
t∑R

r=1
∑Tr

t=1 γr
q,i(t)

, (11.5)

Θ̂q ,i =

∑R
r=1

∑Tr
t=1 γr

q,i(t)(x
r
t − μ̂q ,i)(x

r
t − μ̂q ,i)

T∑R
r=1

∑Tr
t=1 γr

q,i(t)
, (11.6)

γr
q,i(t) being the probability of state occupancy for state q of the ith component of the Gaussian

mixture at time t, and γr
q (t) being the probability of state occupancy for state q at time t defined

as: γr
q (t) = 1

Lr
αq (t)βq (t). Reestimation of the whole set of parameters Λ is repeated as long

as L(Λ|X) increases enough at each iteration of the process.

11.2 Acoustic Model Adaptation and Noise Robustness

In the next sections, the most well-known techniques for acoustic model adaptation will
be presented. These techniques were not initially developed specifically to adapt acoustic
models to noise, but they undeniably increase the accuracy of speech-recognition systems
in noisy environments. These adaptation techniques may be used either supervised or un-
supervised. In supervised mode, manual transcriptions of recordings in noisy environments
are available. These data are ordinarily put to use in a static way: all the data are used at
once to adapt preexisting acoustic models, before the speech-recognition system is started.
In unsupervised mode, no manual transcriptions are available: such transcriptions must be
generated by a speech-recognition system. Contrary to supervised mode, an important issue

1 It is assumed that there is only one allowable initial state and one allowable final state.
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in unsupervised mode consists in dealing with transcription errors. For instance, this can be
done by using confidence measures provided by the ASR system in order to filter automatic
transcripts. Adaptation of acoustic models using on these automatic transcriptions of audio
recordings may then be carried out either statically or, more usually, dynamically–in the latter
case, adaptation is performed online, while processing applicative data. Static and dynamic
terms were used in [11] or [37] which also used respectively off-line (or batch) and on-line
(or incremental) terms.

11.2.1 Static (or Offline) Adaptation

When the type of noise present in the audio signal is known in advance and in-domain
recordings, with the same acoustic environment, are available, the acoustic models should be
adapted before processing that signal–on condition that the initial acoustic models be more
efficient than whatever acoustic models that could be estimated from scratch using only the
available in-domain data.

Be it in supervised or in unsupervised mode, any of the adaptation techniques described in
the present chapter can be applied for static adaptation using available in-domain data. The
experiments carried out in [4] show that on the Aurora 2 corpus [14]–which is composed of
recordings in noisy environments–using MLLR adaptation in static, unsupervised mode allows
to increase word recognition accuracy. For example, for a signal-to-noise ratio (SNR) of 15
dB, word recognition accuracy goes from 87.5% with no adaptation to 93.6% with adaptation;
while for a SNR of 5 dB, word recognition accuracy jumps from 39.5% to 72.8%. [4] presents
various results, depending on the size of the adaptation corpus and on the amount or nature of
the noise. In all cases, a larger adaptation corpus yields better results.

In unsupervised mode, the main risk is to reinforce the biases found in the unadapted acoustic
models, which yield errors during the generation of automatic transcriptions of the in-domain
data. In [32], the authors propose an unsupervised cross-validation technique, coupled with an
aggregated adaptation technique, in order to reduce that overfitting problem. These techniques
rely on MAP for unsupervised domain adaptation, together with unsupervised MLLR speaker
adaptation. Their experiments in noisy environment on the Spontaneous Japanese corpus
described in [17] show that associating MAP and MLLR techniques allows a decrease in word
error rate, from 35% with no adaptation down to 29% with a classical unsupervised adaptation
approach. When used aggregated as proposed in the article, the same techniques allow a word
error rate of 25.8% on that same corpus.

11.2.2 Dynamic (or Online) Adaptation

In the case of unexpected noise in the speech signal, it is difficult to have the correct adaptation
corpus beforehand. The unexpectedness of that noise usually implies that it will be present
for a limited time only–therefore, the system should be able to adapt the acoustic models to
the current acoustic conditions. Unsupervised dynamic adaptation fits that case, particularly
when using MLLR or CMLLR adaptation techniques. Indeed, these techniques are relevant
when the amount of adaptation data is small, and they exhibit relatively good robustness
to transcription errors. In that case, the ASR system must be a multipass system: the first
pass yields automatic transcriptions (using generic acoustic models), used to compute linear
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Acoustic feature vectors

First recognition 
hypothesis

First speech- 
recognition process

Generic acoustic models

Adapted acoustic models

Acoustic model 
adaptation

Second speech- 
recognition process

Final recognition 
hypothesis

Figure 11.1 Dynamic adaptation of acoustic models: two speech-recognition passes are necessary to
process an utterance. The first one produces an automatic transcription by applying generic acoustic
models. This automatic transcription is then used to adapt acoustic models. The adapted acoustic models
are used to process the utterance again.

transformation matrices for MLLR or CMLLR; the next pass then applies those transformation
matrices, thus achieving unsupervised, dynamic adaptation of the acoustic models. Figure 11.1
illustrates dynamic adaptation of acoustic models2.

In [29], the authors apply CMLLR-based unsupervised, dynamic adaptation to noisy
data from the SPEECON database [15]. For a 14 dB SNR, the resulting word error rate is
43.8% with no adaptation and goes down to 28.8% when using CMLLR adaptation. For an
8 dB SNR, WER goes from 67.7% with no adaptation to 44.9% with CMLLR adaptation.
In [18], the authors present an extension to CMLLR designed more specifically for adaptation
to noise. The technique is named Noisy CMLLR (NCMLLR) and is presented in detail in
Chapter 17. Results are given for phone number recognition in a car driven on a highway
(Toshiba In-Car Task). In that situation, the average SNR is 18 dB. Without adaptation, but
with MPE models trained on in-domain data, the word error rate is 5%. With NCMLLR
adaptation in unsupervised, dynamic mode, the word error rate can go as low as 1.4%.

11.3 Maximum A Posteriori Reestimation

(MAP), described in [10], is used for model adaptation in cases where there is a significant
mismatch between training data and application data, for instance when application data

2 Figure 11.1 refers to MLLR acoustic model adaptation. CMLLR adaptation usually transforms acoustic features
vectors instead of acoustic models, contrary to what is shown in the figure: this point will be explained later in this
chapter.
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have different noise or channel conditions from the training data, and a sufficient amount
of adaptation data are available. MAP adaptation relies on the availability of an a priori
distribution p0(Λ) of the parameters to be adapted. Where in the case of MLE, the parameters
Λ̂ of an HMM are chosen in order to maximize L(Λ|X), in the case of MAP the a priori
distribution is involved in the estimation of Λ̂:

Λ̂map = argmax
Λ

L(Λ|X)p0(Λ). (11.7)

In practice, p0(Λ) corresponds to the distribution of parameters Λ as it was computed during
acoustic model training. Since training is usually done with large amounts of data, taking
distribution p0(Λ) into account allows robust reestimation of parameters Λ on a comparatively
smaller amount of data. It has to be noted that if distribution p0(Λ) is uniform, it does not
provide any information and MAP reestimation then amounts to MLE.

MAP reestimation of the mean μ̂ of a given Gaussian, starting with prior mean μ0 , can be
described as:

μ̂q ,i =
τq,iμ0 +

∑R
r=1

∑Tr
t=1 γr

q,i(t)x
r
t

τq ,i +
∑R

r=1
∑Tr

t=1 γr
q,i(t)

, (11.8)

where τq,i is a meta-parameter, usually set empirically to a value between 2 and 20, identically
for each pair (q, i). τq,i allows to set the weight of the prior mean relative to the weight of the
mean computed through maximum likelihood estimation. A low value for τq,i results in a low
influence of the prior mean in the MAP reestimation. Equation (11.8) comes from [10], which
also proposes similar equations to adapt the covariance matrix Θq ,i of each Gaussian, as well
as its weight wq,i within the mixture.

Algorithm 1 proposes an implementation of the reestimation of all these parameters.
Figure 11.2 illustrates the fact that by using MAP adaptation each Gaussian in the origi-
nal acoustic models is updated individually. In this figure, each Gaussian is located using its
isodensity contour in a two-dimensional acoustic feature space, this isodensity being defined
for example as its 85% peak likelihood contour. For a Gaussian, the importance of the update
depends to the number of occurrences of this Gaussian in the adaptation corpus.

Original Gaussian densities

Adapted Gaussian densities

∧

∧

∧

∧

Figure 11.2 Schema on the effects of MAP reestimation in a two-dimensional feature space: each
Gaussian is updated individually.
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Algorithm 1: Example of MAP adaptation implementation
Input: τ value, prior means μprior, variances θprior, and mixture weights wprior

Output: MAP adapted means μmap, variances θmap, and mixture weights wmap

Data: adaptation data X

Lold = 0 ;
repeat

MLE reestimation on adaptation data using Equations (11.4), (11.5), and (11.6) to
compute the wmle, μmle, and θmle values.After the first iteration, wmap, μmap, and
θmap – which are values computed during the previous iteration – are used as
parameters of initial acoustic models for the MLE reestimation process.
if (L(Λmle|X) − Lold) < Δ) then

/* Stop condition of the main loop */
break ;

end
Lold = L(Λmle|X) ;
foreach state q do

foreach gaussian density i do
w = wmle[q,i];
wmap[q,i] = w + τ ;
if wmle[q,i] > τ/10 then

/* only if enough observations */
foreach acoustic vector component c do

m = (τ×μprior[q,i,c] + w × μmle[q,i,c]) / (τ+ w);
v = τ×θprior[q,i,c]

+ w×(θmle[q,i,c] + μmle[q,i,c]×μmle[q,i,c]
- 2×μmle[q,i,c]×m + m×m)

+ τ×(μprior[q,i,c] - m)×(μprior[q,i,c] - m);
if θmle[q,i,c] > ε then

/* only if the variance is large enough */
/* ε has to be empirically estimated */
v = v/(τ + w);

else
v=θprior[q,i,c] ;

end
μmap[q,i,c] =m;
θmap[q,i,c] =v;

end
else

foreach acoustic vector component c do
μmap[q,i,c] = μprior[q,i,c];
θmap[q,i,c] = θprior[q,i,c];

end
end

end
end

until false;
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11.4 Maximum Likelihood Linear Regression

When, as part of speaker adaptation of acoustic models, transformations are only applied to the
means of the Gaussians, as described in [20], or to both the means and covariance matrices as
in [8], they can be seen as repositioning acoustic classes from the acoustic space of the initial
models to the acoustic space of a new speaker, or new recording environment. MLLR is the
main linear-transformation technique for adapting only the means, and sometimes variances,
of a Gaussian mixture associated with an HMM, without updating the weight of the mixture
components. When using this linear regression approach, the Gaussian mean parameters are
updated as follows:

μ̂q ,i = Acμq ,i + bc , (11.9)

where Ac is an D × D regression matrix and bc is an additive D-dimensional vector (D being
the dimensionality of the observations). Ac and bc are associated with acoustic class c which
can be a set of shared HMM states or a class of close phonemes. The same transformation can
be applied to all the Gaussians that are part of one same given acoustic class. This makes the
MLLR approach interesting when only a small amount of adaptation data is available, since it
is possible to set the number of classes – and hence the number of transformations to define –
as a function of that amount.

Equation (11.9) is usually rewritten as:

μ̂q ,i = Wcξq ,i , (11.10)

where Wc is a D × (D + 1) regression matrix and ξq ,i is the extended mean vector, with
Wc = [bc ,Ac ] and ξq ,i = [1, μT

q ,i ]
T. Computing the matrices Wc is the central point of acoustic

model adaptation through MLLR. The matrices Wc are estimated so that the likelihood of
the resulting adapted model is maximized on the adaptation data. As usual, the Expectation-
Maximization (EM) algorithm is well suited to the resolution of this problem. Maximization
of the auxiliary function used in the EM algorithm, of which the details are given in [20],
yields the following equation for computation of the elements of Wc :

wc,r = k(r)
c G(r)−1

c , (11.11)

where wc,r is the rth row of transformation matrix Wc corresponding to acoustic class c, and

G(r)
c =

Ic∑
ic =1

1
θ2
ic r

ξic
ξT

ic

T∑
t=1

γic
(t), (11.12)

k(r)
c =

Ic∑
ic =1

T∑
t=1

γic
(t)

1
θ2
ic r

xr (t)ξT
ic

, (11.13)

where ic is a mixture component of regression class c, θic r is the rth element on the diagonal
in the covariance matrice Θic

of this component, γic
is the occupancy probability for ic at

time t, and ξic
is the extended mean vector for the mixture component ic .

Mean adaptation is where MLLR has the greatest impact, but variance adaptation may
also bring an extra, slight decrease in word error rate. To adapt variances, the transformation
matrix Hc can be computed from the means adapted by using the transformation matrix Wc .
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Variances are adapted as follows:
Θ̂q ,i = C−1T

HcC−1 , (11.14)

where C−1 is the inverse of the Choleski factor of Θq ,i , that is Θ−1
q ,i = CCT. Estimating Hc

then amounts to

Hc =

∑Ic
ic =1 CT

ic

[
γic

(t)(x(t) − μ̂ic
)(x(t) − μ̂ic

)T
]
Cic

γic
(t)

. (11.15)

The equation above is only for the case of diagonal covariance matrices, which, as explained
earlier, is the most frequently used configuration for reasons of simplicity and computation
time. An implementation of the estimation of MLLR matrices for mean transformation is
presented in Algorithm 2. Figure 11.3 illustrates the fact that by using MLLR adaptation all
the Gaussians group to the same MLLR classes in the original acoustic models are updated in
one block, contrary to MAP adaptation illustrated in Figure 11.2.

11.4.1 Class Regression Tree

The number of linear transformation matrices that it is be possible to estimate depends on the
available amount of adaptation data. Each transformation corresponds to an acoustic class.
The definition of such a class is variable. An acoustic class may be manually defined, in
a static way. For example, an acoustic class may be the set of phonemes belonging to the
same predefined broad phoneme class: sonorant, stop, fricative, closure, silence, vowel, etc.
The transformation for this class will be applied to all the Gaussian components taking part in
the corresponding HMMs.

Acoustic classes are more usually generated automatically and in a dynamic way, which
allows to adapt the number of acoustic classes to the amount of available adaptation data, and

Original Gaussian densities
Adapted Gaussian densities

Figure 11.3 Schema on the effects of MLLR adaptation in a two-dimensional feature space: all the
Gaussians grouped in the same MLLR classes are updated with the same transformation.
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Algorithm 2: Estimation of MLLR matrices for mean transformation
Input: Initial acoustic models estimated on the training corpus: means μic

and variances
θic

Output: MLLR mean transformation matrices: Wc

Data: Adaptation data: xt

/* First step. Modified Baum-Welch algorithm to compute Gc et kc

during the backward pass for each time t */
foreach regression class c do

foreach gaussian ic included to the class c do
for p : 0 → (D − 1) do

for q : p → (D − 1) do
/* Computing ξic

ξT
ic

represented by mProd */
mProd[p][q] = μic

[p] × μic
[q] ;

end
end
for r : 0 → (D − 1) do

temp1 = γic
(t) / θic

[r] ;
for p : 0 → (D − 1) do

for q : p → (D − 1) do
Gc [r][p][q] = temp1 × mProd[p][q];

end
temp2 = temp1 × μic

[p]
Gc [r][p][D] += temp2 ;
kc [r][p] + temp2 × xt[r] ;

end
Gc [r][D][D] += temp2 ;
kc [r][D] += temp1 × xt[r] ;

end
end

end
/* Second step. Resolving Equation (11.11) to obtain the MLLR

transformation matrix Wc */
foreach regression class c do

for j : 0 → (D − 1) do
if Gc is invertible then

Resolve GcWc = kc /* classical AX = B linear equation */
end

end
end
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makes MLLR adaptation more robust. Clustering into acoustic classes is done directly at the
Gaussian component level, using a class regression tree.

The class regression tree is built using the initial acoustic models and does not depend on the
adaptation data. It is a binary tree, with each node grouping Gaussian components which are
close in the acoustic space. The deeper a node is in the tree, the closer its components are to each
other. During MLLR adaptation, each node may be attached to a transformation matrix, depend-
ing on the amount of adaptation available to estimate that matrix. The advantage of grouping
Gaussian components lies in that is allows applying one same transformation to a whole set of
components, thus also adapting distributions which were not observed in the adaptation data.

In the ideal case where the amount of adaptation data is large enough, the matrices that will
be used will be the ones attached to the leaf nodes of the class regression tree. The Gaussian
component clusters attached to the leaves are named base regression classes. In practice it is
often the case that adaptation data are not available in amounts large enough to allow matrix
estimation for the base regression classes. The solution is then to use lower ranked nodes,
going all the way down to the root node in the worst case. In the latter case, the one same trans-
formation, known as the global transformation, will be applied to every Gaussian component.

Acoustic proximity is usually measured for two Gaussians by comparing their means. In
order to build the class regression tree, a centroid-splitting algorithm using a Euclidean distance
measure is usually applied to the whole set of Gaussian components. Algorithm 3 shows a
brief summary of class regression tree building.

Algorithm 3: Example of an algorithm building a class regression tree
Input: HMM that were estimated on the training data; number of expected base

regression classes
Output: Class regression tree (hierarchized nodes)

Compute the mean μ0 and the variance Θ0 from the mean values of Gaussians associated
with the root node n0 containing all the Gaussians, weighted according to their
occupancy in the training data;

repeat
Select the node np to split: for example the one with the largest Euclidean distance
between a mean vector μi of a Gaussian i in this node and μp ;
Insert two new children nl and nr and initialize their means μl and μr with their
parent’s mean μp , by translating them to opposite directions: μl = μp − λ

√
diag(Θp )

and μr = μp + λ
√

diag(Θp ) where
√

diag(Θp ) is the component-wise square root of
a vector formed from the diagonal elements of Θp .foreach gaussian component in
node np do

Assign this component to the closest child by using the Euclidean distance
measure;

end
Recompute the new mean μl (resp. μr ) and the variance Θl (resp. Θr ) from the mean
values of Gaussians associated with node nl (resp. nr ), weighted by their occupancy
in the training data;

until the number of expected final nodes is reached;
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11.4.2 Constrained Maximum Likelihood Linear Regression

MLLR proposes a method to estimate transformations for the Gaussian means and variances
of acoustic models. Estimation of the transformation matrices is done independently for the
means and for the variances. CMLLR proposes an approach where the transformations are
constrained as follows:

μ̂q ,i = Acμq ,i − bc , (11.16)

Θ̂q ,i = AT
c Θq ,iAc , (11.17)

where Ac is still an D × D regression matrix and bc is an additive D-dimensional vector (D
being the dimensionality of the observations). This approach was first presented in [6] for use
with diagonal transformation matrices, and later extended in [7] to cover full transformation
matrices. In practice, CMLLR is used more as an adaptation technique for acoustic features
rather than to adapt models. Indeed, applying the constraints defined in Equations (11.16)
and (11.17) in order to maximize likelihood for the acoustic models on the adaptation data
amounts to modifying the value of the observation vectors as follows:

x̂t = A−1
c xt + A−1

c bc . (11.18)

The concept of acoustic classes is not really relevant in the case where the acoustic features
themselves are transformed, because of the difficulty of determining a direct relationship
between an observation and a class of Gaussians. Therefore, only one CMLLR transformation
matrix is usually applied to the acoustic features before those features are matched against the
acoustic models as part of the speech-recognition process.

11.4.3 CMLLR Implementation

For CMLLR implementation, the problem will be different from the one encountered for
MLLR. We will try to find A and b such as

x̂t = Acxt + bc . (11.19)

By defining

Wc = [Ac bc ], (11.20)

it can be rewritten as

x̂t = Wcζt , (11.21)

ζt = [xT
t 1]T. (11.22)

In the same way as in the MLLR approach, computing the matrices Wc is a crucial point
of acoustic model adaptation through CMLLR. Matrices Wc have to be estimated so as to
maximize the likelihood of the resulting adapted acoustic models on the adaptation data.
Maximizing the auxiliary function amounts to maximizing the following expression:

Q = βc log(det(Ac)) − 1
2

D−1∑
r=0

(
wc,rG

(r)
c wT

c,r − 2wc,rk
(j )T
c

)
, (11.23)
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where wc,r is the rth row of transformation matrix Wc corresponding to acoustic class c and

βc =
T∑

t=1

lc∑
ic =1

γic
(t), (11.24)

G(r)
c =

lc∑
ic =1

1
θic r

T∑
t=1

γic
(t)ζtζ

T
t , (11.25)

k(r)
c =

lc∑
ic =1

1
θic ,r

μic ,r

T∑
t=1

γic
(t)ζT

t . (11.26)

In order to get the derivative of the expression with respect to wr , it can be noticed that

det(A) = cofact(A)raT
r , (11.27)

where cofact(A)r is the rth row of the matrix of cofactors of A, and aT
r is the transposed of

the rth row of matrix A. By writing qc,r = [cofact(Ac)r 0], we get

det(Ac) = qc,rwT
c,r . (11.28)

Differentiating Q presented in Equation (11.23) with respect to wc,r yields

dQ
dwc,r

= βc
qc,r

qc,rwT
c,r

− wc,rG
(r)
c + k(r)

c . (11.29)

Since CMLLR is usually done with one class, the sums over ic become sums of i ∈ G, with
G being the set of Gaussians that exist in the model. In this case, index c disappears and β is
equal to the total number of frames taken into account in the algorithm.

Practical realization is done in two steps. First, accumulators (β, G(r)
{0≤r<D}, k(r)

{0≤r<D})
have to be computed over the whole adaptation corpus. Then, Equation (11.29) has to be
solved through an iterative process described in [7].

11.4.4 Speaker Adaptive Training

In order to reduce variation due to speaker, channel, or acoustic condition, [1] has proposed
the speaker adaptive training (SAT) approach, which uses MLLR or CMLLR transformations
during model training. This approach allows to prepare the initial acoustic models in view
of MLLR or CMLLR adaptation at the time they get used in a dynamic way3 during the
speech-recognition process.

SAT consists in grouping the training data of acoustic models by speaker, after the ini-
tial models have been estimated. For each speaker, MLLR or CMLLR transformations are
computed using the training data corresponding to the speaker. In the case of MLLR, the
transformations for each speaker are applied to the initial models, which are then reestimated

3 Cf. Section 11.2 in this chapter.
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on the whole training corpus. The resulting models have a higher likelihood on the training
corpus, as well as smaller variances. This approach yields a significant decrease in word error
rate, as was shown in [1,28].

The use of CMLLR seems more beneficial than that of MLLR: applying the transformations
to the acoustic features is far easier than applying them to the model means; and, on top of
that, CMLLR/SAT training can be used conjointly with a discriminative training method, with
additive benefits.

The success of SAT which makes ASR systems more robust to speaker variability was
the main motivation to develop the noise adaptive training (NAT) approach, described in
Chapter 13.

11.5 Discriminative Training

Speech recognition these days sees more and more widespread use of discriminative training
techniques applied to HMMs. However, it should be noted that those techniques, which are
in competition against generative training approaches such as MLE seen in Section 11.1.2,
have been studied by the speech-recognition community for decades. The first works, based
on information theory, resulted in the MMIE approach, presented in [2]. But, for a long time,
discriminative training was lagging behind generative training in terms of results, except for
a few simple tasks such as digit recognition as was presented in [22]. Except for [35], it was
after 2000, and particularly following the work presented in [25], that discriminative training
started being interesting for very large vocabulary speech-recognition systems.

These days, using discriminative training allows to decrease the word error rate for most
applications of automatic speech recognition. Discriminative training may be seen as an
adaptation technique in the same way as the MAP approach: it can not be used dynamically –
as CMLLR can – but only statically, like MAP. Discriminative training is commonly used to
adapt acoustic models to the targeted task.

In fact, discriminative training improves the robustness of the acoustic models. Reference
[38] presents a study on such robustness according to the size of the margin of a model:
this margin is defined as “the desired minimum distance between any training sample to the
decision boundary of the model in a separable classification case.” Noise distortion reduces
the relevance of the decision boundary of a model, especially when this model was trained
on clean data. Figure 11.4 shows the impact of noise distortion, while Figure 11.5 illustrates
the definition of the margin of a model. The both were inspired from [38]. Discriminative
training implicitly increases the margin of a model by choosing utterances near the decision
boundary to modify the model: larger margins make acoustic models more robust to noise
distortions.

In [38], authors compare acoustic models trained with MLE, acoustic models estimated with
discriminating training, and acoustic models trained with a margin-based method, called soft-
margin estimation (SMEs). In their experiments, acoustic models trained with discriminative
training and SME outperform very significantly the ones trained with MLE on noisy data on
the Aurora-2 corpus, while SME allows to reach slightly better results than discriminative
training in these experimental conditions. For example, in one of their experiments, acoustic
models trained with MLE reach 85.58% of word accuracy for a signal-to-noise ratio of 15dB,
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Decision boundary
Class A

Class B

log p(X|A)

log p(X|B)

Figure 11.4 Noise robustness illustrated by a two-classification problem in log likelihood domain.
Elements in class A are represented by white circles and elements in class B by black ones. Noise
distortion reduces the relevance of the decision boundary of a model: noisy samples may cross the
decision boundary and may be wrongly classified.

while the ones trained with discriminative training reach 92.27% and the ones trained with
SME reach 92.95%.

In this section, we will present the fundamentals of discriminative training with MMIE or
minimum phone error (MPE), as well as the bases of an implementation of MPE. Readers
wishing to learn more about discriminative training will find helpful material in the tutorial
presented in [13]. A very complete overview of that domain can also be found in [16].

Margin

Class A

Class B

log p(X|A)

log p(X|B)

Figure 11.5 Increasing the margin makes the model more robust. Elements in class A are represented
by white circles and elements in class B by black ones.
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11.5.1 MMI Discriminative Training Criterion

Each training criterion used to estimate the Λ parameters of HMMs can be represented as
an objective function F(Λ, X1 ...XR ) that should be either maximized or minimized on the
training data X1 . . . XR . For example, the objective function associated with MLE, to be
maximized (cf. Section 11.1.2), can be written as: FMLE =

∑R
r=1 log PΛ(Xr |sr ), where sr is

the correct transcription of Xr , the rth sequence of acoustic data.
The MMI objective function used for MMIE is written as follows [2,30]:

FMMI(Λ) =
R∑

r=1

log
PΛ(Xr |sr )KP (sr )K∑

s PΛ(Xr |s)KP (s)K
, (11.30)

where P (s) is the language model probability, including linguistic weights and word insertion
penalties for sentence s; PΛ(Xr |sr ) is the likelihood provided by acoustic models for the
correct sentence sr ; and K is a probability scale optimized to get better results on test data
[30].

In fact, the numerator in Equation (11.30) is the likelihood of the correct transcription
combined with its linguistic probability, while the denominator is the total likelihood for all the
word sequences combined with linguistic probabilities: FMMI(Λ) equals posterior probability
of correct sentences given data and acoustic models with Λ parameters. Maximizing FMMI(Λ)
corresponds to maximizing the ratio of the MLE training criterion by the denominator. That
way the MMI criterion should be more correlated to the word error rate than the ML criterion
is. This is true in the case of the training corpus; we will see later that it will be necessary to
take into account the generalization of the MMIE approach.

The extended Baum–Welch algorithm presented in [12,21] is generally used in order to
optimize FMMI(Λ). It then yields the equations below for the estimation of means and variances
obtained through MMIE:

μ̂q ,i =

{
ςnum
q ,i (X) − ςden

q ,i (X)
}

+ Dq ,iμq ,i{
γnum

q ,i − γden
q ,i

}
+ Dq ,i

, (11.31)

θ̂q ,i =

{
ςnum
q ,i (X2) − ςden

q ,i (X2)
}

+ Dq ,i(θq ,i + μ2
q ,i){

γnum
q ,i − γden

q ,i

}
+ Dq ,i

− μ̂2
q ,i , (11.32)

where

� ςq ,i(X) and ςq ,i(X2) are sums of data and squared data, respectively, weighted by their
probability for Gaussian i of state q, data being represented by acoustic observation vectors.

� γq,i are Gaussian occupancies summed over time.
� num corresponds to the correct word sequence, and den corresponds to the recognition model

computed from all the possible word sequences: in practice all the possible recognition
hypotheses are approximated by using word lattices4.

4 A word lattice is a directed acyclic graph with a set of nodes (including a starting node) and arcs (or transitions)
between these nodes. Each hypothesis word is associated to a node or to an arc: this depends to the representation
chosen in the ASR system. Different scores (acoustic, linguistic, . . .) can also label nodes or arcs.
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� μq ,i and θq ,i are the prior means and variances, μ2
q ,i denoting element-wise squaring, with

μ2
q ,i = μq ,i ⊗ μq ,i .

� Dq ,i are positive smoothing constants for each Gaussian i of state q: a low value of Dq ,i

increases optimization speed, but Dq ,i must be large enough to ensure positive variances.

The process of discriminative training with MMIE is summarized as follows:

1. Process training (or adaptation) data in order to generate word lattices using MLE acoustic
models with a weak language model, for example unigram or bigram.

2. Align HMMs with the word lattices in order to specify HMM models boundaries.
3. While word error rate on development data increases

(a) compute Dq ,i values which ensure that the variances stay positive; and
(b) estimate μ̂q ,i and θ̂q ,i following, respectively, Equations (11.31) and (11.32).

11.5.2 MPE Discriminative Training Criterion

The goal of MMIE was to propose an estimation of HMM parameters resulting in acoustic
models that would be more discriminant than those obtained through generative training of
the MLE kind. To reach this objective, estimation of acoustic models is based on getting
sharper distinction between wrong and good recognition hypotheses. The purpose of MPE is
the same, the difference being in the discriminative criterion, which in this case is based on
an approximation of the phone error rate [24, 25]. MPE generally yields better results than
MMIE, for a similar training complexity.

While FMMI(Λ̂) is the posterior probability of the correct utterance given the speech data,
the MPE objective function, FMPE(Λ̂), is a weighted average of a measure of phone accuracy,
weighted by sentence likelihood, as described in [25]:

FMPE(Λ) =
R∑

r=1

∑
s PΛ(Xr |s)KP (s)KRawPhoneAccuracy(s)∑

s PΛ(Xr |s)KP (s)K
, (11.33)

where most of the terms are the same as for the MMI objective function shown in Equation
(11.30), with the addition of function RawPhoneAccuracy which is a measure of the number
of phones correctly transcribed in sentence s and is equal to the sum of PhoneAcc(p) for all
phones p in sentence s, with

PhoneAcc(p) =

⎧⎪⎨
⎪⎩

1 if correct phone
0 if substitution

−1 if insertion.

(11.34)

Mean and variance reestimation with MPE relies on the same equations as for MMIE –
that is, Equations (11.31) and (11.32), respectively. The difference is found in the way the
terms composing the equations are computed: γnum, ςnum(X), ςnum(X2), γden, ςden(X), and
ςden(X2). Computation of those terms in the MPE case is explained below.

In the same way as for MMIE, implementation of MPE estimation uses a lattice framework:
for each sentence of the training corpus, speech recognition is done using the initial acoustic
models – usually estimated through MLE – in order to build a lattice of phones, analogous to a
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classical lattice of words used in speech recognition, each phone hypothesis being associated
to one arc. That lattice will be used, along with the phones of the corresponding reference
transcription, to carry out MPE training.

The most important accumulator, which holds statistics gathered on the training corpus (or
on the adaptation corpus) for later use, is γMPE

a :

γMPE
a =

1
K

δFMPE

δ logL(a)
. (11.35)

That accumulator is a value computed for each arc a of the phone lattice, and is the differential
of the objective function FMPE with respect to the log likelihood L(a) of arc a. In practice,
to evaluate γMPE

a , some approximations can be made, as presented in Equation (11.47) in
Section 11.5.4. For MPE, K is usually equal to the inverse of the language model weight used
in the speech-recognition process that lead to the lattice. The terms used to update means and
variances according to Equations (11.31) and (11.32) can then be written as follows:

γnum
q ,i =

A∑
a=1

ea∑
t=sa

γa,q ,i(t) max(0, γMPE
a ), (11.36)

ςnum
q ,i (X) =

A∑
a=1

ea∑
t=sa

γa,q ,i(t) max(0, γMPE
a )x(t), (11.37)

ςnum
q ,i (X2) =

A∑
a=1

ea∑
t=sa

γa,q ,i(t) max(0, γMPE
a )x2(t), (11.38)

(11.39)

γden
q ,i =

A∑
a=1

ea∑
t=sa

γa,q ,i(t) max(0,−γMPE
a ), (11.40)

ςden
q ,i (X) =

A∑
a=1

ea∑
t=sa

γa,q ,i(t) max(0,−γMPE
a )x(t), (11.41)

ςden
q ,i (X2) =

A∑
a=1

ea∑
t=sa

γa,q ,i(t) max(0,−γMPE
a )x2(t), (11.42)

where A is the number of arcs in the phone lattice, γa,q ,i(t) is the occupation probability at
time t for Gaussian i of state q for the arc a, sa is the starting time of arc a, ea its ending time,
and x2(t) denotes element-wise squaring of x(t), with x2(t) = x(t) ⊗ x(t).

In order to increase the generalization power of MPE estimation, in turn leading to better
results, those terms are usually modified by applying the I-smoothing technique.

11.5.3 I-smoothing

I-smoothing is a technique that was developed to avoid overtraining caused by the use of
discriminative criteria such as MMI or MPE. It consists in smoothing parameter estimation by
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integrating a prior distribution, for example, based on MLE, in a spirit similar to that of the
MAP approach. That technique is crucial for acoustic model adaptation, particularly when in
presence of a small amount of adaptation data. In the case of MPE, I-smoothing is a requisite
for good results. It implies the following updates:

γ′num
q ,i = γnum

q ,i + τ I , (11.43)

ς ′num
q ,i (X) = ςnum

q ,i (X) +
τ I

γmle
q ,i

ςmle
q ,i (X), (11.44)

ς ′num
q ,i (X2) = ςnum

q ,i (X2) +
τ I

γmle
q ,i

ςmle
q ,i (X2), (11.45)

where

� ςq ,i(X)mle and ςq ,i(X2)mle are sums of data and squared data respectively, weighted by their
probability for prior Gaussian i of state q estimated using MLE.

� γmle
q ,i are prior Gaussian occupancies summed over time.

� τ I is an empirically tuned value which is usually equal to 50.

Thus, when using I-smoothing, those modified terms will be used in Equations (11.31)
and (11.32).

11.5.4 MPE Implementation

This section presents the key points of MPE implementation; for a more thorough description
of the implementation, the reader can refer to the PhD dissertation of [23]. The general
principle of MPE training is similar to that of MMIE; the main difference resides in the
use of a phone recognition lattice for MPE instead of a word lattice for MMIE. Hence, the
implementations of MMIE and MPE differ mostly by how the various statistics required to
optimize the discriminative criterion are computed.

Approximate Alignment

It should first be noted that computing RawPhoneAccuracy(s) is complicated and computa-
tionally intensive since it requires a phonetic alignment of each recognition hypothesis in the
lattice. In order to simplify the matter, it is common to use an approximation of PhoneAcc(p),
based on time-alignment information. In this case, PhoneAcc(p) is computed as follows to
integrate alignment approximations:

PhoneAcc(p) = max
z

{
−1 + 2e(p, z) if p and z are same phone
−1 + e(p, z) if p and z are different phones,

(11.46)

where p is a hypothesis phone, z is a phone in the reference transcript, and e(p, z) is the
proportion of the length of phone z overlapping with phone p. It results in much easier
computations than going using strict alignment would. Despite its imperfection – coming



P1: TIX/XYZ P2: ABC
JWST201-c11 JWST201-Virtanen August 31, 2012 8:51 Printer Name: Yet to Come Trim: 244mm × 168mm

Adaptation and Discriminative Training of Acoustic Models 305

from the choice of the reference phone z, on which the hypothesis phone p is aligned, being
done locally – that approximation gives very good results, and is well suited to a lattice context.

Updating Means and Variances

The terms γMPE
a , defined for each arc a of the phone recognition lattice, are essential to the

computation of the elements defined in Equations (11.36)–(11.45), and are directly used to
update the means and variances in Equations (11.31) and (11.32). By using the approximate
alignment presented above, computation of accumulator γMPE

a , presented in Equation (11.35),
can be done as follows:

γMPE
a = γa (c(a) − cavg), (11.47)

where γa is the occupancy probability of the arc a computed from the forward-backward
algorithm below, c(a) is the average RawPhoneAccuracy of sentences passing through the arc
a, and cavg is the average RawPhoneAccuracy of all the sentences in the recognition lattice.

Algorithm 4 shows how to compute γMPE
a . This algorithm is a variant of the one given in

[23]: it can easily be optimized in order to limit the number of operations.

Updating weights

For MPE training, as well as for MMIE, updating the HMM - of iterations by applying the
equation below:

w
(I+1)
q ,i =

γnum
q ,i + w

(I)
q ,i k

(I)
q ,i∑

i γnum
q ,i + w

(I)
q ,i k

(I)
q ,i

(11.48)

with

k
(I)
q ,i =

⎛
⎜⎝max

m

γden
q ,i

worig
q ,i

⎛
⎝ w

(I)
q ,i

worig
q ,i

⎞
⎠

C−1
⎞
⎟⎠ −

γden
q ,i

worig
q ,i

⎛
⎝ w

(I)
q ,i

worig
q ,i

⎞
⎠

C−1

, (11.49)

where worig
q ,i is the initial model weight before MPE, and w

(0)
q ,i = worig

q ,i . (I) is the iteration rank

used to compute the weight w
(I+1)
q ,i , following the recurrence relation existing between w

(I+1)
q ,i

and w
(I)
q ,i , and described in Equation (11.48). C is a positive smoothing constant which allows

to regulate convergence (the higher the value of C, the faster convergence will be reached).
Interestingly, the value of C is often set to 1 (resulting in a considerably simpler equation).
Usually, 100 iterations of Equation (11.48) are done; hence, the value of the updated weights
come from the terms w

(100)
q ,i .

Computing Dq,i Values

In order to update the means and variances of acoustic models, Equations (11.31) and (11.32)
use the smoothing constants Dq ,i , which ensure that the variances stay positive. Several means
of computing the values Dq ,i have been proposed for MMIE [31,34]. In his work on the MPE
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Algorithm 4: Algorithm for γMPE
a values computation, which are the most important

accumulators for MPE training; γMPE
a is defined in Equation (11.35)

Input: Phone recognition lattice with A arcs a sorted chronologically, K is the inverse of
the linguistic weight used during the initial recognition process, L(a) is the log
likelihood of arc a computed by initial MLE acoustic models, Tba is the lattice
transition probability between b and a derived from the language model.

Output: γM P E
a for each arc a

for a : 1 → A do
if a is a starting arc then

αa = L(a)K;
α′

a = PhoneAcc(a);
else

αa = 0;
tmpSum1 = tmpSum2 = 0;
foreach arc b preceding a do

αa = αa + αb × T K
ba × L(a)K;

tmpSum1 = tmpSum1 + α′
b × αb × T K

ba ;
tmpSum2 = tmpSum2 + αb × T K

ba ;
end
α′

a = PhoneAcc(a) + tmpSum1/tmpSum2;
end

end
for a : A → 1 do

if a is an ending arc then
βa = 1;
β′

a = 0;
else

β = 0;
tmpSum = 0;
foreach arc f following a do

βa = βa + T K
af × L(f )K × βf ;

tmpSum = tmpSum + T K
af × L(f )K × βf × (β′

f + PhoneAcc(f ));
end
β′

a = tmpSum/βa ;
end

end
tmpSum1 = tmpSum2 = 0;
foreach ending arc a do

tmpSum1 = tmpSum1 + α′
a × αa ;

tmpSum2 = tmpSum2 + αa ;
end
cavg = tmpSum1/tmpSum2;
foreach arc a do

γa = (αa × βa )/tmpSum2;
c(a) = α′

a + β′
a ;

γM P E
a = γa × (c(a) − cavg );

end
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approach, presented in [23], Povey proposes to choose Dq ,i such as

Dq ,i = max
(
2 ×Dmin

q ,i , E × γden
q ,i

)
, (11.50)

where Dmin
q ,i is the value that guarantees that variances are positive for each dimension of

the ith Gaussian of state q; and E is a constant equal to 1 or 2. Experiments carried out in
[23] show that the best value for E depends on the corpus and on the number of Gaussians per
state in the HMM set. With data for which an ASR system has a low error rate, and for which
a large number of Gaussians is available, E = 1 yields the best results. For the other cases,
E = 2 is usually the best choice.

11.6 Conclusion

Adaptation techniques for acoustic models are in use in the best speech-recognition systems,
such as the ones presented in [9,19,36]. There exist variants of the acoustic model-adaptation
techniques presented in this chapter, such as structural MAP, lattice-based MLLR, MAP-
MMIE, or MAP-MPE, MCE (close to MMI), MWE (which is the same as MPE but focusing
on word errors instead of phone errors), fMPE, presented in [26] which extends MPE to
acoustic features instead of acoustic models, but the fundamentals are the same.

The ASR systems that yield the best results these days make use of all the techniques
described here, as they are usually complementary. For example, Figure 11.6 illustrates a
possible processing sequence combining all of those techniques in order to enhance the
accuracy of a speech-recognition system. As a first step, the acoustic models are estimated
over a training corpus by using the classical maximum likelihood criterion. A first adaptation
can then be done using MAP, for example to build gender-dependent acoustic models by
splitting the training corpus into mono-gender corpora. That gender-based specialization of
the initial models can then be enhanced through a decrease of interspeaker distance – from an
acoustic model perspective—within each of the gender-dependent corpora. By applying the
CMLLR/SAT method to the acoustic features of the corpora, it is then possible to obtain more
precise acoustic models. In particular, the use of CMLLR transformations when processing
the test data will benefit from the use of CMLLR/SAT during the training phase. Finally,
since CMLLR/SAT only applies to acoustic features and not directly to the parameters of the
HMMs themselves, its use can easily be completed with a reestimation of those parameters
through discriminative training—for example using the MPE criterion. To make the ASR

Training 
corpus

Initial 
estimation

Specialization 
to gender

Inter-speaker
distance 
reduction

Discriminative 
training

MLE MAP CMLLR/SAT MPE

Training 
corpus

Large 
adaptation 

corpus
and/or

Acoustic 
models

Figure 11.6 Example of a sequential process for acoustic model estimation combining ML estimation
and adaptation techniques presented in this chapter.
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system significantly more robust to noise, this static acoustic model adaptation is usually
combined with dynamic adaptation, as presented in Section 11.2.

Other combinations are of course possible, using a different order, or using variants of the
adaptation techniques presented here. For example, some ASR systems use the vocal tract
length normalization (VTLN) approach in addition to MLLR or CMLLR. Reference [33]
showed that VTLN was an interesting complement to MLLR. However, it also concluded that
VTLN did not bring any enhancement as an addition to CMLLR with a high enough number
of iterations in the estimation of transformations matrices for the latter.

Some strategies consist in generating a set of different acoustic models through reestimation
using different adaptation techniques, in order to merge the results obtained by the various
models, as presented in [9]. More generally, the cross-adaptation approach, consisting in using
several ASR systems and adapting the acoustic models of each of them by using the outputs
of the other ones, offers very interesting prospects [27, 36].

Quantifying precisely the benefits of each of the techniques presented in this paper is
difficult. The gain depends on the applicative context, which can present many variations in
terms of task, language, training corpus size, adaptation corpus size, expected response time
for the ASR system, etc. Moreover, it is now rare to find one of those techniques used alone,
and the latest published results are based on combinations of many or all of those techniques.
It can be noticed that the benefits brought by acoustic model adaptation are crucial to the
development of a state-of-the-art ASR system these days: [9] showed that acoustic model
adaptation alone allowed to decrease word error rate from 17.2% down to 12.3% in the context
of broadcast news transcription in English. In [27], in the context of conversational telephone
in English, the use of cross-adaptation allows to bring the transcription error rate from 21%
down to 16.7%.

In conclusion, it has been seen that several acoustic model-adaptation techniques exist in
order to make an ASR system more robust. The major part of these techniques were not initially
proposed specifically to adapt acoustic models to noise, but they allow a significant decrease
of the word error rate in presence of noise, as shown in results presented in Section 11.2
Among these techniques, CMLLR, and its variants applied dynamically to acoustic features
in an unsupervised mode, seems to be one of the most interesting ones, especially because it
can be used in conjunction with other adaptation techniques.
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12.1 Introduction

Noise compensation techniques for robust automatic speech recognition (ASR) attempt to
improve system performance in the presence of acoustic interference. In feature-based noise
compensation, which includes speech enhancement approaches, the acoustic features that are
sent to the recognizer are first processed to remove the effects of noise (see Chapter 9). Model
compensation approaches, in contrast, are concerned with modifying and even extending the
acoustic model of speech to account for the effects of noise. A taxonomy of the different
approaches to noise compensation is depicted in Figure 12.1, which serves as a road map for
the present discussion.

The two main strategies used for model compensation approaches are model adaptation
and model-based noise compensation. Model adaptation approaches implicitly account for
noise by adjusting the parameters of the acoustic model of speech, whereas model-based noise
compensation approaches explicitly model the noise and its effect on the noisy speech fea-
tures. Common adaptation approaches include maximum likelihood linear regression (MLLR)
[55], maximum a posteriori (MAP) adaptation [32], and their generalizations [17, 29, 47].
These approaches, which are discussed in Chapter 11, alter the speech acoustic model in a
completely data-driven way given additional training data or test data. Adaptation methods
are somewhat more general than model-based approaches in that they may handle effects on
the signal that are difficult to explicitly model, such as nonlinear distortion and changes in
the voice in reaction to noise (the Lombard effect [53]). However, in the presence of additive
noise, failing to take into account the known interactions between speech and noise can be
detrimental to performance.

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
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Figure 12.1 Noise compensation methods in a Venn diagram. The shaded region represents model-
based noise compensation, the subject of this chapter. Note that the term “model” in “model compensa-
tion” refers to the recognizer’s acoustic model, whereas in “model-based noise compensation,” it refers
to the models of additive noise.

Model-based noise compensation approaches, in contrast to adaptation approaches, explic-
itly model the different factors present in the acoustic environment: the speech, the various
sources of acoustic interference, and how they interact to form the noisy speech signal. By
modeling the noise separately from the speech, these factorial models can generalize to com-
binations of speech and noise sounds not seen during training, and can explicitly represent
the dynamics of individual noise sources. A significant advantage of this approach is that
the compensated speech features and recognition result are jointly inferred, unlike in feature-
based approaches. The recognizer’s model of speech dynamics can be directly employed to
better infer the acoustic states and parameters of the interference model. Similarly, the model
of acoustic interference and its dynamics can be utilized to more accurately estimate the se-
quence of states of the speech model. Performing these inference processes jointly allows the
recognizer to consider different possible combinations of speech and interference.

Approaches that lie somewhere between feature-based and model-based noise compensation
include uncertainty decoding [19,57], which is discussed in Chapter 17, and missing-feature
methods [68, 83], which are discussed in Chapters 14–16. These methods involve additional
communication from the feature enhancement algorithm to the recognizer about the uncertainty
associated with the enhanced features being estimated. Model-based compensation approaches
can be seen as taking the idea of uncertainty decoding to its logical conclusion: by placing
the enhancement model inside the recognizer, the information about uncertainty is considered
jointly in terms of the noise model and the full speech model of the recognizer.

Difficult obstacles must be overcome in order to realize the full benefit of the model-based
approach. A primary challenge is the complexity of inference: if implemented naively, joint
inference in factorial models requires performing computations for each combination of the
states of the models. Because of the potential combinatorial explosion, this is prohibitively
expensive for many real applications. Alleviating these problems continues to be a core
challenge in the field, and therefore efficient inference is a central theme in this chapter.
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Another challenge is the dilemma of feature domains. In feature domains where the interac-
tion between speech and noise is additive, isolating the phonetic content of the speech signal
can be difficult. This is because phonetic content is imparted to speech by the filtering effect
of the vocal tract, which is approximately multiplicative in the power spectrum. However, in
the log spectrum domain the vocal tract filter is additive. Speech recognizers exploit this by
using features that are linear transforms of the log spectrum domain. In such domains, the
effect of noise is nonlinear, and compensating for it becomes difficult. As such, a major focus
of research has been to derive tractable inference algorithms by approximating the interaction
between speech and noise in the log spectrum domain.

This chapter presents the fundamental concepts and current state of the art in model-based
compensation, while hinting along the way at potential future directions.1 First, the general
framework of the model-based approach is introduced. This is followed by a review of the
feature domains commonly used for representing signals, focusing on the way in which
additive signals interact deterministically in each domain. A probabilistic perspective on
these interaction functions and their approximations is then presented. Following this, several
commonly used inference methods which utilize these approximate interaction functions are
described in detail. Because computational complexity is of paramount importance in speech
processing, we also describe an array of methods which can be used to alleviate the complexity
of evaluating factorial models of noisy speech. The chapter concludes with a discussion of
many promising research directions in this exciting and rapidly evolving area, with a focus
on how complex and highly structured models of noise can be utilized for robust speech
recognition.

12.2 The Model-Based Approach

Model-based approaches start with probabilistic models of the features of speech and the noise,
and combine them using an interaction model, which describes the distribution of the observed
noisy speech given the speech and noise. To make this explicit we will need some notation: p(x)
denotes a probability distribution. In the case that x is a discrete random variable, p denotes
a probability mass function, and if x is a continuous random variable, it denotes a probability
density function (pdf). To simplify notation, we shall specify the random variable considered
as a subscript, for example, px(x), only when required to avoid confusion. Assume that we have
probabilistic models for the features of the clean speech, xt , and the noise nt at time t: p(xt |sx

t )
and p(nt |sn

t ), which depend on some states sx
t and sn

t . In the context of speech recognition,
the clean speech model is typically a hidden Markov model (HMM), which describes the
dynamical properties of speech via transition probabilities over the unobserved states sx

t . The
interaction model then describes the conditional probability of the noisy speech given the clean
speech and the noise, p(yt |xt , nt). Inference in the model-based method involves computing
one or more of the following basic quantities: the state likelihood p(yt |sx

t , s
n
t ), the joint clean

speech and noise posterior p(xt , nt |yt , s
x
t , s

n
t ), and the clean speech estimate E(xt |yt , s

x
t , s

n
t )

for a given hypothesis of the speech and noise states sx
t and sn

t . The state likelihood, which is

1 Additional perspectives and background material may be found in recent reviews on this topic [13, 30].
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needed in speech recognition to compute the posterior probability of state sequences, involves
the integral

p(yt |sx
t , s

n
t ) =

∫
p(yt |xt , nt)p(nt |sn

t )p(xt |sx
t ) dxt dnt . (12.1)

The joint posterior of the speech and noise features can be computed using the above integral:

p(xt , nt |yt , s
x
t , s

n
t ) =

p(yt |xt , nt)p(nt |sn
t )p(xt |sx

t )
p(yt |sx

t , s
n
t )

. (12.2)

The expected value of the speech features, used in feature-based compensation, can then be
obtained as follows:

E(xt |sx
t , s

n
t ) =

∫
xt p(xt , nt |yt , s

x
t , s

n
t ) dxt dnt . (12.3)

For uncertainty-decoding approaches, a measure of uncertainty such as the posterior variance,
Var(xt |sx

t , s
n
t ), would also need to be computed (see Chapter 17 for more details). Note that

there are typically mixture components for each state, so that p(xt |sx
t ) =

∑
cx

t
p(xt |cx

t )p(cx
t |sx

t ).
In the rest of this chapter, we neglect mixture components to avoid clutter, as introducing them
is straightforward and irrelevant to the main problem of computing the above integrals.

Given this general framework, what remains is to show how the above integrals can be
accurately and efficiently estimated in the feature domains commonly used in speech modeling.
To that end, we turn to the interaction functions that result from analysis of signals in different
feature domains.

12.3 Signal Feature Domains

We shall present here the different representations of a signal commonly involved in auto-
matic speech recognition, introduce the corresponding notations, and describe the interaction
functions between clean speech and noise in each domain. Due to the complexity of these
interactions, and in particular due to the nonlinear transformations involved, approximations
are often required. We shall point them out as we proceed, and mention the conditions under
which they can be considered to be justified.

We assume that the observed signal is a degraded version of the clean signal, where the
degradation is classically modeled as the combination of linear channel distortion and additive
noise [1]. The flow chart of the basic front-end signal processing is shown in Figure 12.2.
Denoting by y[t] the observed speech, x[t] the clean speech, n[t] the noise signal, and h[t] the
impulse response of the linear channel-distortion filter, we obtain the following relationship
in the time domain, where ∗ denotes convolution:

y[t] = (h ∗ x)[t] + n[t]. (12.4)

The frequency content of the observed signal is then generally analyzed using the short-term
discrete Fourier transform (DFT): overlapping frames of the signal are windowed and the DFT
is computed, leading to the complex short-term spectrum. Let us denote by Y t,f (respectively,
Xt,f and Nt,f ) the spectrum of the observed speech (respectively, the clean speech and the
noise) at time frame t and frequency bin f , and by Hf the DFT of h (assumed shorter than the



P1: TIX/XYZ P2: ABC
JWST201-c12 JWST201-Virtanen September 3, 2012 9:8 Printer Name: Yet to Come Trim: 244mm × 168mm

Factorial Models for Noise Robust Speech Recognition 315

Figure 12.2 Basic front-end signal processing showing the notation used throughout the chapter for
different feature domains.

window length). Under the so-called narrowband approximation, the relationship between the
complex short-term spectra can be written as

Y t,f ≈ Hf Xt,f + Nt,f . (12.5)

Note that this approximation can only be justified for a short channel-distortion filter and
a smooth window function (i.e., whose Fourier transform is concentrated at low frequen-
cies) [48]. This approximation is extremely common in frequency-domain source separation
[42, 87].

We are now ready to transform (12.5) to the power spectrum domain:

|Y t,f |2 = |Hf |2 |Xt,f |2 + |Nt,f |2 + 2|Hf ||Xt,f ||Nt,f | cos(φt,f ), (12.6)

where φt,f is the phase difference between Hf Xt,f and Nt,f . The third term is often assumed
to be zero, leading to the following approximate interaction:

|Y t,f |2 ≈ |Hf |2 |Xt,f |2 + |Nt,f |2 . (12.7)

This approximation is commonly justified by noticing that the expected value of the cross-term
|Hf ||Xt,f ||Nt,f | cos(φt,f ) is zero if x and n are assumed statistically independent. However,
the expected value being equal to zero does not tell us much about the particular value taken at
a given time-frequency bin. A slightly stronger argument to justify the above approximation
is that of the sparsity of audio signals: if the speech and noise signals are sparse in the time-
frequency domain, their cross-term is likely to be very small most of the time. Nonetheless,
this term is not equal to zero in general, and we will see that the influence of the cross-term is
actually very complex.

In order to reduce the influence of pitch (and thus reduce the within-class variance relative
to the between-class variance when recognizing phonemes or sub-phonemes), the power
spectrum is converted to the so-called mel power spectrum. The mel power spectrum is
obtained by filtering the power spectrum using a small number L (typically 20 to 24 at a
sampling rate of 8 kHz, 40 at 16 kHz) of overlapping triangular filters with both center
frequencies and bandwidths equally spaced on the mel scale, believed to well approximate the
human perception of frequency. Denoting by Ml,f the response of filter l in frequency f , the
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mel power spectrum of the observed signal is defined as:

‖Y m
t,l‖2 =

∑
f

Ml,f |Y t,f |2 (12.8)

with similar definitions for that of the clean speech, ‖Xm‖2 , and of the noise, ‖Nm‖2 . As the
number L of filters is typically much smaller than the number F of frequency bins, considering
the mel power spectrum implies reducing the dimensionality of the features. Moreover, apart
from reducing the influence of pitch, it also implicitly changes the weight given to the data as
a function of frequency, in particular down-weighting the contribution of high frequencies. In
terms of noise robustness, the mel domain has a beneficial effect for voiced speech in broadband
noise: it gives preferential weight to the peaks of the spectrum, which are likely to correspond
to the harmonics of speech, where the signal-to-noise ratio is greatest. This is easy to see in
the log mel domain, since log

∑
f Ml,f |Y t,f |2 ≈ maxf

(
log(|Y t,f |2) + log Ml,f

)
. Finally, we

shall see that, as a side effect, it also leads to greater accuracy in the log-sum approximation,
which is introduced in Section 12.4.3.

We can now obtain an analog of (12.6) on the mel spectra:

‖Y m
t,l‖2 = ‖Hm

t,l‖2‖Xm
t,l‖2 + ‖Nm

t,l‖2 + 2
√

‖Hm
t,l‖2‖Xm

t,l‖2‖Nm
t,l‖2 αm

t,l , (12.9)

where the two newly introduced quantities

‖Hm
t,l‖2 =

∑
f Ml,f |Hf |2 |Xt,f |2

‖Xm
t,l‖2 , (12.10)

αm
t,l =

∑
f Ml,f |Hf ||Xt,f ||Nt,f | cos(φt,f )√

‖Hm
t,l‖2‖Xm

t,l‖2‖Nm
t,l‖2

(12.11)

incorporate complex interactions between the various terms. These terms are typically not
handled using the above formulae but through approximate models, as shown later in this
chapter.

In order to deal with the very wide dynamic range of speech, and motivated by considerations
on the roughly logarithmic perception of loudness by humans, the power spectrum and mel
power spectrum are often converted to the log domain. We define the log power spectrum of
the observed signal as

yt,f = log(|Y t,f |2) (12.12)

with analogous definitions for the log power spectra of the clean speech xt,f , the noise nt,f ,
and the channel distortion hf . This leads to the following interaction function in the log power
domain:

yt,f = log
(

ehf +xt , f + ent , f + 2e
h f + x t , f + n t , f

2 cos(φt,f )
)

. (12.13)

Similarly to the log power spectrum, we define the log mel power spectrum of the noisy
speech as

ym
t,l = log(‖Y m

t,l‖2) (12.14)
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and analogously for the log power spectra of the clean speech, xm
t,l , the noise, nm

t,l , and the
channel distortion, hm

t,l . The interaction function in the log mel power domain becomes

ym
t,l = log

(
ehm

t , l +xm
t , l + enm

t , l + 2e
h m

t , l + x m
t , l + n m

t , l
2 αm

t,l

)
. (12.15)

To decorrelate the features, and focus on the envelope characteristics of the log mel power
spectrum, which are likely to be related to the characteristics of the vocal tract, most speech
recognition systems further compute the so-called mel cepstrum, which consists of the low-
frequency components of the discrete cosine transform (DCT) of the log mel power spectrum.
Introducing the DCT matrix Cm of size K × L, where K is the number of mel cepstral
coefficients (typically around 13), the mel cepstrum of the noisy signal is defined as

ỹm
t = Cmym

t (12.16)

with similar definitions of the mel cepstra of the clean speech, x̃m
t , the noise, ñm

t , and the
channel distortion, h̃

m
t . As the matrix Cm is typically not invertible, the interaction function

in the mel cepstrum domain is generally approximated by

ỹm
t = Cm log

(
eDm(h̃m

t +x̃m
t ) + eDmñm

t + 2eDm h̃m
t + x̃m

t + ñm
t

2 ◦ αm
t

)
, (12.17)

where Dm is a pseudoinverse of Cm, such as the Moore–Penrose pseudoinverse, and ◦ denotes
the element-wise product.

Notice that the interaction becomes more and more complicated and nonlinear as we move
closer to the features that are used in modern speech recognizers. When we consider using
probabilistic models of the speech and noise in the feature domain, the more complicated the
interaction function is, the less tractable inference becomes. To make matters worse, state-
of-the-art systems do not stop at the mel cepstrum, but introduce further transformations that
encompass multiple frames. These include linear transformations of several frames of features,
such as the so-called delta and delta-delta features and linear discriminant analysis (LDA), as
well as nonlinear transformations such as feature-based minimum phone error (fMPE). Except
for the simplest cases, model-based noise compensation with such features has not yet been
addressed. We shall thus limit our presentation mainly to static (i.e., single frame) features.

12.4 Interaction Models

For each of the feature domains introduced above, we have shown that a domain-specific inter-
action function describes how noisy features relate to those of the clean speech and the additive
noise. In feature domains such as the complex spectrum, which contain complete information
about the underlying signals, the interaction function is deterministic. However, in feature
domains that omit some information, the unknown information leads to uncertainty about the
interaction, which in the model-based approach is described using a probabilistic interaction
function. In general, the model-based approach thus requires a distribution p(yt |xt , nt) over
the observed noisy features yt given the speech features xt and the noise features nt . The
definition of this function varies depending on the feature domain. In the feature domains most
used for modeling speech, approximations are generally required to make inference tractable.
In this section, we review interaction models for log spectrum features, as well as some of
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their extensions to the mel spectrum domain and the mel cepstrum. From here on we omit
time subscripts to simplify notation, bearing in mind that we are modeling the interaction in a
particular time frame t.

12.4.1 Exact Interaction Model

We consider for now the modeling of speech and noise energy in the log power spectrum do-
main. In (12.13), the unknown phase and channel are a source of uncertainty in the relationship
between the power spectra of the speech and noise. In the log power spectrum, the effect of
the acoustic channel is well approximated as an additive constant, for stationary reverberation
with an impulse response of length less than a frame. We can thus model the channel implicitly
as part of the speech feature, to simplify our discussion, with little loss in generality. See [13]
for a review in which it is explicitly included in the interaction model. The difference in phase
φf between the speech and noise signals is a remaining source of uncertainty

p(yf |xf , nf , φf ) = δ

(
yf − log

(
exf + enf + 2e

x f + n f
2 cos(φf )

))
. (12.18)

We need to compute
∫ π
−π p(yf |xf , nf , φf )p(φf ) dφf . We define αf = cos(φf ) and derive

pαf (αf ) from pφf
(φf ), noting that cos(φf ) = cos(−φf ), so that for φf ∈ (−π, π), we have

two solutions to |φf | = cos−1(αf ):

pαf (αf ) =
pφf

(φf ) + pφf
(−φf )∣∣∣ ∂ cos(φf )

∂φf

∣∣∣ =
pφf

(cos−1(αf )) + pφf
(− cos−1(αf ))√

1 − α2
f

. (12.19)

Given a distribution over αf , the log spectrum interaction model can be written generally as

p(yf |xf , nf ) = pαf (αf )
∣∣∣∣ ∂yf

∂αf

∣∣∣∣
−1

(12.20)

= pαf

(
1
2

(
eyf − x f + n f

2 − e
x f −n f

2 − e
n f −x f

2

))
1
2
eyf − x f + n f

2 , (12.21)

where αf is obtained as a function of yf , xf and nf from (12.13).
If we assume that the phase difference between speech and noise φf is uniformly distributed,

pφf
(φf ) = 1

2π , then a change of variables leads to

pαf (αf ) =
1

π
√

1 − α2
f

. (12.22)

This is a shifted beta distribution: pαf (αf ) = 1
2 Beta

(
αf +1

2 ; a = 1
2 , b = 1

2

)
where

Beta(x; a, b) = xa−1(1 − x)b−1 Γ(a+b)
Γ(a)Γ(b) [23]. Indicating uniform phase by U(φ), we
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(a) Contour plot of exact interaction model (b) Surface plot of exact interaction model

Figure 12.3 (a) Contour plot of the exact density in the log spectrum pU(φ)(yf = 0|xf , nf ) and
(b) surface plot of the same, showing how the function is unbounded at the edges. Contour line spacing
is logarithmic and the function has been truncated to fit in the plot box.

substitute (12.22) yielding

pU(φ)(yf |xf , nf ) =
1

2π eyf − x f + n f
2√

1 − 1
4

(
eyf − x f + n f

2 − e
x f −n f

2 − e
n f −x f

2

)2
(12.23)

as shown in [37], where it is called the devil function after its tortuous shape. Note that
interesting alternate expressions for the same quantity can be obtained after some algebraic
manipulations:

pU(φ)(yf |xf , nf )

=
1
π eyf√(

e
y f
2 + e

x f
2 + e

n f
2

) (
−e

y f
2 + e

x f
2 + e

n f
2

) (
e

y f
2 − e

x f
2 + e

n f
2

) (
e

y f
2 + e

x f
2 − e

n f
2

)
(12.24)

=
1
π eyf√(

eyf + exf + enf

)2
− 2

(
e2yf + e2xf + e2nf

) . (12.25)

Later, we discuss application of similar derivations to the mel domain considered in [90]. In the
amplitude domain, a similar distribution is known in the wireless communications literature
as the two-wave envelope pdf [21].

Figures 12.3(a) and 12.3(b) show the exact interaction density function (12.23). The interac-
tion density is highly nonlinear, and diverges to infinity along the edges of the feasible region.
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The edge toward the bottom left of Figure 12.3(a), where xf < 0 and nf < 0, results from cases
where the phase difference is zero and the signal amplitudes add up to the observation. The
two other edges, where xf > 0 or nf > 0, result from cases where the signals have opposing
phase and cancel to generate the observed signal.

Unfortunately, with (12.23), the integral in (12.1) is generally intractable, leaving sampling
as the only viable approach for inference (see, for example, [37]). Therefore, there have been a
series of approaches based on approximate interaction functions, especially in the mel domain,
to which we will turn after discussing more basic approximations in the log spectrum domain.

12.4.2 Max Model

Approximating the sum of two signals in a frequency band as the maximum of the two signals
is an intuitive idea that roughly follows our knowledge of masking phenomena in human
hearing2, and can be justified mathematically. Expressing (12.13) in the form

yf = max(xf , nf ) + log
(

1 + e−|xf −nf | + 2e−
|x f −n f |

2 cos(φf )
)

, (12.26)

we can see that when one signal dominates the other, the second term approaches zero, taking
the effect of phase along with it. This motivates the max approximation:

yf ≈ max(xf , nf ), (12.27)

which can be interpreted probabilistically using a Dirac delta:

pmax(yf |xf , nf ) def= δ
(
yf − max(xf , nf )

)
. (12.28)

Note that more general models based on the max approximation could be defined by addition-
ally modeling the uncertainty associated with the approximation. For example, the approxi-
mation error could be modeled as Gaussian, and, optionally, made dependent on SNR. Such
modeling has been thoroughly investigated for the log-sum approximation, as described below,
but, to the best of our knowledge, has not yet been investigated for the max approximation.

Remarkably, the max approximation is the mean of the exact interaction function (12.23)
[66]3:

E(yf |xf , nf ) =
∫

yf pU(φ)(yf |xf , nf ) dyf = max(xf , nf ). (12.29)

2 A high-intensity signal at a given frequency affects the human hearing threshold for other signals at that frequency
(signals roughly 6 dB below the dominant signal are not heard), and nearby frequencies, with diminishing effect, as
a function of frequency difference. Consult [59] for details.

3 While [66] reverts to an integration table to complete the proof of (12.29), it can be shown from (12.26)

by noticing that ∀η ∈ [0, 1),
∫

log(1 + η2 + 2η cos(θ)) dθ =
∫

log |1 + ηeiθ |2 dθ = 2Re(
∫

log(1 +
ηeiθ ) dθ) = 0, where θ is integrated over [0, 2π). After a change of variable z = ηeiθ , this can be obtained using

Cauchy’s integral formula f (a) = 1
2π i

∮
γ

f (z )
z−a dz applied to the holomorphic function f : z �→ log(1 + z) de-

fined in the open disk {z ∈ C : |z| < 1} of the complex plane, with a = 0 and on the circle γ of center 0 and radius
η. The case η = 1 results from simple computations and amounts to showing

∫ π
0 log(sin(θ)) dθ = −π log(2).
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The max approximation was first used for noise compensation in [62]. Shortly thereafter, in
[91], it was used to compute joint state likelihoods of speech and noise and find their optimal
state sequence using a factorial hidden Markov model.

Inference in the max model is generally intractable when p(x|sx) or p(n|sn) have de-
pendencies across frequency, as do, for example, full-covariance Gaussians. However, for
conditionally independent models of the form p(x|sx) =

∏
f p(xf |sx), the state likelihoods and

the posterior of (x, n) given the states can be readily computed, as shown below. Moreover,
the max model is also highly amenable to approximate inference when explicitly evaluating
all state combinations is computationally intractable, as described in Section 12.6.

12.4.3 Log-Sum Model

The log-sum model, used in [27, 60] based on the additivity assumption in the power domain
[7], uses the log of the expected value in the power domain to define an interaction function:

yf ≈ log E(eyf |xf , nf ) = log(exf + enf ), (12.30)

which can then be interpreted probabilistically using

plogsum (yf |xf , nf ) def= N (yf ; log(exf + enf ), ψf ), (12.31)

where Ψ is a variance intended to compensate for the effects of phase. In the limit as
ψf → 0, plogsum (yf |xf , nf ) becomes a Dirac delta function, leading to the model investigated
in [20].

In the case of the log mel spectrum, which is closer to the features used by a recognizer,
matters are made worse by the lack of a closed form expression for p(ym

l |xm
l , nm

l ). This situation
arises because the mel quantities are averages across frequency, but the signal interaction
involves the whole frequency domain, as can be seen for example in (12.11). On the other
hand, since the mel frequency domain averages together multiple bins, the effect of phase
averages out. In this case, the log-sum approximation becomes more accurate, as shown in
Figure 12.4(b).

However, the log-sum approximation does not account for the changing variance of ym
f

as a function of the SNR stemming from the complicated phase term in (12.9). Various
approximations have been proposed to handle this [16, 49, 85, 86, 90].

12.4.4 Mel Interaction Model

Although directly integrating out phase in the mel spectrum interaction (12.15) is intractable,
a frequently used approximation is to assume that the term αm

l in (12.15) has a known
distribution, p̃(αm

l ), that is independent of xm
l and nm

l . Using this approximation, we can
directly use (12.21):

pmel(y
m
l |xm

l , nm
l ) ≈ p̃αm

l

(
1
2

(
eym

l − x m
l + n m

l
2 − e

x m
l −n m

l
2 − e

n m
l −x m

l
2

))
1
2 eym

l − x m
l + n m

l
2 . (12.32)
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(a) Empirical interaction function for the log spectrum. (b) Empirical interaction function for an average of five
power spectrum bins.

Figure 12.4 Histograms representing empirical measurements of the interaction function for (a) the
log spectrum domain and (b) an average of five power spectrum bins typical of the mel spectrum domain.

Unfortunately, it is still intractable to perform exact inference in this model. Hence, in [90], the
integrals in (12.1) are computed by Monte Carlo, using a truncated Gaussian approximation
to p̃(αm

l ). The shifted beta distribution mentioned earlier also has the feature that it can
approximate a Gaussian for parameters a and b such that ab 
 1, so perhaps it could be used as
a unifying distribution, with empirically trained parameters, to handle the full range of cases.
Approximate inference methods are discussed in Section 12.5.

12.5 Inference Methods

We have defined a number of interaction models, and now turn to inference methods for these
interaction models. The main quantity of interest for speech recognition is the state likelihood
p(y|sx, sn) defined in (12.1). The posterior distribution of speech and noise p(x, n|y, sx, sn)
defined in (12.2) is also important but can often be computed using the same approximation
methods as the likelihood. Figures 12.6 and 12.7 show how different the likelihoods can be
for the various approximate inference methods described in this section.

12.5.1 Max Model Inference

The likelihood of the speech and noise features, x and n, under the max model is

pmax(y|x, n) =
∏
f

pmax(yf |xf , nf )

=
∏
f

δ(yf − max(xf , nf )). (12.33)

For models of the form p(x|sx) =
∏

f p(xf |sx) with conditionally independent features given
the states (e.g., diagonal-covariance Gaussians), the state likelihoods and the posterior of x



P1: TIX/XYZ P2: ABC
JWST201-c12 JWST201-Virtanen September 3, 2012 9:8 Printer Name: Yet to Come Trim: 244mm × 168mm

Factorial Models for Noise Robust Speech Recognition 323

Figure 12.5 Inference under the max interaction model for clean speech xf and noise nf , for a
single combination of states. In (a) the conditional prior p(xf , nf |sx, sn) = p(xf |sx)p(nf |sn) is
shown for a single feature dimension. The support of the likelihood function pmax(yf |xf , nf ) =
δ
(
yf − max(xf , nf )

)
, for yf = 0, is represented by a thick contour. The state likelihood p(yf =

0|sx, sn) is the integral along this contour. The feature posterior p(xf , nf |sx, sn, yf = 0), which is
proportional to the product of the prior and likelihood functions, is shown in (b).

given the states can be readily computed. Define the probability density of the event xf = yf

given state sx as pxf (yf |sx), and the probability of the event that xf ≤ yf as Φxf (yf |sx) def=
p(xf ≤ yf ) =

∫ yf

−∞ p(xf |sx)dxf , which is the cumulative distribution function (cdf) of xf given
sx evaluated at yf .

For a given combination of states sx, sn, the cdf of yf under the model factors for independent
sources [62, 75]:

p(yf ≤ yf |sx, sn) = p(max(xf , nf ) ≤ yf |sx, sn)

= p(xf ≤ yf , nf ≤ yf |sx, sn)

= Φxf (yf |sx)Φnf (yf |sn). (12.34)

The density of yf is obtained by differentiating the cdf:

p(yf |sx, sn) =
d

dyf

(
Φxf (yf |sx)Φnf (yf |sn)

)
= pxf (yf |sx)Φnf (yf |sn) + pnf (yf |sn)Φxf (yf |sx). (12.35)

The density of y then is

p(y|sx, sn) =
∏
f

(
pxf (yf |sx)Φnf (yf |sn) + pnf (yf |sn)Φxf (yf |sx)

)
. (12.36)

Inference under this model is illustrated in Figure 12.5, and compared to other methods in
Figures 12.6 and 12.7.

In the case that the p(x|sx) or p(n|sn) have dependencies across frequency, such as with
full-covariance Gaussians, inference in the max model is generally intractable. When the
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conditional joint cdf of y is differentiated with respect to each dimension of y, we obtain an
expression having 2F terms:

p(y|sx, sn) =
∑

F∈P([1..F ])

∂Φx(y|sx)
∂{yf }f∈F

∂Φn(y|sn)
∂{yf ′}f ′∈F̄

, (12.37)

where F ⊂ [1..F ] is any subset of the feature dimensions, F̄ is its complement, and the power
set P([1..F ]) is the set of all such subsets. A set F of feature indices corresponds to a hypothesis
that xf > nf , f ∈ F , or in other words that x dominates in the selected frequency bands. When
computing these quantities we would typically start with the joint pdf for each source, and
integrate to obtain the term of interest:

∂Φx(y|sx)
∂{yf }f∈F

=
∫
RF̄

px(yF , yF̄ |sx)dyF̄ , (12.38)

where we denote a subset of the variables indexed by set F as yF = {yf }f∈F , and the region of
integration is the negative half-space of yF̄ defined by RF̄ =

⊗
f∈F̄ (−∞, yf ]. These integrals

are intractable, in general, for conditionally dependent models. Such integrals are also used in
the marginalization approach to missing data methods as discussed in Chapter 14, and are a
source of difficulty in applying these methods in the cepstral domain.

The equations above can be directly generalized to the case of multiple independent sources,
as shown in [75]. In the general case of conditionally dependent features, there are then KF

terms in the conditional pdf of y, where K is the number of source signals. In the case of
conditionally independent features, the model factorizes over frequency, and only univariate
forms of the integrals above have to be computed. However, there remains an exponential
number of combinations of the states of each source that need to be considered. Approximate
techniques for addressing this computational issue are discussed below in the section on
efficient inference methods.

12.5.2 Parallel Model Combination

In an approach known as parallel model combination (PMC), [28] makes use of the log-
sum approximation, and assumes that the conditional probability ppmc(yf |sx, sn) is a normal
distribution in the log spectrum or log mel spectrum domain. Moment-matching is then used
in the power domain to estimate the parameters of ppmc(yf |sx, sn). To avoid clutter, we omit
conditioning on the states and simply write ppmc(yf ) in this section. For simplicity, we present
the method using diagonal-covariance models. The method is straightforward to extend to the
case where the models are full-covariance [28], or are defined in a transformed domain such
as the mel cepstrum, although at considerable additional computational cost. PMC defines
ppmc(yf ) = N (yf ; μ̂yf , σ̂yf ), and chooses the mean μ̂yf and the variance σ̂yf so that

EN (yf ;μ̂yf
,σ̂yf

)(|Y f |2) = E(|Xf |2) + E(|Nf |2),
(12.39)

VarN (yf ;μ̂yf
,σ̂yf

)(|Y f |2) = Var(|Xf |2) + Var(|Nf |2).



P1: TIX/XYZ P2: ABC
JWST201-c12 JWST201-Virtanen September 3, 2012 9:8 Printer Name: Yet to Come Trim: 244mm × 168mm

Factorial Models for Noise Robust Speech Recognition 325

As xf ∼ N (xf ; μxf , σxf ), the following identities hold:

E(|Xf |2) = E(exf ) = eμxf
+ 1

2 σxf ,

(12.40)
Var(|Xf |2) = Var(exf ) = (eσxf − 1)e2μxf

+σxf ,

and similarly for nf . These identities can be inverted for yf to yield

μ̂yf = log EN (yf ;μ̂yf
,σ̂yf

)(|Y f |2) − 1
2
σ̂yf ,

(12.41)

σ̂yf = log

⎛
⎝1 +

VarN (yf ;μ̂yf
,σ̂yf

)(|Y f |2)

(EN (yf ;μ̂yf
,σ̂yf

)(|Y f |2))2

⎞
⎠ .

Substituting (12.39) and then (12.40) into (12.41) yields

μ̂yf = log
eμxf

+ 1
2 σxf + eμnf

+ 1
2 σnf

e
1
2 σ̂yf

,

(12.42)

σ̂yf = log

(
1 +

(eσxf − 1)e2μxf
+σxf + (eσnf − 1)e2μnf

+σnf

(eμxf
+ 1

2 σxf + eμnf
+ 1

2 σnf )2

)
.

In other words, PMC assumes that the distributions of the clean speech and the noise are
log-normal, and approximates the sum of two log-normal distribution as another log-normal
distribution whose parameters are estimated by moment-matching in the power domain. This
method is known as the Fenton–Wilkinson method [24]. Returning to writing state-conditional
models, and with the parameters of ppmc(yf |sx, sn) in hand, the state likelihood can now be
evaluated. Note that this method does not supply an estimate of the speech features given the
noisy features.

PMC is the result of three approximations: the log-sum approximation, the assumption
that p(yf |sx, sn) is Gaussian in the log domain, and the Fenton–Wilkinson approximation,
which uses moment-matching in the power domain instead of moment-matching in the log
domain. The latter is problematic because the mean and variance in the power domain are
not sufficient statistics of a log-normal distribution. Because of this, the mean and variance
of the true conditional distribution p(yf |sx, sn) in the log domain are generally different from
those estimated by the Fenton–Wilkinson method, as can be seen in Figure 12.6, where the
Fenton–Wilkinson approximation is compared to Monte-Carlo approximations of the true
conditional distribution. A Monte-Carlo method known as data-driven PMC was developed
in [28, 30] to address this problem. Data-driven PMC estimates the mean of y by sampling
from the prior distributions of speech and noise, and computing the empirical mean of the
noisy speech under the log-sum approximation. Other log-normal approximation methods for
the sum of independent log-normal distributions have been proposed which instead directly
estimate the sufficient statistics in the log domain [69,82,95]. Section 12.5.3 concerns another
method that in some cases abandons the assumption that p(yf |sx, sn) is log-normal altogether.



P1: TIX/XYZ P2: ABC
JWST201-c12 JWST201-Virtanen September 3, 2012 9:8 Printer Name: Yet to Come Trim: 244mm × 168mm

326 Techniques for Noise Robustness in Automatic Speech Recognition

Figure 12.6 Comparison of the probability distribution p(yf |sx, sn) under Gaussian priors for the
speech and noise for different interaction models and inference methods. In all cases, the speech prior
has mean 4 dB, and standard deviation 1 dB, and the noise prior has mean 0 dB and standard deviation
10 dB. The MC uniform phase is a Monte-Carlo approximation to the exact interaction model in the log
spectral domain with uniform phase (the devil function), (12.21), using the max-model control variate
method of [37]. MC Gaussian phase factor is the Monte-Carlo approximation to (12.53) with α variance
0.2, using a similar control variate approach. Both Monte-Carlo estimates are here computed with 10000
samples per value of yf . The max model and PMC (Fenton–Wilkinson) approaches are straightforward,
whereas VTS approaches depend upon the expansion point and iteration. Here, we show VTS expanded
at the prior mean.

12.5.3 Vector Taylor Series Approaches

Unlike PMC, the vector Taylor series (VTS)-based approaches do not assume that the condi-
tional probability distribution p(yf |sx, sn) is Gaussian in the log spectrum or log mel spectrum
domain. Instead, they linearize the log-sum interaction function (12.31) about an expansion
point that is optimized for each observed yf . The resulting conditional probability distribution
is non-Gaussian and performs better in general than the PMC approximation. As an added
benefit, the method yields estimates of the clean speech and is amenable to feature-based
and model-based methods. The early VTS work of [60] was further developed by completing
the probabilistic framework and introducing iterations on the expansion point in an algo-
rithm known as Algonquin [26,50], which we describe here. Although the original algorithms
included reverberation of the speech in the framework, we here relegate these channel com-
ponents to the speech model for simplicity.

Here, we present the algorithm for general full-covariance models, and omit the dependency
on states of each model for simplicity of notation. Note that for diagonal-covariance models,
the features decouple and can be handled using the formula below independently for each
feature. To handle the joint posterior, we concatenate x and n to form the joint vector z =
[x�n�]� and use the function g(z) = log(ex + en), where the logarithm and exponents operate
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Figure 12.7 Comparison of the same probability distributions as Figure 12.6, but with different Gaus-
sian priors for the speech and noise. Here, the speech prior has mean 2 dB, and standard deviation 1 dB,
and the noise prior has mean 0 dB and standard deviation 2 dB. In this case, the prior is close to the
point where the max model is less accurate (0 dB SNR). PMC, on the other hand, appears to do better
because the variances of speech and noise are closer to each other. VTS also is more accurate because
the expansion point at the prior is closer to the posterior mode.

element-wise on x and n. Using a first-order Taylor series expansion at the point z0 , the
conditional distribution plogsum (y|x, n) introduced in (12.31) is approximated as

plogsum (y|z) ≈ plinear(y|z; z0) = N (y; g(z0) + Jg (z0)(z − z0), Ψ), (12.43)

where Ψ = (ψf )f and Jg (z0) is the Jacobian matrix of g, evaluated at z0 :

Jg (z0) =
∂g

∂z

∣∣∣∣
z0

=
[

diag
(

∂g
∂x

)
diag

(
∂g
∂n

) ]∣∣∣
x0 ,n0

=
[
diag

(
1

1+en0 −x0

)
diag

(
1

1+ex0 −n0

) ]
.

(12.44)

We assume that x and n are independent and Gaussian distributed when conditioning on
the corresponding speech and noise states (which we here omit):

p(x) = N (x; μx, Σx), p(n) = N (n; μn, Σn). (12.45)

Hence, z is Gaussian distributed with mean and covariance

μz =

[
μx

μn

]
, Σz =

[
Σx 0
0 Σn

]
. (12.46)

This leads to a simple linear Gaussian model with a Gaussian prior p(z) and a Gaussian
conditional distribution plinear(y|z; z0) whose mean is a linear function of z and whose
covariance is independent of z. It is an easy and classical result in Bayesian theory that both
plinear(y; z0) and the posterior plinear(z|y; z0) are then Gaussian, and that their mean and
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Figure 12.8 Comparison of the probability distribution p(yf |sx, sn) for VTS computed with different
expansion points, using the same priors as Figure 12.6. Expansion points are (a) the prior mean (prior)
which is the most commonly used expansion point, (b) the posterior mean, (MMSE) estimated using
the MC Gaussian phase factor method shown in Figure 12.6, (c) the point having maximum likelihood
(ML) under the linearization, and (d) the mode of the posterior distribution (MAP) on the log-sum
approximation curve, computed by grid search. Note that the latter is discontinuous because it switches
from one mode of the posterior to another which has greater posterior density, but less likelihood when
integrated under the linearization.

covariance can be easily computed from those of the prior and the conditional distribution. In
particular, we can obtain the mean and covariance of the posterior by completing the square
with respect to z in the exponent of plinear(y|z; z0)p(z). The covariance Σz|y turns out to be
independent of y:

Σz|y =
[
Σ−1

z + Jg (z0)�Ψ−1Jg (z0)
]−1

, (12.47)

while the mean is given by

μz|y = Σz|y
[
Σ−1

z μz + Jg (z0)�Ψ−1(y − g(z0) + Jg (z0)z0)
]

def=

[
μx|y
μn|y

]
. (12.48)

By further integrating out z in plinear(y|z; z0)p(z), we obtain the mean and covariance of
p(y; z0):

μy = g(z0) + Jg (z0)(μz − z0), (12.49)

Σy = Ψ + Jg (z0)ΣzJg (z0)�. (12.50)

Note that although plinear(y; z0) is Gaussian for a given expansion point, the value of z0 is
the result of optimization and depends on y in a nonlinear way, so that the state likelihood is
non-Gaussian as a function of y.
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Figure 12.9 Comparison of the probability distribution p(yf |sx, sn) for iterative VTS at different
iterations, using the same priors as Figure 12.6. The convergence properties of iterative VTS are shown
by plotting each of the first 20 iterations, followed by each of the last 10 iterations for a total of 30. The
fact that these last iterations still differ on the left-hand tail of the distribution indicates that the algorithm
is oscillating between different solutions. Here, the iterations are started at the prior mean, but other
expansion points lead to similar behavior. It is interesting to note that in this case, the minimum of the
last several iterations of VTS makes a nice approximation of the probability distribution given by MC
Gaussian phase factor shown in Figure 12.6.

We shall note as well that the posterior mean can be rewritten in a simpler and more intuitive
way using the above covariance:

μz|y = μz + ΣzJg (z0)�Σ−1
y

(
y − μy

)
. (12.51)

The posterior mean is thus obtained as the sum of the prior mean and a renormalized version
of the bias between the observed noisy speech and the predicted value of the noisy speech at
the prior mean given a linearization of the interaction function at z0 .

The linearization point is important to the accuracy of the algorithm, as can be seen in
Figure 12.8, and theoretically should be near the mode of the “true” posterior obtained using
plogsum (y|x, n) as the conditional probability. Therefore, whereas the initial linearization point
is at the prior mean, in each iteration the estimated posterior mean is used to obtain a new
expansion point z0 = μz|y . Because the interaction function is shift invariant, in the sense that
y + v = g(x + v, n + v) for any v, the linearization at z0 = [x0 ; n0 ] is a plane tangent to g

along the line in x, n defined by x − x0 = n − n0 . Since y is observed, this is equivalent, as
illustrated in Figure 12.10, to linearizing at a point on the curve determined by the observation
y = g(x′

0 , n′
0), defined by x′

0 = μx|y + v, n′
0 = μn|y + v, where v = y − g(μx|y , μn|y). This

point is not necessarily at the posterior mode along the curve, so the expansion can be a
source of trouble for the algorithm. Most notably, it does not guarantee the convergence of the
likelihood estimate which is known to fail in many conditions [49], as illustrated in Figure 12.9.
It may be better to pose the problem in terms of finding the mode of the posterior distribution
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Figure 12.10 Illustration of the linearization procedure in VTS for a single frequency. The transparent
surface on top represents the log-sum interaction y = log(ex + en ), while the plane below it is the
linearization of g, which is tangent to that surface at (x0 , n0 , g(x0 , n0)), for (x0 , n0) = (5, 8). This
plane is also tangent along the dash-dotted line, because g has the property that g(x + v, n + v) = y + v
for any v. The two solid curves represent y = log(ex + en ) for y = 0 and y = g(x0 , n0). The dashed
line is the tangent to 0 = log(ex + en ) at (x0 , n0) in the y = 0 plane.

directly. Optimization methods such as quasi-Newton methods involve differentiating the
log posterior, and thus compute differentials of g(x), but can step toward the optimum in a
smoother and faster way [51].

Our discussion of VTS approaches above has assumed the use of source models based in
the log (mel) power spectral domain, rather than cepstral domain, and neglected the explicit
modeling of channel effects. Both circumstances can be readily handled in the VTS framework,
assuming that an invertible DCT matrix C is used to transform to the cepstral domain. However,
often the cepstra are generated by eliminating higher-order coefficients, in order to minimize
the influence of pitch, and the Moore–Penrose pseudoinverse is commonly used. A more
principled approach would be to supply a model of the upper cepstra so that the transformation
is invertible.

In general, recognizers model features of multiple frames rather than a single one. This
creates a model in which inference at the current frame is dependent upon previous frames.
In [15], models of both static (i.e., single frame) and dynamic (i.e., differences across frame)
features are used as priors for Algonquin. Although exact inference in such a model is generally
intractable, [15] made the expedient approximation of using point estimates of the clean speech
of previous frames to compute the priors of the current frame.

Unfortunately, as mentioned earlier, state-of-the-art speech recognizers use more complex
and non-invertible transformations of multiple frames, such as LDA or fMPE transforms.
Because of the nonlinearity and dimensionality reduction, further approximations would be
necessary to perform model-based noise compensation with such models. In general, as
previously mentioned, fleshing out the models to provide some distributions of the dimensions
that are normally discarded is one avenue of attack.
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(a) Contour plot of phase-factor model (b) Surface plot of phase-factor model

Figure 12.11 (a) Contour plot of phase factor approximation and (b) surface plot of the same. Contour
line spacing is logarithmic and the function has been truncated to fit in the plot box.

12.5.4 SNR-Dependent Approaches

SNR-dependent approaches [16, 20, 49], also known as “phase-sensitive” approaches, are
similar to the basic VTS model except that a Gaussian model is used for the phase factor α in
(12.9), rather than for the entire phase term. Thus, neglecting the channel effects, the model is

y = log(ex + en + 2e
x+ n

2 ◦ α). (12.52)

The phase factor α ∈ [−1, 1]F is modeled as a zero mean Gaussian p(α) = N (α; 0, Σα ) trun-
cated to the interval [−1, 1] in each dimension. The variance Σα is usually assumed to be
diagonal. Using (12.21), we then have

psnrdep(y|x, n)= Nα

(
1
2
(ey−x+ n

2 − e
x−n

2 − e
n−x

2 ); 0, Σα

) ∣∣∣∣diag
(

1
2
ey−x+ n

2

)∣∣∣∣ . (12.53)

This distribution is illustrated in Figure 12.11. It is especially appropriate in the log mel domain
and corresponds closely to the empirical distribution shown in Figure 12.4(b). Although the
variance of α does not change as a function of SNR, the uncertainty of y given x and n

becomes a function of SNR due to the nonlinearity of the interaction. In [49], in addition to
modeling α as a Gaussian, the interaction was also approximated using

y = log(ex + en) + log
(

1 +
2

e
x−n

2 + e
n−x

2

◦ α

)

≈ log(ex + en) +
2

e
x−n

2 + e
n−x

2

◦ α. (12.54)
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Using this interaction function in (12.20) leads to a conditionally Gaussian likelihood function:

psnrdepvar(y|x, n) = N
(
y; log(ex + en), A�ΣαA

)
. (12.55)

The matrix A def= diag
(
2/(e

x−n
2 + e

n−x
2 )

)
, where division is defined element-wise, is a func-

tion of the SNR, x − n. In this case, the dependency of the uncertainty upon the SNR clearly
appears in the variance, which reaches a maximum for an SNR of zero.

In [16], posteriors of clean speech and likelihoods of noisy speech were computed using
(12.53), using an improved version of the VTS/Algonquin method, based on second-order
expansion of the joint distribution, psnrdep(y|x, n)p(x)p(n). The proposed algorithm was
used to estimate the likelihoods of noisy speech, the posterior mean of the clean speech and
to optimize the noise model given noisy speech.

12.6 Efficient Likelihood Evaluation in Factorial Models

Exact inference methods for robust ASR using factorial models require computing the joint
state likelihood p(y|sx, sn) ≡ p(y|sz), introduced in (12.1), for all combinations of speech
and noise states. Therefore, exact inference generally becomes computationally intractable
when the number of state combinations is large. Efficient approximate inference naturally
involves either reducing the amount of computation required to estimate p(y|sx, sn), reducing
the number of state combinations that are evaluated, or both.

12.6.1 Efficient Inference using the Max Model

In Section 12.5.1, we showed that if the conditional prior distributions of speech and noise
have no statistical dependencies between features, the joint likelihood of a given combination
of speech and noise states under the max interaction model is given by:

pmax(y|sx, sn) =
∏
f

(
pxf (yf |sx)Φnf (yf |sn) + pnf (yf |sn)Φxf (yf |sx)

)
. (12.56)

For K explicitly modeled acoustic sources, the result becomes

p(y|{sk}) =
∏
f

∑
k

pxk
f

(
yf |sk

) ∏
j �=k

Φ
xj

f

(
yf |sj

)
, (12.57)

where sk denotes the acoustic state of the kth source xk , and {sk} denotes {sk}K
k=1 =

{s1 , s2 , . . . , sK }, a particular configuration of the state variables of each source.
An advantageous property of this likelihood function is that it is composed of terms with

factors that depend on the state of a single acoustic source. Therefore, the cost of computing
these factors scales linearly with the number of acoustic sources that are explicitly modeled.
However, exact inference using the max model requires that the product of sums in (12.36)
be computed for every combination of states, which scales exponentially with the number
of sources. This is true even for models in which the feature dimensions are conditionally
independent given the states.
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The joint likelihood (12.57) is often approximated to depend only on the acoustic model of a
single source, for example, as done in [38], where p(yf |{sk}) ≈ pxi

f
(yf |si), i = arg maxk μsk .

This averts the cost of computing the cumulative distribution functions and the additions and
multiplications in (12.57), but inference still scales exponentially with K , since the resulting
likelihood function is, in general, different for every combination of states. In the case that
all Gaussians in all acoustic models share the same variance at each dimension, the branch-
and-bound algorithm in [80] can be applied to do an approximate search for the MAP state
configuration, but this approach also has exponential worst-case complexity, and is not well
suited for approximating the likelihoods of the states, because the upper bounds produced
during the search are very loose.

Recently, a new variational framework for the max model was introduced [76–78]. The
framework hinges on the observation that in each feature dimension, a latent hidden variable,
corresponding to the identity of the source that explains the data in that dimension, is being
integrated out in the sum in (12.57). Denoting the mask variable for feature f by df , and a
particular choice of mask values for all of the features by {df } def= {df }F

f =1 , we have

p(y, {df }|{sk}) =
∏
f

p(yf , {df }|{sk}) (12.58)

=
∏
f

p
x

d f
f

(yf |sdf )
∏

j �=df

Φ
xj

f
(yf |sj ), (12.59)

where x
df

f and sdf denote the feature and state of the source that explains feature f . Note

that p(yf , {df }|{sk}) is simply the product of the probability that source df explains the data,
and all other source features have values less than the data. This lifted max model is derived
more rigorously in [78], and explicitly models which source explains each feature dimension.
The lifted max model has the special property that p(y, {df }|{sk}) factors over the acoustic
sources, which immediately implies that if the mask values {df } are known, inference of the
acoustic sources decouples. Since p(yf , {df }|{sk}) factors over frequency, it also follows that
if the state combination is known, then the inference of each df decouples from the others.
In general, it is intractable to compute all possible acoustic masks (2F ), or all possible state
combinations (

∏
k |sk |), but these properties can be exploited using variational methods.

By Jensen’s inequality, the log probability of the data under the lifted max model can be
lower-bounded as follows:

log p(y) = log
∑

{sk },{df }
p(y, {sk}, {df }) (12.60)

≥
∑

{sk },{df }
q({sk}, {df }) log

p(y, {sk}, {df })
q({sk}, {df })

def= L (12.61)

for any probability distribution q on the states {sk} and masks {df }. The difference between
(12.60) and (12.61) is the Kullback–Leibler (KL) divergence between the exact posterior under
the model, p({sk}, {df }|y), and q({sk}, {df }) [44]:

D(q{sk },{df } || p{sk },{df }|y) = log p(y) − L, (12.62)
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where we use the random variable notation for sk and df to indicate that the divergence is only
a function of their distribution and not their values. When q({sk}, {df }) = p({sk}, {df }|y), the
bound is tight. By optimizing the variational parameters of q({sk}, {df }) to maximize the lower
bound L in (12.61), we at the same time minimize (12.62). The resulting q distribution can
be utilized as a surrogate for the true posterior p({sk}, {df }|y), and used to make predictions.
Because the joint distribution p(y, {sk}, {df }) factors, any form of q({sk}, {df }) that factors
over both {sk} and {df } makes optimizing the bound L in (12.61) linear in the number
of sources K , the number of features F , and number of states

∑
k |sk |. For example, if

q({sk}, {df }) =
∏

f q(df )
∏

k q(sk ), the bound L becomes

L =
∑

{sk },{df }

∏
f

q(df )
∏
k

q(sk ) log

∏
f p

x
d f
f

(yf |sdf )
∏

j �=df
Φ

xj
f
(yf |sj )

∏
k p(sk )∏

f q(df )
∏

k q(sk )

=
∑
f ,k

(
qdf

(k)
∑
sk

q(sk ) log pxk
f
(yf |sk ) + (1 − qdf

(k))
∑
sk

q(sk ) log Φxk
f
(yf |sk )

)

+
∑
f

H(qdf
) −

∑
k

D(qsk || psk ) (12.63)

as shown in [76], where H(qdf
) = −∑

df
q(df ) log q(df ) denotes the entropy of qdf

. Clearly
the bound can be computed without considering combinations of source states, or combinations
of feature mask configurations, and so scales linearly with the number of sources, states per
source, and feature dimension. Importantly, this implies that the chosen q distribution can
also be iteratively inferred in time linear in these variables. As described in Section 12.7.2,
these variational approximations and their extensions have been explored in the context of
multi-talker speech recognition.

12.6.2 Efficient Vector-Taylor Series Approaches

To make inference in VTS-based systems more efficient, the following approximations are
typically made:

� The noise is modeled by a single Gaussian to reduce the number of joint states to the number
of states in the speech model, so that |sz| = |sx|, where |s| denotes the number of discrete
values that the state s can take.

� The data likelihood plinear(y|sz; z0) is assumed to have a diagonal covariance matrix:

plinear(y|sz; z0) = N (y; μy|sz , Σy|sz) ≈ N (y; μy|sz , diag(Σy|sz)),

μy|sz = g(z0) + Jg (z0)(μz|sz − z0),

Σy|sz = Ψ + Jg (z0)Σz|szJg (z0)�.

This reduces the cost of evaluating plinear( y|sz; z0) by a factor of F , the dimension of y.
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� The approximation of the conditional likelihood plogsum (y|x, n) as a Gaussian with mean
linear in x and n is shared by sufficiently similar speech states

plogsum (y|z) ≈ plinear(y|z, sz) ≈ plinear(y|z, srz , sz), (12.64)

where the state srz is a “low-resolution” surrogate for the joint state sz, and |srz | � |sz|. srz

is often referred to in the speech literature as a “regression class variable” [31]. Similarly,
hierarchical acoustic models, which consist of multiple acoustic models trained at different
model resolutions in terms of number of components can be used to compute surrogate
likelihoods using VTS-methods while “searching” for probable state combinations.

The amount of computational savings brought by (12.64) depends on the specific approx-
imations made, and several have been proposed [30]. Techniques such as joint uncertainty
decoding (JUD) and VTS-JUD [57, 96], introduced in more detail in Chapter 17, have the
advantage that only |srz | sets of “compensation” parameters need to be computed, but the
parameters of all |sz| states of the acoustic model need to be transformed. Predictive CMLLR
(PCMLLR) [31], conversely, implements model compensation via a feature transformation:

plinear(y|sz) ≈ pcmllr(y|sz, srz) = |Asrz | N (Asrz y + bsrz ; μx|sx , Σx|sx), (12.65)

where Asrz and bsrz are estimated to minimize the KL divergence of pcmllr(y|sz, srz) from
plinear(y|sz), and the Jacobian determinant |Asrz | ensures that the distribution in the right-
hand side normalizes over y. Note that the parameters of the speech model are not modified.
Compared to model transformation methods that utilize diagonal-covariance approximations
of Σy|sz , PCMLLR has the advantage that correlation changes in the feature vector can be
modeled via Asrz . Such modeling has been shown to improve ASR performance [30]. Another
important advantage is that the PCMLLR model can be adapted in a straightforward manner
like CMLLR [30].

The computational burden of computing likelihoods for all combinations of states in VTS
models can also be alleviated using variational methods. A variational form of Algonquin was
first discussed in [27], and is described in detail for the assumption of Gaussian posteriors
for x and n in [49]. These algorithms iterate between computing linear approximation(s) of
the log-sum function given the current estimate(s) of the speech and noise, and optimizing
a variational lower bound on the resulting approximation to the probability of the data to
update the speech and noise estimate(s) and acoustic likelihoods. The idea of conditioning
the variational posterior on auxiliary state variables to control the number of masks that are
inferred when doing inference in the max model [77, 78] could be similarly applied in the
Algonquin (or VTS) framework to control the number of Gaussians used to approximate the
posterior distribution of the features.

12.6.3 Band Quantization

Band quantization (BQ) is a technique that can be used to reduce the number of likelihoods
that need to be computed per dimension for models with conditionally independent features.
A band-quantized Gaussian mixture model (BQGMM) is a diagonal-covariance GMM that is
constrained as follows. At each feature dimension f , an additional discrete random variable ax

f



P1: TIX/XYZ P2: ABC
JWST201-c12 JWST201-Virtanen September 3, 2012 9:8 Printer Name: Yet to Come Trim: 244mm × 168mm

336 Techniques for Noise Robustness in Automatic Speech Recognition

Figure 12.12 In band quantization, a large set of multidimensional Gaussians is represented using a
small set of shared one-dimensional Gaussians optimized to best fit the original set of Gaussians. Here,
we illustrate 12 two-dimensional Gaussians (solid ellipses). In each dimension, we quantize these to a
pool of four shared one-dimensional Gaussians (density plots on axes). The means of these are drawn as a
grid (dashed lines), on which the quantized two-dimensional Gaussians (dashed ellipses) can occur only
at the intersections. Each quantized two-dimensional Gaussian is constructed from the corresponding
pair of one-dimensional Gaussians, one for each feature dimension. In this example, we represent 24
means and variances (12 Gaussians × 2 dimensions), using 8 means and variances (4 Gaussians ×
2 dimensions).

is introduced, and the feature distribution is assumed to be Gaussian given ax
f . The mapping

from GMM states cx to atoms ax
f is usually constrained to be deterministic:

p(x) =
∑
cx

πcxN
(
x; μcx , σ

2
cx

)
(12.66)

≈
∑
cx

πcx

∏
f

N
(
xf ; μax

f (cx) , σ
2
ax

f (cx)

)
. (12.67)

By design |ax
f | � |cx|, so the number of Gaussians per dimension is vastly reduced. Figure

12.12 illustrates the idea. This concept was pioneered in early speech recognizers to reduce
the computational load and promote generalization from small training sets [5, 6, 40, 41].

Despite the relatively small number of components |ax
f | in each band, taken across bands,

BQGMMs are capable of expressing |ax
f |F distinct patterns in an F -dimensional feature

space. The computation and storage requirements of a BQGMM relative to its corresponding
diagonal-covariance GMM are reduced by approximately a factor of |cx|

|ax
f | . For speech models,

this factor is generally on the order of 100 for negligible loss in ASR performance. The
computational savings can be even more significant when using factorial models, which in
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general scale exponentially with the number of acoustic sources that are distinctly modeled. For
example, in [38], BQGMMs are used to separate and recognize two simultaneously speaking
talkers, and their use speeds up the cost of a full evaluation of the likelihoods by over three
orders of magnitude. Importantly, band quantization can be applied to hierarchical acoustic
models to reduce their memory footprint, and, depending on the search parameters used,
deliver significant additional computational savings [4].

BQGMMs are generally estimated from an existing GMM, by clustering the Gaussians
in each dimension using K-means clustering, with the KL-divergence between Gaussians as
the distance metric [6]. More generally, BQGMMs can be identified by minimizing the KL-
divergence between the BQGMM and an existing GMM. This objective cannot be analytically
optimized. An analytic algorithm that uses variational techniques to approximate the KL
divergence between GMMs is presented in [36], and was used to construct speech BQGMMs
in [38].

12.7 Current Directions

We have reviewed some approaches to handling the problems of intractability in model-based
approaches, both at the mathematical level, due to the nonlinearity of feature transforms,
and at the computational level, due to the multiplicative number of state combinations for
factorial models. We now discuss a few interesting current research directions in model-based
robust ASR.

The foregoing has focused on attempts to model signal interaction in feature domains
that are known to work well for speech recognition. An alternative is to investigate speech
recognition using feature domains in which signal interaction is easily modeled. Approaches
to enhancement based on basis decomposition of power spectra attempt to model speech and
noise directly in the power spectrum domain [43, 67, 74, 81].

Another direction is to investigate better modeling of speech and noise. The ability to model
the noise dynamics is one of the more promising aspects of the model-based compensation
framework. We discuss a model with simple linear dynamics on the noise levels that shows
strong potential for use within a model-based noise compensation scheme. For more complex
noise sources, such as an interfering speaker, noise compensation would be hopeless without
complex models of the dynamics of both the target and interfering signals. However, some
recent work on factorial HMMs shows that super-human speech recognition is possible and
can be performed with far less computation than originally thought [78].

Speech recognition has a history that began with recognition of clean speech, and hence
feature optimization has focused on extracting the filtering effects of the vocal tract and
eliminating sources of variance that were thought irrelevant to recognition. The voiced parts
of speech contain harmonics determined by the pitch, which carry the vocal tract information.
However, in non-tonal languages the pitch is largely independent of the words being said.
In noise, the situation changes: the harmonics are precisely the frequencies where the SNR
is greatest, and so it may be profitable to model the dynamics of pitch along with the vocal
tract information, in order to help extract the vocal tract information. Source-filter models also
allow the interaction model to operate in the full spectrum, while allowing the recognition part
of the model to operate in the filter domain. This type of model has been attempted for speech
separation in [34, 46, 56], and for music separation in, for example, [33], and is also used in
HMM-based speech synthesis [97].
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In the rest of this section, we discuss some of these ideas in more detail. In particular,
we discuss dynamic noise models, speech separation with factorial HMMs, and non-negative
subspace approaches to signal separation, and their potential use within a speech recognition
system.

12.7.1 Dynamic Noise Models for Robust ASR

A fundamental problem in robust ASR (and classification in general) is handling mismatch
between training and testing conditions in a highly efficient manner. Maximum Likelihood
Linear Regression (MLLR) techniques such as fMLLR, Maximum a Posteriori Linear Re-
gression (MAPLR), feature space MAPLR, etc. [10,28,29] are relatively simple, efficient and
generally effective approaches to speaker and environmental compensation, and are used (in
one form or another) by essentially all state-of-the-art ASR systems today.

However, as we have explained in detail in this chapter, additive noise has a highly nonlinear
effect in the log frequency domain. Factorial models of speech and noise can exploit this
relationship to learn efficient and representative models of the available training data. The
benefits of explicitly modeling canonical variables such as noise are much more pronounced
when mismatched data is encountered. Often very little adaptation data is available or very
rapid adaptation is preferred. Naturally, an efficient and accurate parameterization of the data
can be adapted much more rapidly and can be far more effective than brute-force methods.

The rapid adaptation of a noise model under a factorial representation of noisy speech is
an idea with roots tracing back over four decades to early work on front-end denoising using
spectral subtraction and Wiener filtering [7, 22]. Speech recognition systems are composed
of loosely connected modules: a speech detector, a noise estimator that operates on blocks
of data identified as speech-free, and a noise removal system, that produces a speech feature
estimate given an estimate of the noise. Ongoing research aims to develop more accurate
models of speech, noise, and their interaction, and jointly inferring their configuration under the
resulting probability model of the data. More recent, significant work on rapid noise adaptation
includes investigations on dynamic forgetting factor algorithms for noise parameter adaptation
[2], stochastic online noise parameter adaptation [14], and dynamic noise adaptation (DNA)
[71, 79].

A distinguishing feature of DNA in this context is that noise is modeled as a random variable
with simple dynamics. DNA maintains an approximation to the posterior distribution of the
noise rather than a point estimate, which leads to better decisions about what frequency bands
are explained by speech versus noise. A limitation of these rapid noise-adaptation techniques
is that they generally utilize very simple models of noise that are estimated in online fashion,
and maintain no long-term statistics about previously seen data. The use of pre-trained models
of noise to detect and reset the DNA noise tracker has been investigated to an extent [79], as
has condition detection (CD): the automatic detection of when explicit noise modeling is not
beneficial [72]. The latter approach allows for the use of DNA with multi-condition models
for the speech model and back-end acoustic models, as is, without any system re-training, and
improves the performance of state-of-the-art ASR systems significantly.

Factorial switching models with pre-trained (conditionally) linear dynamical models for
speech and noise have also been investigated [18], and are described briefly in Chapter 9.
Future work on dynamic noise modeling should focus on efficiently leveraging stronger noise
models that incorporate proven adaptation techniques, and incorporating/improving algorithms
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that have recently been investigated for multi-talker speech recognition (as described directly
below), so that more structured acoustic interference, such as secondary speech and music,
can be accurately compensated.

12.7.2 Multi-Talker Speech Recognition using Graphical Models

A hallmark of human perception is our ability to solve the auditory cocktail party problem:
even when restricted to a single channel, we can direct our attention to a chosen speaker in the
presence of interfering speech, and, more often than not, understand what was said remarkably
well. A truly exciting direction of current research in factorial modeling for robust ASR has
been the use of graphical models to realize super-human speech recognition performance.
These techniques have so far utilized HMMs to model each explicitly represented speaker,
and combined them with one or more of the interaction models described in this chapter to
realize multi-talker speech separation and recognition systems.

A fundamental challenge of multi-talker speech recognition is computational complexity.
As discussed in Section 12.6, in general, exact inference involves computing the likelihood
of all combinations of the states of the speakers. Exact inference also entails searching the
joint (dynamic) state space of the decoders, which also scales exponentially with the number
of speakers. In [35, 38, 52], the two-talker system used to outperform human listeners on the
PASCAL monaural speech separation and recognition task [11], utilized band quantization
(described in Section 12.6.3) to reduce the cost of acoustic labeling by an exponential factor,
and joint-state pruning, which, for this well-constrained task, was very effective at controlling
the complexity of the joint decoder. In [75], the idea of using loopy belief propagation
to iteratively decode the speakers was introduced. This technique reduces the complexity
of decoding from exponential to linear in the number of speakers, with negligible loss in
recognition performance. Shortly thereafter in [76], the new variational framework for the
max model described in Section 12.6.1 was introduced, and used to make inference linear in
the number of speakers. Later in [77,78], this framework was extended so that the complexity
of inference could be precisely controlled. The resulting system was able to separate and
recognize the speech of up to five speakers talking simultaneously and mixed in a single
channel: a remarkable result, considering that the models necessary to describe the data
involve trillions of state combinations for each frame.

These recent advances in multi-talker speech recognition are significant, but several im-
portant and exciting problems remain. First and foremost, it is important to emphasize that
existing algorithms have so far only been tested in reasonably well-constrained scenarios, and
artificially mixed data. The enhancement of these techniques to make them suitable for multi-
talker recognition of real data streams with significant background noise, channel distortion,
and less-constrained speaker vocabularies involves solving many interesting and challenging
problems, some of which we discuss briefly below.

For example, to the best of our knowledge, algorithms that select which and how many
speakers (or more generally acoustic sources) to explicitly model have yet to be investigated
for more than two concurrently active sources. For the case of two sources, a simple method to
detect clean conditions is described in [38]. This work, and existing work on speaker segmen-
tation (e.g., [8]) could be used as a starting point for future investigations. Another important
direction of future work is to develop representative models of the acoustic background that
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extract canonical acoustic components that can be composed to explain new, previously un-
seen test data, and yet do not over-generalize. Current studies include matrix factorization
approaches, as described further below, and factorial models based on graphical models with a
distributed state representations, such as deep belief networks (DBNs) of restricted Boltzmann
machines (RBMs) for ASR [58], and factorial hidden DBNs of RBMs for robust ASR [73].

In addition, relatively little work has been done on probabilistic models for speech separation
and recognition that employ multiple channels in a coherent model [3, 12, 70, 84]. With the
availability of two or more channels in speech enabled devices rapidly becoming the rule,
rather than the exception, it seems inevitable that the best ASR systems will be those that have
multi-channel processing capabilities integrated directly into the acoustic scorer and decoder.

12.7.3 Noise Robust ASR using Non-Negative Basis Representations

We have so far shown how tremendous efforts need to be made in order to bring interaction
modeling in the domain of the speech recognizer. Another approach to the problem is to try
to perform recognition in a domain where the interaction can be conveniently modeled, such
as the magnitude or power domain. A promising angle of attack in this direction is to use
techniques based on non-negative matrix factorization (NMF) [54]. In the context of audio
signal processing, NMF is generally applied to the magnitude or power spectrogram of the
signal, with the hope that the non-negative low-rank decomposition thus obtained will extract
relevant parts [88].

In NMF approaches, the model for each source in a given frame (a small window of speech,
of approximately 40 ms) is defined by a set of weighted non-negative basis functions in the
power spectrum (or similar feature space). Inference involves concatenating the basis sets for
different sources into a single basis, and solving in parallel for the weights of all sources that
best reconstruct the signal. There is also work to include phase explicitly as a parameter [45],
which would allow for exact inference of the complete signal.

This type of approach has the advantage of speed because it avoids considering all com-
binations of basis functions across speakers. It has proven extremely successful, particularly
for music signal transcription and source separation [25, 92], as described in more details in
Chapter 5 of this book. The original framework has been extended in many directions. One
has been to integrate better constraints, such as temporal continuity, into the models while
retaining their computational advantages [92, 94]. Another has been to reformulate NMF in
a probabilistic framework [9, 93], which enables posterior probabilities and likelihoods to be
computed. This also enables NMF to be used as a component in a graphical model such as a
speech HMM.

A recent trend of research has, like the speech separation approaches of the previous section,
focused on modeling multiple non-stationary sources through factorial models [61,63,65,89].
An exciting new direction takes this idea even further by using nonparametric Bayesian
methods to define factorial models with an unbounded number of factors [39,64]. The beauty
of these methods is that, despite their apparent complexity, they are able to acquire models of all
of the components of an acoustic scene. This makes them ideally suited to the task of modeling
complex and unknown signals. Applying this kind of approach to the speech recognition
problem has, to the best of our knowledge, not yet been attempted, but we think that it is a
very promising direction for future research.
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Acoustic Model Training for
Robust Speech Recognition
Michael L. Seltzer
Microsoft Research, USA

13.1 Introduction

Traditionally, researchers working on the field of noise robustness have focused their efforts
on two areas: front-end enhancement and model compensation. Front-end enhancement en-
compasses a variety of signal and feature processing methods, such as those discussed in
Chapters 4 and 9, that are designed to remove distortions in the speech caused by the acoustic
environment [10, 30, 37]. On the other hand, model compensation, described in Chapters 11
and 12, alters the parameters of the speech recognizer’s acoustic models to better match the
characteristics of the current environment [13,17,32]. There is a rich literature in both of these
areas that has led to improvements in speech-recognition performance over the years [14].

While all of this effort is focused on noise compensation at runtime, relatively little attention
has been paid to the manner in which the speech-recognition systems are trained. Almost all
of the robustness algorithms assume, either implicitly or explicitly, that the recognizer has
been trained from clean speech, and the job of a noise-robustness technique is to reduce the
mismatch between the clean acoustic models and the noisy speech. As a result, performance
is determined by how well the captured speech is denoised or how well the clean acoustic
models adapt to the environment of the test utterance. However, there are many reasons why
this is suboptimal. First, from a theoretical point of view, speech recognizers perform best
when the speech used to train the recognizer is close to that seen in deployment. Using clean
acoustic models creates the most severe mismatch between training and testing environments.
In addition, it is simply impractical to require a system to be trained on clean speech data.
Collecting such data requires careful recordings which are time consuming and expensive.
Even more importantly, it means that data collected in the field cannot be used to train
the system.

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
Edited by Tuomas Virtanen, Rita Singh, and Bhiksha Raj.
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Alternatively, acoustic models can be trained on on noisy speech data. Because training
models using matched data is usually impractical, systems are often trained with data collected
in a variety of environmental conditions. While these multicondition systems generally have
better performance than a system trained from clean speech, there are drawbacks here as well.
First, by using such a diverse set of acoustic data, additional variability is introduced into
the model that may not be pertinent to the speech-recognition task. In addition, because the
model now represents an average of noisy conditions, it is suboptimal for any one particular
environment, and may not generalize well to noises unseen in training.

Recently, a new adaptive training approach for robust speech recognition has been proposed
that enables the use of multicondition training data in combination with front-end enhancement
[5] or model compensation [18,19,28]. This training paradigm is called noise adaptive training
(NAT) and produces acoustic models that have less unwanted variability than multistyle
models and do a better job generalizing to unseen data. NAT is inspired by the success of
speaker adaptive training (SAT). The main principle behind SAT is that the same speaker
adaptation algorithm used at runtime is also applied to the training data. The resulting acoustic
models have less interspeaker variability and are therefore optimal (in the maximum likelihood
sense) for that particular adaptation strategy. SAT has consistently shown improvements over
conventional speaker-independent training when speaker adaptation is used at runtime and is
a standard part of many large vocabulary-recognition systems.

This chapter is organized as follows. In Section 13.2, we first review the traditional methods
for training speech-recognition systems for noisy environments and compare their perfor-
mance. We then briefly review SAT in Section 13.3, as it provides many of the foundational
elements helpful to understanding NAT. In Section 13.4, we introduce feature-space NAT and
evaluate its performance using two different front-end compensation algorithms. NAT in the
model domain is then presented in Section 13.5 and a detailed look at its implementation using
vector Taylor series (VTS) adaptation is shown in Section 13.6. The performance of NAT with
both front-end and model-based compensation is evaluated in a series of experiments on sim-
ulated and actual noisy speech. The advantages and disadvantages of the methods described
in this chapter are discussed in Section 13.7 highlighting additional related work and open
challenges. Finally, the main ideas of the chapter are summarized in Section 13.8.

13.2 Traditional Training Methods for Robust Speech Recognition

There are three basic paradigms for data selection to train a speech-recognition system. The first
and most common is to train the system with clean speech signals. These signals are typically
recorded in a quiet environment with a close-talking microphone and contain minimal additive
noise or reverberation. The motivation for this style of data is that it represents the ideal speech
signal and that noisy speech can be cleaned in some manner. This approach results in the most
severe mismatch between the acoustic models and the observed noisy speech and places a
strong emphasis on the noise-compensation algorithms.

Another approach to training uses so-called matched data that originates from the same
environment as the test data. Because of the sheer variety of environmental factors including
additive noise, reverberation, speaker-to-microphone distance, signal-to-noise ratio, and mi-
crophone type, matched training is impractical to use in a real system. However, such systems
are valuable for experimental purposes, as they demonstrate the upper bound in performance
in a given environment. It is frequently convenient to train a model for matched conditions
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Table 13.1 Word error rates for speech from the WSJ corpus corrupted by white noise using clean,
multicondition, and matched training data. Enhancement using spectral subtraction (SS) only provides
modest improvements when the models are trained with clean speech.

Training data 5 dB 10 dB 15 dB 20 dB Clean Avg

Clean 87.11 55.06 19.76 10.02 4.87 35.36
Clean, SS-test only 75.30 33.79 13.29 8.05 4.65 27.02
Noisy multicondition 28.91 14.84 10.45 7.53 6.09 13.56
Noisy matched 25.41 14.03 8.94 7.05 4.87 12.06

using single pass retraining which is a method for mapping an acoustic model trained with
one parameterization of the speech signal into another acoustic model based on a different
parameterization [36]. In the context of matched training, this technique can be used to map a
clean acoustic model to a noisy acoustic model given clean training data and a parallel corpus
of noisy training data.

Because matched condition training is impractical, a more general approach called multistyle
or multicondition training has been proposed [29]. Multistyle training was first proposed to
improve the recognizer’s robustness to different speaking styles and was later proposed as
means of improved noise robustness [1]. In the same way that training data from many different
speakers is pooled to create a speaker independent recognizer, multicondition systems pool
data from many different environments in an attempt to create an environment-independent
system. For example, for an automotive application, a multistyle model may consist of speech
captured at a variety of speeds, in a variety of cars, and with various dashboard instruments
turned on. All of this data is pooled to create an acoustic model that captures the average
statistics of these environments. They key benefit of multistyle training over clean training
is that there is far less mismatch between the acoustic model and the noisy speech seen in
deployment. In addition, multicondition systems can be trained from speech collected from
the real world, where clean conditions almost never exist.

The performance of these three training methods is shown Table 13.1. The table shows the
word error rate (WER) obtained on a noise-corrupted version of the Wall Street Journal (WSJ)
corpus [33]. In these experiments, the WSJ test set was corrupted by white noise at different
SNRs. For the multicondition training, the clean WSJ training set was corrupted by white
noise at a variety of SNRs. For matched condition training, a separate acoustic model was
created for each test SNR. The table also shows the performance of the system trained from
clean speech when the test data is enhanced using spectral subtraction (SS) [4], described
in Section 4.5.1. As the results indicate, the performance of the mismatched clean system
really degrades at low SNRs. When the test data is denoised, significant gains are obtained.
However, much larger gains are obtained using multicondition training, even in the absence of
any noise compensation. Note that multicondition training degrades the performance on clean
speech, which is to be expected given that the model contains substantially more environmental
variability. Of course, the best performance is obtained with matched training.

13.3 A Brief Overview of Speaker Adaptive Training

Much of the motivation for NAT comes from the success of SAT, which creates acoustic
models with less interspeaker variability [3]. In traditional speaker-independent acoustic model
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training, speech data from many speakers are pooled to create a single model that maximizes
the likelihood on the training data. However, it is clear that while the pooled-speaker model
may be a good model for some average speaker, it is suboptimal for any one particular
speaker. This can be interpreted as a version of multistyle training where the primary source
of variability comes from the speakers themselves. To combat this unwanted variability at
runtime, adaptation techniques such as MLLR can be applied to the acoustic models to better
match the user’s speech, as described in Chapter 11. The idea of SAT is to employ the same
speaker adaptation to the training data so that the speaker variability in the training data can be
accounted for by the adaptation transforms rather than the model parameters. This produces a
more compact model that captures more of the desired phonetic variation and less interspeaker
variability. SAT was originally proposed using maximum likelihood linear regression (MLLR)
for mean adaptation [22]. In MLLR, the adapted mean vector can be written as

μ
(r)
qi = A(r)μqi + b(r) , (13.1)

where μqi is the mean vector associated with the Gaussian i in HMM state q, {A(r) , b(r)} define

the MLLR transform for speaker r, and μ
(r)
qi is the speaker-adapted mean. Under this model,

the auxiliary function used to derive the expectation maximization (EM) update formulae for
hidden Markov model (HMM) training must be augmented with the speaker transforms as
follows:

Q(ΦW , ΛS , Φ̄W , Λ̄S ) =
∑

r,t,q ,i

γ
(r)
tq i log(N (s(r)

t ; A(r)μqi + b(r) , Θqi)), (13.2)

where ΛS represents the complete set of HMM parameters, ΦW represents the set of MLLR
transforms for all speakers, t, r, q, and i represent the frame, speaker, state, and Gaussian
index, respectively, and γ

(r)
tq i is the posterior probability of Gaussian i in state q at frame t from

speaker r. The feature vector at frame t for speaker r is represented by s(r)
t and the variance of

Gaussian i in state q is given Θqi . Throughout this chapter, the current value of a variable to
be estimated in an iterative algorithm is indicated with a bar, for example Λ̄S .

Using this objective function, the parameters of the HMM and the speaker transforms are
optimized in an iterative fashion; first the speaker transforms are updated while the HMM
parameters are fixed, then the HMM parameters are updated while the speaker transforms are
fixed. This process continues until the likelihood of the training set converges. For example,
for a fixed set of speaker transforms, the mean update formula under SAT is

μqi =

⎛
⎝∑

r,t

γ
(r)
tq i A

(r)T Θ−1
qi A(r)

⎞
⎠

−1 ⎛
⎝∑

r,t

γ
(r)
tq i A

(r)T Θ−1
qi (s(r)

t − b(r))

⎞
⎠ . (13.3)

While SAT was originally proposed for MLLR in the model domain, most current systems
used constrained MLLR (CMLLR) which can be implemented as a feature-space transform
[8, 12]. SAT experiments reported in [3] showed gains of about 20% reduction in word error
rate by performing model adaptation on models trained using SAT compared to conventional
speaker-independent models. Clearly, training the model in a way that enables it to be aware
of the processing that will be applied at test time provides significant gains. In the remainder
of this chapter, we discuss how these ideas can be exploited for training models that are robust
to environmental distortions.
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13.4 Feature-Space Noise Adaptive Training

There is a large literature of techniques designed to remove distortions from the speech
waveform, spectrum, or features. The vast majority of these methods are concerned with
additive noise and linear filtering. In typical operation, one of these methods is used to
enhance the incoming speech which is then passed to the recognizer that has been trained on
clean speech for decoding. The implicit assumption made by this approach is that the methods
performed perfect enhancement and there is no residual mismatch in between the enhanced
test data and the clean acoustic models. Of course, this is not true. All algorithms have some
level of distortion, artifacts, musical nose, or residual noise in the output.

If we put aside the mathematics for a moment, the basic principle of SAT is to apply
the same adaptation algorithm during training that will be applied at test time in order to
remove the same sources of variability from both the training and test data. For recognizing
noisy speech, the obvious analog to speaker adaptation is noise compensation. The differ-
ent speakers and the variability they introduce are replaced by different environments and
the distortions they cause. Therefore, whatever enhancement algorithm will be used during
deployment should be run at training time. Of course, in the same way that practical speaker-
independent systems are obtained from training data with a variety of speakers, NAT is best
performed with noise-corrupted speech that includes the types of distortions and levels ex-
pected to be seen in deployment. Of course, if you know that the system will only be used
in specific environments, for example in a car, then the types of data used for training can
reflect this.

Thus, the basic recipe for feature-space noise adaptive training (fNAT) is to select an
enhancement algorithm that you believe will be effective in the deployed environment, and
apply this algorithm to a collection of multicondition training data that contains much of
the same environmental distortions [5], as shown in Figure 13.1. By doing so, the variabil-
ity caused by the environmental distortion will be removed from the the training data in
exactly the same was as the test data. This match between training and test is critical be-
cause no enhancement algorithm can generate perfectly clean speech. Any errors or artifacts
caused by the algorithm will be generated in the training data, and therefore modeled by
the HMMs.

Figure 13.1 Flowchart of feature-space noise-adaptive training (fNAT).
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13.4.1 Experiments using fNAT

The performance of fNAT was evaluated on the same noisy WSJ task described in Section
13.2. As before, the acoustic models were trained with clean, multicondition, or matched
data. However, in these experiments the noisy training data in the multicondition and matched
experiments were also processed using spectral subtraction [4]. As you can see, applying fNAT
results a significant gain in performance compared to using clean training data. In addition, if
we compare the results in Table 13.1 to those in Table 13.2, we can see that using fNAT even
outperforms matched training.

In these experiments, the multicondition training data only varied the level of the noise
but not the type. While this assumption may be realistic in some scenarios, there are far
more cases where both the type and level of noise are unknown. In addition, it is perhaps
also reasonable to ask whether these results hold when a more state-of-the-art enhancement
algorithm is used. To address these questions, experiments were performed using the Aurora 2
corpus. Aurora 2 consists of clean speech recordings of connected digits degraded with eight
types of noise artificially added at signal-to-noise ratios (SNR) varying from −5 to 20 dB and
channel distortion [16]. Three test sets provided with the task are contaminated with noise
types seen in the training data (Set A), unseen in the training data (Set B), and with additive
noise plus channel distortion (Set C). The acoustic models used in these experiments were
trained using the standard “complex back-end” Aurora 2 recipe [34]. An HMM with 16 states
per digit and a mixture of 20 Gaussians per state is created for each digit as a whole word. In
addition, a three state silence model with a mixture of 36 Gaussians per state and a one state
short pause model which is tied to the middle state of silence model are used.

In the fNAT experiments, feature enhancement was performed using the ETSI Advanced
Front-End (AFE) [30] described in Section 4.5.4. The AFE is a good representation of the
state-of-the-art in feature enhancement on this task. The results for clean training and multistyle
training are shown in Table 13.3. As the results indicate, applying the AFE to the test data
reduces the mismatch to the clean trained models, and significantly improves performance.
However, here too, this system is outperformed by simple multicondition training without
any additional signal or feature processing. If we used the fNAT approach and apply the
AFE to the multicondition training data, a significant gain in performance is obtained. These
experiments demonstrate that fNAT in conjunction with multicondition training data has
significant advantages over a conventional approach where clean speech is used.

It should be noted that the fNAT can include not just the speech enhancement algorithm
but any and all components of the audio-processing pipeline used in a system. In a deployed
interactive system, this may include acoustic echo cancellation, microphone array processing,

Table 13.2 Word error rates for speech from the WSJ corpus corrupted by white noise obtained by
enhancing the test data using spectral subtraction (SS). For fNAT, spectral subtraction was also applied
to the training data.

Training data 5 dB 10 dB 15 dB 20 dB Clean Avg

Clean, SS-test 75.30 33.79 13.29 8.05 4.65 27.02
Noisy multicondition 28.91 14.84 10.45 7.53 6.09 13.56
Noisy multicondition, fNAT-SS 20.90 12.22 8.86 7.35 6.57 11.18
Noisy matched, fNAT-SS 21.94 11.74 8.60 6.76 5.02 10.81
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Table 13.3 Word accuracy for Aurora 2 using clean and multicondition
training sets. The test data was enhanced using the ETSI advanced front-end
(AFE). The AFE was also applied to the training data in the fNAT experiment.

Training data Set A Set B Set C Avg

Clean 60.43 55.85 69.01 60.31
Clean, AFE-test 89.27 87.92 88.53 88.58
Noisy multicondition 91.68 89.74 88.91 90.35
Noisy multicondition, fNAT-AFE 93.74 93.26 92.21 93.24

noise suppression, double-talk detection, and barge-in. For example, in acoustic cancellation,
the undesired loudspeaker signal often leaks into the microphone signal when the echo path
changes, for example when the talker moves significantly. The harm to recognition accuracy
caused by these artifacts can be mitigated if the recognizer is trained on such data.

While fNAT is appealing because it is easy to implement and has been shown to be very
effective, it has the drawback that there is little theoretical foundation for it. In traditional
SAT, both the adaptation parameters and model parameters are optimized jointly under a
common objective function using a maximum likelihood criterion. In fNAT, there is no such
framework. Another disadvantage of fNAT is that it relies on point estimates of the clean speech
features made by the enhancement algorithm. Using point-estimates implicitly assumes that
all training data is equally informative. There is no ability for the front-end to communicate
to the model training process any notion of uncertainty about a particular feature. While
feature-enhancement methods that generate estimates of uncertainty have been proposed [9],
problems with this approach at low SNRs have been discovered [27]. More details about these
uncertainty decoding methods are discussed in Chapter 17. In Section 13.5, we introduce a
model-domain version of NAT that addresses these issues.

13.5 Model-Space Noise Adaptive Training

In NAT in the model space, we seek to jointly optimize the parameters of the HMM and the
parameters of a noise compensation algorithm using a set of noise-corrupted training data.
Let us assume that there are J utterances in the multicondition training set X = {X (j )}J

j=1 ,

where X (j ) = {x(j )
t }Tj

t=1 is a sequence of Tj observations corresponding to the jth utterance.
We further assume that each utterance X (j ) in the training set has an associated distortion
model with parameters φ(j ) that represent hidden variables that describe the environment, for
example the additive noise and the channel.

In traditional maximum likelihood training, the HMM parameters are estimated such that
the resulting generic model ΛX maximizes the likelihood of the training data. In contrast, the
NAT algorithm seeks both the distortion model parameters for all utterances Φ = {φ(j )}J

j=1 ,
and the underlying “pseudoclean” HMM parameters ΛS that jointly maximize the likelihood
of the multicondition data when the model ΛS is transformed to the adapted HMM of Λ(j )

X .
This can be written as

(ΛS , Φ) = argmax
(ΛS ,Φ)

J∏
j=1

L(X (j ) ; Λ(j )
X ), (13.4)
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where

Λ(j )
X = A(ΛS , φ(j )) (13.5)

is the adapted HMM and A represents the specific algorithm used for adaption. The term
“pseudoclean” is used to indicate that the model defined by ΛS is not necessarily equivalent
to models trained with clean speech, but rather the models that maximize the likelihood of the
multicondition training data when processed by the adaptation scheme.

To jointly learn the distortion model parameters and the pseudoclean speech model param-
eters, we start with the following EM auxiliary function:

Q(ΛS , Φ, ΛS , Φ) =
J∑

j=1

∑
t,q ,i

γ
(j )
tq i log(p(x(j )

t |q, i, ΛS , φ(j ))), (13.6)

where j, t, q, i represent the indices for utterance, frame, state, and Gaussian, respectively, and
γ

(j )
tq i is the posterior probability of Gaussian i in the HMM state q for frame t of utterance j

γ
(j )
tq i = p(qt = q, it = i|X (j ) , ΛS , φ

(j )
). (13.7)

This posterior probability is computed as:

γ
(j )
tq i =

α
(j )
tq β

(j )
tq∑

q ′ α
(j )
tq ′β

(j )
tq ′

cqip(x(j )
t |q, i, ΛS , φ

(j )
)∑

i′ cqi′p(x(j )
t |q, i′, ΛS , φ

(j )
)
, (13.8)

where α
(j )
tq and β

(j )
tq are the conventional forward and backward variables used in the

Baum–Welch training algorithm [35], cqi is the mixture weight of the ith Gaussian in state q.
In Equations (13.6) and (13.8)

p(x(j )
t |q, i, ΛS , φ

(j )
) ∼ N (x(j )

t ; ν(j )
qi , Ψ(j )

qi ), (13.9)

where ν
(j )
qi , Ψ(j )

qi are the adapted Gaussian mean and covariance, respectively. Note that these
parameters are utterance dependent since they are functions of distortion parameters for that
utterance φ(j ) . The same parameters with slightly different notation are also used in the regular
training of HMMs that is explained in Section 2.3.3.

To perform NAT, the auxiliary function in Equation (13.6) is iteratively maximized with
respect to the pseudoclean HMM parameters ΛX and the distortion parameters Φ. Similarly to
SAT, the HMM parameters are updated while the distortion parameters are fixed and then the
distortion parameters are fixed while HMM parameters are updated. This process is repeated
until the likelihood of the training set converges. Once the pseudoclean model parameters are
learned, the distortion parameters Φ are discarded and the HMM parameters ΛX are ready to
be used at runtime along with the adaptation algorithm A. A depiction of this process is shown
in Figure 13.2.

In order to apply NAT, an adaptation strategy needs to be chosen. In the following section,
an implementation of NAT that uses vector Taylor series (VTS) adaptation is presented.
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Figure 13.2 Flowchart of model-space noise adaptive training.

13.6 Noise Adaptive Training using VTS Adaptation

We will review VTS adaptation before examining the manner in which it is used for NAT.
There have been several implementations of VTS proposed in the literature [2, 21, 23, 32].
While the details about VTS adaptation can be found in Chapter 12, we briefly summarize the
algorithm proposed in [23]. This approach which adapts the means and variances of the static,
delta, and delta-delta parameters using a generalized EM approach.

13.6.1 Vector Taylor Series HMM Adaptation

In the cepstral domain, the relationship between clean and distorted speech can be expressed
as

x = s + h + g(n − s − h), (13.10)

where x, s, h, n, are the cepstral vectors corresponding to distorted speech, clean speech,
channel, and noise, respectively. In Equation (13.10), the nonlinear function g(z) is

g(z) = C log(1 + exp(C†(z)), (13.11)

where C is the discrete cosine transform (DCT) matrix and C† is its pseudoinverse. It can be
shown that the Jacobian of Equation (13.10) with respect to s and h evaluated at a fixed point
(s̄, h̄, n̄) is

G = C · diag
(

1
1 + exp(C†(n̄ − s̄ − h̄))

)
· C†, (13.12)

where diag(.) represents the diagonal matrix whose elements equal to the value of the vector in
the argument. Similarly, the Jacobian of Equation (13.10) with respect to n can be expressed
as F = I − G. Then, the nonlinear relationship between the distorted speech, clean speech,
and environment parameters (noise and channel) in Equation (13.10) can be approximated by
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using a first-order VTS expansion around the point (s̄, h̄, n̄) as

x ≈ s̄ + h̄ + ḡ + G(s − s̄) + G(h − h̄) + F(n − n̄), (13.13)

where

ḡ = C log(1 + exp(C†(n̄ − s̄ − h̄))). (13.14)

Let ΛX = {μqi , Θqi} denote the set of Gaussian parameters for the clean speech HMMs
where μqi and Θqi denote the mean vector and the diagonal covariance matrix of the ith
Gaussian component in the qth state, respectively. We assume that additive noise is Gaussian
with mean μn and covariance Θn , and that the channel h has a probability density of the
Kronecker delta function δ(h − μh ).

It is assumed that the environmental distortion does not change the alignment between a
speech frame and the corresponding Gaussian component of the HMM. As a result, only the
mean vector and covariance matrix for each Gaussian of the HMM will be affected. Using
Equation (13.13), we can compute the mean νqi and variance Ψqi of the adapted model ΛX as

νqi ≈ μ̄qi + μ̄h + ḡqi + Gqi(μqi − μ̄qi)

+ Gqi(μh − μ̄h ) + Fqi(μn − μ̄n ), (13.15)

Ψqi ≈ GqiΘqiG
T
qi + FqiΘnFT

qi . (13.16)

where G, F, and ḡ carry the subscript qi to emphasize that they are functions of the mean of
Gaussian i in state q of the clean-speech HMM. It can be concluded from Equation (13.16) that
even if Θqi and Θn are diagonal, Ψqi is no longer diagonal. However, for compatibility with
traditional ASR decoders that have been optimized for diagonal covariances, only diagonal
elements of Ψqi are used.

The means and variances of the delta parameters are typically updated using the continuous-
time approximation proposed in [15]. This results in the following mean adaptation formula:

νΔqi ≈ GqiμΔqi , (13.17)

where a Δ in the variable subscript indicates the delta parameters of that variable. Because
we assume that the noise is stationary, μΔn = 0, for all utterances. Similarly, the covariance
matrices for the delta features are adapted according to

ΨΔqi ≈ GqiΘΔqiG
T
qi + FqiΘΔnFT

qi . (13.18)

The means and covariance matrices of the delta-delta features are adapted in a similar way to
Equations (13.17) and (13.18) by replacing delta parameters with delta-delta parameters.

Adapting the clean-speech model parameters using Equations (13.15)–(13.18) requires esti-
mates of the environment distortion (noise and channel) parameters. As only the noisy speech
is observed, these parameters are hidden variables and must be estimated. General purpose
noise estimation methods as described in Chapter 4 can be used, but the best performance
is typically obtained using integrated EM-based maximum likelihood parameter estimation
methods as will be described in Section 13.6.3. The key of NAT is jointly estimating the
distortion model parameters with the acoustic model parameters.
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13.6.2 Updating the Acoustic Model Parameters

NAT is an iterative procedure based on the generalized EM algorithm that alternately up-
dates the acoustic model parameters and the distortion model parameters. For each iteration,
the E-step is performed by accumulating the required sufficient statistics computed from
the current estimates of the acoustic model parameters and the utterance-specific distortion
model parameters. The M-step then uses these statistics to generate new estimates for these
parameters.

We will first derive the update formulae for the acoustic model parameters for a fixed set
of distortion model parameters. To compute the pseudoclean model parameters of the ith
Gaussian in HMM state q, we can rewrite the auxiliary function given in Equation (13.6) by
ignoring the terms constant with respect to the model parameters μqi and Θqi as follows:

Q =
∑
j,t

γ
(j )
tq i ×

{
−1

2
log |Ψ(j )

qi | − 1
2
(x(j )

t − ν
(j )
qi )T Ψ(j )−1

qi (x(j )
t − ν

(j )
qi )

}
. (13.19)

where γ
(j )
tq i is the posterior probability defined in Equation (13.8) of the noisy observation x(j )

t

under the utterance-specific VTS-adapted model Λ(j )
X , and {ν(j )

qi , Ψ(j )
qi } are the adapted mean

and variance as defined in Equations (13.15)–(13.18). Thus, these parameters are utterance
specific as well. As in conventional model training, the summation in the auxiliary function is
over all frames of all utterances available in the training set.

Updating the Means

To update μqi , we take the derivative of Equation (13.19) with respect to μqi , and set the result
to zero. This leads to following expression:

∑
j,t

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi (x(j )
t − ν

(j )
qi ) = 0. (13.20)

Then, substituting Equation (13.15) into Equation (13.20) produces the following equation:
∑
j,t

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi G(j )
qi (μqi − μ̄qi) =

∑
j,t

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi (x(j )
t − ν̄

(j )
qi ), (13.21)

which can be solved for μqi to obtain the following update formula:

μqi = μ̄qi +

⎛
⎝∑

j,t

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi G(j )
qi

⎞
⎠

−1

×

⎛
⎝∑

j,t

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi

(
x(j )

t − ν̄
(j )
qi

)⎞⎠ . (13.22)

The update formulae for the delta and delta-delta mean parameters can be similarly derived,
substituting Δx(j )

t and νΔqi for x(j )
t and νqi , respectively, in Equation (13.20), and recalling

the definition of νΔqi in Equation (13.17).
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Updating the Variances

There is no closed form solution for covariance matrices of the HMM distributions. As a result,
the covariances are optimized using a gradient-based approach. We describe a solution using
Newton’s method, a second order approach. According to Newton’s method, the covariance
update equation is

Θqi = Θ̄qi −
[(

∂2Q

∂2Θqi

)−1 (
∂Q

∂Θqi

)]
Θ q i =Θ̄ q i

, (13.23)

where Θ̄qi is the current estimate of the covariance matrix for Gaussian i and state q.

We assume that the covariance matrices Ψ(j )
qi , Θqi , Θ

(j )
n are all diagonal. Then, we can write

each of these covariance matrices as vectors:

ψ
(j )
qi = [ψ(j )

qi,1 , ψ
(j )
qi,2 , . . . , ψ

(j )
qi,D ], (13.24)

θqi = [θqi,1 , θqi,2 , . . . , θqi,D ], (13.25)

θ
(j )
n = [θ(j )

n,1 , θ
(j )
n,2 , . . . , θ

(j )
n,D ], (13.26)

where D is the dimension of the feature vector and ψ
(j )
qi,d , θqi,d , and θ

(j )
n,d are the adapted

variance, the acoustic model variance and the noise variance, respectively, for component d
of the feature vector. Typically 13-dimensional cepstra are used in the traditional automatic
speech recognizers. Then, we can rewrite the auxiliary function in Equation (13.19) as

Q =
∑
j,t

−1
2
γ

(j )
tq i ×

⎧⎨
⎩

D∑
d=1

⎛
⎝log ψ

(j )
qi,d +

(x(j )
t,d − ν

(j )
qi,d)2

ψ
(j )
qi,d

⎞
⎠
⎫⎬
⎭ , (13.27)

where x
(j )
t,d is the dth component of the feature vector x(j )

t , and ν
(j )
qi,d is the dth component of

the VTS adapted mean vector ν
(j )
qi .

To compute the first and second derivatives of the Q function in Equation (13.19) with
respect to the clean speech variance θqi,d , we can expand G(j )

qi and F(j )
qi matrices in Equation

(13.19) as

G(j )
qi =

⎡
⎢⎢⎢⎢⎣

g11 g12 · · · g1D

g21 g22 · · · g2D

...
...

...
...

gD1 gD2 · · · gDD

⎤
⎥⎥⎥⎥⎦ , (13.28)

F(j )
qi =

⎡
⎢⎢⎢⎢⎣

f11 f12 · · · f1D

f21 f22 · · · f2D

...
...

...
...

fD1 fD2 · · · fDD

⎤
⎥⎥⎥⎥⎦ , (13.29)
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where indices q, i, and j are omitted to simplify the notation. Then, we can write the formula
for the diagonal elements of the covariance matrix Ψ(j )

qi given in Equation (13.16) explicitly as

ψ
(j )
qi,d =

D∑
k=1

g2
dk θqi,k + f 2

dk θ
(j )
n,k d = 1, . . . , D. (13.30)

The first derivative of the Q function given in Equation (13.27) with respect to the pth
element of the speech variance can be obtained by applying the chain rule as follows:

∂Q

∂θ
(j )
qi,p

=
∑
d

∂Q

∂ψ
(j )
qi,d

∂ψ
(j )
qi,d

∂θqi,p
, (13.31)

where

∂Q

∂ψ
(j )
qi,d

= −1
2

∑
j,t

γ
(j )
tq i

⎛
⎝ 1

ψ
(j )
qi,d

⎛
⎝1 −

(x(j )
t,d − ν

(j )
qi,d)2

ψ
(j )
qi,d

⎞
⎠
⎞
⎠ (13.32)

and

∂ψ
(j )
qi,d

∂θ2
qi,p

= g2
dp . (13.33)

Using Equations (13.31)–(13.33), we can write the first derivative of the Q function with
respect to the speech variance as

∂Q

∂θ2
qi,p

= −1
2

∑
j,t

γ
(j )
tq i

⎛
⎝∑

d

g2
dp

ψ
(j )
qi,d

⎛
⎝1 −

(x(j )
t,d − ν

(j )
qi,d)2

ψ
(j )
qi,d

⎞
⎠
⎞
⎠ . (13.34)

We can continue with the second-derivative of the Q function with respect to the speech
variance as follows:

∂Q2

∂θqi,p∂θqi,l
=

∂

∂θqi,l

(
∂Q

∂θqi,p

)
, (13.35)

which can be expressed as

∂Q2

∂θqi,p∂θqi,l
=

1
2

∑
j,t

γ
(j )
tq i

⎧⎨
⎩
∑
d

g2
dpg2

dl

ψ
(j )
qi,d

⎛
⎝1 − 2

(x(j )
t,d − ν

(j )
qi,d)2

ψ
(j )
qi,d

⎞
⎠
⎫⎬
⎭ . (13.36)

As with the mean updates, the covariance matrices for the dynamic features of the pseudo-
clean model can be similarly derived by replacing the static parameters and features with the
dynamic parameters and features. In order to ensure that the variances remain positive during
training, the logarithm of the variances are optimized in practice. This is discussed in more
detail in Section 13.6.4.

Updating the Mixture Weights and Transition Probabilities

The transition probabilities, the initial probabilities, and the mixture weights for the pseu-
doclean model are computed in the same way as traditional ML training of the HMMs (as
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explained in Section 2.3.3) but using the adapted acoustic model to compute the posterior
probabilities.

13.6.3 Updating the Environmental Parameters

Once the HMM parameters are updated, they are fixed and the distortion model parameters are
updated. To update the distortion parameters for the jth utterance, φ(j ) , the auxiliary function
is rewritten as

Q =
∑
t,q ,i

γ
(j )
tq i

{
−1

2
log |Ψ(j )

qi | − 1
2
(x(j )

t − ν
(j )
qi )T Ψ(j )−1

qi (x(j )
t − ν

(j )
qi )

}
. (13.37)

As before, the update equations for the noise and channel means are derived by taking the
derivative of Equation (13.37) with respect to each of the parameters and setting the result to
zero. This leads to the following update equations for the noise and channel means:

μ(j )
n = μ̄(j )

n +

⎛
⎝ ∑

t,s,m

γ
(j )
tq i F

(j )T
qi Ψ(j )−1

qi (F(j )
qi )

⎞
⎠

−1

×

⎛
⎝ ∑

t,s,m

γ
(j )
tq i F

(j )T
qi Ψ(j )−1

qi (x(j )
t − ν̄

(j )
qi )

⎞
⎠ , (13.38)

μ
(j )
h = μ̄

(j )
h +

⎛
⎝ ∑

t,s,m

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi (G(j )
qi )

⎞
⎠

−1

×

⎛
⎝ ∑

t,s,m

γ
(j )
tq i G

(j )T
qi Ψ(j )−1

qi (x(j )
t − ν̄

(j )
qi )

⎞
⎠ . (13.39)

As with the speech variance, the noise variance requires a gradient-based update. We again
use Newton’s method with the following update expression:

Θ(j )
n = Θ̄(j )

n −
⎡
⎣(

∂2Q

∂2Θ(j )
n

)−1 (
∂Q

∂Θ(j )
n

)⎤
⎦

Θ ( j )
n =Θ̄ ( j )

n

. (13.40)

The terms in Equation (13.40) can be derived in a similar manner to the terms in the speech
variance described previously. The detailed derivation can be found in [20].

13.6.4 Implementation Details

The variances of both the noise and pseudoclean speech are optimized iteratively using
Newton’s method since there is no closed-form solution. To ensure that the variances remains
positive, a change of variable is made such that Θ̃ = log(Θ). The optimization is performed on
Θ̃, and then the exponential function is applied to obtain the actual covariance Θ = exp(Θ̃).
Maximizing the auxiliary function with respect to the log of the covariance requires changes
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to the update expression. Complete derivations for the log-covariance update are omitted for
space considerations but are given in [20].

There are some well-known numerical issues with Newton’s method. If the Hessian matrix
is close to singular, its inverse may be unstable. Also, to ensure that the updates converge to a
local maximum, the Hessian matrix must be negative definite. A diagonal-loading technique
[7] was used to fulfill these constraints as

Θ̃qi = ˜̄Θqi −
⎡
⎣(

∂2Q

∂2Θ̃qi

− εI

)−1 (
∂Q

∂Θ̃qi

)⎤
⎦

Θ̃ q i = ˜̄Θ q i

, (13.41)

where ε = 1 was empirically found to be useful to stabilize the optimization. Also, to ensure
the stability, the change of variance was limited such as

Θ̃qi = min
(
max

(
Θ̃qi ,

˜̄Θqi − ς
)

, ˜̄Θqi + ς
)

, (13.42)

which in turn limits the change of the original variance Θqi by a factor of exp(ς). In the
experiments, ς was set to 1. The noise covariance matrix was also optimized iteratively in the
same way.

Finally, because of the approximations in the Taylor series expansion and the gradient-based
updates used to learn the covariances, it is theoretically possible for decreases in likelihood
to occur during the Generalized EM optimization. To compensate for this, a back-off strategy
was proposed where the new parameter estimates are interpolated with their previous values
until no decreases in likelihood are observed [26].

The overall algorithm for NAT using VTS adaptation is shown in Algorithm 1.

13.6.5 Experiments using NAT

The effectiveness of the VTS-based NAT algorithm was evaluated through a series of experi-
ments on the Aurora 2 corpus described in Section 13.4 and Aurora 3 corpus, which consists
of digit strings in four different languages recorded in an actual car environment.

In these experiments, the distortion parameters for each utterance in the training set were
initialized such that the channel mean was set to zero, and the noise mean and covariance
were estimated from the first and last 20 frames of each utterance. At each iteration, the static
noise mean, static channel mean, and static and dynamic noise variances were reestimated.
The dynamic channel and noise means remained set to zero, reflecting the assumptions that
the the channel is deterministic and the noise is stochastic but stationary.

Table 13.4 shows the accuracy obtained by several well-known algorithms including cepstral
mean normalization (CMN), cepstral mean and variance normalization (CMVN), and the AFE
used with fNAT training (fNAT-AFE). All systems were trained using multicondition data,
and as before, the complex back-end training recipe was used. The proposed NAT method
outperforms all other methods, and provides relative reductions in word error rate of 11.97%
relative improvement over CMN, 3.85% over CMVN, 7.54% over fNAT-AFE, and 18.83%
over VTS adaptation. Note that NAT-VTS and VTS are exactly the same algorithm at runtime
and differ only in the manner in which the acoustic models are trained. The substantial
improvement of NAT-VTS over VTS (18.8%) highlights the value of the adaptive training



P1: TIX/XYZ P2: ABC
JWST201-c13 JWST201-Virtanen August 31, 2012 8:53 Printer Name: Yet to Come Trim: 244mm × 168mm

362 Techniques for Noise Robustness in Automatic Speech Recognition

Algorithm 1: Noise adaptive training using VTS
Input: Initial HMM parameters ΛS trained from multicondition data, initial distortion

parameters Φ for each utterance, multicondition training data X
Output: NAT-VTS-trained HMM model parameters ΛS

repeat
// Update HMM parameters
Load HMM parameters ΛS

for j = 1 to J do
Load distortion model parameters φ(j ) for utterance j

Adapt HMM: Λ(j )
X ← V TS(ΛS , φ(j ))

Compute posterior probabilities γtqi using (13.7)
for all μqi , Θqi (static and dynamic) do

Accumulate matrix and vector terms in (13.22)–(13.23)
end for

end for
Update ΛS and write to file
// Update distortion model parameters
Load HMM parameters ΛS

for j = 1 to J do
Load distortion model parameters φ(j ) for utterance j

Adapt HMM: Λ(j )
X ← V TS(ΛS , φ(j ))

Compute posterior probabilities γtqi using (13.7)
for μn , μh , Θn (static and dynamic) do

Accumulate matrix and vector terms in (13.38)–(13.40)
end for
Update φ(j ) and write to file

end for
until Likelihood converges

approach when multicondition data is used for training. Explain acronyms CMN and CMVN
and provide a reference. We will shortly discuss them in the intro as well, so keep this as a
placeholder for a reference to there.

We also applied NAT to the acoustic models trained using clean speech. These results are
presented in Table 13.5 for Aurora 2. NAT provides a small improvement over the VTS model

Table 13.4 Word accuracy for each set of Aurora 2 using models trained
on multicondition data.

Method Set A Set B Set C Avg

Baseline 91.68 89.74 88.91 90.35
CMN 92.97 92.62 93.32 92.90
CMVN 93.80 93.09 93.70 93.50
fNAT-AFE 93.74 93.26 92.21 93.24
VTS 92.20 91.87 93.37 92.30
NAT-VTS 93.66 93.77 93.89 93.75
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Table 13.5 Word accuracy for each set of Aurora 2 using models trained
on clean data.

Method Set A Set B Set C Avg

Baseline 60.43 55.85 69.01 60.31
CMN 68.65 73.71 69.69 70.88
CMVN 84.46 85.55 84.84 84.97
AFE 89.27 87.92 88.53 88.58
VTS 92.61 92.87 92.76 92.75
NAT-VTS 92.79 93.26 92.59 92.94

adaptation (92.75% vs. 92.94%) showing that even clean models have unwanted variability that
may be attributed to factors such as microphone characteristics and positioning, instrumental
noise, and speaker differences. It is also interesting to note that when the acoustic models are
trained with clean data, the model-based techniques VTS and NAT-VTS, perform substantially
better than front-end feature enhancement using the AFE.

Because Aurora 2 consists of noisy speech synthetically generated by adding noise to clean
speech, we wanted to validate the performance of NAT on real data actually collected in
a noisy environment. Aurora 3 consists of connected digit strings recorded in realistic car
environments [31]. Each utterance is recorded using either a close-talking or hands-free far
field microphone and labeled as coming from either a high, medium, or low noise condition.
There are four languages (Finnish, Spanish, German, and Danish) and three experimental
conditions (well matched, medium matched, and highly mismatched). The acoustic models
were trained using the standard “simple back-end” recipe [16]. An HMM with 16 states per
digit and mixture of three Gaussians per state is created for each digit as a whole word. A
three state silence model with 6 Gaussian mixtures per state and a one state short pause model
which is tied to the middle stage of silence model are included.

In Table 13.6, the results obtained with Aurora 3 are presented for the same set of algorithms
compared previously. Note that in Aurora 3, there is no clean data available for training and the
acoustic models are trained using the speech provided with the database for each experimental
condition. When the ML trained models are adapted at runtime using the VTS algorithm, the
average word recognition accuracy is 86.26% for the Aurora 3 task. Using NAT-VTS improves
the accuracy to 90.66% (a 32% relative improvement) and outperforms the other methods. As
before, the next best performing method is fNAT-AFE.

Table 13.6 Word accuracy for the Aurora 3 experimental conditions.

Method Well Mid High Avg

Baseline 91.34 78.4 55.84 77.94
CMN 92.97 84.43 71.57 84.63
CMVN 94.22 87.92 83.40 89.31
fNAT-AFE 95.30 86.79 87.25 90.31
VTS 91.33 80.25 86.57 86.26
NAT-VTS 94.44 87.55 88.98 90.66
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13.7 Discussion

13.7.1 Comparison of Training Algorithms

We have presented several different training strategies in this chapter and empirically evaluated
their performance. It is instructive to directly compare the update equations. In Table 13.7, the
mean update equations are shown for four different training strategies for a simple Gaussian
mixture model. The Gaussian posterior probabilities are shown directly as p(i|st) rather than
the conventional γit notation, in order to make explicit which features are being used to
computer posterior probabilities. As the table shows, clean and multicondition training are
identical except in the features used. Obviously, multicondition training will model the noisy
data xt better than the clean-trained models. However, these models have a lot more unwanted
variability from the environmental distortion.

In fNAT, point estimates of the clean speech features ŝt generated by an enhancement
algorithm are used for training. As we have shown experimentally, this is quite effective
at removing much of the unwanted environmental variability in the model. Uncertainty in
the enhancement process is captured by the model implicitly through the additional variance
introduced by errors made by the enhancement algorithm over a large training corpus.

Finally, in the NAT algorithm, the posterior probability is computed directly on the noisy data
using the adapted model, but the observations are replaced by the mean of the state-conditional
posterior distribution of clean speech. This enables NAT to use a different estimate of the clean
speech for each Gaussian. Uncertainty in the adaptation process is captured explicitly through
the presence of the adapted model variance Ψi in the accumulation of the sufficient statistics.
Components with high variance will contribute less to the estimate of the updated mean.

13.7.2 Comparison to Speaker Adaptive Training

It is also interesting to compare the the update equations of SAT and NAT, since it was our
original motivation for this algorithm. Because the variance update is unchanged in SAT, we
only focus on the comparison of the mean update equations here. The VTS mean adaptation
formula in Equation (13.15) can be written in the form of MLLR transformation as follows:

ν
(j )
qi = A(j )

qi μqi + b(j )
qi , (13.43)

where

A(j )
qi = G(j )

qi (13.44)

Table 13.7 Comparison of GMM mean update formulae for different
training strategies.

Training method Mean update equation

Clean training μi =
(∑

t p(i|st)
)−1 ∑

t p(i|st)st

Multi training μi =
(∑

t p(i|xt)
)−1 ∑

t p(i|xt)xt

fNAT μi =
(∑

t p(i|ŝt)
)−1 ∑

t p(i|ŝt)ŝt

NAT μi =
(∑

t p(i|xt)GT
i Ψ−1

i Gi

)−1 ∑
t p(i|xt)GT

i Ψ−1
i μs|xt ,i
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and

b(j )
qi = μ̄qi + μ̄

(j )
h + ḡ(j )

qi − G(j )
qi μ̄qi , (13.45)

when the VTS expansion point is μ̄
(j )
h = μ

(j )
h and μ̄

(j )
n = μ

(j )
n . When written in this form, the

mean update equation for NAT can be rederived and expressed as

μqi =

⎛
⎝∑

j,t

γ
(j )
tq i A

(j )T
qi Ψ(j )−1

qi A(j )
qi

⎞
⎠

−1 ⎛
⎝∑

j,t

γ
(j )
tq i A

(j )T
qi Ψ(j )−1

qi (x(j )
t − b(j )

qi )

⎞
⎠ . (13.46)

By comparing Equation (13.46) with Equation (13.3), it is clear the the algorithms are very
similar with the following key differences. First, SAT typically uses a global transformation
for each speaker r while NAT uses a separate transformation for each each Gaussian in the
HMM for each utterance. Second, the parameters of the transformation in SAT are estimated
from training or adaptation data, whereas the parameters of the transformations in NAT are
fully specified by the utterance-specific distortion parameters, that is the noise and channel
model parameters.

13.7.3 Related Adaptive Training Methods

In Section 13.6, we described a specific implementation of NAT that used VTS adaptation
for noise compensation. In this, work, the VTS implementation used followed closely that of
[23]. However, alternative compensation algorithms have been proposed in the literature and
can potentially be incorporated into NAT. For example, improved performance on Aurora 2
was obtained using a phase-sensitive model of the distortion function Equation (13.10). In
this model, a variable α is introduced to represent the phase asynchrony between the clean
speech and the noise [6]. Although α is theoretically a random variable, it was treated as a
tunable parameter in [24], whose optimal value resulted in an accuracy of 93.32% with clean
trained acoustic models. If a NAT formulation is used that includes this phase-sensitive VTS
distortion model, the accuracy using multicondition training data increases from 93.75% to
94.14%.

In addition to the NAT algorithm presented in this chapter, there are other adaptive training
algorithms for compensating for environmental distortion in the literature. For example, the
irrelevant variability normalization (IVN) training algorithm [18] uses a different version of
the VTS algorithm [21] which enables the optimization to be performed using EM, rather
than a gradient-based generalized EM. Joint adaptive training (JAT) [28] uses joint uncertainty
decoding as its companion model adaptation scheme [25]. Unlike most adaptation algorithms
for environmental distortion which transform every Gaussian in the system individually, JUD
computes transformations for a set of regression classes, in a similar manner to MLLR. In
addition, JAT uses a second-order method for jointly optimizing both the mean and the variance
that results in a different form of the Hessian matrix. Typically, the use of regression classes
results in computational savings at the expense of reduced accuracy, as discussed in Chapter 17.

While the material in this chapter has been restricted to training models using a maximum
likelihood criterion, discriminative training can also be used in an adaptive training framework
[11]. To do so, maximum likelihood NAT is performed until the likelihood of the training
data converges. Then, the distortion model parameters are fixed and discriminative training is
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applied to further optimize the HMM parameters. Using this approach with minimum phone
error (MPE) training resulted in further improvements in accuracy for both VTS and JUD
compensation algorithms [11].

13.8 Conclusion

In this chapter, we have described different methods to train acoustic models for noise robust
speech recognition. We have shown that acoustic models trained from clean speech typically
have the highest degree of mismatch to the observed noisy test data and thus, generally
have the poorest performance, even after front-end compensation. In addition, relying on
acoustic models trained from clean speech typically means that data collected from a deployed
application in the field cannot be used to retrain and improve the speech-recognition system.
Multicondition training substantially reduces the mismatch between the training and test data
but may not generalize well to unseen environmental conditions. Additionally, multicondition-
trained models may have weak discriminative power if the environmental distortion in the
training data introduces excessive variability.

NAT provides a means of training acoustic models with noisy speech in a manner that
removes the unwanted environmental variability from the acoustic models. By following
the same methodology used to develop SAT, NAT learns a pseudoclean acoustic model that
maximizes the likelihood of noisy training data after the model has been adapted to the noisy
environment. A simplified version of NAT can be implemented using front-end enhancement.
By simply processing the noisy training data through the same front-end enhancement pipeline
as the test data, much of the performance benefits of model-based NAT can be obtained.
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Missing-Data Techniques:
Recognition with Incomplete
Spectrograms
Jon Barker
University of Sheffield, UK

14.1 Introduction

In Part Four of this book, the mismatch between the statistics of noisy observations and those
of noise-free speech was presented as the fundamental problem facing robust ASR systems.
Techniques were described that aimed to improve performance by reducing this mismatch.
This section of the book takes a rather different perspective that emphasises information loss
rather than model mismatch. The difference between these perspective can be illustrated by
the visual analogy presented in Figure 14.1.

The top panel of the figure shows a word written is a familiar font that has been partially
distorted: the lower half of the word has been passed through a ripple effect. It is clear that
the distorted image will be poorly matched to models that have been trained on undistorted
characters. However, it is also clear that as long as the parameters of the distortion are
known, and as long as the ripple effect is invertible, no information has been lost. Armed
with knowledge about how the image had been distorted it would be possible to recover the
undistorted word. Inverting a known or estimated distortion to reduce model mismatch is the
principle behind many robust speech-recognition technologies, for example, including MLLR
(Chapter 11), dereverberation (Chapter 10) and feature compensation methods (Chapter 9).

Contrast the top panel with the situation appearing in the bottom panel. Again, a word
written in a familiar font has been distorted and the distortion has been applied to exactly
the same region of the image. In this case, the distortion is an occlusion – part of the image
has been masked by a black rectangle. This distortion differs from the ripple effect in that it
cannot be described by a one-to-one mapping and is therefore clearly not invertible. So, even

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
Edited by Tuomas Virtanen, Rita Singh, and Bhiksha Raj.
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Figure 14.1 A visual analogy comparing two views of the robust ASR problem: noise as a source of
model mismatch versus noise as a source of information loss. The distortion in the top panel is invertible
and the original signal could theoretically be recovered if the model for the distortion was known. The
occlusion in the bottom panel is not invertible and information has been genuinely lost.

with complete knowledge of the process producing the distortion, it is impossible to recover
the original undistorted image. Information has been lost. As it happens the word can still
be recognised because language (whether encoded in text or as speech) is highly redundant
and, in this case, there remains sufficient information in the top half of the image to decode
the word. However, note that although this decoding process may involve identifying which
regions of the image are affected by the noise, it does not involve restoring the original image
by ‘removing the noise’ from the lower half.

The approaches discussed in this chapter view noise robust speech recognition as a problem
of recognising speech on the basis of incomplete spectrograms, and are analogous to the
problem of attempting to read a word given an incomplete image shown in the lower half
of the figure. The noise is considered to behave like an occluding object that has obstructed
the view of the noise-free speech spectrogram. This may seem a strange perspective to take,
because whereas it is clear that when a visual object is occluded, light from the object is
blocked and replaced by uninformative light from the occluder, it is not clear that acoustic
sources occlude each other in this way. In any spectro-temporal region, energy from the two
sources combines in an additive way and, in principle, if the noise source was known it could be
subtracted to recover the target speech. However, in practice, in local time-frequency regions
the noise may be at a level many decibels above that of the speech, and the variance in the
noise estimate may be much larger than the speech energy meaning that subtracting the noise
with a useful degree of reliability becomes impossible. In such spectro-temporal regions the
information about the underlying speech signal is effectively lost and the spectro-temporal
region can be considered just as missing as if it had been obliterated by an opaque masker.
The effective opaqueness of noise maskers is in fact consistent with our perception of signals
in noise. For example, if white noise is added to a tone, as the level of the noise is increased
there will come a point where the tone is no longer detectable and no tone is perceived. At this
point, we would describe the tone as being masked by the noise. However, it is worth noting
that the masking threshold is often far below 0 dB signal-to-noise ratio (SNR).

So, although acoustic objects are not opaque, and acoustic masking is not as absolute as
visual occlusion, it can often be treated as though it is. A noisy speech spectrogram can then be
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seen to consist of separated regions where the speech masks the noise, and other regions where
the noise masks the speech. In this view, the regions masked by the noise are said to contain
missing data and the regions dominated by the speech are said to be present data. This chapter
will take this seemingly rather simplistic binary approximation of acoustic source mixing and
show how it leads to a set of simple but surprisingly effective approaches to robust ASR.

The chapter starts by discussing the problem of classification with incomplete data that is
central to all the ASR approaches that will be discussed. The classification problem will be
motivated by a trivial non-speech example which will help define some of the key concepts and
intuitions on which the formalism will be built. The chapter will then proceed to discuss how
these concepts can be applied to the case of masked speech recognition. The basic missing-data
ASR approach will be introduced and the compatibility of missing-data ASR and techniques
employed in conventional ASR systems will be discussed.

The first half of the chapter makes the assumption that there is prior knowledge that informs
us with certainty which spectro-temporal regions are missing. In practice, this will not be
the case. In general, our knowledge of the missing-data pattern (or the missing-data mask) is
itself incomplete. The second half of the chapter will consider how this missing-data mask
uncertainty, the meta-missing data, can be accommodated. We will see that the basic approach
is to represent the missing-data mask as a distribution and sum over missing-data mask
hypotheses. Various ways of representing mask distributions will be considered.

The chapter has been written in an attempt to present various missing-data approaches under
a common theoretical framework and to provide pointers to the extensive literature. Practical
details, such as performance and computational cost will be briefly discussed in the final
section, but the chapter is not intended as a comparative review of missing-data recognition
performance. There have been no comprehensive comparisons of missing-data approaches but
broad conclusions can be drawn from the recent review by Raj and Stern [28].

The techniques in this chapter attempt to accommodate for missing information during the
classification stage. An alternative approach is to reconstruct the missing information during a
pre-processing stage and then to process the reconstructed feature vectors using conventional
speech recognition techniques – this approach, commonly referred to as missing-data impu-
tation, is discussed further in Chapter 15 of this book. Note also that this chapter assumes that
some approximation of the missing-data mask is available a priori. For a discussion of the
problem of mask estimation itself the reader is referred to Chapter 16.

14.2 Classification with Incomplete Data

The problem of classification with incomplete data arises in a huge variety of contexts, with
data being lost through a wide range of mechanisms including sensor malfunction, censoring,
summarisation, compression, or corruption due to noise or transmission error. Despite the
importance of handling these situations and the ubiquity of the problem, it was not until
relatively recent years that missing data received much attention. Modern missing data theory
was pioneered in the late 1970s by the seminal work of Rubin [30] and the field was given
added relevance by the advent of efficient iterative solutions to learning with incomplete data
made practical by modern computers [12]. Missing-data theory is now commonly employed
and there are several comprehensive textbook treatments of the subject including Schafer [31],
Williams et al. [37].



P1: TIX/XYZ P2: ABC
JWST201-c14 JWST201-Virtanen August 31, 2012 8:55 Printer Name: Yet to Come Trim: 244mm × 168mm

374 Techniques for Noise Robustness in Automatic Speech Recognition

Missing-data problems involve some unexpected subtleties that are easily overlooked when
dealing with unfamiliar data sets such as abstract speech feature vectors, so, in order to
develop our understanding, we will start by considering a trivial two class classification
problem given a pair of discrete observations. Solutions to this simple problem can be written
down through appeal to common sense and intuition; however, the section will proceed to
develop a formal perspective with which we can validate our initial intuitions and extend the
ideas to more complex scenarios. Finally, we will return to the problem of speech recognition
with incomplete spectra to see how the general ideas apply to this specific case.

14.2.1 A Simple Missing Data Scenario

Consider a set of survey data showing the height and weight of a set of 100 men and 100
women. For convenience the data has been discretised into five bands for weight which,
running from lightest to heaviest, are labeled, --W, -W, W, +W and ++W and five bands for height
which are similarly labeled, --H, -H, H, +H and ++H. The width of each band has been tuned to
represent 20 percentiles of the complete data set. The data is displayed in Table 14.1 which has
entries representing every combination of H and W values, written in the form (F |M ) where
F is the count for the number of female subjects and M is the count for male subjects. So for
example, 20 of the 100 women and 1 of the 100 men are jointly in the height band, --H, and
weight band --W.

Let us now consider that after having collected this data, we are asked to guess the gender of
a set of previously unseen subjects having only been told their weight and height bands. Given
that the data has been collected from an equal number of male and female subjects, and given
that we have no prior reason to expect a random subject to be more likely to be one gender
than another, then our best guess will be the gender that has most often been seen to have
the feature {H, W } in the training data. For example, if a subject is observed to be {H, +W}
then the table records four female and six male subjects with this feature, so our best guess
for the gender would be male. What happens though if we receive a survey form in which the
height is recorded as H but the box on the form that records the weight feature is seen to be
empty? Interestingly, the correct classification may now depend on information about why the

Table 14.1 The distribution of weights and heights of 100 men and 100 women. The weights and
heights have been discretised into five 20 percentile band. Table entries are of the form F|M where F is
the count for females and M the count for males. The final row shows the counts for each height band
summed over weights, and the final column shows the counts for each weight band summed over
all heights.

− −H −H H +H ++H Σ(H)

− −W 20|1 12|0 4|1 0|1 0|1 36|4
−W 11|0 11|1 6|6 0|3 0|2 28|12

W 7|0 10|2 8|1 2|8 0|2 27|13
+W 1|0 4|0 4|6 0|14 0|11 9|31

++W 0|0 0|0 0|4 0|12 0|24 0|40

Σ(W ) 39|1 37|3 22|18 2|38 0|40
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weight feature happens to be unrecorded. The importance of understanding the mechanism
that caused the missingness is made clear by considering the three following scenarios.

In the first situation, suppose that next to the empty height box we see an annotation, ‘The
scales were broken’, and flicking through the pile of new arriving surveys we find the weight
box is empty in them all. Now, in this case, since the scales were not working we truly have
no idea what the weight might have been. We know the subject to be in height band H and we
might argue that according to the training data, people with height H are most commonly in
weight band -W. So we guess the missing weight value to be -W – we can say that the missing
value has been imputed. In which case the subject is most likely to be {H,-W} and hence is
equally likely to be male or female as the table records (6|6) for this condition. However,
basing the decision on the most likely weight does not take into account our uncertainty about
the missing data. The more intuitively correct thing to do, which we will see later is also
theoretically correct in this case, is to imagine that the weight measurement never existed
(neither during collection of the training data nor when making a classification) and base the
classification on the statistics of the height alone. To do this, we simply look at the marginal
distribution of the heights of the male and female subjects. This marginal distribution can be
computed from the joint distribution provided by the training data by summing each height
column across all weights. The result is shown in the table by the row labelled Σ(W ). For
Σ(W ) in the H column we see that there are 22 females and 18 males and so the best guess for
the gender is female. Note that in this case the result arrived at by marginalisation is different
from that achieved by imputation.

In a second situation, we receive a survey form with a blank weight measure and again
the form notes that the scales are broken, but looking through the pile of forms we see that
the weights are only missing for some subjects. Specifically, we note that weights of --W, -W
and W have been recorded but there are none recorded as +W and ++W. We then hypothesise
that the scales were systematically failing to work for the heaviest people and we confirm
this hypothesis by inquiry. In this case, the data is missing but we know something about the
missing value. Specifically, we know that the missing value must either have been +W or ++W. It
is no longer appropriate to use the marginal height distribution, that is completely ignoring the
weight. The missing value still contains some information. In this case, the correct approach
would be to form a marginal distribution for height by summing over only the allowable
weights, that is summing the +W and ++W rows in the table. Computing this bounded marginal
and looking at its value for height, H, shows the female to male ratio to be (4|10), so in this
case we would guess the gender as male rather than female.

In the previous case, it was clear how to proceed because we had access to exact knowledge
of the conditions under which the data had gone missing (the missing-data model). However, a
good missing-data model is not always so readily available. Consider a third situation in which
the procedure for collecting the data has been changed. Rather than the height and weight
being recorded by a technician, subjects are asked to make their own measurements and then to
record the data themselves on the survey form. Further, the form makes it clear that height and
weight data is an optional part of the survey and survey subjects have the right to simply omit
the data if they so chose. In this case, if the weight information is missing, after checking that
the scales were working, it is most likely that the subject has simply withheld the information.
Treating this missing information is now no longer straightforward. We might initially assume
that the data omissions are independent of their value and of the gender of the subject, that is
any person regardless of gender or weight has an equal probability of choosing not to report
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their weight. In this case, it might seem natural to proceed as if the scales had simply been
broken and base the classification on a simple marginal probability. However, consider that
perhaps the omissions are not random. It is possible, for example, that participants in the +W
and ++W categories are embarrassed about their weight and hence more likely not to record it.
In this case, we would want to treat this situation like the second scenario where the scales
had been selectively broken. Alternatively, perhaps women – or men – are on average more
private about their weight. It is clear that in this case the missingness in itself tells us something
directly about the class. However, in general, we choose to proceed, the classification can only
be performed after stating and justifying our beliefs about the missing-data model.

14.2.2 Missing Data Theory

Let us now formalise the missing-data classification problem that we discussed in Section
14.2.1. Let x be a vector in RN representing the complete set of observed features (i.e. the
height and weight in the previous example). In the example above N equals two, but the
dimensionality of the problem is arbitrary. Let xp ∈ RP where P ≤ N be a subvector of x
constructed from the elements of x that are directly observed, that is the present features.
Likewise xm ∈ RM , where M + P = N , is a vector representing the missing features. We will
also consider the missing-data pattern, s which is a vector of N binary indicator variables
which selects which of the features in x happen to be present and which happen to be missing.
In the missing-data ASR literature, this missing-data pattern is also known as the missing-data
mask or as the segmentation. (In this chapter, it is denoted s – as in segmentation – rather than
m to avoid confusion with the usage of m to refer exclusively to missing features.)

In our initial description both the present features xp and the missing-data pattern s are
directly observed and we wish to select the class label, which will be denoted q, which is most
probable given these observation (we will later generalise to the case where the missing-data
pattern itself is not directly observed). So, the missing-data classification problem can be
stated as

q′ = argmax
q

P (q|xp , s). (14.1)

Before considering this problem, consider how we would proceed if xp was the complete
data set, that is, the missing features were not missing but had never existed, then the problem
would be written as

q′ = argmax
q

P (q|xp ) (14.2)

which, rearranging using Bayes’ rule and ignoring the constant denominator, can be written as

q′ = argmax
q

P (xp |q)P (q).

Note, p(xp |q) can be computed as a marginal distribution of p(x|q). In the examples of
Section 14.2.1, the gender was chosen using the marginal when the scales were totally broken.
However, this solution resulted from Equation (14.2) rather than the correct, Equation (14.1).
So, when are we justified in ignoring the conditioning on the missingness pattern, s?
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To clearly see the relation between Equation (14.2) and Equation (14.1) we will introduce
the missing features, xm , and perform some simple algebra

q′ = argmax
q

P (q|xp , s)

= argmax
q

∑
xm

P (q,xm |xp , s)

= argmax
q

∑
xm

P (q,x, s)
P (xp , s)

= argmax
q

∑
xm

{
P (q|x, s)P (xp ,xm , s)

P (xp , s)

}

= argmax
q

∑
xm

{P (q|x, s)P (xm |xp , s)}

= argmax
q

∑
xm

{
P (q|x, s)

P (s|xp ,xm )P (xm |xp )
P (s|xp )

}
.

(14.3)

Now P (q|x, s) = P (q|x) because then the missing-data pattern tells us nothing extra about the
class once we are given the full feature vector. (Note that this remains true only as long as we
assume that the missing-data mechanism is not dependent on the class q.)

q′ = argmax
q

∑
xm

{
P (q|x)P (xm |xp)

P (s|xp ,xm )
P (s|xp)

}
.

Now if we assume that

P (s|xp ,xm ) = P (s|xp ) (14.4)

the third term cancels and the xm in the first term integrates out, to lead us back to Equa-
tion (14.2).

q′ = argmax
q

∑
xm

{
P (q|x)P (xm |xp )

P (s|xp ,xm )
P (s|xp )

}

= argmax
q

∑
xm

{
P (q, xm |xp )

P (s|xp ))
P (s|xp )

}

= argmax
q

∑
xm

P (q|xp ).

So, in summary, we are justified in using the marginal distribution directly in cases where
we can assume Equation (14.4) holds, that is, in situations where, given the present features,
the missingness pattern is independent of the values of the missing features. This condition is
known as Missing At Random (MAR) [16].
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Considering again our survey scenario. In the first case where the scales were totally broken
the data was always missing. So the missingness pattern depended neither on the present or
missing values

P (s|xp ,xm ) = P (s). (14.5)

This more stringent condition is described in the literature as Missing Completely At
Random (MCAR). Data that are MCAR are clearly also MAR, hence, the use of the marginal
was justified.

A survey situation that is MAR without being MCAR could be contrived. For example,
imagine subjects have their height measured and sent to separate rooms to be weighed with
the room depending on their height. Now imagine that the scales in just the room for the
tallest people is broken. Now tall people generally weigh more, so more heavy weights will
be missing from the survey but conditioned on the observed data, the height, the missingness
pattern is independent of weight. The data is still MAR and marginalisation could be validly
applied. This is worth bearing in mind because the technical meaning of ‘missing at random’
does not fit precisely with intuitive ideas of randomness.

In the second and third scenarios, the fact that the data was missing depended, or potentially
depended, on the weight (the missing value) itself even when conditioned on the observed
height. So now the missing data is Not Missing At Random (NMAR). In this case, the model
for the missing-data pattern needs to be explicitly stated:

q′ = argmax
q

∑
xm

{
P (q|x)P (xm |xp )

P (s|xp ,xm )
P (s|xp )

}

= argmax
q

∑
xm

{P (q, xm |xp )P (s|xp ,xm )} .

14.2.3 Validity of the MAR Assumption

We have seen that in situations where missing data is Missing At Random (MAR) there
is a straightforward approach to classification: we take the present features to be complete
feature vectors and classify them according to their marginal distributions. Good classification
performance can be achieved if there is sufficient redundancy in the full feature vector that the
marginal distributions retain some discriminative power.

Before considering how marginalisation is applied to acoustic models in ASR, it is important
to consider whether the MAR assumption is ever valid for masked speech. Missing-data ASR
was largely inspired by earlier work by Ahmad and Tresp [1] who demonstrated that missing
feature theory could be successfully applied to the problem of occlusion in visual object
classification. The case for the MAR approximation in vision is clear: it is saying that the
chances of an object being occluded depend little on the appearance of the object. There are
many visual scenes for which this is a reasonable statement. MAR is less readily justifiable
in speech recognition. Indeed, very early demonstrations of missing-data ASR sidestepped
the issue completely by randomly deleting spectro-temporal elements directly in the feature
domain thus ensuring the data was MAR [8].

The validity of the MAR assumption in speech processing depends to a large extent on the
circumstances under which the data has been lost. There are certain common situations where
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the assumption can be clearly justified. First, consider information that has been lost due to
filtering. For example, speech that has been passed through a band-limited communication
channel may be matched against models trained on the full-band signal as long as the filtered
components are treated as missing data. In this case, the missing-data pattern is fixed and
so clearly does not depend on the value of the missing elements. Marginalisation may also
be an appropriate technique for dealing with information lost due to transmission error in
distributed automatic speech recognition [27,33]. In this case, multiple speech features or
complete temporal segments of the signal may be missing. Again, although there may be
external factors that are predictive of a transmission error, the chances of error do not usually
depend on the information being transmitted, and so the MAR condition holds.

However, missing-data techniques are most commonly applied to deal with data that has
been lost due to energetic masking [9]. Is such data MAR? In this case, the obvious answer
is no, because any particular channel is more likely to be masked – and hence missing – if
the speech signal in that channel has low rather than high energy, that is, the missingness
pattern depends on the value of the missing components, so the data is NMAR and a specific
missing-data model needs to be introduced. Although this is true for masking in general, for
certain noise types, MAR may still be a good approximation. In particular, imagine a noise
signal that is spectro-temporally sparse but sufficiently intense that in regions where noise
energy is present it consistently masks the speech regardless of the speech energy. Extremely
abrupt impulsive noises such as hammer blows, or narrow-band tonal noises such as sirens
may approach these conditions. In such situations, simple marginalisation may prove effective.

14.2.4 Marginalising Acoustic Models

In situations where the speech observations are missing at random, classification requires
evaluation of the marginal likelihood. Our discussion so far has employed discrete observations,
but we will now be dealing with continuous quantities, namely spectral energy observations.
However, the formalism remains unaltered except that probability mass functions of discrete
observations, P () are replaced with probability density functions, p(), and summations over
discrete probabilities are replaced with integrals over continuous densities, hence the marginal
likelihood is written as

p(xp |q) =
∫

xm

p(xp ,xm |q) dxm .

The ease with which the marginal can be computed will depend on the form of the p.d.f.
used to model the acoustic feature vectors. When modelling speech in the spectral domain it is
necessary to account for the dependence between features, that is features in adjacent frequency
bands are highly correlated. One possibility is to use a multivariate normal distribution with
full covariance

p(x|q) =
1
K

exp
{
−1

2
(x − μq )

T Σ−1
q (x − μq )

}
,

where μq is the mean vector and Σq is a covariance matrix for class q and K is the normalisation
constant. In this case, it can be shown [26] that the marginal is also a multivariate normal
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distribution

p(xp |q) =
1

K ′ exp
{
−1

2
(xp − μq ,p )T Σ−1

q ,pp (xp − μq ,p )
}

, (14.6)

where μq ,p is a vector constructed from the original mean vector, μq by striking out the
elements corresponding to the missing values in x, and likewise, Σq ,pp is constructed from
the covariance matrix Σq by striking out the rows and columns corresponding to the missing
elements. Note that the normalisation constant for the marginal, K ′, does not have the same
value as the constant needed to normalise the full distribution, K. (Henceforth, the class
subscript, q, is dropped from �μ and Σ for the sake of compactness).

Unfortunately, although the marginal has a lower dimensionality that the full distribution,
it cannot be computed with the same efficiency: in a standard full-covariance ASR system the
precision matrices Σ−1 can be pre-computed and stored. However, in a missing-data system,
the matrices Σ−1

pp are a function of the missing-data pattern which is generally changing at
each frame. Given the exponentially large number of possible missing-data patterns, pre-
computation is not a practical option and the matrix inverses have to be computed at run time.
For systems with a large number of states, this can be a significant computational burden.

The more common alternative for modelling feature interdependence is to use a Gaussian
mixture model (GMM) composed of mixture components having a diagonal covariance matrix.
The p.d.f. for a diagonal covariance GMM is given as

p(x|q) =
M∑

m=1

P (m|q)p(x|m, q) =
M∑

m=1

P (m|q)
N∏

i=1

p(xi |m, q),

where M is the number of mixture components, N is the number of elements in the feature
vector x and p(xi |m, q) is a univariate Gaussian distribution

p(xi |m, q) =
1√

2πσ2
i,m

exp

{
−1

2

(
xi − μi,m

σi,m

)2
}

.

Note, that for a diagonal covariance GMM there is dependency between features
so p(xm ,xp |q) �= p(xm |q)p(xp |q); however, features are independent within each mixture,
p(xm , xp |q, m) = p(xm |q, m)p(xp |q, m). This factorisation greatly simplifies the form of the
marginal distribution

p(xp |q) =
∫
xm

p(xm ,xp |q)dxm

=
∫
xm

M∑
m=1

P (m|q)p(xm ,xp |m, q)dxm

=
M∑

m=1

P (m|q)p(xp |m, q)
∫
xm

p(xm |m, q) dxm︸ ︷︷ ︸
1

=
M∑

m=1

P (m|q)
∏
i∈P

p(xi |m, q),

(14.7)
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where P is the set of indices of the present features, that is, each mixture is evaluated as a
product of univariate Gaussians, one for each feature that is marked as present.

A missing-data ASR system then can be implemented as a relatively minor modification
to a conventional hidden Markov model (HMM)-based automatic speech recognition (ASR)
system: HMMs with, typically, diagonal covariance GMM emission distributions are trained
on noise free speech using a spectral representation and the usual expectation maximisation
(EM) algorithm. At recognition time, the usual Viterbi algorithm is employed but the decoder
is also given access to a missing-data pattern. The missing-data pattern and the observed noisy
spectra are passed to each state in the model. Then the usual state likelihood computation is
replaced with an evaluation of Equation (14.7) – or one of the more sophisticated missing-data
likelihood equations that we shall see later. So essentially a missing-data ASR system is akin
to a conventional HMM just with a different calculation for the state likelihood. This holds
true for all the systems discussed in this chapter other than the speech fragment-decoding
technique introduced in Section 14.4.3.

14.3 Energetic Masking

Section 14.2 introduced the missing-data formalism and demonstrated that when the data is
Missing at Random (MAR) classification can proceed simply by replacing the probability
distributions for the complete observation vector with the marginal distribution of the present
data components. A few cases where the MAR approximation holds were discussed and
examples of the marginal computation for multivariate gaussian distributions and diagonal
covariance Gaussian mixture models have been provided. However, in general, when spectro-
temporal data has been lost due to noise masking – the situation where missing-data techniques
are most commonly applied – the data is far from being MAR. This section will demonstrate
how an explicit missing-data model can be introduced to correct for the lack of randomness.
Different missing models will be discussed.

14.3.1 The Max Approximation

Figure 14.2 shows a log energy domain representation of a speech spectrum (dashed) in the
presence of a masking noise source whose spectrum is shown by the dotted trace. The spectrum
of the combined signals is given by the solid line.

Imagine that some process has provided us with the missingness pattern, s, which identifies
the frequency channels in which the speech signal dominates (i.e. present data) and those in
which it is masked (i.e. missing data). In the figure the missingness pattern, s, is indicated by
the horizontal line that lies over the frequency regions in which the data is present. As before,
let the speech features x be partitioned into those that are directly observable xp and those that
are masked by the interferer and are hence not observed, xm .

Are the missing values likely to be missing at random? MAR implies that

P (s|xp ,xm ) = P (s|xp).

This assumption clearly does not hold for the simple fact that low-energy regions of the
speech signal are more readily masked than high-energy regions. In fact, if we take y to be
the observed spectra, then it is the case that, in the regions where the speech is known to
be masked, the unknown speech energy must be lower than the observed masking energy.



P1: TIX/XYZ P2: ABC
JWST201-c14 JWST201-Virtanen August 31, 2012 8:55 Printer Name: Yet to Come Trim: 244mm × 168mm

382 Techniques for Noise Robustness in Automatic Speech Recognition

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

E
ne

rg
y 

(d
B

)

Frequency (Hz)

Figure 14.2 A pair of energy spectra (dashed lines) and their summation (solid line) in the log domain.
Note that at each frequency point the summation is well approximated by the maximum of the two
signals being combined. The maximum error in this approximation is about 3 dB which occurs when the
signals being combined have equal energy.

The missing regions are themselves informative. The fact that the speech is masked in these
regions provides counter-evidence against acoustic model states that would have produced
observations that are more energetic than the masking level [9].

Although the data is NMAR the missing data can be modelled using a simple approximation
to describe the addition of the two signals. Operating in the log energy domain let y represent
the spectrum that results from the combination of a log domain speech spectra, x and a noise
spectra, n. Assuming phase independence of the noise and speech source then for each spectral
component yi

yi = log(exp(xi) + exp(ni)).

Due to the sparsity of the speech signal, in most frequency channels either exp(xi) � exp(ni)
or exp(ni) � exp(xi). As such the combination of the speech and noise in the log domain can
be modelled using the max approximation

yi ≈ max(xi, ni).

The accuracy of this approximation is illustrated in the figure by the fact that the solid line
representing the combined spectra is nearly always close to the bigger of either the dashed or
dotted lines representing the component spectra. The maximum deviation is about 3 dB which
occurs when the two sources have equal energy. This error of 3 dB is typically small compared
to the variability of the spectra across frequency. Ignoring the error in the max approximation, it
holds that in regions where the speech dominates it corresponds to the observed signal, xp = yp ,
and in the masked regions we know that the speech energy lies somewhere between 0 and the
observed energy, 0 ≤ xm ≤ ym . This is known as the missing-data bounds constraint [9].

14.3.2 Bounded Marginalisation

So far missing data has been discussed in terms of observations that are present or missing
and we have performed classification with respect to the present features. The discussion
in Section 14.3.1 motivates a subtly different view. A noise-corrupted speech spectrum y is
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observed and our interpretation of y is molded by our belief about the missing-data pattern s.
In the masked regions, the noisy observation, y, acts as an upper limit on the possible value
of the unobserved speech, whereas in the unmasked regions the ‘unobserved’ speech energy
is equal to the noisy observation y. In this formulation the speech features are all treated as
potentially missing, and the noisy spectrum y and the missingness pattern s are given hence
the classification problem is written as

q′ = argmax
q

P (q|s,y). (14.8)

Now, following Equation (14.3) we arrive at

q′ = argmax
q

∫
P (q,x|s, y) dx

= argmax
q

∫
P (q|x)p(x|s, y) dx

= argmax
q

∫
p(x|q)p(x|s, y)

p(x)
dxP (q)

= argmax
q

∫
p(x|q)Ws,y (x) dxP (q).

(14.9)

So now the likelihood p(x|q) used when the speech data is directly observed is replaced by a
weighted integral of p(x|q) computed over all possible speech observations, x. The weighting
is dictated by the function Ws,y (x). From the previous discussion on the max approximation,
p(x|s, y) �= 0 only if xi = yi for all i where si = 1 and xi < yi for all i where si = 0. For values
of x that obey these constraints, we would expect p(x|s, y) to be proportional to p(x) (as long
as we ignore the fact that speakers adapt their speech in the presence of noise in order to reduce
the effects of masking [7, 17]). So W takes a value that is either 0 or constant. Since the scale
of the constant will not influence the outcome of the argmax operation, we can take it to be 1
and then we can conveniently factorise Ws,y (x) as

Ws,y (x) =
N∏

i=1

Ws,y (xi), (14.10)

where

Ws,y ,i(xi) =

⎧⎪⎨
⎪⎩

1 : si = 1 and xi = yi

1 : si = 0 and xi < yi

0 : else
(14.11)
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Now if the speech observation distribution is modelled using a diagonal covariance Gaussian
mixture model then the integral in Equation (14.9) can be evaluated as follows,

∫
p(x|q)Ws,y (x) dx =

∫ M∑
m=1

P (m|q)
N∏

i=1

Ws,y ,i(xi)p(xi |m, q)dxi

=
M∑

m=1

P (m|q)
N∏

i=1

{∫
Ws,y ,i(xi)p(xi |m, q)dxi

}

=
M∑

m=1

P (m|q)
∏
i∈P

p(xi = yi |m, q)
∏

i∈M

∫ yi

−∞
p(xi |m, q)dxi,

(14.12)

where P is the set of indices for which si = 1 (i.e. the present data) and M is the set of indices
for which si = 0 (i.e. the missing data).

In the missing-data ASR literature Equation (14.12) is typically referred to as the bounded
marginalisation approach [9]. An integration is being performed similar to that performed in
the computation of the marginal distribution, but in this case the integration is only over the
permissible values of the missing features whose maximum value is bounded by the observed
energy yi , hence the appearance of the integration bounds. Note that if the masking energy
were to be infinite then the bounded marginal Equation (14.12) simplifies to the evaluation of
the probability of xp using the marginal distribution, Equation (14.7).

14.3.3 Missing Data ASR in the Cepstral Domain

The missing-data techniques that have been discussed so far all operate in the spectral domain,
that is the acoustic models are constructed from the statistics of speech energies measured
across a range of frequency bands. Modelling in the spectral domain is an obvious choice
because it is in the spectral domain that noise masking can be observed to have a local effect.
Additive noise will obstruct some spectral features, rendering them as missing, while leaving
others intact. However, spectral features do not lend themselves well to statistical acoustic
modelling. For example, there exist complicated correlations between features which mean
many extra parameters have to be estimated. Further, the spectral representation is not invariant
to changes in energy level such as might occur if a speaker moves closer to a microphone, nor
are they easily normalised for channel variability, such as changes in microphone or changes
in room reverberation. Large vocabulary speech-recognition systems have long solved these
problems by developing sophisticated chains of feature preprocessing steps [15]. The most
significant of these steps is typically the use of linear transforms to decorrelate the features,
for example as employed in the construction of mel-frequency cepstral coefficients [19].

Can missing-data techniques be employed with acoustic models trained on cepstral repre-
sentations? One approach for interfacing spectral missing-data approaches and cepstral speech
models is to employ spectral imputation [29]. Imputation-based techniques operate by recon-
structing the missing spectral regions based on a best guess of the noise-free spectrum. After
reconstruction, it is then straightforward to apply the necessary linear transform to the esti-
mated spectrum to compute an estimated cepstral observation vector (see Chapter 15 for a
full account). Although the practical advantages of being able to interface with existing large
vocabulary ASR infrastructure should not be underestimated, imputation-based techniques
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remain sub-optimal from a theoretical point of view because the imputed spectra discard in-
formation about the uncertainty. Recall from the simple example described in Section 14.2.1
how the imputation based approach led to an incorrect result. Techniques to incorporate es-
timates of the imputation uncertainty into the decoding can address these problems, but the
uncertainty itself can be difficult to estimate or to model [13, 25].

There have been attempts to directly incorporate cepstral models into the theoretically well-
motivated marginalisation approach; however, to do so successfully is problematic for two
main reasons.

Firstly, noise corruption that is typically local in the spectral domain becomes spread across
all cepstral parameters. Consider a spectral feature vector with one parameter that is missing
in an unbound sense, that is the missing feature is free to take any value. Imagine there
are 32 frequency channels. If one feature is missing we can compute the necessary p(xp |q)
using the remaining 31 features and the marginal distribution obtained by integrating over the
missing dimension (see Section 14.2.4). Given that the spectral representation contains a lot of
redundancy it would be expected that the remaining 31 channels were sufficiently informative
to afford a high level of classification performance. Now consider computing a linear transform
of the original 32 features to form a set of up to 32 cepstral features. It is easy to see that
the uncertainty of the one missing feature is spread across all 32 cepstral features. If we are
infinitely uncertain about the value of the one missing spectral feature, we become infinitely
uncertain about all 32 cepstral features. In practice however we are never infinitely uncertain
about the spectral parameter rather we acknowledge that even if a spectral feature were to be
fully missing (e.g. filtered out) we are able to fall back on prior knowledge, that is spectral
features have a well defined energy distribution p(x) that can be learned from the training data.

A second more intransigent difficulty with the cepstral domain arises from a computational
problem. In the spectral domain, our uncertainty about the missing data as represented by
the bounds constraint presents itself as a set of integrations over hyper-cuboid regions which
are aligned with the axes. When the distributions are factorised, we have seen how these become
simple 1-d integrals. Consider the situation when we perform a linear transform to decorrelate
the features. Figure 14.3 illustrates the distribution of two unobserved spectral features. The

Cepstral domainSpectral domain

x

x

2

1

Figure 14.3 Bounded marginalisation in the spectral and cepstral domains. The panel on the right
illustrates the distribution of a pair of spectral features and the bounded integration area that is implied
by a pair of noisy observation x1 and x2 . In the cepstral domain, right panel, the distribution becomes
decorrelated but the axis aligned integration area becomes rotated.
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speech energy is not directly observed but known to be less than the observed masking noise
levels and hence the vector x can lie anywhere in the shaded region. If operating in the log
energy domain there is no effective lower bound; however, missing-data systems often work
with cube root compressed energies in which case the unobserved speech features are bound
below by 0 [9]. Although there is no closed form solution for integrating a full covariance
Gaussian distribution over this region, the distribution is typically approximated by a diagonal
covariance GMM (as illustrated by the dotted circles in the figure) so the integration becomes
the sum of easily computed integrals over mixture components. The panel on the right shows
the situation after a diagonalising linear transform has been applied. The features are now
decorrelated and hence the ellipse is axis aligned, but now the region of possible speech
observations has become a rectangle that is not aligned with the axis. This integral does not
have a closed form solution.

One solution to approximating the integral in the cepstral domain is to estimate it with
another integral that can be easily computed. For each cepstral feature, it is possible to
independently compute the minimum and maximum values that can be obtained by considering
appropriate extreme choices for the missing spectral values, that is points lying on the vertices
of the cuboid integration region on the left. Then these minimum and maximum values are used
as independent integration bounds for the cepstral features. Geometrically this is equivalent
to integrating over the smallest axis-aligned hyper-cuboid that encloses the correct non-axis
aligned hyper-cuboid integration region, that is the white box surrounding the grey region in
the panel on the right of the figure. However, as the figure makes clear, this technique hugely
overestimates the true uncertainty. The significance of the additional corner areas becomes
exponentially greater as the number of dimensions increase. Ad-hoc adjustments to the bounds
may improve the situation but the underlying problem remains. Further, if operating with log
energies, which could in theory be infinitely small, then no suitable axis aligned approximation
can be computed. However, ideas similar to these have been applied to good effect in recent
missing-data-imputaton systems [14].

14.3.4 Missing Data ASR with Dynamic Features

It is common practice in ASR systems to include the rate of change of the observed acoustic
features as an additional set of features that are appended to the feature vector. These dynamic
features (often referred to as delta features or velocities) are equally important whether working
in the cepstral or spectral domain. Further information can be extracted by applying this idea
twice and computing the rate of change of the delta features, that is delta delta features, or
accelerations.

Some care needs to be taken when using dynamic features in the missing-data framework.
The simplest estimate of the rate of change would be a simple frame difference, that is
Δxi,t = xi,t − xi,t−1 . However, in order to produce more reliable estimates the rate of change
is usually computed using a linear regression over several frames. Using an odd number of
frames (2N + 1) centered on xt the least means squared linear fit to the observations produces
a gradient of

Δxi,t =

∑N
j=1 j(xi,t+j − xi,t−j )∑N

j=1 2j2
.
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Figure 14.4 The construction of a missing-data pattern for delta features. The panel on the left illustrates
the four static features that contribute to a delta feature when employing five frame linear regression.
The panel on the right shows a missing-data mask for static features (black indicates present) and the
corresponding delta mask in which delta features are only marked present if they can be estimated from
present static features.

The panel of the left of Figure 14.4 illustrates the set of static features that are employed in the
estimation of a delta feature when using a window size of five, that is N = 2. If any of the static
features that contributes to the computation of the delta feature is marked as missing then the
delta feature cannot be directly computed and should itself be marked as missing [2, 34]. The
panel on the right shows an example of a missing-data pattern for a set of spectro-temporal
features (top) and the corresponding missing-data pattern for the delta features if this rule is
applied (bottom).

Bounds on the missing delta features can be computed, using a similar logic to that discussed
in Section 14.3.3, by considering extreme values of the possible missing static features, that
is xmin and the observed masking energy. The maximum delta would be achieved by setting
the missing observations on the left of the window to xmin and setting the missing values
on the right to be the observed masking energy, and vice versa for the minimum delta. For
example, if all static features were missing, and xmin was assumed to be 0 – as would
be appropriate if using, say, cube root energy features – then the delta bounds would be[−0.2yi,t−2 − 0.1yi,t−1 , 0.1yi,t+1 + 0.2yi,t+2

]
. In practice, however, these bounds are so

wide that using them provides little advantage over considering the delta feature to be fully
missing. For the sake of simplicity, missing-data systems typically apply full marginalisation
to delta and delta delta features [2].

Previously, it was explained that the techniques described in the chapter are based on the
assumption that the data is missing at random (MAR), which – loosely stated – means that
the probability of a feature being missing must not depend on the value of the feature. Since
the missingness pattern for the dynamic features depends only on the missing pattern of the
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static features, then if the MAR assumption holds for the static features it will also hold for the
dynamic features. The validity of the MAR assumption for the static features was discussed
in Section 14.2.3.

14.4 Meta-Missing Data: Dealing with Mask Uncertainty

In all the discussions so far, it has been presumed that the missingness pattern s is provided
and that it is known with absolute certainty. However, in practice, the missing-data pattern
itself has to be estimated. Mask estimation is a challenging problem which is discussed in
more detail in Chapter 16 (see also [11, 32, 35, 36] for examples). Although there may be
some temporal spectral regions where it is clear whether it is the speech or the noise that is
dominating the mixture, more generally there will be uncertainty in the missing-data mask
estimate – information about which elements are missing is itself incomplete or missing,
therefore meta-missing. As will be discussed, the appropriate model for missing-data pattern
uncertainty can depend largely on the nature of the noise and in the manner in which the mask
estimate has been formed. This section will discuss approaches to modelling mask uncertainty,
and how mask uncertainty can be properly accounted for during missing-data classification.

14.4.1 Missing Data with Soft Masks

So far it has been assumed that there is direct access to the exact missing-data pattern, s.
However, in real applications, the missing-data pattern is estimated from an observation of the
noisy signal, y. For example, we might choose to employ the single missing-data pattern s′

that we believe to be the most likely

q′ = argmax
q

P (q|s′,y),

where

s′ = argmax
s

P (s|y).

However, using a point estimate of the mask does not represent the true uncertainty of our
beliefs.This uncertainty can be quite large as there is often no clear evidence on which to base
the decision of missingness. The correct thing to do is to sum over all possible masks weighted
by their probability, that is

P (q|y) =
∑
s

{∫
x

p(q,x, s|y) dx
}

=
∑
s

{∫
x

p(q|x, s,y)p(x|s, y)P (s|y) dx
}

=
∑
s

{∫
x

p(x|q)p(x|s, y)
p(x)

dxP (s|y)
}

P (q),
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where the last step above is performed by first using the fact that p(q|x, s,y) = p(q|x) and then
applying Bayes’ rule.

The missing-data pattern distribution, p(s|y), in the above summation is a distribution
over all possible binary vectors. A possible simplifying assumption would be to consider
the missingness state of each component of the spectra to be independent given the noisy
observation, y

P (s|y) =
N∏

i=1

P (si |y).

The distribution for a single element can be modelled as a Bernoulli distribution with a single
parameter, λi , which by convention is taken to represent the probability of the element being
present. So the missingness pattern s is the outcome of N independent Bernoulli trials each
with a separate parameter, λi . This vector of parameters is often described as a soft missing-
data mask because it represents the probability of each spectral element being present [2]. In
the case where the parameters are all either 0 or 1 then the mask elements are correspondingly
either 0 or 1 with certainty and the situation is equivalent to that discussed in earlier sections
where certain knowledge of the missing-data pattern is assumed. The soft missing-data mask is
typically estimated deterministically from the noisy data, that is λ = f (y) so we will sometimes
denote P (s|y) as Pλ (s).

Given the soft missing-data mask λ the probability distribution for the missing-data masks,
Pλ (s) is given by

P (s|y) = Pλ(s) =
∏
i∈P

λi

∏
i∈M

(1 − λi).

As before let us assume a diagonal covariance Gaussian mixture model for p(x|q) then
P (q|y) becomes

P (q|y) =
∑
s

∫
x

M∑
m=1

P (m|q)
N∏

i=1

p(xi |m, q)
p(x|s,y)

p(x)
dx

∏
i∈Ps

λi

∏
i∈Ms

(1 − λi)P (q). (14.13)

The direct summation over missing-data patterns would involve 2N terms and is generally
not practicable. The computation would become feasible if, within each mixture component,
each of the N spectral features made an independent contribution, allowing the equations to
be expressed as a product over N terms. In order to see how this might be achieved consider
the term

Ws,y(x) =
p(x|s,y)

p(x)
.

Earlier it was argued that because p(x|s, y) is either proportional to p(x) or 0, then W is
constant everywhere that it is not 0, and therefore W can be factorised as shown previously is
Equations (14.10) and (14.11) where the constant has been arbitrarily scaled to unity without
effect on the argmax operation. However, the constant depends on s and so we cannot arbitrarily
scale it to unity (i.e. there is a different constant for each term in the sum over missing-data
patterns) and so this term cannot generally be factorised in a useful way. In order to proceed we
need to assume that p(x) and p(x|s, y) can themselves be factorised into a product of univariate
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distributions for each spectral feature

p(x) =
N∏

i=1

p(xi),

p(x|s, y) =
N∏

i=1

p(xi |s,y).

Then there are two cases, either si indicates that the spectral feature is dominated by speech
energy and so xi must be equal to yi

p(xi |si = 1, yi) = δ(xi − yi).

Alternatively si indicates the feature is masked in which case

p(xi |si = 0, yi) =
{

Fi.p(xi) : xi ≤ yi

0 : xi > yi
,

where Fi is a normalisation constant need to ensure that the truncated distribution integrates
to unity and remains a true pdf, that is

Fi =
1∫ yi

−∞ p(xi)dxi

.

Substituting the factored form of W into Equation (14.3) produces

P (q|y) =
∑
s

∫
x

M∑
m=1

P (m|q)
N∏

i=1

{
p(xi |m, q)

p(xi |si , yi)
p(xi)

}
dx

∏
i∈Ps

λi

∏
i∈Ms

(1 − λi)P (q)

=
M∑

m=1

P (m|q)
∑
s

N∏
i=1

{∫
xi

p(xi |m, q)
p(xi |si , yi)

p(xi)
dxi

} ∏
i∈Ps

λi

∏
i∈Ms

(1 − λi)P (q),

(14.14)
which, substituting in the missing and present data forms for p(xi |m, q) and using the notation
p(x = y) to represent the value of p(x) evaluated at y, can be rewritten as

P (q|y) =
M∑

m=1

P (m|q)
∑

s

∏
i∈Ps

λi
p(xi = yi |m, q)

p(xi = yi)

∏
i∈Ms

(1 − λi)Fi

∫ yi

−∞
p(xi |m, q)dxi,

which can then be rearranged to allow the sum over all possible masks within each of the M
mixtures to be computed efficiently as a product of N terms

P (q|y) =
M∑

m=1

P (m|q)
N∏

i=1

{
λi

p(xi = yi |m, q)
p(xi = yi)

+ (1 − λi)Fi

∫ yi

−∞
p(xi |m, q)dxi

}
.
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As we are usually searching for the q that maximises P (q|y), and hence constant scaling
does not affect the result, the soft missing-data equation is usually seen written as

q′ = argmax
q

M∑
m=1

P (m|q)
N∏

i=1

{
λip(xi = yi |m, q) + (1 − λi)

1
ki

∫ yi

−∞
p(xi |m, q)dxi

}
.

Compared with the discrete mask case, where within each mixture each element of the
spectral feature vector either contributes a present-data term or a missing-data term, now each
element contributes a weighted sum of the present and missing-data terms where the soft
missing-data mask dictates the weighting. The scaling constant ki is effectively converting
the probability into a probability density so that the present and missing-data terms are
commensurate. The constant ki can be calculated as

ki =
1

Fip(xi = yi)
=

∫ yi

−∞ p(xi)dxi

p(xi = yi)
. (14.15)

If p(xi) is assumed to be a uniform distribution between 0 and any arbitrary maximum
value then evaluation of Equation (14.15) gives ki = yi , that is the missing-data integral term
is normalised by division by the observed masking energy, yi . This is exactly the equation
presented in the original soft missing-data paper [2]; however, in this original paper the result
is derived using an intuitive argument without any formal justification.

14.4.2 Sub-band Combination Approaches

Sub-band combination approaches (e.g. multi-band combination [4, 24] and the probabilistic
union model [20–22]) consider the speech spectrum as being split into a small number of
frequency sub-bands (typically three or four). Statistical models are then built for features
extracted from each band and then some heuristic is employed at recognition time to combine
separate band observation probabilities in a way that accommodates the potential for one or
more bands to be corrupt. The bands may be modelled directly in the spectral domain, but
are more commonly independently transformed using a technique typically applied to the full
spectrum, for example transformation to the cepstral domain.

The multi-band combination approach replaces the observed data probability p(x|q) with a
score computed as a product over bands

f(x|q) =
B∏

b=1

p(xb |q)λb ,

where xb are the sub-band feature vectors and λb are sub-band weighting factors that control
the dynamic range of the likelihoods. In the simplest case all weights are equal; however,
if there is evidence that a band has low SNR the weight can be reduced, or, in severe noise
conditions, set to 0 so that the band is effectively ignored. The effectiveness of the technique
depends on how well sub-band SNRs can be estimated. An obvious drawback is that by
modelling the sub-bands independently, it is not possible to take advantage of the correlations
that exist between widely separated frequency regions and which can be captured by full-band
Gaussian mixture modelling.
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The probabilistic union model notes that the unweighted multi-band approach is equivalent
to combining bands with an ‘AND’ operator, that is the data provides evidence for a class to
the extent that all bands provide support for that class, whereas in noisy situations it would
seem more appropriate to combine bands using an ‘OR’ operator [21]. The model can be
expressed as

P (x|q) = P (
∨

n1 ,n2 ,...nN −M

xn1 xn2 ...xnN −M
|q),

where xn1 xn2 ...xnN −M is a sub-set of N − M of the total N available sub-bands. Sub-bands
within each sub-set are combined with an ‘AND’ operator, whereas

∨
is the probabilistic ‘OR’

operation that is operating over all
(

N
N −M

)
sub-sets. The parameter M is called the order of

the model and represents the number of bands that are believed to be corrupted. So for the
case of N = 3, the form of P (x|w) for each possible order would be as follows:

M = 0 ⇒ PM =0(x|q) = p(x1x2x3 |q) = p(x1 |q)p(x2 |q)p(x3 |q), (14.16)

M = 1 ⇒ PM =1(x|q) = p(x1x2 ∨ x1x3 ∨ x1x3 |q)
= p(x1 |q)(x2 |q) + p(x1 |q)p(x3 |q) + p(x2 |q)p(x3 |q), (14.17)

M = 2 ⇒ PM =2(x|q) = p(x1 ∨ x2 ∨ x3 |q) = p(x1) + p(x2) + p(x3). (14.18)

In the above, note that the ‘OR’-ed probabilities can be simply added because they are
mutually exclusive, and note that the ‘AND’-ed terms are being simply multiplied which is
only valid under the assumption that the sub-bands are independent given the state (which
may be a poor approximation). Unfortunately, the scores from the models of different orders
are not directly comparable, so it is not possible to sum over model orders, rather the model
order is chosen a priori based on some idea of how many bands might be corrupted. A later
version of the model termed the posterior union model [23] solves this problem by computing
the a posteriori union probability for each state q given by

PM (qk |x) =
PM (x|qk )P (qk )∑Q
i=1 PM (x|qi)P (qi)

. (14.19)

However, this model does not resolve the problem of selecting the model order, M. A solution
would be to assign a prior distribution over the values of M and sum over all possible models.

It is instructive to compare the probabilistic union model with missing-data with an uncertain
missing-data pattern, as discussed in Section 14.4.1:

P (q|y) =
∑
s

∫
x

p(q,x, s|y)dx

=
∑

s

{∫
x

p(x|q)p(x|s, y)
p(x)

dxP (s|y)
}

P (q).
(14.20)

Consider a case where all missing-data patterns are considered equally probable, that is
P (s|y) is constant, and also consider there to be no bounds constraints on missing values so
that p(x|s, y) is 0 if present elements of x do not match the observed signal, y, but otherwise
proportional to p(x), which can be expressed compactly as

p(x|s, y) = kp(x)δ(xps − yps ), (14.21)
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where k is a constant set to ensure the distribution integrates to unity and xps is the sub-
vector formed from the components of x marked as present according to s, and yps are the
corresponding elements of y. The value of k can be computed by integrating the distribution

k =
1∫

xm s
p(xps = yps ,xms )dxms

. (14.22)

Substituting Equation (14.21) into Equation (14.20) and integrating over xps we arrive at

p(q|y) ∝
∑
s

{∫
xm s

p(xps = yps ,xms |q)dxms∫
xm s

p(xps = yps ,xms )dxms

}
P (q). (14.23)

In the above the sum is assumed to be over all possible masking patterns. This sum could be
approximated by considering masking patterns that accepted or rejected clusters of frequency
channels arranged as sub-bands. In this case, an equivalence can be seen between Equation
(14.23) and a posterior union model (Equation 14.19) in which sub-band probabilities have
been computed via missing-data marginalisation and a sum has been taken over all model
orders, M. This formalism appears to avoid the model selection problem that is inherent in the
posterior union model as presented in Ming and Smith [23].

14.4.3 Speech Fragment Decoding

In the previous sections, we have seen how a single mask estimate can be replaced with
a distribution over possible masks. In Section 14.4.1, this distribution is formed by each
time-frequency element being independently considered as either present or missing with a
probability estimated from the noisy data. This soft mask model may or may not be appropriate.
It is successfully used, for example, in situations where the additive noise is estimated to within
a simple noise term. In this case, a single missing-data pattern could be computed using the
noise mean, and the softness of the mask is in proportion to the variance in the noise estimate.
However, this kind of model is not particularly appropriate for everyday listening situations
where the noise is typically being generated by multiple sources with unpredictably changing
levels of activity. For example, imagine trying to recognise speech in a noisy cafeteria, in
a busy street or even in a domestic living room shared with a television set. The end of
Section 14.4.2 presented an alternative that summed over all masks that could be formed from
a set of sub-bands. Again though, in practice, noise seldom fits neatly into pre-determined
frequency bands.

In complex acoustic scenes, direct estimation of the missing-data pattern is extremely
challenging. It is usually not possible to say with any certainty whether any particular time
frequency element, taken in isolation, is masked or not (i.e. whether si is a 0 or a 1). However,
it is often possible to make strong predictions about the relation between pairs or groups of
time frequency elements. In Chapter 16, it was discussed how certain properties of a sound
source can be used to cue grouping rules that bind elements of a source across frequency
and time. For example, if a sound is periodic it will have harmonics spread across the entire
spectrum but, although appearing in separated frequency bands, these harmonics will all be
related by having a common fundamental frequency. Using this cue the vocal resonances of
a vowel spoken by one talker can readily be grouped together and seen to be separate from
simultaneously occurring vocal resonances of a competing speaker talking with a different
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F1

F2

F3

Figure 14.5 On the left, 12 frequency channels have been grouped into three fragments, F 1, F 2 and
F 3. On the right are shown the 8 (2 × 2 × 2) masking patterns (i.e. missing-data patterns) that can be
validly constructed from the three fragments.

pitch [18]. Likewise, timing differences between signals arriving at the two ears which indicate
the direction of arrival of a sound can be used to separate parts of the spectrum dominated
by sounds arriving from one direction from those arriving from another [6]. Using such cues,
it is possible to identify fragments of sound energy which extend over frequency and time
and which appear to be due to a single environmental source. It might be unclear whether
this fragment is dominated by the target speech source or by a noise source, but because the
fragment is all from one source time-frequency elements in the fragment region must all share
a common value in the missingness pattern (i.e. either 0 or 1).

The above discussion of fragment analysis suggests an alternative model for p(s|y). For the
sake of continuity with earlier sections, we will consider initially a single frame of the signal,
y. Within this frame, cross-frequency grouping rules have clustered the frequency elements
into a small number of mutually exclusive spectral fragments. Each fragment is either a
fragment of speech and hence would be represented in s by 1’s or a fragment of noise masker
and hence would be represented by 0’s. Only missing-data patterns that are consistent with
these rules will be permissible, for all others p(s|y) = 0. We might decide that all permissible
missing-data patterns have equal probability. Figure 14.5 shows an example of this model
in which three fragments are shown along with the eight possible missing-data patterns that
they might generate. P (q|y) is computed just as in Section 14.4.1 by summing over possible
segmentations, which in this case gives

P (q|y) =
M∑

m=1

P (m|q)
∑
s∈S

⎧⎨
⎩ ∏

i∈Ps

p(xi = yi |m, q)
p(xi = yi)

∏
i∈Ms

Fi

∫ yi

−∞
p(xi |m, q)dxi

⎫⎬
⎭ , (14.24)

where S represents the sets of segmentations permissible given the fragments.
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However, this single frame fragment model is not used in practice because the true power of
the fragment based approach comes from allowing fragments to extend across time. By tracking
source signal properties over time it is possible to construct fragments with a spectro-temporal
extent. Let X = {x1 , ...,xT }, Y = {y1 , ...,yT }, S = {s1 , ..., sT } and Q be the sequence of
states Q = {q1 , ..., qT } where T is the number of frames in the utterance. The ASR problem of
finding the optimal state sequence can then be posed as

Q′ = argmax
Q

p(Q|Y) = argmax
Q

∑
S

{∫
X

p(Q,X,S|Y) dX
}

.

In general this problem is intractable because of the large number of segmentations that need
to be considered; however, the best test sequence, Q′, can be estimated by searching for the
combined state sequence and single segmentation that jointly maximise P (Q,S|Y)

Q′,S′ = argmax
Q,S

p(Q,S|Y) = argmax
Q,S

{∫
X

p(Q,X,S|Y) dX
}

.

By making a set of frame-independence assumptions, similar to those made in all HMM-
based ASR systems, the problem can be solved by an extension to the standard ASR Viterbi
decoding algorithm which includes a parallel search over possible segmentations [3]. For a
given segmentation hypothesis, at each time frame, and for each acoustic model state q, the
frame-based posterior probabilities p(q, s|y) need to be computed. These can be computed
using Equation (14.24) but with the summation over all s replaced by a single term repre-
senting the missing-data pattern hypothesis currently under consideration. The search over
full segmentations hypotheses, S can be achieved efficiently through a graph structure which
spawns new hypotheses at the frame where a fragment begins and merges pairs of hypotheses
when a fragment ends (see [3] for details).

14.5 Some Perspectives on Performance

It is now over 10 years since the publication of the paper of Cooke et al. [9] that first popularised
the marginalisation-based missing-data approach to robust speech recognition. Despite the
wealth of research that has been conducted in the intervening years, it remains very difficult
to say anything very concrete about the performance of missing-data techniques. There are
strong interactions between techniques for mask estimation, mask uncertainty modelling and
acoustic modelling. Achieving a good result requires very careful application and depends to
a large extent on the complexity of the recognition task in terms of both the speech content
and the noise background.

In the early years of missing-data ASR there was considerable optimism. Much of this
optimism was driven by results on small vocabulary tasks using so-called a priori masks
[9]. In these experiments knowledge of pre-mixed speech and noise signals would be used
to generate a missing-data mask by selecting reliable points on the basis of the true local
SNR. Using such idealised masks, it was shown that recognition performance could remain
robust down to global SNRs that would challenge even human perception. However, papers
presenting such results seldom point out that a priori mask experiments would produce good
results even if the real speech and noise mixture contained no cue by which the signals could
be separated. It is rather like observing that white text can be read on a white background as
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long as someone shows you the outline of the letters – but there is clearly no process that can
find the outlines given only a blank sheet of paper as input.

Despite the oversold and ambiguous interpretation of a priori mask results, the performance
gap between these results and genuine missing-data ASR results initially drove researchers
to concentrate on improving mask estimation. Estimating missing-data masks is a different
problem than recognising words in noisy signals – but it is not clear that it is any more tractable.
Despite much research in this direction, and appeals made to auditory scene analysis [5] and its
computational models (see Chapter 16), there remains no general purpose algorithm for mask
estimation. There are many partial techniques. However, the success of these techniques largely
depends on specifics of the application and, in particular, the strength of the assumptions that
can be made about the noise, for example, the noise may be at a different spatial location, or
it may have a predictable temporal or spectral structure, or it may be sufficiently stationary
to allow it to be estimated during non-speech regions. The paradox is that in situations where
there is a strong noise model it may be better to use other techniques, for example model
combination or noise subtraction (see Chapter 12 and Chapter 4).

The difficulties inherent in estimating accurate missing-data masks have driven the search
for techniques that accommodate uncertainty in the mask estimates. Early experiments with
soft missing-data masks showed it was possible to gain substantial performance improvements
in a wide range of noise conditions even while using simple and ad hocly drawn uncertainty
measures [2]. However, in highly non-stationary noise background, it can become difficult
to estimate uncertainty in the mask. Errors in the mask pixels are often correlated over local
spectro-temporal regions as large fragments of the noise background or the speech background
are misallocated. A typical such case would be attempting to recognise speech against a
background of competing speech [10]. Soft masks do not offer much in such conditions.

Fragment-decoding techniques provide a potential solution to the general case of speech
in unpredictable noise backgrounds [3]. However, even fragment decoding systems are con-
strained by the quality of the front-end signal processing. Although it is no longer necessary
to estimate a complete mask prior to recognition, the front-end still needs to locate locally
coherent sound source fragments. Again, whereas experiments with ‘a priori fragments’ have
shown encouraging results, finding sufficiently coherent fragments to approach this perfor-
mance using real signal processing has remained an elusive goals.

Over the 10 years since the introduction of missing-data systems there has been a trend
towards increasingly complex joined-up systems. The original concept of being able to achieve
robust recognition results in a real system by applying a simple missing-or-present masking
model while making no assumption about the noise has developed into something more subtle.
It has been realised that – apart from in a few exceptional circumstances – the speech data
in seldom completely missing but is only more or less uncertain. Missing data has become
uncertain data and implicit assumptions about noise sources have become more explicit. The
boundaries between missing-data systems, model combination techniques and uncertainty
decoding become increasingly blurred. It can be expected that future techniques will benefit
by drawing on insights that have been made in each of these areas.
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15.1 Introduction

Automatic speech recognition (ASR) performance degrades rapidly when speech is corrupted
with increasing levels of noise. Missing-data techniques are a family of methods which tackle
noise-robust speech recognition based on the so-called missing-data assumption proposed
in [12]. The methods assume that (i) the noisy speech signal can be divided in speech-
dominated (reliable) and noise-dominated (unreliable) spectro-temporal components prior to
decoding and (ii) the unreliable elements do not retain any information about the corresponding
clean speech values. This means that the clean speech values corresponding to the noise-
dominated components are effectively missing, and speech recognition must proceed with
partially observed data.

Techniques for speech recognition with missing features divide in roughly two categories,
marginalization and feature reconstruction. The marginalization approach, discussed in Chap-
ter 14, is based on disregarding the missing components when calculating acoustic model
likelihoods: The likelihoods that correspond to the missing components are calculated by
integrating over the full range of possible missing-feature values [11]. In this chapter, we
focus on the reconstruction approach, where the missing values are substituted (imputed) with
clean speech estimates prior to calculating the acoustic model likelihoods [10,43,45]. Since
the reconstructed features no longer contain missing data, likelihood calculation does not need
to be modified.

In general, all missing-feature imputation methods employ a model of the clean speech to
estimate the missing values. Such models range from simple smoothness assumptions [45] to
advanced statistical models and exemplar-based approaches. Given the clean speech model
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and a noisy observation, the missing features are imputed with the values that best match the
assumptions of clean speech components at the missing locations.

Most imputation techniques are front-end based, which means they operate independently
of the speech recognizer. Front-end imputation methods are attractive for two reasons. First,
once the missing features have been replaced with clean speech estimates, any recognizer
developed for clean speech conditions can be deployed without further modifications. In
addition, the reconstructed features may be subjected to normalization and, for example,
converted to cepstra. This is advantageous since the cepstral features are less correlated than
spectral features and better suited for processing with ASR systems based on hidden Markov
model (HMM) techniques [13]. Using marginalization or imputation techniques directly in
the cepstral domain is more difficult since the cepstral transformation spreads the corrupting
noise over all cepstral bands.

In this chapter, we primarily discuss four imputation methods that are well known and have
been evaluated in various speech recognition tasks. First, we introduce correlation-based im-
putation [43] and cluster-based imputation [45] which use statistical models to calculate clean
speech estimates using bounded maximum a posteriori (MAP) estimation. Correlation-based
imputation employs a model that represents the sequence of speech frames as the output of a
wide-sense stationary Gaussian process whereas in cluster-based imputation, clean speech is
represented with a Gaussian mixture model (GMM). In cluster-based imputation, the bounded
MAP estimate is approximated as a weighted sum of estimates calculated for each Gaussian.

The third method we discuss is class-conditioned imputation [33,57], where a specific clean
speech estimate is calculated for each acoustic model state or Gaussian that is evaluated. This
requires classifier modification, and thus, the imputation process is not strictly front-end based
as in correlation or cluster-based imputation. Moreover, while class-conditioned imputation
otherwise resembles cluster-based imputation, the speech model used for missing-feature
estimation must have the same states or the same Gaussian components as the acoustic model
used for speech recognition. Traditionally, the acoustic model itself is used.

The last method treated in depth is sparse imputation [22,27], which is an exemplar-based
method. In contrast to the methods described above, speech is modeled nonparametrically as
a linear combination of clean speech example spectrograms spanning multiple time frames.
The missing-feature estimates are then determined based on the sparsest possible linear com-
bination of example spectrograms that accurately represents the reliable features of the noisy
speech.

For each method, we describe the basic concept and assumptions, discuss practical issues for
implementation, and conclude with a description of possible advances on the basic technique
proposed in literature. Common advances are combinations with soft missing-data masks or
observation uncertainties. In addition to the four well-known imputation methods, we give short
overviews of a few other methods that can be used for reconstructing missing features in speech
recognition. The methods include reconstruction based on Markov random fields [49], nonlin-
ear state-space models [42], matrix-factorization techniques [35,51], and discrete HMMs [5].

The remainder of this chapter is organized as follows. In Section 15.2, we introduce the
concept of feature reconstruction and describe the notation used in the chapter. In Sections
15.3–15.6, we describe the four well-known reconstruction methods, and in Section 15.7, we
present short overviews of other methods. In Section 15.8, we discuss results obtained with the
various missing-feature reconstruction methods, and finally, we conclude with a discussion in
Section 15.9.
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15.2 Missing-Data Techniques

In ASR, speech is normally represented as a spectro-temporal distribution of acoustic power,
a spectrogram. In noise-free conditions, the value of each time-frequency cell in this two-
dimensional matrix depends only on the speech signal power, whereas in noisy conditions,
the value of each cell represents both speech and background noise power. Assuming noise
is additive and uncorrelated with speech, the power spectrogram of noisy speech can be
approximately described as the sum of the individual power spectrograms of clean speech and
noise.

The spectrographic features are often mapped to the mel-frequency scale and compressed
with a logarithmic function to mimic human hearing. The logarithmic compression of a two-
term sum can be approximated by the logarithm of the larger of the two terms [37]. Therefore,
it holds for noisy speech features that

X ≈ max(S,N) (15.1)

with the (mel-frequency) log-power spectrogram matrix X denoting the noisy speech, S the
clean speech, and N the background noise spectrogram in the (mel-frequency) log-power
domain. The max operator denotes an element-wise maximum. Based on Equation (15.1),
we assume that the features X(t, f ), where the time index 1 ≤ t ≤ T and the frequency index
1 ≤ f ≤ F , which are dominated by speech energy approximately represent the uncorrupted
clean speech signal whereas features dominated by noise energy represent only the noise
signal.

The speech-dominated, reliable features Xr (t, f ) can be directly used as an estimate of the
corresponding clean speech values, Sr (t, f ) = Xr (t, f ), whereas the noise-dominated, unreli-
able features Xu (t, f ) provide only an upper bound for the unobserved or missing clean speech
components, Su (t, f ) ≤ Xu (t, f ). The labels that denote whether a time-frequency compo-
nent X(t, f ) is reliable or unreliable are referred to as a missing-data mask or spectrographic
mask M. The mask denotes reliable components as M (t, f ) = 1 and unreliable components as
M (t, f ) = 0. The missing-feature problem is illustrated in Figure 15.1.
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Figure 15.1 Figure (a) is a spectro-temporal representation of the digit “one”. The horizontal axis
represents time, the vertical axis represents frequency, and the intensity represents the acoustic energy.
The noisy spectrogram (b) represents the clean speech after it has been artificially corrupted by suburban
train noise at SNR = −5 dB. In figure (c), the unreliable features of the noisy speech are marked black.
We see that a substantial part of the data is missing.
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If the clean speech and noise signals or their spectral representations are available so that we
know the speech and noise power in each time-frequency cell, a so-called oracle mask may be
constructed. However, in realistic situations, the location of reliable and unreliable components
needs to be estimated. This results in an estimated mask. For methods of mask estimation, we
refer the reader to the discussion in Chapter 16 or the overview in [9]. Instead of hard labels,
assessing the probability that a component is reliable or unreliable has also been proposed.
The probabilistic or soft mask M assigns each time-frequency component a continuous value
between 0 and 1 to describe the probability of the component being reliable [3].

15.3 Correlation-Based Imputation

15.3.1 Fundamentals

In correlation-based imputation [43], the missing values are estimated based on their statistical
dependencies with reliable observations in the current and neighboring frames. In the following
sections, we introduce the clean speech model used in correlation-based imputation and derive
the maximum a posteriori (MAP) estimates for the missing values based on the model.
A correlation-based rule is applied to restrict the set of reliable components to make the
estimation procedure computationally feasible.

Clean Speech Model

In correlation-based imputation [43], the matrix S that represents a sequence of clean speech
vectors in the log-power domain is modeled as an output of a wide-sense stationary Gaussian
process. Wide-sense stationarity means that the first and second order statistics of the feature
vectors S(t) do not vary in time. Therefore, the expected value is constant, E[S(t)] = S̄ for all
t, and the covariance between feature vectors in any two frames depends only on their relative
time difference, E[S(t)S(t − l)T] = Q(l) for all t. Moreover, since the process is assumed
Gaussian, the joint probability distribution of any time-frequency components S(t, f ) in S is a
Gaussian whose parameters are derived from the expectation value vector S̄ and the covariance
matrices Q(l) as discussed in Section 15.3.2.

Feature Reconstruction

Given the clean speech model and a noisy spectrogram matrix X divided in reliable and
unreliable features, {Xr (t, f )} and {Xu (t, f )}, estimates for the missing values {Su (t, f )}
should be chosen so that (i) the reconstructed spectrogram Ŝ, where Ŝ(t, f ) = Sr (t, f ) if the
components is reliable and Ŝ(t, f ) = Ŝu (t, f ) if the component is unreliable, fits the clean
speech model while (ii) the estimates Ŝu (t, f ) do not exceed the observed values Xu (t, f ).
Under the above conditions, clean speech estimates for the unreliable components are given as

{Ŝu (t, f )} = argmax
ξu

P (ξu |{ξr (t, f ) = Xr (t, f )}, {ξu (t, f ) ≤ Xu (t, f )}, Λ), (15.2)

where ξr = {ξr (t, f )} and ξu = {ξu (t, f )} denote the random variables corresponding to the
reliable and unreliable elements of the clean speech spectrogram matrix S, and Λ denotes
the model parameters. The estimates Ŝu (t, f ) are referred to as bounded MAP estimates. If
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the observed spectrograms X represent, for example, single words, the set {Ŝu (t, f )} can
be solved using the methods discussed in Box 1. Given a longer utterance, calculations may
become computationally infeasible.

Frame-Based Reconstruction

In order to reduce the computational load, Raj [43] proposed using a frame-based approach
where the missing values in each time frame are estimated independently. We assume the
feature vector X(t) in frame t is divided in reliable and unreliable components that may be
rearranged in vectors Xr (t) and Xu (t), respectively. That the missing values in each frame
are estimated independently means that ξ(t, f ) and ξ(t ′, k), which correspond to missing
components Su (t, f ) and Su (t ′, k), are assumed to be uncorrelated if t ′ �= t. Additionally,
because the correlation between any two components ξ(t, f ) and ξ(t ′, k) decreases rapidly
when the distance between (t, f ) and (t ′, k) grows, many reliable components Sr (t ′, k) do
not contribute in the clean speech estimate vector Ŝu (t) and can be discarded from Equation
(15.2) without a significant effect. The components ξ(t ′, k) that (i) correspond to reliable
observations and (ii) have a correlation greater than certain threshold α with the components
of the random variable ξu that corresponds to the vector Su (t) are collected in a vector ξn (see
Figure 15.2). This vector contains the reliable components that will be used in estimating the
missing values in correlation-based imputation.

To summarize, in correlation-based imputation the random variable ξu , which corresponds to
the vector Su (t) whose components are the missing clean speech features in frame t, is assumed
to be statistically independent of all feature components except the vector ξn that contains a
subset of reliable features from S. Applying the independence assumption to Equation (15.2),

Ŝu (t) = argmax
ξu

P (ξu |ξn = Xn (t), ξu ≤ Xu (t), Λ), (15.3)

where Xn (t) is a noisy observation vector whose components correspond to the components
of ξn . Since the clean speech spectrogram matrix S is modeled as an output of a Gaussian
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Figure 15.2 Assume (a) a missing-data mask M that divides the log-spectral time-frequency compo-
nents X(t, f ) into reliable (white) and unreliable (gray) components. When t = 4, the vector constructed
from the unreliable components ξu = [ξ(4, 3)]. The reliable components used in correlation-based im-
putation are determined based on the mask M and (b) the correlation between the missing compo-
nent ξ(4, 3) and the other components ξ(t ′, k). Components with correlation greater than α = 0.5
(white) are assumed to contribute to the clean speech estimate Ŝ(4, 3) whereas the other components
(gray) are assumed independent of ξ(4, 3). Hence, (c) the reliable components used to reconstruct the
feature vector S(4) (white) in correlation-based imputation are a subset of all the reliable compo-
nents in the spectrogram S. The reliable components used for reconstruction are organized in a vector
ξn = [ξ(2, 3), ξ(3, 1), ξ(4, 1), ξ(4, 2), ξ(5, 1)]T.
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process, the joint distribution of ξu and ξn is Gaussian, and Ŝu (t) can be calculated using the
bounded MAP estimation methods discussed in Box 1. The estimation procedure is applied
independently in each time frame to obtain the reconstructed spectrogram.

Box 1: Bounded estimation

Assume we are given two random variables ξr and ξu that are jointly Gaussian and an
observation vector X whose components may be arranged in the reliable and unreliable
component vectors Xr and Xu so that ξr = Xr and ξu ≤ Xu . The bounded MAP estimate
for ξu is given as:

Ŝu (t) = argmax
ξu

{P (ξu |ξr = Xr , ξu ≤ Xu, μ, Θ}, (A.1)

where μ and Θ are the mean and covariance of the vector ξ = [ξT
r ξT

u ]T. If the covariance
matrix is diagonal and the components of the observation vector X are rearranged so that
X = [XT

r XT
u ]T, the bounded MAP estimate of each vector component ξ(f ) is the minimum

of the observed upper bound X(f ) and the expected value E[ξ(f )] = μ(f ), where μ(f ) is
the f th component of the Gaussian mean μ in Equation (A.1). If full covariances are used,
the bounded estimates cannot be solved in closed form.

The bounded MAP estimation problem with Gaussian variables may be formulated as a
constrained optimization task

min
ξ

{1
2
(ξ − μ)TΘ−1(ξ − μ)} subject to ξr = Xr and ξu ≤ Xu , (A.2)

where ξ = [ξT
r ξT

u ]T. The feature vector ξ̂ that minimizes the cost function in (A.2) maximizes
the conditional probability in Equation (A.1). Finding ξ̂ is a general quadratic optimiza-
tion problem which can be solved using iterative methods such as sequential quadratic
programming (SQP). Van hamme [57] compared using a gradient descent method to solve
the optimization problem (A.2) with using a multiplicative updates method to solve a non-
negative least squares (NNLSQ) problem derived from problem (A.2). Speech recognition
performance was reported to converge after 2–5 iterations with either method. In [27], the
estimates were computed using a multiplicative updates method for quadratic optimization
problems with non-negativity constraints [50]. Raj [43] alternatively proposed an iterative
approach for solving Equation (A.1) as a series of bounded estimation tasks with a single
missing feature.

15.3.2 Implementation

Correlation-based imputation needs an estimate for the clean speech model parameters and
a rule for choosing the reliable components used in reconstructing the tth partially observed
feature vector S(t). The speech data may be processed in spectrograms or in fixed-length
windows centered around the current frame t. Since this does not affect estimation, we simply
assume the missing values are calculated from an F × T noisy speech segment X. The cal-
culations described in the estimation section below are repeated for every time frame in the
observed noisy spectrogram.
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Clean Speech Model

All spectrograms Sj in the clean speech training data are assumed independent observations of
the same wide-sense stationary Gaussian process. The maximum likelihood estimate (MLE)
for the feature mean is a vector calculated as the sample average

S̄ =
1
N

∑
j

∑
t

Sj (t), (15.4)

where N is the number of samples in the clean speech training data and Sj (t) denotes the
feature vector in the tth frame of the jth spectrogram matrix in the training data. MLEs for
the feature covariances are similarly calculated as sample covariances between the S(t) and
S(t − l),

Q(l) =
1

N (l)

∑
j

∑
t

(Sj (t) − S̄)(Sj (t − l) − S̄)T, (15.5)

where N (l) is the number of samples available for estimating the lth covariance matrix and S̄ is
the estimated mean vector from Equation (15.4). Considering missing-feature reconstruction,
it is noteworthy that the mean and covariance parameters define the distribution of any subset
of clean speech features in a spectrogram. More precisely, a sequence of T consecutive clean
speech feature vectors concatenated into a single vector s follows a Gaussian distribution with
mean and covariance given as

μ =

⎡
⎢⎢⎣

S̄
...
S̄

⎤
⎥⎥⎦ Θ =

⎡
⎢⎢⎣

Q(0) . . . Q(T − 1)
...

...
Q(T − 1) . . . Q(0)

⎤
⎥⎥⎦ , (15.6)

where μ is an FT -dimensional vector constructed by repeating the F -dimensional sample
mean T times and Θ is an FT × FT matrix constructed from the sample covariances Q(l).

Reliable Components

In correlation-based imputation, estimates for the missing clean speech values in frame t are
calculated from the joint distribution of ξn and ξu , where ξn is a vector constructed from the
clean speech components that are used for reconstruction of the vector S(t) in frame t and
ξu corresponds to the vector Su (t) whose components are the missing clean speech features
in frame t. The components of vector ξn are the elements of matrix S that (i) correspond
to the reliable observations Sr (t ′, k) and (ii) according to the clean speech model, have a
correlation greater than a given threshold α with at least one of the components of vector ξu .
The correlation between S(t ′, k) and S(t, f ) is calculated as

r(t − t ′, f, k) =
q(t − t ′, f, k)√

q(0, f, f)q(0, k, k)
, (15.7)

where q(l, f, k) denotes the f th row of the kth column of the lth covariance matrix Q(l) from
Equation (15.5).

If the speech data is processed in windows rather than full spectrograms, the window
width T should be set so that the correlation between any two components more than T/2
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frames apart does not exceed the given threshold. Raj [43] reports that the correlation between
two feature components ξ(t, f ) and ξ(t ′, k) falls below the proposed threshold α = 0.5 when
|t − t ′| > 5. Note that this result depends on the frame rate and feature representation used
to compute the spectrograms, so the minimum window width should be determined for each
system separately.

Estimation

Bounded MAP estimation (Box 1) is used for computing the clean speech estimate Ŝu (t) based
on the extended observation vector X̃(t) = [Xn (t)TXu (t)T]T and the mean and covariance
of the corresponding clean speech distribution. To form the extended observation vector,
let us reshape the F × T noisy speech segment X into a single FT -dimensional vector x
by concatenating the feature vectors in subsequent time frames. Given the threshold α for
choosing correlated reliable components, we can construct a binary matrix U(t) that extracts
the components of X̃(t) from x, X̃(t) = U(t)x. Similarly, we can construct an extended mask
to divide X̃(t) in reliable and unreliable components as M̃ (t) = U(t)m, where m is constructed
from the missing-data mask M by concatenating the mask vectors in subsequent time frames.
The corresponding clean speech distribution parameters are given as

μ̃(t) = U(t)μ, Θ̃(t) = U(t)ΘU(t)T, (15.8)

where μ and Θ are the mean and covariance from Equation (15.6). Calculating the distribution
parameters is an O(d(FT )2) operation, where d denotes the number of components of X̃(t).

15.4 Cluster-Based Imputation

15.4.1 Fundamentals

In cluster-based imputation [45], clean speech is represented with a Gaussian mixture model
(GMM) and the missing values in each frame are estimated based on their statistical relationship
with the reliable observations in the current frame. In the following sections, we introduce
the clean speech model used in cluster-based imputation and derive the MAP estimates for
the missing values based on the model. The estimates are approximated as a weighted sum of
cluster-conditional estimates.

Clean Speech Model

In cluster-based imputation [45], the log-domain clean speech feature vectors S = S(t) are
modeled as independent and identically distributed (i.i.d.) random variables sampled from a
mixture of Gaussians:

P (S) =
∑

i

wi N (S ; μi ,Θi), (15.9)

where wi is the weight of the ith mixture component and μi and Θi are the mean vector and
covariance matrix of the ith component.
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Feature Reconstruction

Considering the noisy observation feature vector X = X(t), we distinguish between its re-
liable and unreliable component using the vectors Xr and Xu . Accordingly, we denote the
corresponding reliable and unreliable (missing) elements of the clean speech vector S = S(t)
as Sr and Su , respectively. Given the clean speech model, the estimate Ŝu for Su should be
chosen so that (i) the reconstructed feature vector Ŝ fits the clean speech distribution model
while (ii) the estimate Ŝu does not exceed the observed values in Xu . The estimate Ŝu under
the above conditions is given as

Ŝu = argmax
ξu

P (ξu |ξr = Xr , ξu ≤ Xu, Λ), (15.10)

where ξu and ξr denote the random variables corresponding to Su and Sr and Λ denotes the
parameters of the clean speech distribution model in Equation (15.9). For GMM-distributed
variables, Equation (15.10) can be written as a maximization over a weighted sum of cluster-
conditional posterior probabilities,

Ŝu = argmax
ξu

{
∑

i

P (i|X, Λ)P (ξu |ξr = Xr , ξu ≤ Xu, Λi)}, (15.11)

where P (i|X, Λ) is the posterior probability for the ith Gaussian component given the noisy
observations X and P (ξu |ξr = Xr , ξu ≤ Xu, Λi) is the cluster-conditional posterior probabil-
ity distribution for the unreliable features. In cluster-based imputation, Equation (15.11) is
approximated as

Ŝu =
∑

i

P (i|X, Λ) argmax
ξu

{P (ξu |ξr = Xr , ξu ≤ Xu, Λi)}, (15.12)

which is a weighted sum of cluster-conditional bounded MAP estimates for the missing-feature
vector Su . The cluster-conditional estimates can be calculated using the methods discussed in
Box 1 and the posterior probabilities for clusters are calculated from the component weights
and cluster-conditional observation probabilities as described below.

Cluster Posterior Probabilities

The posterior probability of the clean speech vector S being associated with the ith Gaussian
component of the clean speech model is calculated as

P (i|X, Λ) =
wiP (X |Λi)∑I

j=1 wjP (X |Λj )
, (15.13)

where wi is the weight of the ith component from Equation (15.9), P (X |Λi) the cluster-
conditional observation probability, and Λi = {μi ,Θi} denotes the mean and covariance of
the ith component. Although the clean speech model in Equation (15.9) is assumed to have
full covariance matrices, only their diagonal components are considered when calculating the
observation probabilities [45]. The probabilities are calculated as

P (X |Λi) =
∏

f∈fr

P (ξ(f ) = X(f )|Λi)
∏

f∈fu

P (ξ(f ) ≤ X(f )|Λi), (15.14)
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where the sets fr and fu denote the reliable and unreliable frequency bands of X . Here, the
first term P (ξ(f ) = X(f )|Λi) corresponds to the Gaussian distribution function evaluated at
the elements of the reliable observation vector Xr and the second term P (ξ(f ) ≤ X(f )|Λi)
corresponds to the Gaussian cumulative distribution function evaluated at the elements of the
unreliable feature vector Xu .

15.4.2 Implementation

In cluster-based imputation, the statistical dependencies between spectral channels S(f ) are
modeled as a mixture of Gaussians. In the following sections, we discuss training the model
with an appropriate number of components and review the feature reconstruction procedure
discussed in Section 15.4.1 from a practical point of view. The calculations described in the
estimation section below are repeated for every time frame.

Clean Speech Model

The clean speech GMM may be constructed by clustering clean speech training data in I

clusters and modeling each cluster as a Gaussian. This is a simple approach that allows using
any available clustering method such as k-means. Alternatively, one can use the expectation-
maximization (EM) algorithm to calculate maximum likelihood estimates (MLE) for the GMM
parameters. It alternates between calculating cluster membership probabilities for the data
given the current parameter estimates (E-step) and calculating estimates for the distribution
parameters given the current membership probabilities (M-step). EM-based GMM training
has been implemented in, for example, the GMMBAYES Toolbox1 for MATLAB and the
scikits.learn module2 for Python. The training data may also be partitioned based on voicing
characteristics, for example, with a separate GMM trained for voiced and unvoiced features,
as proposed in [38].

The number of clusters I in the model must be such that the feature vectors in each cluster
can be approximately modeled as a Gaussian. This depends on the feature representation and
training data. The optimal number for missing value estimation is likely to depend on factors
such as the complexity of the noisy speech recognition task and the accuracy of the missing-
data mask, and should be determined based on speech recognition experiments. Sometimes
a small number is preferred simply because the computational complexity of cluster-based
imputation grows in proportion to the number of clusters I and the performance gain from
increasing the number of clusters is often small compared to the initial gain from using
cluster-based imputation.

The models used in previous experiments with cluster-based imputation have varied
in size and training method. A model with 512 components trained using k-means was
used in [27] and a model with five components trained using the EM-algorithm in [28].
Since the covariances are assumed diagonal in calculating the cluster posterior probabilities,
Raj et al. [45] recommend training the GMM with diagonal covariances and estimating the
full covariance structure in the final pass of the EM-algorithm. A model with 128 components
with full covariances estimated in the final pass was used in [19].

1 Publicly available at http://www.it.lut.fi/project/gmmbayes/.
2 Publicly available at http://scikit-learn.sourceforge.net/.
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Estimation

Estimates for the missing clean speech vectors Su are calculated from Equation (15.12). This
corresponds to a weighted sum

Ŝu =
∑

i

ωi Ŝ
(i)
u , (15.15)

where ωi are the cluster posterior probabilities and Ŝ
(i)
u the cluster-conditional estimates. The

ith cluster-conditional estimate Ŝ
(i)
u is calculated based on the noisy observation vector X and

the mean and covariance parameters of the ith Gaussian component as discussed in Box 1. The
weights ωi are calculated as a product of reliable component likelihoods and bounded marginal
likelihoods associated with the unreliable components (Equation 15.14). The likelihoods are
calculated from the Gaussian distribution function

P (ξ(f ) = X(f )|Λi) =
1√

2πθi(f )
exp

(−(X(f ) − μi(f ))2

2θi(f )

)
, (15.16)

where Λi = {μi ,Θi} denotes the mean and covariance of the ith Gaussian and θi(f ) is the
f th diagonal component of the ith covariance matrix Θi . The bounded marginal likelihoods
are calculated from the Gaussian cumulative distribution. They can be solved using the error
function as

P (ξ(f ) ≤ X(f )|Λi) = 0.5 + 0.5 erf

(
X(f ) − μi(f )√

2θi(f )

)
, (15.17)

where erf(a) denotes the error function evaluated at a. The error function is implemented in
all major programming languages.

15.4.3 Advances

In cluster-based imputation, estimates for the missing values have typically been calculated as
a weighted sum of cluster-conditional bounded MAP estimates (Equation 15.12) as proposed
in [45]. In the following sections, we discuss using soft masks and estimating observation
uncertainties, which both require introducing a different estimation criteria for cluster-based
imputation. Other recent advances include using multiple prior models [38] to exploit extra
information such as voicedness and window-based processing [47] to introduce additional
time context in the frame-based reconstruction.

Soft Masks

Using a soft missing-data mask corresponds to assuming that each component of the observed
feature vector X is reliable with probability M (f ) and unreliable with probability 1 − M (f ).
The use of soft masks in the cluster-based imputation framework was proposed in [44].
When soft masks are used, the clean speech features are reconstructed using minimum mean
square error (MMSE) estimation. The MMSE estimate for the f th spectral component of the
underlying clean speech vector S(f ) is given as

Ŝ(f ) = M (f )X(f ) + (1 − M (f ))E[ξ(f )|ξ ≤ X, Λ]. (15.18)
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This may be understood as follows: With probability M (f ), the observation X(f ) is reliable
and the MMSE estimate for S(f ) is X(f ). With probability 1 − M (f ), the observations is
unreliable and the estimate for S(f ) must be calculated as the expectation value of ξ(f ) given
the observed upper bound X(f ) and the clean speech model parameters Λ. The MMSE estimate
for S(f ) is calculated as

E[ξ(f )|ξ ≤ X, Λ] =
∑

i

P (i|X, Λ)E[ξ(f )|ξ ≤ X, Λi ], (15.19)

where P (i|X, Λ) is the posterior probability of the ith cluster (Equation 15.13) and the ex-
pected value conditioned on Λi and the reliable and unreliable observations is the ith cluster-
conditional bounded MMSE estimate. Note that all the components are assumed missing,
that is fu = {f} and fr = ∅, when calculating the observation probabilities used in Equation
(15.13) from Equation (15.14).

If noise is assumed to have a uniform distribution in the log-spectral domain, the cluster-
conditional estimates E[ξ(f )|ξ ≤ X, Λi ] are solved as the expected value of a box-truncated
Gaussian distribution [19,44]. Furthermore, if diagonal covariances are used, the ith cluster-
conditional bounded MMSE estimate for the f th spectral component S(f ) in Su is given as

E[ξ(f )|ξ ≤ X, Λi ] = μi(f ) − θi(f )
P (ξ(f ) = X(f )|Λi)
P (ξ(f ) ≤ X(f )|Λi)

, (15.20)

where μi(f ) is the f th component of the mean and θi(f ) the f th diagonal component of the
covariance matrix of the ith Gaussian component. The likelihood P (ξ(f ) = X(f )|Λi) and the
bounded marginal likelihood P (ξ(f ) ≤ X(f )|Λi) at the observed value are calculated using
Equations (15.16) and (15.17). If full covariances are used, the bounded MMSE estimates must
be solved iteratively or the bounded full covariance solution approximated as proposed in [19].

Observation Uncertainty

To improve speech recognition performance after front-end feature enhancement or missing-
feature reconstruction, the clean speech vectors S may be associated with a full posterior rather
than a point estimate Ŝ. We may then calculate the expected value of the state likelihoods with
respect to the clean speech posterior, as discussed in Section 17.2 of this book. The use of a
full posterior allows the decoder to consider the uncertainty in each reconstructed feature and
recover from errors made in reconstruction.

The clean speech posterior constrained on both the reliable and unreliable observations
(Equation 15.11) does not have an analytical solution and is approximated with Equation
(15.12) in cluster-based imputation. Therefore, Srinivasan and Wang [52] propose to discard
the unreliable observations to calculate the full posterior for the missing clean speech features
and use the posterior covariances as a basis for uncertainty estimation. The uncertainty measure
proposed in [52] is described in Section 16.5.1.

If the speech signal is decoded in the domain where missing-feature reconstruction is
applied, the estimated uncertainties can be directly used as the variance bias Θb as described
in Section 17.2. Otherwise the uncertainties are first propagated to the acoustic model domain.
Uncertainty propagation through the front-end is discussed in, for example [20]. An alternative
approach, proposed in [52], uses clean and noisy speech training data to estimate a mapping
from the estimated uncertainties in the spectral domain to oracle uncertainties in the cepstral
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domain. These oracle uncertainties were calculated as the expected squared error between the
reconstructed and clean speech features, and the mapping was implemented using multilayer
perceptrons (MLP) in [52] and regression trees in [53]. Reconstructed features in the acoustic
model domain were given as context information for the frame-based MLP or regression tree
mapping.

15.5 Class-Conditioned Imputation

15.5.1 Fundamentals

The class-conditioned imputation approaches employ the same conditional mean imputation
principle as correlation and cluster-based imputation. However, instead of using a separate
clean speech model, the estimates for the missing features are calculated from the acoustic
models, and a separate clean speech estimate is calculated for each acoustic model state [10,33]
or distribution component [57]. In the following sections, the acoustic models are assumed to
use the same log-power feature representation used in calculating the missing-data mask and
the acoustic model states are assumed to have been modeled as GMM distributions. The state
and Gaussian-conditioned clean speech estimates are calculated using MAP estimation.

State-Conditioned Imputation

Front-end methods such as correlation and cluster-based imputation replace the observed
feature vector X = X(t) with the reconstructed vector Ŝ in calculating the acoustic model
likelihoods. In state-conditioned imputation [10,33], the likelihood for each state q is calculated
based on a reconstructed feature whose missing values have been estimated using the GMM
distribution associated with the same state,

P (X |q) =
∑

i

wiq P (Ŝ(q) |Λiq ), (15.21)

where X is the observed noisy feature vector in the log-power domain and wiq the weight of
the ith mixture component in the qth state. The parameters of the qth state distribution and the
ith component of the qth state distribution are denoted as Λq and Λiq , respectively, and Ŝ(q)

denotes the reconstructed clean speech vector estimated using the qth state distribution.
We distinguish the reliable and unreliable component of X using the vectors Xr and Xu .

Likewise, we denote the corresponding reliable and unreliable (missing) elements of the clean
speech vector S as vectors Sr and Su , respectively. The state-conditioned bounded MAP
estimates for the unreliable feature vector Su are calculated from Equation (15.12) as

Ŝ
(q)
u =

∑
i

P (i|X, Λq )Ŝ(iq)
u , (15.22)

where P (i|X, Λq ) is the posterior probability for the ith Gaussian component in the qth
acoustic model state and Ŝ

(iq)
u the ith Gaussian-conditioned bounded MAP estimate for the

unreliable components. The posterior probabilities are calculated from Equation (15.13) and
the Gaussian-conditioned estimates as described in Section 15.5.2.
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Gaussian-Conditioned Imputation

Van hamme [57] observed that it is computationally more efficient, and that the speech-
recognition performance improves, if missing values are estimated specifically for each Gaus-
sian component rather than each GMM state in the acoustic model. Given a noisy observation
X , the state likelihoods are calculated as

P (X |q) =
∑

i

wiq P (Ŝ(iq) |Λiq ), (15.23)

where the Gaussian-conditioned bounded MAP estimates Ŝ(iq) for the reliable components
are the observed values Xr , and for the unreliable components, estimates Ŝ

(iq)
u are calculated

as described in Section 15.5.2.

15.5.2 Implementation

Class-conditioned imputation differs from cluster-based imputation in that the clean speech
estimates are calculated using the acoustic model state distributions. Estimation differs from
cluster-based imputation only if the state distributions use diagonal covariances. Note that
class-conditioned imputation does not produce a single reconstructed spectrogram Ŝ but a set
of class-conditioned spectrograms.

Estimation

Assuming the acoustic model states are modeled as GMMs with diagonal covariances, the
iqth Gaussian-conditioned bounded MAP estimates for the unreliable components in Su may
be calculated as the minimum of the observed upper bound X(f ) and the unbounded MAP
estimate. Since the latter coincides with expected value of the missing component in the ith
Gaussian in the qth state, the estimates Ŝ

(iq)
u are given as

Ŝ(iq)(f ) = min{X(f ), μiq (f )} ∀f ∈ fu , (15.24)

where the set fu contains the frequency bands corresponding to the unreliable elements in X

and where μiq denotes the mean of the ith Gaussian in the qth acoustic model state.
The state-conditioned bounded MAP estimates defined in Equation (15.22) are calculated

as a weighted sum of the Gaussian-conditioned estimates. The weights are Gaussian posterior
probabilities calculated as a product of reliable component likelihoods and bounded marginal
likelihoods associated with the unreliable components (Equation 15.13). The likelihoods are
calculated as in Equations (15.16)–(15.17) in Section 15.4.2.

Classifier Modification

In principle, the way likelihoods are calculated does not need to be modified even when
class-conditioned imputation is used, but since the likelihoods are calculated based on either a
state or Gaussian-dependent estimate or the reliable observation, it is necessary to implement
some modifications in the likelihood calculating module of the speech recognizer being
used. In practice, since modifications are in any case necessary, the most computationally
efficient solution may be to slightly modify the likelihood calculation. For example, for
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Gaussian-conditioned imputation, the likelihood calculation for the unreliable feature
components, X(f ) with f ∈ fu , can be written as:

P (ξ(f ) = X(f )) =
1√

2πθiq (f )
exp

(
−(min{X(f ), μiq (f )} − μiq (f ))2

2θiq (f )

)
, (15.25)

where θiq (f ) is the f th diagonal component of the covariance matrix of the ith Gaussian in
the qth acoustic model state.

15.5.3 Advances

The log-spectral features S(t) are considered an unattractive feature representation for ASR
because their correlatedness requires modeling the feature distribution with full covariances.
Since class-conditioned imputation is not a front-end based method, the features cannot be
decorrelated after reconstruction. Therefore, the more advanced class-conditioned imputation
methods reconstruct the clean speech features directly in a decorrelated feature domain.

Cepstral Domain Imputation

The log-spectral features are normally decorrelated with a linear transformation such as the
discrete cosine transformation (DCT). A method for Gaussian-conditioned imputation in the
cepstral domain was proposed in [57]. Cepstral feature vectors are calculated as

s(t) = AS(t), (15.26)

where matrix A denotes the discrete cosine transformation. The bounded MAP estimate for
cepstral features s = s(t) given a noisy observation is calculated from the distribution of
cepstral features as

ŝ = argmax
ξ

P (Aξ|ξr = Xr , ξu ≤ Xu, Λiq ), (15.27)

where X = X(t) is the observed noisy speech feature in log-spectral domain, and its reliable
and unreliable elements are described using the vectors Xr and Xu . ξ is the random variable
corresponding to the log-spectral feature vector of clean speech, and we distinguish between
its reliable and unreliable elements using the vectors ξr and ξu . The model parameters Λiq =
{μiq ,Θiq} define the distribution of the cepstral features s in the ith Gaussian of the qth
acoustic model state.

Equation (15.27) cannot be solved in closed form, but it may be formulated as a constrained
optimization task

min
ξ

{1
2
(Aξ − μiq )TΘ−1

iq (Aξ − μiq )} subject to ξr = Xr and ξu ≤ Xu. (15.28)

The clean speech features Ŝ that minimize the cost function in (15.28) maximize the prob-
ability in Equation (15.27), but solving (15.28) requires regularization. Therefore, it is more
convenient to express this as an optimization task in the spectral domain,

min
ξ

{1
2
(ξ − μS )TP(ξ − μS )} subject to ξr = Xr and ξu ≤ Xu, (15.29)
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where μS is the log-spectral domain mean of the Gaussian with cepstral mean μiq and the
precision matrix P is constructed as

P = ATΘ−1
C A + λΘ−1

S , (15.30)

where ΘC = Θiq is the diagonal covariance matrix in cepstral domain, ΘS the diagonal
covariance in the log-spectral domain, and λ a regularization parameter. Note that using the
formulation (15.29) requires an existence of a spectral and a cepstral acoustic model so that
each spectral Gaussian is mapped to a specific cepstral Gaussian. Such spectral model can be
obtained, for example, through forced alignment. The optimization problem in (15.29) can be
solved using the techniques described in Box 1. A good starting point for minimizing (15.29)
is the spectral domain reconstruction from Equation (15.24).

Regularization with λΘ−1
S is necessary when using the cepstral transformation because the

matrix ATΘ−1
C A is rank-deficient. In [59], an alternative linear transformation was proposed,

the ProsPect transformation. The ProsPect transformation is a low-order approximation of the
cepstral transformation, and like cepstral transformation, it largely decorrelates the spectral
features. However, the resulting precision matrix P is full rank, and no regularization is
required. In practice, using ProsPect features is more computationally efficient.

Soft Masks

In [60], Gaussian-conditioned imputation was modified to use soft missing-data masks. The
soft mask M (t) estimated for the tth frame is represented as a diagonal matrix W with the
mask elements on the diagonal, diag(W) = M (t). For soft mask imputation in the cepstral
domain, the optimization task in (15.29) becomes

min
ξ

{1
2
(ξ − μS )TV(ξ − μS ) +

1
2
(ξ − μS )TW(ξ − μS )} subject to ξ ≤ X, (15.31)

where the matrix V is given as

V = (I − W)
1
2 P(I − W)

1
2 , (15.32)

where I is an identity matrix of the same dimensions as W. In the formulation (15.31), the
first term ensures that the optimal point gets as close to the Gaussian mean as permitted by
the constraint ξ ≤ X . The second term that did not exist in the previous formulation (15.29)
ensures that if the mask value is 1 and the features are reliable, the optimal point approaches the
observed feature value. Note that the formulation (15.31) is not limited to the cepstral domain
but is equally valid in the ProsPect or log-spectral domain. For the log-spectral domain, a
closed-form solution of (15.31) was presented in [60].

15.6 Sparse Imputation

15.6.1 Fundamentals

The feature-reconstruction methods described in the previous sections are parametric methods
that rely on a statistical description of the clean speech characteristics. The front-end based
sparse imputation method described in this section, on the other hand, is an exemplar-based
feature-reconstruction method. Exemplar-based methods model speech using a collection of
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actual speech samples, exemplars. The exemplars typically span several frames, which allows
the estimation to benefit from temporal correlations. The sparse imputation method, first
proposed in [22], works by first finding a small subset of clean speech exemplars that sparsely
represent the reliable features of the observed noisy speech. This sparse representation is then
used to make an estimate of the unreliable features of the noisy speech.

A Sparse Representation of Clean Speech

Consider an utterance that contains only clean speech. The log-power spectrogram matrix of
clean speech, S, is reshaped to a single vector s of dimension L = F · T by concatenating the
T subsequent F -dimensional time frames. The assumption is that s can be represented exactly,
or approximated with sufficient accuracy, by a linear, non-negative, combination of exemplar
spectrograms dn , where n denotes a specific exemplar (1 ≤ n ≤ N ) in the dictionary which
contains the N available exemplars:

s =
N∑

n=1

yndn = Dy subject to y ≥ 0, (15.33)

where y is an N -dimensional activation vector. The activation vector is referred to as a sparse
representation of s because the majority of the activations in y can be zero. The matrix D
denotes the exemplar dictionary D = [d1 d2 . . .dN ] with dimensions L × N and with N 	 L.

If the dictionary is large, the system of linear equations in Equation (15.33) typically has no
unique solution. However, research in the field of compressive sensing [7,14,15] has shown
that if a sparse representation exists, y can be recovered uniquely by enforcing sparsity.
Conceptually, sparsity is important because it forces the selected exemplars to be closer to
the underlying, lower dimensional manifolds on which the various speech classes are located
[27]. To obtain a sparse solution, we may, for example, regularize the exemplar activations
using L1-minimization as proposed in [55]. The sparse activation vector is obtained as

y = argmin
ỹ∈IRN

{ ‖Dỹ − s‖2 + λ‖ỹ‖1 } subject to ỹ ≥ 0, (15.34)

where λ denotes the regularization parameter.

Feature Reconstruction

Sparse imputation is based on finding a sparse representation for partially observed data. First,
the subsequent time frames of the spectrographic mask matrix M are concatenated to form a
mask vector m and the subsequent frames of X are concatenated to a form a noisy observation
vector x. The reliable and unreliable elements of the noisy speech are denoted xr and xu ,
respectively. The reliable elements xr are used as an approximation for the corresponding
elements of the now unknown s, so problem (15.34) becomes

y = argmin
ỹ∈IRN

{ ‖Dr ỹ − xr‖2 + λ‖ỹ‖1 } subject to ỹ ≥ 0, (15.35)

where Dr denotes the rows of D that correspond to the elements of m that are equal to one.
The sparse representation y can be used to estimate the clean observation vector as ŝ = Dy
as illustrated in Figure 15.3.
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Figure 15.3 Schematic representation of sparse imputation of the noisy digit “three.” The top row
shows the spectrogram of the noisy digit at SNR −5 dB as a linear combination of masked clean speech
exemplars. The missing features as indicated by an oracle mask are shown in black. The middle row
shows the largest four nonzero exemplar activations of the sparse representation that describes the masked
noisy digit using the masked clean speech exemplars. In the bottom row, imputation is done by linear
combination of the unmasked clean speech exemplars.

In practice, the clean speech estimates calculated as ŝ = Dy have some reconstruction error,
so better results are obtained if only the unreliable elements are imputed. Additionally, the
constraint that the clean speech estimates should not exceed the noisy feature values can be
used: this is referred to as bounded imputation. Approximating this constraint, the clean speech
estimates are given as

ŝ =

{
ŝr = xr

ŝu = min (Duy, xu ),
(15.36)

where ŝu and Du are the rows of ŝ and D that correspond to zero elements in m and the
min operator denotes an element-wise minimum. The reconstructed clean speech spectrogram
matrix Ŝ is obtained by reshaping ŝ into an F × T matrix.

15.6.2 Implementation

Continuous Speech

The sparse imputation framework described in Section 15.6.1 is suitable for imputation of
noisy speech tokens that can be adequately represented by a fixed number of time frames
T . Since arbitrary length utterances clearly do not satisfy this constraint, it is necessary to
modify the method. A practical solution was proposed in [24] in the form of a sliding window
approach. Here, the utterance is divided in several overlapping windows by sliding a window
of length T through the noisy utterance with shifts of Δ, 1 ≤ Δ ≤ T frames (see Figure 15.4).
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Figure 15.4 Schematic diagram of the sliding window approach for imputation. The dark shaded time
frame in the noisy utterance is processed in several fixed-length imputation windows, of which we have
shown four. Within each window, the given frame takes a different position due to the window shift
Δ. The corresponding time frame in the clean speech estimate is the combination of these individual
window-based imputations.

Each window is reconstructed separately using sparse imputation as described in Section
15.6.1.

Assuming the window shift Δ < T , sparse imputation with the sliding window approach
results in multiple clean speech estimates for each time frame. The estimates from overlapping
windows may be recombined, for example through averaging or by taking the median value.
Care must be taken that only clean speech estimates that originate from windows with a
nonzero number of reliable elements are used. If for a certain frame, none of the underlying
windows contained any reliable features, the sparse imputation method cannot provide a clean
speech estimate. If this happens, the clean speech estimate should either not be provided (frame
dropping) or it should be calculated based on a different approach such as inserting silence or
interpolation.

In [24], it was shown that using larger step sizes Δ reduces computational effort but can
decrease imputation accuracy. In most subsequent work on sparse imputation, Δ = 1 has been
used. The optimal value of the window length T , which translates directly to the length of the
exemplars in the dictionary, depends on the task and should be tuned for each database. For
aurora-2, a connected digit database, T = 35 frames (350 ms) were found optimal in [24],
whereas for the large-vocabulary speecon database, an optimal value of T ≈ 20 frames (160
ms) was reported in [28].

Creating a Dictionary

Sparse imputation models clean speech as a collection of exemplars, the exemplar dictionary.
In the case of small, restricted databases such as those available for small-vocabulary isolated
word recognition, the dictionary can be formed by using all the time-normalized training
tokens. When the size of the training database increases, the size of such a dictionary could
become impractical. In this scenario, the exemplars should be subsampled from the complete
database, for which several options exist. These include clustering, self-organizing maps, and
random sampling.
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In [27], a single-digit dictionary containing 4000 exemplars was created through random
sampling. Random sampling ensures a good average coverage of the database and low com-
putational cost, but may not cover under represented spectra. When using a sliding window
approach, it is probably more important to have shifted variants of exemplars in order to
provide shift-invariance. These shifted variants can either be obtained by artificially shifting
extracted exemplars or through sampling with a shifted offset. In [24], a continuous-digit dic-
tionary containing 4000 exemplars was constructed by extracting fixed-size exemplars with
a random offset from each utterance in the database. In [28], a dictionary of 8000 exemplars
was extracted. In both works, it was reported that while a larger randomly extracted dictionary
may improve performance, the gains are diminishing.

Finding a Sparse Representation

The computational and algorithmic complexity of sparse imputation is mainly carried by the
minimization (15.35). As minimization using a sparsity constraint has gained considerable
interest over the past decade, many off-the-shelf implementations exist. We refer the reader to
[8] for an overview and discussion of implementations in various programming languages.

To date, sparse imputation has been used with two different solvers: the basis pursuit interior-
point method l1_ls_nonneg3 [34] and the greedy SolveLasso4 solver. For l1_ls_nonneg,
good results have been obtained using the default settings, for example using the the utility
function find_lambdamax_l1_ls_nonneg to determine the regularization parameter λ and
using a duality gap of 0.01 as a stopping criterion [23]. The SolveLasso solver may yield
solutions better suited for sparse imputation when terminated after a fixed number of iterations
[54]. The number of iterations that is optimal depends on the used dictionary and should be
empirically tuned; in [28], 30 iterations were used.

15.6.3 Advances

Soft Masks

In [25], an extension to sparse imputation was proposed that allows the use of a soft missing-
data mask. When using a soft missing-data mask M, formulation (15.35) becomes a weighted
minimization task

y = argmin
ỹ∈IRN

{ ‖WDỹ − Wx‖2 + λ‖ỹ‖1 } subject to ỹ ≥ 0, (15.37)

where W is a diagonal matrix the elements of which are determined by the soft missing-data
mask M. The weights on the diagonal are given as diag(W) = m, where m is the mask vector
constructed from M. After obtaining the sparse representation y, imputation is done as

ŝ = min (Dy, x). (15.38)

3 This solver is publicly available from http://www.stanford.edu/∼boyd/l1_ls/.
4 This solver is implemented as part of the SparseLab toolbox which is publicly available from

http://www.sparselab.stanford.edu.
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In the new formulation (15.37), using a binary mask would be equivalent to using W as a
row selector picking only the rows of D and x that are assumed to contain reliable data. In the
case of a soft mask, the weights on the diagonal influence the impact of each spectrographic
element on the calculation of the reconstruction error.

Observation Uncertainty

For cluster-based imputation and other statistical approaches, the observation uncertainty
matrix Θb can be estimated using the variance of the clean speech posterior as discussed in
Section 15.4.3. Since the sparse imputation method does not support such variance estimation,
various heuristic measures were proposed to characterize the uncertainty in the reconstructed
features in [26].

Here, we review the two best performing uncertainty estimators from [26]. Both yield a
single uncertainty assessment β for each window reconstructed with sparse imputation (cf.
Section 15.6.2). Thus, the uncertainty associated with each feature component in a window is β

if the component is determined unreliable or zero if reliable. Furthermore, the two uncertainty
measures described below are expressed as proportional relationship and should be scaled to
0 . . . 1 per utterance prior to usage. The scalar uncertainties β are estimated as follows:

� The sparsity-based approach assumes a correlation between the uncertainty β and the sparsity
of the representation y. The idea is that if a particular observation is difficult to represent
sparsely, it is because the observation is not covered by the dictionary D. As a result,
imputation performance may be poor. Therefore, it was proposed setting the uncertainty
proportional to the number of exemplars used in reconstructing the segments: β ∝ ‖y‖1 .
When using this measure, it may be advantageous to only consider the largest values of y;
in [26], only values larger than 1% of the maximum occurring value in y were taken into
account.

� The mask-based approach assumes a correlation between the uncertainty β and the missing-
data mask used for imputation. The idea is that with more reliable features, it is easier
to accurately estimate the unreliable values. Thus, it was proposed that the uncertainty is
proportional to the number of unreliable features: β ∝ L − ‖m‖1 , where L denotes the total
number of features in the window.

The observation uncertainty for each frame, Θb , is calculated as a recombination of the
window-based uncertainties. If speech recognition requires transforming the features to a
domain other than the mel-spectral domain where sparse imputation operates, the obtained
uncertainty measures need to be propagated to the acoustic model domain. In [26], this
mapping was done using a linear transformation, but the techniques outlined in Section 15.4.3
are equally applicable. The observation uncertainties can be used to adjust the acoustic model
variances as described in Section 17.2.

Elastic Net Regularization

Tan et al. [54] proposed doing sparse imputation with the elastic net (EN) formulation [63].
In this formulation, (15.35) is modified to include an extra regularization term:

y = argmin
ỹ∈IRN

{ ‖Dr ỹ − xr‖2 + γ‖ỹ‖2 + λ‖ỹ‖1 } subject to ỹ ≥ 0. (15.39)
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The use of the regularization term γ‖ỹ‖2 has a grouping effect that selects or deselects highly
correlated exemplars together. Experiments on aurora-2 showed that using EN regularization
improves the recognition accuracy. It also allows using smaller exemplar dictionaries, which
decreases the computational cost of sparse imputation.

15.7 Other Feature-Reconstruction Methods

Over the past two decades, numerous other methods for missing-feature reconstruction have
been proposed. While not all of the methods discussed in this section have been applied in
ASR tasks, they have been applied to reconstruction of spectrograms that contain missing
features, and could be used for noise-robust ASR.

15.7.1 Parametric Approaches

In [49], each clean speech vector S(t) was modeled as a nonuniform transformation of the
clean speech vector in the previous frame, S(t − 1). The clean speech frames were divided into
patches S̃(t, f ) that contain the time-frequency components S(t, k) with k = f − d . . . f + d,
thus spanning 2d + 1 frequency bands. A larger d was chosen for patches extracted from the
feature vector S(t − 1). A separate transformation was associated with each pair of consecutive
patches, that is patches centered on the same frequency band f . It was assumed that the
linear transformation matrix A(t, f ) applied on the patch S̃(t, f ) was selected from a discrete
set of transformations {Ai}. The active transformations were modeled as a hidden variable
in a generative graphical model whose observed nodes correspond to the time-frequency
components S(t, f ). In the presence of missing values, some of the nodes become hidden.
Probabilities of the transformations, P (A(t, f ) = Ai), and of the hidden nodes, P (S(t, f )),
were inferred from the observed nodes using a modified form of belief propagation. The
transition probabilities between neighboring transformations were determined experimentally.
While the method was not evaluated experimentally, visual examples of reconstructed spectra
were presented.

In [42], clean speech was modeled as the output of a nonlinear state-space model (NSSM).
Feature vectors S(t) were calculated as a nonlinear transformation of hidden source vectors
Z(t) which, in turn, were calculated as a non-linear transformation of the source vectors in the
previous frame, Z(t − 1). A variational Bayesian approach was used to estimate the transfor-
mation parameters from clean speech training data. When using the model for reconstruction,
the probability distributions of the source variables, P (Z(t)), and of the missing components,
P (S(t, f )), were inferred from the reliable components using the total derivatives approach
proposed in [42]. Evaluated in large-vocabulary continuous-speech recognition task, NSSM-
based reconstruction resulted in a performance comparable to cluster-based imputation and
sparse imputation [48].

Borgström and Alwan [5] proposed an HMM-based missing-feature reconstruction method
which can utilize the statistical dependencies between time frames, frequency channels, or
both. The feature components S(t, f ) were quantized and modeled as a tree-structured set
of discrete centroids Si . Each HMM state corresponds to a centroid, and the state output
distributions model the observation probabilities P (X(t)|S(t, f ) → Si), where S(t, f ) → Si

denotes the underlying clean speech feature S(t, f ) being quantized to Si . The transition
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probabilities between centroids were learned from quantized clean speech training data and
the observation probability distributions based on the speech data and a local noise estimate. In
the reconstruction phase, the probability distribution over the hidden states, P (S(t, f ) → Si),
was inferred using the forward-backward algorithm, and the missing values were reconstructed
as a weighted sum of the centroids Si . The HMM-based reconstruction method was evaluated
using the aurora-2 connected digit recognition task.

15.7.2 Nonparametric Approaches

In [4], a technique related to sparse imputation was proposed. Like sparse imputation, the
method estimates a sparse linear combination of dictionary elements based on the reliable
observations. Unlike sparse imputation, which is window-based, the method only works on
single time frames, and has an artificial speech dictionary D formed by the discrete Haar
transform. To calculate bounded clean speech estimates, the optimization problem (15.35) is
given the additional constraint that Duy ≤ xu . This renders the approximation in Equation
(15.36) unnecessary. Comparing the performance obtained in experiments on aurora-2 with
the results obtained with sparse imputation, it can be concluded that the performance is
comparable to the performance of sparse imputation when estimated masks are used, but
significantly lower than sparse imputation when oracle masks are used.

In [35], a feature-reconstruction method based on non-negative matrix factorization (NMF)
was presented. A magnitude spectrogram matrix S was represented as a factorization of two
matrices, S = DY, where D describes the spectral envelope templates and Y describes the
power envelopes in time. The approach is related to the sparse imputation method discussed in
Section 15.6, with the difference that the spectral dictionary matrix D is also derived at run-time
based on the observed features. The authors described a modification that allows factorization
in the presence of missing data, after which reconstruction can be done by multiplying the
recovered factorizations. Results were reported using SNR and segmental SNR computed on
music samples.

The technique proposed in [51] is similar to the NMF-based approach [35] in that the
spectrograms are described using a latent-variable decomposition. The spectral vectors are
expressed in the magnitude domain, which allows the modeling of multiple additive sources.
For reconstructing features with missing components, the authors use a spectral basis that
has been pretrained using noisy data from similar conditions which does not contain missing
features. For comparison, the authors used two missing-feature reconstruction methods nor-
mally applied in different fields: nearest neighbors imputation used in computer vision [6]
and singular value decomposition (SVD) used in the imputation of gene expression arrays
[31]. The methods were evaluated using visual examples and informal listening tests on music
samples.

15.8 Experimental Results

The missing-feature reconstruction methods described in this chapter have been evaluated
in a variety of speech recognition tasks with conditions ranging from small vocabulary, iso-
lated word experiments with artificially added noise to large-vocabulary continuous speech-
recognition tasks with data recorded in realistic environments. Results obtained in different
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conditions are generally deemed incomparable, and even if methods have been evaluated on
the same data, differences in the choice of features, preprocessing, the back-end recognizer,
and missing-data mask estimation method make comparing the performance difficult. In this
section, results from various publications are reviewed and discussed in order to provide the
reader with a general idea of how the methods treated in this chapter may perform in a speech
recognition task.

In Section 15.8.1, we review experiments where several imputation methods have been com-
pared. In Section 15.8.2, we discuss the effectiveness of missing-feature reconstruction com-
pared to other methods for noise-robust speech recognition. In Section 15.8.3, we discuss the in-
fluence of mask estimation quality, the effectiveness of using soft masks, and the use of observa-
tion uncertainties. Finally, in Section 15.8.4, we discuss results obtained by combining missing-
feature reconstruction with other techniques such as filtering or multicondition training.

15.8.1 Feature-Reconstruction Methods

Raj et al. [45] compared correlation-based, cluster-based, and state-conditioned imputation.
Recognition experiments were conducted on the DARPA resource management data [41]
which was artificially mixed with white noise and music at a range of signal-to-noise ratios
(SNRs). When oracle masks and spectral features were used, correlation-based and state-
conditioned imputation performed comparably while cluster-based imputation performed
much better. When estimated masks were used, state-conditioned imputation performed as
well as cluster-based imputation. When the reconstructed features were converted to cepstral
domain, the accuracy obtained with cluster-based imputation, and to a lesser extent, with
correlation-based imputation, increased substantially. At the time, there was no formulation
for class-conditioned imputation in the cepstral domain.

In [59,61,62], several modifications of Gaussian-conditioned imputation were compared.
The experiments were carried out on the aurora-2 and aurora-4 databases which have
been constructed specifically for noise-robust speech recognition research and contain speech
artificially corrupted with a variety of noises. aurora-2 [32] is a digit recognition task
based on the tidigits corpus [36] and aurora-4 [39] is a large-vocabulary task based on
read sentences from the Wall Street Journal (WSJ) database [40]. In accordance with the
findings in [45], speech recognition accuracy in the cepstral domain was found superior to the
accuracy obtained using spectral features. A new linear transformation referred to as ProsPect
transformation was proposed in [59] and shown to result in recognition accuracies comparable
to the cepstral transformation at a fraction of the computational cost. Moreover, Gaussian-
conditioned imputation was modified to allow maximum likelihood channel compensation,
which improved accuracy in the presence of a channel mismatch [61].

Faubel et al. [19] compared using cluster-based imputation with minimum mean square
error (MMSE) estimates computed using full covariances and bounded MMSE estimates
calculated using either diagonal covariances or the full covariance approximation proposed
in [19]. Experiments were carried out on the WSJ large-vocabulary speech data artificially
mixed with noise samples from the noisex-92 database. Regardless to whether oracle or
estimated masks were used, bounded imputation outperformed unbounded imputation and
using full covariance matrices improved the results further still. Bounded imputation also
outperformed unbounded imputation in the noisy digit recognition experiments conducted
with state-conditioned imputation in [11].
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1

(a) Clean digit (b) Noisy digit (c) Applied mask

(d) Cluster-based
imputation

(e) Gaussian-conditioned
imputation

(f) Sparse imputation

Figure 15.5 Comparing (a) the clean speech spectrogram of digit “three” (/θri/) with (b) the observed
noisy spectrogram and (c) the remaining reliable components, we see that imputation needs to reconstruct
(1) the onset, which is the moderate energy pattern seen on the left of the spectrogram, (2) the frication
of the /θ/, which is the high-energy pattern in the upper left corner, and (3) the formant trace, which is the
high-energy structure in the upper right corner. Spectrograms reconstructed with the (d) cluster-based
imputation, (e) Gaussian-conditioned imputation, and (f) sparse imputation show the methods succeed
with a varying degree. The spectrogram of Gaussian-conditioned imputation is constructed using the best
scoring Gaussian at each frame, as determined after recognition. In all cases the digit was recognized
correctly after imputation.

In [27], sparse imputation was compared with cluster-based and Gaussian-conditioned
imputation. Experiments were carried out on the aurora-2 isolated digit recognition task,
and reconstructed features were converted to the ProsPect domain prior to recognition. With
estimated masks, Gaussian-conditioned imputation outperformed sparse imputation by a
small margin, whereas with oracle masks, sparse imputation performance was significantly
better than either Gaussian-conditioned or cluster-based imputation performance when SNR
< 15 dB. Examples of reconstructed spectrograms are given in Figure 15.5 and recognition
accuracies are reported in Figure 15.6. The difference between sparse imputation and
cluster-based imputation performance with oracle and estimated masks was confirmed in
large-vocabulary continuous speech recognition experiments on the Finnish speecon database
using both artificially corrupted data as well as recordings from real-world car and public
environments [28].

Finally, various imputation methods can use time-contexts that are longer than a single
frame. As discussed in Section 15.6.2, the use of T = 20 frames (160 ms) of time-context
in sparse imputation has a large beneficial influence on recognition accuracy. The same
window-based approach was used to introduce multiple frames of time context in cluster-
based imputation in [47]. Evaluations on speech from the Finnish speecon database artificially
corrupted with babble noise or impulse noise showed that using T = 5 to T = 10 frames (40 ms
to 80 ms) of time-context can substantially improve the results. In addition to the window-based
approach used in sparse and cluster-based imputation, modeling the temporal dependencies
between consecutive frames has been done using the non-linear state-space model (NSSM)
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Figure 15.6 Word error rates obtained on aurora-2 isolated digits database with cluster-based,
Gaussian-conditioned, and sparse imputation. The left panel shows the results obtained using oracle
masks and the right panel shows the results obtained using estimated masks. The horizontal axis de-
scribes the SNR at which the clean speech is mixed with the background noise and the vertical axis
describes the word error rate averaged over four noise types: subway, car, babble, and exhibition hall
noise. The vertical bars around data points indicate the 95 % confidence intervals.

[42] and HMM-based [5] approaches described in Section 15.7.1. The NSSM and HMM-based
imputation methods both performed well when evaluated on speech recognition tasks [5,48],
although evaluations on the aurora-2 connected digit recognition task showed that the use
of temporal correlations in HMM-based imputation only improved the results consistently at
SNR < 0 dB.

15.8.2 Comparison with Other Methods

Traditionally, missing-feature reconstruction methods have been compared with the marginal-
ization approach discussed in Chapter 14. In [11,33], bounded and unbounded state-
conditioned imputation were compared with bounded and unbounded marginalization in
experiments conducted on artificially noise-corrupted TIDIGITS material. The results indi-
cate that bounded marginalization works better than bounded imputation, and both work better
than their unbounded variants. However, the experiments did not compare performance on the
cepstral features that have been commonly used in later implementations of class-conditioned
imputation.

In [45], several feature-reconstruction methods were compared with marginalization. It was
concluded that marginalization works better than feature reconstruction when used in the
spectral domain, but cluster-based reconstruction works better than marginalization when the
reconstructed features are transformed to cepstral domain. It was also shown that missing-
feature techniques perform better than simple spectral subtraction. Spectral subtraction is
discussed in Section 4.5.1 of this book.
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Figure 15.7 Word error rates obtained on an isolated words task of the speecon database with Gaussian-
conditioned imputation and the ETSI AFE feature enhancement method, using either a clean speech or
multicondition trained acoustic model. The horizontal axis describes the estimated SNR of the noisy
speech. The vertical bars around data points indicate the 95 % confidence intervals. Evaluated on noisy
speech recorded in a car environment, the choice of acoustic model does not affect the order of the
methods, but imputation outperforms AFE in both cases. In the more challenging entertainment room
environment, imputation outperforms AFE only if the multicondition model is employed. Using the
multicondition model generally improves the results in both environments.

In [58], cepstral-based Gaussian-conditioned imputation was compared with the ETSI ad-
vanced front-end (AFE) feature extraction method [1] which is discussed in Section 4.5.4 of
this book. AFE is based on a two-stage Wiener filter approach and is considered a good front-
end-based feature enhancement tool. Experiments conducted on aurora-2 showed that the
imputation performance is comparable to AFE when an estimated missing-data mask is used.

In [29], ProsPect-based Gaussian-conditioned imputation was evaluated in a more chal-
lenging task: Flemish speecon material that contains noisy speech recorded in real-world
environments. In this work, imputation using a clean speech model performed comparably
to recognition with a multicondition trained acoustic model. Furthermore, when Gaussian-
conditioned imputation was used with a multicondition trained acoustic model (cf. Section
15.8.4), the results were substantially better than the results obtained using AFE. The results
are illustrated in Figure 15.7.

There are no recent studies with direct comparisons between missing-feature reconstruction
methods and popular model-based methods such as parallel model combination (PMC) [21]
or vector Taylor series (VTS) approximation [2]. In [43], feature-reconstruction methods were
shown to outperform VTS on speech artificially corrupted by white noise, but if we compare
the performance of reconstruction methods on common databases such as aurora-2 and
aurora-4 to recently reported results on the performance of model-based approaches on the
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same data [56], it seems that feature reconstruction can only outperform the model-based
noise compensation methods when oracle masks are used. When estimated masks are used,
model-based methods perform slightly better than Gaussian-conditioned imputation, which is
the most effective reconstruction method in this setting.

15.8.3 Advances

While the two-stage approach of mask estimation and missing-feature compensation is an
attractive alternative for noise-robust speech recognition in unconstrained environments, it
introduces two types of errors in the system: mask estimation errors and reconstruction errors.
To evaluate the imputation methods irrespective of mask estimation errors, experiments are
often conducted using both oracle and estimated masks. While the oracle mask experiments
have shown the full potential of imputation methods, they have also confirmed the existence
of a large performance gap between systems using oracle and estimated masks. The difference
in performance is especially grave in the case of sparse imputation, for which the oracle
mask performance is impressive even at low SNR conditions, and markedly exceeds that of
other imputation methods, whereas with estimated masks, the performance is comparable to
that of cluster-based or Gaussian-conditioned imputation. In general, it has been found that
classifier compensation methods such as class-conditioned imputation and marginalization are
less influenced by mask estimation errors than front-end based methods such as cluster-based
imputation [27,44].

In this chapter, we described two advances that may alleviate the effect of mask estimation
errors and reconstruction errors. The first is to use a probabilistic mask rather than a binary
mask, and the second is to make the decoder aware of the reconstructed features through the
use of observations uncertainties. In the following sections, we discuss improvements reported
from using these two approaches.

Soft Estimated Masks

Making soft decisions was first proposed in [3], where soft masks were used in missing-data
marginalization. The effectiveness of using soft masks with cluster-based imputation was
investigated in [44], where clean speech features were calculated as the bounded MMSE
estimates described in Section 15.4.3. Speech recognition experiments were conducted on
Spanish telephone speech artificially corrupted with traffic, music, babble, and subway noise.
Using soft estimated masks significantly improved recognition performance, particularly for
traffic and subway noises, where a 25 % relative reduction in word error rate at 0 dB was
reported. Cluster-based imputation with soft masks performed better than marginalization
with soft masks although the difference between soft marginalization and imputation methods
decreased at very low SNRs.

In [60], a modification to the Gaussian-conditioned imputation was proposed that allows us-
ing soft masks in the spectral or ProsPect domain (see Section 15.5.3). Experiments on aurora-
2 indicated that while using soft rather than binary masks improves speech-recognition per-
formance in both cases, the effect is greater when working in the spectral domain. The authors
also investigated the effectiveness of using a soft version of the oracle mask, and showed that
even with oracle masks, making soft decisions increases the recognition accuracy, although
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not as much as with estimated masks. It was concluded that the use of soft masks improves
even the oracle mask performance because the approximation (15.1) is inaccurate when the
underlying speech and noise energies are comparable.

Finally, in [25], the soft mask approach for sparse imputation, described in Section 15.6.3,
was evaluated on the aurora-2 database. As with the other imputation methods that can use
soft masks, sparse imputation performance benefited from the probabilistic information, but
curiously, the improvement was even larger with soft oracle masks than with soft estimated
masks, and an impressive 8 % word error rate was obtained at −5 dB when soft oracle masks
were used.

Observation Uncertainty

Another approach to boosting speech recognition accuracy in noisy conditions is making the
recognizer aware of the feature-reconstruction step. This is done by estimating the uncertainty
of the reconstructed features. The effect of using uncertainty associated with cluster-based
imputation as described in Section 15.4.3 was evaluated on aurora-4 in [52]. The authors used
two mask estimation methods and reported significant improvements in speech recognition
accuracy when uncertainties were used with either method. The authors also compared the
performance of estimated and oracle observation uncertainty when oracle masks were used.
Since few, if any, differences were observed when using oracle masks, it was concluded that
the proposed uncertainty estimation method works accurately. In a later publication [53], a
different mapping from spectral to the cepstral domain uncertainties was proposed and shown
to further improve the performance gain from using observation uncertainties.

In [26], the combination of sparse imputation with observation uncertainty was evaluated.
The proposed measures of uncertainty, two of which were described in Section 15.6.3, were
evaluated on clean Finnish speecon material artificially corrupted with babble noise from
the noisex-92 database. Although based on different concepts, the sparsity-based and mask-
based measures resulted in comparable performance. The two measures outperformed other
alternatives presented in [26] and resulted in error reductions of up to 12 % in letter error
rate compared to the baseline sparse imputation method. With oracle masks, differences in the
speech recognition performance with the spectral domain oracle uncertainties and estimated
uncertainties were minor, whereas with estimated masks, using oracle uncertainties resulted
in better performance.

Finally, using observation uncertainty in the sparse imputation framework did not only
improve the method performance on noisy speech, but on clean speech as well [26]. This is
because with estimated masks, using sparse imputation on clean speech data may result in
spurious insertions of whole words due to the use of multiframe windows, as discussed in [28].
It was concluded that using observation uncertainties can compensate for this effect and level
the sparse imputation performance on clean speech with the clean speech baseline performance.

15.8.4 Combination with Other Methods

A number of authors have proposed to combine missing-feature reconstruction with other
feature enhancement methods. Combining missing-data techniques with spectral subtraction
was first proposed in [16], where marginalization combined with spectral subtraction was used
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in a speaker verification task. In [45], spectral subtraction was used on the reliable features
of speech artificially corrupted with white noise, and correlation-based, cluster-based, and
state-conditioned imputation were all shown to benefit from spectral subtraction. Gaussian-
conditioned imputation was applied on spectral subtracted speech in [29] with similar results.
In that work, the authors concluded that the performance improves because the imputation
bounds become more accurate.

In [18,19], cluster-based imputation was combined with a particle-filtering technique that
had previously been employed in feature enhancement [46,17]. Particle filtering was used
for calculating estimates of the underlying clean speech and noise. The estimates were used
twice: first, the clean speech and noise estimates were used to construct a missing-data mask,
and then, cluster-based imputation was applied on the clean speech estimate, guided by this
missing-data mask. Experiments on artificially noise-corrupted WSJ large-vocabulary speech
data indicated that both particle filtering and missing-feature reconstruction contributed in the
improved speech recognition performance.

Finally, in [29], using Gaussian-conditioned imputation in combination with multicondition
trained acoustic models was proposed. In theory, the combination is incorrect since the assump-
tion that reliable features remain uncorrupted means the reliable features should be recognized
using a clean speech model. However, Figure 15.7 shows that in practice the combination
leads to substantial improvements in recognition accuracy. The experiments were conducted
on noisy speech from the speecon database which has been recorded in realistic conditions. It
was concluded that using a multicondition trained model describes a wider variance of speech
phenomena and thus compensates not only for additional effects such as reverberation but also
for mask estimation errors. After all, if an unreliable feature is erroneously labeled reliable,
the noisy speech model has a better chance of recovering from the mask estimation error.

15.9 Discussion and Conclusion

We have discussed several methods for feature reconstruction as an approach to improve noise
robustness in ASR under the missing-data paradigm. Four well-known methods, namely
correlation-based imputation, cluster-based imputation, class-conditioned imputation, and
sparse imputation, were discussed in detail along with some significant advances that have been
proposed to improve the basic approach. The performance of the methods was analyzed based
on results published in various studies. Additionally, a number of recently developed methods
that have not been extensively evaluated in noisy speech recognition task were described in
Section 15.7.

The results discussed in Section 15.8.1 suggest that the most effective feature-reconstruction
methods are sparse imputation and Gaussian-conditioned imputation. Sparse imputation typi-
cally results in the best speech recognition performance when oracle masks are used whereas
Gaussian-conditioned imputation results in the best performance when estimated masks are
used. However, while effective, Gaussian-conditioned imputation is not a front-end based
method and requires classifier modification. The extent of modification is most notable when
the advances outlined in Section 15.5.3 are employed. It is noteworthy that when classifier
modification is acceptable, we have the option of using the observation uncertainty approaches
described in Sections 15.4.3 and 15.6.3 to improve the front-end-based imputation performance
as well.
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If a front-end reconstruction method is preferred, sparse imputation or cluster-based imputa-
tion are recommended, for correlation-based imputation has never outperformed cluster-based
imputation in experiments reported on realistic data. Cluster-based imputation, on the other
hand, has been found as effective as sparse imputation when the noise level is moderate and
estimated masks are used. While the result may depend on the recognition task, cluster-based
imputation seems a fair alternative at low-noise conditions, and it is easy to implement.

The comparisons between missing-feature reconstruction and noise-robustness methods
not based on missing-data techniques, reviewed in Section 15.8.2, indicated that feature
reconstruction can result in a performance as good as or better than multicondition training,
spectral subtraction, or feature enhancement with the ETSI AFE front-end, but might not
outperform the recent formulations of model-based techniques such as PMC or VTS. When
compared with marginalization, the feature-reconstruction methods appear to work better
when the reconstructed features are transformed to cepstral domain prior to recognition,
which is not possible with standard marginalization approaches. While marginalization has
also been extended to the cepstral domain [30], the cepstral domain marginalization approach
has not been compared with cepstral domain feature-reconstruction approaches.

The large difference between oracle mask and estimated mask performance of sparse imputa-
tion exemplifies how the performance of feature-reconstruction methods is largely determined
by the quality of the missing-data mask. Depending on the data, estimating the mask with a
sufficient accuracy can be extremely difficult. Although the results discussed in Section 15.8.3
show that performance improves with soft masks, soft decisions alone do not bridge the gap
between oracle and estimated mask performance. Moreover, experiments on more challenging
data such as noisy speech recorded in realistic environments indicated that missing-feature
reconstruction may be more difficult if the additivity assumptions of noise and speech are
violated, which happens, for example, in the presence of reverberation [29].

In general, all the results on missing-feature reconstruction suggest that the imputation
performance improves as more information is provided for missing value estimation. That
is, bounded imputation works better than unbounded imputation, using soft masks improves
the performance over binary masks, and finally, increasing the time context considered in
missing-feature reconstruction can improve the performance, especially in noisy conditions.

The review of missing-feature reconstruction methods presented in this chapter shows
missing-feature reconstruction can be a competitive approach for speech recognition in adverse
noisy conditions. While the success of these methods depends critically of the accuracy with
which one estimates the missing-data mask, the large variety in approaches does make clear
missing-feature methods are, above all, extremely flexible. As discussed in Section 15.8.4,
combining missing-feature reconstruction with other noise-robustness techniques often leads
to improved speech recognition performance. Interesting results could arise from combining
feature reconstruction with more advanced noise-robustness techniques, such as the ETSI AFE
front-end or VTS approaches.
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16.1 Introduction

The human auditory system is, in a way, an engineering marvel. It is able to do wonderful
things that powerful modern machines find extremely difficult. For instance, our auditory
system is able to follow the lyrics of a song when the input is a mixture of speech and
musical accompaniments. Another example is a party situation. Usually there are multiple
groups of people talking, with laughter, ambient music and other sound sources running in the
background. The input our auditory system receives through the ears is a mixture of all these.
In spite of such a complex input, we are able to selectively listen to an individual speaker,
attend to the music in the background, and so on. In fact this ability of ‘segregation’ is so
instinctive that we take it for granted without wondering about the complexity of the problem
our auditory system solves.

Colin Cherry, in the 1950s, coined the term ‘cocktail party problem’ while trying to describe
how our auditory system functions in such an environment [12]. He did a series of experiments
to study the factors that help humans perform this complex task [11]. A number of theories have
been proposed since then to explain the observations made in those experiments [11,12,70].
Helmhotz had, in the mid-nineteenth century, reflected upon the complexity of this signal by
using the example of a ball room setting [22]. He remarked that even though the signal is
“complicated beyond conception,” our ears are able to “distinguish all the separate constituent
parts of this confused whole.”

So how does our auditory system solve the so-called cocktail party problem? Bregman tried
to give a systematic account in his seminal 1990 book Auditory Scene Analysis [8]. He calls
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the process “scene analysis” by drawing parallels with vision. It has been argued that the goal
of perception is to form a mental description of the world around us. Our brain analyzes the
scene and forms mental representations by combining the evidence that it gathers through
the senses. The role of audition is no different. Its goal is to form a mental description of the
acoustic world around us by integrating sound components that belong together (e.g., those
of the target speaker in a party) and segregating those that do not. Bregman suggests that the
auditory system accomplishes this task in two stages. First, the acoustic input is broken down
into local time-frequency elements, each belonging to a single source. This stage is called
segmentation as it forms locally grouped time-frequency regions or segments [79]. The second
stage then groups the segments that belong to the same source to form an auditory stream. A
stream corresponds to a single source.

Inspired by Bregman’s account of auditory organization, many computational systems
have been proposed to segregate sound mixtures automatically. Such algorithms have im-
portant practical applications in hearing aids, automatic speech recognition, automatic music
transcription, etc. The field is collectively termed Computational Auditory Scene Analysis
(CASA).

This chapter is about CASA and automatic speech recognition in noise. In Section 16.2, we
discuss some of the grouping principles of auditory scene analysis (ASA), focusing primarily
on the cues that are most important for the auditory organization of speech. We then move on
to computational aspects. How to combine CASA and ASR effectively is, in itself, a research
issue. We address this by discussing CASA in depth, and introducing an important goal of
CASA - Ideal Binary Mask (IBM) - in Section 16.3. As we will see, the IBM has applications
to both speech segregation and automatic speech recognition. We will also discuss a typical
architecture of CASA systems in Section 16.3. This will be followed by a discussion of
strategies used for IBM estimation in Section 16.4. In the subsequent section, we address the
topic of robust automatic speech recognition, where we will discuss some of the methods to
integrate CASA and ASR. We note that this topic will also be addressed in other chapters
(see Chapters 14 and 15 for detailed descriptions on missing-data ASR techniques). Finally,
Section 16.6 offers a few concluding remarks.

16.2 Auditory Scene Analysis

CASA-based systems use ASA principles as a foundation to build computational models. As
mentioned in the introductory section, Bregman described ASA to be a two stage process
which results in integration of acoustic components that belong together and segregation of
those that do not. In the first stage, an acoustic signal is broken down into time-frequency (T-F)
segments. The second stage groups segments formed in the first stage into streams. Grouping
of segments can occur across frequency or across time. They are called simultaneous grouping
and sequential grouping, respectively.

A number of factors influence the grouping stage which results in the formation of coherent
streams from local segments. Two distinctive schemes have been described by Bregman:
primitive grouping and schema-based grouping.

Primitive grouping is an innate bottom-up process that groups segments based on acoustic
attributes of sound sources. Major primitive grouping principles include proximity, periodicity,
continuity, common onset/offset, amplitude and frequency modulation, and spatial location [8,
79]. Proximity refers to closeness in time or frequency of sound components. The components
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of a periodic signal are harmonically related (they are multiples of the fundamental frequency
or F 0), and thus segments that are harmonically related are grouped together. Periodicity is a
major grouping cue that has also been widely utilized by CASA systems. Continuity refers to
the continuity of pitch (perceived fundamental frequency), spectral and temporal continuity,
etc. Continuity or smooth transitions can be used to group segments across time. Segments
that have synchronous onset or offset times are usually associated with the same source
and hence, grouped together. Among the two, onset synchrony is a stronger grouping cue.
Similarly, segments that share temporal modulation characteristics (amplitude or frequency)
tend to be grouped together. If segments originate from the same spatial location, there is a
high probability that they belong to the same source and hence should be grouped.

Unlike primitive grouping, schema-based grouping is a top-down process where grouping
occurs based on the learned patterns of sound sources. Schema-based organization plays an
important role in grouping segments of speech and music, as some of their properties are
learned over time by the auditory system. An example is the identification of a vowel based on
observed formants. Note that both schema-based and primitive grouping play important roles
in organizing real-world signals like speech and music.

The grouping principles introduced thus far were originally found though laboratory ex-
periments using simple stimuli such as tones. Later experiments using more complex speech
stimuli have established their role in speech perception [2,8]. Figure 16.1 shows some of
the primitive grouping cues present for speech organization. Cues like continuity, common
onset/offset, harmonicity are marked in the figure.

16.3 Computational Auditory Scene Analysis

Wang and Brown define CASA as ([79], p. 11):

. . . the field of computational study that aims to achieve human performance in ASA by using one
or two microphone recordings of the acoustic scene.

This definition takes into account the biological relevance of this field by limiting the number
of microphones to two (like in humans) and the functional goal of CASA. The mechanisms
used by CASA systems are perceptually motivated. For example, most systems make use of
harmonicity as a grouping cue [79]. But this does not mean that the systems are exclusively
dependent on ASA to achieve their goals. As we will see, modern systems make use of
perceptual cues in combination with methods not necessarily motivated from the biological
perspective.

16.3.1 Ideal Binary Mask

The goal of ASA is to form perceptual streams corresponding to the sound sources from the
acoustic signal that reaches our ears. Taking this into consideration, Wang and colleagues
suggested the Ideal Binary Mask as a main goal of CASA [24,27,76]. The concept was largely
motivated by the masking phenomenon in auditory perception, whereby a stronger sound
masks a weaker sound and renders it inaudible within a critical band [49]. Along the same
lines, the IBM defines what regions in the time-frequency representation of a mixture are
target dominant and what regions are not. Assuming a spectrogram-like representation of an
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Figure 16.1 Primitive grouping cues for speech organization (reproduced from Wang and Brown [79]).
The top panel shows a broadband spectrogram of the utterance “pure pleasure”. Temporal continuity,
onset and offset synchrony, common amplitude modulation and harmonicity cues are present. The bottom
panel shows a narrow-band spectrogram of the same utterance.

acoustic input, the IBM takes the form of a binary matrix with 1 representing target dominant
T-F units and 0 representing interference dominant units.

Mathematically, the IBM is defined as:

IBM (t, f ) =

{
1 if SNR(t, f ) ≥ LC

0 otherwise.
(16.1)

Here, SNR(t, f ) represents the signal-to-noise ratio (SNR) within the T-F unit of time index
t and frequency index (or channel) f . LC stands for a local criterion, which acts as an SNR
threshold that determines how strong the target should be over the noise for the unit to be
marked target dominant. The LC is usually set to 0 dB which translates to a simple rule of
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whether the target energy is stronger than the noise energy. Note that, to obtain the IBM, we
need access to the premixed target and interference signals (hence the term “ideal”). According
to them, a CASA system should aim at estimating the IBM from the mixture signal. It should
be pointed out that the IBM can be thought of as an “oracle” binary mask. Oracle masks,
binary or otherwise, have been widely used in the missing-data ASR literature to indicate the
ceiling recognition performance of noisy speech.

The reasons why the IBM is an appropriate goal of CASA include the following:

(i) Li and Wang studied the optimality of the IBM measured in terms of the improvement
in the SNR of a noisy signal (SNR gain) processed using binary masks [43]. They show
that, under certain conditions, the IBM with the LC of 0 dB is optimal among all binary
masks. Further, they compare the IBM with the ideal ratio (soft) mask, which is a T-F
mask with real values representing the percentages of target speech energy contained in
T-F units, similar to a Wiener filter. The comparisons show that, although the ideal ratio
mask achieves higher SNR gains than the IBM as expected, in most mixtures of interest
the difference in SNR gain is very small.

(ii) IBM-segregated noisy speech has been shown to greatly improve intelligibility for both
normal hearing and hearing impaired listeners [1,10,42,81]. Even when errors are intro-
duced to the IBM, it can still improve the intelligibility of noisy speech as long as the
errors are within a reasonable range [42,62]. Moreover, it has been found that the LC of
–6 dB seems to be more effective than the LC of 0 dB to improve speech intelligibility
[81] even though the latter threshold leads to a higher SNR of IBM processed signals.

(iii) Speech energy is sparsely distributed in a high-resolution T-F representation, and there is
little overlap between the components of different speakers in a speech mixture [63,86].
Under such circumstances, the IBM can almost segregate a mixture into its constituent
streams. Note that sparsity does not hold for broadband interferences such as speech
babble or when room reverberation is present.

(iv) Related binary masks have been shown to be effective for robust ASR [13,62]. Missing-
data techniques using IBM like masks have been discussed in detail in previous chapters
(see Chapters 14 and 15). Apart from missing-data ASR, other strategies have been
proposed that use the IBM to improve ASR results. We will look at a few of them later in
this chapter.

(v) Recently, Wang et al. [80] showed that IBM-modulated noise can produce intelligible
speech. In this experiment, speech-shaped noise (SSN) is modulated by the IBM created
for a mixture of speech and SSN. Speech shaped noise is broadband, and has a long-term
spectrum matching that of natural speech. Even with a coarse frequency resolution (e.g.,
16 bands), they observe nearly perfect intelligibility of IBM modulated noise.

Figure 16.2 shows an example of the IBM created for a two-talker mixture. The time-
frequency representation used in the figure is called a cochleagram, which is commonly used
in CASA [79]. Compared to the mixture in the middle left panel, the IBM-masked mixture
(shown in the bottom left panel) is more similar to the target utterance (shown in the top left
panel).

Apart from the IBM, research has also aimed at estimating the ideal ratio mask [3,73]. Note
that, the real values in a ratio (soft) mask can also be interpreted as the probability of a T-F unit
being target dominant. One can argue that estimating a ratio mask is computationally harder
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Figure 16.2 Illustration of the IBM. The top left panel shows a cochleagram of a target utterance where
brightness indicates energy. The top right panel shows a cochleagram of the interference signal. The
middle left panel shows a cochleagram of the mixture. The middle right panel shows the ideal binary
mask for the mixture where a white pixel indicates 1 and a black pixel 0. The bottom left panel shows
the cochleagram of the IBM-masked mixture.

than estimating a binary mask [77]. Nevertheless, the use of ratio masks has been shown to be
advantageous in some ASR studies [3,73].

16.3.2 Typical CASA Architecture

Figure 16.3 shows a typical architecture of CASA. All CASA systems start with a peripheral
analysis of the acoustic input (the mixture). Typically, the peripheral analysis converts the signal
into a time-frequency representation. This is usually accomplished by using an auditory filter
bank. The most commonly used is the gammatone filter bank [58]. The center frequencies of
the gammatone filter bank are uniformly distributed on the ERB-rate scale [18]. ERB refers to
the equivalent rectangular bandwidth of an auditory filter, which corresponds to the bandwidth
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Figure 16.3 Schematic diagram of a typical CASA system.

of an ideal rectangular filter that has the same peak gain as the auditory filter with the same
center frequency and passes the same total power for white noise. Similar to the Bark scale, the
ERB-rate scale is a warped frequency scale akin to that of human cochlear filtering. The ERB
scale is close to linear at low frequencies, but logarithmic at high frequencies. Figure 16.4
shows the responses of eight such filters, uniformly distributed according to the ERB-rate
scale from 100 to 2000 Hz. Although eight filters are sufficient to fully span a frequency range
of 50–8000 Hz, more filters (32 or 64) are typically used for a better frequency resolution.
To simulate the firing activity of auditory nerve fibers, the output from the gammatone filter
bank is further subjected to some nonlinear processing, where the Meddis hair cell model
is typically used [48]. It models the rectification, compression and the firing pattern of the
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Figure 16.4 A gammatone filter bank. The left panel shows impulse responses of eight gammatone
filters, with center frequencies equally spaced between 100 Hz and 2 KHz on the ERB-rate scale. The
right panel shows the corresponding magnitude responses of the filters.
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auditory nerve. Alternatively, a simple half wave rectification followed by some compression
(square root or cubic root) can be used to model the nonlinearity. Finally, the output at each
channel is windowed or downsampled. The result is the cochleagram of the acoustic signal as
it models the processing performed by the cochlea [79]. An element of a cochleagram is a T-F
unit, which represents the response of a particular filter at a time frame.

The next few stages vary depending on the specifics of different CASA systems. The
feature extraction stage computes features such as F 0, onset/offset, amplitude and frequency
modulation. The extracted features enable the system to form segments, each of which is a
contiguous region of T-F units. Segments provide a mid-level representation on which grouping
operates. The grouping stage utilizes primitive and schema-based grouping cues. The output
of the grouping stage can be an estimated binary mask or a ratio mask. Efficient algorithms
exist that can resynthesize the target signal using a T-F mask and the original mixture signal
[79,82].

16.4 CASA Strategies

Given the goal of estimating the IBM, we now discuss strategies to achieve it. The main
focus of this section will be on monaural CASA techniques which have seen most of the
development.

Monaural source segregation uses a single recording of the acoustic scene from which the
target is to be segregated. The most important cue utilized for this task is the fundamental
frequency. F0 estimation from clean speech is fairly accurate and many systems exist that
perform well; for example Praat is a freely available tool which is widely used [6]. The
presence of multiple sound sources in a scene adds to the complexity of the task as a single
frame may now have multiple pitch points. Perhaps the earliest system that used F0 for speech
segregation was proposed by Parsons [57]. He used the short-term magnitude spectrum of noisy
speech to estimate multiple F0s. A sub-harmonic histogram method, proposed by Shroeder
[64], was used to estimate the most dominant F 0 in a frame. He then removed the harmonics
of the estimated F 0 from the mixture spectrum and used the remainder to estimate the second
F 0. The estimated F 0s were finally used to segregate the mixture.

We start our discussion on IBM estimation in Section 16.4.1 by introducing strategies
based on noise-estimation techniques from the speech-enhancement literature. More recent
CASA-based strategies aim to segregate the target by extracting ASA cues like F 0, amplitude
modulation and onset/offset, which are then used to estimate the IBM. An alternative approach
is to treat mask estimation as a binary classification problem. We explain these approaches in
the subsequent subsections by treating two recent strategies in detail. The second subsection
focuses on the tandem algorithm proposed by Hu and Wang [26] that uses several ASA cues to
estimate the IBM. Section 16.4.3 focuses on a binary classification-based approach proposed
by Kim et al. [36]. The final subsection briefly touches upon binaural CASA strategies.

16.4.1 IBM Estimation Based on Local SNR Estimates

In this sub-section, we discuss mask estimation strategies that are based on local signal-to-
noise ratio estimates at each time-frequency unit. Such techniques typically make use of an
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estimate of the short-time noise power spectrum. The estimated noise power can be used to
obtain the SNR and in turn a T-F mask. It should be clear from Equation (16.1) that with the
true local SNR information, the IBM can be readily calculated. The noise estimate can also be
used to define masks based on alternative criteria, like the negative energy criterion used by
El-Maliki and Drygajlo [17]. We will first review a few noise-estimation techniques, followed
by a brief discussion on how they can be used to estimate the IBM.

Noise (and SNR) estimation is a widely studied topic in speech enhancement largely in
the context of spectral subtraction [5]. One commonly used technique is to assume that noise
remains stationary throughout the duration of an utterance and that the first few frames are
‘noise-only’. A noise estimate is then obtained by simply averaging the spectral energy of
these frames. Such estimates are, for instance, used in Vizinho et al. [75], Josifovski et al.
[34], Cooke et al. [13]. But noise is often nonstationary and therefore, such methods often
result in poor IBM estimates. More sophisticated techniques have been proposed to estimate
noise in nonstationary conditions. See, for example, voice-activity detection (VAD) [69] based
methods [40], Hirsch’s histogram based methods [23], recursive noise-estimation techniques
[23], etc. Seltzer et al. [65] use an approach similar to Hirsch’s to estimate the noise floor in
each sub-band, which is in turn used for mask estimation (see Section 16.4.3). A more detailed
discussion on noise estimation can be found in Chapter 4.

All noise-estimation techniques can be easily extended to estimate the SNR at each T-F unit
by using it to obtain an estimate of the clean speech power spectrum. A spectral subtraction
based approach [5,7] is commonly used, wherein the speech power is obtained by subtracting
the noise power from the observed noisy spectral power. Further, a spectral floor is set and any
estimate lower than the floor is automatically rounded to this preset value. Other direct SNR-
estimation techniques have also been proposed in the literature. For example, Nemer et al.
[53] utilize higher order statistics of speech and noise to estimate the local SNR, assuming
a sinusoidal model for band restricted speech and a Gaussian model for noise. A supervised
SNR-estimation technique was proposed by Tchorz and Kollmeier [74]. They use features
inspired from psychoacoustics and a multilayer perceptron (MLP)-based classifier to estimate
the SNR at each T-F unit. Interested readers are also referred to Loizou[46] for detailed reviews
on these topics.

If a noise estimate is used to calculate the SNR, the IBM can be estimated using Equation
(16.1) after setting the LC to an appropriate value. Although 0 dB is a natural choice here,
other values have also been used [13,60]. Soft (ratio) masks can be obtained from local SNR
estimates by applying a sigmoid function that maps it to a real number in the range [0, 1],
thereby allowing it to be interpreted as probability measures for subsequent processing. One
can also define masks based on a posteriori SNR, which is the ratio of the noisy signal power
to noise power expressed in dB [61]. This circumvents the need to estimate the clean speech
power and local SNR. Note that any a posteriori SNR criterion can be equivalently expressed
using a local SNR criterion. An even simpler alternative is to use the negative energy criterion
proposed by El-Maliki and Drygajlo [17]. They identify reliable speech dominant units as
those T-F units for which the observed noisy spectral energy is greater than the noise estimate.
In other words, T-F units for which the spectral energy after subtracting the noise estimate from
the observed noisy spectral energy is negative are considered noise dominant and unreliable.
Raj and Stern [59] note that a combination of an SNR criterion and a negative energy criterion
usually yields better quality masks.
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In practice, such noise-estimation-based techniques work well in stationary conditions but
tend to produce poor results in nonstationary conditions. Nonetheless, SNR-based techniques
are still used because of their simplicity.

16.4.2 IBM Estimation using ASA Cues

The tandem system by Hu and Wang [26] aims at voiced speech segregation and F0 estimation
in an iterative fashion. In describing the algorithm, we will explain how some of the ASA cues
can be extracted and utilized for computing binary masks.

The tandem system uses several auditory representations that are widely used for pitch
estimation. These representations are based on autocorrelation, which was originally proposed
by Licklider back in the 1950s to explain pitch perception [44]. Autocorrelation has been used
by other F 0 estimation techniques [24,38,85]. The tandem system first uses a gammatone
filter bank to decompose the signal into 128 frequency channels with center frequencies
spaced uniformly in the ERB-rate scale from 50 to 8000 Hz. The output at each channel is
divided into frames of length 20 ms with 10 ms overlap. A running autocorrelation function
(ACF) is then calculated according to Equation (16.2) at each frame to form a correlogram:

A(t, f, τ ) =

∑
n

x(tTt − nTn , f )x(tTt − nTn − τTn , f )√∑
n

x2(tTt − nTn , f )
√∑

n

x2(tTt − nTn − τTn , f )
. (16.2)

Here, A(t, f, τ ) denotes the normalized autocorrelation function at frequency channel f and
time frame t, and τ is the time delay in samples indexed by n. Tt = 10 ms and Tn = 1/fs ,
where fs is the sampling frequency, are the frame shift and the sampling time, respectively.
The function is normalized so that the peak value at τ = 0 is 1. An example of a correlogram is
shown in Figure 16.5. Usually, a peak in the ACF corresponds to the time delay that represents
a period of the signal. Since the target signal is speech, τ can be limited to the typical pitch
range between 70 and 400 Hz, or τTn between 2.5 and 15 ms [54]. Calculating the channel-
wise ACF after decomposing the signal using a filter bank, instead of directly calculating it
from the time domain signal, adds to the robustness of the F0 estimation process [14,85].
Additionally, a summary autocorrelation function (SACF) can be calculated by summing the
ACFs across all the channels:

SACF (T, τ ) =
∑
f

A(T, f, τ ). (16.3)

A peak in the SACF corresponds to the time period that has support from many frequency
channels. Since a periodic signal triggers responses in multiple channels, this peak likely
indicates the period of the signal.

The cross-channel correlation between neighboring channels has been used to identify
whether neighboring T-F units are dominated by the same source which can be used to group
the units to form a segment [9,78]. Normalized cross-channel correlation, C(t, f ), is calculated



P1: TIX/XYZ P2: ABC
JWST201-c16 JWST201-Virtanen August 31, 2012 8:59 Printer Name: Yet to Come Trim: 244mm × 168mm

Computational Auditory Scene Analysis and Automatic Speech Recognition 443

50

332

839

1919

3864

8000
Fr

eq
ue

nc
y 

(H
z)

0 4 8 12
Delay (ms)

0 1
50

332

839

1919

3864

8000

0 4 8 12
Delay (ms)

0 1

(a)

0 4 8 12
50

332

839

1919

3864

8000

Fr
eq

ue
nc

y 
(H

z)

Delay (ms)
0 1 0 4 8 12

50

332

839

1919

3864

8000

Delay (ms)
0 1

(b)

Figure 16.5 Autocorrelation and cross-channel correlation. (a) Correlogram at a frame for clean speech
(top left panel) and a mixture of speech with babble noise at 6 dB SNR (top right panel). The corre-
sponding cross-channel correlation and summary autocorrelation are shown on the right and the bottom
panel of each figure, respectively. A peak in the SACF is clearly visible in both cases. Note that corre-
lations of different frequency channels are represented using separate lines. (b) Corresponding envelope
correlogram and envelope cross-channel correlation for clean speech (bottom left panel) and the mixture
(bottom right panel). It can be clearly seen that the functions estimated from clean speech and noisy
speech match closely.

using the ACF as:

C(t, f ) =

∑
τ

[
A(t, f, τ ) − A(t, f )

] [
A(t, f + 1, τ ) − A(t, f + 1)

]
√∑

τ

[
A(t, f, τ ) − A(t, f )

]2
√∑

τ

[
A(t, f + 1, τ ) − A(t, f + 1)

]2
. (16.4)

Here, A(t, f ) denotes the mean of the ACF function over τ .
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As mentioned earlier, gammatone filters with higher center frequencies have wider band-
widths (see Figure 16.4). As a result, for a periodic signal, high-frequency filters will respond
to more than one harmonic of the signal. These harmonics are referred to as unresolved.
Unresolved harmonics cause filter responses to be amplitude modulated, and the envelope of
a filter response fluctuates at the fundamental frequency of the signal. This property has also
been used as a cue to group segments and units in high-frequency channels [24]. Amplitude
modulation or envelope can be captured by half wave rectification followed by band-pass
filtering of the response. The pass band of the filter corresponds to the plausible pitch range of
the signal. Replacing the filter responses in Equation (16.2) and Equation (16.4) with the ex-
tracted envelopes yields the normalized envelope autocorrelation, AE(t, f, τ ), and the envelope
cross-channel correlation, CE(t, f ), respectively. AE can be used to estimate the periodicity
of amplitude fluctuation. CE encodes the similarity of the response envelopes of neighboring
channels and aids segmentation. Figure 16.5 shows an example of a correlogram and an en-
velope correlogram for a single frame of speech (clean and noisy), and their corresponding
cross-channel correlations and SACFs.

For T-F unit labeling, the tandem algorithm uses the probability that the signal within a unit
is in agreement with a pitch period τ . This probability, denoted as P (T, f, τ ), is estimated with
the help of an MLP using a six-dimensional (6-D) pitch-based feature vector:

r(t, f, τ ) = [A(t, f, τ ), f̄ (t, f )τ − int(f̄ (t, f )τ ), int(f̄ (t, f )τ ),

AE(t, f, τ ), f̄E(t, f )τ − int(f̄E(t, f )τ ), int(f̄E(t, f )τ )], (16.5)

where the vector consists of ACFs and features derived using an estimate of the average
instantaneous frequency, f̄ (t, f ). In the equation, int(.) returns the nearest integer and the
subscript ‘E’ denotes envelope. f̄E is the instantaneous frequency estimated from the response
envelope. If a signal is harmonically related to the pitch period τ , then int(f̄ (t, f )τ ) and
int(f̄E(t, f )τ ) will indicate a harmonic number. The difference between these products and
their nearest integers in the second and the fourth terms quantifies a degree of this relationship.
An MLP is trained for each filter channel in order to estimate P (t, f, τ )1.

The algorithm first estimates initial pitch contours, each of which is a set of contiguous
pitch periods belonging to the same source, and their associated binary masks for up to two
sound sources. The main part of the algorithm iteratively refines the initial estimates. The final
stage applies onset/offset analysis to further improve segregation results. Let us now look at
these stages in detail.

The initial stage starts by identifying T-F units corresponding to periodic signals. Such
units tend to have high cross-channel correlation or envelope cross-channel correlation and,
therefore, are identified by comparing C(t, f ) and CE(t, f ) with a threshold. Within each frame,
the algorithm considers up to two dominant voiced sound sources. The identified T-F units of
a frame are grouped using a two step process. First, estimate up to two F 0s. Next, assign a T-F
unit to an F 0 group if it agrees with the F 0.

An earlier model by Hu and Wang [24] identifies the dominant pitch period of a frame as
the lag that corresponds to the maximum in the summary autocorrelation function (Equation
(16.3)). To check if a T-F unit agrees with the dominant pitch period, they compare the value

1 Note that this term is a convenient abuse of notation. It, in fact, represents the posterior probability of the T-F unit
being in agreement with the pitch period given the 6-D pitch-based features.
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of the ACF at the estimated pitch period to the peak value of the ACF for that T-F unit:

A(t, f, τD (t))
A(t, f, τP (t, f ))

> θP . (16.6)

Here, τD (t) and τP (t, f ) are the delays that correspond to the estimated F 0 and the maximum
in the ACF, respectively, for channel f at time frame t. If the signal within the T-F unit has a
period close to the estimated F 0, then this ratio will be close to 1. θP defines a threshold to
make a binary decision about the agreement.

The tandem algorithm uses a similar approach, but instead of the ACF it uses the probability
function, P (t, f, τ ), estimated using the MLPs. Having identified the T-F units of each frame
with strong periodicity, the algorithm chooses the lag, τ , that has the most support from these
units as the dominant pitch period of the frame. A T-F unit is said to support τ if the probability,
P (t, f, τ ), is above a chosen threshold. The T-F units that support the dominant pitch period
are then grouped together. The second pitch period and the associated set of T-F units are
estimated in a similar fashion, using those units not in the first group. To remove spurious
pitch estimates, if there are too few supporting T-F units, the estimated pitch is discarded.

To form pitch contours from these initial estimates, the algorithm groups the pitch periods
of any three consecutive frames if their values change by less than 20% from one frame to the
next. The temporal continuity of the sets of T-F units associated with the pitch periods is also
considered before grouping pitch estimates together; at least half of the frequency channels
associated with the pitch periods of neighboring frames should match for them to be grouped
into a pitch contour. After the initial stage, each pitch contour has an associated T-F mask.
Since pitch changes rather smoothly in natural speech, each of the formed pitch contours and
its associated binary mask usually belong to a single sound source. Isolated pitch points after
this initial grouping are considered unreliable and discarded.

These initial estimates are then refined using an iterative procedure. The idea is to use
obtained binary masks to obtain better pitch contours, and then use the refined pitch estimates
to re-estimate the masks. Each iteration of the tandem algorithm consists of two steps:

(i) The first step expands each pitch contour to its neighboring frames, and re-estimates its
pitch periods. Since pitch changes smoothly over time, the pitch periods of the contour
can be used to estimate potential pitch periods in the contour’s neighboring frames.
Specifically, for the kth pitch contour τk , that extends from frame t1 to t2 , the corresponding
binary mask, Mk (t) (t = t1 , . . . , t2), is extended to frames t1 − 1 and t2 + 1 by setting
Mk (t1 − 1) = Mk (t1) and Mk (t2 + 1) = Mk (t2). Using this new mask, the periods of the
pitch contour are reestimated. A summary probability function, SP (t, τ ), which is similar
to SACF (t, τ ) but uses P (t, f, τ ) values instead of A(t, f, τ ), is calculated at each frame
for this purpose. The SP function tends to have significant peaks at multiples of the pitch
period. Therefore, an MLP is trained to choose the correct pitch period from among the
multiple candidates. The expansion stops at either end when the estimated pitch violates
temporal continuity with the existing pitch contour. Note that, as a result of contour
expansion, pitch contours may be combined.

(ii) The second step reestimates the mask corresponding to each of the pitch contours. This
is done by identifying T-F units of each frame that are in agreement with the estimated
pitch period of that frame. Given the pitch period τD (t), P (t, f, τD ) can be directly used to
make this decision at each T-F unit. But this does not take into consideration the temporal
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continuity and the wide-band nature of speech. If a T-F unit is in agreement with τD ,
its neighboring T-F units also tend to agree with τD . For added robustness, the tandem
algorithm trains an MLP to perform unit labeling based on a neighboring set of T-F units.
It takes as input the P (t, f, τ ) values of a set of neighboring T-F units, centered at the unit
for which the labeling decision has to be made. The output of this MLP is finally used to
label each T-F unit.

The algorithm iterates between these two steps until it converges or the number of iterations
exceeds a predefined maximum (20 is suggested).

The final step of the tandem algorithm is a segmentation stage based on onset/offset analysis,
which may be viewed as post processing. The stage forms segments by detecting sudden
changes in intensity as such a change indicates an onset or offset of an acoustic event. As
discussed earlier, onset and offset are prominent ASA principles (see Figure 16.1). Segments
are formed using multiscale analysis of onsets and offsets (see Hu and Wang [25] for details).
The tandem algorithm further breaks each segment down to channel wise subsegments, called
T-segments as they span multiple time frames but are restricted to a single frequency channel.
Each T-segment is then classified as a whole as target dominant if at least half its energy is
contained in the voiced frames of the target and at least half of the energy in these voiced
frames is included in the target mask. If the conditions are not satisfied, the labeling from the
iterative stage remains unchanged for the units of the T-segment.

Figure 16.6 illustrates the results of different stages of the tandem system. The mask
obtained at the end of the iterative stage (Figure 16.6(e)) includes most of the target speech. The
subsequent segmentation stage improves the segregation results by recovering a few previously
masked (mask value 0) T-F units, for example toward the end of the utterance in Figure 16.6(g).
These units were identified from the onset/offset segments. The final resynthesized waveform,
shown in Figure 16.6(h), is close to the original signal (Figure 16.6(b)).

There are two important aspects of CASA that the tandem algorithm does not consider.
The first one is sequential organization. The outputs of the tandem system are multiple pitch
contours and associated binary masks. The pitch track (and therefore the mask) of a target
utterance need not be continuous as there are breaks due to silence and unvoiced speech.
Sections before and after such discontinuities have to be sequentially grouped into the target
stream. The tandem system assumes ideal sequential grouping, and therefore ignores the
sequential grouping issue. Methods for sequential grouping have been proposed. Barker et al.
[4] proposed a schema based approach using ASR models to simultaneously perform sequential
integration and speech recognition (more about this in Section 14.4.3). Ma et al. [47] later
used a similar approach to group segments that were formed using correlograms in voiced
intervals and a watershed algorithm in unvoiced intervals. Shao and Wang [67] proposed a
speaker model-based approach for sequential grouping. Recently, Hu and Wang [30] proposed
an unsupervised grouping strategy based on clustering and reported results comparable to the
model-based approach of Shao and Wang.

The second issue with the tandem algorithm is that it does not deal with unvoiced speech.
An analysis by Hu and Wang [28] shows that unvoiced speech accounts for more than 20%
of spoken English, measured in terms of both frequency and duration of speech sounds.
Therefore, unvoiced speech segregation is important for improving the intelligibility and
ASR of the segregated target signal. Dealing with unvoiced speech is challenging as it has
noise-like characteristics and lacks strong grouping cues such as F 0. Hu and Wang [28]
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Figure 16.6 Different stages of IBM estimation using the tandem system. (a) Cochleagram of a female
target utterance. (b) Corresponding waveform. (c) Cochleagram of a mixture signal obtained by adding
crowd noise to the target utterance. (d) Corresponding waveform. (e) Mask obtained at the end of
the iterative stage of the algorithm. (f) Waveform of the resynthesized target using the mask. (g) The
final mask obtained after the segmentation stage. (h) The resynthesized waveform. (i) The IBM. (j)
Resynthesized signal using the IBM. Reproduced by permission from Hu and Wang [26] © 2010 IEEE.

suggest a method to extract unvoiced speech using onset/offset based segments. They first
segregate voiced speech. Then, acoustic-phonetic features are used to classify the remaining
segments as interference dominant or unvoiced speech dominant. A simpler system was later
proposed by Hu and Wang [29]. Their system first segregates voiced speech and removes
other periodic intrusions from the mixture. It then uses a spectral subtraction based scheme
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to obtain segments in unvoiced intervals (an unvoiced interval corresponds to a contiguous
group of unvoiced frames); the noise estimate for each unvoiced interval is estimated using
the mixture energy in the masked T-F units of its neighboring voiced intervals. Together with
an approximation of the target energy obtained by subtracting the estimated noise from the
mixture, the local SNR at each T-F unit is calculated. The segments themselves are formed by
grouping together neighboring T-F units that have estimated SNRs above a chosen threshold.
The obtained segments are then classified as target or interference dominant based on the
observation that most of the target dominant unvoiced speech segments reside in the high-
frequency region. The algorithm works well if the noise remains fairly stationary during the
duration of an unvoiced interval and the neighboring voiced intervals.

16.4.3 IBM Estimation as Binary Classification

The tandem algorithm exemplifies a system that uses ASA cues and supervised learning to
estimate the IBM. When it comes to direct classification, the issues lie in choosing appropriate
features that can discriminate target speech from interference, and an appropriate classifier.
To explain how direct classification is applied, we describe the classification-based approach
of Kim et al. [36] in detail.

The system by Kim et al. uses amplitude modulation spectrograms (AMS) as the feature to
build their classifier. To obtain AMS features, the signal is first passed through a 25 channel
filter bank, with filter center frequencies spaced according to the mel-frequency scale. The
output at each channel is full-wave rectified and decimated by a factor of 3 to obtain the
envelope of the response. Next, the envelope is divided into frames 32 ms long with 16 ms
overlap. The modulation spectrum at each T-F unit is then calculated using the FFT2. The
FFT magnitudes are finally integrated using 15 triangular windows spaced uniformly from
15.6 to 400 Hz, resulting in 15 AMS features [39]. Kim et al. augment the extracted AMS
features with delta features calculated from the neighboring T-F units. The delta features are
calculated across time and frequency, and for each of the 15 features separately. They help
capture temporal and spectral correlations between T-F units. This creates a 45-dimensional
feature representation for each T-F unit, AMS(t, f ).

Given the 45-dimensional input, a Gaussian mixture model (GMM)-based classifier is
trained to do the classification. The desired unit labels are set using the IBM created using
an LC (see Equation (16.1)) of –8 dB for low-frequency channels (channels 1 through 15)
and –16 dB for high-frequency channels (channels 16 through 25). This creates a group of
masked T-F units, represented as λ0 , and unmasked (mask value 1) T-F units, λ1 . The authors
chose a lower LC for high-frequency channels to account for the difference in the masking
characteristics of speech across spectrum. Each group, λi , where i = 0, 1, is further divided into
two smaller subgroups, λ0

i and λ1
i , using a second threshold, LCi . The thresholds (LC0 < LC

and LC1 > LC) are chosen such that the amount of training data in the two subgroups of
a group are the same. This second subdivision is done mainly to reduce the training time
of the GMMs. A 256-mixture, 45-dimensional, full-covariance GMM is trained using the
expectation-maximization algorithm to model the distribution of each of the 4 subgroups.

2 A T-F unit, here, refers to a 32 ms long frame at a particular frequency channel.
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Given a T-F unit from a noisy utterance, a Bayesian decision is then made to obtain a binary
label that is 0 if and only if P (λ0 | AMS(t, f )) > P (λ1 | AMS(t, f )), where

P (λ0 | AMS(t, f )) =
P (λ0 , AMS(t, f ))

P (AMS(t, f ))

=
P (λ0

0)P (AMS(t, f ) | λ0
0) + P (λ1

0)P (AMS(t, f ) | λ1
0)

P (AMS(t, f ))
.

The equation calculates the a posteriori probability of λ0 given the AMS features at the T-F
unit. P (λ0

0) and P (λ1
0) are the a priori probabilities of subgroups λ0

0 and λ1
0 , respectively,

calculated from the training set. The likelihoods, P (AMS(t, f ) | λ0
0) and P (AMS(t, f ) | λ1

0),
are estimated using the trained GMMs. P (AMS(t, f )) is independent of the class label and,
hence, can be ignored. P (λ1 | AMS(t, f )) is calculated in a similar fashion.

One advantage of using the AMS feature is that it can handle both voiced and unvoiced
speech, as opposed to the 6-D pitch based feature used by the tandem algorithm which can be
used only to classify voiced speech. As a result, the mask obtained using Kim et al.’s algorithm
includes both voiced and unvoiced speech.

Figure 16.7 shows an estimated binary mask using Kim et al.’s algorithm. The authors evalu-
ated their system using speech intelligibility tests and reported substantial improvements in the
intelligibility of segregated speech for normal-hearing listeners [36]. It is worth emphasizing
that this is the first monaural segregation system that produces improved speech intelligibility.

One of the main disadvantages of Kim et al.’s system is that training is noise dependent.
Although it works well when tested on speech corrupted with the same noise types, the perfor-
mance degrades significantly when previously unseen noise types are used during the testing
stage. A second disadvantage of the system is that it can handle only nonspeech intrusions
because AMS features mainly distinguish speech and nonspeech signals. By avoiding com-
peting talkers, the problem of sequential organization is avoided because all detected speech
belongs to the target.

Jin and Wang [32] also proposed a classification-based approach to perform voiced speech
segregation in reverberant environments. For T-F unit classification, they use the 6-D pitch-
based features given in Equation (16.5), and an MLP-based classifier. In order to utilize
global information that is not sufficiently represented at the T-F unit level, an additional
segmentation stage is used by their system. Segmentation is performed based on cross-channel
correlation and temporal continuity in low-frequency channels—adjacent T-F units with high
cross-channel correlation are iteratively merged to form larger segments. In high-frequency
channels, they are formed based on onset/offset analysis [25]. The unit level decisions are then
used to group the formed voiced segments either with the target stream or the nontarget (or the
background) stream. Their system produced good segregation results under various reverberant
conditions. Since pitch-based features are derived using the pitch of the target, classifiers
trained on such features tend to generalize better than those trained using AMS features.

More recently, Kun and Wang proposed an SVM-based binary mask estimation model [19].
Inspired by Jin and Wang [32] and Kim et al. [36], they propose to combine pitch-based and
AMS features along with the use of an SVM based classifier. Their system performs well in a
variety of test conditions and is found to have good generalization to unseen noise types.

In the context of robust ASR, Seltzer et al. [65] proposed a similar Bayesian classification
based approach to mask estimation. They extract the following features at the T-F unit level to
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Figure 16.7 IBM estimation using classification. (a) A spectrogram of a target utterance from the IEEE
corpus. (b) Spectrogram of the noisy mixture obtained by adding babble noise to the target utterance. (c)
The estimated binary mask. (d) The spectrogram of the resynthesized signal obtained using the estimated
binary mask. Reprinted with permission from Kim et al. [36] © 2009, Acoustical Society of America.

build GMM based Bayesian classifiers: comb filter ratio (CFR), which is the log ratio of the
total energy at the harmonics of the fundamental frequency estimated for a frame to the total
energy in between those frequencies; autocorrelation peak ratio (APR), which is the ratio of
height of the largest secondary peak in the ACF to the height of the main peak; the log ratio
of the energy within the T-F unit to the total energy at that time frame; kurtosis, calculated
from sample averages in each subband at each time frame; spectral flatness, measured in
terms of the variance of the subband energy within the spectrographic neighborhood of the
T-F unit; the ratio of the subband energy at each time frame to the noise floor estimated for
that subband; and spectral subtraction based local SNR estimate. The features are chosen such
that they capture the characteristics of speech in noise without making assumptions about the
underlying noise type. Except for the first two features, viz. CFR and APR, the remaining ones
can be used to characterize properties of T-F units in both voiced and unvoiced time frames.
CFR and APR are used only for the T-F units in voiced frames. GMMs are trained for voiced
and unvoiced speech separately, and also at each subband and are in turn used to obtain soft
T-F masks. The obtained masks improve ASR performance when used in conjunction with
missing-data-based strategies. Seltzer et al. [65] use speech mixed with white noise to train the
classifiers. This can be limiting when it comes to generalization to unseen noisy conditions.
To overcome this, Kim and Stern [37] suggest training each frequency band separately, using
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artificial colored noise signals generated specifically for each band. They show that this can
yield better generalization results as compared to using white noise alone for training.

In a way, classification-based strategies simplify the task of speech segregation, at least
conceptually. It bypasses the steps of a typical CASA system which extracts perceptually
motivated cues and applies the ASA stages of segmentation and grouping to obtain a binary
mask. The potential downside of relying on supervised learning is the perennial issue of
generalization to unseen conditions.

16.4.4 Binaural Mask Estimation Strategies

Binaural CASA systems use two microphone recordings to segregate the target from the mix-
ture. Most binaural systems try to extract localization cues, for example azimuth, which are
encoded in the differences between the signals that reach the two ears (or microphones). In
this regard, interaural time difference (ITD) and interaural intensity difference (IID) are the
two most important cues. ITD is the difference between the arrival times of the signal at the
two ears. ITD is ambiguous at high frequencies (> 1.5 KHz) because of short wavelengths
as compared to the distance between the ears. IID is the difference in the intensity of the
sound that reaches the two ears, usually expressed in decibels, and it occurs because of the
‘shadow’ effect of the human head. Contrary to ITD, IID is not useful at low frequencies
(< 500 Hz) because such low-frequency sound components diffract around the head overcom-
ing the shadow effect in the process.

Two classical strategies strongly influenced binaural segregation: the cross-correlation based
model for ITD estimation proposed by Jeffress [31] and the equalization-cancellation (EC)
model of Durlarch [16]. The EC model tries to segregate the target in a two stage process.
In the first stage, the noise levels in the signals arriving at the two ears are equalized. This
is followed by subtraction of the signals at the two ears in the cancellation stage. The noise
equalized in the first stage gets canceled during the second stage, producing a cleaner target.
The Jeffress model is based on the similarity of the signals that arrive at the two ears. The
neural firing patterns of the two ears are passed through delay lines; the delay that maximizes
the correlation between the two patterns is identified as the ITD of the signal.

To compute ITD, a normalized cross-correlation function, C(t, f, τ ), is typically used

C(t, f, τ ) =

∑
n

xL (tTt − nTn , f )xR (tTt − nTn − τTn , f )√∑
n

x2
L (tTt − nTn , f )

√∑
n

x2
R (tTt − nTn − τTn , f )

. (16.7)

The above equation calculates cross-correlation at frequency channel f and time frame t, for
a time lag τ . xL and xR correspond to the left and right ear response, respectively. Tt and
Tn have the same meanings as in Equation (16.2). Similar to the normalized autocorrelation
function, the cross-correlation function will have a peak at a delay that relates to ITD. IID can
be calculated as the ratio of the mean power of the signals that arrive at the two ears:

IID(t, f ) = 10 log10

( ∑
n x2

L (tTt − nTn , f )∑
n x2

R (tTt − nTn , f )

)
. (16.8)
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An IBM estimation strategy based on classifying ITD and IID estimates was proposed by
Roman et al. [62], which is probably the first classification-based system for speech segrega-
tion. They observed that, given a predefined configuration of the target and the interference
(configuration here refers to the azimuths of the target and the interference), ITD and IID
values vary smoothly and systematically with respect to the relative strength of the target
and the mixture. This prompted them to model the distribution of target dominant units and
interference dominant units of each frequency channel in the ITD-IID space. Their system
models the distributions using a nonparametric kernel-density estimator. For an unseen test
utterance, the binary decision at each T-F unit is made by comparing the probabilities of the
unit being target dominant and interference dominant, given the observed ITD and IID at that
unit. The binary masks estimated by their model are very close to the IBM, with excellent
performances in terms of SNR gains, speech intelligibility and ASR accuracies. The main
drawback of the model is that ITD-IID distributions are configuration dependent. A similar
system was proposed by Harding et al. [20], which assumes that only the target azimuth is
known a priori. It then learns the joint distribution of ITD and IID for target dominant T-F
units using a histogram-based method. These distributions are used to predict the probability
of a unit being target dominant from the observed ITD and IID. The estimated probabilities
are directly used in the form of a ratio mask, to improve ASR results in reverberant conditions.

The above strategies are based on modeling the distribution of the binaural cues in the ITD-
IID space. An alternative approach was proposed by Palomaki et al. [55]. This approach first
estimates target and interference azimuths. It then classifies a T-F unit as target or interference
dominant by comparing the values of the cross-correlation function at the estimated azimuths
of the target and the interference. In order to deal with room reverberation, their system models
the precedence effect [45] by using the low-pass filtered envelope response of each channel
as an inhibitor. This reduces the effect of late echoes in reverberant situations by preserving
transient and suppressing sustained responses. Palomaki et al. reported good ASR results in
reverberant situations using the above algorithm to estimate binary masks.

Recently, Woodruff and Wang [84] proposed a system that combines monaural and binaural
cues to estimate the IBM. Their system uses a monaural CASA algorithm to first obtain simul-
taneous streams, each occupying a continuous time interval. They use the tandem algorithm,
described earlier, for this purpose. Binaural cues are then used to jointly estimate the azimuths
of the streams that comprise the scene and their corresponding sets of sequentially grouped
simultaneous streams.

16.5 Integrating CASA with ASR

The CASA strategies discussed in Section 16.4 provide us several perceptually inspired ways
of segregating the target from a mixture. The main focus has been on estimating the ideal binary
mask. Although IBM-based strategies produce good segregation results, integrating CASA and
ASR has not been as straightforward a task as it seems. A simple way of combining CASA
with ASR is to use CASA as a preprocessor. ASR models trained in clean conditions can
then be used to perform recognition on the segregated target speech. This can be problematic.
Even when the IBM is used, the resynthesized signal will have artifacts that may pose chal-
lenges to recognition. Errors in IBM estimation will further degrade the performance of such
systems.
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Nevertheless, CASA has been used as a preprocessor in some systems and has been shown
to produce good results. One such model was proposed by Srinivasan et al. [73]. Their system
uses a ratio T-F mask to enhance a noisy utterance. A conventional HMM-based ASR system
trained using the mel-frequency cepstral coefficients (MFCC) of clean speech is used to
recognize the enhanced speech. For mask estimation, they use the binaural segregation model
by Roman et al. [62]. Srinivasan et al. compared their system with the missing-data ASR
approach [13] and found that using such a CASA-based preprocessor can be advantageous
as the vocabulary size of the recognition task increases. The limitation of missing-data ASR
in dealing with larger vocabulary tasks had been reported earlier [60]. The use of a ratio
mask instead of a binary mask coupled with accurate mask estimation helped their system in
overcoming some of the limitations of using CASA as a preprocessor.

More recently, Hartmann and Fosler-Lussier [21] compared the performance of an ASR
system that simply discards masked T-F units, which is equivalent to processing the noisy
speech with a binary mask, with a system that reconstructs those units based on the information
available from the unmasked T-F units. Such feature-reconstruction strategies have been used
to improve noise robust ASR [60]. An HMM based ASR system trained in clean conditions
is used to perform recognition. They observe that the direct use of IBM-processed speech
performs significantly better than the reconstructed speech, and yields ASR results only a
few percentage points worse than those in clean conditions. When noise is added to the IBM
by randomly flipping 1s and 0s, only after the amount of mask errors exceeds some point
does reconstruction work better. This is a surprising observation, considering the conventional
wisdom that the binary nature of a mask is supposed to skew the cepstral coefficients (they
used PLP cepstral coefficients to build their ASR system). This study points to the need of a
deeper understanding of the effects of using binary masks on ASR performance.

The above methods somehow modify the features so that they can be used with ASR
models trained in clean conditions. Such strategies have been called feature compensation
or source-driven methods. Feature compensation includes techniques that use CASA based
strategies for segregating the target [21,73] and reconstructing unreliable features [60]. An
alternative approach would be to modify ASR models so that they implicitly accommodate
missing or corrupt speech features. Such strategies have been termed model compensation or
classifier compensation methods. The missing-data ASR techniques are examples of model
compensation strategies [13]. There are also strategies that combine feature compensation and
model compensation [15,71], and simultaneously perform CASA and ASR [4,72].

A much simpler strategy for integrating CASA and ASR was proposed by Narayanan and
Wang [50] and Karadogan et al. [35]. They interpret IBMs as binary images and use a binary
pattern classifier to do ASR. The idea of using binary pattern recognition for ASR is radically
different from the existing strategies that use detailed speech features like MFCCs. Their work
was motivated by the speech perception study showing that modulating noise by the IBM
can produce intelligible speech for humans [80, also see Section 16.3]. Since noise carries no
speech information, intelligibility must be induced by the binary pattern of the IBM itself.
This indicates that the pattern carries important phonetic information. The system described
in Narayanan and Wang [50] is designed for an isolated digit recognition task. The ASR
module is based on convolutional neural networks [41,68], which have previously been used
successfully for handwritten digit and object recognition. Their system obtains reasonable
results even when the IBM is estimated directly from noisy speech using a CASA algorithm.
They extend their system further in Narayanan and Wang [51] to perform a more challenging
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phone classification task, and show that IBMs and traditional speech features like MFCCs
carry complimentary information that can be combined to improve the overall classification
performance. The combined system obtains classification accuracies that compare favorably
to most of the results reported in recent phone classification literature. It is quite interesting to
note that features that are based on binary patterns can obtain good results on complex ASR
tasks. Such CASA inspired features may eventually be needed for achieving robust ASR.

In the following subsection we discuss in greater detail an example of a CASA-inspired
ASR framework. The subsection focuses on the uncertainty transform model proposed by
Srinivasan and Wang [71] that combines feature compensation and model compensation to
improve ASR performance.

16.5.1 Uncertainty Transform Model

Using a speech-enhancement algorithm to obtain features for ASR does not always yield good
recognition results. This is because, even with the best enhancement algorithms, the enhanced
features remain somewhat noisy, as far as the ASR models trained in clean conditions are
concerned. Moreover, the variance of such features, with respect to the corresponding clean
features, varies across time and frequency. Uncertainty decoding has been suggested as a
strategy to modify ASR model parameters to take into account the inherent uncertainty of
such enhanced features (see Chapter 17 for a more detailed handling of uncertainty decoding
strategies). It has been shown that feature uncertainties contribute to an increase in the variance
of trained acoustic variables and accounting for it during the recognition (decoding) stage can
significantly improve ASR performance [15].

A mismatch in the domain of operation between speech enhancement or segregation and
ASR can pose problems in effectively adjusting ASR model parameters based on estimated
uncertainty. Such a mismatch exists for most CASA-based techniques as they operate either
in the spectral or T-F domain, as opposed to ASR models that operate in the cepstral domain.
Training ASR models in the spectral domain is known to produce suboptimal performance. In
order to overcome this mismatch problem, Srinivasan and Wang [71] suggested a technique
to transform the uncertainties estimated in the spectral domain to the cepstral domain.

The uncertainty transform model by Srinivasan and Wang consists of a speech-enhancement
module, an uncertainty transformer, and a traditional HMM-based ASR module that operates
in the cepstral domain. The enhancement module uses a spectrogram reconstruction method
that is similar to [60] but operates in the linear spectral domain. To perform recognition,
the enhanced spectral features are transformed to the cepstral domain. The corresponding
uncertainties, originally estimated in the spectral domain, are transformed using a supervised
learning method. Given the enhanced cepstral features and associated uncertainties, recognition
is performed in an uncertainty decoding framework. Details about these stages are discussed
below.

The speech-enhancement module starts by converting a noisy speech signal into the spectral
domain using the FFT. The noisy spectrogram is then processed using a speech-segregation
algorithm that estimates the IBM. A binary mask partitions a noisy spectral vector, y, into its
reliable components, yr , and the unreliable components, yu . Assuming that yr sufficiently
approximates the corresponding clean speech spectral values, xr , the goal of reconstruction
is to approximate the true spectral values, xu , of the unreliable components. It uses a speech
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prior model for this purpose, implemented as a large GMM, where the probability density of
a spectral vector of speech (x) is modeled as

p(x) =
K∑

k=1

P (k)p(x | k).

Here, K represents the number of Gaussians in the GMM, k is the Gaussian index, P (k) is the
prior probability of the kth component (or the component weight), and p(x | k) = N (x; μk ,Θk )
is the conditional probability density of x given the kth Gaussian. In the Gaussian, μk and Θk

denote the mean vector and the covariance matrix, respectively. Such a GMM can be trained
by pooling the entire training data and using an expectation maximization algorithm to learn
the parameters. The mean and the covariance matrix of the kth Gaussian are also partitioned
into its reliable and unreliable components using a binary mask:

μk =
[

μr,k

μu,k

]
,Θk =

[
Θrr,k Θru,k

Θur,k Θuu,k

]
,

where μr,k and μu,k are the reliable and the unreliable components of the mean vector of the
kth Gaussian, respectively; Θrr,k and Θuu,k are the corresponding covariances of the reliable
and the unreliable components; and Θru,k and Θur,k are the cross-covariances.

The unreliable components are reconstructed by first estimating the a posteriori probability
of the kth Gaussian using only the reliable components, xr , of the frame:

P (k | xr ) =
P (k)p(xr | k)

K∑
k=1

P (k)p(xr | k)

. (16.9)

Next, the conditional mean of the unreliable components given the reliable components is
approximated as

μ̂u,k = μu,k + Θur,kΘ−1
rr,k (xr − μr,k ). (16.10)

Note that this is the standard formula for calculating the conditional mean of random variables
that follow a multivariate normal distribution.

Given the a posteriori component weights and the conditional mean, a good approximation
of the unreliable components is the expected value of xu given xr , which is also the minimum
mean-squared estimate (MMSE) of xu . The MMSE estimate can be calculated as

x̂u = Exu |xr
(xu ) =

K∑
k=1

P (k | xr )μ̂u,k (16.11)

Finally, a measure of uncertainty in the estimation of the reconstructed spectral vector, x̂
(xr

⋃
x̂u ), is calculated as

Θ̂x̂ =
K∑

k=1

P (k | xr )

⎧⎨⎩
([

xr

μ̂u,k

]
− μk

)
.

(
xr

μ̂u,k
− μk

)T

+

[
0 0
0 Θ̂u,k

]⎫⎬⎭ (16.12)
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where

Θ̂u,k = Θuu,k − Θur,kΘ−1
rr,kΘru,k .

Equation (16.12) is based on the idea of adapting the trained GMM using the reconstructed
spectral vector as an incomplete observation [83]. Even though yr is considered reliable dur-
ing feature reconstruction, the above equation associates a positive, albeit small, measure of
uncertainty to it. This helps the uncertainty transformation model to learn the subsequent
transformation of these quantities to the cepstral domain, since cepstral uncertainties de-
pend on both xr and xu . If a diagonal covariance matrix is used to model the speech prior,
Equation (16.11) and Equation (16.12) can be modified to [66]

x̂u,k =
K∑

k=1
P (k | xr )μu,k , (16.13)

θ̂x̂ =
K∑

k=1
P (k | xr )

⎧⎨⎩
([

xr

x̂u,k

]
− μk

)2

+

[
0

θu,k

]⎫⎬⎭ , (16.14)

where squaring is done per element of the vector. θ̂x̂ and θu,k denote the measure of uncer-
tainty in estimation of x̂ and the unreliable components of the variance of the kth Gaussian,
respectively. This simplification is due to the fact that all the cross-covariance terms will have
the value 0 when the covariance matrix is diagonal. The use of a diagonal covariance matrix
reduces the training time and simplifies the calculations.

To perform ASR, the uncertainty transform approach converts the enhanced spectral feature
(x̂) to the cepstral domain. This is straightforward as we have a fully reconstructed feature
vector. The main step is to transform the estimated uncertainties to the cepstral domain. In
Srinivasan and Wang [71], regression trees are trained to perform this transformation as the
true parametric form of this relationship is unknown. If we assume that the cepstral features
consist of 39 MFCCs (including the delta and acceleration coefficients), and that the ASR
module is based on HMMs that use Gaussians with diagonal covariance matrices to model the
observation probability, the goal of the transformation is to estimate the squared difference,
θẑ , between the reconstructed cepstra, ẑ, and the corresponding clean cepstra, z [15]. The
input to the system is the estimated spectral variance (θ̂x̂ or diag(Θ̂x̂), depending on whether
diagonal or full covariance matrices are used by the feature reconstruction module). Srinivasan
and Wang additionally use the reconstructed cepstral values corresponding to that frame, a
preceding frame and a succeeding frame, as input features as they were found to be useful
in learning the transformation. The cepstral uncertainties of each of the 39 dimensions are
learned using separate regression trees.

Having obtained the enhanced cepstral features and the associated uncertainties, ASR is
performed in an uncertainty decoding framework. Since we only have access to the enhanced
cepstra, ẑ, the observation probability in an HMM-based decoder is calculated by integrating
over all possible clean speech cepstral values, z, as shown below:∫ ∞

−∞
p(z | q, k)p(ẑ | z)dz = N (ẑ; μq ,k , θq ,k + θẑ). (16.15)

In the equation, q denotes a state in the HMM and k indexes the Gaussians used to model
the observation probability. μq ,k and θq ,k are the corresponding mean and the variance vector



P1: TIX/XYZ P2: ABC
JWST201-c16 JWST201-Virtanen August 31, 2012 8:59 Printer Name: Yet to Come Trim: 244mm × 168mm

Computational Auditory Scene Analysis and Automatic Speech Recognition 457

Table 16.1 Word error rates (WER) of the uncertainty transform and the multiple prior based
uncertainty transform methods, as well as the reconstruction-based approach. Baseline results of
directly recognizing the noisy speech are also shown. MP abbreviates multiple priors. The last column
shows the average WER of each of the systems across all the noise types. Reproduced by permission of
Narayanan et al. [52] © 2011 IEEE.

Test Set

System Car Babble Restaurant Street Airport Train Average

Baseline 44.9 43.7 43.2 52.0 44.1 55.2 47.2

Reconstruction 21.5 38.5 42.6 41.5 41.5 39.4 37.5
Uncertainty decoding 18.9 34.2 41.2 40.6 37.0 39.0 35.2

MP reconstruction 19.6 34.8 41.0 38.3 41.1 36.5 35.2
MP uncertainty decoding 18.4 32.8 39.1 37.4 36.9 36.5 33.5

of the kth Gaussian. If the observation probability is modeled using Gaussians and if the
enhancement is unbiased, this probability can be calculated as shown in the equation [15].
Essentially, the learned variance of a Gaussian component is modified during the recognition
stage by adding the estimated cepstral uncertainty to it.

An extension to Srinivasan and Wang’s uncertainty transform framework was recently
proposed by Narayanan et al. [52]. They propose using multiple prior models of speech,
instead of a single large GMM, to better model spectral features. Specifically, they train prior
models based on the voicing characteristic of speech by splitting the training data into voiced
and unvoiced speech. While reconstructing a noisy spectrogram, frames that are detected as
voiced by their voiced/unvoiced (V/UV) detection module are reconstructed using the voiced
prior model. Similarly, unvoiced frames are reconstructed using the unvoiced prior model.
The V/UV detector is implemented as a binary decision problem, using GMMs to model the
underlying density of voiced and unvoiced frames. Like in the uncertainty transform model
of Srinivasan and Wang, reconstructed spectral vectors and their corresponding uncertainties
are finally transformed to the cepstral domain, and recognition is performed in the uncertainty
decoding framework.

The word error rates obtained using the uncertainty transform and the extension by
Narayanan et al. [52] on the Aurora-4 5000 word closed vocabulary speech recognition task
[56] are shown in Table 16.1. This task is based on the Wall Street Journal (WSJ0) database.
The IBM is estimated using a simple spectral subtraction based approach [71]; the spectral
energy in the first and last 50 frames is averaged to create an estimate of the noise spectrum,
which is then simultaneously used to ‘clean’ the noisy spectrogram and to estimate the IBM
by comparing it with the energy in each T-F unit. From the table, we can see that, compared
to the baseline, uncertainty transform clearly reduces the word error rate in all of the testing
conditions. An average improvement of 12 percentage points is obtained over the baseline
of directly recognizing noisy speech. Compared to feature reconstruction, an improvement of
2.3 percentage points is obtained. Using multiple prior models further improves the average
performance by 1.7 percentage points.

The results show that the uncertainty transform and the use of multiple prior models are
effective in dealing with noisy speech utterances. One of the main advantages of the uncertainty
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transformation is that it enables CASA-based speech enhancement techniques that operate in
the spectral domain to be used as a front-end for uncertainty decoding based ASR strategies.
The supervised transformation technique can be used whenever the enhancement and the
recognition modules operate in different domains. Uncertainty transform techniques provide
a clear alternative to missing-data and reconstruction approaches to robust ASR.

16.6 Concluding Remarks

In this chapter, we have discussed facets of CASA and how it can be coupled with ASR to
deal with speech recognition in noisy environments. To recapitulate, we discussed perceptual
mechanisms that allow humans to analyze the auditory scene. We then looked at how such
mechanisms are incorporated in computational models with the goal of achieving human-like
performance. Most of the systems discussed in the chapter try to estimate the ideal binary
mask, which is an established goal of CASA. Finally, in Section 16.5, we described how
CASA can be integrated with ASR.

Although clear advances have been made in the last few years in improving CASA and
ASR, challenges remain. CASA challenges lie in developing effective strategies to sequentially
organize speech and to deal with unvoiced speech. Apart from additive noise, recent studies
have started addressing room reverberation [20,33]. Advances in CASA will have a direct
impact on ASR. ASR systems have been demonstrated to perform excellently when the IBM
is used. Improvements in IBM estimation will lead to more robust ASR. Over the last decade,
attempts at integrating CASA and ASR have yielded fruitful results. Strategies like missing-
data ASR, uncertainty transform, and missing feature reconstruction go beyond using CASA
as preprocessor for ASR. Further progress in robust ASR can be expected from even tighter
coupling between CASA and ASR.

Achieving human-level performance has been the hallmark of many AI endeavors. In CASA,
this translates to a meaningful description of the acoustic world. Therefore, recognizing speech
in realistic environments is a major benchmark of CASA. Our understanding of how we analyze
the auditory scene may eventually pave the way to truly robust ASR.
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17
Uncertainty Decoding
Hank Liao
Google Inc., USA

One may view the accuracy degrading effects of noise in an automatic speech recognition
system as increasing uncertainty while decoding the speech. To mitigate this, the statistical
models used for recognition can be updated to reflect the error or uncertainty introduced by
noise in the test environment. The greater the difference between the test and training and
conditions, the greater the uncertainty. Some approaches that are motivated by this idea are
presented in this chapter and are often described under the broad category called uncertainty
decoding. Previous chapters have discussed methods to address environmental noise by using
speech enhancement (Chapter 9), affine transformations of the features or model parameters
(Chapter 11), or updating the acoustic model parameters (Chapter 12). This chapter discusses
how these standard techniques relate to uncertainty decoding, demonstrates how they can be
extended to handle uncertainty due to noise, and presents the strengths and weaknesses of
various uncertainty decoding forms for noise robust speech recognition.

17.1 Introduction

The problem of speech recognition in noise results from mismatched training and test condi-
tions. Acoustic noise in testing or actual usage conditions that is unaccounted for in training is
unexpected and degrades recognition performance. Feature-based approaches to noise robust-
ness, such as those presented in Chapter 5 or 9, remove the noise from the features, that is the
parameterized speech observations, before recognition. Model-based approaches compensate
the underlying statistical speech acoustic models to match noisy conditions as discussed in
Chapter 12. Uncertainty decoding can be viewed as a hybrid of these approaches where the
environmental mismatch is addressed by compensating the features and adding a simple un-
certainty term to the backend acoustic model variances during recognition. In feature-based
approaches, the uncertainty term can represent the certainty in the feature-compensation pro-
cess. For example, in speech enhancement as the data get noisier, the less certain one may be
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in the estimated clean speech. In model-based approaches, specific models, such as fricatives,
will be affected more by noise than others and this can be reflected by larger uncertainty
causing larger model variances1.

Although there has been a variety of work published related to uncertainty decoding,
they all share a similar approach to modifying search with standard acoustic modeling to
account for uncertainty. HMM-based acoustic models for speech recognition typically use
Gaussian mixture models (GMMs) to represent state distributions. A particular Gaussian in
the recognition acoustic model may be referred to as the mth component of the qth state of
the model. However to simplify notation, Gaussian components of the acoustic model will
be indexed globally, ignoring the state index, such that m is an index from 1 to M, where
M is the total number of Gaussians over all states. Thus, the general form for conditional
likelihood of a noisy speech observation, xt , for a Gaussian m in the clean acoustic model for
uncertainty-based noise robustness methods is

p(xt |m) = αt,mN
(
ŝt ; μs,m , Θs,m + Θb

)
. (17.1)

From the noisy speech features, xt , an estimate of the clean speech features, denoted by ŝt ,
is derived. The clean speech acoustic model means μs,m remain unchanged, but the variances
Θs,m are increased by a bias Θb to account for uncertainty due to noise. Since the variances
are updated, the Gaussian constant normalization term in the likelihood function for m also
needs to be recomputed. An additional normalization term, αt,m , may be necessary depending
if the clean speech estimate is computed by scaling the features, for example if an affine
transform A is applied, then αt,m = |A|. The normalization term is a result of the change of
variables from a probability density function of xt to ŝt . However, it may be unnecessary if it
is independent of m as with typical feature-compensation techniques applied in the front-end
speech parameterization step.

Compared to pure model-based compensation techniques, such as parallel model combina-
tion (PMC) and model-based compensation using a vector Taylor series (VTS) approximation
presented in Chapter 12, the acoustic model parameters update is simpler: the model means
are unaffected and uncertainty parameters can be shared over groups of similar Gaussians
rather than computed for every model component m. The soft-information paradigm referred
to in the Algonquin framework [19] can be considered a pure model-based compensation
scheme, rather than uncertainty decoding as described here, since a variational approximated
noisy speech model is computed for each component in the mismatched acoustic model.
Uncertainty decoding thus combines the benefits of feature compensation with a powerful
model update without the associated cost typical of model-based compensation techniques.
Chapter 13 addressed training of clean acoustic models free of noise, sometimes referred to as
canonical acoustic models. Rather than assume all training frames as equal, the level of noise
can result in uncertainty that weights the contribution of a frame to acoustic model parameter
estimates.

The following sections will present different motivations and approximations that provide
derivations similar to Equation (17.1) and concrete definitions for the uncertainty decoding
parameters: the clean speech estimate, ŝt , and the the uncertainty bias term, Θb . In feature-
based compensation techniques, the parameters may be applied in the front-end and change

1 The astute reader will note that model variances typically decrease with greater acoustic noise, but in the updated
uncertainty feature space, the variances actually increase.
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over time. In contrast, for model-based techniques the uncertainty parameters are dependent
on the backend acoustic model parameters and remain fixed for the duration of an utterance.

17.2 Observation Uncertainty

Feature-compensation schemes, such as speech enhancement, provide an estimate of the clean
speech to the decoder. This assumes the enhancement is exact and the clean speech estimate
is the true value. However, it may be reasonable to consider that the denoising process is not
exact and there is some residual error or uncertainty that may be passed to the decoder. Hence,
in the observation uncertainty approach, instead of using a point estimate of the features, the
clean speech posterior distribution is passed to the decoder as shown in Figure 17.1.

As discussed in Section 9.1.2, the minimum mean squared error estimate of the clean speech
st given the noisy speech xt is the conditional expected value

ŝt = E{st |xt}. (17.2)

But rather than only considering the mean, the variance can also be taken into account.
Thus, the clean estimate varies according to the clean speech posterior may modeled by a
normal distribution

ŝt ∼ p(st |xt) = N (ŝt , Θb), (17.3)

where the variance Θb may be interpreted as the uncertainty of generating the estimate ŝt .
The noisy speech likelihood function m is then derived by integrating over the clean speech

as follows:

p(xt |m) =
∫

p(st |xt)p(st |m)dst (17.4)

= N (ŝt ; μs,m , Θs,m + Θb). (17.5)

Note how observation uncertainty decoding is essentially a feature enhancement scheme, since
the features are the enhanced feature vector ŝt , but with acoustic model variances increased
by the observation uncertainty Θb .

Thus, many probabilistic speech-enhancement techniques can be extended to use this form
of observation uncertainty decoding simply by computing an enhancement variance Θb .
As discussed in Section 9.1.3, a variety of front-end compensation techniques use a front-
end GMM to represent the acoustic space with feature compensation parameters associated
with each front-end Gaussian component i. A specific example is SPLICE, explained in

Figure 17.1 Feature compensation with observation uncertainty.
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Section 9.2, where the clean speech posterior takes this form

p(st |xt , i) = N (st ; xt + μs−x,i , Θs−x,i) (17.6)

and the parameters μs−x,i and Θs−x,i are estimated using stereo data. The enhancement
variance for each front-end GMM component, i, can also be estimated from stereo data

Θs−x,i = E
{

(st − xt)(st − xt)
T|i
}
− μs−x,iμ

T
s−x,i . (17.7)

This enhancement variance, which is the clean posterior variance, is the observation uncertainty

Θb = Θs−x,î , (17.8)

where the front-end component i is selected using the max rule often applied in front-end
GMM-based enhancement as follows:

î = argmax
i

p(xt |i)p(i) (17.9)

as discussed in more detail in Section 9.1.3. Alternatively, model-based feature enhancement
(MBFE) [30], as covered in Section 9.4, uses the joint distribution of the clean and noisy
speech to compute the variance bias

Θb,i = Θs,i − Θsx,iΘ
−1
x,i Θxs,i , (17.10)

where Θsx,i is the cross covariance between clean speech and noisy speech, Θxs,i = ΘT
sx,i ,

and Θx,i the noisy speech variance. The specific uncertainty variance i to apply at time frame
t can again be determined using the max rule in Equation (17.9). Other enhancement schemes
have been extended to provide this uncertainty, for example computed from the formants
[13], a polynomial function of the signal-to-noise ratio (SNR) [1], a parametric model of the
clean speech [4,5], Wiener filtering [2], a particle filter [31], or unscented transforms [28].
Compared to missing feature theory presented in the previous chapters, data imputation with
uncertainty of parts of the reconstructed spectrum falls under this observation uncertainty
approach [3,27,29].

Although there has been some experimentation with this approach, there is an inconsistency
in Equation (17.4) from a Bayesian inference perspective. The clean speech posterior should
instead be the distribution of the noisy speech given the clean. Perhaps this is why some
additional heuristic is applied: “obtained front-end variances are multiplied by a constant
factor (in our case this factor was experimentally tuned to 0.1) before adding them to the
back-end variances on a frame-by-frame basis” [30], the variances are considered too large
[4], or there is degradation compared to the nonuncertainty form in high SNRs [2].

17.3 Uncertainty Decoding

Speech recognition in noise can be modeled as a dynamic Bayesian network where independent
clean speech and noise processes generate hidden clean speech and noise states. The observed
noisy speech at any time frame is conditionally independent of all others given the hidden
clean speech and noise at that time frame. Using this model of the environment, the noisy
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Figure 17.2 Uncertainty decoding.

speech likelihood function for m can be derived by marginalizing over the hidden clean speech

p(xt |m) =
∫

p(xt |st , m)p(st |m)dst , (17.11)

where

p(xt |st , m) =
∫

p(xt |st , nt , m)p(nt)dnt (17.12)

and m is the index of the Gaussian component in the clean acoustic model. Note that in
computing the noisy speech likelihood function in Equation (17.11), only the noisy speech
conditional, given in Equation (17.12), is dependent on the noise. The clean speech prior
p(st |m) distribution is Gaussian component m from the clean acoustic model. Thus, uncertainty
decoding can be viewed as passing the noisy speech conditional distribution, p(xt |st , m), to
the decoding process as shown in Figure 17.2.

An important issue in uncertainty decoding is finding an efficient yet accurate representation
of the corrupted speech conditional distribution that is also amenable to marginalization with
a Gaussian distribution. The main difficulty is that p(xt |st , m) is a complicated distribution.
This is demonstrated by a numerical simulation of the joint log-spectral domain clean and
corrupted speech distribution in Figure 17.3

xl
t = log(exp(slt) + exp(nl

t)), (17.13)

where recall xl
t is the noisy speech and the subscript l indicates a log-spectral domain variable

dimension is being examined. The additive noise nl
t again is generated from a single Gaussian

distribution. The clean speech slt is uniform over the interval [0, 8] to demonstrate how the joint
distribution changes as the clean speech does with a fixed noise source. The joint distribution
is highly non-Gaussian and difficult to characterize parametrically.

The noisy speech conditional distribution varies greatly over the range of values for clean
speech. When the clean speech is much larger than the noise mean, that is when slt = 6 in
Figure 17.3, the conditional distribution is relatively deterministic—the speech is unaffected by
the noise. However, when the SNR drops the variance of the conditional distribution increases
until the noise subsumes the speech. For example, when slt = 1 in Figure 17.3, the conditional
distribution becomes the additive noise distribution. Increasing the noise mean would shift the
distribution up and to the right such that when the SNR is low, the corrupted speech conditional
distribution continues to converge to the noise distribution. Thus, the effective form of the
corrupted speech conditional distribution strongly depends on the difference between the clean
speech and the noise distribution. Approximating the conditional distribution with a constant
density function independent of the clean speech would be poor.
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Figure 17.3 Joint distribution of clean sl
t and noisy speech xl

t with an additive noise source N (3, 1)
in log spectral domain, and conditional distribution of xl

t for sl
t = 1 and sl

t = 6.

Uncertainty decoding can be considered to encompass forms that exploit the factorization in
Equation (17.11) by determining an efficient approximation for the noisy speech conditional
distribution that easily completes the marginalization and is cheap to compute. The noisy
speech posterior can be decoupled from the structure of the actual acoustic models and
thus there is significant freedom in choosing an appropriate form for this distribution that
minimizes the computational cost. If it is completely decoupled, and dependent entirely on
the observed features, this gives feature-based uncertainty decoding forms as discussed in the
following Section 17.4. Partial decoupling, where the conditional is dependent on the class of
the acoustic model component, yields a model-based uncertainty decoding scheme presented
in Section 17.5. In pure model-based approaches the two distributions are fully tied by the
clean speech variable.

17.4 Feature-Based Uncertainty Decoding

In feature-based uncertainty decoding, the noisy speech posterior in Equation (17.11) is
completely decoupled from the clean speech prior distribution other than the compensated
features and associated uncertainty bias. The examples of feature-based uncertainty decoding
are SPLICE with Uncertainty [6] and front-end Joint Uncertainty Decoding or more briefly
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front-end JUD [22]. For both, the transformation of the features and uncertainty bias are
selected based on the most probable front-end component i similar to front-end GMM-
enhancements techniques discussed in Section 9.1.3.

By decoupling the noisy speech posterior and the clean speech prior, the marginalization in
Equation (17.11), becomes this for feature-based uncertainty decoding forms

p(xt |m) =
∫

p(xt |st)p(st |m)dst , (17.14)

where note the noisy speech posterior is no longer conditioned on the acoustic model com-
ponent m. If the noisy speech posterior is Gaussian as is the acoustic model component prior,
then the integral is simple to solve. In this case, the noisy speech likelihood function for m is
given by

p(xt |m) = |Ai |N
(
ŝt ; μs,m , Θs,m + Θb,i

)
, (17.15)

where the clean speech estimate is an affine transformation of the noisy speech

ŝt = Aixt + bi (17.16)

and i is chosen via the hard max rule in Equation (17.9). The normalization term |Ai | arises
from the change of variables from xt on the left side of Equation (17.15) to ŝt on the right
side. The noisy speech posterior affects how the uncertainty parameters Ai , bi , and Θb,i are
estimated; this will be shown in the following subsections with concrete approximation for
p(xt |st). Since the noisy speech posterior is not dependent on the acoustic model parameters,
the clean speech estimate can be computed entirely as part of the feature processing in the
front-end. It is updated once per time frame and shared globally across all acoustic model
components.

Figure 17.4 demonstrates the operation of feature-based uncertainty decoding techniques.
It shows how given a noisy observation, xt , the most likely front-end GMM component i is
selected. This front-end component has compensation parameters associated with it, where the
noisy feature is transformed by Ai and bi , and the uncertainty bias Θb,i is added to the model
variance Θs,m . These are, respectively, the feature transformation and model update applied
during uncertainty decoding. While similar to feature-based forms like SPLICE, MBFE,
or front-end constrained maximum likelihood linear regression (CMLLR) [22], where the
affine feature transform is selected by a front-end GMM, in uncertainty decoding there is the

variance

Front-end processing Model-space processing

Figure 17.4 Feature-based uncertainty decoding.



P1: TIX/XYZ P2: ABC
JWST201-c17 JWST201-Virtanen August 31, 2012 9:1 Printer Name: Yet to Come Trim: 244mm × 168mm

470 Techniques for Noise Robustness in Automatic Speech Recognition

addition of a “uncertainty” variance bias added to the model variances. Data marginalization in
missing-data techniques presented in Chapter 14 can be construed as a limited form of feature-
based uncertainty decoding, restricted to the spectral domain, where a hard-decision is made
whether features are either completely certain or uncertain.

Specific forms of feature-based uncertainty decoding are SPLICE with Uncertainty and
front-end JUD. Although they share the same decoding likelihood function given by Equation
(17.15), they differ in their derivations of p(xt |st) and therefore also have different definitions
of the compensation parameters Ai , bi , and Θb,i . The next two subsections will describe
these two techniques in further detail while the last subsection discusses issues with using
feature-based uncertainty decoding.

17.4.1 SPLICE with Uncertainty

SPLICE learns a piece-wise linear mapping between noisy speech and clean by training on
stereo data where the same speech is recorded in parallel with both clean and noisy conditions.
Stereo data may be generated by adding noise to otherwise clean speech data. The mapping
bias vectors are applied to the noisy speech feature vector to obtain an estimate of clean speech.
Refer back to Section 9.2 for more information about SPLICE and Chapter 9 where stereo
data are used extensively.

SPLICE can also be extended to use the notion of increased uncertainty due to noise.
SPLICE with Uncertainty makes use of Bayes’ rule to express the conditional probability of
the noisy speech given the clean speech in terms of the of the clean speech posterior in this
manner

p(xt |st) =
∑

i p(i)p(st |xt , i)p(xt |i)
p(st)

. (17.17)

Recall from Chapter 9.2 that SPLICE used stereo data to estimate compensation parameters
for each component i, for the component clean speech posterior distribution p(st |xt , i) given
in Equation 17.6. To simplify, a single Gaussian approximation for the distribution of the clean
speech p(st) is used where the global clean speech mean and variance for feature dimension
d are μ̄s,d and θ̄2

s,d . If instead of summing over all components i, only the maximum one is
chosen as before, an analytic form for p(st |xt , i) can be derived. Using these approximations,
if Equation (17.17) is substituted into Equation (17.14), with the restriction that Ai and Θb,i

in equations (17.15) and (17.16) are diagonal, gives

ai,dd =
θ̄2
s,d

θ̄2
s,d − θ2

s−x,i,d

, (17.18)

bi,d = ai,dd

(
μs−x,i,d −

θ2
s−x,i,d

θ̄2
s,d

μ̄s,d

)
, (17.19)

θ2
b,i,d = ai,ddθ2

s−x,i,d . (17.20)

The parameters μs−x,i,d and θ2
s−x,i,d are the SPLICE estimates of the clean speech posterior: the

means and variance respectively of (sd − xd) for the observations associated with component
i of the front-end GMM. The SPLICE variance estimate of the clean speech posterior was
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given earlier in Equation (17.7). In order to ensure that the uncertainty variance bias θ2
b,i,d is

positive, the denominator in Equation (17.18) is floored. For example, the floor could be set to
a fraction of the global clean speech variance. This floor effectively places a maximum value
on ai,dd and hence the uncertainty bias θ2

b,i,d . Still if the denominator becomes small, ai,dd

and θ2
b,i,d can become quite large. In contrast, instead of being multiplied by possibly large

scalars, in the observation uncertainty form of SPLICE, discussed previously in Section 17.2,
biases are added to the features and model variances.

17.4.2 Front-End Joint Uncertainty Decoding

Instead of inverting the noisy speech posterior using Bayes’ rule, it can be derived from the
joint distribution. Similarly though, it can be modeled with a GMM as given by

p
(
xt |st

)
=
∑

i

P(i|st)p
(
xt |st , i

)
. (17.21)

Using a property of multivariate Gaussian distributions that if the joint distribution is
Gaussian distributed, then the conditional distribution is as well, when the joint distribution of
the clean and noisy speech is given by:[

st

xt

]∣∣∣∣∣i ∼ N
([

μs,i
μx,i

]
,

[
Θs,i Θsx,i

Θxs,i Θx,i

])
(17.22)

for component i, the Gaussian noisy speech conditional distribution is as follows:

p
(
xt |st , i

)
= N

(
xt ; μx,i + Θxs,iΘ

−1
s,i

(
st − μs,i

)
, Θx,i − Θxs,iΘ

−1
s,i Θsx,i

)
. (17.23)

Here, the parameters of the noisy speech posterior are all from the joint distribution.
In using a GMM to represent the noisy speech distribution conditioned on the hidden clean

speech, the component posterior is also conditioned on the hidden clean speech. This may be
approximated by conditioning the component posterior on the noisy speech itself

P(i|st) ≈ P(i|xt). (17.24)

By substituting this GMM approximation of the noisy speech posterior into Equation
(17.11), the uncertainty decoding parameters associated with a front-end component i can be
expressed in terms of the parameters of the joint distribution, given in Equation (17.22), as
follows:

Ai = Θs,iΘ
−1
xs,i , (17.25)

bi = μs,i − Aiμx,i , (17.26)

Θb,i = AiΘx,iA
T
i − Θs,i . (17.27)

Compared to the SPLICE with Uncertainty, no explicit flooring is required and the matrix
parameters Ai and Θb,i may be full. However, by having a full uncertainty decoding matrix
bias, the likelihood function in Equation (17.1) also becomes full covariance and very com-
putationally intensive. So in practice, diagonal uncertainty decoding parameters may be used.
Similar to the other feature-based compensation techniques mentioned, a max approximation
may be used to select i for each time frame index.
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Table 17.1 Word error rates (%) for 256-component front-end uncertainty decoding schemes
compensating clean trained models on Aurora2 task, test set A, averaged across subway, babble, car
and exhibition hall condition (N1-N4). Parameters are trained using stereo data.

SNR(dB)

System Compensation 20 15 10 5

— 4.6 12.2 31.1 59.2
SPLICE 2.0 3.1 6.1 16.5

Clean trained SPLICE with Uncertainty 2.0 3.2 5.6 12.3
Front-end JUD 1.8 2.9 5.7 14.6

Matched trained — 1.8 2.8 5.0 11.4

Table 17.1 compares some of techniques discussed using the artificially noisy digit recog-
nition task Aurora2. The clean trained system obviously does much worse as the SNR drops.
Matched training is sometimes considered the best robustness scheme, but often not practical.
An effective feature-based enhancement technique such as SPLICE can significantly improve
the robustness of a mismatched clean trained model. Feature-based uncertainty decoding can
improve this, especially in the noisier 10 and 5 dB conditions.

17.4.3 Issues with Feature-Based Uncertainty Decoding

One serious drawback of front-end uncertainty schemes is that the model variances must be
updated every time the variance bias changes. The variance bias changes as the front-end
component i changes. Although, the update is simple compared to a technique such as model-
based VTS compensation, the update and recomputation of the normalization term must be
executed for every acoustic model component.

A more serious issue is that when the noise completely subsumes the speech, the uncertainty
is unbounded. When the SNR is low and noise masks the speech, the covariance between the
noisy speech and the clean speech will be approximately zero since the noisy speech and clean
speech are independent. Hence

Θxs,i ≈ 0. (17.28)

When this is the case, it is clear the uncertainty term defined in Equation (17.27) becomes
infinite because Ai becomes infinite. During regions of high noise then, this high uncertainty
will cause all acoustic models to appear the same and there will be no acoustic discrimination
between classes. If the recognition task has additional constraints beyond the acoustic models,
such as a language model, then some discrimination between classes may be possible in these
regions. However, when there is no language model or other restrictions, for example with
a digit recognition task such as Aurora2, then these areas will be very susceptible to errors.
These errors will probably be insertions since these areas are likely to be background regions
where the uncertainty is highest. To mitigate this problem a minimum correlation between the
noisy and clean speech may be enforced [23].



P1: TIX/XYZ P2: ABC
JWST201-c17 JWST201-Virtanen August 31, 2012 9:1 Printer Name: Yet to Come Trim: 244mm × 168mm

Uncertainty Decoding 473

Figure 17.5 Plot of log-energy dimension from Aurora2 digit string 8-6-zero-1-1-6-2, showing 16-
component GMM front-end JUD estimate aîxt + bî , uncertainty bias θb,î , and aî (upper panel). With
the correlation floored at 0.1 (lower panel).

An illustration of this issue with front-end JUD is presented in Figure 17.5. This figure shows
the clean speech, noisy speech, front-end JUD estimate, given by aîxt + bî , and the uncertainty
bias σb,î for a simple system with a 16-component front-end GMM. These parameters are
for a single coefficient of the parameters in Equation (17.25)–(17.27) for a particular frame t,
when î is determined using the hard maximum approximation given by Equation (17.9). For
those regions of higher energy speech, for example frames 210–220 where the vowel “i” is
articulated, the variance bias is small. On the other hand, in the lower energy regions around
this vowel, for example frames 225–230, the variance becomes too large to be measured on
this scale, as is the front-end JUD estimate of the value. These large variances are associated
with large values of the scale factor aî as shown in Figure 17.5 due to very small correlations
between the clean and noisy speech as discussed earlier. In this example, from frames 225–230
the value of aî is around 100. With greater numbers of front-end components, these effects are
amplified as parameters are no longer smoothed.

17.5 Model-Based Joint Uncertainty Decoding

As opposed to associating a noisy speech conditional distribution with a region of the fea-
ture space, the conditional distribution may be linked with group of similar acoustic model
components. Model components may be clustered into classes of similar Gaussians using a
regression tree as described in Section 11.4.1. For each class, a joint distribution of the clean
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and noisy speech can be estimated, and therefore a speech speech conditional distribution
determined. Hence, the conditional distribution is a function of a regression class, r, once
again approximated by a Gaussian distribution. This conditional distribution can be derived
from a joint distribution of the clean and noisy speech for the class r much like in the front-end
case [

st

xt

]∣∣∣∣∣r ∼ N
([

μs,r
μx,r

]
,

[
Θs,r Θsx,r

Θxs,r Θx,r

])
, (17.29)

where a Gaussian approximation of the joint distribution also gives a Gaussian form for
the noisy speech conditional distribution. When this form of the noisy speech conditional
distribution is substituted into Equation (17.11), the noisy speech likelihood function for m
becomes

p(xt |m) = |Arm |N
(
Arm xt + brm ; μs,m , Θs,m + Θb,rm

)
, (17.30)

where the rm denotes that the regression class is dependent on the acoustic model component
m. As in front-end JUD, the transform parameters are a function of the joint distribution
parameters

Ar = Θs,rΘ−1
xs,r , (17.31)

br = μs,r − Arμx,r , (17.32)

Θb,r = ArΘx,rAT
r − Θs,r . (17.33)

Compared to the feature-based form depicted in Figure 17.4, the noisy speech features
are transformed by multiple transforms, much like in CMLLR, described in Section 11.4.2,
such that there are R parallel versions of the observation passed to the decoder. In contrast
to CMLLR, each regression class also has a different uncertainty variance bias associated
with it. However, compared to feature-based uncertainty decoding, this variance does not
change over time and may be cached; it need only be updated if the noise condition itself
changes. Since for any given time frame, model components are being compensated by dif-
ferent transforms, model-based uncertainty decoding compensation will not be affected by
the issues discussed previously in Section 17.4.3. Moreover, compared to the previously
discussed feature-based uncertainty decoding forms, the cost of selecting a single max-
imum component from I components in the front-end is of similar order to applying R
transforms for multiple features in model-based uncertainty decoding. Thus, for equivalent
numbers of I and R feature-based and model-based uncertainty decoding are of similar com-
putational complexity. The operation of this model-based uncertainty decoding is shown in
Figure 17.6.

The joint distribution for a class given in Equation (17.29) can be easily estimated using
stereo or parallel data, where at any given frame the clean and noisy speech are known. For a
state alignment, the joint distribution of the clean and noisy speech for each regression class
can be estimated using component level posteriors. Since the parameters given by equations
(17.32) and (17.33) are derived from the class-conditional joint distribution, they are computed
using stereo data.

In Table 17.2, front-end uncertainty decoding is compared with model-based uncertainty
decoding with the same number of parameters. While they perform similarly at higher SNR,



P1: TIX/XYZ P2: ABC
JWST201-c17 JWST201-Virtanen August 31, 2012 9:1 Printer Name: Yet to Come Trim: 244mm × 168mm

Uncertainty Decoding 475

Figure 17.6 Model-based joint uncertainty decoding.

the model-based form is clearly better than the feature-based at lower SNR. At 5 dB, the
model-based version with an error rate of 12.0 is close to the matched system performance.
This demonstrates the advantage of using model-based uncertainty decoding over feature
based.

17.5.1 Parameter Estimation

Estimation of the model-based uncertainty decoding parameters Ar , br , and Θb,r using stereo
data is artificial and not realistic. Alternatively, the joint distribution may also be predicted
using clean speech regression class model, N (μs,r , Θs,r ), a noise model, N (μn , Θn), and a
mismatch function describing how the two combine to form noisy speech. Suitable methods
to compute the rest of the joint distribution parameters include using log-normal or log-add
approximations, PMC or VTS as discussed in Chapter 12. These methods describe how to
derive the noisy speech parameters, N (μx,r , Θx,r ), but the joint distribution also has the clean
speech, noisy speech cross covariance term Θxs,r . For example, using VTS the term has this
form

Θxs,r = JrΘs,r (17.34)

Table 17.2 Word error rates (%) for 256-transform uncertainty decoding schemes. Compare
256-component front-end versus 256-class model-based forms compensating clean trained models on
Aurora2 task, test set A, averaged across different noise conditions N1-N4. Matched test and training
condition results are also reported as an upper bound. Parameters are trained using stereo data.

SNR(dB)

System Compensation 20 15 10 5

— 4.6 12.2 31.1 59.2
Clean trained Front-end JUD 1.8 2.9 5.7 14.6

Model-based JUD 1.9 2.7 5.2 12.0

Matched trained — 1.8 2.8 5.0 11.4
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as shown in [21,33] where Jr is defined as the Jacobian of the noisy speech with respect to
the clean speech for regression class r, that is

Jr =
∂x
∂s

∣∣∣∣∣
τr , n , h

, (17.35)

where the vector Taylor series expansion point τr,n,h is about the regression class clean speech
mean μs,r , additive noise mean μn and channel noise mean μh .

By using a VTS approximation to generate the joint distribution from models of the clean
speech and noise, the associated JUD transform compensates precisely for noise. However, the
joint distribution may thought of as a general statistical model of the relationship between the
speech seen during training and the observed speech in testing. Hence, the joint distribution
can model other factors in addition to noise if this is taken into account during its generation.
For example, vocal tract length or a feature decorrelating transform could be incorporated
in the mismatch function. Furthermore, model-based JUD transforms may also compensate
multistyle-trained systems, acoustic models that are trained on data that has varying amount of
noisy speech, for environmental mismatch. In this case, the noise model no longer represents
additive and convolutional noise but are simply parameters that generate transforms which
reduce the mismatch between the multistyle-trained models and the test conditions. Multistyle
training is also known as multicondition training.

17.5.2 Comparisons with Other Methods

Model-based JUD has much in common in with VTS when VTS is used to derive the joint
distribution. It has been shown that increasing the number of classes R to equal the number of
model components M, using a diagonal acoustic model variance approximation, is equivalent
to VTS model compensation of each individual acoustic model component [20]. However, the
likelihood calculation for a component takes place in a different space transformed by Ar .
This can allow model-based JUD to be much more efficient by trading off the compensation
of acoustic model means for updating the features. Also, computing the Jacobian matrix can
be expensive in VTS because it is computed for each and every acoustic model component;
in model-based JUD, the computation is shared per regression class. The number of regres-
sion classes R is typically much smaller than the number of model components M. Lastly
it is cheaper to apply the uncertainty bias to the variances than to compensate the model
variance as is done in VTS. This convergence of model-based JUD, when R = M , to the
form of model-based compensation that was used to derive the joint distribution is a very
useful property. It allows a flexibility in controlling the computational cost of the uncertainty
decoding scheme by adjusting the number of model classes R. For example, [32] show how
model-based JUD can achieve the same level of accuracy as model-based VTS compensa-
tion with less than 25% of the computational cost. The flexibility of uncertainty decoding
actually allows the more precise, but computationally expensive, second-order VTS approx-
imation used in the model-based JUD system to be about 60% faster than a pure first-order
VTS model-based compensation approach that must update each acoustic model Gaussian
independently.

The affine transformation of the noisy features makes model-based JUD similar to CMLLR,
but with the addition of the uncertainty variance bias. They are both able to compensate a
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Table 17.3 Word error rates (%) for CMLLR, VTS, Model-based JUD, and
PCMLLR compensation of an acoustic model trained on clean speech and tested on
the Toshiba in-car recorded phone number recognition task (from [8]).

In-car condition

System Compensation Idle City Highway

— 2.9 32.9 66.3
CMLLR 0.6 7.6 40.6

Clean trained PCMLLR 1.2 2.9 6.1
Model-based JUD 1.1 2.9 5.4
VTS 1.2 3.1 4.1

mismatched acoustic model to more closely match the test environment. However, model-
based JUD, as with other predictive noise-compensation techniques that use a model of the
acoustic environment for combining clean speech models and a noise model to predict noisy
speech models, only needs a simple noise model to compensate the mismatched acoustic
model. Adaptive techniques like CMLLR have many more free parameters. Hence, predictive
approaches can need much less data to effectively compensate the system compared to adap-
tation approaches. Furthermore, the noise model may be estimated before the onset of speech,
whereas adaptation requires actual test speech. An interesting comparison is with predictive
CMLLR [10]. In PCMLLR, the adaptation statistics are actually predicted from clean statistics
and a noise model. Thus, like model-based uncertainty decoding it can quickly improve noise
robustness of a system. PCMLLR is still solely an affine transformation of the features, like
CMLLR, and does not have the uncertainty bias term.

Table 17.3 compares a variety of these techniques discussed. Many noise robustness tech-
niques are evaluated on artificial tasks, but here the performance of these algorithms on real
in-car noisy speech is tested. The noise model is obtained through ML estimation as described
in [21]. The results clearly show how clean model performance is dramatically affected by
noise. Compensating the clean model with CMLLR can be effective when there is little noise,
but as the mismatch between training and test condition grows it does poorly as shown in the
lower SNR conditions. The predictive schemes all perform better than CMLLR by far in the
noisier conditions. In quieter conditions they give similar results, but at the highway condition
VTS performs best as expected as it is the most powerful and computationally expensive
approach.

17.6 Noisy CMLLR

The model-based JUD transform is similar to CMLLR, but with a bias on the model variances.
They also differ in that the JUD transform is predicted from an environmental model and
models of clean speech and noise, whereas the CMLLR transform is directly estimated using
ML. However, a form of CMLLR can be derived that is directly estimated using ML but also
has a bias on the model variances similar to JUD. This has been called noisy constrained
maximum likelihood linear regression (NCMLLR) [16].
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The noisy speech xt can be written as the product of a generative model of the clean speech
st and noise nt as follows:

xt = Hr st + gr + nt , (17.36)

where Hr and gr is the affine transformation for regression class r and nt is Gaussian distributed
about a mean of zero with variance Ψr . This results in a noisy speech likelihood function for
m of

p(xt |m) = |Arm |N
(
Arm xt + brm ; μs,m , Θs,m + Θb,rm

)
, (17.37)

where rm denotes that the regression class depends on the acoustic model component m. This
is exactly same form as model-based uncertainty decoding; however, the uncertainty transform
parameters associated with a regression class are found to be

Ar = H−1
r , (17.38)

br = −H−1
r gr , (17.39)

Θb,r = ArΨrAT
r . (17.40)

These transform parameters can be grouped together: Tr =
{
Ar , br , Θb,r

}
. The set of all

transforms for all regression classes, where the total number is R, is then denoted by T , where
T =

{
Tr |0 ≤ r < R

}
. The set of transforms T is estimated to maximize the likelihood of noisy

adaptation data, that is

T̂ = argmax
T

log p(X|M, T ,H) (17.41)

for given acoustic model M and transcript of the data H. Due to the latent state sequence
and clean speech, it is difficult to directly optimize Equation (17.41). Thus, as with HMM
parameter estimation, iterative expectation maximization (EM) is applied. The complete data
set is Z = {X,S, Q}, where Q denotes the hidden state sequence. The auxiliary function is
then given by

Q(T̂ ; T ) = E{log p(Z|M, T̂ )|X,M, T }, (17.42)

where E is the conditional expectation of the log likelihood of the complete data over all
possible hidden sequences, given the observed noisy speech, model parameters, and transform
set. For NCMLLR, the auxiliary function is computed as follows:

Q(T̂ ; T ) = −1
2

T∑
t=1

M∑
m=1

γm,tE
{

log |Ψrm | + (xt − V̂ξt)
TΨ−1

rm
(xt − V̂ξt)

∣∣∣∣xt , m

}
, (17.43)

where γm,t is the posterior probability of component m given X, M, and T . The extended
transformation matrix is V̂r = [ĝr Ĥr ] and the extended clean speech vector ξt = [1 sT

t ]T.
Rather than directly maximizing Equation (17.43) for all the transform parameters at once,

it is simpler to separately estimate the feature transformation Ar , br , and then the variance
bias Θb,r . This is achieved by differentiating Equation (17.43) with respect to the variable in
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question, equating the result to zero and solving for the variable. For V̂r this yields

V̂r =

⎛
⎝∑

m∈r

T∑
t=1

γm,txtE
{

ξT
t

∣∣∣xt , m
}⎞⎠
⎛
⎝∑

m∈r

T∑
t=1

γm,tE
{

ξtξ
T
t

∣∣∣xt , m
}⎞⎠

−1

. (17.44)

Recall, the feature transformation can be derived from the constituents of the extended transfor-
mation given by Equations (17.38) and (17.39). The conditional expectations of the extended
clean speech vector and its outer product can be expressed as

E
{

ξT
t

∣∣∣xt , m
}

=
[
1 s̃T

m,t

]
, (17.45)

E
{

ξtξ
T
t

∣∣∣xt , m
}

=

[
1 s̃T

m,t

s̃m,t Θ̃s,m + s̃m,t s̃T
m,t

]
(17.46)

with

s̃m,t = Ãm xt + b̃, m, (17.47)

Θ̃s,m =
(
Θ−1

s,m + Θ̂
−1
b,rm

)−1
(17.48)

and

Ãm =
(
Θ−1

s,m + Θ̂
−1
b,rm

)−1
Θ̂b,rm

Ârm , (17.49)

b̃m =
(
Θ−1

s,m + Θ̂
−1
b,rm

)−1(
Θ−1

s,m μs,rm
+ Θ̂

−1
b,rm

Ârm

)−1
. (17.50)

Similarly the variance bias Θ̂b,r can be estimated from the auxiliary function in Equation
(17.43) by

Θ̂b,r =

∑
m∈r

∑T
t=1 γm,tE

{(
ŝr,t − st

)(
ŝr,t − st

)T}
∑

m∈r

∑T
t=1 γm,t

, (17.51)

where

ŝr,t = Ârxt + b̂r . (17.52)

The variance bias term matrix here is full, but unlike in model-based uncertainty decoding,
Θb,r , may be diagonalized while retaining a full feature transformation matrix Ar . This is
possible since the variance bias is not tied to the feature transformation like JUD is by the
clean-noisy speech cross covariance matrix Θxs . By diagonalizing the variance bias, full
covariance decoding is not required, which results in significant computational savings.

Table 17.4 compares the number of free parameters that need to be estimated for various
noise-compensation schemes. The predictive techniques only need a low parameter noise
model which can be estimated on a small amount of data. The adaptive forms require the
estimation of many more parameters that scale with the number of regression classes used.
With uncertainty decoding, the number regression classes can be flexibly increased without
requiring more test data, to increase robustness at the expense of computational cost of applying
the transformations.
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Table 17.4 Number of free parameters to estimate for various compensation schemes. D is
dimensionality of the full feature vector and Ds is the number of static parameters. R is the number of
regression classes used to group acoustic model components.

Scheme Type Parameters Number of free parameters

PCMLLR, JUD, VTS Predictive μn , Θn , μh 5Ds

CMLLR Adaptive, Ar , br 2RD
NCMLLR Diagonal Ar Ar , br , Θr 3RD

CMLLR Adaptive, Ar , br R(D2 + D)
NCMLLR Full Ar Ar , br , Θr R(D2 + 2D)

Table 17.5 compares CMLLR with NCMLLR on the Toshiba phone number recognition
task, but this time while compensating a multistyle trained acoustic model. In quieter con-
ditions, CMLLR performs better than NCMLLR, but at the highway condition NCMLLR is
better. Perhaps this is due to the training method here that ensures the uncertainty bias is al-
ways positive; for cleaner conditions, a positive uncertainty may make compensating a noisier
multistyle model difficult. An approach that relaxes the constraint of a positive uncertainty
bias is presented in [25]. The differences between these CMLLR and NCMLLR results are
small and not significant though.

17.7 Uncertainty and Adaptive Training

Chapter 13 demonstrated that training on features processed by a noise-reduction algorithm
gives improved performance by providing a purer clean, canonical acoustic model, further
minimizing the difference between training and test features. Recall the canonical acoustic
model should be free of acoustic variability not necessary for recognition. However, when
there is environmental noise, the compensation of the features may be imperfect, especially
for noisier conditions. Estimates for the noise-free, canonical acoustic model in these noisier
conditions may be poor. Thus, noisier features should contribute less to the canonical acoustic
model than features that are more certain. Using the notion of uncertainty due to noise is one
approach to achieving this. This chapter demonstrates how adaptive training with uncertainty
can reduce contributions of noisier observations.

When discussing adaptive training, it is useful to introduce the concept of a homogeneous set
of observations where the noise environment can be considered stationary. The entire training
data set can be viewed as heterogeneous, with many varying noise conditions, but comprised of

Table 17.5 Word error rates (%) comparing 16-transform CMLLR with NCMLLR compensation on
multistyle system tested on Toshiba in-car recorded phone number recognition task (from [17]).

In-car condition

System Compensation Idle City Highway

— 1.1 3.6 6.7
Multistyle trained CMLLR 0.3 1.1 2.4

NCMLLR 0.5 1.2 2.1
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H blocks of homogeneous speech. The parameters associated with an individual block where
the noise is assumed constant is denoted by h. The total number of frames of homogeneous
speech for the block is indicated by Th . As with standard HMM training, the hidden variables
make direct estimation of the canonical parameters difficult and so EM is used. The auxiliary
function where only terms dependent on the model parameters are shown is

Q(M,M̂) = −1
2

H∑
h=1

Th∑
t=1

M∑
m=1

γm,h,t

[
log
∣∣∣Θs,m + Θb,rm ,h

∣∣∣
+
(
Arm ,hst + brm ,h −μs,m

)T (
Θs,m + Θb,rm ,h

)−1
(
Arm ,hst + brm ,h −μs,m

)]
.

(17.53)

A set of uncertainty transformation parameters Th =
{
T1,h , Tr,h , . . . , TR,h

}
will have to be

estimated per block h where recall R is the total number of regression classes used to represent
the much larger number of acoustic model components. The parameters for each condition
h and regression class r are Tr,h =

{
Ar,h , br,h , Θb,r,h

}
. Therefore, there will be H sets of

uncertainty transforms each with R transforms.
In the literature, there are two main methods to estimating the canonical acoustic model

parameters in this uncertainty decoding framework. One is to use gradient-based methods to
optimize an auxiliary function. Alternatively, factor analysis-based EM approaches treat the
clean speech and additive noise as continuous latent variables that generate the noisy speech
[12]. The next two sections will discuss these in further detail.

17.7.1 Gradient-Based Methods

Because the model-based JUD transform parameters affect the acoustic model parameters,
yet the acoustic model parameters are shared over many homogeneous blocks, there is no
closed form solution for the model parameters that maximize this auxiliary function. Hence
a generalized EM approach can be taken, where Newton’s method is applied to optimize the
model parameters in the maximization step

[
μ̂s,m ,d

θ̂2
s,m ,d

]
=

[
μs,m ,d

θ2
s,m ,d

]
− ζ

⎡
⎢⎢⎢⎢⎢⎣

∂2Q

∂
(
μs,m ,d

)2
∂2Q

∂μs,m ,d∂θ2
s,m ,d

∂2Q
∂θ2

s,m ,d∂μs,m ,d

∂2Q

∂
(
θ2
s,m ,d

)2

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎣

∂Q
∂μs,m ,d

∂Q
∂θ2

s,m ,d

⎤
⎥⎥⎦ , (17.54)

where ζ is the learning rate. This requires both first- and second-order derivatives of the
auxiliary function with respect to the model mean and variance. To simplify the derivation of
the first derivative, diagonal approximations of the covariance can be made in the auxiliary
function in Equation (17.53) yielding

Q(M,M̂) =

−1
2

H∑
h=1

Th∑
t=1

M∑
m=1

γm,h,t

D∑
d=1

⎛
⎝ log

(
θ2
s,m ,d + θ2

b,rm ,h,d

)
+

(
arm ,h,d̄st + brm ,h,d − μs,m ,d

)2

θ2
s,m ,d + θ2

b,rm ,h,d

⎞
⎟⎠ ,

(17.55)
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where the term arm ,h,d̄ denotes the dth row in the matrix Arm ,h and is a row vector instead of
the usual column vector notation. Thus, the first derivative of the auxiliary function in Equation
(17.55) with respect to the mean of component m, dimension d is

∂Q
∂μs,m ,d

=
H∑

h=1

Th∑
t=1

γm,h,t

θ2
s,m ,d + θ2

b,rm ,h,d

(
arm ,h,d̄st + brm ,h,d − μs,m ,d

)
. (17.56)

Notice how the uncertainty bias θ2
b,r,h,d adjusts the component posterior γm,h,t . The same is

true for the first derivative with respect to the variance. If the SNR is high, then there is no
uncertainty and the posterior is not affected. When the SNR is low, the uncertainty will be large,
reducing the contribution of noisy observations by deweighting the component posterior. In
areas where the noise completely subsumes the speech, the uncertainty will ensure that these
observations do not contribute to the estimate of the model parameters at all—the model
parameters will not be updated since the first derivatives of the auxiliary function with respect
to the model means and variance will be naught. This allows the model parameters to be a better
representation of “clean” speech. With normalization schemes, noise adaptive training using
spectral enhancement or feature compensation, or MLLR-based adaptation, once observations
are compensated for noise, the cleaned training features are all treated equally. In contrast,
with the uncertainty term adaptive training will give greater importance to observations that
are less noisy and errorful. Thus, uncertainty decoding can minimize errors due to noise from
polluting the canonical acoustic model parameters. More details on this can be found in [24]
where this is approached is described as joint adaptive training (JAT). Newton’s method is also
used to estimate the canonical model variances for noise adaptive training with VTS in [15];
there are many similarities due to the relationship between model-based uncertainty decoding
and VTS.

17.7.2 Factor Analysis Approaches

For the first-order VTS approximation, the noisy speech observation associated with a model
component m can be written as a linear combination of the clean speech and noise

x|m ≈ Jm s + (I − Jm )n + Jm h + f (μs,m , μn , μh). (17.57)

If the Jacobian matrix Jm and the bias term f (μs,m , μn , μh) are considered fixed, this can
be viewed as a generative model conducive to factor analysis [16]. Using this approach, the
canonical acoustic model parameters are given by

μ̂s,m =

∑H
h=1

∑Th
t=1 γm,h,tE

{
st |xt , m, h

}
∑H

h=1
∑Th

t=1 γm,h,t

, (17.58)

Θ̂s,m = diag

⎧⎨
⎩
∑H

h=1
∑Th

t=1 γm,h,tE
{
stsT

t |xt , m, h
}

∑H
h=1

∑Th
t=1 γm,h,t

− μ̂s,m μ̂T
s,m

⎫⎬
⎭ . (17.59)
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Table 17.6 Word error rates (%) contrasting joint adaptive
training with VTS adaptive training on an average across two
Toshiba test sets (phone numbers and city names) (from [7]).

Condition

System Idle Highway

Multistyle training 2.5 9.5
Joint adaptive training 2.4 4.7
VTS adaptive training 2.2 4.4

The conditional expectations are

E
{
st |xt , m, h

}
= s̃m,h,t , (17.60)

E
{
sts

T
t |xt , m, h

}
= Θ̃s,m ,h + s̃m,h,t s̃

T
m,h,t . (17.61)

However, these model estimates do not guarantee improvement in likelihood due to the
assumptions made earlier. First, the Jacobian and bias terms are in fact dependent on the
model parameters themselves and thus not fixed. Secondly, since the Jacobian is not diagonal,
the resulting clean speech variance Θ̂s,m will also not be diagonal; however, here Θ̂s,m is
diagonalized for decoding efficiency, resulting in an approximate generative model. These
issues are discussed in more detail in [9].

Also, note the NCMLLR and model-based JUD transforms are the same in how they are
applied during decoding. Thus, this approach can be used to estimate the canonical clean
speech model parameters for either method. Furthermore, since model-based JUD and VTS
are equivalent when the number of regression classes equals the number of model components,
this approach is essentially a variation of the factor estimation methods in Kim et al. [18] and
Hu and Huo [14].

In Table 17.6, the performance of some adaptive training techniques are compared against
multistyle training. For the quieter idle condition, there is some benefit, but the larger gains
appear in the noisier highway condition. There is little difference in results between JAT and
VTS adaptive training although JAT can be more efficient to use in practice.

17.8 In Combination with Other Techniques

Many state of the art-recognition systems use multiple acoustic-modeling techniques in con-
cert, for example semitied covariances (STC), linear discriminant analysis (LDA), CMLLR,
MLLR, vocal tract length normalization, and PLP features (see [11] for an overview of these
techniques), and feature and model discriminative training. Such techniques can make it very
difficult to predict the noisy speech statistics from a clean model as the mismatch function
becomes very complex. Reference [26] demonstrate some of the difficulties in incorporating
predictive techniques in a large vocabulary system with many of these techniques.

However linear transformations like STC, CMLLR, and MLLR can be combined with
uncertainty decoding techniques as shown in [20]. Also there has not been much focus
on combining predictive noise-robustness techniques with discriminative model training
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Table 17.7 Word error rates (%) contrasting joint adaptive training with
VTS adaptive training on an average across two Toshiba test sets (phone
numbers and city names) (from [7]).

Condition

System Idle Highway

ML 2.5 9.5
MPE 2.1 8.6Multistyle training

ML 2.4 4.7
MPE 1.7 3.6Joint adaptive training

ML 2.2 4.4
MPE 1.3 3.7VTS adaptive training

methods. Using a factor analysis approach to estimating the canonical speech model parameters
allows these noise-robustness techniques to be combined with discriminative training.
Table 17.7 compares maximum likelihood (ML) training with the commonly used discrimi-
native minimum phone error (MPE) criterion. The results show clearly that these methods can
be combined and result in greater than 10% relative improvement over the multistyle baseline
for both quiet and noisy conditions.

17.9 Conclusions

This chapter has presented a variety of techniques that use the concept of uncertainty in de-
coding due to noise to improve recognition robustness. Feature-based uncertainty approaches
are presented along with their fundamental limitations. The level of uncertainty is highly de-
pendent on the clean speech model being compensated where the uncertainty is proportional
to the level of mismatch. The model-based uncertainty approaches take advantage of this fact.
They also provide an elegant means of applying pure model-based compensation techniques
like VTS more efficiently by varying the number of regression classes. For adaptive training,
the uncertainty limits the contribution of noisier observations to acoustic model parameter
estimates. In practice, results demonstrating how model-based uncertainty forms can signif-
icantly lower the computational cost with recognition accuracy similar to pure model-based
compensation were shown.

As the noise level increases, it becomes more important to accurately model the correlations
introduced by the noise. Many of the results discussed in this chapter assume stationary noise.
More sophisticated modeling of the environmental noise could be made, for example to handle
sudden noises, background speech or reverberant noise. These techniques also assume the noisy
speech distribution will be Gaussian; however, they can be highly non-Gaussian depending on
the SNR and speech and noise variances. Alternative non-Gaussian distributions could provide
better results. The joint distribution has also been predicted using a noise mismatch function. If
other factors, such as the speaker, can be captured in the joint distribution between the training
and test conditions, then uncertainty decoding can be extended beyond noise compensation.
While there has been work on the field of noise robustness, very few techniques are actually
deployed in large-scale real-word systems. Combining these uncertainty decoding techniques
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with other state-of-the-art recognition algorithms is an ongoing research topic. These issues
are discussed in further detail in [20].
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a posteriori SNR, 59
a priori SNR, 70

estimation, 69–71
decision directed, 70, 75

acoustic echo cancellation, 352
acoustic impulse response, 252
acoustic model, 10
acoustic pre-processing, 161
acoustic transfer function, 259
additive noise, 41
Algonquin, see vector Taylor series
aliasing, 125

cancellation, 123, 125
frequency, 125
spatial, 119
time, 123

amplitude modulation, 444
amplitude modulation spectrogram (AMS),

448
analysis

filter bank, 123–125
frequency domain, 123
subband domain, 123

angle
polar, 142

aperture
length, 113
linear, 113–118

array
gain, 126–129

delay-and-sum, 127

linear, 120, 122, 126, 149–152
manifold vector, 118, 121, 125
modal manifold vector, 147
spherical, 142–152

articulation index, 219
auditory models, 208–221
auditory feature extraction, 208–221

Carney group, 214
detailed physiological models, 214
frequency, rate, and scale, models based

on, 220
Gitza EIH model, 210
impact on MFCC and PLP features, 206
initial performance, 212
Lyon auditory model, 211
multi-band and multi-stream processing,

219
neural synchrony, 210–212, 218
Seneff auditory model, 208
tandem combination, 219

auditory perception, 202–208
auditory thresholds, 205
frequency resolution, 203
intensity, perception of, 203
nonsimultaneous masking, 206
psychoacoustical response to sound

auditory physiology, 194–202
amplitude and frequency modulation,

response to, 202
binaural phenomena, 201
frequency resolution, 196
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auditory physiology (Continued )
lateral suppression, 199
rate-level response, 197
synchrony, neural, 197
transient response, 195

auditory scene analysis (ASA), 433
schema-based grouping, 435
auditory stream, 434
primitive grouping, 434
segments, 434
sequential grouping, 434
simultaneous grouping, 434

Aurora-2, 230, 420–422, 424, 425, 472, 475
Aurora-3, 363
Aurora-4, 230, 273, 422, 427, 457
Aurora-5, 272
autocorrelation, 442

circular, 165
normalized envelope autocorrelation, 444
running autocorrelation, 442
summary autocorrelation, see summary

autocorrelation function
automatic speech recognition (ASR), 35
averaged localized synchrony detection

(ALSD), 218
averaged localized synchrony response

(ALSR), 198
azimuth, 113

backward probability, 15
band quantization, 335–337, 339
band quantized GMM (BQGMM), 335
barge-in, 353
Bark scale, 204
Baum-Welch algorithm, 19–20
Bayes classification, 10, 31, 35
beamformer, 109

adaptive, 120–126, 129, 131, 148
delay-and-sum, 119, 120, 127, 142, 148
fixed, 120, 148
frequency domain, 123
generalized sidelobe canceller, 129–132
HOS, 142
hypercardioid, 148
linear, 152
LMS, 130

maximum kurtosis, 133–136, 139–142
maximum negentropy, 134–136, 141, 142
MVDR, 120–126, 129, 131
performance measures, 126–129
RLS, 130, 131
SOS, 142
subband, 125, 129
subband domain, 123
superdirective, 123, 141, 142

beampattern, 116–120, 122, 128, 148–150
belief propagation, 339
Bessel function, 123, 143
blind source separation, 88
bounded marginalization, see missing data,

bounded marginalization
BQ, see band quantization
BQGMM, see band quantized GMM
broadside, 118

cancellation
aliasing, 123
signal, 121

canonical acoustic model, 480
cepstral mean and variance normalization,

361
cepstral mean normalization, 48, 261
cepstral mean subtraction, 48, 261
cepstral variance normalization, 48
cepstrum histogram normalization, 48
cepstrum smoothing, 71
channel effects on speech, 39
class regression tree, 294, 296
classifier compensation, 400

for ASR, 453, 457
clustering, 408

k-means, 408
regression tree, 473

CMLLR, see constrained maximum
likelihood linear regression

CMVN, see cepstral mean and variance
normalization

cochleagram, 440
T-F unit, 440

cochlear response, 194
cocktail party problem, 433
coding distortions, 41
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Cohen auditory model, 212
computational auditory scene analysis

(CASA), 434
definition, 435
IBM, see ideal binary mask

constrained maximum likelihood linear
regression, see maximum likelihood
linear regression, constrained

front-end, 469
noisy, see noisy constrained maximum

likelihood linear regression, 477,
483

predictive, 477
continuous-time approximation, 356
convolutive mixture, 92
correlogram, 442
correlogram representation, 212
critical bands, 203
critical distance, 253
cross-channel correlation, 442

envelope cross-channel correlation,
444

cross-correlation, 451
generalized, 111

curse of dimensionality, 161
cylindrically isotropic noise field, 130

delta features, 25
devil function, 318–320
diagonal loading, 361
dictionary, 415, 417, 421
diffraction, 110
direct-to-reverberation ratio, 254
direction

cosine, 115
look, 117, 118, 120–122, 128, 129
of arrival, 113

directivity, 145
index, 126, 128–129

discrete cosine transform, 257
discrete Fourier transform, 55–57
discriminative SPLICE, 237
discriminative training, 299
distortion model, 353
distortionless constraint, 120, 121, 128, 129,

137, 148

DNA, see dynamic noise adaptation
dynamic adaptation, 289
dynamic noise adaptation, 338–339
dynamic noise models, 338–339

early reflections, 252, 253
early reverberation, 252
energetic masking, 381
energy decay curve, 253
entropy, 132, 135
envelope

of a signal, 444
equalization-cancellation (EC) model, 451
equation

observation, 112
state, 112

ERB scale, 204
errors in ASR, 35
errors in Bayes classification, 33–36
estimated mask, 402, 429
ETSI

advanced front-end (AFE), 75, 352, 425
standard front end, 255

exact interaction model, 318–320
exemplars, 414
expectation maximization algorithm, 19, 408
external effects on speech, 36

factor analysis, 482
factorial models, 311–340
FDLP, see frequency-domain linear

prediction
feature compensation

for ASR, 454, 457
feature enhancement, 267
feature extraction, 24, 161

impact of auditory processing, 206
feature normalization, 47
missing-feature reconstruction, see

imputation
feature-based noise compensation, 311
feature-space noise adaptive training, 351
features

AMS, see amplitude modulation
spectrogram (AMS)

based on periodicity, 450
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features (Continued )
based on SNR, 450
based on spectral shape, 450
ideal binary masks, 453
IID, see interaural intensity difference

(IID)
ITD, see interaural time difference

(ITD)
pitch-based, see pitch-based features

Fechner log law, 203
filter

distortionless, 170
filter bank, 438

analysis, 123–125
ERB, 438
gammatone filter bank, 438, 444
Meddis hair cell model, 439
polyphase implementation, 125
synthesis, 123–125
uniform DFT, 125

fMPE, 307
forgetting factor, 130
forward and backward masking, 206
forward probability, 14
Fourier transform

discrete, 123
inverse, 112

short time, 123
fragment decoding, 393
frame dropping, 54, 64
frequency

aliasing, 125
shift, 124
turning point, 173

frequency of interest, 170
frequency-domain linear prediction (FDLP),

220
front-end processing, 161
function

Bessel
cylindrical, 123
spherical, 143

Hankel, 143
Legendre, 143
square-integrable, 143, 145

fundamental frequency, 163

Gabor filters, 221
gain

array, 126–128
Kalman, 113
white noise, 126, 128

gammatone filterbank, 260
Gaussian mixture model (GMM), 12,

231–232, 406, 408, 411, 450, 455, 457
Gaussian process, 400
generalized

cross-correlation, 111
Gaussian, 133, 135, 141
sidelobe canceller, 129–132

Ghitza EIH model, 210
GMM noise estimation, 67
grating lobe, 118

half wavelength rule, 119
Hamming window, 24
Hankel function, 143
hidden Markov model (HMM), 11–29, 454
higher-order statistics, 132
histogram noise estimation, 67

I-smoothing, 303
IBM estimation

a posteriori SNR criterion, 441
based on ITD and IID, 452
in reverberant environments, 449, 452
negative energy criterion, 441
onset/offset analysis, 446
segmentation, 446
sequential organization, 446
SNR criterion, 441
tandem algorithm, 442

iterative stage, 445
unvoiced speech segregation, 446, 449
using GMMs, 448, 451
using kernel-density estimators, 452
using MLPs, 445, 449
using SVMs, 449

IBM processing, see also ideal binary mask
(IBM)

for automatic speech recognition, 452,
453

ICA, see independent component analysis
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ideal binary mask (IBM), 435
as a goal of CASA, 437
illustration (Fig.), 438
definition, 436
for ASR, 454
IBM processing, 440
signal resynthesis, 440

ideal ratio mask, see soft mask
imaging, 125
improving ASR on distorted speech, 46
imputation, 399

bounded imputation, 402, 407, 411, 416,
421, 422, 424, 429

cepstral domain imputation, 413, 425
channel compensation, 422
class-conditioned imputation, 400,

411–414, 422, 423, 424, 425, 426,
428

Gaussian-conditioned imputation, 412,
413–414, 422, 423, 424, 425,
426, 428

state-conditioned imputation, 411,
422, 424, 428

cluster-based imputation, 400, 406–411,
422, 423, 424, 426, 427, 428, 429

correlation-based imputation, 400, 402,
422, 424, 429

HMM-based imputation, 420–421,
423–424

nearest neighbors, 421
singular value decomposition (SVD),

421
sparse imputation, 400, 414–420, 421,

423, 426, 427, 428, 429
incomplete data, 373
independent component analysis, 89
information loss, 371
information theory, 132
innovation, 113
instantaneous mixture, 88
interaction models, 317–322
interaural intensity difference (IID), 451
interaural time difference (ITD), 451
irrelevant variability normalization, 365
isolated digit recognition, 422, 423, 424

from IBMs, 453

joint adaptive training, 365, 482, 483
joint uncertainty decoding, 335

front-end, 471–472
model-based, 473–475, 483

JUD, see joint uncertainty decoding

Kalman
filter

extended, 112
observation, 112
state, 112

gain, 113
kurtosis, 134, 135, 139–141

excess, 133

L1-minimization, 415, 418
language model, 10, 28
late reflections, 252, 253
late reverberation, 252
lateral suppression, 199
Legendre

function, 143
polynomial, 143

Levinson-Durbin recursion, 167
lifted max model (LMM), 333
linear

aperture, 113–118
array, 118, 122
phase shift, 115

linear prediction
warped, 175

LMM, see lifted max model
lobe

grating, 118
main, 117
side, 117

log power spectrum, 316
log-spectral amplitude estimation, 76
log-sum model, 321

efficient inference, 334–335
inference, 325–327, 332

logarithmic mel power spectral coefficients,
256

look direction, 149, 154
loopy belief propagation, 339
Lyon models, 211
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MAR, see missing at random
marginalization, see missing data,

marginalization
Markov chain, 11
mask estimation, see IBM estimation
matrix

blocking, 129, 130, 132, 136, 137, 139,
140

covariance, 121–123, 129, 132
spatial spectral, 120
transition, 112

matrix scatter
total, 184

max approximation, 381
max model, 320–321

efficient inference, 332–333
inference, 322–325

maximum a posteriori (MAP), 402, 406, 411
bounded MAP estimation, 402, 404, 411,

412
maximum a posteriori reestimation,

289–291, 299
maximum kurtosis, 134
maximum likelihood, 135
maximum likelihood estimation, 287, 288,

299
maximum likelihood linear regression, 263,

289, 293–295, 311, 350
constrained, 261, 289, 290, 297–299, 334,

474, 480
feature space, 261

maximum mutual information, 301, 303
maximum mutual information estimation,

299, 300, 302
MCAR, see missing completely at random
measurement update, 269
Meddis model, 214
mel cepstrum, 24, 317
mel frequency cepstral coefficients, 24–25,

206, 255
mel interaction model, 321–322
mel scale, 204
mel spectrum, 315–317
meta-missing data, 388
microphone arrays, 340
minimum mean squared error, 271

minimum mean squared error enhancement,
465

minimum phone error, 300, 302, 303, 305
minimum statistics, 67
minimum variance distortionless response,

149, 169
envelope, 169

missing at random, 377
validity of the assumption, 378

missing completely at random, 378
missing data

bounded marginalization, 375, 382, 384,
424, 429

bounds constraint, 382
cepstral domain, 384, 413, 425
dynamic features, 386
marginalization, 375, 379, 399, 424, 426,

427, 429
mask uncertainty, 388
see soft mask, 388

missing data mask, 373, 401–402
missing data model, 375, 376
missing data pattern, 376
missing data theory, 376
missing-feature methods, 312, 399
MLE, see maximum likelihood estimation
MLLR, see maximum likelihood linear

regression
MMI-SPLICE, 238
MMIE, see maximum mutual information

estimation
MMSE magnitude-squared estimation, 76
MMSE-SPLICE, 233
modal array manifold vector, 147
modal coefficient, 143–145
model adaptation, 311
model compensation, 311
model mismatch, 371
model-based feature enhancement, 242
model-based noise compensation, 311–340
model-space noise adaptive training, 353
models of recording environments, 43
modulating, 124
modulation index, 260
modulation spectrum, 202, 219
monaural mixture, 98
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monaural source segregation, 440
MPE, see minimum phone error
multi-band and multi-stream processing,

219
multi-band ASR, 391
multi-condition training, 428, 429
multi-layer perceptron (MLP), 444–446
multi-talker speech recognition, 339–340
multiple input/output inverse theorem, 259
multistyle training, 349, 476
musical noise, 66, 72
MVDR, 148, 149

N-gram language model, 28
NCMLLR, see noisy constrained maximum

likelihood linear regression
negentropy, 134–136, 141, 142

empirical, 135
Newton’s method, 358, 360
NMF, see non-negative matrix factorization
noise

observation, 112
process, 112

noise adaptive training, 348, 480
noise compensation, 311
noise estimation, 441
noise field

isotropic
cylindrically, 123
spherically, 123

noise power spectrum estimation, 65–68
NOISEX, 422, 427
noisy constrained maximum likelihood

linear regression, 290, 477
non-emitting state, 22
non-linear decorrelation, 90
non-linear state-space model (NSSM), 420,

423–424
non-negative basis representations, see

non-negative matrix factorization
non-negative matrix factorization, 340, 421
non-parametric Bayesian methods, 340
Nyquist sampling, 39

observation function, 112
observation noise, 112

observation uncertainty, 410, 419, 427,
465–466

oracle mask, 402, 429
orthonormal, 144
overlap-add synthesis, 55
oversampling, 125
oversubtraction, 73

parallel model combination, 325, 425, 464
parameter sharing, 23
partials, 163
pattern

power, 128
pdf, 132–135, 141

Gamma, 133
K0, 133
Bessel, 133
frequency-dependent, 135
Gaussian, 133–135
generalized Gaussian, 133, 135, 141
Laplace, 133
non-Gaussian, 134
sub-Gaussian, 134
super-Gaussian, 133, 134

perceptual linear prediction (PLP), 24, 206
perfect reconstruction, 123
perfect reconstruction analysis-synthesis, 56
periodicity, 435

unresolved harmonics, 444
permutation problem, 95
phase-sensitive model, 365
phase-sensitive VTS, 365
phone classification

from IBMs, 454
phone lattice, 303
pitch contours, 444, 445
pitch period estimation, 440, 444, 445
pitch-based features, 444
PMC, see parallel model combination
PNCC, see power-normalized cepstral

coefficients
polar angle, 113
posterior union model, 392
power spectrum, 165, 315
power-normalized cepstral coefficients, 217
precedence effect, 201, 254
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prediction, 113
predictive CMLLR, 334, 335
probabilistic mask, see soft mask
probabilistic union model, 391
process noise, 112
ProsPect features, 414, 422
prototype, 124
pseudo-clean model, 357

range, 143
RASTA, see relative spectral analysis
RBM, see restricted Boltzmann machine
recursive least squares, 130
regularization, 135
relative spectral analysis, 207
restricted Boltzmann machine, 340
reverberation, 42, 252
reverberation time, 267
robustness, 31
Rprop, 240

SAT, see speaker adaptive training
scale

bilinear transform, 171
scatter matrix

between-class, 184
total, 184
within-class, 184

scattering, 142
segmentation hypothesis, 395
Seneff model, 208
shift, 124
sidelobe, 164
signal cancellation, 121, 131, 132, 134, 136,

142
signal clipping, 40
signal pre-emphasis, 24
signal-to-noise-ratio, 42
single pass retraining, 349
single-channel mixture, 98
sliding window, 416
snapshot

subband domain, 120
SNR, see signal-to-noise-ratio
soft mask, 388, 402, 409, 418, 426–427, 429,

437

SOS, 132
source-driven ASR, see feature

compensation
sparse representation, 415
spatial

aliasing, 119, 120
spectral matrix, 120, 131

exponentially weighted, 130
normalized, 127

speaker adaptation, 285, 289, 293, 298
speaker adaptative training, 298, 299, 307
speaker segmentation, 339
spectra

analysis, 163
comparison, 177
envelope, 166
estimation, 163

non-parametric, 163
parametric, 163

linear prediction
limitation, 168
warped, 175

minimum variance distortionless
response, 169

warped, 176
power, 165
processing, 163
relationship, 179
tilt, 174

spectral floor, 73
spectral subtraction, 71–74, 352, 427, 429

non-linear, 73
spectro-temporal occlusion, 371
spectral-temporal receptive field (STRFs),

202, 220
spectrogram, 179, 401
spectrogram factorization, 101
spectrographic mask, see missing data mask
speech, 162

unvoiced, 163
voiced, 163

speech amplitude estimation, 75
non-Gaussian models for, 77

speech enhancement, 311
speech features, 24
speech fragment decoding, 393



P1: TIX/XYZ P2: ABC
JWST201-IND JWST201-Virtanen August 31, 2012 9:3 Printer Name: Yet to Come Trim: 244mm × 168mm

Index 495

speech intelligibility, 76
speech prior

using Gaussian mixture modeling,
455

speech recognition, 140–142
speech separation, 339–340
speech signal capture, 37
SPEECON, 423, 425, 427, 428
spherical

array, 142–152
beamformer, 148
Bessel function, 143
coordinate, 154
harmonic, 144, 145

addition theorem, 144
wave, 143

spherically isotropic noise field, 123
SPLICE, 232, 465, 472

with uncertainty, 470–471
state estimate

filtered, 113
predicted, 113

static adaptation, 289
statistics

higher order, 132
second order, 120, 132

steering
beam, 118
null, 117

Stevens power law, 203
STRF, see spectro-temporal receptive field
subband, 129, 136

oversampling, 125
summary autocorrelation function, 442

pitch period estimation, 444
superdirective beamformer, 123
supervised adaptation, 288
support vector machine (SVM), 430
switching linear dynamic model, 262,

270
switching linear dynamic system, 248
synthesis filter bank, 123–125

T-F unit labeling, 444, 449
tandem algorithm, see IBM estimation
Tandem combination, 219

Tchorz/Kollmeier model, 220
telephone bandwidth, 39
temporal envelope filtering, 260
temporal patterns (TRAPS), 220
TI-DIGITS, 230, 422, 424
time

delay of arrival, 111, 115
time-frequency unit, see also cochleagram,

T-F unit
TIMIT, 153
transform

bilinear, 172
phase, 111

TRAPS representation, see temporal patterns

uncertainty decoding, 312, 314, 335, 353,
466–477

and adaptive training, 480
feature-based, 468
model-based, 473

union model, 391
unmixing matrix, 89, 91
unsupervised adaptation, 288

variational inference, 339
vector Taylor series, 246, 268, 327–425,

425–426
model-based compensation, 464, 475
phase factor approach, 331–332
SNR-dependent approach, 331–332

visible rigion, 118
Viterbi algorithm, 17–18
vocal tract length normalization, 308
voice activity detection, 58–65
VTLN, see vocal tract length normalization
VTS, see vector Taylor series, see vector

Taylor series
VTS adaptation, 354

Wall Street Journal, 230, 422, 428, 457
warp

bilinear transform, 172
frequency domain, 173
LP, 175
time domain, 173
turning point, 173
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warp factor, 172
wave

front, 113
plane, 113, 121, 142, 143, 145
scattered, 143
spherical, 121, 143

wavenumber, 114, 143
frequency response function,

115
scalar, 114
vector, 114

weight vector
active, 129–132, 134, 136, 138–142
quiescent, 129, 130, 139, 140, 142

white noise gain, 128
Wiener filtering, 74
word error rate, 142
word lattice, 301

zero variance model, 244
zero-crossing peak analysis (ZCPA), 218
Zhang-Carney auditory model, 214–216




